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Abstract. Pairings on elliptic curves have been used as cryptographic
primitives for the development of new applications such as identity based
schemes. For the practical applications, it is crucial to provide efficient
and secure implementations of the pairings. There have been several
works on efficient implementations of the pairings. However, the research
for secure implementations of the pairings has not been thoroughly in-
vestigated. In this paper, we investigate vulnerability of the pairing used
in some pairing based protocols against side channel attacks. We propose
an efficient algorithm secure against such side channel attacks of the eta
pairing using randomized projective coordinate systems for the pairing
computation.

Keywords: Pairing based cryptosystems, Side channel attacks, Differ-
ential Power Analysis, Randomized projective coordinate systems, Eta
pairing.

1 Introduction

Since pairings have new and useful cryptographic properties such as bilinearity
and non-degeneracy the interest and active research of them in cryptography is
growing. Recently many cryptographic schemes based on the Tate pairing and
the Weil pairing have been proposed. For example, identity based encryption
schemes [6,28], identity based signature schemes [17,8,26], short signature [7],
and identity based authenticated key agreement [31].

To accelerate practical applications of pairing based schemes a lot of work
has focused on the development of efficient and easy computations of pairings
on elliptic curves. Barreto et al. [2] and Galbraith et al. [13] provided the fast
computation of the Tate pairing on supersingular elliptic curves over finite fields
of characteristic two and three. Duursma and Lee [11] gave a closed formula
in the case of characteristic three, and Kwon [21] extended it to supersingular
curves over characteristic two. Barreto et al. [1] proposed a general technique
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for the efficient computation of pairings on supersingular abelian varieties called
the eta pairing.

Recently such methods of pairings have been implemented in software and
hardware to accelerate constrained devices such as smartcards [5,14,30,4,27]. In
the implementation of cryptosystems or protocols on such devices, we should
consider not only efficiency but also security. If we don’t carefully implement
cryptosystems on constrained devices then they can be insecure against side
channel attacks (SCAs). Thus it is important to consider the secure implemen-
tation of pairing based cryptosystems secure against SCAs. We can divide pairing
based schemes into two types by whether or not an input of pairing is secret [10].
For example, identity based signature schemes such as short signature scheme
by Boneh et al. require the secret information as an input (i.e., the secret scalar)
of the elliptic curve scalar multiplication. Side channel attacks and countermea-
sures on scalar multiplications have well been studied. However, identity based
encryption schemes such as Boneh-Franklin encryption scheme [6] use the secret
information as an input of the pairing. In this case, there are only few works
of SCAs on the pairings [24,29,33]. In [24], Page and Vercauteren showed side
channel attacks against the Duursma-Lee algorithm. In [29], Scott suggested
countermeasures to provide resistance to more sophisticated simple power anal-
ysis (SPA) and differential power analysis (DPA) attacks. Very recently, Whelan
and Scott investigated practical pairing algorithms using correlation power anal-
ysis (CPA) [33]. However the form of some multiplication used in the eta pairing
on the supersingular curves in characteristic two is different to the case of char-
acteristic three. In this paper, we concretely examine the security of the eta
pairing on the supersingular curve over F2m against timing attack (TA) or SPA
attack and DPA attack.

In general, to speed up elliptic curve point addition and doubling, the projec-
tive coordinate systems are used instead of the affine coordinate system because
the affine coordinate system requires a modular inversion operation, compu-
tationally expensive. In [19], Izu and Takagi showed that the Tate pairing on
general elliptic curves over prime fields Fpm is efficiently computed using the
projective coordinate systems. Hess et al. [18] extended the eta pairing over su-
persingular curves to general curves over prime fields Fpm , and then examined
efficiency in the projective coordinate systems. However, for providing protec-
tion of SCAs, Coron [9] used the randomized projective coordinate. In this pa-
per, to resist SCAs, we propose an explicit algorithm using randomness of the
projective coordinate systems of the eta pairing for a curve over characteristic
two.

This paper is organized as follows: In the next section we review several meth-
ods for the efficient computation of the Tate pairing. Section 3 describes side
channel attacks on the eta pairing over supersingular curves in characteristic
two. Section 4 presents a countermeasure to prevent the attack described in
Section 3. Section 5 compares the proposed countermeasure with the previous
methods. Finally we conclude in Section 6.
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2 The Tate Pairing

Let E be an elliptic curve over a finite field Fq. Let l be a positive integer coprime
to q, which divides #E(Fq), i.e., l|#E(Fq). Let k be the smallest positive integer
such that the l-th root of unity exists in F

∗
qk , i.e., l|(qk − 1). We call such k the

embedding degree or security multiplier. The Tate pairing of P and Q on E(Fq)
of order l is defined as follows:

el : E(Fq)[l]× E(Fqk)[l]→ μl with el(P,Q) = fl,P (DQ)(q
k−1)/l, (1)

where fl,P is a rational function such that (fl,P ) = l(P ) − ([l]P ) − (l − 1)(O)
and DQ is a zero divisor equivalent to (Q)− (O) such that DQ and (fl,P ) have
disjoint supports. Also μl is the subgroup of the l-th root of unity in F

∗
qk . The

first efficient method for computing such a rational function is proposed by
Miller [22]. This algorithm is based on the binary method for elliptic curve
scalar multiplication combined with an evaluation of the tangent lines used in the
elliptic curve addition process. In the original Miller algorithm, a denominator in
the step of an evaluation of the tangent lines should be manipulated. Barreto et
al. [2] showed the way able to speed up by eliminating the denominator, namely,
for supersingular elliptic curves they used a specific endormorphism ψ called a
distortion map [32]. Thus the Tate pairing is modified by

el(P,Q) = fl,P (ψ(Q))(q
k−1)/l. (2)

To improve the computation speed of the above pairing on curves we can use
N = hl to be a multiple of the order of elliptic curve for some integer h instead
of l [13]. Since (fN,P ) = h(fl,P ) = (fh

l,P ) the Tate pairing can be computed by

fN,P (ψ(Q))(q
k−1)/N , where N = hl and fN,P is a rational function such that

(fN,P ) = N(P )− ([N ]P )− (N − 1)(O). Using this property, Duursma and Lee
[11] and Kwon [21] replaced l by N = hl which has low Hamming weight in
the case of characteristic three and two, respectively. In characteristic two, the
order and the embedding degree of supersingular curves E : y2 + y = x3 + x+ b,
where b ∈ F2 are 2m ± 2(m+1)/2 + 1 and 4, respectively. Thus, we can use
N = 22m+1 = (2m+2(m+1)/2+1)(2m−2(m+1)/2+1) of Hamming weight 2 in the
binary representation and also the final exponentiation by (24m−1)/(22m +1) =
22m − 1 is very simple, which is computed by applying one Frobenius map and
one division [11,21].

The fastest method for computing the Tate pairing is the eta pairing [1], which
includes the algorithms by Duursma and Lee [11] and Kwon [21] as special cases.
We now present an outline of the eta pairing algorithm. The elliptic curve of our
interest is the supersingular curve E : y2 + y = x3 + x + b over F2m where
m ≡ 3 mod 8 and b ∈ F2. The extension field F24m is represented by the basis
{1, s, t, st} such that s2 + s + 1 = 0 and t2 + t + s = 0. The distortion map is
ψ(x, y) = (x + s2, y + sx + t). For some integer T the eta pairing ηT is defined
to be ηT (P,Q) = fT,P (ψ(Q)). Then there is the following relation between the
eta pairing and the Tate pairing.

(
ηT (P,Q)M

)aT a−1

=
(
eN(P,Q)

)L
. (3)
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where T a + 1 = LN for some a ∈ N and L ∈ Z, T = q + cN for some c ∈ Z,
and M = (qk − 1)/N . To reduce of the loop in characteristic two we can choose
T = ∓2(m+1)/2 + 1, a = 2, c = −1, and L = 2. In this case, we should first
compute the rational function corresponding to addition of 2(m+1)/2P and ±P .
Since 2(m+1)/2P is efficiently computed by Frobenius map we can easily deal
with it. We have

(
ηT (P,Q)M

)2T = eN(P,Q)2 ⇒ (
ηT (P,Q)M

)T = eN(P,Q). (4)

However, to obtain the same result as the Tate pairing, it must be further
exponentiated to the power of T . The concrete algorithm of the eta pairing
on supersingular curves in characteristic two with m ≡ 3 mod 8 is shown in
Algorithm 1.

Algorithm 1. ηT (P,Q) on the curve E: y2 + y = x3 + x + b over F2m , where
b ∈ F2 and m ≡ 3 mod 8 case [1]
Input: P = (xP , yP ) and Q = (xQ, yQ).
Output: ηT (P, Q).
1: u← xP + 1
2: f ← u · (u + xQ) + yP + yQ + b + 1 + (u + xQ)s + t
3: for i = 0 to (m + 1)/2 do
4: u← xP , xP ← √xP , yP ← √yP

5: g ← u · (xP + xQ) + yP + yQ + xP + (u + xQ)s + t
6: f ← f · g
7: xQ ← x2

Q, yQ ← y2
Q

8: end for
9: return f (22m−1)(22m−2(m+1)/2+1)

Note that we mainly deal with the eta pairing in characteristic two because
the algorithm is simpler in characteristic three than characteristic two in the
sense of side channel attacks.

3 Side Channel Attacks

Side channel attacks (SCAs) have been recognized as serious menaces to con-
strained devices such as smartcards. By monitoring computation timing, power
consumption, or electromagnetic radiation, etc. during cryptographic operations,
it is possible to recover the secret information related to the keys inside the
device [20,9]. Timing attack (TA) analyzes the time taken to execute cryp-
tographic algorithms. Simple Power Analysis (SPA) attack directly interprets
power consumption measurements collected during cryptographic operations.
Differential Power Analysis (DPA) attack analyzes correlation between power
consumptions and specific key-dependent intermediate values which appear dur-
ing computation with the secret by using statistical tools and error correction
techniques.
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In this section we investigate the eta pairing used in identity based encryp-
tion schemes such as Boneh-Franklin encryption scheme [6] and Sakai-Kasahara
encryption scheme [28] in the context of side channel attacks such as TA, SPA,
and DPA.

3.1 Weak Point in Pairing Computation

In the decryption step of identity based encryption schemes, the critical cal-
culation is e(SID, C) where SID is the fixed secret key and C is a part of a
ciphertext. In this case, side channel attacks may try to extract the secret key
from the pairing computation by repeatedly manipulating C. Recently, Page and
Vercauteren [24] presented an SPA attack and a DPA attack on a field multi-
plication step of the pairing computation with the secret value. They showed
that there are such field multiplications in the Duursma-Lee algorithm [24] and
the BLKS algorithm [2] of characteristic three, i.e., y · r where y is an un-
known and fixed value related with the y-coordinate of the secret point SID

and r is a known and variable value related with the ciphertext C. Since the
field multiplication is analogous to exponentiation on a multiplicative group or
scalar multiplication on an additive group we can easily apply DPA attacks such
as [9].

However, the eta pairing in characteristic two includes the multiplication of
the different form a ·(b+r) compared with the case of characteristic three, where
both a and b are unknown. In this case, since r chosen by an attacker is added by
the unknown value b we may not simulate or guess an intermediate value related
with secret value. Thus it seems secure against DPA attacks. However, in the
next section, we will show that the addition and the multiplication of a · (b+ r)
can be insecure against TA or SPA attack and DPA attack.

Assumption. From this section assume that the first input P = (xP , yP ) of
the pairing in Algorithm 1 is secret and the second input Q = (xQ, yQ) is public.
Note however that the description of the attack is similar even if P is public and
Q is secret. For the computation of a · (b+ r), we also assume that the addition
(b+ r) is first computed, and the multiplication a · (b+ r) is computed.

3.2 Finite Field Arithmetic

Let f(x) be an irreducible polynomial of degree m over F2. Assume an element
a of F2m � F2[x]/(f(x)) is represented by the polynomial basis. Let the bit
string (am−1am−2 · · · a1a0) where ai ∈ F2 denote an element a of F2m . Addition
and multiplication of a = (am−1 · · ·a1a0) and b = (bm−1 · · · b1b0) in F2m are
performed as follows:

Addition: a+ b = (cm−1 · · · c1c0), where ci = (ai + bi) mod 2.
Multiplication: c = a · b = (cm−1 · · · c1c0), where c is computed as a multi-

plication of polynomials a(x) and b(x) of F2[x] followed by a reduction by
f(x). That is, c = a(x) · b(x) mod f(x).
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The addition of two elements a and b in F2m is easily performed by a bitwise
XOR operation. A usual way of multiplying two elements a and b of F2m is done
by scanning the multiplier b one bit at a time. This method is known as the
shift-and-add method based on the following observation

a · b = am−1x
m−1b+ am−2x

m−2b+ · · ·+ a1xb+ a0b.

For efficiency reason the irreducible polynomial is selected as a trinomial or a
pentanomial. Therefore, we assume that a multiplication of polynomials is first
performed, and then the result is reduced by an irreducible polynomial. Note
however that the attack is not limited to the above multiplication and the sepa-
rative computation of multiplication and reduction. we can extend our attack to
other multiplication methods and the simultaneous computation of multiplica-
tion and reduction. The concrete algorithm of the shift-and-add method is given
in Algorithm 2.

Algorithm 2. Shift-and-add(Right-to-left) method for polynomial multiplica-
tion
Input: a(x) = (am−1 · · · a0)2 and b(x) = (bm−1 · · · b0).
Output: c(x) = a(x) · b(x).
1: C ← 0 and B ← b
2: for i = 0 to m− 1 do
3: if ai = 1 then
4: C ← C + B
5: end if
6: B ← B · x
7: end for
8: return C

3.3 SPA or Timing Attack on the Eta Pairing in Characteristic Two

We consider the multiplication a · (b + r). If a is multiplier then the addition is
performed depending on whether ai = 1 or not. The structure of the shift-and-
add method for the multiplication of a · (b+ r) is shown in Figure 1.

Page and Vercauteren [24] firstly presented an SPA attack against a · r in
F3m , where a is secret and r is public. It means that this conditional branch
is vulnerable to TA or SPA attack [20,9]. Thus, we can also recover u of u ·
(xP + xQ), which is a part of step 5 of Algorithm 1. In this case, u is the x-
coordinate of the secret point P . Thus we can obtain the y-coordinate from the
x-coordinate.

However, if b + r is multiplier then the conditional branch occurs depending
on bi + ri. So, if we can detect an appearance of the conditional branch by TA
or SPA attack then bi �= ri. Otherwise, bi = ri. Thus we can recover xP by
controlling xQ in u · (xP + xQ). Since xP is the square root of the x-coordinate
of the secret point P we can obtain the x-coordinate by squaring xP , and then
the y-coordinate from the x-coordinate of the secret point P .
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Fig. 1. The shift-and-add multiplication of a · (b + r) in F2m

3.4 DPA on the Eta Pairing in Characteristic Two

In this section, we investigate DPA attacks against the addition b + r and the
multiplication a · (b+ r) used in the eta pairing on curves in characteristic two,
where a and b are secret and r is public.

To ease the explanation we consider the simplified Hamming weight model for
power leakage [23]. In this model, power consumption depends on the Hamming
weight of the data being processed. Thus we can express the power consumption
C as follows:

C = ε ·H + n,

where H , ε and n represent the Hamming weight of the intermediate data, the
incremental amount of power for each extra ‘1’ in the Hamming weight, and the
noise, respectively. Note that assume the average of noise n is zero.

Attack on the Addition. The addition of b+ r is of the form

(bm−1 ⊕ rm−1)xm−1 + (bm−2 ⊕ rm−2)xm−2 + · · ·+ (b1 ⊕ r1)x+ (b0 ⊕ r0).
Let C be the power consumption associated with the addition operation b+ r.

To recover the i-th bit of b, we guess that bi = 1 and divide power consumptions
into two sets by ri.

Sk = {C|ri = k} with k ∈ {0, 1} (5)

The averages of S0 and S1 are respectively ε(M + 1)/2 and ε(M − 1)/2, where
M is the size of the resister. Thus the differential power consumption is

Δ = 〈S0 − S1〉. (6)

If Δ �= 0 then bi = 1, otherwise bi = 0.
In conclusion, since the addition operation (xP + xQ) of step 5 of Algorithm

1 is vulnerable to the above analysis we can recover xP . From this value we can
obtain the x-coordinate and y-coordinate of the secret point P .
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Attack on the Multiplication. Since DPA attacks use correlation between
power consumptions and specific key-dependent intermediate values which ap-
pear during computation related with the secret it is important to examine the
intermediate values for the computation of a · (b + r) by Algorithm 2. We will
treat both cases: the first case is that a is multiplier and b + r is multiplicand
and the second case is that b+ r is multiplier and a is multiplicand.

Theorem 1. In Algorithm 2, if a is multiplier and b + r is multiplicand then
the algorithm is vulnerable to the DPA attack.

Proof. In this case, the multiplication is performed as follows;

am−1x
m−1(b + r) + am−2x

m−2(b + r) + · · ·+ a1x(b + r) + a0(b + r). (7)

To describe how to recover a assume the lowest bits ai−1, · · · , a0 of the secret
multiplier a are already recovered. We describe how to find the next bit ai.

In Algorithm 2, the intermediate value obtained at end of i-th step of the loop
is

aix
i(b+ r) + · · ·+ a1x(b + r) + a0(b+ r). (8)

The i-th bit of (8) is

ai(b0 + r0) + ai−1(b1 + r1) + · · ·+ a1(bi−1 + ri−1) + a0(bi + ri)
= (aib0 + ai−1b1 + · · ·+ a0bi) + (air0 + ai−1r1 + · · ·+ a0ri). (9)

In this case, we can not simulate this intermediate value because we don’t know
the value of aib0 +ai−1b1 + · · ·+a0bi. However, we can accomplish a DPA attack
by only controlling the input value r and not the intermediate value.

Let C be the power consumption associated with computation of a · (b + r).
From the formula of (9) we guess the ai = 1 and divide power consumptions into
two sets by air0 + ai−1r1 + · · ·+ a0ri, which is derived from the already known
ai−1, · · · , a0 and the random value chosen by ourself.

Sk = {C|r0 + ai−1r1 + · · ·+ a0ri = k} with k ∈ {0, 1} (10)

If aib0 +ai−1b1 + · · ·+a0bi = 1 in (9) then the average power consumptions of
S0 and S1 are respectively ε(M+1)/2 and ε(M−1)/2, where M is the size of the
resister. So, we have 〈S1−S0〉 = −ε. In the case of aib0 +ai−1b1 + · · ·+a0bi = 0,
the averages of S0 and S1 are respectively ε(M − 1)/2 and ε(M +1)/2. We have
〈S1 − S0〉 = ε. The difference between two cases is only whether the differential
average power consumptions is positive or negative. Thus we will compute the
differential power consumption by using absolute value

Δ = 〈|S1 − S0|〉. (11)

If Δ �= 0, namely, we can detect an appreciable peak then the guess is right
(i.e., ai = 1), otherwise the guess is wrong (i.e., ai = 0). The remaining bits
am−1, · · · , ai+1 are recursively recovered by the same way. Thus we can recover
the multiplier of Algorithm 2. �
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Theorem 2. In Algorithm 2, if b + r is multiplier and a is multiplicand then
the algorithm is vulnerable to the DPA attack.

Proof. The multiplication of (b+ r) · a is performed as follows;

(bm−1 + rm−1)xm−1a+ (bm−2 + rm−2)xm−2a+ · · ·+ (b1 + r1)xa+ (b0 + r0)a.

In this case, we also describe how to recover a. Assume the lowest bits ai−1, · · · , a0

of a are already recovered. The aim is to find the next bit ai.
In Algorithm 2, the intermediate value obtained at end of i-th step of the

loop is

(bi + ri)xia+ · · ·+ (b1 + r1)xa+ (b0 + r0)a. (12)

The i-th bit of (12) is

(bi + ri)a0 + (bi−1 + ri−1)a1 + · · ·+ (b1 + r1)ai−1 + (b0 + r0)ai

= (bia0 + bi−1a1 + · · ·+ b0ai) + (ria0 + ri−1a1 + · · ·+ r0ai). (13)

The above equation is equal to (9). Thus, we can recover ai by the proof of
Theorem 1. �
In conclusion, since the multiplication of u(xP + xQ) of step 5 of Algorithm 1
is vulnerable to the proposed attack, we can recover u, the x-coordinate of the
secret point P . Finally, we can obtain the y-coordinate from the x-coordinate.

Remark 1. Since the eta pairing over characteristic three also includes the ad-
dition a + r and the multiplication a · r, where a is secret and r is public (See
[1] for detail.) the addition and the multiplication are vulnerable to the above
described attack. However, note that Page and Vercauteren [24] also presented
DPA attack on the multiplication of a ·r. Thus the eta pairing over characteristic
three is also insecure against side channel attacks.

4 Proposed Countermeasure

The attack described in Section 3 is possible since we can choose and control an
input value. To incapacitate such a behavior Coron [9] proposed three methods
for securely computing scalar multiplication dP in elliptic curve cryptosystems
(ECCs), where d is the secret key and P is public. Let E be an elliptic curve
over finite fields Fq. Let #E be the number of points of the curve. The counter-
measures for computing Q = dP are follows:

1. Randomization of the private value, i.e., dP = (d + r ·#E)P for a random
number r ∈ Fq.

2. Blinding the public value, i.e., dP = d(P + R) − dR for a random point R
on E(Fq).

3. Randomized projective coordinate, i.e., (X ;Y ;Z) = (λX ;λY ;λZ) for a ran-
dom value λ �= 0 in Fq.
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In the context of the above techniques, Page and Vercauteren [24] and Scott
[29] proposed some methods for the pairings. First, they used bilinearity to ran-
domize the private data, i.e., e(P,Q) = e(sP, tP )1/st where s and t are random
variables. Furthermore, the exponentiation to the power 1/st can be removed by
selecting s and t satisfying s · t = 1 mod l, where l is the order of the underlying
elliptic curve for the pairing [24]. Second, they presented the method for blinding
the input point by the relation e(P,Q) = e(P,Q+R) · e(P,R)−1 [24].

4.1 Projective Coordinate Randomization

In this paper, we propose an explicit algorithm for the eta pairing using the
projective coordinate in order to resist DPA attack, which is the fastest method
among existing countermeasures, and then we estimate computational efficiency
between the proposed method and previous countermeasures. We now describe
how to make an algorithm using the randomized projective coordinate technique
of the eta pairing in the case of characteristic two. The projective coordinates
(X,Y, Z) of a point P = (x, y) are given by

x = X/Z, y = Y/Z

We can randomize the input points by randomly selecting Z-coordinate value
before the computation of the pairing e(P,Q). In Algorithm 1, we only randomize
Q for efficiency reason. Thus the step 5 of Algorithm 1 for the eta pairing is
changed into

xP (
√
xP +XQ/ZQ) +

√
yP +

√
xP + YQ/ZQ + (xP +XQ/ZQ)s+ t

=
1
ZQ

(
xP (ZQ

√
xP +XQ)+ZQ(

√
yP +

√
xP ) + YQ + (ZQxP +XQ)s+ ZQt

)
.

Since 1/ZQ is in Fq it becomes one after the final exponentiation. Thus elimi-
nation of 1/ZQ does not effect the result. The concrete algorithm is shown in
Algorithm 3.

The step 6 of the proposed countermeasure is secure against the attacks de-
scribed in the previous section because all operands of the addition and the
multiplication operations are randomized by the projective coordinate system.

4.2 Randomizing Miller Variables

In [29], Scott introduced a method which multiplies intermediate values ap-
pearing during the loop by a random value in Fq. To defend from the DPA
attacks described the previous section, all intermediate variables (not only g)
in step 2 and the step 5 of Algorithm 1 must be multiplied by a random
value. Thus the step 2 and the step 5 should be respectively changed into
f ← u · (r · u + r · xQ) + r · yP + r · (yQ + b + 1) + (r · u + r · xQ)s + t and
g ← u · (r · xP + r · xQ) + r · yP + r · yQ + r · xP + (r · u+ r · xQ)s+ rt.
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Algorithm 3. Randomized Projective Coordinate ηT (P,Q) on the curve E:
Y 2Z + Y Z2 = X3 +XZ2 + bZ3 over F2m , where b ∈ F2 and m ≡ 3 mod 8 case
Input: P = (xP , yP ) and Q = (xQ, yQ).
Output: ηT (P, Q).
1: (XQ, YQ, ZQ)← (λxQ, λyQ, λ), where λ is a random integer.
2: u← xP + 1
3: f ← u · (ZQ · u + XQ) + ZQ · (yP + b + 1) + YQ + (ZQ · u + XQ)s + ZQt
4: for i = 0 to (m + 1)/2 do
5: u← xP , xP ← √xP , yP ← √yP

6: g ← u · (ZQ · xP + XQ) + ZQ · (yP + xP ) + YQ + (ZQ · u + XQ)s + ZQt
7: f ← f · g
8: XQ ← X2

Q, YQ ← Y 2
Q, ZQ ← Z2

Q

9: end for
10: return f (22m−1)(22m−2(m+1)/2+1)

5 Efficiency Comparison

We first estimate the computational cost of the proposed algorithm. In the orig-
inal eta pairing, the initial step requires 1 multiplication in F2m and each loop
requires 7 multiplications in F2m , where 1 multiplication to compute g and 6
multiplications at step 6 because of the sparse form of g. However, the initial
step of the proposed algorithm requires 5 multiplications in F2m where 2 mul-
tiplications at step 1 and 3 multiplications at step 3, and each loop requires 13
multiplications in F2m , where 4 multiplications at step 6 and 9 multiplications at
step 7. See Appendix for detail. Since addition and squaring in F2m are relatively
inexpensive compared to multiplication and inversion we can ignore the cost of
field additions and squarings [16]. Moreover, we can ignore the cost of square
roots because the method described in [12] for computing square roots in F2m

is as fast as squaring. Thus the additional cost for the eta pairing including the
initial step is 3(m+ 1) + 4 multiplications in F2m .

We now compare computational efficiency of the techniques described in Sec-
tion 4. First, the method using bilinearity additionally requires 2 scalar mul-
tiplications. In supersingular curves, doubling a point is free and adding two
distinct points requires two multiplications and one inversion [22]. In general,
the ratio of inversion to multiplication is approximately 10 to 1 [16]. If we use
the binary method for scalar multiplication then the additional cost of the eta
pairing using this method is 12 multiplications in F2m . Second, the method of
e(P,Q) = e(P,Q + R)e(P,R)−1 additionally requires 1 pairing computation,
1 extension field multiplication, and 1 extension field inversion. The computa-
tional cost of the eta pairing, i.e., Algorithm 1, is approximately 7(m + 1)/2
multiplications in F2m plus the final exponentiation required 3 applications of
2m-Frobenius map, 4 multiplications in the extension field F24m , and 1 inversion
in F24m [1]. In the approach randomizing intermediate variables by Scott [29],
the additional cost for the eta pairing is 4(m + 1) + 4 multiplications in F2m
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Table 1. Additional Cost for DPA Resistance over the Eta pairing (not over the Tate
pairing) on Supersingular Curves on F2m

Countermeasure Additional Cost

Page-Vercauteren (randomized private value) [24] 12mM

Page-Vercauteren (blinding public value) [24] 3.5(m + 1)M + α

Scott (randomizing intermediate value) [29] 4(m + 1)M + 4M

The Proposed Method (Algorithm 3) 3(m + 1)M + 4M3(m + 1)M + 4M3(m + 1)M + 4M

as Section 4.2. We give a comparison table of the number of operations among
existing techniques in Table 1, where M and α denote the computation time
of a multiplication in F2m and the final exponentiation plus 1 extension field
multiplication in F24m and 1 extension field inversion in F24m , respectively.

6 Conclusion

In this paper, we have investigated the security of pairing based cryptosystems
against side channel attacks. Since pairing has different properties from primi-
tives of traditional cryptosystems such as RSA or ECC the application of pair-
ings such as identity based schemes has been interesting for implementing on
constrained devices such as smartcards. Although the work for efficient imple-
mentation of pairings has been concentrated the secure implementation has not
been worked precisely. In this paper, we have investigated security against side
channel attacks for implementations of the eta pairing on supersingular curves in
characteristic two. To avoid such attacks we have proposed an explicit algorithm
of the eta pairing using the projective coordinate and showed that the proposed
method is the most efficient countermeasure compared with previous techniques.
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A Multiplication in F24m

The extension field F24m is represented by the basis {1, s, t, st} such that s2 +
s+ 1 = 0 and t2 + t+ s = 0. Let g = (g0, g1, g2, g3) = g0 + g1s+ g2t+ g3st and
f = (f0, f1, f2, f3) = f0+f1s+f2t+f3st. Then we have h = (h0, h1, h2, h3) = f ·g
where

h0 = f0g0 + f1g1 + f3g2 + f2g3 + f3g3,

h1 = f1g0 + f0g1 + f1g1 + f2g2 + f3g2 + f2g3,

h2 = f2g0 + f3g1 + f0g2 + f2g2 + f1g3 + f3g3,

h3 = f3g0 + f2g1 + f3g1 + f1g2 + f3g2 + f0g3 + f1g3 + f2g3 + f3g3.

In Algorithm 3, since g3 = 0 the above formula is simplified as follows.

h0 = f0g0 + f1g1 + f3g2,

h1 = f1g0 + f0g1 + f1g1 + f2g2 + f3g2,

h2 = f2g0 + f3g1 + f0g2 + f2g2,

h3 = f3g0 + f2g1 + f3g1 + f1g2 + f3g2.

Applying the Karatsuba multiplication method we can compute it by 9 multi-
plications.
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