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Abstract. In this paper, we study multi-collision probability. For a hash
function H : D → R with |R| = n, it has been believed that we can find
an s-collision by hashing Q = n(s−1)/s times. We first show that this
probability is at most 1/s! which is very small for large s. We next show
that by hashing (s!)1/s × Q times, an s-collision is found with proba-
bility approximately 0.5 for sufficiently large n. Note that if s = 2, it
coincides with the usual birthday paradox. Hence it is a generalization
of the birthday paradox to multi-collisions.

Keywords: hash function, birthday paradox, multi-collision, collision
resistant.

1 Introduction

Let H : D → R be a hash function, where D is the domain and R is the range
such that |R| = n. A collision for H is a distinct pair x1, x2 ∈ D such that
H(x1) = H(x2). We usually require that H is collision resistant, which means
that it is hard to find a collision. This security notion is used in many cryp-
tographic applications such as digital signatures. All hash functions, however,
suffer from the so-called birthday paradox which is a generic collision-finding
attack. In this attack, we choose x1, · · · , xq ∈ D independently at random and
compute yi = H(xi) for i = 1, · · · , q. We succeed if there is a pair i, j such that
H(xi) = H(xj). It is then well known that if q = O(

√
n), then we succeed with

non-negligible probability (say, 0.5). Bellare, Kilian and Rogaway derived a nice
upper bound and a lower bound on this success probability [1, Appendix].

Multi-collisions, on the other hand, are also an important notion of hash
functions. An s-collision for H is s distinct points x1, · · · , xs ∈ D such that
H(x1) = · · · = H(xs). As a negative side, Joux [5] showed a multi-collision
attack on iterated hash functions at Crypto’04. As a positive side, the notion
of multi-collisions was used for indentification schemes by Girault and Stern [4],
for signature schemes by Brickell et al. [3] and for the micropayment scheme of
Rivest and Shamir [6]. These schemes made use of an intuition such that finding
an s-collision would be much harder than finding a usual collsion if s is large.
Indeed, as a generalization of the birthday paradox, it has been believed that
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“We can find an s-collision by hashing q = n(s−1)/s x-values”

as written in [6, Sec.4] [5, Sec.2].
In this paper, we first present a negative result which shows that the above sen-

tence is wrong. More precisely, we prove that by hashing Q = n(s−1)/s x-values,
an s-collision is found with probability at most 1/s!. Note that this probability
is very small if s is large. Hence the above sentence is wrong for large s.

We next show a positive result such that by hashing q = (s!)1/s×Q x-values1,
an s-collision is found with probability approximately at least 0.5 for sufficiently
large n. Note that if s = 2, it coincides with the usual birthday paradox. Hence
we can consider that it is a generalization of the birthday paradox to multi-
collisions.

Throughout this paper, we suppose that each image y ∈ R has the same
number of preimages, that is, |H−1(y)| = |D|/|R| for all y ∈ R. In Sec. 2, we
present a recursive formula which expresses the exact probability of finding an
s-collision. In Sec. 3, we present a general lower and an upper bound of the
probability of finding an s-collision. In Sec. 4, we show a more tight lower and
an upper bound which agree within a constant factor for q ≤ n(s−1)/s. In Sec. 5,
we show our main (negative and positive) results for q = O(n(s−1)/s).

2 Exact Probability of s-Collision

In this section, we present a recursive formula for the probability of s-collision.
We will use this formula to find the exact value and to derive bounds for the
probability.

Let 2 ≤ s ≤ q ≤ n and consider the following experiment. Suppose that there
are q balls and n buckets. We throw the balls one by one at random into the
buckets. Let C(n, q, s) denote the event (called s-collision) that there exists at
least one bucket that contains at least s balls.

The above experiment mimics the generic hashing attack as follows. We call
n elements of the set R buckets. The q random x-values x1, . . . , xq are called
balls. Each time we calculate the hash value H(xi), we imagine that the ball
xi is thrown into the bucket H(xi). If a bucket r contains at least s balls, say
xi1 , . . . , xis , then we have found an s-collision H(xi1) = . . . = H(xis) = r. Thus,
the probability Pr[C(n, q, s)] models the s-collision probability.

We now present a recursive formula of Pr[C(n, q, s)].

Theorem 1

Pr[C(n, q, s)] =
1

ns−1

q∑

i=s

(
i − 1
s − 1

) (
1 − 1

n

)i−s

(1 − Pr[C(n − 1, i − s, s)]).

Proof. In the experiment of throwing q balls one by one at random into n buckets,
for each s ≤ i ≤ q, let C(n, q, s, i) denote the event that the ith ball causes the

1 Approximately, q ≈ (s/2.71) × n(s−1)/s from Stirling formula.
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first s-collision, that is, s-collision does not occur until the ith ball but does when
the ball is thrown. Then

Pr[C(n, q, s)] =
q∑

i=s

Pr[C(n, q, s, i)].

We can find Pr[C(n, q, s, i)] as follows:

1. One bucket (denoted by B), where the first s-collision occurs, can be selected
from n buckets in n ways;

2. s−1 balls, which are put into B can be selected from the previous i−1 balls
in

(
i−1
s−1

)
ways;

3. The probability that the s selected balls land in the one selected bucket is
1/ns;

4. The probability that for the s selected balls and the one selected bucket
B, none of the other i − s balls land in B and cause an s-collision is (1 −
1/n)i−s × (1 − Pr[C(n − 1, i − s, s)]).

Thus we have

Pr[C(n, q, s, i)] = n ×
(

i − 1

s − 1

)
× 1

ns
×

(
1 − 1

n

)i−s

×(1 − Pr[C(n − 1, i − s, s)])

=
1

ns−1

(
i − 1

s − 1

) (
1 − 1

n

)i−s

(1−Pr[C(n − 1, i − s, s)]).

Therefore,

Pr[C(n, q, s)] =
1

ns−1

q∑

i=s

(
i − 1
s − 1

) (
1 − 1

n

)i−s

(1 − Pr[C(n − 1, i − s, s)]).

We will use this recursive formula to calculate the exact value of the s-collision
probability and derive its bounds in the next sections. Before doing that we need
some auxiliary results. The proofs are shown in the Appendix.

Lemma 1. The following statements must hold

1. For any positive integers k, s, and i ≥ (k + 1)s,
q∑

i=s

(
i − 1
s − 1

)
=

(
q

s

)
.

2. For any positive integers k, s, and i ≥ (k + 1)s,
(

i − 1
ks − 1

)(
i − ks

s

)
=

(
(k + 1)s − 1

s

)(
i − 1

(k + 1)s − 1

)
.

3. For any positive integers k ≥ 2, s, and q ≥ ks,
(

ks − 1
s

)(
q

ks

)
=

k − 1
k

(
q

s

)(
q − s

(k − 1)s

)
.
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4. For any integers n, s ≥ 2,

(n − 1)s−1 > (n
s−1

s − 1)s.

5. For any 1 < a ≤ b,
a − 1
b − 1

≤ a

b

6. Let ek = (1−1/k)−k then {ek}∞k=2 is a decreasing sequence and limk→∞ ek =
e ≈ 2.7 – the Euler constant. For any 0 < x < 1, we have

e−x
k > 1 − x ln ek ≈ 1 − x.

7. For any integer s ≥ 2,
(s!)−1/s(s + 1)/2 > 1.

3 Bounds on the Probability of s-Collision

In this section, we present the following bounds on the probability of s-collision.

Theorem 2

Pr[C(n, q, s)] ≤ 1
ns−1

(
q

s

)
,

and

Pr[C(n, q, s)] ≥ 1
ns−1

(
q

s

) (
1 − 1

n

)q−s {
1 − 1

2(n − 1)s−1

(
q − s

s

)}
.

Proof. By Theorem 1 and Lemma 1(1), we obtain the upper bound

Pr[C(n, q, s)] =
1

ns−1

q∑

i=s

(
i − 1
s − 1

) (
1 − 1

n

)i−s

(1 − Pr[C(n − 1, i − s, s)])

≤ 1
ns−1

q∑

i=s

(
i − 1
s − 1

)
=

1
ns−1

(
q

s

)
.

We have

Pr[C(n, q, s)] =
1

ns−1

q∑

i=s

(
i − 1

s − 1

) (
1 − 1

n

)i−s

(1 − Pr[C(n − 1, i − s, s)])

≥ 1

ns−1

(
1 − 1

n

)q−s q∑

i=s

(
i − 1

s − 1

)
(1 − Pr[C(n − 1, i − s, s)])

=
1

ns−1

(
1 − 1

n

)q−s
[

q∑

i=s

(
i − 1

s − 1

)
−

q∑

i=s

(
i − 1

s − 1

)
Pr[C(n − 1, i − s, s)]

]

=
1

ns−1

(
1 − 1

n

)q−s
[(

q

s

)
−

q∑

i=2s

(
i − 1

s − 1

)
Pr[C(n − 1, i − s, s)]

]
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where the last equality follows from the fact that Pr[C(n − 1, i − s, s)] = 0 for
i ≤ 2s − 1 and Lemma 1(1).

Now using the above upper bound, we derive the lower bound,

Pr[C(n, q, s)]≥ 1

ns−1

(
1 − 1

n

)q−s
[(

q

s

)
−

q∑

i=2s

(
i − 1

s − 1

)
1

(n − 1)s−1

(
i − s

s

)]

=
1

ns−1

(
1 − 1

n

)q−s
[(

q

s

)
− 1

(n − 1)s−1

q∑

i=2s

(
i − 1

s − 1

)(
i − s

s

)]
.

By Lemma 1(2),

=
1

ns−1

(
1 − 1

n

)q−s
[(

q

s

)
− 1

(n − 1)s−1

(
2s − 1

s

) q∑

i=2s

(
i − 1
2s − 1

)]
.

By Lemma 1(1),

=
1

ns−1

(
1 − 1

n

)q−s [(
q

s

)
− 1

(n − 1)s−1

(
2s − 1

s

)(
q

2s

)]
.

By Lemma 1(3),

=
1

ns−1

(
1 − 1

n

)q−s [(
q

s

)
− 1

2(n − 1)s−1

(
q

s

)(
q − s

s

)]

=
1

ns−1

(
1 − 1

n

)q−s (
q

s

) {
1 − 1

2(n − 1)s−1

(
q − s

s

)}
.

From now on, we use the following notation,

f(n) =
(

1 − 1
n

)q−s

and g(n) =
1

2(n − 1)s−1

(
q − s

s

)
.

Theorem 2 can be rewritten as

f(n)(1 − g(n))
1

ns−1

(
q

s

)
≤ Pr[C(n, q, s)] ≤ 1

ns−1

(
q

s

)
. (1)

4 Bounds for q = Θ(nε) Where ε < (s − 1)/s

The graph in Figure 1 demonstrates the upper bound and the lower bound in
Theorem 2 and the exact probability of Pr[C(n, q, s)] for n = 365 and s = 3.
From this figure, we can see that for q < n(s−1)/s ≈ 52, the difference between
values of these three graphs is small. We will show that when q = nε with
ε < s−1

s , the upper bound and the lower bound are indeed very close to each
other. We also show that in this case, the upper bound asymptotically tends to
zero.
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Theorem 3. Let ε be a positive number such that ε < s−1
s . Then for any positive

number c < 1, there exists a positive number n0 such that

c × 1
ns−1

(
q

s

)
< Pr[C(n, q, s)] ≤ 1

ns−1

(
q

s

)
,

for any n > n0 and 2 ≤ s ≤ q = nε.

Proof. The theorem follows from the following two claims.
Claim 1.

g(n) <
1

2 s!
qs

ns−1
=

1
2 s! ns−1−sε

,

thus, g(n) → 0 when n → ∞.
Proof. We have

(
q − s

s

)
=

(q − s)(q − s − 1) . . . (q − 2s + 1)
s!

<
(q − 1)s

s!
,

By Lemma 1(4),
(n − 1)s−1 > (n

s−1
s − 1)s.

Thus,

g(n) =
1

2(n − 1)s−1

(
q − s

s

)
<

1

2(n
s−1

s − 1)s

(q − 1)s

s!
=

1
2 s!

(
q − 1

n
s−1

s − 1

)s

By Lemma 1(5),

g(n) <
1

2 s!

(
q

n
s−1

s

)s

=
1

2 s!
qs

ns−1
=

1
2 s! ns−1−sε

.

Fig. 1. The upper bound and the lower bound of Theorem 2 and the exact probability
of Pr[C(n, q, s)] for n = 365 and s = 3. We use the recursive formula in Section 2 to
calculate the exact probability Pr[C(n, q, s)].
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Since s − 1 − sε > 0, we have g(n) → 0 when n → ∞.
Claim 2. With the notation in Lemma 1(6), for any n > k,

f(n) > e
−q/n
k = e−nε−1

k ,

where ek ≈ e, thus, f(n) → 1 when n → ∞.
Proof. We have

f(n) =
(

1 − 1
n

)q−s

>

(
1 − 1

n

)q

=

[(
1 − 1

n

)−n
]−q/n

= e−q/n
n .

Since n > k, by Lemma 1(6), en < ek, thus,

f(n) > e
−q/n
k = e−nε−1

k .

Since ε < 1, nε−1 → 0 and f(n) → 1 as n → ∞.
From Claim 1 and Claim 2, we have f(n)(1 − g(n)) → 1, thus, the theorem

follows.

Example. Let s = 4, ε = 1
2 < s−1

s = 3
4 , and n > 100 then

g(n) <
nsε−(s−1)

2 s!
=

n−1

48
<

1
4800

= 0.000208333,

f(n) > e−nε−1

100 = e−n−1/2

100 > e−100−1/2

100 =
[
(1 − 1/100)−100

]−100−1/2

> .9

Thus f(n)(1 − g(n)) > .8998, and we have

.8998× 1
ns−1

(
q

s

)
< Pr[C(n, q, s)] ≤ 1

ns−1

(
q

s

)
.

Even though Theorem 3 shows that the upper bound and the lower bound are
very closed to each other, the following lemma shows that these bounds asymp-
totically tend to zero.

Lemma 2. Let ε be a positive number such that ε < s−1
s and q = nε, then

1
ns−1

(
q

s

)
→ 0 when n → ∞.

Proof. We have
1

ns−1

(
q

s

)
<

1
ns−1

qs

s!
=

1
s! ns−1−sε

.

Since s − 1 − sε > 0, we have

1
ns−1

(
q

s

)
→ 0.
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5 Bounds for q = Θ(n(s−1)/s)

In this section, we consider the case q = Θ(n(s−1)/s). We prove two main the-
orems. Theorem 4 shows that if q ≈ n(s−1)/s and n is sufficiently large then
Pr[C(n, q, s)] ≈ 1/s!, and Theorem 5 shows that if q ≈ (s!)1/sn(s−1)/s and n is
sufficiently large then Pr[C(n, q, s)] � 1/2.

It implies the following generalized birthday paradox

For a hash function H : D → R with |R| = n, if n is sufficiently
large then by n(s−1)/s number of hashings, an s-collision can be found
with probability ≈ 1/s!, and by (s!)1/s n(s−1)/s number of hashings an
s-collision can be found with probability � 1/2.

Theorem 4. We suppose that q = α n(s−1)/s, q − s = α′ n(s−1)/s, where 0 <
α′ < α < 1. If 2 ≤ s ≤ q then

Pr[C(n, q, s)] ≤ 1
ns−1

(
q

s

)
<

αs

s!
<

1
s!

(2)

and

Pr[C(n, q, s)] >
α′s

s!
−

(
α′s+1 ln en

s! n1/s
+

(αα′)s

2(s!)2

)

where en = (1 − 1/n)−n ≈ e. In particular, if n is sufficiently large so that
1/n1/s ≈ 0, and α′ � α � 1, then we have

Pr[C(n, q, s)] >
α′s

s!
−

(
α′s+1 ln en

s! n1/s
+

(αα′)s

2(s!)2

)
≈ 1

s!
− 1

2(s!)2

Proof. We have

1
ns−1

(
q

s

)
=

1
ns−1

q(q − 1) . . . (q − s + 1)
s!

<
1

ns−1

qs

s!
=

αs

s!

thus

Pr[C(n, q, s)] ≤ 1
ns−1

(
q

s

)
<

αs

s!
<

1
s!

.

We have

1
ns−1

(
q

s

)
=

1
ns−1

q(q − 1) . . . (q − s + 1)
s!

>
1

ns−1

(q − s)s

s!
=

α′s

s!
.

As in the proof of Theorem 3, we have

g(n) <
1

2 s!
qs

ns−1
=

αs

2 s!
.

and by Lemma 1(6),

f(n) = e−(q−s)/n
n > 1 − q − s

n
ln en = 1 − α′ ln en

n1/s
.
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Thus,

f(n)(1 − g(n)) ≥ f(n) − g(n) > 1 − α′ ln en

n1/s
− αs

2 s!
.

Therefore,

Pr[C(n, q, s)] ≥ f(n)(1 − g(n))
1

ns−1

(
q

s

)

>

(
1 − α′ ln en

n1/s
− αs

2 s!

)
α′s

s!

=
α′s

s!
−

(
α′s+1 ln en

s! n1/s
+

(αα′)s

2(s!)2

)
.

Theorem 5. If 2 ≤ s ≤ q, and q = (s!)1/sn(s−1)/s + s − 1(< n), then we have

Pr[C(n, q, s)] >
1
2
−

(
s!
n

)1/s

ln en.

In particular, if n is sufficiently large so that (s!/n)1/s ≈ 0, then we have

Pr[C(n, q, s)] >
1
2
−

(
s!
n

)1/s

ln en ≈ 1
2
. (3)

Proof. By Cauchy’s inequality,
(

q − s

s

)
=

(q − s)(q − s − 1) . . . (q − 2s + 1)
s!

<
1
s!

(
(q − s) + (q − s − 1) + . . . + (q − 2s + 1)

s

)s

=
[q − (3s − 1)/2]s

s!
=

[(s!)1/s n(s−1)/s − (s + 1)/2]s

s!
= [n(s−1)/s − (s!)−1/s(s + 1)/2]s

By Lemma 1(7), (s!)−1/s(s + 1)/2 > 1, thus,
(

q − s

s

)
< (n(s−1)/s − 1)s.

By Lemma 1(4),
(n − 1)s−1 > (n(s−1)/s − 1)s,

thus,

g(n) =
1

2(n − 1)s−1

(
q − s

s

)
<

1
2
. (4)

We have

f(n) =
(

1 − 1
n

)q−s

>

(
1 − 1

n

)q−s+1

= e−(q−s+1)/n
n ,
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thus, by Lemma 1(6),

f(n) > e−(q−s+1)/n
n > 1 − q − s + 1

n
ln en = 1 −

(
s!
n

)1/s

ln en. (5)

From (4) and (5), we have

f(n)(1 − g(n)) ≥ f(n) − g(n) >
1
2
−

(
s!
n

)1/s

ln en. (6)

We have
1

ns−1

(
q

s

)
>

(q − s + 1)s

s! ns−1
=

((s!)1/sn(s−1)/s)s

s! ns−1
= 1. (7)

Combining (6) and (7) gives

Pr[C(n, q, s)] ≥ f(n)(1−g(n))
1

ns−1

(
q

s

)
>

1
2
−

(
s!
n

)1/s

ln en.

Example. If s ≥ 2, n > s! 32s(≥ 2048) and q = (s!)1/sn(s−1)/s + s − 1(< n)
then (

s!
n

)1/s

<
1
32

and ln e2048 < 1.00025,

thus

Pr[C(n, q, s)] >
1
2
− 1

32
× 1.00025 > .4687

6 Conclusion

In this paper, we have studied multi-collision probabilities for regular hash func-
tions H : D → R, where ”regular” means that each image y ∈ R has the same
number of preimages. Suppose that that |R| = n. Then our main results are
summarized as follows.

– By hashing about n(s−1)/s times, an s-collision is found with probability at
most 1/s! (see eq.(2)). Since it is very small for large s, this disproves the
folklore which has been believed so far.

– By hashing about (s!)1/sn(s−1)/s times, an s-collision is found with proba-
bility approximately 1/2 or more if n is large enough so that (s!/n)1/s ≈ 0
(see eq.(3)). Hence this is a true generalization of the birthday paradox to
multicollisions.

Bellare and Kohno genralized the birthday paradox (for s = 2) to non-regular
hash functions [2]. It will be a furter work to generalize our result on multicolli-
sion to non-regular hash functions.
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Appendix: Proofs of Lemma 1

Proof. (1) Since (
i

s

)
=

(
i − 1

s

)
+

(
i − 1
s − 1

)
,

we have
q∑

i=s

(
i − 1

s − 1

)
=1+

q∑

i=s+1

(
i − 1

s − 1

)
=1+

q∑

i=s+1

[(
i

s

)
−

(
i − 1

s

)]
=1+

(
q

s

)
−

(
s

s

)
=

(
q

s

)
.

(2) We have
(

i − 1
ks − 1

)(
i − ks

s

)
=

(i − 1)!
(ks − 1)!(i − ks)!

× (i − ks)!
s!(i − (k + 1)s)!

=
((k + 1)s − 1)!

s!(ks − 1)!
× (i − 1)!

((k + 1)s − 1)!(i − (k + 1)s)!

=
(

(k + 1)s − 1
s

)(
i − 1

(k + 1)s − 1

)
.

(3) We have
(

ks − 1
s

)(
q

ks

)
=

(ks − 1)!
s!((k − 1)s − 1)!

× q!
(ks)!(q − ks)!
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=
q!

(ks) s! ((k − 1)s − 1)! (q − ks)!

=
k − 1

k
× q!

s!(q − s)!
× (q − s)!

((k − 1)s)!(q − ks)!

=
k − 1

k

(
q

s

)(
q − s

(k − 1)s

)
.

(4) Let 0 < t = s−1
s < 1 and consider the function a(n) = (n − 1)t − nt + 1.

We have a′(n) = t[(n − 1)t−1 − nt−1] > 0. Thus, a(n) ≥ a(2) = 2 − 2t > 0.
Therefore,

(n − 1)
s−1

s > n
s−1

s − 1,

and thus,
(n − 1)s−1 > (n

s−1
s − 1)s.

(5) We have

a − 1
b − 1

≤ a

b
↔ b(a − 1) ≤ a(b − 1) ↔ a ≤ b.

(6) It is a basic result that the sequence {ek}∞k=2 is a decreasing sequence,
ek > e, and limk→∞ ek = e, the proof of this result can be found in any calculus
textbook. We have

e−x > 1 − x,

thus,

e−x
k = (e−x)ln ek > (1 − x)ln ek , and by Bernoulli’s inequality,

> 1 − x ln ek.

(7) By Cauchy’s inequality,

s! <

(
1 + 2 + . . . + s

s

)s

=
(

s + 1
2

)s

,

thus, (s + 1)/2 > (s!)1/s. It follows that (s!)−1/s (s + 1)/2 > 1.
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