
S. Sugimoto et al. (Eds.): ICADL 2006, LNCS 4312, pp. 400 – 409, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Supporting Efficient Grouping and Summary
Information for Semistructured Digital Libraries*

Minsoo Lee1, Sookyung Song1, Yunmi Kim1, and Hyoseop Shin2,**

1 Department of Computer Science and Engineering
Ewha Womans University, Seoul, Korea

mlee@ewha.ac.kr, happymint@ewhain.net, cherish11@ewhain.net
2 Department of Internet and Multimedia Engineering

Konkuk University, Seoul, Korea
hsshin@konkuk.ac.kr

Abstract. XML is the most popular platform-independent data expression
language which is used to specify various digital content such as web content,
multimedia content, bio-chemical data, etc. These various forms of XML data
are continuously increasing by a large amount and there is a strong demand on
effectively managing such data in digital libraries or archives. The most popular
query language to search and retrieve information from such semi-structured
XML digital libraries is XQuery. XQuery has a very powerful syntax which
allows users to iterate over data items and perform calculation, string matching,
and output formatting. However, it lacks a simple and easy way to group and
provide summaries on vast amounts of XML data. This grouping and summary
function is especially important for large digital archives where users like to
obtain an overview or summary of the contents in the digital library. Our work
is focused on providing an easy way for grouping in XQuery at the query
language level. We provide several cases where this can be considered to be
effective. We have also implemented an XQuery processing system with
grouping functions based on the eXist Native XML Database.

1 Introduction

XML(eXtensible Markup Language) is increasingly becoming popular as a data
expression and exchange language on the Web as well as a specification language for
various multimedia content due to its flexibility and platform-independence[1]. Large
amounts of digital content represented in XML format are becoming increasingly
available and there is strong demand to provide digital libraries and archives for such
XML data. The W3C has already adopted XML as a standard and there have been
several languages devised to query XML data. Among such query languages XQuery
is now considered the standard[2]. The XQuery language uses a FLWR(For-Let-
Where-Return) syntax to devise queries. XQuery uses XPath[3] expressions to specify

 * This work was supported by the Korea Research Foundation Grant (KRF-2004-041-D00572)

and also partially supported by the second stage of the BK21 program.
** Corresponding author.

 Supporting Efficient Grouping and Summary Information 401

hierarchical relationships, and has powerful iteration capabilities as well as
convenient calculation and formatting functions.

However, the current XQuery provides very poor functionality regarding grouping
and summary (i.e., aggregation) capabilities on XML data. This is especially
important in large digital libraries, where users would frequently ask for an overview
or summary on the large amount of XML data stored in digital libraries. Because
XQuery requires users to specify their grouping and aggregation queries as multiple
nested structures and join operations, it is hard to express and understand such
complex query statements. In this paper, we propose a way to extend XQuery at the
language level to enable such grouping and aggregation queries to be much more
easily formulated. Considering various cases for grouping in semistructured data, we
extend the EBNF of XQuery to incorporate a group by clause. In addition, we
extended the eXist native database system[4] to implement our idea and validate the
usefulness of our approach.

The organization of the paper is as follows. Section 2 discusses related research on
grouping support for queries on XML data. Section 3 gives an overview of our
XQuery extension to support the groupby clause as well as several cases where this
could greatly benefit query construction in digital libraries. Section 4 deals with the
implementation of our system based on the eXist native database and gives an
explanation on how the grouping and aggregation is processed in our system. Section
5 gives the conclusion and discusses future work.

2 Related Research

Grouping on data requires restructuring of the original data and enables related data to
be treated together as a group, thus allowing aggregations to be computed on the
groups. Research on grouping data is still an issue in relational databases. Especially
in data warehouses complex analytical queries containing various grouping conditions
are issued. Therefore, users need a way to easily specify the grouping methods.
Several new operators for grouping have been suggested in the data warehouse
research area [5,6].

Grouping in XML documents is a much more serious issue yet it is considered as a
more difficult problem due to the semistructured nature of the XML documents.
There has been some work that helped understanding the difference between
relational and XML data in terms of grouping and provided insight on proposing
grouping operators for XML[7]. In this work, they have focused on providing binding
variables for a set of tuples instead of individual tuples and devised a GApply
operator that can be integrated into existing relational database engines. The Lore
semistructured database system[8] does not support the groupby clause and requires a
complex query to be formulated to perform grouping tasks. The TIMBER project[9]
defined a tree algebra called TAX to internally identify the grouping information and
used it to transform a nested XQuery into a TAX grouped query. Deutsch et al.[10]
extend tree pattern queries into Group-by Normal Form Tree Pattern(GNFTP)
queries, which are nested, perform arbitrary joins, and freely mix bag and set

402 M. Lee et al.

semantics. They describe a subset of XQuery, called OptXQuery and provide a
normalization algorithm that rewrites any OptXQuery into a GNFTP query. The
algorithm detects and eliminates redundant navigation within and across nested
subqueries and it unifies and generalizes prior solutions for tree pattern minimization
and group-by detection. Beyer et al.[11] provide a proposal for extending the XQuery
FLWOR expression with explicit syntax for grouping and for numbering of results. In
this work, they show that these new XQuery constructs not only simplify the
construction and evaluation of queries requiring grouping and ranking but also enable
complex analytic queries such as moving-window aggregation and rollups along
dynamic hierarchies to be expressed without additional language extensions.

3 Extension of XQuery with Groupby Clause

This section explains the XQuery extension to incorporate the groupby clause. We
show how our approach is consistent with the syntactic and semantic specification of
XQuery by first giving the EBNF(Extended Backus-Naur Form) that includes the
groupby clause and then discussing the specific query types that could benefit from
the use of the groupby clause. Figure 1 shows only the extended EBNF part of the
XQuery language specification including the groupby clause.

FLWGRExpr ::= (ForClause|LetClause)+ WhereClause?
groupbyClause? "return" ExprSingle

ForClause ::= <"for" "$"> VarName TypeDeclaration? PositionalVar? "in" ExprSingle
("," "$" VarName TypeDeclaration? PositionalVar? "in" ExprSingle)*

LetClause ::= <"let" "$"> VarName TypeDeclaration? ":=" ExprSingle ("," "$" VarName
TypeDeclaration?":=" ExprSingle)*

WhereClause ::= "where" ExprSingle
groupbyClause ::= <"groupby"> groupbySpecList
groupbySpecList ::= (NgroupbySpec | SgroupbySpec)
SgroupbySpec ::= "[" groupbySpec ("," groupbySpec)* "]"
NgroupbySpec ::= groupbySpec ("," groupbySpec)*
groupbySpec ::= ExprSingle

Fig. 1. EBNF including groupby in XQuery

The following subsections show 4 types of queries that could benefit from the use
of the groupby clause in XQuery and are based on the XML example data shown in
Figure 2.

3.1 XQuery Type 1: Group by with Single Binding Variable

XQuery Type 1 is a basic example for using group by with a single binding variable.
Using the XML in Figure 2, the following query which groups according to the
“author” information could be easily formulated with a groupby clause extension.

 Type 1: Output the book titles grouped by the author who published the book.

 Supporting Efficient Grouping and Summary Information 403

<?xml version="1.0" encoding="utf-8"?>
<bib>
 <book year="1994">
 <title>TCP/IP Illustrated</title>
 <author>Stevens W.</author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book year="1992">
 <title>Advanced Programming in the Unix environment</title>
 <author>Stevens W.</author>
 <author>Abiteboul Serge</author>
 <publisher>Addison-Wesley</publisher>
 <price>65.95</price>
 </book>
 <book year="2000">
 <title>Data on the Web</title>
 <author>Abiteboul Serge</author>
 <author>Buneman Peter</author>
 <author>Suciu Dan</author>
 <publisher>Morgan Kaufmann Publishers</publisher>
 <price>39.95</price>
 </book>
 <book year="1999">
 <title>The Economics of Technology and Content for Digital TV</title>
 <editor>CITI</editor>
 <publisher>Kluwer Academic Publishers</publisher>
 <price>129.95</price>
 </book>

</bib>

Fig. 2. Example XML data

XQuery Type 1: Without groupby XQuery Type 1: With groupby
<results>
 {
 let $a := doc("bib.xml")//author
ⓐ for $author in distinct-values($a/text())

 return
 <result>
 <author>{ $author }</author>
 <titles> {
ⓑ for $b in doc("bib.xml")/bib/book

where some $ba in $b/author
 satisfies ($ba/text() = $author)

return $b/title
}

 </titles>
 </result>
 }

</results>

<results>
 {
for $b in doc("bib.xml")/bib/book,
 $a in $b/author
group by $a
return
 <result>
 { $a }
 <titles>
 { $b/title }
 </titles>
 </result>
 }
</results>

Fig. 3. Comparison of XQuery Type 1 with and without groupby clause

404 M. Lee et al.

When using the current XQuery syntax to devise such a query it becomes very
complex and requires a nested XQuery to obtain the desired result. However, by
including a group by clause it becomes very easy to formulate such a query. Figure 3
shows this difference in formulating the query.

3.2 XQuery Type 2: Group by Used with Aggregation Function

XQuery Type 2 applies aggregation functions on the grouped data. Using the XML in
Figure 2, the following query calculates the “total number of books” in the groups.

 Type 2: Output the book titles and total number of books grouped by the author

who published the book.

Again, when using the current XQuery syntax, a nested XQuery is needed to obtain

the desired result. A group by clause can simplify the query. Figure 4 shows the
difference when using the current XQuery without the groupby clause and when using
the extended XQuery with the groupby clause to express such a query.

XQuery Type 2: Without groupby XQuery Type 2: With groupby
<results>
 {
 let $a := doc("bib.xml")//author
ⓐ for $author in distinct-values($a/text())

 let $t :=
ⓑ for $b in doc("bib.xml")/bib/book

 where some $ba in $b/author
 satisfies ($ba/text()= $author)
 return $b/title
 return
 <result>
 <author>{ $author }</author>
 <title-count> { count($t) }</title-

count>
 <titles>{ $t }</titles>
 </result>
 }
</results>

<results>
 {
for $b in doc("bib.xml")/bib/book,

 $a in $b/author
group by $a
return

 <result>
 { $a }
 <title-count> { count($b/title) }
 </title-count>
 <titles> { $b/title }
 </titles>
 </result>
 }

</results>

Fig. 4. Comparison of XQuery Type 2 with and without groupby clause

3.3 XQuery Type 3: Group by with Two or More Binding Variables

XQuery Type 3 groups the XML data based on two or more binding variables. The
following query is an example using the XML data shown in Figure 2.

 Type 3: Output the book titles grouped by the author who published the book

and the year in which the book was published.

 Supporting Efficient Grouping and Summary Information 405

The current XQuery syntax requires a deeply nested XQuery to obtain the desired
result, whereas a group by clause enables it to be expressed in a single level query.
Figure 5 shows this difference.

XQuery Type 3: Without groupby XQuery Type 3: With groupby
<results>
 {
 let $a := doc("bib.xml")//author
ⓐ for $author in distinct-values($a/text())

 return
 <result>
 <author>{ $author }</author>
 {
 let $year :=

 doc("bib.xml")/bib/book[author=
 $author]/year

 ⓑ for $y in distinct-values($year/text())
return

 <year-titles>
 <year>{ $y }</year>
 <titles>
 {
 ⓒ for $b in doc("bib.xml")/bib

/book[author=$author and
year=$y]

 return
 $b/title
 }
 </titles>
 </year-titles>
 }
 </result>
 }

</results>

<results>
 {
for $b in doc("bib.xml")/bib/book,
 $a in $b/author,
 $y in $b/@year
group by $a, $y
return

<result>
 { $a }
 <year-titles>
 <year> { $y } </year>
 <titles> { $b/title } </titles>
 </year-titles>
 </result>
}

 </results>

Fig. 5. Comparison of XQuery Type 3 with and without groupby clause

3.4 XQuery Type 4: Group by with Binding Variable Composed of Set of
Values

XQuery Type 4 groups the XML data based on a binding variable that represents a set
of values. Using the example XML data shown in Figure 2, the following query could
be easily formulated with a groupby clause extension.

 Type 4: Output the book titles grouped by the set of authors who published the
book.

This kind of query will take into consideration “a set of elements” instead of
individual values and use it to group other information. Figure 6 shows the difference
when using the current XQuery without the groupby clause and when using the
extended XQuery with the groupby clause to express such a query.

406 M. Lee et al.

XQuery Type 4: Without groupby XQuery Type 4: With groupby
<results>
{
① let $au1 := ⓐ for $b1 in doc("bib.xml")/bib/book
 where exists($b1/author)
 return <author-set> {
 for $a1 in $b1/author
 order by $a1
 return $a1 }
 </author-set>
② let $au2 := ⓑ for $b2 in doc("bib.xml")/bib/book
 where exists($b2/author)
 return <author-set> {
 for $a2 in $b2/author
 order by $a2
 return $a2 }
 </author-set>
③ let $au3 := union($au1, $au2)
ⓒ for $au4 in $au3/author-set
 return
 <result>
 { $au4 }
 <titles> {
 ⓓ for $b in doc("bib.xml")/bib/book
 where exists($b/author)
 let $au := ⓔ let $au5 := $b/author
 return <author-set> {
 for $a3 in $b/author
 order by $a3
 return $a3 }
 </author-set>
 where deep-equal($au,$au4)
 return $b/title }
 </titles>
 </result>
}
</results>

<results>
{
for $b in doc("bib.xml")/bib/book
let $a := $b/author
group by [$a]
return
 <result>
 <author-set> { $a }

</author-set>
 <titles>
 { $b/title }
 </titles>
 </result>
}
</results>

Fig. 6. Comparison of XQuery Type 4 with and without groupby clause

4 Implementation of XQuery Processor Supporting Groupby
Clause

We have implemented a prototype query processor that supports XQuery with the
group by clause extension to demonstrate the feasibility of our approach. Performance
issues will be pursued in future work. The prototype is implemented using the eXist
native database system[4]. The development environment is as follows. For the
server, eXist 1.0 was used, and jEdit 4.2 was used as the client. Eclipse SDK 3.0.2
was used as the Integrated Development Environment(IDE). JDK 1.4.2 and XQuery
1.0 were used. The overall architecture of the system is shown in Figure 7. The

 Supporting Efficient Grouping and Summary Information 407

Fig. 7. Overview of architecture of the XQuery with group by processor

XQueryLexer, XQueryParser, XQueryTreeParser, and various parts of the Query
Executor of the eXist system, shown as (a)-(e) in Figure 7, were modified.

Figure 8 gives a high-level overview on processing the grouping and aggregation
queries. The query is first parsed and then executed and an initial XML DOM tree
result without the grouping is obtained. The grouping elements are then searched and
group keys are assigned to each group element. Afterwards, the XML DOM tree is
restructured according to the grouping information and output format. During this
step the aggregation values are also computed. The final XML result is then returned
to the user.

A simple example of the three major steps are shown in Figure 9. The first step is
identifying the grouping elements and assigning the group key elements. The initial

Fig. 8. Overview of processing XQuery with group by feature

408 M. Lee et al.

value of the group key is –1, but when groups composed of more than one
participating elements are identified, the group key value is assigned with a positive
integer. The second step is to connect the elements within the same group to
restructure the XML DOM tree. The third step disconnects those prior links that are
no longer needed after elements are grouped together.

(a) Identifying grouping elements and assigning group keys

(b) Connecting elements within same group with identical group keys

(c) Disconnecting links that are no longer needed

Fig. 9. Three major steps in processing groups in XQuery

 Supporting Efficient Grouping and Summary Information 409

5 Conclusion

In this paper, we have proposed an extension to the XQuery language to effectively
support grouping and summaries on XML data. This work enables users of semi-
structured digital libraries to easily formulate queries that provide overview or
summary information for a large size digital library. We have also implemented the
processing of XQuery with the groupby clause on the eXist native database system.
The contribution of our paper is that with this extension to XQuery, the complex and
nested equivalent queries would be reduced to simple XQueries using this groupby
clause. Some comparisons on other work are shown in Table 1. Future work include
performing extensive query optimization with group information and identifying more
flexible semantics in group concepts regarding the semistructured nature of XML.

Table 1. Comparison of XQuery groupby support with other systems

References

[1] XML(eXtensible Markup Language), http://www.w3.org/XML/
[2] XQuery (XML Query Language), http://www.w3.org/XML/Query/
[3] XML Path Language (XPath) 2.0, http://www.w3.org/TR/2005/WD-xpath20-20050404/
[4] eXist(An Open Source Native XML Database), http://exist.sourceforge.net/
[5] D. Chatziantoniou and K. A. Ross, “Querying multiple features of groups in relational

databases," VLDB, 1996
[6] D. Chatziantoniou and K. A. Ross, “Groupwise processing of relational queries," VLDB, 1997
[7] S. Chaudhuri, R. Kaushik and J.F. Naughton, “On Relational Support for XML

Publishing: Beyond Sorting and Tagging”, SIGMOD, 2003
[8] J. McHugh, S. Abiteboul, R. Goldman, D. Quass, and J. Widom, “Lore: A Database

Management System for Semistructured Data”, SIGMOD Record, 26(3):54-66,
September 1997

[9] H. V. Jagadish, Shurug Al-Khalifa, Adriane Chapman, Laks V.S. Lakshmanan, Andrew
Nierman, Stelios Paparizos, Jignesh M. Patel, Divesh Srivastava, Nuwee Wiwatwattana,
Yuqing Wu and Cong Yu. “TIMBER: A Native XML Database”, VLDB Journal, Vol. 11,
Issue 4, 2002

[10] Alin Deutsch , Yannis Papakonstantinou , Yu Xu, “Minimization and Group-By Detection
for Nested XQueries”, Int’l Conference on Data Engineering (ICDE) , pp. 839, 2004

[11] Kevin Beyer, Don Chamberlin, Latha S. Colby, Fatma Ozcan, Hamid Pirahesh, Yu Xu,
“XML query, update, and search: Extending XQuery for analytics", Proceedings of the
2005 ACM SIGMOD Int’l Conference on Management of Data, pp. 503-514, June 2005

	Introduction
	Related Research
	Extension of XQuery with Groupby Clause
	XQuery Type 1: Group by with Single Binding Variable
	XQuery Type 2: Group by Used with Aggregation Function
	XQuery Type 3: Group by with Two or More Binding Variables
	XQuery Type 4: Group by with Binding Variable Composed of Set of Values

	Implementation of XQuery Processor Supporting Groupby Clause
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

