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Preface

ASIACRYPT 2006 was held in Shanghai, China, during December 3–7, 2006.
This was the 12th annual ASIACRYPT conference, and was sponsored by the
International Association for Cryptologic Research (IACR), in cooperation with
the State Key Labs of Information Security, Chinese Academy of Sciences (LOIS),
Lab for Cryptography and Information Security, Shanghai Jiaotong University
(CIS/SJTU) and Natural Science Foundation of China (NSFC).

This year we received a record number of 314 submissions, of which 303 regu-
lar submissions were reviewed by 32 members of the Program Committee, with
the help of 250 external referees. After a two-month review process, the Program
Committee selected 30 papers for presentation. This volume of proceedings con-
tains the revised version of the 30 selected papers. The IACR 2006 distinguished
lecture by Ivan Damgaard was also in the program. The paper “Finding SHA-1
Characteristics” by Christophe De Canniére and Christian Rechberger received
the best paper award.

The reviewing process was a challenging task, and we had to reject many good
submissions that could have been accepted under normal circumstances. I am
very grateful to Program Committee for their efforts to carry out this challenging
task and to keep the high standard of ASIACRYPT conferences. We gratefully
acknowledge our 250 external referees; without their help it would be infeasible
to provide 1008 high-quality, often extensive, reviews. More importantly, I would
like to thank all the authors who submitted their work to ASIACRYPT 2006.

This year submissions were processed using Web-based software iChair, and
would like to thank Thomas Baigneres, Matthieu Finiasz and Serge Vaudenay
for providing this valuable tool. I am grateful to Ruimin Shen for his generous
and indispensable support and I would like to thank Changzhe Gao, Haining Lu
and Jingjing Wu for the smooth operation of our Web-sites.

I would also like to thank the General Chair, Dingyi Pei, for organizing the
conference and the Organization Chair, Kefei Chen, for taking over all the hard
tasks and preparing these proceedings.

Last but not least, my thanks to all the participants of the ASIACRYPT 2006
conference.

September 2006 Xuejia Lai
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Sébastien Canard
Ran Canetti
Zhengjun Cao
Dr Gary Carter

Jiun-Ming Chen
Liqun Chen
Benoit Chevallier-Mames
Jung-Hui Chiu
Kim-Kwang R. Choo
Yvonne Cliff
Martin Cochran
Scott Contini
Jean-Sebastien Coron
Nicolas Courtois
Jason Crampton
Ricardo Dahab
Tanmoy Kanti Das
Blandine Debraize
Cecile Delerablee
Yi Deng
Yingpu Deng

Alex Dent
Claus Diem
Christophe Doche
Yevgeniy Dodis
Ling Dong
Jeroen Doumen
Orr Dunkelman
Ratna Dutta
Chun-I Fan
Haining Fan
Reza Rezaeien Farashahi
Siamak

Fayyaz-Shahan-dashti
Serge Fehr
Décio Luiz Gazzoni Filho
Matthieu Finiasz
Marc Fischlin



Organization IX

Eiichiro Fujisaki
Kazuhide Fukushima
Jun Furukawa
Steven Galbraith
Marc Girault
Kenneth Giuliani
Philippe Golle
Zheng Gong
Eu-Jin Goh
Jeroen van de Graaf
Jens Groth
Lifeng Guo
Kishan Gupta
Satoshi Hada
Safuat Hamdy
Helena Handschuh
Colm O hEigeartaigh
Martin Hell
Swee-Huay Heng
Yong-Sork Her
Javier Herranz
Clemens Heuberger
Alejandro Hevia
Jason Hinek
Shoichi Hirose
Martin Hirt
Xuan Hong
Nick Hopper
Yoshiaki Hori
Honggang Hu
Lei Hu
Po-Yi Huang
Qianhong Huang
Xinyi Huang
Zhenjie Huang
J. J. Hwang
Jim Hughes
Russell Impagliazzo
Yuval Ishai
Kouichi Itoh
Tetsu Iwata
Stanislaw Jarecki
Shaoquan Jiang
Kwon Jo
Ellen Jochemsz

Ari Juels
Pascal Junod
Marcelo Kaihara
Yael Kalai
Jonathan Katz
Pinhun Ke
John Kelsey
Shahram Khazaei
Khoongming Khoo
Aggelos Kiayias
Joe Kilian
Jongsung Kim
Eike Kiltz
Takeshi Koshiba
Lars Knudsen
Noboru Kunihiro
Simon Künzli
Wen-Chung Kuo
Hidenori Kuwakado
Joseph Lano
Sven Laur
John Malone Lee
Reynald Lercier
Jung-Shian Li
Pin Lin
Xiangxue Li
Zhuowei Li
Benoit Libert
Yehuda Lindell
Yu Long
Vadim Lyubashevsky
Mark Manulis
Anton Mityagin
Jean Monnerat
Tal Moran
Yi Mu
Sourav Mukhopadhyay
Michael Naehrig
Jorge Nakahara Jr.
Mridul Nandy
Yassir Nawaz
Gregory Neven
Lan Nguyen
Phong Nguyen
Jesper Buus Nielsen

Juan Gonzalez Nieto
Juanma Gonzales Nieto
Svetla Nikova
Yasuhiro Ohtaki
Dag Arne Osvik
Soyoung Park
Matthew G. Parker
Sylvain Pasini
Torben Pryds Pedersen
Kun Peng
Olivier Pereira
Ludovic Perret
Thomas Peyrin
Duong Hieu Phan
Josef Pieprzyk
Benny Pinkas
Angela Piper
Weidong Qiu
Tal Rabin
Leonid Reyzin
Tom Ristenpart
Matt Robshaw
Markus Rohe
Allen Roginsky
Greg Rose
Andy Rupp
Ahmad-Reza Sadeghi
Palash Sarkar
Louis Salvail
Werner Schindler
Katja Schmidt-Samoa
Berry Schoenmakers
Jasper Scholten
Jacob Schuldt
Gil Segev
SeongHan Shin
Tom Shrimpton
Andrey Sidorenko
Alice Silverberg
Leonie Simpson
Jerome A. Solinas
Nigel Smart
Adam Smith
Markus Stadler
Martijn Stam



X Organization

Allan Steel
Till Stegers
Damien Stehle
Andreas Stein
John Steinberger
Marc Stevens
Doug Stinson
Chunhua Su
Makoto Sugita
Haipo Sun
Hung-Min Sun
Willy Susilo
Daisuke Suzuki
Gelareh Taban
Tsuyoshi Takagi
Jun-ichi Takeuchi
Keisuke Tanaka
Qiang Tang
Tomas Toft
Dongvu Tonien
Jacques Traore
Pim Tuyls

Wen-Guey Tzeng
Yoshifumi Ueshige
Ingrid Verbauwhede
Frederik Vercauteren
Damien Vergnaud
Eric Verheul
Martin Vuagnoux
Charlotte Vikkelsoe
Johan Wallén
Colin Walter
Chih-Hung Wang
Guilin Wang
Huaxiong Wang
Kunpeng Wang
Wang Peng
Shuhong Wang
Bogdan Warinschi
Brent Waters
Benne de Weger
Mi Wen
Jian Weng
Christopher Wolf

Stefan Wolf
Zheng Xu
Yacov Yacobi
Akihiro Yamamura
Bo-Yin Yang
Chung-Huang Yang
C. N. Yang
Lizhen Yang
Yiqun Lisa Yin
Nam Yul Yu
Bin Zhang
Lei Zhang
Rui Zhang
Wentao Zhang
Zhengfeng Zhang
Zhifang Zhang
Xianfeng Zhao
Yunlei Zhao
Dong Zheng
Sujing Zhou
Yongbin Zhou
Huafei Zhu



Table of Contents

Attacks on Hash Functions

Finding SHA-1 Characteristics: General Results and Applications . . . . . . . 1
Christophe De Cannière, Christian Rechberger

Improved Collision Search for SHA-0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Yusuke Naito, Yu Sasaki, Takeshi Shimoyama, Jun Yajima,
Noboru Kunihiro, Kazuo Ohta

Forgery and Partial Key-Recovery Attacks on HMAC and NMAC
Using Hash Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Scott Contini, Yiqun Lisa Yin

Stream Ciphers and Boolean Functions

New Guess-and-Determine Attack on the Self-Shrinking Generator . . . . . . 54
Bin Zhang, Dengguo Feng

On the (In)security of Stream Ciphers Based on Arrays and Modular
Addition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Souradyuti Paul, Bart Preneel

Construction and Analysis of Boolean Functions of 2t + 1 Variables
with Maximum Algebraic Immunity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

Na Li, Wen-Feng Qi

Biometrics and ECC Computation

Secure Sketch for Biometric Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
Qiming Li, Yagiz Sutcu, Nasir Memon

The 2-Adic CM Method for Genus 2 Curves with Application
to Cryptography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

P. Gaudry, T. Houtmann, D. Kohel, C. Ritzenthaler, A. Weng

Extending Scalar Multiplication Using Double Bases . . . . . . . . . . . . . . . . . . 130
Roberto Avanzi, Vassil Dimitrov, Christophe Doche,
Francesco Sica



XII Table of Contents

ID-Based Schemes

HIBE With Short Public Parameters Without Random Oracle . . . . . . . . . . 145
Sanjit Chatterjee, Palash Sarkar

Forward-Secure and Searchable Broadcast Encryption with Short
Ciphertexts and Private Keys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161

Nuttapong Attrapadung, Jun Furukawa, Hideki Imai

On the Generic Construction of Identity-Based Signatures
with Additional Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

David Galindo, Javier Herranz, Eike Kiltz

Public-Key Schemes

On the Provable Security of an Efficient RSA-Based Pseudorandom
Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194

Ron Steinfeld, Josef Pieprzyk, Huaxiong Wang

On the Security of OAEP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Alexandra Boldyreva, Marc Fischlin

Relationship Between Standard Model Plaintext Awareness
and Message Hiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

Isamu Teranishi, Wakaha Ogata

RSA and Factorization

On the Equivalence of RSA and Factoring Regarding Generic Ring
Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241

Gregor Leander, Andy Rupp

Trading One-Wayness Against Chosen-Ciphertext Security
in Factoring-Based Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Pascal Paillier, Jorge L. Villar

A Strategy for Finding Roots of Multivariate Polynomials with New
Applications in Attacking RSA Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267

Ellen Jochemsz, Alexander May

Construction of Hash Function

Indifferentiable Security Analysis of Popular Hash Functions
with Prefix-Free Padding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

Donghoon Chang, Sangjin Lee, Mridul Nandi, Moti Yung



Table of Contents XIII

Multi-Property-Preserving Hash Domain Extension and the EMD
Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Mihir Bellare, Thomas Ristenpart

Combining Compression Functions and Block Cipher-Based Hash
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315

Thomas Peyrin, Henri Gilbert, Frédéric Muller, Matt Robshaw

Protocols

A Scalable Password-Based Group Key Exchange Protocol
in the Standard Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 332

Michel Abdalla, David Pointcheval

A Weakness in Some Oblivious Transfer and Zero-Knowledge
Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Ventzislav Nikov, Svetla Nikova, Bart Preneel

Almost Optimum Secret Sharing Schemes Secure Against Cheating
for Arbitrary Secret Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364

Satoshi Obana, Toshinori Araki

Block Ciphers

KFC - The Krazy Feistel Cipher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380
Thomas Baignères, Matthieu Finiasz

Generic Attacks on Unbalanced Feistel Schemes with Contracting
Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 396

Jacques Patarin, Valérie Nachef, Côme Berbain
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Finding SHA-1 Characteristics:

General Results and Applications

Christophe De Cannière1,2 and Christian Rechberger1

1 Graz University of Technology
Institute for Applied Information Processing and Communications

Inffeldgasse 16a, A–8010 Graz, Austria
2 Katholieke Universiteit Leuven, Dept. ESAT/SCD-COSIC,

Kasteelpark Arenberg 10, B–3001 Heverlee, Belgium
{Christophe.DeCanniere, Christian.Rechberger}@iaik.tugraz.at

Abstract. The most efficient collision attacks on members of the SHA
family presented so far all use complex characteristics which were man-
ually constructed by Wang et al. In this report, we describe a method to
search for characteristics in an automatic way. This is particularly useful
for multi-block attacks, and as a proof of concept, we give a two-block
collision for 64-step SHA-1 based on a new characteristic. The highest
number of steps for which a SHA-1 collision was published so far was 58.
We also give a unified view on the expected work factor of a collision
search and the needed degrees of freedom for the search, which facili-
tates optimization.

1 Introduction

Shortcut attacks on the collision resistance of hash functions are usually differ-
ential in nature. In the differential cryptanalysis of block ciphers, characteristics
with arbitrary starting and ending differences spanning less than the full num-
ber of rounds and having a sufficient high probability allow key recovery attacks
faster than brute force. This contrasts the situation in the case of collision at-
tacks on hash functions. Here characteristics of sufficiently high probability need
to start and end with chaining input and output difference being zero, injected
differences (via the message input) are expected to cancel out themselves.

Members of the MD4 hash function family like the widely used SHA-1 mix
simple building blocks like modular addition, 3-input bit-wise Boolean functions
and bit-wise XOR, combine them to steps and iterate these steps many times.
High probability characteristics which are needed for fast collision search attacks
exploit situations where differences with respect to one operation propagate with
high probability through other building blocks as well. As an example, an XOR
difference in the most significant bit of a word propagates with probability one
through a modular addition. The best characteristics for SHA-1 are constructed
such that these and similar effects are maximized. However they do not fulfill the
requirement of zero differences at the chaining inputs/outputs which makes them
not directly usable for fast collision search attacks. Earlier work on SHA-1 [2,13]

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 1–20, 2006.
c© International Association for Cryptologic Research 2006



2 C. De Cannière and C. Rechberger

therefore consider characteristics which fulfill this requirement at the cost of a
less optimal probabilities.

However, the fact that an attacker has complete control over the message
input, and thus control over the propagation of all differences in the first steps,
gives more freedom in the choice of good characteristics. Roughly speaking, the
probability of complex characteristics spanning the first steps which connect
to a desired high probability characteristic does not affect the performance of a
collision search. Hence, finding these complex connecting characteristics helps to
improve the performance of collision search attacks. In the case of SHA-1, finding
such characteristics made differential collision search attacks on the full SHA-1
possible in the first place. To reflect the fact that the desired characteristics to
connect to have usually probability one in a linearized model of the hash function,
they are referred to as L-characteristics. The connecting characteristics do not
have this property, hence the name NL-characteristics.

So far, little is known about the construction of these connecting NL-char-
acteristics. Wang et al. describe in their seminal paper [20] an approach which is
based on following and manipulating differences manually [23] in combination
with a great deal of experience and intuition. Follow-up work on SHA-1 [16] as
well as on MD4 [9], MD5 [3,7,8,15] and SHA-0 [10] all build up on the char-
acteristics given in the papers of Wang et al. [17,20,21,22]. The only exception
is recent work by Schläffer and Oswald [14] on the conceptually much simpler
MD4, where an algorithm for finding new characteristics given the same mes-
sage difference as originally used by Wang et al. is reported. No one succeeded
so far in showing a similar ability in the case of SHA-1. By employing a new
method and using SHA-1 as an example, we show in this article that finding
useful NL-characteristics is also possible in more complex hash functions.

As shown in informal presentations by Wang [18,19], the actual shape/design
of these connecting NL-characteristics interacts with speed-up techniques at the
final-search stage. These techniques are referred to as message modification tech-
niques and little details about them in the context of SHA-1 are publicly known
so far. To sum up, two important methods (finding connecting NL-characteristics
and message modification) are not fully understood, but heavily affect the actual
collision-search complexity. Therefore, it currently seems impossible to reason
about the limits of these techniques, other than improving on the current results
in an ad-hoc manner. Hence the need for automated search tools as the one
presented in this paper.

Looking at the recent results of Wang et al. on SHA-1, we see that more de-
grees of freedom are needed for speedup-purposes. As mentioned in [18], message
conditions and state variable conditions need to be fulfilled for that purpose. It
is observed that “the available message space is tight”, which refers to the re-
maining degrees of freedom.

The new view we propose unifies finding complex characteristics and speeding
up the final search phase. By calculating the expected number of collisions, given
the degrees of freedom, we tackle questions related to optimization. If the goal is to
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find one collision, why should the used method allow to find more than that? The
new view gives an attacker the ability to exploit all available degrees of freedom.

The remainder of the paper is structured as follows. Subsequently we define
some notation in Table 1. A short description of SHA-1 is given in Sect. 2. We
tackle the core of the problem in Sect. 3, where we revisit the approach of finding
collisions based on differential techniques. To do that, we generalize the concept
of characteristics and introduce a new way to calculate the expected work to
find a collision. Some examples are given there to illustrate the new concept.
Based on that, in Sect. 4 we finally describe a way to automatically find the
complex NL-characteristics needed. Also there we give examples which illustrate
its behavior. As an application of the described technique, we give a two-block
64-step SHA-1 colliding message pair including all used characteristics in Sect. 5.
Sect. 6 puts our contribution into the context of related and previous work. We
conclude and survey future work in Sect. 7.

Table 1. Notation

notation description

X ⊕ Y bit-wise XOR of X and Y
ΔX difference with respect to XOR

X + Y addition of X and Y modulo 232

δX difference with respect to modular addition
X arbitrary 32-bit word
xi value of the i-th bit
X2 pair of words, shortcut for (X, X∗)
Mi input message word i (32 bits)
Wi expanded input message word t (32 bits)

X ≪ n bit-rotation of X by n positions to the left, 0 ≤ n ≤ 31
X ≫ n bit-rotation of X by n positions to the right, 0 ≤ n ≤ 31

N number of steps of the compression function

2 Short Introduction to SHA-1

SHA-1 [11], as most dedicated hash functions used today, is based on the design
principles of MD4. First, the input message is padded and split into 512-bit
message blocks. An 80-step compression function is then applied to each of these
512-bit message blocks. It has two types of inputs: a chaining input of 160 bits
and a message input of 512 bits. Let g(m, h) denote the compression function
with message input m and chaining input h. The chaining input hn+1 for the
next compression function is calculated by hn + g(m, hn), called feed forward.
The chaining variables for the first iteration are set to fixed values (referred to
as IV ). The result of the last call to the compression function is the hash of the
message. The compression function basically consists of two parts: the message
expansion and the state update transformation.
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Message Expansion. In SHA-1, the message expansion is defined as follows.
The message is represented by 16 32-bit words, denoted by Mi, with 0 ≤ i ≤ 15.
In the message expansion, this input is expanded linearly into 80 32-bit words
Wi. The expanded message words Wi are defined as follows:

Wi =

{
Mi, for 0 ≤ i ≤ 15,
(Wi−3 ⊕Wi−8 ⊕Wi−14 ⊕Wi−16) ≪ 1 for 16 ≤ i ≤ 79 .

(1)

State Update Transformation. The state update transformation starts by
copying the chaining input into the five 32-bit state variables A, . . . , E, which
are updated in 80 steps (0, . . . , 79) by using the word Wi and a round constant
Ki in step i. A single step of the state update transformation is shown in Fig. 1.
The function f in Fig. 1 depends on the step number: steps 0 to 19 (round 1)

i i i i i

i+1 i+1 i+1 i+1 i+1

i

i

Fig. 1. One step of the state update transformation of SHA-1

use fIF and steps 40 to 59 (round 3) use fMAJ . The function fXOR is applied
in the remaining steps (round 2 and 4). The functions are defined as:

fIF (B, C, D) = B ∧ C ⊕B ∧D (2)
fMAJ (B, C, D) = B ∧ C ⊕B ∧D ⊕ C ∧D (3)
fXOR(B, C, D) = B ⊕ C ⊕D . (4)

Note that Bi = Ai−1, Ci = Ai−2 ≫ 2, Di = Ai−3 ≫ 2, Ei = Ai−4 ≫ 2. This
also implies that the chaining inputs fill all Aj for −4 ≤ j ≤ 0. Thus it suffices to
consider the state variable A, which we will for the remainder of this paper.

3 Collision Attacks Revisited

The objective of this paper is to develop a method to find SHA-1 characteristics
which are suitable for collision attacks. However, in order to solve this problem,
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we first have to determine exactly what ‘suitable’ means in this context. In
this section, we will therefore consider collision attacks and characteristics in a
general setting, and analyze how the choice of the characteristic affects the work
factor of the attack.

3.1 How Dedicated Collision Attacks Work

If we are given an n-bit hash function whose output values are uniformly dis-
tributed and use it to hash an arbitrary pair of messages, then we expect the
hash values to collide with a probability of 2−n. Hence, without knowing anything
about the internals of the hash function, we should be able to find a collision
after trying out 2n pairs. Since any set of 2n pairs will do, this approach can be
turned into a birthday attack requiring only 2n/2 hash evaluations.

Instead of testing arbitrary pairs, dedicated collision attacks try to use the
internal structure of the hash function to locate a special subset of message pairs
which (1) are considerably more likely to collide than random pairs, and (2) can
efficiently be enumerated. A particularly effective way to construct such subsets
is to restrict the search space to message pairs with a fixed difference. The
goal is to pick these differences in such a way that they are likely to propagate
through the hash function following a predefined differential characteristic which
eventually ends in a zero difference (a collision).

As was observed in [4], the probability for this to happen can be increased
by restricting the subset even further and imposing conditions not only on the
differences but also on the values of specific (expanded) message bits. Moreover,
since the internal variables of a hash function only depend on the message (and
not on a secret key as for example in block ciphers), we can also restrict the set
of message pairs by imposing conditions on the state variables. Depending on
their position, however, these conditions might have a considerable impact on
the efficiency to enumerate the messages fulfilling them. This important point is
analyzed in detail in Sect. 3.3.

3.2 Generalized Characteristics

In order to reflect the fact that both the differences and the actual values of bits
play a role in their attack, Wang et al. already extended the notion of differential
characteristics by adding a sign to each non-zero bit difference (1 or −1). In
this paper we generalize this concept even further by allowing characteristics to
impose arbitrary conditions on the values of pairs of bits.

The conditions imposed by such a generalized characteristic on a particular
pair of words X2 will be denoted by ∇X . It will turn out to be convenient
to represent ∇X as a set, containing the values for which the conditions are
satisfied, for example

∇X = {X2 | x7 · x∗
7 = 0, xi = x∗

i for 2 ≤ i < 6, x1 �= x∗
1, and x0 = x∗

0 = 0} .

In order to write this in a more compact way, we will use the notation listed in
Table 2. Using this convention, we can rewrite the example above as

∇X = [7?----x0] .
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Table 2. Possible conditions on a pair of bits

(xi, xi
∗) (0, 0) (1, 0) (0, 1) (1, 1)

? � � � �
- � - - �
x - � � -
0 � - - -
u - � - -
n - - � -
1 - - - �
# - - - -

(xi, x
∗
i ) (0, 0) (1, 0) (0, 1) (1, 1)

3 � � - -
5 � - � -
7 � � � -
A - � - �
B � � - �
C - - � �
D � - � �
E - � � �

A generalized characteristic for SHA-1 is then simply a pair of sequences
∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1.

3.3 Work Factor and Probabilities

Let us now assume that we are given a complete characteristic for SHA-1, spec-
ified by ∇A−4, . . . ,∇AN and ∇W0, . . . ,∇WN−1. Our goal is to estimate how
much effort it would take to find a pair of messages which follows this charac-
teristic, assuming a simple depth-first search algorithm which tries to determine
the pairs of message words M2

i one by one starting from M2
0 .

In order to estimate the work factor of this algorithm, we will compute the
expected number of visited nodes in the search tree. But first we introduce some
definitions.

Definition 1. The message freedom FW (i) of a characteristic at step i is the
number of ways to choose W 2

i without violating any (linear) condition imposed
on the expanded message, given fixed values W 2

j for 0 ≤ j < i.

We note that since the expanded message in SHA-1 is completely determined
by the first 16 words, we always have FW (i) = 1 for i ≥ 16.

Definition 2. The uncontrolled probability Pu(i) of a characteristic at step i
is the probability that the output A2

i+1 of step i follows the characteristic, given
that all input pairs do as well, i.e.,

Pu(i) = P
(
A2

i+1 ∈ ∇Ai+1 | A2
i−j ∈ ∇Ai−j for 0 ≤ j < 5, and W 2

i ∈ ∇Wi

)
.

Definition 3. The controlled probability Pc(i) of a characteristic at step i is
the probability that there exists at least one pair of message words W 2

i following
the characteristic, such that the output A2

i+1 of step i follows the characteristic,
given that all other input pairs do as well, i.e.,

Pc(i) = P
(∃W 2

i ∈ ∇Wi : A2
i+1 ∈ ∇Ai+1 | A2

i−j ∈ ∇Ai−j for 0 ≤ j < 5
)

.

With the definitions above, we can now easily express the number of nodes
Ns(i) visited at each step of the compression function during the collision search.
Taking into account that the average number of children of a node at step i is
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FW (i) ·Pu(i), that only a fraction Pc(i) of the nodes at step i have any children
at all, and that the search stops as soon as step N is reached, we can derive the
following recursive relation:

Ns(i) =

{
1 if i = N ,

max
{
Ns(i + 1) · FW (i)−1 · P−1

u (i), P−1
c (i)

}
if i < N .

The total work factor is then given by

Nw =
N∑

i=1

Ns(i) .

In order to understand what the different quantities defined above represent,
it might be helpful to walk through a small example. Table 3 shows two hypo-
thetical search trees with corresponding values of FW , Pu, and Pc. The nodes
which are visited by the search algorithm, and hence contribute to the com-
plexity of the collision search, are filled. Note that the values of Pc(i) do not
always influence the complexity of the attack. The trees in Table 3, however, are
examples where they do.

Table 3. How Pc affects the search tree

i treea FW Pu(i) Pc(i) Ns(i)

0: 4 1/2 1 1
1: 4 1/2 1 1
2: 1 1/2 1/2 2
3: 1 1 1 1
4: 1

i tree FW Pu(i) Pc(i) Ns(i)

0: 4 1/2 1 1
1: 4 1/2 1/2 2
2: 1 1/2 1/2 2
3: 1 1 1 1
4: 1

a Both and represent values of W 2
i−1 which lead to a consistent A2

i ; the nodes
visited by the search algorithm are filled. Inconsistent values are denoted by .

Let us now illustrate the previous concepts with two examples on 64-step
SHA-1. In the first example, shown in Table 4, we consider a generalized char-
acteristic which does not impose any conditions, except for a fixed IV value at
the input of the compression function and a collision at the output. The values
of Ns(i) in the table tell us that the search algorithm is expected to traverse
nearly the complete compression function 2160 times before finding a colliding
pair (note that from here on all values listed in tables will be base 2 logarithms).

In the example of Table 5, we force the state variables and the expanded
message words to follow a given differential characteristic starting from the out-
put of the 16th step (i.e., A16, . . . , E16). How such diffential characteriscs can be
found will be explained in Sect. 4. The most significant effect is that the five con-
secutive uncontrolled probabilities of 2−32 in the previous example move up to
steps 11–15, where their effect on the number of nodes is completely neutralized
by the degrees of freedom in the expanded message, resulting in a considerable
reduction of the total work factor.
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The examples above clearly show that small probabilities have a much larger
impact on the work factor when they occur after step 16 (where FW (i) = 1).
Therefore, when constructing characteristics, we will in the first place try to
optimize the probabilities in the second part of the compression function (steps
16 to N−1), even if this comes at the cost of a significant decrease of probabilities
in the first part.

4 Constructing Characteristics

Having the necessary tools to estimate the work factor corresponding to any
given generalized characteristic, we now turn to the problem of finding charac-
teristics which minimize this work factor.

The search method presented in this section constructs characteristics by it-
eratively adding more conditions as long as it improves the work factor. During
this process, two important tasks need to be performed: (1) determining when
and where to add which condition, and (2) letting conditions propagate and
avoiding inconsistent conditions. We first discuss the second problem.

4.1 Consistency and Propagation of Conditions

When analyzing the interaction of bit conditions imposed at the inputs and
the outputs of a single step of the state update transformation, three situations
can occur: (1) the conditions are inconsistent, (2) the conditions are consistent,
and (3) the conditions are consistent, provided that a number of additional bit
conditions are fulfilled as well (the conditions are said to propagate). This third
case is illustrated in Table 6, where the conditions imposed on the expanded
message words in the previous example propagate to the state variables. It should
be noted that such consistency checks can be implemented in a very efficient way,
thanks to the fact that bits at different bit positions only interact through the
carries of the integer additions.

4.2 Determining Which Conditions to Add

In Sect. 3.3 we noted that conditions in a characteristic affect the work factor in
very different ways depending on the step where they are enforced. This is also
reflected in the procedure which we are about to propose: in order to determine
where to add which conditions, we will proceed in a number of distinct stages,
each of which tries to optimize a specific part of the characteristic.

Stage 1. As observed in Sect. 3.3, the work factor of the collision search al-
gorithm is mainly determined by the shape of the characteristic after step 16.
Hence, our first goal is to find a high probability differential characteristic, which
can start with any difference in the state variables after step 16, but ends in a
zero difference in the last step (later on, when we consider multi-block collisions,
this constraint will be removed as well).
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Table 4. Example 1, no conditions

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 ???????????????????????????????? 64 0.00 0.00 0.00
1: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00

· · · · · ·
12: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00
13: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 0.00
14: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 32.00
15: ???????????????????????????????? ???????????????????????????????? 64 0.00 0.00 96.00
16: ???????????????????????????????? ???????????????????????????????? 0 0.00 0.00 160.00
17: ???????????????????????????????? ???????????????????????????????? 0 0.00 0.00 160.00

· · · · · ·
59: ???????????????????????????????? ???????????????????????????????? 0 -32.00 0.00 160.00
60: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 128.00
61: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 96.00
62: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 64.00
63: -------------------------------- ???????????????????????????????? 0 -32.00 0.00 32.00
64: --------------------------------

Table 5. Example 2, less message freedom, better work factor by specifying a suitable
message difference

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 -xx----------------------------- 32 0.00 0.00 0.00
1: ???????????????????????????????? xxx-----------------------x-x-x- 32 0.00 0.00 0.00

· · · · · ·
7: ???????????????????????????????? -xx-----------------------xx--x- 32 0.00 0.00 0.00
8: ???????????????????????????????? -xx----------------------x----xx 32 0.00 0.00 5.00
9: ???????????????????????????????? --x----------------------x------ 32 0.00 0.00 37.00

10: ???????????????????????????????? xxx----------------------x----x- 32 0.00 0.00 69.00
11: ???????????????????????????????? -xx---------------------------x- 32 -32.00 -29.00 101.00
12: x------------------------------- x------------------------------x 32 -32.00 -31.00 101.00
13: x------------------------------- --------------------------x----- 32 -32.00 -31.00 101.00
14: -------------------------------- ------------------------------xx 32 -32.00 -31.19 101.00
15: x-----------------------------xx -x-----------------------x-x--x- 32 -32.00 -27.83 101.00
16: ------------------------------x- -x-----------------------x------ 0 -7.00 -4.00 101.00
17: x-----------------------------x- xxx----------------------x-x--x- 0 -7.00 -2.00 94.00
18: -------------------------------- x-x----------------------------- 0 -5.00 -3.00 87.00
19: ------------------------------x- x------------------------x------ 0 -4.00 -3.00 82.00

· · · · · ·
49: ------------------------------x- -------------------------x------ 0 -2.00 -1.00 7.00
50: -------------------------------- x-----------------------------x- 0 -3.00 -2.00 5.00
51: -------------------------------- -------------------------------- 0 -1.00 -1.00 2.00
52: -------------------------------- x------------------------------- 0 -1.00 -1.00 1.00
53: -------------------------------- x------------------------------- 0 0.00 0.00 0.00
54: -------------------------------- -------------------------------- 0 0.00 0.00 0.00

· · · · · ·
60: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
61: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
62: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
63: -------------------------------- -------------------------------- 0 0.00 0.00 0.00
64: --------------------------------

In general, the sparser a differential characteristic, the higher its probability,
and in the case of the SHA family, it has been shown before that sparse char-
acteristics can easily be found by linearizing all components of the state update
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Table 6. Propagation of conditions in Example 2

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 -xx----------------------------- 32 0.00 0.00 0.00
1: ??x----------------------------- xxx-----------------------x-x-x- 32 0.00 0.00 0.00
2: ??????????????????????????????x- --x----------------------x----xx 32 0.00 0.00 0.00
3: ???????????????????????????????? x-xx---------------------x------ 32 0.00 0.00 0.00

· · · · · ·

transformation, representing the resulting compression function as a linear code,
and searching for low-weight vectors (see [5,12,13,20]).

Once a suitable differential characteristic is found for the linearized variant
(called an L-characteristic), we determine the corresponding message difference,
and impose it to our generalized characteristic. The differences in the state vari-
ables after step 16 are copied in the same way, except that we do not directly
impose constraints to the most significant and the two least significant bits, but
instead determine them by propagation. This will avoid inconsistencies caused
in some cases by the nonlinear f -functions.

Stage 2. At this point, the largest part of the work factor is most likely concen-
trated in steps 12 to 16 (see e.g. Table 5), where the state variables, which are
not constraint in any way in the previous steps, are suddenly forced to follow
a fixed difference. In order to eliminate this bottleneck, we want to guide the
state variables to the target difference by imposing conditions to the first steps
as well.

Although the probability of this part of the characteristic is not as critical
as before, we still want the differences to be reasonably sparse. Unfortunately,
because of the high number of constraints (the message difference and both the
differences at the input of the first step and at the output of step 16 are fixed
already), suitable L-characteristics are extremely unlikely to exist in this case.
In order to solve this problem, we will use a probabilistic algorithm which bears
some resemblance to the algorithms used to find low-weight code words, but
instead of feeding it with a linear code, we directly apply it to the unmodified
(non-linear) compression function.

The basic idea of the algorithm is to randomly pick a bit position which is
not restricted yet (i.e., a ‘?’-bit), impose a zero-difference at this position (a
‘-’-bit), and calculate how the condition propagates. This is repeated until all
unrestricted bits have been eliminated, or until we run into an inconsistency, in
which case we start again. The algorithm can be optimized in several ways, for
example by also picking ‘x’-bits once they start to appear, guessing the sign of
their differences (‘u’ or ‘n’), and backtracking if this does not lead to a solution.
It turns out that inconsistencies are discovered considerably earlier this way.

An interesting property of the proposed procedure is that the sparser a char-
acteristic, the higher the probability that it will be discovered. The number of
trials before a consistent characteristic is found, is very hard to predict, though.
Experiments show that this number can range from a few hundreds to several
hundreds of thousands.
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Stage 3. In the final stage, we try to further improve the work factor corre-
sponding to the characteristic by performing local optimizations. To this end,
we run through all bit positions of every state variable and every expanded
message word, check which conditions can be added to improve the total work
factor, and finally pick the position and corresponding condition which yields
the largest gain. By repeating this many times, we can gradually improve the
work factor. The example in Table 7 shows how our previous characteristic looks
like after applying this greedy approach for a number of iterations.

An interesting issue here, is when to stop adding new conditions. In order
to answer this question, we first notice that every additional condition reduces
the size of the search tree, but at the same time lowers the expected number
of surviving leaves at step N . In general, the work factor will improve as long
as the search tree is reduced by a larger factor than the number of surviving
leaves. At some point, however, the expected number of leaves will drop below
one, meaning that message pairs which actually follow the characteristic are only
expected to exist with a certain probability. This is not necessarily a problem if
we are prepared to repeat the search for a number of different characteristics,
and in fact, that is exactly how we constructed the second block of the 64-step
collision presented in the next section. In this case, three different characteristics
were used, the third of which is shown in Table 10 (notice that the expected
number of characteristics needed to find one surviving leave can directly be read
from Ns(0), in this example 21.24 ≈ 3). Coming back to our original question, we

Table 7. Example 3, after adding conditions to minimize workfactor

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
· · ·

0: 01100111010001010010001100000001 0uu01010110011010000111101110101 0 0.00 0.00 0.00
1: n0n01010100000011010100000101000 unn00001000110100010110111u1u0n0 0 0.00 0.00 0.00
2: 00u1unnnnnnnnnnnnnnnnnnnnnnn01u0 00n1110100110011111111011n1011uu 0 0.00 0.00 0.00
3: 1000101001100100100111u11100u111 n0un011000011010110011010u111100 0 0.00 0.00 0.00
4: u000u01n11uu010u11u10100101010u0 un0n011010010000100010110n1u01uu 0 0.00 0.00 0.00
5: n01001000n100011n1n000101uu0n010 uu1n1010111110011101110110n000u0 0 0.00 0.00 0.00
6: 010100110n0101u00100001000001100 10n10000111111000000000000010011 0 0.00 0.00 0.00
7: 1011111unnnnnnnnnn100000nu101n10 1nu0100000010111001----001nu01u1 4 -1.00 0.00 0.00
8: n1100110111000000101---00110nu00 0nu1101110111------------u0011nu 12 -8.00 0.00 0.00
9: n01010010000111101110----n10111n 11u1100001111-----------0u100111 11 -0.13 0.00 0.00

10: n011010010111-----------000000n0 nnn111101----------------n1010u0 16 -4.00 -0.68 0.68
11: u0110101011-------------n1100100 1un1001-0-----------------0011u1 18 -6.00 -1.68 5.36
12: u0010100101-------------0-110001 u10110-0-0----------------11000u 18 -11.00 -2.96 17.36
13: u11100101110010----------0100000 0010010100000-------------u00101 13 -4.00 -2.42 24.36
14: 01110011011111-------------11000 1001000111111-------------1001uu 11 -3.00 -2.00 33.36
15: u1010110101-1-------------1001uu 0n110--0-----------------n0n00n0 19 -10.14 -0.14 41.36
16: 1100011000000000-----------110n0 1u0100101000-------------u100100 0 0.00 0.00 50.22
17: u000111011------------------11u1 unn11101000000-----------n0n10n1 0 -0.22 -0.21 50.22
18: 11101-----------------------1001 n1u0--1-----------------01100101 0 -1.00 -0.48 50.00
19: --0--------------------------1u1 u00110-0-----------------n101011 0 -1.00 -0.54 49.00
20: ----0------------------------1-- 10u00-1-1----------------011100n 0 0.00 0.00 48.00
21: -------------------------------u 00n--0-------------------nu01010 0 0.00 0.00 48.00
22: -------------------------------- n1000-0------------------010010u 0 -1.00 -1.00 48.00

· · · · · ·
60: -------------------------------- ------------------------0------- 0 0.00 0.00 0.00
61: -------------------------------- -----------------------1-0------ 0 0.00 0.00 0.00
62: -------------------------------- ------------------------1-1----- 0 0.00 0.00 0.00
63: -------------------------------- -----------------------0-------- 0 0.00 0.00 0.00
64: --------------------------------
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can conclude that we should in principle continue adding conditions as long as
the gain in work factor justifies the cost of generating additional characteristics.

5 Applications

To illustrate our method, we give a characteristic for a two-block collision of
SHA-1 reduced to 64 steps with the standard IV. Note that for different initial
chaining variables, different characteristics might be needed. This is in contrast
to MD4 or MD5 where good characteristics are possible without having condi-
tions on the chaining variables. In addition to the characteristic, we also give a
message pair which follows the described characteristic and collides. Note that,
to the best of our knowledge, not a single second block characteristics for SHA-0
or SHA-1 has been presented so far, neither in the literature nor in informal
public talks. Hence the example we give is the first of its kind. Additionally,
it is a collision for SHA-1 with the highest number of steps published so far
(previously known collisions covered up to 58 steps).

5.1 On the Choice of the Message Difference

The choice of the message difference determines the high-probability character-
istics L1 that is followed in the later part of the compression function. This is
illustrated in Fig. 2. In a first step, only ’-’ and ’x’ conditions are needed, i. e. we
only allow XOR-differences. The signs of the differences as well as some values
of bits are determined in a later stage of the attack.

As previous work shows [5,12,13,20], it turns out that interleaving so-called
local collisions (a disturbing and a set of correcting differences) is the best way to
construct these high-probability characteristics in the case of SHA-1. It turns out
that these characteristics are L-characteristics. In order to allow for a small work
factor, we do not put restrictions on the output difference of the compression
function. Thus, δh1 will be nonzero. Good L-characteristics for variants of SHA-1
with other than 80 steps are usually shifted versions of each other. These effects
have also been considered in previous work, thus we do not expand on this
issue here. In order to turn such high probability characteristics, which actually
describe a pseudo-near-collision, into a collision-producing characteristic, NL-
characteristics are needed. As illustrated in Fig. 2, a first NL-characteristic (NL1)
is needed to connect from a zero-difference in the chaining variables to L1. After
the feed-forward of the first block, we expect to have a modular difference +d
in the chaining variables.

However, this difference does not fit to the difference needed to directly con-
nect to the same L-characteristic used in the first block. Regardless of that, we
want to follow this L-characteristics in the second block again (with the excep-
tion of different signs for some differences). The reason is that we want to cancel
out the expected low-weight difference after the last step of the second block
with the difference that is fed forward. We require

δg(h1, m1) + δh1 = 0.
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Fig. 2. Two-block approach to produce collisions

Thus, a new NL-characteristic (NL2) for the second block is needed, taking into
account the difference between δh0 and δh1 and the actual values at the chaining
input of the second block. Note that with the ability to find these general NL-
characteristics NL1 and NL2, collision-producing characteristics covering more
than two blocks do not improve the work factor.

In [20,22], examples for NL-characteristics are given which connect to a pre-
viously selected L-characteristic in the first block. It is commonly assumed that
finding these NL-characteristics was based on experience and intuition, and done
manually. Based on Sect. 3 and 4, we describe in the following an application
for the automatical search for suitable NL-characteristics, which succeeds for the
first and the second block.

5.2 A Two-Block Collision for 64-Step SHA-1

Herein we present a collision for 64-step SHA-1 using two message blocks. Ta-
ble 9 and 10 detail the used characteristic for the first block and the second block
respectively (see Sect. 3.2 for an explanation of the notation). Using our current
(unoptimized) methods, we have an expected work factor of about 235 compres-
sion function evaluations to find it. This compares favorably to the estimate of
236 given in [20].

The number of nodes in the tree visited in the search, Nw, is given as the
sum of all Ns in Tables 9 and 10. Nw relates to the expected work factor in the
following way. We measured the cost of visiting a node in the search tree to be
about 2−5 compression function evaluations. For that, we used as a means of
comparison the SHA-1 implementation of OpenSSL 0.9.7g, which can do about
219 compression functions per second on our PC. Note that the work factor for
both blocks is lower than estimated. The reason is that carry differences in the
last steps can be ignored and that the characteristic of the second block can be
adjusted to allow additional deviations in the last steps of the first block.

In Table 8, we give the colliding messages. Note that we do not consider
padding rules in our example, which would simply mean adding a common block
to both messages after the collision. At this point we stress that this example
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Table 8. Example of a 64-step collision using the standard IV

i Message 1 (m0), first block Message 1 (m1), second block
1–4 63DAEFDD 30A0D167 52EDCDA4 90012F5F 3B2AB4E1 AAD112EF 669C9BAE 5DEA4D14
5–8 0DB4DFB5 E5A3F9AB AE66EE56 12A5663F 1DBE220E AB46A5E0 96E2D937 F3E58B63
9–12 D0320F85 8505C67C 756336DA DFFF4DB9 BE594F1C BD63F044 50C42AA5 8B793546
13–16 596D6A95 0855F129 429A41B3 ED5AE1CD A9B24128 816FD53A D1B663DC B615DD01

i Message 2 (m∗
0), first block Message 2 (m∗

1), second block
1–4 63DAEFDE 70A0D135 12EDCDE4 70012F0D 3B2AB4E2 EAD112BD 269C9BEE BDEA4D46
5–8 ADB4DFB5 65A3F9EB 8E66EE57 32A5665F BDBE220E 2B46A5A0 B6E2D936 D3E58B03
9–12 50320F84 C505C63E B5633699 9FFF4D9B 3E594F1D FD63F006 90C42AE6 CB793564
13–16 596D6A96 4855F16B 829A41F0 2D5AE1EF A9B2412B C16FD578 11B6639F 7615DD23

i XOR-difference are the same for both blocks
1–4 00000003 40000052 40000040 E0000052 00000003 40000052 40000040 E0000052
5–8 A0000000 80000040 20000001 20000060 A0000000 80000040 20000001 20000060
9–12 80000001 40000042 C0000043 40000022 80000001 40000042 C0000043 40000022
13–16 00000003 40000042 C0000043 C0000022 00000003 40000042 C0000043 C0000022

i The colliding hash values
1–5 A750337B 55FFFDBB C08DB36C 0C6CFD97 A12EFFE0

serves as a proof of concept for the unified approach to searching for complex
characteristics and optimizing the characteristic for the final search phase. Hence
it does not rule out other, probably more efficient ways to speed up the search
for colliding pairs using the given characteristic.

6 Comparison with Previous Work

In order to put our contribution into perspective, we compare it with related
previous work.

On finding suitable characteristics. In 1998, the pioneering work of Chabaud
and Joux [4] resulted in a collision-search attack on an earlier version of SHA-1
(termed SHA-0). Their attack is based on L-characteristics they found. The Ham-
ming weight of these characteristics (or a part of them) was used as a rough es-
timate of the attack complexity. However, the details depend on the positions of
all differences. For each difference, the sign, the step in which it occurs, the bit-
position within the word as well as its relative position to neighboring differences
influence its impact on the attack complexity. A general and practical way to cal-
culate this impact was described in Sect. 3.3.

In 2005, Rijmen and Oswald reported an attack on step-reduced SHA-1 [13],
which is based on L-characteristics as well. Also the complexity of a collision
search on SHA-0 was improved by Biham and Chen using the neutral-bit tech-
nique [1], and by Biham et al. using a multi-block approach [2]. Note that the
attack on SHA-0 [2] employed four message blocks. Using the presented method
of automatically finding complex characteristics, we eliminate the need for more
than two blocks for an efficient collision-search attack.

Recent results of Wang et al. [20,22] describe further major improvements.
By employing the multi-block technique as described in Sect. 5.1, together with
the ability to manually find NL-characteristics, attack costs are improved by
many orders of magnitude. As shown in Sect. 5, our method can be used to
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automatically reach the same goal. This also answers the question left open
in [16]. Since the NL-characteristic for the second block (NL2) depends on the
chosen message pair for the first block, this also prevents a manual search for
new characteristics in the middle of a collision search.

The only related work which also aims for automatic search for complex char-
acteristics is by Schläffer and Oswald [14] on MD4. Their method is very dif-
ferent from ours. It assumes a fixed differential behavior of the function f and
limits carry extensions to only a few bit positions to reduce the search space.
Thus it is not easy to extend it to more complex hash functions since these
restrictions are too strict. Our method is not restricting anything, but is still
practical.

On the cost of the final search. In previous work, the cost of the attack
is further improved by a technique called message modification. The ideas de-
veloped in Sect. 3 and 4 can also be used for similar improvements. Both the
originally published results by Wang et al. [20] as well as work by Sugita et al. [16]
give rough estimates for the cost of message modification: 21 and 22 compression
function evaluations(cg), respectively. Sugita et al. also give a different trade-off.
By using Gröbnerbasis-methods they reduce the number of trials significantly at
the cost of increased message modification costs. Overall, this method does not
lead to improvements in practice.

Note that for the recently announced but to the best of the authors knowledge
unpublished improvements of the complexity of the collision search for full SHA-
1 [18] (from 269 to 263), no message modification costs are given, thus we lack
comparability here.

Our approach can be seen as a trade-off towards very fast trials without
the overhead of expensive message modification. As mentioned in Sect. 5.2, the
cost of visiting one node in our search is only in the order of 2−5cg. Note that
the neutral-bit technique [1,2] can also be seen as a trade-off in this direction.
However, as reported in [1], only a small fraction (one out of eight in the simpler
case of SHA-0) of the trials conforms to a previously selected characteristic.
Comparing the neutral-bit technique to our method, we observe two differences.
Firstly, instead of a small fraction, we can be sure that every trial will conform
to the characteristic we select. Secondly we don’t rely on randomly generating
message pairs which conform to a previously selected characteristic to bootstrap
the final search. Instead we can exploit the available degrees of freedom in a
sensible way.

On exploiting degrees of freedom. In Sect. 3.3, we described a method
to calculate the expected number of collisions given a particular characteristic.
Thus we can make a sensible use of degrees of freedom up to the point where
we expect to find only one suitable message pair. In fact, also this distinguishes
our approach from all previous work.
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Table 9. Characteristic used for the first block of the 64-step collision

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 00001111010010111000011111000011
-3: 01000000110010010101000111011000
-2: 01100010111010110111001111111010
-1: 11101111110011011010101110001001
0: 01100111010001010010001100000001 011000111101101011101111110111nu 0 0.00 0.00 1.07
1: 0000001110001111100010001001000n 0n1100001010000011010-010u1n01u1 1 0.00 0.00 1.07
2: 0n0010010100001010110-00011u0un0 0u01001011101101----11011n100100 4 -3.00 0.00 2.07
3: 1u10100001110010100-1un110nuu110 unn10000000000-1001----10u0u11u1 5 -4.00 0.00 3.07
4: 1un0010110011110un1100-0n1n11nu1 n0n01101101101001-01111-10110101 2 -2.00 0.00 4.07
5: n1u10110101un00010nu10u111000010 u1100101101000111111----1n101011 4 -4.00 0.00 4.07
6: 100u100u01111nu00u1110nu111u1un1 10u01110011001101-1------101011n 7 -5.00 0.00 4.07
7: nn1100101n1101011-1111-11u1001u0 00n100101010-101------100nu11111 7 -5.00 0.00 6.07
8: 01110111001100u00010--0n11110u11 u1010000001100---00---11-000010u 7 -6.00 0.00 8.07
9: 1n1u000101uuuu0uu1110-1010n110n0 1n00010100000101-100--10-u1111n0 4 -3.00 0.00 9.07

10: 1011000101n11111n111u-01n00un100 nu1101010110001--011----1u0110un 6 -5.00 0.00 10.07
11: nnnnnnnnnnnnnnnnnnnnnnn-nnnnn0n1 1u01111111111111---------0u110n1 9 -9.00 0.00 11.07
12: 00110100000011110110000110011000 010110010110110101101---1-0101nu 4 -3.00 0.00 11.07
13: 0100000000001000000111100-011000 0n001000010101-----------n1010n1 11 -4.00 0.00 12.07
14: 10011000100011000-0------0110101 nu00001010011-----------1n1100uu 11 -2.00 0.00 19.07
15: 1101101011111--1----------00010n uu101101010-1-1--------1-1n011n1 11 -0.07 0.00 28.07
16: 11111100------------------0-0111 1101001010100-----------1010101u 0 -1.00 -1.00 39.00
17: 0000----------------------1-1111 1u0011100111------------111011u0 0 -1.00 -0.99 38.00
18: ----0-----------------------01u- un00111011-0-0----------0n0011nu 0 0.00 0.00 37.00
19: -------------------------------n 1u1100011111------------1un011n0 0 0.00 0.00 37.00
20: -------------------------------- n1101001100--------------011000n 0 -1.00 -1.00 37.00
21: ------------------------------n- 1u1000110-1-0-----------0u1000n0 0 -2.00 -2.00 36.00
22: ------------------------------n- 1n011010011-------------0u0110n1 0 -2.00 -2.00 34.00
23: -------------------------------- 0n10011011--------------011111n0 0 -1.00 -1.00 32.00
24: -------------------------------- 00101001-0-0------------001010n1 0 -1.00 -1.00 31.00
25: ------------------------------n- 0001110111--------------1u100100 0 0.00 0.00 30.00
26: -------------------------------- n00010000--------------0-11111n1 0 -1.00 -1.00 30.00
27: -------------------------------- n001111-1-1-------------11101010 0 0.00 0.00 29.00
28: -------------------------------- u10111110----------------11001n0 0 -1.00 -1.00 29.00
29: ------------------------------n- n0011100----------------1u110010 0 0.00 0.00 28.00
30: -------------------------------- 001010-1-1-------------101010110 0 -2.00 -2.00 28.00
31: ------------------------------n- u0110101----------------0u110111 0 0.00 0.00 26.00
32: -------------------------------- u101001----------------011111010 0 -2.00 -2.00 26.00
33: ------------------------------u- 00010-1-0-------------110n100000 0 0.00 0.00 24.00
34: -------------------------------- u011010----------------001101110 0 -2.00 -2.00 24.00
35: ------------------------------n- 101111----------------010u111001 0 0.00 0.00 22.00
36: -------------------------------- n111-1-1---------------1010110u0 0 -1.00 -1.00 22.00
37: -------------------------------- 110110-----------------100000000 0 0.00 0.00 21.00
38: -------------------------------- n1001------------------010111110 0 0.00 0.00 21.00
39: -------------------------------- u11-0-1----------------101101011 0 0.00 0.00 21.00
40: -------------------------------- 01010-------------------01011100 0 0.00 0.00 21.00
41: -------------------------------- 1011-------------------100100000 0 0.00 0.00 21.00
42: -------------------------------- 00-0-0-----------------100111001 0 0.00 0.00 21.00
43: -------------------------------- 1101-------------------001111011 0 0.00 0.00 21.00
44: -------------------------------- 011---------------------10010000 0 0.00 0.00 21.00
45: -------------------------------- 1-1-0------------------101111000 0 0.00 0.00 21.00
46: -------------------------------- 110-------------------1011010010 0 0.00 0.00 21.00
47: -------------------------------- 01---------------------101011000 0 0.00 0.00 21.00
48: -------------------------------- -0-0-------------------101100001 0 0.00 0.00 21.00
49: -------------------------------- 10--------------------1101010111 0 0.00 0.00 21.00
50: -------------------------------- 0---------------------1010101n11 0 -1.00 -1.00 21.00
51: -----------------------------n-- 0-1-------------------10u100011- 0 0.00 0.00 20.00
52: -------------------------------- 1----------------------001000u11 0 -1.00 -1.00 20.00
53: -------------------------------- ----------------------110111n00u 0 -2.00 -2.00 19.00
54: ----------------------------n--- -1---------------------u111011-u 0 -1.00 -1.00 17.00
55: -------------------------------- ----------------------101010u00u 0 -1.00 -1.00 16.00
56: -------------------------------- -----------------------0111n10u- 0 -2.00 -1.91 15.00
57: ---------------------------n---- 0---------------------u111000-u- 0 -1.00 -1.00 13.00
58: -------------------------------- ---------------------0-1010un1u- 0 -2.00 -1.83 12.00
59: ----------------------------u--- ----------------------1n01n11u-- 0 -2.00 -1.87 10.00
60: --------------------------n----- ---------------------u-11000xu-0 0 -2.00 -1.00 8.00
61: -------------------------------- ----------------------0000n01ux- 0 -2.00 -1.00 6.00
62: -------------------------------- ---------------------1000n00n-x- 0 -3.00 -1.89 4.00
63: -------------------------n------ --------------------u-10010-n-n- 0 -1.00 -1.00 1.00
64: --------------------------------
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Table 10. Third characteristic used for the second block of the 64-step collision

i ∇Ai ∇Wi FW Pu(i) Pc(i) Ns(i)
-4: 11110011111100010000010000n10011
-3: 01101110111000001010001110011101
-2: 11001011101100100011110111000100
-1: 1001011011110100100111001n110101
0: 10100000000111101110010101101000 0011101100101010101101-0111000nu 1 0.00 0.00 1.24
1: 1111001001110010110010-10000n1nu 1n1010101101000---0100101u1n11u1 3 -3.00 0.00 2.24
2: uu10001001100001000001nu01un01u0 0u1001101001110010011--11n101110 2 -2.00 0.00 2.24
3: 0u10010110111100000nnnn01011u1nn nun1110111101010010011010n0u01n0 0 0.00 0.00 2.24
4: 0nu1110110110n0010uuuu0uunuu1u10 n0n11101101111100010001000001110 0 0.00 0.00 2.24
5: 1000111nu111u0001n11111100100001 u01010110100011010-00101-u100000 2 -1.00 0.00 2.24
6: u11110un101n0u0111-1011n010u1010 10n1011011100-10110----10011011u 5 -2.00 0.00 3.24
7: u001u11nn0101011100n---0u011n111 11u10011111001----00-0-10uu00011 6 -4.00 0.00 6.24
8: 1n010101001u01n10000-0-11000u011 u0111110010110----0----1-001110n 9 -7.00 0.00 8.24
9: 01001u1n10100110100101-1-uu10100 1n11110101100------------u0001n0 12 -10.00 0.00 10.24

10: uuuuuuuuuuuuuuuuuuuuuu--1100u011 nu01000011000100---------n1001nu 9 -8.00 0.00 12.24
11: 0100111011111100011111un-0111100 1n00101101111001001------1n001u0 6 -6.00 0.00 13.24
12: 1100000010111111111111111111u110 101010011011001001000---001010nn 3 -2.00 -1.00 13.24
13: 0110000101111111111111--0110110n 1n000001011011111--------n1110u0 8 -2.24 0.00 14.24
14: 0101111110011010110--------010u0 uu01000110110-----------1u0-11nn 12 -4.00 0.00 20.00
15: 01010010010000010-----------00nu un110110000-0-0--------1-0n000n1 11 -1.00 0.00 28.00
16: 001001001011---------------10010 1100010100000-----------1101001n 0 0.00 0.00 38.00
17: 100000----------------------1000 0n1101111101------------11-001u1 0 -1.00 -0.99 38.00
18: ----0------------------------0u1 nn11101111-0-1----------0n0010nu 0 0.00 0.00 37.00
19: -------------------------------n 0u1100011010------------1un000n1 0 -1.00 -1.00 37.00
20: -0------------------------------ n0101010011------------11-10110n 0 -1.00 -1.00 36.00
21: ------------------------------n- 1u0001000-0-0-----------0u1000n1 0 -1.00 -1.00 35.00
22: ------------------------------n- 0n010001010-------------0u-011n1 0 -2.00 -2.00 34.00
23: -------------------------------- 1n10010111---------------00101n1 0 -1.00 -1.00 32.00
24: -------------------------------- 11011111-0-1------------000101n1 0 -1.00 -1.00 31.00
25: ------------------------------n- 0010000100--------------0u010000 0 0.00 0.00 30.00
26: -------------------------------- u10011101---------------001000u0 0 -1.00 -1.00 30.00
27: -------------------------------- n100100-0-0-------------01010001 0 0.00 0.00 29.00
28: -------------------------------- u11001101--------------0-0-100n0 0 -1.00 -1.00 29.00
29: ------------------------------n- n1111011----------------1u110000 0 0.00 0.00 28.00
30: -------------------------------- 100110-1-1-------------00--00100 0 -2.00 -2.00 28.00
31: ------------------------------u- u0000101----------------1n000111 0 0.00 0.00 26.00
32: -------------------------------- u011010---------------0001111100 0 -2.00 -2.00 26.00
33: ------------------------------n- 11111-0-0--------------0-u100101 0 0.00 0.00 24.00
34: -------------------------------- u011010----------------0-0000000 0 -2.00 -2.00 24.00
35: ------------------------------u- 100100----------------010n011010 0 0.00 0.00 22.00
36: -------------------------------- n100-0-1-------------0-1-11010n0 0 -1.00 -1.00 22.00
37: -------------------------------- 010111-----------------100001001 0 0.00 0.00 21.00
38: -------------------------------- u0001------------------0-0001101 0 0.00 0.00 21.00
39: -------------------------------- u00-0-0----------------101010100 0 0.00 0.00 21.00
40: -------------------------------- 11110------------------010000101 0 0.00 0.00 21.00
41: -------------------------------- 0011-------------------011010010 0 0.00 0.00 21.00
42: -------------------------------- 00-1-0-----------------01-001100 0 0.00 0.00 21.00
43: -------------------------------- 1010-------------------001111100 0 0.00 0.00 21.00
44: -------------------------------- 000-------------------11-0011100 0 0.00 0.00 21.00
45: -------------------------------- 0-1-0------------------1-1100101 0 0.00 0.00 21.00
46: -------------------------------- 000-------------------0---010010 0 0.00 0.00 21.00
47: -------------------------------- 11---------------------001010101 0 0.00 0.00 21.00
48: -------------------------------- -0-0------------------1100111001 0 0.00 0.00 21.00
49: -------------------------------- 10---------------------0-1111110 0 0.00 0.00 21.00
50: -------------------------------- 0---------------------11-1100n10 0 -1.00 -1.00 21.00
51: -----------------------------n-- 1-0-------------------10u010110- 0 0.00 0.00 20.00
52: -------------------------------- 1---------------------0000001u10 0 -1.00 -1.00 20.00
53: -------------------------------- ----------------------011011n10u 0 -2.00 -2.00 19.00
54: ----------------------------n--- -1---------------------u-11011-u 0 -1.00 -1.00 17.00
55: -------------------------------- ----------------------111011u01u 0 -1.00 -1.00 16.00
56: -------------------------------- ----------------------01-00n10u- 0 -2.00 -1.91 15.00
57: ---------------------------n---- 1---------------------u101111-u- 0 -1.00 -1.00 13.00
58: -------------------------------- ----------------------10-00un0u- 0 -2.00 -1.83 12.00
59: ----------------------------u--- ----------------------0n01u11u-- 0 -2.00 -1.87 10.00
60: --------------------------u----- ---------------------n-0-111xu-0 0 -2.00 -1.00 8.00
61: -------------------------------- ----------------------0100u01ux- 0 -2.00 -1.00 6.00
62: -------------------------------- -----------------------0-u11n-x- 0 -3.00 -1.89 4.00
63: -------------------------u------ --------------------n-10110-u-n- 0 -1.00 -1.00 1.00
64: --------------------------------
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7 Conclusions and Future Work

We described, for the first time, a computer-implementable method to search for
complex characteristics as needed in the effective cryptanalysis of hash functions
of the MD4 family like SHA-1. As a proof of concept, we gave the characteristics
needed for a 64-step two-block collision of SHA-1. Furthermore, for the first time
an actual collision for 64-step SHA-1 is produced, with an expected work factor
of 235 compression function computations.

We also tackled issues like work factors or degrees of freedom and put them
into a precise framework. Thus an optimal exploitation of available degrees of
freedom gets possible for goals like fast collision search.

Future work includes optimization of the found characteristics for different
final search strategies, or the application of the described technique to other
hash functions. Given the increased design complexity of members of the SHA-2
family compared to SHA-1, an automatic approach as described in our article
seems to be highly beneficial for the analysis of these hash functions.

Giventheabilitytoautomatically incorporatesomedifferences fromthechaining
variables at the start of the compression function, applications such as meaningful
collisions or speeding up techniques like herding attacks [6] are also future work.
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Abstract. At CRYPTO2005, Xiaoyun Wang, Hongbo Yu and Yiqun
Lisa Yin proposed a collision attack on SHA-0 that could generate a col-
lision with complexity 239 SHA-0 hash operations. Although the method
of Wang et al. can find messages that satisfy the sufficient conditions
in steps 1 to 20 by using message modification, it makes no mention of
the message modifications needed to yield satisfaction of the sufficient
conditions in steps 21 and onwards.

In this paper, first, we give sufficient conditions for the steps from
step 21, and propose submarine modification as the message modifica-
tion technique that will ensure satisfaction of the sufficient conditions
from steps 21 to 24. Submarine modification is an extension of the multi-
message modification used in collision attacks on the MD-family. Next,
we point out that the sufficient conditions given by Wang et al. are not
enough to generate a collision with high probability; we rectify this short-
fall by introducing two new sufficient conditions. The combination of our
newly found sufficient conditions and submarine modification allows us
to generate a collision with complexity 236 SHA-0 hash operations. At
the end of this paper, we show the example of a collision generated by
applying our proposals.

Keywords: SHA-0, Collision Attack, Message Modification, Sufficient
Condition.

1 Introduction

SHA-0 is the hash function issued by NIST in 1993 [5]. All hash functions must
hold 3 properties: Pre-image Resistance, Second Pre-image Resistance and Col-
lision Resistance. Collision Resistance means that it is very hard to find x, y such
that x �= y and H(x) = H(y), where H(·) is any hash function. Collision Resis-
tance is more difficult to keep than any other property. The Collision Resistance
of SHA-0 was broken recently [2]. This paper uses the term Collision Attack to
refer to attacks that break Collision Resistance.

The first collision attack on SHA-0 was proposed by F. Chabaud and A. Joux
in 1998 [3]. They employed differential attack and used XOR as the differential.
After that, E. Biham and R. Chen improved [3], and found near collisions [1].
Near collision means x, y such that x �= y and H(x), H(y) differ only by a small
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number of bits. At the rump session of CRYPTO2004, the first announcement of
finding a collision of SHA-0 was made by A. Joux [4]. Details of this attack were
presented in EUROCRYPT2005 by E. Biham, R. Chen, A. Joux, P. Carribault,
W. Jalby and C. Lemuet [2]. In 2004, Wang proposed an independent collision
attack method on SHA-0 [10,11]. Wang’s method uses the differential attack ap-
proach in which numerical operations are used as the differential. Subsequently,
X. Wang, H. Yu and Y. Lisa Yin proposed an improved version of Wang’s attack
[14]. This method has complexity of 239 SHA-0 hash operations, and is the most
efficient collision attack method proposed so far.

The method of Wang et al. can be divided into 2 phases. In the pre-computation
phase, a differential path and conditions that indicate that a collision is possi-
ble are constructed. In this paper, we call these conditions “sufficient conditions”.
Sufficient conditions define the triggers for ending collision search. In the collision
search phase, an input message satisfying all sufficient conditions is searched for.
If this message is found, a collision can be generated. In this phase, message modi-
fication is used to efficiently find a message that satisfies the sufficient conditions.

According to Wang et al., in the case of SHA-0, a message satisfying sufficient
conditions from steps 1 to 20 can be located efficiently by using message modi-
fication. The specification of SHA-0 states that the messages used in steps 1-16
are input messages, whereas messages used in steps after 16 are determined by
message expansion as is defined by the specification of SHA-0. In the method
of Wang et al., messages satisfying the sufficient conditions in steps 1-16 can,
with probability 1, be generated by using message modification. Since steps 1-16
are not affected by the limitations placed on message expansion, it is possible to
choose values of chaining variables to satisfy all sufficient conditions, and then
calculate messages that can yield these chaining variables. Regarding the suffi-
cient conditions in steps 17-20, if these conditions are not satisfied and message
modification is executed, these sufficient conditions are satisfied with probabil-
ity of almost 1. Since the steps from 17 are affected by message expansion, the
message modification in steps after 16 proposed by Wang et al., is executed by
generating the differential in the step not affected by message expansion. Since
this differential (We call this differential “transmission differential”) is trans-
ferred to subsequent steps, sufficient conditions are satisfied by the transferred
differential. We call this method “transmission method”. Without using these
methods, the probability that a sufficient condition is satisfied in 1 time is 1

2 .
For example, suppose there exists 1 condition in step i and the complexity to
calculate all necessary operations up to step i is j steps. In this case, the number
of steps needed to ensure the success of step i is 2j (on average). By using these
methods, if the complexity of message modification is p steps, the number of
steps needed to ensure the success of step i is j + 1

2 · p (on average). Since we
choose message modification such that the complexity is p < j, message modi-
fication reduces the complexity by j − 1

2 · p steps. Therefore, we can efficiently
locate a collision by using message modification. Note that message modifica-
tion in the steps after 16 is particularly important in reducing the complexity of
collision search.



Improved Collision Search for SHA-0 23

Our Results

Our paper makes 2 contributions.

1st Result: Wang et al. have not proposed message modification to satisfy
the sufficient conditions from step 21; their solution is random search. In
this paper, we propose message modification for steps 21-24. We call this
proposal “submarine modification”. It takes advantage of the ideas of multi-
message modification for the MD-family (we call multi-message modification
for the MD-family “cancel method”) and transmission method (Details are
described below). Since the same discussion about the complexity of message
modification made with regard to the proposal of Wang et al., discussed
above, can be applied to submarine modification, submarine modification can
more efficiently satisfy the sufficient conditions than random search. Since
the structure of the MD-family or SHA-1 is very similar to that of SHA-0,
submarine modification may also be applicable to those hash functions.

2nd Result: We show that the sufficient conditions given by Wang et al. are
missing two conditions, and then describe the missing sufficient conditions.

From the second result, even if a message satisfying all sufficient conditions
given by Wang et al. is found, collision search does not always succeed. Since
their conditions are two short, their method will fail with probability 3

4 . We
identify the two missing sufficient conditions and use them with our submarine
modification proposal to search for a collision. Considering the fact that the
number of sufficient conditions in steps 21-24 is 4 and given the complexity of
submarine modification, a computer experiment finds that our method finds a
collision with complexity 236 SHA-0 hash operations. The PC used had a Pen-
tium4 3.4GHZ CPU(OS: Linux 2.6.9 (Fedora Core 3, Red Hat 3.4.2), Compiler:
gcc 3.4.2-i386). In the fastest case, a collision was found in 8 hours. The average
time to find a collision was roughly 100 hours.

Overview of Our Main Idea: Submarine Modification
Submarine modification uses two ideas of message modifications, “transmission
method” and “cancel method”. We can satisfy sufficient conditions for up to
step 24 by using submarine modification.

“Transmission method” is the method that can satisfy sufficient conditions
for up to step 21 of SHA-0 (Wang et al. apply transmission method to sufficient
condition for steps 17-20. We confirm that transmission method is applicable to
satisfy sufficient conditions for steps 17-21). Namely, transmission method can
satisfy sufficient conditions for 5 steps from a start step of transmission.

“Cancel method” is the method that uses the idea of the local collision. The
local collision is the method where we create a differential and offset the differ-
ential in within several. We construct the method that inputs differentials and
offsets the effects of these differentials before step 16 such that the differential
(we call this differential “latent differential”) appears again from step 17 due
to message expansion after the differential is offset. Differentials don’t appear
for steps between the step where the differential offsets and the step where the
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latent differential appears. We call these steps “latent period”. We denote the
number of steps in latent period after step 17 as t. Influence of differentials cre-
ated before the step where the latent differential appears does not occur. Cancel
method is the method with which the sufficient condition for the step where
the latent differential appears is satisfied by using the latent differential. We use
the idea of cancel method in order to allow the start step of transmission to
locate between step 17 to step 19. Note that cancel method itself does not use
transmission of the latent differential.

The method that we propose in this paper satisfies sufficient conditions for up
to step 24. If we use transmission method to satisfy sufficient conditions for up
to step 24, we need to extend the range where the transmission differential can
be started from step 16 to step 19. We can realize it by using the idea of cancel
method. Since maximum number of latent period after step 17 for SHA-0 is t = 3,
we can extent the range of the start step of transmission from step 16 to step
19 if we adopt the transmission differential as the latent differential. The latent
differential can be created by using cancel method. Since there exists no influence
for satisfied sufficient conditions in latent period by using cancel method, and we
can satisfy sufficient conditions for 5 steps from the start step of transmission
by applying transmission method. Since this method takes advantage of the
differentials whose local effects are cancelled in the earlier steps, we call this
message modification technique “submarine modification”.

2 Structure of SHA-0[5]

SHA-0 is a hash function issued by NIST in 1993. SHA-0 has the Merkle-
Damg̊ard structure, therefore, it repeatedly applies a compression function. SHA-
0 input is an arbitrary length message M , and SHA-0 output is 160 bit data
H(M). If the length of the input message is not a multiple of 512, the message is
padded to realized a multiple of 512 bits. The padding process is M∗ = M ||10...0.
First, 1 is added, and then as many 0’s as are needed. Padded message M∗ is
divided into several messages Mi each 512 bits long (M∗ = (M1||M2||...||Mn)).
These divided messages are input to the compression function.

h1 =compress(M1, IV ) → h2 =compress(M2, h1) → · · · → hn =compress(Mn, hn−1)

H(M) = hn

In this paper, we call the calculation performed in a single run of the compression
function 1 block. IV in the above expression is defined as (a0, b0, c0, d0, e0) =
(0x67452301,0xefcdab89,0x98badcfe,0x10325476,0xc3d2e1f0). We next explain
the structure of the compression function of SHA-0. All calculations in this are
32-bit. In this paper, we exclude the description of “mod 232”.

Procedure 1. Divide the input message Mj into 32 bit messagesm0, m1, ..., m15.
Procedure 2. Calculate m16 to m79 by mi = mi−3 ⊕mi−8 ⊕mi−14 ⊕mi−16
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Procedure 3. Calculate chaining variables ai, bi, ci, di, ei in step i by the fol-
lowing procedures.

ai = (ai−1 ≪ 5) + f(bi−1, ci−1, di−1) + ei−1 + mi−1 + ki−1,

bi = ai−1, ci = bi−1 ≪ 30, di = ci−1, ei = di−1

“≪ j” denotes left cyclic shift by j bits. Repeat this process 80 times.
Initial values a0, b0, c0, d0, e0 for the compression function of the first block
are IV . a0, b0, c0, d0, e0 for the compression function from the second block
are the output values of the previous block. Steps 1-20 are called the first
round. Steps 21-40, 41-60, and 61-80 are the second, third, and fourth rounds,
respectively, ki is a constant defined in each round. Function f is a boolean
function defined in each round. The specifications of ki and f are shown in
Table 1.

Table 1. Function f and Constants k in SHA-0

round functionf constant ki

1 (b ∧ c) ∨ (¬b ∧ d) 0x5a827999

2 b ⊕ c ⊕ d 0x6ed9eba1

3 (b ∧ c) ∨ (c ∧ d) ∨ (d ∧ b) 0x8f1bbcdc

4 b ⊕ c ⊕ d 0xca62c1d6

Procedure 4. (a0 +a80, b0 + b80, c0 + c80, d0 +d80, e0 + e80) is the output of the
compression function.

3 Collision Attack by Wang et al.[8,9,14,15]

The method of Wang et al. is based on differential attack which uses subtraction
as the differential. If a collision is found on hash function H(·), that is, M , M ′

such that H(M) = H(M ′), M �= M ′ is found, the differential values of M and
H(M) become ΔM = M ′ −M �= 0, ΔH(M, M ′) = H(M ′)−H(M) = 0. Let x
and x′ be certain values. We write x′ − x as Δx, and we call Δx the differential
value of x. Since the differential value of input message ΔM �= 0, differential
values of the chaining variables of the hash function are not 0.

The method of Wang et al. first notes differential values. It determines the
differential values of the chaining variables and the differential value of the in-
put message so that the output differential value of hash function ΔH(M, M ′)
becomes ΔH(M, M ′) = 0 and the differential value of the input message be-
comes ΔM �= 0. However, even if we find a pair of messages M, M ′ that satisfy
ΔM , the output differential value is not always H(M ′) −H(M) = 0. This can
happen since the differentials of chaining values from M and M ′ do not always
satisfy the differential values of the chaining variables. Therefore, we need to set
conditions for satisfying the differential values of the chaining variables. We call
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these conditions “sufficient conditions”. These procedures (deciding the differen-
tial value of the input message, differential values of the chaining variables and
sufficient conditions) are pre-computations.

We start collision search by using the differential value of input message ΔM
and sufficient conditions decided in the pre-computation phase. First, we search
for message M satisfying all sufficient conditions. Next, we calculate M ′ = M +
ΔM . M and M ′ thus become collision messages, that is, H(M) = H(M ′).
In order to efficiently locate a message that satisfies all sufficient conditions,
message modification can be used.

3.1 Message Modification for SHA-0 and MD-Family

First, we explain message modification for SHA-0, and clarify the range wherein
message modification can be applied. Next, since we use the idea of cancel
method, which is originally proposed for MD-family, as part of the proposed
submarine modification, we explain the procedures of cancel method.

Message Modification for SHA-0 [14]
Message modification for SHA-0 can generate messages satisfying all sufficient
conditions in steps 1-16 with probability of 1. This procedure is shown below.

– Message Modification for step i (1 ≤ i ≤ 16):
1. Generate ai satisfying all sufficient conditions for ai.
2. Calculate mi−1 ← ai − (ai−1 ≪ 5)− f(bi−1, ci−1, di−1)− ei−1 − ki−1.

Transmission method was proposed by Wang et al as follows. These modifications
are executed when sufficient conditions are checked and found to be not satisfied.
In message modification for steps 17-20, differentials are generated in order to
create a differential on a bit where the sufficient condition that we want to satisfy
exists. From the specification of SHA-0, since we can freely choose messages only
for steps 1-16, we input the differential on the message used in up to step 16.
We then transfer this differential to step 17, which yields the differentials that
impact the targeted bits in the subsequent steps.

Multi-message Modification for MD-Family [8,9]
Multi-message modification for the MD-family (which we call cancel method)
involves modifying messages to satisfy the sufficient conditions from step 17 of
the MD-family. In cancel method, differentials are input in steps which are not
affected by message expansion, and then cancel the impact of those differentials.
The differentials that are input appear in step 17 and later steps due to mes-
sage expansion, and this leads to satisfaction of the sufficient conditions. Cancel
method does not use the technique where the latent differential transfers.

3.2 Collision Search for SHA-0

Collision search is done to locate a message that satisfies all sufficient condi-
tions; it involves the use of 2 block messages. The sufficient conditions on the
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first block are set in order to control the differentials of the chaining variables
on the second block. Since all conditions are conditions of output values, they
cannot be satisfied by message modification. Therefore, we don’t execute any
message modification when searching for a message that satisfies all sufficient
conditions of the first block. Fortunately, since the complexity of message search
in the first block (214SHA-0 operations) is much smaller than that of the sec-
ond block (239SHA-0 operations), the complexity of the first block does not
impact overall complexity. Collision search on the second block is done by using
message modification. Furthermore, the early stopping technique can be used
to efficiently find a message that satisfies the sufficient conditions. In the early
stopping technique, after step 24 is calculated, the sufficient conditions up to
step 24 are checked to determine whether they are satisfied or not. If all con-
ditions are satisfied, steps from 25 are calculated. Otherwise, collision search is
repeated from the first procedure. It is important to remember that this method
still cannot find a message that is assured of satisfying the sufficient conditions
in steps 21-24 with probability of almost 1. Submarine modification, proposed
in this paper, can satisfy the sufficient conditions in steps 21-24 with probability
of almost 1.

Another problem of the existing method is that it is impossible to execute the
algorithm proposed by Wang et al. since their description of it is incomplete. We
rectify this omission in Appendix B.

4 New Message Modification Techniques

The method of Wang et al. uses message modification to efficiently locate a
collision. Their method can efficiently generate messages that satisfying the suf-
ficient conditions up to step 20. However, Wang et al. did not propose message
modification for subsequent steps. This section studies message modification,
and proposes message modification so as to satisfy the sufficient conditions in
steps 21 to 24. In this paper, we call this modification submarine modification.
Since the structure of SHA-0 is very similar to those of the MD-family or SHA-1,
submarine modification may also be applicable to those hash functions.

4.1 Main Idea of Submarine Modification

Transmission method can be applied to satisfy sufficient conditions for 5 steps
from the start step of transmission1. If we use transmission method to satisfy
sufficient condition for after step 22, we need to extend the range where the
transmission differential can be started after step 17. Therefore, we use the idea
of cancel method in order to extend the range where the transmission differential
can be started. If we use the latent differential as the transmission differential, we
can extend the range where the transmission differential can be started to step
19 followed by the 5 steps. In the case of SHA-0, the maximum number of latent
period after step 17 is t = 3 2. As a result, we can satisfy sufficient conditions
1 We confirm the number of applicable steps by a computer experiment.
2 By considering a local collision and message expansion, we can find t = 3.
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for up to step 24 by combining ideas of cancel method and transmission method.
We use the idea of cancel method to create the latent differential for steps 17-19.
Since there is no influence for satisfied sufficient conditions in latent period by
using cancel method, we can satisfy sufficient conditions for 5 steps from the
start step of transmission by applying transmission method. A brief explanation
of submarine modification is shown in Figure 1.

Step
i

i+1
…
i+5
…
17
…
s
…

Differential
ai=2j

bi=2j

…
0

…

0
as=2k

Input a differential to mi-1

Execute procedures canceling the differential

Differentials of chaining values are 0

Correct

Appear the differential
from the message expansion

δ
δ

δ

sufficient condition

Fig. 1. Outline of Submarine Modification

Remark. In this paper, we apply submarine modification to only the case of
steps 21-24. However, submarine modification can be also applied to steps 17-20.
We want to note that submarine modification is not limited to only the case of
steps 21-24.

4.2 How to Construct Submarine Modification

Submarine modification involves inputting and offsetting differentials and trans-
ferring differentials. The procedure of submarine modification is as follows:

1. Decide differentials that satisfy a target sufficient condition in step j(j ≥ 17)
by considering the transfer of differentials.(The idea of transmission method)

2. Decide the method for inputting and offsetting differentials before step 16
to yield the necessary differentials in step j.(The idea of cancel method)

4.3 Proposal of Submarine Modification

There are 4 sufficient conditions from steps 21 to 24: a21,4 = a20,4 (or a21,4 �=
a20,4), a22,2 = m21,2, a22,4 = a21,4 (or a22,4 �= a21,4), a23,2 = m22,2. In this section,
we propose message modification to satisfy each of these sufficient conditions.

Theorem 1. Suppose we set following conditions as Extra Conditions. a6,6 =
m5,6, m6,11 �= m5,6, m7,6 = m5,6, a7,4 = 0, a8,4 = 1, m10,4 �= m5,6. If we modify
the message as shown below, the sufficient condition a21,4 = a20,4 (or a21,4 �=
a20,4) is satisfied with probability of almost 1.

m5 ← m5 ⊕ 25, m6 ← m6 ⊕ 210, m7 ← m7 ⊕ 25, m10 ← m10 ⊕ 23
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In order to satisfy extra conditions, we generate messages that satisfy these
extra conditions in advance by a method similar to that used to satisfy the
sufficient conditions.

Proof. We explain the change in each chaining variable Theorem 1 is executed
in every step.

Step 6. In this step, differential δm5 = ±25 is input. Here, δx is the differential
created by message modification on chaining variable x. In this step, a6 is
calculated as follows:

a6 = (a5 ≪ 5) + f(b5, c5, d5) + e5 + m5 + k5.

After this equation is calculated, δa6 becomes δa6 = ±25 because δm5 =
±25. Since a6,6 = m5,6 is set as the extra condition, δa6 = ±25 does not
trigger differential carry. By this condition, since δm5 = ±25 does not cause
carry in m5, and the sign of δa6 and δm5,6 are the same, which confirms
that no carry occurs.

Step 7. In step 7, a7 is calculated as follows:

a7 = (a6 ≪ 5) + f(b6, c6, d6) + e6 + m6 + k6.

To ensure δa7 = 0, we cancel δa6 = ±25 by δm6 = ±210. Since m6,11 �= m5,6

was set as the extra condition, the sign of δa6 = ±25 and the sign of δm6 =
±210 become opposite, and they cancel each other. Due to this condition,
in the case of m5,6 = 0, m6,11 becomes m6,11 = 1. In this situation, m5,6

changes from 0 to 1 because of the differential, and m6,11 changes from 1
to 0. Since we have ensured that no carry occurs, δm5 and δm6 become
δm5 = 25 and δm6 = −210, respectively. Since δm5 = 25, δa6 becomes
δa6 = 25. Therefore, δa7 = 0 from δa6 = 25 ≪ 5 = 210 and δm6 = −210.
In the case of m5,6 = 0 and m6,11 = 1, a similar analysis finds that δa7 is
assured of being 0.

Step 8. In step 8, a8 is calculated as follows:

a8 = (a7 ≪ 5) + f(b7, c7, d7) + e7 + m7 + k7.

To ensure δa8 = 0, we cancel δb7 = ±25 by δm7 = ±25. Since m7,6 = m5,6

was set as the extra condition, m7,6 = 0 when m5,6 = 0. In this situation,
m5,6 changes from 0 to 1, and m7,6 changes from 0 to 1. Since we have ensured
that no carry occurs, δm5 and δm7 become δm5 = 25 and δm7 = 25. Since
δm5 = 25, δa6 = 25, that is, δb7 = 25, respectively. Since function f is
f(b7, c7, d7) = (b7 ∧ c7) ∨ (¬b7 ∧ d7), and c7,6 = 0, d7,8 = 1 are ensured to
be satisfied by the sufficient conditions; the 2nd bit of f(b7, c7, d7) before
differential input is 1, and the 2nd bit of f(b7, c7, d7) after differential input
is 0. Therefore, δf(b7, c7, d7) becomes −25 and is canceled by δm7 = 25. As a
result, δa8 becomes δa8 = 0. In the case of m7,6 = 1 and m5,6 = 1, a similar
analysis confirms that δa8 is assured of being 0.
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Step 9. In step 9, a9 is calculated as follows:

a9 = (a8 ≪ 5) + f(b8, c8, d8) + e8 + m8 + k8.

Since a7,4 = 0 is set as the extra condition, we can cancel δc8 = ±23 from the
property of function f . Since the function f is f(b8, c8, d8) = (b8∧c8)∨(¬b8∧
d8), if b8,4 = 0, the 4-th bit of f(b8, c8, d8) is equal to d8,4, and if b8,4 = 1, the
4-th bit of f(b8, c8, d8) is equal to c8,4. Therefore, since δc8 = ±23, δc8 = ±23

is canceled by setting the extra condition a7,4 = 0, that is, b8,4 = 0. As a
result, δa9 becomes 0.

Step 10. In step 10, a10 is calculated as follows:

a10 = (a9 ≪ 5) + f(b9, c9, d9) + e9 + m9 + k9.

Since a8,4 = 1 is set as the extra condition, we can cancel δd9 = ±23 from
the property of function f . This basically follows Step 9.

Step 11. In step 11, a11 is calculated as follows:

a11 = (a10 ≪ 5) + f(b10, c10, d10) + e10 + m10 + k10.

To ensure δa11 = 0, we cancel δe10 = ±23 by δm10 = ±23. Since m10,4 �=
m5,6 is set as the extra condition, m10,4 becomes m10,4 = 1 when m5,6 = 0.
In this situation, m5,6 changes from 0 to 1, and m10,4 changes from 1 to 0.
Since we have ensured that no carry is triggered by the differential, δm5 and
δm10 become δm5 = 25 and δm10 = −23, respectively. Since δm5 = 25, δa6

becomes δa6 = 25, that is, δe10 = 23. Therefore, δe10 = 23 is canceled by
δm10 = −23, and δa11 becomes 0. In the case of m5,6 = 1 and m10,4 = 0, a
similar analysis shows that δa11 becomes 0.

From Step 17. Because of input differentials and message expansion, the fol-
lowing message differentials appear from step 19: δm18 = ±23, δm19 = ±25

and δm20 = ±210. δm18 = ±23 is transferred as shown below, and a21,4 =
a20,4 (or a21,4 �= a20,4) is satisfied by δa21 = ±23.

δm18 = ±23 → δa19 = ±23 → δb20 = ±23 → δa21 = ±23 �

Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting other sufficient
conditions is almost 100%. The complexity of this message modification is less
than the operations of 2 steps.

Theorem 2. Suppose we set following conditions as Extra Conditions: a11,21 =
m10,21, m11,26 �= m10,21, a10,23 = a9,23, a12,19 = 0, a13,19 = 1, m15,19 �=
m10,21, m19,26 �= m18,21. If we modify a message as shown below, the sufficient
condition a22,2 = m21,2 is satisfied with probability of almost 1.

m10 ← m10 ⊕ 220, m11 ← m11 ⊕ 225, m15 ← m15 ⊕ 218

Proof. Since the proof of Theorem 2 is almost the same as the proof of Theorem
1 and due to lack of space, we omit the explanation of this proof.
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Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting the other sufficient
conditions is 97.5%. The complexity of this message modification is less than the
operations of 3 steps.

Theorem 3. Suppose we set the following conditions as Extra Conditions:
a11,8 = m10,8, m11,13 �= m10,8, a10,10 = a9,10, a12,6 = 0, a13,6 = 1, m15,6 �=
m10,8, m19,13 �= m18,8. If we modify the message as shown below, sufficient con-
dition a22,4 = a21,4 (or a22,4 �= a21,4) is satisfied with probability of almost 1.

m10 ← m10 ⊕ 27, m11 ← m11 ⊕ 212, m15 ← m15 ⊕ 25

Proof. Since the proof of Theorem 3 is almost same as that of Theorem 1 and
due to lack of space, we omit the explanation of this proof.

Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting the other sufficient
conditions is almost 100%. The complexity of this message modification is less
than the operations of 3 steps.

Theorem 4. Suppose we set following conditions as Extra Conditions: a11,16 =
m10,16, m11,21 �= m10,16, m12,16 �= m10,16, a12,14 = 0, a13,14 = 1, m15,14 �= m10,16,
m19,21 �= m18,16. If we modify the message as shown below, the sufficient condi-
tion a23,2 = m22,2 is satisfied with probability of almost 1.

m10 ← m10 ⊕ 215, m11 ← m11 ⊕ 220, m12 ← m12 ⊕ 215, m15 ← m15 ⊕ 213

Proof. Since the proof of Theorem 4 is almost the same as the proof of Theorem
1 and due to lack of space, we omit the explanation of this proof.

Remark. We experimentally confirmed that the probability that this message
modification can satisfy the target condition without affecting the other sufficient
conditions is 97%. The complexity of this message modification is less than the
operations of 4 steps.

4.4 Application to SHA-1

Since a collision attack on SHA-1 [15] is similar to an attack on SHA-0, sub-
marine modification would be applicable to SHA-1. This section considers the
application of submarine modification to SHA-1.

Collision search of SHA-1 is done by using message modification as well as
collision search of SHA-0. In SHA-1, only message modification for sufficient
conditions up to step 22 has been proposed. Therefore, we discuss the possibility
of applying submarine modification to realizing the sufficient conditions after
step 22 of SHA-1. For example, we discuss message modification to satisfy a23,2 =
m22,2.



32 Y. Naito et al.

Example. Suppose we set following conditions as Extra Conditions: a11,15 =
m10,15, m11,20 �= m10,15, a10,17 �= m9,17, a12,13 = 0, a13,13 = 1, m15,13 �= m10,15,
m19,21 �= m18,16 If we modify the message as shown below, the sufficient condition
a23,2 = m22,2 is satisfied with probability of almost 1.

m10 ← m10 ⊕ 214, m11 ← m11 ⊕ 219, m15 ← m15 ⊕ 212

However, this message modification can impact other sufficient conditions. An
analysis of this is a future work.

If we execute this procedure, the following message differentials appear from
step 19 due to message expansion: δm18 = ±213 ± 215, δm19 = ±220, δm20 =
±215, δm21 = ±214 ± 216, δm22 = ±221 Since m19,21 �= m18,16 is set as the extra
condition, we can minimize the probability of breaking the other sufficient condi-
tions. We omit this explanation since it basically follows that of Theorem 2.

δm18 = ±213 is transferred as shown below, and a23,2 = m22,2 is satisfied by
δa23 = ±2.

δm18 =±213→δa19 =±213→δa20 =±218→δa21 =±223→δa22 =±228→δa23 =±2

Remark. Wang et al. announced an improved version of their original attack
on SHA-1 [15] at NIST HASH WORKSHOP 2005 and CT-RSA’06 [12,13].

5 Lack of Sufficient Conditions

When we use the sufficient conditions given by Wang et al. [14], a collision
attack does not necessarily succeed even if all sufficient conditions are satisfied.
This problem occurs because their approach lacks two conditions. Our analysis,
detailed below, showed that the missing conditions are b0,9 = 0 and b0,11 = 1.

a3 is calculated as follows:

a3 = (a2 ≪ 5) + f(b2, c2, d2) + e2 + m2 + k2.

We transform the above equation for f .

f(b2, c2, d2) = a3 − (a2 ≪ 5)− e2 −m2 − k2

Since Δa3 = 2 − 29 − 211 + 216, Δa2 = −24 − 26 + 211, Δe2 = 0 and Δm2 =
2 + 26 ± 231, Δf(b2, c2, d2) is calculated as follows:

Δf(b2, c2, d2) = Δa3 − (Δa2 ≪ 5)−Δe2 −Δm2

=(2−29−211+216)−((−24−26+211) ≪ 5)−0−(2+26+2± 31)

=−26 ± 231.

Since Δb2 = −2+26+211, b2,2 is fixed to change from 1 to 0 due to the differential
-2, b2,7 is fixed to change from 1 to 0, b2,8 is fixed to change from 1 to 0, b2,9

is fixed to change from 0 to 1 due to the use of differential 26. The sign of the
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change by differential ±231 does not have to be considered since it is MSB. Here,
we focus on the 7th and 9th bits.

First, we discuss the 7th bit. Wang et al. takes advantage of the fact that b2,7

changes from 1 to 0 in order to make differential −26 on f(b2, c2, d2). From the
property of f(b2, c2, d2) = (b2 ∧ c2) ∨ (¬b2 ∧ d2), if we set c2,7 = 1 and d2,7 = 0,
that is, a0,9 = 1 and b0,9 = 0 as sufficient conditions, we can make differential
−26. However, b0,9 = 0 was not one of the sufficient conditions described by
Wang et al.

We turn now to the 9th bit. b2,9 changes from 0 to 1. Wang et al. cancel this
influence in function f . From the property of f(b2, c2, d2) = (b2∧c2)∨(¬b2∧d2),
if we set c2,9 = d2,9, that is, a0,11 = b0,11, we can cancel the influence of the
change of b2,9. Since a0,11 = 1 is one of the sufficient conditions given by Wang
et al, we need to set b0,11 = 1 as a sufficient condition. This sufficient condition
was not specified by Wang et al.

From the above, we need to use b0,9 = 0 and b0,11 = 1 as sufficient conditions
in addition to those given by Wang et al.

6 Complexity of Collision Search

Without the additional sufficient conditions the generation of a message that
yields a collision will fail with probability 3

4 .
Combining the two additional sufficient conditions with those of Wang et al.

and using submarine modification reduces the complexity of collision search to
236 SHA-0 operations. This calculation is given below.

1st block and Step 1-13 of 2nd block. The complexity of generating mes-
sages for these steps is insignificant. Refer to the paper written by Wang et
al. [14].

Step 14-20 of 2nd block. The complexity of generating messages that satisfy
all sufficient conditions in steps 14-20, including message modification, is less
than 8 steps.

Step 21 of 2nd block. The complexity of generating messages that satisfy all
sufficient conditions up to step 21 including submarine modification is less
than,

8 + 1 +
1
2
· 2 = 10.

Step 22 of 2nd block. The complexity of generating messages that satisfy all
sufficient conditions up to step 22 including submarine modification is cal-
culated as follows: Let the complexity where conditions up to step 22 are
satisfied and the number of times m14, m15 is chosen is less than i times
x22,i. In this situation, the following equation below is valid. Here x22,0 = 0.

x22,i =
(

1
2
· 0.025

)i−1

·
(

10 + 1 +
1
2
· 3 +

1
2
· 3
)

+ x22,i−1

The complexity is about 15 steps since lim
i→∞

x22,i ≈ 15.
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Table 2. An example of generated collision pair

M1block f459644c b87cdae1 ed98d4a6 7f5c304b a8606648 073dda8d 9f044c3a 2386c95f
8b611aa4 d66ed3b9 c4854f6e d57662b3 d687ebe0 f61cefe5 6d0252c2 01f298bc

h1block 41f3e784 96831ef3 563e0aa9 d7def7ba 232e8581

M2block 76c21fb3 8a725c5a 13a6039c a23c1950 53e65762 b70bbb88 705ec5b6 079e5dd5
f58793f6 d67d305e 352ee1b8 87c36500 fd012cb5 a51c4269 6a72aabd 7a2449cc

M ′
2block f6c21ff1 8a725c5a 93a603de a23c1910 53e65722 b70bbbca f05ec5b4 879e5dd7

f58793b6 567d305e b52ee1f8 07c36502 fd012cb7 251c4229 ea72aabd fa24498c

h2block cad681a1 354105dc ac31607b 6ccaba44 c76d1948

Step 23 of 2nd block. The complexity of generating messages that satisfy all
sufficient conditions up to step 23 including submarine modification is cal-
culated as follows: Let the complexity where conditions up to step 23 are
satisfied and the number of times m14, m15 is chosen is less than i times
x23,i. In this situation, the following equation below is valid. Here x23,0 = 0.

x23,i =
(

1
2
· 0.03

)i−1

·
(

15 + 1 +
1
2
· 4
)

+ x23,i−1

The complexity is about 18 steps since lim
i→∞

x23,i ≈ 18.

Step i(i = 24− 80) of 2nd block. Let the complexity of generating messages
that satisfy all sufficient conditions up to the i− 1 step be yi−1. If there are
ni sufficient conditions in the i-th step, the probability that all of them are
satisfied is 2−ni . Therefore, yi, the complexity of generating messages that
satisfy all sufficient conditions up to the i-th step, is yi = (yi−1 + 1) · 2ni .
From this equation, y80 = 6180766429108. This is equivalent to 236 SHA-0
operations. From the above consideration, the total complexity of collision
search is 236 SHA-0 operations.

Remark. There is a possibility the collision attack could be further improved
by using another differential path. We discuss this topic in Appendix A.

7 Conclusion

In this paper, we proposed submarine modification, message modification that can
satisfy the sufficient conditions in steps 21-24. Moreover, we showed that subma-
rine modification is applicable to SHA-1. We also showed that the sufficient con-
ditions given by Wang et al. are incomplete since they are missing b0,9 = 0 and
b0,11 = 1. Therefore, even if a message that satisfies all sufficient conditions given
by Wang et al. is discovered, a collision generation may fail with probability 3

4 . By
utilizing the two additional sufficient conditions and submarine modification, the
complexity of collision search is reduced to 236 SHA-0 operations.

Table 2 shows a collision found by using the technique proposed herein.
M1block is a message of the 1st block, h1block is the output of the compres-
sion function of the 1st block. M2block is a message for the 2nd block, M ′

2block is



Improved Collision Search for SHA-0 35

a message of 2nd block after the differential is input, h2block is the output of the
compression function of 2nd block.

Acknowledgement. We would like to thank The Telecommunications Advance-
ment Foundation for supporting our research.
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A A Study of Other Disturbance Vectors

Wang et al. chose a disturbance vector under the condition that the sufficient
conditions up to step 20 can be satisfied by message modification. Therefore,
they chose a disturbance vector to minimize the number of sufficient conditions
after step 20. However, submarine modification can satisfy sufficient conditions
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up to step 24 can be satisfied by message modification. Therefore, we expect
that if we choose a disturbance vector to minimize the number of sufficient
conditions after step 24, we can generate a collision with complexity under 236

SHA-0 operations. If we use the disturbance vector chosen by Wang et al, the
number of conditions after step 24 is 38. However, by using the disturbance
vector shown in Table 3, the number of conditions after step 24 is 37. Therefore,
we expect that the disturbance vector shown in Table 3 enables us to generate
a collision with complexity under 236 SHA-0 operations. Additional analysis on
this matter is a future task.

Table 3. A Disturbance Vector for Reduced Complexity

i value

−5, ...,−1 0 1 1 1 0

0, ..., 19 0 0 0 0 0 1 1 1 0 0 1 1 0 1 1 1 1 1 0 1

20, ..., 39 0 1 1 0 1 1 1 0 0 0 1 0 0 0 1 0 1 0 1 0

40, ..., 59 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0

60, ..., 79 0 0 1 0 0 0 0 1 0 0 1 0 1 1 0 0 0 0 0 0

B Complement of Collision Search by Wang et al.

B.1 2nd Bit and 7th Bit of Messages

The complexity claims of Wang et al. claim address only the sufficient conditions
of chaining variables. They don’t consider the complexity of satisfying the suf-
ficient conditions of messages. However, when a random message is generated,
it must satisfy the sufficient conditions of messages, and this takes a few steps.
This raises the complexity of collision search. This increase can be suppressed
by fixing the 2nd bit and 7th bit of the messages in advance in order to ensure
satisfaction of the sufficient conditions.

B.2 Sufficient Conditions Given by Wang et al.

The sufficient conditions of Wang et al. include those for a13,4, a14,4, a15,4, a16,4,
a17,2. These values depend on the method used to fix the 2nd and 7th bits of the
messages (Discussed in Appendix B.1). That is, if a fixing method different from
that of Wang et al. is chosen, the sufficient conditions for a13,4, a14,4, a15,4, a16,4,
a17,2 are also changed.
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Abstract. In this paper, we analyze the security of HMAC and NMAC,
both of which are hash-based message authentication codes. We present
distinguishing, forgery, and partial key recovery attacks on HMAC and
NMAC using collisions of MD4, MD5, SHA-0, and reduced SHA-1. Our
results demonstrate that the strength of a cryptographic scheme can be
greatly weakened by the insecurity of the underlying hash function.

1 Introduction

Many cryptographic schemes use hash functions as a primitive. Various assump-
tions are made on the underlying hash function in order to prove the security
of the scheme. For example, some proofs assume that the hash function behaves
as a random oracle, while other proofs only assume collision resistance. With
the continuing development in hash function research, especially several popular
ones are no longer secure against collision attacks, a natural question is whether
these attacks would have any impact on the security of existing hash-based cryp-
tographic schemes.

In this paper, we focus our study on HMAC and NMAC, which are hash-based
message authentication codes proposed by Bellare, Canetti and Krawczyk [2].
HMAC has been implemented in widely used security protocols including SSL,
TLS, SSH, and IPsec. NMAC, although less known in the practical world, is the
theoretical foundation of HMAC — existing security proofs [2,1] were first given
for NMAC and then extended to HMAC. It is commonly believed that the two
schemes have identical security.

The constructions of HMAC and NMAC are based on a keyed hash function
Fk(m) = F (k, m), in which the IV of F is replaced with a secret key k. NMAC
has the following nested structure: NMAC(k1,k2)(m) = Fk1(Fk2 (m)), where k =
(k1, k2) is a pair of secret keys. HMAC is similar to NMAC, except that the key
pair (k1, k2) is derived from a single secret key using the hash function. Hence,
we can view HMAC as NMAC plus a key derivation function.

The security of HMAC and NMAC was carefully analyzed by its design-
ers [2]. They showed that NMAC is a pseudorandom function family (PRF)

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 37–53, 2006.
c© International Association for Cryptologic Research 2006
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under the two assumptions that (A1) the keyed compression function fk of
the hash function is a PRF, and (A2) the keyed hash function Fk is weakly
collision resistant1. The proof for NMAC was then lifted to HMAC by fur-
ther assuming that (A3) the key derivation function in HMAC is a PRF. The
provable security of HMAC, besides its efficiency and elegancy, was an im-
portant factor for its wide deployment. However, recent collision attacks on
hash functions [21,24] imply that assumption (A2) in the original proof no
longer holds when considering concrete constructions such as HMAC-MD5 and
HMAC-SHA1. To fix this problem, Bellare recently showed [1] that NMAC is
a PRF under the sole assumption that the keyed compression function fk is
a PRF. This implies that the security of HMAC now depends only on as-
sumptions (A1) and (A3). The main advantage of the new analysis is that
the proof assumptions do not seem to be refuted by existing attacks on hash
functions.

The new security proofs are quite satisfying, especially since they are based on
relatively weak assumptions of the underlying hash function. On the other hand,
they have also raised interesting questions as whether the proof assumptions
indeed hold for popular hash functions. In particular, does any existing collision
attack on a hash function compromise the PRF assumption? And if so, does it
lead to possible attacks on HMAC and NMAC?

1.1 Summary of Main Results

In this paper, we analyze the security of HMAC and NMAC. We answer the
aforementioned questions in the affirmative by constructing various attacks on
HMAC and NMAC based upon weaknesses of the underlying hash function.

Our analysis is based upon existing analyses of hash functions, especially the
attacks on MD4, MD5, SHA-0, and reduced SHA-1 presented in [25,9,10,7]. We
first show that the collision differential path in these earlier attacks can be used
to construct distinguishing attacks on the keyed compression function fk. Hence,
for MD4, MD52, SHA-0, and reduced SHA-1, fk is not a PRF.

Building upon the above attacks, we show how to construct distinguishing,
forgery, and partial key recovery attacks on HMAC and NMAC when the under-
lying hash functions are MD4, MD5, SHA-0, and reduced SHA-1. The complexity
of our attacks is closely related to the total probability of the collision differential
path, and in some cases it is less than the 2n/2 generic bound for birthday-type
attacks. A summary of our main results is given in Table 1. We remark that in
our key recovery attack the adversary can retrieve the entire inner key k2. This
can greatly weaken the security of the scheme. In particular, when the keyed
inner function is degraded to a hash function with a known IV, further attacks
such as single-block forgeries become possible.

1 Please refer to Section 3 for precise definitions of fk and Fk. The notion of weakly
collision resistant (WCR) was introduced in [2]. Roughly, Fk is WCR if it is compu-
tationally infeasible to find m �= m′ s.t. Fk(m) = Fk(m′) for hidden k.

2 In the case of MD5, fk is not a PRF under related-key attacks.
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Table 1. Result summary: number of queries in our attacks on HMAC/NMAC

hash distinguish & key recovery comments
function forgery attacks attacks

HMAC/NMAC MD4 258 263

NMAC MD5 247 247 related-key attacks

HMAC/NMAC SHA-0 284 284

reduced 234 234 inner function
HMAC/NMAC SHA-1 is 34 rounds

1.2 Use of Hash Collisions in Our Attacks

Our attacks on HMAC and NMAC are based on collisions of the keyed inner
function Fk2 . The main reason that an adversary can observe such collisions is
that in our scenario the outer function Fk1 , although hiding the output of the
inner function, does not hide the occurrence of an inner collision.

In our key recovery attacks, each bit of collision information – whether or not
a collision occurs from a set of properly chosen messages – roughly reveals one bit
of the inner key. This is due to the fact that a collision holds information about
the entire hash computation, and hence the secret key. Our techniques illustrate
that collisions within a hash function can potentially be very dangerous to the
security of the upper-layer cryptographic scheme.

1.3 Other Results

General framework for analyzing HMAC and NMAC.We extend the approach
in our attacks to provide a general framework for analyzing HMAC and NMAC.
This framework also points to possible directions for hash function attacks that
most likely lead to further improved attacks on HMAC and NMAC.

Attacks on key derivation in HMAC-MD5.We study the key derivation func-
tion in HMAC-MD5, which is essentially the MD5 compression function keyed
through the message input. We describe distinguishing and second preimage
attacks on the function with complexity much less than the theoretical bound.

New modification technique. We develop a new message modification tech-
nique in our key recovery analysis. In contrast with Wang’s techniques [21,22],
our method does not require full knowledge of the internal hash computation
process. We believe that our new technique may have other applications.

1.4 Implications

In practice, HMAC is mostly implemented with MD5 or SHA-1. To a much lesser
extent, there is some deployment of HMAC-MD4 (for example, see [12]). We are
not aware of any deployment of NMAC. The attacks presented in this paper do
not imply any immediate practical threat to implementations of HMAC-MD5 or
HMAC-SHA1. However, our attacks on HMAC-MD4 may not be out of range
of some adversaries, and therefore it should no longer be used in practice.
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We emphasize that our results on HMAC complement, rather than contradict,
the analysis in [2,1]. While the designers proved that HMAC is secure under
certain assumptions on the underlying hash function, we show that attacks are
possible when these assumptions do not hold.

1.5 Organization of the Paper

In Section 3, we provide brief descriptions of HMAC, NMAC and the MDx family.
In Section 5, we present all three types of attacks on NMAC-MD5, which is
based on the MD5 pseudo-collision (Section 4). The simplicity of the underlying
differential path in this case facilitates our explanation, especially the technical
details of our key recovery attack. For attacks on HMAC and NMAC using other
underlying hash functions, the methods are similar and thus we just focus on
what is different in each case in Section 6. In Section 7, we describe a general
framework for analyzing HMAC and NMAC.

2 Related Work

Our analysis on HMAC and NMAC is closely related to various attacks on hash
functions, especially those in the MDx family. In addition, our work is also re-
lated to the rich literature on message authentication codes. Many early heuristic
designs for MACs were broken, sometimes in ways that allowed forgery and key
recovery [17,18,19]. These early analyses were the driving force behind proposals
with formal security proofs, namely HMAC and NMAC [2]. Since their publi-
cation, most of the security analysis was provided by the designers. Recently,
Coron et al. [11] studied the security of HMAC and NMAC in the setting of
constructing iterative hash functions. After our submission to Asiacrypt’06, we
learned that Kim et al. [15] did independent work on distinguishing and forgery
attacks on HMAC and NMAC when the underlying functions are MD4, SHA-0,
and reduced SHA-1. They did not consider key recovery attacks.

Some of our attacks are in the related-key setting. Related-key attacks were
introduced by Biham [5] and Knudsen [14] to analyze block ciphers. A theoret-
ical treatment of related-key attacks was given by Bellare and Kohno [4]. The
relevance of related-key cryptanalysis is debated in the cryptographic commu-
nity. For example, some suggest that the attacks are only practical in poorly
implemented protocols. On the other hand, cryptographic primitives that resist
such attacks are certainly more robust, and vulnerabilities can sometimes indi-
cate weaknesses in the design. See the introduction to [13] for example settings in
which related-key attacks can be applied. We note that the designers of HMAC
and NMAC did not consider the related key setting in their security analysis.

3 Preliminaries

3.1 Hash Functions and the MDx Family

A cryptographic hash function is a mathematical transformation that takes an
input message of arbitrary length and produces an output of fixed length, called
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the hash value. Formal treatment of cryptographic hash functions and their prop-
erties can be found in [20]. In practice, hash functions are constructed by iterat-
ing a compression function f(cv, x) which takes fixed length inputs: a chaining
variable cv of n bits and a message block x of b bits. The hash function F is
defined as follows: First divide the input message m into x1, x2, ..., xs according
to some preprocessing specification, where each xi is of length b. Then set the
first chaining variable cv0 as the fixed IV, and compute cvi = f(cvi−1, xi) for
i = 1, 2, ..., s. The final output cvs of the iteration is the value of F .

The MDx family of hash functions includes MD4, MD5, SHA-0, SHA-1, and
others with similar structure. Here we briefly describe the structure of MD5 and
omit others. The compression function of MD5 takes a 128-bit chaining variable
and a 512-bit message block. The chaining variable is split into four registers
(A, B, C, D), and the message block is split into 16 message words m0, . . . , m15.
The compression function consists of 4 rounds of 16 steps each, for a total of 64
steps. In each step, the registers are updated according to one of the message
words. The initial registers (A0, B0, C0, D0) are set to be some fixed IV. Each
step t (0 ≤ t < 64) has the following general form3:

Xt ← (At + φ(Bt, Ct, Dt) + wt + Kt)<<<st

(At+1, Bt+1, Ct+1, Dt+1) ← (Dt, Xt + Bt, Bt, Ct)

In the above equation, φ is a round-dependent Boolean function, Kt is a step-
dependent constant, and st is a step-dependent rotation amount. In each round,
all 16 message words are applied in a different order, and so wt is one of the
16 message words. After the 64 steps, the final output is computed as (A64 +
A0, B64 + B0, C64 + C0, D64 + D0).

3.2 Message Authentication Codes, HMAC and NMAC

A message authentication code is a mathematical transformation that takes as
inputs a message and a secret key and produces an output called authentication
tag. The most common attack on MACs is a forgery attack, in which the adver-
sary can produce a valid message/tag pair without knowing the secret key. For
MACs that are based on iterative hash functions, there is a birthday-type forgery
attack [17,3] that requires about 2n/2 MAC queries, where n is the length of the
authentication tag.

HMAC and NMAC are both hash-based MACs. Let F be the underlying
hash function and f be the compression function. The basic design approach
for NMAC is to replace the fixed IV in F with a secret key (aka keyed via the
IV). Following the notation in [2], we use fk(x) = f(k, x) to denote the keyed
compression function and Fk(x) = F (k, x) the keyed hash function. Let (k1, k2)
be a pair of independent keys. The NMAC function, on input message m and
secret key (k1, k2), is defined as:

NMAC(k1,k2)(m) = Fk1(Fk2 (m)).
3 We use a slightly different notation from previous work so that there is a unified

description for all the steps.
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The construction of HMAC was motivated by practical implementation needs.
Since NMAC changes the fixed IV in F into a secret key, this requires a modifi-
cation of existing implementations of the hash function. To avoid this problem,
the designers introduced the fixed-IV variant HMAC. Let const1 and const2
be two fixed constants. The HMAC function, on input message m and a single
secret key k, is defined as:

k1 = f(IV, k ⊕ const1) (1)
k2 = f(IV, k ⊕ const2) (2)

HMACk(m) = NMAC(k1,k2)(m).

In the above description for HMAC, we can consider Equations (1) and (2)
together as a key derivation function KDF which takes a single secret key k and
outputs a pair of keys (k1, k2). That is, (k1, k2) = KDF(k). Hence, HMAC is
essentially “KDF + NMAC”. We remark that the term “key derivation function”
was not used in [2], but this view of the HMAC construction will be quite
convenient for our later analysis.

4 Pseudo-collisions of MD5

In [9], den Boer and Bosselaers analyzed the compression function of MD5 and
found pseudo-collisions of the form f(cv, m) = f(cv′, m), where cv and cv′ are
two different IVs. Such pseudo-collisions of MD5 are the basis for our related-
key attacks on NMAC-MD5. In this section, we discuss some properties of the
pseudo-collisions under the framework of differential cryptanalysis.

Differential cryptanalysis was introduced by Biham and Shamir [8] to analyze
the security of DES. The idea also applies to the analysis of hash functions. In
a hash collision attack, we consider input pairs with an appropriately defined
difference and analyze how the differences in the chaining variables evolve dur-
ing the hash computation. The intermediate differences collectively are called
a differential path, and its probability is defined to be the probability that the
path holds when averaged over all input pairs satisfying the given difference.

For the MD5 pseudo-collisions in [9], the messages are the same and the input
difference is only in the chaining variables. The pair of initial chaining variables
(cv, cv′) as well as all the intermediate values satisfy the following difference:

cv ⊕ cv′ = ( 80000000 80000000 80000000 80000000 ) def= Δmsb. (3)

Putting in concrete terms, the differences are only in the most significant bit
(MSB) of each register At, Bt, Ct, Dt. This simple pattern propagates through
all 64 steps of MD5. Because of the extra addition operation at the end, the
difference disappears, yielding a pseudo-collision.

The differential path requires the following conditions on the IV:

MSB(B0) = MSB(C0) = MSB(D0) = b, (4)
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where b = 0 or 1. Moreover, the MSBs of the intermediate registers are the same
for most of the first round. Namely, for 1 ≤ t < 15,

MSB(At) = MSB(Bt) = MSB(Ct) = MSB(Dt) = b.

The total probability of the differential is 2−46.

5 Related-Key Attacks on NMAC-MD5

In this section, we present distinguishing, forgery, and partial key recovery at-
tacks on NMAC-MD5 in the related-key setting. In this setting, the goal of the
adversary is to break the MAC by obtaining input/output pairs of two MAC
oracles whose keys are different but with a known relation.

As described in Section 4, the differential path for the MD5 pseudo-collision
holds with probability 2−46. Given the path, we can construct a related-key dis-
tinguishing attack on the keyed MD5 compression function that requires about
247 queries. This distinguishing attack is the basis for all three types of attacks on
NMAC-MD5. Since the distinguishing attacks on the MD5 compression function
and on NMAC-MD5 are nearly identical, we omit the details of the former.

Recall that in NMAC, the inner function Fk2 is keyed through the IV. Hence,
in our related-key attacks, the difference in the inner key k2 is set according to
the input IV difference given by Equation (3). More specifically, we have the
following setting for our related-key attacks on NMAC-MD5:

– There are two oracles NMAC(k1,k2) and NMAC(k′
1,k′

2). The relation between
(k1, k2) and (k′

1, k
′
2) is set as:

k1 = k′
1 and k2 ⊕ k′

2 = Δmsb. (5)

– The adversary queries each oracle on input messages of its choice and is
given the corresponding authentication tag.

5.1 Related-Key Distinguishing and Forgery Attacks on
NMAC-MD5

We first present a related-key distinguishing attack on NMAC-MD5, based upon
the lack of pseudorandomness of the keyed MD5 compression function. In this
attack, the adversary is given two oracles (O, O′), which can either be the two
NMAC oracles as defined by Equation (5) or oracles for truly random functions.
The adversary generates 246 random messages and queries both oracles. If a
collision O(m) = O′(m) is observed for any message m, it identifies the oracles
as NMAC; otherwise, it identifies them as a truly random function.

The correctness of the attack is easy to see: After 246 messages, a collision of
the inner function is expected. That is, Fk2 (m) = Fk′

2
(m). Since the outer key k1

is the same, the inner collision yields a collision for the two NMAC oracles. The
complexity is 246 random queries to each oracle, for a total of 247 queries. The
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attack succeeds if k2 satisfies the condition given by Equation (4). Hence, for
two random NMAC key pairs which satisfy the relation given by Equation (5),
the success probability of our distinguishing attack is 1/4.

It is worth noticing that the outer function in NMAC, although making the
output of the inner function hidden, does not hide the occurrence of an inner
collision. This property is very useful for converting the distinguishing attack
on the inner function (which is the keyed MD5 compression) to a distinguishing
attack on NMAC. Such a conversion also applies to HMAC.

The attack can be extended to a forgery attack as follows [17,3]: Once a
message m is found that causes a collision of the two NMAC oracles, the ad-
versary queries the first oracle on m||e for any extension e and obtains tag =
NMAC(k1,k2)(m||e). Then, it produces (m||e, tag) as a forgery for the second ora-
cle. Since NMAC(k1,k2)(m||e) = NMAC(k′

1,k′
2)

(m||e), the forged authentication tag is
valid. The complexity is 247 random queries plus one chosen query. Hence, the
total number of queries is about 247 and the success probability is 1/4.

5.2 Related-Key Key Recovery Attack on NMAC-MD5

We present a partial key recovery attack on NMAC-MD5, in which the adversary
can retrieve the entire inner key k2 in NMAC. This is the most technical part of
the paper, so we start with a high level description of the key recovery algorithm
consisting of four phases:

– Phase 1. The attacker generates random messages until it obtains a message
m that causes a collision of the two NMAC oracles.

– Phase 2. The attacker modifies certain bits of m to create new messages
m∗ and observes whether any m∗ causes a new collision. This collision infor-
mation allows the attacker to recover many bits in the intermediate registers
S = (A14, B14, C14, D14) in the computation of Fk2(m).

– Phase 3. Similar to Phase 2, the attacker recovers a few additional bits from
other registers, and uses this information to determine more bits of S with
a possible small additive error.

– Phase 4. The attacker guesses all remaining unknown bits of S and steps
through the MD5 computation backwards to get (A0, B0, C0, D0) – a candi-
date for k2. It verifies whether Fk2(m) = Fk′

2
(m). If so, it outputs k2 as the

inner key; Otherwise, go back to Phase 1.

Phase 1 and Phase 4 of the key recovery algorithm are fairly straightforward,
and so for the rest of the section we focus on Phase 2 and Phase 3. We first
explain the main idea and then present detailed analysis.

Main idea. For Phase 2 and Phase 3, the objective is to recover bits of some
intermediate registers through collision information. To achieve this goal, we take
a closer look at the collision differential paths and analyze what information can
be derived from such paths. Let DPm denote the differential path induced by m,
i.e., all the intermediate differences in the computation of Fk2(m) and Fk′

2
(m).
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Since m yields a collision, we know that DPm follows the differential path for
the MD5 pseudo-collision. In particular, for the computation of Fk2(m), we have
MSB(Bt) = b for 1 ≤ t < 15. WLOG, we assume b = 0.

For a given step t in the first round, we introduce a new message m∗ that is
defined based on message m as follows:

m∗
j =

⎧⎨⎩mj if 0 ≤ j < t
mj + Δ if j = t
random if t < j < 16

(6)

We next consider the differential path DPm∗ , induced by m∗. Since m and m∗

are the same up to Step t−1, the two paths DPm and DPm∗ are the same until this
step. For Step t, let B∗

t+1 be the newly computed register by replacing mt with
m∗

t = mt +Δ. We know that B∗
t+1 will be different from Bt+1. A key observation

is that if MSB(B∗
t+1) changes from 0 to 1, then the path DPm∗ will drift away from

the collision differential path, and hence the chance of it producing a collision
after 64 steps is negligible. More precisely, we have the following lemma.

Lemma 1. Let m∗ be a message defined as in Equation (6), and let p∗ be the
probability that m∗ causes a collision Fk2(m

∗) = Fk′
2
(m∗). If MSB(B∗

t+1) = 0,
then p∗ = 2t−45 when averaged over all random m∗

j (j > t). If MSB(B∗
t+1) = 1,

then p∗ ≈ 2−128.

For a given value Δ, Lemma 1 can be used to detect the MSB of B∗
t+1 as follows:

generate about 245−t messages satisfying Equation (6) and query both NMAC
oracles on these messages. If a collision is observed, then the MSB of B∗

t+1 is 0;
otherwise, the bit is 1.

In what follows, we show how to use the above collision information to recover
Bt+1. To better illustrate the intuition, we consider a simplified step function
where the rotate is eliminated. Hence Step t becomes Bt+1 = mt +T and B∗

t+1 =
m∗

t + T , where the value T has been determined before Step t. To detect bit i
of Bt+1, we set m∗

t = mt + 2i. This implies that

B∗
t+1 = Bt+1 + 2i. (7)

We consider the effect of the above increment, depending on whether bit i of
Bt+1 is 0 or 1:

– If bit i of Bt+1 is 0, then the increment will not cause a carry. In this case,
MSB(B∗

t+1) = MSB(Bt+1) = 0, and we will observe a collision in the expected
number of queries.

– If bit i of Bt+1 is 1, then the increment causes a carry. Furthermore, if we
can set bits [(i+1)..30] of B∗

t+1 to be all 1, then the carry will go all the way
to the MSB of B∗

t+1 . In this case, MSB(B∗
t+1) = MSB(Bt+1) + 1 = 1, and we

will not observe a collision.
To ensure carry propagates to the MSB, we set m∗

t = mt + 2i + d, for an
appropriate choice of d. So Equation (7) becomes B∗

t+1 = Bt+1 + 2i + d.
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The above analysis yields an algorithm for determining Bt+1 one bit at a time,
from bit 30 to bit 0. (Note that we already know bit 31 of Bt+1 is 0 by assump-
tion.) We refer to this algorithm as the bit flipping algorithm, and the complete
description is given in Appendix A.

Detailed analysis. The main idea described above generally applies to any
register Bt for 0 ≤ t < 15. In Phase 2, the registers to be recovered are

(B11, B12, B13, B14) = (A14, D14, C14, B14).

The reason why we choose later registers rather than earlier ones is to minimize
the number of oracle queries, which is 245−t per oracle per bit computed of
register Bt+1. We leave B15, B16 free so that there is enough randomness for
generating new collisions.

We now consider how to apply the bit flipping algorithm in the presence of
rotation. We need to do B∗

t+1 = Bt+1 + 2i + d for i = 30, 29, . . . , 0. However,
we are not able to do so by just setting m∗

t = mt + 2i + d because of the
rotation operation <<<st. Instead, we use a modified bit flipping algorithm (see
Appendix A for details). In this algorithm, we set m∗

t = mt + 2i′ + d′ where

i′ + st = i mod 32 and d′<<<st = d.

Note that if addition and rotation could commute, then setting m∗
t as above

would have the same effect as B∗
t+1 = Bt+1 + 2i + d. Since this is not the case,

some error might occur when applying the modified algorithm. Fortunately, the
error is manageable — we can show that the modified algorithm almost always
succeeds for recovering the most significant (32−st) bits of Bt+1. In other words,
if it fails, it is almost always on the least significant st bits. More precisely, we
have the following lemma. The proof is omitted due to space limit.

Lemma 2. For step t, let pt be the probability that the modified bit flipping
algorithm correctly recovers the most significant (32 − st) bits of Bt+1, when
averaged over all possible input messages m. Then pt ≥ 1− 2−st − 2−st−1.

For the four steps t = 10, 11, 12, 13, the rotation amounts are st = 17, 22, 7, 12.
Hence, we can use the modified bit flipping algorithm to determine the following
bits of the registers:

A14 = B11 : most significant 15 bits
D14 = B12 : most significant 10 bits
C14 = B13 : most significant 25 bits
B14 = B14 : most significant 20 bits

In total we already recover 70 bits of the registers. We could proceed to Phase 4
and guess the remaining 58 bits. This would yield a key recovery algorithm with
query complexity 247 and time complexity equal to about 258 MD5 operations,
which is much less than exhaustive key search.
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With refined analysis, we can further reduce the workload by doing an in-
significant number of additional queries in Phase 3. We do so by following similar
steps as in Phase 2, except recovering bits of earlier registers, namely the most
significant (32 − st) bits of B10, B9, B8. Once these bits are known, the inter-
action between successive steps can be used to determine 10 more bits of the
registers (A14, D14, C14, B14) up to a possible small additive error. Due to space
limits, specific details are omitted. Together with an early stopping technique in
Phase 4, the remaining workload is at most 245 MD5 operations. This can be
reduced further, but 245 is already do-able with moderate computing resources.
The total number of queries is still dominated by that of Phase 1, which is 247.

Implementation results. We have implemented the key recovery attack on
NMAC-MD5. In our implementation, we used a reduced-round version of MD5,
in which the last round (16 steps) is omitted. Since the attack only depends on
properties of the first round, the reduction in rounds does not affect the analysis
except that the query complexity is reduced from 247 to 231. In our experiment,
the algorithm correctly recovered the inner key bits.

Remarks on message modification techniques. In the key recovery analy-
sis, we use information about the collision differential paths to derive information
about the intermediate registers. To generate useful paths, we developed a new
message modification technique that works even when the internal hash compu-
tation is unknown due to the presence of the secret key.

It is worth comparing our modification techniques with Wang’s original mes-
sage modification techniques [21,22], which deals with the situation where the
entire hash computation is known since there is no secret for a keyless hash
function. Note that the objective of the modification is also different for collision
attacks and our key recovery attacks: the goal for the former is to modify mes-
sages so that collisions can occur with high probability; the goal for the latter is
to modify messages so that certain collisions may or may not occur, depending
upon the value of the secret key.

5.3 Attacks on the KDF in HMAC-MD5

Given our related-key attacks on NMAC-MD5, an immediate question is whether
they are applicable to HMAC-MD5. Since the difference between HMAC and
NMAC is the extra key derivation function KDF, we analyze properties of KDF in
HMAC-MD5, which consists of two functions of the form ki = f(IV, k⊕consti).
Here the MD5 compression function f is used as f(x, K), where x ∈ {0, 1}128

and the key K ∈ {0, 1}512. For ease of reference, we denote f(x, K) by gK(x).
So {gK}K∈{0,1}512 is a family of functions indexed by K.

As noted in Section 5.4 of [1], Rijmen observed that it seems possible to
extend the pseudo-collision of MD5 [9] to a distinguishing attack on {gK}. Here,
we describe the details of such an attack: The adversary generates 246 random
pairs (x, x′) such that x⊕x′ = Δmsb, and queries an oracle, which is either gK or
a truly random function. If the adversary observes a collision for any pair, then
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it identifies the oracle as gK ; otherwise, it identifies the oracle as a truly random
function. The complexity of the attack is 247 queries.

Recall that the HMAC security proofs [1,2] require KDF to be a PRF. However,
the above distinguishing attack implies that the KDF in HMAC-MD5 is not a
PRF. Despite the non-pseudorandomness, its presence does help HMAC-MD5
to resist our related-key attacks for the following reason. In order to apply the
attacks to HMAC-MD5, we would need to set appropriate differences in the
single key k and hope that (k1, k2) = KDF(k) would yield the required difference
for k2 while keeping k1 the same (see Equation (5)). However, this appears to be
very difficult, since any differences in k would almost certainly cause differences
in both k1 and k2, thus making the attacks impossible.

Of independent interest, we present a second preimage attack on gK , also
based on [9]. Here the key K can be either secret or known. The attack works as
follows: For a given random input x ∈ {0, 1}128, the adversary sets x′ such that
x⊕x′ = Δmsb, and outputs x′ as a second preimage of x. The success probability
is about 2−48, since the probability that x satisfies Equation (4) is 2−2, and the
probability that the pair (x, x′) then follows the differential path to produce a
collision is 2−46 (meaning x′ is a second preimage of x). Hence, the above attack
requires O(1) workload, no queries, and succeeds with probability 2−48, which
is much higher than the 2−128 theoretical bound.

6 Attacks on HMAC/NMAC with Other Hash Functions

The basis for our attacks on NMAC-MD5 is a collision differential path for the
keyed MD5 compression function that holds with relatively large probability. The
same ideas and techniques also apply to other underlying hash functions such
as MD4, SHA-0, and reduced SHA-1. In this section, we present three types of
attacks on HMAC and NMAC for these underlying hash functions, all in the
standard setting.

6.1 Attacks on HMAC/NMAC-MD4

MD4 has long been known to be insecure, but it was an open question whether
HMAC-MD4 can still be used as a PRF or a secure MAC. We answer the question
in the negative by presenting attacks on HMAC/NMAC-MD4.

Our attacks are based upon the second preimage attack on MD4 by Yu et
al. [25]. Table 3 of [25] gives a differential path that leads to a collision with
probability 2−62. The details that are most relevant to our attacks are the mes-
sage difference: there is only a one-bit difference in one of the message words,
namely, m4 ⊕ m′

4 = 2i, and the path holds for any i (0 ≤ i < 32), for a total
of 32 possible paths. Given the paths, we can mount a distinguishing attack on
the keyed MD4 compression function, implying that the function is not a PRF.

For our distinguish attack on HMAC-MD4, there is only a single oracle O,
which can be either HMACk or a truly random function. The adversary generates
about 262 message pairs (m, m′) such that m4 ⊕m′

4 = 2i for some i, queries the
oracle, and observes whether a collision O(m) = O(m′) occurs. If so, it identifies
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the oracle as HMAC; otherwise, it identifies it as a truly random function. The
expected query complexity is 263, and the success probability is one. From the
collision, a forgery attack easily follows (similar to Section 5.1) which requires
an additional chosen query.

We can reduce the query complexity to 258 by using a structure, which is a
common trick in differential cryptanalysis. The idea is to take advantage of the
multiple differential paths by generating input pairs (m, m′) in a more compact
way as follows: First, generate 226 random m3 (it can actually be any message
word mj as long as j �= 4). Second, for each m3, generate all 232 possible values
for m4. Hence, the total number of messages is 258. It is easy to show that the
258 messages collectively create 262 pairs of (m, m′) for which m4 ⊕m′

4 = 2i for
some i. One of the pairs is expected to produce a collision.

We can construct a partial key recovery attack on HMAC-MD4 following
similar phases as that of NMAC-MD5. Given the form of the 32 differential
paths and their associated conditions, it is better to use only one path (i = 22)
for key recovery. Our analysis shows that the query complexity is roughly 263

and the remaining computation is order 240 MD4 operations.

6.2 Attacks on HMAC/NMAC-SHA0

Chabaud and Joux [10] presented the first collision attack on SHA-0 with com-
plexity 261. Their analysis also introduced important concepts such as local
collisions and disturbance vectors, which prove to be the basis for all subsequent
attacks on SHA-0 and SHA-1. The differential path used in their attack holds
with probability p = 2−83 (see Table 4 in [10] for detailed calculation). We can
use the differential path to construct distinguish and forgery attack on HMAC-
SHA0 with query complexity 284. One subtle issue for SHA-0 (and SHA-1) is
that we should generate message pairs so that they not only satisfy the required
message difference but also extra conditions on certain message bits.

A partial key recovery attack on HMAC-SHA0 can also be constructed. In
fact, the analysis would be much simpler than that of NMAC-MD5 due to
the particular form of the SHA-0 (and SHA-1) step function, which is Ai =
(Ai−1<<<5)+ fi(Bi−1, Ci−1, Di−1)+ Ei−1 + mi−1 + ki. Since there is no rotation
associated with the message word, we can use the bit flipping algorithm directly
(rather than the modified version) to recover the register Ai. Our analysis shows
that the query complexity is about 284, and the time complexity is about 260.

6.3 Attacks on Reduced-Round Variants of HMAC/NMAC-SHA1

Biham et al. [7] presented collision attacks on several reduced-round variants of
SHA-1. Their attack on 34-round SHA-1 used a disturbance vector with very
low Hamming weight (see Table 1 of [7]). Based on this vector, we calculated
the probability of the differential path to be 2−33, and it holds for half of the
randomly chosen IVs. This path implies that 34-round SHA-1 is not a PRF.
Using our techniques developed earlier, we can construct all three types of attacks
on HMAC-SHA1 when the inner function is reduced to 34 rounds. The query
complexity is about 234 and the success probability is 1/2 for a random key.
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6.4 Further Improvements

It is possible to further improve the complexity of our attacks. Krawczyk [16]
pointed out a useful tradeoff between query complexity and the success prob-
ability of the attacks. More specifically, we can construct new attacks with 2t

queries and success probability 2t−q, where 2q is the number of queries in our
original attacks and 1 ≤ t ≤ q. Biham [6] suggested that attacks on HMAC can
be extended to 40-round SHA-1 using results in [7].

7 A General Framework for Analyzing HMAC/NMAC

In this section we extend the approach in our attacks to provide a general frame-
work for analyzing HMAC/NMAC. Let DP be a collision differential path for the
compression function f , and let Δ = (Δcv, Δm) be the required input difference
for the path. Suppose that the path holds with probability at least P0 = 2−w

for a fraction q of all randomly chosen inputs (cv, cv′) and (m, m′) satisfying Δ.
We consider two cases depending on Δcv:

– Δcv = 0. In this case, the path DP yields a real collision. The attacks to be
considered are in the standard setting and apply to both HMAC and NMAC.

– Δcv �= 0. In this case, the path DP yields a pseudo-collision. The attacks to
be considered are in the related-key setting and apply only to NMAC.

There are three types of possible attacks, all having success probability q.

1. Distinguishing attack. The complexity is about O(2w+1) queries.
2. Forgery attack. If the hash function F is iterative, the distinguishing attack

implies a forgery attack with one additional chosen query.
3. Key recovery attack. If F has similar step functions as MDx, the collision

path may allow the recovery of the inner key in HMAC and NMAC. The
query complexity is O(2w+1), and the time complexity depends on the form
of the collision path.

To beat the generic birthday-type forgery attack, we need to find a collision
differential path such that P0 > 2−n/2, and to beat the exhaustive key search
attack, we need P0 > 2−n. Hence, the above general framework reduces the
problem of attacking HMAC/NMAC to the problem of finding a “good” collision
differential path for the underlying compression function.

Finding suitable differential paths. There have been many collision attacks
on hash functions, each relying on a specific differential path. One important
point is that a differential path that works best for finding collisions may not
be the best for the purpose of attacking HMAC and NMAC. To better explain
this, we introduce a variable Pr, which is the probability of the differential path
from Step r to the last step.

– For collision attacks, we should select a path such that Pr is minimized,
assuming message modification techniques can apply up to Step r-1 of the
hash function.

– For attacks on HMAC and NMAC, we should select a path such that P0 is
minimized.
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For example, for the purpose of analyzing HMAC-SHA0, Chabaud and Joux’s
attack offers a better differential path than the improved collision attack in [23],
since the probability P0 associated with the differential path in the former attack
is much larger than the latter.

To break HMAC-MD5, we would need to find differential paths that hold with
large enough probability P0 and lead to real collisions. The differential path in
Wang’s MD5 attack [21] was constructed to minimize P17 (≈ 2−37) so that it
works best with modification techniques. The total probability P0 of the path
is only about 2−300. So far, improvements to the MD5 attack were all due to
refined modification techniques: nobody has discovered new differential paths.
An open question is whether differential paths for MD5 with P0 > 2−128 can be
found. New automated search methods may provide promising ways for finding
such differential paths.
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A The Bit Flipping Algorithms

We first give the bit flipping algorithm in Figure 1. This is for the simplified
MD5 step function where the rotation is eliminated.

For j = 0, . . . , t− 1, set m∗
j = mj

Set d = 0 (a)
For i = 30 downto 0 do (b)
{

Set m∗
t = mt + 2i + d (c)

Repeat order 246−t times
{

Choose m∗
t+1, . . . , m

∗
15 at random.

/* now all 16 words of m∗ have been set */
Query the two nmac oracles on m∗

If there is a collision, then
{

Bit i of Bt+1 is 0
Set d = d + 2i (d)
break;

}
}
If no collision found, then bit i of Bt+1 is 1

}

Fig. 1. Bit flipping algorithm for computing Bt+1
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The modified bit flipping algorithm is similar, except the following four steps:

– Step (a) ⇒ Set d′ = 0
– Step (b) ⇒ For i′ = 30− st downto 0 do
– Step (c) ⇒ Set m∗

t = mt + 2i′ + d′

– Step (d) ⇒ Set d′ = d′ + 2i′
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our attack can reliably restore the initial state with time complexity
O(20.556L), memory complexity O(L2) from O(20.161L)-bit keystream for
L ≥ 100 and time complexity O(20.571L), memory complexity O(L2)
from O(20.194L)-bit keystream for L < 100. Therefore, our attack is bet-
ter than all the previously known attacks on the SSG and especially, it
compares favorably with the time/memory/data tradeoff attack which
typically has time complexity O(20.5L), memory complexity O(20.5L)
and data complexity O(20.25L)-bit keystream after a pre-computation
phase of complexity O(20.75L). It is well-known that one of the open re-
search problems in stream ciphers specified by the European STORK
(Strategic Roadmap for Crypto) project is to find an attack on the
self-shrinking generator with complexity lower than that of a generic
time/memory/data tradeoff attack. Our result is the best answer to this
problem known so far.
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1 Introduction

The self-shrinking generator is an elegant keystream generator proposed by W.
Meier and O. Staffelbach at EUROCRYPT’94 [22]. It applies the shrinking idea
[7] to only one maximal length LFSR and generates the keystream according
to the following rule: let a = a0, a1, . . . be a binary sequence produced by the
LFSR, consider the bit pair (ai, ai+1), if ai = 1, output ai+1 as a keystream
bit, otherwise no output is produced. It is suggested in [22] that the key of the
SSG consists of the initial state of the LFSR and (preferably) also of the LFSR
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feedback logic. As in other articles, e.g. [18,26,31,3], we assume that the primitive
feedback polynomial is known to the attacker.

Although many LFSR based stream ciphers are found vulnerable to (fast)
correlation attacks [4,5,14,15,16,23,24,25] and algebraic attacks [1,2,8,9], the self-
shrinking generator has shown remarkable resistance against such cryptanalysis.
For a length L LFSR, the previously known best concrete attack is the BDD
attack in [18], which has time complexity O(20.656L) at the expense of O(20.656L)
memory from �2.41 · L� bits keystream. One of the open research problems in
stream ciphers specified by the STORK (Strategic Roadmap for Crypto) project
[29] is to find an attack on the self-shrinking generator with complexity lower
than that of a generic time/memory/data (TMD) tradeoff attack, which typically
has time complexity O(20.5L), memory complexity O(20.5L) by using O(20.25L)-
bit keystream after a pre-computation phase of complexity O(20.75L).

In [22], a simple method of reducing the key space is introduced and the en-
tropy leakage analysis shows that the average key space of the self-shrinking
generator is O(20.75L). A faster cryptanalysis of the SSG is proposed by Mihal-
jević in [26] with time complexity varying from O(20.5L) to O(20.75L) and the
required keystream length ranging from 20.5L to 20.25L accordingly. To get the
best complexity estimation O(20.5L), the intercepted keystream length must be
greater than L/2 · 2L/2, which is beyond the realistic scope for large value of L.
In [31], a search tree algorithm is presented to restore an equivalent state of the
LFSR from a short segment of the keystream with time complexity O(20.694L).
However, the main bottleneck of the attacks in [31,18] is their unrealistically
large requirement of memory. Since the self-shrinking generator uses only one
LFSR, the method of reducing the memory complexity in [17] is inapplicable.
In 2003, P. Ekdahl et al. showed that certain week feedback polynomials allow
very efficient distinguishing attacks on the SSG [10]. Except for these concrete
attacks, there is a general time/memory/data tradeoff attack [3] applicable to all
stream ciphers in theory. This kind of attack should be taken into consideration
especially when a technique called BSW sampling [3] is applicable to the cipher
system. It is known that the sampling resistance of the self-shrinking generator
is 2−L/4, thus the reduced search space is O(20.75L). However, such an attack
always has a time-consuming preprocessing phase and requires large amount of
memory, which are usually impossible for individual cryptanalysts.

In this paper, we propose a new type of guess-and-determine attack on the
self-shrinking generator. The large flexibility inherent in the new attack enables
us to handle different attack conditions and requirements smoothly. It has no
restriction on the form of the LFSR and can reliably recover the initial state
of the LFSR with time complexity O(20.556L), memory complexity O(L2) from
O(20.161L)-bit keystream for L ≥ 100 and time complexity O(20.571L), mem-
ory complexity O(L2) from O(20.194L)-bit keystream for L < 100. Compared
with the general time/memory/data tradeoff attack, our attack avoids the time-
consumptive pre-computation phase and the large memory requirement in the
TMD attack, while without a substantial compromise of the real processing
complexity. Comparisons with other known attacks against the self-shrinking
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generator show that our attack offers the best tradeoff between the complexi-
ties (time, memory and pre-computation) and the required keystream length.
Therefore, our result is the best answer to the open problem in STORK project
known so far.

The rest of this paper is organized as follows. We present a detailed description
of our attack in Section 2 with theoretical analysis. In Section 3, experimental
results to verify the feasibility of our attack and comprehensive comparisons
with the previously known attacks on the self-shrinking generator are provided.
Finally, some conclusions are given in Section 4.

2 Our Attack

The aim of our attack is to restore the initial state or an equivalent initial state
of the LFSR used in the self-shrinking generator from a keystream segment of
realistic length. We first state some basic facts on the self-shrinking generator
and on the underlying maximal length sequences, then the guess-and-determine
attack is presented in detail followed by the theoretical complexity analysis.

2.1 Basic Facts

Let a = a0, a1, . . . be the maximal length sequence produced by LFSR A used
in the self-shrinking generator and z = z0, z1, . . . be the keystream. First note
that the two decimated sequences a0, a2, . . . , a2i, . . . and a1, a3, . . . , a2i+1, . . . are
shift equivalent to the original sequence a [13]. They share the same feedback
polynomial as that of sequence a and differ only by some shift. The following
lemma determines the shift value between sequence {a2i} and {a2i+1}.
Lemma 1. Let a = a0, a1, . . . be a binary maximal length sequence produced by
a LFSR of length L, then the shift value τ between the two decimated sequences
c = {a2i} and b = {a2i+1} is 2L−1, i.e. for each integer i ≥ 0, bi = ci+2L−1 .

Proof. It suffices to note that ci+2L−1 = a2·(i+2L−1) = a2i+2L = a2i+1+2L−1 =
a2i+1 = bi.

Lemma 1 shows the exact shift value between {a2i} and {a2i+1}, which will
facilitate the determination of the relationship between them. Keep the notations
as above, we have the following lemma.

Lemma 2. Let f(x) = 1 + c1x + c2x
2 + · · · + cL−1x

L−1 + xL be the primi-
tive feedback polynomial of LFSR A over GF (2), i.e. for each i ≥ 0, ai+L =∑L

j=1 cjai+L−j, where cL = 1, then there exists a polynomial h(x) =
∑L−1

i=0 hix
i

such that h(x) ≡ xτmod f∗(x), where f∗(x) is the reciprocal polynomial of f(x)
and τ = 2L−1 is the shift value between c = {a2i} and b = {a2i+1}. Besides, the
polynomial h(x) can be efficiently computed as illustrated below for very large
value of L.
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Proof. The former part of this lemma is a straightforward conclusion according
to the theory of maximal sequences [13]. It reveals that

bi = a2i+1 =
L−1∑
j=0

hjci+j =
L−1∑
j=0

hja2(i+j), (1)

i.e. each bi is a linear combination of some ci.
We follow the following recursive procedures to compute h(x). More pre-

cisely, the linear coefficients hj can be determined by recursively computing
ximod f∗(x) = x(xi−1mod f∗(x)) mod f∗(x) for moderately large L. For very
large value of L, this can be fulfilled by the combination of the recursive proce-
dure with the following small step strategy, i.e. we first determine a set of values
{τ1, · · · , τt} such that

x2L−1
mod f∗(x) = x

t
j=1 τj mod f∗(x) = ((xτ1mod f∗(x))τ2 · · · )τtmod f∗(x),

where
∏t

j=1 τt = 2L−1 and each τj is chosen so that xτj mod f∗(x) can be
computed efficiently by the available method such as the Square-and-Multiply
method [20] in rational time. Hence, the linear coefficients hj can be computed
in an acceptable time for very large L in this way.

Table 1 lists the corresponding h(x), obtained by the above combination
method, of some primitive polynomials of length up to 300. Here we use τi = 210

for i = 1, · · · , �(L − 1)/10� − 1 and τ�(L−1)/10	 = 2L−1−10·(�(L−1)/10	−1) so that
even x2299

mod f∗(x) with f(x) being a primitive polynomial of degree 300 can
be computed in about one hour on a Pentium 4 Processor. This completes the
proof.

Lemma 2 shows that compared with the real attack complexity O(20.556L) or
O(20.571L), the complexity of computing the linear relationship between {a2i}
and {a2i+1} is negligible. The overall complexity of our attack is dominated by
the complexity of the guess-and-determine algorithm given below.

2.2 The Guess-and-Determine Algorithm

The basic idea of a guess-and-determine attack on a stream cipher is to guess
some bits of the internal state and derive other bits of the internal state through
the relationship between the keystream bits and the internal state bits introduced
by the keystream generation process. The validity of a guessed and determined
internal state is checked by running the cipher forward from that state. If the
generated keystream matches the intercepted keystream, we accept it. Otherwise,
we discard the current candidate and try the attack again to get new state
candidates.

Oppositely to the methods in other articles, here we do not directly apply the
guess-and-determine idea to sequence {ai}. Instead we consider the decimated
sequence {a2i}. With the knowledge of {a2i}, {ai} can be easily recovered from
simple linear algebra.
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Table 1. Computational results of h(x) on a Pentium 4 processor using Mathematica
with the above combination method

f(x) x2L−1
modf∗(x)

1 + x + x37 + x38 + x80 x2 + x4 + x5 + x6 + x7 + x11

+x14 + x15 + x17 + x19 + x20

+x21 + x23 + x24 + x25 + x29

+x32 + x33 + x35 + x37 + x38

+x39 + x41 + x44 + x45 + x46

+x47 + x51 + x54 + x55 + x57

+x59 + x60 + x62 + x63 + x64

+x65 + x69 + x72 + x73 + x75

+x77 + x78 + x79

1 + x37 + x100 x19 + x32 + x69

1 + x2 + x15 + x17 + x168 x8 + x76 + x77 + x91 + x92

1 + x7 + x18 + x36 + x83 + x130 +x206 + x253 + x300 x6 + x9 + x11 + x16 + x21 + x23

+x24 + x25 + x26 + x30 + x32

+x33 + x34 + x35 + x36 + x37

+x38 + x41 + x43 + x44 + x45

+x46 + x54 + x55 + x56 + x57

+x60 + x65 + x68 + x70 + x71

+x75 + x76 + x78 + x80 + x82

+x83 + x84 + x85 + x87 + x89

+x91 + x92 + x93 + x94 + x95

+x96 + x97 + x98 + x102

+x104 + x105 + x107 + x109

+x110 + x112 + x113 + x115

+x118 + x120 + x122 + x125

+x126 + x128 + x129 + x136

+x139 + x141 + x146 + x147

+x151 + x153 + x154 + x155

+x156 + x160 + x162 + x163

+x164 + x165 + x166 + x167

+x168 + x171 + x173 + x174

+x175 + x179 + x181 + x183

+x184 + x185 + x186 + x187

+x188 + x190 + x191 + x196

+x200 + x201 + x203 + x204

+x209 + x213 + x214 + x215

+x216 + x217 + x218 + x219

+x220 + x228 + x231 + x232

+x233 + x238 + x239 + x241

+x243 + x245 + x246 + x247

+x248 + x252 + x254 + x255

+x256 + x257 + x258 + x260

+x263 + x265 + x266 + x267

+x270 + x273 + x276 + x277

+x282 + x289 + x290 + x291

+x295 + x296 + x298 + x299
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More precisely, to attack a self-shrinking generator, we first guess a l-bit length
segment

Al−1
0 = (a0, a2, · · · , a2(l−1)) (2)

of the initial state (a0, a2, · · · , a2(L−1)) of {a2i}, as shown in Figure 1, thus
there are L − l bits (black points in Figure 1) of the initial state left unknown.
Let WH(·) be the hamming weight of the corresponding vector, then from the
guessed segment, we can get WH(Al−1

0 ) linear equations on the remaining L− l
bits via the shift structure (illustrated by arrowhead in Figure 1). For example,
if a2i = 1 (0 ≤ i ≤ l − 1), then we have

bi = a2i+1 =
L−1∑
j=0

hja2(i+j) =
l−1∑
j=0

hja2(i+j) +
L−1∑
j=l

hja2(i+j) = z i−1
j=0 a2i

, (3)

where h(x) =
∑L−1

j=0 hjx
j is the polynomial satisfying h(x) ≡ x2L−1

mod f∗(x)

found by Lemma 2. Note that the partial sum
∑l−1

j=0 hja2(i+j) in (3) is a known

Fig. 1. Guess-and-determine process

parameter because we guessed the value of (a0, a2, · · · , a2(l−1)), thus (3) is a
linear equation on L− l variables (a2l, · · · , a2(L−1)). Once there is a bit a2i = 1
for 0 ≤ i ≤ l − 1, we will have one linear equation on (a2l, · · · , a2(L−1)). Our
observation is that the more 1 in the guessed segment Al−1

0 , the more linear
equations on the remaining L − l bits we can get. The extreme case is that if
(a0, a2, · · · , a2(l−1)) = (1, 1, · · · , 1), then we will have l linear equations on L− l
variables. In order to get an efficient attack, here we do not exhaustively search
over all the possible values of Al−1

0 . Instead, we just search over those possible
values of Al−1

0 satisfying (without loss of generality, we assume a0 = 1)

WH(Al−1
0 ) ≥ �α · l�, (4)

where �x� gives the smallest integer greater than or equal to x and α (0.5 ≤ α ≤
1) is a parameter to be determined later. Hence, we can get at least �α · l� linear
equations on the remaining L− l bits by this method.

Now a crucial question arises naturally, i.e. how about the linear dependency
of these linear equations? Fortunately, from the initial state (a0, a2, · · · , a2(L−1))
of {a2i}, we have

(a0, · · · , a2(L−1), a2L, · · · , a2(N−1)) = (a0, a2, · · · , a2(L−1)) ·G,
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where N is the length of sequence {a2i} under consideration and G is a L ×N
matrix over GF (2):

G =

⎛⎜⎜⎜⎝
g0
0 g0

1 · · · g0
N−1

g1
0 g1

1 · · · g1
N−1

...
...

. . .
...

gL−1
0 gL−1

1 · · · gL−1
N−1

⎞⎟⎟⎟⎠ ,

i.e. each a2i is a linear combination of (a0, a2, · · · , a2(L−1)). Since for each i ≥ 0,
a2i+1 = a2i+2L−1 , the column vectors gi = (g0

i , g1
i , · · · , gL−1

i )T corresponding
to the bits selected in (a1, a3, · · · , a2l−1) according to the pattern of (a0, a2, · · ·
, a2(l−1)) can be regarded as random vectors over GF (2)L. Thus, this holds also
for the truncated versions of gi over GF (2)L−l which form the coefficient matrix
on the remaining L− l unknown bits. The following lemma guarantees that the
matrix formed by the truncated random column vectors always has the rank
close to its maximum.

Lemma 3. ([30]) The probability that a random generated m×n binary matrix
has rank r (1 ≤ r ≤ min(m, n)) is

Pr = 2r(m+n−r)−nm
r−1∏
i=0

(1− 2i−m)(1 − 2i−n)
1− 2i−r

. (5)

Although we can sometimes get more than �αl� linear equations by the above
searching method, we only use the lower bound �αl� in the estimation of the
linear independent equations and let �α · l� = L − l. The reason for doing so is
to derive the worst case complexity of our guess-and-determine algorithm in the
Section 2.3. By lemma 3, the probability that a random generated �αl�× (L− l)
binary matrix has rank r ≥ �αl� − 5 is

P (r ≥ �αl� − 5) =
�αl	∑

r=�αl	−5

2−(r−�αl	)(r−L+l)
r−1∏
i=0

(1− 2i−�αl	)(1 − 2i−L+l)
1− 2i−r

. (6)

Simulation results show that P (r ≥ �αl�− 5) ≥ 0.99 for L ≤ 1500, i.e. the linear
equations we get are almost linear independent. We can compensate the linear
dependency of the linear system by an exhaustive search at a small scale.

The entire description of the guess-and-determine attack (algorithm A) is as
follows (in C-like notation).

– Parameter: α, L

– Input: keystream {zi}N−1
i=0 , feedback polynomial f(x)

– Processing:

1. Apply the combination strategy illustrated in Section 2.1 to compute x2L−1

mod f∗(x), where f∗(x) is the reciprocal polynomial of f(x)

2. for all l-bit segment Al−1
0 satisfying (4) do

• for k = 0 to l − 1 do



New Guess-and-Determine Attack on the Self-Shrinking Generator 61

∗ if a2k = 1 then
Using h(x) obtained in step 1 and f(x), derive a linear expression
on the remaining bits in AL−1

l = (a2l, · · · , a2(L−1)) and store the
expression in matrix U
end if

end for
• for j = 0 to N − 1 − 
α · l� do

(a) Check the linear consistency [32] of the linear system using keystream
indexed from zj

(b) if the linear consistency test is OK then

∗ Solve the linear system in U according to the keystream indexed
from zj to get a state candidate (a′

0, a
′
2, · · · , a′

2(L−1)) or a small list
of candidates

∗ for each candidate state do

i. Run the SSG forward from the candidate state and check the
generated keystreams with {zi}N−1

i=j

ii. if the correlation test is OK then
Output that candidate and break the loop
else continue
end if

end for

else continue
end if

end for

end for

– Output: the initial state or an equivalent state (a0, a2, · · · , a2(L−1))

Here the for loop works in the same way as in C language. Assume we start with
the keystream {zi}N−1

i=0 . We first derive the linear expressions as in (3) from the
guessed segment Al−1

0 , then associate them with the keystream indexed from z0

and test the linear consistency of the resulting system. If the test fails, then try
the keystream indexed from z1, indexed from z2, . . . , and so on. If we cannot get
a consistent linear system based on the keystream in hand, discard the current
guess of Al−1

0 and try another guess to restart. If we find it, solve the system
to get a candidate state (a′

0, a
′
2, · · · , a′

2(L−1)) or a small list of candidate states.
Run the self-shrinking generator forward from each candidate state and generate
the corresponding keystream. If the generated keystream does not match the
intercepted keystream, discard that candidate and try another one. If all the
candidates failed to find a match, then try another guess of Al−1

0 to restart
the above whole process. If enough keystream is available, we expect to find the
initial state (or an equivalent state) corresponding to the intercepted keystream
with high success probability.

2.3 Complexity Analysis

Now we analyze the time, memory and data complexity of the algorithm A. We
first establish the basic equation of our attack. Then, the corresponding time,
memory and data complexity are derived in the most general case, respectively.
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Finally, we discuss the success rate of the algorithm A and point out the optimal
choices of the attack parameters.

From algorithm A, to cover the L − l unknown bits by O(α · l) linear inde-
pendent equations, we let

O(α · l) = L− l =⇒ l = O(
1

1 + α
· L) . (7)

Since we just want to derive the magnitude, here we ignore the possible small
number of linear dependent equations.

In algorithm A, we only search over those possible values of Al−1
0 that satisfy

(4). Let H = {Al−1
0 | �αl� ≤ WH(Al−1

0 ) ≤ l and a0 = 1}, then

|H | =
l−1∑

i=�αl	−1

(
l − 1

i

)
,

where | · | denotes the cardinality of a set. The proportion between the l-bit
values contained in |H | and all the 2l possible values is |H|

2l , we rewrite it as∑l−1
i=�αl	−1

(
l−1

i

)
2l

=
2βl

2l
= 2−(1−β)·l , (8)

where β is a parameter determined by α and l. From (8), we have

β =
1
l
· log2

l−1∑
i=�αl	−1

(
l − 1

i

)
. (9)

Combining with (7), we have a function β = β(α, L), as shown in Figure 2. It is
worth noting that β decreases with α increasing.
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Fig. 2. β as a function of α and the LFSR length L

For the algorithm A to succeed, we must find at least one match pair between
the state set H and the keystream segments involved in algorithm A. Assume
sequence {ai} is purely random (consisting of independent and uniformly dis-
tributed binary random variables), thus the keystream length N should satisfy
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(N − L) ·
l−1∑

i=�αl	−1

(
l − 1

i

)
(
1
2
)l−1 ≥ 1,

i.e.

N >
2l−1∑l−1

i=�αl	−1

(
l−1

i

) =
2l−1

2β·l = 2(1−β)·l−1 =⇒ N ∼ O(2
1−β
1+α ·L) . (10)

Algorithm A searches over the state set H and at each iteration, it checks along
the keystream {zi}N−1

i=0 to find the suited segment. Therefore, the worst case
time complexity is

O(N − L) ·O(2β·l) = O(2
1

1+α ·L) . (11)

The following theorem summarizes the above results.

Theorem 1. Keep the notations as above. The guess-and-determine algorithm
A in section 2.2 has time complexity O(L3 · 2 1

1+α ·L), memory complexity O(L2)
and data complexity O(2

1−β
1+α ·L), where L is the length of the LFSR used in the

SSG, 0.5 ≤ α ≤ 1, β is a parameter determined by α and L.

Proof. For the time complexity, note (11) and that in each iteration of algorithm
A, we have to check the linear consistency of the linear system and then solve it.
This contributes the L3 factor to time complexity. For the memory complexity,
it suffices to note that in the algorithm A, we only need to store the matrix U
corresponding to the current guess of Al−1

0 and the memory usage in step 2 is
dominating. The data complexity follows (10).

Corollary 1. Keep the notations as those in Theorem 1 and under the above
complexities, the success probability of algorithm A is

Psucc = 1− (1− 2 · 2− 1−β
1+α ·L)N−L ,

where N is the length of the keystream used in the attack.

Proof. It suffices to note that in algorithm A, we totally check N −L keystream
segments and each segment matches to a state in H with probability 2 ·2− 1−β

1+α ·L.

To get the optimal performance of our attack, we should optimize the parameters
α and β of the algorithm A. Table 2 lists the asymptotic time, memory and data
complexities corresponding to the different choices of α with the LFSR length
L ≥ 100. It is worth noting that the values of β are just approximations. In a real
attack, we recommend using (7) and (9) to compute the more accurate values.
(In Table 2, 3 and 4, we ignore the polynomial factors in the corresponding
time complexities of these attacks, e.g. for the attack in [31], this factor is L4

and for the BDD-based attack in [18], this factor is LO(1)).To beat the general
time/memory/data tradeoff attack, we recommend using α = 0.8. Accordingly,
the asymptotic time, memory and data complexities are O(20.556L), O(L2) and
O(20.161L), respectively.
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Table 2. The asymptotic time, memory and data complexities of algorithm A corre-
sponding to different choices of α (L ≥ 100)

α β Time Memory Data

0.5 0.99 O(20.667L) O(L2) O(20.007L)
0.6 0.96 O(20.625L) O(L2) O(20.025L)
0.75 0.80 O(20.571L) O(L2) O(20.114L)
0.8 0.71 O(20.556L) O(L2) O(20.161L)
0.9 0.46 O(20.526L) O(L2) O(20.284L)

1.0 0.00 O(20.5L) O(L2) O(20.5L)

Table 3. The time, memory and data complexities of algorithm A corresponding to
different choices of α (40 ≤ L < 100)

α β Time Memory Data

0.5 0.93 O(20.667L) O(L2) O(20.047L)

0.6 0.88 O(20.625L) O(L2) O(20.075L)
0.75 0.66 O(20.571L) O(L2) O(20.194L)
0.8 0.57 O(20.556L) O(L2) O(20.239L)
0.9 0.36 O(20.526L) O(L2) O(20.337L)

1.0 0.00 O(20.5L) O(L2) O(20.5L)

Note that the values listed in Table 2 are asymptotic. For 40 ≤ L < 100,
the corresponding values are listed in Table 3.To beat the TMD attack with
40 ≤ L < 100, we recommend using α = 0.75 or α = 0.8. In both cases, the
corresponding memory and data complexities are better than those of the TMD
attack, while without a substantial compromise of the time complexity.

3 Comparisons and Experimental Results

We first present a detailed comparison with some other well-known attacks
against the self-shrinking generator. Then, a number of experimental results
are provided to verify the actual performance of the new attack. The advantages
of our attack are pointed out at the end of this section.

3.1 Comparisons with Other Attacks

We mainly focus on the following attacks against the self-shrinking generator,
i.e. the Mihaljević’s attack in [26], the search tree attack in [31], the BDD-
based attack in [18] and the time/memory/data tradeoff attack in [3]. Table 4
summarizes the corresponding results.

We can see from Table 4 that our attack achieves the best tradeoff between
the time, memory, data and pre-computation complexities. More precisely, The
attack in [26] suffers from the large amount of the keystream, which reaches
O(20.5L) to obtain the best time complexity O(20.5L). Both the search tree attack
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Table 4. Asymptotic complexity comparisons with some other well-known attacks
against the self-shrinking generator with the LFSR of length L

Attack Pre-computation Time Memory Data

[26]A - O(20.5L) O(L) O(20.5L)
[26]B - O(20.75L) O(L) O(20.25L)

[31] - O(20.694L) O(20.694L) O(L)
[18] - O(20.656L) O(20.656L) O(L)
[3]A O(20.75L) O(20.5L) O(20.5L) O(20.25L)
[3]B O(20.67L) O(20.67L) O(20.33L) O(20.33L)

Ours (α = 0.5) - O(20.667L) O(L2) O(20.007L)

Ours (α = 0.75) - O(20.571L) O(L2) O(20.114L)
Ours (α = 0.8) - O(20.556L) O(L2) O(20.161L)

in [31] and the BDD-based attack in [18] are unrealistic in terms of the memory
requirement. In addition, the data complexity of our attack with α = 0.5 are
in the same order as those in [31] and [18] for the LFSR length L up to 2000.
The two typical TMD attacks are derived according to the two points T = N2/3,
M = D = N1/3 and T = M = N1/2, D = N1/4 on the curve TM2D2 = N2 with
pre-computation P = N/D, where T , M , D, N denote time, memory, data and
search key space, respectively. Even regardless of the heavy pre-computation
phase of the TMD attack, our attack with α = 0.8 has much better memory
and data complexity compared with the two TMD attacks, while without a
substantial compromise of the real time complexity.

On the other hand, our attack can deal with different attack conditions and re-
quirements smoothly due to the flexible choices of α. If only very short keystream
and very limited disk space are available to the attacker, we still can launch a
guess-and-determine attack successfully against the SSG with α ≤ 0.6. In this
way, we avoid the large memory requirement of the two attacks in [31] and [18].

3.2 Experimental Results

We made a number of experimental results in C language on a Pentium 4 pro-
cessor to check the actual performance of our attack.

Since the guess-and-determine attack in Section 2.2 has no restriction on the
LFSR form, it has been implemented and tested many times for random chosen
initial states and primitive polynomials of degree 10 ≤ L ≤ 50 involved in
the self-shrinking generator. For 10 ≤ L ≤ 40, we use α = 0.6 to mount the
attack on the self-shrinking generator. For 40 < L ≤ 50, we use α = 0.8. The
results are rather satisfactory. The required keystream length are very close to
the theoretical value in magnitude and the time complexity seems to be upper
bounded by the theoretical value, which is just in expectation.

For example, let the LFSR’s feedback polynomial be f(x) = 1 + x2 + x19 +
x21+x40, then the shift value is x239

mod f∗(x) = x11 +x29+x30, where f∗(x) is
the reciprocal polynomial of f(x). For a random chosen initial state, our attack
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takes several minutes to recover the initial state or an equivalent state with
success rate (see Table 3 and Corollary 1)

1− (1 − 2 · 2−(1−0.88)·40/(1+0.6))(200−40) > 0.99

from 200 bits keystream.
As a summary, our attack has at least the following advantages over the past

relevant attacks against the self-shrinking generator:

– significantly smaller memory complexity with the time complexity quite close
to O(20.5L).

– no pre-computation or if like (pre-compute h(x)), significantly smaller pre-
processing time complexity without a compromise of the real attack com-
plexity.

– flexibility to different attack conditions and requirements

These features guarantee that the proposed guess-and-determine attack can pro-
vide a better tradeoff between the time, memory and data complexities than all
the previously known attacks against the self-shrinking generator. Especially, it
compares favorably with the general time/memory/data tradeoff attack. Thus,
our attack is the best answer known so far to a well-known open problem spec-
ified by the European STORK project.

4 Conclusions

In this paper, we proposed a new type of guess-and-determine attack on the self-
shrinking generator. The new attack adapts well to different attack conditions
and enables us to analyze the self-shrinking generator with the best tradeoff
between the time, memory, data and pre-computation complexities known so far.
So our result is the best answer to the corresponding open problem in STORK
project known so far.

Acknowledgements. We would like to thank one of the anonymous reviewers
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Abstract. Stream ciphers play an important role in symmetric cryptol-
ogy because of their suitability in high speed applications where block
ciphers fall short. A large number of fast stream ciphers or pseudoran-
dom bit generators (PRBG’s) can be found in the literature that are
based on arrays and simple operations such as modular additions, ro-
tations and memory accesses (e.g. RC4, RC4A, Py, Py6, ISAAC etc.).
This paper investigates the security of array-based stream ciphers (or
PRBG’s) against certain types of distinguishing attacks in a unified way.
We argue, counter-intuitively, that the most useful characteristic of an
array, namely, the association of array-elements with unique indices, may
turn out to be the origins of distinguishing attacks if adequate caution
is not maintained. In short, an adversary may attack a cipher simply ex-
ploiting the dependence of array-elements on the corresponding indices.
Most importantly, the weaknesses are not eliminated even if the indices
and the array-elements are made to follow uniform distributions sepa-
rately. Exploiting these weaknesses we build distinguishing attacks with
reasonable advantage on five recent stream ciphers (or PRBG’s), namely,
Py6 (2005, Biham et al.), IA, ISAAC (1996, Jenkins Jr.), NGG, GGHN
(2005, Gong et al.) with data complexities 268.61, 232.89, 216.89 , 232.89 and
232.89 respectively. In all the cases we worked under the assumption that
the key-setup algorithms of the ciphers produced uniformly distributed
internal states. We only investigated the mixing of bits in the keystream
generation algorithms. In hindsight, we also observe that the previous
attacks on the other array-based stream ciphers (e.g. Py, etc.), can also
be explained in the general framework developed in this paper. We hope
that our analyses will be useful in the evaluation of the security of stream
ciphers based on arrays and modular addition.

1 Introduction

Stream ciphers are of paramount importance in fast cryptographic applications
such as encryption of streaming data where information is generated at a high
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biorix 2005/11 of the Flemish Government and in part by the European Commission
through the IST Programme under Contract IST-2002-507932 ECRYPT.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 69–83, 2006.
c© International Association for Cryptologic Research 2006



70 S. Paul and B. Preneel

speed. Unfortunately, the state-of-the art of this type of ciphers, to euphemize,
is not very promising as reflected in the failure of the NESSIE project to select a
single cipher for its profile [13] and also the attacks on a number of submissions for
the ongoing ECRYPT project [6]. Because of plenty of common features as well
as dissimilarities, it is almost impossible to classify the entire gamut of stream ci-
phers into small, well-defined, disjoint groups, so that one group of ciphers can be
analyzed in isolation of the others. However, in view of the identical data struc-
tures and similar operations in a number of stream ciphers and the fact that they
are vulnerable against certain kinds of attacks originating from some basic flaws
inherent in the design, it makes sense to scrutinize the class of ciphers in a unified
way. As the title suggests, the paper takes a closer look at stream ciphers connected
by a common feature that each of them uses (i) one or more arrays1 as the main
part of the internal state and (ii) the operation modular addition in the pseudo-
random bit generation algorithm. Apart from addition over different groups (e.g,
GF(2n) and GF(2)), the stream ciphers under consideration only admit of sim-
ple operations such as memory access (direct and indirect) and cyclic rotation of
bits, which are typical of any fast stream cipher. In the present discussion we omit
the relatively rare class of stream ciphers which may nominally use array and ad-
dition, but their security depends significantly on special functions such as those
based on algebraic hard problems, Rijndael S-box etc.

To the best of our knowledge, the RC4 stream cipher, designed by Ron Rivest in
1987, is the first stream cipher which exploits the features of an array in generating
pseudorandom bits, using a few simple operations. Since then a large number of
array-based ciphers or PRBG’s – namely, RC4A [14], VMPC stream cipher [20],
IA, IBAA, ISAAC [10], Py [2], Py6 [4], Pypy [3], HC-256 [18], NGG [12], GGHN [8]
– have been proposed that are inspired by the RC4 design principles. The Scream
family of ciphers [9] also uses arrays and modular additions in their round func-
tions, however, the security of them hinges on a tailor-made function derived from
Rijndael S-box rather than mixing of additions over different groups (e.g., GF(2n)
and GF(2)) and cyclic rotation of bits; therefore, this family of ciphers is excluded
from the class of ciphers to be discussed in the paper.

First, in Table 1, we briefly review the pros and cons of the RC4 stream
cipher which is the predecessor of all the ciphers to be analyzed later. Unfor-
tunately, the RC4 cipher is compatible with the old fashioned 8-bit processors
only. Except RC4A and the VMPC cipher (which are designed to work on 8-
bit processors), all the other ciphers described before are suitable for modern
16/32-bit architectures. Moreover, those 16/32-bit ciphers have been designed
with an ambition of incorporating all the positive aspects of RC4, while ruling
out it’s negative properties as listed in Table 1. However, the paper observes that
a certain amount of caution is necessary to adapt RC4-like ciphers to 16/32-bit
architecture. Here, we mount distinguishing attacks on the ciphers (or PRBG’s)
Py6, IA, ISAAC, NGG, GGHN – all of them are designed to suit 16/32-bit pro-
cessors – with data 268.61, 232.89, 216.89, 232.89 and 232.89 respectively, exploiting

1 An array is a data structure containing a set of elements associated with unique
indices.
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Table 1. Pros and cons of the RC4 cipher

Advantages of RC4 Disadvantages of RC4

Arrays allow for huge secret internal state Not suitable for 16/32-bit architecture

Fast because of fewer operations per round Several distinguishing attacks

Simple Design Weak Key-setup algorithm

No key recovery attacks better than brute force

similar weaknesses in their designs (note that another 32-bit array-based cipher
Py has already been attacked in a similar fashion [5,15]). Summarily the attacks
on the class of ciphers described in this paper originate from the following basic
although not independent facts. However, note that our attacks are based on the
assumptions that the key-setup algorithms of the ciphers are ‘perfect’, that is,
after the execution of the algorithms they produce uniformly distributed internal
states (more on that in Sect. 1.2).

– Array-elements are large (usually of size 16/32 bits), but the array-indices
are short (generally of size 8 bits).

– Only a few elements of the arrays undergo changes in consecutive rounds.
– Usage of both pseudorandom index-pointers and pseudorandom array-

elements in a round, which apparently seems to provide stronger security
than the ciphers with fixed pointers, may leave room for attacks arising
from the correlation between the index-pointers and the corresponding array-
elements (see discussion in Sect. 2.2).

– Usage of simple operations like addition over GF(2n) and GF(2) in output
generation.

Essentially our attacks based on the above facts have it origins in the fortuitous
states attack on RC4 by Fluhrer and McGrew [7].

A general framework to attack array-based stream ciphers with the above
characteristics is discussed in Sect. 2. Subsequently in Sect. 3.1, 3.2 and 3.3, as
concrete proofs of our argument, we show distinguishing attacks on five stream
ciphers (or PRBG’s). The purpose of the paper is, by no means, to claim that the
array-based ciphers are intrinsically insecure, and therefore, should be rejected
without analyzing its merits; rather, we stress that when such a PRBG turns
out to be extremely fast – such as Py, Py6, IA, ISAAC, NGG, GGHN – an alert
message should better be issued for the designers to recheck that they are free
from the weaknesses described here. In Sect. 3.5, we comment on the security of
three other array-based ciphers (or PRBG’s) IBAA, Pypy and HC-256 which,
for the moment, do not come under attacks, however they are slower than the
ones attacked in this paper.

1.1 Notation and Convention

– The symbols ⊕, +, −, ≪, ≫, �, � are used as per convention.
– The ith bit of the variable X is denoted X(i) (the lsb is the 0th bit).
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– The segment of m − n + 1 bits between the mth and the nth bits of the
variable X is denoted by X(m,n).

– The abbreviation for Pseudorandom Bit Generator is PRBG.
– P [A] denotes the probability of occurrence of the event A.
– Ec denotes the compliment of the event E.
– At any round t, some part of the internal state is updated before the output

generation and the rest is updated after that. Example: in Algorithm 3, the
variables a and m are updated before the output generation in line 5. The
variables i and b are updated after or at the same time with the output
generation. Our convention is: a variable S is denoted by St at the time of
output generation of round t. As each of the variables is modified in a single
line of the corresponding algorithm, after the modification its subscript is
incremented.

1.2 Assumption

In this paper we concentrate solely on the mixing of bits by the keystream gener-
ation algorithms (i.e., PRGB) of several array-based stream ciphers and assume
that the corresponding key-setup algorithms are perfect. A perfect key-setup
algorithm produces internal state that leaks no statistical information to the at-
tacker. In other words, because of the difficulty of deducing any relations between
the inputs and outputs of the key-setup algorithm, the internal state produced
by the key-setup algorithm is assumed to follow the uniform distribution.

2 Stream Ciphers Based on Arrays and Modular
Addition

2.1 Basic Working Principles

The basic working principle of the PRBG of a stream cipher, based on one or
multiple arrays, is shown in Fig. 1. For simplicity, we take snapshots of the
internal state, composed of only two arrays, at two close rounds denoted by
round t and round t′ = t + δ. However, our analysis is still valid with more
arrays and rounds than just two. Now we delineate the rudiments of the PRBG
of such ciphers.
– Components: The internal state of the cipher comprises all or part of the

following components.
1. One or more arrays of n-bit elements (X1 and X2 in Fig. 1).
2. One or more variables for indexing into the arrays, i.e., the index-pointers

(down arrows in Fig. 1).
3. One or more random variables usually of n-bit length (m1, m2, m′

1, m′
2

in Fig. 1).
– Modification to the Internal State at a round

1. Index Pointers: The most notable feature of such ciphers is that it has
two sets of index pointers. (i) Some of them are fixed or updated in a
known way, i.e., independent of the secret part of the state (solid arrows
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Zt’

...

...

...

...X2

(a)

...

...

...

...

X1

X2

(b)

X1

m1, m2 m1’,m2’

   Output 
Zt Output

Fig. 1. Internal State at (a) round t and (b) round t′ = t + δ

in Fig. 1) and (ii) the other set of pointers are updated pseudorandomly,
i.e., based on one or more secret components of the internal state (dotted
arrows in Fig. 1).

2. Arrays : A few elements of the arrays are updated pseudorandomly based
on one or more components of the internal state (the shaded cells of
the arrays in Fig. 1). Note that, in two successive rounds, only a small
number of array-elements (e.g. one or two in each array) are updated.
Therefore, most of the array-elements remain identical in consecutive
rounds.

3. Other variables if any: They are updated using several components of
the internal state.

– Output generation: The output generation function at a round is a non-
linear combination of different components described above.

2.2 Weaknesses and General Attack Scenario

Before assessing the security of array-based ciphers in general, for easy under-
standing, we first deal with a simple toy-cipher with certain properties which
induce distinguishing attack on it. Output at round t is denoted by Zt.

Remark 1. The basis for the attacks described throughout the paper including
the one in the following example is searching for internal states for which the
outputs can be predicted with bias. This strategy is inspired by the fortuitous
states attacks by Fluhrer and McGrew on the RC4 stream cipher [7].

Example 1. Let the size of the internal state of a stream cipher with the follow-
ing properties be k bits.

Property 1. The outputs Zt1 , Zt2 are as follows.

Zt1 = X ⊕ Y + (A ≪ B) , (1)
Zt2 = M + N ⊕ (C ≪ D) (2)

where X , Y , A, B, M , N , C, D are uniformly distributed and independent.
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Property 2. [Bias-inducing State] If certain k′ bits (0 < k′ ≤ k) of the internal
state are set to all 0’s (denote the occurrence of such state by event E) at round
t1, then the following equations hold good.

X = M, Y = N, B = D = 0, A = C.

Therefore, (1) and (2) become

Zt1 = X ⊕ Y + A , Zt2 = X + Y ⊕A .

Now, it follows directly form the above equations that, for a fraction of 2−k′
of

all internal states,

P [Z(0) = (Zt1 ⊕ Zt2)(0) = 0|E] = 1. (3)

Property 3. If the internal state is chosen randomly from the rest of the states,
then

P [Z(0) = 0|Ec] =
1
2
. (4)

Combining (3) and (4) we get the overall bias for Z(0),

P [Z(0) = 0] =
1

2k′ · 1 + (1− 1
2k′ ) ·

1
2

=
1
2
(1 +

1
2k′ ) (5)

Note that, if the cipher were a secure PRBG then P [Z(0) = 0] = 1
2 . �

Discussion. Now we argue that an array-based cipher has all the three proper-
ties of the above example; therefore, the style of attack presented in the example
can possibly be applied to an array-based cipher too. First, we discuss the op-
erations involved in the output generation of the PRBG. Let the internal state
consist of N arrays and M other variables. At round t, the arrays are denoted by
S1,t[·], S2,t[·], · · · , SN,t[·] and the variables by m1,t, m2,t, · · · , mM,t. We observe
that the output Zt is of the following form,

Zt = ROT[· · ·ROT[ROT[ROT[V1,t] � ROT[V2,t]]
�ROT[V3,t]] � · · ·� ROT[Vk,t]] (6)

where Vi,t = mg,t or Sj,t[Il]; ROT[·] is the cyclic rotation function either constant
or variable depending on the secret state; the function �[·, ·] is either bit-wise
XOR or addition modulo 2n.

Now we describe a general technique to establish a distinguishing attack on an
array-based cipher from the above information. We recall that, at the first round
(round t1 in the present context), the internal state is assumed to be uniformly
distributed (see Sect. 1.2).
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Step 1. [Analogy with Property 1 of Example 1 ] Observe the elements of the in-
ternal state which are involved in the outputs Zt1 , Zt2 , · · · (i.e., the Vi,t’s in (6))
when the rounds in question are close (t1 < t2 < · · · ).

Step 2. [Bias-inducing state, Analogy with Property 2 of Example 1 ] Fix a
few bits of some array elements (or fix a relation among them) at the initial
round t1 such that indices of array-elements in later rounds can be predicted
with probability 1 or close to it. More specifically, we search for a partially spec-
ified internal state such that one or both of the following cases occur due to
predictable index-pointers.

1. The Vi,t’s involved in Zt1 , Zt2 , · · · are those array-elements whose bits are
already fixed.

2. Each Vi,t is dependent on one or more other variables in Zt1 , Zt2 , · · · .
Now, for this case, we compute the bias in the output bits. Below we identify the
reasons why an array-based cipher can potentially fall into the above scenarios.

Reason 1. Usually, an array-based cipher uses a number of pseudorandom
index-pointers which are updated by the elements of the array. This fact turns
out to be a weakness, as fixed values (or a relation) can be assigned to the
array-elements such that the index-pointers fetch values from known locations.
In other words, the weakness results from the correlation between index-pointers
and array-elements which are, although, uniformly distributed individually but
not independent of each other.

Reason 2. Barring a few, most of the array-elements do not change in rounds
which are close to each other. Therefore, by fixing bits, it is sometimes easy to
force the pseudorandom index-pointers fetch certain elements from the arrays in
successive rounds.

Reason 3. The size of an index-pointer is small, usually 8 bits irrespective
of the size of an array-element which is either 16 bits or 32 bits or 64 bits.
Therefore, fixing a small number of bits of the array-elements, it is possible to
assign appropriate values to the index-pointers. The less the number of fixed
bits, the greater is the bias (note the parameter k′ in (5)).

Reason 4. If the rotation operations in the output function are determined
by pseudorandom array elements (see (6)) then fixing a few bits of internal
state can simplify the function by freeing it from rotation operations. In many
cases rotation operations are not present in the function. In any case the output
function takes the following form.

Zt = V1,t � V2,t � V3,t � · · ·� Vk,t.

Irrespective of whether ‘�’ denotes ‘⊕’ or ‘+’, the following equation holds for
the lsb of Zt.

Zt(0) = V1,t(0) ⊕ V2,t(0) ⊕ V3,t(0) ⊕ · · · ⊕ Vk,t(0).
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Now by adjusting the index-pointers through fixing bits, if certain equalities

among the Vi,t’s are ensured then
t⊕

Zt(0) = 0 occurs with probability 1 rather
than probability 1/2.

Step 3. [Analogy with Property 3 of Example 1 ] Prove or provide strong evi-
dence that, for the rest of the states other than the bias-inducing state, the bias
generated in the previous step is not counterbalanced.

Reason. The internal state of such cipher is huge and uniformly distributed
at the initial round. The correlation, detected among the indices and array-
elements in Step 2, is fortuitous although not entirely surprising because the
variables are not independent. Therefore, the possibility that a bias, produced
by an accidental state, is totally counterbalanced by another accidental state
is negligible. In other words, if the bias-inducing state, as explained in Step 2,
does not occur, it is likely that at least one of the Vi,t’s in (6) is uniformly dis-
tributed and independent; this fact ensures that the outputs are also uniformly
distributed and independent.

Step 4. [Analogy with (5) of Example 1 ] Estimate the overall bias from the
results in Step 2 and 3. �
In the next section, we attack several array-based ciphers following the methods
described in this section.

3 Distinguishing Attacks on Array-Based Ciphers or
PRBG’s

This section describes distinguishing attacks on the ciphers (or PRBG’s) Py6,
IA, ISAAC, NGG and GGHN – each of which is based on arrays and modular
addition. Due to space constraints, full description of the ciphers is omitted; the
reader is kindly referred to the corresponding design papers for details. For each
of the ciphers, our task is essentially two-forked as summed up below.

1. Identification of a Bias-inducing State. This state is denoted by the
event E which adjusts the index-pointers in such a way that the lsb’s of the
outputs are biased. The lsb’s of the outputs are potentially vulnerable as
they are generated without any carry bits which are nonlinear combinations
of input bits (see Step 2 of the general technique described in Sect. 2.2).

2. Computation of the Probability of Overall Bias. The probability is
calculated considering both E and Ec. As suggested in Step 3 of Sect. 2.2,
for each cipher, the lsb’s of the outputs are uniformly distributed if the event
E does not occur under the assumption mentioned in Sect. 1.2.

Note. For each of the five ciphers attacked in the subsequent sections, it can be
shown that, if E (i.e., the bias-inducing state) does not occur then the variable
under investigation is uniformly distributed under the assumption of uniformly
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distributed internal state after the key-setup algorithm. We omit those proofs
due to space constraints.

3.1 Bias in the Outputs of Py6

The stream cipher Py6, designed especially for fast software applications by Bi-
ham and Seberry in 2005, is one of the modern ciphers that are based on arrays
[2,4].2 Although the cipher Py, a variant of Py6, was successfully attacked [15,5],
Py6 has so far remained alive. The PRBG of Py6 is described in Algorithm 1
(see [2,4] for a detailed discussion).

Algorithm 1. Single Round of Py6
Input: Y [−3, ..., 64], P [0, ..., 63], a 32-bit variable s
Output: 64-bit random output

/*Update and rotate P*/
1: swap (P [0], P [Y [43]&63]);
2: rotate (P );

/* Update s*/
3: s+ = Y [P [18]] − Y [P [57]];
4: s = ROTL32(s, ((P [26] + 18)&31));

/* Output 8 bytes (least significant byte first)*/
5: output ((ROTL32(s, 25) ⊕ Y [64]) + Y [P [8]]);
6: output (( s ⊕Y [−1]) + Y [P [21]]);

/* Update and rotate Y */
7: Y [−3] = (ROTL32(s, 14) ⊕ Y [−3]) + Y [P [48]];
8: rotate(Y );

Bias-producing State of Py6. Below we identify six conditions among the
elements of the S-box P , for which the distribution of Z1,1⊕Z2,3 is biased (Z1,t

and Z2,t denote the lower and upper 32 bits of output respectively, at round t).

C1. P2[26] ≡ −18(mod 32); C2. P3[26] ≡ 7(mod 32); C3. P2[18] = P3[57] + 1;
C4. P2[57] = P3[18] + 1; C5. P1[8] = 1; C6. P3[21] = 62.

Let the event E denote the simultaneous occurrence of the above conditions
(P [E] ≈ 2−33.86). It can be shown that, if E occurs then Z(0) = 0 where Z
denotes Z1,1⊕Z2,3 (see the full version of the paper [16]). Now we calculate the
probability of occurrence of Z(0).

P [Z(0) = 0] = P [Z(0) = 0|E] · P [E] + P [Z(0) = 0|Ec] · P [Ec]

= 1 · 2−33.86 +
1
2
· (1− 2−33.86)

=
1
2
· (1 + 2−33.86) . (7)

2 The cipher has been submitted to the ECRYPT Project [6].
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Note that, if Py6 had been an ideal PRBG then the above probability would
have been exactly 1

2 .

Remark 2. The above bias can be generalized for rounds t and t + 2 (t > 0)
rather than only rounds 1 and 3.

Remark 3. The main difference between Py and Py6 is that the locations of
S-box elements used by one cipher is different from those by the other. The
significance of the above results is that it shows that changing the locations
of array-elements is futile if the cipher retains some intrinsic weaknesses as ex-
plained in Sect. 2.2. Note that Py was attacked with 284.7 data while Py6 is with
268.61 (explained in Sect. 3.4).

3.2 Biased Outputs in IA and ISAAC

At FSE 1996, R. Jenkins Jr. proposed two fast PRBG’s, namely IA and ISAAC,
along the lines of the RC4 stream cipher [10]. The round functions of IA and
ISAAC are shown in Algorithm 2 and Algorithm 3. Each of them uses an array
of 256 elements. The size of an array-element is 16 bits for IA and 32 bits for
ISAAC. However, IA and ISAAC can be adapted to work with array-elements
of larger size too. For IA, this is the first time that an attack is proposed. For
ISAAC, the earlier attack was by Pudovkina who claimed to have deduced its
internal state with time 4 · 67 · 101240 which was way more than the exhaustive
search through the keys of usual size of 256-bit or 128-bit [17]. On the other
hand, we shall see later in Sect. 3.4 that our distinguishing attacks can be built
with much lower time complexities. The Zt denotes the output at round t.

Algorithm 2. PRBG of IA
Input: m[0, 1, ...255], 16-bit random variable b
Output: 16-bit random output
1: i = 0;
2: x = m[i];
3: m[i] = y = m[ind(x)] + b mod 216; /* ind(x) = x(7,0) */
4: Output= b = m[ind(y � 8)] + x mod 216;
5: i = i + 1 mod 256;
6: Go to step 2;

Bias-inducing State of IA. Let mt[it + 1 mod 256] = a. If the following
condition

ind((a + Zt) � 8) = ind(a) = it+1 (8)

is satisfied then

Z(0)(= Zt(0) ⊕ Zt+1(0)) = 0
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A pictorial description of the state is provided in the full version of the paper
[16]. Let event E occur when (8) holds good. Note that P [E] = 2−16 assuming
a and Zt are independent and uniformly distributed. Therefore,

P [Z(0) = 0] = P [Z(0) = 0|E] · P [E] + P [Z(0) = 0|Ec] · P [Ec]

= 1 · 2−16 +
1
2
· (1 − 2−16)

=
1
2
· (1 + 2−16) . (9)

Algorithm 3. PRBG of ISAAC
Input: m[0, 1, ...255], two 32-bit random variables a and b
Output: 32-bit random output
1: i = 0;
2: x = m[i];
3: a = a ⊕ (a  R) + m[i + K mod 256] mod 232;
4: m[i + 1] = y = m[ind(x)] + a + b mod 232; /* ind(x) = x(9,2) */
5: Output= b = m[ind(y � 8)] + x mod 232;
6: i = i + 1 mod 256;
7: Go to Step 2.

Bias-inducing State of ISAAC. For easy understanding, we rewrite the
PRBG of the ISAAC in a simplified manner in Algorithm 3. The variables R
and K, described in step 3 of Algorithm 3, depend on the parameter i (see [10]
for details); however, we show that our attack can be built independent of those
variables.

Let mt−1[it] = x. Let event E occur when the following equation is satisfied.

ind((mt−1[ind(x)] + at + bt−1) � 8) = it. (10)

If E occurs then Zt = x + x mod 232, i.e., Zt(0) = 0 (see the full version of the
paper [16]). As at, bt−1 and x are independent and each of them is uniformly
distributed over Z232 , the following equation captures the bias in the output.

P [Zt(0) = 0] = P [Zt(0) = 0|E] · P [E] + P [Zt(0) = 0|Ec] · P [Ec]

= 1 · 2−8 +
1
2
· (1− 2−8)

=
1
2
· (1 + 2−8) . (11)

3.3 Biases in the Outputs of NGG and GGHN

Gong et al. very recently have proposed two array-based ciphers NGG and GGHN
with 32/64-bit word-length [12,8] for very fast software applications. The PRBG’s
of the ciphers are described in Algorithm 4 and Algorithm 5. Both the ciphers are
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claimed to be more than three times as fast as RC4. Due to the introduction of an
extra 32-bit random variable k, the GGHN is evidently a stronger version of NGG.
We propose attacks on both the ciphers based on the general technique described
in Sect. 2.2. Note that the NGG cipher was already experimentally attacked by Wu
without theoretical quantification of the attack parameters such as bias, required
outputs [19]. For NGG, our attack is new, theoretically justifiable and most impor-
tantly, conforms to the basic weaknesses of an array-based cipher, as explained in
Sect. 2.2. For GGHN, our attack is the first attack on the cipher. In the following
discussion, the Zt denotes the output at round t.

Algorithm 4. Pseudorandom Bit Generation of NGG
Input: S[0, 1, ...255]
Output: 32-bit random output
1: i = 0, j = 0;
2: i = i + 1 mod 256;
3: j = j + S[i] mod 256;
4: Swap (S[i], S[j]);
5: Output= S[S[i] + S[j] mod 256];
6: S[S[i] + S[j] mod 256] = S[i] + S[j] mod 232

7: Go to step 2;

Bias-inducing State of NGG. Let the event E occur, if it = jt and St+1[it+1]+
St+1[jt+1] = 2 · St[it] mod 256. We observe that, if E occurs then Zt+1(0) = 0
(see the full version of the paper [16]). Now we compute P [Zt+1(0) = 0] where
P [E] = 2−16.

P [Zt+1(0) = 0] = P [Zt+1(0) = 0|E] · P [E] + P [Zt+1(0) = 0|Ec] · P [Ec]

= 1 · 2−16 +
1
2
· (1− 2−16)

=
1
2
· (1 + 2−16) . (12)

Algorithm 5. Pseudorandom Bit Generation of GGHN
Input: S[0, 1, ...255], k
Output: 16-bit random output
1: i = 0, j = 0;
2: i = i + 1 mod 256;
3: j = j + S[i] mod 256;
4: k = k + S[j] mod 232;
5: Output= S[S[i] + S[j] mod 256] + k mod 232;
6: S[S[i] + S[j] mod 256] = k + S[i] mod 232;
7: Go to step 2;

Bias-producing State of GGHN. If St[it] = St+1[jt+1] and St[jt] = St+1[it+1]
(denote it by event E) then Zt+1(0) = 0 (see the full version of the paper [16]).
Now we compute P [Zt+1(0) = 0] where P [E] = 2−16.
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P [Zt+1(0) = 0] = P [Zt+1(0) = 0|E] · P [E] + P [Zt+1(0) = 0|Ec] · P [Ec]

= 1 · 2−16 +
1
2
· (1− 2−16)

=
1
2
· (1 + 2−16) . (13)

3.4 Data and Time of the Distinguishing Attacks

In the section we compute the data and time complexities of the distinguishers
derived from the biases computed in the previous sections. A distinguisher is an
algorithm which distinguishes a stream of bits from a perfectly random stream
of bits, that is, a stream of bits that has been chosen according to the uniform
distribution. The advantage of a distinguisher is the measure of its success rate
(see [1] for a detailed discussion).

Let there be n binary random variables z1, z2, · · · , zn which are independent
of each other and each of them follows the distribution DBIAS. Let the uniform
distribution on alphabet Z2 be denoted by DUNI. Method to construct an optimal
distinguisher with a fixed number of samples is given in [1].3 While the detailed
description of an optimal distinguisher is omitted, the following theorem deter-
mines the number of samples required by an optimal distinguisher to attain an
advantage of 0.5 which is considered a reasonable goal.

Theorem 1. Let the input to an optimal distinguisher be a realization of the
binary random variables z1, z2, z3, · · · , zn where each zi follows DBIAS. To attain
an advantage of more than 0.5, the least number of samples required by the
optimal distinguisher is given by the following formula

n = 0.4624 ·M2 where

PDBIAS
[zi = 0]− PDUNI

[zi = 0] =
1
M

.

Proof. See Sect. 5 of [15] for the proof.

Now DUNI is known and DBIAS can be determined from (7) for Py6, (9) for IA,
(11) for ISAAC, (12) for NGG, (13) for GGHN. In Table 2, we list the data
and time complexities of the distinguishers. Our experiments agree well with the
theoretical results. The constant in O(m) is determined by the time taken by
single round of the corresponding cipher.

3.5 A Note on IBAA, Pypy and HC-256

IBAA, Pypy and HC-256 are the array-oriented ciphers/PRBG’s which are still
free from any attacks. The IBAA works in a similar way as the ISAAC works,

3 Given a fixed number of samples, an optimal distinguisher attains the maximum
advantage.
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Table 2. Data and time of the distinguishers with advantage exceeding 0.5

PRBG M Bytes of a single stream = 0.4624 · M2 Time

Py6 234.86 268.61 O(268.61)

IA 217 232.89 O(232.89)

ISAAC 29 216.89 O(216.89)

NGG 217 232.89 O(232.89)

GGHN 217 232.89 O(232.89)

except for the variable a which plays an important role in the output generation
of IBAA [10]. It seems that a relation has to be discovered among the values
of the parameter a at different rounds to successfully attack IBAA. Pypy is a
slower variant of Py and Py6 [3]. Pypy produces 32 bits per round when each
of Py and Py6 produces 64 bits. To attack Pypy a relation need to be found
among the elements which are separated by at least three rounds. To attack
HC-256 [18], some correlations need to be known among the elements which are
cyclically rotated by constant number of bits.

4 Conclusion

In this paper, we have studied array-based stream ciphers or PRBG’s in a general
framework to assess their resistance against certain distinguishing attacks origi-
nating from the correlation between index-pointers and array-elements. We show
that the weakness becomes more profound because of the usage of simple modu-
lar additions in the output generation function. In the unified framework we have
attacked five modern array-based stream ciphers (or PRBG’s) Py6, IA, ISAAC,
NGG, GGHN with data complexities 268.61, 232.89, 216.89, 232.89 and 232.89 respec-
tively.Wealsonote that someother array-basedstreamciphers (orPRBG’s) IBAA,
Pypy, HC-256 still do not come under any threats, however, the algorithms need to
be analyzed more carefully in order to be considered secure. We believe that our in-
vestigation will throw light on the security of array-based stream ciphers in general
and can possibly be extended to analyze other types of ciphers too.
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Abstract. In this paper, we study the construction of (2t + 1)-variable
Boolean functions with maximum algebraic immunity, and we also ana-
lyze some other cryptographic properties of this kind of functions, such
as nonlinearity, resilience. We first identify several classes of this kind of
functions. Further, some necessary conditions of this kind of functions
which also have higher nonlinearity are obtained. In this way, a modi-
fied construction method is proposed to possibly obtain (2t+1)-variable
Boolean functions which have maximum algebraic immunity and higher
nonlinearity, and a class of such functions is also obtained. Finally, we
present a sufficient and necessary condition of (2t + 1)-variable Boolean
functions with maximum algebraic immunity which are also 1-resilient.

Keywords: Algebraic attack, algebraic immunity, Boolean functions,
balancedness, nonlinearity, resilience.

1 Introduction

The recent progress in research related to algebraic attacks [1,2,5,6] seems to
threaten all LFSR-based stream ciphers. It is known that Boolean functions used
in stream ciphers should have high algebraic degree [11]. However, a Boolean
function may have low degree multiples even if its algebraic degree is high. By
this fact it is possible to obtain an over-defined system of multivariate equations
of low degree whose unknowns are the bits of the initialization of the LFSR(s).
Then the secret key can be discovered by solving the system.

To measure the resistance to algebraic attacks, a new cryptographic property
of Boolean functions called algebraic immunity (AI) has been proposed by W.
Meier et al. [16]. When used in a cryptosystem, a Boolean function should have
high AI. Now, it is known that the AI of an n-variable Boolean function is upper
bounded by

⌈
n
2

⌉
[6,16]. Balancedness, nonlinearity and correlation-immunity are

three other important cryptographic criteria. In some sense, algebraic immunity
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is compatible with the former two criteria: a Boolean functions with low nonlin-
earity will have low AI [7,14], a Boolean function of an odd number of variables
with maximum AI must be balanced [7]. The existence of links between algebraic
immunity and correlation-immunity remains open.

Constructions of Boolean functions with maximum AI are obviously impor-
tant. Further, it is more important to construct these functions which also satisfy
some other criteria (such as balancedness, a high nonlinearity, a high correlation-
immunity order, . . .). Some classes of symmetric Boolean functions with max-
imum AI were obtained in [3] and [9], and it was shown in [12] that there is
only one such symmetric function (besides its complement) when the number
of input variables is odd. A construction keeping in mind the basic theory of
algebraic immunity was presented in [9], which also provided some functions
with maximum AI. In [4], Carlet introduced a general method (for any number
of variables) and an algorithm (for an even number of variables) for construct-
ing balanced functions with maximum AI. In [13], a method was proposed for
constructing functions of an odd number of variables with maximum AI, which
convert the problem of constructing such a function to the problem of finding an
invertible submatrix of a 2n−1 × 2n−1 matrix. And it was stated that any such
function can be obtained by this method.

In this paper, we study the construction of (2t+1)-variable Boolean functions
with maximum AI, and we also analyze some other cryptographic properties of
this kind of functions. From the characteristic of the matrix used in the con-
struction proposed in [13], we obtain some necessary or sufficient conditions of
(2t + 1)-variable Boolean functions with maximum AI. Further, by studying the
Walsh spectra of this kind of functions, we obtain some necessary conditions of
this kind of functions which also have higher nonlinearity and thus we propose
a modified construction to obtain such functions. We finally present a sufficient
and necessary condition of (2t + 1)-variable Boolean functions with maximum
AI which are also 1-resilient.

2 Preliminaries

Let Fn
2 be the set of all n-tuples of elements in the finite field F2. To avoid

confusion with the usual sum, we denote the sum over F2 by ⊕.
A Boolean function of n variables is a function from Fn

2 into F2. Any n-
variable Boolean function f can be uniquely expressed by a polynomial in
F2[x1, . . . , xn]/(x2

1 − x1, . . . , x
2
n − xn), which is called its algebraic normal form

(ANF). The algebraic degree of f , denoted by deg(f), is the degree of this poly-
nomial. Boolean function f can also be identified by a binary string of length
2n, called its truth table, which is defined as

(f(0, 0, . . . , 0), f(1, 0, . . . , 0), f(0, 1, . . . , 0), . . . , f(1, 1, . . . , 1)).

Let
1f = {X ∈ Fn

2 |f(X) = 1}, 0f = {X ∈ Fn
2 |f(X) = 0}.
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The set 1f (resp. 0f) is called the on set (resp. off set). The cardinality of 1f ,
denoted by wt(f), is called the Hamming wight of f . We say that an n-variable
Boolean function f is balanced if wt(f) = 2n−1. The Hamming distance between
two functions f and g, denoted by d(f, g), is the Hamming weight of f ⊕ g. Let
S = (s1, s2, . . . , sn) ∈ Fn

2 , the Hamming weight of S, denoted by wt(S), is the
number of 1’s in {s1, s2, . . . , sn}.

Walsh spectra is an important tool for studying Boolean functions. Let X =
(x1, . . . , xn) and S = (s1, . . . , sn) both belonging to Fn

2 and their inner product
X · S = x1s1⊕ . . .⊕ xnsn. Let f be a Boolean function of n variables. Then the
Walsh transform of f is an integer valued function over Fn

2 which is defined as

Wf (S) =
∑

X∈F
n
2

(−1)f(X)⊕X·S.

Affine functions are those Boolean functions of degree at most 1. The nonlinearity
of an n-variable Boolean function f is its Hamming distance from the set of all
n-variable affine functions, i.e.,

nl(f) = min{d(f, g)|g is an affine function}.

The nonlinearity of f can be described by its Walsh spectra as nl(f) = 2n−1 −
1
2maxS∈F

n
2
|Wf (S)|. Correlation immune functions and resilient functions are two

important classes of Boolean functions. A function is mth order correlation im-
mune (resp. m-resilient) if and only if its Walsh spectra satisfies

Wf (S) = 0, for 1 ≤ wt(S) ≤ m (resp. 0 ≤ wt(S) ≤ m).

Definition 1. [16] For a given n-variable Boolean function f , a nonzero n-
variable Boolean function g is called an annihilator of f if f · g = 0, and the
algebraic immunity of f , denoted by AI(f), is the minimum value of d such that
f or f ⊕ 1 admits an annihilating function of degree d.

For convenience, two orderings on vectors and monomials are defined as follows.

Definition 2. A vector ordering <v on Fn
2 is defined as:

let (a1, . . . , an), (b1, . . . , bn) ∈ Fn
2 , then (a1, . . . , an) <v (b1, . . . , bn) if and only if∑n

i=1 ai <
∑n

i=1 bi, or
∑n

i=1 ai =
∑n

i=1 bi and there exists 1 ≤ i < n such that
ai > bi, aj = bj for 1 ≤ j < i.

Example 1. If n = 3, then (0, 0, 0) <v (1, 0, 0) <v (0, 1, 0) <v (0, 0, 1) <v

(1, 1, 0) <v (1, 0, 1) <v (0, 1, 1) <v (1, 1, 1).

Definition 3. A monomial ordering <m on F2[x1, . . . , xn]/(x2
1−x1, . . . , x

2
n−xn)

is defined as:
let xa1

1 . . . xan
n , xb1

1 . . . xbn
n ∈F2[x1,. . ., xn]/(x2

1− x1,. . ., x
2
n− xn), then xa1

1 . . . xan
n <m

xb1
1 . . . xbn

n if and only if (a1, . . . , an) <v (b1, . . . , bn).

It is clear that <v and <m are both total orderings.
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Let A be an l×l matrix, and integers 1 ≤ i1, i2 . . . , ik ≤ l, 1 ≤ j1, j2 . . . , jk ≤ l.
Denoted by A(i1,...,ik) the k× l matrix with the rth (1 ≤ r ≤ k) row vector equal
to the irth row vector of A, and A(i1,...,ik;j1,...,jk) the k × k matrix with the rth
(1 ≤ r ≤ k) column vector equal to the jrth column vector of A(i1,...,ik).

3 Construction of Boolean Functions with Maximum AI

In this section, we briefly review the method to construct Boolean functions with
maximum AI proposed in [13].

Let n be a positive integer, X = (x1, . . . , xn) ∈ Fn
2 . Let

v(X) =(1, x1, . . . , xn, x1x2, . . . , xn−1xn, . . . . . . ,

x1 · · · x�n
2 �−1, . . . , x�n

2 �+2 · · · xn) ∈ F
�n

2 �−1

i=0 (n
i)

2 ,

where the monomials are ordered according to the ordering <m. It is clear that∑�n
2 �−1

i=0

(
n
i

)
= 2n−1 when n is odd. Let f be an n-variable Boolean function,

let V (1f ) denote the wt(f) ×∑�n
2 �−1

i=0

(
n
i

)
matrix with the set of row vectors

{v(X)|X ∈ 1f}, and V (0f) denote the (2n − wt(f)) ×∑�n
2 �−1

i=0

(
n
i

)
matrix with

the set of row vectors {v(X)|X ∈ 0f}.
Lemma 1. [3,9] Let odd n = 2t + 1 and f be an n-variable Boolean function
which satisfies

f(X) =
{

a for wt(X) ≤ t
a⊕ 1 for wt(X) > t

,

where a ∈ F2, then AI(f) = t + 1.

When a = 1, the function described in Lemma 1 is called the majority function,
and we denote it by Fn. It is clear that Fn is balanced. We arrange the vectors
in 1Fn (resp. 0Fn) according to the order <v, and denote them by X1, . . . , X2n−1

(resp. Y1, . . . , Y2n−1), i.e. X1 <v . . . <v X2n−1 (resp. Y1 <v . . . <v Y2n−1). Let
Xj = (xj,1, . . . , xj,n) (resp. Yi = (yi,1, . . . , yi,n)). The ith row vector of V (1Fn)
(resp. V (0Fn)) is v(Xi) (resp. v(Yi)).

The idea of the construction proposed in [13] is to obtain a new function
by changing the values of the majority function at some vectors. The problem
of finding out the appropriate vectors is converted to the problem of finding
out a k × k invertible submatrix of the 2n−1 × 2n−1 invertible matrix W =
V (0Fn)V (1Fn)−1.

Theorem 1. [13] Let n = 2t + 1, and f an n-variable Boolean function. Then,
AI(f)= t + 1 if and only if there exist integers 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤
j1 < . . . < jk ≤ 2n−1, such that f = f(i1,...,ik;j1,...,jk) and W(i1,...,ik;j1,...,jk) is
invertible, where f(i1,...,ik;j1,...,jk) is defined as

f(i1,...,ik;j1,...,jk)(X) =
{

Fn(X)⊕ 1 if X ∈ {Xj1 , . . . , Xjk
, Yi1 , . . . , Yik

}
Fn(X) else . (1)
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Construction 1. [13] Let n = 2t + 1. The following method can generate a
Boolean function of n variables with maximum AI.

Step1: Select randomly an integer 1 ≤ k ≤ 2n−2 and k integers 1 ≤ i1 < . . . <
ik ≤ 2n−1.

Step2: Find out k integers 1 ≤ j1 < . . . < jk ≤ 2n−1, such that the j1th, . . .,
jkth column vectors of W(i1,...,ik) are linearly independent.

Then, the Boolean function f(i1,...,ik;j1,...,jk) defined by (1) has AI t + 1.

Remark 1. 1) For any fixed 1 ≤ k ≤ 2n−2 and any k integers 1 ≤ i1 < . . . <
ik ≤ 2n−1, there always exist k integers 1 ≤ j1 < . . . < jk ≤ 2n−1 such that
W(i1,...,ik;j1,...,jk) is invertible.

2) Any Boolean function of 2t + 1 variables with maximum AI can be con-
structed by this method.

For the rest of this paper, we always suppose n = 2t + 1.

4 Properties of W and Several Classes of n-Variable
Boolean Functions with Maximum AI

In this section, we first show some important properties of the matrix W =
V (0Fn)V (1Fn)−1, then use these conclusions to obtain some necessary or suffi-
cient conditions of n-variable Boolean function achieving maximum AI.

Let A be a 2n−1×2n−1 matrix, and divide A into (t+1)2 submatrixes, denoted
by Ai,j , 1 ≤ i ≤ t + 1, 1 ≤ j ≤ t + 1, defined as

Ai,j = A(ri−1+1,ri−1+2...,ri;sj−1+1,sj−1+2...,sj),

where

rl =
{

0 if l = 0∑l
k=1

(
n

t+k

)
if l > 0

, sl =
{

0 if l = 0∑l−1
k=0

(
n
k

)
if l > 0

.

It is clear that the row (resp. column) vectors of Wi,j correspond to the vectors
in Fn

2 with Hamming weight i + t (resp. j − 1).

Proposition 1. [10] V (1Fn)−1=V (1Fn).

Proposition 2. Let W = V (0Fn)V (1Fn)−1, then

Wi,j =

⎧⎨⎩ 0 if
t−j+1⊕
r=0

(
t+i−j+1

r

)
= 0

V (0Fn)i,j else
, for 1 ≤ i, j ≤ t + 1,

where 0 denotes the matrix with all entries 0.

Proof. By Proposition 1, W = V (0Fn)V (1Fn)−1 = V (0Fn)V (1Fn). Let Y =
(y1, . . . , yn) ∈ 0Fn and wt(Y ) = i > t, xr1 · · ·xrj be a monomial of degree j(0 ≤
j ≤ t). Denote the transpose of the column vector of V (1Fn) corresponding to
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xr1 · · ·xrj by u(xr1 · · ·xrj ). That is, u(xr1 · · ·xrj ) is the evaluation of xr1 · · ·xrj

at the vectors belonging to 1Fn . We can represent u(xr1 · · ·xrj ) as

(g(1), g(x1), . . . , g(xn), g(x1x2), g(x1x3), . . . ,
g(xn−1xn), . . . , g(x1 · · ·xt), . . . , g(xt+2 · · ·xn)),

(2)

where g is a function on the monomials of degree at most t, which satisfies

g(xa1
1 · · ·xan

n ) =
{

1 if xr1 · · ·xrj |xa1
1 · · ·xan

n

0 else . (3)

On the other hand, we can also represent v(Y ) as

(h(1), h(x1), . . . , h(xn), h(x1x2), h(x1x3), . . . ,
h(xn−1xn), . . . , h(x1 · · ·xt), . . . , h(xt+2 · · ·xn)),

(4)

where h is a function on the monomials of degree at most t, which satisfies

h(xa1
1 · · ·xan

n ) =
{

1 if xa1
1 · · ·xan

n |xy1
1 · · ·xyn

n

0 else . (5)

Denote the inner product of v(Y ) and u(xr1 · · ·xrj ) by c.
If yr1 , . . . , yrj are not all 1, by (2), (3), (4) and (5), we have c = 0 =

h(xr1 · · ·xrj ). If yr1 , . . . , yrj are all 1, we have h(xr1 · · ·xrj ) = 1 and

c =
⊕

xr1 ···xrj
|xa1

1 ···xan
n ,

x
a1
1 ···xan

n |xy1
1 ···xyn

n

wt(a1,...,an)≤t

1 =
t−j⊕
r=0

(
i− j

r

)
.

It is clear that the row (resp. column) vectors of Wi,j correspond to the vectors
in Fn

2 with Hamming weight i+ t (resp. j−1). Therefore, we complete the proof.

Corollary 1. 1) For any 2 ≤ i ≤ t + 1, Wi,t+2−i = 0.
2) For any 1 ≤ j ≤ t + 1, W1,j = V (0Fn)1,j.
3) For any 1 ≤ i ≤ t + 1, Wi,t+1 = V (0Fn)i,t+1.

Proof. 1) If 2 ≤ i ≤ t + 1 and j = t + 2− i, then

t−j+1⊕
r=0

(
t + i− j + 1

r

)
=

i−1⊕
r=0

(
2i− 1

r

)
= 22i−2 mod 2 = 0.

2) If i = 1, then

t−j+1⊕
r=0

(
t + i− j + 1

r

)
=

t−j+1⊕
r=0

(
t− j + 2

r

)
= 2t−j+2 − 1 mod 2 = 1.
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3) If j = t + 1, then

t−j+1⊕
r=0

(
t + i− j + 1

r

)
= 1.

We can obtain some necessary conditions of n-variable Boolean functions with
maximum AI.

Theorem 2. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤
2n−1. If there exist 0 ≤ j ≤ t, t + 1 ≤ i ≤ n such that

t−j⊕
r=0

(
i−j
r

)
= 0, and

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) = j}+ #{Y ∈ {Yi1 , . . . , Yik

}|wt(Y ) = i} > k,

then, AI(f(i1,...,ik;j1,...,jk)) < t + 1.

Proof. By Theorem 1, it is sufficient to show that W(i1,...,ik;j1,...,jk) is not invert-
ible. By Proposition 2 and the first condition, we have that Wi−t,j+1 = 0. Then
the second condition implies that W(i1,...,ik;j1,...,jk) has a submatrix with the
number of rows and columns greater than k whose entries are all 0. Therefore,
W(i1,...,ik;j1,...,jk) is not invertible.

Corollary 2. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤
2n−1. If there exists 0 ≤ r ≤ t− 1 such that

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) = r}+#{Y ∈ {Yi1 , . . . , Yik

}|wt(Y ) = n− r} > k,

then, AI(f(i1,...,ik;j1,...,jk)) < t + 1.

In the following of this section, several classes of n-variable Boolean functions
with maximum AI are provided.

Theorem 3. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤
2n−1. If the following conditions are both satisfied, then AI(f(i1,...,ik;j1,...,jk)) =
t + 1.

1) There exist 1 ≤ a1 < . . . < as ≤ n, such that xjr ,a1 = . . . = xjr ,as = 0 for
1 ≤ r ≤ k.

2) For any Xjr (1 ≤ r ≤ k), there exists correspondingly Yir
′ ∈ {Yi1 , . . . , Yik

},
such that yir

′,a = xjr ,a for a /∈ {a1, . . . , as}, and

t−wt(Xjr )⊕
l=0

(
wt(Yir

′)− wt(Xjr )
l

)
= 1.

Proof. If Xj1 , . . . , Xjk
and Yi1 , . . . , Yik

satisfy the two conditions, then by Propo-
sition 2, W(i1′,...,ik

′;j1,...,jk) is in the form of lower triangular with all entries on
the diagonal equal to 1. Therefore W(i1′,...,ik

′;j1,...,jk) is invertible, which implies
that W(i1,...,ik;j1,...,jk) is invertible, and the result holds by Theorem 1.
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Example 2. Let n=7, L1 = {(1, 0, 0, 0, 0, 0, 0), (0, 1, 1, 0, 0, 0, 0), (0, 0, 1, 1, 0, 0, 0),
(1, 1, 1, 0, 0, 0, 0, )}⊆1Fn, L2={(1, 0, 0, 0, 1, 1, 1), (0, 1, 1, 0, 1, 1, 0),(0, 0, 1, 1, 0, 1, 1),
(1, 1, 1, 0, 1, 1, 1, )} ⊆ 0Fn . Then the function

f(X) =
{

Fn(X)⊕ 1 if X ∈ L1 ∪ L2

Fn(X) else

has AI 4.

Theorem 4. Let 1 ≤ 2k ≤ 2n−1, 1 ≤ i1 < . . . < i2k ≤ 2n−1, 1 ≤ j1 < . . . <
j2k ≤ 2n−1. wt(Xjr ) = w1, wt(Yir ) = w′

1 for 1 ≤ r ≤ k, and wt(Xjr ) = w2,
wt(Yir ) = w′

2 for k + 1 ≤ r ≤ 2k. If one of the following two conditions is
satisfied, then AI(f(i1,...,i2k;j1,...,j2k)) = t + 1.

1)
t−w1⊕
r=0

(
w′

2−w1
r

)
and

t−w2⊕
r=0

(
w′

1−w2
r

)
are not both 1, and

AI(f(i1,...,ik;j1,...,jk)) = AI(f(ik+1,...,i2k;jk+1,...,j2k)) = t + 1.

2)
t−w1⊕
r=0

(
w′

1−w1
r

)
and

t−w2⊕
r=0

(
w′

2−w2
r

)
are not both 1, and

AI(f(i1,...,ik;jk+1,...,j2k)) = AI(f(ik+1,...,i2k;j1,...,jk)) = t + 1.

Proof. Let M denote the 2k × 2k matrix W(i1,...,i2k;j1,...,j2k). The first condition
implies that M(1,...,k;1,...,k) and M(k+1,...,2k;k+1,...,2k) are both invertible, and at
least one of M(1,...,k;k+1,...,2k) and M(k+1,...,2k;1,...,k) is 0. Then, M is invertible,
and the result holds by Theorem 1.
If the second condition is satisfied, the result can be proved in the same way.

Example 3. Let n = 7, L1={(0, 0, 0, 0, 1, 1, 0), (0, 0, 0, 0, 1, 0, 1), (0, 0, 0, 0, 0, 1, 1),
(1, 1, 0, 0, 1, 0, 0), (1, 1, 0, 0, 0, 1, 0),(1, 1, 0, 0, 0, 0, 1)}, L2={(1, 1, 0, 0, 1, 1, 0), (1, 1,
0, 0, 1, 0, 1),(1, 1, 0, 0, 0, 1, 1),(1, 1, 1, 1, 1, 0, 0), (1, 1, 1, 1, 0, 1, 0), (1, 1, 1, 1, 0, 0, 1)}.
Then the function

f(X) =
{

Fn(X)⊕ 1 if X ∈ L1 ∪ L2

Fn(X) else

has AI 4.

Theorem 5. Let 1 ≤ k ≤ n, Yi1 , . . . , Yik
belong to 0Fn and their Hamming

weight are w1, . . . , wk, respectively. If

1)
t−1⊕
r=0

(
wi−1

r

)
= 1 for 1 ≤ i ≤ k, and

2) there exist 1 ≤ j1 < . . . < jk ≤ n, such that the j1th, . . ., jkth column of

the matrix

⎛⎝Yi1

. . .
Yik

⎞⎠ are linearly independent,

then, AI(f(i1,...,ik;j1+1,...,jk+1)) = t + 1.

Proof. By Proposition 2, W(i1 ,...,ik;j1+1,...,jk+1) is invertible if the two conditions
are both satisfied, and the result holds by Theorem 1.
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Example 4. Let n=7, L1={(1, 0, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0, 0)},
L2={(1, 0, 1, 0, 1, 1, 1), (0, 1, 1, 0, 1, 0, 1), (1, 1, 1, 1, 0, 1, 0)}. Then the function

f(X) =
{

Fn(X)⊕ 1 if X ∈ L1 ∪ L2

Fn(X) else

has AI 4.

5 Nonlinearity and Resilience of Boolean Functions with
Maximum AI

At first, we give the Walsh spectra of majority functions. Note that although the
first item and the case of wt(S) = 1 in the second item in the following lemma
have been given in [9], we still give the proof for completeness.

Lemma 2. Let S ∈ Fn
2 .

1) If wt(S) is even, then WFn(S) = 0.
2) If wt(S) is odd, then

WFn(S) = (−1)(wt(S)+1)/22
(

n− 1
t

) (wt(S)−1)/2∏
i=1

2i− 1
n− 2i

.

Proof. Since
∑

wt(X)=i

(−1)S·X = Ki(wt(S), n), we have

WFn(S) =
n∑

i=t+1

Ki(wt(S), n) −
t∑

i=0

Ki(wt(S), n), (6)

where Ki(k, n) is the so-called Krawtchouk polynomial [15, Page 151, Part I]
defined by

Ki(k, n) =
i∑

j=0

(−1)j

(
k

j

)(
n− k

i− j

)
, i = 0, 1, . . . , n.

Krawtchouk polynomials also have properties [15, Page 153, Part I] as follows.

P1. Ki(k, n) = (−1)kKn−i(k, n).
P2.

∑e
i=0 Ki(k, n) = Ke(k − 1, n− 1).

P3. (n − k)Ki(k + 1, n) = (n − 2i)Ki(k, n) − kKi(k − 1, n) for nonnegative
integers i and k.

If wt(S) is even, then by (6) and P1, we have WFn(S) = 0.
If wt(S) is odd, then by (6), P1 and P2, we have

WFn(S) = −2
t∑

i=0

Ki(wt(S), n) = −2Kt(wt(S)− 1, n− 1).

By the definition of Krawtchouk polynomials, we have Kt(k, n − 1) = 0 if k is
odd. Thus by P3, we have
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WFn(S) = (−1)(wt(S)−1)/2+12Kt(0, n− 1)
(wt(S)−1)/2∏

i=1

2i− 1
n− 2i

= (−1)(wt(S)+1)/22
(

n− 1
t

) (wt(S)−1)/2∏
i=1

2i− 1
n− 2i

.

Lemma 3. Let S, T ∈ Fn
2 .

1) If wt(S) + wt(T ) = n + 1, then WFn(S) = (−1)tWFn(T ).
2) If both wt(S) and wt(T ) are odd, and 0 < wt(S) < wt(T ) ≤ t + 1, then

|WFn(S)| > |WFn(T )|.
Proof. 1) Since Krawtchouk polynomials have the following property,

Ki(k, n) = (−1)iKi(n− k, n),

we have that

WFn(S) = −2Kt(wt(S) − 1, n− 1)

= −2(−1)tKt(n− 1− (wt(S)− 1), n− 1)

= −2(−1)tKt(wt(T )− 1, n− 1) = (−1)tWFn(T ).

2) It is obvious from the second item of Lemma 2.

Remark 2. By Lemma 3, we have

max
T∈F

n
2

|WFn(T )| = |WFn(S1)| = |WFn(Sn)| = 2
(

n− 1
t

)
,

where wt(S1) = 1, wt(Sn) = n. Therefore, nl(Fn) = 2n−1 − (
n−1

t

)
[9]. And

max
T∈F

n
2 ,wt(T ) �=1,n

|WFn(T )| = |WFn(S3)| = |WFn(Sn−2)| = 2
n− 2

(
n− 1

t

)
,

where wt(S3) = 3, wt(Sn−2) = n − 2. We note that the difference between the
maximal and the secondarily maximal absolute value of Walsh spectra is quite
great, which is

2
n− 3
n− 2

(
n− 1

t

)
.

Algebraic immunity has the following relationship with nonlinearity.

Lemma 4. [14] Let f be an n-variable Boolean function, AI(f) = k, then

nl(f) ≥ 2n−1 −
n−k∑

i=k−1

(
n− 1

i

)
,

and this bound is tight.
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Remark 3. Lemma 4 together with Remark 2 implies that Fn has the worst
nonlinearity among all n-variable Boolean functions with maximum AI.

Theorem 6. The Walsh spectra of f = f(i1,...,ik;j1,...,jk) is given by

Wf (S) = WFn(S)− 4(
k∑

r=1

S ·Xjr −
k∑

r=1

S · Yir ).

Proof

Wf (S) =
2n−1∑
r=1

(−1)f(Xr)+S·Xr +
2n−1∑
r=1

(−1)f(Yr)+S·Yr

=
∑

r∈{1,...,2n−1}\{j1,...,jk}
(−1)Fn(Xr)+S·Xr +

k∑
r=1

(−1)Fn(Xjr )+1+S·Xjr +

∑
r∈{1,...,2n−1}\{i1,...,ik}

(−1)Fn(Yr)+S·Yr +
k∑

r=1

(−1)Fn(Yir )+1+S·Yir

= WFn(S)− 2(
k∑

r=1

(−1)Fn(Xjr )+S·Xjr +
k∑

r=1

(−1)Fn(Yir )+S·Yir )

= WFn(S)− 2(
k∑

r=1

(−1)1+S·Xjr +
k∑

r=1

(−1)S·Yir )

= WFn(S)− 2(
k∑

r=1

(2S ·Xjr − 1) +
k∑

r=1

(1− 2S · Yir ))

= WFn(S)− 4(
k∑

r=1

S ·Xjr −
k∑

r=1

S · Yir ).

From the above analysis in this section, some necessary conditions of Boolean
functions with maximum AI and these functions which also have higher nonlin-
earity than that of Fn can be obtained.

Theorem 7. Let 1 ≤ k ≤ 2n−1, 1 ≤ i1 < . . . < ik ≤ 2n−1, 1 ≤ j1 < . . . < jk ≤
2n−1. If one of the following conditions is satisfied, then AI(f(i1,...,ik;j1,...,jk)) <
t + 1.

1) There exists 1 ≤ r ≤ n, such that xj1,r + . . . + xjk ,r > yi1,r + . . . + yik,r.
2)If n ≡ 1 mod 4,

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) is odd} > #{Y ∈ {Yi1 , . . . , Yik

}|wt(Y ) is odd};

if n ≡ 3 mod 4,

#{X ∈ {Xj1 , . . . , Xjk
}|wt(X) is odd} < #{Y ∈ {Yi1 , . . . , Yik

}|wt(Y ) is odd}.
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Proof. By Theorem 6, the first condition means that |Wf(i1 ,...,ik ;j1,...,jk)(S)| >

|WFn(S)| for S = (0, . . . , 0︸ ︷︷ ︸
r−1

, 1, 0, . . . , 0). Thus, we have nl(f(i1,...,ik;j1,...,jk)) <

nl(Fn) by Remark 2 . Therefore, by Remark 3, we have AI(f(i1,...,ik;j1,...,jk)) <
t + 1.

If the second condition is satisfied, then |Wf(i1 ,...,ik ;j1,...,jk)(S)| > |WFn(S)| for
S = (1, 1, . . . , 1). In the same way, the result can be proved.

Theorem 8. Let f = f(i1,...,ik;j1,...,jk) be an n-variable Boolean function with
AI t + 1. If one of the following conditions is satisfied, then f has the worst
nonlinearity among all n-variable Boolean functions with maximum AI.

1) There exists 1 ≤ r ≤ n, such that xj1,r + . . . + xjk ,r = yi1,r + . . . + yik,r.
2) #{X∈{Xj1 , . . . , Xjk

}|wt(X) is odd}=#{Y∈{Yi1 , . . . , Yik
}|wt(Y ) is odd}.

Proof. By Theorem 6, the first condition means that |Wf(i1 ,...,ik ;j1,...,jk)(S)| =
|WFn(S)| for S = (0, . . . , 0︸ ︷︷ ︸

r−1

, 1, 0, . . . , 0). Thus, we have nl(f(i1,...,ik;j1,...,jk)) ≤

nl(Fn) by Remark 2 . Therefore, by Remark 3, we have nl(f(i1,...,ik;j1,...,jk)) =
nl(Fn), and the result is proved.

If the second condition is satisfied, then |Wf(i1 ,...,ik ;j1,...,jk)(S)| = |WFn(S)| for
S = (1, 1, . . . , 1). In the same way, the result can be proved.

Corollary 3. For any 1 ≤ i, j ≤ 2n−1, if AI(f(i;j)) = t + 1 then f(i;j) has the
worst nonlinearity among all n-variable Boolean functions with maximum AI.

Proof. From Theorem 8, it is sufficient to consider the case of i = 2n−1, j = 1, i.e.
X = (0, 0, . . . , 0), Y = (1, 1, . . . , 1). In this case, from the first item of Corollary
1 we have AI(f(i;j)) < t + 1 which contradicts the assumption.

Theorem 9. If 1 ≤ k ≤ n−3
4(n−2)

(
n−1

t

)
, then nl(f(i1,...,ik;j1,...,jk)) is given by

2n−1 −
(

n− 1
t

)
+ 2min{ min

1≤s≤n
(

k∑
r=1

yir ,s −
k∑

r=1

xjr ,s), (−1)t(N1 −N2)},

where
N1 = #{Y ∈ {Yi1 , . . . , Yik

}|wt(Y ) is odd },
N2 = #{X ∈ {Xj1 , . . . , Xjk

}|wt(X) is odd }.
Proof. Denote f(i1,...,ik;j1,...,jk;) by f . From Theorem 6 we have,

|WFn(S)| − 4k ≤ |Wf (S)| ≤ |WFn(S)|+ 4k.

Let S, T ∈ Fn
2 , and wt(S) = 1 or n, wt(T ) /∈ {1, n}. If 1 ≤ k ≤ n−3

4(n−2)

(
n−1

t

)
, then

by Remark 2,

|Wf (S)| ≥ |WFn(S)| − 4k ≥ |WFn(T )|+ 4k ≥ |Wf (T )|.
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Therefore, we have maxT∈Fn
2
|Wf (T )| = maxwt(S)=1,n|Wf (S)|.

Case 1. wt(S) = 1 and S = (0, . . . , 0︸ ︷︷ ︸
s−1

, 1, 0, . . . , 0). By Theorem 6 we have

|Wf (S)| = 2
(

n− 1
t

)
− 4(

k∑
r=1

yir ,s −
k∑

r=1

xjr ,s).

Case 2. wt(S) = n. By Theorem 6 we have

|Wf (S)| = 2
(

n− 1
t

)
− 4((−1)t(N1 −N2)).

Hence the result holds from nl(f) = 2n−1 − 1
2maxS∈F

n
2
|Wf (S)|.

Now, we modify Construction 1 to construct n-variable Boolean functions
with maximum AI and possibly having higher nonlinearity.

Construction 2. Step1: Select randomly an integer 1 ≤ k ≤ 2n−2 and k integers
1 ≤ i1 < . . . < ik ≤ 2n−1, which satisfy

i) min
1≤s≤n

k∑
r=1

yir ,s is as large as possible;

ii) if n ≡ 1 mod 4, #{Y ∈ {Yi1 , . . . , Yik
}|wt(Y ) is odd } is as large as

possible; if n ≡ 3 mod 4, #{Y ∈ {Yi1 , . . . , Yik
}|wt(Y ) is even } is as large as

possible.
Step2: Find out k integers 1 ≤ j1 < . . . < jk ≤ 2n−1, which satisfies
i) the j1th, . . ., jkth column vectors of W(i1,...,ik) are linearly independent;

ii) a = min
1≤s≤n

(
k∑

r=1
yir ,s −

k∑
r=1

xjr ,s) is as large as possible;

iii) if n ≡ 1 mod 4,

b = #{Y ∈{Yi1 , . . . , Yik
}|wt(Y ) is odd }−#{X∈{Xj1 , . . . , Xjk

}|wt(X) is odd }

is as large as possible; if n ≡ 3 mod 4,

c = #{X∈{Xj1 , . . . , Xjk
}|wt(X) is odd }−#{Y ∈{Yi1 , . . . , Yik

}|wt(Y ) is odd }

is as large as possible.
Then, the Boolean function f(i1,...,ik;j1,...,jk) defined by (1) has AI t + 1 and

has possibly a higher nonlinearity.

Remark 4. From Theorem 9, the function obtained by Construction 2 will has
a higher nonlinearity than that of Fn if 1 ≤ k ≤ n−3

4(n−2)

(
n−1

t

)
and a > 0, b > 0

(if n ≡ 1 mod 4) or c > 0 (if n ≡ 3 mod 4), and it possibly has a nonlinearity
equal to that of Fn if k > n−3

4(n−2) .

Further, the following theorem provides a class of n-variable Boolean functions
with maximum AI which also have higher nonlinearity than that of Fn.
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Theorem 10. Let n ≡ 3 mod 4, 1 ≤ k ≤ min{n, n−3
4(n−2)

(
n−1

t

)}, Yi1 , . . . , Yik

belong to 0Fn and their Hamming weights are w1, . . . , wk, respectively. If

1)
t−1⊕
r=0

(
wi−1

r

)
= 1, i = 1, . . . , k; and

2) w1, . . . , wk are not all odd; and
3) there exist 1 ≤ j1 < . . . < jk ≤ n, such that the j1th, . . ., jkth columns of

the matrix

⎛⎝Yi1

. . .
Yik

⎞⎠ are linearly independent; and

4) for any s /∈ {j1, . . . , jk}, yi1,s + . . .+yik,s ≥ 1; and for any s ∈ {j1, . . . , jk},
yi1,s + . . . + yik,s ≥ 2.

then, AI(f(i1,...,ik;j1+1,...,jk+1))= t+1 and nl(f(i1,...,ik;j1+1,...,jk+1)) ≥ nl(Fn)+2.

Example 5. The Boolean function defined in Example 4 has AI 4. And nl(f) =
nl(Fn) + 2.

Finally, we obtain the following sufficient and necessary condition of Boolean
functions with maximum AI which are also resilient functions.

Theorem 11. Let f =f(i1,...,ik;j1,...,jk) be an n-variable Boolean function. Then,
f is 1-resilient function if and only if

k∑
r=1

yir,s −
k∑

r=1

xjr ,s =
1
2

(
n− 1

t

)
,

for s = 1, . . . , n.

Corollary 4. Let f = f(i1,...,ik;j1,...,jk) be an n-variable Boolean function. Then,
f is 1-resilient function and has AI t + 1 if and only if

k∑
r=1

yir,s −
k∑

r=1

xjr ,s =
1
2

(
n− 1

t

)
,

for s = 1, . . . , n, and W(i1,...,ik;j1,...,jk) is invertible.

6 Conclusion

Possessing a high algebraic immunity is a necessary condition for Boolean func-
tions used in stream ciphers against algebraic attacks. In this paper, some classes
of (2t + 1)-variable Boolean functions with maximum AI are obtained. Further,
some necessary conditions of this kind of functions which also have higher non-
linearity are presented and thus a modified construction method is proposed to
obtain such functions. Finally, a sufficient and necessary condition of (2t + 1)-
variable Boolean functions with maximum AI which are also 1-resilient is pre-
sented. However, it is still open that what is the highest nonlinearity of Boolean
functions with maximum AI and how to construct Boolean functions which have
maximum AI and the highest nonlinearity.
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Abstract. There have been active discussions on how to derive a con-
sistent cryptographic key from noisy data such as biometric templates,
with the help of some extra information called a sketch. It is desirable
that the sketch reveals little information about the biometric templates
even in the worst case (i.e., the entropy loss should be low). The main
difficulty is that many biometric templates are represented as points in
continuous domains with unknown distributions, whereas known results
either work only in discrete domains, or lack rigorous analysis on the
entropy loss. A general approach to handle points in continuous domains
is to quantize (discretize) the points and apply a known sketch scheme in
the discrete domain. However, it can be difficult to analyze the entropy
loss due to quantization and to find the “optimal” quantizer. In this
paper, instead of trying to solve these problems directly, we propose to
examine the relative entropy loss of any given scheme, which bounds the
number of additional bits we could have extracted if we used the optimal
parameters. We give a general scheme and show that the relative entropy
loss due to suboptimal discretization is at most (n log 3), where n is the
number of points, and the bound is tight. We further illustrate how our
scheme can be applied to real biometric data by giving a concrete scheme
for face biometrics.

Keywords: Secure sketch, biometric template, continuous domain.

1 Introduction

The main challenge in using biometric data in cryptography is that they cannot
be reproduced exactly. Some noise will be inevitably introduced into biometric
samples during acquisition and processing. There have been active discussions
on how to extract a reliable cryptographic key from such noisy data. Some
recent techniques attempt to correct the noise in the data by using some public
information P derived from the original biometric template X . These techniques
include fuzzy commitment [12], fuzzy vault [11], helper data [19], and secure
sketch [7]. In this paper, we follow Dodis et al. [7] and call such public information
P a sketch.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 99–113, 2006.
c© International Association for Cryptologic Research 2006
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Typically, there are two main components in a secure sketch scheme. The first is
the sketch generation algorithm, which we will refer to as the encoder. It takes the
original biometric template X as the input, and outputs a sketch P . The second al-
gorithm is the biometric template reconstruction algorithm, or the decoder, which
takes another biometric template Y and the sketch P as the input and outputs X ′.
If Y and X are sufficiently similar according to some similarity measure, we will
have X = X ′. An important requirement for such a scheme is that the sketch P
should not reveal too much information about the biometric template X . Dodis
et al. [7] gives a notion of entropy loss, which (informally speaking) measures the
advantage that P gives to any adversary in guessing X , when X is discrete in na-
ture (Section 3 provides the details). It is worth to note that the entropy loss is a
worst case bound for all distributions of X .

There are several difficulties in applying many known secure sketch tech-
niques to known types of biometric templates directly. Firstly, many biometric
templates are represented by sequences of n points in a continuous domain (say,
R), or equivalently, points in an n-dimensional space (say, Rn). In this case,
since the entropy of the original data can be very large, and the length of the
extracted key is typically quite limited, the “entropy loss” as defined in [7] can
be very high for any possible scheme. For example, X is often a discrete approx-
imation of some points in a continuous domain (e.g., decimal fractions obtained
by rounding real numbers). As the precision of X gets higher, both the entropy
of X and the entropy loss from P become larger, but the extracted key can
become stronger. Hence, this notion of entropy loss alone is insufficient, and the
seemingly high entropy loss for this type of biometric data would be misleading.
We will discuss this issue in detail in Section 4, and give a complimentary defini-
tion of relative entropy loss for noisy data in the continuous domain. Informally
speaking, the relative entropy loss of a sketch measures the imperfectness of the
rounding, which is the maximum amount of additional entropy we can obtain
by the “optimal” rounding. At the same time, the entropy loss from P serves as
a measure of the security of the sketch in the discrete domain.

Secondly, even if the biometric templates are represented in discrete form,
there are practical problems when the entropy of the original template is high.
For example, the iris pattern of an eye can be represented by a 2048 bit binary
string called iris code, and up to 20% of the bits could be changed under noise
[9]. The fuzzy commitment scheme based on binary error-correcting codes [12]
seems to be applicable at the first glance. However, it would be impractical to
apply a binary error-correcting code on such a long string with such a large
error-correcting capability. A two-level error-correcting technique is proposed in
[9], which essentially changes the similarity measure. As a result, the space is no
longer a metric space.

Thirdly, the similarity measures for many known biometric templates can
be quite different from those considered in many theoretical works (such as
Hamming distance, set difference and edit distance in [7]). This can happen as
a result of technical considerations (e.g., in the case of iris codes). However,
in many cases this is due to the nature of biometric templates. For instance,
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a fingerprint template usually consists of a set of minutiae (feature points in
2-D space), and two templates are considered as similar if more than a certain
number of minutiae in one template are near distinct minutiae in the other. In
this case, the similarity measure has to consider both Euclidean distance and set
difference at the same time.

The secure sketch for point sets [5] is perhaps the first rigorous approach to
similarity measures that do not define a metric space. A generic scheme is pro-
posed in [5] for point sets in bounded discrete d-dimensional space for any d,
where the underlying similarity measure is motivated by the similarity measure
of fingerprint templates. While such a scheme is potentially applicable to fin-
gerprints represented as minutiae, other types of biometrics are different both
in representations and similarity measures, thus require different considerations
and different schemes.

In this paper, we study how to design secure sketch for biometric templates,
where the worst case bound can be proved. We observe that many biometric
templates can be represented in a general form: The original X can be considered
as a list of n points, where each point x of X is in a bounded continuous domain.
Under noise, each point can be perturbed by a distance less than δ, and on top
of that, at most t points can be replaced. Similar to [5], we will refer to the
first noise as the white noise, and the second replacement noise. We note that
this similarity measure can be applied to handwritten online signatures [8], iris
patterns [9], voice features [15], and face biometrics [17]. This formulation is
different from that in [5] in two ways: (1) The points are in a continuous domain,
and (2) the points are always ordered.

To handle points in continuous domain, a general two step approach is to
(1) quantize (i.e., discretize) the points in X to a discrete domain with a scalar
quantizer Qλ, where λ is the step size, and (2) apply secure sketch techniques on
the quantized points X̂ = Qλ(X) in the quantized domain, which is discrete. For
example, if points in X are real numbers between 0 and 1, assume that we have
a scalar quantizer Qλ with step size λ = 0.01, such that Qλ(x) = x̂ if and only
if x̂λ ≤ x < (x̂ + 1)λ, then every point in X would be mapped to an integer in
[0, 99]. After that, we can apply a secure sketch for discrete points in the domain
[0, 99]n to achieve error-tolerance.

However, there are two difficulties when this approach is applied. Firstly, if we
follow the notion of secure sketch and entropy loss as in [7], the quantization error
X − X̂ in the first step has to be kept in the sketch, since exact reconstruction of
X is required by definition. However, it can be difficult to give an upper bound on
the entropy loss from the quantization errors. Even if we can, it can be very large.

Furthermore, as the quantization step λ becomes very small, the bound on the
entropy loss in the quantized domain during the second step can be very high. For
instance, for x ∈ [0, 1) and δ = 0.01, when λ = 0.01, the entropy loss in Step
(2) will be log 3, and the bound is tight. When λ = 0.001, the entropy loss will
be log 21. However, the big difference in entropy loss in the quantized domain can
be misleading. We will revisit this example in Section 5, and will show that the
second case actually results in a stronger key if X is uniformly distributed.



102 Q. Li, Y. Sutcu, and N. Memon

To address the above problems, we consider the following strategy. Instead of
trying to answer the question of how much entropy is lost during quantization,
we study how different quantizers affect the strength of the key that we can
finally extract from the noisy data. In particular, given a secure sketch scheme
in the discrete domain and a quantizer Q1 with step size λ1, we consider any
quantizer Q2 with step size λ2. Assuming that m1 and m2 are the strengths of
the keys under these two quantizers respectively, we found that it is possible to
give an upper bound on the difference between m1 and m2, for any distribution
of X , and any choices of λ2 (hence Q2) within a certain range. This bound can
be expressed as a function of λ1. In other words, although we do not know what
is the exact entropy loss due to the quantizer Q1, we do know that at most how
far away Q1 can be from the “optimal” one. Based on this, we give a notion
of relative entropy loss for data in continuous domain. Furthermore, we show
that if X is uniformly distributed, the relative entropy loss can be bounded by
a constant for any choice of λ1.

To illustrate how our general approach can be applied to practical biometric
templates, we give a scheme based on the authentication scheme for face biomet-
rics in [17]. We will also discuss some practical issues in designing secure sketch
schemes for biometric templates.

We note that our proposed schemes and analysis can be applied for two parties
to extract secret keys given correlated random variables (e.g., [14]), where the
random variables take values in a continuous domain (e.g. R). The entropy loss
in the quantized domain measures how much information can be leaked to an
eavesdropper, while the relative entropy loss measures how many additional bits
that we might be able to extract.

We will give a review of related works in Section 2, followed by some pre-
liminary formal definitions in Section 3. Our definition of secure sketch and its
security will be presented in Section 4. We give a general similarity measure and
our proposed schemes in Section 5, together with a security analysis and some
discussions on choosing the parameters. A concrete secure sketch scheme for face
biometrics will be given in 6.

2 Related Works

It is not surprising that the construction of the sketch largely depends on the
representation of the biometric templates and the underlying distance function
that measures the similarity. Most of the known techniques assume that the
noisy data under consideration are represented as points in some metric space.
The fuzzy commitment scheme [12], which is based on binary error-correcting
codes, considers binary strings where the similarity is measured by Hamming
distance. The fuzzy vault scheme [11] considers sets of elements in a finite field
with set difference as the distance function, and corrects errors by polynomial
interpolation. Dodis et al. [7] further gives the notion of fuzzy extractors, where a
“strong extractor” (such as pair-wise independent hash functions) is applied after
the original X is reconstructed to obtain an almost uniform key. Constructions
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and rigorous analysis of secure sketch are given in [7] for three metrics: Hamming
distance, set difference and edit distance. Secure sketch schemes for point sets in
[5] are motivated by the typical similarity measure used for fingerprints, where
each template consists of a set of points in 2-D space, and the similarity measure
does not define a metric space.

On the other hand, there have been a number of works on how to extract
consistent keys from real biometric templates, which have quite different rep-
resentations and similarity measures from the above theoretical works. Such
biometric templates include handwritten online signatures [8], fingerprints [20],
iris patterns [9], voice features [15], and face biometrics [17]. These works, how-
ever, do not have sufficiently rigorous treatment of the security, compared to
well-established cryptographic techniques. Some of the works give analysis on
the entropy of the biometrics, and approximated amount of efforts required by
a brute-force attacker.

Boyen [2] shows that a sketch scheme that is provably secure may be insecure
when multiple sketches of the same biometric data are obtained. Boyen et al.
further study the security of secure sketch schemes under more general attacker
models in [1], and techniques to achieve mutual authentication are proposed.

Linnartz and Tuyls [13] consider a similar problem for biometric authentica-
tion applications. They consider zero mean i.i.d. jointly Gaussian random vectors
as biometric templates, and use mutual information as the measure of security
against dishonest verifiers. Tuyls and Goseling [19] consider a similar notion of
security, and develop some general results when the distribution of the original
is known and the verifier can be trusted. Some practical results along this line
also appear in [18].

3 Preliminaries

3.1 Entropy and Entropy Loss in Discrete Domain

In the case where X is discrete, we follow the definitions by Dodis et al. [7]. They
consider a variant of the average min-entropy of X given P , which is essentially
the minimum strength of the key that can be consistently extracted from X
when P is made public.

In particular, the min-entropy H∞(A) of a discrete random variable A is
defined as H∞(A) = − log(maxa Pr[A = a]). For two discrete random variables
A and B, the average min-entropy of A given B is defined as H̃∞(A | B) =
− log(Eb←B [2−H∞(A|B=b)]).

For discrete X , the entropy loss of the sketch P is defined as L = H∞(X)−
H̃∞(X |P ). This definition is useful in the analysis, since for any 	-bit string B,
we have H̃∞(A | B) ≥ H∞(A)− 	. For any secure sketch scheme for discrete X ,
let R be the randomness invested in constructing the sketch, it is not difficult to
show that when R can be computed from X and P , we have

L = H∞(X)− H̃∞(X | P ) ≤ |P | −H∞(R). (1)
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In other words, the entropy loss can be bounded from above by the difference
between the size of P and the amount of randomness we invested in computing
P . This allows us to conveniently find an upper bound of L for any distribution
of X , since it is independent of X .

3.2 Secure Sketch in Discrete Domain

Our definitions of secure sketch and entropy loss in the discrete domain follow
that in [7]. Let M be a finite set of points with a similarity relation S ⊆M×M.
When (X, Y ) ∈ S, we say the Y is similar to X , or the pair (X, Y ) is similar.

Definition 1. A sketch scheme in discrete domain is a tuple (M, S, Enc, Dec),
where Enc : M→ {0, 1}∗ is an encoder and Dec : M×{0, 1}∗ →M is a decoder
such that for all X, Y ∈ M, Dec(Y, Enc(X)) = X if (X, Y ) ∈ S. The string
P = Enc(X) is the sketch, and is to be made public. We say that the scheme is
L-secure if for all random variables X over M, the entropy loss of the sketch P
is at most L. That is, H∞(X)− H̃∞(X | Enc(X)) ≤ L.

We call H̃∞(X | P ) the left-over entropy, which in essence measures the “strength”
of the key that can be extracted from X given that P is made public. Note that
in most cases, the ultimate goal is to maximize the left-over entropy for some par-
ticular distribution of X . However, in the discrete case, the min-entropy of X is
fixed but can be difficult to analyze. Hence, entropy loss becomes an equivalent
measure which is easier to quantify.

4 Secure Sketch in Continuous Domain

In this section we propose a general approach to handle noisy data in a contin-
uous domain. We consider points in a universe U , which is a set that may be
uncountable. Let S be a similarity relation on U , i.e., S ⊆ U × U . Let M be a
set of finite points, and let Q : U →M be a function that maps points in U to
points in M. We will refer to such a function Q as a quantizer.

Definition 2. A quantization-based sketch scheme is a tuple (U ,S,Q,M,Enc,Dec),
where Enc : M→ {0, 1}∗ is an encoder and Dec : M×{0, 1}∗ →M is an decoder
such that for all X, Y ∈ U , Dec(Q(Y ), Enc(Q(X))) = Q(X) if (X, Y ) ∈ S. The
string P = Enc(Q(X)) is the sketch. We say that the scheme is L-secure in the
quantized domain if for all random variable X over U , the entropy loss of P is at
most L, i.e., H∞(Q(X))− H̃∞(Q(X) | Enc(Q(X))) ≤ L.

In other words, a quantization is applied to transform the points in the con-
tinuous domain to a discrete domain, and a sketch scheme for discrete domain
is applied to obtain the sketch P . During reconstruction, we require the exact
reconstruction of the quantization Q(X) instead of the original X in the contin-
uous domain. When required, a strong extractor can be further applied to Q(X)
to extract a key (as the fuzzy extractor in [7]). That is, we treat Q(X) as the
“discrete original”. Similarly, we call H̃∞(Q(X) | P ) the left-over entropy.
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When Q is fixed, we can use the entropy loss on Q(X) to analyze the security
of the scheme, and bound the entropy loss of P . However, using this entropy loss
alone may be misleading, since there are many ways to quantize X , and different
quantizer would make a difference in both the min-entropy of Q(X) and the
entropy loss. Since our ultimate goal is to maximize the left-over entropy (i.e.,
the average min-entropy H̃∞(Q(X) | P )), the entropy loss alone is not sufficient
to compare different quantization strategies.

To illustrate the subtleties, we consider the following example. Let x be a point
uniformly distributed in the interval [0, 1), and under noise, it can be shifted but
still within the range [x− 0.01, x+0.01). We can use a scalar quantizer Q1 with
step size 0.01, such that all points in the interval [0, 1) are mapped to integers
[0, 99]. In this case, the min-entropy H∞(Q1(x)) = log 100. As we can see later,
there is an easy way to construct a secure sketch for such Q1(x) with entropy
loss of log 3. Hence, the left-over entropy is log(100/3) ≈ 5.06. Now we consider
another scalar quantizer Q2 with step size 0.001, such that the range of Q2(x) is
[0, 999]. A similar scheme onQ2(x) would give entropy loss of log 21, which seems
much larger than the previous log 3. However, the min-entropy of Q2(x) is also
increased to log 1000, and the left-over entropy would be log(1000/21) ≈ 5.57,
which is slightly higher than the case where Q1 is used.

Intuitively, for a given class of methods of handling noisy data in the quantized
domain, it is important to examine how different precisions of the quantization
process affect the strength of the extracted key. For this purpose, we propose
to consider not just one, but a family of quantizers Q, where each quantizer Q
drawn from Q defines a mapping from U to a finite set MQ. Let M be the set
of such MQ for all Q ∈ Q. We also define a family of encoders E and decoders
D, such that for each Q and MQ, there exist uniquely defined EncQ ∈ E and
DecQ ∈ D that can handle Q(X) in MQ.

Definition 3. A quantization-based sketch family is a tuple (U , S,Q,M,E,D),
such that for each quantizer Q ∈ Q, there exist M∈ M, Enc ∈ E and Dec ∈ D,
and (U , S,Q,M, Enc, Dec) is a quantization-based sketch scheme. We say that
such a scheme is a member of the family, and is identified by Q.

Definition 4. A quantization-based sketch family (U , S,Q,M,E,D) is (L,R)-
secure for functions L,R : Q → R if for any member identified by Q1 (with
encoder Enc1) it holds that

1. This member is L(Q1)-secure in the quantized domain; and
2. For any random variable X, and any member identified by Q2 (with encoder

Enc2), we have

H̃∞(Q2(X) | Enc2(Q2(X)))− H̃∞(Q1(X) | Enc1(Q1(X))) ≤ R(Q1).

In other words, to measure the security of the family of schemes, we examine two
aspects of the family. Firstly, we consider the entropy loss in the quantized do-
main for each member of the family. This is represented by the function L, which
serves as a measure of security when the quantizer is fixed. Secondly, given any
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quantizer in the family, we consider the question: If we use another quantizer, how
many more bits can be extracted? We call this the relative entropy loss, which is
represented by the function R.

We observe that for some sketch families, the relative entropy loss for any given
member can be conveniently bounded by the size of of the sketch generated by
that member. We say that such sketch families are well-formed. More precisely,
we have

Definition 5. A quantization-based sketch family (U ,S,Q,M,E,D) is well-formed
if for any two members (U ,S,Q1,M1,Enc1,Dec1) and (U , S,Q2,M2, Enc2, Dec2), it
holds for any random variable X that

H̃∞ (Q1(X) | 〈P1, P2〉) = H̃∞ (Q2(X) | 〈P1, P2〉) (2)

where P1 = Enc1(Q1(X)) and P2 = Enc2(Q2(X)).

Theorem 1. For any well-formed quantization-based sketch family, given any
two members (U , S,Q1,M1, Enc1, Dec1) and (U , S,Q2,M2, Enc2, Dec2), it holds
for any random variable X that

H̃∞(Q2(X) | P2)− H̃∞(Q1(X) | P1) ≤ |P1|
where P1 = Enc1(Q1(X)) and P2 = Enc2(Q2(X)).

Proof: First, it is not difficult to show that for any random variables A, B and
C, we have

H̃∞(A | B)− |C| ≤ H̃∞(A | 〈B, C〉) ≤ H̃∞(A | B). (3)

Let X̂1 = Q1(X) and X̂2 = Q2(X). Since the sketch family is well-formed,

H̃∞
(
X̂1 | 〈P1, P2〉

)
= H̃∞

(
X̂2 | 〈P1, P2〉

)
. (4)

Substituting B by P1, C by P2, and A by X̂1 and X̂2 respectively in (3), we have

H̃∞
(
X̂2 | P2

)
− |P1| ≤ H̃∞

(
X̂2 | 〈P1, P2〉

)
= H̃∞

(
X̂1 | 〈P1, P2〉

)
≤ H̃∞

(
X̂1 | P1

)
.

(5)

5 A General Scheme for Biometric Templates

We observe that many biometric templates can be represented as a sequence of
points in some bounded continuous domain. There are two types of noise that
can occur. The first noise, white noise, perturbs each points by a small distance,
and the second noise, replacement noise, replaces some points by different points.



Secure Sketch for Biometric Templates 107

Without loss of generality, we assume that each biometric template X can be
written as a sequence X = 〈x1, x2, · · · , xn〉, where each xi ∈ R and 0 ≤ xi < 1.
In other words, X ∈ U = [0, 1)n. For each pair of biometric templates X and
Y , we say that (X, Y ) ∈ S if there exists a subset C of {1, · · · , n}, such that
|C| ≥ n− t for some threshold t, and for every i ∈ C, it holds that |xi − yi| < δ,
for some threshold δ.

Similar to the two-part approach in [5], we construct the sketch in two parts.
The first part, the white noise sketch, handles the white noise in the noisy data,
and the second part, the replacement noise sketch, corrects the replacement noise.
We will concentrate on the white noise sketch in this paper, and the replacement
noise sketch can be implemented using a known secure sketch scheme for set
difference (e.g., that in [7,3]).

5.1 Proposed Quantization-Based Sketch Family

Each member of the family is parameterized by a λ such that λ ∈ R and 0 <
λ ≤ δ.

Quantizer Qλ. Each quantizer Qλ in Q is a scalar quantizer with step size
λ ∈ R. For each x ∈ U , Qλ(x) = x̂ if and only if λx̂ ≤ x < λ(x̂ + 1), and
the quantization of X is defined as X̂ = Qλ(X) � 〈Qλ(x1), · · · ,Qλ(xn)〉. The
corresponding quantized domain is thus Mλ = [0, � 1

λ�]n. The encoders and the
decoders work only on the quantized domain. The white noise appeared in the
quantized domain is of level δ̂λ = �δ/λ�. In other words, under white noise, a
point x̂ in the quantized domain can be shifted by a distance of at most δ̂λ. Let
us denote Δλ � 2δ̂λ + 1.

Codebook Cλ. Furthermore, for each quantized domain Mλ we consider a code-
book Cλ, where every codeword c ∈ Cλ has the form c = kΔλ for some
non-negative integer k. We use Cλ(·) to denote the function such that given
a quantized point x̂, it returns a value c = Cλ(x̂) such that |x̂− c| ≤ δ̂λ. That is,
the functions finds the unique codeword c that is nearest to x̂ in the codebook.

Encoder Encλ. Given a quantized X̂ ∈Mλ, the encoder Encλ does the following.
1. For each x̂i ∈ X̂ , compute ci = Cλ(x̂i);
2. Output P = Encλ(X̂) = 〈d1, · · · , dn〉, where di = x̂i − ci for 1 ≤ i ≤ n.

In other words, for every x̂i, the encoder outputs the distance of x̂i from its
nearest codeword in the codebook Cλ.

Decoder Decλ. For a corrupted template Y , it is first quantized by Ŷ = Qλ(Y ).
Given P = 〈d1, · · · , dn〉 and Ŷ = 〈ŷ1, · · · , ŷn〉, and the decoder Decλ does the
following.
1. For each ŷi ∈ Ŷ , compute ci = Cλ(ŷi − di);
2. Output X̃ = Decλ(Ŷ ) = 〈c1 + d1, · · · , cn + dn〉.

In other words, the decoder shifts every ŷi by di, maps it to the nearest codeword
in Cλ, and shifts it back by the same distance.
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5.2 Security Analysis

For each member of the sketch family with parameter λ, the difference di be-
tween x̂i and pi ranges from −δ̂λ to δ̂λ. Intuitively, log Δλ bits are sufficient
and necessary to describe the white noise in the quantized domain (recall that
Δλ = 2δ̂λ + 1 = 2� δ

λ�+ 1). Hence, we have

Lemma 2. The quantization-based sketch scheme (U ,S,Qλ,Mλ,Encλ,Decλ) is
(nlogΔλ)-secure in the quantized domain.

Proof: Note that the size of each di generated in the second step of the encoder
is log Δλ. Hence the total size of the sketch is n log Δλ. Therefore, the entropy
loss of the sketch P is at most n log Δλ by Equation (1).

It is not difficult to see that the above bound is tight. For example, when each
x̂ is uniformly distributed in the quantized domain, the min-entropy of each x̂
after quantization would be log� 1

λ�, and the average min-entropy of x̂ given P
would be at most log |Cλ| = log� 1

λ� − log Δλ.
Now we consider the relative entropy loss. First of all, we observe that the

proposed sketch family is well-formed according to Definition 5.

Lemma 3. The quantization-based sketch family defined in Section 5.1 is well-
formed.

Proof: We consider any two members in the sketch family. The first is identified
by Qλ1 with step size λ1, and the second is identified by Qλ2 with step size λ2.

For any point x ∈ X , let x̂1 = Qλ1(x). Recall that during encoding, a code-
word is computed as c1 = Cλ1(x̂1), and the difference d1 = x̂1 − c1 is put into
the sketch. Similarly, let x̂2 = Qλ2(x), c2 = Cλ2(x̂2) and d2 = x̂2 − c2.

Since λ1 ≤ δ and λ2 ≤ δ, it is easy to see that if d1, d2 and x̂1 is known, we
can compute x̂2 deterministically. Similarly, given d1, d2 and x̂2, x̂1 can also be
determined. Thus, we have

H̃∞ (x̂1 | 〈d1, d2〉) = H̃∞ (〈x̂1, x̂2〉 | 〈d1, d2〉) = H̃∞ (x̂2 | 〈d1, d2〉) . (6)

The same arguments can be applied to all the points in X . Hence, let P1 =
Encλ1(X) and P2 = Encλ2(X), we have

H̃∞
(
X̂1 | 〈P1, P2〉

)
= H̃∞

(〈
X̂1, X̂2

〉
| 〈P1, P2〉

)
= H̃∞

(
X̂2 | 〈P1, P2〉

)
. (7)

That is, the proposed sketch family is well-formed.

By combining Theorem 1 and Lemma 3, and considering that for the member
of the sketch family identified by Qλ1 with step size λ1, the size of the sketch
|P1| = n(log Δλ1 ), we have the following lemma.

Lemma 4. For the quantization-based sketch family defined in Section 5.1, given
any member identified byQλ1 with step size λ1 and encoder Encλ1 it holds that, for
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every random variable X ∈ U and any member identified by Qλ2 with step size λ2

and encoder Encλ2 , we have

H̃∞(Qλ2(X) | Encλ2(Qλ2(X)))− H̃∞(Qλ1(X) | Encλ1(Qλ1(X))) ≤ n(log Δλ1).

In other words, the relative entropy loss is at most n(log Δλ1) for Qλ1 .

Not only the above is a worst case bound, we can show that the worst case can
indeed happen.

Lemma 5. The relative entropy loss in Lemma 4 is tight for sufficiently small δ.

Proof: For any given λ1, we find a λ2 such that it is possible to find Δλ1 �
(2�δ/λ1�+1) points W = {w0, · · · , wΔλ1−1} such thatQλ1(wi)−Cλ1(Qλ1(w1)) =
i − �δ/λ1�, and Cλ2(wi) = ci for some codeword ci ∈ Cλ2 . In other words, we
want to find points such that each of them would generate a different di in the
final sketch with Qλ1 , but would generate exactly the same number (i.e., 0) in
the sketch when Qλ2 is used. Note that when δ is sufficiently small, there would
be sufficiently many codewords in Cλ1 , and it is always possible to find such λ2

(e.g., λ2 = λ1/2).
When each x ∈ X is uniformly distributed over W , we can see that the sketch

from the scheme identified by Qλ1 would reveal all information about X , but in
the case of Qλ2 , the left-over entropy would be exactly logΔλ1 .

Therefore, combining lemmas 2, 4 and 5 we have

Theorem 6. The quantization-based sketch family defined in Section 5.1 is (L,R)-
secure where for each member in the family identified byQλ with step size λ, where
L(Qλ) = R(Qλ) = n log Δλ. Furthermore, the bounds are tight.

For example, if λ = δ, we would have L(Qλ) = R(Qλ) = n(log 3). Note that
although decreasing λ might give a larger left-over entropy, this is not guaranteed.
In fact, if we use a λ′ < λ, by applying the above theorem on Qλ′ , we can see
that it may result in a smaller left-over entropy than using Qλ (e.g., consider
the example in the proof of Lemma 5).

5.3 A Special Case

We further study a special case when each point x ∈ X is independently and
uniformly distributed over [0, 1). We further assume that 1/δ is an integer, and
the family of schemes only consists of members with step size λ such that 1/λ is
an integer that is a multiple of Δλ. This additional assumption is only for the
convenience of the analysis, and would not make too much difference in practice.

In this case, the entropy loss in the quantized domain for the member identified
by Qλ with step size λ would be exactly n(log Δλ), which shows that Lemma 2
is tight. Moreover, it is interesting that the relative entropy loss in this case can
be bounded by a constant.
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Corollary 7. When each x ∈ X is independently and uniformly distributed, the
quantization-based sketch family defined in Section 5.1 is (L,R)-secure where
for each member in the family identified by Qλ with step size λ, where L(Qλ) =
n(log Δλ), and R(Qλ) = n log(1 + λ

2δ ) ≤ n log(3/2).

Proof: The claim L(Qλ) = n(log Δλ) follows directly from Lemma 2, so we
only focus on R. Consider two members of the family identified by Qλ1 and
Qλ2 respectively. Without loss of generality, we assume λ1 > λ2. Consider any
x ∈ X , let x̂1 = Qλ1(x), c1 = Cλ1(x̂1). Similarly we define x̂2 = Qλ2(x) and c2 =
Cλ2(x̂2). Hence, the min-entropy in the quantized domain would be log(1/λ1)
and log(1/λ2) respectively.

Clearly, c1 and c2 are also uniformly distributed over Cλ1 and Cλ2 respectively,
and do not depend on d1 and d2. Hence, the left-over entropy for these two
members would be log(|Cλ1 |) = log 1

λ1+2δ and log(|Cλ2 |) = log 1
λ2+2δ respectively.

Furthermore, recall that 0 < λ2 < λ1 ≤ δ, and the difference between these two
quantities can be bounded as

log(|Cλ2 |)− log(|Cλ1 |) = log
λ1 + 2δ

λ2 + 2δ
< log(1 +

λ1

2δ
) ≤ log

3
2
.

Therefore, the relative entropy loss is bounded by n log(3/2) as claimed.

5.4 Remarks

Choosing the step size λ. We can view the step size λ as a measure of the precision
of X̂. Since the white noise in the continuous domain is fixed at δ, when λ becomes
smaller, the corresponding white noise in the quantized domain would increase,
and vice versa. That is intuitively why it is not possible to obtain much more left-
over entropy by simply having X represented in a higher precision. In fact, it is
not difficult to show that there are certain distributions of X such that a smaller
step size would reveal more information. Furthermore, the scheme can be more
efficient if we use a relatively larger step size, since we would need fewer bits to
represent both X and the white noise in the quantized domain. If we use the same
quantizer for both encoding and decoding, the simplest form of white noise in the
quantized domain can be achieved when λ = δ, where a quantized x̂ can be either
left unchanged, or shifted by 1. In this case, from Theorem 6, we can get at most
n log 3 additional bits if we choose other λ′ < δ. If X is uniformly distributed, the
increment is at most n log(3/2) by Corollary 7.

When λ > δ, the form of white noise in the quantized domain would remain
unchanged, but we may lose too much information about X due to the large
quantization step, which may result in a much lower left-over entropy. There-
fore, it is not desirable to have a step size larger than δ in general. If different
quantizers are used during encoding and decoding, with large step size (e.g., 2δ),
it is possible to reduce the white noise in the quantized domain to a special 0-1
noise, under which an x̂ is either left unchanged or shifted to x̂ + 1, as observed
in [4]. Nevertheless, this strategy may give lower left-over entropy.



Secure Sketch for Biometric Templates 111

Handling replacement noise. After the white noise has been corrected, an exist-
ing scheme for set difference can be applied in the quantized domain to correct
the replacement noise. There are known schemes that can achieve entropy loss
of O(t log� 1

λ�) with small leading constant, such as those in [7,3]. Although the
replacement noise is not considered for the face biometrics that we study in
Section 6, it may need to be addressed for other biometric templates (e.g., iris
patterns [9]).

Extension to higher dimensions. It is straightforward to extend our scheme to
higher dimensions, where each x ∈ X is a point in some d-dimensional space. For
example, we can apply a scalar quantizer on each coordinate of every point, and
let the distance of two points in d-dimensional space be measured by max-norm
(i.e., the maximum distance in all dimensions). The entropy loss of the resulting
scheme would be d times that in the current construction for 1-D points. If there
is no replacement noise, we could also expand the n points in d-dimensional
space into nd points in 1-D and apply the proposed scheme.

The choice of the sketch family. It is important to note that even if a quantization-
based sketch family is well-formed, it does not guarantee the existence of a “good”
quantizer in that family. Nevertheless, it does allow us to evaluate any given mem-
ber in the family with respect to the “optimal” member in the family. We consider
it a challenging open problem to find a general algorithm to find the optimal quan-
tizer among all possible quantizers, given certain practical constraints (e.g., the
smallest possible quantization step and the distribution of X).

6 A Concrete Construction for Face Biometrics

Face images, especially those taken from a controlled environment, can be used
as the basis of identity verification, Here we follow the techniques employed in
[17] and make use of the singular value decomposition (SVD) of the face images
for verification, which is a well-known strategy in the face recognition literature
(such as [10,6]). Given a face image A of size M×N , we can always find matrices
U , Σ and V such that A = UΣV T , where Σ is an M×N matrix with min(M, N)
non-zero elements ordered according to their significance. As noted in [17], some
(say, n) most significant coefficients of Σ contain significant identity information
of the individual. Typically n is chosen such that the sum of these n coefficients
is more than, say, 98% of the sum of all the coefficients.

In [17], the biometric template of an individual is obtained as follows. First,
we take a few face images, compute the SVD, and obtain the minimum mini

and maximum maxi of the i-th significant coefficient, for 1 ≤ i ≤ n, where n
is chosen to be 20. The mean value ai = (maxi + mini)/2 is then taken as
a point in the template. When a new face image is presented for verification,
its SVD is computed, and if for 1 ≤ i ≤ n, the i-th significant coefficient is
sufficiently close to ai, it is considered as authenticated. The scheme in [17] is
applied to face images from the Essex Faces94 Database [16], which contains
152 faces with 20 images for each face (24bit color JPEG). Twelve images per
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face are randomly chosen to compute the templates, and the rest 8 are used for
testing. The experiments show that when the false accept rate is 0.005, the false
reject rate is less than 0.045.

To apply our sketch scheme, for each coefficient, we further compute the min-
imum min and the maximum max of all the templates in the database (assuming
that the number of templates is large). Hence, we can compute our biometric
template X as a sequence of n points, where the i-th point xi = ai−min

max−min
. We

set the noise level δi = k(maxi−ai)
max−min

for some constant k ≥ 1. In this way, each
point xi will be between 0 and 1 so that our scheme can be applied. There is a
difference, however, that we have a different δi for each point, which we have to
put as part of the sketch. Nevertheless, our analysis on the entropy loss can be
easily adapted to this case, and the difference here will not affect the security of
the scheme. Here we choose λi = δi for all 1 ≤ i ≤ n.

In this way, the sketch produced by our proposed scheme, would be the tuple

P = (min, max, λ1, · · · , λn, x̂1 − Cλ1(x̂1), · · · , x̂n − Cλn(x̂n))

where x̂i = Qλi(xi) for 1 ≤ i ≤ n. By applying the arguments in Theorem 6 and
Corollary 7 to each point in X , we have

Corollary 8. The entropy loss in the quantized domain for the aforementioned
scheme is at most n log 3. Let m be the left-over entropy. When λi < δi for any
i, 1 ≤ i ≤ n, let the left-over entropy be m′. We have m′ − m ≤ n log 3. If all
points are uniformly distributed, we have m′ −m ≤ n log(3/2).

When n = 20, the above bounds are approximately 31.7 and 11.7 respectively.
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Abstract. The complex multiplication (CM) method for genus 2 is cur-
rently the most efficient way of generating genus 2 hyperelliptic curves
defined over large prime fields and suitable for cryptography. Since low
class number might be seen as a potential threat, it is of interest to push
the method as far as possible. We have thus designed a new algorithm
for the construction of CM invariants of genus 2 curves, using 2-adic
lifting of an input curve over a small finite field. This provides a nu-
merically stable alternative to the complex analytic method in the first
phase of the CM method for genus 2. As an example we compute an ir-
reducible factor of the Igusa class polynomial system for the quartic CM

field Q(i 75 + 12
√

17), whose class number is 50. We also introduce a
new representation to describe the CM curves: a set of polynomials in
(j1, j2, j3) which vanish on the precise set of triples which are the Igusa
invariants of curves whose Jacobians have CM by a prescribed field. The
new representation provides a speedup in the second phase, which uses
Mestre’s algorithm to construct a genus 2 Jacobian of prime order over
a large prime field for use in cryptography.

1 Introduction

In the late 1980’s, Koblitz proposed the use of hyperelliptic curves in cryptog-
raphy. Since then, significant progress has been made in turning this idea into
practice, and currently genus two cryptosystems present the same security ben-
efits as elliptic curves, together with potential benefits in terms of performance
and new protocols [31,2,17,22].

The efficient generation of genus two groups of prime or nearly prime order
over finite fields of large characteristic, however, remains an important issue.
Random curve generation in characteristic 2 is amenable to efficient versions of
Kedlaya’s algorithm or Mestre’s AGM algorithm. In contrast, over large prime
fields the latest records for point counting (see [18]) still require about a week’s
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computation time for each curve. In this case, the complex multiplication method
currently provides the only efficient approach to cryptographic curve construc-
tion. For genus one, several authors have introduced improvements to the CM
method using p-adic lifting [13,7,6,24]. Our article generalizes such work to the
case of genus two. Furthermore, in the past few years, the elliptic CM method has
gained new interest as the key tool for building curves with a special structure,
in particular curves with a computable bilinear map [29]. Similar constructions
in genus two will also require explicit CM methods.

The first phase of the CM method constructs the Igusa class polynomials for
CM genus two curves, which determine the triples (j1, j2, j3) of invariants of
curves whose Jacobians have prescribed endomorphism ring. These polynomials
are determined by complex analytic techniques, or, in this work, by p-adic ana-
lytic construction. After solving for the roots of these polynomials over a chosen
finite field of large characteristic, the algorithm of Mestre [28] allows one to con-
struct a model of the curve for which the group order of its Jacobian has been
previously determined to be prime or nearly prime. In this article, we extend
the computational limit for Igusa class polynomials in genus two, addressing
concerns that a CM field of low class number might give rise to weak curves in
a cryptographic protocol.

Our first contribution is to use a 2-adic lifting method in place of the classical
floating point complex approach. We start with a binary curve over a field small
enough so that point counting is possible using naive methods. We determine not
only the number of points but also the endomorphism ring of the Jacobian and
therefore the CM field K associated to it. By computing the canonical 2-adic lift
with sufficiently high precision we are able to get the class polynomials which
we recognize as polynomials over the rationals. This bypasses the costly step of
evaluating theta functions. We also introduce a simple representation of the ideal
of CM invariants in terms of univariate polynomials. Prior authors focused on
finding the degree h∗

K minimal polynomials H1(X), H2(X), and H3(X) of the
invariants j1, j2, and j3. However in the second phase of the CM method, this re-
quires a combinatorial match of h∗

K
3 roots to find one of h∗

K valid triples, when
constructing a CM curve. For those small values of h∗

K previously attainable,
this was not particularly onerous, but with our 2-adic method, our largest ex-
amples computed have reached h∗

K = 100, for which this combinatorial matching
problem is undesirable.

Our Magma and C implementation of the 2-adic CM method allow us to com-
pute a degree 50 irreducible factor of Igusa class polynomials for the quartic CM
field K = Q(i

√
75 + 12

√
17). The class number of K is 50 and the Igusa class

polynomials for K have degree h∗
K = 100.

The paper is organized as follows. In section 2 we introduce the mathematical
objects we need to explain the 2-adic CM method and the generation of hyper-
elliptic curves suitable for cryptography. In section 3 we deal with Igusa class
polynomials, our new representation of the ideal of invariants. In section 4 we
give details about the 2-adic CM method. In section 5 we analyze its complexity
and compare it with previous methods [35,40,9,16].
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2 Mathematical Background

In this section, we briefly present the mathematical tools that we need. The first
part deals with complex multiplication theory. We give theoretical results applied
to our genus two case. Then we recall Lubin-Serre-Tate theorem for genus two
and finally we deal with the reduction of the variety of j-invariants.

2.1 Complex Multiplication Theory

We begin with some definitions and results from the theory of complex multi-
plication (see [33] for further details). The central notion is that of a CM field,
defined to be a totally imaginary quadratic extension K of a totally real number
field K0.

For the study of genus two curves we will be interested in quartic CM fields
K. We define a type of such a field as a pair of non-conjugate embeddings Φ =
(φ1, φ2) of K in C. If I is an ideal in the ring of integers OK of K, we consider
Φ(I) = {(φ1(α), φ2(α)) ⊂ C2, α ∈ I}. The set Φ(I) is a lattice in C2 and C2/Φ(I)
is an abelian variety A such that K ⊂ End(A) ⊗ Q. We furthermore make the
following restrictions:

1. We assume that K is cyclic or non-Galois. The abelian variety A (for which
End(A) ⊗ Q = K) is then absolutely simple. This is a good condition for
cryptographic applications since we want #A(Fq) to be almost prime.

2. We assume that hK0 = 1, which implies that the abelian surface A has a
principal polarization. As A is absolutely simple, it follows there exists a
genus two curve C such that A = Jac(C).

3. We assume moreover that End(Jac(C)) = OK . The above conditions imply
End(Jac(C)) ⊆ OK , but for sake of simplicity of both theory and computa-
tions, we restrict to the case where this inclusion is an equality. This requires
us to address the issue of testing effectively this hypothesis for a given curve
C, but we will not treat these algorithms in this article (see however [16]).

Definition 1. Let C be a hyperelliptic curve of genus two and K a quartic CM
field. We say that C has complex multiplication by OK if the endomorphism ring
of the Jacobian of the curve is isomorphic to the ring of integers OK of K.

Example 1. As an example we consider K = Q(i
√

2 +
√

2). The real subfield of
K is Q(

√
2) since (i

√
2 +

√
2)2 + 2 = −√2. Then there exists a curve defined

over Q with model y2 = −x5 + 3x4 + 2x3 − 6x2 − 3x + 1, whose Jacobian has
endomorphism ring OK . Further details on this example can be found in [38]
or [35].

We first recall basic notions of CM theory in genus one, for which we re-
fer to [3]. We begin with a positive squarefree integer D, and compute the
class group of K = Q(i

√
D), which we denote by ClK . For complex numbers

(τi)i∈[1,hK ], representing the classes in ClK , we associate an elliptic curve with
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period lattice Z + τiZ. Finally we compute the j-invariant ji = j(τi) using η-
functions and recover the classical Hilbert class polynomial from the definition
H(X) =

∏hK

i=1(X − ji) ∈ Z[X ], as a monic polynomial over the integers.
The analogous theory for genus two presents several additional technical chal-

lenges. The first question is to determine how many isomorphism classes of CM
curves are associated to a CM order OK . We denote this number by h∗

K . In genus
one, this number equals the class number hK , but in higher genus there is no
longer a one-to-one correspondence between the ideal classes and the principally
polarized abelian surfaces with endomorphism ring OK , each of which gives rise
to an isomorphism class of CM curves. However, for a quartic CM field K with
real subfield of class number one, we can make the following statement.

Theorem 1. Let K be a quartic CM field with real quadratic subfield K0 of
class number 1. If K is cyclic over Q then there are hK isomorphism classes
and if K is not normal over Q then there are 2hK isomorphism classes with hK

classes associated to each CM type.

Remark 1. The Cohen-Lenstra heuristics [11] predict that the class number of
the real quadratic field K0 has class number 1 with density greater than 3/4 so
this is expected to apply to this proportion of all quartic CM fields.

The above theorem establishes the degree of the Igusa class polynomials, which
vanish on the triples of the CM Igusa invariants (j1, j2, j3). Once their degree is
known, we can apply a construction as in the genus 1 CM method for the classi-
cal complex CM method. Beginning from a quartic CM field K, we compute the
class group of K over Q, and find a representative of each class. Here the repre-
sentatives are 2×2 matrices called period matrices which can be computed from
a set of representatives of the class group of K and a fundamental unit of K0.
We refer to [40] for the exact construction of these period matrices (Ωi)1≤i≤h∗

K
.

Evaluating theta functions at the Ωi allows to recover the j-invariants (j(i)
1 ,

j
(i)
2 , j

(i)
3 )i of the CM curves and joining the j-invariants together gives us the

Igusa class polynomials described in [35] or in [40] as

H1 =
h∗

K∏
i=1

(X − j
(i)
1 ), H2 =

h∗
K∏

i=1

(X − j
(i)
2 ), H3 =

h∗
K∏

i=1

(X − j
(i)
3 ).

For the purposes of 2-adic lifting we may use normalized invariants j1, j2, and
j3, defined in terms of the Igusa-Clebsch invariants A, B, C, D (denoted A′, B′,
C′, D′ in Mestre [28]), by j1 = A5/8D, j2 = 2A3B/D, j3 = 8A2C/D.

2.2 The Lubin-Serre-Tate Theorem for Genus Two

In 1964, Lubin, Serre and Tate [25] proved the existence of the canonical lift of an
ordinary abelian variety and gave a way of computing this lift for elliptic curves,
extending a result of Deuring [14]. Denote by Qp the field of p-adic numbers, and
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by Qpd the unique unramified extension of degree d, and by Zp or Zpd their re-
spective rings of integers (see e.g. [4] or [21] for background). The fundamental
property of the canonical lift A↑/Zpd of an ordinary abelian variety A/Fpd is that
End(A↑) ∼= End(A). Moreover, A↑ is actually defined over Q. Thus if we can find
a curve over Fpd whose Jacobian is ordinary and has complex multiplication by
the ring of integers of a quartic CM field K, we theoretically obtain a curve over
Q with complex multiplication by OK . In the article, p is fixed to 2 and the CM-
curves over F2d whose Jacobian is ordinary are not rare and can be found easily.

To perform this method explicitly, we require a constructive formulation of
the existence theorem for the canonical lift. In genus 1, this is the following
theorem (see [39]).

Theorem 2. Let p be a prime number and d an integer greater than 2. Let Ē
be an ordinary elliptic curve over Fpd with j-invariant j(Ē) ∈ Fpd\Fp2 . Denote
by σ the Frobenius automorphism of Zpd and by Φp(X, Y ) the p-th modular
polynomial. Then the system of equations

Φp(X, Xσ) = 0 and X ≡ j(Ē) mod p,

has a unique solution J ∈ Zpd , which is the j-invariant of the canonical lift E
of Ē (defined up to isomorphism).

Generalization to genus two is easier if one speaks about isogeny instead of
modular equations:

Theorem 3. Let C̄ be an ordinary hyperelliptic curve of genus two over Fpd .
Then there exists a hyperelliptic curve C of genus two defined over Qpd that is
a canonical lift of C̄ (in the sense that the endomorphism ring of the Jacobian
is preserved) and furthermore there exists a (p, p)-isogeny between Jac(C) and
Jac(Cσ) that reduces to the Frobenius map from Jac(C̄) to its conjugate.

In the case where p = 2, the Richelot isogeny [5] provides explicit formulae that
allow us to translate this theorem into a set of equations that must be satisfied by
the defining equation of the canonical lift. A Newton-like process due to Harley
is then used to solve it (more details are given in Section 4.1).

General results on the convergence of the Newton process for the AGM is
given by Carls [8] for abstract abelian varieties. In our case, we have explicit
equations for the Richelot correspondences of curves, for which this theoretical
machinery is not required and the convergence can be checked using classical
criteria (valuation of the Jacobian matrix of the system of equations).

2.3 Reduction of the Moduli Subvariety

This section is based on the work of Goren [19] describing the reduction of an
abelian surface.

Theorem 4 ([19]). Let K be a cyclic quartic CM field and A an abelian variety
having CM by OK the ring of integers of K. Let p̄ be a prime of Q̄, p1 = p̄∩OK

and (p) = p1 ∩ Z. Assume that p is unramified in K. Then the reduction Ap̄ of
A mod p̄ is determined by the decomposition of p in OK as follows:
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(i) if p = P1P2P3P4 then Ap̄ is ordinary and simple;
(ii) if p = P1P2 then Ap̄ is isomorphic to the product of two supersingular

elliptic curves;
(iii) if p = P1 then Ap̄ is isogenous but not isomorphic to a product of two

supersingular elliptic curves.

For a non-normal quartic CM field, which is the generic case, an analogous
theorem holds: depending on group theoretic considerations in the Galois group
of the normal closure of K, one can decide whether the reduction of the Jacobian
of a CM curve is ordinary, intermediate, or supersingular, and whether or not it
is simple. We omit the details here and refer instead to Goren [19] for a precise
statement.

These results are used at two places. First, they are required in the final curve
construction step, to determine a prime of ordinary reduction, a necessary con-
dition for cryptographic use. From the primes of ordinary reduction, we choose
a prime p such that a solution to the Igusa class polynomials over Fp gives a
group order which is prime. Second, for the 2-adic method to work, the reduction
modulo 2 must be ordinary, otherwise the canonical lift is not well-defined and
the lifting algorithm does not apply. Given a CM field K, the theorem describes
when there exists an ordinary curve defined over a finite field F2d with CM by
OK . As the input to our algorithm is an ordinary curve, rather than the CM
field K, this theorem describes the condition at 2 on those CM fields which can
be treated by our algorithm.

3 New Representation of the CM Variety

Before presenting our 2-adic CM method, we explain our modification to the rep-
resentation of the ideal describing the CM invariants. In the classical CM method,
Spallek [35] chose to compute three polynomials H1, H2 and H3, defined as

H1 =
h∗

K∏
i=1

(X − j
(i)
1 ), H2 =

h∗
K∏

i=1

(X − j
(i)
2 ) and H3 =

h∗
K∏

i=1

(X − j
(i)
3 ).

Subsequently Weng [40] formalized the classical CM method for genus two in
terms of the same polynomials. However these polynomials determine an ideal
(H1(j1), H2(j2), H2(j3)) ⊂ Q[j1, j2, j3], of degree h∗

K
3, i.e. defining h∗

K
3 points

(j(i1)
1 , j

(i2)
2 , j

(i3)
3 ), of which only the h∗

K solutions (j(i)
1 , j

(i)
2 , j

(i)
3 ) determine valid

CM curves.
In order to compute the equation of a CM curve, we need to test all h∗

K
3

candidate solutions to this system of equations to find one of the h∗
K which is

known to have the correct endomorphism ring. For each solution we must apply
Mestre’s algorithm [28] to find the corresponding curve, then to test a random
point on the Jacobian to determine if the group of rational points has the correct
order. This overhead is unnecessary since with a few additional relations among
the (j1, j2, j3), we determine a complete set of relations for the CM invariants of
the desired CM order.
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The solution is to find some compact representation for the full ideal of class
invariants. Beginning with the minimal polynomial of j1, H1(X) =

∏h∗
K

i=1(X −
j
(i)
1 ) ∈ Q[X ], we then use Lagrange interpolation to compute

Gk(X) =
h∗

K∑
i=1

j
(i)
k

h∗
K∏

�=1
� �=i

X − j
(	)
1

j
(i)
1 − j

(	)
1

∈ Q[X ], for k = 2, 3.

This solves the problem of having an incomplete specification for the ideal of in-
variants, since jk = Gk(j1) are uniquely determined by any root j1 of H1(X). To
determine a CM curve over Fp, we solve for a root j̄1 of H1(X) mod p which de-
termines j̄2 = G2(j̄1) and j̄3 = G3(j̄1), and use Mestre’s algorithm to determine
a CM curve from the triple (j̄1, j̄2, j̄3).

Modified Lagrange interpolation. The above construction provides an exact de-
scription of the CM invariants, but we observe empirically that the coefficient
sizes of Gk, in comparison with those for Hk, are larger by a factor of three to
four. However, in the formulae for Gk, we can pull out the factor H ′

1(j
(i)
1 )−1 =∏

k �=i(j
(i)
1 − j

(k)
1 )−1. Therefore instead of using Gk we consider the polynomials

Ĥk(X) =
h∗

K∑
i=1

j
(i)
k

h∗
K∏

�=1
� �=i

(X − j
(	)
1 ) ∈ Q[X ] for k = 2, 3,

which recover the lost factor, and have coefficients of the same order of magnitude
as Hk. The defining relations for our CM invariants can now be expressed as

H1(j1) = 0, H ′
1(j1)j2 = Ĥ2(j1), H ′

1(j1)j3 = Ĥ3(j1).

In order to explain the decrease in the size of the polynomial coefficients,
we make some assumptions to deal with a notion of size for the j-invariants
we are manipulating. Let L be a number field containing all Galois conjugates
j
(i)
k of the j-invariants. We assume that there exists a notion of a logarithmic

height function h : L → R>0, measuring the size of elements, which satisfies the
properties: h(ab) = h(a)+h(b), and h(a+b) � max(h(a), h(b)), for general a and
b. We extend h to a height function on L[X ] by: h(

∑n
i=0 aiX

i) =
∑n

i=0 h(an).
We also assume that all the j-invariants are random elements of bounded height
S. We can then estimate the relative heights of our polynomials Hk, Gk, and
Ĥk. We evaluate the size of Hk to be

h(Hk) ≤
h∗

K∑
i=1

iS =
h∗

K(h∗
K + 1)
2

S,

since the coefficients of Hk are symmetric polynomials in the j
(i)
k . A similar calcu-

lation for Gk and Ĥk gives h(Gk) ≤ 2h∗
K(h∗

K − 1)S, and h(Ĥk) ≤ h∗
K(h∗

K − 1)S.
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Under the assumption that the j-invariants behave as random elements, we ex-
pect equality to hold for each bound. This analysis, although heuristic, agrees
with the empirical results of the algorithm.

Remark 2. We emphasize the fact that this new representation applies both to
the classical CM construction and to our new p-adic method that we present in
the next section.

4 The 2-Adic CM Method

In this section we describe our algorithm for computing the Igusa class polyno-
mials H1, Ĥ2, Ĥ3 corresponding to a CM order. In the classical approach one
starts from a CM field and computes the Igusa class polynomials. In our ap-
proach, the input is a genus 2 curve defined over a small finite field F2d , for some
small d, and we reconstruct the class polynomials associated to its canonical
lift. The input curves for this construction are defined over a tiny field of no
cryptographic interest, but via their canonical lift we find their class invariants
over Q, which can then be reduced modulo p to produce curves of cryptographic
application over some large prime field Fp. We note that the class polynomials
we find may determine a proper irreducible factor of the CM class invariants, in
the case the invariants fall into distinct Galois orbits. However, for their appli-
cation to cryptography this only aids in the rational reconstruction phase of our
algorithm.

The algorithm proceeds as follows. Since d is small, one can easily compute
all the data related to the input curve C, in particular the endomorphism ring
O of its Jacobian, which we assume to be the maximal order of a CM field K.
The canonical lift of C is then computed to a high precision, so that we can get
a good 2-adic approximation of its Igusa invariants. Theorem 1 gives a way to
predict the degree h∗

K of the class polynomials. From this information, if the
precision is sufficient, there is a unique possibility left for the polynomials H1,
Ĥ2, Ĥ3. These can be computed by running the LLL algorithm on a matrix built
from powers of the invariants of the canonical lift. Algorithm 1 gives a summary
of the algorithm, and in the next two subsections we discuss the details.

4.1 Computing the Canonical Lift

Canonical lifts were introduced in cryptography for the purpose of point counting
by Satoh [32] for elliptic curves. After many improvements by several people,
this ended up in a very fast method that runs in a time which is almost-linear
in the required precision. A precise description and comparison of the various
methods in the elliptic case can be found in [39] to which we refer for additional
reading. Two genus 2 variants have been introduced by Mestre [27,26], based
on the Richelot isogeny or on the Borchardt mean. The latter variant has been
developed in detail by Lercier and Lubicz [23].
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Algorithm 1 The 2-adic CM method
Input : An ordinary genus 2 curve C defined over F2d having CM by an order O;
Output : (H1,irr , H2,irr , H3,irr) which determine an irreducible factor of the class in-

variants (H1, H2, H3) of O.
1: Compute the j-invariants of C and choose an arbitrary lift to Z2d ;
2: Compute the canonical lifts (j1, j2, j3) ∈ (Z2d)3, i.e. the j-invariants of the canonical

lift of C;
3: Determine the degree h∗

K of (H1, H2, H3);
4: Apply the LLL algorithm with input h∗

K and powers of (j1, j2, j3);

5: Retrieve the result of LLL, that is the polynomials H1,irr , H2,irr and H3,irr verifying

H1,irr(j1) = 0, H ′
1,irr(j1) · j2 = H2,irr(j1) and H ′

1,irr(j1) · j3 = H3,irr(j1);

6: Return the triple H1,irr , H2,irr , H3,irr .

For the present work, we used the former approach, based on Richelot isoge-
nies, together with the asymptotically fast lifting algorithm of Harley. Since this
is not well described in the literature, we say a few words about it.

The main point is that Richelot isogeny as described in [5] gives relations
between the defining equations of genus 2 curves whose Jacobian are (2, 2)-
isogenous. We take equations in the Rosenhain form: y2 = x(x− 1)(x− λ0)(x−
λ1)(x − λ∞). Putting Λ = (λ0, λ1, λ∞), we can realize the relations coming
from Richelot isogeny as a system of polynomial maps Φ = (Φ1, Φ2, Φ3) from
Q6

2d = Q3
2d × Q3

2d to Q3
2d , such that two curves of Rosenhain invariants Λ and

Λ′ have Jacobians related by a (2, 2)-isogeny if and only if Φ(Λ, Λ′) = 0. Hence,
according to Theorem 3, the Rosenhain invariants Λ of the canonical lift of
the curve C we are interested in must verify Φ(Λ, Λσ) = 0. Before giving the
explicit formulae for Φ, we sketch how Harley’s algorithm can be adapted to the
multivariate setting.

Assume we have an approximation Λ0 ∈ Q3
2d to the Rosenhain invariants Λ

of the canonical lift, correct to precision 2k. Let Λ1 ∈ Z3
2d be such that Λ =

Λ0 + 2kΛ1. Then Λ satisfies the equation Φ(Λ, Λσ) = 0, which rewrites as

0 = Φ(Λ0 + 2kΛ1, Λ
σ
0 + 2kΛσ

1 ) = Φ(Λ0, Λ
σ
0 ) + 2kdΦ(Λ0, Λ

σ
0 )
[

Λ1

Λσ
1

]
mod 22k,

from which Λ1 can be deduced. Indeed, since Φ(Λ0, Λ
σ
0 ) ≡ 0 mod 2k, the equation

in Λ1 can be restated as Λσ
1 + AΛ1 + B = 0, where A is a 3 × 3 matrix over

Z2d , and B and Λ1 are vectors in Z3
2d . Another level of recursive Newton-lifting

is used for solving this so-called Artin-Schreier equation.
In this brief description, we have freely assumed that computing σ is a cheap

operation, which is unfortunately not true if one takes an arbitrary defining
polynomial f(x) for the extension field Q2d = Q2[x]/(f(x)). The trick is to
choose the polynomial f(x) such that f divides x2d−x, which in turn implies that
tσ = t2, where t is the defining element of the extension field. The computation
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of such an f is done, again, by a Newton lifting algorithm based on the equation
f(x2) = f(x)f(−x), which is easily seen to be satisfied by the polynomial we are
looking for. We refer to [39] for a more precise description.

Let us now describe the polynomial maps Φ given by the Richelot’s isogeny.
For clarity, we give them in an implicit form that introduces new intermediate
variables. Let λ0, λ1 and λ∞ be the starting Rosenhain invariants. The images
λσ

0 , λσ
1 and λσ

∞ of λ0, λ1 and λ∞ by the second power Frobenius automorphism
are given by the following formulae:

λσ
0 =

(u1−v∞)(w0−v0)
(u1−v0)(w0−v∞)

, λσ
1 =

(u1−u∞)(w1−v0)
(u1−v0)(w1−v∞)

and λσ
∞=

(u1−v∞)(u∞−v0)
(u1−v0)(u∞−v∞)

,

where (u1, u∞), (v0, v∞) and (w0, w1) are the respective roots of the polynomials

U2 − 2λ∞U + λ∞(1 + λ1)− λ1,
V 2 − 2λ∞V + λ0λ∞, and
(λ0 − 1− λ1)W 2 + 2λ1W − λ0λ1.

Remark 3. We need to pay attention to the valuations of our Rosenhain invari-
ants. Assuming that we begin with λ0 ≡ 0 mod 4, λ1 ≡ 1 mod 4 and val(λ∞) =
−2, we choose the labeling of the roots of our quadratic polynomials such that
v0, w0 ≡ 0 mod 2, u1, w1 ≡ 1 mod 2, and val(u∞), val(v∞) < 0, from which
λσ

0 ≡ 0 mod 4, λσ
1 ≡ 1 mod 4 and val(λσ∞) = −2 follows.

4.2 Recognizing Class Polynomials in Q[X]

In this section we explain how we use the LLL algorithm to recover the minimal
polynomials over Z of the canonical lifted j-invariants. Let Λ = 〈b1, . . . , bm〉 be a
lattice and let det(Λ) be its determinant. Minkowski’s inequality gives the upper
bound

√
m/2πedet(L)1/m, for the norm of the shortest lattice vector, and in a

random lattice, one expects a minimal length vector to be close to this norm. The
LLL algorithm outputs a basis of short vectors, and if we construct Λ to have a
known vector v ∈ Λ of norm much smaller than this bound, then, heuristically, it
will be the shortest vector in Λ.

Let Z2d be an extension of Z2 of degree d with Z2-basis 1, w1, . . . , wd−1. Let
α ∈ Z2d generate Z2d , and α̃ be an approximation of α modulo a high power
of 2, say α ≡ α̃ mod 2N . We assume that we know the degree s of its minimal
polynomial f(x) ∈ Z[x], i.e. f(x) = asx

s + . . . + a0 where the (ai) ⊆ Z are
unknown. The degree s of the minimal polynomial is the degree of an irreducible
factor of Igusa class polynomials, whose degree is h∗

K . In order to determine the
(ai), we determine a basis of the left kernel in Zs+d+1 of the matrix

(
A

2NId

)
, where A is the (s + 1)× d matrix:

⎛⎜⎜⎜⎝
1 0 · · · 0

α1,0 α1,1 · · · α1,(d−1)

...
...

αs,0 αs,1 · · · αs,(d−1)

⎞⎟⎟⎟⎠ ,

with αj,k defined by αj = αj,0 + αj,1w1 + . . . + αj,(d−1)wd−1.
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In order to compute the basis of the left kernel, we apply the LLL algorithm
in the same way as described in [10]. This kernel is a lattice Λ, in which the
coefficients of the minimal polynomial of α are part of a short vector. Indeed, if
a0, . . . , as are integers with |ai| � 2N such that asα

s+ . . .+a0 ≡ 0 mod 2N , then
(a0, . . . , as, ε1, . . . , εd) will be a short vector in Λ, for appropriate integers (εi).
Any other solution that is not proportional to the (ai) will differ by an element of
Λ0+2NZs+d+1, where Λ0 is generated by the cdα

d+i+. . .+c0α
i ≡ 0 mod 2N , 1 ≤

i ≤ s − d, coming from the minimal polynomial g(x) = cdx
d + · · · + c0 of α in

Z2[x] having arbitrary coefficients in Z2. If the precision N is sufficiently high,
we expect the unique solution (a0, . . . , as) to appear as the shortest vector in
the LLL-reduced lattice basis.

We remark that we can easily compute the image of (j1, j2, j3) by the Frobe-
nius σ and therefore we have access to the powers of (j1, j2, j3) and (jσi

1 , jσi

2 , jσi

3 )
for i ∈ [1, d]. Therefore we can use this information as input of our LLL algo-
rithm. It implies a more complicated recognition phase where we have to use
the subresultant algorithm to recognize our minimal polynomials. Moreover an
explosion of the coefficient size in the course of the algorithm leads us to use
modular arithmetic and the Chinese remainder theorem for our computations.

5 Complexity and Comparison with Other Methods

5.1 Complexity of the 2-Adic CM Method

The two costly steps of the 2-adic CM method are the computation of the canon-
ical lift and the reconstruction of the polynomials using LLL. Those two steps
highly depend on the precision k at which we have to compute the canonical
lift in order to recover the full polynomials. This precision k depends itself on
the sizes of the polynomial H1, Ĥ2, Ĥ3, for which no bound (that would depend
on the class number of K) is known. Hence we shall keep k in our formulae,
although this is not a parameter under control.

By using advanced algorithms coming from point counting, the canonical lift
computation takes a time which is essentially linear in the precision k. More
precisely it has a complexity O(M(dk) log(k)) where M(dk) is the time for mul-
tiplying integers with dk bits, that is O(dk) up to logarithmic factors.

The complexity of the LLL step involves the further parameter h∗
K , which is

the degree of the polynomials we are trying to reconstruct. Using the classical
LLL algorithm, we end up with a complexity of O((h∗

K+d)6k3). The L2 variant of
Nguy˜̂en and Stehlé [30] has a better general complexity of O((h∗

K +d)5(h∗
K +d+

k)k), and in our case the structure of the lattice gives us an improved complexity
of O((h∗

K + d)4(h∗
K + d + k)k).

Now we will analyze what we could expect from the PSLQ algorithm. In [1],
given an input of h∗

K + d complex numbers whose integer relation is bounded by
2k, the PSLQ algorithm is claimed to have a number of iterations in O((h∗

K +
d)3+(h∗

K +d)2k). Each iteration consists of four steps. Both for the complexity in
the dimension and in the precision the bottleneck step is the third step, Hermite’s
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reduction and matrix multiplication. Therefore the complexity of one iteration
is O((h∗

K + d)3k). The total complexity of PSLQ seems to be O((h∗
K + d)6k +

(h∗
K +d)k2) thus we do not expect any improvement from using a 2-adic version

of PSLQ.

5.2 Comparison with Other Methods

The comparison with the classical CM method [35,40] is only valid for inputs at
which their outputs coincide, since the inputs to each algorithm is different. In
the 2-adic method one treats only CM fields where the ideal (2) has a special
structure, and moreover the input is not the field but a hyperelliptic curve over
a small finite field. In the classical CM method one starts directly from a CM
field, with the requirement that the class number of the real subfield is 1. The
main advantage of the 2-adic method compared to the classical method is that
the complex floating point evaluation of theta constants at the period matrices
(which is the bottleneck in the classical method) is replaced by a p-adic canonical
lifting procedure for which we have precise control over precision and precision
loss (there is none). Furthermore, the time-complexity of the evaluation of theta
constants is quadratic in the required precision, whereas the canonical lift is
essentially linear in the precision. On the other hand, the drawback of the 2-adic
CM method is that the reconstruction step is much more expensive than in the
classical case, since the step of building a polynomial from its roots is replaced
by a call to the LLL algorithm. In this later case, the complexity becomes again
quadratic in the precision. In other words, by changing the method, we have
moved the bottleneck of the approach from the first step to the second step.

We can also compare to the CRT approach [9,16]. In that case, to be able to
build a class polynomial whose coefficients have k bits, one needs to use O(k)
small finite fields Fpi , where pi is O(k). Finding the appropriate curves implies
O(p3

i ) steps for each pi, since we essentially have to enumerate all isomorphism
classes over the field Fpi . Hence the complexity is more than quadratic in the
precision, so that the CRT method is not competitive with the other methods
in terms of required precision. This ignores the endomorphism ring computation
which is exponential in pi in the worst case (but might be controlled by a more
selective sieving for CRT primes).

5.3 Experiments

All of the experiments we carried out were written using Magma [12] and C rou-
tines. The 2-adic arithmetic is taken from an experimental gmp-style library
called Mploc which was developed by E. Thomé [37]. It currently contains far
more than the 2-adic arithmetic, including efficient arithmetic in Qp, Qp[X ], and
extensions of Qp. We use NTL [34] library for the floating-point LLL routine, as
at the time we developed our program, Stehlé’s LLL C routines were not avail-
able [36]. All the experiments were conducted on a 2.4 GHz Athlon 64. On such
a computer, computing irreducible factors of Igusa class polynomials of degree
less than twenty is a question of minutes.
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Example. Let C be the curve of equation y2 + h(x)y + f(x) = 0 over F32 =
F2[t]/(t5 + t2+1), with f(x) = x5 + t20x3 + t17x2 + t19x and h(x) = x2 + t9x. The
curve is ordinary and has CM by the maximal order of K = Q(i

√
75 + 12

√
17).

The field K is non-normal and its class number is 50; so we have h∗
K = 100

isomorphism classes of principally polarized abelian varieties.
Looking for a minimal polynomial of the lifted value of j1, the LLL algorithm

produced a plausible answer of degree 50. A more subtle analysis of the Galois
theory in fact predicts that the class polynomial of degree 100 is reducible over
the rationals, splitting in two factors of degree 50. Using our method, we produce
one of these two factors H1(X), with the corresponding polynomials Ĥ2(X) and
Ĥ3(X). The leading coefficient of H1 is 35011156176023724124731283121814869112,
consistent with the theory of Goren-Lauter [20], and reduction at a large prime
gave rise to a Jacobian whose group of rational points agreed with the expected
order for this CM field.

For this example, we used a 2-adic precision of 65000 bits, and the running
time to lift the curve and compute the invariants was 20 seconds. The subsequent
lattice reductions took about one day. This confirms that the bottleneck is in
the second step, as predicted by the complexity estimates, and suggests that an
improved strategy would be to lift additional j-invariants to reduce the size of
the lattice in the reduction phase.

6 Conclusion and Perspectives

This work presents a new p-adic method for building Igusa class polynomials
for genus two curves, that can be used to efficiently produce CM curves suitable
for cryptography. Our method makes use of p-adic lifting techniques borrowed
from point counting algorithms. The algorithm performs well in practice and has
allowed us to treat much larger class numbers than previously reported in the
literature.

In order to deal with such large degree class polynomials, we were led to
introduce a new representation for the ideal of CM points, so that the final step
of the CM method — namely reducing the polynomials modulo an appropriate
prime p and constructing the corresponding curve equation — no longer requires
a combinatorial search for one valid tuple of invariants for each h∗

K
3 tuple when

using class polynomials of degree h∗
K .

Our work is based on curves of characteristic 2, which places a restriction on
which CM fields we can treat. This is analogous to the condition on discriminants
treatable by the CM construction in genus 1 using reduced class polynomials in
terms of Weber functions. Extending this algorithm to other small characteris-
tics p would impose an independent condition so that more CM fields could be
treated. Such algorithms are the subject of ongoing investigation, motivated by
this research.

As the discussion of complexity issues indicates, the different methods for
building Igusa class polynomials (complex analytic, p-adic analytic, CRT) all
have advantages and limitations. Combining them in order to take advantage of
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the best of each method is something that should be explored. For example, an
algebraic formula for the exact leading coefficient of the Igusa class polynomi-
als (see [20]) would have benefit to a greater or lesser extent in each of these
methods. We note that the bottleneck of the classical CM method is the evalua-
tion of theta constants. Recently, Dupont [15] developed new algorithms for this
task, yielding a huge performance improvement for the classical CM method.
Further investigation of the limiting steps for the classical and p-adic methods
will determine in the end which algorithm applies most effectively to a given
problem.
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A Cryptographic CM Curve Generation on One Example

We start with the curve C of equation y2+h(x)y+f(x) = 0 over F8 = F2[t]/(t3+
t+1), with f(x) = x5+t6x3+t5x2+t3x and h(x) = x2+x. The curve is ordinary
and has complex multiplication by the maximal order of K = Q(i

√
23 + 4

√
5).

The field K is non-normal and its class number is 3; so we have 6 isomorphism
classes of principally polarized abelian varieties. We apply our algorithm and
compute the canonical lift of C to high precision (in fact, a posteriori, we see
that 1200 bits are enough) and get its invariants. From this we reconstruct the
minimal polynomial H1 and the corresponding Ĥ2 and Ĥ3. As expected, the
degree of H1 is 6.

H1 = 218536724 T6

− 11187730399273689774009740470140169672902905436515808105468750000 T5

+ 501512527690591679504420832767471421512684501403834547644662988263671875000 T4

− 10112409242787391786676284633730575047614543135572025667468221432704263857808262923 T3

+ 118287000250588667564540744739406154398135978447792771928535541240797386992091828213521875 T2

− 21350510111131531701116319169938793494948953569198870004032131926868578084899317 T

+ 36051523540951793641135

H2 = 2−3 2734249284974589542086559782016563911333032280921936035156250000 T5

+ 57554607277149797568849387967258354564256002479144001401149377453125000000 T4

+ 2402137816085408582966361480412923409977297040376760501014543382338189483861887923 T3

− 75691166837057576824962404339816428897154828109931810138346946500235981947587900092046875 T2

+ 2134851035828519670812312117443096939126403484719666514876459782054400437 T

− 358515111 13223340932387911793641133370974539856105277
H3 = 2−4 200620022977265019387539624994933881234269211769104003906250000 T5

− 23006467431764975697282545882188900514908468992554759536043135578125000000 T4

+ 615017294619678068611319414718144161545088218260214211563850151291136646894987547 T3

− 14310698742415340178789612716269299249317950024503557714370659520249839645781463819312875 T2

− 213465813161118373951326869125713288587261208212107985724468058651509734160907 T

+ 355513232409223561144013111793641132451986402352017881724712641689

From the Newton polygon of H1 for the 2-adic valuation, we see that there
are three roots that have valuation 0, and the others have negative valuation.
Hence only three of the curves have good reduction modulo 2. However, since
H1 is irreducible over Q, the 2-adic lifted invariants of any of the three conjugate
curves yields the whole H1.

Choosing the 120-bit prime p = 954090659715830612807582649452910809,
and solving a norm equation in the endomorphism ring OK , we know that a
solution (j1, j2, j3) to the Igusa class polynomials gives the invariants of a genus
2 curve whose Jacobian has prime order

910288986956988885753118558284481029311411128276048027584310525408884449

of 240-bits. We find a corresponding curve:

C : y2 = x6 + 827864728926129278937584622188769650 x4

+ 102877610579816483342116736180407060 x3

+ 335099510136640078379392471445640199 x2

+ 351831044709132324687022261714141411 x
+ 274535330436225557527308493450553085

and a test of a random point on the Jacobian verifies the group order.
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Abstract. It has been recently acknowledged [4,6,9] that the use of
double bases representations of scalars n, that is an expression of the form
n = e,s,t(−1)eAsBt can speed up significantly scalar multiplication on
those elliptic curves where multiplication by one base (say B) is fast. This
is the case in particular of Koblitz curves and supersingular curves, where
scalar multiplication can now be achieved in o(log n) curve additions.

Previous literature dealt basically with supersingular curves (in char-
acteristic 3, although the methods can be easily extended to arbitrary
characteristic), where A, B ∈ N. Only [4] attempted to provide a simi-
lar method for Koblitz curves, where at least one base must be non-real,
although their method does not seem practical for cryptographic sizes (it
is only asymptotic), since the constants involved are too large.

We provide here a unifying theory by proposing an alternate recoding
algorithm which works in all cases with optimal constants. Furthermore,
it can also solve the until now untreatable case where both A and B are
non-real. The resulting scalar multiplication method is then compared to
standard methods for Koblitz curves. It runs in less than log n/ log log n
elliptic curve additions, and is faster than any given method with similar
storage requirements already on the curve K-163, with larger improve-
ments as the size of the curve increases, surpassing 50% with respect to
the τ -NAF for the curves K-409 and K-571. With respect of windowed
methods, that can approach our speed but require O(log(n)/ log log(n))
precomputations for optimal parameters, we offer the advantage of a
fixed, small memory footprint, as we need storage for at most two addi-
tional points.
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1 Introduction

In cryptographic algorithms designed around elliptic curves, the most expensive
part is the scalar multiplication nP , where P lies on the curve. In order to speed
up this computation, it was proposed already at a very early stage of their use
to adopt special families of curves where a large multiple of P can be computed
very quickly. This is the case of endomorphism curves [15] or Koblitz curves
Ea [17].

We will examine more closely this latter class of curves. Defined over F2p , they
are endowed with the Frobenius endomorphism τ of the rational point group Ea

(F2p). Now, τP is a large multiple of P which can be computed in time O(1) using
normal bases or O(p) using polynomial bases. The map τ is also identified with
a complex root of an equation of the form τ2±τ +2 = 0 that depends only on the
curve equation. Using τ , one can devise good scalar multiplication algorithms, see
§§ 2.3, 2.5 and 2.6. All these algorithms compute nP with1 Ω(log n) costly curve
operations (such as a doubling or an addition). We call these algorithms linear (in
the number of curve operations with respect to the bit size of the field), since also
the number of curve operations is O(log n). There are two ways of improving over
these algorithms: either we devise algorithms with lower complexity (sublinear
methods), or we reduce the number of group operations by some multiplicative
factor. We deal here with the former paradigm.

The novelty of our approach is to combine the use of τ with double bases, first
introduced in elliptic curve cryptography in [11]. To achieve this, we consider
a more general setting of double base number systems (DBNS) that can be
applied also to other classes of curves, such as supersingular curves over fields
of characteristic 3, where in place of the Frobenius the fast operation is point
tripling. We show how to find decompositions

n =
k−1∑
i=0

(−1)eiAsiBti

with (A, B) a suitable pair of algebraic integers (such as (2, 3), (3, τ), or (τ̄ , τ))
si, ti nonnegative integers and ei ∈ {0, 1}. The length k of this expansion is O
(log n/ log log n). Wo reveal, similarly to [6], a scalar multiplication algorithm with
cost O(log n/ log log n) curve operations in presence of a fast group endomorphism.
We call such an algorithm sublinear, when the number of curve operations over the
bit size of the field goes to zero.

This is a first instance of a practical sublinear scalar multiplication algorithm
with very little precomputations (which depend only on p, not the curve or the
point P ) or storage requirements (O(log p) bits). We provide some computational
comparisons with other methods to show that even on 163-bit curves, our method
yields better results.

1 We use the notation Ω(x) to mean > cx for some positive c.
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2 Background Material

2.1 Double Bases

Following [8], albeit with a slightly different notation, we will call a (A, B)-integer
a number which can be written as AiBj for some nonnegative integers i, j. We
will extend the definition to algebraic integers, more precisely, integers in Z[τ ].
We will also allow A, B ∈ Z[τ ]. We define a (A, B)-integer expansion of n as a
decomposition of n into a sum of (possibly signed) (A, B)-integers. Sometimes
this will be also called a DBNS(A, B) recoding.

2.2 Koblitz Curves

For a general presentation of Koblitz curves, we refer to [13, § 15.1.1]. A Koblitz
curve Ea is an elliptic curve defined over F2p , with equation

Ea : y2 + xy = x3 + ax2 + 1 . (1)

Here a = 0 or 1, and p is a prime chosen so to make the order of the group of
points Ea(F2p) equal to twice if a = 1 (resp. four times if a = 0) a prime number,
for at least one choice of a. A point P ∈ Ea(F2p) is then randomly chosen with
order equal to that large prime. In view of Hasse’s theorem, which states that
|#Ea(F2p)− 2p − 1| < 2

p
2 +1, this means that we can choose P so that ordP is

very close to 2p−1 if a = 1 and to 2p−2 if a = 0. Since Ea has coefficients in
F2, the Frobenius map τ(x, y) = (x2, y2) is an endomorphism of Ea(F2p). Since
squaring is a linear operation in characteristic two, computing τP is also linear
and takes time O(p). If normal bases are used to represent elements of F2p , then
computing τP is much faster, since it amounts to making two rotations, which
is essentially free.

We can view τ as a complex number of norm 2 satisfying the quadratic
equation τ2 − (−1)1−aτ + 2 = 0, since for any P on the curve, τ2P + 2P =
(−1)1−aτP . Explicitly, τ = (−1)1−a+

√−7
2 . We will also make use of the con-

jugate τ̄ = (−1)1−a − τ of τ . This corresponds to the dual of the Frobenius
endomorphism.

2.3 The τ -NAF for Koblitz Curves

All facts here are stated without proofs: These are found in [24,25].
Let us consider the Koblitz curve Ea defined over F2p by equation (1), with

base point P , and let τ denote the Frobenius endomorphism. We have seen that
we can view τ(P ) as multiplication by τ and let Z[τ ] operate on P , but in fact
there exists an integer λ such that τ(P ) = λP , and thus τ operates on the whole
subgroup generated by P like multiplication by λ.

The τ -adic non-adjacent form (τ -NAF for short) of an integer z ∈ Z[τ ] is a
decomposition z =

∑
i ziτ

i where zi ∈ {0,±1} with the non-adjacency property
zjzj+1 = 0, similarly to the classical NAF [21]. The average density (that is the
average ratio of non-zero bits related to the total number of bits) of a τ -NAF is
1/3. Each integer z admits a unique τ -NAF.
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The length of the τ -NAF expansion of a randomly chosen scalar n is ≈ 2p,
whereas the bit length of n is ≈ p. But, for any point P ∈ Ea(F2p) � Ea(F2),
τpP = P and τP �= P .

Since the ring Z[τ ] is Euclidean we can take the remainder ζ of n mod τp−1
τ−1

and use it in place of n. This ζ will have smaller norm than that of (τp−1)/(τ−1),
and thus length at most p. Its τ -NAF is called the reduced τ -NAF of n and when
P has prime order, it can be shown that nP = ζP .

The double-and-add scalar multiplication algorithm is a Horner scheme for the
evaluation of nP using the binary expansion of n =

∑	
i=0 ni2i as

∑	
i=0 ni2iP . In

a similar way we can evaluate zP =
∑

i ziτ
i(P ) by a Horner scheme, and the the

corresponding algorithm is called a τ -and-add algorithm. It is much faster than
the double-and-add scheme on Koblitz curves because Frobenius evaluations are
much faster than doublings.

2.4 Point Halving

Point halving (see [16] and [22,23]) is a technique to improve the performance
of cryptosystems based on binary elliptic curves. The idea is to replace, in the
double-and-add algorithm for scalar multiplication, doublings 2Q by halvings
1
2Q = ord Q+1

2 Q. Even though halving is not as fast as a Frobenius operation, it
is much faster than doubling (between two and three times faster), according to
literature [16,22,23] as well as [14].

2.5 Inserting a Halving in the τ -Adic Scalar Multiplication

In [1] a single point halving is inserted in the “τ -and-add” scalar multiplication.
This brings a non-negligible speedup (up to 14%) with respect to the use of the τ -
NAF, but is not optimal. In [3] the method is refined in order to bring the speed-
up to 25%, and the resulting method is proved optimal among similar methods
that do not require any precomputation. The basic idea in both approaches is
to express nP as

∑
i e0,iτ

i(P ) +
∑

i e1,iτ
i(Q) with Q = 1

2P and a smaller total
Hamming weight of the ej,i’s. The τ -and-add loop is repeated two times: first∑

i e1,iτ
i(P ) is computed, then the result is halved and a second τ -and-add loop

is performed like for the computation of
∑

i e0,iτ
i(P ), but starting with the

result just obtained in place of 0.

2.6 Further Developments in τ -Adic Representations

The authors of [19] generalize the approach of [1] to expressions of the form∑
i e0,iτ

i(P )+
∑

i e1,iτ
i(f1(P ))+ . . .+

∑
i e2u−2−1,iτ

i(f2u−2−1(P )), where 1 and
the fj are representants of the residue classes modulo τu in the ring Z[τ ] which
are coprime to τ , and ej,i ∈ {0,±1}. Such an expression can be obtained from
a τ -adic windowed recoding [25]. If a window of width u is used, then the τ -
and-add loop is performed 2u−2 times in place of two times as in the method of
§ 2.5. Thus, the number of Frobenius operations can increase exponentially with
u. To ensure that this does not become a performance problem if polynomial
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bases are used, a technique from [20] is adopted to convert between normal and
polynomial bases as required to quickly compute iterated Frobenius operations.

At the end of the τ -and-add loop corresponding to the digit fj the partial
result must be multiplied by fj+1/fj before starting the τ -and-add loop corre-
sponding to the next digit fj+1. The relations between the fj ’s and their inverses
must then be given explicitly. In [19] this is done for w = 5. Even though the au-
thors cannot present the results in a completely general way, in the case described
in [19] the reduction in memory consumption (or, equivalently, the speed-up with
respect to other methods with no precomputations) is noteworthy. In order to
generalize their approach the digit set itself has to be modified. In [2] it is shown
how to do so.

2.7 Supersingular Elliptic Curves in Characteristic 3

We refer to [18] for generalities on supersingular elliptic curves. We will consider
the curves Eb defined over F3m by the Weierstraß equations [5]

y2 = x3 − x + b

with b = ±1. On these curves, the tripling operation sends P = (x, y) to
3P = (x9 − b,−y9), meaning that point tripling is essentially equivalent to two
Frobenius and its cost will be considered negligible.

3 Theoretical Preliminaries

All the new results proving the sublinearity of the new DBNS decompositions
are based on the following propositions. These results appears naturally in any
elementary number theory book during the proof of the structure theorem for
(Z/m)
, the multiplicative group of invertible classes modulo m. In the sequel,
we let R be a unique factorization domain containing Z (we will consider in
practice R = Z and R = Z[τ ], where τ is the Frobenius endomorphism on a
Koblitz curve). This is more stringent than necessary, however, it will make the
proofs less elaborate.

Notation: For gcd(a, b) = 1, we denote ordb(a) the multiplicative order of a
(mod b).

Lemma 1. Let π be a prime, p > 0 a generator of πR∩Z and k ≥ 2 an integer.
Let a ∈ R. Then (1 + aπk)p ≡ 1 + paπk (mod πk+2).

Proof. Note first that p is prime in Z. Using the binomial theorem, we write out
the left-hand side of the congruence as (1 + aπk)p = 1 + paπk +

∑p
i=2

(
p
i

)
aiπki.

If k ≥ 2, then 2k ≥ k + 2 so that πk+2 | πki. � 
Now the following result is proved immediately by induction.

Lemma 2. Let π, p, k, a as in Lemma 1. If u ≥ 0, then (1+aπk)pu ≡ 1+puaπk

(mod πk+u+1).
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Lemma 3. Let π, p be as in Lemma 1, α, β ∈ R such that α ≡ β (mod πu) for
some u ≥ 1. Then αp ≡ βp (mod πu+1).

Proof. We proceed as in the proof of Lemma 1. We write α = β + aπu. Then
αp = βp +

∑p
i=1

(
p
i

)
βp−iaiπiu. Note that πu+1 | πiu if i ≥ 2. For i = 1 the term

in the summation is pβp−1aπu. Since π | p, we are done. � 
Theorem 1. Let α ∈ R and d = ordπ2(α). Assume also that π is unramified
over p, in other words that π � (p/π). Let

k = max{u ≥ 2: d = ordπu(α)} .

Then

ordπu(α) =

{
d if u ≤ k ,
dpu−k if u > k .

Proof. It is clear that ordπu(α) = d if u ≤ k. We then prove by induction that

ordπk+u(α) = dpu if u ≥ 1 .

Since αd ≡ 1 (mod πk) we deduce by Lemma 3 αdp ≡ 1 (mod πk+1). Therefore
ordπk+1(α) | dp but also d | ordπk+1(α) and d �= ordπk+1(α) by definition of u.
Hence ordπk+1(α) = dp and the initial step (u = 1) of induction is proved.

Assume therefore that ordπk+u(α) = dpu.
Notice also that we must then have

αd = 1 + aπk (mod πk+1) where π � a .

By Lemma 2, we then have

αdpu ≡ 1 + puaπk ≡ 1 + a(p/π)uπk+u (mod πk+u+1) .

Since π | p is unramified, we have αdpu �≡ 1 (mod πk+u+1). By the induction
hypothesis, dpu | ordπk+u+1(α) and we just found that these two numbers are
different. Since by Lemma 3 again ordπk+u+1(α) | dpu+1 and p is prime, it must
be ordπk+u+1(α) = dpu+1. This completes the proof. � 
We can appeal to this theorem to easily find the order of known elements to a
power of a prime. We let τ be the Frobenius on a Koblitz curve as described
previously, viewing it as a complex root of X2 + (−1)aX + 2 = 0. Then Z[τ ]
is Euclidean hence a unique factorization domain. We have that τ is prime in
Z[τ ] and likewise for τ̄ = (−1)a+1− τ , its complex conjugate. Also, τ | 2 = τ τ̄ is
unramified, since τ and τ̄ are coprime.

Corollary 1. We have the following.

ord3u(2) = 2 · 3u−1 u ≥ 1 ,

ord2u(3) = 2u−2 u ≥ 3 ,

ordτu(3) = 2u−2 u ≥ 3 ,

ordτu(τ̄ ) = 2u−2 u ≥ 3 .
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Proof. The first equality follows from the fact that 6 = ord9(2) < ord27(2) and
an actual verification for u = 1.

For the second, notice that ord4(3) = 2 = ord8(3) < ord16(3).
For the third, it suffices to notice that 2u | 3i − 1 if and only if τu | 3i − 1.

The “only if part” is obvious, since τ | 2. For the “if” part, notice that by
taking conjugates we also have τ̄u | 3i − 1 and since τ and τ̄ are coprime we get
τuτ̄u | 3i − 1.

Finally, (−1)a+1τ̄ = −1−τ2, hence τ̄2 = 1+ τ̄ τ3+τ4. This yields immediately
2 = ordτ2(τ̄ ) = ordτ3(τ̄ ) < ordτ4(τ̄ ) if a = 1 or 1 = ordτ2(τ̄ ) < 2 = ordτ3(τ̄ ) <
ordτ4(τ̄ ) if a = 0 and the last formula. � 
This leads to the main theorem of this section.

Theorem 2. 1. Every N ∈ Z with 3 � a is congruent modulo 3u, (u ≥ 1), to
precisely one of the numbers 2j, 0 ≤ j < 2 · 3u−1.

2. Every N ∈ Z[τ ] with τ � N is congruent modulo τu, (u ≥ 3), to precisely one
of the numbers (−1)eAj , e = 0, 1 and 0 ≤ j < 2u−2, for A = 3 or τ̄ .

Proof. There are exactly φ(3u) = 2 · 3u−1 residue classes coprime to the mod-
ulus 3u. Hence, the first part of the theorem follows from the first equality of
Corollary 1.

For the second, begin by noting that #Z[τ ]/τu = 2u (since the norm of τu is
2u) and #

(
Z[τ ]/τu

)
 = 2u−1, since elements divisible by τ are exactly the kernel
of the reduction homomorphism Z[τ ]/τu → Z[τ ]/τ . Therefore it suffices to prove
that the numbers listed in the theorem are all distinct modulo τu. Suppose then
that (−1)eAj ≡ (−1)e′

Aj′ (mod τu). Reducing modulo τ3, we get that e = e′,
since the coprime residues modulo τ3 are ±1,±A. Hence Aj ≡ Aj′ (mod τu)
and by Corollary 1, we must have j = j′. This proves the theorem. � 

4 Algebraic Algorithms for DBNS Recoding and Scalar
Multiplication

The results hitherto proved allow us to provide new double base recodings of
scalars. Unlike previous algorithms [4,6,8,9] these are not greedy and proceed
from right to left (i.e. from the smallest powers of the fast endomorphism to the
largest).

Algorithm 1 implements a first version of a new DBNS recoding. We have
given here an unsigned version, which, by a result of [4] must have at least
(1 + o(1)) log n/ log log n terms. The algorithm works by Theorem 2, which says
that in Step 6 we can always find j. The termination of the algorithm is also
simple here since in Step 7, N stays positive but becomes strictly smaller. A
signed version, suitable for implementation on Eb, can be readily obtained and
is left to the reader.
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Algorithm 1. Unsigned right-to-left DBNS(2,3) recoding

Input: An integer n > 0 and a parameter u.

Output: Two arrays s[ ], t[ ] and their common length k. The arrays are
sequences of exponents in the decomposition n = k−1

i=0 2s[i]3t[i]

1. N ← n, i ← 0, t ← 0

2. t[ ] ← 0, s[ ] ← 0

3. while N ≥ 43u−1
do

4. while 3 | N do

5. N ← N/3, t ← t + 1

6. Find 0 ≤ j < 3u−12 with N ≡ 2j (mod 3u)

7. N ← (N − 2j)/3u

8. s[i] ← j, t[i] ← t

9. t ← t + u, i ← i + 1

10. while N > 0 do

11. while 3 | N do

12. N ← N/3, t ← t + 1

13. if N ≡ 1 (mod 3) then

14. N ← (N − 1)/3, s[i] ← 0

15. else

16. N ← (N − 2)/3, s[i] ← 1

17. t[i] ← t, t ← t + 1, i ← i + 1

18. return s[ ], t[ ], i

Algorithm 2 implements a signed algorithm using a complex double base (3, τ),
resp. (τ̄ , τ), to be used on a Koblitz curve Ea, resp. a supersingular elliptic curve
in characteristic 3.

Algorithm 2. Signed right-to-left DBNS(A, τ ) recoding (A = 3 or τ̄)

Input: An integer ζ ∈ Z[τ ] and a parameter u.

Output: Three arrays s[ ], t[ ], e[ ] and their common length k. The arrays are
sequences of exponents in the decomposition n = k−1

i=0 (−1)e[i]As[i]τ t[i].

1. N ← ζ, i ← 0, t ← 0

2. t[ ] ← 0, s[ ] ← 0, e[ ] ← 0

3. while |N | ≥ 22u−1
[See Remarks below]

4. while τ | N do

5. N ← N/τ , t ← t + 1

6. Find 0 ≤ j < 2u−2 and e = 0, 1 with N ≡ (−1)eAj (mod τu)

7. N ← (N − (−1)eAj)/τu

8. s[i] ← j, t[i] ← t, e[i] ← e

9. t ← t + u, i ← i + 1

10. while |N | > 0 do

11. while τ | N do
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12. N ← N/τ , t ← t + 1

13. if N ≡ 1 (mod τ 2) then

14. N ← (N − 1)/τ 2, e[i] ← 0

15. else

16. N ← (N + 1)/τ 2, e[i] ← 1

17. t[i] ← t, t ← t + 2, i ← i + 1

18. return s[ ], t[ ], e[ ], i

Remarks

1. In the case A = τ̄ , we can replace the lower bound in line 3. by 22u−3
.

2. To reduce the length of the expansion, it is possible to adapt u to the size
of N . For instance, if A = τ̄ , replace line 3. by
3. while |N | > 0 do

and after line 5. add
6. while |N | < 2

2u−2−1
2 do u ← u − 1

Doing that, lines 10. to 17. are no longer necessary. This modification helps
to save a few more additions in Algorithm 4. See Table 1.

By Theorem 2 again, the algorithm is consistent. The only point left to show
is that it will terminate, namely that we have eventually N < 22u−1

, since upon
entering Step 10, the algorithm computes the τ -NAF of N , hence termination is
guaranteed.

Indeed notice that if N ≥ 22u−1
then

|(−1)eAj | ≤ 3j < 32u−2
< 42u−2 ≤ |N | (2)

therefore in Step 7 ∣∣∣∣N − (−1)eAj

τu

∣∣∣∣ <
2 |N |
|τu| =

|N |
|τu−2| < |N | (3)

since u ≥ 3. Since |N |2 ∈ N (it is the norm of the algebraic integer N ∈ Z[τ ]),
eventually |N | < 22u−1

and the algorithm terminates.
In the case when A = τ̄ and the lower bound is 22u−3

, we replace (2) by

|(−1)eτ̄ j | ≤ 2j/2 < 22u−3 ≤ |N |

and we proceed as in (3) to show that |N | diminishes. Therefore our algorithms
are correct. Notice that we apply Algorithm 2 to ζ, the reduced τ -NAF of n
(see Section 2.3).

After running Algorithms 1 or 2 and before Algorithm 3, that computes the
scalar multiplication, we have to shuffle the indices i in the arrays e[ ], s[ ], t[ ] so
as to get s[i + 1] ≥ s[i] for all i and t[i + 1] > t[i] in case s[i + 1] = s[i]. In
Algorithm 3, set e[i] = 0 if using an unsigned recoding.
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Algorithm 3. Scalar Multiplication from a DBNS(A,B) expansion

Input: A point P on the curve Ea or Eb and the arrays e[ ], s[ ], t[ ] of length
k such that s[i + 1] ≥ s[i] and t[i + 1] > t[i] whenever s[i + 1] = s[i].

Output: The point Q on Ea or Eb such that Q = k−1
i=0 (−1)e[i]As[i]Bt[i]P .

1. Q ← O, i ← k − 1

2. s[−1] ← 0

3. while i ≥ 0 do

4. Let j ≤ i be the min index with s[j] = s[i]

5. R ← (−1)e[i]P

6. while i > j do

7. R ← Bt[i]−t[i−1]R + (−1)e[i−1]P

8. i ← i − 1

9. Q ← Q + R

10. Q ← As[i]−s[i−1]Q

11. return Q

5 Comparison with Established Methods

We want here to give an idea of how well Algorithm 2 fares with (τ̄ , τ) on
Koblitz curves standardized by NIST. We compare our new multiplication algo-
rithm with the τ -and-add using a τ -NAF expansion [24] and the width-w τ -NAF
expansion [25].

For a given value of u, by (3), the number of iterations in the main loop
(Steps 3 to 9) is bounded by the quantity c such that |ζ| = |τu−2|c = 2

c
2 (u−2).

This gives

c =
2 log2 |ζ|

u− 2
=

p
u− 2

for a generic scalar, by the way ζ is constructed. Also, since the “tail” (i.e. the
quantity processed in Steps 11 to 17) is a generic integer of Z[τ ] of norm less than
22u−2

, its expected Hamming weight is bounded by 2u−2/3. Thus, the average
Hamming weight of the new expansion is bounded by

p
u− 2

+
2u−2

3
,

and its worst case by
p

u− 2
+ 2u−3 + 1 . (4)

In practice, when N is large in (3), the new value of N has absolute value much
closer to |N |/|τu|, therefore we should expect a Hamming weight closer to the
value

p
u

+
2u−2

3
· (5)

Algorithm 3 then implies that the total cost of a scalar multiplication equals
at most p/u+2u−2/3 additions plus 2u−2 applications of τ̄ . Since an application
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of τ̄ = (−1)1−a − τ corresponds to a curve addition, the total cost (in curve
additions) is bounded from above by

f(u) =
p
u

+
2u

3
·

In the previous argument, following [4, Section 4], we neglected the cost of apply-
ing τ , as we will in the following comparisons. See also Section 7 for a concrete
approach to reducing the impact of the Frobenius to a non-dominant term.

We can modify Algorithm 3 to make use of the advantage of halvings over
multiplications by A = τ̄ (at least a 50% saving in performance). Indeed, let
ζ′ = 22u−2

ζ (mod τp−1
τ−1 ) with minimal norm. From a DBNS(τ̄ , τ) expansion

ζ′ =
k−1∑
i=0

(−1)e′
i τ̄s′

iτ t′i

get that

nP = ζP =
k−1∑
i=0

(−1)e′
i
τ̄s′

i

22u τ t′iP =
k−1∑
i=0

(−1)e′
i
τ t′i−s′

i

22u−s′
i

P

=
k−1∑
i=0

(−1)e′
i
τ εip+t′i−s′

i

22u−s′
i

P

where εi = 1 if t′i < s′i and 0 else. Note that this is a valid DBNS(1/2, τ)
expansion, because for different values of i, j, the same powers of 1/2 and τ
occur only if s′i = s′j and either t′i− s′i = t′j − s′j or t′i− s′i = p+ t′j − s′j. Since the
pairs (s′i, t

′
i) arise from a DBNS expansion and t′i < p, either case is impossible.

In this case, from (5) and the subsequent analysis, we can conclude that
the cost of one scalar multiplication using a DBNS(1/2, τ) expansion is upper
bounded on average by g(u) curve additions, where

g(u) =
p
u

+
5
24

2u .

For various parameters of p corresponding to the NIST curves K-163 (a = 1),
K-233 (a = 0), K-283 (a = 0), K-409 (a = 0), K-571 (a = 0), Table 1 gives
the scalar multiplication costs in elliptic curve additions (with the assumption
that two halvings are equivalent to one addition) using the τ -NAF, width-w τ -
NAF (w-τ -NAF) and our new recodings, on average, as well as the percentage
improvement over those methods and the value of u used in minimizing the
functions f(u) and g(u). In each case, the average is computed over 25,000
values.

6 Asymptotic Improvements

We now establish the asymptotic behavior of our new scalar multiplication al-
gorithm. Its sublinear nature will be thus revealed. We have the following.
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Table 1. Comparison of scalar multiplication algorithms on Koblitz curves

Field size p τ -NAF w-τ -NAF w DBNS(τ̄ , τ ) u DBNS( 1
2
, τ ) u %/τ -NAF %/w-τ -NAF

163 54.33 34.16 5 34.60 5 31.09 5 42.78% 8.99%

233 77.66 45.83 5 46.60 5 41.38 6 46.72% 9.71%

283 94.33 54.16 5 54.38 5 48.80 6 48.27% 9.90%

409 136.33 73.42 6 74.40 6 66.89 6 50.94% 8.90%

571 190.33 102.37 6 97.18 6 88.04 7 53.74% 14.00%

Theorem 3. Algorithms 1 and 2 allow to express nP , where P ∈ Eb or P ∈ Ea, as

nP =

(
k−1∑
i=0

(−1)eiAsiBti

)
P with (si, ti) �= (sj , tj) for i �= j ,

where (A, B) = (2, 3) in the case of Eb and (A, B) = (3, τ) or (τ̄ , τ) in the case
of Ea. The length k satisfies on average (the worst case being twice as large only
in the case of Ea)

k ≤ (
1 + o(1)

) log n

log log n
as n →∞ ,

and max si ≤ log n/(log log n)2.
Therefore scalar multiplication nP can be performed via Algorithm 3 on these

curves with an average cost of less than
(
1+o(1)

)
log n/log log n curve additions.

Proof. We detail the proof in the case of Koblitz curves. In the DBNS(2, 3) case,
simple modifications lead to the analogous result. We start with (4), letting
u = �2 + log2 p − 2 log2 logp�. We then find that k ≤ p

log2 p + o
(

p
log p

)
. Since

on average p = log2 n we are done in the average case. In the worst case p has
to be replaced by 2 log2 |ζ|, where ζ = n if n is too small. The (average) bound
on the si is immediate from Step 6 in Algorithm 2.

Since the total cost of Algorithm 3 differs from the Hamming weight k by a
multiple of 2u−2 = o(p/ logp) we are done. � 

7 On the Use of Normal vs. Polynomial Bases

Neglecting the cost of τ is fine if normal bases are used, but when polynomial bases
are used Frobenius operations can become expensive as u increases.One solution is
provided, as alreadymentioned, by a technique introduced byPark et al. in [20] and
used by Okeya et al. in [19]. Instead of applying a variable power of the Frobenius
to a changing point as done in Steps 5 to 9 if Algorithm 3, we apply the Frobenius to
the point P and accumulate directly. Only, the Frobenius is performed on a copy of
P that has been converted to normal basis representation (hence, all powers of the
Frobenius have essentially the same cost), and then the result is converted back to
polynomial basis representation before adding it to the accumulator variable that
will contain the final result at the end of the algorithm.
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Algorithm 4. (τ̄ , τ )-Double Bases Scalar Multiplication on Koblitz Curves

Input: A point P on Ea, a scalar z and arrays e[ ], s[ ], t[ ] of length k with
s[i + 1] ≥ s[i] such that z = k−1

i=0 (−1)e[i]τ̄ s[i]τ t[i].

Output: The point Q on Ea such that Q = zP = k−1
i=0 (−1)e[i]τ̄ s[i]τ t[i]P .

1. R ← normal basis(P ) [Keep in affine coordinates]

2. Q ← 0 [Use López-Dahab coordinates]

3. for i = k − 1 to 0 do

4. if i �= k − 1 and s[i] �= s[i + 1] then

5. for j = 1 to s[i + 1] − s[i] do

6. Q ← τ−1Q, Q ← 2Q

7. Q ← Q + e[i] · polynomial basis(τ t[i]R) [Mixed coordinates]

8. return Q

With our notation the resulting method is presented as Algorithm 4, in a
version that uses mixed coordinate arithmetic and projective (P) or López-
Dahab (LD) coordinates [12, § 13.3] while keeping the points P and R in affine
(A) coordinates.

There we use the fact that 2 = τ τ̄ to implement τ̄ as a doubling with an
inverse of a Frobenius, an operation that requires three square root extractions
in P or LD. A square root extraction costs between 1/8 and 1/2 of a multipli-
cation depending on the field [14]. A doubling in LD costs 4 multiplications and
4 squarings, whereas a mixed coordinate addition (i.e. adding a point in A to a
point in LD with a result in LD) costs 9 multiplications and 5 squarings. The
time required by a basis conversion (routines normal basis and polynomial basis)
is roughly the same as one polynomial basis multiplication, and the conversion
routines require each a matrix that occupies O(p2) bits of storage [7]. Hence
Steps 1 and 6 cost each about two field multiplications. The time for an eval-
uation of τ̄ is then roughly a half of the time for an evaluation of the addition
(including the basis conversion).

8 Conclusion

This work shows that using double bases in scalar multiplication improves per-
formance significantly, even for the smallest cryptographic parameters, at
almost no additional memory cost. This method however is only effective if
multiplication by one of the bases can be neglected, as was shown in [4]. The
resulting new scalar multiplication algorithms are especially fast on Koblitz
curves and supersingular curves of characteristic three used in pairing-based
cryptosystems.

As this work is being written, other articles on the same subject are about to
be published. In [10], accepted at CHES 2006, the authors present practical mea-
surements on FPGA and show that indeed one achieves a 50% speedup already
on the smallest Koblitz curve K-163 by using short decompositions found by a
clever extensive search. The paper [2], to appear in the proceedings of SAC 2006,
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among other things contains results similar to ours, but expressed in the language
of expansions with respect to a single base using suitably defined digit sets.
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Abstract. At Eurocrypt 2005, Waters presented an identity based en-
cryption (IBE) protocol which is secure in the full model without random
oracle. In this paper, we extend Waters’ IBE protocol to a hierarchical
IBE (HIBE) protocol which is secure in the full model without random
oracle. The only previous construction in the same setting is due to
Waters. Our construction improves upon Waters’ HIBE by significantly
reducing the number of public parameters.

1 Introduction

The concept of identity based encryption (IBE) was introduced by Shamir in
1984 [17]. An IBE is a type of public key encryption where the public key can
be any binary string. The corresponding secret key is generated by a private
key generator (PKG) and provided to the legitimate user. The notion of IBE
simplifies several applications of public key cryptography. The first efficient im-
plementation and an appropriate security model for IBE was provided by Boneh
and Franklin [5].

The PKG issues a private key associated with an identity. The notion of
hierarchical identity based encryption (HIBE) was introduced in [14,13] to reduce
the workload of the PKG. An entity in a HIBE structure has an identity which
is a tuple (v1, . . . , vj). The private key corresponding to such an identity can
be generated by the entity whose identity is (v1, . . . , vj−1) and which possesses
the private key corresponding to his identity. The security model for IBE was
extended to that of HIBE in [14,13].

The construction of IBE in [5] and of HIBE in [13], was proved to be secure in
appropriate models using the random oracle heuristic, i.e., the protocols make
use of cryptographic hash functions that are modeled as random oracle in the
security proof. The first construction of an IBE which can be proved to be secure
in the full model without the random oracle heuristic was given by Boneh and
Boyen in [3]. Later, Waters [19] presented an efficient construction of an IBE
which is secure in the same setting.

An important construction of a HIBE is given by Boneh-Boyen [2]. This paper
describes a general framework for constructing a HIBE. For an h-level HIBE,

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 145–160, 2006.
c© International Association for Cryptologic Research 2006
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the idea in [2] is to use h functions ψ1, . . . , ψh, where ψi is viewed as a hash
function which maps the ith component of the identity tuple to an appropriate
group element. This framework is instantiated in [2] to obtain a HIBE protocol
which can be proved secure in weaker model called the selective-ID (sID) model.

The construction by Waters in [19] can be viewed as another instantiation
of a 1-level BB-framework [2]. Identities are considered to be n-bit strings. The
construction uses group elements U ′, U1, . . . , Un (and P, P1, P2) as public pa-
rameters. A natural extension of this construction to an h-level HIBE is given
in [19]. In this extension, for an h-level HIBE, the public parameters will be of
the form U ′

1, U1,1, . . . , U1,n, U ′
2, U2,1, . . . , U2,n, . . ., U ′

h, Uh,1, . . . , Uh,n. One still
requires the parameters P, P1, P2, giving rise to 3 + (n + 1)h many parameters.

Our Contributions: We present a HIBE which can be proved to be secure
in the full model assuming the decisional bilinear Diffie-Hellman problem to be
hard without using the random oracle heuristic. Our construction can also be
viewed as another instantiation of the BB-framework [2]. The public parameters
for an h-level HIBE are of the form U ′

1, . . . , U
′
h, U1, . . . , Un. In other words, the

parameters U ′
1, . . . , U

′
h correspond to the different levels of the HIBE, whereas

the parameters U1, . . . , Un are the same for all the levels. These parameters
U1, . . . , Un are reused in the key generation procedure. We require 3 + n + h
parameters compared to 3 + (n + 1)h parameters in Waters’ HIBE.

The reuse of public parameters over the different levels of the HIBE compli-
cates the security proof. A straightforward extension of the independence results
and lower bound proofs from [19] is not possible. We provide complete proofs of
the required results. The constructed HIBE is proved to be secure under chosen
plaintext attack (called CPA-secure). Standard techniques [8,6] can convert such
a HIBE into one which is secure against chosen ciphertext attack (CCA-secure).

Related Work: The first construction of HIBE which is secure in the full model
is due to Gentry and Silverberg [13]. The security proof depends on the random
oracle heuristic. HIBE constructions which can be proved secure without random
oracle are known [2,4]. However, these are secure in the weaker selective-ID model.
A generic transformation converts a selective-ID secure HIBE to a HIBE secure in
the full model. Unfortunately, this results in an unacceptable degradation in the
security bound. It is also possible to convert it into a HIBE secure in the full model
under the random oracle hypothesis. As mentioned earlier, Waters [19] HIBE is
the only previous indication of directly obtaining a HIBE which is secure in the full
model without random oracle. In Table 1 of Section 4, we provide a comparison
of our construction with the previous constructions.

An extension of Waters’ IBE was independently done by Chatterjee-Sarkar [9]
and Naccache [16]. In this extension, the n-bit identities of Waters’ IBE are
replaced by l strings of length n/l bits each. This reduces the number of public
parameters from 3+n in Waters’ IBE to 3+ l. The trade-off is a further security
degradation by a factor of approximately 2n/l. This can be translated into a
trade-off between the size of the public parameters and the efficiency of the
protocol (see [9]). The CSN idea of extending Waters’ IBE can also be applied
to the HIBE we describe.
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2 Definitions

In this section, we describe HIBE, security model for HIBE, cryptographic bi-
linear map and the hardness assumption that will be required in the proof.

2.1 HIBE Protocol

Following [14,13] a HIBE scheme is specified by four probabilistic algorithms:
Setup, Key Generation, Encryption and Decryption. Note that, for a HIBE of
height h (henceforth denoted as h-HIBE) any identity v is a tuple (v1, . . . , vj)
where 1 ≤ j ≤ h.

Setup: It takes as input a security parameter and returns the system parameters
together with the master key. The system parameters include the public param-
eters of the PKG, a description of the message space, the ciphertext space and
the identity space. These are publicly known while the master key is known only
to the PKG.

Each of the algorithms below (Key Generation, Encryption and Decryption)
have the system public parameters as an input. We do not mention this explicitly.

Key Generation: It takes as input an identity v = (v1, . . . , vj), the public pa-
rameters of the PKG and the private key dv|(j−1) corresponding to the identity
(v1, . . . , vj−1) and returns a private key dv for v. The identity v is used as the
public key while dv is the corresponding private key. If j = 1, then the private
key is generated by the PKG. It is not difficult to see that any entity which
possesses a private key for a prefix of v can generate a private key for v.

Encryption: It takes as input the identity v, the public parameters of the PKG
and a message from the message space and produces a ciphertext in the cipher-
text space.

Decryption: It takes as input the ciphertext and the private key of the cor-
responding identity v and returns the message or bad if the ciphertext is not
valid.

2.2 Security Model for HIBE

Security is defined using an adversarial game. An adversaryA is allowed to query
two oracles – a decryption oracle and a key-extraction oracle. At the initiation,
it is provided with the public parameters of the PKG. The game has two query
phases with a challenge phase in between.

Query Phase 1: Adversary A makes a finite number of queries where each query
is addressed either to the decryption oracle or to the key-extraction oracle. In
a query to the decryption oracle it provides a ciphertext as well as the identity
under which it wants the decryption. It gets back the corresponding message or
bad if the ciphertext is invalid. Similarly, in a query to the key-extraction oracle,
it asks for the private key of the identity it provides and gets back this private
key. Further, A is allowed to make these queries adaptively, i.e., any query may
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depend on the previous queries as well as their answers. The adversary is not
allowed to make any useless queries, i.e., queries for which it can compute the
answer itself. For example, the adversary is not allowed to ask for the decryp-
tion of a message under an identity if it has already obtained a private key
corresponding to the identity.

Challenge: At this stage, A outputs an identity v∗ = (v∗1 , . . . , v∗j ) for 1 ≤ j ≤ h,
and a pair of messages M0 and M1. There is the natural restriction on the
adversary, that it cannot query the key extraction oracle on v∗ or any of its
proper prefixes in either of the phases 1 or 2. A random bit b is chosen and the
adversary is provided with C∗ which is an encryption of Mb under v∗.

Query Phase 2: A now issues additional queries just like Phase 1, with the
(obvious) restrictions that it cannot ask the decryption oracle for the decryption
of C∗ under v∗, nor the key-extraction oracle for the private key v∗ or any of its
prefix.

Guess: A outputs a guess b′ of b.
The advantage of the adversary A is defined as:

AdvHIBE
A = |Pr[(b = b′)]− 1/2|.

The quantity AdvHIBE(t, qID, qC) denotes the maximum of AdvHIBE
A where the max-

imum is taken over all adversaries running in time at most t and making at
most qC queries to the decryption oracle and at most qID queries to the key-
extraction oracle. A HIBE protocol is said to be (ε, t, qID, qC)-CCA secure if
AdvHIBE(t, qID, qC) ≤ ε.

In the above game, we can restrict the adversary A from querying the de-
cryption oracle. AdvHIBE(t, q) in this context denotes the maximum advantage
where the maximum is taken over all adversaries running in time at most t and
making at most q queries to the key-extraction oracle. A HIBE protocol is said
to be (t, q, ε)-CPA secure if AdvHIBE(t, q) ≤ ε.

As mentioned earlier there are generic techniques [8,6] for converting a CPA-
secure HIBE into a CCA-secure HIBE. In view of these techniques, we will
concentrate only on CPA-secure HIBE.

2.3 Cryptographic Bilinear Map

Let G1 and G2 be cyclic groups having the same prime order p and G1 = 〈P 〉,
where we write G1 additively and G2 multiplicatively. A mapping e : G1×G1 →
G2 is called a cryptographic bilinear map if it satisfies the following properties.

– Bilinearity: e(aP, bQ) = e(P, Q)ab for all P, Q ∈ G1 and a, b ∈ ZZp.
– Non-degeneracy: If G1 = 〈P 〉, then G2 = 〈e(P, P )〉.
– Computability: There exists an efficient algorithm to compute e(P, Q) for all

P, Q ∈ G1.

Since e(aP, bP ) = e(P, P )ab = e(bP, aP ), e() also satisfies the symmetry prop-
erty. The modified Weil pairing [5] and the modified Tate pairing [1,11] are
examples of cryptographic bilinear maps.
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Note: Known examples of e() have G1 to be a group of Elliptic Curve (EC) points
and G2 to be a subgroup of a multiplicative group of a finite field. Hence, in
papers on pairing implementations [1,11], it is customary to write G1 additively
and G2 multiplicatively. On the other hand, some “pure” protocol papers [2,3,19]
write both G1 and G2 multiplicatively though this is not true for the initial
protocol papers [15,5]. Here we follow the first convention as it is closer to the
known examples of cryptographic bilinear map.

The decisional bilinear Diffie-Hellman (DBDH) problem in 〈G1, G2, e〉 [5] is
as follows: Given a tuple 〈P, aP, bP, cP, Z〉, where Z ∈ G2, decide whether Z =
e(P, P )abc (which we denote as Z is real) or Z is random.

The advantage of a probabilistic algorithm B, which takes as input a tuple
〈P, aP, bP, cP, Z〉 and outputs a bit, in solving the DBDH problem is defined as

AdvDBDH
B = |Pr[B(P, aP, bP, cP, Z) = 1|Z is real]

−Pr[B(P, aP, bP, cP, Z) = 1| Z is random]|
where the probability is calculated over the random choices of a, b, c ∈ ZZp as well
as the random bits used by B. The quantity AdvDBDH(t) denotes the maximum
of AdvDBDH

B where the maximum is taken over all adversaries B running in time
at most t. By the (ε, t)-DBDH assumption we mean AdvDBDH(t) ≤ ε.

3 HIBE Construction

The IBE scheme proposed in [19] has some similarities with the 1-level (H)IBE
scheme of Boneh-Boyen [2]. Waters in his paper [19], utilized this similarity to
build a HIBE in an obvious manner, i.e., for each level we have to generate new
parameters. This makes the public parameters quite large – for a HIBE of height
h with n-bit identities, the number of public parameters becomes n× h.

Here we present an alternative construction where the public parameters can
be significantly reduced. We show that for an h-HIBE it suffices to store (n + h)
elements in the public parameter.

The identities are of the type (v1, . . . , vj), for j ∈ {1, . . . , h} where each vk =
(vk,1, . . . , vk,n), vk,j ∈ {0, 1} for 1 ≤ j ≤ n.

Let G1 and G2 be cyclic groups having the same prime order p. We use a
cryptographic bilinear map e : G1 ×G1 → G2 the definition of which is given in
Section 2.3. The message space is G2.

Set-Up: The protocol is built from groups G1, G2 and a bilinear map e as men-
tioned above. The public parameters are the following elements: P , P1 = αP ,
P2, U ′

1, . . . , U
′
h, U1, . . . , Un, where G1 = 〈P 〉, α is chosen randomly from ZZp

and the other quantities are chosen randomly from G1. The master secret is
αP2. (The quantities P1 and P2 are not directly required; instead e(P1, P2) is
required. Hence one may store e(P1, P2) as part of the public parameters instead
of P1 and P2.)

Note that for the jth level of the HIBE, we add a single element, i.e., U ′
j in

the public parameter while the elements U1, . . . , Un are re-used for each level.
This way we are able to shorten the public parameter size.
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A shorthand: Let v = (v1, . . . , vn), where each vi is a bit. For 1 ≤ k ≤ h we
define,

Vk(v) = U ′
k +

n∑
i=1

viUi. (1)

When v is clear from the context we will write Vk instead of Vk(v). The modu-
larity introduced by this notation allows an easier understanding of the protocol.

Key Generation: Let v = (v1, . . . , vj), j ≤ h, be the identity for which the
private key is required. The private key dv for v is defined to be a tuple dv =
(d0, d1, . . . , dj) where

d0 = αP2 +
j∑

k=1

rkVk(vk); and dk = rkP for 1 ≤ k ≤ j.

Here r1, . . . , rj are random elements from ZZp.
Such a key can be generated by an entity which possesses a private key for

the tuple (v1, . . . , vj−1) in the manner shown in [2]. Suppose (d′0, d
′
1, . . . , d

′
j−1) is

a private key for the identity (v1, . . . , vj−1). To generate a private key for v, first
choose a random rj ∈ ZZp and compute dv = (d0, d1, . . . , dj) as follows.

d0 = d′0 + rjVj(vj); di = d′i for 1 ≤ i ≤ j − 1; and dj = rjP.

In fact, any prefix of v as well as the PKG can generate a private key dv for v.

Encryption: Let v = (v1, . . . , vj) be the identity under which a message M ∈ G2

is to be encrypted. Choose t to be a random element of ZZp. The ciphertext is

(C0 = M × e(P1, P2)t, C1 = tP, B1 = tV1(v1), . . . , Bj = tVj(vj)).

Decryption: Let C = (C0, C1, B1, . . . , Bj) be a ciphertext and the corresponding
identity v = (v1, . . . , vj). Let (d0, d1, . . . , dj) be the decryption key corresponding
to the identity v. The decryption steps are as follows.

Verify whether C0 is in G2, C1 and the Bi’s are in G1. If any of these ver-
ifications fail, then return bad, else proceed with further decryption as follows.
Compute V1(v1), . . . , Vj(vj). Return

C0 ×
∏j

k=1 e(Bi, di)
e(d0, C1)

.

It is standard to verify the consistency of decryption.

Chatterjee-Sarkar-Naccache Extension: Following [9,16], let l be a size parameter
which divides n. An identity is a tuple (v1, . . . , vj), j ≤ h, where each vk, 1 ≤
k ≤ j is represented as vk = (vk,1, . . . , vk,l) where vk,i is an (n/l)-bit string
considered to be an element of ZZ2n/l .
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The public parameters are P,P1, P2, U1, . . . , Ul and U ′
1, . . . , U

′
h. In this case,

we change the definition of Vk() to the following: Vk(v) = U ′
k +

∑l
i=1 viUi where

each vi is a bit string of length n/l. Using this modified definition of Vk() for
1 ≤ k ≤ h, the key generation, encryption and decryption algorithms of the HIBE
described above can be extended to the Chatterjee-Sarkar-Naccache settings.

4 Security

In this section, we state the result on security and discuss its implications. The
proof is given in Section 5.

Theorem 1. The HIBE protocol described in Section 3 is (εhibe, t, q)-CPA se-
cure assuming that the (t′, εdbdh)-DBDH assumption holds in 〈G1, G2, e〉, where
εhibe ≤ 2εdbdh/λ; t′ = t + χ(εhibe) and

χ(ε) = O(τq + O(ε−2 ln(ε−1)λ−1 ln(λ−1));
τ is the time required for one scalar multiplication in G1;
λ = 1/(2(4q(n + 1))h).

We further assume 4q(n + 1) < p.

The last assumption is practical and similar assumptions are alsomade in [19,9,16],
though not quite so explicitly. Before proceeding to the proof, we discuss the above
result. The main point of the theorem is the bound on εhibe. This is given in terms
of λ and in turn in terms of q, n and h.

The reduction is not tight; security degrades by a factor of 4(4q(n + 1))h.
The actual value of degradation depends on the value of q, the number of key
extraction queries made by the adversary. A value of q used in earlier analysis
is q = 230 [12].

h = 1: This implies that the HIBE is actually an IBE. This is the situation
originally considered by Waters [19] and εhibe ≤ 16q(n + 1)εdbdh ≤ 32nqεdbdh.

h > 1: This corresponds to a proper HIBE and we obtain εhibe ≤ 4(4q(n +
1))hεdbdh ≤ 4(8nq)hεdbdh. For n = 160 (and q = 230), this amounts to εhibe ≤
4(10× 237)hεdbdh.

In Table 1, we compare the known HIBE protocols which are secure in the full
model. We note that HIBE protocols which are secure in the selective-ID model
are also secure in the full model with a security degradation of ≈ 2nh, where h
is the number of levels in the HIBE and n is number of bits in the identity. This
degradation is far worse than the protocols in Table 1.

The BB-HIBE in Table 1 is obtained through a generic transformation (as
mentioned in [2]) of the selective-ID secure BB-HIBE to a HIBE secure in the full
model using random oracle. For the GS-HIBE [13] and BB-HIBE, the parameter
qH stands for the total number of random oracle queries and in general qH ≈
260 � q [12]. The parameter j in the private key size, ciphertext size and the
encryption and decryption columns of Table 1 represents the number of levels
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Table 1. Comparison of HIBE Protocols

Protocol Hardness Rnd. Sec. Pub. Para. sz Pvt. Key sz Cprtxt sz Pairing
Assump. Ora. Deg. (elts. of G1) (elts. of G1) (elts. of G1) Enc. Dec.

GS [13] BDH Yes qHqh 2 j j 1 j

BB [2] DBDH Yes qh
H h + 3 j + 1 j + 1 None j + 1

Waters [19] DBDH No 4(8nq)h (n + 1)h + 3 j + 1 j + 1 None j + 1

Our DBDH No 4(8nq)h h + n + 3 j + 1 j + 1 None j + 1

of the identity on which the operations are performed. The parameter h is the
maximum number of levels in the HIBE. The construction in this paper requires
(h + n + 3) many elements of G1 as public parameters whereas Waters HIBE
requires (n+1)h+3 many elements. The security degradation remains the same
in both cases.

5 Proof of Theorem 1

The security reduction follows along standard lines and develops on the proof
given in [19,9,16]. We need to lower bound the probability of the simulator
aborting on certain queries and in the challenge stage. The details of obtaining
this lower bound are given in Section 5.1. In the following proof, we simply use
the lower bound. We want to show that the HIBE is (εhibe, t, q)-CPA secure. In
the game sequence style of proofs, we start with the adversarial game defining
the CPA-security of the protocol against an adversary A and then obtain a
sequence of games as usual. In each of the games, the simulator chooses a bit δ
and the adversary makes a guess δ′. By Xi we will denote the event that the bit
δ is equal to the bit δ′ in the ith game.

Game 0: This is the usual adversarial game used in defining CPA-secure HIBE.
We assume that the adversary’s runtime is t and it makes q key extraction
queries. Also, we assume that the adversary maximizes the advantage among all
adversaries with similar resources. Thus, we have εhibe =

∣∣Pr[X0]− 1
2

∣∣ .
Game 1: In this game, we setup the protocol from a tuple 〈P, P1 = aP, P2 =
bP, P3 = cP, Z = e(P1, P2)abc〉 and answer key extraction queries and generate
the challenge. The simulator is assumed to know the values a, b and c. However,
the simulator can setup the protocol as well as answer certain private key queries
without the knowledge of these values. Also, for certain challenge identities it
can generate the challenge ciphertext without the knowledge of a, b and c. In the
following, we show how this can be done. If the simulator cannot answer a key
extraction query or generate a challenge without using the knowledge of a, b and
c, it sets a flag flg to one. The value of flg is initially set to zero.

Note that the simulator is always able to answer the adversary (with or with-
out using a, b and c). The adversary is provided with proper replies to all its
queries and is also provided the proper challenge ciphertext. Thus, irrespective
of whether flg is set to one, the adversary’s view in Game 1 is same as that in
Game 0. Hence, we have Pr[X0] = Pr[X1].
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We next show how to setup the protocol and answer the queries based on the
tuple 〈P, P1 = aP, P2 = bP, P3 = cP, Z = e(P1, P2)abc〉.

Set-Up: Let m be a prime such that 2q < m < 4q. Our choice of m is different
from that of previous works [19,9,16] where m was chosen to be equal to 4q and
2q.

Choose x′
1, . . . , x

′
h and x1, . . . , xn randomly from ZZm; also choose y′

1, . . . , y
′
h

and y1, . . . , yn randomly from ZZp. Choose k1, . . . , kh randomly from {0, . . . , n}.
For 1 ≤ j ≤ h, define U ′

j = (p−mkj + x′
j)P2 + y′

jP and for 1 ≤ i ≤ n define
Ui = xiP2 + yiP . The public parameters are (P, P1, P2, U

′
1, . . . , U

′
h, U1, . . . , Un).

The master secret is aP2 = abP . The distribution of the public parameters is
as expected by A. In its attack, A will make some queries, which have to be
properly answered by the simulator.

For 1 ≤ j ≤ h, we define several functions. Let v = (v1, . . . , vn) where each
vi ∈ {0, 1}. We define

Fj(v) = p−mkj + x′
j +

∑n
i=1 xivi

Jj(v) = y′
j +

∑n
i=1 yivi

Lj(v) = x′
j +

∑n
i=1 xivi (mod m)

Kj(v) =
{

0 if Lj(v) = 0
1 otherwise.

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ (2)

Recall that we have assumed 4q(n+1) < p. Let Fmin and Fmax be the minimum
and maximum values of Fj(v). Fmin is achieved when kj is maximum and x′

j

and the xi’s are all zero. Thus, Fmin = p −mn. We have mn < 4q(n + 1) and
by assumption 4q(n + 1) < p. Hence, Fmin > 0. Again Fmax is achieved when
kj = 0 and x′

j and the xi’s and vi’s are equal to their respective maximum
values. We get Fmax < p + m(n + 1) < p + 4q(n + 1) < 2p. Thus, we have
0 < Fmin ≤ Fj(v) ≤ Fmax < 2p. Consequently, Fj(v) ≡ 0 mod p if and only if
Fj(v) = p which holds if and only if −mkj + x′

j +
∑n

i=1 xivi = 0.
Now we describe how the queries made by A are answered by B. The queries

can be made in both Phases 1 and 2 of the adversarial game (subject to the
usual restrictions). The manner in which they are answered by the simulator is
the same in both the phases.

Key Extraction Query: Suppose A makes a key extraction query on the identity
v = (v1, . . . , vj). Suppose there is a u with 1 ≤ u ≤ j such that Ku(vu) = 1.
Otherwise set flg to one. In the second case, the simulator uses the value of a to
return a proper private key dv = (aP2 +

∑j
i=1 riVi, r1V1, . . . , rjVj). In the first

case, the simulator constructs a private key in the following manner.
Choose random r1, . . . , rj from ZZp and define

d0|u = − Ju(vu)
Fu(vu)P1 + ru(Fu(vu)P2 + Ju(vu)P )

du = −1
Fu(vu)P1 + ruP

dk = rkP for k �= u
dv = (d0|u +

∑
k∈{1,...,j}\{u} rkVk, d1, . . . , dj)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ (3)



154 S. Chatterjee and P. Sarkar

The quantity dv is a proper private key corresponding to the identity v. The
algebraic verification of this fact is similar to that in [2,19]. This key is provided
to A.

Challenge: Let the challenge identity be v∗ = (v∗1 , . . . , v∗h∗), 1 ≤ h∗ ≤ h and the
messages be M0 and M1. Choose a random bit δ. We need to have Fk(v∗k) ≡
0 mod p for all 1 ≤ k ≤ h∗. If this condition does not hold, then set flg to one. In
the second case, the simulator uses the value of c to provide a proper encryption
of Mδ to A by computing (Mδ × e(P1, P2)c, cP, cV1, . . . , cVh∗). In the first case,
it constructs a proper encryption of Mδ in the following manner.

(M δ × Z, C1 = P3, B1 = J1(v∗1)P3, . . . , Bh∗ = Jh∗(v∗h∗)P3).

We require Bj to be equal to cVj(v∗j ) for 1 ≤ j ≤ h∗. Recall that the definition
of Vj(v) is Vj(v) = U ′

j +
∑n

k=1 vkUk. Using the definition of U ′
j and the Uk’s as

defined in the setup by the simulator, we obtain, cVi = c(Fi(v∗i )P2 + Ji(v∗i )P ) =
Ji(v∗i )cP = Ji(v∗i )P3. Here we use the fact, Fi(v∗i ) ≡ 0 mod p. Hence, the quan-
tities B1, . . . , Bh∗ are properly formed.

Guess: The adversary outputs a guess δ′ of δ.

Game 2: This is a modification of Game 1 whereby the Z in Game 1 is now
chosen to be a random element of G2. This Z is used to mask the message
Mδ in the challenge ciphertext. Since Z is random, the first component of the
challenge ciphertext is a random element of G2 and provides no information to
the adversary about δ. Thus, Pr[X2] = 1

2 .
We have the following claim.

Claim:
|Pr[X1]− Pr[X2]| ≤ εdbdh

λ
+

εhibe

2
.

Proof: The change from Game 1 to Game 2 corresponds to an “indistinguisha-
bility” step in Shoup’s tutorial [18] on such games. Usually, it is easy to bound
the probability difference. In this case, the situation is complicated by the fact
that there is a need to abort.

We show that it is possible to obtain an algorithm B for DBDH by extending
Games 1 and 2. The extension of both the games is same and is described as
follows. B takes as input a tuple (P, aP, bP, cP, Z) and sets up the HIBE protocol
as in Game 1 (The setup of Games 1 and 2 are the same). The key extraction
queries are answered and the challenge ciphertext is generated as in Game 1.
If at any point of time flg is set to one by the game, then B outputs a random
bit and aborts. This is because the query cannot be answered or the challenge
ciphertext cannot be generated using the input tuple. At the end of the game,
the adversary outputs the guess δ′. B now goes through a separate abort stage
as follows.
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“Artificial Abort”: The probability that B aborts in the query or challenge phases
depends on the adversary’s input. The goal of the artificial abort step is to make
the probability of abort independent of the adversary’s queries by ensuring that
in all cases its probability of abort is the maximum possible. This is done by sam-
pling the transcript of adversary’s query and in certain cases aborting. The sam-
pling procedure introduces the extra component O(ε−2

hibe ln(ε−1
hibe)λ

−1 ln(λ−1))
into the simulator’s runtime. (For details see [19,16].) Here λ is a lower bound
on the probability that B does not abort before entering the artificial abort stage.
The expression for λ is obtained in Proposition 3 of Section 5.1.

Output: If B has not aborted up to this stage, then it outputs 1 if δ = δ′; else 0.
Note that if Z is real, then the adversary is playing Game 1 and if Z is random,

then the adversary is playing Game 2. The time taken by the simulator in either
Game 1 or 2 is clearly t + χ(εhibe). From this point, standard inequalities and
probability calculations establish the claim. � 
Now we can complete the proof in the following manner.

εhibe =
∣∣∣∣Pr[X0]− 1

2

∣∣∣∣
≤ |Pr[X0]− Pr[X2]|
≤ |Pr[X0]− Pr[X1]|+ |Pr[X1]− Pr[X2]|
≤ εhibe

2
+

εdbdh

λ
.

Rearranging the inequality gives the desired result. This completes the proof of
Theorem 1. � 
5.1 Lower Bound on Not Abort

We require the following two independence results in obtaining the required lower
bound. Similar independence results have been used in [19,9,16] in connection
with IBE protocols. The situation for HIBE is more complicated than IBE and
especially so since we reuse some of the public parameters over different levels
of the HIBE. This makes the proofs more difficult. Our independence results are
given in Proposition 1 and 2 and these subsume the results of previous work. We
provide complete proofs for these two propositions as well as a complete proof
for the lower bound. The probability calculation for the lower bound is also more
complicated compared to the IBE case.

Proposition 1. Let m be a prime and L(·) be as defined in (2). Let v1, . . . , vj

be identities, i.e., each vi = (vi,1, . . . , vi,n), is an n-bit string.Then

Pr

[
j∧

k=1

(Lk(vk) = 0)

]
=

1
mj

.
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The probability is over independent and uniform random choices of x′
1, . . . , x

′
j,

x1, . . . , xn from ZZm. Consequently, for any θ ∈ {1, . . . , j}, we have

Pr

⎡⎣Lθ(vθ) = 0

∣∣∣∣∣∣
j∧

k=1,k �=θ

(Lk(vk) = 0)

⎤⎦ =
1
m

.

Proof: Since ZZm forms a field, we can do linear algebra with vector spaces over
ZZm. The condition

∧j
k=1 (Lj(vj) = 0) is equivalent to the following system of

equations over ZZm.

x′
1 + v1,1x1 + · · · + v1,nxn = 0

x′
2 + v2,1x1 + · · · + v2,nxn = 0
· · · · · · · · · · · · · · · · ·
x′

j + vj,1x1 + · · · + vj,nxn = 0

This can be rewritten as

(x′
1, . . . , x

′
j , x1, . . . , xn)A(j+n)×(j+n) = (0, . . . , 0)1×(j+n)

where

A =
[

Ij Oj×n

Vn×j On×n

]
and Vn×j =

⎡⎣ v1,1 · · · vj,1

· · · · · · · · ·
v1,n · · · vj,n

⎤⎦ ;

Ij is the identity matrix of order j; O is the all zero matrix of the specified order.
The rank of A is clearly j and hence the dimension of the solution space is n.
Hence, there are mn solutions in (x′

1, . . . , x
′
j , x1, . . . , xn) to the above system of

linear equations. Since the variables x′
1, . . . , x

′
j , x1, . . . , xn are chosen indepen-

dently and uniformly at random, the probability that the system of linear equa-
tions is satisfied for a particular choice of these variables is mn/mn+j = 1/mj.
This proves the first part of the result.

For the second part, note that we may assume θ = j by renaming the x′’s if
required. Then

Pr

[
Lj(vj) = 0

∣∣∣∣∣
j−1∧
k=1

(Lk(vk) = 0)

]
=

Pr
[∧j

k=1 (Lk(vk) = 0)
]

Pr
[∧j−1

k=1 (Lk(vk) = 0)
] =

mj−1

mj
=

1
m

.

� 
Proposition 2. Let m be a prime and L(·) be as defined in (2). Let v1, . . . , vj

be identities, i.e., each vi = (vi,1, . . . , vi,n), is an n-bit string. Let θ ∈ {1, . . . , j}
and let v′θ be an identity such that v′θ �= vθ. Then

Pr

[
(Lθ(v′θ) = 0) ∧

j∧
k=1

(Lk(vk) = 0)

]
=

1
mj+1

.

The probability is over independent and uniform random choices of x′
1, . . . , x

′
j,

x1, . . . , xn from ZZm. Consequently, we have

Pr

[
Lθ(v′θ) = 0

∣∣∣∣∣
j∧

k=1

(Lk(vk) = 0)

]
=

1
m

.
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Proof: The proof is similar to the proof of Proposition 1. Without loss of
generality, we may assume that θ = j, since otherwise we may rename variables
to achieve this. The condition (Lθ(v′θ) = 0)∧∧j

k=1 (Lk(vk) = 0) is equivalent to
a system of linear equations xA = 0 over ZZm. In this case, the form of A is the
following.

A =
[

Ij cT Oj×n

Vn×j (v′j)
T On×

]
where c = (0, . . . , 0, 1); cT denotes the transpose of c and (v′j)

T is the transpose
of v′j . The first j columns of A are linearly independent. The (j + 1)th column
of A is clearly linearly independent of the first (j− 1) columns. We have vj �= v′j
and m > 2, hence vj �≡ v′j mod m. Using this, it is not difficult to see that the
first (j + 1) columns of A are linearly independent and hence the rank of A is
(j + 1). Consequently, the dimension of the solution space is n − 1 and there
are mn−1 solutions in (x′

1, . . . , x
′
j , x1, . . . , xn) to the system of linear equations.

Since the x′’s and the x’s are chosen independently and uniformly at random
from ZZm, the probability of getting a solution is mn−1/mn+j = 1/mj+1. This
proves the first part of the result. The proof of the second part is similar to that
of Proposition 1. � 

Proposition 3. The probability that the simulator in the proof of Theorem 1
does not abort before the artificial abort stage is at least λ = 1

2(4q(n+1))h .

Proof: We consider the simulator in the proof of Theorem 1. Up to the artificial
abort stage, the simulator could abort on either a key extraction query or in the
challenge stage. Let abort be the event that the simulator aborts before the
artificial abort stage. For 1 ≤ i ≤ q, let Ei denote the event that the simulator
does not abort on the ith key extraction query and let C be the event that the
simulator does not abort in the challenge stage. We have

Pr[abort] = Pr

[(
q∧

i=1

Ei

)
∧C

]

= Pr

[(
q∧

i=1

Ei

)
|C

]
Pr[C]

=

(
1− Pr

[(
q∨

i=1

¬Ei

)
|C

])
Pr[C]

≥
(

1−
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].

We first consider the event C. Let the challenge identity be v∗ = (v∗1 , . . . , v
∗
h∗).

Event C holds if and only if Fj(v∗j ) ≡ 0 mod p for 1 ≤ j ≤ h∗. Recall that by
choice of p, we can assume Fj(v∗j ) ≡ 0 mod p if and only if x′

j +
∑n

k=1 xkvj,k =
mkj . Hence,
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Pr[C] = Pr

⎡⎣ h∗∧
j=1

(
x′

j +
n∑

k=1

xkvj,k = mkj

)⎤⎦ . (4)

For 1 ≤ j ≤ h∗ and 0 ≤ i ≤ n, denote the event x′
j +

∑n
k=1 xkvj,k = mi by Aj,i

and the event kj = i by Bj,i. Also, let Cj,i be the event Aj,i ∧Bj,i.
Note that the event

∨n
i=0 Aj,i is equivalent to x′

j +
∑n

k=1 xkvj,k ≡ 0 mod m
and hence equivalent to the condition Lj(vj) = 0. Since kj is chosen uniformly
at random from the set {0, . . . , n}, we have Pr[Bj,i] = 1/(1 + n) for all j and
i. The events Bj,i’s are independent of each other and also independent of the
Aj,i’s. We have

Pr

⎡⎣ h∗∧
j=1

(
x′

j +
n∑

k=1

xkvj,k = mkj

)⎤⎦ = Pr

⎡⎣ h∗∧
j=1

(
n∨

i=0

Cj,i

)⎤⎦
=

1
(1 + n)h∗ Pr

⎡⎣ h∗∧
j=1

(
n∨

i=0

Aj,i

)⎤⎦
=

1
(1 + n)h∗ Pr

⎡⎣ h∗∧
j=1

(Lj(vj) = 0)

⎤⎦
=

1
(m(1 + n))h∗

The last equality follows from Proposition 1.
Now we turn to bounding Pr[¬Ei|C]. For simplicity of notation, we will drop

the subscript i from Ei and consider the event E that the simulator does not
abort on a particular key extraction query on an identity (v1, . . . , vj). By the
simulation, the event ¬E implies that Li(vi) = 0 for all 1 ≤ i ≤ j. This
holds even when the event is conditioned under C. Thus, we have Pr[¬E|C] ≤
Pr[∧j

i=1Li(vi) = 0|C]. The number of components in the challenge identity is h∗

and now two cases can happen:

j ≤ h∗: By the protocol constraint (a prefix of the challenge identity cannot be
queried to the key extraction oracle), we must have a θ with 1 ≤ θ ≤ j such that
vθ �= v∗θ .
j > h∗: In this case, we choose θ = h∗ + 1.

Now we have Pr[¬E|C] ≤ Pr

[
j∧

i=1

Li(vi) = 0|C
]
≤ Pr[Lθ(vθ) = 0|C] = 1/m.

The last equality follows from an application of either Proposition 1 or Propo-
sition 2 according as whether j > h∗ or j ≤ h∗. Substituting this in the bound
for Pr[abort] we obtain

Pr[abort] ≥
(

1−
q∑

i=1

Pr [¬Ei |C ]

)
Pr[C].
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≥
(
1− q

m

) 1
(m(n + 1))h

≥ 1
2
× 1

(4q(n + 1))h
.

We use h ≥ h∗ and 2q < m < 4q to obtain the inequalities. This completes the
proof. � 

6 Conclusion

Waters presented a construction of IBE [19] which significantly improves upon
the previous construction of Boneh-Boyen [3]. In his paper, Waters also described
a method to extend his IBE to a HIBE. The problem with this construction is
that it increases the number public parameters. In this paper, we have presented
a construction of a HIBE which builds upon the previous (H)IBE protocols. The
number of public parameters is significantly less compared to Waters’ HIBE.
The main open problem in the construction of HIBE protocols is to avoid or
control the security degradation which is exponential in the number of levels of
the HIBE.
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Abstract. We introduce a primitive called Hierarchical Identity-
Coupling Broadcast Encryption (HICBE) that can be used for construct-
ing efficient collusion-resistant public-key broadcast encryption schemes
with extended properties such as forward-security and keyword-
searchability. Our forward-secure broadcast encryption schemes have
small ciphertext and private key sizes, in particular, independent of the
number of users in the system. One of our best two constructions achieves
ciphertexts of constant size and user private keys of size O(log2 T ), where
T is the total number of time periods, while another achieves both ci-
phertexts and user private keys of size O(log T ). These performances
are comparable to those of the currently best single-user forward-secure
public-key encryption scheme, while our schemes are designed for broad-
casting to arbitrary sets of users. As a side result, we also formalize the
notion of searchable broadcast encryption, which is a new generaliza-
tion of public key encryption with keyword search. We then relate it
to anonymous HICBE and present a construction with polylogarithmic
performance.

1 Introduction

Broadcast encryption (BE) scheme [16] allows a broadcaster to encrypt a message
to an arbitrarily designated subset S of all users in the system. Any user in S can
decrypt the message by using his own private key while users outside S should
not be able to do so even if all of them collude. Such a scheme is motivated
by many applications such as pay-TV systems, the distribution of copyrighted
materials such as CD/DVD. Public-key broadcast encryption is the one in which
the broadcaster key is public. Such a scheme is typically harder to construct than
private-key type ones. In what follows, we let n denote the number of all users.

The best BE scheme so far in the literature was recently proposed by Boneh,
Gentry, and Waters [7]. Their scheme, which is a public-key scheme, achieves
asymptotically optimal sizes, O(1), for both broadcast ciphertexts and user pri-
vate keys, with the price of O(n)-size public key. (To achieve some tradeoff, they

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 161–177, 2006.
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also proposed a generalized scheme, of which one parametrization gives a scheme
where both the public keys and the ciphertexts are of size O(

√
n)). The previ-

ously best schemes [20,19,18], along the line of the subset-cover paradigm by
Naor, Naor, and Lotspiech (NNL) [20], can only achieve a broadcast ciphertext
of size O(r) with each user’s private key being of size O(log n), where r = n−|S|
is the number of revoked users. Although these schemes are improved in [3] by
reducing the private key size to O(1), the ciphertext is still of size O(r).1 These
NNL derivatives are originally private-key schemes. Dodis and Fazio [15] gave
a framework to extend these schemes to public-key versions using Hierarchical
Identity-Based Encryption (HIBE) [17]. Instantiating this framework with a re-
cent efficient HIBE scheme by Boneh, Boyen, and Goh [5] gives a public-key
version of NNL-based schemes without loss in performance of ciphertext sizes.

Forward-Secure Broadcast Encryption. Unfortunately, a normal broadcast
encryption scheme offers no security protection for any user whatsoever once
his private key is compromised. As an extension to the normal variant in or-
der to cope with the vulnerability against key exposure, the notion of forward
security in the context of public-key broadcast encryption was first studied by
Yao et al. [22]. A forward-secure public-key broadcast encryption (FS-BE) al-
lows each user to update his private key periodically while keeping the public
key unchanged. Such a scheme guarantees that even if an adversary learns the
private key of some user at time period τ , messages encrypted during all time
periods prior to τ remain secret. Yao et al. also proposed a FS-BE scheme achiev-
ing ciphertexts of size O(r log T log n) while each user’s private key is of size
O(log3 n log T ), where T is the maximum allowed time period. Indeed, they pro-
posed a forward-secure HIBE scheme and then applied it to the NNL scheme in
essentially the same manner as done by [15], as mentioned above. Later, Boneh et
al. [5] proposed (at least two) more efficient forward-secure HIBE schemes, which
when applying to the NNL scheme gives a FS-BE scheme with ciphertexts of size
O(r) and private keys of size O(log3 n logT ) and another FS-BE scheme with
ciphertexts of size O(r log T ) and private keys of size O((log2 n)(log n + log T )).
These schemes are the best FS-BE schemes so far in the literature.

1.1 Our Contributions

Towards constructing a more efficient FS-BE scheme, we introduce a new primi-
tive called Hierarchical Identity-Coupling Broadcast Encryption (HICBE), which
can be considered as a generalization either of BE that further includes hierarchi-
cal-identity dimension together with key derivation functionality or of HIBE that
further includes a user dimension together with broadcast functionality. Besides
forward security, HICBE can be used to construct BE with other extended prop-
erties such as keyword-searchability, which is another feature that we study as
a side result in this paper (see below).
1 Note that one advantage of these NNL-based schemes is that, in contrast to the BGW

scheme, all the other efficiency parameters, beside ciphertext sizes and private key
sizes, are also of sub-linear (in n) size.
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FS-BE with Short Ciphertexts and Private Keys. Using HICBE as a
building block, we propose at least three new FS-BE schemes. One of our best two
schemes achieves ciphertexts of size O(1) and user private keys of size O(log2 T ).
The other best scheme achieves ciphertexts of size O(log T ) and user private
keys of size O(log T ). These outperform the previous schemes in terms of both
overheads. In particular, they are independent of the parameters in the user
dimension, namely n and r; moreover, the first scheme achieves the constant-
size ciphertext. These performances of our schemes are comparable to those of
the currently best single-user forward-secure public-key encryption scheme (cf.
[5]). The public keys for both schemes are of size O(n + log T ). Analogously
to [7], we can show that this amount can be traded off to O(

√
n + log T ) with

ciphertext size being increased to O(
√

n) and O(
√

n+log T ) respectively in both
schemes.

Security of our systems is based on the Decision Bilinear Diffie-Hellman Ex-
ponent assumption (BDHE), which is previously used in [7,5]. We prove the
security in the standard model (i.e., without random oracle).

Searchable Broadcast Encryption. Public-key BE can be applied naturally
to encrypted file systems, which enable file sharing among privileged users over
a public server, as already suggested in [7]. A file can be created by anyone using
the public key and the privileged subset can be arbitrarily specified by the cre-
ator of the file. Due to a possible large amount of databases, a user Alice might
want to retrieve only those files that contain a particular keyword of interest
(among all the files in which Alice is specified as a privileged user), but with-
out giving the server the ability to decrypt the databases. Public-key Broadcast
Encryption with Keyword Search (BEKS) allows to do exactly this. It enables
Alice to give the server a capability (or a trapdoor) to test whether a particular
keyword, w, is contained in any (and only) file that includes Alice as a privileged
user. This is done in such a way that (1) the server is unable to learn anything
else about that file, besides the information about containment of w, and (2) all
the other users outside the privileged set cannot learn anything, in particular,
cannot generate such a trapdoor, even if they collude.

BEKS is a new generalization of public key encryption with keyword search
(PEKS) [6] that we introduce in this paper. We then relate that an anonymous
ICBE (1-level HICBE) is sufficient to construct BEKS, analogously to the rela-
tion between anonymous IBE and PEKS [1].

A trivial BEKS achieving ciphertexts of size O(n) can be constructed from the
concatenation of PEKS-encryption of the same keyword to each privileged user.
Our scheme achieves ciphertexts of size O(r log n), trapdoors of size O(log3 n),
and private keys of size O(log4 n). Before coming up with this result, we construc-
tively hint that even using the same technique as our FS-BE schemes (where a
non-anonymous HICBE is sufficient), it might not be easy to construct a BEKS
scheme with both ciphertext and private key of sizes independent of n. We refer
for most of the results in this part to the full version of this paper [2] due to
limited space here.
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2 Preliminaries

Bilinear Maps. We briefly review facts about bilinear maps. We use the stan-
dard terminology from [8]. Let G, G1 be multiplicative groups of prime order p.
Let g be a generator of G. A bilinear map is a map e : G × G → G1 for which
the following hold: (1) e is bilinear; that is, for all u, v ∈ G, a, b ∈ Z, we have
e(ua, vb) = e(u, v)ab. (2) The map is non-degenerate: e(g, g) �= 1. We say that
G is a bilinear group if the group action in G can be computed efficiently and
there exists G1 for which the bilinear map e : G × G → G1 is efficiently com-
putable. Although it is desirable to use asymmetric type, e : G×G′ → G1 where
G �= G′, so that group elements will have compact representation, for simplicity
we will present our schemes by the symmetric ones. Indeed, our schemes can be
rephrased in terms of asymmetric maps.

Decision BDHE Assumption.2 Let G be a bilinear group of prime order p.
The Decision n-BDHE (Bilinear Diffie-Hellman Exponent) problem [7,5] in G is
stated as follows: given a vector(

g, h, gα, g(α2), . . . , g(αn), g(αn+2), . . . , g(α2n), Z
)
∈ G2n+1 ×G1

as input, determine whether Z = e(g, h)(α
n+1). We denote gi = g(αi) ∈ G for

shorthand. Let yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n). An algorithmA that outputs
b ∈ {0, 1} has advantage ε in solving Decision n-BDHE in G if |Pr

[A(g, h, yg,α,n,

e(gn+1, h)
)

= 0
]− Pr

[A(g, h, yg,α,n, Z
)

= 0
]| ≥ ε, where the probability is over

the random choice of generators g, h ∈ G, the random choice of α ∈ Zp, the
random choice of Z ∈ G1, and the randomness of A. We refer to the distribution
on the left as PBDHE and the distribution on the right as RBDHE . We say
that the Decision (t, ε, n)-BDHE assumption holds in G if no t-time algorithm
has advantage at least ε in solving the Decision n-BDHE problem in G. We
sometimes drop t, ε and refer it as the Decision n-BDHE assumption in G.

3 Hierarchical Identity-Coupling Broadcast Encryption

Model. A HICBE system consists of n users, each with index i ∈ {1, . . . , n}.
In usage, a user index will be “coupled” with some additional arbitrary identity
tuple ID = (I1, . . . , Iz), for any Ij in some predefined identity space I and any
z = 1, . . . , L where L is a predetermined maximum depth of tuples. The user
i coupling with ID, which we will refer as a node (i, ID), will possess its own
private key di,ID. If ID = (I1, . . . , Iz), then for j = 1, . . . , z, let ID|j = (I1, . . . , Ij),
and let ID|0 be the empty string ε. A HICBE system enables a derivation from

2 This holds in the generic bilinear group model with the computational lower bound of
Ω( p/n) on the difficulty of breaking (cf.[5]). Cheon [14] recently showed a concrete
attack with roughly the same complexity. It is recommended to either increase p (to
≈ 220-bit size for n = 264 to achieve 280 security) or use p of a special form where
p − 1 and p + 1 have no small divisor greater than log2 p to avoid the attack.
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di,ID|z−1 to di,ID. In particular, di,(I1) can be derived from di, the root private
keys of i. A HICBE system enables one to encrypt a message to a set of nodes
{(i, ID)|i ∈ S} for arbitrary S ⊆ {1, . . . , n}, where we say that it is encrypted
to multi-node (S, ID). If i ∈ S, the user i coupling with ID (who possesses di,ID)
can decrypt this ciphertext. When L = 1, we simply call it an ICBE.

Formally, a HICBE system is made up of five randomized algorithms as fol-
lows. For simplicity, we define it as a key encapsulation mechanism (KEM).

Setup(n, L): Takes as input the number of all users n and the maximum depth
L of the identity hierarchy. It outputs a public key pk and a master key msk.

PrivKeyGen(i, pk, msk): Takes as input a user index i, the public key pk, and the
master key msk. It outputs a root private key di of user i.

Derive(pk, i, ID, di,ID|z−1): Takes as input the public key pk, a user index i, an
identity ID of depth z, and the private key di,ID|z−1 of user i coupling with
the parent identity ID|z−1. It outputs di,ID. Here di,ID|0 = di.

Encrypt(pk, S, ID): Takes as input the public key pk, a subset S ⊆ {1, . . . , n},
and an identity tuple ID. It outputs a pair (hdr, K) where hdr is called the
header and K ∈ K is a message encryption key. We will also refer to hdr as
the broadcast ciphertext.

Decrypt(pk, S, i, di,ID, hdr): Takes as input the pk, a subset S, a user i, the private
key di,ID of user i coupling with ID, and the header hdr. If i ∈ S it outputs
K ∈ K else outputs a special symbol ‘/∈’.

The correctness consistency can be defined straightforwardly and is omitted here.

Confidentiality. We define semantic security of HICBE by the following game
between an adversary A and a challenger C; both are given n, L as input.

Setup. The challenger C runs Setup(n, L) to obtain a public key pk and the
master key msk. It then gives the public key pk to A.

Phase 1. A adaptively issues queries q1, . . . , qμ where each is one of two types:
- Private key query 〈i, ID〉. C responds by running algorithm PrivKeyGen and

Derive to derive the private key di,ID, corresponding to the node (i, ID), then
sends di,ID to A.

- Decryption query 〈S, ID, i, hdr〉 where i ∈ S. C responds by running algorithm
PrivKeyGen and Derive to derive the private key di,ID, corresponding to the
node (i, ID). It then gives to A the output from Decrypt(pk, S, i, di,ID, hdr).

Challenge. Once A decides that Phase 1 is over, it outputs (S
, ID
) which is
the multi-node it wants to attack, where S
 ⊆ {1, . . . , n}. The only restriction is
that A did not previously issue a private key query for 〈i, ID〉 such that i ∈ S


and that either ID = ID
 or ID is a prefix of ID
. C then compute (hdr
, K) R←−
Encrypt(pk, S
, ID
) where K ∈ K. Next C picks a random b ∈ {0, 1}. It sets
Kb = K and picks a random K1−b in K. It then gives (hdr
, K0, K1) to A.

Phase 2. A issues additional queries qμ+1, . . . , qν where each is one of two types:
- Private key query 〈i, ID〉 such that if i ∈ S
 then neither ID = ID
 nor ID is

a prefix of ID
, else (i �∈ S
) ID can be arbitrary.
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- Decryption query 〈S, ID, i, hdr〉 where i ∈ S and S ⊆ S
.3 The only constraint
is that hdr �= hdr
 if either ID = ID
 or ID is a prefix of ID
.

In both cases, C responds as in Phase 1. These queries may be adaptive.

Guess. Finally A outputs its guess b′ ∈ {0, 1} for b and wins the game if b = b′.

We refer to such an adversary A as an IND-aID-aSet-CCA adversary and the
above game as the IND-aID-aSet-CCA game. Weaker notions of security can be
defined by modifying the above game so that it is required that the adversary
must commit ahead of time to the target subset S
 or the target identity ID


or both. These notions are analogous to the notion of selective-identity secure
HIBE, defined in [12,13]. We have 4 possible combinations: the game IND-xID-
ySet-CCA where (x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}. If (x, y) = (s, ∗) then it is
exactly the same as IND-aID-aSet-CCA except that A must disclose to C the
target identity ID
 before the Setup phase. Analogously, if (x, y) = (∗, s), A must
disclose the target subset S
 before the Setup phase. For only the case of (s, s),
it is further required that the restrictions on private key queries from phase
2 also hold in phase 1. Intuitively, s means selective while a means adaptive
security.

We define the advantage of the adversary A in attacking the HICBE scheme
E in the game IND-xID-ySet-CCA as AdvHICBExy(E ,A) = |Pr[b = b′]− 1

2 |, where
the probability is over the random bits used by C and A in that game.

Definition 1. We say that a HICBE system E is (t, qP, qD, ε)-IND-xID-ySet-
CCA-secure if for any t-time IND-xID-ySet-CCA adversary A that makes at most
qP chosen private key queries and at most qD chosen decryption queries, we have
that AdvHICBExy(E ,A) < ε. We say that a HICBE system E is (t, qP, ε)-IND-xID-
ySet-CPA-secure if E is (t, qP, 0, ε)-IND-xID-ySet-CCA-secure.

Anonymity. Recipient anonymity is the property that the adversary be unable
to distinguish the ciphertext intended for a chosen identity from another one
intended for a random identity. We capture such a property via what we name
ANO-xID-ySet-CCA[Δ] notion, where Δ ⊆ {0, . . . , L} indicates a set of levels that
satisfy anonymity, with 0 corresponds to the anonymity of the set S. This is a
generalized notion from [1]. We refer to the full paper [2] for the details .

4 HICBE Constructions

In this section, we give our first two HICBE constructions. A HICBE system
must have both broadcast and hierarchical-identity-based derivation properties.
To achieve this we will combine some techniques from the BGW broadcast en-
cryption [7] with the BB and BBG HIBE systems by Boneh-Boyen [4] and Boneh-
Boyen-Goh [5] respectively. The reader is encouraged to refer to the full paper [2]
for the intuition into the design.
3 It is WLOG that we just restrict S ⊆ S� since for S such that S �⊆ S�, one can make

a private key query for some i ∈ S \ S� and perform the decryption oneself.
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4.1 Our First HICBE Construction Based on BGW and BB

We first show how to combine the basic BGW scheme with the BB HIBE scheme.
We assume that the identity space I is Zp. Thus, if ID is of depth z then
ID = (I1, . . . , Iz) ∈ Z z

p . As in [4], we can later extend the construction to arbi-
trary identities in {0, 1}∗ by first hashing each Ij using a collision resistant hash
function H : {0, 1}∗ → Zp. We follow almost the same terminology from [7,4].
This scheme, denoted by BasicHICBE1, works as follows.

Setup(n, L): Let G be a bilinear group of prime order p. It first picks a random
generator g ∈ G and a random α ∈ Zp. It computes gi = g(αi) ∈ G for
i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it picks a random γ ∈ Zp and sets v =
gγ ∈ G. It then picks random elements h1, . . . , hL ∈ G. The public key is:

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, h1, . . . , hL) ∈ G2n+L+1.

The master key is msk = γ. For j = 1, . . . , L, we define Fj : Zp → G to be
the function: Fj(x) = gx

1hj. The algorithm outputs pk and msk.
PrivKeyGen(i, pk, msk): Set a root private key for i as di = (gi)γ = v(αi) ∈ G.
Derive(pk, i, ID, di,ID|z−1): To generate the private key for node (i, ID) where i ∈

{1, . . . , n} and ID = (I1, . . . , Iz) ∈ Z z
p of depth z ≤ L, pick random elements

s1, . . . , sz ∈ Zp and output

di,ID =

⎛⎝(gi)γ ·
z∏

j=1

Fj(Ij)sj , gs1 , . . . , gsz

⎞⎠ ∈ Gz+1.

Note that the private key for node (i, ID) can be generated just given a
private key for node (i, ID|z−1) where ID|z−1 = (I1, . . . Iz−1) ∈ Z z−1

p , as
required. Indeed, let di,ID|z−1 = (a0, . . . , az−1) be the private key for node
(i, ID|z−1). To generate di,ID, pick a random sz ∈ Zp and output di,ID =
(a0 · Fz(Iz)sz , a1, . . . , az−1, g

sz).
Encrypt(pk, S, ID): Pick a random t ∈ Zp and set K = e(gn+1, g)t. The value

e(gn+1, g) can be computed as e(gn, g1). Let ID = (I1, . . . , Iz). It outputs
(hdr, K) where we let

hdr =

⎛⎝gt, (v ·
∏
j∈S

gn+1−j)t , F1(I1)t , . . . , Fz(Iz)t

⎞⎠ ∈ Gz+2.

Decrypt(pk, S, i, di,ID, hdr): Parse the header as hdr = (C0, C1, A1, . . . , Az) ∈
Gz+2. Also parse di,ID = (a0, . . . , az) ∈ Gz+1. Then output

K = e(gi, C1) ·
z∏

j=1

e(Aj , aj) / e(a0 ·
∏
j∈S
j �=i

gn+1−j+i, C0).

The correctness verification is straightforward. The scheme inherits a good prop-
erty of the BGW scheme: the ciphertext size and user private key size are inde-
pendent of n. Indeed, when we let ID = ε, the corresponding algorithms become
those of the basic BGW scheme.
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Theorem 1. Let G be a bilinear group of prime order p. Suppose the Decision
(t, ε, n)-BDHE assumption holds in G. Then the BasicHICBE1 system for n users
and maximum depth L is (t′, qP, ε)-IND-sID-sSet-CPA-secure for any n, L, qP, and
t′ < t−Θ(τexpLqP) where τexp is the maximum time for an exponentiation in G.

The security proof, although vaguely resembles those of BGW and BB, is not
straightforward as we have to simulate both sub-systems simultaneously. In-
tuitively, the implicit “orthogonality” of BGW and BB allows us to prove the
security of the combined scheme. We omit it here (and refer to [2]) and will focus
on a similar but somewhat more interesting proof of the second scheme.

4.2 Our Second HICBE Construction Based on BGW and BBG

Our method of integrating the BGW system can also be applied to the BBG
HIBE scheme analogously to the previous integration. In contrast, this time we
achieve a feature of “reusing” the public key from the BGW portion to be used
for the BBG portion. Consequently, the resulting scheme has exactly the same
public key as the BGW scheme except for only one additional element of G.

We will assume that L ≤ n, otherwise just create dummy users so as to be so;
a more efficient way will be discussed in the next subsection. As usual we can
assume that I is Zp. The scheme, denoted by BasicHICBE2, works as follows.

Setup(n, L): The algorithm first picks a random generator g ∈ G and a random
α ∈ Zp. It computes gi = g(αi) ∈ G for i = 1, 2, . . . , n, n + 2, . . . , 2n. Next, it
randomly picks y ∈ G, γ ∈ Zp and sets v = gγ ∈ G. The public key is:

pk = (g, g1, . . . , gn, gn+2, . . . , g2n, v, y) ∈ G2n+2.

The master key is msk = γ. It outputs (pk, msk). For conceptual purpose, let
hj = gn+1−j for j = 1, . . . , L; intuitively, the hj terms will be used to visually
indicate the BBG portion, while the gj terms are for the BGW portion.

PrivKeyGen(i, pk, msk): Set a root private key for i as di = (gi)γ = v(αi) ∈ G.
Derive(pk, i, ID, di,ID|z−1): To generate the private key for node (i, ID) where i ∈

{1, . . . , n} and ID = (I1, . . . , Iz) ∈ Z z
p of depth z ≤ L, pick a random element

s ∈ Zp and output

di,ID =
(
(gi)γ · (hI1

1 · · ·hIz
z · y)s , gs , hs

z+1 , . . . , hs
L

)
∈ G2+L−z.

Note that the private key for node (i, ID) can be generated just given a
private key for node (i, ID|z−1) where ID|z−1 = (I1, . . . Iz−1) ∈ Z z−1

p , as
required. Indeed, let di,ID|z−1 = (a0, a1, bz, . . . , bL) be the private key for
node (i, ID|z−1). To generate di,ID, pick a random δ ∈ Zp and output di,ID =(
a0 · bIz

z · (hI1
1 · · ·hIz

z · y)δ , a1 · gδ , bz+1 · hδ
z+1 , . . . , bL · hδ

L

)
. This key

has a proper distribution as a private key for node (i, ID) with the ran-
domness s = s′ + δ ∈ Zp, where s′ is the randomness in di,ID|z−1 . Note that
the private key di,ID becomes shorter as the depth of ID increases.
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Encrypt(pk, S, ID): Pick a random t ∈ Zp and set K = e(gn+1, g)t. The value
e(gn+1, g) can be computed as e(gn, g1). Let ID = (I1, . . . , Iz). It outputs
(hdr, K) where we let

hdr =

⎛⎝gt, (v ·
∏
j∈S

gn+1−j)t , (hI1
1 · · ·hIz

z · y)t

⎞⎠ ∈ G3.

Decrypt(pk, S, i, di,ID, hdr): Let hdr = (C0, C1, C2) ∈ G3 and let di,ID = (a0, a1,
bz+1, . . . , bL) ∈ G2+L−z. Then output

K = e(gi, C1) · e(C2, a1) / e(a0 ·
∏
j∈S
j �=i

gn+1−j+i, C0).

The scheme inherits good properties from both the BGW scheme: the ciphertext
size and user private key size are independent of n, and the BBG scheme: the
ciphertext size is constant. One difference from the BBG system is that we let the
hj terms be of special forms, namely hj = gn+1−j , instead of random elements
in G as in [5]. This allows us to save the public key size since those gj terms are
already used for the BGW system. Indeed, suppose that the BGW BE system has
been already established, it can be augmented to a HICBE version by just once
publishing one random element, namely y ∈ G, as an additional public key. Note
that defining hj terms in this way is also crucial to the security proof. We prove
the security under the Decision n-BDHE assumption. This strong assumption is
already necessary for both the (stand-alone) BGW and BBG systems.4

Theorem 2. Let G be a bilinear group of prime order p. Suppose the Decision
(t, ε, n)-BDHE assumption holds in G. Then the BasicHICBE2 scheme for n users
and maximum depth L is (t′, qP, ε)-IND-sID-sSet-CPA-secure for arbitrary n, L
such that L ≤ n and qP, and any t′ < t−Θ(τexpLqP) where τexp is the maximum
time for an exponentiation in G.

Proof. Suppose there exists an adversary, A, that has advantage ε in attacking
the HICBE scheme. We build an algorithm B that solves the Decision n-BDHE
problem in G. B is given as input a random n-BDHE challenge (g, h, yg,α,n, Z),
where yg,α,n = (g1, . . . , gn, gn+2, . . . , g2n) and Z is either e(gn+1, h) or a random
element in G1 (recall that gj = g(αj)). Algorithm B proceeds as follows.

Initialization. The selective (identity, subset) game begins with A first out-
putting a multi-node (S
, ID
) where S
 ⊆ {1, . . . , n} and ID
 = (I
1, . . . , I



z) ∈

Z z
p of depth z ≤ L that it intends to attack.

Setup. To generate pk, algorithm B randomly chooses u, σ ∈ Zp and sets

v = gu · (
∏

j∈S�

gn+1−j)−1, y = gσ ·
z∏

j=1

g
−I�

j

n+1−j .

4 It was later shown in [5, full] that a truncated form of Decision n-BDHE, namely the
Decision n-wBDHI∗, indeed suffices for BBG. This assumption is defined exactly the
same as the former except that we change the vector yg,α,n to y∗

g,α,n := (g1, . . . , gn).
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It gives A the pk = (g, yg,α,n, v, y). Since g, α, u, σ are chosen randomly and
independently, pk has an identical distribution to that in the actual construction.

Phase 1. A issues up to qP private key queries. Consider a query for the private
key corresponding to node (i, ID), of which ID = (I1, . . . , Iw) ∈ Z w

p where w ≤ L.
We distinguish two cases according to whether i is in S
 or not.

If i �∈ S
 then B responds to the query by first computing a root private key di

from which it can then construct a private key di,ID for the request node (i, ID).
In this case, B computes di as di = gu

i · (
∏

j∈S� gn+1−j+i)−1. Indeed, we have

di = (gu(
∏

j∈S� gn+1−j)−1)(α
i) = v(αi), as required.

If i ∈ S
 then from the restriction of the private key query, it must be that ID
is neither ID
 nor any prefix of ID
. We further distinguish two cases according
to whether ID
 is a prefix of ID or not.
Case 1: ID
 is not a prefix of ID. Then there must exist k ≤ z such that it is the
smallest index satisfying Ik �= I
k. B responds to the query by first computing
a private key for node (i, ID|k) from which it then constructs a private key
for the request node (i, ID). B picks random elements s ∈ Zp. We pose s̃ =
s+αk/(Ik− I
k). Note that s̃ is unknown to B. Next, B generates the private key

(a0, a1, bk+1, . . . , bL) =
(
v(αi) · (hI1

1 · · ·hIk

k · y)s̃ , gs̃ , hs̃
k+1 , . . . , hs̃

L

)
(1)

which is a valid random private key for node (i, ID|k) by definition. We show that
B can compute all elements of this private key given the values that it knows.
Recall that hj = gn+1−j. To generate a0, we first assume that k < z, and observe

a0 = gu
i

( ∏
j∈S�

gn+1−j+i

)−1

· (gσ ·
k−1∏
j=1

g
Ij−I�

j

n+1−j︸ ︷︷ ︸
=1

·gIk−I�
k

n+1−k ·
z∏

j=k+1

g
−I�

j

n+1−j)
s̃

= gu
i

( ∏
j∈S�

j �=i

gn+1−j+i

)−1

· g−1
n+1 · g(Ik−I�

k)s̃
n+1−k︸ ︷︷ ︸

T1

· gσs̃︸︷︷︸
T2

·
z∏

j=k+1

g
−I�

j s̃

n+1−j︸ ︷︷ ︸
T3

.

The term T1 can be computed by B since

T1 = g−1
n+1 · g

(Ik−I�
k)(s+ αk

Ik−I�
k

)

n+1−k = g−1
n+1 · g(Ik−I�

k)s
n+1−k · gαk

n+1−k = g
(Ik−I�

k)s
n+1−k ,

where the unknown term gn+1 is canceled out. The term T2 can be computed by
using gk, which is not gn+1 since k ≤ z ≤ L ≤ n. Each term in the product T3 is
computable since gs̃

n+1−j = gs
n+1−j ·g1/(Ik−I�

k)
n+1−j+k and for j = k+1, . . . , z, the terms

gn+1−j, gn+1−j+k are not equal to gn+1 hence can be computed. It is left to
consider the case k = z. In this case, a0 is exactly the same as above except that
the last product term, i.e., T3, does not appear. The analysis of computability
by B thus follows from the same argument.

The component a1 can be generated since a1 = gs̃ = gs · g
1/(Ik−I�

k)
k . For

j = k + 1, . . . , L, the value bj can be computed as bj = hs̃
j = hs

j · g1/(Ik−I�
k)

n+1−j+k.
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Case 2: ID
 is a prefix of ID. Then it holds that z+1 ≤ w. B responds to the query
by first computing a private key for node (i, ID|z+1) from which it then construct
a private key for the request node (i, ID). B picks random elements s ∈ Zp. We
pose s̃ = s + αz+1/Iz+1. Note that s̃ is unknown to B. Next, B generates the
private key in exactly the same form as Eq.(1) (change k to z + 1, of course).
From a similar observation as above, one can show that B can compute this key.

Challenge. To generate the challenge, B computes hdr
 as (h, hu, hσ). It then
randomly chooses a bit b ∈ {0, 1} and sets Kb = Z and picks a random K1−b in
G1. B then gives (hdr
, K0, K1) to A.

We claim that when Z = e(gn+1, h) (that is, the input to B is a n-BDHE
tuple) then (hdr
, K0, K1) is a valid challenge to A as in a real attack game. To
see this, write h = gt for some (unknown) t ∈ Zp. Then, we have that

hu = (gu)t = (gu(
∏

j∈S�

gn+1−j)−1(
∏

j∈S�

gn+1−j))t = (v
∏

j∈S�

gn+1−j)t,

hσ =
( z∏

j=1

g
I�
j

n+1−j · (gσ ·
z∏

j=1

g
−I�

j

n+1−j)
)t

= (hI�
1

1 · · ·hI�
z

z · y)t.

Thus, by definition, (h, hu, hσ) is a valid encryption of the key e(gn+1, g)t. Also,
e(gn+1, g)t = e(gn+1, h) = Z = Kb and hence (hdr
, K0, K1) is a valid challenge.

On the other hand, when Z is random in G1 (that is, the input to B is a
random tuple) then K0, K1 are just random independent elements of G1.
Phase 2. A continues to ask queries not issued in Phase 1. B responds as before.
Guess. Finally, A outputs b′ ∈ {0, 1}. If b = b′ then B outputs 1 (meaning
Z = e(gn+1, h)). Otherwise, it outputs 0 (meaning Z is random in G1).

We see that if (g, h, yg,α,n, Z) is sampled from RBDHE then Pr[B(g, h, yg,α,n,
Z) = 0] = 1

2 . On the other hand, if (g, h, yg,α,n, Z) is sampled from PBDHE then
|Pr[B(g, h, yg,α,n, Z) = 0]− 1

2 | ≥ ε. It follows that B has advantage at least ε in
solving n-BDHE problem in G. This concludes the proof of Theorem 2. � 
4.3 Extensions

Modification. Recall that for BasicHICBE2 when L > n, we created dummy
users so that the effective number of users is L. The resulting pk contained 2L+2
elements of G. We now give a more efficient scheme in this case (L > n). First,
we change ‘n’ in all appearances in the description of BasicHICBE2 to ‘L’ except
that the user indexes are as usual: {1, . . . , n}. Then we modify the public key to
pk = (g, g1, . . . , gL, gL+2, . . . , gL+n, v, y) ∈ GL+n+2, which is of smaller size than
that of the above method. This modified scheme is secure under the Decision
L-BDHE assumption. However, it can be shown to be secure under a weaker one
which is a new assumption that we call Decision 〈L, n〉-BDHE. (Two values are
specified instead of only one). It is defined exactly the same as the Decision L-
BDHE except that we change yg,α,L to yg,α,〈L,n〉 := (g1, . . . , gL, gL+2, . . . , gL+n).

Generalizations. Without going into details, we can also combine the BGW
system with the Hybrid BB/BBG scheme [5, full §4.2], which can trade off the
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public key and private key sizes with the ciphertext size. We denote this scheme
by BasicHICBE(ω) for parameter ω ∈ [0, 1]. It becomes BasicHICBE1 when ω = 1
and BasicHICBE2 when ω = 0. In this scheme, the public key, the private key,
and the ciphertext contains Lω + max(L1−ω, n) + n + 1, ≤ L1−ω + Lω + 1, and
≤ Lω+2 elements in G respectively. It can also be further generalized in the other
dimension, namely the user dimension, in the same manner as the generalized
BGW scheme [7], which can trade off the public key size with the ciphertext
size while the private key size remains fixed. In the resulting scheme, denoted by
GenHICBE(ω, μ), for μ ∈ [0, 1], the public key, the private key, and the ciphertext
contains Lω + max(L1−ω, nμ) + nμ + n1−μ, ≤ L1−ω + Lω + 1, ≤ Lω + n1−μ + 1
elements in G respectively. Note that it becomes BasicHICBE(ω) when μ = 1.

Chosen-Ciphertext and Adaptive-ID Security. We use the conversion due
to Canetti et al. [13] or its derivatives [9,10] (adapted to the case of HICBE
appropriately) to obtain IND-sID-sSet-CCA-secure schemes. An IND-aID-sSet-
CCA-secure scheme can be constructed by combining the BGW system with
Waters’ HIBE [21] in essentially the same way as our previous two schemes.

5 Forward-Secure Public-Key Broadcast Encryption

Model for FS-BE. The syntax of a forward-secure public-key broadcast encryp-
tion (FS-BE) scheme is introduced in [22]. Following [7], for simplicity we define it
as a KEM. A key-evolving broadcast encryption is made up of six randomized al-
gorithms. Via (pk, msk0)

R←− Setup(n, T ), where n is the number of receivers and T
is the total number of time periods, the setup algorithm produces a public key pk

and an initial master private key msk0; via mski,τ
R←− MasUpdate(pk, τ, mskτ−1)

the master key update algorithm outputs a new private key mski,τ of user i

for time period τ ; via ski,τ
R←− Regist(i, τ, pk, mskτ ) the center outputs a pri-

vate key ski,τ of user i for time period τ ; via ski,τ
R←− Update(pk, i, τ, ski,τ−1)

the user i updates his private key to ski,τ for the consecutive time period;
via (hdr, K) R←− Encrypt(pk, S, τ), where S is the set of recipients, a sender
outputs a pair (hdr, K), a header and a message encryption key; via K

R←−
Decrypt(pk, S, i, ski,τ , hdr) a recipient i ∈ S outputs K ∈ K. A scheme is cor-
rect if (1) when pk, mskτ , ski,τ−1 are correctly generated, the distributions of
private keys output from Regist(i, τ, pk, mskτ ) and from Update(pk, i, τ, ski,τ−1)
are the same; (2) Encrypt and Decrypt are consistent (in the standard way).

Security Notions. We define semantic security of a key-evolving BE in essen-
tially the same way as in the case of HICBE system. Such a notion is introduced
by Yao et al. [22]. We reformalize and briefly state it here. (See the full paper [2]
for details). We define eight combinations of notions called IND-xFSi-ySet-CCA
security where (x, y) ∈ {(a, a), (a, s), (s, a), (s, s)}, corresponding to whether the
target time τ
 and/or the target set of recipients S
 must be disclosed before
the Setup phase or not, and i ∈ {1, 2}, where when i = 2 the adversary is al-
lowed to ask also master key queries for mskτ of time τ while when i = 1 it
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is not. Note that the notion in [22] corresponds to IND-aFS1-aSet-CCA security.
We note that a IND-sFSi-ySet-CCA-secure scheme is also secure in the sense
IND-aFSi-ySet-CCA, albeit with the security degradation by factor T . For most
applications, FS1 security is sufficient. In this case, it is useful to consider the
MasUpdate as a trivial algorithm as we let mskτ = msk0 for all τ (and denote it
by msk). Note that it is trivial to convert a scheme with FS1 security to a new
one achieving FS2 security by letting mskτ contains all user keys of time τ .

Conversion C [HICBE⇒FS-BE]. Given a HICBE scheme, we construct a FS-
BE scheme using the “time tree” technique of [12], which was used to construct
a forward-secure encryption from a binary tree encryption. Our conversion is
essentially the same as that of [12] except that the user dimension is introduced.

For a forward-secure BE with T time periods, we image a complete balance
binary tree of depth L = log2(T + 1)− 1. Let each node be labeled with a string
in {0, 1}≤L. We assign the root with the empty string. The left and right child
of w is labeled w0 and w1 respectively. From now, to distinguish the abstract
‘node’ of a HICBE system from nodes in the binary tree, we refer to the former as
h-node and the latter as usual. Following the notation in [12], we let wτ to be the
τ -th node in a pre-order traversal of the binary tree.5 WLOG, we assume that
0, 1 ∈ I, the identity space. Hence, we can view a binary string of length z ≤ L
as an identity tuple of length z. Encryption in time τ for a set S of recipients
uses the encryption function of the HICBE scheme to the multi-node (S, wτ ).
At time τ the private key also contains, beside the private key of h-node (i, wτ )
of the HICBE scheme, all the keys of h-nodes (i, y) where y is a right sibling of
the nodes on the path from the root to wτ in the binary tree. When updating
the key to time τ + 1, we compute the private key of h-node (i, wτ+1) and erase
the one of (i, wτ ). Since wτ+1 is a left child of wτ or one of the nodes whose
keys are stored as the additional keys at time τ , the derivation can be done, in
particular, using at most one application of Derive. We denote this conversion
as C(·) and write its formal description and its security proof in [2].

Theorem 3. Suppose that the scheme HICBE for L levels is (t, qP, qD, ε)-IND-
xID-ySet-CCA-secure (resp., (t, qP, ε)-IND-xID-ySet-CPA-secure) for some (x, y) ∈
{(a, a), (a, s), (s, a), (s, s)}. Then the scheme C(HICBE) for T time periods is (t, q′P,
qD, ε)-IND-xFS1-ySet-CCA-secure (resp., (t, q′P, ε)-IND-xFS1-ySet-CPA-secure) for
q′P ≤ qP/L, where L = log(T + 1)− 1.

Resulting FS-BE Schemes. It is easy to see that in the resulting scheme, the
private key size is expanded by the factor O(log T ) while the other parameters are
unchanged from the original HICBE scheme (instantiated for log(T +1)−1 levels
of identities). We have that the C(BasicHICBE1) scheme achieves ciphertext of
size O(log T ) and user private keys of size O(log2 T ) while the C(BasicHICBE2)
scheme achieves ciphertexts of size O(1) and user private keys of size O(log2 T ).

We also directly construct a more efficient but specific FS-BE scheme, denoted
by DirFSBE, which is not built via the generic conversion. It can be considered as
5 The pre-order traversal is started from the root, w1 = ε. From w it goes to w0 if w

is not a leaf otherwise it goes to v1 if v0 is the largest string that is a prefix of w.
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Table 1. Comparison among previous and our FS-BE schemes (upper and lower table
resp.). T = |total time periods|. n = |all users|. r = |revoked users|. The time com-
plexity is expressed in terms of number of operations where [e] is exponentiation, [p] is
bilinear pairing, and [m] is group multiplication, while [o] indicates the time complexity
for some other process. ‘⇐’ means that it has the same value as the entry on its left.

Params↓ GS(NNL)×YFDLGS BBG(NNL)×YFDLBBG BBG(NNL)⊥BBG BB
[22] [5, full §5.2] [5, full §C]

Reg time O(log3 n log T ) [e] ⇐ O((log2 n)(log n + log T )) [e]
Enc time O(r log n log T ) [e] ⇐ O(r(log n + log T )) [e]
Dec time O(log n log T ) [p] + O(r) [o] ⇐ O(log T ) [p] + O(r) [o]
Upd time O(log3 n) [e] ⇐ O(log2 n log T ) [e]
|Pub key| O(log n + log T ) ⇐ ⇐
|Pri key| O(log3 n log T ) ⇐ O((log2 n)(log n + log T ))
|Cipher| O(r log n log T ) O(r) O(r log T )

Params↓ C(BasicHICBE1) DirFSBE C(BasicHICBE2) C(GenHICBE(0.5, 0.5))

Reg time O(log T ) [e] ⇐ ⇐ O(
√

log T ) [e]
Enc time O(n) [m] + O(log T ) [e] ⇐ ⇐ O(

√
n) [m] + O(

√
log T ) [e]

Dec time O(n) [m]6+ O(log T ) [p] ⇐ O(n) [m]6+O(1) [p]O(
√

n) [m] + O(
√

log T ) [p]
Upd time O(1) [e] ⇐ ⇐ ⇐
|Pub key| O(n + log T ) ⇐ ⇐ O(

√
n +

√
log T )

|Pri key| O(log2 T ) O(log T ) O(log2 T ) O(log1.5 T )
|Cipher| O(log T ) ⇐ O(1) O(

√
n +

√
log T )

a redundancy-free version of C(BasicHICBE1) which can reduce private key size
to O(log T ) without affecting other parameters. This can be seen as a reminiscent
of the “Linear fs-HIBE” scheme in [5, full §C]. Its generalized scheme, denoted
by DirFSBE(μ), can be constructed as in §4.3. It trades off the public keys of
size O(nμ + n1−μ + log T ) with the ciphertexts of size O(n1−μ + log T ).

Efficiency Comparisons. We draw comparisons among FS-BE schemes by
wrapping up in Table 1. We name the three previous schemes intuitively from
their approaches, where ‘×YFDL’ is the “cross-product” approach by Yao et al. [22],
‘⊥BBG’ is the orthogonal integration approach by Boneh et al. [5, full §C], and
the two operands indicate the underlying HIBEs, which include GS (the Gentry-
Silverberg HIBE [17]), BB, and BBG. (See more details in [2]).

6 Public-Key Broadcast Encryption with Keyword
Search

6.1 Definitions and Relation to Anonymous ICBE

Model for BEKS. A public-key BE with keyword search (BEKS) consists
of four algorithms. Via (pk, {sk1, . . . , skn}) R←− Setup(n) the setup algorithm
6 This is due to the computation of j∈S,j �=i gn+1−j+i, which indeed can be pre-

computed. This is useful when S is incrementally changed (cf. [7]).



Forward-Secure and Searchable Broadcast Encryption 175

produces a public key and n user keys; via C
R←− BEKS(pk, S, w) a sender encrypts

a keyword w to get a ciphertext (C, S) intended for recipients in S ⊆ {1, . . . , n};
via ti,w

R←− Td(i, w, ski) the receiver i computes a trapdoor (ti,w, i) for keyword
w and provides it to the gateway (the server); via b ← Test(pk, i, ti,w, C, S) for
i ∈ S the gateway can test whether C encrypts w where b = 1 means “positive”
and b = 0 means “negative”. Here if i �∈ S it always outputs ‘/∈’. We describe
the right-keyword consistency (correctness), the computational consistency (in
the sense of [1]), and the security notion, which we name IND-xKW-ySet-CPA,
in the full paper [2]. The security captures the property that the adversary be
unable to distinguish the encryption of chosen keyword with a random one.

Conversion K [ICBE⇒BEKS].The conversion of [1] that compiles any anony-
mous IBE into aPEKScan be generalized to a broadcastversion straightforwardly.
More concretely, we construct BEKS from ICBE as follows. SetupBEKS(n) can be
constructed from SetupICBE and PrivKeyGenICBE by relating the same public key
pk and relating the private key ski = di. The remaining algorithms work as fol-
lows: ti,w

R←− Td(i, w, ski) = DeriveICBE(i, w, di); (C1, C2)
R←− BEKS(pk, S, w) =

EncryptICBE(pk, S, w); Test(pk, i, tw, (C1, C2), S) outputs ‘/∈’ if i �∈ S, else outputs 1
if DecryptICBE(pk, S, i, tw, C1) = C2, else outputs 0. Denote this conversionby K(·).
Its correctness is immediate from that of ICBE. Indeed, ti,w, C1, C2 are related to
di,w, hdr, K in the ICBE scheme respectively. We remark that our conversion is a
little bit different from (and simpler than) that of [1], in particular, since we have
formalized the ICBE as a KEM.

Theorem 4. (Informal) If the scheme ICBE is ANO-xID-ySet-CPA[{1}]-secure,
then the BEKS scheme K(ICBE) is IND-xKW-ySet-CPA-secure. Further, if ICBE
is semantically secure, then K(ICBE) is computationally consistent.

6.2 Constructing Anonymous (H)ICBE

Attempts. As one may expect, the first attempt is to use our integration
method to combine the BGW system with the anonymous HIBE, BW, by Boyen-
Waters [11], which has a BB/BBG-like structure. Somewhat surprisingly and un-
fortunately, the resulting HICBE scheme is not ANO-sID-sSet-CPA-secure. Es-
sentially, this is precisely due to the implicit orthogonality of BGW and BW.
Such a property enables any user i �∈ S
 to use the independent part of pri-
vate keys corresponding to the BW portion to easily distinguish whether a
ciphertext is intended for (S
, ID
) or (S
, R) for random R, thus breaking
anonymity. Dilemmatically, on the one hand, this orthogonality enables us to
prove the confidentiality of the combined scheme; on the other hand, this very
property gives an attack to the anonymity. We also remark that the approach
BB(NNL)⊥BBG BW and BBG(NNL)⊥BBG BW (where notations are borrowed from the
end of §5) also do not preserve the anonymity of BW due to a similar reason.
See details in [2].

The Construction. From the above discussion, it is then natural to imple-
ment both the broadcast and identity dimensions from two non-orthogonal sub-
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systems. Therefore, we construct our scheme in [2], denoted by AnonHICBE, from
the YFDL (cross-product) approach instantiated to two copies of the BW hierar-
chies, or in our terminology, BW(NNL)×YFDLBW.7 The resulting anonymous ICBE
system achieves ciphertext of size O(r log n) and private key of size O(log4 n) for
the user level (level 0) and private key of size O(log3 n) for level 1. These translate
to the sizes of ciphertext, private key, and trapdoor in BEKS respectively.
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Abstract. It has been demonstrated by Bellare, Neven, and Namprem-
pre (Eurocrypt 2004) that identity-based signature schemes can be
constructed from any PKI-based signature scheme. In this paper we con-
sider the following natural extension: is there a generic construction of
“identity-based signature schemes with additional properties” (such as
identity-based blind signatures, verifiably encrypted signatures, ...) from
PKI-based signature schemes with the same properties? Our results show
that this is possible for great number of properties including proxy sig-
natures; (partially) blind signatures; verifiably encrypted signatures; un-
deniable signatures; forward-secure signatures; (strongly) key insulated
signatures; online/offline signatures; threshold signatures; and (with
some limitations) aggregate signatures.

Using well-known results for PKI-based schemes, we conclude that
such identity-based signature schemes with additional properties can
be constructed, enjoying some better properties than specific schemes
proposed until know. In particular, our work implies the existence of
identity-based signatures with additional properties that are provably
secure in the standard model, do not need bilinear pairings, or can be
based on general assumptions.

1 Introduction

Digital signatures are one of the most fundamental concepts of modern cryp-
tography. They provide authentication, integrity and non-repudiation to digital
communications, which makes them the most used public key cryptographic tool
in real applications. In order to satisfy the needs of some specific scenarios such
as electronic commerce, cash, voting, or auctions, the original concept of digital
signature has been extended and modified in multiple ways, giving raise to many
kinds of what we call “digital signatures with additional properties”, e.g. blind
signatures, verifiably encrypted signatures, and aggregated signatures.

Initially, all these extensions were introduced for the standard PKI-based
framework, where each user generates a secret key and publishes the matching
public key. In practice, digital certificates linking public keys with identities of
users are needed to implement these systems, and this fact leads to some draw-
backs in efficiency and simplicity. For this reason, the alternative framework of
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identity-based cryptography was introduced by Shamir [29]. The idea is that the
public key of a user can be directly derived from his identity, and therefore digi-
tal certificates are avoidable. The user obtains his secret key by interacting with
some trusted master entity. In his paper, Shamir already proposed an identity-
based signature scheme. In contrast, the problem of designing an efficient and
secure identity-based encryption scheme remained open until [6,28].

From a theoretical point of view, results concerning identity-based encryption
schemes are more challenging than those concerning identity-based signatures
(IBS). In contrast to the identity-based encryption case it is folklore that a stan-
dard PKI-based signature scheme already implies an identity-based signature
scheme by using the signature scheme twice: for generating user secret keys and
for the actual signing process. More precisely, the user secret key of an identity
consists of a fresh PKI-based signing/verification key and a certificate proving the
validity of the signing key. The latter certificate is established by the master entity
by signing (using the master signing key) the new verification key together with
the user’s identity. In the actual identity-based signing process the user employs
this signing key to sign the message. The identity-based signature itself consists
of this signature along with the certificate and the public verification key.

The above idea was formalized by Bellare, Neven, and Namprempre in [3],
where they propose a generic and secure construction of identity-based signature
schemes from any secure PKI-based signature scheme. However, some specific
identity-based signature schemes have been proposed and published, mostly em-
ploying bilinear pairings and random oracles, without arguing if the proposed
schemes are more efficient than the schemes resulting from the generic construc-
tion in [3]. In fact, in many papers the authors do not mention the generic
approach from [3] and in spite of Shamir’s work from more than two decades
ago [29] it still seems to be a popular “opinion” among some researchers that the
construction of identity-based signatures inherently relies on bilinear pairings.

Our observation is that the situation is quite similar when identity-based
signature schemes with additional properties are considered. Intuitively such
schemes may be obtained using the same generic approach as in the case of
standard identity-based signatures combining a digital certificate and a PKI-
based signature scheme with the desired additional property. To the best of
our knowledge, this intuitive construction was never mentioned before, nor has
a formal analysis been given up to now. Furthermore, specific identity-based
signature schemes with additional properties keep being proposed and published
without arguing which improvements they bring with respect to the possible
generic certificate-based approach. Nearly all of these papers employ bilinear
pairings and the security proofs are given in the random oracle model [5] (with
its well-known limitations [9]).

1.1 Our Results

In this work we formally revisit this intuitive idea outlined in the last paragraph.
Namely, if S is a secure PKI-based signature scheme and PS is a PKI-based sig-
nature scheme with some additional property P , we pursue the question if for a



180 D. Galindo, J. Herranz, and E. Kiltz

certain property P the combination of those two signature schemes can lead to
a secure IBS scheme IB PS enjoying the same additional property P . We can
answer this question to the positive, giving generic constructions of signature
schemes with the following properties: proxy signatures (PS); (partially) blind
signatures (BS); verifiably encrypted signatures (VES); undeniable signatures
(US); forward-secure signatures (FSS); strong key insulated signatures (SKIS);
online/offline signatures (OOS); threshold signatures (TS); and aggregate signa-
tures (AS).1

Implications. By considering well-known results and constructions of PKI-
based signatures PS with the required additional properties, we obtain identity-
based schemes IB PS from weaker assumptions than previously known. A
detailed overview of our results can be looked up in Table 1 on page 183. To
give a quick overview of our results, for nearly every property P listed above, we
obtain (i) the first IB PS scheme secure in the standard model (i.e., without ran-
dom oracles); (ii) the first IB PS scheme built without using bilinear pairings;
and (iii) the first IB PS based on “general assumptions” (e.g. on the sole as-
sumption of one-way functions), answering the main foundational question with
regard to these primitives. Our results therefore implicitly resolve many “open
problems” in the area of identity-based signatures with additional properties.

Generic Constructions. For some properties P the construction of the
scheme IB PS is the same as in [3] and a formal security statement can be
proved following basically verbatim the proofs given in [3]. But as the limita-
tions of the generic approach indicate, this approach does not work in a black-box
way for every possible property P . For some special properties the certificate-
based generic construction sketched above has to be (non-trivially) adapted to
fit the specific nature of the signature scheme. This is in particular the case for
blind and undeniable signatures and hence in these cases we will lay out our
constructions in more detail.

Discussion. We think that in some cases the constructions of identity-based sig-
natures with additional properties implied by our results are at least as efficient
as most of the schemes known before. However, because of the huge number of
cases to be considered, we decided not to include a detailed efficiency analysis
of our generic constructions. Note that, in order to analyze the efficiency of a
particular identity-based scheme resulting from our construction, we should first
fix the framework: whether we admit the random oracle model, whether we allow
the use of bilinear pairings, etc. Then we should take the most efficient suitable
PKI-based scheme and measure the efficiency of the resulting identity-based one.
Our point is rather that this comparison should be up to the authors propos-
ing new specific schemes: the schemes (explicitly and implicitly) implied by our
generic approach should be used as benchmarks relative to which both, existing
and new practical schemes measure their novelty and efficiency.

1 We stress that the length of our implied aggregated identity-based signatures is still
depending linearly on the number of different signers (optimally it is constant) and
therefore our results concerning AS are not optimal.
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We stress that we do not claim the completely novelty of our generic ap-
proaches to construct identity-based signatures with additional properties. Sim-
ilar to [3] we rather think that most of these constructions can be considered
as folklore and are known by many researchers. However, the immense number
of existing articles neglecting these constructions was our initial motivation for
writing this paper. We think that our results may also help better understanding
IBS. To obtain a practical IBS with some additional properties the “standard
method” in most articles is to start from a standard IBS and try to “add in”
the desired additional property. Our results propose that one should rather start
from a standard signature scheme with the additional property and try to make
it identity-based. We hope that the latter approach may be used to obtain more
efficient practical schemes.

2 Definitions

Standard Signatures. A standard signature scheme S = (S.KG, S.Sign, S.Vfy)
consists of the following three (probabilistic polynomial-time) algorithms. The
key generation algorithm S.KG takes as input a security parameter k and
returns a secret key SK and a matching public key PK . We use the notation
(SK ,PK ) ← S.KG(1k) to refer to one execution of this protocol. The signing
algorithm S.Sign inputs a message m and a secret key SK . The output is a
signature sigSK (m). We denote an execution of this protocol as sigSK (m) ←
S.Sign(SK , m). The verification algorithm S.Vfy takes as input a message m, a
signature sig = sigSK (m) and a public key PK . The output is 1 if the signature
is valid, or 0 otherwise. We use the notation {0, 1} ← S.Vfy(PK , m, sig) to refer
to one execution of this algorithm.

The standard security notion for signature schemes in unforgeability against
adaptively-chosen message attacks, which can be found in [19,17].

Identity-Based Signatures. An identity-based signature scheme IB S =
(IB S.KG, IB S.Extr, IB S.Sign, IB S.Vfy) consists of the following four (probabilis-
tic polynomial-time) algorithms [10]. The setup algorithm IB S.KG takes as in-
put a security parameter k and returns, on the one hand, the system public
parameters mpk and, on the other hand, the value master secret key msk , which
is known only to the master entity. We note an execution of this protocol as
(mpk ,msk) ← IB S.KG(1k). The key extraction algorithm IB S.Extr takes as
inputs mpk , the master secret key msk and an identity id ∈ {0, 1}∗, and returns
a secret key sk [id ] for the user with this identity. We use notation sk [id ] ←
IB S.Extr(msk , id) to refer to one execution of this protocol. The signing al-
gorithm IB S.Sign inputs a user secret key sk [id ], the public parameters mpk ,
an identity, and a message m. The output is a signature sig = sigmsk (id , m).
We denote an execution of this protocol as sig ← IB S.Sign(mpk , id , sk [id ], m).
Finally, the verification algorithm IB S.Vfy inputs mpk , a message m, an iden-
tity id and a signature sig ; it outputs 1 if the signature is valid, and 0 oth-
erwise. To refer to one execution of this protocol, we use notation {0, 1} ←
IB S.Vfy(mpk , id , m, sig).
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The standard security notion for identity-based signature schemes is unforge-
ability against adaptively-chosen identity and message attacks, which can be
found in [3,17].

3 Generic Construction of Identity-Based Signatures

We first outline the BNN generic transformation [3] from two standard signature
schemes S , S ′ into an identity-based signature scheme.

Let S = (S.KG, S.Sign, S.Vfy) and S ′ = (S′.KG, S′.Sign, S′.Vfy) be two (possibly
equal) standard signature schemes. The generic construction of an identity-based
signature scheme IB S = (IB S.KG, IB S.Extr, IB S.Sign, IB S.Vfy), proposed in
[3], is defined as follows.

Key Generation IB S.KG(1k): The key generation algorithm from the stan-
dard signature scheme S is run to obtain the master key-pair for the identity-
based signature scheme IB S : (msk ,mpk ) ← S.KG(1k).

IBS Key extraction IB S.Extr(msk , id i): The secret key of a user with identity
id i is defined as

sk [id i] = (sig i, pk i, sk i), (1)

where (pk i, sk i) is a random key-pair obtained by running S′.KG(1k) and sig i ←
S.Sign(msk , id i||pk i). Here the signature sig i can be viewed as a “certificate” on
the validity of pk i.

Identity-Based Sign IB S.Sign(mpk , id i, sk [id i], m): Given a user secret key
for id i an id-based signature for identity id i and message m is defined as

sig(id i, m) = (sig i, pk i, sigski
(m)), (2)

where sigski
(m) = S′.Sign(sk i, m) can be computed by the possessor of the

user secret key sk [id i] since sk i is contained in sk [id i]. Signature sig i included
in Eqn. (2) certifies the validity of pk i.

Verification IB S.Vfy(mpk , sig): The user checks if the first signature from
Eqn. (2) is valid with respect to mpk and “message” id ||pk i (using the verifica-
tion protocol S.Vfy); and if the second signature is valid with respect to pk i and
the message m (using the verification protocol S′.Vfy).

Bellare, Namprempre, and Neven [3] prove the following result:

Theorem 1. If S and S ′ are both secure standard signature schemes then IB S
is a secure identity-based signature scheme.

Let PS be a signature scheme with the property P . We extend the above con-
struction to an IBS with additional properties IB PS in a straightforward way:
as with signing/verification, all functionality provided by PS is “lifted” to the
identity-based case. That means that (analog to IB S.Sign and IB S.Vfy) any
protocol additionally provided by PS is executed using the corresponding se-
cret/public key pair (sk i, pk i) from the user secret key Eqn. (1). We will refer to
the latter construction as the “generic construction of identity-based signatures
with additional properties” or simply “generic construction”.
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In the rest of this section we will demonstrate that this generic construction
and variants of it can indeed be used for many signatures schemes with additional
properties. Due to the lack of space we only provide details for identity-based
VES, US, AS, and BS schemes. For the details on the remaining results we
refer to the full verion of this paper [17]. Table 1 summarizes the practical
impact of our results, i.e. it is shown which types IB PS of new identity-based
signature schemes are implied by our general constructions. The existence of the
identity-based signature schemes can be derived by the existence of the respective
standard signature scheme [17].

Table 1. A summary of the practical implications of our results. Here “�” means that
a scheme was known before (with a formal proof), a “	” means that our construction
gives the first such scheme, and a “−” means that no such scheme is known.

Signature type Existence of identity-based signature schemes
at all ? w/o random oracles? w/o pairings? general assumptions?

VES §3.1 � 	 	 	
BS §4 �/	2 	 	 	
US §3.2 � 	 	 −
FSS [17] 	 	 	 	
SKIS [17] � 	 	 	
PS [17] � 	 	 	
OOS [17] � 	 	 	
Threshold [17] � 	 	 −

3.1 Verifiably Encrypted Signatures

Verifiably encrypted signature (VES) schemes can be seen as a special extension
of the standard signature primitive. VES schemes enable a user Alice to create a
signature encrypted using an adjudicator’s public key (the VES signature), and
enable public verification if the encrypted signature is valid. The adjudicator is
a trusted third party, who can reveal the standard signature when needed. VES
schemes provide an efficient way to enable fairness in many practical applications
such as contract signing.

An efficient VES scheme in the random oracle model based on pairings was
given in [7], one in the standard model in [25]. It was further noted in [25]
that VES schemes can be constructed on general assumptions such as trapdoor
one-way permutations.

Identity-based verifiably encrypted signature (IB-VES) schemes were intro-
duced in [20] where also a concrete security model was proposed. In contrast
to [20], here we only consider a weaker (but still reasonable) model where the
adjudicator has a fixed public key, i.e. it is not identity-based.

Compared to a standard signature a VES scheme has three additional algo-
rithms: VES signing/verification (with respect to an adjudicators public key),
and adjudication. Here the adjudication algorithm inputs an adjudicators secret
2 Against concurrent adversaries.
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key and transforms a VES into a standard signature. For our generic construc-
tion VES signing and verification can be lifted to the identity-based case in the
same way as in the generic construction, i.e. in an IB-VES one replaces sigski

(m)
in Eqn. (2) with its VES counterpart obtained by running the VES signing al-
gorithm on sk i, m, and the adjudicator’s public key. IB-VES verification checks
the certificate and the VES using the standard VES verification algorithm. More
formally we can prove the following theorem:

Theorem 2. If S is a secure standard signature scheme and PS is a secure
verifiably encrypted signature scheme then the generic construction gives a secure
identity-based verifiably encrypted signature scheme.

Using our generic construction we get an IB-VES scheme based on any trapdoor
one-way function [25], and a more efficient one using [7].

3.2 Undeniable Signatures

Undeniable signatures [12] (US) are signature schemes in which testing for
(in)validity of a signature requires interaction with the signer. Undeniable sig-
natures are used in applications where signed documents carry some private
information about the signer and where it is considered to be an important
privacy factor to limit the ability of verification.

Following [14], an undeniable signature scheme US consists of four algorithms
US = (US.KG, US.Sign, US.Conf, US.Disav), where US.Conf is a confirmation and
US.Disav is a disavowal protocol, both being interactive algorithms run between
a prover and a verifier. The basic security properties are (standard) unforgeabil-
ity, non-transferability and simulatability. By non-transferability it is meant that
no adversary should be able to convince any third party of the validity/invalidity
of a given message/signature pair after having participated in the confirmation
and disavowal protocols. Intuitively this is captured by requiring the confirma-
tion and disavowal protocols to be “zero-knowledge”, such that no information
is leaked besides (in)validity. With simulatability one wants to ensure that the
strings representing signatures can not be recognized (i.e., distinguished from a
random string) by an attacker. This security property is fulfilled if there exists
a signature simulator algorithm US.Sim, that on input of a public key and a
message, outputs a simulated signature sig(m) which looks like a “real undeni-
able signature” to anyone who only knows public information and has access to
confirmation/disavowal oracles.

Extending the previous definition to the identity-based setting, an identity-
based undeniable signature (IB-US) scheme consists of a tuple of five algorithms
IB US = (IB US.KG, IB US.Extr, IB US.Sign, IB US.Conf, IB US.Disav) where
IB US.Conf and IB US.Disav are interactive algorithms run between a prover
and a verifier. The basic security properties for an IB-US (unforgeability, non-
transferability and simulatability), are defined by suitably adapting the standard
US security notions to the identity-based scenario.

In particular, the identity-based simulatability property is defined in terms
of the existence of an additional simulation algorithm IB US.Sim. On input of
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the system public parameters mpk , an identity id and a message m, IB US.Sim
outputs a simulated signature sig(id , m), which is indistinguishable from a real
signature for someone having access to confirmation/disavowal oracles for the
identity id .

We now sketch our generic construction of identity-based undeniable signa-
tures. In contrast to the generic construction (cf. Eqn. (2)) we define the identity-
based undeniable signature IB US.Sign(sk [idi], m) as sigski

(m) (i.e., the certificate
sigmsk (idi||pk i) and pk i are not included in the signature). In the interactive
identity-based confirmation and disavowal protocols, the signer sends his certifi-
cate (sigmsk (id i||pk i), pk i) to the verifier such that the verifier can be convinced
about the link between the signature and id i||pk i. Then prover (using sk i) and
verifier (using pk i) engage in the standard US confirmation/disavowal protocol.

It remains to describe the identity-based simulation algorithm IB US.Sim in
terms of the algorithm US.Sim. We define the output of IB US.Sim(mpk , id , m)
as US.Sim(pk ′

i, m), where (pk ′
i, sk

′
i) ← US.KG(1k) is a fresh key pair generated

by the simulator. Note that the simulator IB US.Sim does not input the user
secret key sk [id ] and therefore the public key pk i from the user secret key for
id i (cf. Eqn. (1)) is information theoretically hidden from it. However, an ad-
versary against simulatability may learn this public key pk i from an execution
of the confirmation/disavowal protocol. It turns out that to ensure that our
generic IB-US construction satisfies the simulatability property it is sufficient to
require the scheme US to be anonymous in the sense of [16]. A scheme US
is said to be anonymous if (roughly) for two randomly generated key pairs
(pk0, sk0), (pk1, sk1) and a message m, it is infeasible to distinguish the two
distributions US.Sign(sk0, m) and US.Sign(sk1, m). More formally, we can prove
the following theorem:

Theorem 3. If S is a secure standard signature scheme and US is a secure
anonymous undeniable signature scheme then IB US as outlined above is a se-
cure identity-based undeniable signature scheme.

As far as we know, only one IB-US has been previously presented in [24]. This
scheme uses bilinear pairings and it is proved secure in the random oracle model.
We stress that the security model in [24] seems to be incomplete, as the authors
do not consider simulatability.

In [16], an anonymous PKI-based US scheme based on the RSA primitive
was proposed (the security proof uses the random oracle model). A different
anonymous US scheme, whose security is proved in the standard model, can be
found in [23]; it does not employ bilinear pairings, but the disavowal protocol is
quite inefficient. Using these anonymous US schemes [16,23], we can obtain secure
IB-US schemes in the random oracle model and also in the standard model, based
on different computational assumptions, which do not employ bilinear pairings.

3.3 Aggregate Signatures

The idea of an aggregate signature scheme [7] is to combine n signatures on n
different messages, signed by n (possibly different) signers, in order to obtain
a single aggregate signature AgSig which provides the same certainty than the



186 D. Galindo, J. Herranz, and E. Kiltz

n initial signatures. The main goal in the design of such protocols is that the
length of AgSig be constant, independent of the number of messages and signers.
Of course, to check correctness of an aggregate signature, the verifier will also
need the messages mi and the public keys pk i, but this is not taken into account
when considering the length of AgSig.

In the identity-based framework, the only proposal which achieves constant-
length aggregation is that of [18]; however, this scheme only works in a more
restrictive scenario where some interaction or sequentiality is needed among the
signers of the messages which later will be aggregated (in the same direction
as [25] for the PKI-based scenario). With respect to non-interactive aggregate
signatures in the identity-based setting, the most efficient proposal is from [21],
that does not achieve constant-length aggregation: the length of the aggregate
signature does not depend on the number of signed messages, but on the num-
ber of different signers. Using the approach of this work, we can achieve exactly
the same level of partial aggregation for identity-based signatures. In effect,
let us consider our generic construction, and let us assume that the employed
PKI-based signature scheme S allows constant-length aggregation. The the input
of the aggregation algorithm would be {(idi, sigmsk (idi||pk i), pk i, mi, sig i}1≤i≤n,
where sig i and sigski

(mi) are signatures resulting from scheme S , and can there-
fore be aggregated into a PKI-based aggregate signature AgSig , of constant-
length. Then the final identity-based aggregate signature would be IBAgSig =
(Ag Sig, pk1, . . . , pkn). This aggregate signature, along with the n messages and
the n identities, is sufficient to verify the correctness of the n signatures. There-
fore the length of the identity-based aggregate signature IBAgSig is linear with
respect to the number of different signers.

3.4 Limitations and Extensions

Our generic approach to construct identity-based signature schemes with special
properties does not work in situations where the signing procedure (in the cor-
responding PKI-based scheme) involves other public keys than the one from the
signer, and interaction between the signer and the owners of these public keys
is not mandatory. Our approach fails in this case because in the identity-based
framework the signer only knows the identity of the other users, and needs some
interaction with them in order to know the public key that they have received in
the key extraction phase. Some examples of signature schemes with special prop-
erties falling inside this group are: ring signatures; designated verifier signatures;
confirmer signatures; chameleon signatures; and nominative signatures.

We are aware of the fact that the list of properties where the generic approach
can be applied is not complete and it obviously can also be applied to other
concepts (like one-time signatures, homomorphic signatures, etc.) as well.

4 Generic Construction of ID-Based Blind Signatures

In this section we consider in more detail the generic construction in the case
of blind signature schemes. In blind signature (BS) schemes [11] a user can ask
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a signer to blindly sign a (secret) message m. At the end of the (interactive)
signing process, the user obtains a valid signature on m, but the signer has no
information about the message he has just signed. A formal security model of
blind signatures was introduced in [22,27]. Partially blind signature schemes are
a variation of this concept, where the signer can include some common informa-
tion in the blind signature, under some agreement with the final receiver of the
signature. This concept was introduced in [1] and the security of such schemes
was formalized in [2].

The first identity-based blind signature (IB-BS) schemes were proposed in
[31,30]. They employ bilinear pairings, but their security is not formally analyzed.
Subsequent schemes were proposed in [13] but security is only provided in a
weaker model (i.e. against sequential adversaries).

The main result of this section can be stated as follows.

Theorem 4. If S is a strongly secure standard signature scheme and PS is a
secure (partially) blind signature scheme then a secure identity-based (partially)
blind signature scheme IB PS can be constructed.

Here the IB-BS scheme inherits the security properties of the BS scheme — if BS
is secure against concurrent adversaries so is IB-BS. In particular, we obtain the
first IB-BS scheme provably secure (in the standard model), against concurrent
adversaries (by using the results from [8,26,15]), we obtain IB-BS schemes which
do not employ bilinear pairings [4], and we obtain IB-BS schemes from any one-
way trapdoor permutation [22,15].

We now formally prove Theorem 4. First we recall the basic definitions of PKI-
based and identity-based blind signature schemes, then we explain and analyze
our construction and prove its blindness. Due to lack of space, we included all
details (definitions and analysis) related to the unforgeability property in the
full version of this paper [17].

4.1 Blind Signature Schemes

Blind signature schemes were introduced in [11] with electronic banking as first
motivation. The intuitive idea is that a user asks some signer to blindly sign a
(secret) message m. At the end of the process, the user obtains a valid signature
on m from the signer, but the signer has no information about the message he has
signed. More formally, a blind signature scheme BS = (BS.KG, BS.Sign, BS.Vfy)
consists of the following (partially interactive) algorithms.

The key generation algorithm BS.KG takes as input a security parameter
k and returns a secret key sk and a matching public key pk . We use notation
(sk , pk ) ← BS.KG(1k) to refer to one execution of this protocol. The blind
signing algorithm BS.Sign is an interactive protocol between a user U and a
signer S with public key pk . The input for the user is InpU = (m, pk ) where m
is the message he wants to be signed by the signer. The input InpS of the signer is
his secret key sk . In the end, the output OutS of the signer is ’completed’ or ’not
completed’, whereas the output OutU of the user is either ’fail’ or a signature
sig = sigsk (m). We use notation (OutU ,OutS) ← BS.Sign(InpU , InpS) to refer
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to one execution of this interactive protocol. Finally, the verification algorithm
BS.Vfy is the same verification protocol as in standard signature schemes. To
refer to one execution of this protocol, we use notation {0, 1} ← BS.Vfy(m, sig).

Blindness. Intuitively, the blindness property captures the notion of a signer
who tries to obtain some information about the messages he is signing for some
user. Formally, this notion is defined by the following game that an adversary
(signer) B plays against a challenger (who plays the role of a user).

First the adversary B runs the key generation protocol (sk , pk) ← BS.KG(1k).
Then the adversary B chooses two messages m0 and m1 and sends them to the
challenger, along with the public key pk . The challenger chooses b ∈ {0, 1} at
random and then the interactive signing protocol is executed two times (possibly
in a concurrent way), resulting in (OutU,b,OutS,b) ← BS.Sign(InpU,b, InpS,b) and
(OutU,1−b,OutS,1−b) ← BS.Sign(InpU,1−b, InpS,1−b), where adversary B plays
the role of the signer S, and the challenger plays the role of the user, with
inputs InpU,b = (pk , mb) and InpU,1−b = (pk , m1−b). Finally, the adversary B
outputs its guess b′. Note that the adversary in the above security game is in
the possession of the secret key sk .

We say that such an adversary B succeeds if b′ = b and define its advantage
in the above game as Advblind

BS ,B (k) = |Pr [ b′ = b ] − 1/2|. A scheme BS has the
blindness property if, for all PPT adversaries B, Advblind

BS ,B (k) is a negligible
function (with respect to the security parameter k).

4.2 Identity-Based Blind Signature Schemes

Analogously, an identity-based blind signature scheme IB BS = (IB BS.KG,
IB BS.Extr, IB BS.Sign, IB BS.Vfy) consists of the following algorithms.

The setup algorithm IB BS.KG takes as input a security parameter k and
returns, on the one hand, the master public key mpk and, on the other hand,
the value master secret key msk , which is known only to the master entity. We
note an execution of this protocol as (msk ,mpk) ← IB BS.KG(1k). The key ex-
traction algorithm IB BS.Extr takes as inputs mpk , the master secret key msk
and an identity id ∈ {0, 1}∗, and returns a secret key sk [id ] for the user with this
identity. We use notation sk [id ] ← IB BS.Extr(msk , id) to refer to one execution
of this protocol. The blind signing algorithm IB BS.Sign is an interactive proto-
col between a user U and a signer with identity id . The common input for them
is mpk . The input for the user is InpU = (id , m) where m is the message he wants
to be signed by id . The input Inpid of the signer is his secret key sk [id ]. In the
end, the output Outid of the signer is ’completed’ or ’not completed’, whereas
the output OutU of the user is either ’fail’ or a signature sig = sigmsk (id , m). We
use notation (OutU ,Out id ) ← IB BS.Sign(mpk , InpU , Inpid ) to refer to one exe-
cution of this interactive protocol. Finally, the verification algorithm IB BS.Vfy
takes as input mpk , a message m, an identity id and a signature sig ; it outputs
1 if the signature is valid with respect to the public key mpk and the identity
id , and 0 otherwise. To refer to one execution of this protocol, we use notation
{0, 1} ← IB BS.Vfy(mpk , id , m, sig).
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An identity-based blind signature scheme must satisfy the requirements of
correctness, blindness and unforgeability. Due to lack of space, we focus only on
the blindness property.

Blindness. Blindness of an identity-based blind signature scheme is defined
by a game played between a challenger and an adversary. This adversary BIB

models the dishonest behavior of a signer who tries to distinguish which mes-
sage (between two messages chosen by himself) is being signed in an interactive
execution of the signing protocol with a user. The game is as follows.

First the challenger runs the setup protocol (msk , mpk) ← IB BS.KG(1k) and
gives mpk to BIB. The master secret key msk is kept secret by the challenger.
The adversary BIB is allowed to query for secret keys of identities id i of his
choice. The challenger runs sk [id i] ← IB BS.Extr(msk , id i) and gives the re-
sulting secret key sk [id i] to BIB. If the same identity is asked again, the same
value sk [id i] must be returned by the challenger. At some point, the adver-
sary BIB chooses an identity id∗ and two messages m0, m1, and sends these
values to the challenger. The challenger chooses b ∈ {0, 1} at random and
then the interactive signing protocol is executed twice (possibly in a concur-
rent way), resulting in (OutU,b,Outid∗,b) ← IB BS.Sign(InpU,b, Inpid∗,b) and
(OutU,1−b,Out id∗,1−b) ← IB BS.Sign(InpU,1−b, Inpid∗,1−b), where adversary BIB

plays the role of the signer id∗, and the challenger plays the role of the user, with
inputs InpU,b = (mb, id∗) and InpU,1−b = (m1−b, id∗). Finally, the adversary BIB

outputs its guess b′.
We say that such an adversary B succeeds if b′ = b and define its advantage

in the above game as Advib-blind
IB BS ,BIB

(k) = |Pr [ b′ = b ] − 1/2|. A scheme IB BS
has the blindness property if, for all PPT adversaries BIB, Advib-blind

IB BS ,BIB
(k) is a

negligible function (with respect to the security parameter k).

4.3 Constructing Identity-Based Blind Signature Schemes

Let S = (S.KG, S.Sign, S.Vfy) be a standard signature scheme and let BS =
(BS.KG, BS.Sign, BS.Vfy) be a blind signature scheme. We construct an ID-based
blind signature scheme IB BS = (IB BS.KG, IB BS.Sign, IB BS.Extr, IB BS.Vfy)
as follows.

Setup IB BS.KG(1k): On input a security parameter k, the key generation pro-
tocol S.KG of S is executed, resulting in (SK ,PK ) ← S.KG(1k). The master
public key is defined as mpk = PK , whereas the master secret key stored by the
master entity is msk = SK .

Key extraction IB BS.Extr(msk , id i): When the user secret key sk [id i] for
some identity id i is requested, the master entity first checks if it already has es-
tablished a user secret key for id i. If so, the old secret key is returned. Otherwise
it generates and stores a new user secret key as follows: it runs the key generation
protocol of the blind signature scheme BS , resulting in (sk i, pk i) ← BS.KG(1k).
Then it uses signature scheme S to sign the ”message” id i ‖ pk i, that is, it
executes sigmsk (id i ‖ pk i) ← S.Sign(msk , id i ‖ pk i). The resulting secret key,
which is sent to the owner of the identity, is sk [id i] = (sk i, pk i, sigmsk (id i ‖
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pk i)). The recipient can verify the obtained secret key by executing {0, 1} ←
S.Vfy(mpk , id i ‖ pki, sigmsk(id i||pk i)); if the output is 1, then the secret key is
accepted.

Blind signature IB BS.Sign: The interactive protocol between a user U and
a signer with identity id i consists of the following steps (recall that mpk is a
common input for user and signer, the input of the user is (id i, m) and the input
of the signer is sk [id i]).

1. User U sends the query (id i,
′blindsignature?′) to the signer.

2. If the signer does not want to sign, the protocol finishes with OutU =’fail’ and
Out idi

=’not completed’. Otherwise, the signer sends (pk i, sigmsk(id i||pk i))
back to the user.

3. The user runs {0, 1} ← S.Vfy(mpk , id i||pki, sigmsk (id i||pk i)). If the output is
0, then the protocol finishes with OutU =’fail’ and Out idi

=’not completed’.
Otherwise, user and signer interact to run the blind signature protocol of BS ,
resulting in (Out ′U ,Out ′idi

) ← BS.Sign(InpU , Inpidi
), where InpU = (pk i, m)

and Inpidi
= sk i. If Out ′U �=’fail’, then it consists of a standard signature

sigski
(m) on m under secret key sk i. The final output for the user is in

this case OutU = sig(id i, mi) = (sigmsk (id i||pki), pk i, sigski
(m)), which is

defined to be the identity-based signature on message m from identity id i.

Verification IB BS.Vfy(mpk , id i, m, sig(id i, mi)): Given as input a message
m, an identity id i and an identity-based signature sig(id i, mi) that is parsed as
(sigmsk (id i||pki), pk i, sigski

(m)), the verification protocol works as follows. The
two verification protocols, of schemes S and BS , are executed in parallel: {0, 1} ←
S.Vfy(mpk , id i||pki, sigmsk(id i||pki)) and {0, 1} ← BS.Vfy(pk i, m, sigski

(m)). If
both outputs are 1, then the final output of this protocol is also 1. Otherwise,
the output is 0.

4.4 Security Analysis

In this section we prove that the identity-based blind signature scheme IB BS
constructed in the previous section satisfies the blindness property, assuming
that the schemes S and BS employed as primitives are secure. The detailed
analysis of the unforgeability property can be found in [17].

Theorem 5. Assume the signature scheme S is strongly unforgeable and the blind
signature scheme BS is blind. Then the identity-based blind signature scheme
IB BS constructed in Section 4.3 is blind.

Proof. Assume there exists a successful adversary BIB against the blindness of
the scheme IB BS . We show that then there exists either a successful forger F
against the signature scheme S or a successful adversary B against the blindness
of the blind signature scheme BS . We now construct F and B.

Setup. Forger F receives as initial input some public key PK for the standard
signature scheme S . Then we initialize the adversary BIB by providing it
with mpk = PK .
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Secret key queries. Adversary BIB is allowed to make secret key queries for
identities id i of its choice. To answer a query, we run the key generation
protocol of the blind signature scheme BS to obtain (sk i, pk i) ← BS.KG(1k).
Then we send the query mi = id i ‖ pk i to the signing oracle of the forger
F , and obtain as answer a valid signature sig i with respect to scheme S
and public key PK = mpk . Then we send to BIB the consistent answer
sk [id i] = (sk i, pk i, sig i). We store all this information in a table. If the
same identity is asked twice by BIB, then the same secret key is given as
answer.

Challenge. At some point, BIB will output some challenge identity id∗ and
two messages m0, m1. Without loss of generality we can assume that BIB

had already asked for the secret key of this identity (otherwise, we generate
it now and send it to BIB), obtaining sk [id∗] = (sk∗, pk∗, sig∗). Then we
start constructing an adversary B against the blindness of the scheme BS , by
sending public key pk∗ and messages m0, m1 to the corresponding challenger.
Now we must execute twice the interactive blind signature protocol with BIB,
where BIB acts as a signer and we act as the user. For both executions, we first
send (id∗, ′blindsignature?′) to BIB. As answers, we will obtain (pk (0)

∗ , sig(0)
∗ )

and (pk (1)
∗ , sig(1)

∗ ) from BIB, where sig(j)
∗ is a valid signature on id∗ ‖ pk (j)

∗ ,
for both j = 0, 1.

If (pk (j)
∗ , sig(j)

∗ ) �= (pk∗, sig∗) for either j = 0 of j = 1, then F outputs
sig(j)

∗ as a valid forgery on the message id∗||pk (j)
∗ for the signature scheme S .

This is a valid forgery against signature scheme S , because these signatures
were not obtained during the attack. Therefore, in this case we would have a
successful forger F against S , contradicting the hypothesis in the statement
of the theorem which claims that S is strongly unforgeable.

From now on we assume (pk (j)
∗ , sig(j)

∗ ) = (pk∗, sig∗) for both j = 0, 1 and
the two first steps in the two executions of the interactive signing protocol
are identical. Then we run the two execution of the blind signing protocol of
scheme BS , playing the role of the signer: we obtain from BIB the information
that we must send to the challenger (user) of BS , and this challenger sends
back to us the information that we must provide to BIB. This challenger of
BS is the one who chooses the bit b ∈ {0, 1}.

Eventually, adversary BIB outputs its guess b′. B outputs the same bit b′

as its guess in the blindness game against the blind signature scheme BS .

The first two steps in the two executions of the interactive signing protocol of
IB BS run between BIB and us are identical. Hence distinguishing between the
two executions of IB BS.Sign is equivalent to distinguishing between the two
executions of BS.Sign. This completes the proof. � 

We stress that the signature scheme S really has to be strongly unforgeable;
otherwise a signer can break blindness by using different versions of sk [id i] in
different signing sessions and later use this information to trace the user.
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Theorem 6. Assume the standard signature scheme S is unforgeable and the
blind signature scheme BS is unforgeable. Then the identity-based blind signature
scheme IB BS from Section 4.3 is unforgeable.

The proof of Theorem 6 can be found in [17]. Theorems 5 and 6 imply Theorem 4.
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Abstract. Pseudorandom Generators (PRGs) based on the RSA inver-
sion (one-wayness) problem have been extensively studied in the litera-
ture over the last 25 years. These generators have the attractive feature
of provable pseudorandomness security assuming the hardness of the
RSA inversion problem. However, despite extensive study, the most effi-
cient provably secure RSA-based generators output asymptotically only
at most O(log n) bits per multiply modulo an RSA modulus of bitlength
n, and hence are too slow to be used in many practical applications.

To bring theory closer to practice, we present a simple modification
to the proof of security by Fischlin and Schnorr of an RSA-based PRG,
which shows that one can obtain an RSA-based PRG which outputs Ω(n)
bits per multiply and has provable pseudorandomness security assuming
the hardness of a well-studied variant of the RSA inversion problem,
where a constant fraction of the plaintext bits are given. Our result
gives a positive answer to an open question posed by Gennaro (J. of
Cryptology, 2005) regarding finding a PRG beating the rate O(log n) bits
per multiply at the cost of a reasonable assumption on RSA inversion.

Keywords: Pseudorandom generator, RSA, provable security, lattice
attack.

1 Introduction

Background. The RSA Pseudorandom bit generator (RSA PRG) works by iterat-
ing the RSA encryption mapping x → xe mod N (with public RSA modulus N of
length n bits and public exponent e coprime to φ(N)) on a secret random initial
seed value x0 ∈ ZZN to compute the intermediate state values xi+1 = xe

i mod N
(for i = 0, 1, 2, . . .) and outputting r least-significant bits of the state value xi per
iteration. The pseudorandomness of the RSA PRG (especially the case r = 1)
was studied extensively by several researchers [19,2,30,1,14]. However, even the
best security proof so far [14,28] only applies to the case when only a very small
number of bits r = O(log n) is output per iteration. Consequently, even with
small public exponent e, these proven RSA PRG variants only output O(log n)
bits per multiply modulo N and hence are too slow for most practical applica-
tions. As far as we are aware, these are currently the most efficient RSA-based
PRGs with proven pseudorandomness security.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 194–209, 2006.
c© International Association for Cryptologic Research 2006
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Our Approach. Our approach to studying the provable security of efficient vari-
ants of the RSA PRG is based on two observations.

First, we observe that existing security proofs of the RSA PRG have always
attempted to prove the security assuming the hardness of the classical RSA
one-wayness problem (given RSA modulus N and y = xe mod N for random
x ∈ ZZN , find x). If we instead make a stronger hardness assumption, we can
hope to prove the security of much more efficient and practical variants of the
RSA PRG, with r = Ω(n). But we must be careful in choosing this stronger
hardness assumption to ensure that it is based on substantial evidence – it must
be a hard problem which has been undoubtedly studied extensively by experts.
This leads to our second observation.

Our second observation is that over the last decade, beginning with the work
of Coppersmith [11], the following variant of the RSA one-wayness problem has
been studied explicitly:

(δ, e)-Small Solution RSA ((δ, e)-SSRSA) Problem. Given a random n-
bit RSA modulus N , the coefficients of a univariate polynomial f(z) = aez

e +
ae−1z

e−1 + · · · + a0 ∈ ZZN [z] of degree e (with ae ∈ ZZ∗
N ) and y = f(z̄) mod N

for a random integer z̄ < N δ (with 0 < δ < 1), find z̄ (note that we will only
be interested in instances where f is such that z̄ is uniquely determined by
(N, f, y)).

The celebrated lattice-based attack of Coppersmith [11] shows that for small
e, the (δ, e)-SSRSA problem can be solved in polynomial time (in n) whenever
δ < 1/e. But when δ > 1/e + ε for some constant ε > 0, the lattice attack
fails, and the only known attack (beyond factoring N) is to run the lattice
attack O(N ε) times for each guess of the ε · n most-significant bits of z̄. Hence,
when ε is made sufficiently large to make the above lattice attack slower than
factoring N (namely even ε = O((log n/n)2/3) suffices), the best known attack
against (1/e + ε, e)-SSRSA problem is to factor N . Importantly, this hardness
assumption is supported by explicit evidence in the literature that the (1/e+ε, e)-
SSRSA problem has been studied by experts [12,26,10], yet these studies have
not yielded an efficient algorithm for the (1/e + ε, e)-SSRSA problem.
Our Result. We present a simple modification to the proof of security of the RSA
PRG by Fischlin and Schnorr [14] which shows that assuming the hardness of
a certain specific (1/e + ε, e)-SSRSA one-wayness problem suffices to prove the
pseudorandomness of the RSA PRG outputting r = (1/2 − 1/e − ε − o(1)) · n
LS bits per iteration. Our specific (1/e + ε, e)-SSRSA one-wayness problem can
be posed as RSA inversion with some known plaintext bits, namely: Given N ,
y = [xe]N , r LS bits of x and w ≈ n/2 MS bits of x, for x ∈R ZZN , find x. For
small (constant) e ≥ 3 we therefore obtain a throughput of Ω(n) output pseu-
dorandom bits per multiply modulo the RSA modulus N , which is a significant
improvement over the O(log n) bits per multiply throughput obtained using pre-
vious proof of security relative to the RSA assumption. We believe this answers
in the positive an open question raised by Gennaro [15], who asked whether one
can obtain a PRG which beats the rate O(log n) bits per multiply at the cost of
a stronger but reasonable assumption on RSA inversion.
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Organization. In Section 1.1 we discuss additional related work. Section 2 contains
definitions and notations. In Section 3, we review the RSA PRG construction and
its proof of security by Fischlin and Schnorr [14]. Section 4 presents our modified
security proof for the RSA PRG assuming the hardness of a (1/e + ε, e)-SSRSA
problem. In Section 5, we estimate concrete parameters and associated PRG per-
formance for given proven security level and security assumptions. In Section 6 we
investigate the potential for performance improvements using a stronger hardness
assumption. Section 7 concludes the paper with some open problems.

1.1 Additional Related Work

Related PRG constructions can be divided in two classes.
The first class contains PRGs based on related hardness assumptions. The

well known Blum-Blum-Shub (BBS) generator [6] has the same structure as
the RSA PRG, but uses the Rabin squaring iteration function instead. Similar
security results as for the RSA PRG are known for this generator [14], but we
need a less known assumption to prove the security of efficient variants of this
generator (see Section 6). The factoring-based construction by Goldreich and
Rosen [17] has a throughput of O(1) bits per multiply modulo an n bit modulus.
The Micali-Schnorr RSA-based constructions [24] have a throughput of Ω(n)
bits per multiply, but their pseudorandomness security is only proven assuming
the pseudorandomness of the RSA function with small inputs whereas for our
construction we can prove pseudorandomness assuming only a much weaker
assumption of one-wayness of RSA with small inputs. The PRG of Boneh et
al [9] also achieves a throughput of Ω(n) bits per multiply (and in fact may use
a smaller prime modulus), but its provable pseudorandomness security also relies
on a pseudorandomness assumption rather than a one-wayness assumption.

The second class of PRGs achieve provable pseudorandomness based on dif-
ferent one-wayness assumptions. The construction by Impagliazzo and Naor [21]
is based on the hardness of the Subset Sum problem. Although this construc-
tion is potentially very efficient, its concrete security against lattice-based subset
sum attacks is difficult to estimate and requires carefully chosen large parameters
with a small number of bits output per function evaluation. Very recently, a more
practical ‘QUAD’ construction by Berbain et al [3] was proposed, using similar
ideas to [21] in its security proof, but based on the hardness of solving a random
system of multivariate quadratic equations over a finite field (‘MQ’ problem).
We compare the practical performance of our construction with QUAD in Sec-
tion 5. The fastest PRG based on the hardness of a variant of the Discrete-Log
one-wayness problem is due to Gennaro [15] (improving on earlier work by Patel
and Sundaram [27]), but its throughput is at most O(( n

log n )2/3) = o(n) bits per
multiply, compared to Ω(n) bits per multiply for our construction with same
modulus length n and conjectured security level.

Finally, we also wish to mention the lattice-based attacks of Blackburn et
al [5,4] on a class of PRGs having the same iterative structure as our RSA
PRG. These attacks show that the RSA PRG is insecure when the number of
bits output per iteration r is larger than about 2

3n [5] for e = 2, and about
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(1− 1
e(e+1)/2+2 )n [4] in the general case (these results are obtained for r MS bits

output per iteration and prime moduli, but we believe that with appropriate
modifications they hold also for r LS bits and RSA moduli). We remark that
the general case attacks in [4] use low-dimension lattices and are rigorously
proven. A heuristic extension of these attacks to high dimension lattices using the
Coppersmith method [11] suggests that the RSA PRG is insecure asymptotically
with r ≥ (1 − 1

e+1 )n (we omit details of these calculations here). These lower
bounds for insecure values of r are greater by a factor of about 2 than the upper
bounds on r for which our security proof applies. Closing this remaining gap
between best attack and best proof is an interesting open problem.

2 Preliminaries

Notation. For integers x and N , we use [x]N to denote the remainder x mod N .
We use Lr(x) = [x]2r to denote the r least significant bits of the binary repre-
sentation of x. Similarly, we use Mr(x) = (x−Ln−r(x))/2n−r (where n is the bit
length of x) to denote the r most significant bits of the binary representation of
x. For x ∈ ZZN , we use M̂N,r(x) to denote any approximation of x with additive
error |x− M̂N,r(x)| ≤ N/2r.

Probability Distributions and Distinguishers. Let D denote a probability
distribution over {0, 1}	. We denote by s ← D the assignment to s of a random
element sampled from the distribution D. If S denotes a set then we let s ∈R S
denote the assignment to s of a uniformly random element sampled from S. Let
D1 and D2 denote two probability distributions on some finite set. We say that
an algorithm D is a (T, δ) distinguisher between D1 and D2 if D runs in time
at most T and has distinguishing advantage at least δ between D1 and D2, i.e.
|Prs←D1 [D(s) = 1] − Prs←D2 [D(s) = 1]| ≥ δ. The statistical distance between
two distributions D1 and D2 is 1

2

∑
s |D1(s)−D2(s)|. It gives an upper bound on

the distinguishing advantage of any distinguisher between D1 and D2, regardless
of run-time.

Pseudorandom Bit Generators (PRGs). We use the following definition of
pseudorandom generators and their concrete pseudorandomness.

Definition 1 ((T, δ) PRG). A (T, δ) Pseudorandom Generator (family) PRG
is a collection of functions GN : SN → {0, 1}	 indexed by N ∈ In. Here In

(PRG function index space) and SN (PRG seed domain) are both efficiently
samplable subsets of {0, 1}n, where n is the security parameter. We require that
any (probabilistic) distinguisher algorithm D running in time T has distinguish-
ing advantage at most δ between the pseudorandom distribution DP,	 and the
random distribution DR,	 on 	-bit strings, which are defined as follows:

DP,	 = {s : N ∈R In; x0 ∈R SN ; s = GN (x0)}
while

DR,	 = {s : s ∈R {0, 1}	}.
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If algorithm D runs in time T and has distinguishing advantage at least δ between
DP,	 and DR,	, we say that D is a (T, δ) distinguisher for PRG.

The RSA Inversion Problem. The classical RSA inversion problem is defined
as follows.

Definition 2 ((n, e)-RSA problem). Let e be a fixed integer. Let In denote
the set of all n-bit RSA moduli N = pq (for p,q primes of n/2 bits each) such
that gcd(e, (p−1)(q−1)) = 1. The (n, e)-RSA inversion problem is the following:
given N ∈R In and y = [xe]N for x ∈R ZZN , find x. We say that algorithm A is
a (T, ε) inversion algorithm for (n, e)-RSA if A runs in time T and succeeds with
probability ε over the choice of N ∈R In, x ∈R ZZN and the random coins of A.

Lattices. Let {b1, . . . ,bn} be a set of n linearly independent vectors in IRn.
The set

L = {z: z = c1b1 + . . . + cnbn; c1, . . . , cn ∈ ZZ}
is called an n-dimensional (full-rank) lattice with basis {b1, . . . ,bn}. Given a
basis B = {b1, . . . ,bn} for a lattice L, we define the associated basis matrix
ML,B to be the (full-rank) n×n matrix whose ith row is the ith basis vector bi

for i = 1, . . . , n. The quantity | det(ML,B)| is independent of B. It is called the
determinant of the lattice L and denoted by det(L). Given any basis of a lattice
L, the well-known LLL algorithm [22] outputs in polynomial time a reduced basis
for L consisting of short vectors. We use the following result [8] bounding the
length of those vectors.

Lemma 1. Let L be a lattice of dimension d with basis matrix BL in lower
diagonal form whose diagonal elements are greater or equal to 1. Then the Eu-
clidean norm of the first two vectors in the LLL reduced basis for L is at most
2d/2(det(L))

1
d−1 .

3 Overview of the Fischlin-Schnorr Security Proof

The RSA PRG. We begin by recalling the RSA PRG construction.

Definition 3 ((n, e, r, 	)-RSAPRG Pseudorandom Generator). The psue-
dorandom generator family (n, e, r, 	)-RSAPRG is defined as follows. The PRG
function index space In is the set of all n-bit RSA moduli N = pq (for p,q primes
of n/2 bits each) such that gcd(e, (p−1)(q−1)) = 1. Given index N ∈ In the PRG
seed domain is ZZN . Assume that 	 is a multiple of r. Given a seed x0 ∈R ZZN ,
the PRG function GN : ZZN → {0, 1}	 is defined by

GN (x0) = (s0, . . . , s	/r−1) : si = Lr(xi), xi+1 = [xe
i ]N for i = 0, . . . , 	/r− 1.

As will become clear below, our result builds on the Fischlin-Schnorr result in
essentially a ‘black box’ way, so our result can be understood without knowing
most of the internal details of the reduction in [14]. Hence, in this section we
provide only a very high-level overview of the basic security reduction [14] for
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the RSA PRG from the RSA assumption, in the case of r LS bits output per
iteration (refer to the full version of the paper [29] for more details).

Using our notation, the Fischlin-Schnorr security result can be stated con-
cretely as follows.

Theorem 1 (Fischlin-Schnorr [14]). For all n ≥ 29, any (T, δ) distinguisher
D for (n, e, r, 	)-RSAPRG can be converted into a (TINV , δ/9) inversion algorithm
A for the (n, e)-RSA problem with run-time at most

TINV = 22r+14(	/δ)6n log(n) · (T + O(	/r log(e)n2)). (1)

Proof. We are given a distinguisher D with run-time T and distinguishing ad-
vantage Adv(D) ≥ δ between the pseudorandom distribution DP,	 (obtained by
iterating m = 	/r times and outputting r LS bits per iteration) and the random
distribution DR,	 on 	 bit strings, namely:

DP,	 = {GN (x0) : N ∈R In; x0 ∈R ZZN}

while
DR,	 = {s : s ∈R {0, 1}	}.

We use D to construct the (n, e)-RSA inversion algorithm A as follows.
As a first step, we note that the pseudorandom distribution DP,	 is taken

over the random choice of modulus N ∈R In as well as random seed x0 ∈R

ZZN . For the remainder of the proof, we wish to fix N and find a lower bound
on the distinguishing advantage AdvN (D) between DR,	 and the pseudorandom
distribution DP,	,N taken over just the random choice of x0 ∈R ZZN for this fixed
N , that is:

DP,	,N = {GN (x0) : x0 ∈R ZZN}.
To do so, we use an averaging argument over N .

Lemma 2. There exists a subset Gn ⊆ In of size at least |Gn| ≥ δ/2|In| such
that D has distinguishing advantage at least δ/2 between the distributions DP,	,N

and DR,	 for all N ∈ Gn.

From now on we assume that N ∈ Gn (which happens with probability at least
δ/2 over N ∈R In) so that D has distinguishing advantage at least δ/2 between
DP,	,N and DR,	 (We remark that this first step is actually omitted in [14]
which always assumes a fixed N ; however we add this step since we believe it is
essential for a meaningful security proof: to demonstrate an efficient algorithm
for RSA inversion contradicting the RSA assumption, one must evaluate its
success probability over the random choice of modulus N , since for any fixed N
an efficient algorithm always exists; it has built into it the prime factors of N).

We now convert 	/r-iteration distinguisher D into a 1-iteration distinguisher
D′. This is a ‘hybrid’ argument using the fact that the mapping x → [xe]N is a
permutation on ZZN . Note that the ‘hybrid’ argument underlying this reduction
has been known since the work of [18,7] and it is not explicitly included in [14].
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Lemma 3 (m = 	/r iterations to 1 iteration.). Any (T, δ) distinguisher
D between the m-iteration pseudorandom distribution DP,	,N and the random
distribution DR,	 can be converted into a (T + O(m log(e)n2), δ/m) 1-iteration
distinguisher D′ between the distributions

D′
P,r,N = {(y = [xe]N , s = Lr(x)) : x ∈R ZZN}

and
D′

R,r,N = {(y = [xe]N , s) : x ∈R ZZN ; s ∈R {0, 1}r}.
The main part of the Fischlin-Schnorr reduction [14] is the conversion of the
distinguisher D′ into an inversion algorithm that recovers the RSA preimage x
from y = [xe]N with the help of some additional information on x, namely r least-
significant bits of [ax]N and [bx]N for some randomly chosen known a, b ∈ ZZN ,
as well as rough approximations to [ax]N and [bx]N . This is stated more precisely
as follows.

Lemma 4 (Distinguisher to Inverter). For all n ≥ 29, any (T, δ) distin-
guisher D′ between the distributions D′

P,r,N and D′
R,r,N (see Lemma 3) can be

converted into an inversion algorithm A′ that, given N and (y = [xe]N , a ∈R

ZZN , s1 = Lr([ax]N ), u1 = M̂N,k([ax]N ), b ∈R ZZN , s2 = Lr([bx]N ), u2 =
M̂N,l([bx]N )), for any x ∈ ZZN with k = 3 log(r/δ)+ 4 and l = log(r/δ)+ 4, out-
puts x with probability ε′INV ≥ 2/9 (over the choice of a ∈R ZZN , b ∈R ZZN and
the random coins of A′) and runs in time T ′

INV = 4n log(n)(r/δ)2 · (T +O(n2)).
Here M̂N,k(x) denotes any approximation of x with additive error |M̂N,k(x) −
x| ≤ 2n−k.

Putting it Together. On input (N, y = [xe]N ), the RSA inversion algorithm A
runs as follows. It applies Lemmas 2 and 3 to convert the (T, δ) distinguisher D
into a (T +O(m log(e)n2), δ/(2m)) distinguisher D′ between distributions D′

P,r,N

and D′
R,r,N which works for at least a fraction δ/2 of N ∈ In. Then A applies

Lemma 4 to convert D′ into the inversion algorithm A′. A now chooses random
a and b in ZZN . Since A does not know the ‘extra information’ s1 = Lr([ax]N ),
u1 = M̂N,k([ax]N ), s2 = Lr([bx]N ) and u2 = M̂N,l([bx]N )) required by A′,
A just exhaustively searches through all NG possible values of (s1, u1, s2, u2)
and runs A′ on input (N, y = [xe],ŝ1, û1, ŝ2, û2) for every guessed possibility
(ŝ1, û1, ŝ2, û2) until A′ succeeds to recover x. Note that to find an approximation
M̂N,k([ax]N ) correct within additive error N/2k it is enough to search through
2k−1 uniformly spaced possibilities (N/2k−1)i for i = 0, . . . , 2k−1 − 1. Since
k = 3 log(2mr/δ) + 4 = 3 log(2	/δ) + 4 and l = log(2	/δ) + 4, there are at most

NG = 64(2	/δ)422r (2)

guessing possibilities for Lr([ax]N ), M̂N,k([ax]N ), Lr([bx]N ), M̂N,l([bx]N ) to
search through. So the run-time bound of A is

TINV = NG · (4n log(n)(2	/δ)2) · (T + O(m log(e)n2))
= 22r+14(2	/δ)6n log(n) · (T + O(m log(e)n2)). (3)
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For at least a fraction δ/2 of N ∈ In, with the correct guessed value of the
‘extra information’, A′ succeeds with probability at least 2/9 over the choice of
a, b. Hence we conclude that the success probability of A is at least εINV ≥ δ/9,
as claimed. � 
We can interpret Theorem 1 as follows. Suppose we assume that the expected
run-time TINV /εINV of any (TINV , εINV ) RSA inversion algorithm is at least
TL. Then Theorem 1 can be used to convert a (T, δ) distinguisher for (n, e, r, 	)-
RSAPRG to an RSA inverter contradicting our hardness assumption only if we
output at most r bits per iteration, where

r <
1
2

log
(

1
9 · 214 · n logn	6δ−7

· TL

T

)
. (4)

Hence asymptotically, if we take TL = poly(n) (i.e. assume no poly-time RSA
algorithm) then we get r = O(log(n)) bits per iteration. If we assume that TL =
O(2cn1/3(log n)2/3

) for constant c (run-time of the Number Field Sieve factoring
algorithm [23]) then we can have r = O(n1/3 log2/3 n). But in any case, r = o(n).

4 Our Modified Security Proof from an SSRSA Problem

We now explain how we modify the above reduction to solve a well-studied
SSRSA problem and the resulting improved PRG efficiency/security tradeoff.

Our goal is to remove the search factor NG = 64 · 22r(	/δ)4 from the run-
time bound (3) of the reduction in the proof of Theorem 1. The simplest way
to do so is to provide the inversion algorithm A with the correct values for the
‘extra information’ required by the inversion algorithm A′ of Lemma 4. This
leads us to consider the following (not well-known) inversion problem that we
call (n, e, r, k, l)-FSRSA :

Definition 4 ((n, e, r, k, l)-FSRSA Problem.). Given RSA modulus N , and
(y = [xe]N , a ∈R ZZN , s1 = Lr([ax]N ), u1 = M̂k([ax]N ), b ∈R ZZN , s2 =
Lr([bx]N ), u2 = M̂l([bx]N )), for x ∈R ZZN , find x (here M̂N,k(x) denotes any
approximation to x with additive error |M̂N,k(x) − x| ≤ N/2k). We say that
algorithm A is a (T, η) inversion algorithm for (n, e, r, k, l)-FSRSA if A runs in
time at most T and has success probability at least η (over the random choice of
N ∈R In, x, a, b ∈R ZZN and the random coins of A, where In is the same as in
Definition 2).

With the search factor NG removed from the Fischlin-Schnorr reduction we
therefore have that the hardness of the inversion problem (n, e, r, k, l)-FSRSA
(with k = 3 log(2	/δ) + 4 and l = log(2	/δ) + 4) suffices for the ‘simultaneous
security’ of the r least-significant RSA message bits (i.e. indistinguishability of
distributions D′

P,r,N and D′
R,r,N in Lemma 3) and hence the pseudorandomness

of (n, e, r, 	)-RSAPRG, with a much tighter reduction than the one of Theorem 1
relative to the RSA problem.
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Theorem 2. For all n ≥ 29, any (T, δ) distinguisher D for (n, e, r, 	)-RSAPRG
can be converted into a (TINV , δ/9) inversion algorithm A for the (n, e, r, k, l)-
FSRSA problem (with k = 3 log(2	/δ) + 4 and l = log(2	/δ) + 4) with run-time
at most

TINV = 16 · (	/δ)2n log(n) · (T + O(	/r log(e)n2)). (5)

Proof. We use the same inversion algorithm A as in the proof of Theorem 1, ex-
cept that when applying Lemma 4, A runs inversion algorithm A′ just once
using the correct values of (a, b, s1 = Lr([ax]N ), u1 = M̂N,k([ax]N ), s2 =
Lr([bx]N ), u2 = M̂N,l([bx]N )) given as input to A, eliminating the search through
NG = 64(2	/δ)422r possible values for (s1, u1, s2, u2). � 
We defer to Section 6.1 our cryptanalysis of the (n, e, r, k, l)-FSRSA problem
using the lattice-based method introduced by Coppersmith [11], which leads us
to conjecture that the problem is hard whenever r/n ≤ 1/2 − 1/(2e) − (k +
l)/2n− ε for constant ε > 0. This assumption together with the above reduction
already implies the security of the efficient variants of (n, e, r, 	)-RSAPRG with
r = Ω(n). Unfortunately, (n, e, r, k, l)-FSRSA is a new problem and consequently
our conjecture on its hardness is not currently supported by extensive research.
However, we will now show that in fact for r/n = 1/2−max(k, l)/n−1/e−ε (note
that this is smaller by (max(k, l)− (k + l)/2)/n + 1/(2e) than the largest secure
value of r/n conjectured above), the problem (n, e, r, k, l)-FSRSA is at least
as hard as a specific (1/e + ε, e)-SSRSA problem (i.e. with a specific univariate
polynomial f of degree e) which we call (n, e, r, w)-CopRSA and define as follows:

Definition 5 ((n, e, r, w)-CopRSA Problem.). Given RSA modulus N , and
(y = [xe]N , sL = Lr(x), sH = Mn/2+w(x)), for x ∈R ZZN , find x (here Mk(x)
denotes the k most-significant bits of the binary representation of x). We say that
algorithm A is a (T, η) inversion algorithm for (n, e, r, w)-CopRSA if A runs in
time at most T and has success probability at least η (over the random choice
of N ∈R In, x ∈R ZZN and the random coins of A, where In is the same as in
Definition 2).

To see that (n, e, r, w)-CopRSA problem is a specific type of SSRSA problem,
note that it is equivalent to finding a small solution z̄ < 2n/2−(r+w) (consisting
of bits r + 1, . . . , (n/2 − w) of the randomly chosen integer x) to the equation
f(z̄) ≡ y mod N , where the degree e polynomial f(z) = (2rz + s)e, where s =
sH · 2n/2−w + sL is known. Hence (n, e, r, w)-CopRSA is a (1/e + ε, e)-SSRSA
problem when 1/2− (r + w)/n = 1/e + ε, i.e. r/n = 1/2− 1/e− ε− w/n.

Theorem 3. Let A′ be a (T ′, η′) attacker against (n, e, r, w− 1, w− 1)-FSRSA.
Then we construct a (T, η) attacker A against (n, e, r, w)-CopRSA with

T = 4T ′ + O(n2) and η = η′ − 4/2n/2.

Proof. On input (N, y = [xe]N , sL = Lr(x), sH = Mn/2+w(x)), for N ∈R In and
x ∈R ZZN , the attacker A runs as follows:
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– Choose a uniformly random b ∈R ZZN .
– Compute an integer c coprime to N with |c| < N1/2 such that |[b·c]N | < N1/2

(here [z]N ∈ (−N/2, N/2) denotes the ‘symmetrical’ residue of z modulo N ,

i.e. [z]N
def= [z]N if [z]N ∈ [0, N/2) and [z]N

def= [z]N −N if [z]N ∈ (N/2, N)).
It is well known that such a c exists and can be computed efficiently (in time
O(n2)) using continued fractions (see, e.g. Lemma 16 in [25]).

– Observe that [cx]N = cx − ωcN , where ωc = � cx
N �. Let x̂ = sH · 2n/2−w.

Notice that x̂ approximates x within additive error Δx ≤ 2n/2−w and con-
sequently the rational number cx

N approximates cx
N within additive error

|c|Δx

N ≤ Δx/N1/2 ≤ 2n/2−w/2(n−1)/2 < 1, where we have used the fact that
|c| < N1/2 and w ≥ 1. It follows that ωc ∈ {� cx

N �, � cx
N �±1} (where the + sign

applies if c ≥ 0 and the − sign applies otherwise). So A obtains 2 candidates
for ωc.

– Using Lr([cx]N ) = Lr(cx−ωcN) = Lr(Lr(c) ·Lr(x)−Lr(ωcN)), A computes
(with the known sL = Lr(x), c and N) 2 candidates for Lr([cx]N ) from the
2 candidates for ωc.

– Similarly, writing [bcx]N = [bc]N · x − ωbcN , with ωbc = � [bc]Nx

N �, using

|[bc]N | < N1/2 we obtain ωbc ∈ {� [bc]Nx

N �, � [bc]Nx

N � ± 1} (with + sign if
[bc]N ≥ 0 and − sign otherwise), so A also computes 2 candidates for ωbc

and two corresponding candidates for Lr([bcx]N ) = Lr([bc]Nx − ωbcN) =
Lr(Lr([bc]N )Lr(x) − ωbcN).

– Using x̂ and the 2 candidates for ωc computed above, A computes two can-
didate approximations cx̂ − ωcN for [cx]N . Since x̂ approximates x within
additive error Δx ≤ 2n/2−w we have that cx̂−ωcN approximates [cx]N within
additive error |c|Δx ≤ N1/22(n−1)/2/2w−1/2 ≤ N/2w−1 using N ≥ 2n−1.

– Similarly, using x̂ and the 2 candidates for ωbc computed above, A computes
two candidate approximations [bc]N x̂ − ωbcN for [bcx]N , one of which has
additive error |[bc]N |Δx ≤ N/2w−1.

– Choose a uniformly random a ∈ ZZ∗
N and compute y′ = [(a−1c)ey]N =

[(a−1cx)e]N .
– Collecting all of the above information, A obtains 4 candidates for (N, y′ =

[(a−1cx)e]N , a, s1 = Lr([cx]N ), u1 = M̂N,w−1([cx]N ), b′ = [ab]N , s2 =
Lr([bcx]N ), u2 = M̂N,w−1([bcx]N )). Note that this is a valid instance of
(n, e, r, w − 1, w − 1)-FSRSA. Furthermore, it has almost exactly the cor-
rect distribution, since the triple (x′ = [a−1cx]N , a, b′ = [ab]N ) is uni-
formly random in ZZN × ZZ∗

N × ZZN thanks to the uniformly random choice
of (x, a, b) ∈ ZZN × ZZ∗

N × ZZN . The FSRSA instance distribution is not ex-
actly correct because here a is uniform on ZZ∗

N while it should be uniform
on ZZN . However, simple calculation shows that the statistical distance be-
tween the uniform distribution on ZZ∗

N and the uniform distribution on ZZN

is negligible, namely 1− φ(N)/N = (p + q − 1)/N ≤ 4/2n/2.
– A runs A′ on the above 4 candidate (n, e, r, w − 1, w − 1)-FSRSA instances.

On one of those runs, A′ outputs x′ = [a−1cx]N with probability at least
η − 4/2n/2, from which x is easily recovered as x = [ac−1x′]N .
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Note that the run-time of A is bounded as T ≤ 4T ′+O(n2) and A succeeds with
probability at least η − 4/2n/2, as required. This completes the proof. � 
So, combining Theorems 2 and 3, we conclude:

Corollary 1. For all n ≥ 29, any (T, δ) distinguisher D for (n, e, r, 	)-RSAPRG
can be converted into a (TINV , εINV ) inversion algorithm A for the (n, e, r, w)-
CopRSA problem (with w = 3 log(2	/δ) + 5) with

TINV = 64 ·(	/δ)2n log(n) ·(T +O(	/r log(e)n2)) and εINV = δ/9−4/2n/2. (6)

Remark. Fischlin and Schnorr [14] also outline an alternative security reduction
(worked out in detail and optimized for the Rabin iteration function by Sidorenko
and Schoenmakers [28]) for the (n, e, r, 	)-RSAPRG with r > 1 based on a general
‘Computational XOR Lemma’ [30,16]. However, this alternative reduction has an
inherent exponential run-time factor 22r which we do not know how to eliminate,
even using our stronger SSRSA assumption on RSA inversion.

5 Concrete Parameters and Estimated Performance

Using (6) we obtain an upper bound on the pseudorandom string length 	 for
a given security level (T, δ) and assumed expected run-time lower bound TL for
breaking the (n, e, r, 3 log(2	/δ) + 5)-CopRSA problem. Recall that the latter is
a (1/e + ε, e)-SSRSA problem when

r/n = 1/2− 1/e− ε− (3 log(2	/δ) + 5)/n, (7)

and that (1/e + ε, e)-SSRSA problem is conjectured to take time TL =
min(TF (n), TC(n, ε)), where TF (n) is a lower bound for factoring N and
TC(n, ε) = poly(n) · 2εn is the time for the Coppersmith attack on (1/e + ε, e)-
SSRSA. Asymptotically, we therefore have for any constant ε > 0 that TL =
TF (n) since TF (n) is subexponential in n, so for any 	/δ = poly(n) and e ≥ 3
we can use r/n = 1/2− 1/e− ε− o(1), i.e. r = Ω(n). The exact bound on r for
a given modulus length n depends on the value of ε such that TF (n) = TC(n, ε).
To estimate concrete values, we used the Number Field Sieve (NFS) factoring
run-time model from [23] (we refer to the full version of the paper for more
details [29]) – the results are summarised in Table 1.

Our estimates indicate that we can (with n = 6144 bit and e = 8) achieve a
rate around 19300 cycles/byte (0.87 Mbit/s with 2.1 GHz clock) on a Pentium
4 Processor, outputting more than 230 bits with provable 270 instructions dis-
tinguishing run-time (under the (1/e + ε, e)-SSRSA assumption). This seems to
be close to practical requirements of some stream cipher applications (it is sev-
eral hundred times faster than the basic Blum-Blum Shub generator outputting
one bit per iteration with the same modulus length). Compared to the recent
provably secure QUAD PRG construction [3] (based on the ‘MQ’ problem), our
PRG seems to have a lower throughput, although it is difficult to make a fair
comparison since unlike our figures above, the performance figures reported in [3]
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Table 1. Estimate of achievable performance for provable T = 270 instructions distin-
guishing time to achieve advantage δ = 1

100
, using e = 8, 9 (assuming hardness of the

CopRSA SSRSA problem) and e = 2 (assuming hardness of FSRSA problem - see Sec-
tion 6). Throughput (’Thrpt’) columns are estimated throughput based on Wei Dai’s
Crypto++ benchmarks page [13] (for Pentium 4 2.1GHz processor) and extrapolation
assuming classical arithmetic.

n log(�) Rate,e = 8 Thrpt Rate,e = 9 Thrpt Rate,e = 2 Thrpt
(bit) (bit/mult) (Mbit/s) (bit/mult) (Mbit/s) (bit/mult) (Mbit/s)

3072 9.3 341 1.68 267 1.31 660 3.2
4096 18.0 460 1.28 360 1.00 899 2.5
5120 25.4 581 1.03 454 0.80 1140 2.0
6144 32.0 702 0.87 549 0.67 1383 1.7

(between 3000 and 4500 cycles/byte on Pentium 4) are for a ‘practical’ choice
of parameters, smaller than those for which the security proof can be applied. A
possible advantage of our construction is its significantly smaller static parame-
ters (i.e. non-secret parameters defining the pseudorandom generator) of length
n ≈ 5 kbit, while in [3] the static parameters are longer than 1 Mbit (this might
allow our construction to be implemented with less code memory requirements).
On the other hand, our construction has a longer state and is based on the hard-
ness of factoring so is insecure against potential future quantum attacks, while
the MQ problem in [3] may be secure even against such attacks.

6 Potential Improvements

6.1 Cryptanalysis of the FS-RSA Problem

As observed in Section 4, the (n, e, r, k, l)-FSRSA problem, although not well-
known, gives a more direct proof of security for the RSA PRG than the SSRSA
problem. In this section we describe a ‘Coppersmith-type’ lattice attack on
(n, e, r, k, l)-FSRSA (which we believe is essentially optimal) and show that it is
likely to succeed only when r/n ≥ 1/2− (k+ l)/(2n)− 1/(2e). This value of r/n
is larger by about 1/(2e) + (max(k, l)/n − (k + l)/(2n)) than that the largest
value for which the corresponding SSRSA problem in Section 4 is secure, leading
to improved throughput for the RSA PRG by using this stronger assumption.

The attack on (n, e, r, k, l)-FSRSA problem works as follows. First we reduce
the problem to solving two modular equations in two small unknowns z1 and
z2. Namely, given (y = [xe]N , a ∈R ZZN , s1 = Lr([ax]N ), u1 = M̂N,k([ax]N ), b ∈R

ZZN , s2 = Lr([bx]N ), u2 = M̂N,l([bx]N )), we have

xe ≡ y (mod N), (8)

[ax]N = s1 + z̄′1 · 2r; |[ax]N − u1| ≤ N/2k (9)

and
[bx]N = s2 + z̄′2 · 2r; |[bx]N − u2| ≤ N/2l (10)
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where z̄′1 < N/2r and z̄′2 < N/2r consist of the n − r MS bits of [ax]N and
[bx]N , respectively. Let ẑ1 = �u1−s1

2r �. From (9) we conclude that |z̄′1 − ẑ1| ≤
|( [ax]N−s1

2r ) − (u1−s1
2r )| + 1 ≤ N/2r+k + 1 ≤ N/2r+k−1 (for 2r+k < N) and

hence letting z̄1 = z̄′1 − ẑ1 we obtain [ax]N = (s1 + 2rẑ1) + 2rz̄1 where integer
|z̄1| < N/2r+k−1. Similarly, from (10) we obtain [bx]N = (s2+2rẑ2)+2rz̄2 where
integer |z̄2| < N/2r+l−1 (for 2r+l ≤ N) and ẑ2 = �(u2 − s2)/2r�. Treating the
last two equations for [ax]N and [bx]N as congruences modulo N , we eliminate
the unknown variable x (by multiplying the second congruence by [ab−1]N and
subtracting from the first) to obtain a single linear polynomial f(z1, z2) in two
variables z1, z2, having the desired small unknowns z̄1, z̄2 as a zero modulo N
(i.e. f(z̄1, z̄2) ≡ 0 (mod N)), namely:

f(z1, z2) = α · z1 + z2 + β, (11)

where α = [−ab−1]N and β = [−a−1b2−r(s1 + 2rẑ1) + 2−r(s2 + 2rẑ2)]N are
known. Also, substituting x ≡ a−1(s1 + 2rẑ1) + 2ra−1ẑ1 (mod N) into (8) we
obtain a degree e univariate polynomial in z1 having the small unknown z̄1 as a
zero modulo N (i.e. g(z̄1) ≡ 0 (mod N)):

g(z1) = (z1 + α̂)e − β̂, (12)

where α̂ = [2−rs1 + ẑ1]N and β̂ = [−(a2−r)ey]N are known. To find the small
zero (z̄1, z̄2) of (11) and (12) we use the bivariate modular polynomial lattice
method of Coppersmith [11] as simplified by Howgrave-Graham [20] and used
in many subsequent works. Namely, for an integer m we use the polynomials
f(z1, z2) and g(z1) to construct the following family of polynomials hi,k(z1, z2)
indexed by a pair of integers i = 0, 1, . . . , me (which we refer to as the ‘block
index’) and k = 0, . . . , i (which we call the ‘inner index’) for each block i:

hi,k(z1, z2) = Nme−(i−k+� k
e �)z[k]e

1 g(z1)�
k
e �f(z1, z2)i−k. (13)

Observe that each of the polynomials hi,k(z1, z2) has (z̄1, z̄2) as a zero modulo
Nme, because f(z̄1, z̄2)i−k ≡ 0 (mod N i−k) and g(z̄1)�

k
e � ≡ 0 (mod N � k

e �).
It follows that any integer linear combination of the polynomials hi,k(z1, z2)

also has (z̄1, z̄2) as a zero modulo Nme. Let B1 = N/2r+k−1 and B2 = N/2r+l−1

denote the upper bounds derived above on |z̄1| and |z̄2|, respectively. We set
up a lattice L to search for linear combinations of the polynomials hi,k(z1, z2),
which have sufficiently small coefficients such that they have (z̄1, z̄2) as a zero
over the integers, not just modulo Nme. Given two such linearly independent
polynomials we can take their resultant to obtain a single univariate polynomial
equation in z1 over the integers which is easy to solve. The square basis matrix
BL for lattice L has rows and columns indexed by pairs of integers (i, k), where
the (i′, k′)th column of the (i, k)th row of BL contains the coefficient of the
monomial zk′

1 zi′−k′
2 in the polynomial hi,k(B1z1, B2z2). With this ordering, BL is

in lower diagonal form and its determinant det(L) is the product of the diagonal
elements of BL. Some straightforward calculations (see full paper [29]) show that
det(L) = Nme·d(me)−W (m,e)(B1B2)D(me)/2, where d(me) = 1

2 (me+1)(me+2) is
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the dimension of L, D(me) = e3

3 m3 + O(m2) and W (m, e) = 1
2D(me) + e2

6 m3 +
O(m2). Let h1(z1, z2) and h2(z1, z2) denote the polynomials corresponding to
the first two vectors in the reduced basis of L returned by LLL on input BL.
Using Lemma 1, we can show (see full paper [29]) that h1 and h2 will have a
common zero over ZZ if the following condition is satisfied:

2d(me)/2 det(L)
1

d(me)−1 <
Nme√
d(me)

. (14)

Plugging the expression for det(L) into this condition, we obtain (B1B2)1/2 <

N
W (m,e)−me

D(me) /γ(me), where the factor γ(me) def= (
√

d(me)2d(me)/2)
d(me)−1

D(me) is inde-
pendent of n and so is of order O(No(1)) as n increases. For increasing parameter
m, the leading m3 terms dominate, and hence the ratio W (m,e)−me

D(me) approaches

asymptotically the value 1
2 + e2/6

e3/3 = 1
2 + 1

2e . So the attack success condition
becomes (B1B2)1/2 < N1/2+1/(2e)−o(1) for large n and m. Using B1 = N

2r+k−1

and B2 = N
2r+l−1 and N < 2n we obtain the asymptotic attack success bound

r

n
> 1/2− 1/(2e)− (k + l)

2n
+ o(1). (15)

Although the attack is heuristic (in the sense that resultant of h1 and h2 may
be a zero polynomial), our numerical experiments (see [29]) suggest that the
attack works in practice. We conjecture that bound (15) is essentially optimal
for ‘Coppersmith-type’ lattice attacks on (n, e, r, k, l)-FSRSA (see [29]).

6.2 Using Even Exponents

Assuming Hardness of FSRSA Problem. If we assume that the attack
of the previous section is optimal so the (n, e, r, k, l)-FSRSA problem is hard
when the bound (15) is violated, then we can allow r/n to approach 1/4 even
for e = 2, with only one modular squaring required per iteration. It is shown
in [14] that with appropriate modifications to the proof, Lemma 4 holds also
for e = 2 if we replace the iteration function x → [xe]N by the ‘absolute Rabin
function’ fa(x) = |x2|N def= min([x2]N , N − [x2]N ), choose N = pq to be a Blum
RSA modulus with p ≡ q ≡ 3 (mod 4), and choose the PRG seed x0 ∈R MN ,
where MN

def= ZZ∗
N (+1) ∩ (0, N/2), and ZZ∗

N (+1) denotes the subset of elements
of ZZ∗

N having Jacobi symbol +1. Since fa permutes the set MN , the proof of
Lemma 3 holds as well. Refer to Table 1 for performance of this PRG variant,
where it is assumed that the best attack on (n, e, r, k, l)-FSRSA with r/n =
1/2 − 1/(2e) − (k+l)

2n + ε takes time min(TF (n), 2εn), where TF (n) is the time
needed to factor N . We stress however that this assumption is new and needs
further study.

Assuming Hardness of SSRSA Problem. Our reduction (Theorem 3) from
the CopRSA to FSRSA problem also extends with some small modifications to
the case of even e (see [29]). For e = 8, it actually gives better rate than the best
odd exponent assuming the hardness of SSRSA (e = 9) – see Table 1.
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7 Conclusion

We have shown that an efficient variant of the RSA PRG is provably secure
assuming the hardness of a well-studied variant of the RSA inversion problem
in which some of the plaintext bits are known.

We see two avenues for further improvement. Even using the FSRSA assump-
tion in Section 6, the PRG rate which we can prove secure is r = (1/2−1/(2e)−
ε− o(1))n for ‘small’ ε. Can this rate be improved using a different proof (but a
similar inversion assumption) up to r = (1−1/e−ε−o(1))n? The other question
is whether the factor 	2 in the reduction run-time factor O((	/δ)2n log(n)) can
be significantly reduced.

Finally we remark that besides generic applications of PRGs, our result can
also be applied to prove security of an efficient semantically secure (IND-CPA)
RSA-based public key encryption scheme, assuming the hardness of the SSRSA
one-wayness problem (see [29]). An interesting open problem is to construct
additional efficient cryptographic primitives based on this problem.
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Abstract. Currently, the best and only evidence of the security of the
OAEP encryption scheme is a proof in the contentious random oracle
model. Here we give further arguments in support of the security of
OAEP. We first show that partial instantiations, where one of the two
random oracles used in OAEP is instantiated by a function family, can
be provably secure (still in the random oracle model). For various se-
curity statements about OAEP we specify sufficient conditions for the
instantiating function families that, in some cases, are realizable through
standard cryptographic primitives and, in other cases, may currently not
be known to be achievable but appear moderate and plausible. Further-
more, we give the first non-trivial security result about fully instantiated
OAEP in the standard model, where both oracles are instantiated simul-
taneously. Namely, we show that instantiating both random oracles in
OAEP by modest functions implies non-malleability under chosen plain-
text attacks for random messages. We also discuss the implications, es-
pecially of the full instantiation result, to the usage of OAEP for secure
hybird encryption (as required in SSL/TLS, for example).

1 Introduction

OAEP is one of the most known and widely deployed asymmetric encryption
schemes. It was designed by Bellare and Rogaway [5] as a scheme based on
a trapdoor permutation such as RSA. OAEP is standardized in RSA’s PKCS
#1 v2.1 and is part of the ANSI X9.44, IEEE P1363, ISO 18033-2 and SET
standards. The encryption algorithm of OAEPG,H [F ] takes a public key f , which
is an instance of a trapdoor permutation family F , and a message M , picks r
at random and computes the ciphertext C = f(s||t) for s = G(r) ⊕M ||0k1 and
t = H(s)⊕ r, where G and H are some hash functions. Despite its importance
the only security results for OAEP are a proof of IND-CPA security assuming F
is a one-way trapdoor permutation family [5] and a proof of IND-CCA2 security
assuming F is partial one-way [16], both in the random oracle (RO) model, i.e.,
where G and H are idealized and modeled as random oracles [4]. However, such
proofs merely provide heuristic evidence that breaking the scheme may be hard
in reality (when the random oracles are instantiated with real functions).

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 210–225, 2006.
c© International Association for Cryptologic Research 2006
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A growing number of papers raised concerns regarding soundness of the con-
troversial random oracle model [12,19,20,17,1,14,9,21]. Moreover, most of the
recent results question security of the practical schemes known to be secure in
the RO model. For example, Dodis et al. [14] showed some evidence that the
RSA Full Domain Hash signature scheme may not be secure in the standard
model. Boldyreva and Fischlin [9] showed that even presumably strong candi-
dates like perfectly one-way hash functions (POWHFs) [11,13] are insufficient
to prove security of partial instantiations of OAEP (when only one of the two
random oracles is instantiated with an instance of a POWHF).

The motivation of this work is to gather evidence of soundness of the OAEP
design. Like the aforementioned works our goal is to go beyond the classical
RO heuristic and study security of the scheme when one or all of its ROs are
instantiated. Positive results in the direction of partial instantiations would give
further evidence that breaking OAEP for good instantiations is hard, because
breaking the scheme would then require to exploit interdependent weaknesses
between the instantiations or the family F . Given the negative results of [9] it
is unlikely to expect that the properties needed from the instantiating function
families are weak or even easily realizable, even if one accepts weaker security
stipulations than chosen-ciphertext security for partial or full instantiations. For
example, although it seems plausible, it is currently not even known whether
OAEP can be proven IND-CPA secure in the standard model assuming any
reasonable properties of the instantiating functions.

Here we show that security proofs for instantiations of OAEP are indeed possi-
ble. For various security statements about OAEP we specify sufficient conditions
on G and H that are certainly weaker than assuming that the functions behave
as random oracles, yielding “positive” security statements regarding partially in-
stantiated OAEP. Furthermore, we give the first non-trivial security results about
fully instantiated OAEP in the standard model, where both oracles G and H are
instantiated simultaneously. We next discuss these results in more detail.

The OAEP Framework. For better comprehension of our technical results we
first reconsider the OAEP encryption scheme from a more abstract viewpoint.
Let f be a random instance of a partial one-way trapdoor permutation family
F , and the encryption algorithm computes a ciphertext as C = f(s||t). Partial
one-wayness [16] requires that it is hard to find the leading part of the pre-image
s||t under f and to output, say, s only. If we consider now for example a family
Ft-clear where each function is defined as f ≡ g||ID such that f(s||t) = g(s)||t
for a trapdoor permutation g, then this family Ft-clear is clearly partial one-way
(and also a trapdoor permutation). Hence, this example describes a special case
OAEPG,H [Ft-clear] for the partial one-way trapdoor permutation family Ft-clear

where each function outputs the t-part in clear. In particular, the security proof
in the random oracle model for OAEP and general partial one-way families
(including RSA as a special case) [16] carries over, but we outdo this by giving
positive results of partial instantiation for such families Ft-clear.

Towards the standard-model security results for fully instantiated OAEP we
take the above viewpoint one step further and look at OAEPG,H [Flsb||t-clear] for
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families Flsb||t-clear where each function f outputs the k1 least significant bits of
s = G(r) ⊕M ||0k1 (which equal those bits of G(r)) and t in clear. Since each
function in Flsb||t-clear is also a member in Ft-clear the partial instantiation results
above remain true for OAEPG,H [Flsb||t-clear].

We note that security of partial instantiations of OAEPG,H [Ft-clear] and of
OAEPG,H [Flsb||t-clear], although for qualified partial one-way trapdoor families,
also have implications for the popular OAEPG,H [RSA] case. They show that
any successful attacks on instantiations for RSA would have to take advantage
of specific properties of the RSA function. Generic attacks which would also
work for Ft-clear or Flsb||t-clear are then ruled out.

Partial Instantiation Results. Positive results about partial instantiations
were first shown in [9] for the PSS-E encryption scheme. There it was also shown,
however, that perfectly one-way hash functions cannot be securely used to in-
stantiate either one of the ROs in OAEP. These negative results about partial
instantiation through POWHFs hold for OAEPG,H [Ft-clear] as well. Yet we show
that partial instantiations are possible by switching to other primitives.

To instantiate the G-oracle in OAEPG,H [Ft-clear] while preserving IND-CCA2
security (in the random oracle model), we introduce the notion of a near-collision
resistant pseudorandom generator. For such a generator G it is infeasible to find
different seeds r �= r′ such that predetermined parts of the generator’s out-
puts G(r), G(r′) match (they may differ on other parts). To be more precise
for OAEPG,H [Ft-clear] the generator G is not allowed to coincide on the k1 least
significant bits, bequeathing this property to the values s = G(r) ⊕M ||0k1 and
s′ = G(r′)⊕M ||0k1 in the encryption process. We discuss that such pseudoran-
dom generators can be derived from any one-way permutation.

Instantiating the H oracle in OAEP turns out to be more challenging. To this
end we consider non-malleable pseudorandom generators, where a given image
of a seed r should not help significantly to produce an image of a related seed
r′. Instantiating H through such a non-malleable pseudorandom generator the
resulting scheme achieves NM-CPA security, where it is infeasible to convert a
given ciphertext into one of a related message. Although this security notion for
encryption schemes is not as strong as IND-CCA, it yet exceeds the classical
IND-CPA security. That is, Bellare et al. [3] show that NM-CPA implies IND-
CPA and is incomparable to IND-CCA1 security. Hence, NM-CPA security of
schemes lies somewhere in between IND-CPA and IND-CCA2.1

We also show that it is possible to extend the above result and to instantiate
the H-oracle in OAEPG,H [Ft-clear] without even sacrificing IND-CCA2 security
(again, for random oracle G). This however requires the very strong assump-
tion for the pseudorandom generators which then must be non-malleable under
chosen-image attacks. For such a generator non-malleability should even hold if
the adversary can learn seeds of chosen images, and such generators resemble

1 We mitigate the notion of NM-CPA such that the relation specifying related messages
and the distribution over the messages must be fixed at the outset. This mildly affects
the relationship to the IND notions, but we omit technical details in the introduction.
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chosen-ciphertext secure encryption schemes already. Hence, we see this partial
instantiation as a mere plausibility result that one can presumably instantiate
oracle H and still have IND-CCA2 security. This is contrast to the results in [12]
for example, showing that there are encryption schemes secure in the random
oracle model but which cannot be securely realized for any primitive, not even
for a secure encryption scheme itself.

As for the existence of non-malleable pseudorandom generators, we are not
aware if they can be derived from standard cryptographic assumptions, and
we leave this as an interesting open problem. We also remark that, while non-
malleability under chosen-image attacks seems to be a rather synthetic property,
plain non-malleability as required in the NM-CPA result appears to be a modest
and plausible assumption for typical instantiation candidates like hash functions.
For instance, it should not be easy to flip bits in given hash value, affecting bits
in the pre-image in a reasonable way.

Full Instantiation Result. Our main result is a standard-model security
proof for a fully instantiated OAEP. It is not very reasonable to expect a proof
of IND-CCA2 security of OAEP in the standard model, even assuming very
strong properties of instantiating functions (although we all would like to see
such result). As we mentioned above, we are not aware if one can even show
IND-CPA security of fully instantiated OAEP.

Nevertheless we show that OAEP in the standard model can be proven to
satisfy a rather strong notion of security notion, namely $NM-CPA. It is slightly
weaker than the standard non-malleability notion NM-CPA in that there is a
restriction that an unknown random message is encrypted in the challenge ci-
phertext. A bit more formally this security notion $NM-CPA requires that given
a public key and a ciphertext of a challenge message chosen uniformly at random
from a large message space it is hard to compute a valid ciphertext of a message
non-trivially related to the challenge message. Note that this is consistent with
how asymmetric schemes are typically used to build hybrid encryption schemes,
where the key of the symmetric scheme is derived from a random string en-
crypted with the public-key scheme. To appreciate the power of the $NM-CPA
definition we note that it implies for example the notion of OW-CPA and, more-
over, Bleichenbacher’s attack [7] on PKCS #1 v1.5 is not possible for $NM-CPA
secure schemes.2 Thus our result provides better evidence that OAEP resists
such attacks, and specifies what properties of the instantiating functions are
sufficient for this.

For our full instantiation proof we consider OAEPG,H [Flsb||t-clear] where the
t-part and the least significant bits of the s-part are output in clear. To achieve
the $NM-CPA security notion under full instantiation of both oracles G and H in

2 Bleichenbacher’s attack works by generating a sequence of ciphertexts from a given
ciphertext and verifying validity of the derived ciphertexts by querying the decryp-
tion oracle. While requiring adaptive queries to recover the entire message, one can
view the message in first derived ciphertext in such an attack as having a small (but
not negligible) probability of being non-trivially related to the original (possibly
random) message.
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OAEPG,H [Flsb||t-clear] we need to augment the near-collision resistant generator G
by a trapdoor property, allowing to invert images efficiently given the trapdoor
information; such generators exist if trapdoor permutations exist. We again use
a non-malleable pseudorandom generator H for instantiating H . Assuming that
the generators above exist we show that OAEPG,H [Flsb||t-clear] is $NM-CPA.3

To give further evidence of the usefulness of the $NM-CPA notion we finally
show that we can derive a hybrid encryption scheme that is NM-CPA in the ran-
dom oracle model from an asymmetric scheme secure in the sense of $NM-CPA.
For this, one encrypts a random string r with the asymmetric scheme and then
runs r through an idealized key derivation process to obtain K = G(r), modeled
through a random oracle G. The actual message is then encrypted with a sym-
metric scheme for key K. The construction of such hybrid encryption schemes
resembles the encryption method in SSL/TLS [18]. There, simply speaking, the
client encrypts a random string under the server’s public key and then both par-
ties derive the actual symmetric key K by hashing the random string iteratively.
If one considers this hashing step as an idealized process then our results pro-
vide a security guarantee for this technique. Observe that this result is still cast
in the random oracle model; yet it separates the security of the key derivation
process from the security of the asymmetric encryption scheme and can be seen
as a partial instantiation for the random oracles in the encryption algorithm.

Prospect. The random oracle model should provide confidence that the design
of a cryptographic scheme is sound, even if a security proof in the standard model
for this scheme is missing. The heuristic argument is that “good” instantiations
of random oracles then give evidence that no “clever” attacks against a scheme
work. But the well-known negative results about the random oracle principle
have raised some doubts how much confidence this security heuristic really gives.

The approach we take here towards challenging the doubts is to trade secu-
rity goals against partial or full instantiations of random oracles. Our “test case”
OAEP shows that this is a viable way and gives more insights in “how clever”
attacks against the instantiations would have to be. And while this still does
not rule out the possibility of extraordinary attacks we see this as an important
supplement to the random oracle heuristic and to the question how instanti-
ating candidates should be selected, hopefully inciting other results along this
direction.

2 Preliminaries

If S is a set then x
$← S means that the value x is chosen uniformly at random

from S. If A is a deterministic (resp. randomized algorithm) with a single output
then x ← A(y, z, . . . ) (resp. x

$← A(y, z, . . . )) means that the value x is assigned
the output of A for input (y, z, . . . ). An algorithm is called efficient if it runs
3 Very recently, Brown [2] has shown that RSA-OAEP cannot be proven OW-CPA

under certain security reductions. Our approach here does not fall under this kind of
reductions and does not contradict his result. We provide more details in Section 3.2.
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in polynomial time in the input length (which, in our case, usually refers to
polynomial time in the security parameter).

A function family F =
⋃

k F (1k) consists of sets of functions F (1k) = {f :
{0, 1}m(k) → {0, 1}n(k)}. It is called a family of trapdoor permutations if for
each f ∈ F (1k) there exists f−1 such that f(f−1) ≡ ID. We usually identify the
functions f and f−1 simply with their descriptions, and write (f, f−1) $← F (1k)
for the random choice of f (specifying also f−1) from the family F (1k). Unless
stated differently the minimal assumption about a function family in this paper
is that it is one-way, and that it is efficiently computable.

2.1 The OAEP Framework

The OAEP encryption framework [5] is parameterized by integers k, k0 and k1

(where k0, k1 are linear functions of k) and makes use of a trapdoor permutation
family F with domain and range {0, 1}k and two random oracles

G : {0, 1}k0 → {0, 1}k−k0 and H : {0, 1}k−k0 → {0, 1}k0 .

The message space is {0, 1}k−k0−k1 . The scheme OAEPG,H [F ] = (K, E ,D) is
defined as follows:

– The key generation algorithm K(1k) picks a pair (f, f−1) ← F (1k) at ran-
dom. Let pk specify f and let sk specify f−1.

– The encryption algorithm E(pk, M) picks r
$← {0, 1}k0, and computes s ←

G(r) ⊕ (M‖0k1) and t ← H(s)⊕ r. It finally outputs C ← f(s||t).
– The decryption algorithm D(sk, C) computes s‖t ← f−1(C), r ← t⊕H(s)

and M ← s⊕G(r). If the last k1 bits of M are zeros, then it returns the
first k − k0 − k1 bits of M , else it returns ⊥.

The encryption scheme OAEPG,H [F ] is IND-CCA2 secure in the RO model if
the underlying trapdoor permutation family F is partial one-way [16].

As a side effect of the partial one-wayness result for OAEP [16] we can im-
mediately conclude security of a particular OAEP variant, where we use partial
one-way trapdoor permutation family Ft-clear based on a trapdoor permutation
function family F . Namely, each function ft-clear : {0, 1}k → {0, 1}k in Ft-clear

is described by ft-clear(s||t) ≡ f(s)||ID(t) = f(s)||t for a one-way permutation
f : {0, 1}k−k0 → {0, 1}k−k0 , i.e., the t-part is output in clear. A random instance
(ft-clear, f

−1
t-clear) ← Ft-clear(1k) is sampled by picking (f, f−1) ← F (1k) and set-

ting ft-clear as above (the inverse f−1
t-clear is straightforwardly defined). Then Ft-clear

is clearly partial one-way and thus OAEPG,H [Ft-clear] IND-CCA2 secure in the
random oracle model.

Analogously, we consider another important variant of OAEP where we also
output the k1 least significant bits lsbk1(s) of s in clear and merely apply the
trapdoor function f to the leading k − k0 − k1 bits of s. That is, a random
function flsb||t-clear : {0, 1}k → {0, 1}k in Flsb||t-clear(1k) is described by a random
trapdoor permutation f : {0, 1}k−k0−k1 → {0, 1}k−k0−k1 and flsb||t-clear(s||t) =
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f(s1...k−k0−k1)||lsbk1(s)||t. Note that since s = G(r) ⊕M ||0k1 this means that we
output the least significant bits lsbk1(G(r)) of G(r) and t in clear. For this reason
we sometimes write s||γ instead of s and denote by γ the k1 bits lsbk1(G(r))
such that flsb||t-clear(s||γ||t) = f(s)||γ||t. Flsb||t-clear is clearly partial one-way and
OAEPG,H [Flsb||t-clear] is IND-CCA2 secure in the random oracle model.

In both cases we often identify Ft-clear resp. Flsb||t-clear simply with the under-
lying family F and vice versa. In particular we often denote a random function
from Ft-clear or Flsb||t-clear simply by f . We call Ft-clear resp. Flsb||t-clear the induced
family of F .

Random Oracle Instantiations. For an instantiation of the random oracle
G in OAEPG,H [F ] we consider a pair of efficient algorithms G = (KGenG, G)
where KGenG on input 1k returns a random key K and the deterministic algo-
rithm4 G maps this key K and input r ∈ {0, 1}k0 to an output string G(K, r) =
GK(r) of k − k0 bits. Then we write OAEPG,H [F ] for the encryption scheme
which works as defined above, but where the key pair (sk, pk) is now given
by sk = (f−1, K) and pk = (f, K) and where each evaluation of G(r) is re-
placed by GK(r). We say that OAEPG,H [F ] is a partial G-instantiation of OAEP
through G.

A partial H-instantiation OAEPG,H[F ] of OAEP through H and partial in-
stantiations of the aforementioned OAEP variations are defined accordingly. If
we instantiate both oracles G, H simultaneously then we speak of a full instan-
tiation OAEPG,H[F ] of OAEP through G and H.

2.2 Security of Encryption Schemes

In this section we review the relevant security notions for asymmetric encryp-
tion schemes AS = (K, E ,D). In addition to indistinguishability under chosen-
plaintext and chosen-ciphertext attacks (IND-CPA, IND-CCA1, IND-CCA2) —
see for instance [3] for formal definitions— we occasionally also rely on the
notions of non-malleability. This notion was introduced and formalized in [15,3].
The most basic version is called NM-CPA and says that a ciphertext of a mes-
sage M∗ should not help to find a ciphertext of a related message M , where
the distribution of message M∗ is defined by an efficient distribution M and
related messages are specified by an efficient relation R, both chosen by the
adversary.

Definition 1 (NM-CPA). Let AS be an asymmetric encryption scheme. Then
AS is called secure in the sense of NM-CPA if for for every efficient algorithm
A the following random variables Expnm-cpa-1

AS,A (k), Expnm-cpa-0
AS,A (k) are compu-

tationally indistinguishable:

4 In general, the instantiating functions can be randomized. This requires some care
with the decryption algorithms and possibly introduces new attacks. Since our results
all hold with respect to deterministic algorithms this is beyond our scope here; see
[9] for more details.
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Experiment Expnm-cpa-1
AS,A (k)

(pk, sk) $← K(1k)
(M, state) $← A(pk)
M∗ $←M
C∗ $← Epk(M∗)
(R, C) $← A(state, C∗)
M ← Dsk(C)
Return 1 iff

(C �= C∗) ∧R(M∗, M)

Experiment Expnm-cpa-0
AS,A (k)

(pk, sk) $← K(1k)
(M, state) $← A(pk)
M∗ $←M ; M ′ $←M
C′ $← Epk(M ′)
(R, C) $← A(state, C′)
M ← Dsk(C)
Return 1 iff

(C �= C′) ∧R(M∗, M)

It is assumed that the messages in the support of M have equal length.

We note that the original definition of NM-CPA in [3] actually allows the adver-
sary to output a vector of ciphertexts. Our results for OAEP merely hold with
respect to binary relations and therefore we restrict the definition here to such
relations. We remark that the aforementioned relationships of NM-CPA to the
indistinguishability notions, e.g., that this notion is strictly stronger than the
one of IND-CPA, hold for relations of arity two as well.

We define a weaker security notion is that of $NM-CPA where the adversary
does not have the ability to choose a distribution over the messages, but where
a random message is encrypted and the adversary tries to find a ciphertext of a
related message.

Definition 2 ($NM-CPA). Let AS = (K, E ,D) be an asymmetric encryption
scheme and let M for input 1k describe the uniform distribution over all 	(k) bit
strings for some polynomial 	. Then AS is called secure in the sense of $NM-CPA
if for for every efficient algorithm A and for every efficient relation R the fol-
lowing random variables Exp$nm-cpa-1

AS,A,M,R(k), Exp$nm-cpa-1
AS,A,M,R(k) are computationally

indistinguishable:

Experiment Exp$nm-cpa-1
AS,A,M,R(k)

(pk, sk) $← K(1k)
M∗ $←M(1k)
C∗ $← Epk(M∗)
C

$← A(pk, C∗, 〈R〉)
M ← Dsk(C)
Return 1 iff

(C �= C∗) ∧R(M∗, M)

Experiment Exp$nm-cpa-0
AS,A,M,R(k)

(pk, sk) $← K(1k)
M∗ $←M(1k) ; M ′ $←M(1k)
C′ $← Epk(M ′)
C

$← A(pk, C′, 〈R〉)
M ← Dsk(C)
Return 1 iff

(C �= C′) ∧R(M∗, M)

While the notion of $NM-CPA is weaker than the one of NM-CPA —in addition
to the restriction to uniformly distributed messages the relation is now fixed in
advance— it yet suffices for example to show security in the sense of OW-CPA
(where the adversary’s goal is to recover a random message in a given cipher-
text) and it also covers Bleichenbacher’s attack on PKCS #1 v1.5. In Section 5
we also show that the notion of $NM-CPA is enough to derive NM-CPA secu-
rity under an idealized key derivation function. Namely, one encrypts a random
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string r under the $NM-CPA public-key encryption scheme and then pipes r
through a random oracle G to derive a key K = G(r) for the symmetric scheme.
In fact, one can view the SSL encryption method where the client sends an
encrypted random key to the server and both parties derive a symmetric key
through a complicated hash function operation as a special case of this method.
Then this result about lifting $NM-CPA to NM-CPA security, together with the
$NM-CPA security proof for the full instantiation of OAEPlsb||t-clear, provides an
interesting security heuristic (as long as the key derivation process behaves in an
ideal way).

2.3 Pseudorandom Generators

Typically, the minimal expected requirement when instantiating a random oracle
is that the instantiating function describes a pseudorandom generator, consist-
ing of the key generation algorithm KGen producing a public key K and the
evaluation algorithm G mapping a random seed r with key K to the pseudo-
random output. Usually the output of this generator should still look random
when some side information hint(r) about the seed r is given. This probabilistic
function hint must be of course uninvertible, a weaker notion than one-wayness
(cf. [11]).

We also incorporate into the definition the possibility that the key generation
algorithm outputs some secret trapdoor information K−1 in addition to K. Given
this information K−1 one can efficiently invert images. If this trapdoor property
is not required we can assume that K−1 = ⊥ and often omit K−1 in the key
generator’s output.

Definition 3 ((Trapdoor) Pseudorandom Generator). Let KGen be an ef-
ficient key-generation algorithm that takes as input 1k for k ∈ N and outputs a
key K; let G be an efficient deterministic evaluation algorithm that, on input K
and a string r ∈ {0, 1}k returns a string of length 	(k). Then G = (KGen, G) is
called a pseudorandom generator (with respect to hint) if the following random
variables are computationally indistinguishable:

– Let K ← KGen(1k), r
$← {0, 1}k, h ← hint(r), output (K, G(K, r), h).

– Let K ← KGen(1k), r
$← {0, 1}k, h ← hint(r), u ← {0, 1}	(n), output

(K, u, h).

Furthermore, if there is an efficient algorithm TdG such that for any k ∈ N,
any (K, K−1) ← KGen(1k), any r ∈ {0, 1}k we have G(K, TdG(K−1, G(K, r))) =
G(K, r) then (KGen, G, TdG) is called a trapdoor pseudorandom generator.

For our results about OAEP we often need further properties from the pseudoran-
dom generator, including near-collision resistance and non-malleability. The for-
mer means that given a seed r it is hard to find a different seed r′ such that G(K, r)
and G(K, r′) coincide on a predetermined set of bits (even if they are allowed to
differ on the other bits). Non-malleability refers to generators where the genera-
tor’s output for a seed should not help to produce an image of a related seed. We
give precise definitions and details concerning existential questions on site.
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3 Partial Instantiations for OAEP

In this section we prove security of partial instantiations of OAEP. Our results
show that one can replace either one of the random oracle in OAEP by reasonable
primitives and still maintain security (in the random oracle model).

3.1 Instantiating the G-Oracle for IND-CCA2 Security

We first show how to construct a pseudorandom generator with a special form
of collision-resistance. This property says that finding an input r′ to a ran-
dom input r, such that G(K, r) and G(K, r′) coincide on the k least significant
bits lsbk(G(K, r)), lsbk(G(K, r′)), is infeasible. According to comparable collision
types for hash functions [6] we call this near-collision resistance.

Definition 4 (Near-collision Resistant Pseudorandom Generator). A
pseudorandom generator G = (KGen, G) is called near-collision resistant (for the
least significant k bits) if for any efficient algorithm C the following holds: Let
K ← KGen(1k), r ← {0, 1}k, r′ ← C(K, r). Then the probability that r �= r′ but
lsbk(G(K, r)) = lsbk(G(K, r′)) is negligible.

Near-collision resistant generators can be built, for example, from one-way per-
mutations via the well-known Yao-Blum-Micali construction [22,8]. In that case,
given a family G of one-way permutations the key generation algorithm
KGenYBM(1k) of this generator simply picks a random instance g : {0, 1}k →
{0, 1}k of G(1k), and GYBM(g, r) = (hb(r), hb(g(r)), . . . ,hb(gn−1(r)), gn(r)) is
defined through the hardcore bits hb of g. Since g is a permutation different
inputs r �= r′ yield different output parts gn(r) �= gn(r′).

Given a near-collision resistant pseudorandom generator we show how to in-
stantiate the G-oracle in OAEPG,H [Ft-clear] for the family Ft-clear which is induced
by a trapdoor permutation family F (i.e., where a member f : {0, 1}k−k0 →
{0, 1}k−k0 of F is applied to the k-bit inputs such that the lower k0 bits are
output in clear).

Theorem 1. Let G = (KGenG, G) be a pseudorandom generator which is near-
collision resistant (for the k1 least significant bits). Let F be trapdoor permutation
family and let Ft-clear be the induced partial one-way trapdoor permutation fam-
ily defined in Section 2.1. Then the partial G-instantiation OAEPG,H [Ft-clear] of
OAEP through G is IND-CCA2 in the random oracle model.

The full proof appears in the full version [3]. The idea is to gradually change
the way the challenge ciphertext (encrypting one of two adversarially chosen
messages, the hidden choice made at random) is computed in a sequence of
games. We show that each of these steps does not change an adversary’s success
probability of predicting the secret choice noticeably:

– Initially, in Game0 the challenge ciphertext f(s∗)||t∗ for message M∗ is com-
puted as in the scheme’s description by s∗ = G(K, r∗)⊕M∗||0k1 for the near-
collision resistant generator G and t∗ = H(s∗)⊕ r∗ for oracle H .
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– In Game1 the ciphertext is now computed by setting s∗ = G(K, r∗)⊕M∗||0k1

as before, but letting t∗ = ω ⊕ r∗ for a random ω which is independent of
H(s∗). Because H is a random oracle this will not affect the adversary’s
success probability, except for the rare case that the adversary queries H
about s∗.

– In Game2, in a rather cosmetic change, we further substitute t∗ = ω ⊕ r∗

simply for t∗ = ω, making the t-part independent of the generator’s pre-
image r∗.

– in Game3 we use the pseudorandomness of generator G to replace s∗ =
G(K, r∗)⊕M∗||0k1 by s∗ = u⊕M∗||0k1 for a random u.

Since ciphertexts in the last game are distributed independently of the actual
message security of the original scheme follows, after a careful analysis that de-
cryption queries do not help; this is the step where we exploit that H is still a
random oracle and that G is near-collision resistant. Namely, the near-collision
resistance prevents an adversary from transforming the challenge ciphertext for
values r∗, s∗ into a valid one for the same s∗ but a different r; otherwise the least
significant bits of s∗ = G(K, r∗)⊕M∗||0k1 = G(K, r) ⊕M ||0k1 would not coin-
cide and the derived ciphertext would be invalid with high probability. Given
this, the adversary must always use a “fresh” value s when submitting a ci-
phertext to the decryption oracle, and must have queried the random oracle
H about s before (or else the ciphertext is most likely invalid). But then the
adversary already “knows” r = t⊕H(s) —recall that for Ft-clear the t-part is
included in clear in ciphertexts— and therefore ”knows” the (padded) message
M ||z = s⊕ G(K, r) encapsulated in the ciphertext.

3.2 Instantiating the H-Oracle

To instantiate the H-oracle we introduce the notion of a non-malleable pseudo-
random generator. For such a pseudorandom generator it should be infeasible to
find for a given image y∗ = HK(s∗) of a random s∗ a different image y = HK(s) of
a related value s, where the corresponding efficient relation R(s∗, s) must be de-
termined before seeing K and y∗.5 More precisely, we formalize non-malleability
of a pseudorandom generator by the indistinguishability of two experiments. For
any adversary B it should not matter whether B is given f(s∗), y∗ = HK(s∗) or
f(s∗), y′ = HK(s′) for an independent s′ instead: the probability that B outputs
f(s) and y = HK(s) such that s is related to s∗ via relation R should be roughly
the same in both cases.6

5 We are thankful to the people from the Ecrypt network for pointing out that a
possibly stronger definition for adaptively chosen relations allows trivial relations
over the images and cannot be satisfied.

6 Adding the image under the trapdoor permutation uniquely determines the pre-
image of the pseudorandom generator’s output and enables us to specify R(s∗, s)
via the pre-images. Since this also bundles the security of the trapdoor permutation
and the generator, Brown’s recent impossibility result about security reductions for
OAEP [2] does not apply.
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Definition 5 (Non-Malleable Pseudorandom Generator). Assume H =
(KGenH, H) is a pseudorandom generator (which is pseudorandom with respect to
hint(x) = (f, f(x)) for (f, f−1) ← F (1k) from the trapdoor function family F ).
Then H is called non-malleable with respect to hint if for any efficient algorithm
B and any efficient relation R the following random variables Expnm-cma-1

H,B,F,R (k),
Expnm-cma-0

H,B,F,R (k) are computationally indistinguishable, where the experiments
are defined as follows.

Experiment Expnm-cpa-1
G,B,F,R (k)

K
$← KGenH(1k)

(f, f−1) $← F

s∗ $← {0, 1}k

y∗ $← HK(s∗)
(z, y) $← B(K, f, f(s∗), y∗)
s ← f−1(z)
Return 1 iff

R(s∗, s) ∧ HK(s) = y ∧ s∗ �= s

Experiment Expnm-cpa-0
G,B,F,R (k)

K
$← KGenH(1k)

(f, f−1) $← F

s∗ $← {0, 1}k ; s′ $← {0, 1}k

y′ $← HK(s′)
(z, y) $← B(K, f, f(s∗), y′)
s ← f−1(z)
Return 1 iff

R(s∗, s) ∧HK(s) = y ∧ s∗ �= s

Given a non-malleable pseudorandom generator we can prove NM-CPA security
of the partial H-instantiation of OAEP, under the restriction that the adversar-
ial chosen message distribution and relation are defined at the beginning of the
attack via (M, R, state) ← A(1k) and thus depend only the security parameter.
This relaxed notion still implies for example IND-CPA security (but for messages
picked independently of the public key), is still incomparable to IND-CCA1 se-
curity, and also thwarts Bleichenbacher’s attack. We call such schemes NM-CPA
for pre-defined message distributions and relations.

Theorem 2. Let F be a trapdoor permutation family and let Ft-clear be the in-
duced partial one-way trapdoor permutation family. Let H = (KGenH, H) be a
pseudorandom generator (with respect to hint(x) = (f, f(x)) for (f, f−1) ←
F (1k)). Assume further that H is non-malleable with respect to hint. Then the
partial H-instantiation OAEPG,H[Ft-clear] through H is NM-CPA for pre-defined
message distributions and relations in the random oracle model.

The proof idea is as follows. Assume that an attacker, given a ciphertext for
some values r∗, s∗ (which uniquely define the message in a ciphertext), tries
to prepare a related ciphertext for some value r �= r∗, without having queried
random oracle G about r before. Then such a ciphertext is most likely invalid
because with overwhelming probability the least significant bits of s⊕G(r) are
not zero. Else, if r = r∗, then we must have f(s) �= f(s∗) and s �= s∗, since
the adversarial ciphertext must be different for a successful attack. But then
the values H(K, s∗) and H(K, s) for different pre-images must be related via the
ciphertext’s relation, contradicting the non-malleability of the generator H. In
any other case, if r �= r∗ and r is among the queries to G, the random value
G(r∗) is independent of G(r). So must be the messages M∗||0k1 = s∗ ⊕G(r∗)
and M ||0k1 = s⊕G(r), as required for non-malleability. Details can be found in
the full version [3].
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Replacing the H-oracle without violating IND-CCA2 security is more ambi-
tious and we require a very strong assumption on the pseudorandom
generator, called non-malleability under chosen-image attacks (where the ad-
versary can also make inversion queries to the trapdoor pseudorandom genera-
tor). Since any pseudorandom generator with this property is already close to
a chosen-ciphertext secure encryption scheme, we rather see this as an indica-
tion that a partial instantiation might be possible and that separation results
as [12,19,20,1,17,21,9,14] seem to be hard to find. The formal treatment of the
following and the proof appear in the full version [10].

Theorem 3. Let F be trapdoor permutation family and let Ft-clear be the induced
partial one-way trapdoor permutation family defined in Section 2.1. Let H =
(KGenH, H, TdH) be a trapdoor pseudorandom generator which is non-malleable
under chosen-image attacks (with respect to hint(x) = (f, f(x)) for (f, f−1) ←
Ft-clear(1k)). Then the partial H-instantiation OAEPG,H[Ft-clear] through H is
IND-CCA2 in the random oracle model.

4 Full Instantiation for OAEP

In this section we prove that there exists a full instantiation of OAEPlsb||t-clear
which is secure in the sense of $NM-CPA in the standard model, implying for
example that the scheme is OW-CPA. Recall that in OAEPlsb||t-clear we write
s||γ = G(s)⊕M ||0k1 instead of s to name the least significant bits explicitly.

To prove our result we need a near-collision resistant trapdoor pseudoran-
dom generator, i.e., which combines near-collision resistance with the trapdoor
property. Such generators can be easily built by using again the Blum-Micali-
Yao generator, but this time by deploying a trapdoor permutation g instead of
a one-way permutation, i.e., the generator’s output for random r is given by
GYBM(g, r) = (hb(r), hb(g(r)), . . . ,hb(gn−1(r)), gn(r)). Letting K−1 contain the
trapdoor information g−1 algorithm TdG can easily invert the k1 least significant
bits y of the output to recover a pre-image r.

To be precise we make use of two additional, specific properties of the Blum-
Micali-Yao generator. First, we assume that recovering a pre-image is possible
given the k1 least significant bits only, i.e., without seeing the remaining part
of the image. To simplify the proof we furthermore presume that the k1 least
significant bits of the generator’s output are statistically close to uniform (over
the choice of the seed).7 We simply refer to generators with the above proper-
ties as a near-collision resistant trapdoor pseudorandom generator (for the least
significant k bits).

Theorem 4. Let F be trapdoor permutation family and let Flsb||t-clear be the in-
duced partial one-way trapdoor permutation family. Let G = (KGenG, G) be a
7 It is easy to adapt the proof to the more general case of arbitrary distributions of the

least significant bits, as long as they support extraction. But this would also require
to change the definition of the non-malleable pseudorandom generator GKG(s||γ) to
support arbitrary distributions on the γ-part.
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near-collision resistant trapdoor pseudorandom generator (for the k1 least sig-
nificant bits). Let H = (KGenH, H) be a generator which is pseudorandom and
non-malleable with respect to hint(s||γ) = (f, f(s)||γ) for (f, f−1) ← F (1k).
Then the full instantiation OAEPG,H[Flsb||t-clear] through G and H is $NM-CPA.

The proof appears in the full version [10]. The basic idea is similar to the one
of NM-CPA security for the partial H-instantiation. The important difference
is that the randomness of the encrypted message M in a ciphertext f(s)||γ||t
for s||γ = GK(r) ⊕M ||0k1 helps to overcome otherwise existing “circular” de-
pendencies between G and H in the computations of ciphertexts (which, in the
partial instantiation case, do not occur due to the fact that G is a random oracle).

5 Hybrid Encryption from $NM-CPA Schemes

We show that a public-key scheme which is secure in the sense of $NM-CPA
(i.e., for pre-defined relations), together with an IND-CCA2 secure symmetric
scheme suffices to build a NM-CPA secure hybrid scheme in the random oracle
model (i.e., even for adaptively chosen message distributions and relations).

Construction 1. Let AS = (EKasym, Easym,Dasym) be an asymmetric encryp-
tion scheme and let SS = (EKsym, Esym,Dsym) be a symmetric encryption scheme.
Let G be a hash function mapping k-bit strings into the key space of the symmet-
ric scheme. Then the hybrid encryption scheme AS′ = (EK′

asym, E ′
asym,D′

asym) is
defined as follows.

– The key generation algorithm EK′
asym(1k) outputs a key pair (sk, pk) $←

EKasym(1k).
– The encryption algorithm E ′

asym on input pk, M picks r
$← {0, 1}k, computes

Casym
$← Easym(pk, r), Csym

$← Esym(G(r), M) and returns (Casym, Csym).
– The decryption algorithm D′

asym on input (Casym, Csym) and sk computes
r ← Dasym(sk, Casym), M ← Dsym(G(r), Csym) and returns M .

Theorem 5. Let AS = (EKasym, Easym,Dasym) be an asymmetric encryption
scheme which is $NM-CPA. Let SS = (EKsym, Esym,Dsym) be an IND-CCA2
symmetric encryption scheme. Let G be a hash function and assume AS′ =
(EK′

asym, E ′
asym,D′

asym) is the hybrid encryption scheme defined according to
Construction 1. Then AS′ is NM-CPA secure in the random oracle model.

The proof is in the full version [10] and actually shows that the scheme is
NM-CPA with respect to the stronger notion where the adversary outputs a
sequence C = (C1, . . . , Cm) of ciphertexts and the success is measured accord-
ing to R(M∗,M) for M = (M1, . . . , Mm).
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Abstract. Recently, Bellare and Palacio succeeded in defining the plain-
text awareness, which is also called PA2, in the standard model. They
propose three valiants of the standard model PA2 named perfect, statis-
tical, and computational PA2. In this paper, we study the relationship
between the standard model PA2 and the property about message hiding,
that is, IND-CPA. Although it seems that these two are independent no-
tions at first glance, we show that all of the perfect, statistical, and com-
putational PA2 in the standard model imply the IND-CPA security if the
encryption function is oneway. By using this result, we also showed that
“PA2 + Oneway ⇒ IND-CCA2”. This result shows the “all-or-nothing”
aspect of the PA2. That is, a standard model PA2 secure public-key en-
cryption scheme either satisfies the strongest message hiding property,
IND-CCA2, or does not satisfy even the weakest message hiding prop-
erty, onewayness. We also showed that the computational PA2 notion is
strictly stronger than the statistical one.

Keywords: Plaintext Awareness, Standard Model.

1 Introduction

The Plaintext Awareness [BR94, BDPR98, HLM03, BP04], which is also known
as PA2, is a notion about the security of a public-key encryption scheme. Intu-
itively, we say that a public-key encryption scheme satisfies the PA2, if no adver-
sary can generate a ciphertext “without knowing” the corresponding plaintext.

The PA2 notion is important, because it implies the chosen ciphertext security
[BR94, BDPR98, BP04], if a public-key encryption scheme is the IND-CPA
secure. Moreover, it is useful when one instantiates the ideal functions in the
Dolev-Yao model [DY83], since the relation between the PA2 and the Dolev-Yao
model is known [HLM03].

The original definition of the PA2 security was formalized in the random oracle
model [BR94, BDPR98] and was highly dependent on this model, although the
intuitive definition, mentioned above, does not depend on this model. Therefore,
in the earlier study of the PA2, one of the main concerns was how to define the
PA2 in the standard model.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 226–240, 2006.
c© International Association for Cryptologic Research 2006
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In Asiacrypt 2004, Bellare and Palacio [BP04] succeeded in defining the stan-
dard model PA2. Their result is important, because we can analize encryption
schemes from the new view point whether these are PA2 secure. Here we briefly
review their definition. They define PA2 notion based on the indistinguishabilty
of two worlds, “Dec world”, and “Ext world”. An adversary in the Dec world
can access the decryption oracle and so on. In contrast, the adversary in the
Ext world can access an extractor, which simulates the decryption oracle, and
so on. The extractor has to simulate the decryption oracle by using only data
“which the adversary knows”. They define the three types of the PA2, named
perfect/statistical/computational PA2, depending on that the Dec world and the
Ext world are perfectly/statistically/computationally indistinguishable for the
adversary.

They also succeeded in proving the fundamental theorem, which state that
all of these plaintext awareness notions, together with IND-CPA security, imply
the chosen ciphertext security.

1.1 Our Contributions

In this paper, we study the relationship between the standard model PA2 and the
property about message hiding, that is, IND-CPA. At first glance, it seems that
these two are independent notions. Indeed, it is well known that the random
oracle model PA2 property does not imply the IND-CPA property and vise
versa.

We however show that all of the perfect, statistical, and computational PA2
security in the standard model imply the IND-CPA security if the encryption
function is oneway. Recall that the fundamental theorem that “(perfect, statis-
tical, or computational) PA2 + IND-CPA ⇒ IND-CCA2” holds. Therefore, our
result combining with the fundamental theorem shows the stronger variant of the
fundamental theorem, “(perfect, statistical, or computational) PA2 + Oneway
⇒ IND-CCA2”. This result shows the “all-or-nothing” aspect of the PA2. That
is, the standard model PA2 secure public-key encryption scheme either satis-
fies the strongest message hiding property, IND-CCA2, or does not satisfy even
weakest message hiding property, onewayness.

Our result has not only theoretical interest but also can be useful when one
prove the IND-CCA2 securities of public-key encryption schemes. Recall that it
is non trivial to show the IND-CPA securities of some schemes satisfying the ran-
dom oracle PA2, such as schemes with OAEP+ [OP01], 3-round OAEP [PP04],
or Kobara-Imai [KI01] padding. However, in the case for schemes satisfying the
standard model PA2, we are not required to prove the IND-CPA securities, since
our result assures it.

We also study the gap between the computational and statistical PA2 secu-
rities. That is, we show that the computational PA2 security is strictly stronger
than the statistical one. It is interesting to compare our result with Fujisaki’s
result [F06] about the random oracle PA2. In his paper, he defined a plaintext
simulatability (PS) notion, which was a “computational variant” of the ran-
dom oracle PA2, and showed that plaintext simulatability notion was strictly
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stronger than the random oracle PA2. Therefore, our result can be recognized
as the standard model variant of Fujisaki’s result [F06]. By comparing his result
with our result, we can say that statistical and computational standard model
PA2 notions are related to the random oracle PA2 and the PS, respectively.

We stress that, although our result and Fujisaki’s result themselves are similar,
these are of different model with different proof. Indeed we cannot use his proof
because it highly depends on the random oracle model. Our proof is simpler and
more intuitive than his.

1.2 Previous Works

Before the random oracle PA2 was defined, a weaker variant of it, named the
random oracle PA1 [BR94], had been defined. The first schemes satisfying the
random oracle PA1 and PA2 were proposed in the paper of Bellare-Rogaway
[BR94] and Fujisaki-Okamoto [FO99] respectively. In these papers, the authors
proposed conversions which transform a trapdoor oneway permutation and an
IND-CPA secure public-key encryption scheme to PA1 and PA2 secure public-
key encryption scheme respectively. These conversions are called the OAEP and
the Fujisaki-Okamoto conversions respectively.

Shoup [S01] showed that the random oracle PA1 + IND-CPA does not imply
the IND-CCA2 security, although previously it had been thought that it did.
In his paper, he also gave a revised version of the OAEP conversion, named
the OAEP+, which transforms a trapdoor oneway permutation to a PA2 secure
public-key encryption scheme on the random oracle model. The OAEP and other
conversions satisfying a similar property are also studied in [CHJPPT98, B01,
FOPS01, M01, OP01, CJNP02, KI01, KO03].

As far as we know, the first attempt to define the plaintext awareness not in
the random oracle model was made by Herzog, Liskov, and Micali [HLM03]. They
defined the PA2 notion on the key registration model [HLM03] and constructed
a public-key encryption scheme which satisfies their PA2.

Bellare and Palacio [BP04] define not only the standard model PA2 but also
the standard model PA1. They also showed that the Damg̊ard [D91] and the
lite Cramer-Shoup [CS01] public-key encryption schemes satisfy the standard
model PA1 under the Diffie-Hellman Knowledge assumption [D91, BP04] and
the DDH assumption. Later, Dent [D06] showed that the Cramer-Shoup public-
key encryption scheme [CS98, CS01] satisfies the standard model PA2 security
under the same assumption.

1.3 Organization

The paper is organized as follows: In Section 2, we review the definition of the
standard model PA2. In Section 3, we show that the statistical PA2 is strictly
stronger than the computational one. In Section 4, we show the main theorem,
which states that “(perfect, statistical, or computational) PA2 + Oneway ⇒
IND-CPA”. Finally, in Section 5, we give the conclusion of our paper.
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2 Definition of Standard Model PA2

In this section, we review the definition of the standard model PA2 [BP04].
Before giving the formal definition of the standard model PA2, we give intuitive
explanation about it. The definition of the standard model PA2 is based on
the indistinguishability of two worlds, named Dec world and Ext world, and
uses entities named adversary and extractor. In the Dec world, the adversary
can access to the decryption oracle and the encryption oracle. In contrast, the
adversary in the Ext world can access to the extractor and the encryption oracle.
The extractor has to simulate the decryption oracle by using only data “which
the adversary can see”, that is, the adversary’s description, its random tape, and
the answers from the encryption oracle.

It is a characteristic feature for the definition that it has a mechanism to hide
the encryption query of the adversary from the extractor. In order to hide the
encryption query, the entity, named plaintext creator, is also introduced. It is an
entity which makes encryption queries as the adversary’s proxy. The adversary,
in both Dec and Ext worlds, does not make encryption queries directly but
sends an order to the plaintext creator, in order to make it send a query to the
encryption oracle.

The extractor is not allowed to watch the plaintext creator’s random tape,
although it is allowed to watch the adversary’s one. Hence it cannot know what
queries are made to the encryption oracle. We say that an encryption scheme
satisfies the standard model PA2, if the Dec and Ext worlds are indistinguishable
for the adversary from each other.

We now define the standard model PA2 formally:

Definition 1 (Standard Model PA2 [BP04]). Let Π = (Gen, Enc, Dec) be
a public-key encryption scheme. Let A, P , K be polytime machines, which are
respectively called adversary, plaintext creator, and extractor. Let A(pk; RA)
denotes the execution of an algorithm A on inputting pk with the random coin
RA. For a security parameter κ ∈ N, we define two experiments ExpPA2-Dec

Π,A,P (κ)
and ExpPA2-Ext

Π,A,K,P(κ), shown in Fig. 1. In these experiments, it is required that A
makes no query (dec, C) for which C ∈ CList.

We say that the public-key encryption scheme Π is perfectly/statistically/com-
putationally standard model PA2 secure if

∀A∃K∀P : ExpPA2-Dec
Π,A,P (κ) and ExpPA2-Ext

Π,A,K,P(κ) are
perfectly/statistically/computationally indistinguishable for κ.

Since we only discuss about the standard model PA2, we simply say that Π
is perfectly/statistically/computationally PA2 secure if it is perfectly/statistical-
ly/computationally standard model PA2 secure.

Theorem 2 (Fundamental Theorem for Standard Model PA2 [BP04]).
Let Π be an IND-CPA secure public-key encryption scheme. If Π is (perfect,
statistical, or computational) PA2 secure, then Π is IND-CCA2 secure.
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—ExpPA2-Dec
Π,A,P (κ)—

Take coins RA and RP for A and P randomly.
(pk, sk) ← Gen(1κ), CList ← ε, StP ← ε. (Here StP is the state of P).
Run A(pk; RA) until it halts, replying to its oracle queries as follows:
If A makes query (enc, Q)

(M, StP) ← P(Q,StP ; RP), C ← Encpk(M), CList ← CList||C.
Send C to A as the reply.

If A makes query (dec, Q)
M ← Decsk(Q). Send M to A as the reply.

Return an output S of A.

—ExpPA2-Ext
Π,A,K,P(κ)—

Take coins RA, RP , and RK for A, P , and K randomly.
(pk, sk) ← Gen(1κ), CList ← ε, StP ← ε, StK ← (pk, RA).

(Here StP and StK are the states of P and K).
Run A(pk; RA) until it halts, replying to its oracle queries as follows:
If A makes query (enc, Q)

(M, StP) ← P(Q,StP ; RP), C ← Encpk(M), CList ← CList||C.
Send C to A as the reply.

If A makes query (dec, Q)
(M, StK) ← K(Q, CList, StK; RK). Send M to A as the reply.

Return an output S of A.

Fig. 1. Experiments used to define PA2 of [BP04]

3 Statistical PA2 Is Stronger Than Computational PA2

In this section, we show that the computational PA2 security is strictly stronger
than the statistical one. That is, we give an example of a computational PA2 se-
cure public-key encryption scheme Π ′ = (Gen′, Enc′, Dec′) which is not statistical
PA2 secure.

Let κ be a security parameter. Let Π = (Gen, Enc, Dec) be a public-key
encryption scheme which is statistical PA2 secure and IND-CPA secure (and
therefore IND-CCA2 secure). For instance, we can set Π to the Cramer-Shoup
scheme [CS01], if the Diffie-Hellman Knowledge assumption [D91, BP04] and the
DDH assumption holds. We construct the desired public-key encryption scheme
Π ′ = (Gen′, Enc′, Dec′) by modifying Π . The key generation algorithm Gen′(1κ)
first executes Gen(1κ) and obtains a public key/secret key pair (pk, sk) as the
output. After that, it selects a message M0 randomly and computes a ciphertext
C0 = Encpk(M0). Then it sets pk′ = (pk, C0) and sk′ = sk. Finally, it outputs
the public key/secret key pair (pk′, sk′). We also set Enc′pk′(M) = Encpk(M) and
Dec′sk′(C) = Decsk(C). See Fig. 2 also for the description of Π ′.

We first see that Π ′ is not statistical PA2 secure. In order to see it, we con-
struct an adversary A′

0 such that no extractor can extract a message from the
ciphertext output by A′

0. Our adversary A′
0 is the one who obtains C0 from its
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Gen′(1κ):
(pk, sk) ← Gen(1κ)
Select a message M0 randomly.
C0 ← Encpk(M0).
pk′ ← (pk, C0), sk′ ← sk.
Output (pk′, sk′).

Enc′pk′(M) = Encpk(M), Dec′sk′(C) = Decsk(C).

A′
0(pk′):
Parse pk′ as (pk, C0) and output C0.

Fig. 2. Descriptions of Π ′ = (Gen′, Enc′, Dec′) and A′
0

input pk′ = (pk, C0) and outputs C0. Recall that not A′
0 but the key generation

algorithm Gen′ generates M0 and C0. Therefore, A′
0 “does not know” the mes-

sage M0 corresponding to C0. Since an extractor K′ is input only data which
the adversary can see, K′ “cannot know” M0 = Dec′sk′(C0) = Decsk(C0) either.
This means that Π ′ is not statistical PA2 secure.

However, we can show that Π ′ is the computational PA2 secure. At first
glance, it seems that Π ′ cannot be computational PA2 secure either, because
even an extractor K′ for the computational PA2 “cannot know” M0 = Dec′sk′(C0)
either. However, we actually do not require the extractor who “can know” such
M0. Recall that the extractor K′ is only required to simulate the decryption
oracle in such a way that an adversary A′

0 cannot computationally distinguish
the output of K′ from that of decryption oracle. Therefore, K′ does not need to
output the plaintext M0 itself, but can output the plaintext M1 such that A′

0

cannot computationally distinguish the distribution of M1 from that of M0.
Recall that A′

0 “knows” neither the plaintext M0 nor the random number
r which was used in the computation of C0 = Encpk(M0; r). Recall also that
Π satisfies the IND-CCA2 security. Hence, A′

0 cannot distinguish a randomly
selected message M1 from M0. Therefore, K′ can output a randomly selected
message M1 as the answer to the decryption query C0.

Based on the above discussion, we can prove the following theorem.

Theorem 3. Suppose that there exists at least one computational PA2 secure
public-key encryption scheme. (For instance, if the Cramer-Shoup scheme [CS01]
satisfies it under the DDH assumption and the Diffie-Hellman Knowledge as-
sumption [D91, BP04]). Then there exists a computational PA2 secure public-key
encryption which is not statistical PA2 secure.

It is interesting to compare our result with Fujisaki’s result [F06] about the ran-
dom oracle PA2. In his paper, he defined a plaintext simulatability (PS) notion,
which was an “computational variant” of the random oracle PA2, and showed
that plaintext simulatability notion was strictly stronger than the random ora-
cle PA2. Therefore, our result can be recognized as the standard model variant
of Fujisaki’s result [F06]. By comparing his result with our result, we can say
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that statistical and computational standard model PA2 notions is related to the
random oracle PA2 and the PS, respectively.

4 PA2-04 Together with Onewayness Implies IND-CPA

Our main result is the following:

Theorem 4. Let Π = (Gen, Enc, Dec) be a public-key encryption scheme, which
satisfies the onewayness property. If Π is perfectly, statistically, or computation-
ally PA2 secure, then Π is IND-CPA secure, (and therefore IND-CCA2 secure).

This result shows the “all-or-nothing” aspect of the PA2. That is, the (per-
fect, statistical, or computational) PA2 secure encryption scheme either satisfies
the strongest message hiding property, IND-CCA2, or does not satisfy even the
weakest message hiding property, onewayness.

Before proving Theorem 4, we see that one cannot remove the onewayness
assumption from Theorem 4:

Theorem 5. There is a public-key encryption which is perfect PA2 secure but
is neither oneway nor IND-CPA secure.

Proof (Theorem 5, sketch). Let Π = (Gen, Enc, Dec) be a public-key encryption
scheme, such that an encryption Encpk(M) of a message M is M itself. Then Π
is clearly not IND-CPA secure. Recall the definition of the statistical PA2. We
say that Π satisfies the statistical PA2 security if, for any adversary A, there
exists an extractor K such that K succeeds in extracting the plaintext M which
corresponds to a ciphertext C output by A. Since K can know the message M
directly from the ciphertext itself, Π satisfies the perfect PA2.

We first prove Theorem 4 for the special case where Π is statistically PA2 secure.
Theorem 4 for the perfect PA2 security is clearly followed from it.

Proof (Theorem 4 for the statistical PA2, sketch). Let us make a contradictory
supposition. That is, we suppose that there exists a statistically PA2 secure
public-key encryption scheme Π = (Gen, Enc, Dec) which is not IND-CPA secure.
Then we show that Π is not oneway.

In order to show it, we construct an adversary A0 which satisfies the following
tricky property: A0 can obtain a ciphertext C0 such that (1) A0 “does not know”
the plaintext M0 = Decsk(C0) and (2) C0 is not generated by the encryption
oracle. For a moment, suppose that we succeed in constructing such A0. Since
C0 is not generated by the encryption oracle, A0 can make the query C0 to the
decryption oracle. Then, from the definition of the plaintext awareness, there
exists an extractor K which can extract the plaintext M0 from the query C0 of
A0. (Here we exploit the supposition that Π is statistically PA2 secure). This
means that K succeeds in outputting the unknown plaintext M0 of a ciphertext
C0. That is, K can invert the encryption function Enc. This contradicts to the
assumption that Π is oneway.
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We next describe how to construct A0. At first glance, it seems impossible
to construct such A0, since the definition of the plaintext awareness disable A0

generating a ciphertext C0 “without knowing” the corresponding plaintext M0.
The basic idea how A0 obtains such ciphertext C0 is similar to that used in
Section 3. In Section 3, the adversary obtains such C0 from the key generation
algorithm. In this proof, A0 obtains such C0 from another entity, that is, a
plaintext creator P0. Then A0 “does not know” the message M0 corresponding
to C0, since not A0 itself but P0 generates C0. (We stress that not the encryption
oracle but P0 itself generates C0. If the encryption oracle generates C0,A0 cannot
send C0 to the decryption oracle).

In order to employ the technique mentioned above, P0 has to send C0 to A0.
However, there is no inherent communication channel which enables P0 to send
C0 directly to A0. So, we construct a “virtual” communication channel from P0

to A0.
Here we exploit the assumption that the public-key encryption scheme Π is

not IND-CPA secure. Recall that the definition of the statistical PA2 security
allows P0 to send plaintexts to the encryption oracle. Therefore, P0 can send to
A0 a ciphertext c such that P0 generates the corresponding plaintext. Since Π
is not IND-CPA secure, the ciphertext c leaks information of the corresponding
plaintext. This means that P0 can send to A0 some sort of information via the
ciphertext c. That is, P0 can use the ciphertext as the virtual channel.

We now describe more precisely how P0 “sends” C0 to A0. Let pk0 be a
public key and sk0 be the unknown secret key corresponding to pk0. Since Π
is not IND-CPA secure, there exist an algorithm B, a state StB of B, a pair
of messages (m0, m1), and a non negligible and non negative valued function
μ = μ(κ) satisfying

Pr(B(pk0, m0, m1, Encpk0
(m1), StB) = 1)−Pr(B(pk0, m0, m1, Encpk0

(m0), StB) = 1) ≥ μ.

We set N to �1/μ�. Let bi be the i-th bit of the ciphertext C0 = Encpk0
(M0) such

that M0 is unknown. In advance, A0 sends pk0||m0||m1||N to P0, via the com-
munication channel which enables A0 to query. For each i, P0 sends a message
mbi as a query to the encryption oracle N times. Then the encryption oracle
sends c

(i)
1 = Encpk0

(mbi), . . . , c
(i)
N = Encpk0

(mbi) to A0 as the answers. After re-
ceiving {c(i)

j }, A0 executes B(pk0, m0, m1, c
(i)
j , StB) and obtains an output u

(i)
j of

B for each i and j. Then A0 sets b′i = 1 if the number of j satisfying u
(i)
j = 1 is

more than the number of j satisfying u
(i)
j = 0. Otherwise A0 sets b′i = 0. Since B

has a non negligible advantage, the equality u
(i)
j = bi is satisfied with probability

1/2+(non negligible). Hence the equation b′i = bi is satisfied with overwhelming
probability. That is, A0 succeeds in reconstructing the bit bi of the ciphertext
C0 for each i. Therefore, A0 can reconstruct the ciphertext C0 = b1|| · · · ||bn. In
this way, A0 succeeds in “receiving” C0 from P0. �

We now give the proof for the general case where Π satisfies only the computa-
tional PA2 security.
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Proof (Theorem 4 for the computational PA2, sketch). As in the case of the
proof of for statistical PA2, we suppose that there exists a computationally PA2
secure public-key encryption scheme Π which is not IND-CPA secure. Then we
show that Π is not oneway.

We use similar algorithms to A0 and P0 of the proof for the statistical PA2.
However, in the case of Π is computational PA2, the extractor K may output a
plaintext M ′ which is not equal to the plaintext M0 = Decsk0(C0), although the
distribution of M ′ has to be computationally indistinguishable from that of M0.
Therefore, in order to obtain M0, we modify the description of A0 and P0.

We will first construct an adversaryA1 by modifyingA0. Then, for some extrac-
torK, ExpPA2-Ext

Π,A1,K,P′(κ) is computationally indistinguishable from ExpPA2-Dec
Π,A1,P′(κ)

for anyP ′.Then, bymodifyingP0,wewill construct aplaintext creatorP1 such that
ExpPA2-Ext

Π,A1,K,P1
(κ) is, in fact, statistically indistinguishable fromExpPA2-Dec

Π,A1,P1
(κ), al-

though we cannot exploitP1 itself to obtain the secret plaintext M0. We will finally
construct a plaintext creator P2, by modifying P1, such that P2 can be exploited
to obtain M0.

We will now give a brief description of A1 and P1 by describing the experiment
ExpPA2-Dec

Π,A1,P1
(κ). (We stress that we first choose A1, next obtain K, and finally

choose P1, although we first describe about A1 and P1, and next describe K.
One can easily check that we can take K which does not depend on P1). In the
experiment ExpPA2-Dec

Π,A1,P1
(κ), the experimenter first executes the key generation

algorithm Gen(1κ) and obtains a public key/secret key pair (pk, sk) as an output.
Then he inputs pk to the adversaryA1, the encryption oracle, and the decryption
oracle. He also inputs sk to the decryption oracle. Then A1 executes B(pk) and
obtains (m0, m1, StB) as an output. After that, A1 sends pk||m0||m1||N to P1,
via the communication channel which enables A1 to query. Here N = �1/μ�.

Then P1 generates a message M1 randomly, and computes a ciphertext C1 =
Encpk(M1). After that, A1 and P1 execute the same procedures as those of A0

and P0 except that they execute these procedures using not C0 but C1. That is,
P1 “sends” C1 to A1 via the “virtual” channel. After “receiving” C1 from P1, A1

makes query C1 to the decryption oracle. Then the decryption oracle sends back
a message M ′ to A1 as the answer to the query C1. (Note that the decryption
oracle sends back a message M ′ = M1 = Decsk(C1), although an extractor K
may send back a message M ′ other than M1).

After that, A1 sends M ′ to P1 via the communication channel which enables
A1 to query. P1 checks whether M1 = M ′ or not. Then P1 sets S = 1 if M1 = M ′,
otherwise sets S = 0. After that, P1 “sends” S to A1 via the “virtual” channel.
Finally, A1 outputs S.

Then, for some extractor K, ExpPA2-Ext
Π,A1,K,P′(κ) is computationally indistin-

guishable from ExpPA2-Dec
Π,A1,P′(κ) for any P ′. In particular, ExpPA2-Ext

Π,A1,K,P1
(κ) is

computationally indistinguishable from ExpPA2-Dec
Π,A1,P1

(κ).
We show that ExpPA2-Ext

Π,A1,K,P1
(κ) is, in fact, statistically indistinguishable from

ExpPA2-Dec
Π,A1,P1

(κ). In the casewhereA1 andP1 are in the real experimentExpPA2-Dec
Π,A1,P1

(κ), the output S of A1 is always 1. Recall that A1 cannot computationally distin-
guish ExpPA2-Ext

Π,A1,K,P1
(κ) from ExpPA2-Dec

Π,A1,P1
(κ). Therefore, even in the experiment
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ExpPA2-Ext
Π,A1,K,P1

(κ), S = 1 is satisfied with overwhelming probability. Recall that
S = 1 holds if and only if M ′ = M . Hence, K succeeds in outputting the correct
message M corresponding to C′

1 = C1 = Encpk(M) with overwhelming prob-
ability. This means that ExpPA2-Ext

Π,A1,K,P1
(κ) is statistically indistinguishable from

ExpPA2-Dec
Π,A1,P1

(κ).
We next construct a plaintext creator P2, by modifying P1. Let (pk0, C0)

be an instance of the onewayness game, and sk0 be the unknown secret key
corresponding to pk0. Our goal is to compute M0 = Decsk0(C0). The description
of P2 is equal to that of P1, except that (1) P2 takes C0 as an input, (2) P2 does
not use a ciphertext C1 generated by P2 itself but instead uses a part C0 of the
instance (pk0, C0) of the onewayness game, and (3) P2 always sets S = 1.

We consider a modified version of the experiment ExpPA2-Ext
Π,A1,K,P2

(κ), named
ExpPA2-Ext∗

Π,A1,K,P2
(κ, pk0, C0), in which the experimenter uses not the public key

pk generated by Gen(1κ) but instead uses a part pk0 of the instance (pk0, C0)
of the onewayness game. Recall that both P1 in ExpPA2-Ext

Π,A1,K,P1
(κ) and P2 in

ExpPA2-Ext∗
Π,A1,K,P2

(κ, pk0, C0) set S = 1 with overwhelming probability. Moreover,
the distribution of (pk0, C0) is equal to that of (pk, C) selected randomly. Hence,
the behavior of P1 in ExpPA2-Ext

Π,A1,K,P1
(κ) is statistically indistinguishable from that

of P2 in ExpPA2-Ext∗
Π,A1,K,P2

(κ, pk0, C0). (Recall that K is not input the random coin
of a plaintext creator. Therefore, K cannot distinguish the behavior of P1 from
that of P2).

Therefore, the distribution of the output of ExpPA2-Ext∗
Π,A1,K,P2

(κ, pk0, C0) is sta-
tistically indistinguishable from that of the output of ExpPA2-Ext

Π,A1,K,P1
(κ). Re-

call that, in the experiment ExpPA2-Ext
Π,A1,K,P1

(κ), the output M ′ of K is equal to
M1 = Decsk0(C1) with overwhelming probability. Therefore, even in the experi-
ment ExpPA2-Ext∗

Π,A1,K,P2
(κ, pk0, C0), the output M ′ of K is equal to M0 = Decsk0(C0)

with overwhelming probability. This means that K succeeds in obtaining the
unknown plaintext M0 = Decsk0(C0) with overwhelming probability. �

We see that Theorem 4 does not hold in the case of the random oracle PA2. See
Appendix A for the definition of the random oracle PA2.1

Proposition 6 Suppose that there exists a group G on which the DDH problem
is easy although the CDH problem is hard. (For instance, we can set G to an
elliptic curve group on which a bilinear pairing [BF01, MOV93, JN03, SOK01] is
defined). Then there exists a public-key encryption scheme Π = (Gen, Enc, Dec)
which satisfies the random oracle PA2 security and the onewayness but does not
satisfy the IND-CPA security.

Proof (sketch). The desired encryption scheme is the Fujisaki-Okamoto [FO99]
padded ElGamal encryption scheme such that a message and elements g and h of

1 The definition of the random oracle PA2 differ subtly depending on papers. Our
definitions are those of [BR94, FOPS01]. In some papers, such as [BDPR98, F06],
the authors say that a public-key encryption scheme satisfies the random oracle PA2,
if it satisfies both our definition and the IND-CPA security.
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a public key (g, h) are taken from the above G. Similar to the case of the original
Fujisaki-Okamoto padded ElGamal encryption scheme, we can prove that the
encryption scheme satisfies the random oracle model PA2 security. Moreover, it
satisfies onewayness since the CDH problem is hard on G. However, it does not
satisfy the IND-CPA security since the DDH problem on G is easy. �

By applying the similar idea to the Damg̊ard scheme [D91], one can also show
that there exists a public-key encryption scheme which satisfies the standard
model PA1 security [BP04] and the onewayness but does not satisfy the IND-
CPA security. See Appendix A for the definition of the standard model PA1.

5 Conclusion

In this paper, we studied the relationship between the standard model PA2 and
the property about message hiding, that is, IND-CPA. Although it seems that
these two are independent notions at first glance, we showed that all of the per-
fect, statistical, and computational PA2 in the standard model imply the IND-
CPA security if the encryption function is oneway. This result combining with
the fundamental theorem implies the stronger variant of the fundamental the-
orem, “(perfect, statistical or computational) PA2 + Oneway ⇒ IND-CCA2”.
It shows the “all-or-nothing” aspect of the PA2. That is, a (perfect, statisti-
cal, or computational) PA2 secure public-key encryption scheme either satisfies
the strongest message hiding property, IND-CCA2, or does not satisfy even the
weakest message hiding property, onewayness.

We also showed that the computational PA2 notion is strictly stronger than
the statistical one. By comparing Fujisaki’s result [F06] with our result, we can
say that statistical and computational standard model PA2 notions is related to
the random oracle PA2 and the plaintext simulatability [F06], respectively.
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A Definitions

A.1 Security Definitions of an Encryption Scheme

Definition 7 (IND-CPA/CCA1/CCA2). Let Π=(Gen,Enc,Dec) be a public-
key encryption scheme and κ be a security parameter. For a public key/secret
key pair (pk, sk) for Π , we let Odec(sk, ·) be the oracle (named decryption ora-
cle) such that it returns Decsk(C) to an adversary when the adversary sends a
ciphertext C to it. Let b be a bit. We also let Oenc(b, pk, ·) be the oracle (named
encryption oracle) such that it returns Encpk(Mb) to an adversary when the ad-
versary sends a pair (M0, M1) of messages with the same length to it. We call
Encpk(Mb) the challenge ciphertext.

For a bit b and a polytime adversary A, we set

P(b)
Π,A(κ) = Pr((pk, sk) ← Gen(1κ), b′ ← AOenc(b,pk,·),Odec(sk,·)(pk) : b′ = 1),

and AdvIND
Π,A(κ) = |P(1)

Π,A(κ) −P(0)
Π,A(κ)|.

Above, A can make a query to Oenc(b, pk, ·) only once. Moreover,A is not allowed
to send the challenge ciphertext to Odec(sk, ·).

We say that Π is IND-CPA secure if AdvIND
Π,A(κ) is negligible for any polytime

adversary A such that A has made no query to Odec(sk, ·). We say that Π is
IND-CCA1 secure if AdvIND

Π,A(κ) is negligible for any polytime adversary A such
that A has made no query to Odec(sk, ·) after receiving the challenge ciphertext
from Oenc(b, pk, ·). We also say that Π is IND-CCA2 secure if AdvIND

Π,A(κ) is
negligible for any polytime adversary A.

Definition 8 (Onewayness). Let κ be a security parameter, Π=(Gen,Enc,Dec)
be a public-key encryption scheme, and Mpk be a message space of Π in the
case where the public key is pk. We say that Π is oneway (against CPA attack)
if for any polytime adversary I (named inverter), the probability

Pr((pk, sk) ← Gen(1κ), M ←Mpk, C ← Encpk(M), M ′ ← I(pk, C) : M = M ′)

is negligible for κ.
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Hash ← (Set of all hash functions), (pk, sk) ← GenHash(1κ).

C ← AHash,EncHash
pk (pk).

HList ←(The list of all pairs of hash queries of A and the corresponding answers),

CList ←(The list of all answers of the oracle EncHash
pk ).

M ← K(pk, C, HList, CList).
If M = DecHash

sk (C), return 1. Otherwise return 0.

Fig. 3. Experiment used to define the random oracle PA2

Plaintext Awareness defined in [BR94, BDPR98]. We review the defi-
nitions of the PA1 and the PA2 in the random oracle model, defined in [BR94,
BDPR98].

Definition 9 (Random Oracle PA2). Let Π = (Gen, Enc, Dec) be a public-
key encryption scheme which uses a hash function. For a hash function Hash,
we let GenHash, EncHash, and DecHash denote the key generation, encryption, and
decryption algorithms instantiated by the hash function Hash. Let A and K be
polytime machines, which are respectively called adversary and extractor. For a
security parameter κ ∈ N, let ExpPA2-RO

Π,A,K (κ) denote the experiment described in
Fig. 3.

In this experiment, C must not be an element of CList. We say the public-key
encryption scheme Π = (Gen, Enc, Dec) is random oracle PA2 secure, if there
exists K such that, for any A, the success probability

SuccPA2-RO
Π,A,K (κ) = Pr(ExpPA2-RO

Π,A,K (κ) = 1)

is overwhelming for κ.

Definition 10 (Random Oracle PA1). We say that a public-key encryption
scheme Π = (Gen, Enc, Dec) satisfies the random oracle PA1, if there exists
an extractor K such that, for any adversary A which makes no query to the
encryption oracle, the success probability SuccPA2-RO

Π,A,K (κ) is negligible for κ.

Theorem 11 (Fundamental Theorem for the random oracle PA [BR94,
BDPR98]). Let Π be an IND-CPA secure public-key encryption scheme in the
random oracle model. If Π satisfies the random oracle PA1 or PA2 security,
then Π is IND-CCA1 or IND-CCA2 secure respectively.

Standard Model PA1. We next review the definition of the PA1 in the sense
of [BP04]. We use two experiments for defining PA1. These experiments are
almost the same as those for PA2, except that an adversary makes no query to
the plaintext creator P . Since the experiments do not depend on P , we denote
them by ExpPA1-Dec

Π,A (κ) and ExpPA1-Ext
Π,A,K (κ).

Definition 12 (standard model PA1). We say that a public-key encryption
scheme Π = (Gen, Enc, Dec) is perfect/statistical/computational PA1 secure in
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the sense of [BP04], or easily perfect/statistical/computational PA1 secure, if for
each adversary A such that it makes no query to the plaintext creator, there
exists K such that the two experiments ExpPA1-Dec

Π,A (κ) and ExpPA1-Ext
Π,A,K (κ) are

perfectly/statistically/computationally indistinguishable. We simply say that Π
is PA1 secure in the sense of [BP04], (or PA1 secure) if Π is computationally
PA1 secure.

Theorem 13 (Fundamental Theorem for Standard Model PA1 [BP04]).
Let Π be an IND-CPA secure public-key encryption scheme. If Π is (perfect, sta-
tistical, or computational) PA1 secure, then Π is IND-CCA1 secure.



n = pq
e gcd(e, φ(n)) = 1

n e x ∈ Zn

y ∈ Zn ye = x
p q n

e n

e

n

©



e

G
G

Z∗
n

Zn

n

σ : Zn → Sn

Sn ⊂ {0, 1}�log2(n)� |Sn| = n



Zn

Zn

n Sn

σ(0), σ(1) σ(x)
σ(xi) xi

i j σ(xi ± xj) σ(xixj)

(e, σ(y)) e > 1 gcd(e, φ(n)) = 1 ye = x
n e

O(log(n))
n

n
e O(log(n))

e

Zn

Zn

O
Zn

X Zn x

O
O x ∈U Zn n {σ1, . . . , σn}

n Sn



O L E
j ∈ {1, . . . , |L|} Lj j

L Ej j E L Lj ∈ Zn[X ]
Lj(x) E

Ej Lj(x) O
c E

σ : Zn → Sn

σ1, . . . , σn

P L

P (x)
O j ∈ {1, . . . , |L|}

(P − Lj)(x) ≡ 0 mod n .

O c
σc ∈ Sn \ E E

E
σ := σ ∪ {P (x) �→ σc} j

Ej E
O

c
σ x ∈ Zn

L 0, 1 X E
σ c

O m
(◦, j1, j2) ◦ ∈ {+,−, ·} j1, j2

(◦, j1, j2) P := Lj1 ◦Lj2

P L E σ c
A m O

O
O σ

n− c x ∈ Zn \ {P (x)|P ∈ L}
σc+1, . . . , σn

O A (e, out) out ∈ Sn e > 1
gcd(e, φ(n)) = 1

S A out = σ(y) e
ye ≡ x mod n



O Zn n = pq
A m

O (e, σ(y)) ← AO(n, Sn, σ(0), σ(1), σ(x)) e > 1
gcd(e, φ(n)) = 1 y e

x

Pr[ye = x] ≤ (4φ(e′) + 2)γ +
1

n −m− 3
,

e′ e γ
n A O((φ(e′)2 + log(n))m2)

Zn

A
e e A

e
e

log(n)
A

C

O
Zn n = pq C

A m O
(e, σ(y)) ← AO(n, Sn, C, σ(0), σ(1), σ(x)) e > 1

C gcd(e, φ(n)) = 1 y
e x

Pr[ye = x] ≤ (4C + 2) γ +
1

n−m − 3
,

γ n A
O((C2 + log(n))m2) Zn

m
γ γ

n
Zn

Pr[ye = x] m C
γ

n

n



n

O Osim O
x Osim

O F
A

O
A Osim

γ

F Osim

Li, Lj ∈ L
x

F
Li − Lj

A L

O F γ

Osim O
x

P L
Osim Li = P

j < i

x
(i)
j ∈U Zn

(Li − Lj)(x
(i)
j ) ≡ 0 mod n .

j1, . . . , jk Ej j = min(j1, . . . ,
jk) E

j {j1, . . . , jk} j



j c
σc ∈ Sn \ E E

E σ P (x) �→ σc

P (x)

r1 := n− c
r2 := n− |{P (x)|P ∈ L}|

Osim

min(r1, r2) Zn \ {P (x)|P ∈ L}
σc+1, . . . , σc+min(r1,r2) O

F i > j ∈ {1, . . . , |L|}
(Li − Lj)(x) ≡ 0 mod n (Li − Lj)(x

(i)
j ) �≡ 0 mod n

(Li − Lj)(x) �≡ 0 mod n (Li − Lj)(x
(i)
j ) ≡ 0 mod n .

Ssim A (e, out) out
y ye = x

Ssim F

F O Osim

O Osim

E L
σ F

Ā
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Abstract. We revisit a long-lived folklore impossibility result for fac-
toring-based encryption and properly establish that reaching maximally
secure one-wayness (i.e. equivalent to factoring) and resisting chosen-
ciphertext attacks (CCA) are incompatible goals for single-key cryp-
tosystems. We pinpoint two tradeoffs between security notions in the
standard model that have always remained unnoticed in the Random
Oracle (RO) model. These imply that simple RO-model schemes such
as Rabin/RW-SAEP[+]/OAEP[+][+], EPOC-2, etc. admit no instantia-
tion in the standard model which CCA security is equivalent to factoring
via a key-preserving reduction. We extend this impossibility to arbitrary
reductions assuming non-malleable key generation, a property capturing
the intuition that factoring a modulus n should not be any easier when
given a factoring oracle for moduli n′ �= n. The only known countermea-
sures against our impossibility results, besides malleable key generation,
are the inclusion of an additional random string in the public key, or en-
cryption twinning as in Naor-Yung or Dolev-Dwork-Naor constructions.

1 Introduction

The Paradox. When a proof is given that some cryptosystem is semantically
secure under chosen ciphertext attack (IND-CCA) under some complexity as-
sumption, one generally checks whether one-wayness can be guaranteed under
a weaker assumption. In the case of simple cryptosystems based on factoring
large integers however, an inevitable tradeoff seems to exist between one-wayness
and chosen ciphertext security. This incompatibility, which was observed for
factoring-based signature schemes as well [20,22,13], is folklore knowledge and
dates back to the late eighties. Despite early reasonings and attempts (later
shown to be wrong) by a number of authors to formally prove it, this so-called
“paradox” [13, Section 4] has remained essentially unexplored in a formal manner
and, surprisingly enough, overlooked by contributors.

It is well known that the one-wayness of Rabin encryption and variants thereof
[22,4,8,5] is equivalent to factoring (FACT), meaning that any efficient algorithm
inverting encryption provides an efficient way to factor the modulus. It turns

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 252–266, 2006.
c© International Association for Cryptologic Research 2006
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out that the same algorithm can be used to totally break the cryptosystem (i.e.
factor the modulus) under a trivial chosen ciphertext attack. This kind of at-
tack has never been reported for RSA. But the one-wayness of RSA has not
been shown to be equivalent to FACT. In fact, there is a separation result by
Boneh and Venkatesan [6] which roughly tells that if a reduction from FACT to
low-exponent RSA existed, then an efficient factoring algorithm could be con-
structed. Simultaneously, RSA-based cryptosystems such as OAEP [3] seem to
resist chosen-ciphertext attacks convincingly well in practice. This provides the
intuition that some sort of incompatibility must exist between achieving one-
wayness under the weakest possible assumption (factoring) and achieving chosen
ciphertext security at all.

In an early attempt to capture this intuition, Williams [22] makes the follow-
ing (over)statement1: if the one-wayness of a factoring-based cryptosystem E is
equivalent to factoring then E can be totally broken under chosen-ciphertext at-
tack. A simple proof for this claim was later shown to be incorrect by Goldwasser,
Micali and Rivest [13], and the first public-key encryption scheme fully IND-CCA-
secure under the factoring assumption was then discovered by Dolev, Dwork and
Naor a few years later [10]. However, the incompatibility seems to persist for
factoring-based encryption for which the public key consists of a single modulus.

Our Contributions. Our goal in this paper is to revisit [20,22,13] completely
and clarify the conditions for such security incompatibilities to exist. We find
that when properly formulated, certain security reductions for one-wayness and
chosen-ciphertext security are indeed incompatible when considering single-key
factoring-based encryption i.e. where the public key is just made of one hard-
to-factor modulus. We reformulate the paradox observed by Williams in terms
of key-preserving black-box reductions i.e. reductions which always call the ad-
versarial oracle with the public-key they were given as input. We strengthen the
original observation to show that if one can provide a key-preserving reduction
from factoring to the (chosen-plaintext) semantic security of E , then E cannot
fulfil plaintext-checking security. Plaintext-checking attacks, introduced in [18],
assume that the attacker is given oracle access to a distinguishing oracle that tells
whether a given ciphertext encrypts a given plaintext. It follows from combining
these results that a wide class of factoring-based cryptosystems admit no key-
preserving black-box reduction from factoring to breaking the security notions
IND-CCA, OW-CCA and IND-PCA in the standard model. This provides black-
box separations with well-known security proofs standing in the RO model [2]
such as the one of Rabin-SAEP [5]. We provide later an explanation as to why
these incompatibilities are avoided in the case of Naor-Yung [17] and Dolev-
Dwork-Naor [10] constructions where public keys are composed of two or more
independent moduli, as well as in the RO model.

Finally, we define the notion of non-malleable key generators, which formally
captures the property that the factorizations of two public moduli n, n′ where
n �= n′ are somehow “computationally independent” from one another. Similar
1 The paradox appearing in [20,22,13] is discussed in the context of factoring-based

signatures. This is a straightforward reformulation for factoring-based encryption.
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notions of non-malleability for discrete logarithms recently appeared in [14,16].
Using non-malleability, we extend the scope of the previous impossibility re-
sults to arbitrary black-box reductions. Our refined results state that simple and
innocuous-looking RO-secure factoring-based encryption schemes (e.g. Rabin-
SAEP), when combined with non-malleable key generation, black-box separate
the RO model from the standard model in a very strong sense: IND-CCA security
is equivalent to FACT in the RO model while no instantiation of these schemes
preserves such equivalence in the standard model.

We note that all impossibility results stated in this paper are easily transposed
(mutatis mutandis) to factoring-based signature schemes. We do not treat the
case of signatures here due to lack of space.

Roadmap. The paper is structured as follows. Section 2 gives preliminary facts
about black-box reductions, single-key factoring-based encryption schemes and
related security notions. Section 3 formally establishes the tradeoff between one-
wayness and chosen ciphertext security. We also put forward a second tradeoff
between semantic security against passive adversaries and plaintext-checking
security. In Section 4, we give a formal definition of non-malleable instance gen-
erators and provide extended impossibility results. Section 5 discusses possible
countermeasures such as encryption twinning to overcome these tradeoffs. We
finally conclude on directions for further research in Section 6.

2 Preliminaries

Instance Generators. We define FACT as the problem of computing the list of
all prime factors factors(n) = (p1, . . . , pt) of a randomly chosen positive integer
n. In cryptographic applications, one generally focuses on a specifically chosen
distribution of hard instances by defining an instance generator Gen. Given a
security parameter k, Gen(1k) generates a hard-to-factor modulus n, as well as
the side information factors(n). A probabilistic algorithm A is said to (ε, τ)-break
FACT [Gen] when

Pr
[
(n, factors(n)) ← Gen(1k) : A(n) = factors(n)

] ≥ ε ,

where the probability is taken over the random coins of A and Gen and A halts
after τ steps. FACT [Gen] is commonly referred to as the “factoring problem”
when Gen is specified implicitly. For readability reasons, we may equivalently
write (n, factors(n)) ← Gen(1k) or n ← Gen(1k) to state that n is drawn accord-
ing to the distribution induced by Gen(1k). We note PKk the range of n i.e.
the set of integers n such that Pr

[
n ← Gen(1k)

]
> 0 and SKk = factors(PKk).

Finally PK = ∪kPKk and SK = ∪kSKk. Here are some instance generators
commonly used in factoring-based encryption:

Rabin-Williams. Given 1k, select uniformly at random two �k/2�-bit primes p
and q such that p = 3 mod 8 and q = 7 mod 8. Set n = pq and output
(n, (p, q)).
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OU. Given 1k, randomly select two �k/3�-bit primes p and q. Set n = p2q and
output (n, (p, q)).

RSA-e. Given a small integer e and 1k, randomly select two �k/2�-bit primes p
and q such that gcd(p − 1, e) = gcd(q − 1, e) = 1. Set n = pq and output
(n, (p, q)).

Sophie-Germain. Given 1k, randomly select two (�k/2�− 1)-bit primes p′ and q′

such that p = 2p′ +1 and q = 2q′ +1 are also primes. Set n = pq and output
(n, (p, q)).

Single-Key Factoring-Based Encryption. A single-key factoring-based encryp-
tion scheme E with security parameter k can be described as the combination of
an instance generator Gen with a family of trapdoor functions on Gen, namely a
pair (Enc, Dec) such that for any n ∈ PK, Enc(n, ·, ·) and Dec(factors(n), ·) are
integer-valued functions

Enc(n, ·, · ) : Mn × Rn → Cn , Dec
(
factors(n), · ) : Cn → Mn

where Mn, Rn and Cn denote respectively the plaintext, random and ciphertext
spaces2. We impose that for any n ∈ PK, m ∈ Mn and r ∈ Rn, Dec(factors(n),
Enc(n, m, r)) = m. When Enc(n, Mn, Rn) � Cn, some elements of Cn are not
proper ciphertexts. When c �∈ Enc(n, Mn, Rn), Dec(factors(n), c) returns a fail-
ure symbol ⊥ ∈ Mn. We impose that Enc(n, ·, ·) and Dec(n, ·, ·) be efficiently
computable for any arguments i.e. can be evaluated in time at most poly (k) for
n ∈ PKk. We identify E = (Gen, Enc, Dec) to the three following probabilistic
procedures:

E .keygen: Run Gen(1k) to get (n, factors(n)). The secret key is factors(n) while
the public key is n.

E .encrypt: Given a public key n and a message m ∈ Mn, select r ← Rn uniformly
at random and compute c = Enc(n, m, r). The output ciphertext is c ∈ Cn.

E .decrypt: Given the secret key factors(n) and a ciphertext c ∈ Cn, output m =
Dec(factors(n), c).

Examples of single-key factoring-based cryptosystems as defined above are count-
less: RSA3 and its numerous variants OAEP [3], REACT-RSA [18], PKCS#1
v1.5 [21], Rabin and related systems (Rabin-Williams [22], Blum-Goldwasser
[4], Chor-Goldreich [8], Rabin-SAEP [5]), Naccache-Stern, Okamoto-Uchiyama
and the EPOC family [12,11], Paillier [19] and variants. Many elliptic-curve-
based cryptosystems such as KMOV [15], Vanstone-Zuccherato or Demytko [9]
also fall into this category. We refer the reader to the extensive literature on
factoring and its applications to cryptography for more detail.

2 Rn is the empty set when encryption is deterministic.
3 If the public exponent e is fixed (as usually done in practice), RSA decryption can

be performed given the factors of n only.
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Black-Box Reductions. Black-box reductions constitute a natural tool to re-
late computational problems and capture the way most security proofs are con-
structed. Given two computational problems P1 and P2, a black-box reduction
from P1 to P2 is a probabilistic algorithm R which solves P1 with the help of
an oracle solving instances of P2. R interacts with the oracle strictly as defined
by the specification of P2 and in particular has no view on the internal tapes
of the oracle. The (extra) time of R is the number of elementary steps required
by R to complete given that oracle calls count for one step by convention. A
black-box reduction is polynomial when it runs in polynomial extra time (in
a security parameter). It is crucial to remind that R can be polynomial even
when no polynomial-time algorithm solving P2 is known to exist. We denote by
P1 ⇐ P2 the fact that P1 is polynomially black-box reducible to P2. We write
P1 ⇐R P2 when R is known to reduce P1 to P2. Polynomial equivalence is
denoted by P1 ≡ P2. Succ (P, τ) stands for the maximal success probability of
probabilistic algorithms solving P in no more than τ elementary steps. Similarly,
Succ (P1 ⇐ P2, τ, ε, �) stands for the maximal success probability of probabilistic
algorithms solving P1 in no more than τ elementary steps and at most � calls
to an oracle solving P2 with probability ε. All the reductions considered in this
paper are black-box.

Security Notions for Factoring-Based Encryption. Security notions for encryp-
tion schemes are obtained by combining an adversarial goal with an attack
model. (Goals) We say that an encryption scheme is unbreakable (UBK) when
one cannot extract the secret key matching a prescribed public key. The scheme
is said to be one-way (OW) when no adversary can recover a plaintext given its
encryption. Indistinguishability (IND, a.k.a. semantic security) relates to the
hardness of deciding whether a given ciphertext encrypts a given plaintext.
(Attacks) We consider three attack models in this paper. In a chosen-plaintext
attack (CPA), the adversary is given nothing more than the public key as in-
put. In a plaintext-checking attack (PCA), the adversary is given access to a
plaintext-checking oracle that tells whether a given ciphertext encrypts a given
plaintext [18]. In a chosen-ciphertext attack (CCA), the adversary has access to
a decryption oracle. Oracle access in OW-CCA, IND-PCA and IND-CCA games is
limited in the sense that the adversary is not allowed to call the oracle on the
challenge ciphertext itself. These definitions are classical. We refer to [1,18] for
more detail on security notions for encryption schemes.

For convenience,wedenote securitynotions inapositive fashion e.g.OW-PCA [E ]
denotes the problem of breaking the one-wayness of E under plaintext-checking
attack. This convention allows one to easily describe hierarchies between security
notions using reductions. When the focus is on an adaptive attack (i.e. either
PCA or CCA), we denote by �-GOAL-ATK[E ] the problem of breaking GOAL in no
more than � calls to the resource defined by ATK. Thus, breaking �-IND-CCA [E ]
authorizes at most � calls to the decryption oracle to break IND. We recall
that GOAL-CCA [E ] ⇐ GOAL-PCA [E ] ⇐ GOAL-CPA [E ] for any factoring-based
encryption scheme E and adversarial goal GOAL ∈ {UBK, OW, IND}. We also
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UBK-CCA [E ] ⇐ UBK-PCA [E ] ⇐ UBK-CPA [E ] ≡ FACT [E .keygen]

⇓ ⇓ ⇓
OW-CCA [E ] ⇐ OW-PCA [E ] ⇐ OW-CPA [E ]

⇓ ⇓ ⇓
IND-CCA [E ] ⇐ IND-PCA [E ] ⇐ IND-CPA [E ]

Fig. 1. Relations among security notions for single-key factoring-based encryption

have UBK-CPA [E ] ≡ FACT [E .keygen]. We plot on Fig. 1 the map of security
levels needed for the sake of this work.

3 Impossibility Results for Key-Preserving Reductions

In this section we focus on the standard-model security of single-key factoring-
based encryption schemes. All black-box reductions known for such schemes are
key-preserving, meaning informally that they make oracle calls to the adversary
with the same key that they are given as input. We properly formalize this
particular class of reductions in our setting4.

3.1 Key-Preserving Black-Box Reductions

Definition. We define key preservation for arbitrary security games related to a
single-key factoring-based encryption scheme E . Assume that P1 [E ] and P2 [E ]
are two computational problems (view P1 and P2 as security notions) associated
to E . Consider a black-box reduction algorithm R such that P1 [E ] ⇐R P2 [E ],
meaning that R makes oracle calls to an algorithm A breaking P2 [E ] to break
P1 [E ]. Let Keys(n, aux, �) be the list (n1, . . . , n	) of public keys given by R as
input to A where (n, aux) is the modulus and auxiliary input for which R has
to break P1 [E ] and � ∈ {0, 1}poly(k) denotes the random tape of R. Here the
auxiliary input aux depends on the specification of P1. Note that the number
� of oracle calls is a deterministic function of n, aux and �. R is said to be
key-preserving when for any aux, � and n ∈ PKk, either � = 0 or ni = n for
i ∈ [1, �].

Key-preservation is transitive. It is obvious that if P1 [E ] ⇐R1 P2 [E ] and P2 [E ]
⇐R2 P3 [E ] such that R1 and R2 are both key-preserving, then there is a key-
preserving reduction R3 such that P1 [E ] ⇐R3 P3 [E ].

Reductions among security notions are key-preserving. We use later the prop-
erty that all the straightforward black-box reductions between the classical

4 A similar class of reductions for RSA encryption called simple reductions was recently
considered by Brown [7].
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security notions for E such as IND-CCA [E ] ⇐ IND-PCA [E ] and IND-CPA [E ] ⇐
OW-CPA [E ] and so forth [1], are key-preserving.

3.2 One-Wayness Versus Chosen-Ciphertext Security

The following reformulates the observation made by Williams [22].

Theorem 1. Let E be a single-key factoring-based encryption scheme. If there ex-
ists a polynomial key-preserving black-box reduction R such that FACT [E .keygen]
⇐R OW-CPA [E ], then UBK-CCA [E ] is polynomial.

Proof. The main idea of the proof is basically a one-line statement and follows
the reasoning of [22,13]. Let R be such a key-preserving reduction algorithm, i.e.
an algorithm that factors a modulus n randomly selected by E .keygen with non-
negligible probability εR and extra time τ given black-box access to an adversary
A breaking OW-CPA [E ] with probability at least ε. We construct an adversary
M against UBK-CCA [E ].

Upon reception of the public key n in the UBK-CCA game, M runs R on input
n and uses the decryption oracle to simulate the OW-CPA adversary. Since by
definition the decryption oracle decrypts any ciphertext with probability 1 ≥ ε
in one elementary step, the simulation of A is perfect for any ε ∈ (0, 1). The
simulation complies to the definition of R because R is key-preserving. It is
therefore crucial that this property holds otherwise M can by no means satisfy
the queries R makes to A.

R eventually returns the factorization of n with probability εR which M then
returns as output value. UBK-CCA [E ] can therefore be broken with probability
at least εR in extra time at most τ . ��

3.3 Indistinguishability Versus Plaintext-Checking Security

Let us now consider IND-CPA [E ]. We know that there is a key-preserving re-
duction IND-CPA [E ] ⇐ OW-CPA [E ] and also that key-preservation is transi-
tive. Therefore Theorem 1 implies that there is no key-preserving reduction
FACT [E .keygen] ⇐ IND-CPA [E ] unless UBK-CCA [E ] is polynomial. But precisely
because IND-CPA [E ] is weaker than OW-CPA [E ], a stronger incompatibility re-
sult can be found. We state:

Theorem 2. Let E be a single-key factoring-based encryption scheme. If there ex-
ists a polynomial key-preserving black-box reduction R such that FACT [E .keygen]
⇐R IND-CPA [E ], then UBK-PCA [E ] is polynomial.

Proof. Let us first describe in more detail the game played by a key-preserving
reduction R such that FACT [E .keygen] ⇐R IND-CPA [E ]. Given a modulus n,
R calls the adversarial oracle A breaking IND-CPA [E ] as follows. When R calls
A(find, n), A outputs two plaintexts m0, m1 ∈ Mn of equal length. R then en-
crypts mb for b ← {0, 1} as cb and calls A(guess, cb). A then returns its guess
b̂ ∈ {0, 1} to R and Pr[b̂ = b] ≥ ε. We may assume w.l.o.g. that R never calls
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A(guess, cb) before calling A(find, n) first and always calls A(guess, cb) immedi-
ately after A(find, n), and that cb is always a proper encryption of m0 or m1.
Let 2� be the total number of calls to A. Overall R returns factors(n) with
probability εR and extra time τ .

We construct a trivial meta-reduction M which converts the key-preserving
black-box reduction R into an adversary against UBK-PCA [E ] and works with
identical success probability in similar time. M works as follows. Given a public
key n ← E .keygen, M runs R on input n and simulates the distinguisher A using
the plaintext-checking oracle of the UBK-PCA game. When R calls A(find, n),
M returns two randomly selected plaintexts m0, m1 ← Mn of equal length.
When R calls A(guess, cb), M sends (m1, cb) to the plaintext-checking oracle and
sends its output back to R (recall that given (m, c) ∈ Mn × Cn, the plaintext-
checking oracle returns 1 if c encrypts m and 0 otherwise). Eventually R stops
and M forwards the output of R. By definition, the plaintext-checking oracle
distinguishes plaintext-ciphertext pairs with probability one and M therefore
provides a perfect simulation of A to R for any ε ∈ (0, 1). Hence M outputs the
factors of n with identical probability εR in time τ+2�ρ(k) where ρ(k) = poly (k)
is the time needed to perform a random selection in Mn. ��

3.4 Separation Results

Corollary 1. Let E be a single-key factoring-based encryption scheme. Unless
FACT [E .keygen] is polynomial, there is no polynomial key-preserving black-box
reduction FACT [E .keygen] ⇐ IND-CCA [E ].

Proof. Assume that FACT [E .keygen] ⇐R1 IND-CCA [E ] for some polynomial key-
preserving black-box (PKPBB) reductionR1. Since there exists a PKPBB reduc-
tion R2 such that IND-CCA [E ] ⇐R2 OW-CPA [E ], there must be a PKPBB re-
duction R3 such that FACT [E .keygen] ⇐R3 OW-CPA [E ] by transitivity, resulting
in that UBK-CCA [E ] is polynomial by Theorem 1. Moreover since IND-CCA [E ] ⇐
UBK-CCA [E ], one gets that IND-CCA [E ] is polynomial and therefore that
FACT [E .keygen] is polynomial as well. ��
Similar impossibility results are found for other security notions such as
OW-CCA [E ] and IND-PCA [E ] using Theorem 2.

The Typical Example of Rabin-SAEP. We illustrate the importance of Corol-
lary 1 by deducing a uninstantiability result for Rabin-SAEP. We first recall
the definition of Rabin-SAEP [5]. Let sm, s0, s1 be security parameters and
k = sm+s0+s1. H denotes a fixed-size hash function H : {0, 1}s1 → {0, 1}sm+s0 .
Here k plays the role of security parameter and the security proofs in [5] view
sm, s0, s1 as polynomial functions of k.

Rabin-SAEP.keygen : Given 1k, generate a (k + 2)-bit RSA modulus n = pq,
|p| = |q| = �k/2�+ 1, p = q = 3 mod 4 and n ∈ [2k+1, 2k+1 + 2k). The secret
key is factors(n) = (p, q) while the public key is n.
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Rabin-SAEP.encrypt : Given a public key n, the message space is Mn = {0, 1}sm

and the random space is Rn = {0, 1}s1. For (m, r) ∈ Mn×Rn, Enc(n, m, r) is
defined as (((m ‖ 0s0) ⊕H(r)) ‖ r)2 mod n. The ciphertext space is Cn = Zn.

Rabin-SAEP.decrypt : Given c ∈ Cn and (p, q), compute zp = c(p+1)/4 mod p
and zq = c(q+1)/4 mod q. Output ⊥ if z2

p �= c mod p or z2
q �= c mod q. Among

the four values CRT(±zp,±zq), select the only one y such that y < n/2 and
y can be parsed as ((m ‖ 0s0) ⊕H(r)) ‖ r for some (m, r) ∈ Mn × Rn. If this
fails or can be done for more than one value for y, output ⊥. Otherwise
output m.

It is easily seen that Rabin-SAEP is a single-key factoring-based encryption
scheme as per the definition of Section 2. We refer to [5, Section 4] for a proof
that Rabin-SAEP is chosen-ciphertext secure under the factoring assumption in
the RO model:

Theorem 3 (RO-model security of Rabin-SAEP [5]). Let us view H as a
random oracle. There exists a PKPBB reduction R such that FACT[Rabin-SAEP.

keygen] ⇐R IND-CCA
[
Rabin-SAEPH

]
.

We now state that for any instantiation of H , Rabin-SAEP does not admit a
standard model counterpart of Theorem 3. This impossibility result comes as a
direct application of Corollary 1.

Theorem 4 (Standard-model security of Rabin-SAEP). Assuming
FACT [Rabin-SAEP.keygen] is intractable, there exists no PKPBB reduction
FACT [Rabin-SAEP.keygen] ⇐ IND-CCA [Rabin-SAEP].

Similar separations can be obtained for a wide range of factoring-based en-
cryptions which chosen-ciphertext security is shown to be equivalent to fac-
toring through key-preserving reductions in the RO model such as Rabin/
RW-SAEP[+]/OAEP[+][+]/REACT, EPOC-2 [11], etc.

What Goes Wrong in the RO Model. Consider the meta-reductionM in the proof
of Theorem 1. M cannot make any appropriate use of a key-preserving reduction
R standing in the RO model. In a typical random-oracle-based reduction, the
random oracles of E are simulated by R. This additional power is beneficial to
R which introduces some form of correlation between its own variables and the
responses of the simulated oracles. In a sense, R is not totally black-box i.e. does
not only rely on the input-output behavior of the OW-CPA adversary because
R controls the interactions between the adversary and the random oracles to
increase its success probability.

In the chosen-ciphertext security game, however, the decryption oracle makes
implicit calls (i.e. not controllable by any simulator) to the random oracles.
Therefore, the meta-reduction cannot influence the decryption procedure by
mimicking R and consequently, can by no means correlate the internal vari-
ables of the decryption oracle to its own variables the same way R does with the
OW-CPA adversary. This explains why the RO model is unaware of incompati-
bilities in a general sense.
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4 Extended Results for Non-malleable Key Generation

What we are after in this section is a way to strengthen the previous impossibility
results. Recall we had to restrict the scope of Theorems 1 and 2 to key-preserving
security reductions because the meta-reduction M was unable to simulate the
adversaryAwhen R makes oracle calls to A with arbitrary moduli. Our approach
is to explicitly assume, as a property of the key generation of E , that calling
A with n′ �= n is essentially of no help to R anyways. It appears that one
faces definitional options when capturing this in a formal way: what we provide
hereafter is the simplest definition that is strong enough for our purposes. This
in turn allows us to consider arbitrary black-box reductions at the expense of
making a complexity assumption on the key generation of E .

4.1 Defining Non-malleable Generators

Intuition. An instance generator Gen is said to be malleable if factoring a ran-
domly selected instance n ← Gen(1k) becomes substantially easier when given
repeated access to an oracle which factors other instances n′ �= n for n′ ∈ PKk.
A typical example of malleability is when PKk contains integers of variable size
and number of prime factors. It is indeed trivial to factor n given an oracle that
factors n′ = αn if it happens that both n and n′ are proper elements of PKk.
We observe that most factoring-based cryptosystems define instance generators
which precisely tend to avoid this malleability property by construction (see
Section 2). What we need for our purposes is to define non-malleability in a
strong sense.

Definition. To properly capture non-malleability, we define two games in which
a probabilistic algorithm R attempts to factor n ← Gen(1k) given access to
an oracle A(n, aux) solving with probability one some computational problem
reducible to FACT [Gen]. Here, A models the computational resources R has
access to and aux stands for any auxiliary input given to the oracle A depending
on how A is specified. We may write A(n, ·) instead of A(n, aux) to notify that
aux is chosen freely and arbitrarily by R when A is called. Since we impose that
oracle A be perfect, we can abuse notations and identify A to the problem solved
by A. A typical example of computational resources modelled by A is when A
is polynomial (in which case R is given no extra power), but one may consider
problems reducible to FACT [Gen] that do confer a computational advantage to
R, such as distinguishing quadratic residues modulo n, extracting e-th roots
for gcd(e, φ(n)) = 1 and so forth. In any case, we require A to be perfectly
reducible to FACT [Gen] in polynomial time, that is, for any n ∈ PKk and any
admissible value for aux, A(n, aux) must be solvable with probability one in
time tA = poly (k) given factors(n). In Game 0, the success probability of R is
defined as

SuccGame 0
Gen (R,A, τ, �) = Pr

[
n ← Gen(1k) : RA(n,·)(n) = factors(n)

]
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where the probability is taken over the random tapes of R and A, R runs in
extra time at most τ and makes at most � queries to A(n, ·). We further define

SuccGame 0
Gen (A, τ, �) = max

R
SuccGame 0

Gen (R,A, τ, �)

where the maximum is taken over all probabilistic algorithms R playing Game 0.
This can be interpreted as the success probability of the best reduction that
makes use of A(n, aux) to factor n for the given reduction parameters (τ, �). In
Game 1, the reduction R is given, in addition to A, access to an auxiliary oracle
FACT(·) that factors integers n′ ∈ PKk \ {n} with probability one. Its success
probability SuccGame 1

Gen (R,A, τ, �) is then

Pr
[
n ← Gen(1k) : RA(n,·),FACT(·)(n) = factors(n)

]
where the probability is taken over the random tapes of R and A, R runs in extra
time at most τ , makes �A calls to A(n, ·) and �FACT calls of the type FACT(n′)
with n′ ∈ PKk \ {n} such that �A + �FACT ≤ �. Let us define

SuccGame 1
Gen (A, τ, �) = max

R
SuccGame 1

Gen (R,A, τ, �)

where the maximum is taken over all probabilistic algorithms R playing Game 1.
This measures the success probability of the best reduction that uses simulta-
neously oracles A(n, ·) and FACT(·) to factor n in time τ and totalling no more
than � oracle calls. We finally define the malleability of Gen as

ΔGen (τ, �) = max
A⇐FACT[Gen]

∣∣∣SuccGame 1
Gen (A, τ, �) − SuccGame 0

Gen (A, τ, �)
∣∣∣ ,

where the maximum is now taken over all computational problems A perfectly
reducible to FACT [Gen] in polynomial time.

Remark 1. It is easily seen that ΔGen (τ, 0) = 0 for any τ ≥ 0.

Definition 1 (Non-Malleable Instance Generators). We say that an in-
stance generator Gen is non-malleable when ΔGen (τ, �) remains polynomially neg-
ligible in k when τ = poly (k) and � = poly (k).

Remark 2. The purpose of Game 0 is to include all key-preserving reductions R
such that FACT [Gen] ⇐R A. Since the success probability ε of the adversarial
oracle plays no role in the proofs of Theorems 1 and 2, these can be reformulated
as follows. For any positive integers τ , �:

Th. 1: SuccGame 0
E.keygen (OW-CPA [E ] , τ, �) ≤ Succ (�-UBK-CCA [E ] , τ)

Th. 2: SuccGame 0
E.keygen (IND-CPA [E ] , τ, �) ≤ Succ (�-UBK-PCA [E ] , τ+ 2�ρ(k))
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4.2 A Fundamental Lemma

We now come back to our earlier discussion about extending the scope of The-
orem 1 and dealing with R calling A with arbitrary moduli n′ �= n. The oracle
calls R makes to A are now of two types: calls with the same modulus n (key-
preserving calls) and calls with n′ �= n (non-key-preserving calls). Our definition
of non-malleability allows us to limit the computational advantage conferred to
R by its non-key-preserving calls.

Lemma 1. Let Gen be an instance generator and let A be a computational prob-
lem perfectly reducible to FACT [Gen] in time tA. Then for any positive integers
τ, � and any ε ∈ (0, 1),

Succ (FACT [Gen] ⇐ A, τ, ε, �) ≤ SuccGame 1
Gen (A, τ + � · tA, �) .

Proof. Recall that A denotes a computational problem here. Assume R (τ, ε, �)-
solves FACT [Gen] ⇐ A i.e. factors n ← Gen(1k) in extra time τ with no more than �
calls to an oracleAR solvingAwith probability ε. Let εR be the success probability
of R. We construct an algorithm M which plays Game 1 with respect to a perfect
oracleAM forA and succeeds with identical probability and similar running time.
AlgorithmM works as follows. Given a randomly selected modulus n ← Gen(1k),
M runs R on input n. Now when R calls AR(n, aux), M calls AM(n, aux) and
forwards the output to R. When R calls AR(n′, aux) for n′ ∈ PKk \ {n}, M calls
FACT(n′) to get factors(n′) and solves A(n′, aux) in time tA. M then returns the
result to R. R eventually stops and M returns the output of R. The simulation
of AR is perfect for any ε ∈ (0, 1). M requires extra time at most τ + � · tA and
makes at most � calls to oracles AM and FACT(·) altogether. ��

4.3 Extended Separation Results

Theorem 5. Let E be a single-key factoring-based encryption scheme and
assume E .keygen is non-malleable. If FACT [E .keygen] ⇐ OW-CPA [E ] then
UBK-CCA [E ] is polynomial.

Proof. Let us consider A = OW-CPA [E ]. Obviously A is perfectly reducible to
FACT [E .keygen] since given any n ∈ PKk, aux = c ∈ Cn and factors(n), A(n, aux)
is solved by computing m = Dec(factors(n), c) in time tA = poly (k). Applying
Lemma 1, we get for any τ, � and ε ∈ (0, 1):

Succ (FACT [E .keygen] ⇐ OW-CPA [E ] , τ, ε, �)

≤ SuccGame 1
E.keygen (OW-CPA [E ] , τ + �·poly (k) , �)

≤ SuccGame 0
E.keygen (OW-CPA [E ] , τ + �·poly (k) , �) + ΔGen (τ + �·poly (k) , �)

≤ Succ (�-UBK-CCA [E ] , τ + �·poly (k)) + ΔGen (τ + �·poly (k) , �) .

We now extend asymptotically the above to τ, � = poly (k). Since E .keygen is
non-malleable, the malleability term ΔGen (τ + �·poly (k) , �) remains negligible.
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Since Succ (FACT [E .keygen] ⇐ OW-CPA [E ] , τ, ε, �) is non-negligible by assump-
tion, Succ (�-UBK-CCA [E ] , τ + �·poly (k)) must be non-negligible as well, thereby
giving the result. ��
The same proof technique applies to IND-CPA [E ] and shows that there exists no
reduction FACT [E .keygen] ⇐ IND-CPA [E ] unless UBK-PCA [E ] is polynomial or
E .keygen is malleable. Based on a reasoning similar to the proof of Corollary 1,
we deduce from these incompatibilities that:

Corollary 2. Let E be a single-key factoring-based encryption scheme and as-
sume E .keygen is non-malleable. There is no polynomial black-box reduction
FACT [E .keygen] ⇐ IND-CCA [E ] unless FACT [E .keygen] is polynomial.

To exemplify Corollary 2, we provide this extended impossibility result for Rabin-
SAEP.

Theorem 6 (Standard-model security of Rabin-SAEP, revisited). As-
sume Rabin-SAEP.keygen is non-malleable. Then Rabin-SAEP admits no in-
stantiation in the standard model which is chosen-ciphertext secure under the
factoring assumption i.e. for any instantiation of H,

IND-CCA [Rabin-SAEP] �≡ FACT [Rabin-SAEP.keygen] .

Similar uninstantiability results hold for single-key factoring-based encryption
schemes which chosen-ciphertext security is shown to be equivalent to factoring
in the RO model. Again, these stronger separations are effective only when the
underlying key generation is non-malleable. In other words, either these encryp-
tion schemes do separate the RO model from the standard model in a very strong
sense, or their key generation must be malleable along the lines of Definition 1.

5 Overcoming Uninstantiability

Keyed Paddings. At first look, including some additional key material such as
a random string in the public key seems to invalidate our impossibility results
completely. Typically the extra parameter can serve as a function index in a
keyed family of hash functions. This seems to be an efficient countermeasure
for single-key factoring-based encryption making use of encryption paddings
which, unlike SAEP[+]/OAEP[+][+], Fujisaki-Okamoto and REACT, include
keyed hash functions.

Encryption Twinning. Naor and Yung [17] and Dolev, Dwork and Naor [10]
suggested transformations which when applied to IND-CPA-secure encryptions
such as Blum-Goldwasser [4] or Chor-Goldreich [8] may lead to IND-CCA-secure
schemes under the factoring assumption. The transformed schemes use pub-
lic keys containing two or more independently generated moduli with respect
to the basic scheme. This paradigm makes it possible to generically construct
a larger class of factoring-based cryptosystems which IND-CCA-security can
possibly be proven equivalent to factoring, thereby escaping all incompatibil-
ity results described earlier. We comment that the cornerstone of Theorem 1
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resides in that the decryption oracle provided in the UBK-CCA game can serve
as a factoring algorithm when interfaced with the black-box reduction R. We
now see how encryption twinning prohibits such a use of the decryption ora-
cle. The public key in a Naor-Yung-transformed encryption scheme NY(E) is
(n1, n2, r) where n1, n2 ← E .keygen and r is a random string used to gen-
erate NIZK proofs during encryption. An encryption of m ∈ Mn1 ∩ Mn2 is
(c1 = Enc(n1, m, r1), c2 = Enc(n2, m, r2), π) where π is a proof that c1 and c2

encrypt the same plaintext. Now assume (as typically the case with single-key
factoring-based encryption) there exists an efficient way to generate a random-
looking c1 such that its decryption Dec(factors(n1), c1) leads to an immediate re-
covery of factors(n1). In a typical reduction R from FACT [E .keygen] to breaking
the OW-CPA security of NY(E), R takes as input a modulus n1 ← E .keygen(1k)
but generates by itself the second key pair (n2, factors(n2)) ← E .keygen(1k) and r
to constitute a public key pk = (n1, n2, r). Since R fully controls the generation of
n2 and r, R can use the simulator of the underlying NIZK proof system to create
a valid encryption c = (c1, c2, π) for a random c1. Calling the OW-CPA adversary
will then provide Dec(factors(n1), c1), thus allowing R to factor n1. The meta-
reduction M playing the UBK-CCA game against NY(E) however, is given some
public key PK = (N1, N2, R) and a decryption oracle implicitly parameterized by
PK. Since R takes as input a single modulus and generates by itself the rest of the
public key to be given to its adversarial oracle, M cannot, even if R is run on in-
put N1, use the decryption oracle to answer the request(s) ((N1, n2, r), (c1, c2, π))
made by R because Pr [n2 �= N2 ∨ r �= R] is overwhelming.

6 Are Key Generators Non-malleable?

Our extended impossibility results apply to single-key encryption schemes based
on non-malleable key generation. We conjecture that most instance generators
are in turn non-malleable and expect to see further research works based on
this property in the future. A possible improvement of this work would be to
give a formal proof of non-malleability for commonly referred generators such as
RSA-3 or Sophie-Germain using computational number theory. Another issue is
the design of non-trivial examples of malleable key generators.
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Abstract. We describe a strategy for finding small modular and integer
roots of multivariate polynomials using lattice-based Coppersmith tech-
niques. Applying our strategy, we obtain new polynomial-time attacks
on two RSA variants. First, we attack the Qiao-Lam scheme that uses a
Chinese Remaindering decryption process with a small difference in the
private exponents. Second, we attack the so-called Common Prime RSA
variant, where the RSA primes are constructed in a way that circum-
vents the Wiener attack.
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1 Introduction

Since Coppersmith introduced new ways of finding small modular and integer
roots of polynomials in 1996 [4,5,6], variations of these methods have been widely
used in the field of cryptanalysis. Let us give an example that demonstrates the
usefulness of computing small roots. In the case of RSA, the public variables
(N, e) and the secret variables (d, p, q) satisfy the relation

ed− 1 = k(N − (p + q − 1)), for some (unknown) k.

It is known that one can use Coppersmith techniques to try to find the integer
root (d, k, p + q − 1) of the polynomial f(x, y, z) = ex− yN + yz − 1, and hence
recover the factorization of N . Alternatively, one could look for the modular root
(k, p + q − 1) of fe(y, z) = y(N − z) + 1 modulo e.
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The success of the application of a Coppersmith technique depends on the size
of the root. More precisely, the analysis of the attack results in a bound on the
size of roots that can be found with this method in polynomial time. For the case
of finding the root (y(0), z(0)) = (k, p + q − 1) of fe(y, z) = y(N − z) + 1 modulo
e in the example above, Boneh and Durfee [1] used a Coppersmith technique to
obtain the bound

Y 2+3τZ1+3τ+3τ2
< e1+3τ , for |y(0)| < Y , and |z(0)| < Z,

where τ > 0 can be optimized once the sizes of Y , Z, and e are known. This led
Boneh and Durfee to show that for d < N0.284 the secret RSA parameters can
be recovered in polynomial time, which they later refined to d < N0.292 in the
same work [1].

Since the analysis of a polynomial f of which we wish to find a small root
heavily depends on the monomials that appear in f , each new polynomial has
to be analyzed anew. This is typically a tedious and non-trivial task. In 2005,
Blömer and May [3] showed how to find optimal bounds for small integer roots of
bivariate polynomials. In this paper we present a heuristic strategy that applies
to all multivariate polynomials; having either modular or integer roots.

We apply our strategy to derive new heuristic attacks on two RSA variants,
using a polynomial that arises in their cryptanalysis. In the first system, the
Chinese Remainder Theorem is used in the decryption phase, with the special
property that dp ≡ d mod (p−1) and dq ≡ d mod (q−1) have a fixed difference
dp −dq. This scheme was proposed in 1998 by Qiao and Lam [17] who suggested
to use the small difference dp − dq = 2. The benefit of the Qiao-Lam scheme is
that one has to store only one out of the two keys dq, dq and the small difference
itself. Up to now, the best attack on the Qiao-Lam scheme was a meet-in-the-
middle attack with time and space complexity Õ{√min{dp, dq}} [17].

Qiao and Lam proposed to use a 1024-bit modulus N with 128-bit dp, dq.
Moreover, they argued that in practice 96-bit private exponents should provide
sufficient security. Our results show that private exponents up to N0.099 can be
recovered in polynomial time. Hence, for 1024-bit RSA moduli one can recover
96-bit dp, dq in polynomial time. Furthermore, attacking 128-bit private expo-
nents should also be feasible with our attack by adding some brute force search
on the most significant bits. We confirm the validity of our heuristic attack
by providing several experiments. Although recovering 96-bit private exponents
can theoretically be done in polynomial time, in practice it turns out to be
a non-trivial task since it requires an LLL-lattice basis reduction [13] in large
dimension.

We would like to point out that our attack works whenever max{dp, dq} ≤
N0.099−ε for some arbitrarily small constant ε, and the difference dp−dq is known
to the attacker. We do not require that the difference dp − dq itself is a small
constant like in the Qiao-Lam scheme.

As a second application of our strategy, we give a new attack on an RSA
variant called Common Prime RSA. This variant was originally proposed by
Wiener [19] as a countermeasure for his attack on small secret exponents d ≤ N

1
4 .
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The suggestion is to choose p, q such that p − 1 and q − 1 share a large gcd. In
1995, Lim and Lee [12] used this Common Prime RSA variant in a server-aided
RSA protocol, which was attacked in 1998 by McKee and Pinch [15]. Recently,
Hinek [9] revisited the Common Prime RSA variant. He proposed several RSA
parameter settings with secret exponents less than N

1
4 . However, our second

heuristic attack shows that parts of the proposed key space lead to polynomial
time attacks on RSA. We demonstrate the practicality of our second attack by
providing several experiments that recover the RSA secret information.

2 Finding Small Roots

In this section we describe some tools that we use to solve the problem of finding
small roots, for both the modular and the integer case. Moreover, we present our
new strategy.

In [4,5,6], Coppersmith describes rigorous techniques to find small integer
roots of polynomials in a single variable modulo N , and polynomials in two
variables over the integers. The methods extend to more variables, making them
heuristical. Howgrave-Graham reformulated Coppersmith’s ideas of finding mod-
ular roots in [11], of which we use the following (generalized) lemma.

Lemma 1 (Howgrave-Graham). Let h(x1, . . . , xn) ∈ Z[x1, . . . , xn] be an
integer polynomial that consists of at most ω monomials. Suppose that

(1) h(x(0)
1 , . . . , x

(0)
n ) ≡ 0 mod N for some |x(0)

1 | < X1, . . . , |x(0)
n | < Xn, and

(2) ||h(x1X1, . . . , xnXn)|| < N√
ω
.

Then h(x(0)
1 , . . . , x

(0)
n ) = 0 holds over the integers.

In Lemma 1 the norm of a polynomial f(x1, . . . , xn) =
∑

ai1...inxi1
1 . . . xin

n is the
Euclidean norm of its coefficient vector: ||f(x1, . . . , xn)||2 :=

∑ |ai1...in |2.
Howgrave-Graham’s lemma is usually combined with LLL reduction of lattice

bases, designed by Lenstra, Lenstra, and Lovász [13]. A proof of the following
fact can be found in [14].

Fact 1 (LLL). Let L be a lattice of dimension ω. In polynomial time, the LLL-
algorithm outputs reduced basis vectors vi, 1 ≤ i ≤ ω that satisfy

||v1|| ≤ ||v2|| ≤ . . . ≤ ||vi|| ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i .

Thus the condition 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i < N√
ω

implies that the polynomials
corresponding to the shortest i reduced basis vectors match Howgrave-Graham’s
bound. This reduces to

det(L) ≤ 2
−ω(ω−1)

4 (
1√
ω

)ω+1−iNω+1−i.

In the analysis, we let terms that do not depend on N contribute to an error
term ε, and simply use the determinant condition det(L) ≤ Nω+1−i.
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2.1 Strategy for Finding Small Modular Roots

We will now describe our strategy to find small modular roots of polynomials.
Suppose we want to find a small root (x(0)

1 , . . . , x
(0)
n ) of a polynomial fN modulo

a known composite integer N of unknown factorization. We assume that we
know an upper bound for the root, namely |x(0)

j | < Xj for some given Xj , for
j = 1, . . . , n.

Let l be a leading monomial of fN , with coefficient al. That is, there is no
monomial in fN besides l that is divisible by l. Then gcd(N, al) is 1, or else we
have found a factor of N . Therefore, we can use f ′

N = a−1
l fN mod N .

We start by explaining the basic strategy to find the small modular roots,
after which we extend it slightly to obtain the full strategy.

Basic Strategy: Let ε > 0 be an arbitrarily small constant. Depending on 1
ε ,

we fix an integer m. For k ∈ {0, . . . , m + 1}, we define the set Mk of monomials

Mk := {xi1
1 xi2

2 . . . xin
n | xi1

1 xi2
2 . . . xin

n is a monomial of fm
N

and
xi1

1 xi2
2 . . . xin

n

lk
is a monomial of fm−k

N }.
In this definition of Mk and throughout this paper, we assume that the monomi-
als of fN , . . . , fm−1

N are all contained in the monomials of fm
N . If this is not the

case, the definition can be slightly changed such that Mk contains all monomials

xi1
1 xi2

2 . . . xin
n of f j

N for j ∈ {1, . . . , m} for which x
i1
1 x

i2
2 ...xin

n

lk is a monomial of f i
N

for some i ∈ {0, . . . , m − k}. Notice that by definition the set M0 contains all
the monomials in fm

N , whereas Mm+1 = ∅.
Next, we define the following shift polynomials:

gi1...in(x1, . . . , xn) :=
xi1

1 xi2
2 . . . xin

n

lk
f ′

N (x1, . . . , xn)kNm−k,

for k = 0, . . . , m, and xi1
1 xi2

2 . . . xin
n ∈ Mk\Mk+1.

All polynomials g have the root (x(0)
1 , . . . , x

(0)
n ) modulo Nm. We define a lat-

tice L by taking the coefficient vectors of g(x1X1, . . . , xnXn) as a basis. We can
force the matrix describing L to be lower triangular, if we use the following
ordering of the columns of the matrix. A column corresponding to the mono-
mial xi1

1 . . . xin
n ∈ Mk\Mk+1 has smaller order than a column corresponding to

xj1
1 . . . xjn

n ∈ Mk′\Mk′+1 if k < k′. If k′ = k, then a lexicographical ordering
of the monomials is used. The columns in the lattice basis appear in increasing
order from left to right. The diagonal elements are those corresponding to the
monomial lk in (f ′

N )k for each row. Therefore, the diagonal terms of the matrix
are X i1

1 X i2
2 . . . X in

n Nm−k for the given combinations of k and ij .
The intuition behind the choice of the sets Mk can be explained as follows.

We aim to have a matrix with a low determinant. To keep the diagonal element
corresponding to the monomial xi1

1 xi2
2 . . . xin

n of fm
N as small as possible, we use

the largest possible powers of fN in the shifts. The condition that x
i1
1 x

i2
2 ...xin

n

lk is
a monomial of fm−k

N ensures that no monomials appear that are not in fm
N .
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For a small example, consider the polynomial fN (x, y) = 1+xy2 +x2y. Let us
take l = x2y as our leading term, and m = 2. We want to build a lattice whose
columns correspond to the monomials {1, xy2, x2y, x2y4, x3y3, x4y2} of f2

N . The
shifts given by our strategy are:

for 1 ∈ M0\M1: N2

for xy2 ∈ M0\M1: xy2N2

for x2y4 ∈ M0\M1: x2y4N2

for x2y ∈ M1\M2: fNN
for x3y3 ∈ M1\M2: xy2fNN
for x4y2 ∈ M2\M3: f2

N

Note that the monomial x2y4 is not in M1. Although x2y4 is divisible by l = x2y
and therefore we could obtain x2y4 also by using the shift y3fNN , the product
y3fN would produce the new monomials y3 and xy5, which are not in f2

N .
In general, we find that our condition det(L) < Nm(ω+1−n), derived from

Lemma 1 and Fact 1, reduces to

n∏
j=1

X
sj

j < NsN , for

⎧⎨⎩
sj =

∑
x

i1
n ...xin

n ∈M0
ij, and

sN =
∑m

k=0 k(|Mk| − |Mk+1|) =
∑m

k=1 |Mk|
(1)

If we follow this procedure for a given fN , then (1) will give us an upper bound
on the size of the root that we are trying to find. For Xj and N satisfying this
bound we obtain n polynomials hi such that hi(x

(0)
1 , . . . , x

(0)
n ) = 0. If the poly-

nomials hi are algebraically independent, i.e. they do not share a non-trivial gcd,
then resultant computations will reveal the root. Under Assumption 1 this will
lead us to finding (x(0)

1 , . . . , x
(0)
n ).

Assumption 1. The resultant computations for the polynomials hi yield non-
zero polynomials.

All methods for n ≥ 2 have a similar assumption concerning the algebraic inde-
pendence of the polynomials hi. Therefore one has to keep in mind that (most)
attacks using Coppersmith techniques are heuristical, and experiments must be
done for specific cases to justify the assumption.

Extended Strategy: For many polynomials, it is profitable to use extra shifts of
a certain variable. For instance, if we use extra shifts of x1, then we can extend
our basic strategy by using

Mk :=
⋃

0≤j≤t

{xi1+j
1 xi2

2 . . . xin
n | xi1

1 xi2
2 . . . xin

n is a monomial of fm
N

and
xi1

1 xi2
2 . . . xin

n

lk
is a monomial of fm−k

N }.
Moreover, extra shifts of several variables, or combined shifts should be consid-
ered to obtain an optimal bound.

Using this new definition of Mk, the rest of the strategy conforms to the basic
strategy as described before. In Appendix A, we show how the known results on
small modular roots from [1,2,6] are all special cases of our basic or extended
strategy.
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2.2 Strategy for Finding Small Integer Roots

Coron reformulated Coppersmith’s method of finding small integer roots in [7].
Essentially, Coron picks a ’suitable’ integer R and transforms the situation into
finding a small root modulo R, after which one can apply Howgrave-Graham’s
lemma. Analogous to Coron, we will now present our heuristic strategy for finding
small integer roots of multivariate polynomials. The result is an extension of the
result given by Blömer and May [3], that was meant for the provable special case
of bivariate polynomials.

We note that one could also use Coppersmith’s original technique instead
of Coron’s reformulation. The advantage to do so is that in the original Cop-
persmith technique, lattices of smaller dimension are required. The asymptotic
bounds obtained by both methods are equivalent, but the difference is in the size
of the error term ε. For this paper, we have chosen to use Coron’s method for
the sake of a simpler notation, an easier implementation and for its similarity to
the modular approach.

Suppose we want to find the small integer root (x(0)
1 , . . . , x

(0)
n ) of an irreducible

polynomial f . We know that the root is small in the sense that |x(0)
j | < Xj , for

j = 1, . . . , n.
Analogous to Section 2.1, we fix an integer m depending on 1

ε . We call dj the
maximal degree of xj in f , and W the maximal coefficient of f(x1X1, . . . , xnXn).
We will use W = ‖f(x1X1, . . . , xnXn)‖∞, with ‖f(x1, . . . , xn)‖∞ := max |ai1...in |
for f(x1, . . . , xn) =

∑
ai1...inxi1

1 . . . xin
n as a notation. Moreover, we define R =

W
∏n

j=1 X
dj(m−1)
j . To work with a polynomial with constant term 1, we define

f ′ = a−1
0 f mod R, where a0 is the constant term of f . This means that we should

have a0 �= 0 and gcd(a0, R) = 1. The latter is easy to achieve, analogous to [7,
Appendix A], since any Xj with gcd(a0, Xj) �= 1 can be changed into an X ′

j such
that Xj < X ′

j < 2Xj and gcd(a0, X
′
j) = 1. The same holds for W .

Let us now consider the case a0 = 0. In [7, Appendix A], Coron discussed this
case for bivariate polynomials, and showed a simple way to transfer a polynomial
f with zero constant term into a polynomial f∗ with non-zero constant term.

A general way to do this for multivariate polynomials would be the following.
First, we find a non-zero integer vector (y1, . . . , yn) such that f(y1, . . . , yn) �= 0.
This can be constructed in polynomial time since there are only polynomially
many roots within the given bounds. Then we define f∗(x1, . . . , xn) := f(x1 +
y1, . . . , xn + yn), and look for roots of f∗. Since f∗(0, . . . , 0) = f(y1, . . . , yn), f∗

has a non-zero constant term.
We would like to point out that the switch to f∗ will affect the set of mono-

mials, and new monomials may appear in f∗ that were not in f . This may affect
the analysis and lead to a different Coppersmith-type bound. This issue already
appears with bivariate polynomials, but it did not affect Coron’s analysis since
in his case the set of monomials stayed the same.

Let us now describe our strategy for finding integer roots. As before, we start
with the basic strategy, that we extend later to obtain the full strategy.
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Basic Strategy: Let us first fix an arbitrarily small error term ε. We define an
integer m depending on 1

ε . Furthermore, we define the sets S and M of monomials
that represent the monomials of fm−1 and fm respectively. We denote by lj the
largest exponent of xj that appears in the monomials of S, i.e. lj = dj(m − 1).

Next, we define the following shift polynomials

g : xi1
1 xi2

2 . . . xin
n f ′(x1, . . . , xn)

∏n
j=1 X

lj−ij

j , for xi1
1 xi2

2 . . . xin
n ∈ S,

g′ : xi1
1 xi2

2 . . . xin
n R , for xi1

1 xi2
2 . . . xin

n ∈ M\S.

All g and g′ have the root (x(0)
1 , . . . , x

(0)
n ) modulo R. The coefficient vectors of

g(x1X1, . . . xnXn) and g′(x1X1, . . . xnXn) form a lattice basis of a lattice L.
Using lexicographical ordering of the monomials, we can order the basis matrix

such that it is upper triangular. The diagonal elements of the rows of g are those
corresponding to the constant term in f ′. Therefore, the diagonal entries of the
matrix are

∏n
j=1 X

dj(m−1)
j for the polynomials g and W

∏n
j=1 X

dj(m−1)+ij

j for
the polynomials g′.

From Section 2, we know that the determinant condition det(L) < Rω+2−n

ensures that the n− 1 smallest vectors in an LLL reduced basis of L correspond
to n − 1 polynomials hi(x1, . . . xn) with hi(x

(0)
1 , . . . , x

(0)
n ) = 0.

We find that the condition det(L) < Rω+2−n reduces to
n∏

j=1

X
sj

j < W sW , for sj =
∑

x
i1
1 ...xin

n ∈M\S

ij , and sW = |S|. (2)

So if (2) holds, we obtain n− 1 polynomials hi such that hi(x
(0)
1 , . . . , x

(0)
n ) = 0.

The choice of R ensures that the hi are independent of f . This is because all hi

are divisible by
∏n

j=1 X
dj(m−1)
j . According to a generalization by Hinek/Stinson

[10, Corollary 5] of a lemma of Coron [7], a multiple h(x1, . . . , xn) of f(x1, . . . , xn)
that is divisible by

∏n
j=1 X

dj(m−1)
j has norm at least

2−(ρ+1)n+1
n∏

j=1

X
dj(m−1)
j W = 2−(ρ+1)n+1R,

where ρ is the maximum degree of the polynomials f, h in each variable sepa-
rately. If we let terms that do not depend on R contribute to ε, it follows that
if hi satisfies Howgrave-Graham’s bound ||hi(x1X1, . . . , xnXn)|| < R√

ω
, then it

also cannot be a multiple of f . Since we assume that f is irreducible, it follows
that f and hi must be algebraically independent. However we cannot prevent
that the hi are pairwise algebraically dependent. So the resultant computations
of f and hi (for i = 1, . . . , n− 1) will only reveal the root under Assumption 1.
This makes the techniques heuristical for n ≥ 3.

Extended Strategy: As in the modular case, our strategy is not finished before
exploring the possibilities of extra shifts of a certain variable (or more variables).
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Suppose we use extra shifts of the variable x1. Then, instead of S =
{monomials of fm−1}, and M = {monomials of fm}, we use

S =
⋃

0≤j≤t{xi1+j
1 xi2

2 . . . xin
n | xi1

1 xi2
2 . . . xin

n is a monomial of fm−1},
M = {monomials of xi1

1 xi2
2 . . . xin

n · f | xi1
1 xi2

2 . . . xin
n ∈ S}.

With the new definitions, the rest of the strategy conforms to the basic strat-
egy as described above, except for the value of R. It is necessary to change R =
W

∏n
j=1 X

dj(m−1)
j into R = W

∏n
j=1 X

lj
j , where lj is the largest exponent of xj

that appears in the monomials of S. In Appendix B, we show that the known re-
sults on small integer roots from [3,6,8] are special cases of our basic or extended
strategy. Moreover, a detailed example for a specific polynomial is treated in the
next section.

3 A Bound Obtained with the New Strategy

In this section we will give a novel analysis of a trivariate polynomial that will be
used in two new attacks on RSA variants in the subsequent sections.

Let f(x, y, z) = a0+a1x+a2x
2+a3y+a4z+a5xy+a6xz+a7yz be a polynomial

with a small root (x(0), y(0), z(0)), with |x(0)| < X , |y(0)| < Y , |z(0)| < Z. We show
that under Assumption 1 for every fixed ε, all sufficiently small roots can be found
in time polynomial in log W provided that

X7+9τ+3τ2
(Y Z)5+

9
2 τ < W 3+3τ−ε,

where we can optimize τ > 0 after the substitution of values for X, Y, Z, and W .
Let us follow the extended strategy described in Section 2.2 to show how this

bound can be obtained. Our goal is to construct two polynomials h1, h2 with the
root (x(0), y(0), z(0)) that are not multiples of f . To do so, we fix an integer m
depending on 1

ε , and an integer t = τm that describes the number of extra x-
shifts. We define R = WX2(m−1)+t(Y Z)m−1 and f ′ = a−1

0 f mod R. The shift
polynomials g and g′ are given by:

g : xi1yi2zi3f ′(x, y, z)X2(m−1)+t−i1Y m−1−i2Zm−1−i3 for xi1yi2zi3 ∈ S,
g′ : Rxi1yi2zi3 for xi1yi2zi3 ∈ M\S,

for
S =

⋃
0≤j≤t{xi1+jyi2zi3 | xi1yi2zi3 is a monomial of fm−1},

M = {monomials of xi1yi2zi3 · f | xi1yi2zi3 ∈ S}.
It follows that

xi1yi2zi3 ∈ S ⇔ i2 = 0, . . . , m− 1 ; i3 = 0, . . . , m− 1 ;
i1 = 0, . . . , 2(m − 1)− (i2 + i3) + t.

xi1yi2zi3 ∈ M ⇔ i2 = 0, . . . , m ; i3 = 0, . . . , m ; i1 = 0, . . . , 2m− (i2 + i3) + t.

All polynomials g and g′ have the root (x(0), y(0), z(0)) modulo R. Let h1 and h2 be
linear combinations of the polynomials g and g′. As was explained in Section 2.2,
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if h1 and h2 satisfy Howgrave-Graham’s bound ||hi(xX, yY, zZ)|| < R√
ω
, then we

can assume that h1 and h2 both have the root (x(0), y(0), z(0)) over the integers,
and also that they are algebraically independent of f .

Using the coefficient vectors of g(xX, yY, zZ) and g′(xX, yY, zZ) as a basis, we
build a lattice L. We order the vectors such that the matrix is triangular, with
the diagonal entries of g equal to X2(m−1)+t(Y Z)m−1, and those of g′ equal to
RX i1Y i2Zi3 = X2(m−1)+t+i1Y m−1+i2Zm−1+i3W .

Now by (2), provided that
∏n

j=1 X
sj

j < W |S| with sj =
∑

x
i1
1 ...xin

n ∈M\S
ij holds,

the polynomials h1 and h2 corresponding to the shortest two LLL-reduced basis
vectors satisfy Howgrave-Graham’s bound. This reduces to

X( 7
3+3τ+τ2)m3+o(m2)(Y Z)(

5
3 + 3

2 τ)m3+o(m2) ≤ W (1+τ)m3+o(m2).

If we let all terms of order o(m2) contribute to ε, the condition simplifies to

X7+9τ+3τ2
(Y Z)5+

9
2 τ < W 3+3τ−ε.

4 Attack on RSA-CRT with Known Difference

In this section, we explain how a small root of a polynomial f(x, y, z) = a0+a1x+
a2x

2 + a3y + a4z + a5xy + a6xz + a7yz results in a new attack on a variant of
RSA-CRT proposed by Qiao/Lam [17]. We show the following result.

Theorem 1 (RSA-CRT with Fixed Known Difference dp − dq)
Under Assumption 1, for every ε > 0, there exists n0 such that for every n > n0,
the following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize
n
2 . Let ed ≡ 1 mod φ(N), and dp and dq be such that dp ≡ d mod (p − 1) and
dq ≡ d mod (q − 1). Assume that dp and dq are chosen such that dp = dq + c̄ for
some known c̄ and bitsize(dp), bitsize(dq) ≤ δn for some 0 < δ < 1

2 . Then N can
be factored in time polynomial in log N provided that

δ <
1
4
(4 −

√
13) − ε.

Notice that 1
4 (4 − √

13) ≈ 0.099. Hence, our attack applies whenever dp or dq is
smaller than N0.099−ε and the difference c̄ = dp − dq is known to an attacker.

4.1 RSA-CRT with Known Difference dp − dq

In 1990, Wiener [19] showed that choosing d < N
1
4 makes RSA insecure. As an

alternative, Wiener suggested to use the Chinese Remainder Theorem (CRT) for
the decryption phase of RSA: Instead of computing m ≡ cd mod N for some
ciphertext c, compute m1 ≡ cdp mod p and m2 ≡ cdq mod q and then combine
these results using CRT to obtain m. Wiener pointed out that both exponents
dp ≡ d mod (p − 1) and dq ≡ d mod (q − 1) could be chosen small to obtain a
fast decryption. Then usually e is of the same size as the modulus N .
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Qiao and Lam [17] proposed to use dp and dq such that dp − dq = 2 in their
method for fast signature generation on a low-cost smartcard. For the size of dp

and dq, they suggest 128 bits to counteract the birthday attack that they describe
in [17]. Moreover, they state that 96 bits should be enough to counteract this at-
tack in practice. In current proposals, a minimum of 160 bits is advised for the
private exponents to counteract the birthday attack.

4.2 Description of the New Attack

When dp − dq = c̄, the public and private variables of RSA-CRT satisfy the fol-
lowing relations.{

edp = 1 + k(p− 1),
e(dp − c̄) = 1 + l(q − 1), or equivalently

{
edp − 1 + k = kp,

edp − c̄e− 1 + l = lq.

Multiplying the two equations results in

(1 + c̄e) − (2e + c̄e2)dp + e2d2
p − (c̄e + 1)k − l + edpk + edpl + (1 −N)kl = 0,

in which the unknowns are dp, k, and l. We can extract from this equation that

f(x, y, z) = (1 + c̄e)− (2e + c̄e2)x+ e2x2 − (c̄e + 1)y− z + exy + exz + (1−N)yz

has a small root (d, k, l). From (d, k, l), the factorization of N can easily be found.
Suppose max{dp, dq} is of size N δ for some δ ∈ (0, 1

2 ). Then k and l are both
bounded by N δ+ 1

2 (here we omit constants and let these contribute to the error
term ε). Therefore, we put X = N δ, Y = Z = N δ+ 1

2 , and W = N2+2δ.
In Section 3 we showed that for this polynomial, the asymptotic bound is

X7+9τ+3τ2
(Y Z)5+

9
2 τ < W 3+3τ ,

where τ > 0 can be optimized. Substituting the values for X , Y , Z, and W , we
obtain

(7 + 9τ + 3τ2)δ + (5 + 9
2τ)(2δ + 1)− (3 + 3τ)(2δ + 2) < 0, or

3δτ2 + 3(4δ − 1
2 )τ + (11δ − 1) < 0.

For the optimal value τ =
1
2−4δ

2δ , this reduces to δ < 1
4 (4 −√

13) ≈ 0.099.
Therefore, for a 1024 bit modulus N , the system should be considered unsafe

when dp is at most 0.099 · 1024 ≈ 101 bits. This breaks the system of Qiao and
Lam for the proposed 96 bit exponents in time polynomial in the bit-size of N .

We can add an exhaustive search on the most significant bits of dp and try the
attack for each candidate for d̃p. Here, dp = d̃p +d0, where the unknown part of d
is d0. The corresponding polynomial f will change, but it will still have the same
monomials. Therefore, the analysis will follow easily. The proposal of Qiao and
Lam to use 128 bit private exponents can also be considered unsafe when applying
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such an extra exhaustive search, although performing such an attack may be costly
in practice.

We performed several experiments to test the validity of Assumption 1 and to
show which results can be achieved with relatively small lattices. We implemented
the new attacks on a 2.4GHz Pentium running Linux. The LLL lattice reduction
was done using Shoup’s NTL [18]. For the attack on RSA-CRT with known dif-
ference described in Section 4, the parameters dp, dq were chosen with difference
dp − dq = 2 as suggested in the Qiao-Lam scheme. For m = 2 the choice t = 8
maximizes the size of the attackable dp.

N dp lattice parameters LLL-time
1000 bit 10 bit m = 2, t = 3, dim = 54 32 min
2000 bit 22 bit m = 2, t = 3, dim = 54 175 min
3000 bit 42 bit m = 2, t = 3, dim = 54 487 min
4000 bit 60 bit m = 2, t = 3, dim = 54 1015 min
5000 bit 85 bit m = 2, t = 3, dim = 54 1803 min
500 bit 9 bit m = 2, t = 8, dim = 99 105 min

1000 bit 18 bit m = 2, t = 8, dim = 99 495 min
500 bit 13 bit m = 3, t = 3, dim = 112 397 min

In each experiment we obtained two polynomials h1(x, y, z), h2(x, y, z) with the
desired root (x(0), y(0), z(0)). Solving g(z) = Resy(Resx(h1, f), Resx(h2, f)) = 0
yielded the unknown z(0). The parameters y(0) and x(0) could be obtained by back
substitution. The resultant heuristic of Assumption 1 worked perfectly in practice.
For every instance, we could recover the secrets and hence factor N .

One should note that our experiments are quite far from solving the proposed
96-bit dp, dq instances of the Qiao-Lam scheme. Theoretically, the smallest m for
which one obtains the 96-bit bound is m = 61 together with t = 36, resulting in
a lattice dimension of 376712. Reducing lattice bases in this dimension is clearly
out of reach.

However, we would like to point out that we did not optimize the performance of
our attack. For optimization of the running-time, one should combine brute-force
guessing of most significant bits of dp with the described lattice attack. Moreover,
one should apply faster lattice reduction methods like the recently proposed L2-
method of Nguyen, Stehlé [16]. Additionally, a significant practical improvement
should be obtained by implementing Coppersmith’s original method instead of
Coron’s method, since in Coppersmith’s method one has to reduce a lattice basis
of smaller dimension.

5 New Attack on Common Prime RSA

In this section, we explain how a small root of a polynomial f(x, y, z) = a0+a1x+
a2x

2 +a3y+a4z +a5xy+a6xz +a7yz results in a new attack on a variant of RSA
called Common Prime RSA. We show the following result.
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Theorem 2 (Common Prime RSA)
Under Assumption 1, for every ε > 0, there exists n0 such that for every n > n0, the
following holds: Let N = pq be an n-bit RSA modulus, and p, q primes of bitsize
n
2 such that p − 1 = 2ga and q − 1 = 2gb, for some prime g of bitsize γn, with
0 < γ < 1

2 . Let ed ≡ 1 mod 2gab, with bitsize(e) = (1− γ)n and bitsize(d) = δn,
with 0 < δ < (1 − γ)n. Then d can be found in time polynomial in log N provided
that

δ <
1
4
(4 + 4γ −

√
13 + 20γ + 4γ2)− ε.

5.1 Common Prime RSA

In Section 4, we mentioned that a small d is unsafe in Wiener’s attack [19]. There-
fore, RSA-CRT is often used when efficient decryption is needed. However, there is
also a possibility to choose d < N

1
4 in RSA while avoiding Wiener’s attack. There

is a variant of RSA where Wiener’s attack works less well, as was already shown
by Wiener, namely when gcd(p − 1, q − 1) has a large prime factor. Lim and Lee
used this fact in a proposal [12], which was attacked a few years later by McKee
and Pinch [15]. Recently Hinek [9] revisited this variant, calling it Common Prime
RSA, and investigated its potential and its weaknesses.

In Common Prime RSA, we have N = pq for primes p and q such that p = 2ga+
1 and q = 2gb + 1, for g a large prime, and a, b coprime integers. The exponents
e and d are mutually inverse modulo lcm(p − 1, q − 1) = 2gab:

ed = 1 + k · 2gab, with 0 < e, d < 2gab.

The goal is to safely choose an exponent d < N
1
4 , which enables a fast RSA

decryption process. We set g = Nγ and d = N δ for some 0 ≤ γ < 1
2 , 0 < δ < 1−γ.

Then, e is of size N1−γ , k is of size N δ, and a and b are both of size N
1
2−γ .

A large number of security issues were addressed in [9]. After excluding all pa-
rameter choices of Common Prime RSA that should be considered unsafe by the
known attacks, Hinek concludes that there are still plenty of safe choices for d =
N δ with δ < 1

4 (see Fig. 1).

5.2 Description of the New Attack

An improved attack can be obtained by treating the equation in Hinek’s second
lattice attack in a different way. In his attack, Hinek starts by multiplying the
following two equations:

ed = 1 + k(p − 1)b, ed = 1 + k(q − 1)a.

This can be written as e2d2 + ed(ka + kb− 2)− (N − 1)k2ab− (ka + kb− 1) = 0.
Next, he uses the fact that the polynomial f(x, y, z, u) = e2x+ ey− (N − 1)z− u
has a small root (d2, d(k(a + b− 2)), k2ab, (ka + kb− 1)). This leads to the bound
δ < 2

5γ, for which the secret information can be revealed.
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Now let us take another look at the equation

e2d2 + ed(ka + kb− 2)− (ka + kb− 1) − (N − 1)k2ab = 0,

in which the unknowns are d, k, a and b. We can extract from this equation that
the polynomial f(x, y, z) = e2x2 + ex(y + z − 2) − (y + z − 1) − (N − 1)yz has
a small root (d, ka, kb) with X = N δ, Y = N δ+ 1

2−γ , Z = N δ+ 1
2−γ . Moreover,

W = N2+2δ−2γ .
Substituting these in the asymptotical bound X7+9τ+3τ2

(Y Z)5+
9
2 τ < W 3+3τ

from Section 3 yields

3δτ2 + 3(4δ − 1
2
− γ)τ + (11δ − 1 − 4γ) < 0.

For the optimal τ =
1
2+γ−4δ

2δ , this reduces to δ < 1
4 (4 + 4γ −

√
13 + 20γ + 4γ2).

Fig. 1 shows the new attack region as well as the known attacks, for any size of
modulus N . Combinations of d and g that should be considered unsafe by the new
attack are in the dark shaded area, whereas the lighter shaded area was already
unsafe by the known attacks. It can be seen that the number of ’safe’ combinations
{d, g} with d < N

1
4 has significantly decreased.
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Fig. 1. New attack region

We note that for ’small’ N (such as the regular 1024 bits), other attacks such as
factoring attacks may apply, see [9]. Also, depending on the size of N , the attacks
in the figure could be extended by an additive exhaustive search.

We performed experiments to check the validity of Assumption 1 and to demon-
strate the practicality of our attack. We have implemented the new attack for
the parameter setting m = 2, t = 0 (without the possible additional exhaustive
search), to give an impression on what a realistic bound is for the smallest lattice
possible. Of course, extending to m = 3, m = 4, etc. and using x-shifts will give re-
sults closer to the theoretical attack bound δ < 1

4 (4+4γ−√
13 + 20γ + 4γ2), but

will also result in a longer time needed for the lattice basis reduction. For m = 2,
t = 0 the reduction time (the longest part of the attack) is about one minute.

The following table summarizes the experimental results performed for m = 2,
t = 0, and log2(N) = 1024. As one can see, the results are already outside the
asymptotical range of the two other lattice attacks described in [9].
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maximal δ obtained δ maximal δ
γ (asymptotic) (m = 2, t = 0) (asymptotic)

new attack new attack known attacks
0.10 0.130 0.07 0.20
0.20 0.164 0.10 0.15
0.30 0.200 0.13 (∗) 0.12
0.40 0.237 0.17 (∗) 0.16
0.50 0.275 0.2 0.25

The resultant heuristic of Assumption 1 worked perfectly in most cases. How-
ever, in the rare situation that both δ and γ were very small (e.g. γ = 0.1 and
δ = 0.05), we encountered cases where some of the polynomials hi were alge-
braically dependent. In these cases, we could still recover the secret information
in two different ways. One way was to use combinations of h1 and the somewhat
’larger’ hi for i > 2, instead of only h1 and h2. The other way was by examin-
ing the cause of the zero resultant. In essence, Resy(Resx(h1, f), Resx(h2, f)) = 0
because Resx(h1, f) and Resx(h2, f) have a common polynomial factor, whose co-
efficients immediately reveal the secrets.

Acknowledgements. We thank Benne de Weger, Arjen Lenstra, Jason Hinek,
and the anonymous reviewers for their helpful comments.

References

1. D. Boneh, G. Durfee: Cryptanalysis of RSA with Private Key d Less Than N0.292,
IEEE Transactions on Information Theory 46 [2000], 1339–1349.
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A Small Modular Roots, Known Results

In this appendix, we give the known results for finding small modular roots [1,2,6]
that can also be obtained by following the new strategy. Due to limited space,
we only give the definitions of Mk that reproduce the known bounds. In all cases
where the extended strategy is used, we use the notation t = τm for some τ > 0
that can be optimized later.

Boneh/Durfee [1]: fN (x1, x2) = a0 + a1x1 + a2x1x2

The bound X2+3τ
1 X1+3τ+3τ2

2 < N1+3τ can be found with the extended strategy
using xi1

1 xi2
2 ∈ Mk ⇔ i1 = k, . . . , m; i2 = k, . . . , i1 + t

Blömer/May [2]: fN(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x2x3

The bound X1+4τ
1 X2+4τ

2 X1+4τ+6τ2

3 < N1+4τ can be found with the extended
strategy, with xi1

1 xi2
2 xi3

3 ∈ Mk⇔ i1= k, . . . , m; i2 = 0, . . . , m−i1; i3 = 0, . . . , i2+t.

Generalized Rectangle (generalization of a bound of Coppersmith[6]):
fN(x1, . . . , xn) is a polynomial such that the degree of xi is λiD.
The bound Xλ1

1 · . . . · Xλn
n < N

2
(n+1)D can be obtained with the basic strategy

using xi1
1 · . . . · xin

n ∈ Mk ⇔ ij = λjDk, . . . , λjDm (for j = 1, . . . , n)

Generalized Lower Triangle (generalization of a bound of Coppersmith[6]):
fN(x1, . . . , xn) is a polynomial with monomials xi1

1 . . . xin
n for i1 = 0, . . . , λ1D,

i2 = 0, . . . , λ2D − λ2
λ1

i1, . . . , in = 0, . . . ,≤ λnD −∑n−1
r=1

λnD
λr

ir.
The bound Xλ1

1 · . . . · Xλn
n < N

1
D can be obtained with the basic strategy, with

xi1
1 · . . . · xin

n ∈ Mk ⇔ i1 = λ1Dk, . . . , λ1Dm; ij = 0, . . . , λjDm−∑j−1
r=1

λj

λr
ir (for

j = 2, . . . , n).
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B Small Integer Roots, Known Results

In this appendix, we give the known results for finding small integer roots [3,8,6]
that can also be obtained with the basic or extended strategy. Due to limited space,
we only give the definitions of S and M that reproduce the known bounds. In all
cases where the extended strategy is used, we use the notation t = τm for some
τ > 0 that can be optimized later.

Blömer/May, Upper Triangle [3]:
f(x1, x2) is a polynomial with monomials xi1

1 xi2
2 for i1 = 0 . . .D, i2 = 0 . . . λi2.

The bound X
(λ+τ)2

1 X
2(λ+τ)
2 < W

1
D (λ+2τ) can be obtained with the extended

strategy, with xi1
1 · . . . · xin

n ∈ S ⇔ i2 = 0, . . . , D(m − 1); i1 = 0, . . . , λi2 + t,
and xi1

1 · . . . · xin
n ∈ M ⇔ i2 = 0, . . . , Dm; i1 = 0, . . . , λi2 + t.

Blömer/May, Extended Rectangle [3]:
f(x1, x2), with monomials xi1

1 xi2
2 for i2 = 0, . . . , D, i1 = 0, . . . , γD+λ(D−i2), e.g.

f(x1, x2) = a0 +a1x1 +a2x
2
1 +a3x

3
1 +a4x2 +a5x1x2 (where D = 1, γ = 1, λ = 2).

The bound Xλ2+3γλ+2τλ+4τγ+τ2+3γ2

1 Xλ+3γ+2τ
2 < W

1
D (λ+2γ+2τ) can be obtained

with the extended strategy, using xi1
1 xi2

2 ∈ S ⇔ i2 = 0, . . . , D(m − 1); i1 =
0, . . . , γD(m−1)+λ(D(m−1)− i2)+ t, and xi1

1 xi2
2 ∈ M ⇔ i2 = 0, . . . , Dm; i1 =

0, . . . , γDm + λ(Dm − i2) + t.

Ernst et al. 1 [8]: f(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x2x3.

The bound X1+3τ
1 X2+3τ

2 X1+3τ+3τ2

3 < W 1+3τ can be found with the extended
strategy, with xi1

1 xi2
2 xi3

3 ∈ S ⇔ i1 = 0, . . . , m − 1; i2 = 0, . . . , m − 1 − i1;
i3 = 0, . . . , i2 + t, and xi1

1 xi2
2 xi3

3 ∈ M ⇔ i1 = 0, . . . , m; i2 = 0, . . . , m − i1; i3 =
0, . . . , i2 + t.

Ernst et al. 2 [8]: f(x1, x2, x3) = a0 + a1x1 + a2x2 + a3x3 + a4x2x3.

The bound X2+3τ
1 X3+3τ

2 X3+6τ+3τ2

3 < W 2+3τ can be found with the extended
strategy, using xi1

1 xi2
2 xi3

3 ∈ S ⇔ i1 = 0, . . . , m− 1; i2 = 0, . . . , m− 1− i1 + t; i3 =
0, . . . , m− 1− i1, and xi1

1 xi2
2 xi3

3 ∈ M ⇔ i1 = 0, . . . , m; i2 = 0, . . . , m− i1 + t; i3 =
0, . . . , m− i1.

Generalized Rectangle (generalization of a bound of Coppersmith [6]):
f(x1, . . . , xn) is a polynomial where the degree of xi is λiD.
The bound Xλ1

1 · . . . ·Xλn
n < W

2
(n+1)D can be found with the basic strategy, with

xi1
1 xi2

2 . . . xin
n ∈ S ⇔ ij = 0, . . . , λjD(m − 1), and xi1

1 xi2
2 . . . xin

n ∈ M ⇔ ij =
0, . . . , λjDm (for j = 1, . . . , n).

Generalized Lower Triangle (generalization of a bound of Coppersmith [6]):
f(x1, . . . , xn) is a polynomial monomial are xi1

1 . . . xin
n for 0 ≤ i1 ≤ λ1D, 0 ≤ i2 ≤

λ2D − λ2
λ1

i1, . . . , 0 ≤ in ≤ λnD −∑n−1
r=1

λn

λr
ir.

The bound Xλ1
1 · . . . · Xλn

n < W
1
D can be found with the basic strategy, with

xi1
1 xi2

2 . . . xin
n ∈ S ⇔ ij = 0, . . . , λjD(m − 1) −∑j−1

r=1
λj

λr
ir, and xi1

1 xi2
2 . . . xin

n ∈
M ⇔ ij = 0, . . . , λjDm −∑j−1

r=1
λj

λr
ir (for j = 1, . . . , n).
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Abstract. Understanding what construction strategy has a chance to
be a good hash function is extremely important nowadays. In TCC’04,
Maurer et al. [13] introduced the notion of indifferentiability as a gen-
eralization of the concept of the indistinguishability of two systems. In
Crypto’2005, Coron et al. [5] suggested to employ indifferentiability in
generic analysis of hash functions and started by suggesting four con-
structions which enable eliminating all possible generic attacks against
iterative hash functions. In this paper we continue this initial suggestion
and we give a formal proof of indifferentiability and indifferentiable at-
tack for prefix-free MD hash functions (for single block length (SBL) hash
and also some double block length (DBL) constructions) in the random
oracle model and in the ideal cipher model. In particular, we observe that
there are sixteen PGV hash functions (with prefix-free padding) which
are indifferentiable from random oracle model in the ideal cipher model.

1 Introduction

The notion of indifferentiability was first introduced by Maurer et al. [13] and
is a stronger notion than indistinguishability. For example, assume a cryptosys-
tem P(G) based on a random oracle G is secure. Now, to prove the security of
P(HF) based on Merkle-Damgard (MD) hash function H where the underlying
compression function is a random oracle, we need to prove something different
than indistinguishability. In fact, we need to prove that HF is indifferentiable (as
was introduced in [13]) from a random oracle. Informally, HF is indifferentiable
from random oracle if there is no efficient attacker (or distinguisher) which can
distinguish F and the hash function based on it from a random oracle R and
an efficient simulator of F . Here R is a random oracle with (finite) domain and
range same as that of H . In case of Indistinguishability, the distinguisher only
needs to tell apart H from G without any help of oracle F . Thus, the notion
of indifferentiability is important when we consider attacks on a cryptosystem
based on some ideal primitive where the attacker has some access on the com-
putation of the primitive. In the case of hash function HF , the attacker can also

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 283–298, 2006.
c© International Association for Cryptologic Research 2006
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compute F as it is a random oracle which can be computed publicly. So this
new notion is important for stronger attackers. If the attacker does not have
that access (to the random oracle) then merely indistinguishability will suffice
to preserve the security of the cryptosystem.

Recently, Coron et al. [5] suggested to employ the notion for analysis of hash
functions and they proved that the classical MD iteration is not indifferentiable
with random oracle when the underlying compression function is random ora-
cle. They have also stated indifferentiability for prefix-free MD hash functions
or some other definition of hash functions like HMAC, NMAC, chop-MD hash
function. They also have stated indifferentiability for Davis-Meyer construction
(which is one of the classical PGV construction [17]) in the ideal cipher model.

Our Results: In this paper we extend the use of indifferentiability in analyzing
hash functions, and we present a proof methodology for determining indifferen-
tiability. We discuss indifferentiability of several known hash constructions with
the random oracle model including the prefix free MD hash function. We con-
sider all collision secure PGV hash functions in the ideal cipher model [2] (there
are twenty such hash functions). It is easy to check that under ideal cipher
model the underlying compression function is not indifferentiable with random
oracle. So we can not use the indifferentiability result directly for prefix-free MD
hash function (where we need the underlying compression function as a ran-
dom oracle). But we will show that out of twenty, sixteen hash functions with
prefix free padding are indifferentiable from random oracle. We also prove the
indifferentiability of some known Double length hash functions in the random
oracle model for the underlying single length compression function. Finally, we
will also show several differentiability attacks on block-cipher based on double
length hash function namely, PBGV, LOKI-DBH, MDC2 etc.

Organization: The organization of this paper is as follows. In section 2, we
define notations and describe the security notion of indifferentiability with some
mathematical background and notations which will help to prove the security
later. In section 3, we provide formal proofs of prefix-free single length MD
hash functions, PGV hash functions, and double length hash function. Then, in
section 4, we show the differentiability of some SBL and DBL hash functions.
Finally we conclude.

2 Preliminaries and Related Work

In this section, we briefly describe random oracle and ideal cipher model and
we review how the adversary works in these model. Then some designs of hash
functions are stated.

2.1 Ideal Model and Iterated Structure

Random Oracle Model: f is said to be a random oracle from X to Y if
for each x ∈ X the value of f(x) is chosen randomly from Y . More pre-
cisely, Pr[f(x) = y | f(x1) = y1, f(x2) = y2, . . . f(xq) = yq] = 1

M , where
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x /∈ {x1, . . . , xq}, y, y1, · · · , yq ∈ Y and |Y | = M . There is an equivalent way to
look a random function: Consider Map(X → Y ), the set of all mappings from
X to Y . f is said to be a random oracle if it is chosen uniformly from the set
Map(X → Y ). The adversary A can only query f adaptively, say by inputting
x1, · · ·xq, where q is the total number of queries. Let y1, · · · yq be the responses of
these queries, i.e., f(x1) = y1, · · · , f(xq) = yq. Since an adversary makes queries
adaptively, the ith query xi only depends on previous query-responses (in short,
q-r) (x1, y1), · · · , (xi−1, yi−1) and on the random coins selected by the adversary.

Ideal Cipher Model: Ideal cipher model is the one dating back to Shannon [19]
and used, e.g., in [7,10,20]. Let Bloc(K, X) = {E : K × X → X ; E(k, ·) is a
permutation for each k ∈ K}. As above, a function E is chosen uniformly from the
set Bloc(K, X). As E(k, ·) (we also use the notation Ek(·)) is a permutation, an
adversary A can have access to two oracles E and E−1. Thus, the q-r’s look like
(σ1, k1, x1, y1), · · · , (σq , kq, xq, yq), where σi = ±1 and Eki(xi) = yi, i ≤ i ≤ q.
If σi = 1 then adversary makes E query with input (ki, xi) and response is
yi and if σi = −1 then adversary makes E−1 query with input (ki, yi) and
response is xi. Now one can check that, for each k, Ek(·) behaves like a random
permutation (i.e., Pr[Ek(x) = y | Ek(x1) = y1, . . . , Ek(xq) = yq] = 1

M−q , where
x /∈ {x1, . . . , xq}, y /∈ {y1, · · · , yq} ⊆ Y and |Y | = M) and for different choices of
keys k1, . . . , kl, Ek1 (·), . . . , Ekl

(·) are independently distributed. See [2] for more
details and discussions about black-box models.

Iterated Hash Function: Now given a function F : Y ×B → Y , one can define
an iterated function F ∗ : Y ×B∗ → Y as follows :

F ∗(x, m1, m2, · · · , ml) = F (· · ·F (x, m1), · · · , m	), mi ∈ B, x ∈ Y

where B∗ = ∪i≥0B
i. Let M be a message space (finite) and g : M :→ B∗

be any function called a padding rule. Then the MD-Hash function based on
a compression function F , a fixed initial value IV ∈ Y and a padding rule g(·)
is MDF

g (M) = F ∗(IV, g(M)). A padding rule is called a prefix-free if M1 �=
M2 ⇒ g(M1) is not a prefix of g(M2). Coron et al. [5] considered prefix-free MD
iteration and suggested indifferentiability from random oracle model.

Given a compression function F : Y × B → Y , one can also define a wide
compression function W : Y ′ × B′ → Y ′, where Y ′ is a bigger set than Y .
For example, in case of a double length compression function Y ′ = Y × Y .
An example of a general class of double length compression functions due to
Nandi [15] is as follows : W (x1, x2, m) = F (x1 ‖ x2, m) ‖ F (p(x1 ‖ x2), m),
where x1, x2 ∈ Y, m ∈ B′, F : Y × (Y × B′) → Y and p is a permutation on
Y × Y so that it does not have any fixed point (y is called fixed point of p if
p(y) = y).

2.2 Known Results on Indifferentiability

In this section we give a brief introduction of indifferentiability and state some
known results on it.
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Definition 1. [5] A Turing machine C with oracle access to an ideal primitive
F is said to be (tD, tS , q, ε) indifferentiable from an ideal primitive G if there
exists a simulator S such that for any distinguisher D it holds that :

|Pr[DC,F = 1]− Pr[DG,S = 1] < ε

The simulator has oracle access to G and runs in time at most tS . The distin-
guisher runs in time at most tD and makes at most q queries. Similarly, CF is
said to be (computationally) indifferentiable from G if ε is a negligible function
of the security parameter k (for polynomially bounded tD and tS).

In this paper, we will mainly consider C = HF , where H is MD (or prefix-free
MD) hash function based on the random oracle model (or ideal cipher model) F
and G is a random oracle with same domain and range as the hash function. In
case of ideal cipher model the distinguisher can access both F and F−1 oracles
and the simulator has to simulate both.

The following Theorem [13] due to Maurer et al. is related to this paper. We
explain the theorem for random oracle model of hash functions. Suppose a hash
function (in some design of iteration) H based on a random oracle (or an ideal
cipher) F is indifferentiable from a random oracle G. Then a cryptosystem P
based on the random oracle G is at least as secure as the cryptosystem P based
on the hash function H in the random oracle model (or an ideal cipher model)
F . Here, F is the underlying compression function of H (or block-cipher in case
of block cipher based hash function). The original theorem as stated below is a
more general statement.

Theorem 1. [13] Let P be a cryptosystem with oracle access to an ideal prim-
itive G. Let H be an algorithm such that HF is indifferentiable from G. Then
cryptosystem P is at least as secure in the F model with algorithm H as in the
G model.

Coron et al. stated the indifferentiability of prefix free MD construction in ran-
dom oracle (or in ideal cipher model in the case of block-cipher based construc-
tion). In [5] the following theorems are stated.

Theorem 2. [5] The prefix-free MD construction is (tD, tS , q, ε)-indifferentiable
from a random oracle, in the random oracle model for the compression function,
for any tD, with tS = � ·O(q2) and ε = 2−n · �2 ·O(q2), where � is the maximum
length of a query made by the distinguisher D.

Theorem 3. The Davis-Meyer Hash function (based on the compression func-
tion f(x, m) = Em(x) ⊕ x and a prefix free padding g) MDf

g is (tD, tS , q, ε)-
indifferentiable from a random oracle, in the ideal cipher model, for any tD,
with tS = � ·O(q2) and ε = 2−n · �2 ·O(q2), where � is the maximum length of a
query made by the distinguisher D.

2.3 Adversary in the Random Oracle Model

A binary relation R on (X×B, X) is a subset of X×B×X . A relation is called
functional relation (or partial functional relation) if for each (x, m) ∈ X×B there
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exists at most one y ∈ X such that (x, m, y) ∈ R. Thus, a partial functional
relation is uniquely characterized by a partial function f : X×B → X (a partial
function may have some points on domain where the functional value is not
defined). Now given a relation R on (X × B) × X , one can define a functional
closure relation R∗ on (X ×B∗) ×X which is a minimal relation containing R
such that following are true:

1. (x1, M1, x2), (x2, M2, x3) ∈ R∗ =⇒ (x1, M1 ‖ M2, x3) ∈ R∗.
2. (x1, M1 ‖ M2, x3), (x1, M1, x2) ∈ R∗ =⇒ (x2, M2, x3) ∈ R∗.

Thus, if R corresponds to a partial function f : X × B → X , then R∗

corresponds to the partial function f∗ which is obtained from the partial function
f iteratively. Sometimes, we use a more appealing notation x1 →M1 x2 ∈ R
(or x1 →M1 x2 when the relation is clear from the context) to denote that
(x1, M1, x2) ∈ R∗. Thus, in terms of this notation, R∗ is the minimal relation
containing R with the following conditions:

1. If x1 →M1 x2 →M2 x3, then x1 →M1‖M2 x3 (transitive property).
2. If x1 →M1 x2 and x1 →M1‖M2 x3, then x2 →M2 x3 (substitute property).

Let D be a distinguisher (or an adversary) in the indifferentiable attack. He has
an access to two oracles O1 and O2. In this scenario, either (O1,O2) = (H, f) or
(O1,O2) = (Rand, S), where H = MDf

g (prefix free MD hash function with fixed
initial value IV), S is any simulator, f and Rand are random oracles from X ×B
to X and from M to X respectively. Distinguisher is making successive queries
of O1 or O2. Suppose the ith query is an O1 query with the message M ∈M and
the response of the query is h (say), then we write ri = IV →g(M) h. Otherwise,
ri = h1 →m h2 for O2 query (h1, m) with response h2. Let Ri = {r1, · · · , ri}
be the relation characterizing the query-response after the ith query and R∗

i be
the functional closure of Ri characterizing the view of the distinguisher after
ith query. Thus, Q = (R1,R2, · · · ,Rq) be the complete query-response tuple
and V = (R∗

1,R∗
2, · · · ,R∗

q) be the complete view of the distinguisher D, where
q is the total number of queries. Now we define some terminology which will be
useful in this context.

1. Define support of a relation Ri by a subset of X , Supp(Ri) = {h : h →m

h1 ∈ Ri} ∪ {h : h1 →m h ∈ Ri} ∪ {IV}. Note that, Supp(Ri) = Supp(R∗
i ).

2. We say, ri is a trivial query if ri ∈ R∗
i−1. Since g is a prefix-free padding, ri

can be trivial query only if any one of the following holds :
(a) ri = IV →g(M) h	, where IV = h0 →m1 h1 →m2 . . . h	−1 →m�

h	 ∈ R∗
i−1

and g(M) = m1 ‖ . . . ‖ m	.
(b) ri = h	−1 →m�

h	, where IV = h0 →m1 h1 →m2 . . . h	−1, IV →g(M) h	 ∈
R∗

i−1 and g(M) = m1 ‖ . . . ‖ m	.

(c) ri is a repetition query i.e. ri = rj for some j < i. For simplicity, we can
assume that there is no repetition query as distinguisher’s point of view
it doest not help anything.

3. We say V is not collision free (or in short ¬ CF) if for some i, ri = h →M h′

is non trivial and h′ ∈ Supp(Ri−1) ∪ {h}.
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3 Security Analysis

In this section, we explain how to obtain a formal proof of indifferentiability of
prefix-free single length or double length or block-cipher based MD hash func-
tions. Let E be an event which is only a function of the view of the distinguisher.
In this case we consider complement of the collision-free event (¬ CF). Thus,
there are events E1 and E2 for E when D interact with (H, f) and (Rand, S),
respectively. If this event is defined carefully so that

1. (H, f) and (Rand, S) are identically distributed conditioned on the past view
of the distinguisher and E does not occur, and

2. if Pr[E1], Pr[E2] ≤ max, where max is some negligible function.

Because of item 1, Pr[DH,f → 1 | ¬ E1] = Pr[DR,S → 1|¬E2]. Then, one can
show the indifferentiability of H with the random oracle model. More precisely,

Adv(D) = | Pr[DH,f → 1]− Pr[DR,S → 1] |
= | Pr[DH,f → 1 | E1] × Pr[E1] + Pr[DH,f → 1 | ¬E1] × Pr[¬E1]
−Pr[DR,S → 1 | E2] × Pr[E2]− Pr[DR,S → 1 | ¬E2]× Pr[¬E2] |

≤ max × | Pr[DH,f → 1 | E1]− Pr[DR,S → 1 | E2] |
+Pr[DH,f → 1 | ¬E1] × | Pr[¬ E1]− Pr[¬ E2] | · · · · · · (1)

= max × | Pr[DH,f → 1 | E1]− Pr[DR,S → 1 | E2] |
+Pr[DH,f → 1 | ¬E1] × | Pr[E1]− Pr[E2] | · · · · · · (2)

≤ max × | Pr[DH,f → 1 |E1] − Pr[DR,S → 1 |E2] |
+max × Pr[DH,f → 1 |¬E1]

≤ 2 ×max

In (1), Pr[DH,f → 1 | ¬ E1] = Pr[DR,S → 1|¬E2] and in (2), Pr[¬ E2]−Pr[¬ E1] =
Pr[E1]− Pr[E2]. Thus we have,

Adv(D) ≤ 2 ×max{Pr[E1], Pr[E2]} · · · · · · (3)

Similarly, if H is based on the block cipher E, we have three set of oracles
(HE , E, E−1) or (Rand, S, S−1). Then we can proceed as like above.

3.1 Indifferentiability of Prefix Free Single Length MD Hash
Functions

Now we define a simulator S which simulates f so that no distinguisher can
distinguish (R, S) with (H, f), where R and f are assumed to be random oracles
and H is the prefix-free hash function based on f .
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Simulator: The simulator keeps the relations (R1, . . . ,Ri−1). Initially, R0 = ∅.
On the ith query (hi, xi), the response of S is as follow

1. If ∃ IV →N hi ∈ Ri−1, g(M) = N ‖ xi, then run Rand(M) and obtain the re-
sponse h∗. Ri = Ri−1∪{hi →xi h∗} and return h∗. For more than one choices
of M , return a random string h∗ (this will never happen if (R1, . . . ,Rq) is
collision-free).

2. Else return a random string h∗ and Ri = Ri−1 ∪ {hi →xi h∗}.

If distinguisher is making at most q queries then one can design the above
simulator so that it runs in time O(�q). In the worst case, simulator has to back
track to initial value to check whether condition (1) is satisfied or not and this
is needed at most O(�q) time. Note that in [5] time complexity for simulator is
O(�q2).

Distribution of oracles: Here, we study the conditional distribution of all
oracles given the past view of the distinguisher and the collision-freeness of the
view.

Let Qi be the set of all query-response after i queries. Let CF1 and CF2 denote
that the complete view V is collision free (CF) in case of (H, f) and (Rand, S)
queries, respectively. Given Qi−1∧CF, the ith query ri is a trivial query in (H, f)
if and only if so is in (Rand, S) and the response of the trivial query is uniquely
determined by the previous view. So, output of H or S is same as output of
Rand or S respectively. So assume that ri is not a trivial query.

Lemma 1. Given Qi−1 ∧ CF, the conditional distribution of H, f, Rand and S
on ith query (hi, xi) is uniformly distributed on the set X \ (Supp(Ri−1) ∪ {hi})
provided it is not a trivial query (hi = IV for O1 oracle query).

Proof. In case of Rand and S, as CF2 is not true the output is drawn randomly
outside the set Supp(Ri−1)∪{hi}. In case of Rand query M , since ri is a nontrivial
query, Rand(M) hash has not been queried before even by the simulator. So,
condition on CF2 the distribution of Rand(M) is uniformly distributed on the
set X \ (Supp(Ri−1)∪ {IV}). In case of S query (hi, xi) query, the output is not
random only if it is trivial query (where the case (1) of the simulator occurs
and for the corresponding message M Rand(M) has been queried before by the
distinguisher). So it is true for both Rand and S. Now we will prove it for H .

Let Si = Supp(Ri−1) ∪ {hi}. If we can prove that for all a �= a′ /∈ Si,
Pr[H(M) = a | Qi−1 ∧ CF1] = Pr[H(M) = a′ | Qi−1 ∧ CF1] then we are done
since for all other choices of a the probability is zero because of condition of CF1.
Given a and a′, Let A = {f : X × B → X : Hf(M) = a ∧ f satisfies Qi−1}.
Similarly define A′ for a′. Now one can define a bijection φ between A and A′ in
the following way.

1. If f ∈ A then φ(f)(h, x) = f(h, x) if {f(h, x), h} ∩ {a, a′} = φ
2. φ(f)(a, x) = f(a′, x) if f(a′, x) /∈ {a, a′}. Similarly, φ(f)(a′, x) = f(a, x) if

f(a, x) /∈ {a, a′}.
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3. If h /∈ {a, a′} but f(h, x) = a then φ(f)(h, x) = a′. Similarly, f(h, x) = a′

then φ(f)(h, x) = a.
4. There are four other possibilities i.e.

(a) if f(a, x) = a then φ(f)(a′, x) = a′.
(b) if f(a, x) = a′ then φ(f)(a′, x) = a.
(c) if f(a′, x) = a then φ(f)(a, x) = a′.
(d) if f(a′, x) = a′ then φ(f)(a, x) = a.

Now it is easy to check that φ(f) is well defined and it belongs to A′. Here,
we mainly interchange the role of a and a′ in all possible cases of input and
output keeping other values the same. Thus, given Hf (M) = a, we should have
Hφ(f)(M) = a′ keeping all other equalities fixed (in Qi−1). Now it is also easy
to check that this is a bijection as we can define the inverse function similarly.
Thus, | A | = | A′ | and hence the probabilities are equal. We can prove similarly
for the distribution of f . So we skip the proof of this.

Now we bound the probability of collision events for both cases.

Lemma 2. Pr[¬CF1] = O( l2q2

2n ) and Pr[¬CF2] = O( q2

2n ), where l is the maxi-
mum number of blocks in H-query and |X | = 2n.

Proof. We first assume that there is no trivial query. If it is there, then we have
less probability as it does not help in collision. Now we compute the probability
where all outputs (including the intermediate hash values for different messages)
and inputs of f are distinct. Now any choices of input-outputs satisfying the
above give all different inputs to f . Thus, the probability of any such choice
is 1/2nq′

, where q′ is the total number of inputs of f . Number of choices of
above tuples is at least (|X | − 1)(|X | − 3) · · · (|X | − 2q′ + 1). Thus, Pr[CF1] =
(|X | − 1)(|X | − 3) · · · (|X | − 2q′ + 1)/2nq′

= 1 − O( l2q2

2n ). In case of Pr[CF2],
the probability is O( q2

2n ) as output of simulator and Rand is random except for
nontrivial query. As nontrivial can not make collision we have the above collision
probability.

Combining the lemmas and Equation (3) we obtain the following main theorem
of this section.

Theorem 4. Prefix-free single length MD hash functions in a fixed-size random
oracle model is (tD, tS , q, ε)-indifferentiable from a random oracle, for any tD,
with tS = l · O(q) and ε = 2−n+1 · l2 · O(q2), where l is the maximum length of
a query made by the distinguisher D.

3.2 Indifferentiability of Prefix Free PGV Hash Functions

Now we consider all collision secure PGV hash functions. We will show, in the
prefix-free mode, that sixteen (indexed by 1 ∼ 16 in table 1 of Appendix A)
out of twenty are also indifferentiable with random oracle. Others (indexed by
17 ∼ 20 in table 1 of Appendix A) are not indifferentiable from random oracle.
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It is easy to check that any PGV compression functions are not indifferentiable
with random oracle.

Thus, we can not apply the previous theorem directly. First we consider the
previous example f(hi−1, mi) = Emi(hi−1) ⊕ hi−1. Coron et al. also considered
this example and stated indifferentiability in [5]. We will define a simulator which
simulates both E and E−1. On query (1, ·, ·) it simulates E and on query (−1, ·, ·)
it simulates E−1.

Simulator. Like the previous simulator, it also keeps the relations (R1, . . . ,
Ri−1). Initially, R0 = ∅. Let {Px}x∈X be a family of random permutation. Now
the response of S is as follow:

1. On query (1, hi, xi),
(a) If IV →N hi and g(M) = N ‖ xi then run Rand(M) and obtain the

response h∗. Return h∗ ⊕ hi and Ri = Ri−1 ∪ {hi →xi h∗} (otherwise
behave randomly and similar to previous simulator this does not occur
if collision-free occurs).

(b) Else return Pxi(hi) = h∗,Ri = Ri−1 ∪ {hi →xi h∗ ⊕ hi}.
2. On query (−1, yi, xi),

(a) For each IV →N h such that g(M) = N ‖ xi, run Rand(M) = h∗. If
h∗ ⊕ h = yi, return h and Ri = Ri−1 ∪ {hi →xi h∗}. If there is more
than one such M we say the event BAD occurs and return randomly.

(b) Else return P−1
xi

(yi) = h (say) and Ri = Ri−1 ∪ {hi →xi h∗ ⊕ hi}.

The time complexity of the simulator is O(lq2). The worst case occurs to
search all choices of IV →M h in the case of S−1 query. We define the COLL as
defined in previously or BAD occurs. Let D be a distinguisher keeping relations
Ri and R∗

i . Note that, (Ex(y) = z ⇔ h →m h′) ⇐⇒ m = x, h = y and h′ = z⊕y.
Now for a random permutation either z or y is chosen randomly.

1. For E query, define Si = Supp(Ri) ⊕ hi ∪ Pxi [i], where Px[i] is the set
of all images of Px obtained from Px or P−1

x -query till ith query of the
distinguisher.

2. For E−1 query, Si = Supp(Ri) ∪ (Supp(Ri) ⊕ yi) ∪ P−1
xi

[i], where P−1
x [i] is

the set of all images of P−1
x .

3. Define, Wi = {h ⊕ h∗ : IV →M h →m h∗ ∈ R∗
i−1 and M ‖ m = g(X) for

some X}. This set is related to the BAD event.
4. Finally we define, Zi = Si ∪ Wi ∪ {hi} (for R query hi = IV, for E−1 query

we can ignore {hi}).

Now we say that Vi is not collision-free if for for some j ≤ i, the output of
O2 oracle (in jth query) is in Wi and it is not a trivial query. This definition is
a modified definition of previous collision-free. Here we change the collision set
to Wi. Similar to the previous results we have the following lemma and main
theorem of this section.



292 D. Chang et al.

Lemma 3. The conditional distribution of H, E, E−1Rand, S and S−1 on ith

query, given Qi−1 ∧ CF is uniformly distributed on the set X \Wi provided it is
not a trivial query, where hi = IV for O1 query or (hi, xi) be the query for O2.
In case of trivial query all distribution are degenerated.

Proof. If the query is non-trivial query and collision free is true then Rand, S,
S−1, E and E−1 are uniformly distributed on the set X \Wi. In case of HE , the
hash function, we can prove that Pr[HE(Mi) = a1] = Pr[HE(Mi) = a2], where
a1, a2 ∈ X \Wi. While we count all possible functions E, we interchange the roll
of a1 and a2 in the inputs and outputs of E (as in Hf). We skip the detail of
the proof as it is similar to Lemma 1.

If collision free is true the response of trivial query is completely determined by
the past view (for all possible oracles). For example, if it is S−1 query then note
that there are not more than one choice of M (or h, see case (1)) as BAD events
is included in the event ¬ CF. Thus, there is exactly one h which is completely
determined by the past view and this is the response of this query. Other cases
also can be checked.

Lemma 4. Pr[¬CF1] = O( l2q2

2n ) and Pr[¬CF2] = O( q2

2n ), where l is the maxi-
mum number of blocks in H-query.

Proof. The proof of the lemma is similar to lemma 2 except when BAD event
occurs. For each query it will happen with probability O(q/2n) as R(M)⊕h = yi

has probability 1/2n and there can be at most 2n such M ’s.

Theorem 5. Prefix-free single length MD hash functions in a fixed-size random
oracle model is (tD, tS , q, ε)-indifferentiable from a random oracle, for any tD,
with tS = l · O(q2) and ε = 2−n+1 · l2 · O(q2), where l is the maximum length of
a query made by the distinguisher D.

Indifferentiability of Sixteen PGV Hash Functions
Now we consider all collision secure PGV hash functions. We will show, in the
prefix-free mode, that sixteen (indexed by 1 ∼ 16 in table 1 of Appendix A)
out of twenty are also indifferentiable with random oracle. Others (indexed by
17 ∼ 20 in table 1 of Appendix A) are not indifferentiable from random oracle.
Till now we have shown for the case-1 of Appendix A. For other cases one can
make similar analysis. For example, hi = f(hi−1, mi) = Ewi(mi) ⊕ hi−1. So,
(Ek(x) = y ⇔ h →m h′) ⇐⇒ m = x, h = x ⊕ k and h′ = k ⊕ x ⊕ y. One can
also define the simulator for other PGV functions similarly. The proof of the
indifferentiability will follow similarly.

1. On query (1, ki, xi) i.e. Eki (xi),
(a) If IV →N hi and g(M) = N ‖ xi then run Rand(M) and obtain the

response h∗. Return h∗ ⊕ ki ⊕ xi and Ri = Ri−1 ∪ {(ki ⊕ xi) →xi h∗}
(otherwise behave randomly and similar to previous simulator this does
not occur if collision-free occurs).

(b) Else return Pki(xi) = h∗,Ri = Ri−1 ∪ {ki ⊕ xi →xi h∗ ⊕ ki ⊕ xi}.



Indifferentiable Security Analysis of Popular Hash Functions 293

2. On query (−1, ki, yi), i.e., E−1
ki

(yi)
(a) For each IV →N h such that g(M) = N ‖ ki ⊕ h, run Rand(M) = h∗. If

h∗⊕h = yi, return h⊕ki and Ri = Ri−1∪{h →ki⊕h h∗}. If there is more
than one such M we say the event BAD occurs and return randomly.

(b) Else return P−1
ki

(yi) = h (say) and Ri = Ri−1∪{h⊕ki →xi h∗⊕h⊕ki}.

3.3 Indifferentiability of Double Length Hash Functions

Now we consider the double length construction. A 2n-bit hash value xl = (hl, gl)
is computed from κl-bit message (m1, m2, · · · , ml) as follows. For i = 1, 2, · · · , l,
F (xi−1, mi) = (hi, gi) such that

hi = f(hi−1, gi−1, mi)
gi = f(p(hi−1, gi−1), mi)

where p is a permutation on 2n bits and p has no fixed point and p(g, h) �=
(h, g) for any h, g. Further we assume that p2(·) is an identity permutation. One
example would be p(x) = x, where x is the bitwise complement. We define an
equivalence relation, w ≡ w∗ if w = p(w∗) or w = w∗. Like previous simulator
we define the simulator as follows:

Simulator: The simulator keeps the relations (R1, . . . ,Ri−1). Initially, R0 = ∅.
On the ith query (hi, gi, xi), the response of S is as follow:

1. If the ith query is same as a previous query, output same output of the
previous query.

2. Else if ∃ IV →N h||g ∈ Ri−1, g(M) = N ‖ xi where h||g ≡ hi||gi, then
run Rand(M) and obtain the response h∗||g∗. For more than one choices of
M , return a random string h∗||g∗ (this will never happen if (R1, . . . ,Rq) is
collision-free).
(a) If h||g = hi||gi then return h∗.
(b) If h||g = p(hi||gi) then return g∗.
(c) If (p(hi||gi), xi) has been queried before then

i. If h||g = hi||gi then Ri = Ri−1 ∪ {h||g →xi h∗||g∗}.
ii. If h||g = p(hi||gi) then Ri = Ri−1 ∪ {h||g →xi g∗||h∗}.

3. Else return a random string h∗. If (p(hi||gi), xi) has been queried before and
response is g∗ then Ri = Ri−1 ∪ {hi||gi →xi h∗||g∗} ∪ {p(h||g) →xi g∗||h∗}.

If distinguisher is making q queries at most then one can design the above
simulator so that it runs in time O(lq). In the worst case simulator has to back
track to initial value to check whether condition (1) is satisfied or not and this
needs at most O(lq) time. Similar to previous results we have the following
lemma and main theorem of this section. Similar to prefix free MD construction,
we can define support and collision free.

1. Define support of a relation Ri by a subset of X , Supp(Ri) = {h||g, p(h||g) :
h||g →m h1||g1 ∈ Ri} ∪ {h||g, p(h||g) : h1||g1 →m h||g ∈ Ri} ∪ {IV}. Note
that, Supp(Ri) = Supp(R∗

i ).
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2. We say, ri is a trivial query if ri ∈ R∗
i−1. Since g is a prefix-free padding, ri

can be trivial query only if any one of the following holds :
(a) ri = IV →g(M) h	||g	, where IV = h0||g0 →m1 h1||g1 →m2 . . . h	−1||g	−1

→m�
h	||g	 ∈ R∗

i−1 and g(M) = m1 ‖ . . . ‖ m	.
(b) ri = h	−1||g	−1 →m�

h	 or p(h	−1||g	−1) →m�
g	, where IV = h0||g0 →m1

h1||g1 →m2 . . . h	−1||g	−1, IV →g(M) h	||g	 ∈ R∗
i−1 and g(M) = m1 ‖

. . . ‖ m	.
(c) ri is a repetition query i.e. ri = rj for some j < i. For simplicity we can

assume that there is no repetition query as distinguisher’s point of view
it doest not help anything.

3. We say V is not collision free (or in short ¬ CF) if for some i one of followings
hold :
(a) In case of O1 query : ri = hi||gi →M h′||g′ is non trivial and h′||g′ ∈

Supp(Ri−1) ∪ {hi||gi}.
(b) In case of O2 query : ri = hi||gi →mi h′ is non trivial and O2(p(hi||gi), xi)

= g′ has been queried before and h′||g′ or g′||h′ ∈ Supp(Ri−1)∪{hi||gi}∪
{p(hi||gi)}.

Lemma 5. Given Qi−1∧CF, the conditional distribution of H, f, Rand and S on
ith query is uniformly distributed on the set X \ (Supp(Ri−1)∪{hi||gi}) provided
it is not a trivial query, where hi||gi = IV for O1 query or (hi||gi, xi) be the query
for O2.

Proof. Given a(= a1 ‖ a2) and a′(= a′
1 ‖ a′

2) /∈ X \ (Supp(Ri−1)∪{hi||gi}), Let
A = {f : X × B → X : Hf(M) = a ∧ f satisfies Qi−1}. Similarly define A′ for
a′. Similar to prefix free MD construction, we can define a bijection φ between
A and A′ similar to the Lemma 5.

1. If f ∈ A then φ(f)(b, x)||φ(f)(p(b), x) = f(b, x)||f(p(b), x) if {f(b, x)||f(p(b),
x), b} ∩ {a, a′} = φ

2. φ(f)(a, x)||φ(f)(p(a), x)=f(a′, x)||f(p(a′), x) if f(a′, x)||f(p(a′), x) /∈{a, a′}.
Similarly, φ(f)(a′, x)||φ(f)(p(a′), x) = f(a, x)||f(p(a), x) if f(a, x)||f(p(a),
x) /∈ {a, a′}.

3. If b /∈ {a, a′} but f(b, x)||f(p(b), x) = a then φ(f)(b, x)||φ(f)(p(b), x) = a′.
Similarly, f(b, x)||f(p(b), x) = a′ then φ(f)(b, x)||φ(f)(p(b), x) = a.

4. There are four other possibilities i.e.
(a) if f(a, x)||f(p(a), x) = a then φ(f)(a′, x)||φ(f)(p(a′), x) = a′.
(b) if f(a, x)||f(p(a), x) = a′ then φ(f)(a′, x)||φ(f)(p(a′), x) = a.
(c) if f(a′, x)||f(p(a′), x) = a then φ(f)(a, x)||φ(f)(p(a), x) = a′.
(d) if f(a′, x)||f(p(a′), x) = a′ then φ(f)(a, x)||φ(f)(p(a), x) = a.

Now it is easy to check that φ(f) is well defined and it belongs to A′. Here, we
mainly interchange the roll of a and a′ in all possible cases of input and output
keeping others same. Thus, given Hf(M) = a, we should have Hφ(f)(M) = a′

keeping all other equalities fixed (in Qi−1). Now it is also easy to check that this
is a bijection as we can define the inverse function similarly. Thus, | A | = | A′ |
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and hence the probabilities are equal. We can prove similarly for the distribution
of f . So we skip the proof of this.

Now we bound the probability of collision events for both cases.

Lemma 6. Pr[¬CF1] = O( l2q2

22n ) and Pr[¬CF2] = O( q2

22n ), where l is the maxi-
mum number of blocks in H-query and |X | = 22n.

Proof. The proof is also similar to the Lemma 2. So we skip the proof.

Theorem 6. Let F be above double length hash function. Then for any prefix-
free function g, MDF

g in a single-size random oracle model is (tD, tS , q, ε)-
indifferentiable from a random oracle, for any tD, with tS = l · O(q) and ε =
2−2n+1 · l2 · O(q2), where l is the maximum length of a query made by the dis-
tinguisher D.

4 Attack on Some SBL and DBL Hash Functions

In this section we define PGV and PBGV hash functions. We give some indif-
ferentiable attacks on some of these hash functions. We show only attacks with
one-block padded message. More than one block, we can attack similarly.

The Preneel-Govaerts-Vandewalle (PGV) Schemes [17]
Let x0 be the initial value and κ = N . E is N -bit block cipher with an N -bit
key. An N -bit hash value xl is computed from κl-bit message (m1, m2, · · · , ml)
as follows. For i = 1, 2, · · · , l,

F (xi−1, mi) = xi = Ea(b) ⊕ c

where a, b, c ∈ {xi−1, mi, v, xi−1 ⊕mi}. Here, v is a constant.
Among 20 collision resistant PGV schemes, even we use prefix-free padding

g, we show that 4 schemes are differentiable from random oracle. 4 schemes are
F1(hi−1, mi) = Ehi−1(mi) ⊕mi, F2(hi−1, mi) = Ehi−1(mi ⊕ hi−1) ⊕ mi ⊕ hi−1,
F3(hi−1, mi) = Ehi−1(mi)⊕mi⊕hi−1, and F4(hi−1, mi) = Ehi−1(mi⊕hi−1)⊕mi.
Here, we consider F1. Similarly, we can show the insecurity of other 3 cases.

– distinguisher D can access to oracles (O1,O2) where (O1,O2) is (H, E, E−1)
or (Rand, S, S−1).
• make a random query M such that g(M) = m and |m| = n. then give

the query M to oracle O1 and receive z.
• make an inverse query (−1, x0, z ⊕m) to O2 and receive m∗.
• if m = m∗ output 1, otherwise 0.
• Since any simulator S can know random m only with probability 2−n,

|Pr[DH,E,E−1
= 1]− Pr[DR,S,S−1

= 1]| = 1− 2−n

This is not negligible. So MDF1
g is differentiable from random oracle.
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The Preneel-Bosselaers-Govaerts-Vandewalle (PBGV) Scheme [16]
Let x0 = (h0, g0) be initial value and N = 2n and κ = N . E is N -bit block cipher
with an N -bit key. A N -bit hash value xl = (hl, gl) is computed from κl-bit
message m = (m1, m2, · · · , ml) where mi = (mi,1, mi,2) and |mi,1| = |mi,2| = n.
For i = 1, 2, · · · , l, F (xi−1, mi) = (hi, gi) is defined as follows.

hi = Emi,1⊕mi,2(hi−1 ⊕ gi−1) ⊕mi,1 ⊕ hi−1 ⊕ gi−1

gi = Emi,1⊕hi−1(mi,2 ⊕ gi−1) ⊕mi,2 ⊕ hi−1 ⊕ gi−1

The following is the indifferentiable attack for the PBGV scheme.

– distinguisher D can access to oracles (O1,O2) where (O1,O2) is (H, E, E−1)
or (Rand, S, S−1).
• make a random query M such that g(M) = m1 = m1,1||m1,2 and |m1| =

2n. Then give the query M to oracle O1 and receive x1 = (h1, g1).
• make an inverse query (−1, m1,2 ⊕ h0 ⊕ g0 ⊕ g1, m1,1 ⊕ h0) to O2 and

receive out.
• if out = m1,2 ⊕ g0 output 1, otherwise 0.
• Since any simulator S can know random m1,2 only with probability 2−n,

|Pr[DH,E,E−1
= 1]− Pr[DR,S,S−1

= 1]| = 1− 2−n

This is not negligible. So MDF
g is differentiable from random oracle.

By using the same idea one can find indifferentiability attack on QG-I, LOKI
DBH, MDC-2 and some of the Hirose’s double length hash constructions.

5 Conclusion

As hash function is at times a popular candidate for approximation of a random
oracle, the notion of indifferentiability is important to study. In this paper we
have studied many known designs of hash function in term of indifferentiability.
Some of them are secure and against some of them we have found attack. So
there are many designs, for example sixteen PGV hash functions, which are
secure beyond the collision security. This paper also presents an unified way
to prove the indifferentiability for many designs of hash functions. Finally we
note that there are still many designs whose security analysis in the view of
indifferentiability are open.
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Appendix A: Table of Twenty PGV Hash Functions

Table 1. 20 Collision Resistant PGV Hash Functions in the Ideal Cipher Model.
(wi = mi ⊕ hi−1).

Case PGV Case PGV

1 Emi(hi−1) ⊕ hi−1 11 Emi(hi−1) ⊕ v

2 Emi(wi) ⊕ wi 12 Ewi(hi−1) ⊕ v

3 Emi(hi−1) ⊕ wi 13 Emi(hi−1) ⊕ mi

4 Emi(wi) ⊕ hi−1 14 Ewi(hi−1) ⊕ wi

5 Ewi(mi) ⊕ mi 15 Emi(wi) ⊕ v

6 Ewi(hi−1) ⊕ hi−1 16 Emi(wi) ⊕ mi

7 Ewi(mi) ⊕ hi−1 17 Ehi−1(mi) ⊕ mi

8 Ewi(hi−1) ⊕ mi 18 Ehi−1(wi) ⊕ wi

9 Ewi(wi) ⊕ v 19 Ehi−1(mi) ⊕ wi

10 Ewi(mi) ⊕ wi 20 Ehi−1(wi) ⊕ mi
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Abstract. We point out that the seemingly strong pseudorandom or-
acle preserving (PRO-Pr) property of hash function domain-extension
transforms defined and implemented by Coron et. al. [1] can actually
weaken our guarantees on the hash function, in particular producing a
hash function that fails to be even collision-resistant (CR) even though
the compression function to which the transform is applied is CR. Not
only is this true in general, but we show that all the transforms pre-
sented in [1] have this weakness. We suggest that the appropriate goal of
a domain extension transform for the next generation of hash functions
is to be multi-property preserving, namely that one should have a single
transform that is simultaneously at least collision-resistance preserving,
pseudorandom function preserving and PRO-Pr. We present an efficient
new transform that is proven to be multi-property preserving in this
sense.

Keywords: Hash functions, random oracle, Merkle-Damg̊ard, collision-
resistance, pseudorandom function.

1 Introduction

Background. Recall that hash functions are built in two steps. First, one
designs a compression function h: {0, 1}d+n → {0, 1}n, where d is the length
of a data block and n is the length of the chaining variable. Then one specifies
a domain extension transform H that utilizes h as a black box to implement
the hash function Hh: {0, 1}∗ → {0, 1}n associated to h. All widely-used hash
functions use the Merkle-Damg̊ard (MD) transform [2,3] because it has been
proven [2,3] to be collision-resistance preserving (CR-Pr): if h is collision-resistant
(CR) then so is Hh. This means that the cryptanalytic validation task can be
confined to the compression function.

A rising bar. Current usage makes it obvious that CR no longer suffices as
the security goal for hash functions. In order to obtain MACs and PRFs, hash
functions were keyed. The canonical construct in this domain is HMAC [4,5]
which is widely standardized and used. (NIST FIPS 198, ANSI X9.71, IETF
RFC 2104, SSL, SSH, IPSEC, TLS, IEEE 802.11i, and IEEE 802.16e are only

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 299–314, 2006.
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some instances.) Hash functions are also used to instantiate random oracles [6]
in public-key schemes such as RSA-OAEP [7] and RSA-PSS [8] in the RSA
PKCS#1 v2.1 standard [9]. CR is insufficient for arguing the security of hash
function based MACs or PRFs, let alone hash-function based random oracles. And
it does not end there. Whether hash function designers like it or not, application
builders will use hash functions for all kinds of tasks that presume beyond-CR
properties. Not all such uses can be sanctified, but the central and common ones
should be. We think that the type of usage we are seeing for hash functions
will continue, and it is in the best interests of security to make the new hash
functions rise as far towards this bar as possible, by making them strong and
versatile tools that have security attributes beyond CR.

This paper. Towards the goal of building strong, multi-purpose hash functions,
our focus is on domain extension, meaning we wish to determine which domain
extension transforms are best suited to this task. The first part of our work
examines a natural candidate, namely transforms that are pseudorandom oracle
preserving as per [1], and identifies some weaknesses of this goal. This motivates
the second part, where we introduce the notion of a multi-property preserving
(MPP) transform, argue that this should be the target goal, and present and
prove the correctness of an efficient MPP transform that we refer to as EMD.
Let us now look at all this in more depth.

Random-oracle preservation. Coron, Dodis, Malinaud and Puniya [1] make
the important observation that random oracles are modeled as monolithic enti-
ties (i.e., are black boxes working on domain {0, 1}∗), but in practice are instan-
tiated by hash functions that are highly structured due to the design paradigm
described above, leading for example to the extension attack. Their remedy for
this logical gap is to suggest that a transform H be judged secure if, when
modeling h as a fixed-input-length random oracle, the resulting scheme Hh be-
haves like a random oracle. They give a formal definition of “behaving like a
random oracle” using the indifferentiability framework of Maurer et al. [10]. We
use the moniker pseudorandom oracle to describe any construction that is in-
differentiable from a random oracle. (Note that a random oracle itself is always
a pseudorandom oracle.) The framework has the desirable property that any
scheme proven secure in the random oracle model of [6] is still secure when we
replace the random oracles with pseudorandom oracles. We call the new secu-
rity goal of [1] pseudorandom oracle preservation (PRO-Pr). They propose four
transforms which they prove to be PRO-Pr.

PRO-Pr seems like a very strong property to have. One reason one might
think this is that it appears to automatically guarantee that the constructed
hash function has many nice properties. For example, that the hash function
created by a PRO-Pr transform would be CR. Also that the hash function could
be keyed in almost any reasonable way to yield a PRF and MAC. And so on. This
would be true, because random oracles have these properties, and hence so do
pseudorandom oracles. Thus, one is lead to think that one can stop with PRO-Pr:
once the transform has this property, we have all the attributes we desire from
the constructed hash function.
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Weakness of PRO-Pr. The first contribution of this paper is to point out
that the above reasoning is flawed and there is a danger to PRO-Pr in prac-
tice. Namely, the fact that a transform is PRO-Pr does not guarantee that the
constructed hash function is CR, even if the compression function is CR. We
demonstrate this with a counter-example. Namely we give an example of a trans-
form that is PRO-Pr, yet there is a CR compression function such that the hash
function resulting from the transform is not CR. That is, the transform is PRO-
Pr but not CR-Pr, or, in other words, PRO-Pr does not imply CR-Pr. What this
shows is that using a PRO-Pr transform could be worse than using the standard,
strengthened Merkle-Damg̊ard transform from the point of view of security be-
cause at least the latter guarantees the hash function is CR if the compression
function is, but the former does not. If we blindly move to PRO-Pr transforms,
our security guarantees are actually going down, not up.

How can this be? It comes about because PRO-Pr provides guarantees only
if the compression function is a random oracle or pseudorandom oracle. But of
course any real compression function is provably not either of these. (One can
easily differentiate it from a random oracle because it can be computed by a small
program.) Thus, when a PRO-Pr transform works on a real compression function,
we have essentially no provable guarantees on the resulting hash function. This
is in some ways analogous to the kinds of issues pointed out in [11,12] about the
sometimes impossibility of instantiating random oracles.

The transforms of [1] are not CR-Pr. The fact that a PRO-Pr transform
need not in general be CR-Pr does not mean that some particular PRO-Pr trans-
form is not CR-Pr. We therefore investigate each of the four PRO-Pr schemes
suggested by [1]. The schemes make slight modifications to the MD transform:
the first applies a prefix-free encoding, the second “throws” away some of the
output, and the third and fourth utilize an extra compression function applica-
tion. Unfortunately, we show that none of the four transforms is CR-Pr. We do
this by presenting an example CR compression function h such that applying
each of the four transforms to it results in a hash function for which finding col-
lisions is trivial. In particular, this means that these transforms do not provide
the same guarantee as the existing and in-use Merkle-Damg̊ard transform. For
this reason we think these transforms should not be considered suitable for use
in the design of new hash functions.

What this means. We clarify that we are not suggesting that the pseudoran-
dom oracle preservation goal of [1] is unimportant or should not be achieved.
In fact we think it is a very good idea and should be a property of any new
transform. This is so because in cases where we are (heuristically) assuming the
hash function is a random oracle, this goal reduces the assumption to the com-
pression function being a random oracle. What we have shown above, however,
is that by itself, it is not enough because it can weaken existing, standard-model
guarantees. This leads to the question of what exactly is enough, or what we
should ask for in terms of a goal for hash domain extension transforms.
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MPP transforms. The two-step design paradigm in current use is compelling
because it reduces the cryptanalytic task of providing CR of the hash function
to certifying only that the compression function has the same property. It makes
sense to seek other attributes via the appropriate extension of this paradigm.
We suggest that, if we want a hash function with properties P1, . . . ,Pn then
we should (1) design a compression function h with the goal of having proper-
ties P1, . . . ,Pn, and (2) apply a domain extension transform H that provably
preserves Pi for every i ∈ [1..n]. We call such a compression function a multi-
property one, and we call such a transform a multi-property-preserving domain
extension transform (from now on simply an MPP transform). Note that we
want a single transform that preserves multiple properties, resulting in a sin-
gle, multi-property hash function, as opposed to a transform per property which
would result in not one but numerous hash functions. We suggest that multi-
property preservation is the goal a transform should target.

Properties to preserve. Of course the next question to ask is which proper-
ties our MPP domain extension transform should preserve. We wish, of course,
that the transform continue to be CR-Pr, meaning that it preserve CR. The sec-
ond thing we ask is that it be pseudorandom function preserving (PRF-Pr). That
is, if an appropriately keyed version of the compression function is a PRF then
the appropriately keyed version of the hash function must be a PRF too. This
goal is important due to the many uses of hash functions as MACs and PRFs via
keying as mentioned above. Indeed, if we have a compression function that can
be keyed to be a PRF and our transform is PRF-Pr then obtaining a PRF or MAC
from a hash function will be simple and the construction easy to justify. The
final goal we will ask is that the transform be PRO-Pr. Compelling arguments
in favor of this goal were made at length in [1] and briefly recalled above.

To be clear, we ask that, for a transform H to be considered suitable, one
should do the following. First, prove that Hh is CR using only the fact that h
is CR. Then show that Hh is a pseudorandom oracle when h is a pseudorandom
oracle. Finally, use some natural keying strategy to key Hh and assume that h is
a good PRF, then prove that Hh is also a good PRF. We note that such a MPP
transform will not suffer from the weakness of the transforms of [1] noted above
because it will be not only PRO-Pr but also CR-Pr and PRF-Pr.

New transform. There is to date no transform with all the properties above.
(Namely, that it is PRO-Pr, CR-Pr and PRF-Pr.) The next contribution of this
paper is a new transform EMD (Enveloped Merkle-Damg̊ard) which is the first
to meet our definition of hash domain extension security: EMD is proven to be
CR-Pr, PRO-Pr, and PRF-Pr. The transform is simple and easy to implement in
practice (see the figure in Section 5). It combines two mechanisms to ensure that
it preserves all the properties of interest. The first mechanism is the well-known
Merkle-Damg̊ard strengthening [2]: we always concatenate an input message with
the 64-bit encoding of its length. This ensures that EMD is CR-Pr. The second
mechanism is the use of an “envelope” to hide the internal MD iteration — we
apply the compression function in a distinguished way to the output of the plain
MD iteration. Envelopes in this setting were previously used by the NMAC and
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Transform CR-Pr PRO-Pr PRF-Pr Uses of h for |M | = b ≥ d

Plain MD (MD) No No No 
(b + 1)/d�
Strengthened MD (SMD) [2,3] No No 
(b + 1 + 64)/d�
Prefix-Free (PRE) No [1] [13] 
(b + 1)/(d − 1)�
Chop Solution (CHP) No [1] ? 
(b + 1)/d�
NMAC Construction (NT) No [1] ? 1 + 
(b + 1)/d�
HMAC Construction (HT) No [1] ? 2 + 
(b + 1)/d�
Enveloped MD (EMD) [2] Thm. 1 Thm. 2 
(b + 1 + 64 + n)/d�

Fig. 1. Comparison of transform security and efficiency when applied to a compression
function h: {0, 1}n+d → {0, 1}n. The last column specifies the number of calls to h
needed to hash a b-bit message M (where b ≥ d) under each transform and a typical
padding function (which minimally adds a bit of overhead).

HMAC constructions [4] to build PRFs out of compression functions, and again
in two of the PRO-Pr transforms of [1], which were also based on NMAC and
HMAC. We utilize the envelope in a way distinct from these prior constructions.
Particularly, we include message bits as input to the envelope, which increases
the efficiency of the scheme. Second, we utilize a novel reduction technique in our
proof that EMD is PRO-Pr to show that simply fixing n bits of the envelope’s
input is sufficient to cause the last application of the random oracle to behave
independently with high probability. This simple solution allows our transform
to be PRO-Pr using a single random oracle without using the other work-arounds
previously suggested (e.g., prefix-free encodings or prepending a block of zeros
to input messages). A comparison of various transforms is given in Fig. 1.

Patching existing transforms. We remark that it is possible to patch the
transforms of [1] so that they are CR-Pr. Namely, one could use Merke-Damg̊ard
strengthening, which they omitted. However our transform still has several ad-
vantages over their transforms. One is that ours is cheaper, i.e. more efficient,
and this matters in practice. Another is that ours is PRF-Pr. A result of [13]
implies that one of the transforms of [1] is PRF-Pr, but whether or not this is
true for the others is not clear.

Whence the compression function? We do not address the problem of
constructing a multi-property compression function. We presume that this can
and will be done. This assumption might seem questionable in light of the recent
collision-finding attacks [14,15] that have destroyed some hash functions and
tainted others. But we recall that for block ciphers, the AES yielded by the NIST
competition was not only faster than DES but seems stronger and more elegant.
We believe it will be the same for compression functions, namely that the planned
NIST hash function competition will lead to compression functions having the
properties (CR and beyond) that we want, and perhaps without increase, or even
with decrease, in cost, compared to current compression functions. We also note
that we are not really making new requirements on the compression function; we
are only making explicit requirements that are implicit even in current usage.
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Families of compression functions. Several works [16,17,18] consider a set-
ting where compression and hash functions are families rather than individual
functions, meaning, like block ciphers, have an extra, dedicated key input. In con-
trast, we, following [4,1,5], adopt the setting of current practical cryptographic
compression and hash functions where there is no such dedicated key input. An
enveloping technique similar to that of EMD is used in the Chain-Shift construc-
tion of Maurer and Sjödin [18] for building a VIL MAC out of a FIL MAC in
the dedicated key input setting. We further discuss this setting, and their work,
in the full version of the paper [19].

2 Definitions

Notation. Let D = {0, 1}d and D+ = ∪i≥1{0, 1}id. We denote pairwise con-
catenation by || , e.g. M || M ′. We will often write the concatenation of a se-
quence of string by M1 · · ·Mk, which translates to M1 || M2 || . . . || Mk. For
brevity, we define the following semantics for the notation M1 · · ·Mk

d← M where
M is a string of |M | bits: 1) define k = �|M |/d� and 2) if |M | mod d = 0
then parse M into M1, M2, . . ., Mk where |Mi| = d for 1 ≤ i ≤ k, otherwise
parse M into M1, M2, . . ., Mk−1, Mk where |Mi| = d for 1 ≤ i ≤ k − 1 and
|Mk| = |M | mod d. For any finite set S we write s

$← S to signify uniformly
choosing a value s ∈ S.

Oracle TMs, random oracles, and transforms. Cryptographic schemes,
adversaries, and simulators are modeled as Oracle Turing Machines (OTM) and
are possibly given zero or more oracles, each being either a random oracle or
another OTM (note that when used as an oracle, an OTM maintains state
across queries). We allow OTMs to expose a finite number of interfaces: an
OTM N = (N1, N2, . . . ,Nl) exposes interfaces N1, N2, . . . ,Nl. For brevity, we
write MN to signify that M gets to query all the interfaces of N. For a set Dom
and finite set Rng we define a random function by the following TM accepting
inputs X ∈ Dom:

Algorithm RFDom,Rng(X):
if T [X ] = ⊥ then T [X ] $←Rng
ret T [X ]

where T is a table everywhere initialized to ⊥. This implements a random func-
tion via lazy sampling (which allows us to reason about the case in which Dom
is infinite). In the case that Dom = {0, 1}d and Rng = {0, 1}r we write RFd,r

in place of RFDom,Rng . We similarly define RFd,Rng and RFDom,r in the obvi-
ous ways and write RF∗,r in the special case that Dom = {0, 1}∗. A random
oracle is simply a public random function: all parties (including the adversary)
are given access. We write f, g, . . . = RFDom,Rng to signify that f , g, . . . are
independent random oracles from Dom to Rng. A transform C describes how to
utilize an arbitrary compression function to create a variable-input-length hash
function. When we fix a particular compression function f , we get the associated
cryptographic scheme Cf ≡ C[f ].
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Collision resistance. We consider a function F to be collision resistant (CR)
if it is computationally infeasible to find any two messages M �= M ′ such that
F (M) = F (M ′). For the rest of the paper we use h to always represent a collision-
resistant compression function with signature h: {0, 1}d+n → {0, 1}n.

Note our definition of CR is informal. The general understanding in the litera-
ture is that a formal treatment requires considering keyed families. But practical
compression and hash functions are not keyed when used for CR. (They can be
keyed for use as MACs or PRFs.) And in fact, our results on CR are still formally
meaningful because they specify explicit reductions.

PRFs. Let F : Keys × Dom → Rng be a function family. Informally, we con-
sider F a pseudorandom function family (PRF) if no reasonable adversary can
succeed with high probability at distinguishing between F (K, ·) for K

$← Keys
and a random function f = RFDom,Rng . More compactly we write the prf-
advantage of an adversary A as

Advprf
F (A) = Pr

[
K

$← Keys ; AF (K,·) ⇒ 1
]
− Pr

[
Af(·) ⇒ 1

]
where the probability is taken over the random choice of K and the coins used
by A or by the coins used by f and A. For the rest of the paper we use e to always
represent a PRF with signature e: {0, 1}d+n → {0, 1}n that is keyed through the
low n bits of the input.

PROs. The indifferentiability framework [10] generalizes the more typical indis-
tinguishability framework (e.g., our definition of a PRF above). The new frame-
work captures the necessary definitions for comparing an object that utilizes
public components (e.g., fixed-input-length (FIL) random oracles) with an ideal
object (e.g., a variable-input-length (VIL) random oracle). Fix some number l.
Let Cf1,...,fl : Dom → Rng be a function for random oracles f1, . . . , fl = RFD,R.
Then let SF = (S1, . . . , Sl) be a simulator OTM with access to a random oracle
F = RFDom,Rng and which exposes interfaces for each random oracle utilized
by C. (The simulator’s goal is to mimic f1, . . . , fl in such a way as to convince
an adversary that F is C.) The pro-advantage of an adversary A against C is the
difference between the probability that A outputs a one when given oracle access
to Cf1,...,fl and f1, . . . , fl and the probability that A outputs a one when given
oracle access to F and SF . More succinctly we write that the pro-advantage of
A is

Advpro
C, S(A) =

∣∣∣Pr
[
ACf1,...,fl ,f1,...,fl ⇒ 1

]
− Pr

[
AF ,SF ⇒ 1

]∣∣∣
where, in the first case, the probability is taken over the coins used by the random
oracles and A and, in the second case, the probability is over the coins used by
the random oracles, A, and S. For the rest of the paper we use f to represent a
random oracle RFd+n,n.

Resources. We give concrete statements about the advantage of adversaries
using certain resources. For prf-adversaries we measure the total number of
queries q made and the running time t. For pro-adversaries we measure the
total number of left queries qL (which are either to C or F) and the number of
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right queries qi made to each oracle fi or simulator interface Si. We also specify
the resources utilized by simulators. We measure the total number of queries qS

to F and the maximum running time tS . Note that these values are generally
functions of the number of queries made by an adversary (necessarily so, in the
case of tS).

Pointless queries. In all of our proofs (for all notions of security) we assume
that adversaries make no pointless queries. In our setting this particularly means
that adversaries are never allowed to repeat a query to an oracle.

3 Domain Extension Using Merkle-Damg̊ard

The Merkle-Damg̊ard transform. We focus on variants of the Merkle-
Damg̊ard transform. Let c: {0, 1}d+n → {0, 1}n be an arbitrary fixed-input-
length function. Using it, we wish to construct a family of variable-input-length
functions F c: {0, 1}n × {0, 1}∗ → {0, 1}n. We start by defining the Merkle-
Damg̊ard iteration c+: D+ → {0, 1}n by the algorithm specified below.

Algorithm c+(I, M):
M1 · · ·Mk

d←M ; Y0 ← I
for i = 1 to k do

Yi ← c(Mi || Yi−1)
ret Yk

d

Mk

n
Yk

c

M1 M2

n n

c c · · ·I

Since I is usually fixed to a constant, the function c+ only works for strings that
are a multiple of d bits. Thus we require a padding function pad(M), which for
any string M ∈ {0, 1}∗ returns a string Y for which |Y | is a multiple of d. We
require that pad is one-to-one (this requirement is made for all padding functions
in this paper). A standard instantiation for pad is to append to the message a
one bit and then enough zero bits to fill out a block. Fixing some IV ∈ {0, 1}n,
we define the plain Merkle-Damg̊ard transform MD[c] = c+(IV , pad(·)).
Keying strategies. In this paper we discuss transforms that produce keyless
schemes. We would also like to utilize these schemes as variable-input-length
PRFs, but this requires that we use some keying strategy. We focus on the key-
via-IV strategy. Under this strategy, we replace constant initialization vectors
with randomly chosen keys of the same size. For example, if e is a particular PRF,
then keyed MDe would be defined as MDe

K(M) = e+(K, pad(M)) (it should be
noted that this is not a secure PRF). We will always signify the keyed version of
a construction by explicitly including the keys as subscripts.

Multi-property preservation. We would like to reason about the security
of MD and its variants when we make assumptions about c. Phrased another
way, we want to know if a transform such as MD preserves security properties
of the underlying compression function. We are interested in collision-resistance
preservation, PRO preservation, and PRF preservation. Let C be a transform
that works on functions from {0, 1}d+n to {0, 1}n. Let h: {0, 1}d+n → {0, 1}n
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be a collision-resistant hash function. Then we say that C is collision-resistance
preserving (CR-Pr) if the scheme Ch is collision-resistant. Let f = RFd+n,n be a
random oracle. Then we say that C is pseudorandom oracle preserving (PRO-Pr)
if the scheme Cf is a pseudorandom oracle. Let e: {0, 1}d+n → {0, 1}n be an
arbitrary PRF (keyed via the low n bits). Then we say that C is pseudorandom
function preserving (PRF-Pr) if the keyed-via-IV scheme Ce

K is a PRF. A trans-
form for which all of the above holds is considered multi-property preserving.

Security of MD and SMD. It is well known that MD is neither CR-Pr, PRO-
Pr, or PRF-Pr [2,3,13,1]. The first variant that was proven CR-Pr was so-called
MD with strengthening, which we denote by SMD. In this variant, the padding
function is replaced by one with the following property: for M and M ′ with
|M | �= |M ′| then Mk �= M ′

k (the last blocks after padding are distinct). A
straightforward way to achieve a padding function with this property is to include
an encoding of the message length in the padding. In many implementations,
this encoding is done using 64 bits [20], which restricts the domain to strings of
length no larger than 264. We therefore fix some padding function pad64(M) that
takes as input a string M and returns a string Y of length kd bits for some num-
ber k such that the last 64 bits of Y are an encoding of |M |. Using this padding
function we define the strengthened MD transform SMD[c] = c+(IV , pad64(·)).
We emphasize the fact that preservation of collision-resistance is strongly de-
pendent on the choice of padding function. However, this modification to MD
is alone insufficient for rendering SMD either PRF-Pr or PRO-Pr due to simple
length-extension attacks [13,1].

4 Orthogonality of Property Preservation

In this section we illustrate that property preservation is orthogonal. Previous
work [1] has already shown that collision-resistance preservation does not imply
pseudorandom oracle preservation. We investigate the inverse: does a transform
being PRO-Pr imply that it is also CR-Pr? We answer this in the negative by
showing how to construct a PRO-Pr transform that is not CR-Pr. While this
result is sufficient to refute the idea that PRO-Pr is a stronger security goal for
transforms, it does not necessarily imply anything about specific PRO-Pr trans-
forms. Thus, we investigate the four transforms proposed by Coron et al. and
show that all four fail to preserve collision-resistance. Finally, lacking a formally
meaningful way of comparing pseudorandom oracle preservation and pseudoran-
dom function preservation (one resulting in keyless schemes, the other in keyed),
we briefly discuss whether the proposed transforms are PRF-Pr.

4.1 PRO-Pr Does Not Imply CR-Pr

Let n, d > 0 and h: {0, 1}d+n → {0, 1}n be a collision-resistant hash function and
f = RFd+n,n be a random oracle. Let Dom ,Rng be non-empty sets and let C1 be
a transform for which Cf

1 ≡ C1[f ] is a pseudorandom oracle Cf
1 : Dom → Rng.

We create a transform C2 that is PRO-Pr but is not CR-Pr. In other words
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procedure Initialize
000 f = RFd+n,n

procedure f(x)
100 ret f(x)

procedure C(X) Game G0 Game G1

200 Y ← Cf
1 (X)

201 if f(0d+n) = 0n then bad ← true; Y ← 0n

202 ret Y

Fig. 2. Games utilized in the proof of Proposition 1 to show that Cf
2 is a PRO

the resulting scheme Cf
2 : Dom → Rng is indifferentiable from a random oracle,

but it is trivial to find collisions against the scheme Ch
2 (even without finding

collisions against h). We modify C1[c] to create C2[c] as follows. First check
if c(0d+n) is equal to 0n and return 0n if that is the case. Otherwise we just
follow the steps specified by C1[c]. Thus the scheme Cf

2 returns 0n for any
message if f(0d+n) = 0n. Similarly the scheme Ch

2 returns 0n for any message
if h(0d+n) = 0n. The key insight, of course, is that the differing assumptions
made about the oracle impact the likelihood of this occurring. If the oracle is
a random oracle, then the probability is small: we prove below that Cf

2 is a
pseudorandom oracle. On the other hand, we now show how to easily design a
collision-resistant hash function h that causes Ch

2 to not be collision resistant.
Let h′: {0, 1}d+n → {0, 1}n−1 be some collision-resistant hash function. Then
h(M) returns 0n if M = 0d+n, otherwise it returns h′(M) || 1. Collisions found
on h would necessarily translate into collisions for h′, which implies that h is
collision-resistant. Furthermore since h(0d+n) = 0n we have that Ch

2 (M) = 0n

for any message M , making it trivial to find collisions against Ch
2 .

Proposition 1. [C2 is PRO-Pr] Let n, d > 0 and Dom,Rng be non-empty
sets and f = RFd+n,n and F = RFDom,Rng be random oracles. Let Cf

1 be a
pseudorandom oracle. Let Cf

2 be the scheme as described above and let S be an
arbitrary simulator. Then for any adversary A2 that utilizes qL left queries, qR

right queries, and runs in time t, there exists an adversary A1 such that

Advpro
C2,S(A2) ≤ Advpro

C1,S(A1) +
1
2n

.

with A1 utilizing the same number of queries and time as A2.

Proof. Let f = RFd+n,n and F = RFDom,Rng be random oracles. Let A be some
pro-adversary against Cf

2 . Let S be an OTM with an interface Sf that on (d+n)-
bit inputs returns n-bit strings. We utilize a simple game-playing argument in
conjunction with a hybrid argument to bound the indifferentiability of C2 by
that of C1 (with respect to simulator S). Figure 2 displays two games, game G0
(includes boxed statement) and game G1 (boxed statement removed). The first
game G0 exactly simulates the oracles Cf

2 and f . The second game G1 exactly
simulates the oracles Cf

1 and f . We thus have that Pr[ACf
2 ,f ⇒ 1] = Pr[AG0 ⇒ 1]

and Pr[ACf
1 ,f ⇒ 1] = Pr[AG1 ⇒ 1]. Since G0 and G1 are identical-until-bad

we have by the fundamental lemma of game playing [21] that Pr[AG0 ⇒ 1] −
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Prefix-free MD:
PRE[c] = c+(IV , padPF(·))
where padPF: {0, 1}∗ → D+ is a prefix-free
padding function

NMAC Transform:
NT[c, g] = g(c+(IV , pad(·)))
where g: {0, 1}n → {0, 1}n is a function

Chop Solution:
CHP[c] =

first n − s bits of c+(IV , pad(·))

HMAC Transform:
HT[c] =

c(c+(IV , 0d || pad(·)) || 0d−n || IV )

Fig. 3. The four MD variants proposed in [1] that are PRO-Pr but not CR-Pr

Pr[AG1 ⇒ 1] ≤ Pr[AG1 sets bad] . The right hand side is equal to 2−n because f
is a random oracle. Thus,

Advpro
C2,S(A2) = Pr

[
AG0 ⇒ 1

]− Pr
[
AG1 ⇒ 1

]
+

Pr
[
AG1 ⇒ 1

]− Pr
[
AF ,SF ⇒ 1

]
≤ Pr

[
AG1 sets bad

]
+ Pr

[
ACf

1 ,f ⇒ 1
]
− Pr

[
AF ,SF ⇒ 1

]
=

1
2n

+ Advpro
C1,S(A1) .

��

4.2 Insecurity of Proposed PRO-Pr Transforms

Collision-resistance preservation. The result above tells us that PRO-Pr
does not imply CR-Pr for arbitrary schemes. What about MD variants? One
might hope that the mechanisms used to create a PRO-Pr MD variant are suffi-
cient for rendering the variant CR-Pr also. This is not true. In fact all previously
proposed MD variants proven to be PRO-Pr are not CR-Pr. The four variants
are summarized in Fig. 3 and below, see [1] for more details.

The first transform is Prefix-free MD specified by PRE[c] = c+(IV , padPF(·)).
It applies a prefix-free padding function padPF to an input message and then
uses the MD iteration. The padding function padPF must output strings that
are a multiple of d bits with the property that for any two strings M �= M ′,
padPF(M) is not a prefix of padPF(M ′). The Chop solution simply drops s
bits from the output of the MD iteration applied to a message. The NMAC
transform applies a second, distinct compression function to the output of an
MD iteration; it is defined by NT[c, g] = g(c+(IV , pad(·))), where g is a function
from n bits to n bits (distinct from h). Lastly, the HMAC Transform is defined
by HT[c] = c(c+(IV , 0d || pad(·)) || 0d−n || IV ). This transform similarly utilizes
enveloping: the MD iteration is fed into c in a way that distinguishes this last
call from the uses of c inside the MD iteration. The prepending of a d-bit string
of zeros to an input message helps ensure that the envelope acts differently than
the first compression function application.
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Let IV = 0n. We shall use the collision-resistant hash function h that
maps 0d+n to 0n (defined in Sect. 4.1). We first show that the PRE construc-
tion, while being PRO-Pr for all prefix-free encodings, is not CR-Pr for all prefix-
free encodings. Let padPF(M) = g2(M) from Sect. 3.3 of [1]. Briefly, g2(M) =
0 || M1, . . . , 0 || Mk−1, 1 || Mk for M1 || · · · || Mk

d−1← M || 10r, where r = (d −
1) − ((|M | + 1) mod d − 1). (That is we append a one to M , and then enough
zero’s to make a string with length a multiple of d − 1.) Now let X = 0d−1

and Y = 02(d−1). Then we have that PREh(X) = PREh(Y ) and no colli-
sions against h occur. We should note that some prefix-free encodings will
render PRE CR-Pr, for example any that also include strengthening. The im-
portant point here is that strengthening does not ensure prefix-freeness and
vice-versa.

For the other three constructions, we assume that pad(M) simply appends
a one and then enough zeros to make a string with length a multiple of d.
Let X = 0d and Y = 02d. Then we have that CHPh(X) = CHPh(Y ) and
NTh(X) = NTh(Y ) and HTh(X) = HTh(Y ). Never is there a collision generated
against h.

The straightforward counter-examples exploit the weakness of the basic MD
transform. As noted previously, the MD transform does not give any guaran-
tees about collision resistance, and only when we consider particular padding
functions (i.e., pad64) can we create a CR-Pr transform. Likewise, we have il-
lustrated that the mechanisms of prefix-free encodings, dropping output bits,
and enveloping do nothing to help ensure collision-resistance is preserved, even
though they render the transforms PRO-Pr. To properly ensure preservation of
both properties, we must specify transforms that make use of mechanisms that
ensure collision-resistance preservation and mechanisms that ensure pseudoran-
dom oracle preservation. In fact, it is likely that adding strengthening to these
transforms would render them CR-Pr. However, as we show in the next section,
our new construction (with strengthening) is already more efficient than these
constructions (without strengthening).

PRF preservation. It is not formally meaningful to compare PRF preservation
with PRO preservation, since the resulting schemes in either case are different
types of objects (one keyed and one keyless). However we can look at particular
transforms. Of the four proposed by Coron et al. only PRE is known to be
PRF-Pr. Let e be a PRF. Since we are using the key-via-IV strategy, the keyed
version of PREe is PREe

K(M) = e+(K, padPF(M)). This is already known to be
a good PRF [13]. As for the other three transforms, it is unclear whether any of
them are PRF-Pr. For NT, we note that the security will depend greatly on the
assumptions made about g. If g is a separately keyed PRF, then we can apply
the proof of NMAC [4]. On the other hand, if g is not one-way, then an adversary
can determine the values produced by the underlying MD iteration and mount
simple length-extension attacks. Instead of analyzing these transforms further
(which are not CR-Pr anyway), we look at a new construction.
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5 The EMD Transform

We propose a transform that is CR-Pr, PRO-Pr, and PRF-Pr. Let n, d be num-
bers such that d ≥ n + 64. Let c: {0, 1}d+n → {0, 1}n be a function and let
D◦ = ∪i≥1{0, 1}(i+1)d−n. Then we define the enveloped Merkle-Damg̊ard itera-
tion c◦: {0, 1}2n ×D◦ → {0, 1}n on c by the algorithm given below.

Algorithm c◦(I1, I2, M):
M1 · · ·Mk

d←M
P ← M1 · · ·Mk−1

ret c(c+(I1, P ) || Mk || I2)

d

M1

c · · ·
nn

I1

Mk−1

n

c

Mk

d

n

c

n
YkI2

||

To specify our transform we require a padding function padEMD: {0, 1}≤264 →
D◦ for which the last 64 bits of padEMD(M) encodes |M |. Fix IV 1, IV 2 ∈ {0, 1}n

with IV 1 �= IV 2. Then we specify the enveloped Merkle-Damg̊ard transform
EMD[c] = c◦(IV 1, IV 2, padEMD(·)).

EMD utilizes two main mechanisms for ensuring property preservation. The
first is the well-known technique of strengthening: we require a padding function
that returns a string appended with the 64-bit encoding of the length. This
ensures that EMD preserves collision-resistance. The second technique consists
of using an ‘extra’ compression function application to envelope the internal
MD iteration. It is like the enveloping mechanism used by Maurer and Sjoden
in a different setting [18] (which is discussed in more detail in the full version of
the paper [19]), but distinct from prior enveloping techniques used in the current
setting. First, it includes message bits in the envelope’s input (in NMAC/HMAC
and HT, these bits would be a fixed constant, out of adversarial control). This
results in a performance improvement since in practice it is always desirable
to have d as large as possible relative to n (e.g., in SHA-1 d = 512 and n =
160). Second, it utilizes a distinct initialization vector to provide (with high
probability) domain separation between the envelope and internal applications
of the compression function. This mechanism allows us to avoid having to use
other previously proposed domain separation techniques while still yielding a
PRO-Pr transform. (The previous techniques were prefix-free encodings or the
prepending of 0d to messages, as used in the HT transform; both are more costly.)

5.1 Security of EMD

Collision-resistance preservation. Let h: {0, 1}d+n → {0, 1}n be a colli-
sion resistant hash function. Then any adversary which finds collisions against
EMDh (two messages M �= M ′ for which EMDh(M) = EMDh(M ′)) will nec-
essarily find collisions against h. This can be proven using a slightly modified
version of the proof that SMD is collision-resistant [2,3], and we therefore omit
the details. The important intuition here is that embedding the length of mes-
sages in the last block is crucial; without the strengthening the scheme would
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not be collision resistant (similar attacks as those given in Section 4 would be
possible).

PRO preservation. Now we show that EMD is PRO-Pr. We first prove a
slightly different transform is PRO-Pr and then show that EMD reduces to this
other transform. Let f, g = RFd+n,n be random oracles. For any strings P1 ∈ D+

and P2 ∈ {0, 1}d−n we define the function gf+: D◦ → {0, 1}n by gf+(P || S) =
g(f+(IV 1, P1) || P2 || IV 2). This function is essentially EMDf , except that we
replace the envelope with an independent random oracle g. The following lemma
states that gf+ is a pseudorandom oracle.

Lemma 1. [gf+ is a PRO] Let f, g = RFd+n,n. Let A be an adversary that
asks at most qL left queries, qf right f -queries, qg right g-queries and runs in
time t. Then

Advpro
gf+, SB(A) ≤ (qL + qg)2 + q2

f + qgqf

2n

where SB = (SBf ,SBg) is defined in Fig. 4 and qSB ≤ qg and tSB = O(q2
f +qgqf ).

We might hope that this result is given by Theorem 4 from [1], which states that
NTf,g is indifferentiable from a random oracle. Unfortunately, their theorem
statement does not allow for adversarially-specified bits included in the input
to g. Thus we give a full proof of Lemma 1, found in the full version of the
paper [19]. The next theorem captures the main result, and its proof is also in
the full version. For completeness, we provide the simulators SB = (SBf ,SBg)
and SA in Fig. 4.

Theorem 1. [EMD is PRO-Pr] Fix n, d, and let IV 1, IV 2 ∈ {0, 1}n with
IV 1 �= IV 2. Let f = RFd+n,n and F = RF∗,n be random oracles. Let A be an
adversary that asks at most qL left queries (each of length no larger than ld bits),
q1 right queries with lowest n bits not equal to IV 2, q2 right queries with lowest n
bits equal to IV 2, and runs in time t. Then

Advpro
EMD, SA(A) ≤ (qL + q2)2 + q2

1 + q2q1

2n
+

lq2
L

2n
.

where the simulator SA is defined in Fig. 4 and qSA ≤ q2 and tSA = O(q2
1 +q2q1).

PRF preservation. We utilize the key-via-IV strategy to create a keyed version
of our transform, which is EMDe

K1,K2
(M) = e◦(K1, K2, M) (for some PRF e).

The resulting scheme is very similar to NMAC, which we know to be PRF-Pr [5].
Because our transform allows direct adversarial control over a portion of the
input to the envelope function, we can not directly utilize the proof of NMAC
(which assumes instead that these bits are fixed constants). However, the major-
ity of the proof of NMAC is captured by two lemmas, The first (Lemma 3.1 [5])
shows (informally) that the keyed MD iteration is unlikely to have outputs that
collide. The second lemma (Lemma 3.2 [5]) shows that composing the keyed MD
iteration with a separately keyed PRF yields a PRF. We omit the details.
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On query SBf (X):

Y
$←{0, 1}n

Parse X into U || V s.t.
|U | = d, |V | = n

if V = IV 1 then NewNode(U) ← Y
if M1 · · ·Mi ← GetNode(V ) then

NewNode(M1 · · ·MiU) ← Y
ret Y

On query SBg(X):

Parse X into V || U || W s.t.
|V | = n, |U | = d − n, |W | = n

if W = IV 2 and
M1 · · ·Mi ← GetNode(V ) then
ret F(M1 · · ·MiU)

ret Y
$←{0, 1}n

On query SA(X):

Parse X into V || U || W s.t.
|V | = n, |U | = d − n, |W | = n

if W = IV 2 then
if M1 · · ·Mi ← GetNode(V ) then

ret F(M1 · · ·MiU)
else ret Y

Parse X into U || V s.t.
|U | = d, |V | = n

if V = IV 1 then NewNode(U) ← Y
if M1 · · ·Mi ← GetNode(V ) then

NewNode(M1 · · ·MiU) ← Y
ret Y

Fig. 4. Pseudocode for simulators SB (Lemma 1) and SA (Theorem 1)

Theorem 2. [EMD is PRF-Pr] Fix n, d and let e: {0, 1}d+n → {0, 1}n be a
function family keyed via the low n bits of its input. Let A be a prf-adversary
against keyed EMD using q queries of length at most m blocks and running in
time t. Then there exists prf-adversaries A1 and A2 against e such that

Advprf
EMDe

K1,K2
(A) ≤ Advprf

e (A1) +
(

q

2

)[
2m ·Advprf

e (A2) +
1
2n

]
where A1 utilizes q queries and runs in time at most t and A2 utilizes at most two
oracle queries and runs in time O(mTe) where Te is the time for one computation
of e.
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Abstract. This paper presents a secure constant-round password-based
group key exchange protocol in the common reference string model. Our
protocol is based on the group key exchange protocol by Burmester and
Desmedt and on the 2-party password-based authenticated protocols by
Gennaro and Lindell, and by Katz, Ostrovsky, and Yung. The proof of
security is in the standard model and based on the notion of smooth pro-
jective hash functions. As a result, it can be instantiated under various
computational assumptions, such as decisional Diffie-Hellman, quadratic
residuosity, and N-residuosity.

Keywords: Smooth Projective Hash Functions, Password-based Au-
thentication, Group Key Exchange.

1 Introduction

Key exchange is one of the most useful tools in public-key cryptography, allow-
ing users to establish a common secret which they can then use in applications
to achieve both privacy and authenticity. Among the examples of key exchange
protocols, the most classical one is the Diffie-Hellman protocol [22]. Unfortu-
nately, the latter only works between two players and does not provide any
authentication of the players.

Group Key Exchange. Group key exchange protocols are designed to provide
a pool of players communicating over an open network with a shared secret key
which may later be used to achieve cryptographic goals like multicast message
confidentiality or multicast data integrity. Secure virtual conferences involving
up to one hundred participants is an example.

Due to the usefulness of group key exchange protocols, several papers have
attempted to extend the basic Diffie-Hellman protocol to the group setting.
Nonetheless, most of these attempts were rather informal or quite inefficient in
practice for large groups. To make the analyses of such protocols more formal,
Bresson et al. [11,16] introduced a formal security model for group key exchange
protocols, in the same vein as [6,7,4]. Moreover, they also proposed new pro-
tocols, referred to as group Diffie-Hellman protocols, using a ring structure for
the communication, in which each player has to wait for the message from his

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 332–347, 2006.
c© International Association for Cryptologic Research 2006
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predecessor before producing his own. Unfortunately, the nature of their com-
munication structure makes their protocols quite impractical for large groups
since the number of rounds of communication is linear in the number of players.

A more efficient and practical approach to the group key exchange problem
is the one proposed by Burmester and Desmedt [17,18], in which they provide
a constant-round Diffie-Hellman variant. Their protocol is both scalable and
efficient, even for large groups, since it only requires 2 rounds of broadcasts.
Thus, with reasonable time-out values, one could always quickly decide whether
or not a protocol has been successfully executed. Furthermore, their protocol
has also been formally analyzed, in the above security framework [30].

Password-Based Authenticated Key Exchange. The most classical way
to add authentication to key exchange protocols is to sign critical message flows.
In fact, as shown by Katz and Yung [30] in the context of group key exchange
protocols, this technique can be made quite general and efficient, converting any
scheme that is secure against passive adversaries into one that is secure against
active ones. Unfortunately, such techniques require the use of complex infrastruc-
tures to handle public keys and certificates. One way to avoid such infrastructures
is to use passwords for authentication. In the latter case, the pool of players who
wants to agree on a common secret key only needs to share a low-entropy pass-
word —a 4-digit pin-code, for example— against which an exhaustive search is
quite easy to perform. In password-based protocols, it is clear that an outsider
attacker can always guess a password and attempt to run the protocol. In case of
failure, he can try again with a different guess. After each failure, the adversary
can erase one password. Such an attack, known as “on-line exhaustive search”
cannot be avoided, but the damage it may cause can be mitigated by other means
such as limiting the number of failed login attempts. A more dangerous threat
is the “off-line exhaustive search”, also known as “dictionary attack”. It would
mean that after one failure, or even after a simple eavesdropping, the adversary
can significantly reduce the number of password candidates.

In the two-party case, perhaps the most well known Diffie-Hellman variant
is the encrypted key exchange protocol by Bellovin and Merritt [8]. However,
its security analyses [4,10,13,14] require ideal models, such as the random ora-
cle model [5] or the ideal cipher model. The first practical password-based key
exchange protocol, without random oracles, was proposed by Katz et al. [28] in
the common reference string model and it is based on the Cramer-Shoup cryp-
tosystem [19]. Their work was later extended by Gennaro and Lindell [24] using
the more general smooth projective hash function primitive [19,20,21].

In the group key exchange case, very few protocols have been proposed with
password authentication. In [12,15], Bresson et al. showed how to adapt their
group Diffie-Hellman protocols to the password-based scenario. However, as the
original protocols on which they are based, their security analyses require ideal
models and the total number of rounds is linear in the number of players, making
their schemes impractical for large groups. More recently, several constant-round
password-based group key exchange protocols have been proposed in the liter-
ature by Abdalla et al. [1], by Dutta and Barua [23], and by Kim, Lee, and
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Lee [31]. All of these constructions are based on the Burmester and Desmedt
protocol [17,18] and are quite efficient, but their security analyses usually re-
quire the random oracle and/or the ideal cipher models.1 Independently of and
concurrently to our work, a new constant-round password-based group key ex-
change protocol has been proposed by Bohli et al. [9]. Their protocol is more
efficient than ours and also enjoys a security proof in the standard model.

Contributions. In this paper, we propose the first password-based authenti-
cated group key exchange protocol in the standard model. To achieve this goal,
we extend the Gennaro-Lindell framework [24] to the group setting, using ideas
similar to those used in the Burmester-Desmedt protocol [17,18]. In doing so, we
take advantage of the smooth projective hash function primitive [20] to avoid
the use of ideal models. Our protocol has several advantages. First, it is efficient
both in terms of communication, only requiring 5 rounds, and in terms of compu-
tation, with a per-user computational load that is linear in the size of the group.
Second, like the Burmester-Desmedt protocol, our protocol is also contributory
since each member contributes equally to the generation of the common session
key. Such property, as pointed out by Steiner, Tsudik and Waidner [33], may be
essential for certain distributed applications. Finally, as in the Gennaro-Lindell
framework [24], our protocol works in the common reference string model and
is quite general, being built in a modular way from four cryptographic primi-
tives: a labeled encryption scheme secure against chosen-ciphertext attacks, a
signature scheme, a family of smooth projective hash functions, and a family of
universal hash functions. Thus, it can be instantiated under various computa-
tional assumptions, such as decisional Diffie-Hellman, quadratic residuosity, and
N -residuosity (see [24]). In particular, the Diffie-Hellman variant (based on the
Cramer-Shoup cryptosystem [19]) can be seen as a generalization of the KOY
protocol [28] to the group setting.

2 Security Model

The security model for password-based group key exchange protocols that we
present here is the one by Bresson et al. [15], which is based on the model by
Bellare et al. [4] for 2-party password-based key exchange protocols.

Protocol participants. Let U denote the set of potential participants in a
password-based group key exchange protocol. Each participant U ∈ U may be-
long to several subgroups G ⊆ U , each of which has a unique password pwG
associated to it. The password pwG of a subgroup G is known to all the users
Ui ∈ G.

Protocol execution. The interaction between an adversaryA and the protocol
participants only occurs via oracle queries, which model the adversary capabil-
ities in a real attack. During the execution of the protocol, the adversary may
1 In fact, in [1], Abdalla et al. showed that the protocols by Dutta and Barua [23]

and by Kim, Lee, and Lee are insecure by presenting concrete attacks against these
schemes.
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create several instances of a participant and several instances of the same par-
ticipant may be active at any given time. Let U 〈i〉 denote the instance i of a
participant U and let b be a bit chosen uniformly at random. The query types
available to the adversary are as follows:

• Execute(U 〈i1〉
1 , . . . , U

〈in〉
n ): This query models passive attacks in which the

attacker eavesdrops on honest executions among the participant instances
U

〈i1〉
1 , . . . , U

〈in〉
n . It returns the messages that were exchanged during an

honest execution of the protocol.
• Send(U 〈i〉, m): This query models an active attack, in which the adversary

may tamper with the message being sent over the public channel. It returns
the message that the participant instance U 〈i〉 would generate upon receipt
of message m.

• Reveal(U 〈i〉): This query models the misuse of session keys by a user. It
returns the session key held by the instance U 〈i〉.

• Test(U 〈i〉): This query tries to capture the adversary’s ability to tell apart
a real session key from a random one. It returns the session key for instance
U 〈i〉 if b = 1 or a random key of the same size if b = 0.

Partnering. Following [30], we define the notion of partnering via session and
partner identifiers. Let the session identifier sidi of a participant instance U 〈i〉 be
a function of all the messages sent and received by U 〈i〉 as specified by the group
key exchange protocol. Let the partner identifier pidi of a participant instance
U 〈i〉 is the set of all participants with whom U 〈i〉 wishes to establish a common
secret key. Two instances U

〈i1〉
1 and U

〈i2〉
2 are said to be partnered if and only if

pidi1
1 = pidi2

2 and sidi1
1 = sidi2

2 .

Freshness. Differently from [30], our definition of freshness does not take into
account forward security as the latter is out of the scope of the present paper.
Let acci be true if an instance U 〈i〉 goes into an accept state after receiving the
last expected protocol message and false otherwise. We say that an instance U 〈i〉

is fresh if acci = true and no Reveal has been asked to U 〈i〉 or to any of its
partners.

Correctness. For a protocol to be correct, it should always be the case that,
whenever two instances U

〈i1〉
1 and U

〈i2〉
2 are partnered and have accepted, both

instances should hold the same non-null session key.

Indistinguishability. Consider an execution of the group key exchange pro-
tocol P by an adversary A, in which the latter is given access to the Reveal,
Execute, Send, and Test oracles and asks a single Test query to a fresh in-
stance, and outputs a guess bit b′. Let Succ denote the event b′ correctly
matches the value of the hidden bit b used by the Test oracle. The AKE-IND
advantage of an adversary A in violating the indistinguishability of the protocol
P and the advantage function of the protocol P , when passwords are drawn
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from a dictionary D, are respectively Advake-ind
P,D (A) = 2 · Pr [Succ ] − 1 and

Advake-ind
P,D (t, R) = maxA{Advake-ind

P,D (A)} , where maximum is over all A with
time-complexity at most t and using resources at most R (such as the number
of queries to its oracles). The definition of time-complexity that we use hence-
forth is the usual one, which includes the maximum of all execution times in the
experiments defining the security plus the code size.

We say that a password-based group key exchange protocol P is secure if
the advantage of any polynomial-time adversary is only negligibly larger than
O(q/|D|), where q is number of different protocol instances to which the adver-
sary has asked Send queries. Given that the dictionary size can be quite small
in practice, the hidden constant in the big-O notation should be as small as
possible (preferably 1) for a higher level of security.

3 Building Blocks

3.1 Universal Hash Function Families

One of the tools used in our protocol is a family of universal hash functions. A
family UH of universal hash function is a map K×G �→ R, where K is the key
or seed space, G is the domain of the hash function, and R is the range. For
each seed or key k ∈ K, we can define a particular instance UHk : G �→ R of
the family by fixing the key being used in the computation of the function. For
simplicity, we sometimes omit the seed k from the notation when referring to a
particular instance of the family. Let UHk be a universal hash function chosen
at random from a family UH . One of the properties of universal hash function
families in which we are interested is the one that says that, if an element g is
chosen uniformly at random from G, then the output distribution of UHk (g) is
statistically close to uniform in R [26].

3.2 Signatures

The signature scheme used in our protocol is the standard one introduced by
Goldwasser, Micali, and Rivest [25]. A standard signature scheme SIG = (SKG,
Sign, Ver) is composed of three algorithms. The key generation algorithm SKG
takes as input 1k, where k is a security parameter, and returns a pair (sk , vk)
containing the secret signing key and the public verification key. The signing
algorithm Sign takes as input the secret key sk and a message m and returns a
signature σ for that message. The verification algorithm Ver on input (vk ,m, σ)
returns 1 if σ is a valid signature for the message m with respect to the verifi-
cation key vk .

The security notion for signature schemes needed in our proofs is strong ex-
istential unforgeability under chosen-message attacks [25]. More precisely, let
(sk , vk) be a pair of secret and public keys for a signature scheme SIG , let
Sign(·) be a signing oracle which returns σ = Sign(sk ,m) on input m, and let F
be an adversary. Then, consider the experiment in which the adversary F , who is
given access to the public key vk and to the signing oracle Sign(·), outputs a pair
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(m, σ). Let {(mi, σi)} denote the set of queries made to the signing oracle with
the respective responses and let Succ denote the event in which Ver(vk ,m ′, σ′) =
1 and that (m ′, σ′) �∈ {(mi, σi)}. The SIG-SUF-CMA-advantage of an adversary
F in violating the chosen message security of the signature scheme SIG is de-
fined as Advsig-suf-cma

SIG ,F (k) = Pr [Succ ]. A signature scheme SIG is said to be
SIG-SUF-CMA-secure if this advantage is a negligible function in k for all poly-
nomial time adversaries (PTAs) F asking a polynomial number of queries to
their signing oracle.

3.3 Labeled Encryption

The notion of labeled encryption, first formalized in the ISO 18033-2 stan-
dard [32], is a variation of the usual encryption notion that takes into account the
presence of labels in the encryption and decryption algorithms. More precisely,
in a labeled encryption scheme, both the encryption and decryption algorithms
have an additional input parameter, referred to as a label, and the decryption
algorithm should only correctly decrypt a ciphertext if its input label matches
the label used to create that ciphertext.

Formally, a labeled encryption scheme LPKE = (LKG, Enc, Dec) consists of
three algorithms. Via (pk , sk) $← LKG(1k), where k ∈ N is a security parameter,
the randomized key-generation algorithm produces the public and secret keys
of the scheme. Via c $← Enc(pk , l ,m; r), the randomized encryption algorithm
produces a ciphertext c for a label l and message m using r as the randomness.
Via m ← Dec(sk , l , c), the decryption algorithm decrypts the ciphertext c using
l as the label to get back a message m.

The security notion for labeled encryption is similar to that of standard en-
cryption schemes. The main difference is that, whenever the adversary wishes
to ask a query to his Left-or-Right encryption oracle, in addition to providing
a pair of messages (m0,m1), he also has to provide a target label l in order
to obtain the challenge ciphertext c. Moreover, when chosen-ciphertext security
(LPKE-IND-CCA) is concerned, the adversary is also allowed to query his de-
cryption oracle on any pair (l , c) as long as the ciphertext c does not match the
output of a query to his Left-or-Right encryption oracle whose input includes the
label l . As shown by Bellare et al. in the case of standard encryption schemes [3],
one can easily show that the Left-or-Right security notion for labeled encryption
follows from the more standard Find-Then-Guess security notion (in which the
adversary is only allowed a single query to his challenging encryption oracle).

3.4 Smooth Projective Hash Functions

The notion of projective hash function families was first introduced by Cramer
and Shoup [20] as a means to design chosen-ciphertext secure encryption schemes.
Later, Gennaro and Lindell [24] showed how to use such families to build secure
password-based authenticated key exchange protocols. One of the properties that
makes these functions particularly interesting is that, for certain points of their
domain, their values can be computed by using either a secret hashing key or a
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public projective key. While the computation using secret hashing key works for
all the points in the domain of the hash function, the computation using a public
projective key only works for a specified subset of the domain. A projective hash
function family is said to be smooth if the value of the function on inputs that
are outside the particular subset of the domain are independent of the projective
key. In [24], the notion of smooth hash functions was presented in the context of
families of hard (partitioned) subset membership problems. Here we follow the
same approach.

Hard partitioned subset membership problems. Let k ∈ N be a security
parameter. In a family of hard (partitioned) subset membership problem, we first
specify two sets X(k) and L(k) in {0, 1}poly(k) such that L(k) ⊆ X(k) as well as
two distributions D(L(k)) and D(X(k)\L(k)) over L(k) and X(k)\L(k)) respec-
tively. Next, we specify a witness set W(k) ⊆ {0, 1}poly(k) and a NP-relation
R(k) ⊆ X(k) × W(k) such that x ∈ L(k) if and only if there exists a witness
w ∈ W(k) such that (x ,w) ∈ R(k). Then, we say that a family of subset mem-
bership problems is hard if (X(k),L(k), D(L(k)), D(X(k) \ L(k)),W(k),R(k))
instances can be efficiently generated, that a member element x ∈ L(k) can be
efficiently sampled according to D(L(k)) along with a witness w ∈ W(k) to
the fact that (x ,w) ∈ R(k), that non-member elements x ∈ X(k) \ L(k) can
be efficiently sampled according to D(X(k) \ L(k)), and that the distributions
of member and non-member elements cannot be efficiently distinguished. The
definition of hard partitioned subset membership problem is an extension of the
one given above in which the set X(k) is partitioned in disjoint subsets X(k, i)
for some index i and for which for all i it remains hard to distinguish an ele-
ment x ∈ L(k, i) chosen according to a distribution D(L(k, i)) from an element
x ∈ X(k, i) \ L(k, i) chosen according to a distribution D(X(k, i) \ L(k, i)).

Hard partitioned subset membership problems from labeled encryp-
tion. The families of hard partitioned subset membership problems in which
we are interested are those based on LPKE-IND-CCA-secure labeled encryption
schemes. More precisely, let LPKE = (LKG, Enc, Dec) be a LPKE-IND-CCA-
secure labeled encryption scheme and let pk be a public key outputted by the
LKG algorithm for a given security parameter k. Let Enc(pk ) denote an efficiently
recognizable superset of the space of all ciphertexts that may be outputted by
the encryption algorithm Enc when the public key is pk and let L and M de-
note efficiently recognizable supersets of the label and message spaces. Using
these sets, we can define a family of hard partitioned subset membership prob-
lems as follows. First, we define the sets X and L for the family of hard subset
membership problems as X(pk ) = Enc(pk ) × L × M and L(pk ) = {(c, l ,m) |
∃r s.t. c = Enc(pk , l ,m; r)}. Next, we define the partitioning of the sets X and
L with respect to the message and label used in the encryption as X(pk , l ,m) =
Enc(pk ) × l × m and L(pk , l ,m) = {(c, l ,m) | ∃r s.t. c = Enc(pk , l ,m; r)}. The
distribution D(L(pk , l ,m)) can then be defined by choosing a random r ∈ R
and outputting the triple (Enc(pk , l ,m; r), l ,m) with r as a witness. Likewise,
the distribution D(X(pk , l ,m)\L(pk , l ,m)) can be defined by choosing a random
r ∈ R and outputting the triple (Enc(pk , l ,m ′; r), l ,m), where m ′ is a dummy
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message different from m but of the same length. Finally, we define the witness
set W(pk ) to be r and the NP-relation R(pk) in a natural way. It is easy to
see that the hardness of distinguishing non-members from members follows from
the LPKE-IND-CCA security of the labeled encryption scheme.

Smooth projective hash functions. Let HLPKE(pk) = (X(pk ),L(pk ),
D(X(pk , l ,m) \ L(pk , l ,m)), D(L(pk , l ,m)),W(pk ),R(pk)) be a family of hard
(partitioned) subset membership problems based on a LPKE-IND-CCA-secure
labeled encryption scheme LPKE with security parameter k. A family of smooth
projective hash functions HASH (pk ) = (HashKG, ProjKG, Hash, ProjHash) asso-
ciated with HLPKE consists of four algorithms. Via hk $← HashKG(pk ), the
randomized key-generation algorithm produces hash keys hk ∈ HK(pk ), where
k ∈ N is a security parameter and pk is the public key of a labeled encryption
scheme LPKE . Via phk $← ProjKG(hk , l , c), the randomized key projection al-
gorithm produces projected hash keys phk ∈ PHK(pk ) for a hash key hk with
respect to label l and ciphertext c. Via g ← Hash(hk , c, l ,m), the hashing al-
gorithm computes the hash value g ∈ G(pk ) of (c, l ,m) using the hash key hk .
Via g ← ProjHash(phk , c, l ,m; r), the projected hashing algorithm computes the
hash value g ∈ G(pk ) of (c, l ,m) using the projected hash key phk and a wit-
ness r to the fact that c is a valid encryption of message m with respect to the
public-key pk and label l .

Properties. The properties of smooth projective hash functions in which we
are interested are correctness, smoothness, and pseudorandomness.

Correctness. Let LPKE be a labeled encryption scheme and let pk be a public
key outputted by the LKG algorithm for a given security parameter k. Let c =
Enc(pk , l ,m; r) be the ciphertext for a message m with respect to public key pk
and label l computed using r as the randomness. Then, for any hash key hk ∈
HK(pk ) and projected hash key phk $← ProjKG(hk , l , c), the values Hash(hk , c,
l ,m) and ProjHash(phk , c, l ,m, r) are the same.

Smoothness. Let hk ∈ HK(pk ) be a hash key and let phk ∈ PHK(pk ) be a
projected hash key for hk with respect to l and c. Then, for every triple (c, l ,m)
for which c is not a valid encryption of message m with respect to the public-
key pk and label l (i.e., (c, l ,m) ∈ X(pk , l ,m) \ L(pk , l ,m)), the hash value g
= Hash(hk , c, l ,m) is statistically close to uniform in G and independent of the
values (phk , c, l ,m).

Pseudorandomness. Let LPKE be a LPKE-IND-CCA-secure labeled encryp-
tion scheme, let pk be a public key outputted by the LKG algorithm for a given
security parameter k, and let (l ,m) ∈ L × M be a message-label pair. Then,
for uniformly chosen hash key hk ∈ HK(pk ) and randomness r ∈ R(pk ), the
distributions {c = Enc(pk , l ,m; r), l ,m, phk $← ProjKG(hk , l , c), g ← Hash(hk , c,

l ,m)} and {c = Enc(pk , l ,m; r), l ,m, phk $← ProjKG(hk , l , c), g $← G} are com-
putationally indistinguishable.
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Examples. To provide the reader with an idea of how efficient smooth projective
hash functions are, we recall here the example given in [24] based on the Cramer-
Shoup encryption scheme [19].

The labeled version of the Cramer-Shoup scheme works as follows. Let G be
a cyclic group of prime order q where q is large. The key generation algorithm
chooses two additional random generators g1, g2 in G, a collision-resistant hash
function H , and random values z, z̃1, z̃2, ẑ1, ẑ2 in Zq with z �= 0. The secret key
is set to (z, z̃1, z̃2, ẑ1, ẑ2) and the public key is defined to be (h, h̃, ĥ, g1, g2, H),
where h = gz

1 , h̃ = gz̃1
1 gz̃2

2 , and ĥ = gẑ1
1 gẑ2

2 . To encrypt a message m ∈ G with
respect to label l, the sender chooses r ∈ Zq , and computes u1 = gr

1 , u2 = gr
2 ,

e = hr ·m, θ = H(l, u1, u2, e) and v = (h̃ĥθ)r. The ciphertext is c = (u1, u2, e, v).
To decrypt a ciphertext c = (u1, u2, e, v) with respect to label l, the receiver
computes θ = H(l, u1, u2, e) and tests if v equals uz̃1+θẑ1

1 uz̃2+θẑ2
2 . If equality does

not hold, it outputs ⊥; otherwise, it outputs m = eu−z
1 .

The smooth projective hashing for the labeled Cramer-Shoup encryption
scheme is then defined as follows. The hash key generation algorithm HashKG
simply sets the key hk to be the tuple (a1, a2, a3, a4) where each ai is a ran-
dom value in Zq. The key projection function ProjKG, on input (hk , l , c), first
computes θ = H(l, u1, u2, e) and outputs phk = ga1

1 ga2
2 ha3(h̃ĥθ)a4 . The hash

function Hash on input (hk , c, l ,m) outputs ua1
1 ua2

2 (e/m)a3va4 . The projective
hash function ProjHash on input (phk , c, l ,m, r) simply outputs phk r.

4 A Scalable Password-Based Group Key Exchange
Protocol

In this section, we finally present our password-based group key exchange proto-
col. Our protocol is an extension of the Gennaro-Lindell password-based key
exchange protocol [24] to the group setting and uses ideas similar to those
used in the Burmester-Desmedt group key exchange protocol [18]. The Gennaro-
Lindell protocol itself is an abstraction of the password-based key exchange pro-
tocol of Katz, Ostrovsky, and Yung [28,29]. Like the Gennaro-Lindell protocol,
our protocol is built in a modular way from four cryptographic primitives: a
LPKE-IND-CCA-secure labeled encryption scheme, a signature scheme, a fam-
ily of smooth projective hash functions, and a family of universal hash functions.
Thus, our protocol enjoys efficient instantiations based on the decisional Diffie-
Hellman, quadratic residuosity, and N -residuosity assumptions (see [24]). Like
the Burmester-Desmedt group key exchange protocol, our protocol only requires
a constant number of rounds and low per-user computation.

As done in the Gennaro-Lindell protocol, we also assume the existence of
a mechanism to allow parties involved in the protocol to differentiate between
concurrent executions as well as identify the other parties with which they are
interacting. As in their case, this requirement is only needed for the correct
operation of the protocol. No security requirement is imposed on this mechanism.
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4.1 Protocol Description

Overview. As in the Burmester-Desmedt protocol, our protocol assumes a ring
structure for the users so that we can refer to the predecessor and successor
of a user. Moreover, we associate each user with an index i between 1 and n,
where n is the size of the group. After deciding on the order of the users, our
protocol works as follows. First, each user in the group executes two correlated
instances of the Gennaro-Lindell protocol, one with his predecessor and one with
his successor so each user can authenticate his neighbors (this accounts for the
first 3 rounds of the protocol). However, instead of generating a single session
key in each of these instances, we modify the original Gennaro-Lindell protocol
so that two independent session keys are generated in each session (this requires
an extra hash key and an extra projection key per user). We then use the first
one of these as a test key to authenticate the neighbor with whom that key is
shared and we use the other one to help in the computation of the group session
key, which is defined as the product of these latter keys. To do so, we add one
more round of communication like in the Burmester-Desmedt protocol, so that
each user computes and broadcasts the ratio of the session keys that he shares
with his predecessor and successor. After this round, each user is capable of
computing the group session key. However, to ensure that all users agree on the
same key, a final round of signatures is added to the protocol to make sure that
all users compute the group session key based on the same transcript. The key
used to verify the signature of a user is the same one transmitted by that user
in the first round of the Gennaro-Lindell protocol.

For a pictorial description of our protocol, please refer to Fig. 1. The formal
description follows.

Description. Let LPKE = (LKG, Enc, Dec) be a labeled encryption scheme, let
SIG = (SKG, Sign, Ver) be a signature scheme, and let HASH (pk ) = (HashKG,
ProjKG, Hash, ProjHash) be a family smooth projective hash functions based on
LPKE . Let UH : G �→ {0, 1}2l and UH′ : G �→ {0, 1}l be two universal hash
functions chosen uniformly at random from the families UH and UH ′ and let
UH1(g) and UH2(g) refer to the first and second halves of UH(g). Let U1, . . . , Un

be the users wishing to establish a common secret key and let pw be their joint
password chosen uniformly at random from a dictionary Dict of size N . We
assume pw either lies in the message space M of LPKE or can be easily mapped
to it. Our protocol has a total of five rounds of communication and works as
follows.

Initialization. A trusted server runs the key generation algorithm LKG on
input 1k, where k ∈ N is a security parameter, to obtain a pair (pk , sk) of secret
and public keys and publishes the public key pk along with randomly selected
universal hash function UH and UH′ from the families UH and UH ′.

Round 1. In this first round, each player Ui for i = 1, . . . , n starts by setting
the partner identifier pidi to {U1, . . . , Un}. Then, each player Ui generates a pair
(sk i, vk i) of secret and public keys for a signature scheme and a label li = vk i ‖
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U1 ‖ . . . ‖Un. Next, each player encrypts the joint group password pw using the
encryption algorithm Enc with respect to the public key pk and label li using rRi
as the randomness. Let cRi denote the resulting ciphertext (i.e., cRi = Enc(pk , li,
pw; rRi )). At the end of this round, each player Ui broadcasts the pair (li, cRi ).

Round 2. In this second round, each player Ui for i = 1, . . . , n encrypts once
more the joint group password pw using the encryption algorithm Enc with
respect to the public key pk and label li using rLi as the randomness. Let cLi
denote the resulting ciphertext (i.e., cLi = Enc(pk , li, pw; rLi )). Next, each player
Ui chooses a hash key hk L

i uniformly at random from HK(pk ) for the smooth
projective hash function and then generates a projection key phk L

i for it with
respect to the pair (cRi−1, li−1). That is, phk L

i
$← ProjKG(hk L

i , li−1, cRi−1). Here and
in other parts of the protocol, the indices are taken modulo n. At the end of this
round, each player Ui broadcasts the pair (cLi , phkL

i ).

Round 3. In this round, player Ui first chooses two new hash keys hk i and
hkR

i uniformly at random from HK(pk) for the smooth projective hash function.
Next, player Ui generates two projection keys phk i and phk R

i for the hash keys hk i

and hkR
i , both with respect to the pair (cLi+1, li+1). That is, phk i

$← ProjKG(hk i,

li+1, cLi+1) and phk R
i

$← ProjKG(hkR
i , li+1, cLi+1). Then, player Ui computes a test

master key X R
i = K L

i+1 · K R
i for its successor, where K L

i � Hash(hk L
i , cRi−1, li−1,

pw) and K R
i � Hash(hk R

i , cLi+1, li+1, pw). Note that player Ui can compute K R
i

using hkR
i and K L

i+1 using phk L
i+1 and the witness rRi to the fact that cRi is a

valid encryption of pw with respect to pk and li. Finally, player Ui computes a
test key testRi = UH1(X R

i ), sets T R
i = Ui ‖Ui+1 ‖ cRi ‖ cLi+1 ‖ phk i ‖ phk R

i ‖ phk L
i+1 ‖

testRi , and computes a signature σR
i on T R

i using sk i. At the end of this round,
player Ui broadcasts the tuple (phk i, phk

R
i , test

R
i , σ

R
i ).

Round 4. In this round, each player Ui first verifies if the signature σR
i−1 on

the transcript T R
i−1 is correct using vk i−1. If this check fails, then player Ui halts

and sets acci = false. Otherwise, player Ui computes the values K L
i and K R

i−1,
using the hash key hkL

i and the projection key phk R
i−1 along with the witness rLi

to the fact that cLi is a valid encryption of pw with respect to pk and li. That is,
K L

i = Hash(hk L
i , cRi−1, li−1, pw) and K R

i−1 = ProjHash(phk R
i−1, cLi , li, pw, rLi ). Next,

player Ui computes the test master key X L
i = K L

i ·K R
i−1 for its predecessor and

verifies if testRi−1 = UH1(X L
i ). Once again, if this test fails, then player Ui halts

and sets acci = false. If this test succeeds, then player Ui computes a test key
testLi = UH2(X L

i ) for its predecessor and an auxiliary key Xi = Ki/Ki−1, where
Ki � Hash(hk i, cLi+1, li+1, pw). More precisely, player Ui computes the value Ki

using the hash key hk i and the value Ki−1 using the projection key phk i−1 along
with the witness rLi to the fact that cLi is a valid encryption of pw with respect
to pk and li. Finally, each player Ui broadcasts the pair (Xi, testLi ).

Round 5. First, each player Ui checks whether testLi+1 = UH2(X R
i ) and whether∏n

l=1 Xl = 1. If any of these tests fails, then player Ui halts and sets acci = false.
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Otherwise, each player Ui sets Tj = vk j ‖Uj ‖ cj ‖ phk j ‖ phk L
j ‖ phk R

j ‖Xj ‖X L
j

for j = 1, . . . , n and T = T1 ‖ . . . ‖Tn and then signs it using sk i to obtain σi.
Finally, each player Ui broadcasts σi.

Finalization. Each player Ui checks for j �= i whether σj is a valid signature
on T with respect to vk j . If any of these checks fails, then player Ui halts and
sets acci = false. Otherwise, player Ui sets acci = true and computes the master
key MSK =

∏n
j=1 Kj = Kn

i ·X n−1
i+1 ·X n−2

i+2 · . . . ·X 2
i+n−3 ·Xi+n−1, and the session

key SK = UH′(MSK ). Each player Ui also sets the session identifier sidi to T .

Observation. Let Ki � Hash(hk i, cLi+1, li+1, pw), K R
i � Hash(hk R

i , c
L
i+1, li+1,

pw), and K L
i � Hash(hkL

i , c
R
i−1, li−1, pw) denote temporary keys. In a normal

execution of the protocol, the temporary keys Ki and K R
i are known to both

player Ui (who knows hk i and hk R
i ) and his successor Ui+1 (who knows phk i,

phk R
i , and the witness rLi+1 to the fact that cLi+1 is a valid encryption of pw with

respect to pk and li+1). Likewise, the temporary key K L
i is known to both player

Ui (who knows hk L
i ) and his predecessor Ui−1 (who knows phk R

i and the witness
rRi−1 to the fact that cRi−1 is a valid encryption of pw with respect to pk and li−1).

4.2 Correctness and Security

Correctness. In an honest execution of the protocol, it is easy to verify that
all participants in the protocol will terminate by accepting and computing the
same values for the partner identifier, session identifiers, and the session key. The
session key in this case is equal to

∏n
j=1 Hash(hk j , cj+1, lj+1, pw) =

∏n
j=1 Kj .

Security. The intuition behind the security of our protocol is quite simple. Due
to the security properties of the underlying Gennaro-Lindell protocol, each user
is able to authenticate its neighbors and safely share session keys with them.
Due to the properties of the signature scheme, all users in the group are able to
ensure that they had received the same messages and that they will generate the
same group session key. As the following theorem shows, the GPAKE protocol
described above and in Fig. 1 is a secure password-based authenticated group
key exchange protocol as long as the primitives on which the protocol is based
meet the appropriate security notion described in the theorem.

Theorem 1. Let LPKE be a labeled encryption secure against chosen-ciphertext
attacks, let HASH be a family of smooth projective hash functions, let UH and
UH ′ be families of universal hash functions, and let SIG be a signature scheme
that is unforgeable against chosen-message attacks. Let GPAKE denote the pro-
tocol built from these primitives as described above and let A be an adversary
against GPAKE . Then, the advantage function Advake-ind

GPAKE ,A(k) is only negligibly
larger than O(q/N ), where q denotes the maximum number of different protocol
instances to which A has asked Send queries and N is the dictionary size.

The proof can be found in the full version of this paper [2]. In it, we actually show
that the security of our protocol is only negligibly larger than (qsend-1+qsend-2 )/N ,
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User Ui

pidi = {U1, . . . , Un}
(ski, vki)

$← SKG(1k)
li = vki ‖U1 ‖ . . . ‖Un

cR
i = Enc(pk , li, pw; rR

i )

li, cRi−−−−−−−−→

hkL
i

$← HK(pk)

phkL
i

$← ProjKG(hkL
i, li−1, cR

i−1)

cL
i = Enc(pk , li, pw; rL

i )

phkLi, cLi−−−−−−−−→

hki, hkR
i

$← HK(pk)

phki
$← ProjKG(hki, li+1, cL

i+1)

phkR
i

$← ProjKG(hkR
i, li+1, cL

i+1)

K L
i+1 = ProjHash(phkL

i+1, cR
i, li, pw, rR

i )

K R
i = Hash(hkR

i, c
L
i+1, li+1, pw)

X R
i = K L

i+1 · K R
i

testRi = UH1(X R
i )

σR
i = Sign(ski, T

R
i )

phki, phkRi, testRi, σR
i−−−−−−−−−−−−→

if Ver(vki−1, T R
i−1, σR

i−1) = 0 then acci = false

K L
i = Hash(hkL

i, c
R
i−1, li−1, pw)

K R
i−1 = ProjHash(phkR

i−1, cL
i , li, pw, rL

i )

X L
i = K L

i · K R
i−1

if testRi−1 �= UH1(X
L
i ) then acci = false

testLi = UH2(X
L
i )

Ki = Hash(hki, c
L
i+1, li+1, pw)

Ki−1 = ProjHash(phki−1, cL
i , li, pw, rL

i )
Xi = Ki/Ki−1

Xi, testLi−−−−−−−−→
if testLi+1 �= UH2(X

R
i ) then acci = false

if n
l=1 Xl �= 1 then acci = false

T = T1 ‖ . . . ‖Tn

σi = Sign(ski, T)

σi−−−−−−−−→
for j = 1, . . . , i − 1, i + 1, . . . , n
if Ver(vkj , T , σj) = 0 then acci = false

MSK = Kn
i · n−1

j=1 Xn−j
i+j

SK = UH′(MSK )
acci = true
sidi = T

Fig. 1. An honest execution of the password-authenticated group key exchange protocol
by player Ui in a group {U1, . . . , Un}, where T R

i = Ui ‖Ui+1 ‖ cRi ‖ cLi+1 ‖ phk i ‖ phk R
i ‖

phk L
i+1 ‖ test Ri and Ti = vk i ‖Ui ‖ ci ‖ phk i ‖ phk L

i ‖ phk R
i ‖Xi ‖X L

i for i = 1, . . . , n

where qsend-1 and qsend-2 represent the maximum number of Send queries that the
adversary can ask with respect to the first and second round of communication
and N is dictionary size. Even though we believe this security level is good
enough for groups of small to medium sizes, it may not be sufficient in cases
where the number of users in a group is large and the dictionary size is small.
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In the latter case, it would be desirable to have a scheme whose security is only
negligibly larger than the number of sessions (and not protocol instances) over
the size of the dictionary. Unfortunately, the latter cannot be achieved by our
protocol as it is possible for an active adversary to test in the same session a
number of passwords that is linear in the total number of users, for instance by
playing the role of every other user.

4.3 Efficiency

Our protocol is quite efficient, only requiring a small amount of computation by
each user. In what concerns encryption and hash computations, each user only
has to perform 2 encryptions, 3 projection key generations, 3 hash computations,
3 projected hash computations, and 5 universal hash computations. The most
expensive part of our protocol, which is linear in the group size, is the number of
signature verifications and the master session key computation. While the latter
computation can be improved by using algorithms for multi-exponentiations, the
former can be improved by using two-time signature schemes.

It is worth mentioning that, as done by Katz et al. [27] in the case of the
KOY protocol [28], one could also improve the efficiency of our protocol by us-
ing two different encryption schemes when computing the ciphertexts cRi and
cLi broadcasted in the first and second rounds. While the computation of the
ciphertexts cRi would require a CCA-secure labeled encryption scheme, the com-
putation of the ciphertexts cLi would only require a CPA-secure encryption
scheme.

4.4 Future Work

One issue not addressed in the current paper is whether our protocol remains
secure in the presence of Corrupt queries, through which the adversary can learn
the values of the long-term secret keys held by a user. This is indeed a significant
limitation of our security model which we expect to address in the full version
of this paper. In fact, we do hope to be able to prove that our protocol achieves
forward security according to the definition given in [30].
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Abstract. We consider oblivious transfer protocols and their applica-
tions that use underneath semantically secure homomorphic encryption
scheme (e.g. Paillier’s). We show that some oblivious transfer protocols
and their derivatives such as private matching, oblivious polynomial eval-
uation and private shared scalar product could be subject to an attack.
The same attack can be applied to some non-interactive zero-knowledge
arguments which use homomorphic encryption schemes underneath. The
roots of our attack lie in the additional property that some semanti-
cally secure encryption schemes possess, namely, the decryption also re-
veals the random coin used for the encryption, and that the (sender’s
or prover’s) inputs may belong to a space, that is very small compared
to the plaintext space. In this case it appears that even a semi-honest
chooser (verifier) can derive from the random coin bounds for all or some
of the sender’s (prover’s) private inputs with non-negligible probability.
We propose a fix which precludes the attacks.

Keywords: Oblivious Transfer, Homomorphic Semantically Secure
Cryptosystems, Paillier’s Public-Key Cryptosystem, Non-Interactive
Zero-Knowledge Arguments.

1 Introduction

Oblivious Transfer (OT) [4,30] protocols allow one party, called the sender to
send part of its inputs to a second party, called chooser, in such a manner that
the chooser does not receive more information than it is entitled and the sender
does not learn which part of the inputs the chooser received. Oblivious transfer
is used as a key component in many applications of cryptography.

Naor and Pinkas [26] proposed a way to use OT for polynomial evaluation.
Another application known as private matching solves the problem of two par-
ties who possess lists of items and want to compute their set-intersection or to
approximate the size of the intersection. Freedman et al. [16] have shown that
a simple reduction from oblivious transfer to private matching exists. The au-
thors of [16] used oblivious polynomial evaluation in their solution for the private
matching set intersection problem.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 348–363, 2006.
c© International Association for Cryptologic Research 2006
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In this paper we will work in the semi-honest security model, in which the
parties follow the protocol, but may be curious. We do not consider malicious
parties who may deviate from the protocol. Often, there is no guarantee for the
privacy of the sender if the chooser is malicious, but we do not consider this
issue.

Our Contribution: We first describe an attack against an oblivious transfer
protocol; subsequently we apply the attack to certain protocols derived from
oblivious transfer, such as oblivious polynomial evaluation, private matching
(set cardinality and subset inclusion) and private (shared) scalar product. For
our attack we exploit the additional property that some semantically secure en-
cryption schemes possess, namely that the decryption reveals the random coin
used for encryption. We consider the case when the (sender’s) inputs belong to
a very small space compared to the plaintext space of the Paillier cryptosystem.
We show that from the random coin the chooser can derive certain informa-
tion (bounds) for all (or some) of the sender’s private inputs with non-negligible
probability. We extend the attack to certain non-interactive zero-knowledge pro-
tocols. We introduce the so-called irrational behavior of the chooser, meaning
that a semi-honest but curious chooser is “bluffing” in order to get the sender’s
inputs, i.e. the chooser is putting his privacy at risk. To the best of our knowl-
edge some of the protocols from the following papers [6,12,17,19,31] could be
subject to this attack when applied in this scenario. Finally we propose a fix
which precludes the attacks.

Organization of the paper: In the next section we introduce the notions of ho-
momorphic semantically secure cryptosystems, oblivious transfer, and different
applications of the oblivious transfer. Section 3 provides description of several
known protocols and in Sect. 4 the attack against them is proposed. We conclude
in Sect. 5.

2 Preliminary

Homomorphic Semantically Secure Cryptosystems
Let Π = (GΠ , E, D) be a public-key encryption cryptosystem, where GΠ is the
key generation algorithm, E is the encryption algorithm and D is the decryption
algorithm. Let k be the security parameter, then the key generation algorithm
GΠ on input 1k generates a valid key pair (SK, K) of private and public keys
that corresponds to the security parameter k. The encryption algorithm E takes
as input a plaintext m, a random coin r and the public key K and outputs the
corresponding ciphertext EK(m, r). The decryption algorithm takes as input a
ciphertext c and the private key SK and outputs the corresponding plaintext
DSK(c). More formal: GΠ : 1k �→ (SK, K); EK : (m, r) �→ EK(m, r), DSK : c �→
DSK(c) and DSK(c) = m if c = EK(m, r). It is required that DSK(EK(m, r)) =
m for any random coin r, key pair (SK, K) and plaintext m. It is said that Π is
homomorphic, if EK(m1, r1) ·EK(m2, r2) = EK(m1 +m2, r1 ·r2). It then follows
that EK(m, r)s = EK(s · m, rs).
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For an algorithm A, define Advsem
Π,k (A) to be the advantage that A has over

random guessing when trying to distinguish random encryption of two elements,
chosen by herself. It is said that Π is semantically secure under an chosen plain-
text attack (IND-CPA secure) if for all PPT (probabilistic polynomial time)
algorithms A, the advantage Advsem

Π,k (A) is negligible in k.
Several homomorphic probabilistic encryption schemes are known: ElGamal

[14], Goldwasser and Micali [18], Benaloh [2], Okamoto and Uchiyama [28], Nac-
cache and Stern [25], Paillier [29] and its modifications [5,13].

For the sake of simplicity, we will describe the protocols with the Paillier
cryptosystem (some of the protocols which we consider are indeed designed for
the Paillier cryptosystem), although most of the homomorphic semantically se-
cure cryptosystems can be used instead of Paillier’s. We present the Paillier
cryptosystem for completeness, but omit the number-theoretic justifications.

Key Generation: Let N be an RSA modulus N = pq, where p, q are large primes.
The public key K is N and the secret key SK is λ(N) = lcm((p − 1), (q − 1)),
where λ(N) is the Carmichael function. One can assume w.l.o.g. that N > 2k,
where the security parameter k ≥ 1024.
Encryption: To encrypt a plaintext m ∈ ZN , compute the ciphertext

c = EK(m, r) = (1 + mN)rNmod N2, with r ∈R Z∗
N .

Decryption: To decrypt a ciphertext c ∈ ZN2 , compute the plaintext

m = DSK(c) =
L(cλ(N) mod N2)

λ(N)
mod N, where L(u) =

u − 1
N

.

The Paillier cryptosystem possesses the following useful properties:

EK(m1, r1)EK(m2, r2) mod N2 = EK(m1 + m2 mod N, r1r2 mod N)
EK(m, r)s mod N2 = EK(sm mod N, rs mod N)

EK(m, r)(1 + N)c mod N2 = EK(m + c mod N, r).

In order to re-randomize a ciphertext c = EK(m, r), simply multiply it by
a random encryption of 0, i.e. compute crN

1 mod N2 = EK(m, rr1mod N) for
r1 ∈R Z∗

N .
It is well known (see [5]) that for Paillier’s cryptosystem DSK(c) = (m, r) if

c = EK(m, r), i.e. the result of the decryption of a ciphertext is the corresponding
plaintext and the random coin used for the encryption (usually the random coin
cannot be recovered efficiently). Indeed as Catalano et al. have shown there is
an alternative decryption process based on the observation that the ciphertext
c = EK(m, r) satisfies c = rNmod N . The latter can disclose r by an RSA
decryption (modulo N , with public exponent N). Now putting r in the original
ciphertext equation provides the plaintext m.

We stress here that the ability to efficiently disclose the random coin used
for the encryption, forms an essential point for our attack. We pose as an open
problem whether our attack can be extended to some of the other homomorphic
semantically secure cryptosystems.
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2.1
(n
1

)
-Oblivious Transfer and Zero-Knowledge Arguments

During an
(
n
1

)
-Oblivious Transfer the sender maintains n items and the chooser

receives one item chosen by him. The sender does not know which item was
transferred. The security of an OT is usually defined in two parts. We will follow
the definitions of [22,27]. Let k̃ be the security parameter.
Chooser-Privacy: Consider an algorithm A that executes the sender’s part of the
OT protocol; define AdvOT

Cho,k̃
(A) to be the probability that after observing an

execution of the protocol, A can predict which choice was made by the chooser.
An OT protocol is said to be (computationally) chooser-private if AdvOT

Cho,k̃
(A)

is negligible for any PPT algorithm A. In all this protocols the chooser-privacy
(which holds even against a malicious sender) will be based on the indistin-
guishability implied by the underlying semantically secure encryption scheme.
Sender-Privacy: Consider an algorithm A executing the chooser’s part of the
OT protocol; define a simulator S that generates an output that is statistically
indistinguishable from the view of A that interacts with the honest sender. More
precisely, for an algorithm S define AdvOT

Sen,k̃
(A, S) to be the statistical difference

of the distributions of the S output and the view of A. An OT protocol is called
(statistically) sender-private if for every (not necessarily PPT) A there exists a
(not necessarily PPT) S, such that AdvOT

Sen,k̃
(A, S) is negligible in k̃. The sender-

privacy is called perfect if AdvOT
Sen,k̃

(A, S) = 0. In all this cases the sender-privacy
is based on a comparison with the ideal model.

Recently Damg̊ard et al. [12] have proposed a method to build non-interactive
zero-knowledge protocols from homomorphic encryption. Namely the authors
described a method for compiling a class of Σ-protocols (3-move public-coin
protocols) into non-interactive zero-knowledge arguments. In a zero-knowledge
proof system a prover convinces a verifier via an interactive protocol that some
statement is true. The verifier should learn nothing beyond the fact that the
assumption is valid. Σ-protocols are three-move protocols where conversations
are tuples of the form (a, e, z) where e is a random challenge sent by the verifier, a
is the prover’s input and z is the proof. There are several well-known techniques
for making Σ-protocols non-interactive [11,15].

2.2 Applications of OT

As shown by Kilian [21] most cryptographic protocols can be based on oblivious
transfer. In this section we will describe several protocols built on top of OT.

An
(
n
1

)
-OT protocol sometimes needs to be sender-verifiable (or committed)

[7,10] in the following sense: the sender commits to every item and sends these
commitments to the chooser; these commitments later can be used in various
zero-knowledge proofs and arguments.

The notion of conditional oblivious transfer (COT) was introduced by Di
Crescenzo et al. [9]. It is a variant of OT in which the two participants have
private inputs, say x and y respectively, and share a public predicate Q(·, ·). The
sender has a secret s, which is transferred to the chooser if and only if Q(x, y) = 1.
If Q(x, y) = 0, no information about s is transferred to the chooser. The chooser’s
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private input and the value of the predicate remain computationally hidden from
the sender.

The notion of strong conditional oblivious transfer (SCOT) has been first in-
troduced by Di Crescenzo [8]; later Blake and Kolesnikov [3] have independently
defined the same notion. SCOT strengthens the COT definition, in the SCOT
setting – unlike the COT “all-or-nothing” approach – the sender possesses two
secrets s0 and s1 and transfers si if Q(x, y) = i (where i = 0 or 1). In addition to
the COT requirement that the chooser private input has to be computationally
hidden from the sender, the value of the predicate should also remain hidden for
both participants.

Consider the following problem: two parties possess lists (sets) of items and
they want to compute their set-intersection. Related problems are to approx-
imate the size of the intersection or to decide whether the intersection size is
greater than a threshold. Such problems are called private matching (PM) in
[16]. That is, if the chooser inputs X = {x1, . . . , xkc} and the sender inputs Y =
{y1, . . . , yks} then the chooser learns X ∩ Y = {xu : ∃v, xu = yv} ← PM(X, Y ).
The related variants are as follows: the chooser learns |X ∩ Y | ← PMC(X, Y )
for the intersection size problem or for the threshold intersection size problem he
gets 1 ← PMt(X, Y ) if PMC(X, Y ) > t and 0 otherwise. As shown by Freedman
et al. [16] a simple reduction from oblivious transfer to private matching exists.

In a simpler form of PM both lists contain just one item, thus the two parties
want to compare their private inputs without leaking it. Private equality test
(PET) allows the chooser to know whether his private input and the sender’s
private input are equal [16,22].

Another kind of PM is the private subset inclusion. Namely, both participants
have sets X and Y as inputs and the chooser gets 0 if X ⊆ Y or 1 otherwise.
Laur et al. [24] have proposed a private subset inclusion protocol, based on an
improvement of the intersection size protocol by Freedman et al. [16].

Naor and Pinkas [26] proposed a way to use OT for polynomial evaluation
(OPE). Freedman et al. [16] used OPE in their solution for the PM set inter-
section problem. Recently Freedman et al. [17] proposed another OPE protocol
which is used as a building block for a keyword search protocol.

A protocol between two parties is called a scalar product (SP) protocol when
on private inputs of both parties x = (x1, . . . , xn) and y = (y1, . . . , yn) it outputs
their scalar product <x,y>=

∑n
i=1 xiyi. A protocol is called a shared scalar

product (SSP) protocol [19] when both parties receive as output of the protocol
uniformly distributed additive shares of the scalar product, i.e., the chooser gets
sc ∈ ZN and the sender gets ss ∈ ZN such that sc + ss =<x,y> mod N . These
protocols are called private if the inputs (i.e. x and y) are not disclosed.

3 The Protocols

This section describes the protocols to which our attacks can be applied. The
reader who is familiar with these protocols can skip this section and continue
with the attack described in Sect. 4.
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Consider the standard OT setting, i.e. the chooser and the sender have their
private inputs. The chooser encrypts his input and sends it to the sender. The
sender applies a transformation to the encrypted chooser’s input and to his own
input (which could be also encrypted). The value obtained in this way is returned
to the chooser.

3.1
(n
1

)
-Oblivious Transfer

We will start with a short description of Homomorphic Oblivious Transfer and
the AIR protocol [1,22].
Private Inputs:

– The sender has a vector μ = (μ1, . . . , μn), μi ∈ ZT and T ≤ N .
– The chooser has made a choice σ ∈ {1, . . . , n}.

Private Output: The chooser gets μσ.

1. The chooser generates a (private, public) key-pair (SK, K) ← GΠ(1k). Then
generates a random coin r ∈R Z∗

N and computes
c ← EK(σ, r). He sends K and c to the sender.

2. For i = 1, . . . , n the sender performs the following: generates random coins
ri, si ∈R Z∗

N and computes ci ← EK(μi, 1) (c EK(−i, 1))si EK(0, ri)mod N2.
He sends c1, . . . , cn to the chooser.

3. The chooser obtains μσ ← DSK(cσ).

Homomorphic
(
n
1

)
-Oblivious Transfer

Aiello et al. [1] have proposed an OT protocol, which provides perfect sender-
privacy and computational chooser-privacy (AIR protocol, in short). This proto-
col has been slightly modified and generalized by Lipmaa [22] to a homomorphic
oblivious transfer (HOT) protocol. In [23] the authors fix some problems with
the scheme from [22] .

Since the encryption scheme is semantically secure, the sender cannot derive
σ from the ciphertext c (step 1), which guarantees the chooser-privacy. Using
the homomorphic property of the encryption scheme it is easy to verify that
in step 2 the sender computes ci ← EK(μi + (σ − i)simod N, ri rsimod N).
Then in step 3 the chooser can obtain μi +(σ− i)simod N . But since the si are
random coins, the values μi are perfectly hidden, except μσ. This guarantees the
correctness of the scheme and the sender-privacy. The HOT protocol is further
used in [22] to build committed OT and PET protocols.

Stern’s
(
n
1

)
-Oblivious Transfer

Now we present the OT protocol proposed by Stern [31]; this protocol has later
been rediscovered by Chang [6]. The original protocol uses a homomorphic se-
mantically secure encryption scheme and a homomorphic commitment scheme.
The Paillier encryption scheme, proposed one year after the publication of [31],
is not used in the original scheme.
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Private Inputs:

– The sender has a vector μ = (μ1, . . . , μn), μi ∈ ZT and T ≤ N .
– The chooser has made a choice σ ∈ {1, . . . , n}.

Private Output: The chooser gets μσ.

1. The chooser generates a (private, public) key-pair (SK, K) ← GΠ(1k). He
chooses an n-tuple (x1, . . . , xn) such that xσ = 1 and xi = 0 for i �= σ.
Then generates n random coins ri ∈R Z∗

N and computes ci ← EK(xi, ri)
for i = 1, . . . , n. He sends K and c1, . . . , cn to the sender. Last he provides
zero-knowledge proofs that all xi except one are equal to 0 and the nonzero
one is equal to 1.

2. The sender generates a random coin r ∈R Z∗
N and

computes c ← (
∏n

i=1 cμi

i ) EK(0, r)mod N2. He sends c to the chooser.
3. The chooser obtains μσ ← DSK(c).

Using the homomorphic property of the encryption scheme it is easy to ver-
ify that in step 2 the sender computes c ← EK(

∑n
i=1 μiximod N, r

∏n
i=1 rμi

i

mod N). Then in step 3 the chooser can obtain μ =
∑n

i=1 μiximod N . But
since (x1, . . . , xn) is such that xσ = 1 and xi = 0 for i �= σ the decrypted value
is μ = μσ.

Note that in both OT protocols [31] and [1,22] the sender uses an encryption
of 0 (step 2) to re-randomize the ciphertext.

3.2 Oblivious Polynomial Evaluation

Recall that oblivious polynomial evaluation protocol is a building block for other
more complex protocols, for example private matching. The protocol given by
Freedman et al. [17] can be described as follows.

Private Inputs:

– The chooser input is a value x ∈ ZT .
– The sender input is a polynomial P (x) =

∑n
i=0 aix

i, ai ∈ ZT .
– T is chosen such that max(|P (x)|) ≤ N .

Private Output: The chooser gets P (x).

1. The chooser generates a (private, public) key-pair (SK, K) ← GΠ(1k). Then
he generates random coins rj ∈R Z∗

N and computes cj ← EK(xj , rj) for
j = 1, . . . , n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender generates a random coin r ∈R Z∗
N and computes

c = EK(a0, r)(
∏n

j=1 c
aj

j )mod N2. He sends c to the chooser.
3. The chooser decrypts the received ciphertexts, i.e. he computes z = DSK(c).

Observe that c = EK(
∑n

j=0 ajx
jmod N, r

∏n
j=1 r

aj

j mod N), thus z =
∑n

j=0 ajx
j

mod N , i.e. z = P (x). Note that the sender re-randomizes the ciphertext (step
2) in a slightly non standard way – by encrypting a0 with a random r instead
of encrypting 0 afterwards.
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3.3 Private Shared Scalar Product

In [19] Goethals et al. proposed a private SSP protocol. As pointed out by the
authors of [19] a private SP can be obtained immediately from the private SSP
protocol by defining ss ← 0. We present here the private SSP protocol.

Private Inputs:

– The chooser input is a vector x = (x1, . . . , xn), xi ∈ ZT and T ≤ #√N/n$.
– The sender input is a vector y = (y1, . . . , yn), yi ∈ ZT .

Private Output:

– The chooser gets a share sc ∈ ZN .
– The sender gets a share ss ∈ ZN .
– Such that sc + ss =<x,y> mod N .

1. The chooser generates a (private, public) key-pair (SK, K) ← GΠ(1k). He
generates a random coin ri ∈R Z∗

N and computes ci ← EK(xi, ri) for i =
1, . . . , n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender performs the following: generates a random coin r ∈R Z∗
N , a

random share ss ∈R ZN and computes c ← EK(−ss, 1)(
∏n

i=1 cyi

i )EK(0, r)
mod N2. He sends c to the chooser.

3. The chooser decrypts the received ciphertexts and sets it as his share sc, i.e.
he computes sc = DSK(c).

Note that c = EK(−ss+
∑n

i=1 xiyimod N, r
∏n

i=1 ryi

i mod N), thus sc = −ss+ <
x,y> mod N , i.e. the protocol is correct. Again the semantic security of the en-
cryption scheme guarantees the chooser-privacy. The sender-privacy is preserved
since the chooser only sees a random encryption of −ss+ <x,y>, where ss is
random. Note again that the sender uses encryption of 0 (step 2) to re-randomize
the ciphertext.

The authors of [19] give an interesting application of an SP protocol: if xi, yi ∈
{0, 1}, i.e. x and y are the characteristic vectors of two sets X and Y , then
<x,y>= |X ∩ Y |. In other words such an SP protocol provides solution for the
private matching intersection set size problem.

3.4 Private Matching

We first describe the private subset inclusion protocol given by Laur et al. [24].
Then we propose a modification to this protocol, which is more efficient.

Laur’s Private Subset Inclusion
The authors of [24] use the fact that X ⊆ Y if and only if |X | = |X∩Y |. Instead
of using directly the sets, their characteristic functions (denoted with the same
letters) are used in the protocol, where X [i] = 1 if i ∈ X and X [i] = 0 otherwise
(Y [i] is defined in a similar way).
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Private Inputs:

– The chooser input is a set X ⊆ {1, . . . , n}.
– The sender input is a set Y ⊆ {1, . . . , n}.

Private Output: The chooser gets 0 if X ⊆ Y .

1. The chooser generates a (private, public) key-pair (SK, K) ← GΠ(1k). Then
he generates a random coin rj ∈R Z∗

N and computes cj ← EK(X [j], rj) for
j = 1, . . . , n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender generates random coins r, s ∈R Z∗
N and computes

c = (
∏

j:Y [j]=0 cj)s EK(0, r)mod N2. He sends c to the chooser.
3. The chooser decrypts the received ciphertexts, i.e. he computes z = DSK(c)

and accepts that X ⊆ Y if z = 0.

Note that c = EK(s
∑

j:Y [j]=0 X [j] mod N, r
∏

j:Y [j]=0 rs
j mod N). Thus the

chooser gets z = s
∑

j:Y [j]=0 X [j]mod N , which is zero only if all X [j] = 0 when
Y [j] = 0. The last relation implies that X ⊆ Y .

Private Subset Inclusion
We also do not use directly the sets in our protocol, but their characteristic
functions redefined as follows X [i] = si if i ∈ X (for a random nonzero si ∈R Z∗

T

and T ≤ #N/n$) and X [i] = 0 otherwise.

Private Inputs:

– The chooser input is a set X ⊆ {1, . . . , n}.
– The sender input is a set Y ⊆ {1, . . . , n}.

Private Output: The chooser gets 0 if X ⊆ Y .

1. The chooser generates a (private, public) key-pair (SK, K) ← GΠ(1k). Then
he generates a random coin rj ∈R Z∗

N and computes cj ← EK(X [j], rj) for
j = 1, . . . n. The chooser sends K and c1, . . . , cn to the sender.

2. The sender generates a random coin r ∈R Z∗
N and computes

c = (
∏

j:Y [j]=0 cj) EK(0, r)mod N2. He sends c to the chooser.
3. The chooser decrypts the received ciphertexts, i.e. he computes z = DSK(c)

and accepts that X ⊆ Y if z = 0.

Note that c = EK(
∑

j:Y [j]=0 X [j]mod N, r
∏

j:Y [j]=0 rjmod N). Thus z =∑
j:Y [j]=0 X [j], which is zero only if all X [j] = 0 when Y [j] = 0. The last relation

implies that X ⊆ Y . Obviously this protocol is more efficient than the original
protocol of [24] since the sender does not need to compute a random power of∏

j:Y [j]=0 cj . Note again that the standard way to re-randomize the ciphertext
(step 2) is used in both protocols, i.e. the sender uses an encryption of 0.

3.5 Zero-Knowledge Arguments

Consider the following protocol for equality of double base discrete logarithms.
We consider another Σ-protocol than the one in [12] which is for the equality of
discrete logarithms, where the prover should prove that indeed h1 = gw

1 mod p
and h2 = gw

2 mod p for some w. Let k̃ be the security parameter.
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Input:

– The system setting is the tuple (p, p′, g1, g2, h1, h2) where p, p′ are prime, p′

is k̃-bit long, p = 2p′ + 1, g1 ∈ Z∗
p has order p′ and g2, h1, h2 ∈ < g1 >.

In addition g2 = gy
1 for some secret y ∈ Z∗

p and h1 = gw
1 gw1

2 , h2 = gw
1 gw2

2 for
some w, w1, w2 ∈ Z∗

p.
– The tuple (p, p′, g1, g2, h1, h2) is a common input to the prover and the verifier.
– The prover gets w, w1, w2 as private input.

Output: The verifier checks whether logg1
(h1)mod y = logg2

(h2)mod y.

1. The prover chooses random 3k̃-bit integers r, r1, r2 and sends a1 = gr
1g

r1
2

mod p and a2 = gr
1g

r2
2 mod p to the verifier.

2. The verifier chooses the challenge e at random in Zp′ and sends it to the
prover.

3. The prover computes z = r + ew, z1 = r1 + ew1, z2 = r2 + ew2 and sends
them to the verifier who checks that gz

1gz1
2 = a1h

e
1mod p and gz

1gz2
2 = a2h

e
2

mod p.

4 The Proposed Attack

4.1 Attack Against Oblivious Transfer

We first specify the information that the chooser possesses after finishing the
protocol.

– Consider the Stern’s OT protocol described in Section 3.1. Denote by r =
r
∏n

i=1 rμi

i mod N and recall that DSK(c) = (μ, r), where μ =
∑n

i=1 μixi

mod N . Thus the chooser obtains μ and r.
– Consider the OPE protocol described in Section 3.2. Denote by r = r

∏n
j=1 r

aj

j

mod N and recall that DSK(c) = (z, r), where z = P (x). Thus the chooser
obtains z and r.

– Consider the private SSP protocol described in Section 3.3. Recall that
DSK(c) = (m, r), where m = −ss +

∑n
i=1 xiyimod N and r = r

∏n
i=1 ryi

i

mod N . Thus the chooser obtains m and r.
– Consider the modified Subset Inclusion protocol described in Section 3.4.

Recall that DSK(c) = (z, r), where z =
∏

j:Y [j]=0 X [j]mod N and r =
r
∏

j:Y [j]=0 rjmod N . Thus the chooser obtains z and r.

Notice that in all these cases r has a common form, which we will further unify
as r = r

∏n
i=1 ryi

i mod N .

Scenario
Now we describe the scenario in which our attack can be mounted by the chooser.
Recall that the sender’s inputs to the protocol are yi ∈ ZT . We consider the case
when T % N , i.e. is very small; how small will be specified later. In this case a
semi-honest chooser with irrational behavior can try to get some information on
the sender’s inputs with a non-negligible probability. For the sake of simplicity
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we only consider the case of a uniform probability distribution for (y1, . . . , yn),
but our results hold for any probability distribution.

Attack - Phase 1
Let the chooser select ri in step 1 to be small prime numbers, e.g. 2 ≤ p1 ≤
p2 ≤ . . . ≤ pn % N . Thus the probability that gcd(ri, r) �= 1 for some i is 1

ri
,

when r ∈R Z∗
N is chosen (independently) by the sender in step 2. Hence the

probability Pi = Pr[ri = pi and r ∈R Z∗
N : gcd(r, ri) �= 1] = 1/pi.

Consider the random coin r obtained by the chooser after decrypting the
sender’s reply. Denote by r̃ = r

∏n
i=1 ryi

i thus r̃ = r + �N , where � = 0, 1, . . ..
Recall that yi ∈ ZT , r ∈R Z∗

N and ri = pi. Denote by N = (
∏n

i=1 pi)T−1 hence
� < N . Denote by x = N

n
i=1 p

yi
i

(assuming the yi’s are fixed) then Pr[r ∈R Z∗
N :

r < x] = x
N and since the probability that (y1, . . . , yn) is the concrete sender’s

input is 1
T n we obtain that

P [� = 0] = Pr[yi ∈R ZT , r ∈R Z∗
N : r

n∏
i=1

pyi

i < N ] (1)

=
∑

(y1,...,yn)

Pr[(y1, . . . , yn) = (y1, . . . , yn)] Pr[r ∈R Z∗
N : r

n∏
i=1

pyi

i < N ]

=
1

T n

∑
(y1,...,yn)

1∏n
i=1 pyi

i

=
1

T n

∏n
i=1(p

T
i − 1)∏n

i=1 pT−1
i (pi − 1)

>
1

T n
.

Notice that 2x < N when (y1, . . . , yn) �=(0, . . . , 0) and x = N when (y1, . . . , yn)=
(0, . . . , 0), thus we obtain Pr[r ∈R Z∗

N , x �= N : x ≤ r < 2x] = x
N . It can be

observed that P [� = 0] > P [� = i] for any i > 0, for example:

P [� = 1] = Pr[yi ∈R ZT , r ∈R Z∗
N : N ≤ r

n∏
i=1

pyi

i < 2N ]

=
1

T n

∑
(y1,...,yn) �=(0,...,0)

1∏n
i=1 pyi

i

=
1

T n

( ∏n
i=1(p

T
i − 1)∏n

i=1 pT−1
i (pi − 1)

− 1

)
.

Hence P [� = 1] = P [� = 0] − 1
T n . More importantly P [� = 0] depends only on

the primes selected by the chooser and the system parameters n and T .

Attack - Phase 2
Now we explain further how the attack works. The protocol is executed just
once with the exception that the chooser does not generate the ri at random
but instead selects them as described above. At the end of the execution the
chooser possesses r and with probability P [� = 0] he guesses r̃. Note that ryi

i

is a factor of r̃ co-prime with the other factors, except maybe with r. Let the
attacker target some of the secrets yi for i ∈ I (I ⊆ [n] = {1, . . . , n}). We stress
that the chooser should select different prime numbers pi for i ∈ I. Thus from r̃
the chooser can find yi, i ∈ I, by simple division. Hence yi ≤ yi holds, moreover
the difference between yi and yi is equal to the power mi of pi, such that pmi

i
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divides r but pmi+1
i doesn’t. Thus an irrational semi-honest chooser can derive

from r̃ upper bounds for all yi for i ∈ I with probability P [� = 0].
Stern’s OT protocol and the modified Subset Inclusion protocol give the

chooser additional information namely μσ (z respectively) which can be used to
verify the derived values yi. If there is a mismatch between them (e.g. μσ > yσ)
then the chooser tries the next r̃ for � = 1 (with probability P [� = 1]) and so on.

Setting
We are in position now to clarify the setting of our attack (i.e. when it is feasible
at all) and more precisely what we mean by T to be small (i.e. T % N). We
recall here that the security parameter k̃ for the OT is the logarithm of 1

T n . The
other security parameter k ensures only that the Paillier cryptosystem is secure
and in this case 1

2k = 1
N % 1

T n (i.e. k ≥ k̃) holds, i.e. we consider the case when
1

T n is non-negligible in k. Note that in some protocols it is implicitly assumed
that T = N , but sometimes this requirement is not imposed. We want to point
out that for all four protocols T is allowed to be small, moreover for the private
SSP (used for PM intersection set problem) and the modified Subset Inclusion
protocols we have explicitly T = 2.

Recall that the chooser derives with probability P [� = 0] upper bounds for
all yi for i ∈ I, i.e. yi ≤ yi. Hence to break the security of the protocol, namely
the sender’s privacy, it is sufficient that P [� = 0] > 1

T n (i.e. for I = [n]). Indeed
the inequality holds, see (1). Thus the attacker obtains upper bounds for the
secrets, which contradicts the security goal of the protocol.

Now we will show that if the attacker tries to find the exact values yi for some
set I his success probability is negligible. The attack success probability P of
finding the exact values yi is the product of the probability P [� = 0] and the
probabilities of gcd(ri, r) = 1 for those yi, i ∈ I, i.e.

P = P [� = 0]
∏
i∈I

(1 − Pi) =
1

T n

n∏
i=1

pT
i − 1

pT−1
i (pi − 1)

∏
i∈I

pi − 1
pi

=
1

T n

∏
i∈I

pT
i − 1
pT

i

∏
i∈[n]\I

(pT
i − 1)

pT−1
i (pi − 1)

=
1

T n

n∏
i=1

(1 − 1
pT

i

)
∏

i∈[n]\I

pi

pi − 1
.

Obviously the higher P is, the more successful the attack. In order to get the
exact values of yi, i ∈ I, it is sufficient that P > 1

T |I| (the random guessing), but
it is easy to verify that

P =
1

T n

n∏
i=1

(1 − 1
pT

i

)
∏

i∈[n]\I

pi

pi − 1
≤ 1

T n

n∏
i=1

(1 − 1
pT

i

)2n−|I| <
1

T |I|

because T ≥ 2 and taking pi = 2 for i ∈ [n] \ I. Hence the success probability of
this attack is indeed negligible.

But the attacker still can mount a stronger attack than finding upper bounds
for the secrets. Since the probability Pi = Pr[ri = pi and r ∈R Z∗

N : gcd(r, ri) �=
1 and gcd(r/ri, ri) �= 1] = 1

p2
i

the attacker obtains with probability
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P = P [� = 0]
∏

i∈I(1−Pi) that yi ∈ {yi− 1, yi} for i ∈ I. This is the probability
that mi ∈ {0, 1}. Indeed when I = [n] it is easy to check that

P =
1

T n

∏n
i=1(p

T
i − 1)∏n

i=1 pT−1
i (pi − 1)

n∏
i=1

(p2
i − 1)
p2

i

>
1

T n

holds since pi ≥ 2 and T ≥ 2. Thus with probability P better than random
guessing the attacker derives sets with two values for each of the secrets, which
is particularly interesting when T > 2.

To summarize, we have proved the inequalities: P [� = 0] > P > 1
T n > P ;

and we have shown that yi ≤ yi with probability P [� = 0] and yi ≥ yi − 1 with
probability P .

Example
Let the system parameters are T = 5 and n = 2. If the attacker selects p1 = 2 and
p2 = 3 the success probabilities of the attacks are as follows: P [� = 0] = 2.89429

25 ,
P [� = 1] = 1.89429

25 , P = 1.92953
25 and P = 0.96476

25 while the random guessing
has probability 1

25 . Thus with approximately three times better probability than
random guessing the attacker obtains the upper bound and with approximately
twice better probability the lower bound for each secret.

Discussion
A natural question is why this attack doesn’t apply to the HOT and AIR pro-
tocols? Recall that DSK(ci) = (μi, ri), where μi = μi + (σ − i)simod N and
ri = rir

simod N . But now since the sender chooses r and si at random in ZN

the chooser can not derive si from ri. The same trick precludes the attack in the
original Subset Inclusion protocol described in Section 3.4.

Now we clarify why we call the chooser irrational. Note that in order to
mount the attack the chooser puts his privacy at risk. This happens because the
Paillier cryptosystem is not secure if the used “random coin” is not random. It
can be easily verified that if the attacker knows r then he can efficiently reveal m
from Ek(m, r). Thus if the sender knows that he is subject to an attack he can
reveal the chooser’s private input(s). Thus in order to get the sender’s inputs
the chooser has to bluff, which we call irrational behavior.

Our attack does not contradict the semantic security of the Paillier cryptosys-
tem since the attack is performed by the owner of the private key. More precisely
the owner of the private key encrypts a message which is then modified by an-
other entity and returned back to the owner, who decrypts it and tries to figure
out what the modification was. We would like to point out that the additional
information from the random coins affects OT protocols because of their specific
nature.

4.2 Attack Against Non-interactive Zero-Knowledge

We apply the compilation technique from [12] to obtain from the zero-knowledge
protocol described in Section 3.5 a non-interactive one. Then we show that in
this different (compare to OT protocols) scenario our attack can be mounted too.
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Setting
Input:
– The system setting is the tuple (p, p′, g1, g2, h1, h2) where p, p′ are prime, p′

is k̃-bit long, p = 2p′ + 1, g1 ∈ Z∗
p has order p′ and g2, h1, h2 ∈ < g1 >. In

addition g2 = gy
1 for some secret y ∈ Z∗

p and h1 = gw
1 gw1

2 , h2 = gw
1 gw2

2 for
some w1, w2 ∈ Z∗

p. Let w ∈ ZT and T % N .
– The tuple (p, p′, g1, g2, h1, h2) is a common input to the prover and the verifier.
– The prover gets w, w1, w2 as private input.
– The verifier generates a (private, public) key-pair (SK, K) ← GΠ(1k). Then

he generates a random challenge e ∈R Z∗
N , a random coin s ∈R Z∗

N and
computes c̃ ← EK(e, s).

– The prover gets c̃ and K as input.

Output: The verifier checks whether logg1
(h1)mod y = logg2

(h2)mod y.

Protocol Compile

1. The prover chooses random 3k̃-bit integers r, r1, r2 and computes a1 =
gr
1g

r1
2 mod p and a2 = gr

1g
r2
2 mod p.

2. The prover computes c=EK(r, s̃)c̃w, c1 =EK(r1, s̃1)c̃w1 , c2 = EK(r2, s̃2)c̃w2

with some random coins s̃, s̃1, s̃2 ∈R Z∗
N . His proof is the tuple (a1, a2, c, c1, c2).

Verification

1. The verifier decrypts c, c1, c2 obtaining DSK(c) = (z, r), DSK(c1) = (z1, r1),
DSK(c2) = (z2, r2). Where z = r + ew, z1 = r1 + ew1, z2 = r2 + ew2.

2. Then the verifier checks that gz
1gz1

2 = a1h
e
1mod p and gz

1g
z2
2 = a2h

e
2mod p.

Note that the ciphertexts c, c1, c2 are randomized by the prover. The verifier
can mount the attack as follows. Let us emphasize that we explicitly require
w ∈ ZT and T % N . It is easy to compute that r = s̃sw, r1 = s̃1s

w1 , r2 = s̃2s
w2 .

In the setting phase the verifier chooses s to be a small prime number e.g. p1.
Thus the probability that gcd(s, s̃) �= 1 is 1

p1
. Moreover since s̃ ∈R Z∗

N the

probability Pr[s̃, w : s̃sw < N ] = 1
T

(pT
1 −1)

pT−1
1 (p1−1)

is larger than 1
T . Hence the same

type of attack can again be mounted by the verifier in the verification phase if
the space from which w is selected is small. Bound for w can be derived, but
not the exact value. Note that we intentionally modified the protocol from [12]
to the Pedersen commitment, since the Pedersen commitment can perfectly hide
any (even a small) secret w (by w1 and w2).

4.3 Precluding the Attack

Finally we propose an easy fix to the protocols in order to resist our attack. Note
that all these protocols use an encryption of 0 to re-randomize the ciphertext. If
more than one re-randomization is applied (e.g. two) then the probability P [� =
0] = Pr[r, s ∈R Z∗

N : rs
∏n

i=1 pyi

i < N ] is smaller than the probability P [� = 0]

(OT case) multiplied by
N
i=1 1/i

N ≈ ln(N)
N and therefore becomes negligible. The
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probability can be computed by taking into account that Pr[r, s ∈R Z∗
N : rs <

x] =
∑x−1

i=1 Pr[s = i] Pr[r < x/i] = 1
N

∑x−1
i=1

x
iN = x

N2

∑x−1
i=1

1
i < x

N2

∑N
i=1

1
i .

Thus we have shown that in these settings just one re-randomization is not
sufficient, but two (or more) suffice.

5 Conclusion

We have described an attack against several OT protocols and protocols derived
from OT such as private matching, oblivious polynomial evaluation and private
shared scalar product, which are based on semantically secure homomorphic
encryption scheme (e.g. Paillier’s). Some semantically secure encryption schemes
possess the additional property (e.g. Paillier’s) – that they also decrypt the
random coin used for the encryption. We have shown that in certain cases the
information which can be derived from the random coin is sufficient even for
a semi-honest chooser to obtain bounds for the sender’s private inputs with
non-negligible probability.

The following protocols could be subject to this attack: Stern at Asiacypt’98,
Goethals et al. at ICISC’04, Chang at ACISP’04, Freedman et al. at TCC’05,
Damgard et al. at TCC’06 if applied in the scenario, when the secrets belong
to a space very small compared to the (Paillier’s) plaintext space. A fix which
precludes the attacks is proposed.

Acknowledgements. We would like to thank the anonymous reviewers of AC
2006 for the very helpful comments and suggestions.
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Abstract. We consider the problem of cheating in secret sharing
schemes, cheating in which individuals submit forged shares in the secret
reconstruction phase in an effort to make another participant reconstruct
an invalid secret. We introduce a novel technique which uses universal
hash functions to detect such cheating and propose two efficient secret
sharing schemes that employ the functions. The first scheme is nearly
optimum with respect to the size of shares; that is, the size of shares is
only one bit longer than its existing lower bound. The second scheme
possesses a particular merit in that the parameter for the probability of
successful cheating can be chosen without regard to the size of the secret.
Further, the proposed schemes are proven to be secure regardless of the
probability distribution of the secret.

1 Introduction

A secret sharing scheme is a cryptographic primitive in which a secret is divided
into shares and distributed among participants in such a way that only a qualified
set of participants can recover the secret. It is a fundamental building block for
many cryptographic protocols and is often used in the general composition of
secure multiparty computations. While seminal papers were presented by Shamir
[10] and Blakley [1] more than a quarter century ago, because of its importance
in cryptography, it is still being studied actively today.

Tompa and Woll have pointed out that in Shamir’s k-out-of-n threshold secret
sharing scheme, even a single user can fool other participants by submitting
invalid shares at the secret reconstruction phase. They also proposed a scheme
which can detect the fact of cheating when invalid shares are submitted at that
point. Ogata, Kurosawa and Stinson also have presented an efficient scheme
for detecting cheating [8]. While the size of shares in their scheme is proven to
be optimum, the scheme is proven to be secure only if the secret is uniformly
distributed, and the size of the secret will restrict possible value for the successful
cheating probability.

In this paper, we propose two efficient k-out-of-n threshold secret sharing
schemes which are secure regardless of the probability distribution of the secret.
The first scheme is nearly optimum with respect to the size of shares; that is, the

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 364–379, 2006.
c© International Association for Cryptologic Research 2006
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size of shares is only one bit longer than its existing bound. In the second scheme,
the size of shares is somewhat larger than the first scheme, but the second scheme
possesses a particular merit in that the successful cheating probability can be
chosen without regard to the size of the secret. This is not the case in either
the first scheme or the scheme in [8]. The size of shares in the second scheme is
much smaller than that in the scheme by Tompa and Woll, which is also secure
for arbitrary secret distribution and whose successful cheating probability can
be also chosen without regard to the size of the secret. The size of shares in the
second scheme will be even smaller than that in [8] when ε > |S|−1/2, where
ε denotes the successful cheating probability and S denotes the set of secrets1.
This interesting phenomenon results from inflexibility of parameter values in
[8]. Note that the condition ε > |S|−1/2 is quite reasonable since ε is usually
required to be 2−128 or 2−256, whereas the the size of the secret can be as large
as |S| = 21024 or more.

The main idea of the proposed schemes is to use universal hash functions
(more precisely, a variant of ASU2, an almost strongly universal class of hash
functions) for cheating detection. Here, the key for the universal hash functions
is distributedly shared together with the share of the secret. In reconstructing
the secret, both the secret and the key are reconstructed, and each participant
verifies that the secret and the hash value are consistent. We additionally provide
some techniques to reduce the size of shares and to prevent the hash value from
revealing any information about the secret.

The rest of the paper is organized as follows. In Section 2, we briefly review
models of secret sharing schemes capable of detecting cheating, and we discuss
previous works done on them. In Section 3, we introduce a novel technique for
detecting cheating via a universal hash family, and we present efficient schemes
based on it. In Section 4, we describe two generalizations of the schemes pre-
sented in Section 3. In Section 5, we introduce new models which deal with more
powerful cheaters than those in existing models, and we present schemes secure
in the new models. In Section 6, we summarize our work.

2 Preliminaries

2.1 Secret Sharing Schemes

In secret sharing schemes, there are n participants P = {P1, . . . , Pn} and a
dealer D. The set of participants who are allowed to reconstruct the secret is
characterized by an access structure Γ ⊆ 2P ; that is, participants Pi1 , . . . , Pik

are
allowed to reconstruct the secret if and only if {Pi1 , . . . , Pik

} ∈ Γ (for instance,
the access structure of a k-out-of-n threshold secret sharing scheme is defined by
Γ = {A | A ∈ 2P , |A| ≥ k}.) A model consists of two algorithms: ShareGen and
Reconst. Share generation algorithm ShareGen takes a secret s ∈ S as input and
outputs a list (v1, v2, . . . , vn). Each vi ∈ Vi is called a share and is given to a par-
ticipant Pi. Ordinarily, ShareGen is invoked by the dealer. Secret reconstruction
algorithm Reconst takes a list of shares and outputs a secret s ∈ S.
1 Throughout the paper, the cardinality of the set X is denoted by |X |.
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A secret sharing scheme is called perfect if the following two conditions are
satisfied for the output (v1, . . . , vn) of ShareGen(ŝ) where the probabilities are
taken over the random tape of ShareGen.

1. if {Pi1 , . . . , Pik
} ∈ Γ then Pr[Reconst(vi1 , . . . , vik

) = ŝ] = 1,
2. if {Pi1 , . . . , Pik

} �∈ Γ then Pr[S = s | Vi1 = vi1 , . . . ,Vik
= vik

] = Pr[S = s]
for any s ∈ S.

2.2 Secret Sharing Schemes Secure Against Cheating

A secret sharing schemes capable of detecting cheating was first presented by
Tompa and Woll [12]. They considered the scenario in which cheaters who do not
belong to the access structure submit forged shares in the secret reconstruction
phase. Such cheaters will succeed if another participants in the reconstruction
accepts an incorrect secret2. There are two different models for secret sharing
schemes capable of detecting such cheating. Carpentieri, De Santis and Vaccaro
[3] first considered a model in which cheaters who know the secret try to make
another participant reconstruct an invalid secret. We call this model the “CDV
model.” Recently, Ogata, Kurosawa and Stinson [8] introduced a model with
weaker cheaters who do not know the secret in forging their shares. We call this
model the “OKS model.”

As in ordinary secret sharing schemes, each of these models consists of two
algorithms. A share generation algorithm ShareGen is the same as that in the
ordinary secret sharing schemes. A secret reconstruction algorithm Reconst is
slightly changed: it takes a list of shares as input and outputs either a secret or
the special symbol ⊥ (⊥ �∈ S.) Reconst outputs ⊥ if and only if cheating has
been detected. To formalize the models, we define the following simple game for
any (k, n) threshold secret sharing scheme SS = (ShareGen, Reconst) and for any
(not necessarily polynomially bounded) Turing machine A = (A1, A2), where A
represents cheaters Pi1 , . . . , Pik−1 who try to cheat Pik

. Please note that in this
section and the next we will focus on the (k, n) threshold type access structure.
A more general access structure will be discussed in Section 4.

Game(SS, A)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(ii, . . . , ik−1) ← A1(X);
// set X = s for the CDV model, X = ∅ for the OKS model.
(v′i1 , . . . , v

′
ik−1

, ik) ← A2(vi1 , . . . , vik−1 , X);

The advantage of cheaters is expressed as Adv(SS, A) = Pr[s′ ∈ S ∧ s′ �= s] ,
where s′ = Reconst(v′i1 , v

′
i2

, . . . , v′ik−1
, vik

) and the probability is taken over the
distribution of S, and over the random tapes of ShareGen and A.
2 Please note that here we focus on the problem of detecting the fact of cheating with

unconditional security. Neither secret sharing schemes which identify cheaters [2,6]
nor verifiable secret sharing schemes [9,4] are within the scope of this paper.
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Definition 1. A (k, n) threshold secret sharing scheme SS is called a (k, n, ε)-
secure secret sharing scheme if Adv(SS, A) ≤ ε for any adversary A.

2.3 Previous Work

In this subsection, we briefly review the known bounds and constructions of
(k, n, ε)-secure secret sharing schemes. A lower bound for the size of shares in
the CDV model is described as follows:

Proposition 1. [3] In the CDV model, the size of shares for (k, n, εCDV)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|

εCDV
.

Ogata et al. improved this bound when the secret is uniformly distributed:

Proposition 2. [8] In the CDV model, if the secret is uniformly distributed,
then the size of shares |Vi| for (k, n, εCDV)-secure secret sharing schemes is lower
bounded by |Vi| ≥ |S|−1

ε2CDV
+ 1 .

Ogata et al. also presented the lower bound for the size of shares for (k, n, εOKS)-
secure secret sharing scheme in the OKS model as follows.

Proposition 3. [8] In the OKS model, the size of shares for (k, n, εOKS)-secure
secret sharing schemes is lower bounded by |Vi| ≥ |S|−1

εOKS
+ 1 .

The following corollary may be seen to be straightforward from Proposition 2
since it has to hold for a uniformly distributed secret.

Corollary 1. In the CDV model, the size of shares for (k, n, εCDV)-secure se-
cret sharing schemes which satisfy the following two conditions is lower bounded
by |Vi| ≥ |S|−1

ε2CDV
+ 1. (1) Successful cheating probability is upper bounded by ε

regardless of the probability distribution of the secret. (2) Share generation is
independent of the secret distribution (i.e. ShareGen does not need to know the
secret distribution.)

Because it is in general difficult to determine exact probability distributions, we
do not consider here situations in which the share generation algorithm knows
the secret distribution and shares are generated according to the distribution3.

Within the OKS model, Ogata et al. have proposed an elegant (k, n, εOKS)-
secure secret sharing schemes that satisfies the bound of Proposition 3 with
equality [8]. The construction is summarized by the following proposition (please
refer to [7] for the definition of difference set.)

Proposition 4. [8] If there exists an (N, �, λ) difference set then there exists
a (k, n, εOKS)-secure secret sharing scheme in the OKS model which satisfies the
lower bound of Proposition 3 with equality. The scheme is secure if the secret is
uniformly distributed.
3 As mentioned in [8], an example exists in which the size of shares is smaller than

the bound of Proposition 2 when the secret is not uniformly distributed and shares
are generated according to the distribution.
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However, there are two drawbacks in the scheme of [8]. The first is that the
scheme is proven to be secure only if the secret is uniformly distributed. This
drawback comes from the property of the scheme that the share of the target
participant can be uniquely determined from the shares of k − 1 cheaters and
the secret. Therefore, if there exists a secret which occurs with high probabil-
ity then cheaters can guess the share of the target participant also with high
probability, which causes the successful cheating probability larger than what
is expected when the secret is uniformly distributed. The second drawback is
that the successful cheating probability is uniquely determined from the size of
the secret; that is, εOKS is determined to be εOKS = 1/|S| in [8]. On the other
hand, the scheme by Tompa and Woll [12] which is secure in the CDV model is
proven to be secure for arbitrary secret distribution and the successful cheating
probability can be chosen without regard to the size of the secret. However, the
size of shares is as large as |Vi| = ( (|S|−1)(k−1)

εCDV
+ k)2.

3 Proposed Schemes

In this section, we propose two efficient (k, n, εCDV)-secure secret sharing schemes
in the CDV model which are proven to be secure for any secret distribution. The
first scheme is nearly optimum with respect to the size of shares; that is, the
size of shares is |Vi| = |S|/ε2

CDV
which is only one bit longer than the bound of

Corollary 1. The size of shares in the second scheme is |Vi| = |S|(log |S|)2/ε2
CDV

.
Though the size of share is larger than the first scheme, the second scheme
possesses a particular merit in that the size of the secret and the successful
cheating probability can be chosen independently.

The underlying (and yet naive) idea of the schemes is to use almost strongly
universal hash functions εCDV-ASU2 for cheating detection. A family of hash func-
tions H : A → B with the properties (1) and (2) below is called an ε-ASU2. (1)
For any x ∈ A and y ∈ B, |{he ∈ H | he(x) = y}| = |H |/|B|. (2) For any x1, x2(�=
x1) ∈ A and y1, y2 ∈ B, {he ∈ H | he(x1) = y1, he(x2) = y2}| = ε|H |/|B|. where
he denotes the element of H indexed by the key e ∈ E (clearly |H | = |E| holds.)

Now, consider the secret sharing scheme in which a randomly chosen key e ∈ E
of H (where H : S → B is εCDV-ASU2) is shared as well as the secret s ∈ S using
the Shamir’s (k, n) threshold secret sharing scheme and hash value b = he(s)
is open to the public. In the reconstruction phase, a secret ŝ and a key ê are
reconstructed and Reconst outputs ŝ as the valid secret if and only if hê(ŝ) = b
holds. Intuitively, the scheme seems to be (k, n, εCDV)-secure in the CDV model
since knowledge of the secret s does not help cheaters to compute ŝ(�= s) such
that hê(ŝ) = b with probability better than εCDV.

However, we must be careful about the following problems. The first problem
is that the key ê ∈ E reconstructed from the shares is not always same as the
original one since cheaters can forge the shares of the key for the hash func-
tions. Therefore, we cannot prove the security of the above scheme directly from
the properties of ε-ASU2. The second problem is that public (and unforgeable)
storage to store the hash value b = he(s) is not always available. If the public
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storage is not available then the hash value has to be included in the share of
each participant, which makes the size of shares larger. Further, we must ensure
that the hash value b = he(s) does not reveal any information about the secret
since the scheme is no longer perfect if it is not the case. To overcome the first
problem, we choose the specific ε-ASU2 which can ensure security even when
the key for the hash function is forged4. To overcome the second and the third
problem, we fix the hash value b = he(s) to be the constant (e.g. 0,) by which we
can eliminate the public storage or additional shares without any loss of security.

We use two families of hash functions to construct the schemes. The first
scheme is based on the well known 1

p -ASU2 such that H = {he0,e1 | he0,e1(s) =
e0 − s · e1, ei ∈ GF(p)} (e.g. [11].) The second scheme is generalization of the
first scheme and is based on the hash family H = {he0,e1 | he0,e1(s1, . . . , sN ) =
e0 −

∑N
j=1 sj · ej

1, ei ∈ GF(p)} which is proven to be N
p -ASU2 [5].

3.1 Almost Optimum Scheme

The share generation algorithm ShareGen and the share reconstruction algorithm
Reconst of the first scheme is described as follows where p is a prime power.

Share Generation: On input a secret s ∈ GF(p), the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Choose random e0, e1 ∈ GF(p) such that e0 − s · e1 = 0.
2. Generate random polynomials fs(x), fe0(x), fe1(x) ∈ GF(p)[X ] of degree

k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.
3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k shares (vi1 , . . . ,
vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0 − ŝ · ê1 = 0 holds. Otherwise Reconst outputs ⊥.

The properties of the first scheme is summarized by the following theorem.

Theorem 1. The scheme of §3.1 is (k, n, ε)-secure secret sharing schemes in the
CDV model with parameters |S| = p, ε = 1/p and |Vi| = p3 (= |S|/ε2). Further,
the scheme is secure for arbitrary secret distribution.

The size of shares in the first scheme is only one bit longer than the lower bound
of Proposition 2 since |S|

ε2 < 2( |S|−1
ε2 + 1) holds for |S| ≥ 2.

3.2 A Scheme with Flexible Parameters

In the first scheme, the successful cheating probability is uniquely determined
from the size of the secret. On the other hand, the successful cheating probability
can be chosen without regard to the size of the secret in the second scheme. The
second scheme can be described as follows.
4 Formal requirements for the family of hash functions are given in Section 4.
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Share Generation: On input a secret s = (s1, . . . , sN ) ∈ GF(p)N , the share
generation algorithm ShareGen outputs a list of shares (v1, . . . , vn) according to
the following procedure. Please note that we sometimes regard s = (s1, . . . , sN)
as an element of GF(pN ) instead of GF(p)N .

1. Choose random e0, e1 ∈ GF(p) such that e0 −
∑N

j=1 sje
j
1 = 0.

2. Generate a random polynomials fs(x) ∈ GF(pN )[X ] and fe0(x), fe1(x) ∈
GF(p)[X ] of degree k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.

3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k shares (vi1 , . . . ,
vik

), the secret reconstruction algorithm Reconst outputs a secret s or ⊥ as
follows:

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0 −
∑N

j=1 ŝj ê
j
1 = 0 holds. Otherwise Reconst outputs ⊥.

The following theorem holds for the second scheme. Note that the successful
cheating probability ε can be chosen flexibly by choosing the prime power p.

Theorem 2. The scheme of §3.2 is (k, n, ε)-secure secret sharing schemes in the
CDV model with parameters |S| = pN , ε = N/p, |Vi|=pN+2(= |S|(logp |S|)2/ε2).
Further, the scheme is secure for arbitrary secret distribution.

Proof. Without loss of generality, we can assume P1, . . . , Pk−1 are cheaters and
they try to cheat Pk by forging their shares vi = (vs,i, ve0,i, ve1,i) (1 ≤ i ≤ k−1.)

We consider two cases depending on whether the cheaters know the secret.
In the first case, suppose that the cheaters know the secret. The cheaters obtain
the following information about e0 and e1 from their shares v1, . . . , vk−1 and the
secret s ∈ S: e	 = Lkve�,k +

∑k−1
j=1 Ljve�,j (for � = 0, 1,), e0 −

∑N
j=1 sj · ej

1 = 0
where ve0,k and ve1,k are unknown to the cheaters and each Lj is a Lagrange
coefficient. For simplicity, we will rewrite ei by ei = Lkvei,k + Ci (for i = 0, 1)
where Ci =

∑k−1
j=1 Ljvei,j are known to the cheaters. Then we have

Lkve0,k + C0 =
∑N

j=1sj · (Lkve1,k + C1)
j . (1)

Now suppose that the cheaters try to cheat Pk by forging their shares to v′i =
(v′s,i, v

′
e0,i, v

′
e1,i) (for 1 ≤ i ≤ k − 1.) They succeed in cheating Pk if e′0 −∑N

j=1 s′j · e′j1 = 0 holds where e′0, e
′
1 and s′(�= s) are computed by e′0 = Lkve0,k +∑k−1

j=1 Ljv
′
e0,j, e′1 = Lkve1,k +

∑k−1
j=1 Ljv

′
e1,j and s′ = Lkvs,k +

∑k−1
j=1 Ljv

′
s,j . Let

C′
i =

∑k−1
j=1 Ljv

′
ei,j (for i = 0, 1) then the cheaters succeed in cheating if the

following equality holds (please note that the cheater can control the values of
C′

0, C
′
1 and s′ as they want by adjusting their shares.5)

Lkve0,k + C′
0 =

∑N
j=1s

′
j · (Lkve1,k + C′

1)
j (2)

5 The cheaters can control s′ since they can compute vs,k from their shares and s.
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The successful cheating probability ε is computed as follows:

ε = Pr[s′ ∈ S ∧ s′ �= s] = Pr[eq. (1) and eq. (2) hold | eq. (1) holds] = N/p .

We will show the above equation. The condition “eq. (1) and eq. (2) hold” is
equivalent to “eq. (1) and eq. (3) hold” where eq. (3) is described as follows:∑N

j=1sj · (Lkve1,k + C1)
j − C0 =

∑N
j=1s

′
j · (Lkve1,k + C′

1)
j − C′

0 . (3)

Now let J be the largest number such that sJ �= s′J , then eq. (3) can be rewritten
as the univariate equation (sJ−s′J)LJ

k ·vJ
e1,k+

∑J−1
j=0 aj ·vj

e1,k = 0 of degree J with
the variable ve1,k where all the coefficients can be arbitrarily controlled by the
cheaters except that (sJ − s′J)LJ

k �= 0. This equation has at most J (≤ N) roots
and for each root ve1,k, there exists a unique ve0,k that satisfies eq. (1). Since
the share generation algorithm ShareGen chooses actual (ve0,k, ve1,k) uniformly
and randomly from the p pairs of (ve0,k, ve1,k) which satisfy eq. (1), we see that
the successful cheating probability of the cheaters is upper bounded by N/p.

Now we consider the second case in which the cheaters do not know the secret.
In this case the successful cheating probability of the cheaters who forge their
shares from vi = (vs,i, ve0,i, ve1,i) to v′i = (v′s,i, v

′
e0,i, v

′
e1,i), where at least one v′s,i

must satisfy v′s,i �= vs,i, is computed as follows:

ε =
∑

s∈S Pr[S = s] Pr[s′ ∈ S ∧ s′ �= s]
=
∑

s∈S Pr[S = s] Pr[eq. (1) and eq. (2) hold | eq. (1) holds] = N/p .

The above equality holds since Pr[eq. (1) and eq. (2) hold | eq. (1) holds] = N/p
holds for any s ∈ S. ��
Note that the above proof includes the proof for Theorem 2 since the first scheme
is achieved by setting N = 1 in the second scheme.

4 Generalization

In this section, we present more general results on the access structures and on
the class of hash functions used to detect cheating.

Though the schemes presented in Section 3 only deal with (k, n) threshold type
access structure, we can show that the proposed technique can be applied to any
linear secret sharing schemes. A linear secret sharing scheme is a class of secret
sharing schemes with the following properties: (1) The secret s is an element of
a finite field F. (2) The shares (v1, . . . , vn) are generated by (v1, v2, . . . , vn) =
(s, r1, . . . , rt−1)M where M is a fixed t × n matrix over F and each ri ∈ F is
chosen randomly. (3) For a set of participants P = {Pi1 , . . . , Pij} ∈ Γ and their
shares (vi1 , . . . , vij ), the secret s is computed by s =

∑j
k=1 cP,j · vij where each

cP,j ∈ F is a constant uniquely determined from P .
We can also generalize the class of hash function used to detect cheating. To

characterize such class of hash function, we define a new class of hash function
called strongly key-differential universal (ε-SKDU2 for short) as follows:
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Definition 2. A family of hash functions H : A → B is called a strongly key-
differential universal ε-SKDU2 if there exists b̂ ∈ B such that for any distinct
a, a′ ∈ A and for any c ∈ E,

|{he | e ∈ E , he(a) = b̂, he+c(a′) = b̂}|
|{he | e ∈ E , he(a) = b̂}| ≤ ε. (4)

Further, ε-SKDU2 is called an “efficiently samplable” if there exists an efficient
(i.e. polynomial time) algorithm to choose e ∈ E randomly from the set {e ∈ E |
he(a) = b̂} for any a ∈ A.

The following theorem shows that we can construct secret sharing scheme ca-
pable of detecting cheating in the CDV model from any linear secret sharing
schemes over S and over E , and any efficiently samplable ε-SKDU2 with the
domain S.

Theorem 3. If there exist linear secret sharing schemes over S and E for a
common access structure Γ and an efficiently samplable ε-SKDU2 H : S → B,
then there exists a secret sharing scheme capable of detecting cheating for the
access structure Γ in the CDV model such that the successful cheating probability
is equal to ε for arbitrary secret distribution.

Proof. Let S and E be a set of the secrets and the set of keys for ε-SKDU2, re-
spectively and let SS1 = (ShareGen1, Reconst1) and SS2 = (ShareGen2, Reconst2)
be linear secret sharing schemes over S and over E for the same access structure
Γ , respectively. We construct a secret sharing scheme secure against cheaters
SS = (ShareGen, Reconst) as follows.

Share Generation: On input a secret s ∈ S, the share generation algorithm
ShareGen outputs a list of shares (v1, . . . , vn) as follows:

1. Choose a random e ∈ E such that he(s) = b̂, which can be computed effi-
ciently since the efficiently samplable ε-SKDU2 is used.

2. Generate (vs,1, . . . , vs,n)←ShareGen1(s) and (ve,1, . . . , ve,n) ← ShareGen2(e).
3. Compute the share vi = (vs,i, ve,i) of each Pi and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input t shares (vi1 , . . . , vit) such
that {Pi1 , . . . , Pit} ∈ Γ , the secret reconstruction algorithm Reconst outputs a
secret s ∈ S or ⊥ as follows:

1. Compute ŝ ← Reconst1(vs,i1 , . . . , vs,it) and ê ← Reconst2(ve,i1 , . . . , ve,it).
2. Output s if hê(ŝ) = b̂. Otherwise Reconst outputs ⊥.

Now we show that SS = (ShareGen, Reconst) constructed above is ε-secure.
Without loss of generality we can assume that P = {P1, . . . , Pt} is an element of
Γ and that P1, . . . , Pt−1 are cheaters who try to cheat Pt. There are two cases
to consider. In the first case, suppose that the cheaters know the secret.

Let vi = (vs,i, ve,i) be the share of Pi. Since the cheaters know their shares
v1, . . . , vt−1 and the secret s and that SS1 and SS2 are the linear secret sharing
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schemes, the cheaters know he(s) = b̂ holds where e is computed by e = cP,tve,t+∑t−1
j=1cP,jve,j for a constant cP,i. Now suppose the cheaters try to cheat Pt by

forging their shares to v′i = (v′s,i, v
′
e,i) (for 1 ≤ i ≤ t − 1.) They succeed in

cheating Pt if he′(s′) = b̂ holds for e′ and s′(�= s) computed by e′ = cP,tve,t +∑t−1
j=1 cP,jv

′
e,j , s′ = cP,tvs,t +

∑t−1
j=1 cP,jv

′
s,j . Since e′ = e+

∑t−1
j=1 cP,j(v′e,j −ve,j)

holds, we see that the cheaters succeed in cheating if he+C(s′) = b̂ holds where
C =

∑t−1
j=1 cP,j(v′e,j − ve,j) is known to the cheaters. Therefore, the successful

cheating probability ε is computed as follows.

Pr[s′ ∈ S ∧ s′ �= s]

= Pr[he(s) = b̂ and he+C(s′) = b̂ | he(s) = b̂]

=
Pr[he(s) = b̂ and he+C(s′) = b̂]

Pr[he(s) = b̂]
=

|{he | he(s) = b̂, he+C(s′) = b̂}|
|{he | he(s) = b̂}| ≤ ε

where the last equation directly follows from eq. (4).
It can be proven that the successful cheating probability is upper bounded

by ε when the cheaters do not know the secret by the same technique used in
Theorem 2. ��
It is easily checked that the families of hash function used in the proposed
schemes of Section 3 meet the requirements of efficiently samplable ε-SKDU2.

Constructions of ε-SKDU2 other than those used in the proposed schemes
will be of independent interest. The following theorem shows that an ε-SKDU2

(and therefore, a secret sharing scheme capable of detecting cheating) can be
constructed from an ε-ASU2 with additional properties.

Theorem 4. If a family of hash functions H : A → B is an ε-ASU2 with the
properties (1) and (2) below then H is an efficiently samplable ε-SKDU2.

(1) H is constructed from HΔ : A → B of ε-AΔU2 as follows, where ε-AΔU2 is
a family of hash functions such that |{he ∈ HΔ | he(a)− he(a′) = b}| = ε|H | for
any distinct a, a′ ∈ A and for any b ∈ B.

H = {he0,e1 | he0,e1(a) = h′
e0

(a) + e1, h′
e0
∈ HΔ, e1 ∈ B}

(2) HΔ is linear with respect to the key; that is, h′
e+e′ (a) = h′

e(a) + h′
e′(a) holds

for any e, e′ ∈ E and for any a ∈ A.

Proof. It is well known that the family of hash functions H constructed as above
is ε-ASU2 (please refer to [11] for the proof.) Let b̂ be an arbitrary element of B
then we will show that H satisfies the conditions of an efficiently samplable ε-
SKDU2. First, it is easy to see that e0 and e1 such that he0,e1(a) = b̂ is efficiently
samplable by choosing e0 ∈ E randomly and by computing e1 = b̂ − he0(a).
Next, we show that eq. (4) holds for H . Since H is constructed based on HΔ

with the property h′
e+e′ (a) = h′

e(a) + h′
e′(a) for any h′ ∈ HΔ, he0+c0,e1+c1(a) =

h′
e0+c0

(a)+ (e1 + c1) = (h′
e0

(a) + e1)+ (h′
c0

(a) + c1) = he0,e1(a) +hc0,c1(a) holds
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for any a ∈ A and for any (e0, e1), (c0, c1) ∈ E × B. Therefore, the following
equation holds.

|{he0,e1 ∈ H | he0,e1(a) = b̂, he0+c0,e1+c1(a
′) = b̂}|

= |{he0,e1 ∈ H | he0,e1(a) = b̂, he0,e1(a
′) = b̂− hc0,c1(a

′)}|
= |{he0,e1 ∈ H | he0,e1(a) = b̂, he0,e1(a

′) = b̂′}| = ε|H |/|B|
where the last equation follows from the second condition of ε-ASU2. Combining
the above equation and the first property of ε-ASU2: |{he0,e1 ∈ H | he0,e1(a) =

b̂}| = |H |/|B|, we have |{he0,e1∈H|he0,e1(a)=b̂, he0+c0,e1+c1(a′)=b̂}|
|{he0,e1∈H|he0,e1 (a)=b̂}| = ε for any dis-

tinct a, a′ ∈ A and for any (c0, c1) ∈ E × B. ��
Please note that the family of hash function used in the first scheme is con-
structed based on Theorem 4, whereas the family of hash function used in the
second scheme is not. Therefore, we see that SKDU2 can be constructed by other
means than Theorem 4.

5 Coping with More Powerful Cheaters

In this section, we consider the models with more powerful cheaters than those
in the OKS and the CDV models and we present secure schemes against them.

In the OKS model and the CDV model, the secret reconstruction algorithm
Reconst is defined to take only a list of share (vi1 , . . . , vik

) as input. In actual
schemes, however, the identities of the owners i1, . . . , ik are usually required to
reconstruct the secret. This means that we implicitly assume there exist means
to know the correct identities of share holders in the secret reconstruction phase
of both the OKS and the CDV models. In the real life, however, it is very diffi-
cult to realize an identification scheme secure against adversaries with unlimited
computational power. Therefore, it is highly desired to construct secret sharing
schemes capable of detecting cheating without relying on secure identification.

To this end, we define new models: the OKS+ model and the CDV+ model
which are slight modifications of the OKS model and the CDV model, respec-
tively. In both new models, we modify a secret reconstruction algorithm Reconst
and a game Game+ of cheaters A = (A1, A2) against SS = (ShareGen, Reconst) as
follows. The secret reconstruction algorithm Reconst takes a list ((i1, vi1), (i2, vi2),
. . . , (ik, vik

)) of pairs of an identity i	 and a share vi�
of Pi�

. Cheaters in the new
models are allowed to forge their identities as well as their shares. To characterize
such cheaters, a game Game+ is defined as follows.

Game+(SS, A)
s ← S; // according to the probability distribution over S.
(v1, . . . , vn) ← ShareGen(s);
(ii, . . . , ik−1) ← A1(X);
// set X = s for the CDV+ model, X = ∅ for the OKS+ model.
((i′1, v′i′1), . . . , (i

′
k−1, v

′
i′k−1

), ik) ← A2(vi1 , . . . , vik−1 , X);
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The advantage of cheaters is redefined by Adv(SS, A) = Pr[s′ ∈ S∧s′ �= s], where
s′ = Reconst((i′1, v

′
i′1

), (i′2, v
′
i′2

), . . . , (i′k−1, v
′
i′k−1

), (ik, vik
)) and the probability is

taken over the distribution of S, and over the random tapes of ShareGen and A.
Note that all the bounds for the OKS model (resp., the CDV model) (e.g.

Propositions 1–3 and Corollary 1) are also valid for OKS+ model (resp., the
CDV+ model) since a scheme secure in the OKS+ model (resp., the CDV+

model) are also secure in the OKS model (resp., the CDV model.)
Though the schemes secure in the OKS model (resp., the CDV model) are

not necessarily secure in the OKS+ model (resp., the CDV+ model,) the scheme
presented in [8] can be proven to be secure in the OKS+ model and the scheme
presented in [12] can be proven to be secure in the CDV+ model. With respect
to the proposed schemes, the first scheme can be shown to be secure in the
CDV+ model. However, the second scheme is not secure in the CDV+ model.
This is because the security proof of the second scheme strongly relies on the
fact that the cheaters can not manipulate the Lagrange coefficient Lk, which is
not the case in the CDV+ model. When cheaters can manipulate the Lagrange
coefficient as they want, they will succeed in cheating with probability one, which
is possible by forging the Lagrange coefficient Lk to L′

k(�= Lk) in eq. (2) and by
adjusting s′j , C

′
0 and C′

1 to make eq. (2) equivalent to eq. (1).
The good news is that the second scheme secure can be made secure in CDV+

model by slight modification. The main idea of the modified scheme is to intro-
duce a constant padding to a hash function. Specifically, we choose a key e of a
hash families with which he(s1, . . . , sN , 1, 1, 0, 1) = 0 instead of choosing a key
such that he(s1, . . . , sN ) = 0 as in the second scheme. In this modified scheme,
we can show that cheaters cannot make eq. (2) equivalent to eq. (1) unless they
leave the Lagrange coefficient Lk and the secret s = (s1, . . . , sN ) unchanged.
The modified scheme can be described as follows.

Share Generation: On input a secret s = (s1, . . . , sN ) ∈ GF(p)N , the share
generation algorithm ShareGen outputs a list of shares (v1, . . . , vn) according to
the following procedure. Please note that we sometimes regard s = (s1, . . . , sN)
as an element of GF(pN ) instead of GF(p)N .

1. Choose random e0, e1 ∈ GF(p) such that e0 − (eN+4
1 + eN+2

1 + eN+1
1 +∑N

j=1 sje
j
1) = 0.

2. Generate random polynomials fs(x) ∈ GF(pN )[X ] and fe0(x), fe1(x) ∈
GF(p)[X ] of degree k − 1 such that fs(0) = s, fe0(0) = e0 and fe1(0) = e1.

3. Compute vi = (fs(i), fe0(i), fe1(i)) and output (v1, . . . , vn).

Secret Reconstruction and Validity Check: On input a list of k pair of identities
and shares ((i1, vi1), . . . , (ikvik

)), the secret reconstruction algorithm Reconst
outputs a secret s or ⊥ according to the following procedure.

1. Reconstruct ŝ, ê0 and ê1 from vi1 , . . . , vik
using Lagrange interpolation.

2. Output s if ê0 − (êN+4
1 + êN+2

1 + êN+1
1 +

∑N
j=1 ŝj ê

j
1) = 0 holds. Otherwise

Reconst outputs ⊥.

Security of the modified scheme is summarized by the following theorem.
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Theorem 5. The modified scheme presented above is (k, n, ε)-secure secret shar-
ing schemes in the CDV+ model with the following parameters: |S| = pN , ε =
(N +4)/p and |Vi| = pN+2(= |S|(logp |S|+4)2/ε2). Further, the scheme is secure
for arbitrary secret distribution.

Proof. The proof is similar to that of Theorem 2. Let Pj (1 ≤ j ≤ k − 1)
be cheaters who try to cheat Pk by forging their identities j to ij(�= k) and
corresponding shares to v′ij

= (v′s,ij
, v′e0,ij

, v′e1,ij
) (1 ≤ j ≤ k − 1.)

As in the proof of Theorem 2, we consider two cases depending on whether the
cheaters know the secret. In the first case, suppose that the cheaters know the
secret. The cheaters obtain the following information about e0 and e1 from their
shares v1, . . . , vk−1 and the secret s ∈ S: e	 = Lkve�,k +

∑k−1
j=1 Ljve�,j (� = 0, 1),

e0− (eN+4
1 + eN+2

1 + eN+1
1 +

∑N
j=1 sj · ej

1) = 0 where ve0,k and ve1,k are unknown
to the cheaters and each Lj is a Lagrange coefficient. For simplicity, we will
rewrite ei by ei = Lkvei,k + Ci (for i = 0, 1) where Ci =

∑k−1
j=1 Ljvei,j is known

to the cheaters. Then we have the following equality.

Lkve0,k + C0 =
∑

j∈{1,2,4}(Lkve1,k + C1)N+j +
∑N

j=1sj · (Lkve1,k + C1)j (5)

Now suppose the cheaters Pj (1 ≤ j ≤ k − 1) try to cheat Pk by forging their
identities to ij and by forging corresponding shares to v′ij

= (v′s,ij
, v′e0,ij

, v′e1,ij
).

They succeed in cheating Pk if e′0 − (
∑

j={1,2,4} e′N+j
1 +

∑N
j=1 s′j · e′j1 ) = 0 holds

where e′0, e′1 and s′(�= s) are computed by e′	 = L′
kve�,k +

∑k−1
j=1L′

ij
v′e�,ij

(for

� = 0, 1), s′ = L′
kvs,k +

∑k−1
j=1L′

ij
v′s,ij

. Let C′
	 =

∑k−1
j=1 L′

ij
v′e�,ij

(for � = 0, 1) then
the cheaters succeed in cheating if the following equality holds (as in Theorem
2, the cheaters can control the values of C′

0, C
′
1 and s′ as they want.)

L′
kve0,k + C′

0 =
∑

j∈{1,2,4}(L
′
kve1,k + C′

1)
N+j +

∑N
j=1s

′
j · (L′

kve1,k + C′
1)

j (6)

The successful cheating probability ε is computed by ε = Pr[s′ ∈ S ∧ s′ �= s] =
Pr[eq. (5) and eq. (6) hold | eq. (5) holds]. We will show that ε = (N + 4)/p.
First, assume that eq. (5) is not equivalent to eq. (6) (i.e. L′

k × eq. (5) is not
identical to Lk × eq. (6).) In this case, ε is proven to be (N + 4)/p by similar
discussion to the proof of Theorem 2. Next, we will show that if the cheaters make
eq. (6) equivalent to eq. (5) then successful cheating probability becomes 0. This
can be proven by showing that eq. (5) is equivalent to eq. (6) only if the L′

k = Lk,
C′

i = Ci (for i = 0, 1) and sj = s′j (for 1 ≤ j ≤ N) since the cheaters succeed
in cheating only when Pk accepts s′ such that s′ �= s. Suppose Lk × eq. (5) and
L′

k × eq. (6) are identical then their coefficients of vN+4
k , vN+3

k , vN+2
k and vN+1

k

must be identical. Therefore, we have the following equations.

L′
kLN+4

k = LkL′N+4
k (7)(

N+4
1

)
C1L

′
kLN+3

k =
(
N+4

1

)
C′

1LkL′N+3
k (8)
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((
N+4

2

)
C2

1 + 1
)

L′
kLN+2

k =
((

N+4
2

)
C′2

1 + 1
)

LkL′N+2
k (9)((

N+4
3

)
C3

1+
(
N+2
1

)
C1+1

)
L′

kLN+1
k =

((
N+4

3

)
C′3

1 +
(
N+2
1

)
C′

1+1
)

LkL′N+1
k (10)

From eq. (7) and eq. (8) we have LN+3
k = L′N+3

k and C1/Lk = C′
1/L′

k. Using
these relations eq. (7)–eq. (10) can be rewritten as follows.

LN+3
k = L′N+3

k , C1/Lk = C′
1/L′

k, LN+1
k = L′N+1

k , LN
k = L′N

k

The above equalities holds if and only if Lk = L′
k and C1 = C′

1. Further, sj = s′j
(for 1 ≤ j ≤ N) can be also derived from the condition that the coefficients
of vj

k in eq. (5) and eq. (6) are identical. Finally, C0 = C′
0 is derived from the

condition that the constant terms of eq. (5) and eq. (6) are identical.
Now we consider the second case in which the cheaters do not know the secret.

In this case the successful cheating probability of the cheaters who forge their
identities and corresponding shares from (j, (vs,j , ve0,j, ve1,j)) to (ij , (v′s,ij

, v′e0,ij
,

v′e1,ij
)) is computed as follows:

ε =
∑

s∈S Pr[S = s] Pr[s′ ∈ S ∧ s′ �= s]
=
∑

s∈S Pr[S = s] Pr[eq. (5) and eq. (6) hold | eq. (5) holds] = (N + 4)/p .

The above equality holds since Pr[eq. (5) and eq. (6) hold | eq. (5) holds] =
(N + 4)/p holds for any s ∈ S. ��
The following theorem gives a generalized result analogous to Theorem 3.

Theorem 6. If there exist linear secret sharing schemes over S and E for a
common access structure Γ and a family of hash functions H : S → B which
satisfies the conditions (1)–(3) below, then there exists a secret sharing scheme
capable of detecting cheating for the access structure Γ in the CDV+ model such
that the successful cheating probability equals ε for arbitrary secret distribution.

1. Addition and (scalar) multiplication over the set of keys E of H are defined.
2. There exists b̂ ∈ B such that for any distinct a, a′ ∈ A and for any c0 and

c1 ∈ E,
|{he | e ∈ E , he(a) = b̂, hc0e+c1(a′) = b̂}|

|{he | e ∈ E , he(a) = b̂}| ≤ ε. holds.

3. There exists an efficient (i.e. polynomial time) algorithm to choose e ∈ E
randomly from the set {e ∈ E | he(a) = b̂} for any a ∈ A.

Proof. The proof is similar to that of Theorem 3. Let S and E be a set of the
secrets and the set of keys for a function family H , respectively. Further, let
SS1 = (ShareGen1, Reconst1) and SS2 = (ShareGen2, Reconst2) be linear secret
sharing schemes over S and over E for the same access structure Γ , respectively.
The share generation algorithm ShareGen and Reconst are identical to those
defined in the proof of Theorem 3 except that the family of hash functions used
here meets the condition 1–3 of Theorem 6.
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Now we show that the above SS = (ShareGen, Reconst) is ε-secure even when
the cheaters forge their identities as well as their shares. Without loss of general-
ity we can assume that P = {P1, . . . , Pt} is an element of Γ and that P1, . . . , Pt−1

are cheaters who try to cheat Pt. There are two cases to consider. In the first
case, suppose that the cheaters know the secret. Let vi = (vs,i, ve,i) be the share
of Pi. Since the cheaters know their shares v1, . . . , vt−1 and the secret s and that
SS1 and SS2 are the linear secret sharing schemes, the cheaters know he(s) = b̂

holds where e is computed by e = cP,tve,t +
∑t−1

j=1cP,jve,j for a constant cP,i.
Now suppose the cheaters try to cheat Pt by forging their identities from j
to ij (for 1 ≤ j ≤ t − 1) and corresponding shares to v′ij

= (v′s,ij
, v′e,ij

) (for
1 ≤ j ≤ t−1.) They succeed in cheating Pt if he′(s′) = b̂ holds for e′ and s′(�= s)
computed by e′ = c′P,tve,t +

∑t−1
j=1 c′P,ij

v′e,ij
, s′ = c′P,tvs,t +

∑t−1
j=1 c′P,ij

v′s,ij
.

Since e′ = ( c′P,t

cP,t
)e +

∑t−1
j=1(c

′
P,ij

v′e,ij
− cP,tc

′
P,ij

c′P,t
· ve,j) holds, we see that the

cheaters succeed in cheating if hC0·e+C1(s′) = b̂ holds where C0 = c′P,t/cP,t and

C1 =
∑t−1

j=1(c
′
P,ij

v′e,ij
− cP,tc

′
P,ij

c′P,t
· ve,j) are known to the cheaters. Therefore, the

successful cheating probability ε is computed as follows.

Pr[s′ ∈ S ∧ s′ �= s] = Pr[he(s) = b̂ and hC0·e+C1(s
′) = b̂ | he(s) = b̂]

=
|{he | he(s) = b̂, hC0·e+C1(s′) = b̂}|

|{he | he(s) = b̂}| ≤ ε

where the last equation directly follows from the condition (2) of Theorem 6.
It can be proven that the successful cheating probability is upper bounded

by ε when the cheaters do not know the secret by the same technique used in
Theorem 5. ��

6 Conclusion

In this paper, we proposed two efficient (k, n, εCDV)-secure secret sharing schemes
in the CDV model which are proven to be secure for arbitrary secret distribution.
The first scheme is nearly optimum with respect to the size of shares; that is, the
size of share is only one bit longer than the lower bound of Corollary 1. In the
second scheme, the size of share is larger than that in the first scheme. However,
the second scheme possesses a particular merit in that the successful cheating
probability can be chosen without regard to the size of the secret. Table 1 below
compares the bit length of shares in the three schemes for the various security
parameters where the secret is 1024 bit and the access structure considered is 3-
out-of-5 threshold type access structure. Compared to the scheme of [12] the size
of shares in the proposed scheme (the second scheme) is smaller for all security
parameters. It is interesting to note that, when ε > |S|−1/2, the size of the share
in the proposed scheme is even smaller than that in [8] which is proven to be
secure only in the OKS model. This is because ε is determined to be ε = 2−1024

when the secret is 1024 bit in the scheme of [8]. Therefore, ε is forced to be 2−1024
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Table 1. Comparison table of the bit length of the shares (for the secret of 1024 bit)

ε Proposed Scheme Tompa and Woll Ogata et al.

2−128 1286 2306 2048

2−256 1540 2562 2048

2−512 2050 3074 2048

2−1024 3072 4098 2048

in [8] even when we only require the security level of ε = 2−128 or ε = 2−256,
which makes the size of share larger than that in the proposed scheme when ε
is relatively large (please note that ε = 2−128 or ε = 2−256 will be secure enough
in most settings.)

It will be a future study to find (k, n, εCDV)-secure secret sharing schemes in
the CDV model which are secure for arbitrary secret distribution and the bound
of Corollary 1 is satisfied with equality.
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Abstract. We introduce KFC, a block cipher based on a three round
Feistel scheme. Each of the three round functions has an SPN-like struc-
ture for which we can either compute or bound the advantage of the best
d-limited adaptive distinguisher, for any value of d. Using results from
the decorrelation theory, we extend these results to the whole KFC con-
struction. To the best of our knowledge, KFC is the first practical (in the
sense that it can be implemented) block cipher to propose tight security
proofs of resistance against large classes of attacks, including most classi-
cal cryptanalysis (such as linear and differential cryptanalysis, taking hull
effect in consideration in both cases, higher order differential cryptanaly-
sis, the boomerang attack, differential-linear cryptanalysis, and others).

1 Introduction

Most modern block ciphers are designed to resist a wide range of cryptanalytic
techniques. Among them, one may cite linear cryptanalysis [19,20,23], differential
cryptanalysis [7,8], as well as several variants such as impossible differentials [5],
the boomerang attack [27] or the rectangle attack [6]. Proving resistance against
all these attacks is often tedious and does not give any guarantee that a subtle
new variant would not break the construction. Rather than considering all known
attacks individually, it would obviously be preferable to give a unique proof, valid
for a family of attacks.

In [26], Vaudenay shows that the decorrelation theory provides tools to prove
security results in the Luby-Rackoff model [18], i.e., against adversaries only
limited by the number of plaintext/ciphertext pairs they can access. Denoting
d this number of pairs, the adversaries are referred to as d-limited distinguish-
ers. Unfortunately, this class of adversaries does not capture the most widely
studied statistical attacks such as linear and differential cryptanalysis. Instead,
these attacks are formalized by so-called iterated attacks of order d [25]. This
class of attacks was initially inspired by linear and differential cryptanalysis and
actually formalizes most of the possible statistical attacks against block ciphers.
For example, linear cryptanalysis is an iterated attack of order 1, differential
cryptanalysis is of order 2, and higher order differential cryptanalysis [16, 15] of
order i is an iterated attack of order d = 2i.
� Supported by the Swiss National Science Foundation, 200021-107982/1.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 380–395, 2006.
c© International Association for Cryptologic Research 2006
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It is proven that resistance against all 2d-limited distinguishers is sufficient
to resist iterated attacks of order d [26]. Consequently, designing a block cipher
resistant to d-limited distinguishers for a large d is enough to resist most standard
attacks against block ciphers. Obviously, this is not a trivial task as, to the best
of our knowledge, no efficient block cipher was ever designed to resist d-limited
distinguishers for d > 2 [14, 26].

In a previous article entitled “Dial C for Cipher” [1], we presented a block
cipher construction provably resistant against (among others) linear and differ-
ential cryptanalysis (where the linear hull [21] and differentials [17] effects are
taken into account, which is unfortunately not usual in typical proofs of security
of block ciphers), several of their variants, 2-limited distinguishers and thus, all
iterated attacks of order 1. Our aim in this article, is to design a block cipher
based on the same principles as C but provably secure against d-limited distin-
guishers for large values of d. We call this construction KFC as it is based on
a Feistel scheme. KFC is practical in the sense that it can be implemented and
reach a throughput of a few Mbits/s. Just as the typical security proofs of block
ciphers do not compare to ours, the encryption speed reached by KFC does not
compare to those of nowadays block ciphers.

Constructions based on the decorrelation theory have already been proposed.
COCONUT98 [24] was one of the first efficient block cipher based on decorre-
lation concepts. It resists 2-limited distinguishers but can be attacked by David
Wagner’s boomerang attack [27], which is an iterated attack of order 4. Of course
this does not prove that the decorrelation theory is useless, but only that decor-
relation results do not prove more than what they claim. KFC is designed to
resist d-limited distinguishers (and consequently, iterated attacks up to a given
order), nothing more.

High Overview and Outline of the Paper. Before building a provably secure
block cipher, we need to define precisely against which class of attacks it should
be resistant. The adversary model and some reminders about the decorrelation
theory are given in Section 2. Then, in Section 3, we give some hints about why
we chose to use a Feistel scheme [13] for KFC. A description of the structure of
the random functions we use in the Feistel scheme is then given in Section 4.
The exact advantage of the best 2-limited distinguisher is computed in Section 5,
and in Section 6, we bound the advantage of higher order adversaries.

2 Security Model

In this paper, a perfectly random function (resp. permutation) denotes a random
function (resp. permutation) uniformly distributed among all possible functions
(resp. permutations). Consequently, when referring to a random function or a
random permutation, nothing is assumed about its distribution.

The Luby-Rackoff Model [18]. We consider an adversary A with unbounded
computational power, only limited by its number of queries d to an oracle O
implementing a random permutation. The goal of A is to guess whether O is
implementing an instance drawn uniformly among the permutations defined by
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a block cipher C or among all possible permutations, knowing that these two
events have probability 1

2 and that one of them is eventually true. Such an
adversary is referred to as a d-limited adaptive distinguisher when he adaptively
chooses his queries depending on previous answers from the Oracle or as a d-
limited non-adaptive distinguisher when all the queries are made at once. In both
cases, the ability of A to succeed is measured by mean of its advantage.

Definition 1. The advantage of A of distinguishing two random functions F0

and F1 is defined by AdvA(F0, F1) =
∣∣Pr[A(F0) = 0]− Pr[A(F1) = 0]

∣∣.
Informally, a secure block cipher C (i.e., a random permutation) should be in-
distinguishable from a perfectly random permutation C∗, i.e., the advantage
AdvA(C, C∗) of any adversary A should be negligible. A secure random func-
tion F should be indistinguishable from a perfectly random function F ∗, i.e., the
advantage AdvA(F, F ∗) of any adversaryA should be negligible. Apart from very
specific (and usually non-practical) constructions, computing the exact advan-
tage of the best d-limited distinguisher is not straightforward. The decorrelation
theory [26] gives some tools that will allow us to compute (or at least bound)
this advantage for KFC.

Reminders on the Decorrelation Theory. Let F : {0, 1}n → {0, 1}n be a
random function. The distribution matrix [F ]d of F at order d is a 2nd × 2nd

matrix defined by [F ]d(x1,...,xd),(y1,...,yd) = PrF [F (x1) = y1, . . . , F (xd) = yd]. If F1

and F2 are two independent random functions, we have [F2◦F1]d = [F1]d× [F2]d.
The advantage of the best distinguisher between F and F ∗ only depends on the
distance between [F ]d and [F ∗]d, whose exact definition will depend on whether
the considered distinguisher is adaptive or not.

Definition 2. Let A ∈ {0, 1}nd × {0, 1}nd be a matrix indexed by d-tuples of
elements in {0, 1}n. We let:

|||A|||∞ = max
x1,...,xd

∑
y1,...,yd

∣∣A(x1,...,xd),(y1,...,yd)

∣∣ and

‖A‖a = max
x1

∑
y1

· · ·max
xd

∑
yd

∣∣A(x1,...,xd),(y1,...,yd)

∣∣ .
Property 3 (Theorems 10 and 11 in [26]). Let F be a random function
and F ∗ be a perfectly random function. The advantage of the best d-limited
non-adaptive distinguisher A is such that AdvA(F, F ∗) = 1

2 |||[F ]d − [F ∗]d|||∞
whereas the advantage of the best d-limited adaptive distinguisher Aa is such
that AdvAa = 1

2‖[F ]d − [F ∗]d‖a.

An iterated attack of order d consists in iterating independent non-adaptive d-
limited attacks with random inputs. The algorithm of Fig. 1 gives a more formal
definition of this concept. For example, linear cryptanalysis is an iterated attack
of order 1 where T (X, Y ) = a •X ⊕ b •Y (where a and b respectively denote
the input and output masks) and where X is an uniformly distributed random
variable on text space. Similarly, differential cryptanalysis is an iterated attack
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Parameters: a complexity n, a distribution on X, a test function T
outputting one bit, a set S
Oracle: a permutation C
1: for i = 1, . . . , n do
2: pick X = (X1, . . . , Xd) at random
3: get Y = (C(X1), . . . , C(Xd))
4: set Ti = T (X, Y )
5: end for
6: if (T1, . . . , Tn) ∈ S then output 1 else output 0 end if

Fig. 1. Iterated attack of order d

of order 2 where T ((X1, X2), (Y1, Y2)) is 1 when Y1 ⊕ Y2 = b and 0 otherwise
and where X1 is a uniformly distributed random variable and X2 = X1 ⊕ a.
As proved in Theorem 18 in [26] bounding the advantage of the best 2d-limited
non-adaptive adversary is sufficient to bound the advantage of any adversary
performing an iterated attack of order d. Roughly speaking, a block cipher C
with a negligible order 2d decorrelation |||[C]2d−[C∗]2d|||∞ is resistant to iterated
attacks of order d.

3 From the SPN of C to the Feistel Scheme of KFC

The block cipher C (introduced in [1, 2]) is based on the same substitution-
permutation network (SPN) as the AES [11], except that the fixed substitution
boxes are replaced by mutually independent and perfectly random permutations.
It achieves goals similar to those we want to achieve with KFC: being resistant
against 2-limited adversaries, it is secure against all iterated attacks of order 1.
These results were obtained by exploiting strong symmetries (induced by intrin-
sic symmetries of the confusion and diffusion layers) in the order 2 distribution
matrix of C. Unfortunately, we were not able to exhibit similar symmetries for
higher orders. It appears that layers of perfectly random permutations are suit-
able for proving security results at order 2, not above.

Instead of explicitly computing the advantage of a d-limited distinguisher
we will try to bound it by a function of the advantage of the best (d − 1)-
limited distinguisher, and apply this bound recursively down to order 2 (which
we know how to compute). This seems clearly impossible with layers of random
permutations as two distinct inputs will always lead to two correlated outputs.
However, this is not the case anymore when considering a layer of mutually
independent and perfectly random functions. For instance, two distinct inputs
of a perfectly random function yield two independent outputs. Similarly, if the
two inputs of a layer of functions are distinct on each function input, the outputs
are independent. This extends well to a set of d texts: if one text is different from
all the others on all function inputs, the corresponding output is independent
from all other outputs. A formal treatment of this idea is given in Section 4.
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Fig. 2. Increasing the decorrelation order using a layer made of small independent and
perfectly random functions

However, layers of random functions cannot always be inverted and thus do
not fit in a classical SPN structure. The straightforward solution is to use a
Feistel scheme [13]. Moreover, decorrelation results on the round functions of a
Feistel scheme extend well to the whole construction.

Theorem 4 (Theorem 21 in [26]). Let F ∗ be a uniformly distributed ran-
dom function on {0, 1}n. Let F1, . . . , Fr be r independent random functions on
{0, 1}n such that AdvA(Fi, F

∗) ≤ ε (i = 1, . . . , r) for any adversary A. Let
C = Ψ(F1, . . . , Fr) be an r round Feistel cipher on {0, 1}2n. For any adversary
A limited to d queries and for any integer k ≥ 3, we have:

AdvA(C, C∗) ≤ 1
2

(
2kε +

2d2

2n/2

)�r/k�
.

This theorem shows that if we can instantiate independent random functions
secure against all d-limited distinguishers, we can obtain a block cipher provably
secure against any d-limited distinguisher. In the following sections, we focus on
building a round function FKFC following the ideas we have introduced here.

4 A Good Round Function FKFC for the Feistel Scheme

To analyze the behavior of a layer of random functions, we analyze the construc-
tion F = S3 ◦ F2 ◦ F1 where F1 : {0, 1}n → {0, 1}n is a random function, S3 is a
random permutation, and F2 is a layer made of small independent and perfectly
random functions (see Fig. 2(a)). We assume that F1, F2, and S3 are mutually
independent. We obtain an interesting property, making it possible to relate the
order d decorrelation of F to its order d−1 decorrelation. We consider a set of d
inputs of the function F and denote the corresponding random outputs of F1 by
X1, . . . , Xd, where Xk = (Xk,1, . . . , Xk,N ) for k = 1, . . . , d. Let α be the event
{∃k s.t. ∀j Xk,j /∈ {X1,j, . . . , Xk−1,j , Xk+1,j , . . . , Xd,j}}, that is, α is the event
that one of the inputs is different from all the others on the N blocks. If α oc-
curs, at least one of the outputs of the functions layer is a uniformly distributed
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random variable independent from the others. More formally, if we denote Ad

the best d-limited adversary trying to distinguish F from F ∗, we have:

AdvAd
(F, F ∗) =

∣∣1− 2 · Pr[Ad(F ) = 1]
∣∣

= |1 − 2 · (Pr[Ad(F ) = 1|α] Pr[α] + Pr[Ad(F ) = 1|α] Pr[α]) |
≤ AdvAd−1(F, F ∗) Pr[α] + |1 − 2 · Pr[Ad(F ) = 1|α] |Pr[α]
≤ AdvAd−1(F, F ∗) + Pr[α], (1)

where the first inequality comes from the fact that if α occurs, at least one output
of F is completely independent from all the others. As S3 is a permutation, it
preserves this independence. Therefore, when α occurs, a d-limited distinguisher
cannot be more efficient than the best (d−1)-limited distinguisher (this is formally
proven in Appendix A by looking at the definition of the decorrelation norms).

Why this is not Enough. From the previous inequality, it seems natural to
consider a substitution-permutation-like construction made of an alternance of
layers of independent and perfectly random functions and layers of linear diffu-
sion (as shown on Fig. 2(b)). Intuitively, one could think that (as it is the case
when iterating random permutations) iterating random functions is sufficient
to decrease the advantage of a distinguisher. However, this is definitely not the
case. Indeed, consider a 2-limited attack where the two plaintexts are equal on
N−1 blocks and different on the last block. There is a non-negligible probability
2−	 that, after the first layer of functions, both outputs are completely equal,
thus leading to a distinguisher with advantage 2−	. For practical values of � (e.g.,
� = 8), this is not acceptable. This means that we need a good resistance against
2-limited adversaries to initialize the recurrence relation of equation (1).

The Sandwich Technique. As proven in [1], an SPN using layers of mutually
independent and perfectly random permutations is efficient against 2-limited
distinguishers. Intuitively, this means that any set of d inputs will lead to a
set of d pairwise independent outputs. As we will see in Section 6, pairwise
independence is exactly what we need to apply the recursive relation (1).

For these reasons the construction we chose for FKFC consists in sandwich-
ing the construction sketched on Figure 2(b) between two SPN using layers of
mutually independent and perfectly random permutations.

Description of FKFC. The round function FKFC used in the Feistel scheme
defining KFC is based on three different layers:
• a substitution layer S made of N mutually independent and perfectly random

� bit permutations,
• a function layer F made of N mutually independent and perfectly random �

bit functions,
• a linear layer L which is a N × N matrix of elements in GF(2	) defining an

MDS code (for optimal diffusion), which requires N ≤ 2	−1.
Let r1 and r2 be two integers. The round function FKFC of KFC is defined as:

FKFC = FKFC[r1,r2] = S ◦ (L ◦ F)r2 ◦ (L ◦ S)r1 .
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5 Computing the Advantage of the Best 2-Limited
Distinguisher Against FKFC

As all layers of FKFC are mutually independent, the order 2 distribution matrix
[FKFC]2 can be expressed as

[FKFC]2 = [S ◦ (L ◦ F)r2 ◦ (L ◦ S)r1 ]2 = ([S]2 × [L]2)r1 × ([F]2 × [L]2)r2 × [S]2.

Each of these matrices is a 22n × 22n square matrix, which makes direct com-
putations impossible for practical parameters. In the rest of this Section we
will exploit symmetries in order to reduce the computation to a product of
(N + 1)× (N + 1) square matrices. For simplicity, we respectively denote by S,
F, and L the distribution matrices [S]2, [F]2, and [L]2 and let q = 2	.

5.1 Conversion Matrices

Definition 5. Considering a ∈ {0, 1}n as a N -tuple of elements in {0, 1}	,
the support of a is the binary N -tuple with 1’s at the non-zero positions of
a and 0 elsewhere. It is denoted supp(a). The weight of the support, denoted
w(supp(a)) or w(a), is the Hamming weight of the support. When considering
a pair x, x′ ∈ {0, 1}n, the support of the pair is supp(x ⊕ x′).

Distribution matrices at order 2 are indexed by pairs of texts. Using symmetries
at two levels, we will first shrink them to 2N × 2N matrices indexed by supports
of pairs and then to (N + 1) × (N + 1) matrices indexed by weights. To do so,
we define the following conversion matrices.

Pair of texts ↔ Support of pair. We let PS (resp. SP ) denote the matrix
that converts a pair of texts into a support (resp. a support into a pair of texts)
in a uniform way. That is:

PS(x,x′),γ = 1γ=supp(x⊕x′) and SPγ′,(y,y′) = 1γ′=supp(y⊕y′)q
−N (q − 1)−w(γ′),

where x, x′, y, y′ ∈ {0, 1}n and γ, γ′ ∈ {0, 1}N . One can note that SP ×PS = Id.

Support of pair ↔ Weight. Similarly, we let WS (resp. SW ) denote the
matrix that converts a support into a weight (resp. a weight into a support) in
a uniform way. That is:

SWγ,w = 1w(γ)=w and WSw′,γ′ = 1w(γ′)=w′
(

N
w′
)−1

,

where γ, γ′ ∈ {0, 1}N and w, w′ ∈ {0, . . . , N}. We have WS × SW = Id.

Pair of texts ↔ Weight. Finally we let PW = PS×SW and WP = WS×SP
so that we obtain:

PW(x,x′),w = 1w(x⊕x′)=w and WPw′,(y,y′) = 1w(y⊕y′)=w′
(

N
w′
)−1

q−N (q−1)−w′
.

Again, we have WP × PW = Id.
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5.2 Shrinking F and S, the First Step

Let x, x′, y, y′ ∈ GF(q)N . As the N random functions of the F layer are mutually
independent, we can express the coefficients of the distribution matrix F as

F(x,x′),(y,y′) = q−q·N
N∏

i=1

#{fi : GF(q) → GF(q) : fi(xi) = yi , fi(x′
i) = y′

i}.

In the case where supp(y ⊕ y′) � supp(x ⊕ x′), we have F(x,x′),(y,y′) = 0. When
supp(y ⊕ y′) ⊆ supp(x ⊕ x′), the uniform distribution of the fi’s leads to:

F(x,x′),(y,y′) = q−q·Nq−w(x⊕x′)+q·N−N = q−w(x⊕x′)−N ,

and we see that F only depends on support of pairs. Consequently,

F(x,x′),(y,y′) = 1supp(y⊕y′)⊆supp(x⊕x′)q
−w(x⊕x′)−N

=
∑
γ,γ′

1γ=supp(x⊕x′)1γ′=supp(y⊕y′)1γ′⊆γq−w(γ)−N

=
∑
γ,γ′

PS(x,x′),γ1γ′⊆γq−w(γ)(q − 1)w(γ′)SPγ′,(y,y′).

Defining the 2N × 2N matrix F by Fγ,γ′ = 1γ′⊆γq−w(γ)(q − 1)w(γ′) we obtain:

F = PS × F × SP. (2)

Similarly, for the S layer we have:

S(x,x′),(y,y′) = 1supp(x⊕x′)=supp(y⊕y′)q
−N (q−1)−w(x⊕x′) =

∑
γ

PS(x,x′),γSPγ,(y,y′)

and thus,
S = PS × SP. (3)

5.3 Shrinking L, the Second Step

Given the structure of FKFC, each linear layer L is surrounded by S or F layers.
From equations (2) and (3), this means that each matrix L is surrounded by the
conversion matrices PS and SP . Denoting L = SP × L × PS we obtain:

Lγ,γ′ =
∑

(x,x′)

∑
(y,y′)

SPγ,(x,x′)L(x,x′),(y,y′)PS(y,y′),γ′

= q−N (q − 1)−w(γ)
∑

(x,x′)

1γ=supp(x⊕x′)1γ′=supp(L(x⊕x′))

= (q − 1)−w(γ)
∑

x

1γ=supp(x)1γ′=supp(L(x)).
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The sum in this equation is the number of texts of a given support γ that are
mapped by the MDS linear layer L on a text of support γ′. The number of
codewords with given supports can be explicitly computed for any MDS code
(see Theorem 3 in [12]) and, amazingly, only depends on the weights of the
supports γ and γ′. We obtain the following formula:

Lγ,γ′ = (q − 1)−w(γ) E(w(γ) + w(γ′))(
2N

w(γ)+w(γ′)

) ,

where E(i) =
(
2N
i

)∑i
j=N+1

(
i
j

)
(−1)i−j(qj−N − 1) for i > N , E(0) = 1, and

E(i) = 0 for 0 < i ≤ N . As the previous equation only depends on the weights
of γ and γ′, we can shrink L even more:

Lγ,γ′ =
∑
w,w′

1w(γ)=w1w(γ′)=w′(q − 1)−w E(w + w′)(
2N

w+w′
)

=
∑
w,w′

SWγ,w

(
N

w′

)
(q − 1)−w E(w + w′)(

2N
w+w′

) WSw′,γ′ .

Defining the (N + 1) × (N + 1) matrix L by Lw,w′ =
(

N
w′
)
(q − 1)−w E(w+w′)

( 2N
w+w′) ,

L = SW × L×WS. (4)

A Brief Summary of the Situation. We started from [FKFC]2 = (S × L)r1 ×
(F × L)r2 × S. To makes things clearer, we consider the case where r1 = 1 and
r2 = 2. Using equations (2), (3), and (4) we obtain:

[FKFC]2 = S× L × F× L × F × L× S

= PS × SP × L× PS × F × SP × L× PS × F × SP × L × PS × SP

= PS × SW × L×WS × F× SW × L ×WS × F × SW × L×WS × SP

= PW × L ×WS × F× SW × L×WS × F × SW × L×WP.

Now we focus on the simplification of WS × F.

5.4 Shrinking WS × F, the Third (and Last) Step

We have:

(WS × F)w,γ′ =
∑

γ

WSw,γFγ,γ′ =
(
N
w

)−1
q−w(q − 1)w(γ′)

∑
γ

1w(γ)=w1γ′⊆γ

=
(
N
w

)−1
q−w(q − 1)w(γ′)1w≥w(γ′)

(
N−w(γ′)

N−w

)
,

so that (WS × F)w,γ′ only depends on w and on the weight of γ′. Conse-
quently, letting F be the (N + 1)× (N + 1) matrix defined by Fw,w′ = q−w(q −
1)w′

1w≥w′
(

w
w′
)
, we obtain:

WS × F = F ×WS.
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Final Summary of the Situation. From the previous summary and the last
shrinking step, we finally obtain that:

[FKFC]2 = PW × L× F ×WS × SW × L × F×WS × SW × L×WP

= PW × L× F × L× F× L ×WP.

In the general case, this means that [FKFC]2 = PW × (L)r1 × (F × L)r2 ×WP .

5.5 Practical Computation of the Advantage

The expression we just obtained for [FKFC]2 leads to a simple practical expression
for ‖[FKFC]2 − [F ∗]2‖a. Noting that an adversary cannot increase his advantage
asking twice the same query, we have:

‖[FKFC]2 − [F ∗]2‖a = max
x

∑
y

max
x′ �=x

∑
y′

∣∣∣[FKFC]2(x,x′),(y,y′) − q−2N
∣∣∣ .

Let U be the (N + 1)× (N + 1) matrix defined by Uw,w′ = q−N(q− 1)w′(N
w′
)
, so

that for all x, x′, y, y′ we have (PW ×U×WP )(x,x′),(y,y′) = q−2N . Consequently,
‖[FKFC]2 − [F ∗]2‖a is equal to:

max
x

∑
y

max
x′ �=x

∑
y′

∣∣∣∣(PW × (
(L)r1 × (F × L)r2 − U

)×WP
)

(x,x′),(y,y′)

∣∣∣∣ .
As the inner matrix only depends on w(x ⊕ x′) and of w(y ⊕ y′), we get

‖[FKFC]2 − [F ∗]2‖a = max
w �=0

∑
w′

∣∣∣∣((L)r1 × (F × L)r2 − U
)

w,w′

∣∣∣∣
Similar computations show that |||[FKFC]2 − [F ∗]2|||∞ = ‖[FKFC]2 − [F ∗]2‖a.

Theorem 6. Let L, F, and U be (N + 1) × (N + 1) matrices defined as above.
The advantage of the best 2-limited distinguisher A (whether adaptive or not)
against FKFC = S ◦ (L ◦ F)r2 ◦ (L ◦ S)r1 is given by:

AdvA(FKFC, F ∗) =
1
2

max
w �=0

∑
w′

∣∣∣∣((L)r1 × (F × L)r2 − U
)

w,w′

∣∣∣∣ .
Explicit values of this advantage for some typical values of N, q, r1 and r2 are
given in Table 1. We note that r1 = 3 is enough (at least for these parameters).
Moreover, the advantage increases with the value of r2. The reason is that the
more F layers there is, the higher is the probability of an internal collision.

6 Bounding the Advantage of the Best d-Limited
Distinguisher Against FKFC for d > 2

6.1 Replacing F by F ◦ S

To simplify the proofs, we will replace each F layer of FKFC by F ◦ S. Both
constructions are completely equivalent in the sense that any decorrelation result
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Table 1. Advantage of the best 2-limited distinguisher against FKFC

N = 8 and q = 28 N = 8 and q = 216 N = 16 and q = 28

�
�r1

r2 0 1 10 100 0 1 10 100 0 1 10 100

0 1 2−5 2−8 2−8 1 2−13 2−16 2−16 1 2−4 2−8 2−8

1 2−5 2−50 2−52 2−49 2−13 2−114 2−116 2−113 2−4 2−95 2−104 2−103

2 2−46 2−53 2−52 2−49 2−110 2−117 2−116 2−113 2−87 2−104 2−104 2−103

3 2−62 2−53 2−52 2−49 2−128 2−117 2−116 2−113 2−120 2−104 2−104 2−103

holding for the latter also holds for the original construction, the reason being
that [F ◦ S]d = [F]d (see Appendix B for a proof). From now on, we thus study
the following equivalent construction:

FKFC = FKFC[r1,r2] = S ◦ (L ◦ F ◦ S)r2 ◦ (L ◦ S)r1 .

Assumption 7. For r1 > 2, any i ∈ {0, . . . , r2} and any 2-limited distinguisher
A2, we have AdvA2(FKFC[r1,r2], F

∗) ≥ AdvA2(FKFC[r1,i], F
∗).

This assumption seems natural from Table 1, although it might prove wrong in
the general case (in particular, the threshold for r1 might be different for other
values of N and q). However, we experimentally verified it for all values of the
parameters we consider in the rest of this paper.

In practice, Assumption 7 means that, when the advantage of the best 2-
limited distinguisher against FKFC is negligible, this is also the case before any F

layer. The inputs of any F layer can thus be considered as pairwise independent.

6.2 Taking Advantage of the Pairwise Independence

Let i ∈ {0, . . . , r2}. Referring to Section 4, we denote αi−1 the event α and let
F1 = FKFC[r1,i−1], F2 = F, and S3 = S ◦ L. We these notations, FKFC[r1,i] =
S3 ◦ F2 ◦ F1, so that equation (1) gives

AdvAd
(FKFC[r1,i], F

∗) ≤ AdvAd−1(FKFC[r1,i], F
∗) + Pr[αi−1].

Bounding Pr[αi−1] for all i allows to recursively bound AdvAd
(FKFC[r1,i], F

∗). As
in Section 4, we denote the output of F1 by X1, . . . , Xd where, for k = 1, . . . , d,
we have Xk = (Xk,1, . . . , Xk,N ). Let 0 ≤ λ ≤ d be the number of Xk’s different
from all other texts on all N blocks. We have:

λ =
d∑

k=1

N∏
b=1

d∏
j=1
j �=k

1Xk,b �=Xj,b
.

Using the linearity of the mean and the mutual independence of the N blocks,
we obtain E(λ) = d · (Pr[X1,1 /∈ {X2,1, . . . , Xd,1}]

)N
.



KFC - The Krazy Feistel Cipher 391

Property 8. For d > 0 we have Pd = Pr[X1,1 /∈ {X2,1, . . . , Xd,1}] ≥ 1 − d−1
q

and thus, E(λ) ≥ d · (1 − d−1
q

)N .

Proof. The proof is done by induction on d. For d = 1 the result is trivial.
Assume Pd ≥ 1 − (d − 1)/q for an arbitrary d. As stated in Section 6.1, we can
assume that the Xi’s are pairwise independent and thus:

Pd+1 = Pd − Pr[X1,1 /∈ {X2,1, . . . , Xd,1} , X1,1 = Xd+1,1]
≥ Pd − Pr[X1,1 = Xd+1,1] = Pd − 1

q .

The expression we obtained for E(λ) leads to the final result. ��

Using this result, we can easily bound Pr[αi] as E(λ) =
∑d

k=1 k Pr[λ = k] ≤
d Pr[λ �= 0] = d Pr[αi], so that, for all i ∈ {0, . . . , r2},

Pr[αi] ≤ 1 − E(λ)
d ≤ 1 −

(
1 − d−1

q

)N

. (5)

6.3 Piling-Up the Rounds

Obviously, the bound on Pr[αi] we just obtained cannot be used directly to obtain
a meaningful bound on the advantage of high order distinguishers. Consequently,
we will consider t successive αi events and give an upper bound on the proba-
bility that none of them occurs. We have Pr[α1, . . . , αt] = Pr[αt|α1, . . . , αt−1] ·
Pr[α1, . . . , αt−1]. As the bound on E(λ) only relies on the pairwise indepen-
dence of the inputs of the i-th round, the bound given by equation (5) can also
be proven for Pr[αt|α1, . . . , αt−1]. By induction, we finally obtain that:

Pr[α1, . . . , αt] ≤
(

1 −
(
1 − d−1

q

)N
)t

.

Theorem 9. Assume that the advantage of the best 2-limited distinguisher on
FKFC[r1,r2] is bounded by ε. For any d and set of integers {t3, . . . , td} such that∑d

i=3 ti ≤ r2, the advantage of the best d-limited distinguisher Ad on FKFC[r1,r2]

is such that:

AdvAd
(FKFC[r1,r2], F

∗) ≤ ε +
d∑

i=3

(
1 −

(
1 − i−1

q

)N
)ti

.

Fixing r1 = 3, the previous theorem bounds, for any value of d, the advantage
of the best d-limited distinguisher against a given number of rounds r2 of FKFC.
In Table 2 we give the best bounds we obtain for various values of r2, d, N , and
q. If one aims at a specific value of d and wants to select r2 in order to bound
the advantage of the best d-limited distinguisher, the best choice is probably to
select the ti’s such that Pr[α1, . . . , αti ] < ε, which bounds the advantage by d · ε.
The following theorem generalizes this idea.
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Table 2. Bounds on AdvAd for r1 = 3 and various parameters

N = 8 and q = 28 N = 8 and q = 216

�
��r2
d 2 3 4 8 16 32 64 2 3 4 8 16 32 64

10 2−52 2−40 2−17 2−2 1 1 1 2−116 2−116 2−57 2−11 1 1 1
100 2−49 2−49 2−49 2−46 2−11 1 1 2−113 2−113 2−113 2−113 2−66 2−23 2−5

250 2−48 2−48 2−48 2−48 2−33 2−5 1 2−112 2−112 2−112 2−112 2−112 2−69 2−25

1000 2−46 2−46 2−46 2−46 2−46 2−35 2−2 2−110 2−110 2−110 2−110 2−110 2−110 2−110

N = 16 and q = 28

�
��r2
d 2 3 4 8 16 32 64

10 2−104 2−31 2−12 1 1 1 1
100 2−103 2−103 2−103 2−31 2−5 1 1
250 2−103 2−103 2−103 2−81 2−18 1 1
1000 2−102 2−102 2−102 2−102 2−82 2−12 1

Theorem 10. Assume that the advantage of the best 2-limited distinguisher
against FKFC[r1,r2] is bounded by ε. Let:

td(β) = min
t

{Pr[α1, . . . , αt] < β · ε} =
⌈

log(β·ε)
log

(
1−
(
1− d−1

q

)N)⌉.

For any d such that
∑d

i=3 ti(β) ≤ r2, the advantage of the best d-limited distin-
guisher Ad against FKFC[r1,r2] is such that:

AdvAd
(FKFC[r1,r2], F

∗) ≤ ε +
d∑

i=3

(
1−

(
1 − i−1

q

)N
)ti(β)

≤ ε · (1 + (d − 2) · β).

7 Conclusion

We introduced KFC, a block cipher based on a three round Feistel scheme. Each
of the three round functions has an SPN-like structure for which we can either
compute or bound the advantage of the best d-limited adaptive adversary, for any
value of d. Using results from the Decorrelation Theory, we extend these results
to the whole KFC construction. At this time, no key schedule has been specified
for KFC. We suggest to use the same trick as in [1], i.e., use a key schedule based
on a cryptographically secure pseudo-random generator (for example the good
old BBS [10] or a faster generator like QUAD [4, 3]). This way, all the results
we have proven assuming the mutual independence of the random functions and
permutations remain valid when implementing KFC in practice with a 128 bit
secret key. We propose two sets of parameters:

Regular KFC: N = 8, q = 28, r1 = 3, r2 = 100. These parameters
lead to provable security against 8-limited adaptive distinguishers. Consequently,
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Regular KFC is resistant to iterated attacks of order 4, which include linear and
differential cryptanalysis, the boomerang attack and others. Based on existing
implementation results on C, we estimate the encryption speed of Regular KFC
to 15-25 Mbits/s on a Pentium IV 2GHz. The key schedule needs to generate
approximatively 222 cryptographically secure pseudo-random bits.

Extra Crispy KFC: N = 8, q = 216, r1 = 3, r2 = 1000. Using these quite
extreme parameters, we manage to obtain provable security against 70-limited
adaptive adversaries, but encryption rate could probably never reach more than
1 Mbit/s. Also, the key schedule should produce 235 pseudo random bits, which
means that Extra Crispy KFC requires at least 4 GB of memory.

To the best of our knowledge, KFC is the first practical block cipher to propose
tight security proofs of resistance against large classes of attacks, including most
classical cryptanalysis (such as linear and differential cryptanalysis, taking hull
effect in consideration in both cases, higher order differential cryptanalysis, the
boomerang attack, differential-linear cryptanalysis, or the rectangle attack).
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A Proof of |1 − 2 · Pr[Ad(F ) = 1 | α]| = AdvAd−1
(F, F ∗)

Without loss of generality, we can assume that the adversary does not make the
same query twice (as this would not increase its advantage) and that the event α
is true for the dth query. In this case, we know that (F2 ◦F1)(xd) is a uniformly
distributed random variable independent of (F2 ◦F1)(xi) for all i < d. As S3 is a
permutation, this property is still true for (S3 ◦ F2 ◦ F1)(xd) = F (xd). Denoting
by Y this random variable we have:

Pr[F (x1) = y1, . . . , F (xd) = yd|α] = Pr[F (x1) = y1 . . . F (xd−1) = yd−1, Y = yd]
= 2−n Pr[F (x1) = y1 . . . F (xd−1) = yd−1].
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Let A = |1 − 2 · Pr[Ad(F ) = 1 | α]|. Similarly to the proof of Theorem 10 in [26]
we know that:

A =
1
2

max
x1

∑
y1

· · ·max
xd

∑
yd

∣∣Pr[F (x1) = y1, . . . , F (xd) = yd|α] − 2−d·n∣∣ .
From the two previous equations we obtain that:

A =
1
2

max
x1

∑
y1

· · ·max
xd

∑
yd

2−n
∣∣∣Pr[F (x1) = y1 . . . F (xd−1) = yd−1] − 2−(d−1)·n

∣∣∣
=

1
2

max
x1

∑
y1

· · ·max
xd−1

∑
yd−1

∣∣∣Pr[F (x1) = y1 . . . F (xd−1) = yd−1]− 2−(d−1)·n
∣∣∣

= AdvAd−1(F, F ∗).

B Proof That [F ◦ S]d = [F]d

For any x = (x1, . . . , xd), y = (y1, . . . , yd) ∈ {0, 1}nd we have:

[F ◦ S]d(x,y) = Pr[(x1, . . . , xd)
F◦S−−→ (y1, . . . , yd)]

=
d∏

i=1

Pr[(x1,i, . . . , xd,i)
F∗◦C∗
−−−−→ (y1,i, . . . , yd,i)]

=
d∏

i=1

1
2	!

∑
c

Pr[(c(x1,i), . . . , c(xd,i))
F∗−−→ (y1,i, . . . , yd,i)]

=
d∏

i=1

1
2	!

∑
c

Pr[(x1,i, . . . , xd,i)
F∗−−→ (c−1(y1,i), . . . , c−1(yd,i))]

=
d∏

i=1

Pr[(x1,i, . . . , xd,i)
F∗−−→ (y1,i, . . . , yd,i)]

= Pr[(x1, . . . , xd)
F−→ (y1, . . . , yd)]

= [F]d(x,y)
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Abstract. In this paper, we describe generic attacks on unbalanced Feis-
tel schemes with contracting functions. These schemes are used to con-
struct pseudo-random permutations from kn bits to kn bits by
using d pseudo-random functions from (k − 1)n bits to n bits. We
describe known plaintext attacks (KPA) and non-adaptive chosen plain-
text attacks (CPA-1) against these schemes with less than 2kn

plaintext/ciphertext pairs and complexity strictly less than O(2kn) for a
number of rounds d ≤ 2k − 1. Consequently at least 2k rounds are neces-
sary to avoid generic attacks. For k = 3, we found attacks up to 6 rounds,
so 7 rounds are required. When d ≥ 2k, we also describe some attacks on
schemes with generators, (i.e. schemes where the d pseudo-random func-
tions are generated) and where more than one permutation is required.

Keywords: unbalanced Feistel permutations, pseudo-random permuta-
tions, generic attacks, Luby-Rackoff theory, block ciphers.

1 Introduction

Feistel schemes are widely used in symmetric cryptography in order to construct
pseudo-random permutations. In trying to design such scheme, one of the natural
questions is: what is the the minimum number of rounds required to avoid all
the “generic attacks”. By generic attacks we mean all the attacks effective with
high probability when the round functions are randomly chosen. We are mainly
interested in generic attacks with a complexity that is much smaller than a search
on all possible inputs of the permutation.

Many results are known on classical (balanced) Feistel schemes. In [7], Luby
and Rackoff have shown their famous result: for more than 3 rounds all the
generic chosen plaintext attacks on Feistel schemes require at least O(2

n
2 ) inputs.

Moreover for more than 4 rounds all the generic attacks on adaptive chosen
plaintext/ciphertext require at least O(2

n
2 ) inputs. These bounds are tight [1,10].

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 396–411, 2006.
c© International Association for Cryptologic Research 2006
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It has also been proved that to avoid all attacks with less than 22n computations
at least 6 rounds of balanced Feistel schemes are needed [2,11,12]. This result is
still valid if the round functions are permutations [5,6]. For more than 6 rounds,
some attacks are still possible but with more than 22n computations [11]. All
these results on classical Feistel schemes are summarized in Table 1:

Table 1. Results (from [12]) on Gd
2. For more than 6 rounds more that one permutation

is needed or more than 22n computations are needed in the best known attacks to
distinguish Gd

2 from a random permutation with an even signature.

KPA CPA-1 CPCA-2

G1
2 1 1 1

G2
2 2

n
2 2 2

G3
2 2

n
2 2

n
2 3

G4
2 2n 2n/2 2

n
2

G5
2 23n/2 2n 2n

G6
2 22n 22n 22n

G7
2 23n 23n 23n

G8
2 24n 24n 24n

Gd
2, d ≥ 8 2(k−4)n 2(k−4)n 2(k−4)n

The aim of this paper is to look for similar results for the case of unbalanced
Feistel schemes with contracting functions: we call such schemes “contracting
Feistel Schemes”. A precise definition of these schemes is given in Sect. 2. The
case of unbalanced Feistel schemes with expanding functions instead of contract-
ing functions is studied in [4,14,15]. Some results on contracting Feistel schemes
or on small transformations of these schemes can be found in [8,9]. In [9], Naor
and Reingold studied the security of contracting Feistel schemes with pairwise
independent permutations. They show lower bounds for the security of such
schemes. Lucks [8] gives some security results on contracting Feistel schemes
built with hash functions.

The paper is organized as follows. In Sect. 2 and 3, we introduce notations
and present precise definitions of the considered schemes and an overview of our
attacks. In Sect. 4, we study attacks for k = 3 and d ≤ 6. Then in Sect. 5, we give
attacks for any k and d ≤ 2k−1. Finally, Sect. 6 is devoted to what can be done
with more than 2kn computations. In particular, we describe attacks against
permutation generators. All the results are summarized in the conclusion: these
tables extend the above Table 1 to the case of unbalanced Feistel schemes with
contracting functions.

2 Notation

Our notation is very similar to that used in [7] and [9]. We also follow the
construction given in [9]. [a, b] denotes the concatenation of strings a and b. An
Unbalanced Feistel Scheme with Contracting Functions Gd

k is a Feistel scheme
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with d rounds. At round j, we denote by fj the round function from (k − 1)n
bits to n bits. On some input [I1, I2, . . . , Ik], Gd

k produces an output denoted by
[S1, S2, . . . , Sk] by going through d rounds. At each round, the last (k−1)n bits
of the round entry are used as an input to the round function fj, which produces
n bits. Those bits are xored to the first n bits of the round entry. Finally before
going to round j + 1, the kn bit value is rotated by n bits.

We introduce the internal variable Xj : it is the only n-bit value which is
modified at round j and which becomes the k coordinate of the internal state
after j rounds. For example, we have:

X1 = I1 ⊕ f1([I2, . . . , Ik]),
X2 = I2 ⊕ f2([I3, . . . , Ik, X1]),
X3 = I3 ⊕ f3([I4, . . . , Ik, X1, X2]),

. . .

The first round of Gd
k is represented in Fig. 1 below.

I1 I2 I3 Ik

I2 I3 Ik X1 = I1 ⊕ f1([I2, . . . , Ik])

f1

Fig. 1. First Round of Gd
k

3 Overview of the Attacks

We present several attacks that allow us to distinguish Gd
k from a random permu-

tation. Depending on the number of rounds, it is possible to find some relations
between the input variables and output variables. Those relations hold condi-
tionally to equalities of some internal variables due to the structure of the Feistel
scheme. Our attacks consist in using m plaintexts and ciphertexts tuples and in
counting the number NGd

k
of pairs of these tuples that satisfy the above relations.

We then compare NGd
k

with the equivalent number Nperm if a random permuta-
tion is used instead of Gd

k. Our attack is successful, i.e. it is able to distinguish
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Gd
k from a random permutation if the difference |E(NGd

k
) − E(Nperm)| is much

larger than the standard deviation σperm and than the standard deviation σGd
k
,

where E denotes the expectancy function.More general cases of succes are also
given in the extended version of this paper [13].

In order to compute these values, we need to take into account the fact that the
m2 pairs obtained from the m plaintext/ciphertext tuples are not independent.
However their mutual dependence is very small. To compute σperm and σGd

k
, we

will use this well-known formula that we will call the “Covariance Formula”:

V (
∑

xi) =
∑

i

V (xi) +
∑
i<j

[
E(xi, xj) − E(xi)E(xj)

]
where the xi are random variables.

We can note that for a small number of rounds d < k, a distinguishing at-
tack is very easy to find. The output of Gd

k is [S1, S2, . . . , Sk] which is equal to
[Id+1, . . . , Ik, X1, . . . , Xd]. This shows that we can easily mount a KPA attack
with one single message. We just have to test if the first coordinate of the out-
put is equal to the coordinate of rank d + 1 of the input. This leads us to start
investigating attacks for scheme with at least k rounds.

4 Generic Attacks When k = 3 and 3 ≤ d ≤ 6

We first study schemes with k = 3 since this case is slightly different from the
general case k ≥ 4 and since it gives simple examples of what we will do. We
have [S1

i , S2
i , S3

i ] = Gd
3([I1

i , I2
i , I3

i ]).

4.1 Attacks on 3 Rounds: G3
3

G3
3: 3 rounds, CPA-1 with m = 2 messages. Let us choose I2

2 = I2
1 , I3

2 = I3
1 and

I1
2 �= I1

1 . Then the attack just tests if S1
1 ⊕ S1

2 = I1
1 ⊕ I1

2 . This will occur with
probability 1 if f is a G3

3, and with probability' 1
2n if f is a random permutation.

So with three rounds there is a generic attack with two non-adaptive chosen
queries and O(1) computations.

G3
3: 3 rounds, KPA with m ' 2n messages. It is possible to transform this non-

adaptive chosen plaintext attack into a known plaintext attack as follows. If we
have m ≥ 2n random inputs [I1

i , I2
i , I3

i ], then (since m2 ≥ 22n) with a good
probability we will have a collision I2

i = I2
j and I3

i = I3
j , i �= j. Then we test if

S1
i ⊕ S2

j = I1
i ⊕ I1

j . Now the attack requires O(2n) random queries and O(2n)
computations.

4.2 Attacks on 4 Rounds: G4
3

When the output [I1, I2, I3] is given, we have introduced the internal variable
X1 = I1 ⊕ f1([I2, I3]) and the following conditions hold:
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⎧⎪⎪⎨⎪⎪⎩
I2
i = I2

j and I3
i = I3

j ⇒ X1
i ⊕X1

j = I1
i ⊕ I1

j

I3
i = I3

j and X1
i = X1

j ⇒ S1
i ⊕ S1

j = I2
i ⊕ I2

j

X1
i = X1

j and S1
i = S1

j ⇒ S2
i ⊕ S2

j = I3
i ⊕ I3

j

S1
i = S1

j and S2
i = S2

j ⇒ S3
i ⊕ S3

j = X1
i ⊕X1

j

The attack exploits the second condition. It proceeds as follows: we choose m
messages such that ∀i, I3

i = 0 and I2
i �= I2

j for all i �= j. We then count NG4
3

the
number of pairs (i, j) with i < j such that I2

i ⊕ I2
j = S1

i ⊕ S1
j . For a random

permutation, this condition appears only by chance. Thus we get:

Nperm ' m2

2 · 2n
+ O(

m

2
n
2

).

Here 0( m

2
n
2

) denotes the standard deviation. This can be easily proved using the
Covariance Formula, see Appendix A or full version of this article [13].

For G4
3, the equation I2

i ⊕ I2
j = S1

i ⊕S1
j can occur at random with probability

2−n or from the internal collision X1
i = X1

j . Since I3
i is equal to zero for all i, we

have X1
i = I1

i ⊕ f1([I2
i , 0]). Sine f1 is a random function and the I2 are pairwise

distinct, the values f1([I2
i , 0]) and consequently the X1

i are uniformly distributed
random variables. Consequently the internal collision X1

i = X1
j appears with

probability 2−n and we have:

NG4
3
' m2

2n
+ O(

m

2
n
2

)

where O( m

2
n
2

) denotes the standard deviation (proof is given below). We can
distinguish the two permutations when the difference between the mean values
is larger than the standard deviation i.e. when m2

2n ≥ m

2
n
2

, i.e. for m ≥ 2
n
2 . This

generic attack requires O(2
n
2 ) random queries and O(2

n
2 ) computations.

As explained previously, we can transform this attack in a known plaintext
attack with m ' 2n.

Proof of the Standard Deviation σG4
3

We introduce the following random variables:{
δi,j = 1 if I2

i ⊕ I2
j = S1

i ⊕ S1
j

δi,j = 0 otherwise.

Since we have chosen all the I3
i equal to zero, we can say equivalently that

δi,j is equal to one when f2([0, X1
i ]) = f2([0, X1

j ]). NG4
3

is defined as
∑

i<j δi,j

and it is easy to compute E(δi,j) = 2
2n − 1

22n . We now compute the variance
V (δi,j) = E(δ2

i,j) − E(δi,j)2 = E(δi,j) − E(δi,j)2 = 2
2n − 5

22n + 4
23n − 1

24n . We
recall the Covariance Formula:

V (
∑
i<j

δi,j) =
∑
i<j

V (δi,j) +
∑

i<j,k<l,(i,j) �=(k,l)

[
E(δi,j δk,l)− E(δi,j)E(δk,l)

]
.
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We need to compute Cov(i, j, k, l) = E(δi,j δk,l) − E(δi,j)E(δk,l) Let us first
consider the case, where i, j, k, l are pairwise distinct We need to consider the
influence of the equality f2([0, X1

i ]) = f2([0, X1
j ]) over the equality f2([0, X1

k ]) =
f2([0, X1

l ]). It can only happen if X1
k �= X1

l and if either X1
k = X1

i and X1
l = X1

j

or X1
k = X1

j and X1
l = X1

i . In that case we have also X1
i �= X1

j . This event
happens with probability

(
1 − 1

2n

)
2

22n and both equalities have a probability 1
2n

instead of 1
22n . This gives a covariance equals to

2
23n

− 4
24n

+
2

25n
.

The second case is if both equations are sharing an index, for example i = k
We need to consider the influence of the equality f2([0, X1

i ]) = f2([0, X1
j ]) over

the equality f2([0, X1
i ]) = f2([0, X1

l ]). It can only happen if X1
i �= X1

j . This event
happens with probability

(
1− 1

2n

)
1
2n and both equalities have a probability 1

2n

instead of 1
22n . This gives a covariance equals to

1
22n

− 2
23n

+
1

24n
.

Consequently we have

V (NG4
3
) =

m2

2n
+ O

(
m3

22n

)
+ O

(
m4

23n

)
Since m is smaller than 2n, we get:

V (NG4
3
) ' m2

2n
and σG4

3
' m

2
n
2

.

4.3 Attacks on 5 Rounds: G5
3

For 5 rounds, the internal variables are X1 and X2 = I2⊕ f2([I3, X1]). We have
the following conditions:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

I2
i = I2

j and I3
i = I3

j ⇒ X1
i ⊕X1

j = I1
i ⊕ I1

j

I3
i = I3

j and X1
i = X1

j ⇒ X2
i ⊕X2

j = I2
i ⊕ I2

j

X1
i = X1

j and X2
i = X2

j ⇒ S1
i ⊕ S1

j = I3
i ⊕ I3

j

X2
i = X2

j and S1
i = S1

j ⇒ S2
i ⊕ S2

j = X1
i ⊕X1

j

S1
i = S1

j and S2
i = S2

j ⇒ S3
i ⊕ S3

j = X2
i ⊕X2

j

The attack proceeds as follows: we choose m messages such that ∀i, I2
i = 0,

I3
i = 0 and the I1

i values are pairwise distinct. Notice that this directly implies
X1

i ⊕X1
j = I1

i ⊕ I1
j , so the X1

i values are pairwise distinct. Let N be the number
of pairs (i, j), i < j such that S1

i = S1
j and I1

i ⊕ I1
j = S2

i ⊕ S2
j . With a random

permutation, these two conditions appear by chance and we have:

Nperm ' m2

2 · 22n
+ O(

m

2n
).
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Here O( m
2n ) is the standard deviation. For a G5

3, S1
i = S1

j and I1
i ⊕ I1

j = S2
i ⊕S2

j

appear at random or as a consequence of X2
i = X2

j and S1
i = S1

j . This gives:

NG5
3
' m2

22n
.

We can distinguish the two permutations when the difference between the mean
values is larger than the standard deviation i.e. when m2

22n ≥ m
2n , or m ≥ 2n.

Remark: here m ≤ 2n since I2
i = 0 and I3

i = 0; so the attack will succeed when
m ' 2n.

As before this attack leads to a KPA attack with 22n messages. But there is
a better attack as we can see now.

G5
3: 5 rounds, KPA with m = 2

3n
2 messages

For this attack, let N be the number of pairs (i, j), i < j, such that I3
i ⊕ I3

j =
S1

i ⊕ S1
j . For a random permutation, we have:

Nperm ' m2

2 · 2n
+ O(

m√
2n

)

where m√
2n

is the standard deviation, while for G5
3 we obtain

NG5
3
' m2

2 · 2n
+

m2

2 · 22n
.

We can distinguish the two permutations when the difference between the
mean values is larger than the standard deviation i.e. when m2

22n ≥ m√
2n

, i.e. for

m ≥ 2
3
2 n.

4.4 Attacks on 6 Rounds: G6
3

For 6 rounds, the internal variables are X1, X2 and X3 = I3⊕ f3([X1, X2]). We
have the following conditions:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

I2
i = I2

j and I3
i = I3

j ⇒ X1
i ⊕X1

j = I1
i ⊕ I1

j

I3
i = I3

j and X1
i = X1

j ⇒ X2
i ⊕X2

j = I2
i ⊕ I2

j

X1
i = X1

j and X2
i = X2

j ⇒ X3
i ⊕X3

j = I3
i ⊕ I3

j

X2
i = X2

j and X3
i = X3

j ⇒ S1
i ⊕ S1

j = X1
i ⊕X1

j

X3
i = X3

j and S1
i = S1

j ⇒ S2
i ⊕ S2

j = X2
i ⊕X2

j

S1
i = S1

j and S2
i = S2

j ⇒ S3
i ⊕ S3

j = X3
i ⊕X3

j

The attack proceeds as follows: we choose m messages such that ∀i, I3
i = 0. Let

N be the number of pairs (i, j), i < j, such that I2
i = I2

j and I1
i ⊕ I1

j = S1
i ⊕S1

j .
With a random permutation, we have:

Nperm ' m2

2.22n
+ O(

m

2n
)
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where O( m
2n ) is the standard deviation. For a G6

3, since all the I3
i values are

equal, I2
i = I2

j and X2
i = X2

j and X3
i = X3

j imply I1
i ⊕ I1

j = S1
i ⊕ S1

j . We get

NG6
3
' m2

2.22n
+

m2

2 · 23n
.

We can distinguish the two permutations when the difference between the
mean values is larger than the standard deviation i.e. when m2

23n ≥ m
2n , i.e. for

m ≥ 22n.
We can obviously transform this CPA-1 attack into a KPA attack which will

succeed as soon as we have m ≥ 2
5n
2 .

4.5 Experimental Results on G6
3

We have implemented our CPA-1 and KPA attacks against G6
3 for small values

of n (n = 6 and n = 8). Our experimental values confirm the theoretical results.
Our experiments were performed as follows:

– choose randomly an instance of G6
3

– choose randomly a permutation: for this we use classical balanced Feistel
scheme with a large number of rounds (more than 20)

– launch the attack in CPA-1 with m = 22n, in KPA with m = 23n (m = 2
5n
2

also works).
– count the number of plaintext/ciphertext pairs satisfying the relations for

the G6
3 function and for the permutation

– iterate this procedure a large number of times (here 1000 times) to evaluate
the mean values and the standard deviations

– compute the mean value and the standard deviation for both the G6
3 function

and the permutation

Table 2. Experimental results for KPA and CPA attacks on G6
3

Attack n NG6
3

Nperm NG6
3
−Nperm

m2

2·24n σG6
3

σperm
m

√
2·2

3n
2

KPA 6 131006 129011 1995 2048 159 372 362.038

KPA 8 8388308 8355787 32521 32768 2862 2833 2896.309

CPA 6 2058 2009 49 32 45 44 45.254

CPA 8 32781 32601 180 128 178 185 182.019

Conclusion. Our experimental values for NG6
3
− Nperm are very close to the

theoretical expected values ( m2

2·24n in KPA and m2

2·23n in CPA-1). Similarly, our
experimental values for εperm are very close to the theoretical expected values
( m√

2·2 3n
2

in KPA and m√
2·2n

in CPA-1) . So these simulations confirm that we can

distinguish G6
3 from a random permutation with the complexity that we have

given.
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5 Generic Attacks When k ≥ 4 and k ≤ d ≤ 2k − 1

5.1 Attacks for k Rounds

We first describe a CPA-1 attack with two messages. All the blocks of these two
messages are equal to zero except the first one. We test if I1

1 ⊕ I1
2 = S1

1 ⊕ S1
2 .

Since S1 = X1 = I1 ⊕ f1([I2, . . . Ik]), this will occur with probability 1 if f is
a Gk

l , and with probability 2−n if f is a random permutation. This gives the
result.

As usual, we transform this attack into a KPA attack with m = O(2
n(k−1)

2 ).
In that case with a high probability I2

i = I2
j , I3

i = I3
j , ..., Ik

i = Ik
j . We test again

if S1
i ⊕ S1

i = I1
i ⊕ I1

j .

5.2 Attacks for k + t Rounds, with 1 ≤ t < k − 1

In the CPA-1 attack, we choose ∀i, It+2
i = . . . = Ik

i = 0 and pairwise distinct
[I1

i , . . . It
i ]. This choice limits the maximal number of plaintext/ciphertext tuples

to m ≤ 2(t+1)n. We then count the number N of pairs (i, j), i < j, such that
It+1
i ⊕ It+1

j = S1
i ⊕ S1

j . For a random permutation, we have:

Nperm ' m(m− 1)
2 · 2n

+ O(
m

2
n
2

).

Here 0( m

2
n
2

) denotes the standard deviation. This can be easily proved using the
Covariance Formula, see Appendix A or full version of this article [13].

For an unbalanced Feistel scheme, the preceding condition appears at random,
but we also have the following property:

X1
i = X1

j , . . . , Xt
i = Xt

j ⇒ S1
i ⊕ S1

j = It+1
i ⊕ It+1

j

since S1
i = Xt+1 = It+1 ⊕ ft+1([It+2, . . . Ik, X1, . . . , Xt]). This gives

NGk+t
k

' m(m − 1)
2 · 2n

+
m(m− 1)

2 · 2tn
,so |E(NGk+t

k
)− E(Nperm)| ' m(m − 1)

2 · 2tn
.

Here again for NGd
k
, the standard deviation can be computed by using the Co-

variance Formula, as we have shown for G4
3 (see full version of this article for the

details [13]). Thus we distinguish when m2

2tn ≥ m

2
n
2

i.e. when m ≥ 2(t− 1
2 )n, which

is compatible with the bound given above.
As usual, we are able transform this attack into a KPA attack which succeeds

if m ≥ 2( k+t−2
2 )n.

5.3 Attacks for 2k − 1 Rounds

In that case we can only mount a KPA attack. We consider the following KPA
attack: let N be the number of pairs (i, j), i < j, such that Ik

i ⊕ Ik
j = S1

i ⊕ S1
j .

For a random permutation, we have Nperm ' m(m−1)
2·2n + O( m√

2n
) and for an
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unbalanced Feistel scheme, NG2k−1
k

' m(m−1)
2·2n + m(m−1)

2·2(k−1)n , since Ik
i ⊕Ik

j = S1
i ⊕S1

j

is also implied by the following equations: X1
i = X1

j , X2
i = X2

j , · · · , Xk−1
i =

Xk−1
j . This is because S1 = Xk = Ik ⊕ f2k−1([X1, . . . , Xk−1]). Thus we can

distinguish when m2

2·2(k−1)n ≥ m√
2n

. This gives m ≥ 2(k− 3
2 )n.

We can remark that for more than 2k rounds we will have to proceed with
different attacks, since X1

i = X1
j , . . . , Xk

i = Xk
j implies i = j because we have a

permutation.

6 Attacks with More Than 2kn Computations

Until now we have studied Unbalanced Feistel schemes with random functions.
In practice, for example in designing block ciphers we need to consider gener-
ators of pseudo-random permutations. In this section, we will describe attacks
against a generator of permutations (and not only against a single permuta-
tion randomly generated by a generator of permutations), i.e. we will be able to
study several permutations generated by the generator. This allows more than
2kn computations.

Let G be a “Gd
k generator”, i.e. from a binary string K, G generates a d

round unbalanced Feistel permutation Gd
k. Let G′ be a truly random permutation

generator, i.e. from a string K, G′ generates a truly random permutation G′
K of

Bkn. Let G′′ be a truly random even permutation generator, i.e. from a string
K, G′′ generates a truly random permutation G′′

K of Akn, with Akn being the
group of all the permutations of {0, 1}kn → {0, 1}kn with even signature. We
are looking for attacks that distinguish G from G′, and also for attacks that will
distinguish G from G′′.

Adversarial model: An attacker can choose some strings K1, . . .Kf , can ask for
some inputs [I1, . . . , Ik], and can ask for some GKα [I1, . . . , Ik] (with Kα being
one of the Ki). Here the attack is more general than in the previous sections,
since the attacker can have access to many different permutations generated by
the same generator.

Adversarial goal: The aim of the attacker is to distinguish G from G′ (or from
G′′) with a high probability and with a complexity as small as possible.

6.1 Brute Force Attacks

A possible attack is an exhaustive search for the d round functions f1, . . . , fd

from {0, 1}(k−1)n to {0, 1}n that have been used in the unbalanced Feistel con-
struction. This attack always exists, but since we have 2d·n·2(k−1)n

possibilities
for f1, . . . , fd, this attack requires about 2d·n·2(k−1)n

computations and about
d
k · 2(k−1)n random queries but only for one permutation of the generator. This
attacks means that an adversary with infinite computing power will be able to
distinguish Gd

k from a random permutation (or from a truly random permutation
with even signature) when m ≥ d

k · 2(k−1)n.
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6.2 Attack by the Signature

Theorem 1. Let Ψ be an unbalanced Feistel permutation on {0, 1}α+β →
{0, 1}α+β with round functions of {0, 1}β → {0, 1}α. Then if α ≥ 2 and β ≥ 1,
Ψ has an even signature.

The proof of this theorem is quite similar to the proof in the case of a symmetric
Feistel scheme [11,3]. However the fact that α ≥ 2 changes a few things. Conse-
quently a complete proof is included in the full version [13], available from the
authors.

Let f be a permutation from kn bits to kn bits. Then using O(2kn) compu-
tations on the 2kn input/output values of f , we can compute the signature of f .

To achieve this we just compute all the cycles ci of f , f =
α∏

i=1

ci and use the

formula:

signature(f) =
α∏

i=1

(−1)length(ci)+1.

The consequence is that it is possible to distinguish G a generator of Gd
k from

a generator of truly random permutations from kn bits to kn bits after O(2kn)
computations on O(2kn) input/output values.

Remark: To compute the signature of a permutation g we need however to know
all the input/outputs of g (or all of them minus one, since the last one can be
found from the others if g is a permutation).

6.3 Attacks of Gd
k Generators When d = 2k

Let μ be the number of permutations that we will use. After 2k rounds, the
output is given by [S1, S2, . . . , Sk] = [Xk+1, Xk+2, . . . , X2k] where we have
Xk+1 = X1 ⊕ fk+1([X2, . . . , Xk]). Remember that X1 = I1 ⊕ f1([I2, . . . , Ik]).
Let us describe the KPA attack which concentrates on S1 = Xk+1. Let N be
the number of pairs (i, j), i < j, such that

I2
i = I2

j , . . . , Ik
i = Ik

j , Xk+1
i ⊕Xk+1

j = I1
i ⊕ I1

j . (1)

There we have necessary I1
i �= I1

j and X1
i �= X1

j . When we are testing random
permutations, Nperm ' μ · m2

2·2kn + O(
√

μ · m

2
kn
2

). For Gk
k, since I2

i = I2
j , . . . , Ik

i =

Ik
j , X2

i = X2
j , . . . , Xk

i = Xk
j imply (1) we have:

NGd
k

= μ · m2

2 · 2kn
+ μ · m2

2 · 2(2k−2)n
.

Thus we can distinguish the two generators when: μ · m2

2(2k−2)n
≥ √

μ · m

2
kn
2

, or

when μ ·m ≥ 2(3k−4)n. When m = 2kn, we find μ = 2(k−4)n and μ ·m = 2(2k−4)n.
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6.4 Attacks Gd
k Generators for d Rounds with d ≥ 2k

It is possible to generalize the attack given above for any d ≥ 2k. We give here
only the main ideas. We concentrate the attack on Xd−k+1. In the constraints,
there are d conditions and d − k internal variables X i. We choose conditions
number k, 2k, ... , until we get ξ =

⌊
d
k

⌋
conditions. This gives ξ (internal or

external) ·(k − 1)-multiple equations. When they are satisfied, we have:

1. One equation between the input and output variables.
2. ϕ equations between the output variables where

ϕ = (k − 1) −
(

d−
⌊

d

k

⌋
k

)
= (k − 1)− (d mod k)

We have μ permutations and the attack proceeds as follows: let N be the number
of pairs (i, j), i < j, such that these ϕ + 1 equations are satisfied. When we are
testing a permutation generator, we have

Nperm = μ · m(m− 1)
2 · 2(ϕ+1)n

+ O(
√

μ · m

2( ϕ+1
2 )n

).

With a Gd
k, the ξ(k−1)-multiples equations imply the ϕ+1 equations described

above. This shows that

NGd
k

= μ · m(m− 1)
2 · 2(ϕ+1)n

+ μ · m(m− 1)
2 · 2(k−1)n

.

We get the condition:

μ · m2

2(k−1)n
≥ √

μ · m

2( ϕ+1
2 )n

,

μ · m2 ≥ 2(2(k−1)ξ−ϕ−1)n.

For the maximal value m = 2kn, we find μ = 2(2(k−1)ξ−ϕ−2k−1)n and the com-
plexity is λ = μ · m = 2(2(k−1)ξ−ϕk−1)n. Thus we can write

λ = 2(2(k−1)# d
k$+(d mod k)−2k)n = 2

(
d+(k−2)# d

k$−2k
)

n.

7 Conclusion

Until now, attacks and proofs of security on contracting unbalanced Feistel
Schemes have not received much attention. There are much more papers on clas-
sical Feistel schemes and even attacks on expanding unbalanced Feistel schemes
have been more studied than attacks on contracting unbalanced Feistel schemes.
This may be not justified since contracting Feistel schemes seem to have very
good security properties. For example, to avoid all known generic attacks with
the number of messages less than 2kn (where kn is the number of bits of the
input and the output) with these schemes, we need only 2k rounds (if k ≥ 4)
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Table 3. Results on Gd
3. For more than 7 rounds more that one permutation is needed

or more than 23n computations are needed in the best known attacks to distinguish
from a random permutation with an even signature.

KPA CPA-1 a

G1
3 1 1

G2
3 1 1

G3
3 2n 2

G4
3 2n 2n/2

G5
3 23n/2 2n

G6
3 25n/2 22n

G7
3 23n 23n

G8
3 24n 24n

G9
3 26n 26n

G10
3 27n 27n

G11
3 28n 28n

G12
3 210n 210n

Gd
3, d ≥ 12 2(d+� d

3 	−6) 2(d+� d
3 	−6)

a Here we do not show CPA-2, CPCA-1 and CPCA-2 since for Gd
3 , no better attacks

are found compared with CPA-1.

Table 4. Results on Gd
k for any k ≥ 4. For more than 2k rounds more that one

permutation is needed or more than 2(2k−4)n computations are needed in the best
known attacks to distinguish from a random permutation with an even signature.

KPA CPA-1a

Gd
k, 1 ≤ d ≤ k − 1 1 1

Gk
k 2

n(k−1)
2 2

Gk+1
k 2

n(k−1)
2 2

n
2

Gk+2
k 2

k
2 n 2

3
2 n

Gk+3
k 2( k+1

2 )n 2
5
2 n

Gk+i
k , 1 ≤ i < k 2( k+i−2

2 )n 2( 2i−1
2 )n

G2k
k 2(2k−4)n 2(2k−4)n

Gd
k, d ≥ 2k 2(d+(k−2)� d

k
	−2k)n 2(d+(k−2)� d

k
	−2k)n

a Here we do not show CPA-2, CPCA-1 and CPCA-2 since for Gd
k, no better attacks

are found compared with CPA-1.

or 7 rounds (if k = 3). So each bit will be changed only 2 times (if k ≥ 4) un-
like with balanced Feistel schemes where 3 changes (i.e. 6 rounds) are necessary
and unlike expanding unbalanced Feistel schemes where much more changes are
needed [4,11,14].

Storing a random function of (k − 1)n bits to n bits requires a large mem-
ory and this may be a practical disadvantage of Gd

k compared with balanced
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Feistel schemes or Feistel schemes with expanding functions. However if a func-
tion generator is used to generate pseudo-random functions, this may not be a
problem.

There are still many open problems on contracting unbalanced Feistel schemes.
Naor and Reingold have shown a very nice security result [9]: we have security un-
til the birthday bound when we use pairwise independent functions for the first
and the last rounds. However, if we do not use such first and last rounds, the ex-
act security is still an open problem and even the birthday security bound is not
proved yet.

In conclusion, contracting unbalanced Feistel schemes seem to be one of the
best designs for permutation generators. In this paper, we have presented attacks
on these schemes with fewer than 2k rounds.
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A Computation of the Variance for Random
Permutations

In this section, we compute the value of the variance when we are testing a
random permutation and we want to distinguish it from a Gk+t

k , 1 ≤ t ≤ k − 1.
The input is [I1, . . . , Ik] and the output is [S1, . . . , IK ]. We want to compute
Nperm which is the number of (i, j), i < j satisfying the relation It+1

i ⊕ S1
i =

It+1
j ⊕ S1

j . We have the condition ∀i, It+2
i = It+3

i = . . . = Ik
i = 0. This implies

that m ≤ 2(t+1)n. We introduce the following random variables:{
δi,j = 1 if It+1

i ⊕ S1
i = It+1

j ⊕ S1
j

δi,j = 0 otherwise

Then Nperm =
∑

i<j δi,j and E(δi,j) = Prf∈RBkn
[It+1

i ⊕ S1
i = It+1

j ⊕ S1
j ].

Notice that if m % 2n, we may assume that the It+1 values are pairwise
distinct (or are all equal) and if m ≥ 2n, we may assume that each element
of {0, 1}n is reached by about m

2n values of It+1
i (in CPA-1, we can choose m

to be a multiple of 2n and each element of {0, 1}n is reached by exactly m
2n

values of It+1
i . It is also possible to choose that It+1

i are random values). If
It+1
i = It+1

j , E(δi,j) = Prf∈RBkn
[S1

i = S1
j ] = 2(k−1)n−1

2kn−1
' 1

2n . and if It+1
i �= It+1

j ,

E(δi,j) = 2(k−1)n

2kn−1
' 1

2n . This gives us the average value:

E(Nperm) ' m(m− 1)
2 · 2n

+ o(
m

2(k+ 1
2 )n

).

We now compute the variance V (δi,j) = E(δ2
i,j) − E(δi,j)2 = E(δi,j) − E(δi,j)2.

If It+1
i = It+1

j , V (δi,j) = 1
2n · 1

1− 1
2kn

− 1
2kn−1 − (

1
2n · 1

1− 1
2kn

− 1
2kn−1

)2. And if

It+1
i �= It+1

j , V (δi,j) = 1
2n · 1

1− 1
2kn

− (
1
2n · 1

1− 1
2kn

)2. Finally V (δi,j) ' 1
2n (1 − 1

2n )

and ∑
i<j

V (δi,j) ' m(m− 1)
2

· 1
2n

(1 − 1
2n

).

We recall the formula:

V (Nperm) = V (
i<j

δi,j) =
i<j

V (δi,j) +
i<j,p<l,(i,j) �=(p,l)

E(δi,j δp,l) − E(δi,j)E(δp,l)
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The second term is the covariance term. We will see that

V (Nperm) =
m(m− 1)

2 · 2n
+ O

(
m2

22n

)
+ O

(
m4

22n · 2(2k−1)n

)
+ O

(
m3

22n · 2(k−1)n

)
where the two first terms correspond to the sum of the variance of δi,j , the third
term corresponds to the covariance of four distinct indexes (i, j, k, l), and the last
term corresponds to the covariance of 4-tuples of indexes with one in common,
like for example (i, j, i, l). Therefore, for m larger than 2n but smaller than 2kn,
we have as claimed

V (Nperm) =
m(m − 1)

2 · 2n
+ o

(
m2

2n

)
' m2

2 · 2n
.

In order to exactly compute the covariance term, we can separate the com-
putation into several cases. Here we only study the main case, i.e. we sup-
pose that i, j, p, l are pairwise distinct and that It+1

i �= It+1
j , It+1

p �= It+1
l and

It+1
i ⊕ It+1

j ⊕ It+1
p ⊕ It+1

l �= 0. For all other cases, computation is similar and is
included in the full version of this paper [13].

To compute this probability we need to count the total number A of possi-
bilities for the outputs [S1

i , . . . , Sk
i ], [S1

j , . . . , Sk
j ], [S1

p , . . . , Sk
p ] and [S1

l , . . . , Sk
l ].

Since we are using a permutation, we have A = 2kn ·(2kn−1)·(2kn−2)·(2kn−3).
We also have to compute B the number of outputs [S1

i , . . . , Sk
i ], [S1

j , . . . , Sk
j ],

[S1
p , . . . , Sk

p ] and [S1
l , . . . , Sk

l ] satisfying the above relations in the case we con-
sider. For [S1

i , . . . , Sk
i ], there are 2kn possibilities. When this output is fixed,

S1
j = S1

i ⊕ It+1
i ⊕ It+1

j . Thus there are 2(k−1)n possibilities for [S1
j , . . . , Sk

j ]. Now
we have to fix [S1

i , . . . , Sk
i ] and [S1

j , . . . , Sk
j ]. There are 5 cases that we are going

to study now. If S1
p = S1

i ⊕ It+1
p ⊕ It+1

l , then S1
p �= S1

i , S1
p �= S1

l and S1
l = S1

i .
Thus we have 2(k−1)n ·(2(k−1)n−1) possibilities for [S1

p , . . . , Sk
p ] and [S1

l , . . . , Sk
l ].

Then we consider the case where S1
p = S1

j ⊕ It+1
p ⊕ It+1

l . This case is different
from the previous one since S1

i �= S1
j . We get again 2(k−1)n · (2(k−1)n − 1) pos-

sibilities for [S1
p , . . . , Sk

p ] and [S1
l , . . . , Sk

l ]. If S1
p = S1

i or if S1
p = S1

j , there are
(2(k−1)n−1) ·2(k−1)n possibilities for [S1

p , . . . , Sk
p ] and [S1

l , . . . , Sk
l ]. The last case

is when we have eliminated the previous cases. This gives (2n−4)·2(k−1)n·2(k−1)n

possibilities for [S1
p , . . . , Sk

p ] and [S1
l , . . . , Sk

l ]. Finally B = 2(4k−2)n · (1 − 4
2kn ).

Consequently, since E(δi,j δp,l) = B
A we get:

E(δi,j δp,l) − E(δi,j)E(δp,l) =
1

22n
(− 2

22kn
+ O(

1
23kn

)).

Finally these terms of covariance are equal to −2m4

4·22n·22kn ≤ O
(

m4

22n·2(2k−1)n

)
as

claimed.
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Abstract. IDEA is a 64-bit block cipher with 128-bit keys introduced
by Lai and Massey in 1991. IDEA is one of the most widely used block
ciphers, due to its inclusion in several cryptographic packages, such as
PGP and SSH. The cryptographic strength of IDEA relies on a com-
bination of three incompatible group operations – XOR, addition and
modular multiplication. Since its introduction in 1991, IDEA has with-
stood extensive cryptanalytic effort, but no attack was found on the full
variant of the cipher.

In this paper we present the first known non-trivial relation that in-
volves all the three operations of IDEA. Using this relation and other
techniques, we devise a linear attack on 5-round IDEA that uses 219

known plaintexts and has a time complexity of 2103 encryptions. By
transforming the relation into a related-key one, a similar attack on 7.5-
round IDEA can be applied with data complexity of 243.5 known plain-
texts and a time complexity equivalent to 2115.1 encryptions. Both of the
attacks are by far the best known attacks on IDEA

1 Introduction

The International Data Encryption Algorithm (IDEA) is a 64-bit, 8.5-round
block cipher with 128-bit keys proposed by Lai and Massey in 1991 [20]. Due to
its inclusion in several cryptographic packages, such as PGP and SSH, IDEA is
one of the most widely used block ciphers. Since its introduction, IDEA resisted
intensive cryptanalytic efforts [1, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 21, 22, 24].
The best published chosen-plaintext attack on IDEA is an attack on 5-round
IDEA that requires 224 chosen plaintexts, and has time complexity of 2126 en-
cryptions [12]. The best published related-key attack is an attack on 6.5-round
IDEA that requires 257.8 chosen plaintexts encrypted under four related keys and
has time complexity of 288.1 encryptions [5]. Along with the attacks on reduced-
round variants, several weak-key classes for the entire IDEA were found. The
largest weak key class (identified by a boomerang technique) contains 264 keys,
� This work was supported in part by the Israel MOD Research and Technology Unit.

�� The research presented in this paper was supported by the Adams fellowship.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 412–427, 2006.
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and the membership test requires 216 adaptive chosen plaintexts and ciphertexts
and has a time complexity of 216 encryptions [6].

The cryptographic strength of IDEA relies on the combination of three in-
compatible group operations: bitwise XOR, modular addition in Z216 , and mod-
ular multiplication in GF (216 + 1) where 0 is replaced by 216. All the three
operations are essential for the security of the cipher. Indeed, if the multi-
plication is removed, then the cipher can be broken easily by examining the
least significant bits of the words during the encryption. If the XOR is re-
moved, then the cipher is affine over addition in Z216 , and hence, is easily
breakable using only few known plaintexts. In [7, 26] it is shown that if the
addition is removed then the cipher can be easily broken using multiplicative
differentials.

In this paper we present the first known non-trivial relation that involves all
the three different operations of IDEA. More precisely, we show that for the
MA transformation of IDEA, that is composed of additions and multiplications,
there exists an XOR differential with a non-trivial probability.

We use our new relation to devise several new attacks on IDEA based on
various attack techniques: First, we devise linear-type attacks on reduced-round
variants of IDEA that are similar to the attacks presented in [12, 16, 24]. The
attacks are based on constructing linear approximations with bias 1/2 that re-
lates the least significant bits of some words during the encryption process. We
use our relation, along with differential techniques and partial key guessing, to
improve the basic technique presented in [16, 24] and to establish the best known
attack on 5-round IDEA. Our attack requires only 219 known plaintexts and the
time complexity is equivalent to 2103 encryptions. Both the data and the time
complexities are smaller than the respective complexities of all the previously
known attacks on 4.5 or 5 rounds of IDEA. Our attack also has a relatively small
memory complexity, unlike the 5-round attack in [12]. We also devise realistic
attacks on variants of IDEA with a small number of rounds: A distinguishing
attack on 2.5-round IDEA requiring 218 chosen plaintexts and time complexity
of 218 encryptions, and an attack on 3-round IDEA with data complexity of 219

chosen plaintexts and time complexity of about 248.5 encryptions. Both of the
attacks are better in some of the parameters than all the known attacks on the
respective variants of IDEA.

We also show how to use the same relation in the related-key model. Using
two related keys, we are able to extend the linear property by 2.5 rounds. This
gives rise to a 7.5-round attack on IDEA requiring 243.5 known plaintexts and a
time complexity of 2115.1 encryptions. It is also possible to use our new relation
to improve the previously best known related-key attack on IDEA, using the
related-key rectangle technique. These improvements can be used to construct
a 7-round related-key rectangle attack on IDEA with data complexity of 265

related-key chosen plaintexts and time complexity of 2104.2 7-round IDEA en-
cryptions. The complexities of the new attacks, along with selected previously
known attacks, are summarized in Table 1.
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Table 1. Selected Known Attacks on IDEA and Our New Results

Rounds Attack Complexity # of Affected Source
Type Data Time Keys

2 Differential 210 CP 242 all [21]
2.5 Differential 210 CP 2106 all [21]
3 Differential-Linear 229 CP 244 all [8]

3.5 Linear 103 KP/CP 297 all [16]
3.5 Square 222 CP 266 all [16]
4 Imppossible Differential 237 CP 270 all [1]
4 Linear 114 KP 2114 all [24]
4 Square 223 CP 298 all [16]

4.5 Impossible Differential 264 CP 2112 all [1]
5 Meet-in-the-Middle Attack 224 CP 2126 all [12]

6.5 Related-Key Rectangle 259.8 RK-CP 288.1 all [5]

2.5† Linear 218 CP 218 all Section 4.1
3 Linear 219 CP 248.5 all Section 4.2

4.5 Linear 16 CP 2103 all Section 4.3
5 Linear 219 KP 2103 all Section 4.3

7.5 Related-Key Linear 243.5 RK-KP 2115.1 all Section 5
7 Related-Key Rectangle 265 RK-CP 2104.2 all Appendix A

KP – Known plaintext, CP – Chosen plaintext, RK – Related key,
Time complexity is measured in encryption units.
† – Distinguishing attack.

We expect that the new relation can also be used to improve other attacks on
IDEA, as well as attacks on other block ciphers that use the same operations,
e.g., the MESH family of block ciphers [23].

The paper is organized as follows: In Section 2, we briefly describe the struc-
ture of IDEA. In Section 3 we present the new relation between the operations
of IDEA. In Section 4 we present the new attack on 5-round IDEA. In Sec-
tion 5 we transform this attack into a 7.5-round related-key attack on IDEA.
Appendix A suggests a related-key rectangle attack on 7-round IDEA. Finally,
Section 6 summarizes the paper.

2 Description of IDEA and the Notations Used in the
Paper

IDEA [20] is a 64-bit, 8.5-round block cipher with 128-bit keys. It uses a com-
position of XOR operations, additions modulo 216, and multiplications over
GF (216 + 1).

Every round of IDEA is composed of two layers. The round input of round i
is composed of four 16-bit words denoted by (X i

1, X
i
2, X

i
3, X

i
4). In the first layer,

denoted by KA, the first and the fourth words are multiplied by subkey words
(mod 216 + 1) where 0 is replaced by 216, and the second and the third words
are added to subkey words in (mod 216). The intermediate values after this
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Fig. 1. One Round of IDEA

half-round are denoted by (Y i
1 , Y i

2 , Y i
3 , Y i

4 ). Formally, let Zi
1, Z

i
2, Z

i
3, and Zi

4 be
the four subkey words, then

Y i
1 = Zi

1 ( X i
1; Y i

2 = Zi
2 
 X i

2; Y i
3 = Zi

3 
 X i
3; Y i

4 = Zi
4 (X i

4

Then, (pi, qi) = (Y i
1 ⊕Y i

3 , Y i
2 ⊕Y i

4 ) enters the second layer, a structure composed
of multiplications and additions denoted by MA. We denote the two output
words of the MA transformation by (ui, ti). Denoting the subkey words that
enter the MA function by Zi

5 and Zi
6,

ui = (pi ( Zi
5) 
 ti; ti = (qi 
 (pi ( Zi

5)) ( Zi
6

Another notation we use in the attack refers to an intermediate value in the MA
layer: we denote the value pi ( Zi

5 by si.
The output of the i-th round is (Y i

1 ⊕ ti, Y i
3 ⊕ ti, Y i

2 ⊕ ui, Y i
4 ⊕ ui). In the last

round (round 9) the MA layer is removed. Thus, the ciphertext is (Y 9
1 ||Y 9

2 ||Y 9
3 ||

Y 9
4 ). The structure of a single round of IDEA is shown in Figure 1.
IDEA’s key schedule is linear: each subkey is composed of bits selected from

the key. However, the exact structure of the key schedule is crucial for our attacks
and hence the entire key schedule is described in Table 2.
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Table 2. The Key Schedule Algorithm of IDEA

Round Zi
1 Zi

2 Zi
3 Zi

4 Zi
5 Zi

6

i = 1 0–15 16–31 32–47 48–63 64–79 80–95
i = 2 96–111 112–127 25–40 41–56 57–72 73–88
i = 3 89–104 105–120 121–8 9–24 50–65 66–81
i = 4 82–97 98–113 114–1 2–17 18–33 34–49
i = 5 75–90 91–106 107–122 123–10 11–26 27–42
i = 6 43–58 59–74 100–115 116–3 4–19 20–35
i = 7 36–51 52–67 68–83 84–99 125–12 13–28
i = 8 29–44 45–60 61–76 77–92 93–108 109–124
i = 9 22–37 38–53 54–69 70–85

3 A New Non-trivial Relation Between the Three
Operations of IDEA

In this section we present the new non-trivial relation between the three different
operations of IDEA. The relation we present is a property of the MA layer. Since
the property is independent of the round number, in this section we omit the
round index in all the notations. The property is related to the XOR difference
between the values in two encryptions. We denote the difference in the word X
by ΔX .

Observation 1. Assume that the XOR difference between the two intermediate
encryption values in the input to the MA layer is of the form (Δp, Δq) = (0, α)
for some α. Assume also that there is no key difference in the key word Z5 (but
there is no assumption whether there is a key difference in the subkey word Z6).
Then:

1. The least significant bit of the value Δu ⊕Δt equals zero.
2. The average probability of the event (Δu, Δt) = (8000x, 8000x) over all the

possible keys is 2−16 (if α �= 0 or if there is a key difference in Z6).
3. If α is non-zero or if there is a difference in Z6, then Σν,τ Pr 2[(Δu, Δt) =

(ν, τ)] = 2−23.72.

We note that the first part of the observation is similar to observations that were
used in [12, 16, 24].

If the MA layer was truly random, then the probability of the event (Δu, Δt) =
(8000x, 8000x) would be 2−32. Hence, we have a differential with a much higher
probability than expected.

The third part of the observation gives a much higher value than the corre-
sponding value for a random function (which is 2−32). The value discussed in
the third part of the observation affects boomerang and rectangle attacks.

We shall now provide the proof of the observation: The proof uses the additive
difference (module 216) between the two inputs, which we denote by δX . As
there is no XOR difference in the first input word to the MA function (Δp = 0),
then there is no additive difference as well, i.e., δp = 0. As there is no additive
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difference in the subkey Z5, then Δs = δs = 0 as well. As u = t 
 s then
δu = δt 
 δs = δt. We use this relation in the proof:

1. LSB(Δu) = LSB(δu) = LSB(δt) = LSB(Δt), where LSB(w) denotes the
least significant bit of the word w. Thus, LSB(Δu ⊕ Δt) = LSB(Δu) ⊕
LSB(Δt) = 0.

2. Since no assumption on α or the subkey difference in Z6 was used (aside
the fact that there is such a difference), we can assume that the value δt
is randomly distributed. Hence, with probability 2−16 the difference is δt =
8000x. In this case, δu = 8000x as well. However, δt = 8000x is equivalent to
Δt = 8000x. Thus, the probability of the event (Δu, Δt) = (8000x, 8000x) is
indeed 2−16, as asserted.

3. We can write

Σν,τ Pr 2[(Δu, Δt) = (ν, τ)] = Σν,τ (Σδ Pr[(Δu, Δt) = (ν, τ) ∧ (δt = δ)])2 =
2−32 ·Σν,τ (Σδ Pr[(Δu, Δt) = (ν, τ))|(δt = δ)])2

where the last equality follows from the assumption that Pr[δt = δ] = 2−16

for every δ. We calculated the last value explicitly by a computer program
and got the value Σβ,γ Pr 2[(Δu, Δt) = (β, γ)] = 2−23.72, as asserted.

Q.E.D.

4 A New Attack on 5-Round IDEA

In this section we present new attacks on 2.5-round, 3-round and 5-round IDEA
based on the first relation established in Section 3.

We start with an observation due to Biryukov (according to [24]) and Demirci
[12]. Let us examine the second and the third words in all the intermediate stages
of the encryption. There is a relation between the values of these words and the
outputs of the MA layer in the intermediate rounds that uses only XOR and
modular addition, but not multiplication. Let P = (P1, P2, P3, P4) be a plaintext
and let C = (C1, C2, C3, C4) be its corresponding ciphertext, then

(((((((((((((((((P2 
 Z1
2 ) ⊕ u1)
 Z2

3 ) ⊕ t2)
 Z3
2 ) ⊕ u3) 
 Z4

3 ) ⊕ t4) 
 Z5
2 )⊕ u5)


Z6
3 )⊕ t6) 
 Z7

2 ) ⊕ u7) 
 Z8
3 ) ⊕ t8) 
 Z9

2 ) = C2.
(1)

Similarly,

(((((((((((((((((P3 
 Z1
3 ) ⊕ t1) 
 Z2

2) ⊕ u2) 
 Z3
3 )⊕ t3) 
 Z4

2 ) ⊕ u4) 
 Z5
3 ) ⊕ t5)


Z6
2) ⊕ u6) 
 Z7

3 )⊕ t7) 
 Z8
2 ) ⊕ u8) 
 Z9

3) = C3.
(2)

Now, if we are interested only in the value of the least significant bit (LSB)
of the words, modular addition is equivalent to XOR and we can simplify the
above equations into:

LSB(P2 ⊕ Z1
2 ⊕ u1 ⊕ Z2

3 ⊕ t2 ⊕ Z3
2 ⊕ u3 ⊕ Z4

3 ⊕ t4 ⊕ Z5
2 ⊕ u5 ⊕ Z6

3 ⊕ t6 ⊕ Z7
2

⊕u7 ⊕ Z8
3 ⊕ t8 ⊕ Z9

2) = LSB(C2),
(3)

and
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LSB(P3 ⊕ Z1
3 ⊕ t1 ⊕ Z2

2 ⊕ u2 ⊕ Z3
3 ⊕ t3 ⊕ Z4

2 ⊕ u4 ⊕ Z5
3 ⊕ t5 ⊕ Z6

2 ⊕ u6 ⊕ Z7
3

⊕t7 ⊕ Z8
2 ⊕ u8 ⊕ Z9

3) = LSB(C3).
(4)

Since ui = ti
si then LSB(ui) = LSB(ti
si), thus, LSB(ui⊕ti) = LSB(si).
Taking this into consideration and XORing the two above equations we obtain

LSB(P2 ⊕ P3 ⊕ Z1
2 ⊕ Z1

3 ⊕ s1 ⊕ Z2
2 ⊕ Z2

3 ⊕ s2 ⊕ Z3
2 ⊕ Z3

3 ⊕ s3 ⊕ Z4
2 ⊕ Z4

3 ⊕ s4

⊕Z5
2 ⊕ Z5

3 ⊕ s5 ⊕ Z6
2 ⊕ Z6

3 ⊕ s6 ⊕ Z7
2 ⊕ Z7

3 ⊕ s7 ⊕ Z8
2 ⊕ Z8

3 ⊕ s8 ⊕ Z9
2 ⊕ Z9

3 )
= LSB(C2 ⊕ C3).

(5)
This equation is called in [16] “the Biryukov-Demirci relation”.

Consider two plaintexts P 1 and P 2. Denote the XOR difference between the
encryptions of P 1 and P 2 (under the same secret key) in an intermediate value
X by ΔX . Then, the XOR the equations given by P 1 and P 2 gives

LSB(P 1
2 ⊕ P 1

3 ⊕ P 2
2 ⊕ P 2

3 ⊕Δs1 ⊕Δs2 ⊕Δs3 ⊕Δs4 ⊕Δs5 ⊕Δs6 ⊕Δs7⊕
Δs8) = LSB(C1

2 ⊕ C1
3 ⊕ C2

2 ⊕ C2
3 ).

(6)
Equation (6) is the basic equation used in all our attacks in this section.

4.1 A Distinguishing Attack on 2.5-Round IDEA

Consider a 2.5-round variant of IDEA of the form KA ◦MA ◦KA ◦MA ◦KA.
For sake of simplicity we assume that the attack is on the first 2.5 rounds of
IDEA, but the same attack holds for any 2.5 consecutive rounds of this form.

For a 2.5-round IDEA, Equation (6) is reduced to

LSB(P 1
2 ⊕ P 1

3 ⊕ P 2
2 ⊕ P 2

3 ⊕Δs1 ⊕Δs2) = LSB(C1
2 ⊕ C1

3 ⊕ C2
2 ⊕ C2

3 ). (7)

Note that by the first part of the observation in Section 3, if the input XOR
difference to the MA layer is of the form (Δp, Δq) = (0, α) then Δs = 0. In
order to use this property, we consider pairs of plaintexts (P 1, P 2) such that
Δ(X1

1 , X1
2 , X1

3 , X1
4 ) = (0, β, 0, γ) for arbitrary values of β and γ. For these pairs

ΔY 1
1 = ΔY 1

3 = 0 (independent of the values Z1
1 , Z1

3 ), and hence Δp1 = 0.
Therefore, the required property holds and Δs1 = 0. We note that the same
idea was used (to some extent) in [16].

Similarly, if we take only ciphertext pairs satisfying Δ(Y 3
1 , Y 3

2 , Y 3
3 , Y 3

4 ) =
(0, 0, β′, γ′) for arbitrary values of β′ and γ′, then (Δp2, Δq2) = (0, α′) for some
α′, and hence Δs2 = 0.

If the plaintext/ciphertext pair ((P 1, C1), (P 2, C2)) satisfies both differential
relations required above, Equation (7) is further reduced into

LSB(P 1
2 ⊕ P 1

3 ⊕ P 2
2 ⊕ P 2

3 ) = LSB(C1
2 ⊕ C1

3 ⊕ C2
2 ⊕ C2

3 ). (8)

This is a simple linear relation that can be checked easily since only bits of the
plaintexts and the ciphertexts are involved in the equation.

Based on these observations, we can mount a simple distinguishing attack on
2.5-round IDEA, using the following algorithm:
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1. Ask for the encryption of 218 plaintexts of the form (A, Z, B, W ), where A
and B are fixed and Z and W assume arbitrary random values.

2. Insert the ciphertexts into a hash table sorted by the first two words.
3. For every pair of ciphertexts in the same bin of the hash table, check whether

Equation (8) holds for the corresponding plaintext/ciphertext pair.
4. If there is a pair for which the equation does not hold, conclude that the

cipher is not 2.5-round IDEA. If there is no such pair, conclude that the
cipher is 2.5-round IDEA.

Due to the structure of the plaintexts, for every pair of plaintexts the first
differential requirement holds. For every pair of ciphertexts in the same bin of
the hash table, the second requirement also holds. Hence, for all the checked
pairs Equation (8) should be satisfied for 2.5-round IDEA.

The 218 plaintexts can be combined into about 235 possible pairs, and a
fraction of 2−32 of them is expected to have ciphertext difference of the form
(0, 0, β′, γ′). Hence, the expected number of pairs analyzed in Step 3 is eight. If
there is a pair for which the equation does not hold, we know for sure that the
cipher is not 2.5-round IDEA. On the other hand, for a random permutation,
the probability that the equation holds for all the eight pairs is 1/256. Hence,
the distinguisher succeeds with probability greater than 99.5%.

Since the second and the third steps of the attack are implemented using a
hash table, the time complexity of the attack is dominated by the time complex-
ity of the encryptions in the first step of the attack. Hence, the data complexity
of the attack is 218 chosen plaintexts and the time complexity is 218 encryptions.

4.2 A Key Recovery Attack on 3-Round IDEA

The 2.5-round distinguisher can be extended to an attack on 3-round IDEA of
the form E = KA ◦ MA ◦ KA ◦ MA ◦ KA ◦ MA by guessing the subkey of the
last MA layer and applying the distinguishing attack to the first 2.5 rounds. In
this case, the data complexity is slightly increased, since more pairs are required
in the last step of the attack in order to discard all the wrong key values.

The attack algorithm is the following:

1. Ask for the encryption of 219 plaintexts of the form (A, Z, B, W ), where A
and B are fixed and Z and W assume arbitrary random values.

2. For every guess of the 32-bit subkey of the last MA layer:
(a) Partially decrypt all the ciphertexts through the last MA layer and insert

the resulting Y 3 values into a hash table sorted by the first 32 bits.
(b) For every pair of values in the same bin of the hash table, check whether

Equation (8) holds for the corresponding plaintext/ciphertext pair.
(c) If there is a pair for which the equation does not hold, discard the subkey

guess. Otherwise, keep the subkey guess.
3. Output all the subkey guesses that were not discarded.

Since there are 219 plaintexts, then there are about 237 possible pairs, and
about 32 pairs are examined in Step 2(b). Hence, for a wrong key guess the
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probability that the equation holds for all the pairs is 2−32. Therefore, only few
possible key guesses remain, including the right key. The filtering can be further
improved by enlarging the data structure by a small factor.

The time complexity of the attack is dominated by Step 2(b) which contains
decrypting all ciphertexts under all the subkey guesses. The data complexity
of the attack is 219 chosen plaintexts and the time complexity of the attack is
equivalent to 219×232× (1/6) ≈ 248.5 3-round encryptions. Note that the attack
recovers only 32 bits of the master key and the rest of the key has to be found
using other techniques.

We note that a similar attack can be mounted on a 3-round variant of IDEA
of the form E = MA ◦ KA ◦ MA ◦KA ◦ MA ◦ KA. The only difference is that
in this case the attack is performed in the decryption direction. The time and
data complexities remain unchanged.

The two extensions can be combined to an attack on a 3.5-round variant of
IDEA of the form E = MA◦KA◦MA◦KA◦MA◦KA◦MA. However, in this
case the data and time complexities are worse than the complexities of the best
known attack on 3.5-round IDEA. This follows from the fact that while in the
3-round attacks we could guarantee that one of the differential conditions holds,
in the 3.5-round attack this is not the case.

4.3 Attack on 5-Round IDEA

In this section we devise an attack on a 5-round variant of IDEA starting with
the second half of round 3. Choosing round 3 as the starting point of the attack
is the optimal round, as described later.

First, we consider a 4.5-round attack starting at the beginning of round 4.
For this variant, the Equation (6) is transformed into

LSB(P 1
2⊕P 1

3 ⊕P 2
2⊕P 2

3⊕Δs4⊕Δs5⊕Δs6⊕Δs7) = LSB(C1
2⊕C1

3⊕C2
2⊕C2

3 ). (9)

In our attack we use pairs of plaintexts with XOR difference Δ(X4
1 , X4

2 , X4
3 ,

X4
4 ) = (0, β, 0, γ), thus, Δs4 = 0. In order to calculate Δsi for 5 ≤ i ≤ 7, we

guess part of the master key and partially decrypt the ciphertexts through the
last three rounds.

In order to calculate the required Δsi values, we guess the subkeys Z8
4 ,Z8

3 ,Z8
2 ,

Z8
1 ,Z7

6 ,Z7
5 ,Z7

4 ,Z7
3 ,Z7

2 ,Z7
1 ,Z6

6 ,Z6
5 that allow to partially decrypt two rounds, and

the subkeys Z6
1 , Z6

2 , Z5
5 that allow to calculate the value Δs5. However, it appears

that all these 15 subkeys use only 103 bits of the master key, whereas bits
100–124 of the master key remain unused. Hence, we can guess 103 bits of the
master key, and for each guess we can check whether the equation holds for
the plaintext/ciphertext pairs. We note that finding the right subkey requires
about 128 pairs for the analysis, which can be constructed from about 16 chosen
plaintexts. We also note that starting the attack in a different round would
require guessing more subkey bits.

In order to extend the attack to 5 rounds, we guess the subkey of the MA
layer in round 3. This does not increase the time complexity since the relevant
subkey is composed of bits 50–81 of the master key that are included in the 103
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bits we guess in the 4.5-round attack. However, this additional half round affects
the data complexity of the attack.

The only remaining issue is getting pairs of plaintexts with differenceΔ(X4
1 ,

X4
2 , X4

3 , X4
4 ) = (0, β, 0, γ). Since for every guess of the MA layer of round 3

different plaintext pairs are needed to fulfill this differential requirement, this
attack uses known plaintexts instead of chosen plaintexts. We start with 219

known plaintexts that compose 237 possible pairs. For each subkey guess of the
MA layer of round 3, we partially encrypt all the plaintexts and choose the pairs
that have difference Δ(X4

1 , X4
2 , X4

3 , X4
4 ) = (0, β, 0, γ). We expect 32 such pairs,

and these pairs are used in the sequel of the attack. The time complexity of this
step is negligible compared to the time complexities of the other steps of the
attack.

The attack algorithm is as follows:

1. Ask for the encryption of 219 known plaintexts.
2. For each guess of key bits 50–81, perform the following:

(a) Partially encrypt the plaintexts through the MA layer of round 3 and
insert the resulting X4 values to a hash table indexed by the first and
the third words.

(b) For each guess of key bits 0–49,82–99,1 and 125–127 and for all the
colliding pairs, perform the following:
i. Partially decrypt all the pairs through rounds 7 and 6, and the MA

layer of round 5.
ii. Verify that Equation (9) holds for all of the pairs. If no, discard the

key guess.
(c) If the key guess passed the filtering, perform exhaustive search on the

remaining 25 key bits.

As we mentioned before, for every guess of key bits 50–81, we expect that 32
pairs are analyzed in Step 2(b) of the attack. Hence, the probability that a wrong
key guess passes the filtering is 2−32. Thus, we expect that about 2103 ·2−32 = 271

key guesses enter Step 2(c). Thus, the time complexity of Step 2(c) is expected
to be equivalent to 225 · 271 = 296 encryptions in total.

Therefore, the time complexity of the attack is dominated by the partial
decryptions of Step 2(b). We observe that this step can be optimized. Note that
half of the key guesses are discarded after the first pair, half of the remaining key
guesses are discarded after the second pair, etc. Hence, instead of decrypting all
the pairs at once, the attacker can decrypt the first pair and check whether the
equation holds, then (if the key guess was not discarded) decrypt the second pair
and check the equation for it, etc. Using this improvement, the time complexity
of this step is 2103+2102+2101+. . . ≈ 2104 partial decryptions, which are roughly
equivalent to 2103 full encryptions.

Hence, the data complexity of the attack is 219 known plaintexts and the time
complexity is 2103 encryptions.

1 Note that key bits 50–81 are already guessed.
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5 Related-Key Attack on 7.5-Round IDEA

In this section we present a related-key attack on the first 7.5 rounds of IDEA.
The 7.5-round related-key attack uses similar relations as the 5-round known
plaintext attack. In the attack we use the difference between the keys to construct
pairs of plaintexts for which the intermediate values (when encrypted under
the two different keys) are equal for 2.5 rounds. For such pairs of plaintexts,
Equation (6) is reduced to a much simpler one.

Let the K and K∗ be two keys such that they are equal in all bits but bit 34
and any non-empty subset of bits {41, 42, . . . , 49}. Let P and P ∗ be the two
plaintexts, such that Y 2 and Y 2∗, the corresponding intermediate encryption
values after the KA layer of round 2, satisfy:

Y 2
1 = Y 2∗

1 ; Y 2
2 = Y 2∗

2 ; Y 2
3 = Y 2∗

3 ; Y 2
4 = Y 2∗

4 (10)

In such pair, the intermediate encryption values are equal until the MA layer of
round 4. In that MA layer, the input difference is (Δp4, Δq4) = (0, 0) and the
key difference affects only Z4

6 . Hence, by the observation presented in Section 3,
Δs2 = Δs3 = Δs4 = 0.

Therefore, for such pair Equation (6) is reduced to

LSB(P2⊕P3⊕P ∗
2⊕P ∗

3⊕Δs1⊕Δs5⊕Δs6⊕Δs7) = LSB(C2⊕C3⊕C∗
2⊕C∗

3 ). (11)

Hence, if the attacker is able to construct plaintext pairs satisfying Equation (10),
he can partially encrypt/decrypt the plaintext/ciphertext pairs through rounds
1, 7, 6, and 5 and check whether Equation (11) is satisfied. In order to do so,
the attacker has to guess the subkeys Z1

1 , Z1
3 , Z1

5 for the partial encryption and
Z5

5 , Z6
1 , Z6

2 , Z6
5 , Z6

6 ,Z7
1–Z7

6 ,Z8
1–Z8

4 for the partial decryption. However, these 18
subkeys use only 103 bits of the master key, and hence guessing these key bits
and checking whether Equation (11) holds for some plaintext/ciphertext pairs
satisfying Equation (10) yields an attack faster than exhaustive key search.

Constructing pairs of plaintexts satisfying Equation (10) is not a trivial oper-
ation. However, if we use the known plaintext model and take sufficiently many
plaintexts, then Equation (10) may be satisfied sufficiently many times. A naive
approach would be to partially encrypt all the given known plaintexts through
round 1 and the KA layer of round 2, and to find the relevant pairs. However,
even in an optimized manner, this approach would result in guessing 96 key bits,
which combined with the known plaintext nature of the attack results in a time
complexity of least 2128 1-round IDEA encryptions.

Therefore, we use a modified approach. We use 242.5 known plaintexts en-
crypted under two related keys (a total of 243.5 related-key known plaintexts),
and partially encrypt them through the KA layer of round 1. After the KA
layer, we consider only the pairs that have difference (0, 0040x, 0, 0040x). Such
pairs have difference (0, 0, 0040x, 0040x) at the input to the KA layer of round 2,
independent of the value of the subkeys Z1

5 , Z1
6 . With probability 1/2 the dif-

ference in the third word is canceled by the key difference, and with probability
2−16 the difference in the fourth word is canceled by the key difference, leading
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to a pair that satisfies Equation (10). Hence, the required pairs are detected
in a two steps algorithm. First the attacker guesses the values of the subkeys
Z1

1 , Z1
2 , Z1

3 , and Z1
4 and finds the pairs having difference (0, 0040x, 0, 0040x) after

the first KA layer. Most of the pairs are filtered at this stage. Then the attacker
further guesses the values of the subkeys Z1

5 , Z1
6 , Z2

3 , and Z2
4 and checks which

of the remaining pairs satisfy Equation (10).
The attack algorithm on 7.5-round IDEA is as follows:

1. Ask for 242.5 known plaintexts encrypted under K and denote the set of
plaintexts and ciphertexts by SetP .

2. Ask for 242.5 known plaintexts encrypted under K∗ and denote the set of
plaintexts and ciphertexts by SetP ∗.

3. For each guess of the subkeys Z1
1 , Z1

2 , Z1
3 , and Z1

4 :
(a) Partially encrypt all plaintexts in SetP and in SetP ∗ through the KA

layer of round 1.
(b) Find all pairs of Y 1 (encrypted under K) and Y 1∗ (encrypted under K∗)

such that Y 1 ⊕ Y 1∗ = (0, 0040x, 0, 0040x).
(c) For each such pair, and each guess of Z1

5 , Z1
6 , Z2

3 , and Z2
4 :

i. If the pair satisfies Equation (10), guess Z5
5 , Z6

1 , Z6
2 , Z6

5 , Z6
6 ,Z7

1–Z7
6 ,

and Z8
1–Z8

4 and verify whether Equation (11) is satisfied.
ii. If the equation is not satisfied — discard the subkey guess.

4. For each remaining subkey, exhaustively try all 25 remaining subkey bits,
and output the remaining key.

There are 285 pairs of plaintexts, of which 285 · 2−64 = 221 have difference
(0, 0040x, 0, 0040x) after the KA layer of round 1. For each guess of Z1

5 , Z1
6 , Z2

3 , and
Z2

4 , about 221 ·2−17 = 16 pairs have a zero difference after the KA layer of round 2,
satisfying Equation (10). For a correct subkey guess, all these pairs should satisfy
Equation (11). For wrong subkey guesses, the probability that Equation (11) is
satisfied for all the pairs is 2−16. There are 2103 possible subkeys, and hence the
number of subkeys that enter Step 4 is expected to be 2103 · 2−16 = 287.

The time complexity of the attack is thus dominated by Step 3 (Steps 1 and 2
have time complexity of 242.5 encryptions each, and Step 4 has time complexity
of 287 · 225 = 2112 trial encryptions). Step 3(a) is repeated 264 times, and each
time 243.5 values are partially encrypted through one KA layer. Hence, the time
complexity of this step is 264 · 243.5 = 2107.5 partial encryptions. Step 3(b) can
be executed efficiently using a hash table. In Step 3(c)(i) only 221 pairs (or 222

values) are analyzed but this step requires guessing 32 more bits (Z2
3 and Z2

4 are
covered by the bits guessed in Step 3(a)). Thus, the time complexity of the first
part of this step (finding the pairs satisfying Equation (10)) is 264 ·222 ·232 = 2118

1-round decryptions. The time complexity of the second part of Step 3(c)(i)
(checking whether Equation (11) is satisfied) is much lower, as even though 9
more key bits are guessed, there are only 32 pairs (or 64 values) that enter this
step. Thus, the total time complexity of the attack is about 2118 · 1

7.5 = 2115.1

7.5-round IDEA encryptions.
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6 Summary and Conclusions

In this paper we presented several new results on the block cipher IDEA: The
first non-trivial relation involving all the three different operations of IDEA, a
known-plaintext 5-round attack, a related-key attack on 7.5-round IDEA (with
two keys) and a related-key rectangle attack on 7-round IDEA (with four keys).
These results are by far the best known attacks against reduced-round variants
of the cipher.

Our paper shows that the linear key schedule of IDEA makes the cipher
relatively vulnerable to attacks that guess vast amounts of the key. However,
despite our findings, the full IDEA still resists all known attacks.
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A A Related-Key Rectangle Attack on 7-Round IDEA

In this appendix we use the third part of the observation in Section 3 to im-
prove the 6.5-round related-key rectangle attack presented in [5] and to devise
a related-key rectangle attack on 7-round IDEA. Due to space constraints, we
present only the main idea of the attacks and the final results. The detailed
description of the attacks appears in the full version of the paper.

We start by devising a new related-key boomerang distinguisher for 5.5-round
IDEA. The data complexity of the distinguisher is worse than that of the dis-
tinguisher used in [5], but it can be used to devise better key recovery attacks.
We note that the distinguisher used in [5] can be also improved using similar
techniques. This improvement is also described in the full version of the paper.

The new 5.5-round distinguisher is applicable for rounds 1.5–6. The first
related-key differential starts after the KA layer of round 1 with the difference
(0, 0040x, 0, 0040x) and ends after the MA layer of round 4. The key differ-
ence is in bit 34, and any non-empty subset of bits {41, 42, . . . , 49}. The second
related-key differential starts at the beginning of round 5 with the difference
(0, 8000x, 0, 0) and key difference in key bit 91. This difference evolves into a
zero difference after the MA layer of round 6 with probability 1.

The second differential is quite standard. It is based on cancelling the differ-
ence in the second word using the key difference in bit 91 (i.e., ΔK1 = e91). Then,
the zero difference is preserved until key bit 91 is used again in the subkey Z7

4 .
The first differential is a bit more complicated. A pair with input difference

α = (0, 0040x, 0, 0040x) to the MA layer of round 1 has difference (0, 0, 0040x,
0040x) after the MA layer with probability 1. With probability 1/2 the key
difference cancels the data difference in the third word, and with probability
2−16 the key difference cancels the data difference in the fourth word. Thus, with
probability 2−17, the pair has a zero difference after the KA layer of round 2.
This zero difference is preserved until the last multiplication in the MA layer
of round 4. Hence, in that MA layer both Δp4 and the key difference in Z4

5 are
zero. Thus, we can apply the third part of the observation in Section 3 to obtain
p̂ = 2−17 · 2−11.86 = 2−28.86. The key difference ΔK0 can be any of 511 possible
values. We use the value ΔK0 = e34,49, but it can be any of the other values
without affecting our attack.

Using these differentials, we get a 5.5-round related-key boomerang distin-
guisher that uses 259.32 adaptive chosen plaintexts and ciphertexts (257.32 values
are encrypted/decrypted using four different keys).

We now present a related-key rectangle attack [5, 15, 19] on the first 6.5
rounds of IDEA based on the distinguisher presented above. The attack algo-
rithm mostly follows the attack algorithm presented in [3] with the few modifi-
cations needed due to the related-key nature of the attack.

Let Ka, Kb, Kc, Kd be the related keys such that Kb = Ka ⊕ ΔK0, Kc =
Ka ⊕ΔK1, and Kd = Kc ⊕ΔK0. The attack algorithm is as follows:

1. Data Collection Phase
(a) Generate 235 structures Sa

1 , . . . , Sa
235 of 228 plaintexts each, where in each

structure the first word, the six least significant bits of the second word,
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and the 14 least significant bits of the third word are fixed. Ask for the
encryption of the structures under Ka.

(b) Flip bit 6 of the second word and bit 13 of the third word of any plain-
text encrypted under Ka, and ask for the encryption of the resulting
plaintexts under Kb (to obtain Sb

1, . . . , S
b
235).

(c) Generate 235 structures Sc
1, . . . , S

c
235 of 228 plaintexts each, where in each

structure the first word, the six least significant bits of the second word,
and the 14 least significant bits of the third word are fixed. Ask for the
encryption of the structures under Kc.

(d) Flip bit 6 of the second word and bit 13 of the third word of any plain-
text encrypted under Kc, and ask for the encryption of the resulting
plaintexts under Kd (to obtain Sd

1 , . . . , Sd
239).

2. Finding Candidate Quartets
(a) Find all pairs of ciphertexts Ca ∈ Sa

i and Cc ∈ Sc
j , such that they have

the same value in the first, the second, and the third words.
(b) For each such pair, check whether there are pairs of ciphertexts Cb ∈ Sb

i

and Cd ∈ Sd
j , such that they have the same value in the first, the second,

and the third words. If such a pair exists — transfer (Pa, Pb, Pc, Pd), the
corresponding plaintexts, to analysis.

3. Analysis of Candidate Quartets
(a) Initialize 264 counters, each corresponds to a different guess of Z2

1 , Z3
1 ,

Z4
1 , Z4

7 .
(b) For each subkey guess of Z2

1 , Z3
1 , Z4

1 , Z4
7 and each candidate quartet,

check whether the partial encryption and partial decryption of the pairs
of the quartet lead to the required differences. If this is the case increment
the respective counter.

4. Output: Output all subkey guesses whose counter has values greater than 8.

The analysis presented in the full version of the paper shows that the data
complexity of the attack is 265 related-key chosen plaintexts and the time com-
plexity is 287 memory accesses.

The 6.5-round attack can be extended to an attack on rounds 1–7 of IDEA
by partially decrypting all the ciphertexts under all possible values of the key of
the last MA layer, and applying the 6.5-round attack. A trivial implementation
of this approach would lead to an attack that requires 232 · 287 = 2119 memory
accesses, and a data complexity of 265 related-key chosen plaintexts.

However, we improve this result by observing that there are 12 shared bits
between the subkeys Z7

6 and Z1
2 . This allows us to filter most of the wrong

candidate quartets, by evaluating the difference after the addition in the KA
layer of round 1. The improved attack is described in detail in the full version of
the paper. The data complexity of the attack is 265 related-key chosen plaintexts
and the time complexity is 2111 memory accesses. Using the conversion of three
clock cycles for one memory access, and the time measurements of the NESSIE
project [25], these 2111 memory accesses are equivalent to 2104.2 7-round IDEA
encryptions.
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1 Introduction

1.1 Background

The concept of undeniable signature (US) schemes was introduced by Chaum
and van Antwerpen [10]. In an US scheme, the signer issues an undeniable sig-
nature τ which is not publicly verifiable. She then proves the validity or inva-
lidity of τ in zero-knowledge by running a confirmation protocol or disavowal
protocol with the receiver. US schemes have found various applications in cryp-
tography such as in licensing software [10], electronic cash [11,2,31], electronic
voting and auctions. Then there have been a wide range of research covering
a variety of different schemes for undeniable signatures over the past 15 years
[7,1,9,8,19,14,18,25,4,17,16,22,3,26,27].

Recently, the security of Chaum’s US scheme was proved formally in the
random oracle model by [28]. Laguillaumie and Vergnaud showed an US scheme
which is secure in the standard model under the strong Diffie-Hellman (DH)
assumption [23]. The relations among the security notions for US schemes was
given by [21].

The notion of convertible US schemes was introduced by Boyar et al. [1].
A selectively convertible US scheme allows the signer to convert an undeniable
signature τ into a regular signature by releasing a piece of information α at a later
time. All conversion means that the signer can convert all undeniable signatures
into regular ones. They showed that if there exists a digital signature (DS)
scheme, then there exists a convertible US scheme. However, this construction
is not practical.

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 428–443, 2006.
c© International Association for Cryptologic Research 2006
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Damg̊ard and Pedersen showed two selectively convertible US scheme schemes
based on ElGamal signature scheme [14]. In their schemes, a part of the ElGamal
signature is encrypted by Rabin encryption scheme or by ElGamal encryption
scheme. However, invisibility is not proved in these schemes1, where the invis-
ibility means that we cannot decide if (m, τ) is a valid (message, undeniable
signature) pair. Note that the invisibility is an essential property required for
US schemes from the definition.

Gennaro-Krawczyk-Rabin proposed an RSA-based US scheme which allows
all conversion efficiently [18]. 2 They also showed a method of selective conversion
such that the signer releases a non-interactive proof which shows that (m, τ) is
a valid (message, undeniable signature) pair.

1.2 Our Contribution

In this paper, we propose a new approach for constructing selectively convert-
ible undeniable signature schemes, and present two efficient schemes based on
RSA. Our approach allows a more direct selective conversion than the previous
schemes, and the security can be proved formally. Further, our disavowal pro-
tocols do not require parallelization techniques to reach a significant soundness
probability. Also, our second scheme is the first selectively convertible US scheme
whose security can be proved without random oracles.

A selectively convertible US scheme has two modes, the US signature issueing
mode and the selective conversion mode. In our approach, we consider a DS
signature issueing mode as well which is described as follows: For a message m,

– The signer issues an undeniable signature τ in the US mode.
– In the DS mode, the signer issues σ as a regular signature on m.
– In the selective conversion mode, the signer releases σ (which is the same as

above) to convert the already issued undeniable signature τ into a regular
signature. By using σ, the validity of (m, τ) is made publicly verifiable.

We first formalize such US schemes as two-sided undeniable/signature schemes
(”two-sided scheme” for short). In the security model, we consider adversaries
who have access to both the DS-sign oracle and the US-sign oracle. Adversaries
then try to forge a digital signature σ (DS-forgery) or an undeniable signature
τ (US-forgery). See Figure 1. Both types of forgery must be impossible, and
invisibility must be satisfied.

We next show an efficient two-sided scheme based on RSA signature scheme
and Paillier’s encryption scheme [29]. In this scheme, the public-key is an RSA
modulus N(= pq).

1 In Sec.5.1 and Sec.5.2 of [14], the authors wrote only that ”We therefore conjecture
that ...” on the invisibility of their schemes.

2 GRK US scheme assumes that there exits an encoding method of messages so that
the RSA-based DS scheme is unforgeable. However, no such encoding method is
known in the standard model. Hence GRK US scheme is secure in the random
oracle model only currently.
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DS forgery
↑

DS-sign oracle ⇐⇒ Adversary ⇐⇒ US-sign oracle
↓

US forgery

Fig. 1. Adversary in Two-sided scheme

– Our DS mode is the same as the RSA signature scheme with e = N . That
is, the signer issues a digital signature σ ∈ Z∗

N on a message m such that

σN = H(m) mod N,

where H is a hash function.
– Now replace modN with modN2 in the above equation. Then we obtain

that
σN = H(m) + τN mod N2 (1)

for some τ ∈ ZN . We consider that this τ is an undeniable signature on
m. That is, in the US mode, the signer issues the above τ as an undeniable
signature.

– In the selective conversion mode, the signer releases σ (which is the RSA
signature on m) to convert the already issued τ into a regular signature.
The validity of (m, τ) is publicly verified by checking eq.(1).

This piece of information σ released for selective conversion is smaller than
that of GRK US scheme [18], where the latter is based on the Fiat-Shamir
heuristic.3

Not only the above technique is new, but also our confirmation and disavowal
protocols are based on a novel approach. In particular, our (zero-knowledge) dis-
avowal protocol does not require parallelization techniques to reach a significant
soundness probability. In the previous US schemes, only confirmation protocols
are known which do not require parallelization techniques.

We then prove the security of our scheme in the random oracle model. Roughly
speaking, our scheme relies on RSA assumption and the Nth residuosity
assumption.4

Finally, we show the first selectively convertible US scheme which is provably
secure in the standard model. It is a two-sided scheme, and it is obtained by
applying our technique to Cramer-Shoup DS scheme [13] which is known to be
secure in the standard model.

Remark 1. In GRK US scheme [18], N = pq, where p and q must be safe primes.
Galbraith et al. showed a method which can eliminate this restriction [17]. Our
schemes are totally different from [18,17], and p and q can be any primes.
3 Since our scheme does not use the Fiat-Shamir heuristic, it uses one random oracle

H while GRK scheme must use two random oracles (see footnote 2).
4 On the other hand, GRK US scheme [18] relies on RSA assumption and DDH as-

sumption over Z∗
N , where the security model does not consider DS-sign oracle nor

DS forgery.
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2 Model and Definitions

For an algorithm A and its input x, we write y ← A(x) if y is an output of A(x).

2.1 Syntax

A two-sided scheme consists of six polynomial time algorithms (Key, DSign,
DVerify, USign, Convert, UVerify), and two protocols, a confirmation protocol
Confirm and a disavowal protocol Disavow.

Key is a probabilistic algorithm which outputs a public-key pk and a secret-key
sk on input 1	, where � is a security parameter. The public-key pk specifies
the message space M, the space of digital signatures D, and the space of
undeniable signatures U .

DSign is a (either probabilistic or deterministic) algorithm which outputs a dig-
ital signature σ on input (sk, m), where m is a message. We say that (m, σ)
is a valid D-pair if there exists a random tape such that the algorithm
DSign(sk, m) outputs σ.

DVerify is an algorithm which, on input (pk, m, σ), outputs accept if (m, σ) is a
valid D-pair, and reject otherwise.

USign is a (probabilistic) algorithm which outputs an undeniable signature τ on
input (sk, m), where m is a message. We say that (m, τ) is a valid U-pair if
there exists a random tape such that the algorithm USign(sk, m) outputs τ .

Convert is an algorithm which outputs a digital signature σ for a valid U-pair
(m, τ). More precisely, on input (sk, m, τ), it outputs some σ ← DSign(sk, m)
if (m, τ) is a valid U-pair, and ⊥ otherwise. Then by using UVerify shown
below, the validity of (m, τ) is made publicly verifiable.

Note that the above σ is not necessarily a random output of DSign(sk, m).
It must be related to τ so that the validity of (m, τ) is made publicly verifiable
with UVerify.

UVerify is an algorithm which verifies the validity of (m, τ) by using σ ←
Convert(sk, m, τ). More precisely, on input (pk, m, τ, σ), it outputs accept
if (m, τ) is a valid U-pair and σ ← Convert(sk, m, τ), and reject otherwise.

Confirm is a zero-knowledge proof system for valid U-pairs (m, τ).
Disavow is a zero-knowledge proof system for invalid U-pairs (m, τ).

A two-sided scheme has three modes as follows.

DS mode: (Key, DSign, DVerify) is used as a DS scheme in an obvious way.
US mode: (Key, USign, Confirm, Disavow) is used as an US scheme in an obvious

way.
Selective conversion mode: Convert and UVerify are used to convert an un-

deniable signature τ on m so that the validity of (m, τ) is made publicly
verifiable.

The definitions of Convert and UVerify combine DS mode and US mode through
selective conversion mode.
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2.2 Security

In two-sided schemes, adversaries have three goals, DS-forgery, US-forgery and
invisibility. In the attack game of each goal, we allow A to have oracle access
to DSign-oracle, USign-oracle, Convert-oracle and Confirm/Disavow-oracle, where
the last oracle is explained as follows. A queries (m, τ) to Confirm/Disavow-
oracle. If (m, τ) is a valid U-pair, then the oracle returns yes and execute the
protocol Confirm with A. Otherwise, it returns no and execute the protocol
Disavow with A. In both cases, the oracle plays a role of the signer and A plays
a role of the verifier.

We call DSign-oracle and USign-oracle sign-oracles, and Convert-oracle and
Confirm/Disavow-oracle decision-oracles.

Table 1. Sign-oracles and Decision-oracles

Sign-oracles DSign-oracle, USign-oracle

Decision-oracles Convert-oracle, Confirm/Disavow-oracle

(1) We define DS-forgery as follows. Any adversary A can obtain a valid D-
pair (m, σ) if A queries m to DSign-oracle or A queries a valid U-pair (m, τ)
to Convert-oracle. (In the latter case, Convert-oracle returns σ.) We require that
there is no other method for A to output a valid D-pair. Formally, we consider
the following game. An adversary A is given a randomly generated public-key
pk. A then has access to all oracles. Finally A outputs a forgery (m∗, σ∗).

We say that (m∗, σ∗) is not fresh if A queries m∗ to DSign-oracle or A queries a
valid U-pair (m∗, τ) to Convert-oracle for some τ . Otherwise we say that (m∗, σ∗)
is fresh. We say that A DS-forges if (m∗, σ∗) is a valid D-pair, and it is fresh.

We show an example by using Table 2. In this example,

1. A queried mi to DSign-oracle and received σi.
2. A queried mj to USign-oracle and received τj . A next queried (mj , τj) to

Convert-oracle and received σj .
3. A queried mk to USign-oracle and received τk.
4. A queried m	 to no sign-oracle.

A finally outputs (m∗, σ∗). If (m∗, σ∗) is a valid D-pair and m∗ = m	, then A
succeeds in DS-forgery. A also succeeds even if m∗ = mk. It is easy to see that
(m∗, σ∗) is fresh in these cases.

Definition 1. We say that a two-sided scheme is DS-secure if Pr[A DS-forges]
is negligible for any PPT adversary A.

In selective convertible US schemes, A should not be able to forge a converter
α for an already issued U-pair (m, τ). In two-sided schemes, this security notion
is included in the above definition.

(2) We define US-forgery as follows. Suppose that an adversary A finally outputs
a valid U-pair (m∗, τ∗), where A has never queried m∗ to USign-oracle, but it
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queried m∗ to DSign-oracle. Is it a forgery ? Our definitions of Sec.2.1, however,
does not exclude the possibility that one can construct τ∗ from a valid D-pair
(m∗, σ∗). Indeed, this is the case in our constructions.

Hence we consider that A succeeds in US-forgery if A has never queried m∗

to any sign-oracle. We say that a valid U-pair (m∗, τ∗) is fresh if A has never
queried m∗ to any sign-oracle. We also consider that A succeeds in US-forgery
if she queries a fresh (m∗, τ∗) to one of the decision oracles during the attack
game.

Formally, we consider the following game. An adversaryA is given a randomly
generated public-key pk. A then has access to all oracles. We say that A US-
forges if A outputs a fresh (m∗, τ∗) or A queries a fresh (m∗, τ∗) to one of the
decision-oracles.

Let’s consider the example which is shown in the previous case (1) by using
Table 2. Suppose that A finally outputs a valid U-pair (m∗, τ∗). If m∗ = m	,
then A succeeds in US-forgery. However, A does not succeed if m∗ = mi.

Definition 2. We say that a two-sided scheme is US-secure if Pr[A US-forges]
is negligible for any PPT adversary A.

Table 2. Query pattern and DS/US forgery

mi mj mk m�

DSign-oracle σi (σ∗) (σ∗)
USign-oracle τj τk (τ∗)

Convert-oracle σj

(3) The third security notion is invisibility, a notion due to Chaum, van Heijst
and Pfitzmann [9]. This notion is essentially the inability to determine whether
a given U-pair is valid. We consider the following game on a distinguisher D.

1. D is given a randomly generated public-key pk. D then has access to all
oracles.

2. At some point, D outputs a message m∗ which has never been queried to
any oracle, and requests a challenge undeniable signature τ† on m∗.

3. τ† is generated based on the outcome of a hidden coin toss b. If b = 1, then
τ† is generated as usual using USign-oracle, otherwise τ† is chosen uniformly
at random from the undeniable signature space U .

4. D performs oracle queries again with the restriction that no sign-oracle query
on m∗ is allowed, and no decision-oracle query on (m∗, τ†) is allowed.

5. At the end of this attack game, D outputs a guess b′.

Define Advinv(D) = |Pr(b′ = b) − (1/2)|.
Definition 3. A two-sided scheme is invisible if Advinv(D) is negligible for any
PPT D.

Definition 4. We say that a two-sided scheme is secure if it is DS-secure, US-
secure and invisible.
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3 Proposed Two-Sided Scheme in RO Model

Now we show an efficient two-sided scheme in the random oracle model based
on RSA and Paillier’s encryption scheme [29].

3.1 Paillier’s Encryption Scheme

In Paillier’s encryption scheme [29], the public-key is N(= pq), and the private-
key is (p, q), where p and q are large primes. The encryption function for a
message m ∈ ZN is given by

E(m, r) = rN (1 + mN) mod N2,

where r ∈ Z∗
N is randomly chosen. E has a homomorphic property such that

E(m1, r1) · E(m2, r2) = E(m1 + m2 mod N, r1r2 mod N) mod N2.

(For decryption, see [29].) We say that Y ∈ Z∗
N2 is an Nth residue if Y =

xN mod N2 for some x ∈ Z∗
N . Note that E(0, r) is an Nth residue.

3.2 Proposed Scheme

The proposed two-sided scheme is described as follows. Let m ∈ {0, 1}∗ be a
message.

– Key Generation. On input 1	, choose two primes p, q such that |p| = |q| = �
randomly and compute N = pq. Find d such that Nd = 1 mod lcm(p −
1, q − 1). Let H : {0, 1}∗ → Z∗

N be a hash function. Set the public key as
pk = (N, H) and the secret key as d.

– DSign. Compute σ = H(m)d mod N and return σ as the digital signature.
– DVerify. For a given (m, σ), output accept if σN = H(m) mod N and reject

otherwise.
– USign. First compute σ = H(m)d mod N . Next compute τ such that

σN = H(m) + τN mod N2. (2)

Finally return τ as the undeniable signature.
– Convert. For a given (m, τ), first compute σ = H(m)d mod N . Next output

σ if eq.(2) is satisfied, and ⊥ otherwise.
– UVerify. For a given (m, τ, σ), output accept if eq.(2) is satisfied, and reject

otherwise.

For confirmation/disavowal protocols, we use the following Lemma.

Lemma 1. (m, τ) is a valid U-pair if and only if there exists σ ∈ Z∗
N such that

E(0, σ) = H(m) + τN mod N2,

where E is an encryption function of Paillier’s encryption scheme.
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The proof is clear from eq.(2). Now given (m, τ), the signer computes β ∈ ZN

such that
E(β, σ) = H(m) + τN mod N2. (3)

If β = 0, then the signer runs a confirmation protocol which proves that β = 0.
Otherwise, the signer runs a disavowal protocol which proves that β �= 0.

We will show efficient protocols based on the homomorphic property of Pail-
lier’s encryption scheme [29].

3.3 Confirmation Protocol

We first show a basic confirmation protocol which proves that β = 0 in eq.(3).

1. The verifier chooses u, v ∈ ZN and w ∈ Z∗
N randomly, and compute

y = (H(m) + τN)uE(v, w) mod N2.

He then sends y to the signer. Note that it holds that for some r ∈ Z∗
N ,

y = E(0, σ)uE(v, w) = E(0 × u + v, r) = E(v, r) mod N2.

2. By using the decryption algorithm of Paillier’s encryption scheme, the signer
decrypts y and obtains v′ such that y = E(v′, r′) for some r′. Then she sends
v′ to the verifier.

3. The verifier accepts if v′ = v, and rejects otherwise.

Theorem 1. Completeness. If (m, τ) is a valid U-pair, then the verifier al-
ways accepts.

Soundness. If (m, τ) is not a valid U-pair, then the verifier rejects with over-
whelming probability.

The proof is given in Appendix A. Finally, we construct a zero-knowledge con-
firmation protocol as follows, where commit(x) is a commitment function.

1. The verifier sends

y = (H(m) + τN)uE(v, w) mod N2 (4)

to the signer, where u, v ∈ ZN and w ∈ Z∗
N are randomly chosen.

2. The signer computes v′ such that y = E(v′, r′), and sends c = commit(v′)
to the verifier.

3. The verifier reveals u, v, w.
4. The signer checks if eq.(4) holds by using u, v, w. If it holds, then the signer

opens c = commit(v′). Otherwise, she aborts.
5. The verifier accepts if v′ = v, and rejects otherwise.

Theorem 2. The above protocol is zero-knowledge confirmation protocol if (i)
commit(x) reveals no information on x, and (ii) the signer cannot find x′ such
that commit(x) = commit(x′).

The proof will be given in the final version. In the random oracle model, we can
use a simple commit(x) shown by Pass [30, Sec.4.1] as follows.

Commit phase. For x ∈ ZN , Alice chooses r ∈ Z∗
N randomly and sends c =

H(x, r) to Bob.
Reveal phase. Alice sends (x, r) to Bob. Bob checks that c = H(x, r).
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3.4 Disavowal Protocol

We first show a basic disavowal protocol which proves that β �= 0 in eq.(3).

1. The verifier chooses u ∈ ZN and w ∈ Z∗
N randomly, and computes

y = (H(m) + τN)uE(0, w) mod N2.

He sends y to the signer. Note that for some r ∈ Z∗
N ,

y = E(β, σ)uE(0, w) = E(β × u mod N, r) mod N2. (5)

2. The signer first computes x such that y = E(x, r′), where x = β · u mod N
from eq.(5). She next computes u′ = x/β mod N . Then she sends u′ to the
verifier.

3. The verifier accepts if u′ = u, and rejects otherwise.

Similarly to Theorem 1, we can prove the following theorem.

Theorem 3. Completeness. If (m, τ) is not a valid U-pair, then the verifier
always accepts.

Soundness. If (m, τ) is a valid U-pair, then the verifier rejects with overwhelm-
ing probability.

Finally we construct a zero-knowledge disavowal protocol as follows, where commit(x)
is a commitment function given in the previous subsection.

1. The verifier sends

y = (H(m) + τN)uE(0, w) mod N2 (6)

to the signer, where u ∈ ZN and w ∈ Z∗
N are randomly chosen.

2. The signer first computes β of eq.(3) and x such that y = E(x, r′). She next
computes u′ = x/β mod N . Then she sends c = commit(u′) to the verifier.

3. The verifier reveals u, w.
4. The signer checks if eq.(6) holds by using u, w. If it holds, then the signer

opens c = commit(u′). Otherwise, she aborts.
5. The verifier accepts if u′ = u, and rejects otherwise.

Theorem 4. The above protocol is zero-knowledge disavowal protocol if (i)
commit(x) reveals no information on x, and (ii) the signer cannot find x′ such
that commit(x) = commit(x′).

The proof will be given in the final version.
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3.5 Security of Our Scheme

RSA assumption with e = N (N -RSA Problem) claims that given an RSA
modulus N and a random y ∈ Z∗

N , it is hard to compute x ∈ Z∗
N such that

y = xN mod N . We now define the N2-RSA problem as follows. Given an RSA
modulus N and a random Nth residue Y ∈ Z∗

N2 , compute x ∈ Z∗
N such that

Y = xN mod N2. The N2-RSA assumption claims that the N2-RSA problem is
hard. We then prove that the proposed scheme is DS-secure under the N2-RSA
assumption.

Theorem 5. The proposed scheme is DS-secure under the N2-RSA assumption
in the random oracle model.

The proof is given in Appendix B. It use the techniques of Coron [12] which was
also used by [28].

Given an RSA modulus N and a random y ∈ Z∗
N , the computational Nth

Residuosity (CNR) problem is to find z ∈ ZN such that y + zN = xN mod N2

for some x ∈ Z∗
N . The CNR assumption claims that the CNR problem is hard.

Catalano et al. proved that CNR problem is as intractable as the one-wayness
of Paillier cryptosystem [6]. We prove that the proposed scheme is US-secure
under the CNR assumption.

Theorem 6. The proposed scheme is US-secure under CNR assumption in the
random oracle model.

The proof will be given in the final paper.

Let ResidueN = {Y | Y = xN mod N2 for some x ∈ Z∗
N}. Decisional Nth

Residuosity (DNR) assumption claims that ResidueN and Z∗
N2 are indistinguish-

able. More precisely, we consider the following game between a challenger and a
distinguisher D. For a given N(= pq):

1. The challenger chooses a random bit b. If b = 0, then he chooses Y from
ResidueN randomly. If b = 1, then he chooses Y from Z∗

N2 randomly. He
then gives Y to D.

2. D outputs a bit b′.

Define Advdnr(D) = |Pr(b′ = b) − (1/2)|. The DNR assumption claims that
Advdnr(D) is negligible for any PPT distinguisher D. This problem was first
addressed in Paillier cryptosystem, namely Paillier cryptosystem is IND-CPA
under DNR assumption [29].

We prove that the proposed scheme is invisible under DCR assumption.

Theorem 7. The proposed scheme is invisible under DNR assumption in the
random oracle model.

The proof will be given in the final paper.

It is easy to see that the following reductions hold for the underlying problems.

1. N -RSA Problem ⇒ CNR Problem ⇒ DNR Problem,
2. N -RSA Problem ⇒ N2-RSA Problem,
3. CNR Problem + N2-RSA Problem ⇒ N -RSA Problem.



438 K. Kurosawa and T. Takagi

4 How to Remove Random Oracle

In this section, we show an efficient two-sided scheme in the standard model.
Cramer-Shoup showed an adaptively secure DS scheme under strong RSA as-
sumption in the standard model [13]. It can be seen as a special case of Shamir-
Tauman construction [32] which transforms a weakly secure DS scheme (secure
against weak non-adaptive chosen message attack) to an adaptively secure one
by combining with a trapdoor commitment scheme. In particular, in Cramer-
Shoup scheme, a trapdoor commitment scheme is based on GQ identification
scheme [15].

Our two-sided scheme is constructed by modifying Cramer-Shoup DS scheme
as follows. First, our DSign algorithm is almost the same as Cramer-Shoup DS
scheme except that we use two moduli, N1(= p1q1) for GQ-based trapdoor
commitment scheme and N2(= p2q2) for a weakly secure signature part, while
Cramer-Shoup scheme uses a single modulus. Next our USign algorithm is ob-
tained by extending our technique of Sec.3 to the GQ-based trapdoor commit-
ment scheme.

4.1 Scheme

(Key Generation) Let � be a security parameter.

1. Choose four �-bit primes p1, q1, p2, q2 randomly such that p2 = 2p′ + 1 and
q2 = 2q′ + 1, where p′ and q′ are primes. Let N1 = p1q1 and N2 = p2q2.

2. Choose h1 ∈ Z∗
N1

and h2, x ∈ QRN2 randomly, where QRN denotes the set
of quadratic residues of modN .

3. Find d such that N1d = 1 mod lcm(p1 − 1, q1 − 1). Let H be a collision-
resistant hash function whose output can be interpreted as a positive integer
less than 2	.

4. Set the public-key as pk = (N1, h1, N2, h2, x, H) and the secret-key as sk =
(d, p2, q2).

DSign. For a message m ∈ {0, 1}∗, first choose y′ ∈ Z∗
N1

randomly and compute
x′ ∈ ZN1 such that

(y′)N1 = x′hH(m)
1 mod N1, (7)

(where x′ can be seen as a commitment of m). Next choose a (� + 1)-bit prime
e randomly and compute y such that

ye = xh
H(x′)
2 mod N2, (8)

(where (e, y) is a weakly secure signature on x′). The digital signature on m is
σ = (e, y, y′).

DVerify. For a given (m, σ), first check if e is an (� + 1)-bit number. Second,
x′ = (y′)N1h

−H(m)
1 mod N1 is computed. Third, it is checked that x = yeh

−H(x′)
2

mod N2.
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USign. For a message m ∈ {0, 1}∗, first compute σ = (e, y, y′) as shown in DSign.
Next compute ω ∈ ZN1 such that

(y′)N1 = u + ωN1 mod N2
1 , (9)

where u = x′hH(m)
1 mod N1. Finally return τ = (e, y, x′, ω) as the undeniable

signature on m. (Note that the above equation is basically the same as eq.(2)).

Convert. For a given m and τ = (e, y, x′, ω), first check if e is an (� + 1)-bit
number and (e, y, x′) satisfies eq.(8). Next compute y′ ∈ ZN1 which satisfies
eq.(7). Finally check if (y′, ω) satisfies eq.(7). If everything is OK, then output
σ = (e, y, y′). Otherwise, output ⊥.

UVerify. For a given m, τ = (e, y, x′, ω) and σ = (e, y, y′), output accept if e
is an (� + 1)-bit number, and eq.(7), eq.(8) and eq.(9) are satisfied, and reject
otherwise.

In the confirmation protocol, the signer proves that for a valid U-pair, m and
τ = (e, y, x′, ω), there exists σ = (e, y, y′) which satisfies eq.(7), eq.(8) and eq.(9).
Essentially, this means that the signer proves that there exists y′ ∈ ZN1 which
satisfies eq.(9). Such a zero-knowledge protocol can be constructed similarly to
Sec.3.3.

In the disavowal protocol, the signer proves that for an invalid U-pair m and
τ = (e, y, x′, ω), there exists no σ = (e, y, y′) which satisfies eq.(7), eq.(8) and
eq.(9). If eq.(8) is not satisfied, then we have done. If eq.(8) is satisfied, then
the signer proves that there exists no y′ ∈ ZN1 which satisfies eq.(9). Such a
zero-knowledge protocol can be constructed similarly to Sec.3.4.

In these protocols, we can use a commitment function based on RSA assump-
tion as shown in [20, Sec.3]. Also, see [18, page 405].

4.2 Security

The strong RSA assumption claims that given an RSA modulus N and a random
y ∈ Z∗

N , it is hard to find e > 1 and x ∈ Z∗
N such that y = xe mod N .

We define the strong CNR problem as follows. Given an RSA modulus N and
a random z ∈ Z∗

N , find a > 1 and c ∈ ZN such that w = za + cN mod N2

is an Nth residue. Solving the CNR problem implies an algorithm for solving
the strong CNR problem, but the other direction is unknown. The strong CNR
assumption claims that the strong CNR problem is hard.

Theorem 8. The above scheme is US-secure under the strong RSA assumption
and the strong CNR assumption in the standard model.

Theorem 9. The above scheme is DS-secure under the strong RSA assumption
and the strong CNR assumption in the standard model.

Theorem 10. The above scheme is invisible under DNR assumption in the
standard model.

All the proofs will be given in the final paper.
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A Proof of Theorem 1

The completeness is clear. We prove the soundness. Suppose that (m, τ) is not
a valid U-pair. Then we can write

E(β, σ) = H(m) + τN mod N2

for some β ∈ ZN and σ ∈ Z∗
N , where β �= 0 from Lemma 1. Then y is written as

y = E(β, σ)uE(v, w) = E(t, r),

where

t = β · u + v mod N and r = σu · w mod N.

Now it is easy to see that for any v′ ∈ ZN , there exists unique u′, w′ ∈ ZN such
that

t = β · u′ + v′ mod N and r = σu′ · w′ mod N

if gcd(β, N) = 1. This means that the prover cannot compute v correctly more
than guessing. Hence the verifier rejects with overwhelming probability.
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B Proof of Theorem 5

We show that if there exists a PPT adversary A with Pr[A DS-forges] = εA,
then one can construct a PPT algorithm M that can solve the N2-RSA problem
with probability εM , by running A as a subroutine. Suppose the input to M is
(N, Y ), where Y = xN mod N2 for some x ∈ Z∗

N .
M then starts running A by feeding A with the public key (N, H) where H is

a random oracle that will be simulated by M . M also simulates the sign-oracles
and the decision-oracles itself.

We assume that when A requests a sign-oracle query or a decision-oracle query
on a message mi, it has already made the corresponding H query on mi. When
A makes a H-oracle query for a message mi, M chooses ri ∈ Z∗

N randomly and
behaves as follows.

– With probability δ, return hi = H(mi) = rN
i mod N . Let flagi = 0, σi = ri,

and compute τi ∈ Z∗
N such that rN

i = hi + τiN mod N2.
– With probability 1 − δ, return hi = H(mi) = Y rN

i mod N . Let flagi = 1,
and compute τi ∈ Z∗

N such that rN
i Y = hi + τiN mod N2.

In the above, δ is a fixed probability which will be determined later.
Suppose that A makes a sign-oracle query for a message mi.

– Suppose that flagi = 0. If the query is a DSign-oracle query, then M returns
σi. If it is a USign-oracle query, then M returns τi.

– Suppose that flagi = 1. If the query is a USign-oracle query, then M returns
τi. If the query is a DSign-oracle query, then M aborts and it fails to solve
N2-RSA problem.

flagi DSign-oracle query USign-oracle query
0 rN

i = hi + τiN mod N2 σi = ri τi

1 Y rN
i = hi + τiN mod N2 Abort τi

Next, suppose A makes a decision-oracle query for (mi, τ
′
i).

– Suppose that τ ′
i �= τi. If the query is a Convert-oracle query, then M returns

⊥. If the query is a Confirm/Disavow-oracle query, then M returns no and
runs the disavowal protocol with A.

– Otherwise, τ ′
i = τi. If the query is a Confirm/Disavow-oracle query, then M

returns yes and runs the confirmation protocol with A.
Suppose that the query is a Convert-oracle query. If flagi = 0, then M
returns σi. If flagi = 1, then M aborts and it fails to solve N2-RSA problem.

In the above, M can simulate the Confirm/Disavow oracle by using the rewinding
technique because the protocols are zero-knowledge.

Now suppose that A DS-forges, and outputs a valid D-pair (m∗, σ∗) at the
end of the game. We assume that A has queried the H-oracle on m∗ and so
m∗ = mj for some j.
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– If flagj = 0, then M aborts.
– Otherwise, flagj = 1. Since (m∗, σ∗) is a valid D-pair, it holds that

hj + τjN = (σ∗)N mod N2.

On the other hand, rN
j Y = hj + τjN mod N2 since flagj = 1. Therefore, it

holds that
rN
j Y = (σ∗)N mod N2.

Y = (σ∗/rj)N mod N2.

Now let x = σ∗/rj mod N . Then it is easy to show that xN = (σ∗/rj)N mod
N2. Therefore, it holds that

Y = xN mod N2.

Consequently, M outputs x ∈ Z∗
N and thus it solves N2-RSA problem.

To complete the proof, it remains to calculate the probability that M does
not abort. Let qD be the number of DSign-oracle queries and that A issues. The
probability that M answers to all DSign-oracle queries is δqD , and flagj = 1 for
mj = m∗ is 1 − δ. Therefore, the probability that M does not abort during the
simulation is δqD (1− δ). This value is maximized at δopt = 1− 1/(qD + 1). This
shows that εM is at least (1/e(1 + qD))εA, where e is the base of the natural
logarithm. This is because the value (1− 1/(qD +1))qD approaches 1/e for large
qS . This completes our proof.
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Abstract. Non-interactive zero-knowledge proofs play an essential role in many
cryptographic protocols. We suggest several NIZK proof systems based on prime
order groups with a bilinear map. We obtain linear size proofs for relations among
group elements without going through an expensive reduction to an NP-complete
language such as Circuit Satisfiability. Security of all our constructions is based
on the decisional linear assumption.

The NIZK proof system is quite general and has many applications such as
digital signatures, verifiable encryption and group signatures. We focus on the
latter and get the first group signature scheme satisfying the strong security defi-
nition of Bellare, Shi and Zhang [7] in the standard model without random oracles
where each group signature consists only of a constant number of group elements.

We also suggest a simulation-sound NIZK proof of knowledge, which is much
more efficient than previous constructions in the literature.

Caveat: The constants are large, and therefore our schemes are not practical.
Nonetheless, we find it very interesting for the first time to have NIZK proofs
and group signatures that except for a constant factor are optimal without using
the random oracle model to argue security.

Keywords: Non-interactive zero-knowledge, simulation-sound extractability,
group signatures, decisional linear assumption.

1 Introduction

A non-interactive proof system allows a prover to convince a verifier about the truth of
a statement. Zero-knowledge captures the notion that the verifier learns no more from
the proof than the truth of the statement. We refer to the full paper [28] for formal def-
initions of non-interactive zero-knowledge (NIZK) proofs. Our goal in this paper is to
construct short efficient prover NIZK proofs for languages that come up in practice when
constructing cryptographicprotocols. As an example of the usefulness of these new tech-
niques, we construct group signatures consisting of a constant number of group elements.

1.1 Setup

We use two cyclic groups G, G1 of order p, where p is a prime. We make use of a
bilinear map e : G × G → G1. I.e., for all u, v ∈ G and a, b ∈ Z we have e(ua, vb) =
� Supported by NSF grant No. 0456717, and NSF Cybertrust grant.
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e(u, v)ab. We require that e(g, g) is a generator of G1 if g is a generator of G. We also
require that group operations, group membership, and the bilinear map be efficiently
computable. Such groups have been widely used in cryptography in recent years.

Let G be an algorithm that takes a security parameter as input and outputs (p, G, G1,
e, g) such that p is prime, G, G1 are descriptions of groups of order p, e : G×G → G1

is an admissible bilinear map as described above and g is a random generator of G.
We use the decisional linear assumption from Boneh, Boyen and Shacham [10].

Definition 1 (Decisional Linear Assumption (DLIN)). We say the decisional linear
assumption holds for the bilinear group generator G if for all non-uniform polynomial
time adversaries A we have

Pr
[
(p, G, G1, e, g) ← G(1k); x, y, r, s ← Zp :

A(p, G, G1, e, g, gx, gy, gxr, gys, gr+s) = 1
]

≈ Pr
[
(p, G, G1, e, g) ← G(1k); x, y, r, s, d ← Zp :

A(p, G, G1, e, g, gx, gy, gxr, gys, gd) = 1
]
.

Throughout the paper, we work over a bilinear group (p, G, G1, e, g) ← G(1k) gener-
ated such that the DLIN assumption holds for G. We call this a DLIN group. Honest
parties always check group membership of G, G1 when relevant and halt if an element
does not belong to a group that it was supposed to according to the protocol.

Given a DLIN group (p, G, G1, e, g) we can set up a semantically secure cryptosys-
tem as in [10]. We choose at random x, y ← Z∗

p. The public key is (f, h), where
f = gx, h = gy, and the secret key is (x, y). To encrypt a message m ∈ G we choose
r, s ← Zp and let the ciphertext be (u, v, w) = (f r, hs, gr+sm). To decrypt a ciphertext
(u, v, w) ∈ G3 we compute m = D(u, v, w) = u−1/xv−1/yw.

The cryptosystem (Kcpa, E, D) has several nice properties. The DLIN assumption
for G implies semantic security under chosen plaintext attack (CPA). All triples (u, v,
w) ∈ G3 are valid ciphertexts. Also, the cryptosystem is homomorphic.

E(m1; r1, s1)E(m2, r2, s2) = E(m1m2; r1 + r2, s1 + s2).

1.2 Pairing Product Equations

Given a group (p, G, G1, e, g) we define a pairing product equation of length � over
variables a1, . . . , an to be an equation of the following form.

	∏
j=1

e(qj,0, qj,1) = 1, where qj,b = bj,b

n∏
i=1

a
ej,b,i

i with bj,b ∈ G , ej,b,i ∈ Zp.

Given a set S of pairing product equations eq1, . . . , eqm we can ask the natural ques-
tion: Is there a tuple (a1, . . . , an) ∈ Gn such that all equations in S are simultaneously
satisfied?
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To illustrate the generality of the language of satisfiable pairing product equations we
observe a reduction from the NP-complete language Circuit Satisfiability. Let a1, . . . , an

correspond to the wires of the circuit, which without loss of generality contains only
NAND-gates. Let S contain equations e(ai, aig

−1) = 1 forcing each ai = gbi to
encode a bit bi ∈ {0, 1}. For each NAND-gate with input wires i0, i1 and output
i2 add to S the equation e(ai0 , ai1) = e(g, ga−1

i2
), which is satisfied if and only if

bi2 = ¬(bi0 ∧ bi1).
Our main motivation for being interested in satisfiability of pairing product equations

is not NP-completeness though. Satisfiability of pairing product equations comes up in
practice when constructing cryptographic protocols and by making a direct NIZK proof
instead of first reducing the problem to some other language such as Circuit Satisfiabil-
ity we keep proofs short.

For concreteness, let us use verifiable encryption as an example of a pairing product
satisfiability question that may come up in practice. Suppose (u, v, w) is a ciphertext
under the public key (f, h) of the DLIN-based cryptosystem described earlier. We are
interested in whether this ciphertext encrypts a particular message m. This is the case,
if and only if there exists a such that e(g, u) = e(a, f) and e(h, wm−1a−1)) = e(v, g).
If we know r, s we can compute the satisfiability witness a = gr.

1.3 NIZK Proofs for Satisfiability of Pairing Product Equations

NIZK PROOFS. The central technical contribution of this paper is an NIZK proof of
size O(n + �) group elements for satisfiability of a set of pairing product equations of
combined length � =

∑m
j=1 �j . The proof system has perfect completeness and perfect

soundness.

RELATED WORK ON NIZK PROOFS. NIZK proofs were introduced by Blum, Feld-
man and Micali [9] and they suggested an NIZK proof for a single statement based on
the hardness of deciding quadratic residousity. Blum et al. [8] extended this to multi-
theorem NIZK proofs. Feige, Lapidot and Shamir [25] and Kilian and Petrank [33] give
constructions based on trapdoor permutations.

Recently Groth, Ostrovsky and Sahai [30] have constructed NIZK proofs from com-
posite order bilinear groups introduced by Boneh, Goh and Nissim [11]. Even more
recently Groth, Ostrovsky and Sahai [29] have introduced the setting in this paper, a
bilinear group of prime order and the DLIN assumption. They construct non-interactive
witness-indistinguishable proofs without any setup assumptions. In the common refer-
ence string (CRS) model both results give NIZK proofs for Circuit Satisfiability of size
O(|C|) group elements.

All the above-mentioned papers have in common that they focus on an NP-complete
language, usually Circuit Satisfiability, and suggest a bit-by-bit or gate-by-gate NIZK
proof for this language. Our paper differs by introducing new techniques that allows
making direct NIZK proofs for satisfiability of pairing product equations. This allows us
to construct constant/linear size cryptographic protocols for digital signatures, RCCA-
secure encryption[20], verifiable encryption and group signatures.

The only other way we know of to get linear size NIZK proofs/arguments for any
practical language is the Fiat-Shamir heuristic: Make a 3-move public coin (honest ver-
ifier) zero-knowledge protocol non-interactive by computing the verifier’s challenge as
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a hash of the statement and the initial protocol message. To argue security, one models
the hash-function as a random oracle [6]. It is well known that using the random oracle
model sometimes results in insecure real life protocols [18,19,34,27,4]. In comparison,
our NIZK proofs have provable security under the DLIN assumption.

SIMULATION-SOUND EXTRACTABLE NIZK PROOFS. Combining the definitions of
simulation-soundness introduced by Sahai [35] and proofs of knowledge from De San-
tis and Persiano [23], we get simulation-sound extractability. Here the simulator first
creates a simulated CRS together with a simulation trapdoor and an extraction trap-
door. We require that even after the adversary has seen simulated proofs on arbitrary
statements, if it constructs a new valid proof on any statement, then we can extract a
witness. Simulation-sound extractability is a very strong notion, in particular it implies
non-malleability as defined by De Santis et al. [22].

We construct a simulation-sound extractable NIZK proof for satisfiability of pairing
product equations. Our NIZK proof has a CRS with a description of the group and a
constant number of group elements, and the proofs consist of O(n+ �) group elements.

RELATED WORK ON SIMULATION-SOUND NIZK PROOFS. As stated before, our in-
terest in this paper is satisfiability of pairing products equations. However, in order to
compare our scheme with previous work let us look at the case of Circuit Satisfiabil-
ity. [35] constructed a one-time simulation-sound NIZK proof system using techniques
from Dwork, Dolev and Naor [24]. Later a construction for unbounded simulation-
sound extractable NIZK arguments was given by [22], where the adversary can see
many simulated arguments of arbitrary statements. The schemes from both these papers
are based on trapdoor permutations but are not practical. For the sake of fairness in eval-
uating the quality of our contribution, we have also considered whether the techniques
from [30] could be used to get good efficiency for simulation-sound extractability. The
answer to this question seems to be negative, the best construction we can think of using
GOS-techniques gives an additive polynomial size overhead.

Scheme NIZK proof bit size Assumption
[22] O(|C|poly(k)) Trapdoor permutations
Potential use of [30] techniques O(|C|k + poly(k)) Subgroup decision

This paper O(|C|k) DLIN

Fig. 1. Comparison of simulation-sound extractable proofs for Circuit Satisfiability

COMMON REFERENCE STRING VERSUS UNIFORM RANDOM STRING. We will con-
struct NIZK proofs and simulation-sound extractable NIZK proofs in the common ref-
erence string model, where the prover and the verifier both have access to a CRS chosen
according to some distribution. If this distribution is uniform at random we call it the
uniform random string model. In some settings it is easier to work with a URS, for in-
stance a URS can easily be jointly generated using multi-party computation techniques.

Our NIZK proofs use a common reference string that contains a description of a bi-
linear group and a number of group elements. Depending on the group elements, the
CRS will give either perfect soundness of perfect zero-knowledge. With overwhelming
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probability random group elements will lead to a perfect soundness CRS. Assuming that
we can use a uniform random string to get a description of a DLIN group and a number
of random group elements, we will therefore get NIZK proofs and simulation-sound
NIZK proofs in the URS-model. Since there is a negligible chance of picking a per-
fect zero-knowledge CRS, this gives statistical soundness instead of perfect soundness,
which is the best we can hope for in the URS-model. We remark that natural candidates
for bilinear DLIN groups based on elliptic curves are efficiently samplable from a URS
[29]. For the sake of simplicity we will just work with the CRS-model in the paper, but
invite the reader to note that all constructions work in the URS-model as well.

1.4 An Application: Constant Size Group Signatures

Group signatures, introduced by Chaum and van Heyst [21], allow a member to sign
messages anonymously on behalf of a group. A group manager controls the group and
decides who can join. In case of abuse, the group manager is able to open a signature
to reveal who the signer is. It is hard to design group signatures and most schemes
[17,16,3,14,2,13,31,15,10,26,32] use the random oracle model in the security proof.

Bellare, Micciancio and Warinschi [5] suggest rigorous security definitions for group
signatures in the static case where the set of members is fixed from the start and never
changes. Bellare, Shi and Zhang [7] extend the security model to the partially dynamic
case where the group manager can enroll new members in the group. Both [5] and
[7] suggest constructions of group signatures based on trapdoor permutations. These
constructions are very inefficient and only indicate feasability.

Boyen and Waters [12] use a combination of the Waters signature scheme [36] and
the [30] NIZK proofs. They assume a static setting and as part of a group signature they
encrypt the identity of the signer bit by bit. This means that a group signature consists of
O(log n) group elements, where n is the number of members in the group. The group
signature scheme satisfies a relaxed version of the [5] security definition, where the
anonymity is guaranteed only when no signatures have been opened and traced to the
signer. In comparison, the full-anonymity definition in [5] demands that anonymity is
preserved even when the adversary can get an opening of any other signature than the
challenge.

Ateniese et al. [1] use a bilinear group of prime order. The advantage of this scheme
is that it is very efficient, a group signature consists of 8 group elements. However, they
use several strong security assumptions and their security model is even weaker than
that of [12] since it does not protect against key-exposures; knowledge of a signing key
immediately allows one to tell which signatures this member has made. In comparison,
the BMW,BSZ-models do guard against key exposure.

The tools in this paper give a construction of group signatures where both keys and
signatures consist of a constant number of group elements. The construction involves
carefully constructing and tailoring a signature scheme and the simulation-sound ex-
tractable NIZK proof system such that they fit each other. The constant is large; we
do not claim this to be a practical scheme. Rather this should be seen as an interest-
ing feasibility result; under a simple and natural security assumption there exists an up
to a constant optimal dynamic group signature scheme satisfying the strong security
definitions from [5,7].
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Scheme Signature in bits Security model Assumption
[5] poly(k) BMW [5] (fixed group) Trapdoor permutations
[7] poly(k) BSZ [7] (dynamic group) Trapdoor permutations
[12] 3k + 2k log n BMW [5], CPA-anonymity Subgroup decision and CDH
[1] 8k UC-model, non-adaptive adv. Strong SXDH, q-EDH, strong LRSW

This paper O(k) BSZ [7] DLIN

Fig. 2. Comparison of group signature schemes

2 Preliminaries

2.1 Definitions: Non-interactive Zero-Knowledge Proofs

We provide formal definitions of non-interactive proofs, perfect completeness, perfect
soundness, unbounded adaptive zero-knowledge, composable zero-knowledge, perfect
proofs of knowledge, simulation soundness and simulation-sound extractability in the
full paper. Here we will just sketch one useful stronger definition of zero-knowledge
that we have not seen elsewhere in the literature.

COMPOSABLE ZERO-KNOWLEDGE. We define composable zero-knowledge by mak-
ing two requirements. First, a real CRS is computationally indistinguishable from a
simulated CRS; we call this reference string indistinguishability. Second, the adversary
even when it gets access to the simulation trapdoor τ , cannot distinguish real proofs on
the simulated CRS from simulated proofs. We call this simulation indistinguishability.
We refer to the full paper for the formal definition and a proof that composable zero-
knowledge implies the standard notion of unbounded adaptive zero-knowledge usually
found in the literature.

Our motivation for introducing the notion of composable zero-knowledge is that it al-
lows different zero-knowledge proofs for different languages to use the same CRS. Sup-
pose we have relations R1, . . . , Rn and corresponding NIZK proof systems (K, P1, V1),
. . . , (K, Pn, Vn) with composable zero-knowledge using the same key generator and
CRS simulator K, S1. A hybrid argument shows that no non-uniform polynomial time
adversary can distinguish real proofs on a simulated CRS from simulated proofs on this
CRS for relation Ri, even if it sees arbitrary proofs or simulations for statements in
Lj �=i using the same CRS. The reason is that in the definition of simulation indistin-
guishability we give τ to the adversary, so it can itself implement the simulator S2,j for
any relation Rj �=i.

Composable zero-knowledge implies that the zero-knowledge property still makes
sense when many different NIZK proofs use the same CRS. In our paper, all the NIZK
proofs will indeed generate the CRS in the same way and simulate the CRS in the same
way, so we get better performance by not having to deal with different CRSs for each
proof system. At the same time, it simplifies the paper.

2.2 A Homomorphic Commitment Scheme

We use the cryptosystem from Section 1.1 to create a homomorphic commitment
scheme such that depending on how we generate the public key we get either a per-
fectly binding commitment scheme or a perfectly hiding trapdoor commitment scheme.
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The idea is that if K is an encryption of 1, then KmE(1; r, s) is also an encryption of
1 and we have a perfectly hiding commitment to m. On the other hand, if K is not an
encryption of 1, then KmE(1; r, s) is perfectly binding.

Perfectly binding key generation: Let ck = (p, G, G1, e, g, f, h, u, v, w) where f, h
is a public key for the cryptosystem and (u, v, w) = (f ru , hsv , gtw) with tw �=
ru + sv is an encryption of a non-trivial element.

Perfectly hiding trapdoor key generation: Let ck = (p, G, G1, e, g, f, h, u, v, w)
where f, h is a public key for the cryptosystem and (u, v, w) = (f ru , hsv , gru+sv )
is an encryption of 1.

The corresponding trapdoor key is tk = (ck, x, y, ru, sv).
Commitment: To commit to message m ∈ Zp pick r, s ← Zp and let the commitment

be c = (c1, c2, c3) = com(m; r, s) = (umf r, vmhs, wmgr+s).

The commitment schemes (Kbinding, com) and (Khiding, com) have several nice
properties. The CPA-security of the cryptosystem implies that one cannot distinguish
perfect binding keys from perfect hiding keys. This in turn implies computational hiding
respectively computational binding for the two schemes. The homomorphic property of
the cryptosystem transfers to the commitment scheme.

com(m1 + m2; r1 + r2, s1 + s2) = com(m1; r1, s1)com(m2; r2, s2).

For the perfectly binding commitment scheme, any c ∈ G3 is a commitment to some
message m ∈ Zp.

3 Efficient Non-interactive Zero-Knowledge Proof Systems

The construction of our NIZK proof for satisfiability of pairing product equations is
very complex and requires many new techniques. We will therefore build it in a modular
fashion from NIZK proofs for simpler relations. Even some of these simpler NIZK
proofs are complex and we can only sketch the ideas behind the constructions here. The
full paper [28] contains full constructions and security proofs.

3.1 Common Reference String

All the NIZK proofs in this section use the same CRS generator K and CRS simula-
tor S1 described below. A CRS is a public key for the perfectly binding commitment
scheme described in the previous section. The soundness of the NIZK proofs comes
from the perfect binding property of the commitment scheme, which makes it impos-
sible for any adversary to cheat. In simulations, we use a public key for the perfectly
hiding commitment scheme as the simulated CRS.

Common reference string
Generate σ = (p, G, G1, e, g, f, h, u, v, w) ← Kbinding(1k).1

1 Both the CRS generator K and the CRS simulator S1 first create a DLIN group honestly. This
means that instead of generating the CRSs from scratch, it is also possible to build any of the
NIZK proofs we construct in the following sections on top of an already existing DLIN group.
When doing so we write σ ← K(p, G, G1, e, g) or (σ, τ ) ← S1(p, G, G1, e, g).
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Simulated reference string
Generate (σ, τ) ← Khiding(1k), where σ = (p, G, G1, e, g, f, h, u, v, w) and τ =
(x, y, ru, su).

The CPA-security of the cryptosystem gives us the following lemma.

Lemma 1. If (p, G, G1, e, g) is a DLIN group, then (K, S1) has reference string indis-
tinguishability.

3.2 NIZK Proofs for Commitment to 0

Let Rzero = {(c, (r, s)) | c = com(0; r, s)} define the language of commitments to 0.
The proof of the following theorem can be found in the full paper.

Theorem 1. There exists an NIZK proof system (K, Pzero, Vzero, S1, Szero) for Rzero

with perfect completeness, perfect soundness and composable zero-knowledge with per-
fect simulation indistinguishability under the DLIN assumption for G. The proof con-
sists of 1 group element (π = gr). Verification corresponds to evaluating two pairing
product equations.

3.3 Proof for Committed Multiplicative Relationship

Consider three commitments ca, cb, cc such that the corresponding messages have a
multiplicative relationship mc = mamb. The corresponding relation is Rmult = {((ca,
cb, cc), (ma, ra, sa, mb, rb, sb, rc, sc)) | ca = com(ma; ra, sa), cb = com(mb; rb, sb),
cc = com(mamb; rc, sc)}.

Theorem 2. There exists an NIZK proof (K, Pmult, Vmult, S1, Smult) for Rmult with
perfect completeness, perfect soundness and composable zero-knowledge if the DLIN
assumption holds for G. A proof consists of 36 group elements. Verification corresponds
to evaluating a set of pairing product equations.

Sketch of proof. ca, cb, cc have a multiplicative relationship if and only if

cc = cma

b com(0; rc −marb, sc −masb).

To prove the latter, it suffices to reveal ma, and prove that cacom(−ma; 0, 0) and
ccc

−ma

b are commitments to 0. To get zero-knowledge, we tweak this idea in a way
such that ma is not revealed directly.

The main trick in the NIZK proof is to pick exponents r, s at random, which will be
used to hide ma. Using (K, Pzero, Vzero) we prove that

cacom(1; 0, 0)−(r+s+ma)(com(1; 0, 0)π0,1)r(com(1; 0, 0)π0,3)s

and ccc
−(r+s+ma)
b (cbπ0,2)r(cbπ0,4)s

are commitments to 0, where π0,1, π0,2, π0,3, π0,4 are themselves commitments to 0.
Revealing the components com(1; 0, 0)r+s+ma, cr+s+ma

b , the verifier can use the
bilinear maps to check that there exists some common exponent t = r + s + ma, even
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though it cannot compute the exponent itself. Similarly, revealing (com(1; 0, 0)π0,1)r,
(cbπ0,2)r and (com(1; 0, 0)π0,3)s, (cbπ0,4)s allows the verifier to check that there exist
common exponents r, s.

We are verifiably using the same exponents r, s, t on com(1; 0, 0) and cb to get re-
spectively ca and cc. This shows that

cacom(1; 0, 0)r+s−t and ccc
r+s−t
b

are both commitments to 0. The only way this can be possible is when ma = t− r− s.
Computational simulation indistinguishability follows from the fact that while we

use the same exponents, we use different bases. Therefore, at no point is any element
itself raised to ma, which the adversary could potentially use to detect whether it was a
correct proof or one created by a simulator, which does not know ma. The commitments
π0,1, π0,2, π0,3, π0,4 rerandomize the bases that we raise to r, s and therefore t = r +
s + ma is indistinguishable from t random, so ma is hidden. �

3.4 NIZK Proof for Commitment to Exponent

We have two elements a, b and a commitment c to the exponent m so b = am. Rexpo =
{((a, b, c), (m, r, s)) | b = am, c = com(m; r, s)} defines the language of such
statements.

Theorem 3. There exists an NIZK proof (K, Pexpo, Vexpo, S1, Sexpo) for Rexpo with
perfect completeness, perfect soundness and composable zero-knowledge with perfect
simulation indistinguishability if the DLIN assumption holds for G. A proof consists of
8 group elements. Verification consists of evaluating a set of pairing product equations.

Sketch of proof. If a �= 1 then one can use the bilinear map to verify that a pair of
commitments π1, πm have the same exponent m so πm = πm

1 . If π1 is a commitment
to 1, then πm is a commitment to m. What remains is to prove that π1com(−1; 0, 0) and
cmπ−1

m are commitments to 0, which we can do with the NIZK proof for commitment
to 0.

To prove zero-knowledge we observe that on a perfect hiding key ck

π1 = (axr1 , ays1 , ar1+s1) and πm = (bxr1 , bys1 , br1+s1)

gives us commitments so πm = πm
1 , even though we do not know m itself. �

3.5 NIZK Proof for Generalized Pedersen Commitment

Consider a Pedersen commitment to many messages b = gt
∏n

i=1 ami

i . Let ct, c1, . . . , cn

be commitments to the exponents. The language of multi-message Pedersen commit-
ments and corresponding exponent-commitments is defined by Rm−ped = {((a1,
. . . , an, b, ct, c1, . . . , cn), (t, rt, st, m1, r1, s1, . . . , mn, rn, sn)) | b=gt

∏n
i=1 ami

i , ct =
com(t; rt, st), ci = com(mi, ri, si)}.

Theorem 4. There exists an NIZK proof (K, Pm−ped, Vm−ped, S1, Sm−ped) for
Rm−ped with perfect completeness, perfect soundness and composable zero-knowledge
if the DLIN assumption holds for G. The proof consists of 63n− 4 group elements. The
verification consists of evaluating a set of pairing product equations.
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Sketch of Proof. The hard part in constructing an NIZK proof for Rm−ped is to construct
a proof for the one-message Pedersen commitment relation Rped, which is done with
techniques related to the NIZK proof for multiplicative relationship, see the full paper
for details. Once we have that, we split b into n one-message Pedersen commitments
b =

∏n
i=1 bi =

∏n
i=1(a

mi

i gti) choosing the ti’s at random so t =
∑n

i=1 ti and make
commitments cti to the ti’s. We make an NIZK proof for Rped for each of the statements
(ai, bi, ci, cti). �

3.6 NIZK Proof for Committed Bilinear Product

We can commit to a1, b1, . . . , an, bn in the following way. We form Ai = griai and
commitments cri to ri. Similarly, we form Bi = gsibi and commitments csi to si. We
are interested in knowing whether

∏n
i=1 e(ai, bi) = 1.

Let Rbil−prod = {(A1, cr1 , B1, cs1 , . . . , An, crn , Bn, csn), (r1, rr1 , sr1 , s1, rs1 , ss1 ,
. . . , rn, rrn , srn , sn, rsn , ssn) | Ai = griai, Bi = gsibi, cri = com(ri; rri , sri), csi =
com(si; rsi , ssi),

∏n
i=1 e(ai, bi) = 1}.

Theorem 5. There exists an NIZK proof (K, Pbil−prod, Vbil−prod, S1, Sbil−prod) for
Rbil−prod with perfect completeness, perfect soundness and composable zero-knowledge
under the DLIN assumption for G. Proofs consist of 228n− 3 group elements and ver-
ification corresponds to evaluating a set of pairing product equations.

Sketch of proof. The key observation in the construction is that if and only if
∏n

i=1 e(ai,
bi) = 1. we have for arbitrary R1, S1, . . . , Rn, Sn ∈ Zp that

n∏
i=1

e(Ai, Bi) =
n∏

i=1

e(gri , gsibi)e(griai, g
si)e(gri , gsi)−1

n∏
i=1

e(ai, bi)

=
n∏

i=1

e(g, Bi)rie(Ai, g)sie(g, g)−risi = e(g, g−
n
i=1 risi

n∏
i=1

Asi

i Bri

i )

= e(g, g−
n
i=1(risi+RiSi)

n∏
i=1

Asi

i Bri

i )
n∏

i=1

e(gRi , gSi).

In the NIZK proof, we pick R1, S1, . . . , Rn, Sn at random. We commit to Ri, Si and
we already have commitments to ri, si. We reveal the 2n+1 elements gR1 , gS1, . . . , gRn ,
gSn and g−

n
i=1(risi+RiSi)

∏n
i=1 Asi

i Bri

i . We then use NIZK proofs for Rexpo, Rmult,
Rm−ped to prove that they have been formed correctly.

In the simulation, we observe that for arbitrary R1, S1, . . . , Rn, Sn

n∏
i=1

e(Ai, Bi) = e(g, g−
n
i=1 RiSi

n∏
i=1

A−Si

i B−Ri

i )
n∏

i=1

e(gRiAi, g
SiBi).

Picking R1, S1, . . . , Rn, Sn randomly means all elements have the same distribution
as in a real proof on a simulated CRS. We can then simulate the NIZK proofs for
Rexpo, Rmult, Rm−ped. �
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3.7 NIZK Proof for Satisfiability of Pairing Product Equations

Recall from the introduction that a pairing product equation is of the form

eq(a1, . . . , an) :
	∏

j=1

e(qj,0, qj,1) = 1 , where qj,b = bj,b

n∏
i=1

a
ej,b,i

i ,

for known bj,b ∈ G and ej,b,i ∈ Zp. A set S of pairing product equations eq1, . . . , eqm

is said to be satisfiable if there exists (a1, . . . , an) ∈ Gn such that all equations are
satisfied. Let Rppsat = { S | ∃(a1, . . . , an) ∈ Gn ∀eqk ∈ S : eqk(a1, . . . , an) =
true}. We conclude this section with the following main theorem.

Theorem 6. There exists an NIZK proof (K, Pppsat, Vppsat, S1, Sppsat) for Rppsat with
perfect completeness, perfect soundness and composable zero-knowledge if the DLIN
assumption holds for G. Proofs consist of 4n + 228� − 3m group elements, where
� =

∑m
k=1 �k. Verification consists of evaluating a set of pairing product equations.

Sketch of proof. In the NIZK proof, we first commit to each ai as gtiai and com(ti). Us-
ing homomorphic properties, it is straightforward for qk,j,b in equation eqk to compute
gtk,j,bqk,j,b and com(tk,j,b) as

bk,j,b

n∏
i=1

(gtiai)ek,j,b,i = g
n
i=1 tiek,j,b,i(bk,j,b

n∏
i=1

a
ek,j,b,i

i )

and
n∏

i=1

com(ti)ek,j,b,i = com(
n∑

i=1

tiek,j,b,i).

For each pairing product equation eqk make an NIZK proof for Rbil−prod that∏	k

j=1 e(qk,j,0, qk,j,1) = 1. �

NESTING NIZK PROOFS. Since verification consists of verifying a set of pairing prod-
uct equations, we can nest NIZK proofs inside one another. I.e., we can prove that there
exists an NIZK proof such that there exists an NIZK proof such that, etc. Each level of
nesting costs a constant blow-up factor. In comparison, this is very expensive with other
NIZK proofs and impossible in the random oracle model.

REDUCING THE NUMBER OF VARIABLES. Consider a set of pairing product equations
over n variables with combined length �. We show in the full paper that there is a set
of pairing product equations of length � over n′ ≤ 2� variables, such that this set is
satisfiable if and only if the original set is satisfiable. This gives us NIZK proofs of
length O(�) group elements for satisfiability of pairing product equations.

4 Simulation-Sound Extractable NIZK Proof for Satisfiability of
Pairing Product Equations

A CMA-SECURE SIGNATURE SCHEME. With the help of the NIZK proof for Rppsat,
we can construct a digital signature scheme secure against adaptive chosen message
attack (CMA).
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Theorem 7. Under the DLIN assumption there exists a CMA-secure digital signature
scheme (Ksign, Sign, Ver) for signing n group elements with perfect correctness. The
verification key and the signatures consist of O(n) group elements and the verification
process consists of evaluating a set of pairing product equations.

Due to lack of space we refer the reader to the full paper [28] for the construction and
the proof. We remark on one issue that makes the construction non-trivial. Our NIZK
proofs work for pairing product equations. Since we want to use the NIZK proofs on
encrypted signatures, we cannot use a hash-function in the signature scheme, since we
do not know how to make NIZK proofs for correct hashing without an expensive NP-
reduction to e.g. Circuit Satisfiability.

SIMULATION-SOUND EXTRACTABLE NIZK PROOFS. We will combine the CMA-
secure signature scheme with the NIZK proofs to construct an unbounded simulation-
sound extractable NIZK proof for Rppsat.

Common reference string and simulated reference string: Given a group (p, G, G1,
e, g) pick CMA-secure signature keys (vk, sk) ← Ksign(p, G, G1, e, g), keys for
the CPA-secure cryptosystem (pk, skcpa) ← Kcpa(p, G, G1, e, g) and make a ci-
phertext c1 ← Epk(t) for t �= 1. Let σ ← K(p, G, G1, e, g) be a CRS for our NIZK
proofs.
The CRS is Σ = (vk, pk, c1, σ).
In the simulation we pick c1 = Epk(1; rc, sc) and let the simulation trapdoor be
τ = (sk, rc, sc) while the extraction key is ξ = skcpa.

Proof: Given a set of pairing product equations S and a satisfiability witness w =
(a1, . . . , an) the proof is constructed as follows.
Pick keys (vksots, sksots) for a strong one-time signature scheme.2 Encrypt cw ←
Epk(a1, . . . , an) and cs = Epk(1, . . . , 1). Make an NIZK proof πssor of the fol-
lowing statement: Either cw contains a satisfying witness, or c1 contains 1 and cs

contains a signature under vk on vksots. We refer to the full paper how to use the
NIZK proof for Rppsat to prove satisfiability of at least one out of two sets of pair-
ing product equations. Finally, sign everything ssots ← Signsksots

(S, cw, cs, πssor).
The proof is π = (vksots, cw, cs, πssor, ssots).

Simulation: Pick keys (vksots, sksots) for a strong one-time signature scheme. Sign
vksots as s ← Signsk(vksots). Encrypt cw ← Epk(1, . . . , 1) and cs = Epk(s).
Make an NIZK proof πssor of the following statement: Either cw contains a satisfy-
ing witness, or c1 contains 1 and cs contains a signature under vk on vksots. Finally,
sign everything ssots ← Signsksots

(S, cw, cs, πssor).
Verification and extraction: Accept the proof if and only if the strong one-time sig-

nature ssots and the proof πssor are valid.
To extract a witness simply decrypt cw.

Theorem 8. If (p, G, G1, e, g) is a DLIN group then (Ksse, Psse, Vsse, S1,sse,
Ssse, E1,sse, Esse, SE1,sse) is an NIZK proof for Rppsat with perfect completeness, per-
fect soundness, perfect knowledge extraction and composable zero-knowledge and un-
bounded simulation-sound extractability. The size of the CRS is O(1) group elements,
while the NIZK proofs consist of O(n + �) group elements.

2 See the full paper for a DLIN group based strong one-time signature scheme.
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Sketch of proof. On a real CRS, c1 does not contain 1, and therefore by the perfect
soundness of the NIZK proof cw must contain a satisfiability witness w. In simulations,
c1 does contain 1, however, since the prover does not know the signing key sk he cannot
create signatures on vksots of his own choosing and he cannot recycle a vksots either
because he does not know the corresponding signing key sksots. Therefore, he cannot
encrypt a signature in cs, so he must still encrypt a satisfiability witness in cw. We can
then decrypt cw and extract the witness. We refer to the full paper for details. �

5 Constant Size Group Signatures Without Random Oracles

SECURITY DEFINITIONS. [7] define three security properties that a group signature
must satisfy: anonymity, traceability and non-frameability. We refer to the full paper for
formal definitions and to [7] for a discussion of why this is a strong security definition
that incorporates previous security requirements found in the literature. The definition
allows for separating the roles of the group manager into an issuer who can enroll
members and an opener that can open signatures to see who created it.

Anonymity: Only the opener can see who created a signature. This property must hold
even if the members’ keys are exposed and the issuer is corrupt.

Traceability: If the issuer is honest then all signatures will be correctly opened to some
member.

Non-frameability: Even if the issuer and opener are both corrupt, they still cannot
create a valid signature and a convincing opening that frames an honest member
that did not sign it.

A GROUP SIGNATURE SCHEME. We imagine that there is a PKI in place so we have
authenticated public keys. We model this by having a public key registry reg where only
user i has one-time write access to reg[i], we do not attempt to keep this information
secret. User i stores his secret key in gsk[i], unless compromised only the user has
access to this key.

Key generation: We create the group public key gpk = (vk, pk, Σ), where vk is a
verification key for the CMA-secure signature scheme, pk is a public key for the
CPA-secure cryptosystem and Σ is a CRS for the simulation-sound extractable
NIZK proof. The issuer’s key ik is the signing key for the signature scheme, while
the opener’s key ok is the decryption key for the cryptosystem.

Join/Issue: The user i registers a public key vki for the CMA-secure signature scheme
in reg[i] and stores the corresponding secret key ski. The issuer signs it as certi ←
Signik(vki). The user verifies the correctness of the signature and stores gsk[i] =
(ski, vki, certi).

Sign: To sign m ∈ {0, 1}∗, member i creates a strong one-time signature key pair
(vksots, sksots). Using ski he signs the verification key, si ← Signski

(vksots). He
then creates an encryption c of (vki, certi, si) and makes a simulation-sound ex-
tractable NIZK proof π that the plaintext is correctly formed. Finally, he makes a
strong one-time signature ssots ← Signsksots

(m, vksots, c, π).
The group signature on m is s = (vksots, c, π, ssots).
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Verify: Accept if the strong one-time signature and the NIZK proof are valid.
Open: To open a valid group signature we decrypt c. We get some (vk∗, cert∗, s∗) and

look up the member i who registered vk∗. In case no such member exists, we set
i = issuer. We return an opening (i, ψ), where ψ = (vk∗, cert∗, s∗).

Judge: Anybody can check whether cert∗ is a signature on vk∗ under vk, and whether
s∗ is a signature on vksots under vk∗. If vk∗ has been registered for user i, or no
vk∗ has been registered and i = issuer we accept the opening.

Theorem 9. If the DLIN assumption holds for G then there exists a group signature
scheme with anonymity, traceability and non-frameability and perfect correctness. All
public keys contain O(1) group elements, openings contain O(1) group elements, and
signatures contain O(1) group elements and elements from Zp.

Sketch of proof. We get anonymity, because the information (vki, certi, si) that could
identify the signer is encrypted and the NIZK proof is zero-knowledge. Seeing openings
of other group signatures does not help, because when a CPA-secure cryptosystem is
combined with a simulation-sound proof of knowledge of the plaintext, then it becomes
CCA2-secure, see also [23].

We get traceability because by the soundness of the NIZK proof system we must have
a correct (vk∗, cert∗, s∗) inside the ciphertext. Since only the issuer knows the signing
key ik, nobody else can forge a certificate cert∗. This means, the group signature must
point to some member i, not the issuer.

We have non-frameability because a valid signature and a valid opening pointing to
i contains a signature s∗ under vki on vksots, so vksots must have been signed by the
member. Furthermore, since it is a strong one-time signature scheme and the public key
vksots is used only once by i, it must also be this member that made the signature ssots

on (m, vksots, c, π).
The full paper [28] contains a more detailed construction and the full proof. �
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Abstract. The group signature scheme [1], ACJT for short, is popular.
In this paper we show that it is not secure. It does not satisfy excul-
pability. The group manager can sign on behalf of any group member.
The drawback found in the scheme shows that some inductions are not
sound, though they are prevalent in some so-called security proofs.
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1 Introduction

Group signatures, introduced by Chaum and Heyst [2], allow individual members
to make signatures on behalf of the group. Generally, a group signature must
satisfy the following properties [1]:

Unforgeability: Only group members are able to sign messages on behalf
of the group.
Anonymity: Given a valid signature of some message, identifying the actual
signer is computationally hard for everyone but the group manager.
Unlinkability: Deciding whether two different valid signatures were pro-
duced by the same group member is computationally hard.
Traceability: The group manager is always able to open a valid signature
and identify the actual signer.
Coalition-resistance: A colluding subset of group members (even if com-
prised of the entire group) cannot generate a valid signature that the group
manager cannot link to one of the colluding group members.
Exculpability: Neither a group member nor the group manager can sign
on behalf of other group member.

Group signatures can be used to constitute a very useful primitive in many
settings. It has become a hot problem to research group signatures in recent
[3–7].

At Crypto’2000, Ateniese et al. [1] proposed a group signature scheme. The
authors claimed that the scheme was practical and provably secure coalition-
resistant. Recently, we find it is false. The group manager can sign on behalf
of any group member. That is to say, the popular group signature scheme does

X. Lai and K. Chen (Eds.): ASIACRYPT 2006, LNCS 4284, pp. 460–466, 2006.
c© International Association for Cryptologic Research 2006
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not satisfy exculpability. It’s the first time to show that the signature scheme
is not secure. The attack developed in the paper is novel and interesting. The
drawback found in the popular signature scheme shows that some inductions are
not sound, though they are prevalent in so-called security proofs.

The rest of the paper is organized as follows. The next section reviews ACJT
group signature scheme. An attack is presented in Section 3. Some conclusion
remarks are given in Section 4.

2 Review

Let ε > 1, k, �p be security parameters and let λ1, λ2, γ1, γ2 denote the lengths
satisfying

λ1 > ε(λ2 + k) + 2, λ2 > 4�p, γ1 > ε(γ2 + k) + 2, γ2 > λ1 + 2.

Define the integral ranges

Λ = ] 2λ1 − 2λ2 , 2λ1 + 2λ2 [ , Γ = ] 2γ1 − 2γ2 , 2γ1 + 2γ2 [.

Finally, let H be a collision-resistant hash function H : {0, 1}∗ → {0, 1}k.
The initial phase involves the group manager (GM) setting the group public

key Y and his secret key S.

SETUP:
1. Select random secret �p–bit primes p′, q′ such that p = 2p′ + 1 and q = 2q′ + 1

are primes. Set the modulus n = pq.
2. Choose random elements a, a0, g, h ∈R QR(n) (of order p′q′).
3. Choose a random secret element x ∈R Z∗

p′q′ and set y = gx mod n.
4. The group public key is : Y = (n, a, a0, y, g, h).
5. The corresponding secret key (known only to GM) is: S = (p′, q′, x).

Suppose now that a new user wants to join the group. We assume that com-
munication between the user and the group manager is secure. The selection of
per-user parameters is done as follows:

JOIN:
1. User Pi generates a secret exponent x̄i ∈R ]0, 2λ2 [, a random integer

r̄ ∈R ]0, n2[ and sends C1 = gx̄ihr̄ mod n to GM and proves him
knowledge of the representation of C1 w.r.t. bases g and h.

2. GM checks that C1 ∈ QR(n). If this is the case, GM selects αi and
βi ∈R ]0, 2λ2 [ at random and sends (αi, βi) to Pi.

3. User Pi computes xi = 2λ1 + (αix̄i + βi mod 2λ2) and sends GM
the value C2 = axi mod n. The user also proves to GM:

(a) that the discrete log of C2 w.r.t. base a lies in Λ, and
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(b) knowledge of integers u, v, and ω such that
i. u lies in ]− 2λ2 , 2λ2 [,
ii. u equals the discrete log of C2/a2λ1 w.r.t. base a, and
iii. Cαi

1 gβi equals gu(g2λ2 )vhω.
(The statements (i–iii) prove that the user’s membership secret xi =

logaC2 is correctly computed from C1, αi, and βi.)
4. GM checks that C2 ∈ QR(n). If this is the case and all the above

proofs were correct, GM selects a random prime ei ∈R Γ and computes
Ai := (C2a0)1/ei mod n. Finally, GM sends Pi the new membership
certificate [Ai, ei]. (Note that Ai = (axia0)1/ei mod n.)

5. User Pi verifies that axia0 ≡ Aei

i mod n.

Armed with a membership certificate [Ai, ei], a group member can generate
anonymous and unlinkable group signatures on a generic message m ∈ {0, 1}∗ :

SIGN:
1. Generate a random value ω ∈R {0, 1}2	p and compute:

T1 = Aiy
ω mod n, T2 = gω mod n, T3 = geihω mod n.

2. Randomly choose r1 ∈R ±{0, 1}ε(γ2+k), r2 ∈R ±{0, 1}ε(λ2+k),
r3 ∈R ±{0, 1}ε(γ1+2	p+k+1), r4 ∈R ±{0, 1}ε(2	p+k) and compute:

d1 = T r1
1 /(ar2yr3) mod n, d2 = T r1

2 /gr3 mod n

d3 = gr4 mod n, d4 = gr1hr4 mod n

c = H(g ‖ h ‖ y ‖ a0 ‖ a ‖ T1 ‖ T2 ‖ T3 ‖ d1 ‖ d2 ‖ d3 ‖ d4 ‖ m)

s1 = r1 − c(ei − 2γ1), s2 = r2 − c(xi − 2λ1),

s3 = r3 − c ei ω, s4 = r4 − c ω (all in Z).

3. Output (c, s1, s2, s3, s4, T1, T2, T3).

A verifier can check the validity of a signature (c, s1, s2, s3, s4, T1, T2, T3) on
the message m as follows:

VERIFY:
1. Compute

c′ = H(g ‖ h ‖ y ‖ a0 ‖ a ‖ T1 ‖ T2 ‖ T3 ‖ d′1 ‖ d′2 ‖ d′3 ‖ d′4 ‖ m)

where

d′1 = ac
0T

s1−c 2γ1

1 /(as2−c 2λ1
ys3) mod n, d′2 = T s1−c 2γ1

2 /gs3 mod n,

d′3 = T c
2 gs4 mod n, d′4 = T c

3 gs1−c 2γ1
hs4 mod n

2. Accept the signature if and only if c = c′ and

s1 ∈ ±{0, 1}ε(γ2+k)+1, s2 ∈ ±{0, 1}ε(λ2+k)+1,

s3 ∈ ±{0, 1}ε(γ1+2	p+k+1)+1, s4 ∈ ±{0, 1}ε(2	p+k)+1.
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In case of a dispute, GM executes the following procedure:

OPEN:
1. Check the signature’s validity via the VERIFY procedure.
2. Recover Ai (and thus the identity of Pi) as Ai = T1/T x

2 mod n.
3. Prove that loggy = logT2

(T1/Ai mod n).

Remark 1: In the original description [1], we observe that

r3 ∈R ±{0, 1}ε(γ1+2	p+k+1), s3 ∈ ±{0, 1}ε(λ1+2	p+k+1)+1

It’s not difficult to find it should be corrected to keep the consistency between
r3 and s3.

3 Analysis

In this section, we show that ACJT group signature scheme doesn’t satisfy excul-
pability. More precisely, we find the group manager (GM) can sign on behalf of
any member if GM replaces Step 2 in the original SETUP phase with following:

2. Choose random elements a0, g, h ∈R QR(n) (of order p′q′)
and set a = at

0 (mod n), where t ∈R Z∗
p′q′ .

Then GM records (axi , Ai, ei) in the JOIN phase (pointing to the member Pi).
Note that no member can prevent GM from setting a = at

0 (mod n).
Using (t, axi , Ai, ei) and the secret key (p′, q′), GM can sign on behalf of the

member Pi. Given a message m, GM proceeds as follows:
1. Choose ω ∈R {0, 1}2	p and compute:

T1 = Aiy
ω mod n, T2 = gω mod n, T3 = hω mod n.

2. Choose b1, b2 ∈R Zn, r4 ∈R ±{0, 1}ε(2	p+k) and compute

d1 = (axi)b1yb2 , d2 = gb2 , d3 = gr4 , d4 = gb1eihr4 (mod n).

c = H(g ‖ h ‖ y ‖ a0 ‖ a ‖ T1 ‖ T2 ‖ T3 ‖ d1 ‖ d2 ‖ d3 ‖ d4 ‖ m)

3. Choose X ∈R Λ and compute

R1 = (c + b1) ei, R2 = c X + t−1(c + b1), R3 = ωR1 − b2 (mod φ(n))

4. Choose proper ρ1, ρ2, ρ3 ∈ Z such that

r1 = R1 + ρ1φ(n) ∈ ±{0, 1}ε(γ2+k)

r2 = R2 + ρ2φ(n) ∈ ±{0, 1}ε(λ2+k)

r3 = R3 + ρ3φ(n) ∈ ±{0, 1}ε(γ1+2	p+k+1)
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(Since R1, R2, R3 ∈ Zn, n = (2p′ + 1)(2q′ + 1), |p′| = |q′| = �p, ε > 1, γ1 >
ε(γ2 + k) + 2, γ2 > λ1 + 2, λ1 > ε(λ2 + k) + 2 and λ2 > 4�p , it’s easy to find
ρ1, ρ2, ρ3 ∈ Z satisfying the above restrictions.)

5. Compute

s1 = r1 − c (ei − 2γ1), s2 = r2 − c (X − 2λ1),

s3 = r3 − c ei ω, s4 = r4 − c ω (all in Z).

6. Output (c, s1, s2, s3, s4, T1, T2, T3).

Correctness: For convenience, denote by ξi the inverse of ei modulo φ(n), i.e.,

ei ξi = 1 mod φ(n)

Hence, we have

d′1 = ac
0T

s1−c2γ1

1 /(as2−c2λ1
ys3) = ac

0(Aiy
ω)r1−cei/(ar2−cXyr3−ceiω)

= ac
0

(
(axia0)ξi

)(r1−cei)
yωr1−r3/ar2−cX

= (axi)r1ξi−cac+r1ξi−c
0 yωr1−r3/ar2−cX = (axi)r1ξi−car1ξi

0 yωr1−r3/a
t(r2−cX)
0

= (axi)r1ξi−ca
r1ξi−t(r2−cX)
0 yωr1−r3 = (axi)R1ξi−ca

R1ξi−t(R2−cX)
0 yωR1−R3

= (axi)b1a
c+b1−t(c+b1)t

−1

0 yb2 = (axi)b1yb2 = d1 (mod n)

d′2 = T s1−c2γ1

2 /gs3 = (gω)r1−cei /gr3−ceiω

= gωr1−r3 = gωR1−R3 = gb2 = d2 (mod n)

d′3 = T c
2 gs4 = (gω)cgr4−ω c = gr4 = d3 (mod n)

d′4 = T c
3 gs1−c2γ1

hs4 = (hω)cgr1−ceihr4−cω

= gR1−ceihr4 = gb1eihr4 = d4 (mod n)

Thus c′ = c. It’s easy to check that

s1 ∈ ±{0, 1}ε(γ2+k)+1, s2 ∈ ±{0, 1}ε(λ2+k)+1,

s3 ∈ ±{0, 1}ε(γ1+2	p+k+1)+1, s4 ∈ ±{0, 1}ε(2	p+k)+1.

Clearly, we also have

T1/T x
2 = Aiy

ω/(gω)x = Ai mod n

Therefore, the scheme is not exculpable.
Remark 2: The authors [1] claimed that
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First note that due to Corollary 2, GM does not get any information
about a user’s secret xi apart from axi . Thus, the value xi is computa-
tionally hidden from GM. Next note that T1, T2, and T3 are an uncon-
ditionally binding commitments to Ai and ei. One can show that, if the
factorization of n would be publicly known, the interactive proof under-
lying the group signature scheme is a proof of knowledge of the discrete
log of Aei

i /a0 (provided that �p is larger than twice to output length of
the hash function / size of the challenges). Hence, not even the group
manager can sign on behalf of Pi because computing discrete logarithms
is assumed to be infeasible.

But by the above attack, GM is not forced to know a user’s secret xi even that
T1, T2, and T3 are an unconditionally binding commitments to Ai and ei. We
should stress that the likes of the above induction are not sound, though they
are prevalent in some so-called security proofs.

4 Conclusion

In this paper we show that ACJT group signature scheme is insecure. The attack
introduced in the paper will be helpful for researching group signature schemes
in the future. Incidently, the fair E-cash system [8] directly based on ACJT fails.
But it seems that the attack does not apply to the extensions of ACJT proposed
in [9]. The extension proposed in [10] appears to resist the attack at the cost of
the presence of a trusted third party.
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