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Abstract. We deal with the issue of risk estimation in a sample fre-
quency table to be released by an agency. Risk arises from non-empty
sample cells which represent small population cells and from population
uniques in particular. Therefore risk estimation requires assessing which
of the relevant population cells are indeed small. Various methods have
been proposed for this task, and we present a new method in which esti-
mation of a population cell frequency is based on smoothing using a local
neighborhood of this cell, that is, cells having similar or close values in
all attributes.

The statistical model we use is a generalized Negative Binomial model
which subsumes the Poisson and Negative Binomial models. We provide
some preliminary results and experiments with this method.

Comparisons of the new approach are made to a method based on
Poisson regression log-linear hierarchical model, in which inference on a
given cell is based on classical models of contingency tables. Such models
connect each cell to a ‘neighborhood’ of cells with one or several common
attributes, but some other attributes may differ significantly. We also
compare to the Argus Negative Binomial method in which inference on
a given cell is based only on sampling weights, without learning from any
type of ‘neighborhood’ of the given cell and without making use of the
structure of the table.

1 Introduction

Let f = {fk} denote an m-way frequency table, which is a sample from a pop-
ulation table F = {Fk}, where k = (k1, ..., km) indicates a cell, and fk and Fk

denote the frequency in cell k in the sample and population, respectively, and
the number of cells is denoted by K. Formally, the sample and population sizes
in our models are random and their expectations are denoted by n and N re-
spectively. We formally assume that n and N are known, but in practice they are
usually replaced by their natural estimators: the actual sample and population
sizes, assumed to be known, and without further comment.
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The m attributes in the table are considered to be key variables, that is, vari-
ables which are to some extent accessible to the public or to potential intruders.
Disclosure risk arises from cells in which both fk and Fk are positive and small,
and in particular when fk = Fk = 1 (sample and population uniques). An in-
truder who locates a sample unique in cell k, say, and is aware of the fact that
in the population the combination of values k = (k1, ..., km) is unique (Fk = 1)
or rare (Fk small) but matches an individual of interest, can identify this indi-
vidual on the basis of these m attributes. If the sample contains information on
the values of other attributes, then these can now be inferred for the individual
in question, and his privacy is violated.

Individual risk measures will be briefly discussed in Section 2 and we start
with global risk measures which quantify an aspect of the total risk in the file
by aggregating risk over the individual cells. For simplicity we shall focus here
only on two global measure, which are based on sample uniques:

τ1 =
∑

k

I(fk = 1, Fk = 1) , τ2 =
∑

k

I(fk = 1)
1
Fk

,

where I denotes the indicator function. Note that τ1 counts the number of sample
uniques which are also population uniques, and τ2 is the expected number of
correct guesses if each sample unique is matched to a randomly chosen individual
from the same population cell. These measures are somewhat arbitrary, and one
could consider measures which reflect matching of individuals that are not sample
uniques, possibly with some restrictions on cell sizes. Also, it may make sense
to normalize these measures by some measure of the total size of the table, by
the number of sample uniques, or by some measure of the information value of
the data.

Various individual and global risk measures have been proposed in the litera-
ture, see e.g. Franconi, and Polettini (2004) and references therein, Skinner and
Holmes (1998), Elamir and Skinner (2006), Rinott (2003).

In Sections 2 and 3 we propose and explain a new method of estimation of
quantities like τ1 and τ2, using a generalized Negative Binomial model, and local
smoothing of frequency tables, Simonoff (1998). The method is based on the
idea that one can learn about a given population cell from neighboring cells, if a
suitable definition of closeness or neighbors is possible, by standard smoothing
techniques, without relying on complex dependence structure modeling. This
method differs from that of Elamir and Skinner (2006), in which one uses classical
hierarchical log-linear models, which means inferring on a given cell by using
cells that could be very different in many attribute values. For example, in the
independence model, inference on a cell uses all cells which have at least one
common attribute with the given cell, but all others may be very different. Thus
neighborhoods formed by the classical log-linear model theory seem to be too
large for our purposes. This point is explained in detail in Rinott and Shlomo
(2005). On the other hand, the Argus approach, see, e.g., Franconi, and Polettini
(2004), uses no neighborhoods at all and ignores the table structure. We consider
the smoothing approach simple conceptually but not necessarily in terms of the
computations required.
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In this paper it is assumed that f is known, and F is an unknown parameter
(on which there may be some partial information) and the quantities τ1 and
τ2 should be estimated. Note that they are not proper parameters, since they
involve both the sample f and the parameter F.

The methods discussed in this paper consist of modeling the conditional distri-
bution of F|f, estimating parameters in this distribution and then using estimates
of the form

τ̂1 =
∑

k

I(fk = 1)P̂ (Fk = 1|fk = 1), τ̂2 =
∑

k

I(fk = 1)Ê[
1
Fk

|fk = 1] , (1)

where P̂ and Ê denote estimates of the relevant conditional probability and
expectation. For a general theory of estimates of this type see Zhang (2005) and
references therein. Some direct variance estimates appear in Rinott (2003).

2 The Model

For completeness we briefly introduce the Poisson and Negative Binomial models.
More details can be found, for example, in Bethlehem et al. (1990), Cameron
and Trivedi (1998), Rinott (2003).

We assume Fk ∼ Poisson(Nγk), independently, with
∑

γk = 1. Binomial
(or Poisson) sampling from Fk means that fk|Fk ∼ Bin(Fk, πk), πk being the
(known) sampling fraction in cell k. These are common assumptions in the fre-
quency table literature, where it is convenient for log-linear modeling to assume
that all πk’s are equal, an assumption not made here. However, we assume that
the inclusion probabilities πk are fixed within cells. In certain cases such an
assumption may not hold, and more complex models may be required.

By standard calculations we then have

fk ∼ Poisson(Nγkπk) and Fk | fk ∼ fk + Poisson(Nγk(1 − πk)) , (2)

leading to the Poisson model (see references below).
We now add the Bayesian assumption γk ∼ Gamma(α, β) independently.

(Later we assume a common value for α and β in some neighborhoods of cells,
rather than the whole table.)

Then
fk ∼ NB(α, pk =

1
1 + Nπkβ

), (3)

the generalized Negative Binomial distribution, defined for any α > 0 by

X ∼ NB(α, p) if P (X = x) =
Γ (x + α)

Γ (x + 1)Γ (α)
(1 − p)xpα, x = 0, 1, 2, . . . , (4)

which for a natural α counts the number of failures until α successes occur in
independent Bernoulli trials with probability of success p. For this distribution
we have μ = EX = α(1 − p)/p, VarX = α(1 − p)/p2 = μ + μ2/α, and the
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probability generating function is g(t) = EtX = pα/[1− (1−p)t]α, see Cameron
and Trivedi (1998, p 375).

With the above parametrization μk ≡ Efk = Nπkαβ, and for b > 0

E[1/(b + X)] =
∫ 1

0
tb−1g(t)dt. (5)

Further calculations yield

Fk | fk ∼ fk + NB(α + fk, ρk =
Nπkβ + 1
Nβ + 1

), (6)

and clearly Fk ≥ fk.
This is the generalized Negative Binomial model used in this paper.
As α → 0 and β → ∞ we obtain Fk | fk ∼ fk + NB(fk, πk), which is exactly

the Negative Binomial assumption used in the Argus method. See Franconi and
Polettini (2004) and references therein for details. If α → ∞ and αβ → constant,
the Poisson model used in this context by Skinner and Holmes (1998) and Elamir
and Skinner (2006) is obtained. Therefore the generalized Negative Binomial
subsumes both models.

Using (5), (6) and setting ρk = (Nπkβ + 1)/(Nβ + 1), it is easy to compute
individual risk measures for cell k, defined by

P (Fk = 1|fk = 1) = ρ1+α
k , E[

1
Fk

|fk = 1] =
ρk(1 − ρα

k )
α(1 − ρk)

. (7)

3 Smoothing Polynomials and Local Neighborhoods

Our goal in this section is to estimate the parameters of the model so that we can
estimate the quantities in (7). The global risk measures will then be estimated
as indicated in (1).

The estimation question here is essentially the following: given, say, a sample
unique, how likely is it to be also a population unique, or arise from a small
population cell. If a sample unique is found in a part of the sample table where
neighboring cells (by some reasonable metric, to be discussed later) are small
or empty, then it seems reasonable to believe that it is more likely to have
arisen from a small population cell. This motivates our attempt to study local
neighborhoods, and compare the results to those obtained by using model-driven
neighborhood arising in hierarchical log-linear models, where it seems that the
neighborhoods may be too large, and the Argus method which uses no neigh-
borhoods.

Consider frequency tables in which some of the attributes are ordinal, and
define closeness between categories of an attribute in terms of the order, or more
generally, suppose that for a certain attribute one can say that some values of
the attribute are closer to a given value than others. For example, Age and
number of Years of Education are ordinal attributes, and naturally the age of
16 is closer to 15 than to 20, say, while Occupation is not ordinal, but one can
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try to define reasonable notions of closeness between different occupations. The
attribute values of variables which are purely categorical will be kept fixed within
a neighborhood, and ordinal variables will vary within a range that defines the
neighborhood.

Classical log-linear models do not take such closeness into account, and there-
fore, when such models are used for individual cell parameter estimation, the
estimates involve data in cells which may be rather remote from the estimated
cell. On the other hand, as mentioned above, the Argus method bases its esti-
mation only on the sampling weights in the estimated population cell. There is
no learning from other cells, the structure of the table plays no role, and each
cell’s parameter is estimated separately.

Our approach consists of using local neighborhood smoothing which will be
described in (10) below, along with the generalized Negative Binomial model
of (3)-(6). We thus assume that fk ∼ NB(α, pk = 1

1+Nπkβ ), and therefore
μk ≡ Efk = α(1 − pk)/pk = Nπkαβ, see (3) and the subsequent relations.

We describe the proposed estimation method for μ and α. These estimates
will be transformed to estimates of the parameters appearing in the individual
risk measures (7), which in turn lead to estimates of the global risk measures
using (1).

For each fixed cell k we define a neighborhood of cells M = Mk (where k ∈ M)
and estimate the values of μk and αk using neighboring cells k′ ∈ Mk and the
assumption

fk′ ∼ NB(αk, pk′ =
1

1 + Nπk′βk
), (8)

where αk and βk are fixed in the neighborhood and do not depend on k′, while
pk′ actually depends also on k. Since we now fix k we suppress it as an index
in α, β or pk′ , and write Efk′ = μk′ = α(1 − pk′)/pk′ . For the fixed k, set
μ = {μk′ : k′ ∈ M}, so the index k is suppressed also in μ. We consider the
likelihood of the observations {fk′ : k′ ∈ M} in a neighborhood M = Mk

of k based on (8), and using different parameterizations which include μ and
a = 1/α

L(a, μ) ≡ L(a, μ; {fk′ : k′ ∈ M}) =
∏

k′∈M

Γ (x + α)
Γ (x + 1)Γ (α)

(1 − pk′ )fk′ pα
k′

=
∏

k′∈M

Γ (x + α)
Γ (x + 1)Γ (α)

[1 − α/(μk′ + α)]fk′ [α/(μk′ + α)]α . (9)

We emphasize again that although in the above formulas only dependence on k′

is shown, it should be noted that α, β and μ depend on k, and therefore pk′ and
μk′ depend both on k and k′.

For each k we will estimate α = αk and μk′ for k′ ∈ M = Mk using the
likelihood (9) and a smoothing model described next, and then use the estimates
of αk and μk (not using the μk′ estimates for k′ �= k) for further risk estimates,
as discussed below.
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Following Simonoff (1998), see also references therein, we use a local smoothing
polynomial model.

For convenience of notation we now assume m = 2 (a two-way table); the exten-
sion to any m is straightforward. For each fixed k = (k1, k2) separately, we write
the log-linear model below for μk′ in terms of the parameters θ=(θ0, θ1, ϑ1, . . . ,
θt, ϑt), with k′ = (k′

1, k
′
2) varying in the neighborhood M = Mk of k :

log μk′(θ) = θ0 + θ1(k′
1 − k1) + ϑ1(k′

2 − k2) + . . . + θt(k′
1 − k1)t+ϑt(k′

2 − k2)t,

(10)

for some natural number t. One can hope that such a polynomial, with a suitable
t, provides a reasonable approximation to log μk′ if k′ = (k′

1, k
′
2) is in a small

neighborhood of k = (k1, k2). Substituting (10) into the likelihood function (9)
using the relations between parameterizations as described above we obtain the
likelihood function L(a, θ).

Our next goal is to maximize it as a function of a = 1/α and θ. This max-
imization takes place in principle for each cell k (although it may suffice for
our purposes to carry it out for sample uniques only, that is, for cells such that
fk = 1). A source of difficulty here is that log L(a, θ) is concave in θ, but not
jointly in (a, θ), and therefore local maxima may occur, Hessians are not nec-
essarily positive definite, and standard algorithms may not converge to the real
MLE. This difficulty does not arise in the Poisson case of log-linear models of
this type, where the log-likelihood is concave, see Rinott and Shlomo (2006), for
a detailed discussion of the Poisson model. There are several options for max-
imization. SAS uses a Newton-Raphson Ridge Optimization (NRRIDG) which
adds a multiple of the identity matrix to the Hessian when the latter is not pos-
itive definite, and also the Fisher Scoring Algorithm which replaces the Hessian
by its expectation which is the information matrix, (using the parameter esti-
mates of the current iteration), thus making it positive definite. We used our
own program of the latter algorithm.

The components of the gradient of the log-likelihood function are obtained by
differentiation and some manipulations as in Cameron and Trivedi (1998 p. 71),
taking the form:

∂ log L(a, θ)
∂a

=
∑

k′∈M

⎧
⎨

⎩
1
a2

⎛

⎝log(1 + aμk′ ) −
fk′−1∑

υ=0

1
υ + a−1

⎞

⎠ +
fk′ − μk′

a(1 + aμk′)

⎫
⎬

⎭

∂ log L(a, θ)
∂θ�

=
∑

k′∈M

fk′ − μk′

(1 + aμk′)
(k′

1 − k1)�, 
 = 0, . . . , t

∂ log L(a, θ)
∂ϑ�

=
∑

k′∈M

fk′ − μk′

(1 + aμk′)
(k′

2 − k2)�, 
 = 1, . . . , t.

Note that in the solution to the related normal equations, the resulting vector
(a, θ) depends on k.
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The Hessian is calculated as follows:

∂2 log L(a, θ)
∂a2 =

∑

k′∈M

⎧
⎨

⎩
−2
a3

⎛

⎝log(1 + aμk′ ) −
fk′−1∑

υ=0

1
υ + a−1

⎞

⎠

+
1
a2

⎛

⎝ μk′

1 + aμk′
−

fk′−1∑

υ=0

1
(aυ + 1)2

⎞

⎠ − (fk′ − μk′)(1 + 2aμk′)
a2(1 + aμk′)2

⎫
⎬

⎭ ,

∂2 log L(a, θ)
∂θ�∂a

= −
∑

k′∈M

(fk′ − μk′)μk′

(1 + aμk′)2
(k′

1 − k1)�, 
 = 0, . . . , t,

and

∂2 log L(a, θ)
∂θi∂θj

= −
∑

k′∈M

(1 + afk′)μk′

(1 + aμk′ )2
(k′

1 − k1)i+j i, j = 0, . . . , t.

∂2 log L(a, θ)
∂θi∂ϑj

=−
∑

k′∈M

(1+afk′)μk′

(1 + aμk′)2
(k′

1 − k1)i(k′
2 − k2)j , i=0, . . . , t, j=1, . . . , t.

∂2 log L(a, θ)
∂ϑi∂ϑj

= −
∑

k′∈M

(1 + afk′)μk′

(1 + aμk′)2
(k′

2 − k2)i+j , i, j = 1, . . . , t.

With argmax L(a, θ) = (â, θ̂), and θ̂0 denoting the first component of θ̂, we
finally obtain our estimate of μk = μ(k1,k2) in the form

μ̂k ≡ μk(θ̂) = exp(θ̂0), (11)

where the second equality is explained by taking k′ = k = (k1, k2) in (10).
To summarize, we obtain the estimates âk, θ̂ both depending on k by a sepa-

rate maximization for each k as explained above, leading to the estimates âk, and
μ̂k of (11). For the risk measure discussed in this paper, it suffices to compute
these estimates for cells k which are sample uniques, that is, fk = 1

Having estimated âk, μ̂k for each cell k separately on the basis of a neighbor-
hood Mk, we use them to estimate the quantities ρk and α = αk which are ob-
tained by tracing back the reparameterizations. Using the relations ρk = Nπkβ+1

Nβ+1 ,
and μk = Nπkαkβk we readily obtain

ρk =
μk + αk

μk/πk + αk
, αk = 1/ak.

We plug our estimates âk, μ̂k in the latter formula, and then plug the resulting
estimates of αk and ρk into (7), to obtain the individual risk estimates. The
global risk measures are estimated as indicated in (1).
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4 Experiments with Neighborhoods

We present a few experiments. Our results are preliminary as already mentioned
and more work is needed on the approach itself and on classifying types of data
for which it might work.

For the computations we used our versions of the Argus and log-linear mod-
els methods, programmed on the SAS system. The weights wi for the Argus
method in all our examples were computed by post-stratification on Sex by Age
by Geographical location (the latter is not one of the attributes in any of the
tables, but it was used for post-stratification). These variables are commonly
used for post-stratification, other strata may give different, and perhaps better
results.

In the experiments below we compare results of our NB smoothing method
with the Argus estimates and with Poisson hierarchical log-linear models (Elamir
and Skinner 2006), with two log-linear models: one of independence, the other
including all two-way interactions.

We defined neighborhoods M of k by varying around k coordinates correspond-
ing to attributes that are ordinal, allowing in each coordinate a fixed maximal
distance, which is equivalent to using a ball in the sup-norm, or intersection
of sup-norm and 
1 balls (see below). In principle we would use close values in
non-ordinal attributes when possible (e.g., in Occupation). Attributes in which
closeness of values cannot be defined, such as Sex remain constant in the whole
neighborhood and therefore in our experiments neighborhoods always consist of
individuals of the same Sex.

In all experiments we took a real population data file of size N given in
the form of a contingency table with K cells, and from it we took a simple
random sample of size n, so that always πk = n/N . Our approach and formu-
las have the advantage of allowing for variable πk’s, but taking them all equal
enables us to compare to the log-linear models method, where equal πk’s are
required. Since the population and the sample are known to us, we can compute
the true values of τ1 and τ2 and their estimates by the different methods, and
compare.

Example 1. Population : an extract from the 1995 Israeli Census. N = 37, 586,
n = 3, 759, K = 11, 648. Attributes (with number of levels in parentheses):
Sex(2) * Age Groups (32) * Income Groups(14) * Years of Study (13).

In this small experiment we tried our proposed smoothing polynomial model
of (10) for t = 2. We considered one type of neighborhood here, constructed by
fixing Sex and varying each of the other attribute value in k by at most c values
up or down, that is, the neighborhood of each cell k (with a fixed Sex value) is
of the type

M = {k′ : k′
1 = k1, max

2≤i≤m
|k′

i − ki| ≤ c}. (12)

With m = 4 and one variables fixed we vary three variables, each over a range
of five values for c = 2, , so we have |M | = 53 = 125, and taking c = 3 we have
|M | = 73 = 343.
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For cells near the boundaries some of the cells in their neighborhoods do not
exist; here we set non-existing cells’ frequencies to be zero, but other possibilities
can be considered.

The table below presents the true τ values and their estimates by the methods
described above.

Model τ1 τ2

True Values 187 452.0
Argus 137.2 346.4
Log Linear Model:
Independence 217.3 518.0
Log Linear Model:
2-Way Interactions 167.2 432.8
NB Smoothing t = 2 |M | = 125 181.9 461.3
NB Smoothing t = 2 |M | = 343 179.6 449.8

Example 2. Population : an extract from the 1995 Israeli Census. N = 746, 949,
n = 14, 939, K = 337, 920. Attributes: Sex (2) * Age Groups (16) * Years of
Study (10) * Number of Years in Israel (11) * Income Groups (12) * Number of
Persons in Household (8). Note that this is a very sparse table.

We applied the smoothing polynomial of (10) for t = 2 and neighborhoods
obtained by varying all attributes except for Sex which was fixed. Neighborhoods
are of the type

M = {k′ : k′
1 = k1, max

2≤i≤m
|k′

i − ki| ≤ c,
∑

i

|k′
i − ki| ≤ d}, (13)

with c = 2; d = 4 and 6, and |M | = 581 and 1, 893, respectively. The results are
given in the table below.

Model τ1 τ2

True Values 430 1,125.8
Argus 114.5 456.0
Log Linear Model:
Independence 773.8 1,774.1
Log Linear Model:
2-Way Interactions 470.0 1,178.1
NB Smoothing t = 2 |M | = 581 300.7 999.4
NB Smoothing t = 2 |M | = 1, 893 461.9 1,179.6

Example 3. Population : an extract from the 1995 Israeli Census. N = 746, 949,
n = 7, 470, K = 42, 240. Attributes: Sex (2) * Age Groups (16) * Years of Study
(10) * Number of Years in Israel (11) * Income Groups (12).

We applied the smoothing polynomial of (10) for t = 2 and neighborhoods
obtained by varying all attributes except for Sex which was fixed. Neighborhoods
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are as in (13) with c = 2 and d = 4 and |M | = 257; c = 2, d = 6, and |M | = 545,
and c = 2, d = 8 and |M | = 625 . Smaller neighborhoods did not yield good
estimates. The results are given in the table below.

Model τ1 τ2

True Values 42 171.2
Argus 20.7 95.4
Log Linear Model:
Independence 28.8 191.5
Log Linear Model:
2-Way Interactions 35.8 164.1
NB Smoothing t = 2 |M | = 257 24.7 147.5
NB Smoothing t = 2 |M | = 545 39.3 174.8
NB Smoothing t = 2 |M | = 625 45.8 184.4

Discussion of examples. The log-linear model method was tested in Skinner
and Shlomo (2005, 2006) and references therein, and based on model selection
techniques and goodness of fit criteria, yields good estimates for disclosure risk
measures for the types of experiments done here. Di Consiglio et al. (2003)
presented experiments for individual risk assessment with Argus, which seems
to perform less well than the log-linear method in many of our experiments with
global risk measures. Our new method still requires fine-tuning. At present the
results seem comparable or somewhat better than the Poisson hierarchical log-
linear method. In Rinott and Shlomo (2006) we performed experiments of this
kind on a smoothing method based on the Poisson rather than the Negative
Binomial distribution. So far the present Negative Binomial model improves all
the results, and seems potentially promising.

Naturally, more variables and sparse data sets with a large number of cells are
typical and need to be tested. Such files will cause difficulties to any method,
and this is where the different methods should be compared. In sparse multi-way
tables, model selection will be crucial but difficult for the log-linear method, and
perhaps simpler for the smoothing approach.

Our proposed method is at a preliminary stage and requires more work. Par-
ticular directions are the following:

1. Adjust the parameter estimates to fit known population marginals obtained
from prior knowledge and sampling weights, and vary the sampling fractions πk.
In all our experiments so far we used constant πk’s but unlike methods based on
log-linear models, the formulas given here allow for variables πk’s, and we intend
to try variable πk’s obtained by sampling design or post-stratification.
2. Use goodness of fit measures and information on population marginals and
sampling weights to select the type and size of the neighborhoods, and the degree
of the smoothing polynomial in (10).

The examples show a typical monotonicity phenomenon discussed also in the
papers of Rinott and Shlomo (2005, 2006): the risk measure estimates decrease
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as a function of the size of the log-linear model (that is, with one exception of τ1
in Example 3, the two-way models always yield lower estimates than the inde-
pendence model). In the present smoothing approach the risk estimates always
decrease with the size of the neighborhood. These two facts can be explained
in the same way: the better the fit to the sample data, the smaller the risk
estimates. A larger log-linear model or a smaller smoothing neighborhood corre-
spond to a better fit and therefore yield smaller risk estimates. In the presence
of such monotonicity, a study of suitable goodness of fit measures to choose the
right model is critical.
3. We intend to test this method also for individual risk measure estimates,
which are important in themselves, and may also shed more light on efficient
neighborhood and model selection. Our preliminary experiments suggest that
the smoothing approach performs relatively well in estimating individual risk.
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