
Customising Interfaces to Service-Oriented
Digital Library Systems

Hussein Suleman, Kevin Feng, and Gary Marsden

Department of Computer Science, University of Cape Town
Private Bag, Rondebosch, 7701, South Africa

{hussein, ffeng, gaz}@cs.uct.ac.za

Abstract. Digital library systems that once were mostly monolithic in
construction are slowly making the transition to component-based mod-
els. However, it is not clear how best to design or construct the user
interfaces to such systems - one alternative would be to create associ-
ated interface elements while another would be to create a separable
interface layer. This paper discusses an attempt to do the latter by using
current browser-based tools - recently named Ajax - in order to visually
design the layouts, workflows and service connections of a user experience
layer. Expert evaluators provided feedback during this process and the
eventual level of functionality and usability of the proof-of-concept sys-
tem demonstrate the inherent possibilities and relevance of the emerging
Ajax technologies for not only the rendering or execution but also the
design of browser-based Web applicatons, and digital library systems in
particular.

1 Introduction

Current digital library (DL) systems such as DSpace, EPrints and Greenstone
all require some - often non-trivial - customisation in order to fit in with the
hosting organisation’s Web presence. Simple changes such as HTML page titles
are usually effected by the setting of parameters or variables. More elaborate
changes such as integration with a university portal may require substantial
(re-)programming.

In addition, users of standard toolkits may want to use a different set of services
than those provided by default. This is especially relevant where a service-oriented
architecture has been adopted and services can be readily added, removed or cus-
tomised.

This high degree of flexibility has to be reflected in the user interface and
most current DL systems do not cater for this. In contrast, the Web community
has recently begun to create more flexible user interfaces using Asynchronous
Javascript and XML (Ajax) [4]. Ajax is an approach to developing interactive
browser-based user interfaces using a combination of Javascript and in-browser
XML tools. Ajax applications are essentially Javascript applications associated
with Web pages, with the added ability that they are able to send HTTP re-
quests to Web servers and process the output in the Javascript code. Assuming

S. Sugimoto et al. (Eds.): ICADL 2006, LNCS 4312, pp. 503–506, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

504 H. Suleman, K. Feng, and G. Marsden

that the response is in XML, Javascript/Ajax provides the ability to access and
manipulate the DOM tree of this XML response and/or the current document in
the browser window, or perform transformations on any XML fragments using
XSLT. Thus Ajax can be used to provide an interactive user interface within the
otherwise static Web browser.

This paper reports on an attempt to use the Ajax approach to design a
customisable user experience layer that caters for both interface and service
flexibility. While Ajax has typically been used for rendering of interactive user
interfaces, this work has attempted to use Ajax primarily as the basis of a design
tool for user interfaces.

2 Service Oriented Digital Library Systems

In designing a user experience layer, it is necessary to connect interface elements
to back-end services. For this, a Service Oriented Architecture (SOA) was used,
as this is arguably ideal for loosely-coupled systems that need to interconnect
with other systems. Greenstone 3 [1] uses such an architecture and DSpace [7]
is possibly also going to adopt this approach.

User interfaces to SOA-based systems need to submit requests (typically in
XML over the Web) and parse and reformat or transform responses (typically
also in XML) in order to generate portions of the Web interface. This commu-
nication is easily accomplished using Ajax.

For this work, it was necessary to use a foundation set of services provided by
an existing framework. The ODL [5] tools were used because of availability at
the time, but the system could just as easily be layered over Greenstone 3. The
ODL toolkit is a suite of components for providing DL services such as search
and browse, each of which has a simple machine interface accessible over the
Web [6] [2].

3 Design of the Designing System

The user experience layer was decomposed into the following three elements,
with associated sections in the Ajax-based design tool:

– Services, for specifying and configuring a list of services, each of which con-
nects to a service endpoint of a corresponding back-end service component;

– Flows, for specifying a list of pages and assigning a flow structure for inter-
page navigation; and

– Pages, for designing each page using a WYSIWYG (visual) editor.

Figure 1 shows a screen snapshot of the visual page editor. Each page is
designed as a series of elements that can be selected from a toolbar and dragged
within a canvas. The toolbar contains both static (e.g., text) and dynamic (e.g.,
forms to invoke services) elements.

The flow structure editor then ties these pages together and provides a basic
system of navigation. For example, the page where a user enters search queries

Customising Interfaces to Service-Oriented Digital Library Systems 505

Fig. 1. User interface page layout editing

could lead to a page were search query results can be displayed. This structure
is presented as a sitemap, using an approximation to a tree representation.

The services are connected into the individual pages when each page is being
designed. Each service must, however, be configured in terms of the service
endpoint and parameters necessary for the communication with this endpoint.

Finally, after the user experence layer has been designed, the designer can
switch to the ”playback” mode where the system is executed or rendered in
production mode.

4 Evaluation and Analysis

The system was initially specified in a participatory design session with 3 post-
graduate computer scientists, all with experience in digital library systems.

During its development, the system was subject to a two phase expert evalu-
ation by a usability specialist and a digital library specialist. In the first phase
various usability and functionality problems were identified and subsequently ad-
dressed [3]. During the second phase, it was felt that the functionality problems
were largely resolved but the usability of the system could be further improved.
However, the system was deemed to contain all the functionality required to
customise and/or design a suitable user experience layer for a service oriented
DL system.

This project has also led to some important observations about the Ajax
technology:

– Javascript libraries are necessary to perform some functions that are some-
times taken for granted in traditional GUIs, such as drag-and-drop. While
these libraries are readily available, they are not always easy to integrate
at present.

506 H. Suleman, K. Feng, and G. Marsden

– Ajax features are currently not available on all Web browsers, and where
they are available they are not always consistent.

– While a lot of user interaction is possible, the core HTML data format places
restrictions on how data may be rendered e.g., drawing lines or graphs would
require a lot of effort.

5 Conclusions and Future Work

This project has demonstrated that it is possible to create an interface for design-
ing user interfaces to service-oriented digital libraries, using the Ajax approach.
With some effort, the Ajax technologies have proven capable for the task but
there is still room for improvement and greater standardisation. The ability to
customise user interfaces using the interface itself shows promise for DL systems -
users should be able to customise their interaction to some degree while designers
should also not have to use lower-level tools for customisation or configuration.

Acknowledgements

This project was made possible by funding from UCT, NRF (Grant number:
2054030), NRF-THRIP, Telkom and Siemens.

References

1. Bainbridge, David, Katherine J. Don, George R. Buchanan, Ian H. Witten, Steve
Jones, Matt Jones and Malcolm I. Barr (2004), “Dynamic Digital Library Con-
struction and Configuration”, in Heery, R., and L. Lyon (eds), Research and Ad-
vanced Technology for Digital Libraries: 8th European Conference (ECDL2004),
12-17 September, Bath, UK, LNCS 3232, Springer.

2. Eyambe, Linda K., and Hussein Suleman (2004), “A Digital Library Component As-
sembly Environment”, in Proceedings of SAICSIT 2004, Stellenbosch, South Africa,
pp.15-22.

3. Feng, Fu-Yao Kevin (2006) Customisable Abstract Representation Layer for Digital
Libraries, MSc Dissertation, Department of Computer Science, University of Cape
Town.

4. Garrett. J. J. (2005), Ajax: A new approach to web applications, Febru-
ary 2005. Available http://www.adaptivepath.com/publications/essays/archives/
000385.php.

5. Suleman, Hussein, and Edward A. Fox (2001), “A Framework for Building Open
Digital Libraries”, in D-Lib Magazine, Vol. 7, No. 12, December 2001. Available
http://www.dlib.org/dlib/december01/suleman/12suleman.html

6. Suleman, H., and E. A. Fox (2002), “Designing Protocols in Support of Digital
Library Componentization”, 6th European Conference on Research and Advanced
Technology for Digital Libraries (ECDL2002), Rome, Italy, 16-18 September 2002.

7. Tansley, Rob (2004), DSpace 2.0 Design Proposal, presented at
DSpace User Group Meeting, 10-11 March, Cambridge, USA. Available
http://wiki.dspace.org/DspaceTwo

	Introduction
	Service Oriented Digital Library Systems
	Design of the Designing System
	Evaluation and Analysis
	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

