
Contextualization of a RDF Knowledge Base in
the VIKEF Project

Heiko Stoermer1, Ignazio Palmisano2, Domenico Redavid2, Luigi Iannone3,
Paolo Bouquet1, and Giovanni Semeraro2

1 University of Trento,
Dept. of Information and Communication Tech.,

Trento, Italy
{stoermer, bouquet}@dit.unitn.it

2 Dipartimento di Informatica, Università degli Studi di Bari
Campus Universitario, Via Orabona 4, 70125 Bari, Italy

{palmisano, redavid, semeraro}@di.uniba.it
3 Computer Science Department, Liverpool University
Ashton Building, Ashton Street, L69 BX Liverpool, UK

luigi@csc.liv.ac.uk

Abstract. Due to the simplicity of RDF data model and semantics,
complex application scenarios in which RDF is used to represent the
application data model raise important design issues. Modelling e.g.
the temporary evolution, relevance, trust and provenance in Knowledge
Bases require more than just a set of universally true statements, with-
out any reference to a situation, a point in time, or generally a context.
Our proposed solution is to use the notion of context to separate state-
ments that refer to different contextual information, which could so far
not explicitly be tied to the statements. In this paper we describe a
practical solution to this problem, which has been implemented in the
VIKEF project, which deals with making explicit and intelligently use-
able information contained in vast collections of documents, databases
and metadata repositories.

1 Problem Description and Motivation

The VIKEF project1 deals with creating large-scale information systems that
base on Semantic Web technology. At the center of the envisioned systems there
is an RDF (Resource Description Framework)2 knowledge base (KB) that con-
tains a large amount of information about documents and their contents. This
information is gathered by information and knowledge extraction processes at
the base level, then semantically enriched and related to ontological knowledge,
and finally stored in a RDF triple store called RDFCore, which will be described
1 European Commission 6th Framework Programme IST Integrated Project VIKEF -

Virtual Information and Knowledge Environment Framework (Contract no. 507173,
Priority 2.3.1.7 Semantic-based Knowledge Systems http://www.vikef.net)

2 http://www.w3.org/TR/rdf-concepts/

S. Sugimoto et al. (Eds.): ICADL 2006, LNCS 4312, pp. 101–110, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www.vikef.net
http://www.w3.org/TR/rdf-concepts/

102 H. Stoermer et al.

in more detail in Sect. 3.1. On top of this KB, semantic-enabled services will be
implemented to provide a next-generation information system.

Current RDF triple stores are built to represent a single bag of RDF triples, i.e.
all statements are stored in the same information space together. However, from a
Knowledge Representation point of view, RDF statements in general are context-
free, and thus follow a notion of universal truth, while in our opinion knowledge
in an information system is context-dependent. In effect, without a context-based
system, it is possible (and probable) that semantically contradictory statements
will be stored in the KB, such as for instance “Silvio Berlusconi is the Prime
minister of Italy” and “Romano Prodi is the Prime minister of Italy” as the result
of knowledge extracted from articles written in different years (supposing that
being Prime Minister is possible only for a single person). These contradictions
are however unwanted in a logical system because they would interfere with both
simple queries over the data (e.g., the question “who is the Premier in Italy?”
brings two answers instead of just one) and higher level reasoning that is to be
performed to provide Semantic Web functionality, such as semantic browsing,
search, visualization, etc. Additionally, we would like to be able to model other
aspects such as relevance, credibility and validity of a statement, all of which
require further qualification.

If we think about the Semantic Web as a whole, with a large number of un-
coordinated information systems, the problem becomes even more evident. If
every peer builds up a KB of unqualified RDF statements, the set of univer-
sally true facts in the Semantic Web becomes enormously large and impossible
to handle from a semantic point of view; this is the case when, for example,
tools for automatic extraction of metadata are used, as in [5] and [11]. In our
opinion, such contradictions, contradictory beliefs and facts that become seman-
tically incorrect in the absence of additional pragmatic or contextual information
are likely to impose serious problems on the coordination and interoperation of
information systems in the Semantic Web.

The remainder of the paper is organized as follows: after giving some defini-
tions of context in Sect. 2, we present our architecture in Sect. 3. Some empirical
evaluation results are presented in Sect. 4, and finally we draw some conclusions
and future work directions in Sect. 5.

2 Context in RDF Knowledge Bases

We think that the mentioned issues can be approached by introducing the notion
of context into RDF, to limit the scope of a RDF statement to the context in
which it is relevant or valid, because in our opinion this is required for anything
sensible to be expressed in the Semantic Web. We want to present a mechanism
to qualify statements and thus to model that a statement is true only under a
certain set of conditions, which will help us store information in the KB that
would cause contradictions or inconsistencies in a plain RDF A-Box3.
3 In Description Logic, an A-Box is the set of assertions about instances (Assertional

Box), while the T-Box is the portion of the KB containing the axioms, such as class
and property definitions (Theoretical Box).

Contextualization of a RDF Knowledge Base in the VIKEF Project 103

2.1 Context in KR - Multi Context Systems

The theoretical ideas presented in this paper base on the logical theory of Multi
Context Systems and the principles of Locality and Compatibility presented e.g.
in [8], with influences from [3,4]. Basically, this theory states that contexts can
be seen in a peer-to-peer view, resembling more general aspects such as human
beliefs, agent knowledge or distributed systems. The important aspect of this
theory is that reasoning within a context follows standard mechanisms, as the
non-elementary view on the large part of the axioms does not require to keep
track of the context they are relevant for. Relations between contexts however,
i.e. to reason across contexts, are to be expressed in so-called compatibility rela-
tions (CRs), that formalize exactly how under certain circumstances knowledge
from other contexts becomes relevant. Regarding RDF in this case we claim that
a RDF context can be thought of as a locally coherent set of axioms, each one
with a set of parameters and values for these parameters, that specify the con-
ditions under which the set of axioms is valid. We envision CRs to be modeled
as a semantic attachment [12], as we will describe in more detail below.

2.2 Main Idea

The basic idea is to have all statements that belong to a context in a separate
named RDF graph, and extend the RDF semantics in a way to enable contexts
to appear as standard objects in RDF statements of other contexts. As we will
illustrate in more detail in Sect. 3.2, for a reference implementation we will base
on features of the SPARQL4 query language.

Then, we want to model the mentioned CRs between contexts, to allow for
reasoning across contexts. This aspect is probably the most important one, be-
cause from an application perspective it is crucial that sensible queries can be
issued and all relevant information is taken into account - which requires rea-
soning across contexts and reasoning on the relations between contexts (i.e. on
statements of the form <cx R cy> where cx and cy are RDF Contexts, or <f R
c′> respectively <c′ R f> with f ∈ c). We are only starting to explore in full
depth the aspects of CRs that are relevant for the VIKEF project.

Several approaches can be thought of to model CRs in our architecture. First
of all, one could think of allowing the implementer of an information system to
provide their own vocabularies (ontologies) to describe relations between con-
texts. A similar option would be for us to provide such an ontology as part
of the architecture. However, in our opinion the basic problem with these ap-
proaches is the fact that many interesting relations between architectures cannot
be fully formalized with the help of a Semantic Web ontology, which is based on
Description Logics.

As an example for this claim take a relation such as
<c′ EXTENDS c>
which expresses that c′ represents an extension to c, e.g. for the reason that it

is about the same object, but composed at a later point in time. The underlying
4 http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-sparql-query/

104 H. Stoermer et al.

assumption of the EXTENDS relation is that the two contexts are compatible,
i.e. they agree on the relevant context parameters. The semantics of this relation
have to be expressed algorithmically:

if c and c′ are compatible

then if no answer to a query q can be given in c

propagate query to c′

One of the questions that might arise is how these CRs are supposed to be
modeled. At the moment, we see three approaches to do this, which, among
other basic and preliminary results including some of the above ideas, have
been presented in [1], which we recommend to the reader for more detailed
information, references and a discussion of related work.

This work has led us to the conclusion that the approach to be chosen is to
implement a CR as a semantic attachment [12], which can be thought of as a sort
of plugin to the system, one attachment per CR. This has the positive effects
that i) there is no restriction on how many and which kind of CRs are part of
such a system and ii) implementation of the CRs is generally not restricted to
any specific language or system.

2.3 Related Work

As mentioned before, [1] provides a discussion of relevant related work. The
only related approach that has lead to actual results, up to our knowledge, is
that of the W3C Named Graph Interest Group5. A substantial article has been
published in 2005 [2], and implementational results are now part of the Named
Graphs API for Jena (NG4J) 6. The approach describes a way to represent a
graph as an object in a RDF KB, and has mainly been driven by the need
for developing a trust model in RDF, but it could also serve as an underlying
implementation in order to provide a base for the CRs discussed above.

3 The Proposed Solution: System Architecture

Our practical solution to context issues is based on the following requirements:

– Easy and simple identification of contexts
– Separate and independent storage for each context
– Easy querying of one or more contexts
– Easy reasoning on context parameters values
– Ability to plug new CRs in the architecture
– Ability to use CRs of higher expressive level, i.e. higher than OWL and/or

DL

5 http://www.w3.org/2004/03/trix/
6 http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/

http://www.w3.org/2004/03/trix/
http://www.wiwiss.fu-berlin.de/suhl/bizer/ng4j/

Contextualization of a RDF Knowledge Base in the VIKEF Project 105

As sketched in Fig. 1, the two main parts of our implementation are what is
“inside” RDFCore (i.e. the RDF storage level) and “outside” of it. In Sect. 3.1
and Sect. 3.2 we will discuss the details of the architecture.

Fig. 1. Compatibility Relation Association Architecture

3.1 RDF Storage

As RDF storage, the VIKEF project chose to use RDFCore: presented in [7], it is
a component used for storage and retrieval of RDF graphs, including multiuser
support and extensible support for query languages.

In the VIKEF Project, RDFCore is the basic component for RDF metadata
storage; being the VIKEF architecture based on the Web Services paradigm,
its SOAP7-exposed services have been wrapped as a Web Service8 for metadata
storage, retrieval and querying.

RDFCore also has extensible support for different physical persistence solu-
tions. At the time of writing, there are three implementations of RDFEngineIn-
terface (the basic interface to be implemented by plugins), two based on the Jena
Toolkit9, one with MySQL RDBMS10 as persistent storage, called RDFEngine-
JENA, and the other one using Microsoft SQL Server11, called RDFEngine-
MsSQL. The third implementation is based on simple RDF/XML files, and is
called RDFEnginePlain. All these implementations are based on the Jena API.

The component also offers multiuser support; users can choose whether some
of the models they own should be private, publicly readable or writable, and
can restrict access to single users or groups of users. This support is useful
7 http://www.w3.org/2000/xp/Group/
8 http://www.w3.org/2002/ws/
9 http://jena.sourceforge.net

10 http://dev.mysql.com/doc/mysql/en/index.html
11 www.microsoft.com/sql/

http://www.w3.org/2000/xp/Group/
http://www.w3.org/2002/ws/
http://jena.sourceforge.net
http://dev.mysql.com/doc/mysql/en/index.html
www.microsoft.com/sql/

106 H. Stoermer et al.

when designing cooperative applications, thus enabling geographically dispersed
teams to work together easily. RDFCore also can use a graph redundancy check
algorithm (REDD)[6], which is useful in searching redundant portions of RDF
graphs, i.e. those parts of the models that do not carry semantic information, or
that duplicate information carried by other parts.

3.2 Context Querying: SPARQL

We identified SPARQL as the query language that satisfies many of the re-
quirements listed before, since it includes facilities to query more than one RDF
model at a time, and the models to use can be specified with URIs. With this
approach, a context can be easily represented as a RDF model, identified by a
URI – in other words, it can be viewed as a named graph. The only step needed
to complete the pipeline and enable a generic repository to answer a SPARQL
query on multiple contexts is the retrieval machinery to provide the RDF data
for the SPARQL Dataset to the SPARQL engine.

We use ARQ12 as SPARQL engine for RDFCore; since ARQ uses the Jena
class com.hp.hpl.jena.util.FileManager in order to retrieve the RDF data
needed to build the Dataset for the SPARQL query, this is the point in which we
insert our mappings from graph names to URLs that the RDFCore component
has to supply. Since RDFCore has multiuser support, however, it is necessary
to implement a check on whether the user making the query has read access to
the involved models; to do this, RDFCore extracts the graphs’ URIs and checks
that all the required models are accessible before pushing the SPARQL query to
ARQ. Access to the data is done by ARQ through the use of a RDFCoreLocator,
which implements the Locator interface defined in Jena. A small sketch of the
process is depicted in Figure 2.

When the query is issued by an external application using the SPARQL pro-
tocol13, the query can be executed only when all involved models are readable
by any user (thus including any application that does not act on behalf of a
user, and therefore has no explicit access to any model). At the moment, RDF-
Core satisfies only the basic requirements for the SPARQL Protocol (HTTP and
SOAP access), that is, RDFCore only accepts SPARQL queries with embedded
dataset, where the dataset is composed of URIs that are registered as identifiers
for RDF models publicly accessible in RDFCore. Accessing these models is re-
alized through simple HTTP connection to a related RDFCore service, and it is
automated in the query component through the implementation of the Locator
interface in the Jena API, that is used as input to create the RDF dataset in
the ARQ component. The use of the SPARQL protocol simplifies the design of
those VIKEF components that only need read access to specific RDF models; in
the case of distinct contexts, this is an easy way to ensure that no application
can modify the information contained in a specific context.

12 http://jena.sourceforge.net/ARQ/
13 http://www.w3.org/TR/rdf-sparql-protocol/

http://jena.sourceforge.net/ARQ/
http://www.w3.org/TR/rdf-sparql-protocol/

Contextualization of a RDF Knowledge Base in the VIKEF Project 107

Fig. 2. SPARQL query processing

3.3 System Architecture

As sketched in Figure 1, the main parts of the architecture are:

– A URI Registry, used by applications to get the list of context URIs contained
in a particular instance of RDFCore (including accessible and non accessible
ones).

– A Compatibility Relations model, containing statements of the kind <c′ R
c>, meaning that context c′ is in relation R with context c (all three should
be read as URIs for the contexts and the relation).

– A Compatibility Relation Registry, where each URI that identifies a CR is
related to an implementation for that CR (semantic attachment).

The architecture presented so far is quite straightforward; however, the rea-
soning task on the Compatibility Relations model (i.e. the model containing the
CR statements between contexts) cannot be carried out by a DL reasoner, since
the complete semantics of the CRs we want to represent exceeds OWL expres-
siveness. In order to overcome this limitation of the architecture, we devised a
plugin-oriented solution, where the URI of a CR identifies a plugin that imple-
ments the correct behavior to be carried out. As an example, consider a CR
saying that:

“context context : x and context context : y are context : compatible if they
have no contradictory statements”14.

The relation named context : compatible, then, has to be inferred (or verified)
through the use of some code that has to be associated with the relation, which
in this case would do the job of taking the RDF models for the two contexts (i.e.
the RDF models labeled context : x and context : y, available in RDFCore).
A reasoner should then be used on the whole resulting RDF graph in order to
evaluate consistency.

14 Note that no specific reasoner level is set here: a real rule should also specify how to
verify contradiction.

108 H. Stoermer et al.

4 Empirical Evaluation

Empirical evaluation of the contextualized KB can be focused on two main as-
pects: i) scalability w.r.t. the number of contexts and their size, and ii) scalability
w.r.t. number and complexity of Compatibility Relations. So far, we have eval-
uated the first aspect.

4.1 KB Design

In order to evaluate scalability w.r.t. the number of contexts that can be queried
at once, we produced a sample KB containing many artificial RDF models, where
each model represents a Context, and we then ran a SPARQL query of the kind:

CONSTRUCT \{?x ?y ?z\} FROM <urn:a1> FROM
<urn:a2> ... WHERE \{?x ?y ?z\}

where urn:a1 represents the URI of a specific context and is used to retrieve the
corresponding model from RDFCore. This query template simply retrieves all
triples from the models named in the FROM clauses, and in our experiment we
use queries that involve 10, 20 and 100 models respectively; in the first phase
of testing, all the models have 100 statements in them, while in the second
phase all the models have 1000 statements, so the total number of statements
retrieved by a query scales from 1000 to 100000; the results are presented in
Table 1. The last column of Table 1 shows the results obtained executing the
same query on a single model containing the same number of triples of the union
of the models, in order to verify the performance impact of partitioning a model
into smaller contexts. As it emerges from the data, the performance overhead is
small and tends to decrease when the total number of statements increase; the
growth in the elapsed time has the same trend for both approaches, so we deduce
that our architecture does not affect performances in a negative way, for such
simple queries (however, note that any complex query is likely to retrieve a small
number of statements w.r.t. the size of the model, so these very general queries
are stressing the framework more than a very restrictive query that would only
retrieve a single triple).

Table 1. Test Results

(artificial) graphs stmt/graph stmt retrieved elapsed secs elapsed secs
on whole models

First Phase
10 100 1000 ~ 0.4 ~ 0.1
20 100 2000 ~ 0.6 ~ 0.25
100 100 10000 ~ 2.5 ~ 1.5

Second Phase
10 1000 10000 ~ 2 ~ 1.5
20 1000 20000 ~ 4 ~ 3.5
100 1000 100000 ~ 20 ~ 24

Contextualization of a RDF Knowledge Base in the VIKEF Project 109

5 Conclusions and Future Work

We presented a possible solution to the issues related to uncontextualized knowl-
edge, mostly arising from the notion of universal truth that RDF model seman-
tics follows, and showed the architecture of our implementation for this solution.
Future work we plan to do on this implementation consists of:

– A thorough stress test for the RDFCore component that acts like a “context”
server in our architecture, to check for scalability issues w.r.t. CR number
and complexity.

– Some implementations of CR “attachments”, in order to provide the system
with the needed expressive power to match VIKEF requirements.

Possible applications for this kind of KR are manifold, as partly described
in [1,2,9,10]. Aspects such as beliefs, trust, incomplete knowledge and KB evo-
lution in our opinion can all be tackled with a sensible context system as a base.
We believe that in the long run, the vast amount of knowledge represented in
the Semantic Web can only be handled properly if represented in context.

Additionally, we envision the outcomes of this work to go beyond local aspects
and also become relevant from a distributed point of view. As the nature of
the Semantic Web is inherently distributed, we think we can contribute to the
semantic coordination of Semantic Web agents, firstly by offering the capabilities
to make explicit that two knowledge bases belong to their respective agents and
to enable the agents to establish semantic links to the KBs of other peers with
the help of CRs.

Acknowledgments

This research was partially funded by the European Commission under the 6th

Framework Programme IST Integrated Project VIKEF - Virtual Information
and Knowledge Environment Framework (Contract no. 507173, Priority 2.3.1.7
Semantic-based Knowledge Systems; more information at http://www.vikef.
net).

References

1. P. Bouquet, L. Serafini, and H. Stoermer. Introducing Context into RDF Knowl-
edge Bases. In Proceedings of SWAP 2005, the 2nd Italian Semantic Web Work-
shop, Trento, Italy, December 14-16, 2005. CEUR Workshop Proceedings, ISSN
1613-0073, online http://ceur-ws.org/Vol-166/70.pdf, 2005.

2. J. Carroll, C. Bizer, P. Hayes, and P. Stickler. Named Graphs, Provenance and
Trust. In Proceedings of the Fourteenth International World Wide Web Conference
(WWW2005), Chiba, Japan, volume 14, pages 613–622, May 2005.

3. G. Criscuolo, F. Giunchiglia, and L. Serafini. A Foundation for Metareasoning,
Part I: The proof theory. Journal of Logic and Computation, 12(1):167–208, 2002.

http://www.vikef.net
http://www.vikef.net

110 H. Stoermer et al.

4. G. Criscuolo, F. Giunchiglia, and L. Serafini. A Foundation for Metareasoning,
Part II: The model theory. Journal of Logic and Computation, 12(3):345–370,
2002.

5. F. Esposito, S. Ferilli, N. Di Mauro, T. M. A. Basile, L. Iannone, I. Palmisano,
and G. Semeraro. Improving automatic labelling through rdf management. In
Tengku M. T. Sembok, Halimah Badioze Zaman, Hsinchun Chen, Shalini R. Urs,
and Sung-Hyon Myaeng, editors, Digital Libraries: Technology and Management
of Indigenous Knowledge for Global Access, 6th International Conference on Asian
Digital Libraries, ICADL 2003, Kuala Lumpur, Malaysia, December 8-12, 2003,
Proceedings, volume 2911 of Lecture Notes in Computer Science, pages 578–589.
Springer, 2003.

6. F. Esposito, L. Iannone, I. Palmisano, D. Redavid, and G. Semeraro. Redd: An
algorithm for redundancy detection in rdf models. In Asunción Gómez-Pérez and
Jérôme Euzenat, editors, The Semantic Web: Research and Applications, Second
European Semantic Web Conference, ESWC 2005, Heraklion, Crete, Greece, May
29 - June 1, 2005, Proceedings, volume 3532 of Lecture Notes in Computer Science,
pages 138–152. Springer, 2005.

7. F. Esposito, L. Iannone, I. Palmisano, and G. Semeraro. RDF Core: a Component
for Effective Management of RDF Models. In Isabel F. Cruz, Vipul Kashyap,
Stefan Decker, and Rainer Eckstein, editors, Proceedings of SWDB’03, The first
International Workshop on Semantic Web and Databases, Co-located with VLDB
2003, Humboldt-Universität, Berlin, Germany, September 7-8, 2003, 2003.

8. C. Ghidini and F. Giunchiglia. Local models semantics, or contextual reason-
ing=locality+compatibility. Artif. Intell., 127(2):221–259, 2001.

9. R. V. Guha, R. McCool, and R. Fikes. Contexts for the semantic web. In Sheila A.
McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors, International
Semantic Web Conference, volume 3298 of Lecture Notes in Computer Science,
pages 32–46. Springer, 2004.

10. G. Klyne. Contexts for RDF Information Modelling. Content Technologies Ltd,
October 2000. http://www.ninebynine.org/RDFNotes/RDFContexts.html.

11. G. Semeraro, F. Esposito, S. Ferilli, T. M.A. Basile, N. Di Mauro, L. Iannone, and
I. Palmisano. Automatic management of annotations on cultural heritage material.
In International Conference on Digital Libraries, ICDL 2004, New Delhi, India,
February 24-27, 2004, Proceedings, pages 805–812, 2004.

12. R.W. Weyhrauch. Prolegomena to a Theory of Mechanized Formal Reasoning.
Artificial Intelligence, 13(1):133–176, 1980.

	Problem Description and Motivation
	Context in RDF Knowledge Bases
	Context in KR - Multi Context Systems
	Main Idea
	Related Work

	The Proposed Solution: System Architecture
	RDF Storage
	Context Querying: SPARQL
	System Architecture

	Empirical Evaluation
	KB Design

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

