


Lecture Notes in Computer Science 4273
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany



Isabel Cruz Stefan Decker
Dean Allemang Chris Preist
Daniel Schwabe Peter Mika
Mike Uschold Lora Aroyo (Eds.)

The Semantic Web –
ISWC 2006

5th International Semantic Web Conference, ISWC 2006
Athens, GA, USA, November 5-9, 2006
Proceedings

13



Volume Editors

Isabel Cruz
University of Illinois at Chicago, USA, E-mail: ifc@cs.uic.edu

Stefan Decker
DERI Galway, Ireland, E-mail: stefan.decker@deri.org

Dean Allemang
TopQuadrant, Inc., Alexandria, VA,USA, E-mail: dallemang@topquadrant.com

Chris Preist
HP Laboratories, Bristol, UK, E-mail: chris.preist@hp.com

Daniel Schwabe
Pontifical Catholic University, Rio de Janeiro, Brazil (PUC-Rio)
E-mail: dschwabe@inf.puc-rio.br

Peter Mika
Vrije Universiteit Amsterdam, The Netherlands, E-mail: pmika@cs.vu.nl

Mike Uschold
The Boeing Company, Seattle, WA, USA, E-mail: michael.f.uschold@boeing.com

Lora Aroyo
Eindhoven University of Technology, The Netherlands, E-mail: l.m.aroyo@tue.nl

Library of Congress Control Number: 2006935688

CR Subject Classification (1998): H.4, H.3, C.2, H.5, F.3, I.2, K.4

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

ISSN 0302-9743
ISBN-10 3-540-49029-9 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-49029-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11926078 06/3142 5 4 3 2 1 0



Preface 

“Evolve or perish” – this is the motto for living systems. Judging by this saying, the 
Web is alive and well: new sites and business ideas are coming online almost daily 
and are able to attract millions of users often. The more recently coined term “Web 
2.0” summarizes many of the new developments, capturing efforts making the Web 
more interactive (like Ajax), more collaborative (like Wikis), or more relationship 
oriented (like online social networks), aiming to partially fulfill the original promise 
of the Web. 

These new Web developments offer an opportunity and challenge for the Semantic 
Web: what previously manifested itself mostly in “dry” specifications is now 
becoming the foundation for information exchange on the Web, creating a shared 
semantic information space. These and other challenges have been picked up by 
several hundred computer scientists, developers, vendors, government workers, 
venture capitalists, students, and users, gathered in Athens, Atlanta, USA, November 
5–9, 2006, for the Fifth International Semantic Web Conference (ISWC 2006). 
Building on previous successful meetings in Sardinia, Sanibel Island, Hiroshima, and 
Galway, this sixth annual conference demonstrates new research results, technology, 
and applications that show current incarnations of the Semantic Web. Especially 
encouraging is the shift towards more applications—whereas the Research Track 
attracted roughly as many papers as in the previous year, the contributions submitted 
to the In-Use Track doubled. 

This volume contains the main proceedings of ISWC 2006, which we are excited 
to offer to the growing community of researchers and practitioners of the Semantic 
Web. The tremendous response to our call for papers from a truly international 
community of researchers and practitioners from 33 countries, the careful nature of 
the review process, and the breadth and scope of the papers finally selected for 
inclusion in this volume all speak to the quality of the conference and to the 
contributions made by the papers in these proceedings. Through an unprecedented 
agreement with Springer, the papers in these proceedings will also be freely available 
online to all interested parties. In addition, several online applications will provide 
access to semantically annotated information about the papers and the conference 
itself. 

The Research Track attracted 215 submissions, comparable to the number of 
papers submitted to ISWC 2005, which shows the robustness of the research base in 
this area. The review process included three distinct phases.  First, all papers were 
evaluated by three members of the Research Track Program Committee. Then, each 
paper and associated reviews provided the basis for the meta-review phase, led by an 
experienced member of the Program Committee who had not participated in the first 
phase. This strategy produced a joint recommendation from reviewers and the meta-
reviewer to the Research Track Program Co-chairs, who, in a final review phase, 
analyzed each recommendation in detail, in some cases commissioning additional 
reviews and initiating further discussions. The Program Chairs then made a definitive 
decision regarding each paper. Such a structured process, which required a great deal 



Preface VI 

of effort from the members of the Program Committee, ensured a thorough review 
while attesting to the health of our community.  In total, 52 papers were accepted, out 
of 215 submissions, a 24% acceptance rate. 

The In-Use Track replaces the Industrial Track of former years. This change was 
prompted by the observation that many deployed applications of the Semantic Web 
come from diverse sectors including government, public health, and academia, in 
addition to industry. Since the goal of this track is to provide exposure to Semantic 
Web deployments, the ISWC 2006 Organizing Committee felt that a change of name 
was in order. The In-Use Track received 42 submissions. As part of the process in 
which each paper received three reviews from the In-Use Track Program Committee, 
three papers were determined to be more appropriate to the Research Track. Of the 
remaining papers, 14 were selected for acceptance, exactly one third of the 
submissions. Three themes dominated both the submissions and the accepted papers: 
Knowledge Management, Semantic Integration, and Semantic Search. The decision 
process was particularly difficult this year, as there were many fine papers.  
Consequently, the chairs had to make a number of difficult decisions for the final cut.   

A unique aspect of the International Semantic Web Conferences is the Semantic 
Web Challenge. This is a competition in which participants from both academia and 
industry are encouraged to show how Semantic Web techniques can provide useful or 
interesting applications to end-users. In the four years since this competition was first 
organized, we have seen more than 30 integrated applications built around distributed 
data sources, which use some kind of semantic descriptions to handle the data. This 
year we had 18 submissions, double the number of the previous year, making the 
selection process harder. The topics range from multimedia retrieval to music 
recommendation, from emergency management to traditional Chinese medicine. 
Keeping with the broad international appeal, there were submissions from Europe US, 
China, Singapore, Japan and New Zealand, from both industry and academia. The 
winners of the challenge were announced at the ISWC Conference and received 
€1.000 travel support plus a €250 voucher to purchase books from Springer. 

This was the second year offering a Doctoral Consortium, which also showed an 
increase in submissions, 23, of which 6 full presentations and 8 poster presentations 
were accepted. Each paper was reviewed by senior members of the ISWC 
community, providing detailed feedback on how to structure, justify and present their 
work. The topics of the submissions cover a broad range from ontology engineering, 
reasoning, security, trust, multi-agent systems, and bioinformatics to cultural heritage. 
Submissions came in from the US, Austria, China, UK, the Czech Republic, Brazil, 
Italy, Turkey, the Netherlands, Portugal, Germany and Switzerland. Hoppers@KWeb, 
which is part of the Knowledge Web Network of Excellence, provided grants to 
support participation of PhD students in this event.  

Keynote Talks from prominent scientists further enriched IWSC 2006:  Tom 
Gruber presented his vision of the Semantic Web as a substrate for collective 
intelligence, and in particular for the Social Web; Jane Fountain, discussed the mutual 
influences of the Semantic Web and Digital Government, and, more generally, 
between information technologies and society; finally, Rudi Studer examined the 
extent to which interdisciplinary work has played and can play a role in Semantic 
Web research. 



                                                                                                          Preface 

 

VII 

A Panel provided the setting for discussions about the relationship between the 
Semantic Web and Web 2.0. In addition, the conference was enlivened by a large 
Poster and Demo Session, and a Tutorial Program. Another sign of vitality was the 
large number, 20, of high quality proposals to the Workshop Program, of which 13 
were selected. Some workshops are almost as old as the conference itself, with topics 
ranging from Semantic Desktop, User Interaction, Trust and Policies to Geospatial 
Data and Uncertainty Reasoning. We are grateful to Mark Greaves (Web 2.0 Panel 
Moderator), Max Wilson, Daniel A. Smith, m.c. schraefel, and Libby Miller (Poster 
and Demo Co-chairs), Wolfgang Nejdl (Tutorial Chair), and Vipul Kashyap 
(Workshop Chair) for ensuring the success of these events.  

We are indebted to Jen Golbeck, Proceedings Chair, who provided invaluable 
support in compiling both the printed proceedings and the CD-ROM with additional 
material. We also offer many thanks to Eric Miller, Meta Data Chair, for his expert 
coordination of the production of the semantic mark-up associated with each 
contribution to the conference. 

The meeting would not have been possible without the tireless work of the Local 
Organizer Chair, Budak Arpinar. We thank him and his team for providing excellent 
local arrangements. We would also like to thank the generous contribution from our 
sponsors and the fine work of the Sponsorship Chairs, Amit Sheth and Steffen Staab. 
We are thankful to Manos Papagelis, for providing timely support for the Confious 
Conference Management System, which was used to manage the review process. 

Finally, we would like to acknowledge the Semantic Web Science Association for 
providing the organizational oversight for ISWC 2006. 

In conclusion, ISWC 2006 was an exciting event, reflecting the high level of 
energy, creativity, and productivity that permeates the Semantic Web community. 
This is a great time to be involved in all sorts of booming and stimulating activities 
associated with the Semantic Web. 

 
 

November 2006                                                                                              Isabel Cruz 
Stefan Decker 

Program Committee Co-chairs, Research/Academic Track 
Dean Allemang 

Chris Preist 
Program Committee Co-chairs, Semantic Web In-Use Track 

Peter Mika 
Mike Uschold  

Co-chairs, Semantic Web Challenge  
Lora Aroyo  

Chair, Doctoral Consortium 
Daniel Schwabe 

Conference Chair 



Organizing Committee 

General Chair Daniel Schwabe (Catholic University of Rio de Janeiro, 
PUC-Rio, Brazil) 

Research Track Co-chairs Isabel Cruz (University of Illinois at Chicago, USA)  
Stefan Decker (DERI Galway, Ireland) 

Semantic Web In-Use Track  
Co-chairs 

Dean Allemang (TopQuadrant, USA) 
Chris Preist (HP Labs, UK) 

Tutorials Chair Wolfgang Nejdl (L3S and University of Hannover, 
Germany) 

Workshops Chair Vipul Kashyap (Partners HealthCare System, USA) 
Meta-data Chair Eric Miller (W3C, USA) 
Sponsorship Chairs Amit Sheth, for the Americas (University of Georgia 

and Semagix Inc., USA)  
Steffen Staab, for Europe (University of Koblenz, 

Germany) 
Local Organization Chair Budak Arpinar (University of Georgia, USA) 
Proceedings Chair Jennifer Golbeck (University of Maryland, College  

Park, USA) 
Doctoral Symposium Lora Aroyo (Eindhoven University of Technology,  

Netherlands) 
Poster and Demo Chairs Max Wilson (University of Southampton, UK) 

Daniel A. Smith  (University of Southampton, UK) 
M.C. Schraefel  (University of Southampton, UK) 
Libby Miller (Asemantics, UK) 

Semantic Web Challenge 
Chairs 

Peter Mika (Vrije Universiteit Amsterdam,  
Netherlands) 

Mike Uschold (Boeing Corporation, USA) 

Local Organization Committee 

Chair: I. Budak Arpinar (LSDIS Lab., Department of Computer Science, University 
of Georgia, USA) 

Holly Blanchard (Georgia Center, University of Georgia, USA) 
Boanerges Aleman-Meza (LSDIS Lab., Department of Computer Science, 

University of Georgia, USA) 
William Weems (Franking College of Arts and Sciences, University of Georgia, 

USA) 
Matt Perry (LSDIS Lab., Department of Computer Science, University of 

Georgia, USA) 
Meenakshi Nagarajan (LSDIS Lab., Department of Computer Science,  

University of Georgia, USA) 



X Organization 

Maciej Janik (LSDIS Lab., Department of Computer Science, University of 
Georgia, USA) 

Samir Tartir (LSDIS Lab., Department of Computer Science, University of 
Georgia, USA) 

Cartic Ramakrishnan (LSDIS Lab., Department of Computer Science, University 
of Georgia, USA) 

Program Committee  

José Luis Ambite (USC-ISI, USA)  
Troels Andreasen (Roskilde University, Denmark)  
Anupriya Ankolekar (University of Karlsruhe, Germany)  
Wolf-Tilo Balke (University of Hannover, Germany)  
Sean Bechhofer (University of Manchester, UK)  
Zohra Bellahsène (Université Montpellier II, France)  
Richard Benjamins (ISOCO S.A., Spain)  
Abraham Bernstein (University of Zurich, Switzerland)  
Walter Binder (EPFL, Switzerland)  
Kalina Bontcheva (University of Sheffield, UK)  
Paolo Bouquet (University of Trento, Italy)  
François Bry (University of Munich, Germany)  
Paul Buitelaar (DFKI, Germany)  
Liliana Cabral (The Open University, UK)  
Andrea Calì (Free University of Bolzano, Italy)  
Diego Calvanese (Free University of Bolzano, Italy)  
Mario Cannataro (University  “Magna Græcia” of Catanzaro, Italy)  
Silvana Castano (Università degli Studi di Milano, Italy)  
Vinay Chaudhri (SRI International, USA)  
Weiqin Chen (University of Bergen, Norway)  
Philipp Cimiano (University of Karlsruhe, Germany)  
Kendall Clark (Mindlab, University of Maryland, USA)  
Nigel Collier (National Institute of Informatics, NII, Japan)  
Ion Constantinescu (EPFL, Switzerland)  
Óscar Corcho (University of Manchester, UK)  
Philippe Cudré-Mauroux (EPFL, Switzerland)  
Hamish Cunningham (University of Sheffield, UK)  
Jos de Bruijn (University of Innsbruck, Austria)  
David De Roure (University of Southampton, UK)  
Olga De Troyer (Vrije Universiteit Brussel, Belgium)  
Mike Dean (BBN Technologies, USA)  
Keith Decker (University of Delaware)  
Thierry Declerck (DFKI GmbH, Germany)  
Grit Denker (SRI International, USA) 
Ian Dickinson (Hewlett Packard, UK)  
John Domingue (Knowledge Media Institute, The Open University, UK)  
Jin Song Dong (National University of Singapore, Singapore)  
Erik Duval (Katholieke Universiteit Leuven, Belgium)  



 Organization XI 

Martin Dzbor (Knowledge Media Institute, Open University, UK)  
Lim Ee-Peng (Nanyang Technical University, Singapore)  
Max Egenhofer (University of Maine, USA)  
Vadim Ermolayev (Zaporozhye National University, Ukraine)  
Jérôme Euzenat (INRIA, France)  
Boi Faltings (EPFL, Switzerland)  
Dieter Fensel (University of Innsbruck, Austria)  
Tim Finin (University of Maryland, Baltimore County, USA)  
Fred Fonseca (Penn State, USA)  
Gerhard Friedrich (University Klagenfurt, Austria)  
Aldo Gangemi (CNR-ISTC, Italy)  
Vladimir Geroimenko (University of Plymouth, UK)  
Nick Gibbins (University of Southampton, UK)  
Maria Gini (University of Minnesota, USA)  
Fausto Giunchiglia (University of Trento, Italy)  
Carole Goble (University of Manchester, UK)  
Christine Golbreich (Université de Rennes 1, France)  
Asunción Gómez-Pérez (UPM, Spain)  
Marko Grobelnik (Jožef Stefan Institute, Slovenia)  
William Grosky (University of Michigan-Dearborn, USA)  
Volker Haarslev (Concordia University, Canada)  
Mohand-Said Hacid (Université Lyon 1, France)  
Sung-Kuk Han (Wonkwang University, Korea)  
Siegfried Handschuh (National University of Ireland in Galway, Ireland)  
Jeff Heflin (Lehigh University, USA)  
Kaoru Hiramatsu (NTT CS Lab, Japan)  
Masahiro Hori (Kansai University, Japan)  
Ian Horrocks (University of Manchester, UK)  
Jane Hunter (DSTC, Australia)  
Nancy Ide (Vassar College, USA)  
Toru Ishida (Kyoto University, Japan)  
Anupam Joshi (University of Maryland, Baltimore County, USA)  
Takahiro Kawamura (Toshiba Corporation, Japan)  
Rich Keller (NASA Ames, USA)  
Hong-Gee Kim (Seoul National University, Korea)  
Roger King (University of Colorado, USA)  
Yasuhiko Kitamura (Kwansei Gakuin University, Japan)  
Michel Klein (Vrije Universiteit Amsterdam, Netherlands)  
Matthias Klusch (DFKI, Germany)  
Yiannis Kompatsiaris (ITI, Thessaloniki, Greece)  
Manolis Koubarakis (National and Kapodistrian University of Athens, Greece) 
Thibaud Latour (CRP Henri Tudor, Luxembourg)  
Georg Lausen (Albert-Ludwigs Universität Freiburg, Germany)  
David Leake (Indiana University, USA)  
Domenico Lembo (Università di Roma “La Sapienza,” Italy)  
Maurizio Lenzerini (Università di Roma “La Sapienza,” Italy)  
Fernanda Lima (Universidade Católica de Brasília, Brazil)  



XII Organization 

Ling Liu (Georgia Tech, USA)  
Joanne Luciano (Harvard Medical School, USA)  
Bob MacGregor (Siderean Software, USA)  
David Maluf (NASA Ames, USA)  
David Martin (SRI, USA)  
Mihhail Matskin (KTH, Sweden)  
Diana Maynard (University of Sheffield, UK)  
Brian McBride (Hewlett Packard, Bristol, UK)  
Luke McDowell (United States Naval Academy, USA)  
Deborah McGuinness (KSL, Stanford University, USA)  
Simon Miles (University of Southampton, UK)  
Prasenjit Mitra (Pennsylvania State University, USA)  
Riichiro Mizoguchi (Osaka University, Japan)  
Marina Mongiello (Politecnico di Bari, Italy)  
Pavlos Moraitis (Ren Descartes University, France)  
Boris Motik (University of Manchester, UK)  
Enrico Motta (Knowledge Media Institute, Open University, UK)  
John Mylopoulos (University of Toronto, Canada)  
Natasha Noy (Stanford University, USA)  
Tim Oates (University of Maryland Baltimore County, USA)  
Sam Gyun Oh (SungKyunKwan University, Korea)  
Jeff Pan (University of Aberdeen, UK)  
Yue Pan (IBM China Research Laboratory, China)  
Massimo Paolucci (DoCoMo Euro-labs, Germany)  
Bijan Parsia (University of Manchester, UK)  
Peter Patel-Schneider (Bell Labs, USA)  
Terry Payne (University of Southampton, UK)  
Paulo Pinheiro da Silva (The University of Texas at El Paso, USA)  
Dimitris Plexousakis (FORTH, University of Crete, Greece)  
Line Pouchard (Oak Ridge National Laboratory, USA)  
Wolfgang Prinz (Fraunhofer Institute for Applied Information Technology FIT, 

Germany)  
Yuzhong Qu (Southeast University, China)  
Zbigniew Ras (University of North Carolina, USA)  
Chantal Reynaud (Université Paris-Sud, Orsay - LRI, France)  
Mark Roantree (Dublin City University, Ireland)  
Andrea Rodríguez (Universidad de Concepción, Chile)  
Alan Ruttenberg (Millennium Pharmaceuticals, USA)  
Henryk Rybinski (Warsaw University of Technology, Poland) 
Marta Sabou (The Open University, UK)  
Norman Sadeh (CMU, USA)  
Fereidoon Sadri (University of North Carolina, USA)  
Ulrike Sattler (University of Manchester, UK)  
Michel Scholl (CNAM, France)  
mc schraefel (University of Southampton, UK)  
Guus Schreiber (Vrije Universiteit Amsterdam, Netherlands)  
Michael Schumacher (EPFL, Switzerland)  



 Organization XIII 

Amit Sheth (University of Georgia, USA)  
Wolf Siberski (University of Hannover, Germany)  
Carles Sierra (IIIA/CSIC, Spain)  
Nuno Silva (ISEP, Portugal)  
Munindar Singh (North Carolina State University, USA)  
Michael Sintek (DFKI, Germany)  
Andrzej Skowron (Institute of Mathematics, Warsaw University, Poland)  
Derek Sleeman (University of Aberdeen, UK)  
Steffen Staab (Univerity of Koblenz, Germany)  
Giorgos Stamou (University of Athens, Greece)  
Lynn Andrea Stein (Franklin W. Olin College of Engineering, USA)  
Umberto Straccia (ISTI-NCR, Italy)  
Heiner Stuckenschmidt (Universität Mannheim, Germany)  
Rudi Studer (Institute AIFB, University of Karlsruhe, Germany)  
Gerd Stumme (University of Kassel, Germany)  
York Sure (University of Karlsruhe, Germany)  
Katia Sycara (Carnegie Mellon University, USA)  
Said Tabet (Inferware Corp., USA)  
Hideaki Takeda (National Institute for Informatics, Japan)  
Valentina Tamma (University of Liverpool, UK)  
Val Tannen (University of Pennsylvania, USA)  
Herman ter Horst (Philips Research, The Netherlands)  
Sergio Tessaris (Free University of Bolzano, Italy)  
Bhavani Thuraisingham (University of Texas at Dallas, USA)  
Robert Tolksdorf (Freie Universität Berlin, Germany)  
Raphal Troncy (CWI, The Netherlands)  
Yannis Tzitzikas (University of Crete, Greece)  
Andrzej Uszok (Institute for Human and Machine Cognition, USA)  
Frank van Harmelen (Vrije Universiteit Amsterdam, Netherlands)  
Ubbo Visser (University of Bremen, Germany)  
Dan Vodislav (CNAM, France)  
Christopher Welty (IBM T. J. Watson Research Center, USA)  
Graham Wilcock (University of Helsinki, Finland)  
Steve Willmott (Universitat Politècnica de Catalunya, Spain)  
Michael Wooldridge (University of Liverpool, UK)  
Takahira Yamaguchi (Keio University, Japan)  
Guizhen Yang (SRI International, USA) 
Yiyu Yao (University of Regina, Canada)  
Yong Yu (Shanghai Jiao Tong University, China)  
Hai Zhuge (Chinese Academy of Sciences, China)  
Djamel A. Zighed (University of Lyon, France)  

Program Committee - Semantic Web In-Use Track  

Ama Akkira ju (IBM T. J. Watson Research Center, New York, USA)  
Richard Benjamins (iSOCO, Spain)  



XIV Organization 

Dan Brickley (W3C, UK)  
David Karger (MIT, USA)  
Steve Cayzer (HPLabs, UK)  
Andy Crapo (GE, USA)  
Mike Dean (BBN Technologies, USA)  
Michael Denny (Consultant, USA)  
John Domingue (Open University, UK)  
Garry Edwards (ISX, USA)  
Lars M. Garshol (Ontopia, Norway)  
Ivan Herman (W3C, Netherlands)  
Atanas Kiryakov (Ontotext, Bulgaria)  
Ruediger Klein (DaimlerChrysler, Germany)  
Joanne Luciano (Harvard Medical School, USA)  
Libby Miller (Asemantics, UK)  
Mark Musen (Stanford University, USA)  
Andreas Presidis (Biovista, Greece)  
Paul Shabajee (Bristol University, UK)  
Christian de Sainte Marie (ILOG, France)  
Susan Thomas (SAP, Germany)  
Ralph Traphoener (Empolis, Germany)  
Chris van Aart (Acklin, Netherlands) 

Additional Reviewers  

Ahmed Alasoud (Concordia University, Canada)  
Padmapriya Ayyagari (Pennsylvania State University, USA)  
Salima Benbernou (LIRIS, France)  
Janez Brank (Jožef Stefan Institute, Slovenia)  
John Breslin (DERI, NUI Galway, Ireland) 
Christopher Brewster (University of Sheffield, UK)  
Jean-Sébastien Brunner (Centre de Recherche Public Henri Tudor, Luxembourg)  
Henrik Bulskov (Roskilde University, Denmark)  
Kenta Cho (Toshiba Corporation, Japan)  
Bernardo Cuenca Grau (University of Manchester, UK)  
Alexandre Delteil (France Telecom R&D, France)  
Xi Deng (Concordia University, Canada) 
Marin Dimitrov (Sirma AI Ltd., Bulgaria)  
Yannis Dimopoulos (University of Cyprus, Cyprus)  
Nikhil Dinesh (University of Pennsylvania, USA)  
Paolo Dongilli (Free University of Bozen-Bolzano, Italy)  
Cedric du Mouza (LAMSADE, Université Paris-Dauphine, France)  
Alistair Duke (British Telecom, UK)  
Cristina Feier (DERI, University of Innsbruck, Austria)  
Miriam Fernandez (Universidad Autónoma de Madrid, Spain)  
Blaz Fortuna (Jožef Stefan Institute, Slovenia)  
Enrico Franconi (Free University of Bozen-Bolzano, Italy)  



 Organization XV 

Stefania Galizia (KMi, Open University, UK)  
Daniel Giacomuzzi (University of Trento, Italy)  
Antoon Goderis (University of Manchester, UK)  
Rafael González-Cabero (Universidad Politécnica de Madrid, Spain)  
Gunnar Grimnes (DFKI, Germany)  
Tudor Groza (DERI, NUI Galway, Ireland)  
Christian Halaschek-Wiener (University of Maryland, USA)  
Sung-Kook Han (Won Kwang University, Korea)  
Siegfried Handschuh (DERI, NUI Galway, Ireland)  
Andreas Harth (DERI, NUI Galway, Ireland)  
Masumi Inaba (University of Utsunomiya, Japan)  
Anuj R. Jaiswal (Pennsylvania State University, USA)  
Zoi Kaoudi (National and Kapodistrian University of Athens, Greece)  
Grigoris Karvounarakis (University of Pennsylvania, USA)  
Esther Kaufmann (University of Zurich, Switzerland)  
Peihong Ke (University of Manchester, UK)  
Malte Kiesel (DFKI, Germany)  
Joey Lam (University of Aberdeen, UK)  
Yang Liu (National University of Singapore, Singapore)  
Yaoyong Li (University of Sheffield, UK)  
Davide Martinenghi (Free University of Bozen-Bolzano, Italy)  
Iris Miliaraki (University of Athens, Greece)  
Yumiko Mizoguchi (Toshiba Corporation, Japan)  
Shinichi Nagano (Toshiba Corporation, Japan)  
Barry Norton (KMi, Open University, UK)  
Guillermo Nudelman Hess (Universidade Federal do Rio Grande do Sul, Brazil)  
Hsueh-Ieng Pai (Concordia University, Canada)  
Adrián Perreau de Pinninck (IIIA-CSIC, Spain)  
Axel Polleres (Universidad Rey Juan Carlos, Spain)  
Josep M. Pujol (Universitat Politècnica de Catalunya, Spain)  
Jinghai Rao (Carnegie Mellon University, USA)  
Marco Ruzzi (Università di Roma “La Sapienza,” Italy)  
Jordi Sabater-Mir (IIIA-CSIC, Spain)  
Leonardo Salayandia (University of Texas at El Paso, USA)  
Arash Shaban-Nejad (Concordia University, Canada) 
Heiko Stoermer (University of Trento, Italy)  
Giorgos Stoilos (National and Technical University of Athens, Greece)  
Edward Thomas (University of Aberdeen, UK)  
Farouk Toumani (LIMOS, France)  
Goce Trajcevski (Northwestern University, USA)  
Ludger van Elst (DFKI, Germany)  
Thomas Vestskov Terney (Roskilde University, Denmark)  
Max Wilson (University of Southampton, UK)  
Chris Wroe (British Telecom, UK)  
Yeliz Yesilada (University of Manchester, UK)  
Qiankun Zhao (Pennsylvania State University, USA)  
Ziming Zhuang (Pennsylvania State University, USA)  



XVI Organization 

Sponsors  

Gold Sponsors  
DIP- Data, Information, and Process Integration with Semantic Web Services  
SUPER - Semantics Utilised for Process Management within and between Enterprises  
Ontotext  
Vulcan  

Silver Sponsors  
Aduna  
Elsevier  
Microsoft Live Labs  
NeOn  
Nepomuk  
Nokia 
Journal of Web Semantics  
Ontoprise 
SEKT (Semantically-Enabled Knowledge Technologies) 
TopQuadrant 

 

 
 

 

           

               
 
 



Table of Contents

1 Research Track

Ranking Ontologies with AKTiveRank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Harith Alani, Christopher Brewster, Nigel Shadbolt

Three Semantics for Distributed Systems and Their Relations
with Alignment Composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Antoine Zimmermann, Jérôme Euzenat

Semantics and Complexity of SPARQL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Jorge A. Pérez, Marcelo Arenas, Claudio Gutierrez

Ontology-Driven Automatic Entity Disambiguation in Unstructured
Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Joseph Hassell, Boanerges Aleman-Meza, I. Budak Arpinar

Augmenting Navigation for Collaborative Tagging with Emergent
Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Melanie Aurnhammer, Peter Hanappe, Luc Steels

On the Semantics of Linking and Importing in Modular Ontologies . . . . . 72
Jie Bao, Doina Caragea, Vasant G. Honavar

RS2D: Fast Adaptive Search for Semantic Web Services in Unstructured
P2P Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Ulrich Basters, Matthias Klusch

SADIe: Semantic Annotation for Accessibility . . . . . . . . . . . . . . . . . . . . . . . . . 101
Sean Bechhofer, Simon Harper, Darren Lunn

Automatic Annotation of Web Services Based on Workflow Definitions . . . 116
Khalid Belhajjame, Suzanne M. Embury, Norman W. Paton,
Robert Stevens, Carole A. Goble

A Constraint-Based Approach to Horizontal Web Service Composition . . . 130
Ahlem Hassine Ben, Shigeo Matsubara, Toru Ishida

GINO - A Guided Input Natural Language Ontology Editor . . . . . . . . . . . . 144
Abraham Bernstein, Esther Kaufmann

Fresnel: A Browser-Independent Presentation Vocabulary for RDF . . . . . . 158
Emmanuel Pietriga, Christian Bizer, David Karger, Ryan Lee



XVIII Table of Contents

A Software Engineering Approach to Design and Development
of Semantic Web Service Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Marco Brambilla, Irene Celino, Stefano Ceri, Dario Cerizza,
Emanuele Della Valle, Federico Michele Facca

A Model Driven Approach for Building OWL DL and OWL Full
Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

Saartje Brockmans, Robert M. Colomb, Peter Haase,
Elisa F. Kendall, Evan K. Wallace, Chris Welty, Guo Tong Xie

IRS-III: A Broker for Semantic Web Services Based Applications . . . . . . . . 201
Liliana Cabral, John Domingue, Stefania Galizia, Alessio Gugliotta,
Vlad Tanasescu, Carlos Pedrinaci, Barry Norton

Provenance Explorer – Customized Provenance Views Using Semantic
Inferencing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Kwok Cheung, Jane Hunter

On How to Perform a Gold Standard Based Evaluation of Ontology
Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

Klaas Dellschaft, Steffen Staab

Characterizing the Semantic Web on the Web . . . . . . . . . . . . . . . . . . . . . . . . 242
Li Ding, Tim Finin

MultiCrawler: A Pipelined Architecture for Crawling and Indexing
Semantic Web Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

Andreas Harth, Jürgen Umbrich, Stefan Decker

/facet: A Browser for Heterogeneous Semantic Web Repositories . . . . . . . . 272
Michiel Hildebrand, Jacco van Ossenbruggen, Lynda Hardman

Using Ontologies for Extracting Product Features from Web Pages . . . . . 286
Wolfgang Holzinger, Bernhard Krüpl, Marcus Herzog

Block Matching for Ontologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300
Wei Hu, Yuzhong Qu

A Relaxed Approach to RDF Querying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Carlos A. Hurtado, Alexandra Poulovassilis, Peter T. Wood

Mining Information for Instance Unification . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Niraj Aswani, Bontcheva Kalina, Hamish Cunningham



Table of Contents XIX

The Summary Abox: Cutting Ontologies Down to Size . . . . . . . . . . . . . . . . . 343
Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg,
Kavitha Srinivas

Semantic Metadata Generation for Large Scientific Workflows . . . . . . . . . . 357
Jihie Kim, Yolanda Gil, Varun Ratnakar

Reaching Agreement over Ontology Alignments . . . . . . . . . . . . . . . . . . . . . . . 371
Loredana Laera, Valentina Tamma, Jérôme Euzenat,
Trevor Bench-Capon, Terry Payne

A Formal Model for Semantic Web Service Composition . . . . . . . . . . . . . . . 385
Freddy Lécué, Alain Léger

Evaluating Conjunctive Triple Pattern Queries over Large Structured
Overlay Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Erietta Liarou, Stratos Idreos, Manolis Koubarakis

PowerMap: Mapping the Real Semantic Web on the Fly . . . . . . . . . . . . . . . 414
Vanessa Lopez, Marta Sabou, Enrico Motta

Ontology-Driven Information Extraction with OntoSyphon . . . . . . . . . . . . . 428
Luke K. McDowell, Michael Cafarella

Ontology Query Answering on Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445
Jing Mei, Li Ma, Yue Pan

Formal Model for Ontology Mapping Creation . . . . . . . . . . . . . . . . . . . . . . . . 459
Adrian Mocan, Emilia Cimpian, Mick Kerrigan

A Semantic Context-Aware Access Control Framework for Secure
Collaborations in Pervasive Computing Environments . . . . . . . . . . . . . . . . . 473

Alessandra Toninelli, Rebecca Montanari, Lalana Kagal, Ora Lassila

Extracting Relations in Social Networks from the Web Using
Similarity Between Collective Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Junichiro Mori, Takumi Tsujishita, Yutaka Matsuo, Mitsuru Ishizuka

Can OWL and Logic Programming Live Together Happily
Ever After? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501

Boris Motik, Ian Horrocks, Riccardo Rosati, Ulrike Sattler

Innovation Detection Based on User-Interest Ontology
of Blog Community . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

Makoto Nakatsuji, Yu Miyoshi, Yoshihiro Otsuka



XX Table of Contents

Modeling Social Attitudes on the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 529
Matthias Nickles

A Framework for Ontology Evolution in Collaborative Environments . . . . 544
Natalya F. Noy, Abhita Chugh, William Liu, Mark A. Musen

Extending Faceted Navigation for RDF Data . . . . . . . . . . . . . . . . . . . . . . . . . 559
Eyal Oren, Renaud Delbru, Stefan Decker

Reducing the Inferred Type Statements with Individual Grouping
Constructs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573

Övünç Öztürk, Tuğba Özacar, Murat Osman Ünalır

A Framework for Schema-Driven Relationship Discovery from
Unstructured Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Cartic Ramakrishnan, Krys J. Kochut, Amit P. Sheth

Web Service Composition Via Generic Procedures and Customizing
User Preferences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597

Shirin Sohrabi, Nataliya Prokoshyna, Sheila A. McIlraith

Querying the Semantic Web with Preferences . . . . . . . . . . . . . . . . . . . . . . . . . 612
Wolf Siberski, Jeff Z. Pan, Uwe Thaden

ONTOCOM: A Cost Estimation Model for Ontology Engineering . . . . . . . . 625
Elena Paslaru Bontas Simperl, Christoph Tempich, York Sure

Tree-Structured Conditional Random Fields for Semantic Annotation . . . . 640
Jie Tang, Mingcai Hong, Juanzi Li, Bangyong Liang

Framework for an Automated Comparison of Description Logic
Reasoners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 654

Tom Gardiner, Dmitry Tsarkov, Ian Horrocks

Integrating and Querying Parallel Leaf Shape Descriptions . . . . . . . . . . . . . 668
Shenghui Wang, Jeff Z. Pan

A Survey of the Web Ontology Landscape . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682
Taowei David Wang, Bijan Parsia, James Hendler

CropCircles: Topology Sensitive Visualization of OWL
Class Hierarchies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 695

Taowei David Wang, Bijan Parsia

Towards Knowledge Acquisition from Information Extraction . . . . . . . . . . . 709
Chris Welty, J. William Murdock



Table of Contents XXI

A Method for Learning Part-Whole Relations . . . . . . . . . . . . . . . . . . . . . . . . 723
Willem Robert van Hage, Hap Kolb, Guus Schreiber

2 Semantic Web in Use

OntoWiki – A Tool for Social, Semantic Collaboration . . . . . . . . . . . . . . . . . 736
Sören Auer, Sebastian Dietzold, Thomas Riechert

Towards a Semantic Web of Relational Databases: A Practical
Semantic Toolkit and an In-Use Case from Traditional Chinese
Medicine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 750

Huajun Chen, Yimin Wang, Heng Wang, Yuxin Mao,
Jinmin Tang, Cunyin Zhou, Ainin Yin, Zhaohui Wu

Information Integration Via an End-to-End Distributed Semantic
Web System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 764

Dimitre A. Dimitrov, Jeff Heflin, Abir Qasem, Nanbor Wang

NEWS: Bringing Semantic Web Technologies into News Agencies . . . . . . . 778
Norberto Fernández, José M. Blázquez, Jesús A. Fisteus,
Luis Sánchez, Michael Sintek, Ansgar Bernardi, Manuel Fuentes,
Angelo Marrara, Zohar Ben-Asher

Semantically-Enabled Large-Scale Science Data Repositories . . . . . . . . . . . . 792
Peter Fox, Deborah McGuinness, Don Middleton, Luca Cinquini,
J. Anthony Darnell, Jose Garcia, Patrick West, James Benedict,
Stan Solomon

Construction and Use of Role-Ontology for Task-Based Service
Navigation System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 806

Yusuke Fukazawa, Takefumi Naganuma, Kunihiro Fujii,
Shoji Kurakake

Enabling an Online Community for Sharing Oral Medicine Cases
Using Semantic Web Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 820

Marie Gustafsson, Göran Falkman, Fredrik Lindahl,
Olof Torgersson

EKOSS: A Knowledge-User Centered Approach to Knowledge
Sharing, Discovery, and Integration on the Semantic Web . . . . . . . . . . . . . . 833

Steven Kraines, Weisen Guo, Brian Kemper, Yutaka Nakamura

Ontogator — A Semantic View-Based Search Engine Service
for Web Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 847

Eetu Mäkelä, Eero Hyvönen, Samppa Saarela



XXII Table of Contents

Explaining Conclusions from Diverse Knowledge Sources . . . . . . . . . . . . . . 861
J. William Murdock, Deborah L. McGuinness,
Paulo Pinheiro da Silva,Chris Welty, David Ferrucci

A Mixed Initiative Semantic Web Framework for Process Composition . . . 873
Jinghai Rao, Dimitar Dimitrov, Paul Hofmann, Norman Sadeh

Semantic Desktop 2.0: The Gnowsis Experience . . . . . . . . . . . . . . . . . . . . . . . 887
Leo Sauermann, Gunnar Aastrand Grimnes, Malte Kiesel,
Christiaan Fluit, Heiko Maus, Dominik Heim, Danish Nadeem,
Benjamin Horak, Andreas Dengel

Towards Semantic Interoperability in a Clinical Trials Management
System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901

Ravi D. Shankar, Susana B. Martins, Martin J. O’Connor,
David B. Parrish, Amar K. Das

Active Semantic Electronic Medical Record . . . . . . . . . . . . . . . . . . . . . . . . . . 913
A. Sheth, S. Agrawal, J. Lathem, N. Oldham, H. Wingate,
P. Yadav, K. Gallagher

3 Semantic Web Challenge

Foafing the Music: Bridging the Semantic Gap in Music
Recommendation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927

Òscar Celma

Semantic MediaWiki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 935
Markus Krötzsch, Denny Vrandečić, Max Völkel

Enabling Semantic Web Communities with DBin: An Overview . . . . . . . . . 943
Giovanni Tummarello, Christian Morbidoni, Michele Nucci

MultimediaN E-Culture Demonstrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 951
Guus Schreiber, Alia Amin, Mark van Assem, Victor de Boer,
Lynda Hardman, Michiel Hildebrand, Laura Hollink,
Zhisheng Huang, Janneke van Kersen, Marco de Niet,
Borys Omelayenko, Jacco van Ossenbruggen, Ronny Siebes,
Jos Taekema, Jan Wielemaker, Bob Wielinga

A Semantic Web Services GIS Based Emergency Management
Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 959

Vlad Tanasescu, Alessio Gugliotta, John Domingue, Rob Davies,
Leticia Gutiérrez-Villaŕıas, Mary Rowlatt, Marc Richardson,
Sandra Stinčić



Table of Contents XXIII

4 Doctoral Consortium

Package-Based Description Logics - Preliminary Results . . . . . . . . . . . . . . . 967
Jie Bao, Doina Caragea, Vasant G. Honavar

Distributed Policy Management in Semantic Web . . . . . . . . . . . . . . . . . . . . . 970
Özgü Can, Murat Osman Ünalır

Evaluation of SPARQL Queries Using Relational Databases . . . . . . . . . . . . 972
Jǐŕı Dokulil

Dynamic Contextual Regulations in Open Multi-agent Systems . . . . . . . . . 974
Carolina Howard Felićıssimo

From Typed-Functional Semantic Web Services to Proofs . . . . . . . . . . . . . . 976
Harry Halpin

Towards a Usable Group Editor for Ontologies . . . . . . . . . . . . . . . . . . . . . . . . 978
Jan Henke

Talking to the Semantic Web - Query Interfaces to Ontologies
for the Casual User . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 980

Esther Kaufmann

Changing Ontology Breaks Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 982
Yaozhong Liang, Harith Alani, Nigel Shadbolt

Towards a Global Scale Semantic Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 986
Zhengxiang Pan

Schema Mappings for the Web . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 988
François Scharffe

Triple Space Computing for Semantic Web Services – A PhD
Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 989

M. Omair Shafiq

Toward Making Online Biological Data Machine Understandable . . . . . . . . 992
Cui Tao

5 Keynote Abstracts

Where the Social Web Meets the Semantic Web . . . . . . . . . . . . . . . . . . . . . . 994
Tom Gruber



XXIV Table of Contents

The Semantic Web: Suppliers and Customers . . . . . . . . . . . . . . . . . . . . . . . . . 995
Rudi Studer

The Semantic Web and Networked Governance: Promise
and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 997

Jane E. Fountain

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 999



Ranking Ontologies with AKTiveRank

Harith Alani1, Christopher Brewster2, and Nigel Shadbolt1

1 Intelligence, Agents, Multimedia
School of Electronics and Computer Science

University of Southampton, Southampton, UK
{h.alani, nrs}@ecs.soton.ac.uk

2 Dept. of Computer Science
University of Sheffield, Sheffield, UK
C.Brewster@dcs.shef.ac.uk

Abstract. Ontology search and reuse is becoming increasingly important as the
quest for methods to reduce the cost of constructing such knowledge structures
continues. A number of ontology libraries and search engines are coming to ex-
istence to facilitate locating and retrieving potentially relevant ontologies. The
number of ontologies available for reuse is steadily growing, and so is the need
for methods to evaluate and rank existing ontologies in terms of their relevance
to the needs of the knowledge engineer. This paper presents AKTiveRank, a pro-
totype system for ranking ontologies based on a number of structural metrics.

1 Introduction

Knowledge representation in the Semantic Web will be largely based on ontologies.
However, ontology construction remains challenging, mainly due to the skill, time, ef-
fort, and domain specific knowledge required. In order to minimise this, one of the
major advantages claimed of ontologies is the potential of “reuse”. Publicly available
ontologies are to be reused, modified, extended, and pruned as required, thereby avoid-
ing the huge effort of starting from scratch [1].

Search engines to help finding relevant ontologies have started to appear in recent
years. Swoogle1 [5] is currently dominating this area of development, indexing an in-
creasing number of ontologies covering a wide range of domains.

As the number of ontologies that such search engines can find increases, so will the
need increase for a proper ranking method to order the returned lists of ontologies in
terms of their relevancy to the query. This could save a lot of time and effort by reducing
the need to examine in detail each and every ontology returned to find out how well it
suits the needs of the agent or knowledge engineer.

Evaluating and ranking ontologies can be based on many different criteria [8]. This
paper presents AKTiveRank, a prototype of an ontology ranking system which applies
a number of analytic methods to rate each ontology based on an estimation of how
well it represents the given search terms. AKTiveRank could be integrated with other,
different, ranking systems to include additional ranking criteria, such as user ratings or
content coverage.

1 http://swoogle.umbc.edu/

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



2 H. Alani, C. Brewster, and N. Shadbolt

Related work concerning ontology evaluation and ranking is reviewed in the follow-
ing section. A full description of the architecture and ranking method is given in section
3. An experiment is detailed in section 4 and evaluated in section 5. Future work and
Conclusions are discussed in the final sections of the paper.

2 Ontology Evaluation and Ranking

Lack of automatic, well grounded, methodologies to evaluate ontologies may seriously
hinder their adoption by the industry and the wider web community [8]. Ontologies
may be assessed from different angles, such as how the ontologies have been rated and
reviewed by users (e.g. [21]), how well they meet the requirements of certain evaluation
tests (e.g. [10]) or general ontological properties (e.g. [13]).

Gangemiandcolleagues[8]definethreemaintypesofevaluation; functional,usability-
based, and structural evaluation. Functional evaluation focuses on measuring how well
an ontology is serving its purpose (e.g. [3]). Usability evaluations is concerned with
metadata and annotations (e.g. [9]). Structural evaluation focuses on the structural prop-
erties of the ontology as a graph (e.g. [2]).

Other criteria for evaluating an ontology can be based on its content coverage. Jones
and Alani are experimenting with ranking ontologies based on a tf/idf comparison of
each potentially relevant ontology with an automatically gathered corpus that describes
the domain of interest [11].

Some ontology search engines adopted a PageRank-like method to rank ontologies
by analysing links and referrals between the ontologies in the hope of identifying the
most popular ones (e.g. Swoogle [5,6] and OntoKhoj [16]). However, this method of
ranking will not work for a large number of existing ontologies because of their poor
connectivity and lack of referrals from other ontologies [5]. Such ‘self contained’ or
‘isolated’ ontologies would certainly receive poor PageRank results, thus highlighting
the need for additional ranking methods. Furthermore, the popularity of an ontology
could be a good overall assessment of the ontology, but it does not necessarily correlate
with ‘good’ or appropriate representations of specific pieces of knowledge (e.g. certain
classes) [2].

Based on the various evaluation and ranking methods mentioned above, it is clear
that there is a need to assess all important features of an ontology. This can provide a
multi-dimensional ranking approach that users can control as required.

AKTiveRank is an experimental system for ranking ontologies based on a number of
measures that assess the ontology in terms of how well it represents the concepts of in-
terest. Users are assumed to be using an ontology search engine (e.g. Swoogle) to do the
search. The query submitted to the search engine is used by AKTiveRank to identify the
concepts that match the user’s request. The ranking measures applied by AKTiveRank
will be based on the representation of those concepts and their neighbourhoods.

This paper experiments with a modified set of ranking measures to those we previ-
ously used and described in [2]. The measures and an experiment are presented in the
following sections.



Ranking Ontologies with AKTiveRank 3

3 AKTiveRank

Figure 1 shows the current architecture of AKTiveRank. The main component (number
2 in the figure) is a Java Servlet that receives an HTTP query from a user or an agent
(no. 1). The query contains the terms to search for. Currently it is only possible to search
for concepts. In other words, search terms will only be matched with ontology classes,
and not with properties or comments. This is simply to focus AKTiveRank on assessing
the representation of the concepts of interest to the user.

Fig. 1. AKTiveRank Architecture

When a search query is received, AKTiveRank forwards the query to Swoogle (no.
3) and retrieves the returned ontology URIs. Even though AKTiveRank currently relies
on Swoogle to get the list of potentially relevant ontologies to be ranked, it is in no way
restricted to it. Other sources and methods for searching for ontologies can also be used
to feed AKTiveRank with lists of ontologies.

Once a list of ontology candidates is gathered, AKTiveRank starts to check whether
those ontologies are already stored in a Jena MySQL database back-end (no. 4), and if
not, downloads them from the web (no. 5) and add them to the database. The Jena API
is used here to read the ontologies and handle the database storage.

Existing RDF query languages are not well suited for graph queries. To this end,
the current version of AKTiveRank is connected to a purpose-built JUNG servlet (no.
6), which receives an ontology URI and sends back results of JUNG queries in RDF.
JUNG (Java Universal Network/Graph framework) is a software library for analysing
and visualising network graphs.

AKTiveRank then analyses each of the ontology candidates to determine which is
most relevant to the given search terms. This analysis will produce a ranking of the



4 H. Alani, C. Brewster, and N. Shadbolt

retrieved ontologies, and the results are returned to the user as an OWL file containing
the ontology URIs and their total ranks.

3.1 The Ranking Measures

AKTiveRank applies four measures to evaluate different representational aspects of
the ontology and calculate its ranking. Each ontology is examined separately. Once
those measures are all calculated for an ontology, the resulting values will be merged to
produce the total rank for the ontology.

The measures used in AKTiveRank are experimental and subject to change. In a pre-
vious version of AKTiveRank which was reported in [2], one of the measures applied
was the Centrality Measure (CEM). That measure aimed to assess how representative a
class is of an ontology based on the observation that the closer a class is to the middle
level of the hierarchy, the more likely it is that the representation of the class is well
detailed [19]. However, in some experiments we found a few ontologies that placed our
concept of interest near the top of the hierarchy. Those few ontologies were entirely
focused around the concept we were searching for. This meant that even though such
ontologies can be highly relevant to our search, they scored very low in CEM. Further-
more, we also found that CEM values corresponded in most cases to the values of the
Density measure, and rendered CEM somewhat redundant.

The new implementation of AKTiveRank also introduces a new measure; the Be-
tweenness measure, and extends the Class Match measure as described in the following
sections. An example on calculating the values for an ontology will be given for each
of the four measures currently used by AKTiveRank.

Class Match Measure. The Class Match Measure (CMM) is meant to evaluate the
coverage of an ontology for the given search terms. Similar metrics have been used in
the past as part of measures to estimate similarity of software descriptions [20].

AKTiveRank looks for classes in each ontology that have labels matching a search
term either exactly (class label “identical to” search term) or partially (class label “con-
tains” the search term). An ontology that covers all search terms will obviously score
higher than others, and exact matches are regarded as better than partial matches. For
example if searching for “Student” and “University”, then an ontology with two classes
labelled exactly as the search terms will score higher in this measure than another on-
tology which contains partially matching classes, e.g. “UniversityBuilding” and “PhD-
Student” (see example below).

This measure has been extended from its previous version used in [2] by allowing
it to take into account the total number of partially matching classes. In other words,
if we are interested in the concept “student”, then the CMM value for this ontology
will be higher the more classes it has with the given word appearing in their labels or
URIs. In another study we found that taking partial matches into account can sometimes
be problematic and may reduce the search quality [11] (e.g. “gene” and “generator”).
Therefore, the use of partially matching class labels has been limited to CMM only for
the time being. Only if an exact match is unavailable that a partial match is considered
in the other three measures.



Ranking Ontologies with AKTiveRank 5

Definition 1. Let C[o] be a set of classes in ontology o, and T is the set of search terms.

E(o, T ) =
∑

c∈C[o]

∑
t∈T

I(c, t) (1)

I(c, t) =
{

1 : if label(c) = t
0 : if label(c) �= t

(2)

P (o, T ) =
∑

c∈C[o]

∑
t∈T

J(c, t) (3)

J(c, t) =
{

1 : if label(c) contains t
0 : if label(c) not contain t

(4)

where E(o, T ) and P (o, T ) are the number of classes of ontology o that have labels
that match any of the search terms t exactly or partially, respectively.

CMM(o, τ) = αE(o, T ) + βP (o, T ) (5)

where CMM(o, τ) is the Class Match Measure for ontology o with respect to search
terms τ . α and β are the exact matching and partial matching weight factors respec-
tively. Exact matching is favoured over partial matching if α > β. In the experiments
described in this paper, α = 0.6 & β = 0.4, thus putting more emphasis on exact
matching.

Example: When searching the ontology o (aktive-portal-ontology-latest.owl2) for class
labels that equals, or contains, the terms “student” or “university”, the following classes
can be found: Student, PhD-Student, University, Distance-teaching-university and
University-faculty. So the results is two classes with identical labels to our search terms,
and three classes with labels containing the search terms. CMM can therefore be calcu-
lated as follows:

cmm(student) = 1 ∗ 0.6 + 1 ∗ 0.4 = 1
cmm(university) = 1 ∗ 0.6 + 2 ∗ 0.4 = 1.4
CMM(o, {student, university}) = 1 + 1.4 = 2.4

Density Measure. When searching for a specific concept, one would expect to find a
certain degree of detail in the representation of the knowledge concerning that concept
(i.e. a rich conceptual neighbourhood). This may include how well the concept is fur-
ther specified (the number of subclasses), the number of properties associated with that
concept, number of siblings, etc. All this is taken into account in the Density Measure
(DEM). DEM is intended to approximate the representational-density or information-
content of classes and consequently the level of knowledge detail.

Density calculations are currently limited to the numbers of direct relations, sub-
classes, superclasses, and siblings. We dropped the number of instances from this mea-
sure as this might skew the results unfairly towards populated ontologies which may
not necessarily reflect the quality of the schema itself.

2 http://www.mindswap.org/2004/SSSW04/aktive-portal-ontology-latest.owl



6 H. Alani, C. Brewster, and N. Shadbolt

Definition 2. Let S = {S1, S2, S3, S4} =
{subclasses[c], superclasses[c], relations[c], siblings[c]}

dem(c) =
4∑

i=1

wi|Si| (6)

DEM(o) =
1
n

n∑
i=1

dem(c) (7)

where dem(c) is the Density Measure for class c. wi is a weight factor set to a default
value of 1, and n = E(o, T ) + P (o, T ) which is the number of matched classes in
ontology o.

Example: The neighbourhoods of the classes Student and University in the ontology
ita.owl3 are shown in figure 2. When using the weights 1, 0.25, 0.5 and 0.5, for sub-
classes, superclasses, relationships and siblings respectively, we get the following:

dem(student) = 1 ∗ 2 + 0.25 ∗ 1 + 0.5 ∗ 0 + 0.5 ∗ 1 = 2.75
dem(university) = 1 ∗ 0 + 0.25 ∗ 1 + 0.5 ∗ 0 + 0.5 ∗ 5 = 2.75
DEM(ita.owl) = 2.75+2.75

2 = 2.75

Fig. 2. Neighbourhood of Student and University in ita.owl ontology

Semantic Similarity Measure. Similarity measures have often been frequently ex-
plored in information retrieval systems to provide better ranking for query results (e.g.
[4,17]). Ontologies can be viewed as semantic graphs of concepts and relations, and
hence similarity measures can be applied to explore these conceptual graphs. Resnik
applied a similarity measure to WordNet to resolve ambiguities [18]. The measure he
used is based on the comparison of shared features, which was first proposed in [22].
Another common-feature based similarity is the shortest-path measure, introduced by
Rada [17]. He argues that the more relationships objects have in common, the closer
they will be in an ontology. Variations of these techniques have been used to measure
similarity between whole ontology structures [14,23].

The Semantic Similarity Measure (SSM) calculates how close are the concepts of
interest laid out in the ontology structure. If the concepts are positioned relatively far
from each others, then it becomes unlikely for those concepts to be represented in a

3 http://www.mondeca.com/owl/moses/ita.owl



Ranking Ontologies with AKTiveRank 7

compact manner, rendering their extraction and reuse more difficult. Further studies
are required to find whether or not this assumption is dependent on certain ontological
properties, such as size or level of detail.

The SSM formula used here is based on the simple shortest path measure defined
in [17]. SSM is measured from the minimum number of links that connects a pair of
concepts. These links can be isA relationships or other object properties.

Definition 3. Let ci, cj ∈ {classes[o]}, and ci
p� cj is a path p ∈ P of paths between

classes ci and cj

ssm(ci, cj) =

{
1

length(minp∈P {ci
p�cj})

: if i �= j

1 : if i = j
(8)

SSM(o) =
1
k

n−1∑
i=1

n∑
j=i+1

ssm(ci, cj) (9)

where n is the number of matched classes, and k =
∑n−1

k=1 k. Note that even though
ssm(ci, ci) = 1, the system never actually needs to compare a class with itself.

Fig. 3. Shortest path between Student and University in ka.owl ontology

Example: Figure 3 shows the shortest path between the classes Student and University
in the ka.owl4 ontology. Applying SSM to these two classes will produce:

ssm(student, university) = 1
4

SSM(ka.owl) = 1
1 ssm(student, university) = 0.25

Betweenness Measure. One of the algorithms that JUNG provides is Betweenness [7].
This algorithm calculates the number of shortest paths that pass through each node in
the graph. Nodes that occur on many shortest paths between other nodes have higher be-
tweenness value than others. The assumption for using this measure in AKTiveRank is
that if a class has a high betweenness value in an ontology then this class is graphically
central to that ontology.

The BEtweenness Measure (BEM) calculates the betweenness value of each queried
concept in the given ontologies. The ontologies where those classes are more central
will receive a higher BEM value.

Definition 4. Let ci, cj ∈ {classes[o]}, ci and cj are any two classes in ontology o,
C[o] is the set of class in ontology o, bem(c) is the BEtweenness Measure for class c.
4 http://protege.stanford.edu/plugins/owl/owl-library/ka.owl



8 H. Alani, C. Brewster, and N. Shadbolt

bem(c) =
∑

ci �=cj �=c∈C[o]

σcicj (c)
σcicj

(10)

where σcicj is the shortest path from ci to cj , and σcicj (c) is the number of shortest
paths from ci to cj that passes through c.

BEM(o) =
1
n

n∑
k=1

bem(ck) (11)

where n is the number of matched classes in ontology o, and BEM(o) is the average
Betweenness value for ontology o.

Example: When BEM is applied to the classes Student and University of the univ.owl5

ontology, the class Student received a value of 0.00468, while University got a 0 be-
tweenness value (using the Betweenness Centrality measure of Jung). This means that
the former class is more central in the ontology graph than the later class. Final BEM
value can then be calculated as follows:

BEM(univ.owl) = 1
2 (0.00468 + 0.0) = 0.00234.

3.2 Total AKTiveRank Score

The total score of an ontology can be calculated once the four measures are applied to all
the ontologies that the search engine returned. Total score is calculated by aggregating
all the measures’ values, taking into account the weight of each measure, which can be
used to determine the relative importance of each measure for ranking.

The first rank will be given to the ontology with the highest overall score, the second
rank to the second highest score, and so on.

Definition 5. Let M = {M [1], .., M [i], M [4]} = {CMM, DEM, SSM, BEM},
wi is a weight factor, and O is the set of ontologies to rank.

Score(o ∈ O) =
4∑

i=1

wi
M [i]

max1≤j≤|O| M [j]
(12)

Values of each measure are normalised to be in the range (0–1) by dividing by the
maximum measure value for all ontologies. For example, if the maximum DEM value
calculated for a set of ontologies is 4.75, then the normalised DEM value for the ontol-
ogy ita.owl (example in sec. 3.1) will be 2.75

4.75 = 0.579 (table 2).

4 Experiment

In this section we report the results of running AKTiveRank over an example query
submitted to Swoogle6.

5 http://www.mondeca.com/owl/moses/univ.owl
6 Using Swoogle 2005



Ranking Ontologies with AKTiveRank 9

The weights for calculating total score (equation 12) for our experiment are set to
0.4,0.3,0.2,0.1 for the CMM, BEM, SSM, DEM measures respectively. The relative
weighs for these measures are selected based on how well each measure performed
in our evaluation (section 5). Further tests are required to identify the best weights to
use, and whether the chosen mix of weights applies equally well to other queries and
ontologies.

Table 1. Order of search result for “student university” as returned by Swoogle. Duplicates were
removed.

Ontology URL
a http://www.csd.abdn.ac.uk/∼cmckenzi/playpen/rdf/akt ontology LITE.owl
b http://protege.stanford.edu/plugins/owl/owl-library/koala.owl
c http://protege.stanford.edu/plugins/owl/owl-library/ka.owl
d http://reliant.teknowledge.com/DAML/Mid-level-ontology.owl
– http://www.csee.umbc.edu/∼shashi1/Ontologies/Student.owl
e http://www.mindswap.org/2004/SSSW04/aktive-portal-ontology-latest.owl
f http://www.mondeca.com/owl/moses/univ2.owl
g http://www.mondeca.com/owl/moses/univ.owl
– http://www.lehigh.edu/∼yug2/Research/SemanticWeb/LUBM/University0 0.owl
h http://www.lri.jur.uva.nl/∼rinke/aargh.owl
– http://www.srdc.metu.edu.tr/∼yildiray/HW3.OWL
i http://www.mondeca.com/owl/moses/ita.owl
j http://triplestore.aktors.org/data/portal.owl
k http://annotation.semanticweb.org/ontologies/iswc.owl
– http://www.csd.abdn.ac.uk/ cmckenzi/playpen/rdf/abdn ontology LITE.owl
l http://ontoware.org/frs/download.php/18/semiport.owl

Now lets assume that we need to find an OWL ontology that represents the concepts
of “University” and “Student”. The domain of academia is good for such experiments
due to the relatively large number of relevant ontologies about this domain. The list of
ontologies returned by Swoogle at the time of the experiment as a result of the query
“university student type:owl” is shown in table 1. Some of those ontologies were du-
plicates (i.e. the same ontology was available under two slightly different URLs). As
expected, the same rank was produced by AKTiveRank for all duplicated ontologies,
and therefore were removed from the table to reduce complexity.

Some ontologies were no longer online and hence were dropped from the ranking
experiment (they are given index “–” in the table).

When AKTiveRank was applied to the results list in table 1, it produced the values
given in table 2. Figure 4 shows the sum of results per ontology, without applying any
measure weightings. These values are obtained by calculating the values for each of
AKTiveRank’s measure, then normalising each value by dividing it by the maximum
value calculated for that measure when applied to all identified ontologies.

4.1 Results Analysis

From the results of this experiment, it can be seen that ontology a scored the highest
value in AKTiveRank. The ontologies c and h where given the second and third rank
respectively. The koala ontology, which was placed second in Swoogle’s results list, got
the least AKTiveRank score, and thus was places last in the ranked list. Even though
this ontology contains classes labelled “Student” and “University”, those classes are not



10 H. Alani, C. Brewster, and N. Shadbolt

Table 2. Normalised AKTiveRank results. Results for each ontology are weighted and aggregat-
ing to produce a final score, which is compared with the other scores to set the rank.

Onto CMM DEM SSM BEM Score Rank
a 0.833 0.632 0.250 0.806 0.688 1
b 0.5 0.197 0 0 0.220 12
c 0.667 0.5 0.25 1 0.667 2
d 0.417 1 0 0 0.267 11
e 1 0.632 0.111 0.452 0.621 3
f 0.833 0.579 0 0 0.391 7.5
g 0.833 0.579 0.167 0.065 0.444 6
h 0.5 0.553 1 0.323 0.552 4
i 0.5 0.579 0.167 0 0.291 10
j 0.5 0.579 0.125 0.839 0.535 5
k 0.667 0.579 0 0.097 0.354 9
l 0.667 0.685 0 0.194 0.391 7.5

Fig. 4. Aggregated AKTiveRank scores using equal weights

closely associated (i.e. zero SSM7) and not graphically central to the ontology structure
(i.e. zero BEM). The koala ontology is not exactly about students or universities, and
therefore deserves the last rank in this context.

Note that 5 of our ontologies received a SSM of 0.0. This indicates that AKTiveRank
did not manage to find any paths connecting the two given queried classes. Semantic
paths that cross via owl:Thing class are ignored.

The ontology that scored the highest in the Class Match measure (CMM, section 3.1)
was ontology e. This ontology had 2 classes with labels exactly matching our search
terms, and 3 partially matching ones; Phd-Student, University-Faculty and Distance-
Teaching-University.

The highest DEM value was calculated for ontology d. This ontology had a total of
5 subclasses and 10 siblings for the two classes matching our search terms. This added
to its DEM value and made this ontology score best on this measure.

Ontology h received the maximum SSM value because it has the relation enrolled at
which directly connects the classes “Student” and “University”.

7 Jena disagrees with Proègè OWL on its rendering of a restriction in the Koala ontology between
the classes Student and University.



Ranking Ontologies with AKTiveRank 11

Fig. 5. Ontology rankings based on each measure separately

And finally, ontology c was found to have the highest average betweenness value
for the two classes in question, which indicates that these classes are more structurally
central in this ontology than in the other ontologies.

Ranking based on each measure separately is displayed in figure 5. When considered
separately, none of the measures seemed to provide the same ranking list as when the
measures were combined as will be discussed in the following section.

5 Evaluation

In order to evaluate the utility of the output of AKTiveRank, it is important to compare
the results with those produced by some expert users. We have already conducted a
small user-based experiment and used it to evaluate earlier versions of AKTiveRank
[2]. Due to time constraints, we will use the results of that experiment again to evaluate
our current results.

The users in our user-based experiment were presented with a general scenario, a
set of screen shots of the relevant ontologies and a set of simple questions. Users were
asked to rank the ontologies from the set presented, and were also given the opportunity
to give comments and feedback. The total population sample was only four participants
so we cannot make claims of any statistical accuracy or significance. Further and wider
user-based experiments are planned for the very near future. The ranking as given by
the users are listed in table 3:

When comparing the ranks produced by AKTiveRank in our experiments with the
ranks generated from our user-based evaluation using the Pearson Correlation Coeffi-
cient (PCC), we get the value of 0.952. This value shows that the ranks produced by
AKTiveRank are very close to the ranks produced by our users (a value of 0 indicates
no relation, and 1 indicates an exact linear relationship between the two datasets). Note



12 H. Alani, C. Brewster, and N. Shadbolt

Table 3. Ranks given by users

Ontology Rank Ontology Rank Ontology Rank
a 2.5 b 12 c 11
d 9 e 2.5 f 5.5
g 5.5 h 1 i 10
j 7.5 k 4 l 7.5

Table 4. Pearson Correlation Coefficient for each measures separately against rankings provided
by users

Measure Value
CMM 0.499
DEM 0.270
SSM 0.292
BEM 0.298
AktiveRank 0.952
Swoogle -0.144

that PCC value for Swoogle ranks against our user based results is -0.144, which indi-
cates a very low and inversed correlation. Table 4 provides the PCC results above, as
well as the PCC values when comparing each of our measure with the user results sep-
arately. It shows that the performance of each measure on its own was less than when
they where combined (much higher PCC value when combined).

As can be seen in table 4, the measure that performed best when compared to the
user results in table 3 was CMM, followed by BEM, SSM, then DEM. Based on this
observation, the weights given to each measure when calculating the total score in our
experiment were 0.4, 0.3, 0.2, and 0.1 respectively, to reflect the performance of each
individual measures. These results are only representative of this experiment, and can
not be generalised without further studies.

6 Conclusions and Future Work

In this paper we presented an extension to our previous work on ontology ranking based
on an internal analysis of the concepts in the ontologies. The evaluation was based on
four measures, but of course others may be added in the future if necessary. Even though
our initial results are promising, a great deal of research and a much wider experiment
are required before making any conclusive remarks about AKTiveRank’s measures.

The work presented here on the ranking of ontologies has been partly motivated
by an awareness that ontologies are not artefacts like any other document on the web.
They are crafted usually with considerable care where (for example) the importation
of other ontologies usually has a certain significance. On the other hand, it is usual
when constructing a domain specific ontology to import general ontologies like foaf
which contain relatively little domain specific content. It is important to distinguish
the function of an ontology from that of a web page. A web page is read by a human
being and any links it may have may or may not be followed by the reader. In contrast,
an ontology is designed to be read by a machine and any links it may have are by
definition imports pointing to other ontologies which must be included. This poses a
dilemma in ranking an ontology as to whether to include all imports or not. Because
the imports tend to be high level general ontologies, they are relatively vacuous if the



Ranking Ontologies with AKTiveRank 13

user is seeking a domain specific ontology. Further more if ontology O1 is dependent on
ontology O2 to represent class c, then O2 will be evaluated separately anyway assuming
it is included in the set retrieved.

It is very difficult to pinpoint the right selection of parameters or structural prop-
erties to investigate when ranking ontologies. The selection can be dependent on per-
sonal preference as well as use requirements (i.e. the purpose for which the ontology
is intended). One focus of our future research will be to extend the user evaluation
to include a larger number of human participants and a significant number of queries.
Queries need to be posed to the system over a sufficient range of topics so as to allow
confidence in the ranking methods we have used. Previous experience has shown it is
difficult to present ontologies effectively to evaluators. Screen shots often show only a
partial picture of the whole ontology, and some individuals prefer to examine the native
OWL in understanding the ontology and making judgements. This is highly dependent
on the background and skills of the user. Users must be given the freedom to browse
the ontologies in an ontology editing tool such as Protégé[15] or Swoop [12], rather
than given screen dumps or schema descriptions. For this reason, extensive user-based
experiments are required to at least find out what are the properties that users tend to
look at when judging the general quality or suitability of an ontology. Unlike ordinary
search engines, where the user can be safely assumed to be relatively naive, with on-
tologies the typical user is either a knowledge engineer or software developer who has
preconceptions of a technical nature.

Another area of future research lies in understanding further how these non-naive
users set about finding an ontology so as to better model the user behaviour and tailor the
system to that behaviour. In this regard, we have observed how users ask for ontologies
in the Protégé mailing list and found that they tend to ask for topics (e.g. Transport,
Algebra), which may not necessarily map to specific class names, but should rather
be regarded as a general description of the domain. As consequence, we are currently
investigating evaluating ontologies on their content coverage of a corpus [3], which is
collected using the given general topic name (e.g. Cancer, Education)[11].

Other parameters can be taken into account, such as whether a class is defined or
primitive (currently indirectly covered by the Density measure), of if the classes of
interest are hubs or authoritative in a graph-network sense, which might increase their
ontology’s ranking.

The most appropriate criteria for searching for ontologies are still unclear. Swoogle
is mainly based on keyword search, but other searching techniques can be imagined,
based for example on the structure of ontologies or based on whether the ontologies
meet certain requirements [13]. However, whatever the search mechanism is, there will
always be a need for ranking. The ranking criteria will obviously have to be designed
to fit the chosen search technique.

Acknowledgments

This work is supported under the Advanced Knowledge Technologies (AKT) Interdisci-
plinary Research Collaboration (IRC), which is sponsored by the UK Engineering and
Physical Sciences Research Council under grant number GR/N15764/01. The AKT



14 H. Alani, C. Brewster, and N. Shadbolt

IRC comprises the Universities of Aberdeen, Edinburgh, Sheffield, Southampton and
the Open University. Christopher Brewster has also been supported by the UK EPSRC
under grant number GR/T22902/01.

References

1. H. Alani. Ontology construction from online ontologies. In Proc. 15th International World
Wide Web Conference, Edinburgh, 2006.

2. H. Alani and C. Brewster. Ontology ranking based on the analysis of concept sructures. In
3rd Int. Conf. Knowledge Capture (K-Cap), pages 51–58, Banff, Canada, 2005.

3. C. Brewster, H. Alani, S. Dasmahapatra, and Y. Wilks. Data driven ontology evaluation. In
Int. Conf. on Language Resources and Evaluation, Lisbon, Portugal, 2004.

4. P. R. Cohen and R. Kjeldsen. Information retrieval by constrained spreading activation in
semantic networks. Information Processing & Management, 23(4):255–268, 1987.

5. L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. C. Doshi, and
J. Sachs. Swoogle: A semantic web search and metadata engine. In Proc. 13th ACM Conf.
on Information and Knowledge Management, Nov. 2004.

6. L. Ding, R. Pan, T. Finin, A. Joshi, Y. Peng, and P. Kolari. Finding and ranking knowledge
on the semantic web. In Proc. 4th Int. Semantic Web Conf. (ISWC), pages 156–170, Galway,
Ireland, 2005.

7. L. Freeman. A set of measures of centrality based on betweenness. Sociometry, 40:35–41,
1977.

8. A. Gangemi, C. Catenacci, M. Ciaramita, and J. Lehmann. A theoretical framework for
ontology evaluation and validation. In Semantic Web Applications and Perspectives (SWAP)
– 2nd Italian Semantic Web Workshop, Trento, Italy, 2005.

9. A. Gomez-Perez. Some ideas and examples to evaluate ontologies. In 11th Conference on
Artificial Intelligence for Applications. IEEE Computer Society, 1995.

10. N. Guarino and C. Welty. Evaluating ontological decisions with ontoclean. Communications
of the ACM, 45(2):61–65, 2002.

11. M. Jones and H. Alani. Content-based ontology ranking. In Proceedings of the 9th Int.
Protege Conf., Stanford, CA, 2006.

12. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. Swoop: A ’web’ ontology
editing browser. Journal of Web Semantics, 4(2), 2005.

13. A. Lozano-Tello and A. Gomez-Perez. Ontometric: A method to choose the appropriate
ontology. Journal of Database Management, 15(2), 2005.

14. A. Maedche and S. Staab. Measuring similarity between ontologies. In Proc. European Conf.
on Knowledge Acquisition and Management (EKAW), pages 251–263, Madrid, 2002.

15. N. F. Noy, M. Sintek, S. Decker, M. Crubezy, R. W. Fergerson, and M. A. Musen. Creating
semantic web contents with protege-2000. IEEE Intelligent Systems, pages 60–71, 2001.

16. C. Patel, K. Supekar, Y. Lee, and E. Park. Ontokhoj: A semantic web portal for ontology
searching, ranking, and classification. In Proc. 5th ACM Int. Workshop on Web Information
and Data Management, pages 58–61, New Orleans, Louisiana, USA, 2003.

17. R. Rada, H. Mili, E. Bicknell, and M. Blettner. Development and application of a metric on
semantic nets. IEEE Trans. on Systems Management and Cybernetics, 19(1):17–30, 1989.

18. P. Resnik. Semantic similarity in a taxonomy: An information-based measure and its ap-
plication to problems of ambiguity in natural language. Journal of Artificial Intelligence
Research, 11:95–130, 1999.



Ranking Ontologies with AKTiveRank 15

19. E. Rosch. Principles of Categorization. in E. Rosch and B. B. Lloyd editors. Cognition and
Categorization, Lawrence Erlbaum, Hillsdale, New Jersey, 1978.

20. G. Spanoudakis and P. Constantopoulos. Similarity for analogical software reuse: A compu-
tational model. In Proc. 11th European Conf. on AI, ECAI’94, pages 18–22, 1994.

21. K. Supekar. A peer-review approach for ontology evaluation. In 8th Int. Protege Conf., pages
77–79, Madrid, Spain, July 2005.

22. A. Tversky. Features of similarity. Psychological Review, 84(4), 1977.
23. P. C. Weinstein and W. P. Birmingham. Comparing concepts in differentiated ontologies.

In Proc. 12th Workshop on Knowledge Acquisition, Modeling and Management (KAW’ 99),
Banff, Alberta, Canada, 1999.



Three Semantics for Distributed Systems and
Their Relations with Alignment Composition�

Antoine Zimmermann and Jérôme Euzenat

INRIA Rhône-Alpes
Montbonnot Saint-Martin, France

{Antoine.Zimmermann, Jerome.Euzenat}@inrialpes.fr

Abstract. An ontology alignment explicitly describes the relations hold-
ing between two ontologies. A system composed of ontologies and align-
ments interconnecting them is herein called a distributed system. We
give three different semantics of a distributed system, that do not in-
terfere with the semantics of ontologies. Their advantages are compared
with respect to allowing consistent merge of ontologies, managing het-
erogeneity and complying with an alignment composition operation. We
show that only the first two variants, which differ from other proposed
semantics, can offer a sound composition operation.

1 Introduction

In a general sense, ontology alignment is an explicit description of the semantic
relationship that exists between different ontologies. However, in several practical
applications, it is restricted to a set of syntactical correspondences or mapping.
For instance, the Alignment API [1] defines a correspondence as a pair of entities
(one from each ontology), together with the type of relation, and the confidence
in its correctness. The API output format has been used in several ontology
matching tools but has intentionally no associated formal semantics. Our goal
is to consider alternative semantics for this generic type of alignments.

We define three different semantics that have advantages and drawbacks. The
first one, simple distributed semantics, considers the whole distributed system
as a coherent knowledge base which can be interpreted in a single domain. It
is appropriate for consistently merging ontologies, based on correspondences.
However, it is not tolerant to inconsistency, be it local or global. In very hetero-
geneous systems, like the semantic web or semantic P2P systems, this feature is
not desirable. So we extend the first semantics to integrated distributed semantics
where each local knowledge representation is interpreted in its own domain but
these interpretation are then correlated in a global domain. Finally, we define
a contextualized distributed semantics, inspired by DFOL/DDL/C-OWL [2,3,4],
where there is no global domain of interpretation: each local ontologies “imports”
knowledge from other ontologies in its own context.

� This work is partly supported by the Knowledge Web NoE (IST-2004-507482).

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 16–29, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Three Semantics for DS and Their Relations with Alignment Composition 17

Additionally, the semantics is parameterized by the set of expressible relations
between ontology entities. It means that this semantics is usable to reason about
class relations (e.g., equivalence, subsumption, disjunction), as well as temporal
or spatial relations, etc.

Finally, we study the semantics of an alignment composition operator and
prove that only the first two semantics comply with it.

This paper is articulated as follows: Sect. 2 gives an overview of previously
proposed semantics for schema mappings, ontology alignments and matching, or
distributed knowledge representation. Sect. 3 describes the syntax of distributed
systems. Sect. 4 gives the simple distributed semantics. Sect. 5.1 extends the
semantics to integrated distributed semantics, through the use of an equalizing
function to a global domain. Sect. 5.2 presents the contextualized variant of the
semantics. Sect. 6 discusses the composition of alignments within each of the
proposed semantics.

2 Related Work

Ontology matching is strongly related to database schema matching. However,
as noted in [5], there are foundational differences between schema matching and
ontology matching. The most prominent being the weakness of schemata se-
mantics. As a result, the schema mapping community is concerned about query
answering, while ontology alignment must offer more general reasoning capabil-
ities in distributed systems. Of particular interest is [6], which develops a notion
of satisfied mappings that is very generic and the approach in this paper is very
similar to theirs. The difference resides in their using of “helper models”, and
they do not provide a composition operator. Such operator is provided by [7]
for relational databases, and cannot be exploited as it is for more general on-
tology alignment composition. Other database-related work about composition
comprises [8,9,10].

Another different approach to the semantics of schema mapping and align-
ments is found in [11] and generalized in [12] where the authors use the theory of
institutions [13] to characterize the relation between models of related ontologies
or schemata. The approach is seducing for our ontology alignment purpose: it
allows a language independent definition of ontology relation, elegant construc-
tions of merging, composing and it is grounded on model theory. Nonetheless, it
has a major problem: the “ontology morphisms” can only account for the most
basic relations between ontological entities, namely equivalence. So we consider
such an abstraction to be inappropriate for more general types of relations [14].

Other semantics for distributed knowledge based systems have been proposed.
Various distributed logics are found in [2] (DFOL), [3] (DDL), [4] (C-OWL).
They all assume that each ontology is interpreted within a context that has to
be related to others in order to interpret the whole system. This approach effec-
tively solves the problem of mutual inconsistencies in heterogeneous knowledge
representations, but we show here that contextualizing the semantics forbids a
sound composition operation.



18 A. Zimmermann and J. Euzenat

3 Syntax

We want to design a model-theoretic semantics for distributed systems, which
are composed of (1) ontologies and (2) alignments. The present section discusses
the syntax of those components.

One of the key features of our alignment semantics is its independence from
the ontology language. Sometimes, we will use the term “element of an ontology”
to refer to any syntactical entity mentioned in the ontology, e.g., class, property,
individual. The only restriction upon the choice of the ontology language is the
existence of a model-theoretic semantics. Among such languages, we can cite
FOL, RDF [15], OWL [16], Conceptual Graphs [17], etc.

We follow the definition of alignment found in [18], but we intentionally dis-
card the confidence value.1

Definition 1 (Ontology element). An ontology element is either a term of
the ontology (e.g., class, property, individual) or a compound entity built out of
other ontology elements and constructors from the ontological language.

Definition 2 (Ontology element relation). An ontology element relation R

is a symbol denoting a binary relation or predicate R̃. Given a specific alignment
language, the set of usable relation symbols is written R.

The relations an alignment language can capture may be: equivalence, subsump-
tion, disjunction of classes; temporal/spatial relations; fuzzy relations; etc.

These definitions makes the components of a correspondence.

Definition 3 (Correspondence). A correspondence is a triple 〈e1, e2, R〉where:

– e1 and e2 are ontology elements from the two ontologies to align;
– R is an ontology element relation that is asserted to hold between e1 and e2.

Example 1. 〈Man1�Woman1, Human2,≡〉 or 〈Girl1, Human2	Female2,
〉 are ex-
amples of correspondences.

Definition 4 (Ontology alignment). An ontology alignment between ontolo-
gies O1 and O2 is a set of correspondences with ontology elements belonging to
O1 and O2.

Our semantics interprets distributed systems: a structure composed of multiple
ontologies and alignments between them.

Definition 5 (Distributed system). A distributed system (DS for short) is
a pair 〈(Oi), (Aij)〉 consisting of a family of ontologies (Oi)i∈I over a set of
indexes I interconnected by a family of alignments (Aij)i,j∈I .2

Although there can be pairs of ontologies that are not connected by an alignment,
we will then consider the missing alignment as an empty set of correspondences.
Moreover, several alignments between two ontologies are considered here as a
single alignment equals to the union of all their correspondences. So Aij is always
defined.
1 How to treat uncertainty in this semantics is still a subject of investigations.
2 When there is no ambiguity, we will write (Xi) to represent the family (Xi)i∈I .



Three Semantics for DS and Their Relations with Alignment Composition 19

4 Simple Distributed Semantics

The simple distributed semantics considers a distributed system (DS) as a co-
herent knowledge base. This means that all ontologies are interpreted within
the same domain. We first give the definitions for local semantics (given by the
ontological language), then our proposed DS semantics follows.

4.1 Local Semantics

The semantics of a DS depends on the semantics of the ontology language. In
fact, given a set of ontologies and a set of alignments between them, we can
evaluate the semantics of the whole system in function of the semantics of each
individual ontology.

Definition 6 (Interpretation of an ontology). Given an ontology O, an
interpretation of O is a function m from elements of O to elements of a domain
of interpretation D.

This is a very general notion of interpretation. In practice, ontologies are com-
posed of axioms that constrain valid interpretations. Among interpretations,
there are particular ones that are said to satisfy axioms, and if all axioms are
satisfied, then the ontology is itself satisfied. So, the local semantics of ontolo-
gies determine the satisfaction relation |= that relates interpretations to satisfied
ontologies, i.e., m |= O iff m satisfies O. For instance, AsubclassofB would be
satisfied iff A is interpreted as a subset of the interpretation of B. The collection
of interpretations that satisfy O (the models of O) is written Mod(O).

4.2 Satisfaction of an Alignment

In order to determine the semantics of a DS, we first define when a pair of local
interpretations satisfies a correspondence and an alignment.

Definition 7 (Satisfied correspondence). Let O1, O2 be two ontologies and
c = 〈e1, e2, R〉 be a correspondence between O1 and O2. c is satisfied by interpre-
tations m1, m2 of O1, O2 iff m1(e1)R̃m2(e2). This is written m1, m2 |= c.

The relation symbol R is out of the ontology languages. So it does not have to
be interpreted in the local semantics. For instance, a temporal relation can be
expressed between two OWL classes. The associated relation R̃ is fixed, given
a set of relation R. For instance, relation symbol ≡ could be associated to the
relation “=” (equality) over sets.

If all correspondences are satisfied, then it is said that the pair of interpreta-
tions is a model of the alignment.

Definition 8 (Model of an alignment). A model of an alignment A between
ontologies O1 and O2 is a pair m1, m2 of interpretations of O1, O2 such that for
all c ∈ A, m1, m2 |= c. It is noted m1, m2 |= A.



20 A. Zimmermann and J. Euzenat

The models of an alignment do not take the semantics of the ontologies into
account. They just consider the internal consistency of the correspondences. This
is interesting because we can reason with and about alignments without actually
accessing the aligned ontologies. The collection of all models of an alignment A
is written Mod(A).

Correspondences play the role of axioms that constrain the satisfying interpre-
tations of the aligned ontologies. They therefore act as interpretation constraints
of the distributed system.

4.3 Models of a DS

Informally, interpretations of a DS are tuples of local interpretations.3

Definition 9 (Interpretation of a DS). AninterpretationofaDS 〈(Oi), (Aij)〉
is a family (mi) of local interpretations over a common domain D such that for
all i ∈ I, mi is an interpretation of Oi.

Among interpretations, some are said to satisfy the DS. In order to satisfy a DS,
interpretations must satisfy constraints given by (1) the ontologies axioms and
(2) the alignments correspondences.

Definition 10 (Model of a DS). A model of a DS S = 〈(Oi), (Aij)〉 is an
interpretation (mi) of S such that:

– ∀i ∈ I, mi ∈ Mod(Oi) (i.e., mi is a (local) model of Oi);
– ∀i, j ∈ I, mi, mj |= Aij .

This is written (mi) |= S. If a model exists for S, we say that S is satisfiable.

We can see that this definition employs a very global view of the models. All
ontologies and alignments are taken into account at the same time, and there
are strong interdependencies. This is because the DS is seen as a single theory,
with ontologies being but mere modules.

However, it is often the case when we only want to reason about local data,
while taking advantage of external knowledge. So we define local models modulo
a DS:

Definition 11 (Local models modulo a DS). Local models of an ontology
Oi modulo S are the local models ModS(Oi) = {mi ∈ Mod(Oi); ∃(mj)j �=i ∈
Mod(Oj), (mi)i∈I |= S}. It corresponds to the projection of the models of a DS
on the ith component.

With this definition, the models of the full system must be known to compute the
local models. In order to build more efficient reasoners, we define another notion
of models that do not require total integration of all ontologies and alignments at
once. It is based on an iterative process of gradually reducing the local models.
3 As in Sect. 3, I denotes a set of indexes and is omitted in expressions like (Aij),

when there is no ambiguity.



Three Semantics for DS and Their Relations with Alignment Composition 21

Definition 12 (Models of an ontology modulo alignment). Given an on-
tology O1 aligned with O2 according to alignment A, the models of O1 modulo A
are those models of O1 that can satisfy A:

ModA(O1) = {m1 ∈ Mod(O1); ∃m2 ∈ Mod(O2); m1, m2 |= A}

Models modulo alignment is the first step of the following iterative definition.

Definition 13 (Iterated local models modulo a DS). Given a DS S =
〈(Oi), (Aij)〉,considerMod0

S(Oi) = Mod(Oi),andthefollowingiterativedefinition:

Modk
S(Oi)={mi∈ Modk−1

S (Oi); ∀j ∈ I \{i}, ∃mj ∈ Modk−1
S (Oj); mi, mj |= Aij}

ModS(O) denotes the limit of the sequence (Modn
S(O)) when n → ∞, i.e.,

ModS(O) = Mod∞
S (O).

Definition 14 (Local satisfiability). A DS S is locally satisfiable iff for each
ontology O, ModS(O) �= ∅.

So, the iterated models only give a local view of what happens in the DS. More-
over, the stepwise restriction of the models allows for a faster but approximate
reasoning while trying to find new ontologies and alignments.

Proposition 1. Let S be a DS and O an ontology of S. For all n ∈ IN,
ModS(O) ⊆ ModS(O) ⊆ Modn+1

S (O) ⊆ Modn
S(O).

Proposition 2. There exists a DS S such that ModS(O) �= ModS(O).

Proof. We give a sketch of the proof4 with a diagram representing the DS.

O1 �� e1��
≡

��

e′
1��

≡
��

O2 �� e2 �� ≡ �� e3 O3��

�� ��

�� �	

�� ��
�� �	

�� ��
�� �	

In this DS, we have Modn
S(Oi) = Mod(Oi) for all n ∈ IN and i ∈ {1, 2, 3}. But

ModS(O1) is restricted to the models of O1 where e1 and e′1 are interpreted as
the same entity. 	�

In spite of this unfavorable property, ModS(O) and ModS(O) are two solutions
to the fixed-point equation M̃odS(Oi) = {m ∈ Mod(Oi); ∀j ∈ I \ {i}, ∃mj ∈
M̃odS(Oj); mi, mj |= Aij}. This means that locally reasoning with iterated mod-
els will not contradict neighborhood reasoning.

The proposed semantics is somewhat strict, with regard to heterogeneous
systems, because it only allows to assert a correspondence when it is fully com-
patible with both ontologies. While it may be desirable in a few applications, this
semantics is not adapted to every ontology alignment use cases. For instance, in
the semantic web, ontologies will vary tremendously in size, scope, scale, point
of view and quality. We consider two semantics that address this problem.
4 For a detailed proof of this proposition, please refer to the following url:
http://www.inrialpes.fr/exmo/people/zimmer/ISWC2006proof.pdf.



22 A. Zimmermann and J. Euzenat

5 Dealing with Heterogeneous Domains

In very heterogeneous applications, having a unified interpretation of a distrib-
uted system is not feasible. To address this issue, we propose two variants of
the primary semantics: (1) in the integrated distributed semantics, local inter-
pretation domains are separated, and they are reconciled in a global domain,
thanks to the use of equalizing functions (Def. 15) that act as filters; (2) in the
contextualized distributed semantics, no global domain exists, but interpretation
domains are interrelated by as many translation function as there are pairs of
domains.

5.1 Integrated Distributed Semantics

The choice of the interpretation domain is not only guided by the interpreter, but
also partly decided by the local language semantics. So we will use the concept
of an equalizing function to help making the domain commensurate.

Definition 15 (Equalizing function). Given an interpretation (mi) of a DS,
an equalizing function (γi) over (mi) is a family of functions from the local
domains of interpretation of (mi) to a global domain U .

So equalizing functions not only define a global domain for the interpretation of the
DS, but also define how local domains are correlated in the global interpretation.

Definition 16 (Integrated interpretation of a DS). An integrated inter-
pretation of a DS S is a pair 〈(mi), γ〉 where (mi) is a simple interpretation of
S and γ is an equalizing functions over (mi).

The integrated interpretations that satisfy the DS are given by the following
definition.

Definition 17 (Integrated model of a DS). An integrated interpretation
〈(mi), γ〉 of a DS S is an integrated model iff ∀i, j ∈ I, γimi, γjmj |= Aij and
mi is a local model of Oi.5

We can define the iterated models of a DS in the following way:

Definition 18 (Integrated iterated local models modulo a DS). Given a
DS S = 〈(Oi), (Aij)〉, consider Mod0

S(Oi) = Mod(Oi), and the following iterative
definition:

Modk
S(Oi) =

{mi ∈ Modk−1
S (Oi); ∀j ∈ I \ {i}, ∃mj ∈ Modk−1

S (Oj), ∃γ; γimi, γjmj |= Aij}

5 The notation γimi is used to denote the composition of functions γi and mi. In fact,
γimi is an interpretation of Oi in the global domain.



Three Semantics for DS and Their Relations with Alignment Composition 23

As with simple distributed semantics, there is a notion of local and global sat-
isfiability (see Def. 14). The integrated iterated models have the same property
as the simple iterated models (Prop. 1 and Prop. 2).

Proof (of Prop. 2). We give a sketch of the proof6 with a diagram representing
the DS.

O2 �� e2��
≡

����
��

��
�

O1 �� e1 ��

≡
		�������������� e′

2��
≡

����
��

��
�

e3




≡
���������

O3��

e′
1

��

≡
����������������

�≡
�� e′

3




≡

���������

�� ��

�� �	
�� ��

�� �	

�� ��

�� �	

This system is locally satisfiable but not globally satisfiable. 	�

For particular applications, it may prove useful to give restrictions on equalizing
functions. For instance, it might be needed to have injective functions, or to
have inclusion-preserving functions. Although we do not describe the treatment
of such restrictions, they should be compared to domain relation constraints in
DFOL [2]. However, the approach in DFOL differs, because no global domain
exists. They rather relates the local domains to each others, allowing to contex-
tualize import of knowledge from and to each DS node. We extend our semantics
in order to match this approach.

5.2 Contextualized Distributed Semantics

The contextualized semantics uses domain relation instead of equalizing functions.
Domain relations differ from equalizing function because there exists one function
for each pair of ontologies and they relate two local interpretation domains.

Definition 19 (Domain relation). Given two domains of interpretation D1
and D2, a domain relation is a mapping r12 : D1 → D2.

These domain relations form a part of a contextualized interpretation.

Definition 20 (Contextualized interpretation of a DS). A contextualized
interpretation of a DS S is a pair 〈(mi), (rij)〉 where (mi) is a simple interpre-
tation of S and (rij)i�=j is a family of domain relations such that rij relates the
domain of mi to the domain of mj.

The models in the contextualized semantics are defined as follows.

Definition 21 (Contextualized model of a DS). A contextualized interpre-
tation 〈(mi), (rij)〉 of a DS S is a contextualized model iff ∀i, j ∈ I, mi, rjimj

|= Aij and each mi is a local model of Oi.
6 For a detailed proof of this proposition, please refer to the following url:
http://www.inrialpes.fr/exmo/people/zimmer/ISWC2006proof.pdf.



24 A. Zimmermann and J. Euzenat

We again define the iterative models of a DS in the following way:

Definition 22 (Contextualized iterated local models modulo a DS).
Given a DS S = 〈(Oi), (Aij)〉, consider Mod0

S(Oi) = Mod(Oi), and the following
iterative definition:

Modk
S(Oi) =

{mi ∈ Modk−1
S (Oi); ∀j ∈ I \ {i}, ∃mj ∈ Modk−1

S (Oj), ∃rji; mi, rjimj |= Aij}

Again, there is a notion of local and global satisfiability (see Def. 14). The contex-
tualized iterated models have the same property as the simple iterated models.

Proof (of Prop. 2). We give a sketch of the proof7 with a diagram representing
the DS.

O1 �� e1 �� ≡ �� e2 �� ≡ �� e3 O3��

e′
1

�� ≡ �� e′
2

��

�≡
���������
O2��

�� ��

�� �	

�� ��

�� �	

�� ��
�� �	

Among the local models of O1 modulo this DS, there are interpretations where
e1 and e′1 are interpreted identically, while the global models necessitate that
they are interpreted differently. 	�

The three approaches are compared in Sect. 7.

6 Composing Alignments

Building alignments is a difficult task that can hardly be done fully automati-
cally. So existing alignments shall be reused to offer faster interoperable applica-
tions. Alignment composition is one of the key operations permitting this. Given
three ontologies O1, O2 and O3, with alignments A of O1 and O2, and B of O2
and O3, it must be possible to deduce a third alignment of O1 and O3, which
we call the composition of A and B.

We propose here two notions of composition: the first is the syntactic compo-
sition of alignments, which can straightforwardly be implemented; the second is
“semantic composition”. Semantic composition is informally defined as follows:
given a DS of 3 ontologies and 2 alignments S = 〈〈O1, O2, O3〉, 〈A12, A23〉〉, the
semantic composition is the submodels of Mod(S) that are models of the sub-
system 〈〈O1, O3〉, ∅〉 (see below for a more formal definition in each of the three
semantics).

Definition 23 (Syntactic composition). Let A12 be an alignment of O1 and
O2, and A23 an alignment of O2 and O3. The composition of A12 and A23,
noted A23 ◦ A12 is the set of triples 〈e1, e3, R〉 such that there exist e2, R1, R2
s.t. 〈e1, e2, R1〉 ∈ A12, 〈e2, e3, R2〉 ∈ A23 and R = R1; R2 with “;′′ : R × R → R
being an associative operator.
7 For a detailed proof of this proposition, please refer to the following url:
http://www.inrialpes.fr/exmo/people/zimmer/ISWC2006proof.pdf.



Three Semantics for DS and Their Relations with Alignment Composition 25

Remark 1. “;” may also be given by a table of composition. In that case, relations
R ∈ R are sets of primitive relations. Moreover, composition is associative iff “;”
is associative.

In our first semantic approach, the models of A are pairs of interpretations of
O1 and O2, so Mod(A12) is a set-theoretic relation. Relations are composable,
and ideally the composition of A12 and A23 should have equal models as the
composition of Mod(A12) and Mod(A23).

Let S be a DS having 3 ontologies O1, O2, O3 and 2 alignments A12, A23.

Definition 24 (Simple semantic composition). The simple semantic com-
position of the simple models of A12 and A23, noted Mod(A23) ◦s Mod(A12) is
the set:

{〈m1, m3〉 ∈ Mod(O1) × Mod(O3); ∃m2 ∈ Mod(O2), 〈m1, m2, m3〉 ∈ Mod(S)}

In the case of the integrated semantics, the definition should include the equal-
izing function.

Definition 25 (Integrated semantic composition). The integrated seman-
tic composition of the integrated models of A12 and A23, noted Mod(A23) ◦i

Mod(A12) is the set:

{〈〈m1, m3〉, 〈γ1, γ3〉〉; ∃m2, γ2, 〈〈m1, m2, m3〉, 〈γ1, γ2, γ3〉〉 ∈ Mod(S)}

Similarly, thecontextualizedsemanticsdefineacompositionwithdomainrelations.

Definition 26 (Contextualized semantic composition). The contextual-
ized semantic composition of the contextualized models of A12 and A23, noted
Mod(A23) ◦c Mod(A12) is the set:

{〈〈m1, m3〉, 〈r13, r31〉〉; ∃m2, r12, r21, r23, r32, 〈(mi)i∈{1,2,3}, (rij)i�=j〉 ∈ Mod(S)}

These definitions are rather intuitive and correspond to what is found in con-
straint reasoning literature, with slight variants due to the presence of equalizing
functions and domain relations. The following section compares the three ontolo-
gies, and shows that composition is semantically sound in the first two semantics,
but not in the contextualized one.

7 Comparing Semantics

Our three semantics do not only differ by their conceptual design. They also
imply technical differences.

7.1 Simple Semantics

The following diagram helps visualizing the idea behind the simple semantics.
Each ontology is treated as a module of a bigger ontology, interpreted in a single
domain.



26 A. Zimmermann and J. Euzenat

Syntax level O1

I1
�������

��� O2

I2
��	

		
		

	 ··· On

In
��











Semantics level D = i∈I Di

···

�� ��
�� �	

�� ��

�� �	

This semantics offer several advantages. It may be used as a general semantics
for modules composition in ontology engineering. In practical cases, modules are
generally related to each others with an import directive, and sometimes addi-
tional bridge axioms are added in the ontological language. With this semantics,
modules can be written in different languages and aligned with yet another
alignment language. Besides, the decision procedure is easier than in the other
distributed semantics. Consider the case of OWL8 ontologies with possible re-
lations being subclassOf, equivalentClass, disjointClass, subPropertyOf,
equivalentProperty, then reasoning will not differ from reasoning with a single
OWL ontology.

Additionally, composition has the following property:

Property 1. If for all R1, R2 ∈ R, for all appropriate X, Y, Z, XR̃1Y ∧ Y R̃2Z ⇒
XR̃1; R2Z, then the simple semantic composition of the models of the alignments
is included in the models of the syntactic composition of alignments, i.e., :

Mod(B) ◦ Mod(A) ⊆ Mod(B ◦ A).

Proof. Let m1, m3 ∈ Mod(B) ◦ Mod(A). There exists m2 ∈ Mod(O2) such that
m1, m2 |= A and m2, m3 |= B. Let c = (e1, e3, R) be a correspondence of B ◦ A.
There exists R1, R2 ∈ R and e2 in O2 such that R = R1; R2, (e1, e2, R1) ∈ A and
(e2, e3, R2) ∈ B. We have m1(e1)R̃1m2(e2) and m2(e2)R̃2m3(e3). The assump-
tion made ensures that m1(e1)R̃1; R2m3(e3). So for all c ∈ B ◦ A, m1, m3 |= c.
As a result, all m1, m3 in Mod(B) ◦ Mod(A) are also in Mod(B ◦ A). 	�

The property required (∀R1, R2 ∈ R, ∀X, Y, Z, XR̃1Y ∧ Y R̃2Z ⇒ XR̃1; R2Z)
fits with the common sense meaning of what must be a composition operation.
This property is mentioned in work on composition tables (e.g., [19]) as a basic
property for a sound composition operation. This property encourage reuse of
alignments by combining them.

Nonetheless, as explained in [2], interpreting a distributed system in a unique
domain is only feasible in the least heterogeneous systems.

7.2 Integrated Semantics

In the integrated semantics, ontologies are interpreted at the local level, and
the equalizing function γ serves to coordinate local interpretations in a global
domain.

8 http://www.w3.org/TR/owl-guide/



Three Semantics for DS and Their Relations with Alignment Composition 27

Syntax level O1

I1

��

O2

I2

��

··· On

In

��
Local semantics level D1

γ1

����
���

��
��

D2

γ2

��	
		

		
	 ··· Dn

γn

��
















Global semantics level U

···

···

�� ��
�� �	

�� ��
�� �	

�� ��
�� �	

This approach is much more tolerant to inconsistencies, because the equal-
izing functions act as a filter between local and global interpretations. Having
two levels of interpretations allows one to maintain local specificities while inte-
grating knowledge into one consistent interpretation. And, obviously, if a simple
distributed model exists, then an integrated model exists.

The following example demonstrates the interest of equalizing function.

Example 2. Consider two instances of class Child that have different ages and
different heights, but truly represent the same person at different moments.
In some ontology languages, it may not be possible to interpret these different
instances as only one unique individual because age and height may be restricted
in cardinality. However, an equalizing function can map two different instances of
child with different ages in the local domain, to one instance of a person having
no attribute age in the global domain.

Moreover, Prop. 1 holds too in this semantics. Therefore, it is also appropriate to
manipulate and reuse several alignments in a consistent way. So, this semantics
consistently extends the previous one.

However, the reasoning procedure is rendered more difficult because of the
presence of equalizing functions. This is quite inevitable since dealing with in-
consistencies has always been a time-consuming and complex task.

7.3 Contextualized Semantics

In the contextualized semantics, we drop the global domain, but the domain
relations enables each ontology to integrate the whole distributed system in its
own context.

Syntax level O1

I1

��

O2

I2

��

··· On

In

��
Local semantics level D1

r12
��

r1n

��D2

r21

��

r2n
��

··· Dn

rn1

��
rn2

��

···

�� ��
�� �	

�� ��
�� �	

This approach is very similar to context-based logics approach and the interest
of contextualizing inferences is explained in e.g., [2].

However, the following result tend to disqualify this semantics when compos-
ing alignments becomes a necessity:



28 A. Zimmermann and J. Euzenat

Proposition 3. Prop. 1 does not hold in contextualized semantics.

Proof. Consider the following DS9:

O1 �� e1 �� � ����
�



��
��

��
� e2 �� � �� e3 O3��

O2 �� e′
2

�� � �� e′
3

�� ��
�� �	

�� ��

�� �	

�� ��

�� �	

	�

Additionally, we show the generality of our integrated semantics with the fol-
lowing proposition:

Proposition 4. If a contextualized model exists for a DS, then there exists an
integrated model.

Proof. Let 〈(mi), (rij)〉 be a model of a DS. Let k ∈ I be an indice then
〈(mi), (rik)i∈I〉, with rkk = idDk

is an integrated model of the DS with global
domain Dk. 	�

This property was in fact predictable. The contextualized semantics has a differ-
ent purpose: it interprets semantic relations from one ontology’s point of view.
Composing alignments in this way is not sound because two consecutive align-
ments are interpreted according to two different points of view. However, it has
a strong advantage with regard to the integration of external knowledge into a
specific ontology.

8 Conclusion and Future Work

We presented three variant semantics (simple, integrated and contextualized) for
ontology alignments and distributed systems. Our characterization of an align-
ment allows the definition of an alignment composition operator, which is sound
in the first two proposed semantics. We gave the advantages and drawbacks of
each approach, and highlighted the benefits of using the first two semantics in
comparison to using a contextualized semantics. We also make our approach dis-
tinct from others by using a set of relations as a parameter. It enables one to use
the same meta-semantics for different types of relations (e.g., temporal/spatial
relations, class relations or even data types relations).

We will extend this semantics to include operations such as inverse alignment,
union/intersection, and data transformations induced by them (along the line
of the schema mapping algebra in [7]). Finally, our semantics and composition
operator shall be extended to correspondences with confidence value.

9 For a detailed proof of this proposition, please refer to the following url:
http://www.inrialpes.fr/exmo/people/zimmer/ISWC2006proof.pdf.



Three Semantics for DS and Their Relations with Alignment Composition 29

References

1. Euzenat, J.: An API for ontology alignment. In: Proc. Third International Semantic
Web Conference (ISWC’04). (2004) 698–712

2. Ghidini, C., Serafini, L.: Distributed First Order Logics. In: Frontiers of Combining
Systems 2. (2000) 121–139

3. Borgida, A., Serafini, L.: Distributed Description Logics: Assimilating information
from peer sources. J. Data Semantics (2003) 153–184

4. Bouquet, P., Giunchiglia, F., van Harmelen, F., Serafini, L., Stuckenschmidt, H.:
C-OWL: Contextualizing ontologies. In: Proc. 2nd ISWC. (2003)

5. Kalfoglou, Y., Schorlemmer, M.: Ontology mapping: The state of the art. In:
Semantic Interoperability and Integration. Dagstuhl Seminar Proceedings (2005)

6. Madhavan, J., Bernstein, P.A., Domingos, P., Halevy, A.Y.: Representing and
reasoning about mappings between domain models. In: Proc. 18th AAAI’02. (2002)
80–86

7. Bernstein, P.A., Halevy, A.Y., Pottinger, R.A.: A vision for management of com-
plex models. SIGMOD Record (2000) 55–63

8. Madhavan, J., Halevy, A.Y.: Composing mappings among data sources. In: Proc.
29th VLDB. (2003) 572–583

9. Fagin, R., Kolaitis, P.G., Popa, L., Tan, W.C.: Composing schema mappings:
Second-order dependencies to the rescue. In: Proc. 23rd ACM SIGMOD-SIGACT-
SIGART symposium on Principles of Database Systems (PODS’04). (2004) 83–94

10. Dragut, E., Lawrence, R.: Composing mappings between schemas using a reference
ontology. In: Proc. ODBASE. (2004) 783–800

11. Alagić, S., Bernstein, P.A.: A model theory for generic schema management. In:
Proc. 8th DBPL. (2001) 228–246

12. Goguen, J.A.: Data, schema and ontology integration. In: CombLog workshop.
(2004)

13. Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification
and programming. Journal of the ACM (1992) 95–146

14. Zimmermann, A., Krötzsch, M., Euzenat, J., Hitzler, P.: Formalizing ontology
alignment and its operations with category theory. In: Proc. of 4th FOIS. (2006)
To appear.

15. Hayes, P.: RDF Semantics. Technical report, W3C (2004)
16. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language

Semantics and Abstract Syntax. Technical report, W3C (2004)
17. Sowa, J.F.: Conceptual graphs for a data base interface. IBM Journal of Research

and Development 20 (1976) 336–357
18. Bouquet, P., Euzenat, J., Franconi, E., Serafini, L., Stamou, G., Tessaris, S.: Spec-

ification of a common framework for characterizing alignment. Deliverable 2.2.1,
Knowledge Web NoE (2004)

19. Eschenbach, C.: Viewing composition tables as axiomatic systems. In: Proc. 2nd
FOIS. (2001) 93–104



Semantics and Complexity of SPARQL

Jorge Pérez1, Marcelo Arenas2, and Claudio Gutierrez3

1 Universidad de Talca, Chile
2 Pontificia Universidad Católica de Chile

3 Universidad de Chile

Abstract. SPARQL is the W3C candidate recommendation query lan-
guage for RDF. In this paper we address systematically the formal study
of SPARQL, concentrating in its graph pattern facility. We consider for
this study simple RDF graphs without special semantics for literals and
a simplified version of filters which encompasses all the main issues.
We provide a compositional semantics, prove there are normal forms,
prove complexity bounds, among others that the evaluation of SPARQL
patterns is PSPACE-complete, compare our semantics to an alternative
operational semantics, give simple and natural conditions when both se-
mantics coincide and discuss optimization procedures.

1 Introduction

The Resource Description Framework (RDF) [12] is a data model for represent-
ing information about World Wide Web resources. Jointly with its release in
1998 as Recommendation of the W3C, the natural problem of querying RDF
data was raised. Since then, several designs and implementations of RDF query
languages have been proposed (see [9] for a recent survey). In 2004 the RDF
Data Access Working Group (part of the Semantic Web Activity) released a
first public working draft of a query language for RDF, called SPARQL [15].
Currently (August 2006) SPARQL is a W3C Candidate Recommendation.

Essentially, SPARQL is a graph-matching query language. Given a data source
D, a query consists of a pattern which is matched against D, and the values
obtained from this matching are processed to give the answer. The data source
D to be queried can be composed of multiple sources. A SPARQL query consists
of three parts. The pattern matching part, which includes several interesting
features of pattern matching of graphs, like optional parts, union of patterns,
nesting, filtering (or restricting) values of possible matchings, and the possibility
of choosing the data source to be matched by a pattern. The solution modifiers,
which once the output of the pattern has been computed (in the form of a
table of values of variables), allows to modify these values applying classical
operators like projection, distinct, order, limit, and offset. Finally, the output of
a SPARQL query can be of different types: yes/no queries, selections of values of
the variables which match the patterns, construction of new triples from these
values, and descriptions of resources.

Although taken one by one the features of SPARQL are simple to describe
and understand, it turns out that the combination of them makes SPARQL into

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 30–43, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Semantics and Complexity of SPARQL 31

a complex language, whose semantics is far from being understood. In fact, the
semantics of SPARQL currently given in the document [15], as we show in this
paper, does not cover all the complexities brought by the constructs involved in
SPARQL, and includes ambiguities, gaps and features difficult to understand.
The interpretations of the examples and the semantics of cases not covered in
[15] are currently matter of long discussions in the W3C mailing lists.

Thenatural conclusion is thatworkon formalizationof the semanticsofSPARQL
isneeded.Aformalapproachtothissubjectisbeneficialforseveralreasons,including
to serve as a tool to identify and derive relations among the constructors, identify
redundant and contradicting notions, and to study the complexity, expressiveness,
andfurthernaturaldatabasequestionslikerewritingandoptimization.Tothebestof
our knowledge, there is no work today addressing this formalization systematically.
There are proposals addressing partial aspects of the semantics of some fragments
of SPARQL. There is also some work addressing formal issues of the semantics of
query languages forRDF which canbe of use for SPARQL. In fact, SPARQLshares
several constructs with other proposals of query languages for RDF. In the related
work section, we discuss these developments in more detail. None of these works,
nevertheless, covers the problems posed by the core constructors of SPARQL from
the syntactic, semantic, algorithmic and computational complexity point of view,
which is the subject of this paper.

Contributions. An in depth analysis of the semantics benefits from abstracting
some features, which although relevant, in a first stage tend to obscure the inter-
play of the basic constructors used in the language. One of our main goals was
to isolate a core fragment of SPARQL simple enough to be the subject matter
of a formal analysis, but which is expressive enough to capture the core com-
plexities of the language. In this direction, we chose the graph pattern matching
facility, which is additionally one of the most complex parts of the language.
The fragment isolated consists of the grammar of patterns restricted to queries
on one dataset (i.e. not considering the dataset graph pattern) over simple RDF
graphs, not considering RDF/S vocabulary and without special semantics for lit-
erals. There are other two sources of abstractions which do not alter in essential
ways SPARQL: we use set semantics as opposed to the bag semantics implied
in the document of the W3C, and we avoid blanks in the syntax of patterns,
because in our fragment can be replaced by variables [8,4].

The contributions of this paper are:

– A streamlined version of the core fragment of SPARQL with precise syntax
and semantics. A formal version of SPARQL helps clarifying cases where the
current English-wording semantics gives little information, identify areas of
problems and permits to propose solutions.

– We present a compositional semantics for patterns in SPARQL, prove that
there is a notion of normal form for graph patterns, and indicate optimization
procedures and rules for the operators based on them.

– We give thorough analysis of the computational complexity of the fragment.
Among other bounds, we prove that the complexity of evaluation of SPARQL
general graph patterns is PSPACE-complete even without filter conditions.



32 J. Pérez, M. Arenas, and C. Gutierrez

– We formalize a natural procedural semantics which is implicitly used by devel-
opers. We compare these two semantics, the operational and the compositional
mentioned above. We show that putting some slight and reasonable syntactic
restrictions on the scope of variables, they coincide, thus isolating a natural
fragment having a clear semantics and an efficient evaluation procedure.

Organization of the paper. Section 2 presents a formalized algebraic syntax and
a compositional semantics for SPARQL. Section 3 presents the complexity study
of the fragment considered. Section 4 presents and in depth discussion of graph
patterns not including the UNION operator. Finally, Section 5 discusses related
work and gives some concluding remarks.

2 Syntax and Semantics of SPARQL

In this section, we give an algebraic formalization of the core fragment of SPARQL
over simple RDF, that is, RDF without RDFS vocabulary and literal rules. This
allows us to take a close look at the core components of the language and identify
some of its fundamental properties (for details on RDF formalization see [8], or
[13] for a complete reference including RDFS vocabulary).

Assume there are pairwise disjoint infinite sets I, B, and L (IRIs, Blank nodes,
and literals). A triple (s, p, o) ∈ (I ∪B)× I × (I ∪B ∪L) is called an RDF triple.
In this tuple, s is the subject, p the predicate and o the object. We denote by IL
the union I∪L, and by T the union I∪B∪L. Assume additionally the existence
of an infinite set V of variables disjoint from the above sets.

Definition 1. An RDF graph [11] is a set of RDF triples. In our context, we
refer to an RDF graph as an RDF dataset, or simply a dataset.

2.1 Syntax of SPARQL Graph Pattern Expressions

In order to avoid ambiguities in the parsing, we present the syntax of SPARQL
graph patterns in a more traditional algebraic way, using the binary operators
UNION, AND and OPT, and FILTER. We fully parenthesize expressions and
make explicit the left associativity of OPT (OPTIONAL) and the precedence of
AND over OPT implicit in [15].

A SPARQL graph pattern expression is defined recursively as follows:

(1) A tuple from (IL∪V )×(I∪V )×(IL∪V ) is a graph pattern (a triple pattern).
(2) If P1 and P2 are graph patterns, then expressions (P1 AND P2), (P1 OPT P2),

and (P1 UNION P2) are graph patterns.
(3) If P is a graph pattern and R is a SPARQL built-in condition, then the

expression (P FILTER R) is a graph pattern.

A SPARQL built-in condition is constructed using elements of the set V ∪ IL
and constants, logical connectives (¬, ∧, ∨), inequality symbols (<, ≤, ≥, >),
the equality symbol (=), unary predicates like bound, isBlank, and isIRI, plus
other features (see [15] for a complete list).



Semantics and Complexity of SPARQL 33

In this paper, we restrict to the fragment of filters where the built-in condition
is a Boolean combination of terms constructed by using = and bound, that is:

(1) If ?X, ?Y ∈ V and c ∈ I ∪ L, then bound(?X), ?X = c and ?X =?Y are
built-in conditions.

(2) If R1 and R2 are built-in conditions, then (¬R1), (R1 ∨ R2) and (R1 ∧ R2)
are built-in conditions.

Additionally, we assume that for (P FILTER R) the condition var(R) ⊆ var(P )
holds, where var(R) and var(P ) are the sets of variables occurring in R and
P , respectively. Variables in R not occurring in P bring issues that are not
computationally desirable. Consider the example of a built in condition R defined
as ?X =?Y for two variables not occurring in P . What should be the result of
evaluating (P FILTER R)? We decide not to address this discussion here.

2.2 Semantics of SPARQL Graph Pattern Expressions

To define the semantics of SPARQL graph pattern expressions, we need to intro-
duce some terminology. A mapping μ from V to T is a partial function μ : V → T .
Abusing notation, for a triple pattern t we denote by μ(t) the triple obtained
by replacing the variables in t according to μ. The domain of μ, dom(μ), is the
subset of V where μ is defined. Two mappings μ1 and μ2 are compatible when for
all x ∈ dom(μ1) ∩ dom(μ2), it is the case that μ1(x) = μ2(x), i.e. when μ1 ∪ μ2
is also a mapping. Note that two mappings with disjoint domains are always
compatible, and that the empty mapping (i.e. the mapping with empty domain)
μ∅ is compatible with any other mapping. Let Ω1 and Ω2 be sets of mappings.
We define the join of, the union of and the difference between Ω1 and Ω2 as:

Ω1 �� Ω2 = {μ1 ∪ μ2 | μ1 ∈ Ω1, μ2 ∈ Ω2 are compatible mappings},
Ω1 ∪ Ω2 = {μ | μ ∈ Ω1 or μ ∈ Ω2},
Ω1 � Ω2 = {μ ∈ Ω1 | for all μ′ ∈ Ω2, μ and μ′ are not compatible}.

Based on the previous operators, we define the left outer-join as:

Ω1 Ω2 = (Ω1 �� Ω2) ∪ (Ω1 � Ω2).

We are ready to define the semantics of graph pattern expressions as a function
[[ · ]]D which takes a pattern expression and returns a set of mappings. We follow
the approach in [8] defining the semantics as the set of mappings that matches
the dataset D.

Definition 2. Let D be an RDF dataset over T , t a triple pattern and P1, P2
graph patterns. Then the evaluation of a graph pattern over D, denoted by [[ · ]]D,
is defined recursively as follows:

(1) [[t]]D = {μ | dom(μ) = var(t) and μ(t) ∈ D}, where var(t) is the set of
variables occurring in t.



34 J. Pérez, M. Arenas, and C. Gutierrez

(2) [[(P1 AND P2)]]D = [[P1]]D �� [[P2]]D .
(3) [[(P1 OPT P2)]]D = [[P1]]D [[P2]]D.
(4) [[(P1 UNION P2)]]D = [[P1]]D ∪ [[P2]]D.

Consider pattern expression (P1 OPT P2) and let μ1 be a mapping in [[P1]]D.
If there exists a mapping μ2 ∈ [[P2]]D such that μ1 and μ2 are compatible,
then μ1 ∪ μ2 belongs to [[(P1 OPT P2)]]D. But if no such a mapping μ2 exists,
then μ1 belongs to [[(P1 OPT P2)]]D. Thus, operator OPT (optional) allows
information to be added to a mapping μ if the information is available, instead
of just rejecting μ whenever some part of the pattern does not match.

The semantics of FILTER expressions goes as follows. Given a mapping μ and
a built-in condition R, we say that μ satisfies R, denoted by μ |= R, if:

(1) R is bound(?X) and ?X ∈ dom(μ);
(2) R is ?X = c, ?X ∈ dom(μ) and μ(?X) = c;
(3) R is ?X =?Y , ?X ∈ dom(μ), ?Y ∈ dom(μ) and μ(?X) = μ(?Y );
(4) R is (¬R1), R1 is a built-in condition, and it is not the case that μ |= R1;
(5) R is (R1 ∨ R2), R1 and R2 are built-in conditions, and μ |= R1 or μ |= R2;
(6) R is (R1 ∧ R2), R1 and R2 are built-in conditions, μ |= R1 and μ |= R2.

Definition 3. GivenanRDFdatasetD andaFILTERexpression (P FILTERR),

[[(P FILTER R)]]D = {μ ∈ [[P ]]D | μ |= R}.

Example 1. Consider the RDF dataset D:

D = { (B1, name, paul), (B1, phone, 777-3426),
(B2, name, john), (B2, email, john@acd.edu),
(B3, name, george), (B3, webPage, www.george.edu),
(B4, name, ringo), (B4, email, ringo@acd.edu),
(B4, webPage, www.starr.edu), (B4, phone, 888-4537), }

The following are graph pattern expressions and their evaluations over D according to
the above semantics:

(1) P1 = ((?A, email, ?E) OPT (?A, webPage, ?W )). Then

[[P1]]D =
?A ?E ?W

μ1 : B2 john@acd.edu
μ2 : B4 ringo@acd.edu www.starr.edu

(2) P2 = (((?A, name, ?N) OPT (?A, email, ?E)) OPT (?A, webPage, ?W )). Then

[[P2]]D =

?A ?N ?E ?W
μ1 : B1 paul
μ2 : B2 john john@acd.edu
μ3 : B3 george www.george.edu
μ4 : B4 ringo ringo@acd.edu www.starr.edu

(3) P3 = ((?A, name, ?N) OPT ((?A, email, ?E) OPT (?A, webPage, ?W ))). Then



Semantics and Complexity of SPARQL 35

[[P3]]D =

?A ?N ?E ?W
μ1 : B1 paul
μ2 : B2 john john@acd.edu
μ3 : B3 george
μ4 : B4 ringo ringo@acd.edu www.starr.edu

Note the difference between [[P2]]D and [[P3]]D. These two examples show that
[[((A OPT B) OPT C)]]D �= [[(A OPT (B OPT C))]]D in general.

(4) P4 = ((?A, name, ?N) AND ((?A, email, ?E) UNION (?A, webPage, ?W ))). Then

[[P4]]D =

?A ?N ?E ?W
μ1 : B2 john john@acd.edu
μ2 : B3 george www.george.edu
μ3 : B4 ringo ringo@acd.edu
μ4 : B4 ringo www.starr.edu

(5) P5 = (((?A, name, ?N) OPT (?A, phone, ?P )) FILTER ¬ bound(?P )). Then

[[P5]]D =
?A ?N ?P

μ1 : B2 john
μ2 : B3 george

2.3 A Simple Normal Form for Graph Patterns

We say that two graph pattern expressions P1 and P2 are equivalent, denoted
by P1 ≡ P2, if [[P1]]D = [[P2]]D for every RDF dataset D.

Proposition 1. Let P1, P2 and P3 be graph pattern expressions and R a built-in
condition. Then:

(1) AND and UNION are associative and commutative.
(2) (P1 AND (P2 UNION P3)) ≡ ((P1 AND P2) UNION (P1 AND P3)).
(3) (P1 OPT (P2 UNION P3)) ≡ ((P1 OPT P2) UNION (P1 OPT P3)).
(4) ((P1 UNION P2) OPT P3) ≡ ((P1 OPT P3) UNION (P2 OPT P3)).
(5) ((P1 UNION P2) FILTER R) ≡ ((P1 FILTER R) UNION (P2 FILTER R)).

The application of the above equivalences permits to translate any graph pattern
into an equivalent one of the form:

P1 UNION P2 UNION P3 UNION · · · UNION Pn, (1)

where each Pi (1 ≤ i ≤ n) is a UNION-free expression. In Section 4, we study
UNION-free graph pattern expressions.

3 Complexity of Evaluating Graph Pattern Expressions

A fundamental issue in every query language is the complexity of query evaluation
and, in particular, what is the influence of each component of the language in this
complexity. In this section, we address these issues for graph pattern expressions.

As it is customary when studying the complexity of the evaluation problem
for a query language, we consider its associated decision problem. We denote
this problem by Evaluation and we define it as follows:



36 J. Pérez, M. Arenas, and C. Gutierrez

INPUT : An RDF dataset D, a graph pattern P and a mapping μ.
QUESTION : Is μ ∈ [[P ]]D?

We start this study by considering the fragment consisting of graph pattern
expressions constructed by using only AND and FILTER operators. This simple
fragment is interesting as it does not use the two most complicated operators in
SPARQL, namely UNION and OPT. Given an RDF dataset D, a graph pattern
P in this fragment and a mapping μ, it is possible to efficiently check whether
μ ∈ [[P ]]D by using the following algorithm. First, for each triple t in P , verify
whether μ(t) ∈ D. If this is not the case, then return false. Otherwise, by using
a bottom-up approach, verify whether the expression generated by instantiating
the variables in P according to μ satisfies the FILTER conditions in P . If this
is the case, then return true, else return false. Thus, we conclude that:

Theorem 1. Evaluation can be solved in time O(|P | · |D|) for graph pattern
expressions constructed by using only AND and FILTER operators.

We continue this study by adding to the above fragment the UNION operator.
It is important to notice that the inclusion of UNION in SPARQL is one of the
most controversial issues in the definition of this language. In fact, in the W3C
candidate recommendation for SPARQL [15], one can read the following: “The
working group decided on this design and closed the disjunction issue without
reaching consensus. The objection was that adding UNION would complicate
implementation and discourage adoption”. In the following theorem, we show
that indeed the inclusion of UNION operator makes the evaluation problem for
SPARQL considerably harder:

Theorem 2. Evaluation is NP-complete for graph pattern expressions con-
structed by using only AND, FILTER and UNION operators.

We conclude this study by adding to the above fragments the OPT operator.
This operator is probably the most complicated in graph pattern expressions
and, definitively, the most difficult to define. The following theorem shows that
the evaluation problem becomes even harder if we include the OPT operator:

Theorem 3. Evaluation is PSPACE-complete for graph pattern expressions.

It is worth mentioning that in the proof of Theorem 3, we actually show that
Evaluation remains PSPACE-complete if we consider expressions without FIL-
TER conditions, showing that the main source of complexity in SPARQL comes
from the combination of UNION and OPT operators.

When verifying whether μ ∈ [[P ]]D, it is natural to assume that the size of P
is considerably smaller that the size of D. This assumption is very common when
studying the complexity of a query language. In fact, it is named data-complexity
in the database literature [19] and it is defined as the complexity of the evaluation
problem for a fixed query. More precisely, for the case of SPARQL, given a graph
pattern expression P , the evaluation problem for P , denoted by Evaluation(P ),
has as input an RDF dataset D and a mapping μ, and the problem is to verify
whether μ ∈ [[P ]]D. From known results for the data-complexity of first-order
logic [19], it is easy to deduce that:



Semantics and Complexity of SPARQL 37

Theorem 4. Evaluation(P ) is in LOGSPACE for every graph pattern
expression P .

4 On the Semantics of UNION-Free Pattern Expressions

The exact semantics of graph pattern expressions has been largely discussed on
the mailing list of the W3C. There seems to be two main approaches proposed to
compute answers to a graph pattern expression P . The first uses an operational
semantics and consists essentially in the execution of a depth-first traversal of
the parse tree of P and the use of the intermediate results to avoid some compu-
tations. This approach is the one followed by ARQ [1] (a language developed by
HPLabs) in the cases we test, and by the W3C when evaluating graph pattern
expressions containing nested optionals [17]. For instance, the computation of
the mappings satisfying (A OPT (B OPT C)) is done by first computing the
mappings that match A, then checking which of these mappings match B, and
for those who match B checking whether they also match C [17]. The second
approach, compositional in spirit and the one we advocate here, extends classical
conjunctive query evaluation [8] and is based on a bottom up evaluation of the
parse tree, borrowing notions of relational algebra evaluation [3,10] plus some
additional features.

As expected, there are queries for which both approaches do not coincide
(see Section 4.1 for examples). However, both semantics coincide in most of
the “real-life” examples. For instance, for all the queries in the W3C candidate
recommendation for SPARQL, both semantics coincide [15]. Thus, a natural
question is what is the exact relationship between the two approaches mentioned
above and, in particular, whether there is a “natural” condition under which
both approaches coincide. In this section, we address these questions: Section 4.1
formally introduces the depth-first approach, discusses some issues concerning
it, and presents queries for which the two semantics do not coincide; Section 4.2
identifies a natural and simple condition under which these two semantics are
equivalent; Section 4.3 defines a normal form and simple optimization procedures
for patterns satisfying the condition of Section 4.2

Based on the results of Section 2.3, we concentrate in the critical fragment of
UNION-free graph pattern expressions.

4.1 A Depth-First Approach to Evaluate Graph Pattern
Expressions

As we mentioned earlier, one alternative to evaluate graph pattern expressions
is based on a “greedy” approach that computes the mappings satisfying a graph
pattern expression P by traversing the parse tree of P in a depth-first manner
and using the intermediate results to avoid some computations. This evaluation
includes at each stage three parameters: the dataset, the subtree pattern of P to
be evaluated, and a set of mappings already collected. Formally, given an RDF
dataset D, the evaluation of pattern P with the set of mappings Ω, denoted by
EvalD(P, Ω), is a recursive function defined as follows:



38 J. Pérez, M. Arenas, and C. Gutierrez

EvalD(P : graph pattern expression, Ω: set of mappings)
if Ω = ∅ then return(∅)
if P is a triple pattern t then return(Ω �� [[t]]D)
if P = (P1 AND P2) then return EvalD(P2,EvalD(P1, Ω))
if P = (P1 OPT P2) then return EvalD(P1, Ω) EvalD(P2,EvalD(P1, Ω))
if P = (P1 FILTER R) then return {μ ∈ EvalD(P1, Ω) | μ |= R}

Then, the evaluation of P against a dataset D, which we denote simply by
EvalD(P ), is EvalD(P, {μ∅}), where μ∅ is the mapping with empty domain.

Example 2. Assume that P = (t1 OPT (t2 OPT t3)), where t1, t2 and t3
are triple patterns. To compute EvalD(P ), we invoke function EvalD(P, {μ∅}).
This function in turn invokes function EvalD(t1, {μ∅}), which returns [[t1]]D
since t1 is a triple pattern and [[t1]]D �� {μ∅} = [[t1]]D, and then it invokes
EvalD((t2 OPT t3), [[t1]]D). As in the previous case, EvalD((t2 OPT t3), [[t1]]D)
first invokes EvalD(t2, [[t1]]D), which returns [[t1]]D �� [[t2]]D since t2 is a triple
pattern, and then it invokes EvalD(t3, [[t1]]D �� [[t2]]D). Since t3 is a triple pat-
tern, the latter invocation returns [[t1]]D �� [[t2]]D �� [[t3]]D. Thus, by the de-
finition of EvalD we have that EvalD((t2 OPT t3), [[t1]]D) returns ([[t1]]D ��

[[t2]]D) ([[t1]]D �� [[t2]]D �� [[t3]]D). Therefore, EvalD(P ) returns

[[t1]]D
(
([[t1]]D �� [[t2]]D) ([[t1]]D �� [[t2]]D �� [[t3]]D)

)
.

Note that the previous result coincides with the evaluation algorithm proposed
by the W3C for graph pattern (t1 OPT (t2 OPT t3)) [17], as we first compute
the mappings that match t1, then we check which of these mappings match
t2, and for those who match t2 we check whether they also match t3. Also
note that the result of EvalD(P ) is not necessarily the same as [[P ]]D since
[[(t1 OPT (t2 OPT t3))]]D = [[t1]]D ([[t2]]D [[t3]]D). In Example 3 we actually
show a case where the two semantics do not coincide.

Some issues in the depth-first approach. There are two relevant issues to con-
sider when using the depth-first approach to evaluate SPARQL queries. First,
this approach is not compositional. For instance, the result of EvalD(P ) can-
not in general be used to obtain the result of EvalD((P ′ OPT P )), or even
the result of EvalD((P ′ AND P )), as EvalD(P ) results from the computation
of EvalD(P, {μ∅}) while EvalD((P ′ OPT P )) results from the computation of
Ω = EvalD(P ′, {μ∅}) and EvalD(P, Ω). This can become a problem in cases
of data integration where global answers are obtained by combining the results
from several data sources; or when storing some pre–answered queries in order
to obtain the results of more complex queries by composition. Second, under the
depth-first approach some natural properties of widely used operators do not
hold, which may confuse some users. For example, it is not always the case that
EvalD((P1 AND P2)) = EvalD((P2 AND P1)), violating the commutativity of
the conjunction and making the result to depend on the order of the query.

Example 3. Let D be the RDF dataset shown in Example 1 and consider the pat-
tern P = ((?X, name, paul) OPT ((?Y, name, george) OPT (?X, email, ?Z))).



Semantics and Complexity of SPARQL 39

Then [[P ]]D = { {?X → B1} }, that is, [[P ]]D contains only one mapping.
On the other hand, following the recursive definition of EvalD we obtain that
EvalD(P ) = { {?X → B1, ?Y → B3} }, which is different from [[P ]]D.

Example 4 (Not commutativity of AND). Let D be the RDF dataset in Example
1, P1 = ((?X, name, paul) AND ((?Y, name, george) OPT (?X, email, ?Z)))
and P2 = (((?Y, name, george) OPT (?X, email, ?Z)) AND (?X, name, paul)).
Then EvalD(P1) = { {?X → B1, ?Y → B3} } while EvalD(P2) = ∅. Using the
compositional semantics, we obtain [[P1]]D = [[P2]]D = ∅.

Let us mention that ARQ [1] gives the same non-commutative evaluation.

4.2 A Natural Condition Ensuring [[P ]]D = EvalD(P )

If for a pattern P we have that [[P ]]D = EvalD(P ) for every RDF dataset D,
then we have the best of both worlds for P as the compositional approach gives
a formal semantics to P while the depth-first approach gives an efficient way of
evaluating it. Thus, it is desirable to identify natural syntactic conditions on P
ensuring [[P ]]D = EvalD(P ). In this section, we introduce one such condition.

One of the most delicate issues in the definition of a semantics for graph
pattern expressions is the semantics of OPT operator. A careful examination of
the conflicting examples reveals a common pattern: A graph pattern P mentions
an expression P ′ = (P1 OPT P2) and a variable ?X occurring both inside P2 and
outside P ′ but not occurring in P1. For instance, in the graph pattern expression
shown in Example 3:

P = ((?X, name, paul) OPT ((?Y, name, george) OPT (?X, email, ?Z))),

variable ?X occurs both inside the optional part of the sub-pattern P ′ = ((?Y ,
name, george) OPT (?X , email, ?Z)) and outside P ′ in the triple (?X , name,
paul), but it is not mentioned in (?Y , name, george).

What is unnatural about graph pattern P is the fact that (?X, email, ?Z) is
giving optional information for (?X, name, paul) but in P appears as giving op-
tional information for (?Y, name, george). In general, graph pattern expressions
having the condition mentioned above are not natural. In fact, no queries in the
W3C candidate recommendation for SPARQL [15] exhibit this condition. This
motivates the following definition:

Definition 4. A graph pattern P is well designed if for every occurrence of a
sub-pattern P ′ = (P1 OPT P2) of P and for every variable ?X occurring in P ,
the following condition holds:

if ?X occurs both inside P2 and outside P ′, then it also occurs in P1.

Graph pattern expressions that are not well designed are shown in Examples 3
and 4. For all these patterns, the two semantics differ. The next result shows
a fundamental property of well-designed graph pattern expressions, and is a
welcome surprise as a very simple restriction on graph patterns allows the users
of SPARQL to alternatively use any of the two semantics shown in this section:



40 J. Pérez, M. Arenas, and C. Gutierrez

Theorem 5. Let D be an RDF dataset and P a well-designed graph pattern
expression. Then EvalD(P ) = [[P ]]D.

4.3 Well-Designed Patterns and Normalization

Due to the evident similarity between certain operators of SPARQL and rela-
tional algebra, a natural question is whether the classical results of normal forms
and optimization in relational algebra are applicable in the SPARQL context.
The answer is not straightforward, at least for the case of optional patterns and
its relational counterpoint, the left outer join. The classical results about outer
join query reordering and optimization by Galindo-Legaria and Rosenthal [7] are
not directly applicable in the SPARQL context because they assume constraints
on the relational queries that are rarely found in SPARQL. The first and more
problematic issue, is the assumption on predicates used for joining (outer join-
ing) relations to be null-rejecting [7]. In SPARQL, those predicates are implicit
in the variables that the graph patterns share and by the definition of compatible
mappings they are never null-rejecting. In [7] the queries are also enforced not to
contain Cartesian products, situation that occurs often in SPARQL when joining
graph patterns that do not share variables. Thus, specific techniques must be
developed in the SPARQL context.

In what follows we show that the property of a pattern being well designed
has important consequences for the study of normalization and optimization for
a fragment of SPARQL queries. We will restrict in this section to graph patterns
without FILTER.

Proposition 2. Given a well-designed graph pattern P , if the left hand sides of
the following equations are sub-patterns of P , then:

(P1 AND (P2 OPT P3)) ≡ ((P1 AND P2) OPT P3), (2)
((P1 OPT P2) OPT P3) ≡ ((P1 OPT P3) OPT P2). (3)

Moreover, in both equivalences, if one replaces in P the left hand side by the
right hand side, then the resulting pattern is still well designed.

From this proposition plus associativity and commutativity of AND, it follows:

Theorem 6. Every well-designed graph pattern P is equivalent to a pattern in
the following normal form:

(· · · (t1 AND · · · AND tk) OPT O1) OPT O2) · · · ) OPT On), (4)

where each ti is a triple pattern, n ≥ 0 and each Oj has the same form (4).

The proof of the theorem is based on term rewriting techniques. The next ex-
ample shows the benefits of using the above normal form.

Example 5. Consider dataset D of Example 1 and well-designed pattern P =
(((?X , name, ?Y ) OPT (?X, email, ?E)) AND (?X, phone, 888-4537)). The nor-
malized form of P is P ′ = (((?X, name, ?Y ) AND (?X, phone, 888-4537)) OPT
(?X, email, ?E)). The advantage of evaluating P ′ over P follows from a simple
counting of maps.



Semantics and Complexity of SPARQL 41

Two examples of implicit use of the normal form. There are implementations
(not ARQ[1]) that do not permit nested optionals, and when evaluating a pat-
tern they first evaluate all patterns that are outside optionals and then extend
the results with the matchings of patterns inside optionals. That is, they are
implicitly using the normal form mentioned above. In [3], when evaluating a
graph pattern with relational algebra, a similar assumption is made. First the
join of all triple patterns is evaluated, and then the optional patterns are taken
into account. Again, this is an implicit use of the normal form.

5 Related Work and Conclusions

Related Work. A rich source on the intended semantics of the constructors
of SPARQL are the discussions around W3C document [15], which is still in
the stage of Candidate Recommendation. Nevertheless, systematic and compre-
hensive approaches to define the semantics are not present, and most of the
discussion is based on use cases.

In [15], in defining the semantics of SPARQL a notion of entailment is intro-
duced with the idea of making the definition generic enough to support notions
more general than simple entailment (e.g. OWL entailment [14], etc.). Current
developments of the W3C (August 2006) have not settled yet this issue. What is
clear consensus is that in the case of simple RDF any definition should coincide
with subgraph matching, which is the approach followed in this paper.

Cyganiak [3] presents a relational model of SPARQL. The author uses rela-
tional algebra operators (join, left outer join, projection, selection, etc.) to model
SPARQL SELECT clauses. The central idea in [3] is to make a correspondence
between SPARQL queries and relational algebra queries over a single relation
T (S, P, O). Indeed a translation system between SPARQL and SQL is outlined.
The system needs extensive use of COALESCE and IS NULL operations to resemble
SPARQL features. The relational algebra operators and their semantics in [3]
are similar to our operators and have similar syntactic and semantic issues. With
different motivations, but similar philosophy, Harris [10] presents an implemen-
tation of SPARQL queries in a relational database engine. He uses relational
algebra operators similar to [3]. This line of work, which models the semantics
of SPARQL based on the semantics of some relational operators, seems to be
very influent in the decisions on the W3C semantics of SPARQL.

De Bruin et al. [4] address the definition of mapping for SPARQL from a
logical point of view. It slightly differs from the definition in [15] on the issue of
blank nodes. Although De Bruin et al.’s definition allows blank nodes in graph
patterns, it is similar to our definition which does not allow blanks in patterns.
In their approach, these blanks play the role of “non-distinguished” variables,
that is, variables which are not presented in the answer.

Franconi and Tessaris [5], in an ongoing work on the semantics of SPARQL,
formally define the solution for a basic graph pattern (an RDF graph with vari-
ables) as a set of partial functions. They also consider RDF datasets and sev-
eral forms of RDF–entailment. Finally, they propose high level operators (Join,



42 J. Pérez, M. Arenas, and C. Gutierrez

Optional, etc.) that take set of mappings and give set of mappings, but currently
they do not have formal definitions for them, stating only their types.

There are several works on the semantics of RDF query languages which
tangentially touch the issues addressed by SPARQL. Gutierrez et al. [8] dis-
cuss the basic issues of the semantics and complexity of a conjunctive query
language for RDF with basic patterns which underlies the basic evaluation ap-
proach of SPARQL. Haase et al. [9] present a comparison of functionalities of
pre-SPARQL query languages, many of which served as inspiration for the con-
structs of SPARQL. Nevertheless, there is no formal semantics involved.

The idea of having an algebraic query language for RDF is not new. In fact,
there are several proposals. Chen et al. [2] present a set of operators for manip-
ulating RDF graphs, Frasincar et al. [6] study algebraic operators on the lines
of the RQL query language, and Robertson [16] introduces an algebra of triadic
relations for RDF. Although they evidence the power of having an algebraic ap-
proach to query RDF, the frameworks presented in each of these works makes
not evident how to model with them the constructors of SPARQL.

Finally Serfiotis et al. [18] study RDFS query fragments using a logical frame-
work, presenting results on the classical database problems of containment and
minimization of queries for a model of RDF/S. They concentrate on patterns
using the RDF/S vocabulary of classes and properties in conjunctive queries,
making the overlap with our fragment and approach almost empty.

Concluding remarks. The query language SPARQL is in the process of stan-
dardization, and in this process the semantics of the language plays a key role. A
formalization of a semantics will be beneficial on several grounds: help identify
relationships among the constructors that stay hidden in the use cases, identify
redundant and contradicting notions, study the expressiveness and complexity
of the language, help in optimization, etc.

In this paper, we provided such a formal semantics for the graph pattern match-
ing facility, which is the core of SPARQL. We isolated a fragment which is rich
enough to present the main issues and favor a good formalization. We presented a
formal semantics, made observations to the current syntax based on it, and proved
several properties of it. We did a complexity analysis showing that unlimited used
of OPT could lead to high complexity, namely PSPACE. We presented an alter-
native formal procedural semantics which closely resembles the one used by most
developers. We proved that under simple syntactic restrictions both semantics are
equivalent, thus having the advantages of a formal compositional semantics and
the efficiency of a procedural semantics. Finally, we discussed optimization based
on relational algebra and show limitations based on features of SPARQL. On these
lines, we presented optimizations based on normal forms.

The approach followed in this paper for simple RDF can be extended to RDFS
using the method proposed in [8], which introduces the notion of normal form
for RDF graphs. This notion can be used to extend to RDFS the graph-theoretic
characterization of simple RDF entailment. Then by replacing an RDF graph
by its unique normal form, all the semantic results of this paper are preserved.
Further work should include the extension of this approach to typed literals.



Semantics and Complexity of SPARQL 43

Acknowledgments. Pérez is supported by Dirección de Investigación, Univer-
sidad de Talca, Arenas by FONDECYT 1050701, and Arenas and Gutierrez by
Millennium Nucleus Center for Web Research, P04-067-F, Mideplan, Chile.

References

1. ARQ - A SPARQL Processor for Jena, version 1.3 March 2006, Hewlett-Packard
Development Company. http://jena.sourceforge.net/ARQ.

2. L. Chen, A. Gupta and M. E. Kurul. A Semantic-aware RDF Query Algebra. In
COMAD 2005.

3. R. Cyganiak. A Relational Algebra for Sparql. HP-Labs Technical Report, HPL-
2005-170. http://www.hpl.hp.com/techreports/2005/HPL-2005-170.html.

4. J. de Bruijn, E. Franconi, S. Tessaris. Logical Reconstruction of normative RDF.
In OWLED 2005, Galway, Ireland, November 2005

5. E. Franconi and S. Tessaris. The Sematics of SPARQL. Working Draft 2 November
2005. http://www.inf.unibz.it/krdb/w3c/sparql/.

6. F. Frasincar, C. Houben, R. Vdovjak and P. Barna. RAL: An algebra for querying
RDF. In WISE 2002.

7. C. A. Galindo-Legaria and A. Rosenthal. Outerjoin Simplification and Reordering
for Query Optimization. In TODS 22(1): 43–73, 1997.

8. C. Gutierrez, C. Hurtado and A. Mendelzon. Foundations of Semantic Web Data-
bases. In PODS 2004, pages 95–106.

9. P. Haase, J. Broekstra, A. Eberhart and R. Volz. A Comparison of RDF Query
Languages. In ISWC 2004, pages 502–517.

10. S. Harris. Sparql query processing with conventional relational database systems.
In SSWS 2005.

11. G. Klyne, J. J. Carroll and B. McBride. Resource Description Frame-
work (RDF): Concepts and Abstract Syntax. W3C Rec. 10 February 2004.
http://www.w3.org/TR/rdf-concepts/.

12. F. Manola, E. Miller, B. McBride. RDF Primer, W3C Rec. 10 February 2004.
13. D. Marin. RDF Formalization, Santiago de Chile, 2004. Tech. Report Univ. Chile,

TR/DCC-2006-8. http://www.dcc.uchile.cl/~cgutierr/ftp/draltan.pdf
14. Peter Patel-Schneider, Patrick Hayes and Ian Horrocks. OWL Web Ontology Lan-

guage Semantics and Abstract Syntax. W3C Recommendation 10 February 2004,
http://www.w3.org/TR/owl-semantics/.

15. E. Prud’hommeaux and A. Seaborne. SPARQL Query Language for RDF. W3C
Candidate Rec. 6 April 2006. http://www.w3.org/TR/rdf-sparql-query/.

16. E. L. Robertson. Triadic Relations: An Algebra for the Semantic Web. In SWDB
2004, pages 91–108

17. A. Seaborne. Personal Communication. April 13, 2006.
18. G. Serfiotis, I. Koffina, V. Christophides and V. Tannen. Containment and Mini-

mization of RDF/S Query Patterns. In ISWC 2005, pages 607–623.
19. M. Vardi. The Complexity of Relational Query Languages (Extended Abstract). In

STOC 1982, pages 137–146.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 44 – 57, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Ontology-Driven Automatic Entity Disambiguation in 
Unstructured Text 

Joseph Hassell, Boanerges Aleman-Meza, and I. Budak Arpinar 

Large Scale Distributed Information Systems (LSDIS) Lab 
Computer Science Department, University of Georgia 

Athens, GA 30602-7404, USA 
{hassell, boanerg, budak}@cs.uga.edu 

Abstract. Precisely identifying entities in web documents is essential for 
document indexing, web search and data integration. Entity disambiguation is 
the challenge of determining the correct entity out of various candidate entities. 
Our novel method utilizes background knowledge in the form of a populated 
ontology. Additionally, it does not rely on the existence of any structure in a 
document or the appearance of data items that can provide strong evidence, 
such as email addresses, for disambiguating person names. Originality of our 
method is demonstrated in the way it uses different relationships in a document 
as well as from the ontology to provide clues in determining the correct entity. 
We demonstrate the applicability of our method by disambiguating names of re-
searchers appearing in a collection of DBWorld posts using a large scale, real-
world ontology extracted from the DBLP bibliography website. The precision 
and recall measurements provide encouraging results. 

Keywords: Entity disambiguation, ontology, semantic web, DBLP, DBWorld. 

1   Introduction 

A significant problem with the World Wide Web today is that there is no explicit se-
mantic information about the data and objects being presented in the web pages. Most 
of the content encoded in HTML format serves its purpose of describing the presenta-
tion of the information to be displayed to human users. HTML lacks the ability to se-
mantically express or indicate that specific pieces of content refer to real-world 
named entities or concepts. For instance, if “George Bush” is mentioned on a web 
page, there is no way for a computer to identify which “George Bush” the document 
is referring to or even if “George Bush” is the name of a person.  

The Semantic Web aims at solving this problem by providing an underlying mecha-
nism to add semantic metadata on any content, such as web pages. However, an issue 
that the Semantic Web currently faces is that there is not enough semantically annotated 
web content available. The addition of semantic metadata can be in the form of an ex-
plicit relationship from each appearance of named entities within a document to some 
identifier or reference to the entity itself. The architecture of the Semantic Web relies 
upon URIs [4] for this purpose. Examples of this would be the entity “UGA” pointing to 
http://www.uga.edu and “George Bush” pointing to a URL of his official web page at 
the White House. However, more benefit can be obtained by referring to actual entities 



 Ontology-Driven Automatic Entity Disambiguation in Unstructured Text 45 

of an ontology where such entities would be related to concepts and/or other entities. 
The problem that arises is that of entity disambiguation, which is concerned with deter-
mining the right entity within a document out of various possibilities due to same syn-
tactical name match. For example, “A. Joshi” is ambiguous due to various real-world 
entities (i.e. computer scientists) having the same name. 

Entity disambiguation is an important research area within Computer Science. The 
more information that is gathered and merged, the more important it is for this infor-
mation to accurately reflect the objects they are referring to. It is a challenge in part 
due to the difficulty of exploiting, or lack of background knowledge about the entities 
involved. If a human is asked to determine the correct entities mentioned within a 
document, s/he would have to rely upon some background knowledge accumulated 
over time from other documents, experiences, etc. The research problem that we are 
addressing is how to exploit background knowledge for entity disambiguation, which 
is quite complicated particularly when the only available information is an initial and 
last name of a person. In fact, this type of information is already available on the 
World Wide Web in databases, ontologies or other forms of knowledge bases. Our 
method utilizes background knowledge stored in the form of an ontology to pinpoint, 
with high accuracy, the correct object in the ontology that a document refers to. Con-
sider a web page with a “Call for Papers” announcement where various researchers 
are listed as part of the Program Committee. The name of each of them can be linked 
to their respective homepage or other known identifiers maintained elsewhere, such as 
the DBLP bibliography server. Our approach for entity disambiguation is targeted at 
solving this type of problem, as opposed to entity disambiguation in databases which 
aims at determining similarity of attributes from different database schemas to be 
merged and identifying which record instances refer to the same entity (e.g., [7]).  

The contributions of our work are two-fold: (1) a novel method to disambiguate 
entities within unstructured text by using clues in the text and exploiting metadata 
from an ontology; (2) an implementation of our method that uses a very large, real-
world ontology to demonstrate effective entity disambiguation in the domain of Com-
puter Science researchers. According to our knowledge, our method is the first work 
of its type to exploit an ontology and use relations within this ontology to recognize 
entities without relying on structure of the document. We show that our method can 
determine the correct entities mentioned in a document with high accuracy by com-
paring to a manually created and disambiguated dataset. 

2   Dataset 

Our dataset consists of two parts. First, an ontology created from the DBLP bibliogra-
phy [14] and a corpus of DBWorld documents [6] that we use to evaluate our system. 
We chose the DBLP dataset because it is a rich source of information in the Computer 
Science domain and DBWorld because it contains documents which include names of 
people that typically exist in DBLP. 

2.1   DBLP 

Our goal is to demonstrate real-world applicability of our approach. Therefore, we 
chose to use data from the DBLP bibliography site (which has been around since the 



46 J. Hassell, B. Aleman-Meza, and I.B. Arpinar 

1980’s). This is a web site that contains bibliographic information for computer sci-
ence researchers, journals and proceedings. Currently, it indexes more than 725,000 
articles and contains a few thousand links to home pages of computer scientists. Con-
veniently, the site provides two XML files that contain most of the information stored 
in its servers. One of the files contains objects such as authors, proceedings and jour-
nals. The other file contains lists of papers usually organized by tracks or sessions of 
the conference or workshop where they were presented. We have taken the former 
and converted it into RDF. The resulting RDF is very large, approximately one and a 
half gigabytes. It contains 3,079,414 entities and 447,121 of these are authors from 
around the world. Table 1 lists the classes with the most instances. 

Table 1. Instances of classes in DBLP ontology 

Authors 447,121 
Journal Articles 262,562 

Articles in Proceedings 445,530 

The conversion to RDF was designed to create entities out of peoples’ names, instead 
of treating the names as literal values being part of the metadata of a publication. For 
this reason, we did not make use of other available RDF-converted data of DBLP (e.g., 
http://www.semanticweb.org/library/#dblp). Additionally, the data in RDF is enriched 
by adding relationships to affiliations (i.e., universities) and research topics for re-
searchers. For further details see http://lsdis.cs.uga.edu/projects/semdis/swetodblp/. 

2.2   DBWorld 

DBWorld is a mailing list of information for upcoming conferences related to the da-
tabases field. Although it does contain some random post about open positions, etc., 
we are only interested in postings about conferences, workshops, and symposiums. 

We created an HTML scraper that visits the DBWorld site and downloads only the 
posts that contain “Call for Papers”, “Call for Participation” or “CFP” in the subject. 
Our system disambiguates the people listed in these postings and provides a URI to 
the corresponding entity in the ontology.  

A DBWorld post typically contains an introduction, topics of interest, important 
dates and a list of committee members. The general layout of the DBWorld post is 
rarely consistent in terms of its structure. For example, sometimes the participants of a 
conference are listed with their school or company affiliation and sometimes they are 
listed along with the name of a country.  

3   Approach 

In our approach, different relationships in the ontology provide clues for determining 
the correct entity out of various possible matches. Figure 1 provides an overview of the 
main modules in our approach. We argue that rich semantic metadata representations  



 Ontology-Driven Automatic Entity Disambiguation in Unstructured Text 47 

allow a variety of ways to describe a resource. We characterize several relationship 
types that we identified and explain how they contribute towards the disambiguation 
process. As mentioned, we use the scenario of disambiguating researchers by their 
names appearing in DBWorld postings. However, we believe that the following rela-
tionship types are applicable to other scenarios (such as disambiguating actor names in 
movie reviews).  

 

Fig. 1. Overview of the Main Modules for Entity Disambiguation 

3.1   Entity Names 

An ontology contains a variety of concepts and instance data. The first step of our ap-
proach is specifying which entities from a populated ontology are to be spotted in text 
and later disambiguated. To do this, it is necessary to indicate which literal property is 
the one that contains the ‘name’ of entities to be spotted. In most cases, such a literal 
property would be ‘rdfs:label.’ However, in some cases, additional ‘name’ properties 
may need to be listed, such as aliases and alternate names. Additionally, a different 
ontology may have its own way of representing the name for each entity. 

3.2   Text-Proximity Relationships 

Various relationships contain metadata that can be expected to be in ‘text-proximity’ 
of the entity to be disambiguated. For example, affiliation data commonly appears 
near names of researchers in DBWorld posts. Hence, when the known affiliation 
(from the ontology) appears near an entity, there is an increased likelihood that this 
entity is the correct entity that the text refers to. This ‘nearness’ is measured by the 
number of space characters between two objects. Figure 2 illustrates an example 
where the affiliation “Stanford University” appears next to the entity of interest, “Mi-
chael Kassoff”, whose known affiliation is “Stanford University” according to the 
populated DBLP ontology. We acknowledge the fact that the up to date status of an 
ontology can have an impact on the quality of disambiguation results yet measuring 
the degree of such impact is outside the scope of this paper.  
 



48 J. Hassell, B. Aleman-Meza, and I.B. Arpinar 

Fig. 2. Snippet from a DBWorld post Fig. 3. Snippet from the same post in Figure 2 

3.3   Text Co-occurrence Relationships 

Text co-occurrence relationships are similar to text-proximity relationships with the 
exception that ‘proximity’ is not relevant. For example, the intuition of using affilia-
tion data is applicable as long as it appears ‘near’ a person entity, but it would not be 
relevant if it appears somewhere else in the text because it could be the affiliation of a 
different person (or referring to something else). Text co-occurrence relationships are 
intended to specify data items that, when appearing in the same document, provide 
clues about the correct entity being referred in the text. For example, in DBWorld 
posts, the listed ‘topics’ fit the idea of text co-occurrence relationships. Figure 3 
shows a portion of the same document in Figure 2, where “Web mining” and “Seman-
tic Web” are spotted and are both areas of interest that match research topics related 
to “Michael Kassoff.” Thus, by specifying the text co-occurrence relationship, spe-
cific metadata contained in the ontology helps disambiguate the correct person, de-
pending on the topics mentioned in the text.  

It is important to mention that this co-occurrence relationship is applicable only on 
well focused content. That is, if a document contains multiple DBWorld postings then 
its content could bring ‘noise’ and negatively impact the results of the disambiguation 
process. In such cases, it may be necessary to perform a text-segmentation process [9] 
to separate and deal with specific subparts of a document. 

3.4   Popular Entities 

The intuition behind using popular entities is to bias the right entity to be the one hav-
ing more occurrences of ‘popular’ relationships (specified in advance). For example, 
researchers listed in Program Committees of DBWorld posts typically have a high 
number of publications. An ‘author’ relationship specified as popular can bias the 
candidate entities with many publications to be the right entity. For example, the ab-
breviated name “A. Joshi” matches up to 20 entities in DBLP but only a couple of 
such researchers have more than 70 papers published. The usage of this type of rela-
tionship for entity-disambiguation would depend on whether it is applicable for a 
given domain. 



 Ontology-Driven Automatic Entity Disambiguation in Unstructured Text 49 

3.5   Semantic Relationships 

Semantic relationships are intended to consider relationships that go beyond metadata 
which consists of literal values, such as syntactical matching of peoples’ names [5]. 
For example, researchers are related to other researchers by means of their collabora-
tion network. Researchers are also closely related to their co-authors and other authors 
through complex relationships. In DBWorld posts, it is common that the persons 
listed have relationships among themselves within a list of accepted papers and/or 
program committee members of a conference. Thus, the semantic relationship helps 
with determining the correct entity being referred in the text. 

Fig. 4. Sample RDF object 

In Figure 4, we present a part of our DBLP RDF file, which is an input to the sys-
tem for entity disambiguation. In this example, the entity’s name is “Michael Kas-
soff” who is affiliated with “Stanford University” and has authored one paper. The 
author has three areas of interest and is related to four other authors via semantic rela-
tionships described above (e.g., has_co-author). 

4   Algorithm 

In this section, we describe our method for disambiguating entities in unstructured 
text. Figure 5 explains the steps of our method using pseudocode. The general idea is 
to spot entity names in text and then assign each potential match a confidence score. 
The confidence score for each ambiguous entity is adjusted based on whether existing 
information of the entity from the ontology matches accordingly to the relationship 
types found in the ontology as explained in the previous section. Throughout this pa-
per, we will use cf to represent the initial confidence score, acf to represent the initial, 
abbreviated confidence score, pr to represent proximity score, co to represent text co-
occurrence score, sr to represent the semantic relationship score and pe to represent 
the popular entity score. These variables are adjustable to capture the relative impor-
tance of each factor in the disambiguation process. 



50 J. Hassell, B. Aleman-Meza, and I.B. Arpinar 

Algorithm. Disambiguation( ) { 
   for (each entity in ontology) { 
      if (entity found in document) { 
         create ‘candidate entity’
         CS  for ‘candidate entity’ cf / (entities in ontology) 
      } 
   } 
   for (each ‘candidate entity’) { 
      search for ‘candidate entity’s text proximity relationship 
      if (text proximity relationship found near ‘candidate entity’){
         CS for ‘candidate entity’ CS for ‘candidate entity’ + pr
      } 
      search for ‘candidate entity’s text co-occurrence relationship 
      if (text co-occurrence relationship found) { 
         CS for ‘candidate entity’ CS for ‘candidate entity’ + co
      } 
      if (ten or more popular entity relationships exist){ 
      { 
          CS for ‘candidate entity’ CS for ‘candidate entity’ + pe 
      } 
   } 
   iterate  false 
   while (iterate == true) { 
      iterate  true 
      for (each ‘candidate entity’) { 
         search  for semantic relationships in the ontology to other ‘candidate entities’
         for (each relation found that has not been seen AND  
                target entity CS is above ‘threshold’) { 
            CS for ‘candidate entity’ CS for ‘candidate entity’ + sr
            mark relation as seen 
            if (‘candidate entity’ score has risen above ‘threshold’) { 
               iterate  false 
}}}}}

Fig. 5. Algorithm pseudocode 

4.1   Spotting Entity Names 

The first step in our algorithm consists of spotting (within a document) the names of 
the entities to be disambiguated (see Section 3.1). The system only looks for entity-
names of the ontology. Each entity name found in the document is a potential match 
for one or more entities in the populated ontology. Each of the entities of the ontology 
that matches a name becomes a candidate entity. A confidence score is initially as-
signed to each candidate entity depending on how many of them match the same 
name. The formula for assigning this confidence score (CS) is as follows. 



 Ontology-Driven Automatic Entity Disambiguation in Unstructured Text 51 

 

(1) 

Techniques for spotting person names can be as simple as regular expressions that find 
anything that looks like a person name (e.g., two words having their first letter capital-
ized). We did not choose this type of techniques to avoid spotting irrelevant informa-
tion, which would have had to be filtered out later. Our technique for spotting simply 
uses the known names of entities from the ontology and looks for them in the text (we 
were not very concerned with time-efficiency of this step in our prototype implementa-
tion). In addition to spotting based on name, this step also looks for abbreviated names, 
such as “A. Joshi”. This type of entities gets a CS that is initialized differently to reflect 
the fact that many more entities from the ontology can syntactically match to the same 
name. The formula for assigning this confidence score in this case is as follows. 

 

(2) 

The consideration for abbreviated names is a feature that can be turned on or off. 
We found that it is suitable for use with peoples' names yet we did not explore further 
considerations such as canonical names (i.e., Tim and Timothy) and other techniques 
for name matching [5, 13, 19]. 

4.2   Spotting Literal Values of Text-Proximity Relationships 

The second step of our algorithm consists of spotting literal values based on text-
proximity relationships (see Section 3.2). In order to narrow down the search for such 
literals, only the candidate entities found in the previous step are considered when de-
termining literal values of text-proximity relationships to be spotted. By checking the 
ontology, it is then possible to determine whether a candidate entity appears near one 
of the spotted literal values based on text-proximity relationships, such as a known af-
filiation of a person appearing within a predefined window of the person name. We 
argue that this type of evidence is a strong indication that it might be the right entity. 
Hence, the confidence-score of an entity is increased substantially. Figure 2 shows an 
example where the affiliation is a highly relevant hint for the disambiguation of the 
candidate entity “Michael Kassoff.” 

4.3   Spotting Literal Values of Text Co-occurrence Relationships 

This step consists of spotting literal values based on text co-occurrence relationships 
(see Section 3.3). For every candidate entity, if one of its literal values considering 
text co-occurrence relationships is found within the document, its confidence score is 
increased. In our DBLP dataset, this step finds literal values appearing in the docu-
ment based on the relationship ‘aoi’ which contains areas of interest of a researcher. 
For example, in Figure 3 “Web mining” and “Semantic Web” are spotted as areas of 
interest that match those of candidate entities. Thus, any candidate entity having such 
areas of interest receives an increase on its disambiguation CS. 



52 J. Hassell, B. Aleman-Meza, and I.B. Arpinar 

4.4   Using Popular Entities 

The degree of popularity among the candidate entities is considered to adjust the CS of 
candidate entities (see Section 3.4). The intention is to slightly increase the CS for 
those entities that, according to the ontology, have many relationships that were pre-
defined as popular (e.g. authored). In the scenario of DBWorld posts, this step slightly 
increases the score of candidate entities that have many publications as indicated in 
the ontology (as it is more likely that they would be listed in Program Committees). 
We acknowledge that this step may not be applicable in all domains. However, we 
found that it is a useful tie-breaker for candidate entities that have the same CS.

4.5   Using Semantic Relationships 

This step goes beyond just using literal values as evidence for disambiguating entities. 
The intuition is to use relationships to create a propagation or network effect that can 
increase the CS of candidate entities based on semantic relationships (see Section 3. 
5). In the scenario of disambiguating researchers in DBWorld posts, this step consid-
ers whether the candidate entities have co-authorship relationships and increases the 
CS for the ones that do. Such CS adjustments can only be done fairly by starting with 
the candidate entities having the highest score so far. Each candidate entity with a 
high score is analyzed through its semantic relationships in the ontology to increase 
the score of other candidate entities whenever they are connected through the ontol-
ogy. On the other hand, it may not be necessary to perform this analysis on candidate 
entities with very low CS. To deal with this issue, our algorithm uses a threshold CS,
which can be customized. Additionally, the process of adjusting CS is repeated if at 
least one candidate entity gets its CS increased over such threshold. Any such entity 
could then help boost the CS of remaining candidate entities with low scores until no 
more adjustments to CS take place. Thus, this step is iterative and always converges.  

Fig. 6. Sample Output of Spotted Entities with their Disambiguation Score 



 Ontology-Driven Automatic Entity Disambiguation in Unstructured Text 53 

4.6   Output 

As shown in Figure 6, we have chosen to output our results in XML format because 
of its universally accepted syntax. For each entity found in the document and the on-
tology, we output its URI, name, confidence score and character offset. The URI of 
each entity represents the DBLP web page containing information regarding it. The 
name is the literal found in the documents and the character offset is the location of 
the entity within the document. 

5   Evaluation 

We chose to evaluate our method for entity disambiguation using a golden standard, 
which we created manually and we will refer to as disambiguated dataset. This data-
set consists of 20 documents from DBWorld. For the purpose of having a representa-
tive dataset, the documents were chosen by first picking a random DBWorld an-
nouncement and the 19 next documents, as they were posted in chronological order. 
Each document was processed manually by inspecting peoples’ names. For each per-
son’s name, we added a link to its corresponding DBLP web page, which we use in 
the ontology as the URI that uniquely identifies a researcher. Ideally, every DBWorld 
post would have a golden standard representation but this does not exist because it is 
extremely time consuming to create. By creating this disambiguated dataset, it is pos-
sible to evaluate our method’s results and measure precision and recall.  

We use a set A as the set of unique names identified using the disambiguated data-
set and a set B as the set of entities found by our method. The intersection of these 
sets represents the set of entities correctly identified by our method. We measured 
precision as the proportion of correctly identified entities with regard to B. We meas-
ured recall as the proportion of correctly disambiguated entities with regard to A. 

 

(3) 

 

(4) 

Our method computes the CS of candidate entities using weights for the different dis-
ambiguation aspects in Section 4. These weights are part of input settings that allow 
fine tuning depending on the domain and importance of available relationships in a 
given ontology. We adjusted the settings so that an entity’s affiliation and relations 
(co-authorship) to other researchers is considered far more valuable than the areas of 
interest of the researcher. Table 2 lists the assignments that produced the most accu-
rate results when running our test data. 

Within our golden standard set of documents, we were able to find 758 entities that 
have representations in our ontology. In the 20 documents of our disambiguated-set, 
only 17 person names were not represented in the DBLP ontology. These mainly con-
sisted of local organizers and researchers listed in cross-disciplinary conferences. 



54 J. Hassell, B. Aleman-Meza, and I.B. Arpinar 

Table 2. Values of Input Settings used in the Evaluation 

Description Variable Value 
charOffset  50 
Text proximity relationships pr 50
Text co-occurrence relationships co 10
Popular entity score pe 10
Semantic relationship sr 20
Initial confidence score cf 90
Initial abbreviated confidence score acf 70
Threshold threshold 90

When comparing the results of our method with the disambiguated-set, our method 
was able to find 620 entities. Only 18 of these were incorrectly disambiguated. We 
calculated the precision to be 97.1 percent and recall to be 79.6 percent. Table 3 is a 
summary of our results. 

Table 3. Precision and Recall 

Correct Disambiguation Found Entities Total Entities Precision Recall 
602 620 758 97.1% 79.4% 

Figure 7 illustrates the precision and recall evaluation on a per document basis. The 
document numbers coincide with our golden standard set available at 
http://lsdis.cs.uga.edu/~aleman/research/dbworlddis/. The precision is quite accurate 
in most cases and the recall varies from document to document. 

Precision and Recall

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Documents

P
er

ce
n

ta
g

e

Recall

Precision

Fig. 7. Measures of Precision and Recall in a per-document basis 



 Ontology-Driven Automatic Entity Disambiguation in Unstructured Text 55 

There are several situations where our method did not disambiguate the correct en-
tity. This was mostly due to the ontology which, although largely populated, does not 
have complete coverage. For example, some of the authors within the ontology have 
only one relationship to a paper while some authors have a variety of relationships to 
papers, other authors, affiliation, etc. Because of this, it was not possible to precisely 
disambiguate some entities. Another error that is common is the situation where we 
find an entity’s name that matches a portion of the name of another entity. We pro-
vide some safeguards against this as long as both of the candidate entities exist in the 
ontology, but the algorithm still misses in a few cases. 

6   Related Work 

Research on the problem of entity disambiguation has taken place using a variety of 
techniques. Some techniques only work on structured parts of a document. The appli-
cability of disambiguating peoples’ names is evident when finding citations within 
documents. Han et al [13] provides an assessment of several techniques used to dis-
ambiguate citations within a document. These methods use string similarity tech-
niques and do not consider various candidate entities that may have the same name. 

Our method differs from other approaches by a few important features. First, our 
method performs well on unstructured text. Second, by exploiting background knowl-
edge in the form of a populated ontology, the process of spotting entities within the 
text is more focused and reduces the need for string similarity computations. Third, 
our method does not require any training data, as all of the data that is necessary for 
disambiguation is straightforward and provided in the ontology. Last but not least, our 
method exploits the capability provided by relationships among entities in the ontol-
ogy to go beyond techniques traditionally based on syntactical matches. 

The iterative step in our work is similar in spirit to a recent work on entity recon-
ciliation [8]. In such an approach, the results of disambiguated entities are propagated 
to other ambiguous entities, which could then be reconciled based on recently recon-
ciled entities. That method is part of a Personal Information Management system that 
works with a user’s desktop environment to facilitate access and querying of a user’s 
email address book, personal word documents, spreadsheets, etc. Thus, it makes use 
of predictable structures such as fields that contain known types of data (i.e., emails, 
dates and person names) whereas in our method we do not make any assumptions 
about the structure of the text. This is a key difference as the characteristics of the 
data to be disambiguated pose different challenges. Our method uses an ontology and 
runs on un-structured text, an approach that theirs does not consider. 

Citation matching is a related problem aiming at deciding the right citation refer-
ring to a publication [11]. In our work, we do not assume the existence of citation in-
formation such as publication venue and date. However, we believe that our method is 
a significant step to the Identity Uncertainty problem [16] by automatically determin-
ing unique identifiers for person names with respect to a populated ontology. 

KIM is an application that aims to be an automatic ontology population system that 
runs over text documents to provide content for the Semantic Web [17]. The KIM 
platform has many components that are unrelated to our work but within these com-
ponents, there is an entity recognition portion. KIM disambiguates entities within a 



56 J. Hassell, B. Aleman-Meza, and I.B. Arpinar 

document by using a natural language processor and then attempts to index these enti-
ties. The evaluation of the KIM system is done by comparing the results to human-
annotated corpora, much like our method of evaluation.  

The SCORE system for management of semantic metadata (and data extraction) 
also contains a component for resolving ambiguities [18]. SCORE uses associations 
from a knowledgebase to determine the best match from candidate entities but de-
tailed implementation is not available from this commercial system. 

In ESpotter, named entities are recognized using a lexicon and/or atterns [20]. Am-
biguities are resolved by using the URI of the webpage to determine the most likely 
domain of the term (probabilities are computed using hit count of search-engine re-
sults). The main difference with our work is our method uses only named entities 
within the domain of a specific populated ontology. 

Finally, our approach is different to that of disambiguating word senses [2, 12, 15]. 
Instead, our focus is to disambiguate named entities such as peoples’ names, which 
has recently gained attention for its applicability in Social Networks [3, 1]. Thus, in-
stead of exploiting homonymy, synonymy, etc., our method works on relationships 
that real-world entities have such as affiliation of a researcher and his/her topics. 

7   Conclusions 

We proposed a new ontology-driven solution to the entity disambiguation problem in 
unstructured text. In particular, our method uses relationships between entities in the 
ontology to go beyond traditional syntactic-based disambiguation techniques. The 
output of our method consists of a list of spotted entity names, each with an entity 
disambiguation score CS. We demonstrated the effectiveness of our approach through 
evaluations against a manually disambiguated document set containing over 700 enti-
ties. This evaluation was performed over DBWorld announcements using an ontology 
created from DBLP (consisting of over one million entities). The results of this 
evaluation lead us to claim that our method has successfully demonstrated its applica-
bility to scenarios involving real-world data. To the best of our knowledge, this work 
is among the first which successfully uses a large, populated ontology for identifying 
entities in text without relying on the structure of the text. 

In future work, we plan to integrate the results of entity disambiguation into a more 
robust platform such as UIMA [10]. The work we presented can be combined with other 
existing work so that the results may be more useful in certain scenarios. For example, 
the results of entity-disambiguation can be included within a document using initiatives 
such as Microformats (microformats.org) and RDFa (w3.org/TR/xhtml-rdfa-primer/).  

Acknowledgments. This work is funded by NSF-ITR-IDM Award#0325464 (Sem-
DIS: Discovering Complex Relationships in the Semantic Web). 

References 

1. Aleman-Meza, B., Nagarajan, M., Ramakrishnan, C., Ding, L., Kolari, P., Sheth, A., Arpi-
nar, I. B., Joshi, A., Finin, T.: Semantic Analytics on Social Networks: Experiences in Ad-
dressing the Problem of Conflict of Interest Detection. 15th International World Wide Web 
Conference, Edinburgh, Scotland (May 23-26, 2006) 



 Ontology-Driven Automatic Entity Disambiguation in Unstructured Text 57 

2. Basili, R., Rocca, M. D., Pazienza, M. T.: Contextual Word Sense Tuning and Disam-
biguation. Applied Artificial Intelligence, 11(3) (1997) 235-262 

3. Bekkerman, R., McCallum, A.: Disambiguating Web Appearances of People in a Social 
Network. 14th International World Wide Web Conference, Chiba, Japan, (2005) 463-470 

4. Berners-Lee, T., Fielding R., Masinter, L.: Uniform Resource Identifier (URI): Generic 
Syntax. RFC 3986, IETF, (2005) 

5. Bilenko, M., Mooney, R., Cohen, W., Ravikumar, P., Fienberg, S.: Adaptive Name Match-
ing in Information Integration. IEEE Intelligent Systems, 18(5). (2003) 16-23  

6. DBWorld. http://www.cs.wisc.edu/dbworld/ April 9, 2006
7. Dey, D., Sarkar, S., De, P.: A Distance-Based Approach to Entity Reconciliation in Het-

erogeneous Databases. IEEE Transactions on Knowledge and Data Engineering, 14(3) 
(May 2002) 567-582 

8. Dong, X. L., Halevy, A., Madhaven, J.: Reference Reconciliation in Complex Information 
Spaces. Proc. of SIGMOD, Baltimore, MD. (2005) 

9. Embley, D. W., Jiang, Y. S., Ng, Y.: Record-Boundary Discovery in Web Documents. 
Proc. of  SIGMOD, Philadelphia, Pennsylvania (1999) 467-478 

10. Ferrucci, D., Lally, A.: UIMA: An Architectural Approach to Unstructured Information 
Processing in the Corporate Research Environment. Natural Language Engineering, 10(3-
4) (2004) 327-348 

11. Giles, C.L., Bollacker, K.D., Lawrence, S.: CiteSeer: An Automatic Citation Indexing Sys-
tem. Proc. of the 3rd ACM International Conference on Digital Libraries, Pittsburgh, PA, 
(June 23-26, 1998) 89-98 

12. Gomes, P., Pereira, F. C., Paiva, P., Seco, N., Carreiro, P., Ferreira, J. L., Bento, C.: Noun 
Sense Disambiguation with WordNet for Software Design Retrieval. Proc. of the 16th 
Conference of the Canadian Society for Computational Studies of Intelligence (AI 2003),
Halifax, Canada (June 11-13, 2003) 537-543 

13. Han, H., Giles, L., Zha, H., Li, C., Tsioutsiouliklis, K.: Two Supervised Learning Ap-
proaches for Name Disambiguation in Author Citations. Proc. ACM/IEEE Joint Conf on 
Digital Libraries, Tucson, Arizona (2004) 

14. Ley, M.: The DBLP Computer Science Bibliography: Evolution, Research Issues, Per-
spectives. Proc. of the 9th International Symposium on String Processing and Information 
Retrieval, Lisbon, Portugal (Sept. 2002) 1-10 

15. Navigli, R., Velardi, P.: Structural Semantic Interconnections: A Knowledge-Based Ap-
proach to Word Sense Disambiguation. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence, 27(7) (2005) 1075-1086

16. Pasula, H., Marthi, B., Milch, B., Russell, S. J., Shpitser, I.: Identity Uncertainty and Cita-
tion Matching, Neural Information Processing Systems. Vancouver, British Columbia 
(2002) 1401-1408 

17. Popov, B., Kiryakov, A., Kirilov, A., Manov, D., Ognyanoff, D., Goranov, M.: KIM - Se-
mantic Annotation Platform. Proc. of the 2nd International Semantic Web Conference, 
Sanibel Island, Florida (2003) 

18. Sheth, A., Bertram, C., Avant, D., Hammond, B., Kochut, K., Warke, Y.: Managing Se-
mantic Content for the Web, IEEE Internet Computing, 6(4), (2002) 80-87 

19. Torvik, V. I., Weeber, M., Swanson, D. R., Smalheiser, N. R.: A Probabilistic Similarity 
Metric for Medline Records: A Model for Author Name Disambiguation. Journal of the 
American Society for Information Science and Technology, 56(2) (2005) 40-158 

20. Zhu, J., Uren, V., Motta, E.: ESpotter: Adaptive Named Entity Recognition for Web 
Browsing, Proc. of the 3rd Professional Knowledge Management Conference (WM2005),
Kaiserslautern, Germany (2005) 



Augmenting Navigation for Collaborative
Tagging with Emergent Semantics

Melanie Aurnhammer1, Peter Hanappe1, and Luc Steels1,2

1 Sony Computer Science Laboratory, Paris, France
2 Vrije Universiteit Brussel, Brussels, Belgium

{melanie, hanappe}@csl.sony.fr, steels@arti.vub.ac.be

Abstract. We propose an approach that unifies browsing by tags and
visual features for intuitive exploration of image databases. In contrast to
traditional image retrieval approaches, we utilise tags provided by users
on collaborative tagging sites, complemented by simple image analysis
and classification. This allows us to find new relations between data el-
ements. We introduce the concept of a navigation map, that describes
links between users, tags, and data elements for the example of the col-
laborative tagging site Flickr. We show that introducing similarity search
based on image features yields additional links on this map. These theo-
retical considerations are supported by examples provided by our system,
using data and tags from real Flickr users.

1 Introduction

Collaborative tagging is a form of social software that has recently attracted a
huge number of users. Web sites like Flickr, del.icio.us, Technorati, CiteULike,
Buzznet, and Last.fm, to name but a few, encourage users to share photos, URLs,
blogs, article references, and music titles. These data objects are associated with
tags, common words freely chosen by the user. They describe a data item in
a subjective and often associative way. It is an intuitive and effective method
to organise and retrieve data. Tags are used to organise personal data, and are
made public so that other users can access and browse them.

Tagging addresses the problem of providing meta-data for Web resources very
differently from the method proposed by the Semantic Web initiative [1]. In the
latter approach, Web content creators annotate their work using an ontology that
was defined a priori by a group of experts. With tagging, Internet users describe
resources using their own labels. This bottom-up approach is an instance of
Semiotic Dynamics[2,3], in which the uncoordinated actions of many users lead
to the emergence of partially shared taxonomies. It resonates with earlier studies
that used computational models to investigate the emergence of a shared lexicon
by a population of autonomous agents [4,5].

The effect of public exposure of tags is twofold. First, it creates an incentive for
people to tag their data items in order to make them accessible to others. Second,
the motivation of a high exposure of their data encourages people to align their
tags with those of other users. Indeed, it has been observed that over time, the

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 58–71, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Augmenting Navigation for Collaborative Tagging with Emergent Semantics 59

relative frequency of tags used to annotate a data element stabilises [2]. Thus,
collaborative or social tags are not completely arbitrary and hence provide an
interesting means to search databases. Especially domains like images or music,
where semantic retrieval is an extremely hard problem, benefit from the tagging
approach.

However, using tags alone for searching and browsing databases clearly has
its limitations. First, people make mistakes while tagging, such as spelling mis-
takes, or accidental tagging with the wrong tag. Second, there is no solution to
cope with homonymy, i.e. to distinguish different meanings of a word. Third,
synonymy or different languages can only be handled by tagging data explic-
itly with all terms. One possible approach to solve the synonymy problem is to
translate the local taxonomies into a global taxonomy which is used for query-
ing and information exchange. The translation could be aided by mediators [6]
and achieved through automated schema matching [7,8]. However, this approach
requires a one-to-one mapping of taxonomies, which is not always possible.

Our approach to tackle the shortcomings of collaborative tagging is to em-
ploy content-based image retrieval techniques. The combination of social tagging
and data analysis provides the user with an intuitive way to browse databases,
and allows him to experience and explore interesting new relationships between
data, tags, and users, which we summarise in an augmented navigation map. It
is a way to achieve emergent semantics because it can potentially ground the
meaning of tags into the data [9,10,11,12]. To allow seemless integration beween
tagging and data analysis, an adequate interface is obviously a crucial factor for
user acceptance. Although there has recently been some effort to design tools
that apply simple image analysis algorithms to Flickr images [13,14], these tools
work separately and are not employed for integrated navigation. Previous ap-
proaches for combining textual and image information such as [15] have been
concentrating on recognising objects, which is an extremely hard problem. Us-
ing social tags has the advantage that semantic information is already provided
by the user. Instead of attempting automatic semantic interpretation, we thus
restrict ourselves on extracting global, low-level features.

In the following section, we describe first the user interface, including naviga-
tion possibilities and the tag visualisation. In Section 3 we present our method
and give technical details of our implementation. Our concept of a navigation
map is explained in Section 4. An example in Section 5 illustrates the improve-
ment of the navigation map by introducing data analysis. We then conclude our
work and present plans for future work.

2 The Interface

The interface of our system provides an intuitive way to combine collaborative
tagging and content-based image retrieval. Data can be explored in different
ways, either according to tags or using visual features. The application follows
the user actions without enforcing a particular interaction pattern on him. The
visualisation of tags is easy to understand and intuitive to use. The interface



60 M. Aurnhammer, P. Hanappe, and L. Steels

can be used to assemble a collection that can e.g. be shown as a slide show, or
printed as photo album.

2.1 Tag Search

The entry point to assemble a collection is to search with a tag. When the
user enters a tag, images annotated by this tag are shown in the suggestion
display area at the lower right part of the screen (see Figure 1). The user has
the possibility to perform a search on tags at any time in the process.

2.2 Suggestion Display

The images displayed in the suggestion display can be considered propositions
from the archive. These images are either selected according to a common tag
(see above), or by using similarity search. If images have been proposed according
to a tag, the user can select one or more of these images and add them to his
collection (user collection area, see Figure 1).

As soon as an image has been added to the user collection, two more function-
alities are available: the tag visualisation (see section 2.4) and the search engine.
The search can be started by choosing one or more examples of the collection in
order to find visually similar images (see Section 3.2). The images proposed by
the system are again shown at the lower right part of the screen. The user has
the possibility to refine his search by simply selecting more images as positive
examples, or others as negative examples, from the results.

2.3 User Collection Area

This area can be found in the top right part of the screen. The images selected
by the user are displayed here and form his collection. Within this area, the
user can start a search for visually similar images, or move images forward or
backward inside his collection to change the order. In addition, he can display
his images in a slide show.

2.4 Tag Visualisation

The visualisation of sets is shown in the upper left part of the screen (see Figure 1
and 2). The white circle in the centre of this area represents the collection of
the user. The related tags – and their corresponding sets of photos – are shown
as circles arranged around this centre. The visualisation feature has two modes.
The first mode shows only the visualisation of tags related to the user collection.
Before a search has been performed, the displayed circles are filled with a single
colour. For clarity reasons, the number of displayed sets is restricted to the 32
largest sets. The size of each circle indicates the number of the photos contained
in the set. The distance of the sets from the inner circle denotes the overlap of



Augmenting Navigation for Collaborative Tagging with Emergent Semantics 61

Fig. 1. Screenshot of the Interface. User Collection: images selected by the user to
the theme “fall”. Suggestion Display: Search results returned for first image of User
Collection.

the images in the collection with the set, estimated by the number of common
photos. When the user click on any of the circles, the corresponding images
are shown in the suggestion area. We call the visualisation of these sets the
tag-sphere.

The second mode is shown when the user applies a similarity search. The
tag-sphere gets in the background and a second sphere of sets is drawn in a
different colour. Each circle represents a tag that is related to the search results.
The newly-added circles consist of two different colours. The inner, darker colour
represents those images, which have been suggested by the classifier-engine. The
outer, lighter circle represents images possessing the same tag, i.e. belonging to
the same set, but those were not found by the classifier. A higher proportion of
the inner circle indicates a relation between visual features and the tag related
to the images in the set. The number of displayed sets is again restricted to the
32 largest sets. We will call the visualisation of these sets the classifier-sphere.

When images are added from the search results to the collection, the tag-
sphere changes as well. Lighter circles inside some of the displayed circles get
visible. These inner circles denote images found by similarity search that belong
to the displayed set (i.e. they possess the same tag). The higher the proportion
of the inner circle, the more likely is a relation between the visual similarity
of the search image(s) and the tag. Every time an image is added to the user
collection, the tag-sphere is updated. New sets are appended at the end of the
sphere and thus a kind of tag history is represented. When an image is selected,



62 M. Aurnhammer, P. Hanappe, and L. Steels

the sets in which it is represented are highlighted and the corresponding tags
displayed.

Below the tag visualisation is the tag menu (see Figure 5), where the tags
of the current sphere are shown in alphabetic order. This gives the user the
additional possibility to access the sets by going through the tags menu.

Fig. 2. Visualisation of Tags

Figure 2 shows an example visualisation, where a search has been performed
on an image found by the tag “fall” (see first image User Collection, Figure 1).
The two spheres show that there is indeed some correspondence between the tags
of the search results and the visual features. In the classifier-sphere, there are at
least five sets, where the inner circle takes a large part. The tags corresponding
to these sets are “autumn”, “fall”, “harvest”, “red”, “farm”. This shows, that
there is a high percentage of images among the search results, which are labelled
with these tags. A similar behaviour can be observed in the tag-sphere after the
user added some images from the results to his collection. Here, the sets with
a large inner part are “park”, “leaves”, “tree”, “autumn”, and “nature”. These
results are very interesting, since all these tags can be seen as reflecting the
“fall-theme” of the user.

3 Technical Details

We tested our system with photographs downloaded from Flickr. Currently, we
use about 3000 photographs from 12 randomly chosen users. In the following, we
describe the visual features and the implementation of our retrieval process. Most
of the techniques we used reflect either the state-of-the-art in image retrieval or



Augmenting Navigation for Collaborative Tagging with Emergent Semantics 63

are well-established standards in image analysis and pattern recognition. The
idea of our system is to advance neither of these fields but to use the available
tools in a new, intuitive, and creative way.

3.1 Features

We intentionally employ simple global features in our system. Rather than trying
to recognise objects or even explain the meaning of an image, we seek to measure
a certain “atmosphere”, or a vague visual pattern, which we believe is possible
to capture by low-level image features.

The visual features we used are colour and texture, i.e.

F = {fi} = {colour,texture}

Colour Features. Comparison of colour histograms is known to be sensitive
to small colour variations caused e.g. by lighting conditions. In order to obtain a
more robust and simpler measure of the colour distribution, we calculate the first
two moments (mean and standard deviation) in RGB colour space. In addition,
we use the standard deviation between the means of the three colour channels.
Intuitively, this yields a measure for the “colourfulness” of an image. The feature
has a value of zero for grey-scale images and increases for images with stronger
colours. We map the values to a logarithmic scale in order to distribute them
more equally. In total, the colour feature vector has thus seven dimensions.

Texture Features. Texture refers to the properties that represent the surface
or structure of an object. In our work, we seek to employ texture features that
give a rough measure of the structural properties, such as linearity, periodicity, or
directivity of an image. In experiments, we found oriented gaussian derivatives
(OGD) to be well-suited for our purposes [16]. This feature descriptor uses the
steerable property of the OGD to generate rotation invariant feature vectors.
It is based on the idea of computing the “energy” of an image as a steerable
function.

The features are extracted by a 2nd order dyadic pyramid of OGDs with four
levels and a kernel size of 13x13. The generated feature vector has 24 dimensions.
The first order OGD can be seen as a measure of “edge energy”, and the second
order OGD as a measure of the “line energy” of an image.

Feature Integration. The distance between a query image and an image in the
database is calculated according to the l2 norm (Euclidean distance). We use a
linear combination of the distances in the colour and texture spaces to combine
both features. In order to give the same initial weight to all features, the values
are normalised linearly before calculating the distance. The joint distance d
between a database image xl and a query image sk over all features spaces fi is
thus

d(xl, sk) =
N∑

i=1

widi, with
N∑

i=1

wi = 1



64 M. Aurnhammer, P. Hanappe, and L. Steels

where N is the number of features in the set F and w is a weighting factor. In
our implementation, w was set to 1

N .

Did the 
user 

provide 
negative 

examples?

The user requests 
suggestions

Do a search based 
on similarity

Do a search using 
a classifier

No Yes

Fig. 3. Based on the user selection, KORU either performs a similarity search, or a
classification

3.2 Search Process

The search for visually similar images starts with one or more images selected by
the user. These initial images can be found through tags. In our implementation,
we focussed on a totally user defined process: Not only is the number of selected
images left to the user, he is also free in all further actions to take. When the
results of the similarity search are displayed, the user can either (1) exclude
images, (2) select images for refinement, (3) combine (1) and (2), or (4) simply
not take any action. This distinguishes our approach from methods suggested for
relevance feedback in image retrieval (see e.g. [17]), where the user is forced to
take certain actions, such as giving feedback to every retrieved image, or where
he has to follow a strict order of interaction.

Image Selection. In case the user selects several images for his query (multi-
image query), we think of these images as representing different classes. Thus,
we accept images for retrieval that are similar to one of the query images. An
alternative approach would be to average over the selected images which is,
however, rarely relevant because the user might select visually distinct images.
To give a simple example, a user selection of a yellow and a blue image should not
yield green images as a result, but images that are either yellow or blue. Selection
of the retrieved images is performed according to the following equation. Let X
denote the archive and let xl denote the l-th image in the archive. Let S denote



Augmenting Navigation for Collaborative Tagging with Emergent Semantics 65

a set of query images selected by the user. The distance D of xl to S is then
defined by

D(xl, S) = min
k

d(xl, sk) (1)

where d represents the distance of xl to an image sk contained in S, and k
denotes the number of query images in S.

Refinement of Results. If the user is not entirely satisfied with the retrieved
images, he has the possibility to refine the results. He can choose (1) one or more
images as positive examples, or (2) one or more images as negative examples,
or (3) combine (1) and (2). In case only positive examples are chosen, these are
added to the initial query images and the query is started anew by evaluating
Equation 1 and selecting the n closest images. If the user chooses to provide
the system with one or more negative examples, the retrieval process becomes
a classification problem. (see Figure 3). The set of all user-selected images can
then be seen as prototypes labelled either “positive” or “negative”.

It is important to note that the user might choose very different examples
for the same label, i.e. he might choose for example, a red image with a very
smooth texture, and a green image showing high contrast leaves both as posi-
tive examples. Therefore, a parametric classification method is not suited since
it assumes the distribution of the underlying density function to be unimodal.
In our case, it is a much better choice to employ a non-parametric approach
that can be applied for arbitrary distributions and without the assumption
that the forms of the underlying densities are known. Furthermore, it is im-
portant to ensure a smooth transition between retrieval and classification in
order to avoid a drastic change of the results as soon as negative examples are
selected.

A method that fulfils these requirements is a simple nearest neighbour clas-
sifier. Equation 1 basically defines the distance of an image in the database to
a set of query images to be the distance between the test image and its nearest
neighbour in the query set. For this reason, nearest neighbour classification is
the natural choice to follow similarity retrieval. Let Pn = {x1, . . . , xn} denote a
set of n labelled prototypes and let x′ ∈ Pn be the prototype nearest to a test
point x. Then the nearest neighbour rule for classifying x is to assign it the label
associated with x′.

4 Navigation Map

In this section, we introduce our concept of a navigation map to analyse the
relationships between users, tags, and data in tagging systems. We compare the
navigation possibilities between a simple tagging system, a system exploiting
co-occurrence relationships between tags, and our proposed system. We show
that we are able to introduce new links into the navigation map by combining
tagging and data analysis.



66 M. Aurnhammer, P. Hanappe, and L. Steels

4.1 Notation

We will refer to the set of all photos available on the server as the set P . The
set of users of the tagging site will be denoted by U . The relation π ⊂ U × P
defines which photos belong to which users. We define the set T to be the set of
all the tags of all users. The relation τ ⊂ U × T × P represents which tags are
used by which user to label a photo.

In addition to the entities presented above, users can create groups, in
some form or another, and they can organise their photos in sets. For the sake
of simplicity, we will focus here only on users, tags, and photos as the main
entities.

Given the above mentioned relations, it is possible to define the navigation
map that allows users to navigate from one entity (a user u, a photo p, or a
tag t) to any other one. In general, any entity can provide an entry point for a
navigation, based on its name (user name, tag, file name, photo title).

(a) Tagging only (b) Tagging and Similarity Search

Fig. 4. The navigation map with links between users (u), tags (t), and data (d)

4.2 Navigation Using Tags

In the following, we describe the navigation possibilities on a typical tagging
site like Flickr, without taking into account co-occurrence relations. In such a
system, a user can view all available tags (link 1, see Figure 4(a)). He can also
directly access the photo collection of himself or another user (link 2). Through
selection of a tag, the user can view all photos annotated by this tag (link 3).
For a given photo, its associated tags can be displayed (link 4). There is a
direct navigation possibility from a given photo to its owner (link 5). Most tag-
ging sites allow users to establish contacts, which are direct links to other users
(link 8).

4.3 Navigation by Co-occurrence of Tags

One way to improve navigation is to exploit the co-occurrence relations between
tags. This feature is already provided by Flickr, where it is referred to as “clus-
ters”. Navigation between related tags is represented in the navigation map by



Augmenting Navigation for Collaborative Tagging with Emergent Semantics 67

link 7 (see Fig. 4(a)). Clustering allows to solve the problem of synonymy to
some extent. For instance, the tags “fall” and “autumn” appear in one cluster.
However, this approach relies on a large number of people tagging their images
explicitly with both “fall” and “autumn”. For example, establishing links be-
tween tags in different languages using co-occurrence does not work very well
because most users tag in their native language only.

4.4 Augmenting the Navigation Map by Visual Features

The navigation map can be augmented further by introducing links that are not
represented directly in the relations π ⊂ U × P and τ ⊂ U × T × P but can be
found through analysis of the image data (see Figure 4(b)).

As mentioned in the introduction, tagging has some inherent shortcomings.
Among them, the most problematic are the use of synonyms or different lan-
guages by different users, as well as incomplete tagging or the lack of any tags
at all. To overcome these problems, we propose an approach that extends the
navigation map by introducing an important link that is not represented directly
in the relations π and τ . This link is based on visual similarity, which gives a
direct relation between data (link 9, Fig. 4(b))). This new relation augments the
possible navigation paths through the photo archive even further. By retriev-
ing visually similar images, their associated tags are accessible as well, which
yields additional links of type 4. Since the retrieved images link also to users,
we get supplementary links of type 5. Furthermore, the relationship between the
tags of the query image(s) and the retrieved images provides additional links of
type 7.

In summary, visual features can introduce a link between photos that might
be very remote in the existing structure provided by the relations π and τ . This
way, it is possible to discover new photos that were previously difficult or even
impossible to find.

5 Finding New Relations – An Example

The following example shows a possible navigation path of a user through a data
collection. We illustrate, how these new links that connect data elements based
on visual features can be found in our implemented system.

5.1 Initial Query

The user might want to start his search by a certain tag, e.g. “rust” in our
example. Looking at the set of images labelled by this tag, he might select two
interesting photos showing old, rusty windows (see Figure 5).

5.2 Similarity Search

Inspired by his initial selection, the user might want to find more images related
to the “window” theme. He has two possibilities to continue his search: either



68 M. Aurnhammer, P. Hanappe, and L. Steels

Fig. 5. Screenshot of the Interface. Suggestion Display: shows first 20 images tagged
“rust”, User Collection: images selected from this set.

going directly to the tag “window” and view other images labelled with this
tag, or he can start a similarity search. Let us assume that the “window” set
does not provide any images that suit the user’s taste. Instead, he wants to do
a similarity search based on the two photos he selected (see Figure 4, link 9).
In Figure 6, three examples of the images retrieved by this search are shown.
Among the tags attached to the image shown in Figure 6(c) is “fenêtre” (french
for “window”) but not “window” itself. The image shown in Figure 6(a) is tagged
only “downtown” and “oakland”, while no tags at all are provided for the photo
shown in Figure 6(b). It can clearly be seen that none of these images could have
been found with “window” as tag.

The results of the search can be further refined by the user as described in
Section 3.

5.3 Further Exploration Possibilities

The new links the user has found by similarity search give starting points for fur-
ther data exploration. He can, for example, follow the link for “fenêtre”, leading
him to a whole new set of images of windows (see Figure 4(b), link 4). Another
possibility is to start by the tags related to the set of retrieved images (shown
in the Tag Menu, see Figure 1 and 5) and continue navigating through these
tags and their co-occurrence relations (see Figure 4(b), link 7). For example,
the results also include an image showing a photo of a high-rise building tagged
with “tokyo”. The user might find this relation interesting and might want to



Augmenting Navigation for Collaborative Tagging with Emergent Semantics 69

(a) Tags: downtown, oakland (b) No Tags (c) Tags: fenêtre, façade, france,
paris, rivegauche, ...

Fig. 6. Examples of photos retrieved by similarity search, and corresponding tags

look at more images tagged with “tokyo”. And indeed, this data set contains
several photos of high-rise buildings with many windows. Other, perhaps inter-
esting new links are provided by tags such as “façade”, “reflection”, “grid”, or
“downtown”. A further possibility is to navigate from an interesting photo to its
owner (see Figure 4(b), link 5).

6 Conclusions

We introduced an approach that combines social tags and visual features in or-
der to extend the navigation possibilities in image archives. Our user interface
including an intuitive visualisation of tags was presented as well as the implemen-
tation details described. Furthermore, we explained our concept of a navigation
map and showed how the initial map based on tags can be augmented by using
visual features. A simple example illustrated how such additional links can be
found in our implemented system.

We showed an example of our tag visualisation for a similarity search on
an image tagged “fall”. The results indicate that there is some correspondence
between the visual features of the search results, and the tags that are attached to
the result images. Although we cannot expect a simple one-to-one mapping from
a tag to a visual category, there is indication that visual features can support
the suggestion of new tags.

The work presented in this paper concentrated on establishing a framework
for analysing our concept as well as a first implementation. An important next
step will be to develop a quantitative measure of the improvement in navigation
using formal methods and through user studies.

7 Future Work

Future work will also concentrate on exploiting the new relationships between
data objects in order to propose tags for unannotated images. Moreover, we will



70 M. Aurnhammer, P. Hanappe, and L. Steels

investigate possibilities to add new user-to-user links based on profile match-
ing according not only to the users’ tags, but also to visual similarity of the
users’ data sets. Furthermore, we plan to show the generality of our approach
by extending it to the music domain as well as to video clips.

Acknowlegements

This research was carried out and funded by the Sony Computer Science Labo-
ratory in Paris with additional funding from the EU IST project TAGora (FP6-
2005-IST-5).

References

1. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(2001)

2. Cattuto, C.: Collaborative tagging as a complex system. Talk given at International
School on Semiotic Dynamics, Language and Complexity, Erice (2005)

3. Steels, L.: Semiotic dynamics for embodied agents. IEEE Intelligent Systems
(2006) 32–38

4. Steels, L., Kaplan, F.: Collective learning and semiotic dynamics. In Floreano,
D., Nicoud, J.D., Mondada, F., eds.: Advances in Artificial Life: 5th European
Conference (ECAL 99). Lecture Notes in Artificial Intelligence 1674, Springer-
Verlag (1999) 679–688

5. Steels, L., Hanappe, P.: Interoperability through emergent semantics: A semiotic
dynamics approach. Journal of Data Semantics (2006) To appear.

6. Wiederhold, G.: Mediators in the architecture of future information systems. IEEE
Computer (1992) 38–49

7. Rahm, E., Bernstein, A.P.: A survey of approaches to automatic schema
matching. VLDB Journal: Very Large Data Bases (10) (2001) 334–350 http://
citeseer.ist.psu.edu/rahm01survey.html.

8. Tzitzikas, Y., Meghini, C.: Ostensive automatic schema mapping for taxonomy-
based peer-to-peer systems. In: Proc. of CIA–2003, 7th International Workshop
on Cooperative Information Agents - Intelligent Agents for the Internet and Web.
Number 2782 in Lecture Notes in Artificial Intelligence (2003) 78–92

9. Santini, S., Gupta, A., Jain, R.: Emergent semantics through interaction in image
databases. IEEE Transactions on Knowledge and Data Engineering 13 (2001)
337–351

10. Aberer, K., Cudré-Mauroux, P., Ouksel, A.M., Catarci, T., Hacid, M.S., Illar-
ramendi, A., Kashyap, V., Mecella, M., Mena, E., Neuhold, E.J., Troyer, O.D.,
Risse, T., Scannapieco, M., Saltor, F., Santis, L.D., Spaccapietra, S., Staab, S.,
Studer, R.: Emergent semantics principles and issues. In: DASFAA. (2004) 25–38
http://www.ipsi.fraunhofer.de/~risse/pub/P2004-01.pdf.

11. Staab, S.: Emergent semantics. IEEE Intelligent Systems (2002) 78–86 http://
www.cwi.nl/ media/publications/nack-ieee-intsys-2002.pdf.

12. Steels, L.: Emergent semantics. IEEE Intelligent Systems (2002) 83–85
13. Bumgardner, J.: Experimental colr pickr. http://www.krazydad.com/colrpickr/

(2006)
14. Langreiter, C.: Retrievr. http://labs.systemone.at/retrievr/ (2006)



Augmenting Navigation for Collaborative Tagging with Emergent Semantics 71

15. Grosky, W.I., Fotouhi, F., Sethi, I.K., Capatina, B.: Using metadata for the
intelligent browsing of structured media objects. ACM SIGMOD Record 23(4)
(1994) 49–56

16. Alvarado, P., Doerfler, P., Wickel, J.: Axon2 – a visual object recognition
system for non-rigid objects. In: Proceedings International Conference on Signal
Processing, Pattern Recognition and Applications (SPPRA). (2001)

17. Rui, Y., Huang, T.S., Ortega, M., Mehrotra, S.: Relevance feedback: A power tool
for interactive content–based image retrieval. IEEE Transactions on Circuits and
Systems for Video Technology 8(5) (1998) 644–655



On the Semantics of Linking and Importing in
Modular Ontologies

Jie Bao1, Doina Caragea2, and Vasant G Honavar1

1 Artificial Intelligence Research Laboratory,
Department of Computer Science,

Iowa State University, Ames, IA 50011-1040, USA
{baojie, honavar}@cs.iastate.edu

2 Department of Computing and Information Sciences
Kansas State University, Manhattan, KS 66506, USA

dcaragea@ksu.edu

Abstract. Modular ontology languages, such as Distributed Descrip-
tion Logics (DDL), E-connections and Package-based Description Logics
(P-DL) offer two broad classes of approaches to connect multiple ontol-
ogy modules: the use of mappings or linkings between ontology modules
e.g., DDL and E-connections; and the use of importing e.g., P-DL. The
major difference between the two approaches is on the usage of “for-
eign terms” at the syntactic level, and on the local model disjointness
at the semantic level. We compare the semantics of linking in DDL and
E-connections, and importing in P-DL within the Distributed First Or-
der Logics (DFOL) framework. Our investigation shows that the domain
disjointness assumption adopted by the linking approach leads to several
semantic difficulties. We explore the possibility of avoiding some of these
difficulties using the importing approach to linking ontology modules.

1 Introduction

Because the web is a network of loosely coupled, distributed, autonomous en-
tities, it is inevitable that the ontologies on the web to be modular, collab-
oratively built and partially connected. Hence, there is significant interest on
modular ontology languages, such as, Distributed Description Logics (DDL) [4],
E-connections [12,9] and Package-based Description Logics (P-DL) [3].

These proposals adopt two broad classes of approaches to asserting semantic
relations between multiple ontology modules: the use of mappings or linkings
between ontology modules e.g., DDL and E-connections; and the use of import-
ing e.g., P-DL. The major difference between the two approaches has to do with
the use of “foreign terms” in ontology modules. In a linked ontology, different
modules have disjoint terminologies and disjoint interpretation domains, and se-
mantic relations between ontology modules are only enabled by a set of mapping
axioms, such as bridge rules in DDL or E-connections. Therefore, the direct us-
age of terms defined in one module is forbidden in another module. In contrast,
importing allows an ontology module to make direct reference to terms defined
in other ontology modules, i.e., importing of foreign terms.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 72–86, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



On the Semantics of Linking and Importing in Modular Ontologies 73

Serafini et.al. (2005) [15] compare mapping or linking based approaches to
the “integration” of multiple ontology modules such as DDL and E-connections
by reducing them to the Distributed First Order Logics (DFOL) [6] framework.
However, there is little work on the formal investigation of the importing ap-
proach to integrating ontology modules. Against this background, we compare
the semantics of the two approaches within the DFOL framework, with the study
of their strengthes and limitations. Such an investigation reveals that the import-
ing approach, with the removing of the module disjointness assumption adopted
by the linking approach, can provide stronger expressivity and avoid many of
the semantic difficulties in current modular ontology language proposals.

2 Desiderata for Modular Ontology Languages

We first list a set of minimal requirements for modular ontology languages [2]
on the semantic web as the basis for our comparison of the semantics of DDL,
E-connections and P-DL within the DFOL framework:

1. Localized Semantics. A modular ontology should not only be syntactically
modular (e.g. stored in separated XML name spaces), but also semantically
modular. That is, the existence of a global model should not be a requirement
for integration of ontology modules.

2. Exact Reasoning. The answer to a reasoning problem over a collection
of ontology modules should be semantically equivalent to that obtained by
reasoning over an ontology resulting from an integration of the relevant on-
tology modules. Thus, if an ontology O contains A 
 B, B 
 C, C 
 D, and
a modularized version of O has two modules M1 = {A 
 B}, M2 = {C 
 D}
and a semantic connection r(B, C), which represents the modularized ver-
sion of B 
 C, the answer to any reasoning problem obtained by integration
of M1, M2 and r(B, C) should be the same as that obtained by using a sound
and complete reasoner on O.

3. Directed Semantic Relations. The framework must support directional
semantic relations from a source module to a target module. A directional
semantic relation affects only the reasoning within the target module and
not the source module.

4. Transitive Reusability. Knowledge contained in ontology modules should
be directly or indirectly reusable. That is, if a module A reuses module B,
and module B reuses module C, then effectively, module A reuses module
C.

Other desiderata that have been considered in the literature include: the abil-
ity to cope with local inconsistency or global inconsistency, and local logic com-
pleteness. We believe that the desiderata listed above are among the most critical
ones for a modular ontology to be semantically sound and practically usable.



74 J. Bao, D. Caragea, and V.G. Honavar

3 Distributed First Order Logics

A DFOL knowledge base (KB) [6] (and hence, a DFOL ontology) includes a
family of first order languages {Li}i∈I , defined over a finite set of indices I. We
will use Li to refer to the ith module of the ontology . An (i-)variable x or
(i-)formula φ occurring in module Li is denoted as i : x or i : φ (we drop the
prefix when there is no confusion).

The semantics of DFOL includes a set of local models and domain relations.
For each Li, there is an interpretation domain Δi. Let Mi be the set of all
first order models of Li on Δi. We call each m ∈ Mi a local model of Li. A
domain relation rij , where i �= j, is a subset of Δi × Δj . The domain relation
rij represents the capability of the module j to map the objects of Δi in Δj , or,
the j’s subjective view of the relation between Δi and Δj . In general, rij �= r−ji.

We use 〈d, d′〉 in rij to denote that from the point of view of j, the object d in
Δi is mapped to the object d′ in Δj ; d is called a pre-image of d′, and d′ is called
an image of d. In general, domain relations can be injective, surjective, bijective,
or arbitrary. For an object d ∈ Δi, rij(d) denotes the set {d′ ∈ Δj |〈d, d′〉 ∈ rij}.
For a subset D ⊆ Δi, rij(D) denotes ∪d∈Drij(d), is the image set of D.

4 Semantics of Linking in DDL

One influential family of modular ontology formalisms is the linking approach.
The linking approach is aimed at preserving the autonomy of loosely coupled
modules, while allowing restricted “mappings” between formulae of linked mod-
ules. Formally, a linking approach holds the follow assumptions:

– For any Li and Lj , i �= j, i-terms and j-terms are disjoint.
– The semantic connection between Li and Lj is enabled only by mapping

rules between i-terms and j-terms, which are interpreted as domain relations
rij ⊆ Δi × Δj .

– Local interpretation domains and domain relations are disjoint. For any i �=
j, Δi × Δi (or Δj × Δj) has intersection neither with rij nor with rji.

Based on DFOL, Distributed Description Logics (DDL) [4] is one of the first
linking-based modular ontology formalisms. In DDL, the semantic mappings
between disjoint modules Li and Lj are established by a set of inter-module
axioms called “Bridge Rules”(Bij) of the form:

– INTO rule: i : φ

−→ j : ψ, semantics: rij(φmi) ⊆ ψmj

– ONTO rule: i : φ
�−→ j : ψ, semantics: rij(φmi) ⊇ ψmj

where mi(mj) is a model of Li(Lj), φ, ψ are formulae, rij is a domain relation
which serves as the interpretation of Bij . Note that Bij is directional. We will
only consider bridge rules between concepts, not roles [5], since there is still no
reasoning support for role bridge rules [14].



On the Semantics of Linking and Importing in Modular Ontologies 75

Distributed concept correspondence between two modules in DDL covers some
important scenarios that require mapping between ontology modules. However,
the expressivity of DDL is limited in some settings that arise in practical ap-
plications: For example, DDL cannot be used to express “a person x works in
a region y”. In general, it can not construct new concepts using terms across
modules, such as restrictions ∀1 : R.2 : D and ∃1 : R.2 : D, where C, D are
concepts and R is role.

In addition to the expressivity limitations, DDL may present semantic difficul-
ties in some situations. While DDL bridge rules are intended to simulate concept
inclusions [4,5], arbitrary modelling with bridge rules may lead to undesired
semantics, such as in the Subsumption Propagation problem and Inter-module
Unsatisfiability problem, as noted in [9,7]:

Example 1 (Subsumption Propagation). AKBΣd includesmodulesL{1,2,3},

each with an empty TBox; bridge rules B12 = {1 : Bird
�−→ 2 : Fowl}, B23 = {2 :

Fowl
�−→ 3 : Chicken}. The entailment problem 1 : Bird

�−→ 3 : Chicken cannot
be answered since bridge rules B13 are not given, nor can be inferred.

Note that bridge rules may be inferred between the same pair of modules. For
example, if 1 : A


−→ 2 : B and 2 : B 
 2 : C, it can be inferred that 1 : A

−→ 2 :

C. Intra-module subsumption may also be reused in some particular cases. For
example, if 1 : A 
 1 : B, 1 : A

�−→ 2 : C and 1 : B

−→ 2 : D, it can be inferred

that 2 : C 
 2 : D [16]. However, Example 1 shows that in general bridge rules in
DDLs are not transitively reusable, thereby are restricted for many application
scenarios.

Example 2 (Inter-module Unsatisfiability[9,7]). DDLs may not detect un-
satisfiability across ontology modules. A KB Σd includes modules L{1,2}, L1 =

{1 : Bird 
 1 : Fly}, L2 = {2 : Penguin 
 �}, B12 = {1 : Bird
�−→ 2 :

Penguin, 1 : ¬Fly
�−→ 2 : Penguin}. Penguin is still satisfiable in Σd.

Such difficulties are rooted in the implicit local domain disjointness assumption
of DDL: individuals in each local domain are private to that domain, and DDL
semantics does not take into account if individuals in different local domains may
represent the same physical world object. Therefore, a bridge rule, while intended
to simulate concept inclusion, cannot be read directly as concept inclusion, such
as i : A 
 j : B. Instead, it must be read as a classic DL axiom in the following
way [4]:

– i : A

−→ j : B ⇒ (i : A) 
 ∀Rij .(j : B)

– i : A
�−→ j : B ⇒ (j : B) 
 ∃R−

ij .(i : A)

where Rij is a new role representing correspondences Bij between Li and Lj .
Such translations are best understood as shown in Figure 1.

Therefore, for the given subsumption propagation example, if B13 = Ø, en-
tailment Chicken 
 ∃R−

13.Bird is not always true. For the inter-module unsatis-
fiability problem, concept Penguin (
 ∃R−

12.(Fly)	∃R−
12.(¬Fly)) is satisfiable.



76 J. Bao, D. Caragea, and V.G. Honavar

Fig. 1. Semantics of DDL Bridge Rules

Thus, the semantics of DDL are designed to simulate concept inclusion with
a special type of roles, i.e., bridge rules. However, in the absence of a principled
approach to avoid arbitrary domain relation interpretations for bridge rules, all
semantic relations (bridge rules) between DDL modules are localized to pairs of
modules that are bridged by the rules in question. Consequently, semantic rela-
tions between a pair of DDL modules cannot be safely reused by other modules,
thereby precluding general subsumption propagation, and more generally, mod-
ule transitive reusability. Note further that in order to enable distributed (not
necessarily exact) reasoning in general, a DDL KB needs explicit declaration of
domain relations between each pair of modules, leading to an exponential blowup
in the number of bridge rules, with the attendant inefficiency and increased risk
of inconsistencies.

Serafini et al. [14] has asserted that the inter-module unsatisfiability diffi-
culty is the result of incomplete modelling. They have argued that it can be
eliminated if extra information, for example, 1 : ¬Bird


−→ 2 : ¬Penguin and
1 : Fly


−→ ¬2 : Penguin, is added to guarantee one-to-one domain relations.
Our investigation reveals a more general result: one-to-one domain relations can
guarantee that reasoning over DDL always yields the same result as that ob-
tained from an integrated ontology when bridge rules are replaced with general
concept inclusions (GCI). First, we have the definition:

Definition 1. A domain relation rij for bridge rules Bij is said to be one-to-

one if for any bridge rule C

−→ D or C

�−→ D, for any x ∈ CIi , there is one and
only one unique y ∈ Δj such that 〈x, y〉 ∈ rij .

The integration process from a DDL ontology to a ordinary (global) DL ontology
is given in [4]. For a DDL ontology {Li}, the global DL (GDL) ontology is defined
as follows:

– There is a new top concept �g and a new bottom concept ⊥g in GDL.
– The primitive concepts of GDL consist of i : A obtained from primitive

concepts or constant concepts A (such as �i and ⊥i) of Li

– The primitive roles of GDL include i : p obtained from primitive or constant
roles p of Li

The mapping #() from concepts/roles in Li to concepts/roles in GDL is defined
as follows: for atomic concepts, roles, and individuals i : M , #(i : M) = i : M ;



On the Semantics of Linking and Importing in Modular Ontologies 77

for a complex concept constructor ρ with k arguments, #(i : ρ(X1, ..., Xk)) =
�i 	 ρ(#(X1), ...,#(Xk)). For example, #i : (∀p.C) = �i 	 ∀(i : p).(�i 	 i : C).

Applying #() to a DDL knowledge base Σ = 〈{Li}, {Bij}〉, we get an inte-
grated GDL [4] #(Σ) that contains:

– #(i : A) 
 #(i : B) for all i : A 
 B ∈ Li

– ⊥i 
 ⊥g

– #(i : A) 
 �i for each atomic concept A of Li

– Axioms that ensure the domain and range of any i-role to be �i: �i 
 ∀(i :
s).�i, ¬�i 
 ∀(i : s).⊥g

However, in contrast to the approach taken in [4], we will translate bridge
rules in DDL as GCIs in GDL. Hence, #(Σ) will include in addition to the
above:

– #(i : C) 
 #(j : D) for all i : C

−→ j : D ∈ Bij

– #(i : C) � #(j : D) for all i : C
�−→ j : D ∈ Bij

Since the motivation of DDL bridge rules is to simulate concept subsumption
as mentioned in DDL proposals [4,5,14], we believe that GCIs offer a more ap-
propriate translation for bridge rules in comparing the result of reasoning in the
distributed setting with that of the centralized setting. Note that the semantic
difficulties of DDL under incomplete modelling is actually due to the seman-
tic differences between concept subsumptions (i.e., GCIs) and bridge rules (as
shown in the Examples 1 and 2). The following theorem reveals that the domain
relations being one-to-one is a sufficient condition for exact reasoning in DDL
if bridge rules are intended to represent inter-module concept inclusions (proof
can be found in the longer version of the paper 1).

Theorem 1. Suppose Σ = 〈{Li}, {Bij}〉 is a DDL KB, where none of Li uses
role constants or role constructors, and all domain relations in all models of Σ
are one-to-one, then

– #(Σ) � #(i : X) 
 #(i : Y ) if and only if Σ �d i : X 
 i : Y

– #(Σ) � #(i : X) 
 #(j : Y ) if and only if Σ �d (i : X

−→ j : Y or

(j : Y
�−→ i : X)

At present, there is no principled approach in DDL to specify such domain
relations. Adding ¬C


−→ ¬D for each C
�−→ D, as suggested in [14], does not

necessarily result in injective (and hence, also not one-to-one) domain relations
for any inter-module concept relations.

Example 3. A KB Σd includes modules L{1,2}, TBox of L1 is {Woman ≡
¬Man}, TBox of L2 is {Girl ≡ ¬Boy}; bridge rules B12 = {1 : Man

�−→
2 : Boy}. According to [14], we should also add ¬1 : Man


−→ ¬2 : Boy i.e.

1 http://archives.cs.iastate.edu/documents/disk0/00/00/04/08/index.html



78 J. Bao, D. Caragea, and V.G. Honavar

1 : Woman

−→ 2 : Girl to B12. However, that doesn’t rule out the possibility of

a Girl object being both an image of a Man object and a Woman object, neither
ensure one-to-one correspondence between Man objects and Boy objects.

Example 4. (adopted from [17]) Module L1 entails � 
 1 : Car, module L2

entails UsefulThing 
 ¬UselessThing, and there are bridge rules 1 : Car

−→

2 : UsefulThing and 1 : Car

−→ 2 : UselessThing. There is no required new

bridge rules to be added according to [14]. However, 1 : Car is not unsatisfiable,
since DDL semantics allows empty domain relations.

DDL, as presented in [4], meets the localized semantics and directional semantic
relations requirements, but not the exact reasoning and transitive reusability
requirements. In general, DDL in its present form does not provide a satisfactory
formalism for inter-module or inter-ontology subsumption. In the following text,
we will show it can be improved by restricting domain relations to be one-to-one,
by P-DL or a combination of DDL and E-connections.

5 Semantics of Linking in E-Connections

While DDL allows only one type of domain relations, E-connections allow multi-
ple “link” relations between two domains, such as worksIn and bornIn between
2 : Person and 1 : Region. E-connections between ADSs [12], and in particular,
between DLs [11,9], restrict the local domains of the E-connected ontology mod-
ules to be disjoint. Roles are divided into disjoint sets of local roles (connecting
concepts in one module) and links (connecting inter-module concepts).

Formally, given ontology modules {Li}, an (one-way binary) link (more ex-
pressive E-connections are beyond the scope of this paper) E ∈ Eij , where
Eij , i �= j is the set of all links from the module i to the module j, can be
used to construct a concept in module i, with the syntax and semantics specified
as follows:

– 〈E〉(j : C) or ∃E.(j : C) : {x ∈ Δi|∃y ∈ Δj , (x, y) ∈ EM , y ∈ CM}
– ∀E.(j : C) : {x ∈ Δi|∀y ∈ Δj , (x, y) ∈ EM → y ∈ CM}}

where M = 〈{mi}, {EM}E∈Eij〉 is a model of the E-connected ontology, mi is
the local model of Li; C is a concept in Lj , with interpretation CM = Cmj ;
EM ⊆ Δi × Δj is the interpretation of an E-connection E. E-connections also
permit number restrictions on links [12].

An E-connection model M can be mapped to a DFOL model Md=〈{mi}, {rij}〉
with each EM (E ∈ Eij) acting as a domain relation rij [15]. Extending the se-
mantics of E-connection axioms ((1) and (3) below) given in [15] so as to allow
the use of constructed concepts (∃E.D and ∀E.D) on either side of the sub-
sumption, we have (also see Figure 2):

1) C 
 ∀E.D : EM (Cmi) ⊆ Dmj

2) C � ∀E.D : (¬C)mi ⊆ (EM )−((¬D)mj ), i.e., ∀x ∈ Δi, E
M (x) ⊆ Dmj →

x ∈ Cmi



On the Semantics of Linking and Importing in Modular Ontologies 79

r is the interpretation of link E, also acting as the domain relation between the two
local domain.

Fig. 2. Semantics of E-Connections

3) C 
 ∃E.D : Cmi ⊆ (EM )−(Dmj )
4) C � ∃E.D : EM ((¬C)mi ) ⊆ (¬D)mj , i.e., Cmi ⊇ (EM )−(Dmj )

where (EM )− is the inverse of EM , C is an i-concept and D is a j-concept, C
can be an atomic or complex concept. Note that case (2)(similarly also for (4))
can not be reduce to defining C′ ≡ ∀E.D and C′ 
 C in i, since ≡ is the short
for 
 and �.

It has been argued that E-connections are more expressive than DDL [12,7]
because DDL can be reduced to E-connections. However, the reliance of the
reduction on the equivalence of C


−→ D to 〈E〉.C 
 D and C
�−→ D to

〈E〉.C � D [12,7], presents semantic difficulties with regard to DDL and E-

connections semantics in the DFOL framework [15]: ONTO(
�−→) rules in DDL is

actually mapped to type d interpretation constraints in DFOL while 〈E〉.C � D
is mapped to type b interpretation constraints in DFOL.

We show that inverse links being allowed is a necessary condition for E-
connections to be more expressive than DDL bridge rules:

Theorem 2. E-connections, as presented in [12,7] is strictly more expressive
than DDL as presented in [4], only if inverse links are allowed.

Proof Sketch: Comparison of the semantics of DDL and E-connections, if we
treat the only domain relation in DDL as a E-connection E, as shown in [15,4],

C 
 ∀E.D has the same semantics as the “into” rule C

−→ D (rij(Cmi) ⊆ Dmj ).

However, onto rules, such as C
�−→ D (rij(Cmi) ⊇ Dmj ), can be translated into

D 
 ∃E−.C only if the inversion of E-connections is allowed. �
Thus, the language CE

HI(SHIQ,SHOQ,SHIO) is more expressive than DDL
but CE

HQ(SHIQ,SHOQ,SHIO) (allowing no inverse link) [7] is not.



80 J. Bao, D. Caragea, and V.G. Honavar

Note that for i : C
�−→ j : D, defining an E-connection F from j to i, the

onto rule still cannot be translated into D 
 ∃F.C, since DDL semantics doesn’t
assume rij = r−ji, therefore F �= E−. To assert the inverse relation, we still need
inverse link constructors in E-connections.

E-connections allow multiple links between modules and the construction of
new concepts e.g. WorkForce ≡ 〈worksIn〉Region, while DDL does not. Mod-
ule transitive useability can be realized in a limited form by transitive links [13].
E-connections are also directional. Reasoning in E-connections without gener-
alized links is exact w.r.t a combined TBox of the E-connected ontology, since
a concept is satisfiable in the E-connected ontology if and only if there is a
combined model for the combined TBox and the concept [9,8].

However, the applicability of E-connections in practice is also limited by the
need to ensure that the local domains are disjoint:

– To enforce local domain disjointness, a concept cannot be declared as sub-
class of another concept in a foreign module thereby ruling out the possibility
of asserting inter-module subsumption and the general support for transi-
tive useability; a property cannot be declared as sub-relation of a foreign
property; neither foreign classes nor foreign properties can be instantiated;
cross-module concept conjunction or disjunction are also illegal.

– E-connected ontologies have difficulties to be used with OWL importing
mechanism, since importing may actually “decouple” the combination and
result in inconsistency [7].

6 Semantics of Importing – P-DL

Our investigation of the semantics of DDL and E-connections suggests that many
of the semantic difficulties of linking approaches might be the result of a funda-
mental assumption that the local language and local models are disjoint. Thus,
it is interesting to consider formalisms that relax this assumption.

OWL does not make such module disjointness assumption. Instead, it adopts
an importing mechanism to support integration of ontology modules. However,
the importing mechanism in OWL, in its current form, suffers from several seri-
ous drawbacks: (a) It directly introduces both terms and axioms of the imported
ontologies into the importing ontology, and thus fails to support local semantics
(b) It provides no support for partial reuse of an ontology module.

Package-based Description Logics (P-DL)[3] offer a tradeoff between the
strong module disjointness assumption of DDL and E-connections, and the OWL
importing mechanics, which forces complete overlapping of modules.

6.1 Syntax and Semantics of P-DL

In P-DL, an ontology is composed of a collection of modules called packages.
Each term (name of a concept, a property or an individual) and each axiom
is associated with a home package. A package can use terms defined in other
packages i.e., foreign terms. If a package Lj uses a term i : t with home package



On the Semantics of Linking and Importing in Modular Ontologies 81

Li (i �= j), then we say t is imported into Lj , and the importing relation is
denoted as rt

ij . Li may contain the usual TBox and ABox of DL. For simplicity,
we do not present advanced features of P-DL, such as package hierarchy and
scope limitation modifiers [3].

We denote the package extension to DL as P . For example, ALCP is the
package-based version of DL ALC. In what follows, we will examine a restricted
type of package extension which only allows import of concept names, denoted
as PC . We will show that even this restricted form of package extension is not
trivial and is more expressive than DDL and E-connection.

The semantics of P-DL is expressed in DFOL as follows: For a package-based
ontology 〈{Li}, {rt

ij}i�=j〉, a distributed model is M = 〈{mi}, {(rt
ij)

M}i�=j〉, where
mi is the local model of module i, (rt

ij)
M ⊆ Δi ×Δj is the interpretation for the

importing relation rt
ij , which meets the following requirements:

– Every importing relation is one-to-one, and for every object in tmj there is
a single unique object in tmi as its pre-image (therefore rij(tmi) = tmj ).

– Term Consistency: importing relations are consistent for different terms.
Each object in the model of a source package corresponds uniquely to an
object in the model of any target package for interpretations of importing
relations of all terms, i.e., for any i : t1 �= i : t2 and any x, x1, x2 ∈ Δi,
(rt1

ij )M (x) = (rt2
ij )M (x) and (rt1

ij )M (x1) = (rt2
ij )M (x2) �= Ø → x1 = x2.

– Compositional Consistency: if (ri:t1
ik )M (x) = y1, (ri:t2

ij )M (x) = y2, (rj:t3
jk )M

(y2) = y3, , (where t1 and t2 may or may not be same), and y1, y2, y3 are
not null, then y1 = y3. Compositional consistency helps ensure that the
transitive reusability property holds for P-DL.

The domain relation between mi and mj is rij = ∪t(rt
ij)

M .

Lemma 1. Domain relations in a P-DL model are one-to-one.

Lemma 1 states that a domain relation rij in a P-DL model isomorphically
maps, or copies, the relevant partial domain from mi to mj . For any concept
i : C, rij(Cmi), if not empty, contains the copy of a subset of objects in Cmi .
Such domain relations allow us to relax the domain disjointness assumption
adopted in DDL and E-connections, since the construction of a local model is
partially dependent on the structure of local models of imported modules, with
the benefits of preserving exact semantics of terms shared by different modules.

Immediately from the one-to-one domain relation property, we have:

Lemma 2. In a P-DL model m, for any domain relation rij and concept i : C,
we have rij(Cmi) ∩ rij((¬C)mi ) = Ø.

If a term is indirectly used in a non-home package, compositional consistency
property of domain relations makes the domain relation inferrable. For exam-
ple, if some terms defined in L1 are imported into L2, and some terms in L2
are imported into L3, then the importing relation r13 can be inferred from the
composition r12 ◦ r23.



82 J. Bao, D. Caragea, and V.G. Honavar

Lemma 3. For domain relations in a model of P-DL, rik = rij◦rjk, i �= j, j �= k.

In the following text, rij refers to either an explicitly given domain relation or
an inferred domain relation, or their union, between package i and j.

If i : C is imported into j, we define inter-module subsumption i : C 
P j : D
as rij(Cmi) = Cmj ⊆ Dmj and i : C �P j : D as rij(Cmi) = Cmj ⊇ Dmj (see
Figure 3). Note that inter-module subsumption is substantially different from
bridge rules in DDL. DDL bridge rules bridge semantic gaps between different
concepts, and there is no principled way to ensure subjective domain relations
to be semantically consistent (in the sense of one-to-one mappings and composi-
tional consistency). In contrast, P-DL importing mechanism bridges the semantic
gaps between multiple references of the same concept in different modules. Im-
porting of C from i to j cannot be reduced to a DDL equivalency bridge rule
C

≡−→ C′, since in DDL rij(Cmi) = C′mj does not guarantee Cmi and C′mj are
interpretations for the same concept.

We show below that such a relaxation of module disjointness does not sacrifice
localized semantics and can help us to solve many semantic difficulties presented
in other approaches and provide stronger expressivity.

6.2 Features of P-DL Semantics

Fig. 3. Semantics of P-DL

The loss of local model disjointness in
P-DL does not sacrifice localized seman-
tics property of modules, since the local
models (unlike in OWL which requires
completely overlapping of local models)
are, only partially overlapping. The se-
mantics of the part of a module that is
not exported to any other module remains
local to that module. Consequently, there
is no required global model. The example

below demonstrates that P-DL also satisfies directional semantic relation and
module transitive reusability properties.

Example 5. Consider four modules L{1,2,3,4} as shown in Figure 4.

1. Transitivity of inter-module subsumption holds: r14(Am1) = r24(r12(Am1)) ⊆
r24(r12(Bm1)) = r24(Bm2) ⊆ r24(Cm2) ⊆ r24(Pm2) = Pm4 ⊆ Qm4 , i.e.,
A 
P Q. Although no term in L1 is directly imported into L4, we can infer
the domain relation r14 from r12j ◦ r24 utilizing their compositional consis-
tency property.

2. The importing relation is directional. Thus, r12(Am1) ⊆ r12(Dm1) is enforced
only in L2, while Am1 ⊆ Dm1 is not required in L1. There is no information
“backflow” in importing. Therefore, while L2 and L3 are inconsistent, they
are all consistent to L1, and the consistency of L1 is still guaranteed.

3. The model overlapping is only partial, e.g., E and F in 1 are semantically
separated from L2 and have no correspondence in the local model m2.



On the Semantics of Linking and Importing in Modular Ontologies 83

Fig. 4. P-DL Ontology Example

An integrated KB can be obtained from
a P-DL KB by combining axioms in all
packages. Because of the isomorphic na-
ture of importing relations, we have the
theorem (proof is in the longer version of
the paper):

Theorem 3. Reasoning in a P-DL KB is
exact w.r.t. its integrated KB.

The intuition behind this proof is as follows: since the only type of semantic
relations between modules are importing relations, and shared terms are always
interpreted consistently in different modules, we can transform a distributed P-
DL model into a classic DL model by merging all “copied” objects in each of the
local models.

However, a limitation of the importing approach adopted by P-DL is that
the general decidability transfer property does not always hold in P-DL since
the union of two decidable fragments of DL may not in general be decidable
[1]. This presents semantic difficulties in the general setting of connecting ADSs
[1,12]. Fortunately, in the case of a web ontology language where different on-
tology modules are specified using subsets of the same decidable DL language
such as SHOIQ(D) (OWL-DL), the union of such modules is decidable. With
the availability of the decision procedure [10] and highly optimized reasoners
for SHOIQ(D), we can ensure the decidability of P-DL ontology within the
modular web ontology setting. Therefore we have:

Theorem 4. SHOIQPC(D) is decidable

P-DL also has some expressivity limitations. PC does not allow role inclusions
across different modules, using foreign role to construct local concept, declaring
a local role as the inverse of a foreign role, nor the importing of nominals defined
in other modules. Due to the one-to-one domain relation requirement, P-DL can
support only one-to-one ABox mappings, and not many-to-one, one-to-many, or
many-to-many ABox mappings. The semantics of more expressive P-DL that
allows importing of role and individual names still needs further investigation.

6.3 Relation Between P-DL, DDL and E-Connections

P-DL, despite its stronger domain relation restrictions, can be used to model
DDLs and E-Connections.

The reduction from DDL to P-DL is straightforward. An into rule i : C

−→

j : D in DDL can be reduced to a P-DL axiom C 
P D in module j and C is an
imported concept; similarly, an onto rule i : C

�−→ j : D in DDL is translated as
C �P D in module j and C is an imported concept. The semantic interpretation
of such a reduction is clear since rij(Cmi) = Cmj , therefore rij(Cmi) ⊆ Dmj iff
Cmj ⊆ Dmj and rij(Cmi) ⊇ Dmj iff Cmj ⊇ Dmj .

P-DL may avoid the semantic difficulties presented in DDL.



84 J. Bao, D. Caragea, and V.G. Honavar

Example 6 (Subsumption Propagation). A P-DL KB includes three mod-
ules L{1,2,3}, L1 has empty TBox, L2 = {1 : Bird � 2 : Fowl}, L3 = {2 :
Fowl � 3 : Chicken}, importing relations are rBird

12 , rFowl
23 . The inter-module

subsumption problem 1 : Bird � 3 : Chicken can be answered, since in any model
of the KB, Chickenm3 ⊆ r23(Fowlm2) ⊆ r23(r12(Birdm1)) = r13(Birdm1),
therefore Bird �P Chicken is always true.

Example 7 (Inter-module Unsatisfiability). A P-DL ontology contains two
modules L{1,2}, L1 = {1 : Bird 
 1 : Fly}, L2 = {1 : Bird � 2 : Penguin,¬1 :
Fly � 2 : Penguin}, importing relations are rBird

12 , rFly
12 . For any model m of

the ontology, Penguinm2 ⊆ r12((¬Fly)m1) ∩ r12(Birdm1 ), and r12(Birdm1) ⊆
r12(Flym1). Therefore Penguinm2 ⊆ r12((¬Fly)m1) ∩ r12(Flym1) ⊆ Ø is not
satisfiable.

An E-connection-like constructed concept such as ∃(i : E).(j : D) can be defined
in the module i, where j : D is imported into i, with semantics: {x ∈ Δi|∃y ∈
Δj , y

′ = rji(y) ∈ Δi, (x, y′) ∈ Emi , y ∈ Dmj}}. ∀(i : E).(j : D) can be con-
structed similarly. It is easy to see a combined model (Tableau) of E-connections
[7] can be reduced to a P-DL model by transforming every E-connection instance
e(i : x, j : y) to a role instance e(i : x, i : y′) and adding (y, y′) to the domain
relation rji if it has not already been added.

Since “links” in E-connections can be specified as local roles in P-DL with for-
eign concepts as ranges, link inclusion, link inverse, and link number restriction
can also be reduced into normal role axioms in P-DL. Therefore, we have:

Theorem 5. P-DL SHOIQPC(D) is strictly more expressive than the DDL
extension to SHOIQ with bridge rules between concepts, and E-Connections
CE
HQ (SHIQ,SHOQ,SHIO) and CE

HI(SHIQ,SHOQ,SHIO).

Some types of DDL and E-Connections can not be reduced to the P-DL extension
PC , e.g., DDL bridge rules between roles and individuals or generalized links [13]
in E-connections. However, we believe future extension of P-DL may cover some
of these scenarios.

Another observation is that it is possible to simulate the one-to-one do-
main relations that are required in P-DL by the combination of DDL and E-
connections2. If we use bridge rules as a special type of E-connections with
“≤ 1” cardinality restriction in E-connections, it effectively encodes the one-to-
one domain relations. More precisely, for any pair of module i, j, if we denote E
as the E-connection for bridge rules from i to j, F as the E-connection for bridge
rules from j to i,, the following axioms can be added:

– In module i: �i 
≤ 1E.�j

– In module j: �j 
≤ 1F.�i

– F = E−.
2 We thank the anonymous reviewers of the Description Logics Workshop for pointing

this out.



On the Semantics of Linking and Importing in Modular Ontologies 85

However, such a simulation does not always meet the compositional con-
sistency requirement of P-DL. Therefore, such a combination of DDL and E-
connections, while it can solve the inter-module unsatisfiability problem, may
fail on some problems that require module transitive reusability, such as the
general subsumption propagation problem as outlined in Example 1.

7 Summary

In this paper, we have investigated the semantics of DDL, E-connections and P-
DL. We have shown that (a) one-to-one domain relation is a sufficient condition
for exact DDL reasoning; (b) E-connections, in general, are more expressive
than DDL only with inverse links; c) an importing approach in P-DL can be
used to ensure transitivity of inter-module subsumption without sacrificing the
exactness of inference in P-DL with only a compromise of local semantics. Our
results raise the possibility of avoiding many of the semantic difficulties in current
modular ontology language proposals by removing the strong assumption of
module disjointness.

Acknowledgements. This research was supported in part by grants from the
US NSF (0219699, 0639230) and NIH (GM 066387).

References

1. F. Baader, C. Lutz, H. Sturm, and F. Wolter. Fusions of description logics. In
Description Logics, pages 21–30, 2000.

2. J. Bao, D. Caragea, and V. Honavar. Modular ontologies - a formal investigation
of semantics and expressivity. In R. Mizoguchi, Z. Shi, and F. Giunchiglia (Eds.):
Asian Semantic Web Conference 2006, LNCS 4185, pages 616–631, 2006.

3. J. Bao, D. Caragea, and V. Honavar. Towards collaborative environments for
ontology construction and sharing. In International Symposium on Collaborative
Technologies and Systems (CTS 2006), pages 99–108. IEEE Press, 2006.

4. A. Borgida and L. Serafini. Distributed description logics: Directed domain corre-
spondences in federated information sources. In CoopIS, pages 36–53, 2002.

5. P. Bouquet, F. Giunchiglia, and F. van Harmelen. C-OWL: Contextualizing ontolo-
gies. In Second International Semantic Web Conference, volume 2870 of Lecture
Notes in Computer Science, pages 164–179. Springer Verlag, 2003.

6. C. Ghidini and L. Serafini. Frontiers Of Combining Systems 2, Studies in Logic
and Computation, chapter Distributed First Order Logics, pages 121–140. Research
Studies Press, 1998.

7. B. C. Grau. Combination and Integration of Ontologies on the Semantic Web. PhD
thesis, Dpto. de Informatica, Universitat de Valencia, Spain, 2005.

8. B. C. Grau, B. Parsia, and E. Sirin. Tableau algorithms for e-connections of
description logics. Technical report, University of Maryland Institute for Advanced
Computer Studies (UMIACS), TR 2004-72, 2004.

9. B. C. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies on the
semantic web. In International Semantic Web Conference, pages 620–634, 2004.



86 J. Bao, D. Caragea, and V.G. Honavar

10. I. Horrocks and U. Sattler. A Tableaux Decision Procedure for SHOIQ. In IJCAI,
pages 448–453, 2005.

11. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of description
logics. In Description Logics Workshop, CEUR-WS Vol 81, 2003.

12. O. Kutz, C. Lutz, F. Wolter, and M. Zakharyaschev. E-connections of abstract
description systems. Artif. Intell., 156(1):1–73, 2004.

13. B. Parsia and B. C. Grau. Generalized link properties for expressive epsilon-
connections of description logics. In AAAI, pages 657–662, 2005.

14. L. Serafini, A. Borgida, and A. Tamilin. Aspects of distributed and modular on-
tology reasoning. In IJCAI, pages 570–575, 2005.

15. L. Serafini, H. Stuckenschmidt, and H. Wache. A formal investigation of mapping
language for terminological knowledge. In IJCAI, pages 576–581, 2005.

16. L. Serafini and A. Tamilin. Drago: Distributed reasoning architecture for the se-
mantic web. In ESWC, pages 361–376, 2005.

17. H. Stuckenschmidt, L. Serafini, and H. Wache. Reasoning about ontology map-
pings. Technical report, Department for Mathematics and Computer Science, Uni-
versity of Mannheim ; TR-2005-011, 2005.



RS2D: Fast Adaptive Search for Semantic Web
Services in Unstructured P2P Networks

Ulrich Basters and Matthias Klusch

German Research Center for Artificial Intelligence
Stuhlsatzenhausweg 3, 66121 Saarbruecken, Germany

uli@basters.de, klusch@dfki.de

Abstract. In this paper, we present an approach, called RS2D v1, to
adaptive probabilistic search for semantic web services in unstructured
P2P networks. Each service agent dynamically learns the averaged query-
answer behavior of its neighbor peers, and forwards service requests to
those with minimal mixed Bayesian risk of doing so in terms of estimated
semantic gain and commmunication cost. Experimental evaluation shows
that the RS2D search mechanism is robust against changes in the net-
work, and fast with reasonably high precision compared to other existing
relevant approaches1.

1 Introduction

Agent based service provision in the future open semantic Web in one extreme
would ad hoc connected autonomous agents require to efficiently search for rele-
vant services without any central coordination means and prior knowledge about
their environment. This corresponds to the known challenge of searching un-
structured peer-to-peer (P2P) networks with reasonably high performance and
low communication efforts, but no prior knowledge about service distribution,
ontologies, or network topology. Different solutions to this problem have been
proposed in the P2P research literature; an accessible survey is provided in [1].
In contrast to structured P2P networks, unstructured approaches lack of global
routing guarantees provided by the overlay, that is, they offer arbitrary net-
work topology, file placement and search. Though blind flooding based search,
or variants of it, in such networks like Gnutella [9], performs very robustly with
high precision but suffers from insufficient scalability due to high communication
overhead. Randomized routing usually keeps the communication effort low, but
exhibits low performance due to its random nature and inability to adapt to
different query loads. Approaches to informed probabilistic adaptive P2P search
in unstructured P2P networks like in [15] improve on such random walks but
do not exploit the qualitative results of semantic matching of services to drive
the search. In fact, as of today, there exist only few approaches that explic-
itly perform semantic service retrieval in unstructured P2P networks, that are
1 This work has been supported by the German ministry of education and re-

search (BMB+F 01-IW-D02-SCALLOPS), and the European Commission (FP6 IST-
511632-CASCOM).

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 87–100, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



88 U. Basters and M. Klusch

Bibster[10] and GSD[5]. Both approaches are still limited in the sense that they
require prior knowledge on the semantic overlay, and a fixed (static) global on-
tology to be used by each peer, respectively.

This motivated us to develop the first risk-driven and behavior based ap-
proach, named RS2D, to combine adaptive probabilistic with semantic search for
OWL-S services in unstructured P2P networks. RS2D enables each autonomous
peer to dynamically build up and manage its own local ontology in OWL based
on a minimal shared vocabulary only. Furthermore, and more importantly, RS2D
peers do not perform object-specific but average peer behavior based semantic
search, that is each of them quickly learns which of its direct neighbours in the
network will most probably return relevant semantic web services for a given
query with minimal mixed Bayesian risk of both semantic loss and high commu-
nication in average. Although the implemented RS2D routing decision scheme
works for OWL-S services only, its core decision routing mechanism is indepen-
dent from the service description language, hence can be, in principle, used to
search for any other kind of web services as well, such as WSDL, WSDL-S, and
WSMO, by means of replacing our OWLS-MX matchmaker at each peer with
an adequate one for local semantic service selection.

The remainder of this paper is organized as follows. Section 2 presents the
original version of our RS2D approach (RS2D v1) for risk driven probabilistic
search of OWL-S services in unstructured P2P service networks in detail. Sec-
tions 3 and 4 provide the results of the comparative experimental evaluation of
RS2D v1 and related work, respectively, and we conclude in section 5. Comple-
mentary work on RS2D v2 with alternate semantic loss function is in [4].

2 Adaptive Search for OWL-S Services

How does the adaptive probabilistic search for OWL-S services in unstructured
P2P networks according to the RS2D routing decision scheme? Each peer first
determines the set of OWL-S services that are semantically relevant to a given
service request (query) by use of its local OWL-S matchmaker, and then forwards
the same query only to those of its direct neighbor peers from which it expects
to most probably receive semantically relevant services in reasonable time. For
this purpose, it continuously observes the individual average query answering
behavior of these peers, caching not only the number but semantic qualities of
their replies, and requests in its local training set and updates. These data are
then used to estimate the mixed conditional probabilistic risk of semantic query
routing for each of its neighbor peers. We present the details of this adaptive
mixed risk-driven search in subsequent sections.

2.1 Local Observations

What does an RS2D enabled peer v in an unstructured network observe in
concrete terms? From each reply to a given query q it receives from some of its
direct neighbour vk, it extracts data into a training record



RS2D: Fast Adaptive Search for Semantic Web Services 89

t = (q, Sq, S
′
q, L(Sq), L(S′

q), f id, tid, cj, a)

and stores it in its local training set TS. These observation data are as follows:

q: Request in terms of the description of a desired service written in a semantic
web service description language such as OWL-S.

Sq: Set of top-k relevant services retrieved before forwarding the request.
S′

q: Set of top-k relevant services retrieved after forwarding the request.
L(Sq), L(S′

q): Semantic score of Sq, S′′
q . This score measures the semantic qual-

ity of the set of retrieved services with respect to q by summarizing the
numeric results of their semantic matching performed by an appropriate
matchmaker, that is L(Sq) :=

∑
s∈Sq

σ(s, q). For example, searching for
OWL-S services in RS2D enabled P2P networks may be achieved by using
the OWLS-MX matchmaker (cf. section 2.2), as we did for evaluating the
RS2D performance (cf. section 4).

fid, tid: Identifier of the peer from/to which the request was received/forwarded.
cj : Query answer result class, that is c0 meaning that the query got rejected

because it was processed by vk already, or c1 meaning that vk answers to
the query with a semantic gain, i.e. with L(S′

q) − L(Sq) > 0. That is, the
reply is considered of real benefit for v, only if it contains services previously
unknown to v with higher degree of semantic relevance.

a: Communication effort entailed by the decision to route the request to vk, i.e.
the number of message hops in the routing subtree of the request.

The observation vector x ∈ N2 used for risk estimations is defined as x =
(fid, tid). Our experiments showed, that already the use of these two parame-
ters yield an reasonably well prediction. To be able to predict the values of
λ, E(y), E(a) and P (cj |x), we filter the training set TS in different ways.

2.2 Local Semantic Service Selection

In order to compute the numeric semantic scores LS(Sq), each RS2D peer maps
the oputput of its local OWL-S service matchmaker OWLS-MX [12] to the in-
terval [0, 1] (cf. figure 1). The mapping is defined by σmx : (S∗ × S∗) �→ [0, 1] ⊂
R; σmx(s, q) := (5 − dom + sim)/6 with dom = {0, 1, 2, 3, 4, 5} coding the
degrees of match (exact = 0, plug-in = 1, subsumes = 2, subsumed-by = 3,
nearest-neighbour = 4, fail = 5), and sim ∈ [0, 1] the syntactic similarity value,
as returned by the matchmaker OWLS-MX.

OWLS-MX takes any OWL-S service description as a query, and returns an
ordered set of relevant services that match the query in terms of both crisp logic
based and syntactic similarity. For this purpose, it applies five different hybrid
matching filters with one selected IR similarity metric each. Logical subsumption
failures produced by the integrated OWL-DL reasoner Pellet are tolerated, if
the computed syntactic similarity value is sufficient. It turned out that this is
beneficial in terms of both recall and precision. For more details on OWLS-MX,
we refer the interested reader to [12]; the sources are available at [13].



90 U. Basters and M. Klusch

Fig. 1. Mapping of the degrees of semantic service matching returned by the OWLS-
MX matchmaker to [0,1] used by RS2D peers to determine the numeric semantic gain
of received replies from their neighbour peers

What makes OWLS-MX particularly suitable to semantic service selection
in unstructured P2P service networks is its ability to dynamically maintain a
local (matchmaker) ontology on the basis of a shared minimal vocabulary of
primitive components only. This renders RS2D peers independent from the ex-
clusive use of a fixed global ontology. Instead the minimal set of shared primitive
components from which each peer may canonically define local concept seman-
tics constitutes the weakest form of a shared ontology. Further, we assume that
RS2D peers do exchange not only the names but terminologic expansions of
service I/O concepts. This enables peers to gradually learn about the expertise
of other peers through appropriate classification of the concepts of their queries
and replies into its local ontology. The same holds in case service descriptions
change. Hence, RS2D peers do not have to adopt a static global ontology like
in GSD[5].

2.3 Individual Semantic Loss

The estimated semantic loss of routing some query q to a peer vk (alternatives
α0, α1) for possible query answer classes (c0, c1) based on its average Q/A be-
havior according to the actual training set is essentially driving the risk based
decision making of each RS2D peer. In the original version of the RS2D system
v1, the semantic loss λ(αi, cj) is computed as follows:

λ(α0|·) λ(α1|·)
c0 0 2κ
c1 E(y) − E(a)κ −E(y) + E(a)κ

(1)

The average message transmission costs are denoted by κ, and assumed to
be constant. In addition, the average expected semantic gain E(y) and average
number of messages E(a) are defined as follows:



RS2D: Fast Adaptive Search for Semantic Web Services 91

E(y) :=
1

|TSfid,tid|
∑

t∈TSfid,tid

[L(S′′
q )]t − [L(S′

q)]t (2)

E(a) :=
1

|TSfid,tid|
∑

t∈TSfid,tid

[a]t (3)

with [x]t extracting the parameter x from observation record t in the training
set TS. An alternative definition of the semantic loss function we used in the
second version of the RS2D system is presented in [4] together with the results
of its experimental evaluation. As expected, both RS2D versions significantly
differ in the quality of their results. In particular, the second version improved
the retrieval performance of the original one in terms of precision but at the cost
of increased communication efforts.

2.4 Learning of Individual Q/A Behavior

Each peer learns the most probable query answering (Q/A) behavior of each of
its direct neighbours individually in order to be able to decide on whether it is
beneficial to forward queries to theses peers, or not. In particular, the conditional
probability P (cj |x) of possible answering result classes of the considered peer vk

based on its observed Q/A behavior in the past is computed based on the prior
probability P (x|cj), the likelihood P (cj), and the normalizing evidence factor
P (x) from the training set TS, with

P (cj) =
|TScj |
|TS| ; P (x|cj) =

n∏
l=1

P (xl|cj); P (x) =
|C|∑
j=1

P (x|cj) · P (cj) (4)

and the feature probability P (xl|cj) =
|TSxl,cj

|
|TScj

| of the occurence of the observa-
tion feature component xl for given class cj .

The decision making process heavily relies on the training set TS that each
peer maintains individually. Initially, when a peer joins the network, its training
set TS is empty; in this case, it sends its queries to all its direct neighbours until
the size (θ(TS))) of its training set, more specifically TSfid,tid is sufficiently large
for continuing with risk assessment driven routing decisions from this point. Our
experiments provide evidence in favor of θ(TSfid,tid) = 8.

2.5 Mixed Risk Based Query Routing Decision

The risk assessment driven routing decision of each peer v whether to route
a given query q to a given neighbour vk, or not, is then based on the mixed
conditional Bayesian risk of doing so in terms of both semantic gain and com-
munication costs. It is computed as follows

R(αi|x) =
|C|∑
j=1

λ(αi, cj) · P (cj |x) (5)



92 U. Basters and M. Klusch

It sends the request r = (q, Sq, S
′
q, a) based on its actual training set TS to

vk, if the risk of forwarding r to vk is minimal. Otherwise, it rejects a received
request r, if it has been already processed locally, or a fixed number of forwarding
steps (hops) is reached, or the risk of further forwarding is maximal for each of
its neighbours. As a consequence of routing r only to those peers for which the
corresponding alternative with minimal risk

α∗ = argmin{R(α0|x), R(α1|x)} (6)

is α1, the overall risk R =
∫

R(α(x)|x)P (x)dx is also minimal.
For each request r, each peer collects the replies it receives from its neighbours

for r, that is the set of top-k semantically matching services, and merges them
together with its local answer set. The top-k services of the merged set with
semantic gain is then recursively returned on the unique return path to the one
who did forward the request. That is, the complete answer set for a query is
created while being propagated back to its origin. At the same time, each peer
involved in this process continuously learns about the query answering behaviour
of each of its neighbours in general. It caches the individual observations in its
local training set each time it receives a reply. This, in turn, enables each peer
to estimate the corresponding risk of forwarding a query to individual peers.

The computational complexity of RS2D is O(nm · Tσ + nm · log k + nt) with
n and m of peers, respectively, services in the network, and t and k maximal
size of the training, respectively, answer sets. That is, the adaptive RS2D search
is linear with respect to the routing decision but subject to the computational
complexity O(Tσ) of the used matchmaker in total; the proof is given in [2].

2.6 Join/Leave Operations

RS2D requires minimal message exchange on dynamic operations such as node
arrivals or departures. The join-operation of a peer in RS2D enabled P2P net-
works is implemented as a simple handshake-advertisement: Each peer that
wants to join the network, broadcasts a one-hop advertisement (TTL = 1) to
all peers in its neighbourhood, and then waits for acknowledgement-messages. If
at least one peer answers, the requesting peer considers itself to be on line and
part of the network, and both peers mutually take themselves into account for
future routing decisions. The leave-operation is completely passive: A peer just
drops out and stops answering to messages. Its neighbouring peers will detect its
absence as soon as they attempt to send a new message to it, and consequently
remove those training records from their local training sets that relate to it.

In its current version, the RS2D protocol does not explicitly enforce the prop-
agation of changes in the expertise of each peer through the network. Such
changes are caused by the insertion, deletion, or modification service descrip-
tions. Rather, each RS2D peer gradually adapts to such changes each time
it receives a response to a query from the owner of the changed service by



RS2D: Fast Adaptive Search for Semantic Web Services 93

observing possibly implied changes of the answering behaviour including, in par-
ticular, the semantic gain.

3 Comparative Evaluation of RS2D

We have implemented the P2P service retrieval mechanism RS2D v1, and eval-
uated it by means of simulation. In the following, we present the results of
the evaluation of the original RS2D protocol compared to the classic broadcast
based routing (BCST), random selection of two neighbor peers (RND2), and
Bibster like routing (BIBL) [10] based on peers that have prior knowledge on
the semantic overlay network.

For testing purposes, we randomly generated unstructured, sparsely connected
P2P networks of different size with 50, 100, 200, and 576 peers, and used the
OWLS-TC2 service retrieval test collection [14] which contains 576 OWL-S ser-
vices, 36 queries with relevance sets, and the OWLS-MX matchmaker [13] for
semantic matching by each peer. In each simulation run, the queries are sequen-
tially processed by each peer to generate the training set, and the top 20 services
are returned by each peer only. The P2P service retrieval performance is mea-
sured in terms of micro-averaged precision and recall against communication
overhead with respect to the maximum hop count for query propagation.

Testing of RS2D in large scale networks with thousands of peers requires, in
particular, a correspondingly large and meaningful semantic web service retrieval
test collection, which is not available yet. For details on the implementation of
the RS2D simulator, as well as the improved RS2D v2, and the results of its
experimental evaluation, we refer the interested reader to [4,2]. We were not
able to run the GSD

3.1 Service Retrieval Performance

In our experiments, we evaluated two essential aspects of P2P service retrieval
performance measurement:

1. Service distribution to peers: Uniformly at random Vs. Single peer hosts all
relevant services per query

2. Query distribution to peers by the user: Random querying of peers Vs. One
central Q/A peer, considered as exclusive querying interface to the system
for the user

For reasons of space limitation, we present only the representative experimental
results, and refer the interested reader for complete set of our RS2D performance
and robustness experiments to the RS2D project web page [3].

Experiment 1: As figure 2 shows, in a network of 576 peers with evenly dis-
tributed 576 services, and random querying of peers, RS2D outperforms BIBL
as well as RND2 in terms of precision with lesser number of hops which yields a



94 U. Basters and M. Klusch

Fig. 2. Experiment 1, precision and communication

faster response time. However, after around 22 hops it gets slightly overtaken by
BIBL due to its query-specific routing with prior knowledge on the peer exper-
tises. The second version of RS2D ([4], fig. 2) performs totally different in that
it could not be outperformed by BIBL at all while being almost close to opti-
mal from the beginning. Each of both results were confirmed by the respective
version of RS2D also for smaller P2P networks (50, 100, 200 peers).
When it comes to communication overhead, RS2D performs as bad as broadcast
based routing in the initial training phase. In fact, RS2D does a multicast in the
initial training phase, though this phase may be very short (eight recorded replies
in average were sufficient to initialize successful risk driven query routing), so
BIBL outruns RS2D because it exploits its prior semantic overlay knowledge for
routing. However, the situation changes when processing the last query of the
test collection: RS2D is faster than the initially more savvy BIBL (see fig.3). The
same holds for RS2D v2 ([4], fig. 4), though RS2D v1 turned out to be much
more efficient in this respect, hence faster in its response time.

Experiment 2: We also simulated the case of single query authorities, i.e., one
peer hosts all the relevant services to a query, with random querying of the peers.



RS2D: Fast Adaptive Search for Semantic Web Services 95

Fig. 3. Experiment 1, communication, first/last query

For each query a different but distinguished peer was chosen at random to host
the relevance set. The results (fig. 4) show that BIBL eventually outperforms
RS2D, because it can exploit its knowledge on the semantic overlay for optimal
query-specific routing. RS2D v1 gets outperformed even by RND2 in the end.
Main reason for that is that relying only on the average query answer behaviour
renders it very difficult to find the single authority for each individual query. In
any case, this clear deficiency of RS2D v1 motivated us to let each peer adapt
according to a differently designed semantic loss function in the second version
of RS2D ([4], fig. 5) which then performed almost optimal from the beginning,
strongly outperforming both BIBL and RND2, but at the cost of (reasonably)
higher communication efforts.

Experiment 3: We also tested RS2D in a setting with one distinguished (central
querying) peer executing all queries on behalf of a user with 576 services distrib-
uted uniformly at random in a 576 peer network, and initial size of training set
θTS = 8.

According to the experimental results (cf. fig. 5), RS2D performs optimal
(curve is on that of BCST) in terms of precision but drastically reduced commu-
nication overhead. The same was experimentally shown to hold for the perfor-
mance of RS2D v2 ([4], fig. 7) with comparably minor reduction of communica-
tion only. Main reason for the good performance in this case is that the central
RS2D peer is able to directly search the minimal spanning tree for all queries
after its initial multicast.

In fact, further evaluation revealed that for the same reason the observed de-
ficiency of RS2D in case of authorities in an unstructured network with uniform
at random query and service distribution (cf. fig. 4) can be largely mitigated
by the introduction of a central query-answering peer (cf. fig. 6). In this case,
RS2D remains to perform optimal whereas both savvy BIBL and random walk
RND2 are able to eventually close up, though BIBL gets partially outperformed
by RND2. Interestingly, RS2D gets even faster than its competitors in terms
of communication cost. This setting also turned out to be the best for RS2D in
terms of achieved performance and communication according to our simulations.



96 U. Basters and M. Klusch

Fig. 4. Experiment 2, precision and communication (query authorities, n = 200)

3.2 Robustness

We tested the robustness of RS2D against dynamic changes of the topology of
a network of 576 peers.

Experiment 4: During simulation peers may randomly join or leave the network
with a rate of about one such operation for each five simulation steps, with
around 80% of all peers (= 460) being on line in average.

If a RS2D peer is not able to route a return message to relevant peers according
to the return path because they are not reachable for some reason, it tries to
contact the subsequent peers in the path to establish a detour for this case. If
this strategy fails, it issues a limited 2-hop broadcast to all of its neighbours.
Only if the peer turns out to be isolated, or none of the contacted peers is able
to forward the return message to any of the subsequent ones in the respective
return path, the return message is discarded yielding a total loss of all related
intermediate results of the query. The experimental results show that albeit the
implied communication effort of RS2D is higher than that of BIBL compared to
the static cases, it remains to be more efficient in terms of performance except
the optimal BCST. Not surprisingly, the performance of all systems went down



RS2D: Fast Adaptive Search for Semantic Web Services 97

Fig. 5. Experiment 3a, precision and communication (central Q/A peer, random)

compared to those in the static cases; the second version of RS2D performed
slightly better than the original one also in the dynamic case.

4 Related work

Relevant work includes approaches to probabilistic adaptive object retrieval in
unstructured P2P networks such as in [15,11,8] as well as systems that do exploit
semantic web technologies for this task such as Bibster[10] and GSD[5].

In APS [15], each peer forwards a query to k of its N neighbors. If a hit
(match) occurs, the request terminates successfully, otherwise it gets forwarded
to only one of this peers neighbors. This procedure continues until all k requests
(with the same query) have terminated, either with success, or failure. Each APS
peer keeps a local index with one value for each object (service) it requested, or
forwarded a request for, per neighbor. Along the paths of all k queries, indices are
updated as follows. In the pessimistic learning approach, each peer on a querys
path decreases the respective object index value by a fixed amount reflecting the
relative probability of its being the next hop choice in a subsequent search for
the same object concurrently with the actual search. If the query succeeds by



98 U. Basters and M. Klusch

Fig. 6. Experiment 3b, precision and communication (central Q/A peer, authorities,
n = 200)

eventually locating (an exact copy of) the object at some peer, the respective
index values of all peers in the return path get updated by a fixed amount larger
than the previously subtracted amount (positive feedback). The optimistic search
operates in an opposite fashion (negative feedback) after a query fails. Hence,
the initial probability of a peer for a certain object increases if the object was
discovered through (or at) that node, and decreases otherwise. In contrast to
RS2D, APS peers perform an informed exact object search only with index
update by same amount of values for each peer. Hence, APS does not exploit
different qualities of semantic matching at individual peers, nor the combined
use of semantic gain and estimated communication efforts to drive the search
like in RS2D. Finally, RS2D’s minimal risk driven routing scheme is based on
the average but not object specific Q/A behavior of peers.

The GSD routing scheme [5], in contrast to RS2D, relies on an acyclic ontology
to be used by each peer to categorize its services by associating their identifiers
with appropriate concepts. The degree of semantic relevance of any service to
a given query is assumed to be inverse proportional to the computed distance
between their concepts in the ontology.



RS2D: Fast Adaptive Search for Semantic Web Services 99

Fig. 7. Experiment 4, precision and communication

Bibster’s object specific search [10], in contrast to RS2D, exploits prior knowl-
edge about the expertise of peers. In an initial advertisement round, each peer
caches the advertised services of its neighbours only if they are semantically
close to at least one of its own. Any query is then forwarded only to two neigh-
bours with maximum matching expertise. The additional communication over-
head induced by the initial expertise building is not included in the comparative
evaluation results shown in section 4.

5 Conclusion

This paper presents RS2D v1, an approach to adaptive and mixed probabilis-
tic risk driven search for OWL-S services in unstructured P2P networks in the
semantic web. Experimental results showed that RS2D is fast and robust with
comparatively high precision. It is, however, weak in finding single query author-
ity peers, and its scalability to large scale networks with more than 576 service
peers remains to be investigated due to lack of a sufficiently large OWL-S service
retrieval test collection. In [4], we showed that the performance of RS2D v1 can
be significantly improved by means of a different semantic loss function but at



100 U. Basters and M. Klusch

the cost of communication efforts. RS2D will be made available to the semantic
web community under LGPL-like license at semwebcentral.org.

References

1. S. Androutsellis-Theotokis and D. Spinellis. A survey of peer-to-peer content dis-
tribution technologies. ACM Computing Surveys, 36(4):335371, 2004

2. U. Basters. RS2D - Risikobasierte semantische Suche nach OWL-S Diensten in un-
strukturierten P2P Netzen. Diploma thesis, University of the Saarland, Computer
Science Department (in German).

3. U. Basters. RS2D v1.0 and RS2D v2.0 online: http://www.basters.de/rs2d/.
4. U. Basters and M. Klusch Risk Driven Semantic P2P Service Retrieval. Proc. 6th

Int. IEEE Conference on P2P Computing, Cambridge, UK, 2006.
5. D. Chakraborty, A. Joshi, T. Finin, and Y. Yesha. GSD: A novel groupbased

service discovery protocol for MANETS. Proc. 4th IEEE Conference on Mobile
and Wireless Communications Networks (MWCN), 2002.

6. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. Making
Gnutella-like p2p systems scalable. Proc. Int. Conference on Applications, Tech-
nologies, Architectures, and Protocols for Computer Communications, Karlsruhe,
Germany, 2003.

7. C. Elkan. Boosting and Naive Bayesian learning. Technical report, Department of
Computer Science and Engineering, University of California, San Diego, 1997.

8. R. Ferreira, M. Ramanathan, A. Awan, A. Grama, S. Jagannathan. Search with
Probabilistic Guarantees in Unstructured Peer-to-Peer Networks. Proc. Int. IEEE
Conference on P2P Computing, Konstanz, Germany, 2005.

9. Gnutella. http://gnutella.wego.com/.
10. P. Haase, R. Siebes, and F. van Harmelen. Expertise-based Peer selection in Peer-

to-Peer Networks. Knowledge and Information Systems, Springer, 2006.
11. V. Kalogeraki, D. Gunopulos, and D. Zeinalipour-Yazti. A local search mechanism

for peer-to-peer networks. Proc. 11th Int. Conference on Information and Knowl-
edge management (CIKM), ACM Press, 2002.

12. M. Klusch, B. Fries, and K. Sycara. Automated Semantic Web Service Discovery
with OWLS-MX. Proc. 5th Intl. Conference on Autonomous Agents and Multiagent
Systems (AAMAS), Hakodate, Japan, 2006

13. OWLS-MX: http://projects.semwebcentral.org/projects/owls-mx/.
14. OWLS-TC: http://projects.semwebcentral.org/projects/owls-tc/.
15. D. Tsoumakos and N. Roussopoulos. Adaptive Probabilistic Search (APS) for Peer-

to-Peer Networks. Proc. Int. IEEE Conference on P2P Computing, 2003.



SADIe: Semantic Annotation for Accessibility

Sean Bechhofer, Simon Harper, and Darren Lunn

School of Computer Science, University of Manchester,
Kilburn Building, Oxford Road,Manchester, M13 9PL, UK

{sean.bechhofer, simon.harper, darren.lunn}@manchester.ac.uk

Abstract. Visually impaired users are hindered in their efforts to access
the largest repository of electronic information in the world – the World
Wide Web (Web). The web is visually-centric with regard to presenta-
tion and information order / layout, this can (and does) hinder users
who need presentation-agnostic access to information. Transcoding can
help to make information more accessible via a restructuring of pages.
We describe an approach based on annotation of web pages, encoding se-
mantic information that can then be used by tools in order to manipulate
and present web pages in a form that provides easier access to content.
Annotations are made directly to style sheet information, allowing the
annotation of large numbers of similar pages with little effort.

1 Introduction

Access to, and movement around, complex hypermedia environments, of which
the web is the most obvious example, has long been considered an important
and major issue in the Web design and usability field [9,13]. The commonly
used slang phrase ‘surfing the web’ implies rapid and free access, pointing to its
importance among designers and users alike. It has also been long established
[7,10] that this potentially complex and difficult access is further complicated,
and becomes neither rapid nor free, if the user is visually impaired1.

Annotation of web pages provides a mechanism to enhance visually impaired
peoples’ access to information on web-pages through an encoding of the meaning
of that information. Annotations can then be consumed by tools that restructure
or reorganise pages in order to pull out salient information. However, when
working in the real world, there are issues we must face. Empirical evidence
suggests that authors and designers will not create separate semantic mark up
to sit with standard XHTML2 because they see it as an unnecessary overhead.
In addition, designers will not compromise their desire to produce “beautiful
and effective” web sites.

Recent moves towards a separation of presentation, metadata and informa-
tion such as Cascading Style Sheets (CSS) [6], can help to alleviate some of the

1 Here used as a general term encompassing the WHO definition of both profoundly
blind and partially sighted individuals [23].

2 Extensible Hypertext Markup Language.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 101–115, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



102 S. Bechhofer, S. Harper, and D. Lunn

problems, but there are still many issues to be addressed. Sites such as CSSZen-
Garden3 are models of the state of the art, but still remain relatively inaccessible
to visually impaired people, however, as the information is rendered in an order
defined by the designer and not in the order required by the user.

Visually impaired users interact with these systems in a ‘serial’ (audio) manner
as opposed to a ‘parallel’ (visual) manner. Content is read from top left to bottom
right, there is no scanning and progress through information is slow. Visually
impaired users are at a disadvantage because they have no idea which items are
menus, what the page layout is, what the extent is, and where the focus of the
information is. Even when CSS concepts do look as though they have a meaning
with regard to the information there is no way of relating this due to the lack
of machine interpretable semantics. At this point, we can turn our attention to
advances and developments in the Semantic Web.

Before doing so, we must stress that a key consideration for us is the sup-
port of designers. We wish to support the designer because in doing this we
make sure our target user group are supported by the designers’ creation. In our
conversations with designers [26,16] the message we hear given is:

“If there is any kind of overhead above the normal concept creation then
we are less likely to implement it. If our design is compromised in any
way we will not implement. We create beautiful and effective sites, we’re
not information architects.”

We suggest that designers need a lightweight no-frills [20] approach to include
semantic information relating to the role of document elements within XHTML
documents; thus we need to ensure that any technical solutions proposed should
incur a minimal costs in design overhead. We consider this to be “semantics”
as it exposes additional information about page elements that would otherwise
be implicit – for example a menu is an element that should be treated in a
particular way by a client browser. CSS information may describe how to render
the element in an appropriate way, but tells us nothing about the intended
interpretation (and thus semantics) of the element.

The Semantic Web vision [4] is of a Web in which the underlying semantics of
resources are made explicit using representations that are amenable to machine
processing. The consideration of the problem outlined above leads us to the
question:

Can semantic information be exposed in general purpose web-pages such
that the information within the page can be transformed into a version
as accessible to visually impaired users as it is to sighted users, without
compromising the page’s design vision?

Our proposed approach, known as SADIe, can be summarised as follows.
We provide an ontology that describes the meaning of elements found within
XHTML meta tags and associate this with the data found in pages through an
annotation of CSS style sheets. In this way, CSS presentation will be unaffected
3 http://www.csszengarden.com/



SADIe: Semantic Annotation for Accessibility 103

but semantics will be an explicit part of the data. We can then provide tools that
consume this information, manipulating the documents and providing appropri-
ate presentations to the user. A characteristic of our approach which is worth
highlighting is that – in contrast to the majority of Semantic Web work concern-
ing semantic annotation – we are not here concerned directly with annotation of
domain content, but rather in exposing semantics relating to the presentation of
material and the document structure. In addition, there is novelty in the attempt
to annotate the CSS style sheet rather than the individual documents. Although
this may not allow us to provide detailed annotations of individual document el-
ements in particular documents, the broad-brush approach results in a low-pain,
high-gain situation. As we see in our example discussed throughout the paper,
annotation of a single CSS style sheet can result in the ability to transcode large
numbers of pages that share the CSS presentation. Annotation via the CSS also
allows us to deal with legacy sites.

The needs of visually impaired users accessing pages via audio are similar in
a number of ways to those using mobile or small-screen devices – for example,
only a small portion of the page is viewable at any point. Thus, although our
primary motivation for this work is in supporting the needs of visually impaired
users, we see potential benefit in the support of small-screen and mobile devices.

Earlier work4 puts forward the basic ideas behind our approach [15]. Here, we
expand on those ideas, providing a more detailed description of our prototype
implementation along with an evaluation. The remaining sections of the paper
are structured as follows. We provide a brief overview of background and context.
This is followed by a description of the technical approach being taken by SADIe,
along with examples. We present results from a preliminary technical evaluation,
showing the viability of our approach, and conclude with discussion and pointers
to future directions.

2 Background and Context

An overview of related work and technology is given in [15]. A brief summary
is given here. Our work draws on a number of strands, including the Semantic
Web, encoding semantics in documents, transcoding, and annotation.

A variety of techniques have been proposed for embedding XML/RDF infor-
mation in HTML documents. This includes work from the TAG project [5,19],
the use of the XHTML link element [22], the HyperRDF system [12], Aug-
mented Metadata for XHTML [1] and the W3C Web Co-ordination Group’s
work on GRDDL [17].

None of these methods prove ideal for our purposes, some due to problems with
validation (TAG, XHTML link, and HyperRDF). GRDDL is about embedding
extra information through modification of that document. We are interested in
associating additional information with documents, but not through an embed-
ding – rather we aim to make use of existing information already present and
expose it in a more explicit fashion. This is similar to the Deep Annotation [28]
4 Going under the name of LLIS.



104 S. Bechhofer, S. Harper, and D. Lunn

approach proposed by Volz et. al., where annotation of a logical schema can lead
to annotation of resources or web pages that are dynamically generated from a
database.

Transcoding is a technology used to adapt Web content so that it can
be viewed on any of the increasingly diverse devices found on today’s mar-
ket. Transcoding normally involves: (1) Syntactic changes like shrinking or re-
moving images [18]; (2) Semantic rearrangements and fragmentation of pages
based on the meaning of a section [21,11]; (3) Annotation of the page created
by a reader [8]; and (4) Generated annotations created by the content manage-
ment system [8]. In Semantic Transcoding, the semantics provide the ma-
chine understand-ability and knowledge reasoning and the transcoding provides
the transformation technique. Current systems are at present however limited to
page analysis [24] where a page built after a set template can be analysed and
transformed by semantic or semantic like technologies.

The goal of annotations for Web content transcoding is to provide better
support either for audio rendering, and thus for visually impaired users, or for vi-
sual rendering in small screen devices. Various proxy-based systems to transcode
Web pages based on external annotations for visually impaired users have been
proposed [27,3]. The main focus is on extracting visually fragmented group-
ings, their roles and importance. They do not support deep understanding and
analysis of pages, and in consequence the supported transcoding is somewhat
constrained. DANTE [30] uses an ontology known as WAfA, providing a repre-
sentation of knowledge about mobility of visually impaired people. Annotations
made on pages then drive a page transformation process. The DANTE approach
annotates individual page fragments using XPointer which results in a rather
brittle solution. Annotation at the level of the stylesheet (as proposed here)
should, provide a solution which is more resilient to change. Other work centres
on small-screen devices and proposes a system to transcode an HTML document
by fragmenting it into several documents [18]. The transcoding is based on an
external annotation framework. Annotation in the Semantic Web context [14]
has tended to focus on providing annotations on documents in order to improve
search/retrieval or integration. The focus is thus on identifying particular con-
cept instances that are described by web pages. Here though, as introduced in
Section 1 we are providing an explicit description of the meaning or intended
interpretation of the structure of the document, rather than the objects in the
world that the document is talking about.

Each of the transformations described above are fraught with problems with
regard to the acceptability of the resulting generation. This is especially the case
when sighted users as well as visually impaired users wish to use the same page.
Automatic transcoding based on removing parts of the page results in too much
information loss and manual transcoding is near impossible when applied to
dynamic web sites. Most systems use their own bespoke proxy-servers or client
side interfaces and these systems require a greater setup cost in-terms of user
time. Finally, some systems require bespoke automatic annotation by a content
generator and so are not usable by every user and all systems.



SADIe: Semantic Annotation for Accessibility 105

3 System Description

From the preceding discussion, we can identify the following requirements for
our system.

– Semantic descriptions of element roles
– Non-destructive, unobtrusive annotation of pages
– Transcoding based on descriptions

The approach taken in our prototype system can be loosely described as fol-
lows. An upper level ontology provides basic notions that encapsulate the role of
document elements. In the current implementatino, this is largely a taxonomy
consisting of elements such as menu or header. In addition, an element can be
characterised as a removableCSSComponent – one which can be removed with-
out significantly impacting on the information carried within the document or
given a priority that express how important the element is considered to be.
This upper level ontology is defined in isolation from a particular site, providing
an abstraction over the document structure. For a particular CSS stylesheet, we
provide an extension of the ontology giving the particular characteristics of the
elements appearing in that stylesheet. We can consider this extension to be an
annotation of the stylesheet elements – it provides information telling us, for
example, whether particular elements in the stylesheet can be considered to be
removable or important. Figure 1 shows an example of a site-specific ontology
extension.

Fig. 1. blogger.com ontology fragment

Annotation of the CSS elements allows us to make our assertions about the
meaning of the document structure at an appropriate level. A CSS stylesheet
often contains inherent “semantic” information about the implicit intended func-
tion of the elements, but which is not necessarily presented in a manner which
is amenable to machine processing. For example, blogger.com (see below) pro-
vides elements such as comment and profile. This is, we feel, a clear example
of a problem that Semantic Web technology and approaches are intended to
represent – there is (currently) no explicit characterisation of the semantics of
these tags, and they are thus opaque to understanding by machine. By providing
a mapping from these elements to a shared upper level ontology of document
elements, we can provide the opportunity for applications to manipulate doc-
uments in appropriate ways. The SADIe application then uses the ontology to
determine appropriate transformations to be made to a source document.



106 S. Bechhofer, S. Harper, and D. Lunn

Our prototype is delivered as a Mozilla toolbar extension called SADIe (see
Fig. 2) which has three types of functionality; De-Fluff, ReOrder, and Toggle
Menu. De-fluff removes all the information that is removable based on its loca-
tion in the ontology not in the CSS or XHTML. ReOrder rearranges the page so
that the most important pieces of information are moved to the top of the docu-
ment based on the values assigned to the elements in the ontology. Finally, Toggle
Menu moves menu items from their current location to the top of the DOM (as
a child of the DOM body). In the current prototype, requests and operations
are pre-configured and anchored to checkboxes on the toolbar (see Fig 2), with
checkboxes for the functionalities described above and a button to execute the
SADIe transformations. When transformation is selected, appropriate requests
are sent to the Ontology Service. In de-fluffing, for example, all of the removable
items are requested. The Service complies and the SADIe parses the Document
Object Model (DOM) looking for removable components and discarding them.

As an illustrative example, we consider a blogging site blogger.com, a legacy
site for which we have created a sample ontology, and show how our application
can transform pages into more accessible forms. Blogs are fast becoming ubiq-
uitous on the web, with sites such as blogger.com providing easy mechanisms
allowing users to publish their thoughts or opinions on a wide range of subjects.
As many users are neither interested nor competent in issues surrounding web
design or the use of markup languages, blogger.com provides standard mecha-
nisms for marking up and structuring pages. CSS stylesheets are used to control
the presentation. In this way, a large number of pages can be delivered with
almost identical underlying structure, but with widely differing “look and feel”
in terms of the colour, fonts, layout etc. It is this similarity in structure that
we exploit – by providing a mechanism that allows us to annotate at the CSS
level. A single annotation is then applicable to a large number of pages. One
key feature is that because we do not annotate or modify the actual XHTML
document our system does not force developers into costly and time consum-
ing re-engineering to achieve backward compatibility. We extended our SADIe
Ontology with web logging terms and from these created a specific ontology for
blogger.com (see earlier Fig. 1). The ontology was created in OWL using the
Protégé tool; it comprises a small set of concepts and sub-concepts derived from
the blogger.com CSS Template. Some of these concepts were described as being
removable, and a measure of importance assigned using integer values. A frag-
ment of the ontology is shown in Fig. 1. The hierarchical (subclass) relationships
for the class removableCSSComponents have been inferred using a reasoner and
show that deleted-comment, description, footer, profile-container, and sidebar can
all be removed.

Interestingly our ontology contains two concepts (recently and archive-list)
which have no CSS entry but which are used as CSS-class identifiers in blogger.
Thus there is no extra presentational information associated with elements using
these identifiers. These two concepts enclose the recent posts list and the archive
month lists and so, in fact, act like menus into previous postings. Axioms assert-
ing that the concepts recently and archive-list are subclasses of menu are added



SADIe: Semantic Annotation for Accessibility 107

Fig. 2. Transcoding a Blog (see http://partystands4me.blogspot.com/ for the orig-
inal)

to the ontology. As we will see below our application can then treat recently and
archive-list as kinds of menus and perform appropriate operations up on them.
Again, this is an example of the explicit specification of the information content
of the document.

Figure 2 illustrates the tool in action. To the left we see the original page before
transcoding. In this case, the blog contents are relatively inaccessible, even to
sighted users. After transcoding (on the right), the blog entries are exposed.

When an XHTML document arrives in the Mozilla browser with a
SADIe toolbar the application first determines whether there is an ontology as-
sociated with the document (see Section 3). If such an ontology is present it is
retrieved much like Mozilla retrieves the CSS document. The ontology is then
passed to an Ontology Service which is used to provide functionality relating to
the ontology such as classification (e.g. what are all the removable elements?).

Upper Level 
Triage Ontology

Site Specific
Extension

Document
Instances

Triage
Application

Fig. 3. Ontology and Site-specific extensions

In this way all pages created
using blogger.com (close to a
million blogs) can be modified
by using this one simple on-
tology and tool. The particular
ontology is specific to the site.
However, the upper level defini-
tions which are used by the tool
in order to determine which ele-
ments to be removed are generic
– integrating an additional site
into the system simply requires

the definition of a mapping from the CSS elements of the site into the base
SADIe ontology. Any site’s pages can be de-fluffed as long as the elements that
are removable are identified. We do not need to hard-wire the information about
the CSS elements into the application – this is encoded in the ontology which
is then used by the application (see Figure 3). The upper level ontology de-
scribes concepts that are relevant to the process – for example menu – and the



108 S. Bechhofer, S. Harper, and D. Lunn

application’s behaviour is specified in terms of these concepts. Site specific ex-
tensions describe their CSS elements in terms of these upper level concepts (e.g.
recently as discussed in the example).

The approach is non-intrusive and works hand-in-hand with existing technolo-
gies used to control presentation. Users view the document in a web browser as
normal. Browsers that are ‘semantic-aware’, however, can use the extra informa-
tion to provide more intelligent access to the information than before.

In additoin, as we do not annotate or modify the actual XHTML document our
system does not force developers into costly and time consuming re-engineering
to achieve backward compatibility.

We are suggesting a simple and flexible system without a significant semantic
overhead. To achieve this we use a group of techniques to encode semantics
directly into a page:

Class and ID Attributes. XHTML class or id attributes are used to encode
a piece of semantic information in the form of a concept-class or property into
a defined piece of XHTML delimited by the closing element identifier. This is
normally achieved by using the div and span elements to conjoin both the
presentation style (CSS) and the semantic meaning (ontology) to the user.

Ontology. Our approach involves an annotation on CSS elements in order to
describe their properties. The identification of the ontology to use may be done
in a number of ways. These follow the methods laid down by the originators
of CSS in order to link stylesheets to XHTML pages, e.g. through an explicit
XHTML <link> element, a direct encoding of the ontology in the page or by
searching for an ontology in the root directory of the web site;

The SADIe application parses the XHTML DOM and the document is then
viewed as a knowledge base – instances are elements from the document such as
<span> or <div> elements with their associated classes being taken from CSS
id or class attributes (see Fig. 2 - ‘ID / CLASS Results’). Information about the
classes in the ontology is then used to determine the actions to take. For instance,
if we wanted to remove all the concepts (and therefore CSS-blocks) that are
removable, then this involves a query for those elements classified as removable
in the ontology. We can here make use of the concept hierarchy, potentially
providing descriptions of the document elements that are organised and classified
using inference. Inference may be brought into play here – for example, it may
be that we use a number of characteristics to determine whether an element
should be considered as removable.

Similarly, as discussed above, concepts such as recently and archive-list are
classified as kinds of menu. As SADIe knows how to process menu concepts (from
the SADIe Ontology), when it encounters an archive-list, this can be handled using
appropriate mechanisms – say moving it to the top of the document or back to
its original position. A key point to note here is that the reordering of the DOM
in general does not change the visual appearance as the CSS takes care of the
layout. It does however move the information in the XHTML document and
changes are noticeable if the style information is removed. This is exactly the



SADIe: Semantic Annotation for Accessibility 109

Table 1. SADIe Evaluation Results

Category Name URL CSS Failure Entry Point
Corporate Sites Microsoft Corporation http://www.microsoft.com/ Mixed 2 Success

Digital Designs http://www.digitaldesign.us Pure 0 Success
Stagecoach Buses http://www.stagecoachbus.com/ Pure 0 Success
British Nuclear Fuels http://www.bnfl.com/ Pure 0 Success
Epson Corporation http://www.epson.co.jp/e/ Mixed 1 Success

Content & Media Blogger http://www.blogger.com/ Pure 0 Success
The Mac Observer http://www.macobserver.com/ Pure 0 Success
New Musical Express http://www.nme.com/ Mixed 5 Failure
BBC News http://news.bbc.co.uk/ Mixed 2 Failure
CNN International http://edition.cnn.com/ Mixed 1 Failure

Search Engines Google http://www.google.co.uk/ None 5 Failure
Yahoo http://uk.yahoo.com/ Mixed 0 Success
Ask Jeeves http://www.askjeeves.co.uk/ Mixed 0 Success
MSN Search http://search.msn.com/ Pure 0 Success
HotBot http://www.hotbot.co.uk/ Pure 0 Success

Directories Google Directory http://directory.google.co.uk/ None 5 Failure
Yahoo Directory http://uk.dir.yahoo.com/ None 5 Failure
This Is Our Year http://www.thisisouryear.com/ Mixed 2 Success
HotSheet http://www.hotsheet.com/ Pure 0 Success
HaaBaa Web Directory http://www.haabaa.com/ Mixed 0 Success

Portals AOL UK http://www.aol.co.uk/ Mixed 0 Success
MSN UK http://www.msn.co.uk/ Mixed 2 Success
Wanadoo http://www.wanadoo.co.uk/ Mixed 4 Success
Virgin Net http://www.virgin.net/ Mixed 4 Success
Tiscali UK http://www.tiscali.co.uk/ Pure 0 Success

E-stores Play http://www.play.com/ Mixed 0 Success
Amazon UK http://www.amazon.co.uk/ None 5 Failure
Tiny http://www.tiny.com/ Mixed 1 Success
Tesco http://www.tesco.com/ Mixed 1 Success
Red Letter Days http://www.redletterdays.co.uk/ Mixed 1 Success

Virtual Hosting Bravenet http://www.bravenet.com/ Mixed 1 Success
InMotion Hosting http://www.inmotionhosting.com/ None 5 Failure
Path Host http://www.pathhost.net/ Mixed 0 Success
Honest Web Host http://www.honestwebhost.com/ Mixed 5 Failure
Netwalker Internet Services http://www.netwalker.biz/ Mixed 0 Success

Universities University of Manchester http://www.manchester.ac.uk/ Mixed 0 Success
University of York http://www.york.ac.uk/ Mixed 0 Success
University of Sheffield http://www.shef.ac.uk/ Mixed 1 Success
University of Oxford http://www.ox.ac.uk/ Mixed 0 Success
University of Southampton http://www.soton.ac.uk/ Mixed 1 Success

outcome we hoped for because access technologies access the XHTML DOM as
presented and often exclude the style and placement information.

Building a transformable web site is now a relatively straightforward activity.
XHTML pages and the CSS are already built as part of the standard site cre-
ation. The addition required is the identification of the ontology that assists in
the transformation task. As discussed above, this could be either via a <link>,
a direct encoding, or the inclusion of the ontology in a standard location.

4 Evaluation

In order to explore the viability of our proposed approach, we conducted a
small technical evaluation. We are chiefly interested here in evaluating the first
part of our objective: Can semantic information be exposed in general purpose
web-pages such that the information within the page can be transformed? Thus
for the purposes of this evaluation, we make an assumption that the proposed
transformations such as removal of unnecessary items of reordering of menus are
useful operations in improving accessibility5.

The W3C’s Web Accessibility Initiative (WAI) provides strategies and guide-
lines that web designers can use to make the Web accessible to people with
5 Of course, such a claim is open to challenge, and we intend to pursue further User

Evaluations in order to investigate this.



110 S. Bechhofer, S. Harper, and D. Lunn

disabilities. These guidelines are targeted at designers using current technology
and techniques, such CSS and XHTML. The main focus of our approach is not
web site design, but some of the principles in the guidelines can be applied when
evaluating SADIe. The W3C guidelines [29] include steps such as:

1. Select a sample of different kinds of pages from the Web site to be reviewed.
This must include all the pages that people are likely to use to enter the site.

2. Use a graphical user interface browser and examine a selection of pages while
adjusting the browser settings.

3. Use a voice browser or a text browser and examine the Web site while check-
ing if equivalent information available through the voice or text browser is
available through the GUI browser and that the information presented is in
a meaningful order if read serially.

Choose Sample Web Pages. Amitay et. al. [2] propose that while web sites are
different visually, if a web site’s role is taken into account, then there are some
similarities. By using web site roles, they produced eight categories that can
be used for classifying web sites. These categories are Corporate Sites, Content
and Media, Search Engines, Web Hierarchies and Directories, Portals, E-Stores,
Virtual Hosting and Universities. By using these eight categories, we can gain
some confidence that our evaluation uses a reasonable sample of the kinds of
web sites that potential users of SADIe may access.

Five web sites from each category were selected, giving a total of 40 sites in the
sample. The W3C guidelines specify that when evaluating a web site the entry
point should be tested, as this is the first page the users will access. Therefore,
the samples include the site entry point (usually index.html) of the web site,
plus 4 other randomly chosen pages on the web site. This gave us a total of 5
pages per web site. With 40 web sites, we examined 200 web pages in total.

Apply SADIe to Each Page. We applied De-fluff, Reorder and Toggle to the page
and observed the results.

Evaluate Results of SADIe for Each Page. Success of the transcoding was de-
termined by observation of the resulting page. Taking into account what SADIe
was designed to do, we asked the following questions of a transcoded page:

1. Have all obstacles marked removable been removed?
2. Are there multiple columns on the page?
3. Has all formatting that uses tables been removed?
4. Is there anything that breaks up the flow of text?
5. Are all blocks of text aligned vertically as opposed to horizontally?
6. Are all navigation links at the top of the page?

A positive answer to all these questions, was considered to indicate a success-
ful transcoding by SADIe. A negative answer to any question was considered a
failure. This assessment was performed by one of the authors.

Determine Web Site Success. In determining a web site’s success or failure, we
used the entry point to determine if the site succeeded or failed, following the



SADIe: Semantic Annotation for Accessibility 111

Table 2. SADIe Web Site Evaluation Summary

CSS Type Site Sample Site Failures Sample Error (%) True Error Range (%)
Pure 9 0 0 0 - 0
Mixed 26 4 15 2 – 28
None 5 5 100 100 – 100
All 40 9 23 11 – 35
Pure/Mixed 35 4 11 1 – 21

WAI philosophy. If we can make a page that most people use accessible, then
that is more important for the site than providing access to a page that few
people will ever read.

Having established a framework for the evaluation, it was then applied to a
sample of web pages. The sample sites were obtained by taking the first five web
sites from each of the eight IBM categories were used.

Table 1 shows the results of the SADIe evaluation. The 40 web sites and their
categories are noted as well as how many of the web pages on the site failed the
SADIe evaluation and if the entry point was a success or not. We also note how
the presentation of the site was achieved. Pages using only CSS are designated
Pure. None indicates no CSS usage. Mixed was for those sites that use CSS for
formatting fonts and colours and headings etc, but use tables for layout purposes.

Table 2 shows a summary of results. The results are broken down to show
the success rate of the various classes of CSS usage. These three categories are
then further summarised. The Pure/Mixed CSS Type is the combined results of
only those web sites that used Pure CSS for presentation and those that used
a mixture of CSS and tables for presentation. We factor out the web sites that
used no CSS as our design rationale is to make use of document structure as
encapsulated through the use of CSS and XHTML. If there is no CSS then by
design, we are unlikely to be able to transcode the page6.

The column “Site Failure” indicates how many entry points in the sample
failed to be correctly transcoded. The sample error is the proportion of web sites
from the sample that failed. The True Error Range provides a range in which the
true error lies for that class of web site (using a 95% confidence interval). From
Table 2, we can see that all the sites that used no CSS for presentation failed.
This was expected – SADIe relies upon the CSS to capture the structure of the
web page. If there is no CSS, there is nothing for SADIe to use for transcoding.

Discounting the sites that used no CSS, we consider that SADIe obtained rea-
sonable results. All sites that used pure CSS were successfully transcoded. When
the sites that used mixed presentation are included, the error rate increases. This
is partly due to problems in separating columns of text. We observed that a com-
mon approach adopted by these mixed sites was to give the entire table a CSS
class value, which SADIe could use, but not give the elements within the cells
of the table a Class or ID value. So while SADIe could remove or reorder the
table as a whole, the contents within the table were inaccessible to SADIe and
so remained in columns. This in turn meant the screen reader would be unable
to read the text properly and the page was deemed a failure. However, there
6 Clearly this is a limitation here, but we surmise that both the number and relative

proportion of sites that use CSS and XHTML is likely to continue to increase.



112 S. Bechhofer, S. Harper, and D. Lunn

were still a large number of web pages that were successful that mixed CSS and
tables for presentation. Table 2 shows that the error rate for this category was
11%, with the true error lying in the range of 1% and 21%.

While these results are encouraging, they must be taken with a pinch of salt
as we are making several assumptions. The first is that our confidence values
assume that web site design follows a Normal Distribution. Secondly, we are
assuming that our sample is an accurate reflection of the web pages that are
available on the Web. Amitay et. al’s proposal of categories based roles provides
a good guidance for selection. However, it is difficult to say that choosing only 5
web sites for each category, which we did, could accurately reflect that category
when the number is so small and the selection was not purely random. Recall
that we are basing success and failure on the structure and content of page after
transcoding. While we can make a value judgement that the transcoded page
will be more accessible, based on research in the field, a true user evaluation will
be needed before we can be sure of SADIe’s success.

While these assumptions need to be addressed, the initial results are promis-
ing. As Table 2 shows, the combined error rate when we tested web pages that
used pure and mixed presentation was only 11%. While we are not claiming that
SADIe can successfully transcode 89% of all web sites and make them accessible,
this initial result does provide a good basis for continued investigation of the
SADIe approach.

5 Conclusions and Further Work

We have described the first stage in a more elaborate system that will increase
free access to information for all users. By knowing more about the intended
meaning of the information that is being encountered visually impaired users
can perform their own transformations on that information.

Transcoding can help to make information more accessible via a restructur-
ing of pages. Unnecessary items that introduce clutter can be removed, while
important items can be promoted to a position on the page where they are en-
countered earlier by assistive technologies such as screen readers. Doing this in
a principled manner, however, requires that the implicit semantics of the doc-
ument be made explicit. We have described an approach based on annotation
of web pages, encoding semantic information that can then be used by tools in
order to manipulate and present web pages in a form that provides easier access
to content. The annotations use an ontology describing the basic semantic units
found in the pages as described in style sheets. Annotations are made directly
to style sheet information, allowing the annotation of large numbers of similar
pages with little effort.

The approach is minimal in the overhead presented to the site designer. No
constraints are made on the ways in which the layout and presentation of the site
can be produced. This is one of our key requirements – as discussed, designers will
ignore, or at the very least fight against, initiatives that compromise their work.



SADIe: Semantic Annotation for Accessibility 113

Rather we make use of the fact that CSS elements are identified in the document
– in a large number of cases, these elements do, in fact, already correspond to
“meaningful” units of information. In addition, the approach makes no impact
on the validation of XHTML documents.

An alternative approach might have been to use the underlying XML structure
of the XHTML documents and then apply basic XSL technology to transcode.
We see at least two problems with this. First, the current number of resources
that are actually marked up using valid XHTML is small [25]. While browsers
continue to be successful in handling badly formatted HTML, there is little in-
centive for authors to rectify this. Of course, our approach requires HTML+CSS,
but our investigations (see Section 4) suggest that the proportion of sites using
CSS is significant enough to merit this requirement – CSS does not necessar-
ily require valid HTML in order to allow the production of good-looking web
pages. The second problem is that even if the documents are valid, the underly-
ing XML structure is not sufficient to carry the required information. The XML
document will have structure in the form of h1 or p or possibly even div and
span elements, but these alone are not sufficient to represent the various roles
played by elements in a page – this richer detail is usually encoded in the style
sheet.

The current prototype is still very much at the level of a proof-of-concept
demonstrator and will benefit from further refinement. We plan to extend the
upper level ontology to include more concepts covering document constructs
along with the specification of further transcoding operations. Site-specific ex-
tensions of the ontology are currently produced manually – investigations of
the automation or semi-automation of this process are also planned. Finally, we
need further user evaluations of the tool to determine how effective it really is
in increasing accessibility.

In summary, we propose that the inclusion of semantic information directly
into XHTML is an effective way to assist visually impaired users in accessing
web pages while not increasing or compromising the creation activity of authors
and designers. By knowing the meaning of the information that is being encoun-
tered visually impaired users can perform their own transformations on that
information.

References

1. M. Altheim and S. B. Palmer. Augmented Metadata in XHTML, 2002. http://
infomesh.net/2002/augmeta/.

2. E. Amitay, D. Carmel, A. Darlow, R. Lempel, and A. Soffer. The connectivity
sonar: Detecting site functionality by structural patterns. ACM Press, 2003.

3. C. Asakawa and H. Takagi. Annotation-based transcoding for nonvisual web ac-
cess. In Proceedings of the Fourth International ACM Conference on Assistive
Technologies, pages 172–179. ACM Press, 2000.

4. T. Berners-Lee. Weaving the Web. Orion Business Books, 1999.
5. T. Berners-Lee. RDF in HTML, 2002. http://www.w3.org/2002/04/htmlrdf.



114 S. Bechhofer, S. Harper, and D. Lunn

6. B. Bos, T. Çelik, I. Hickson, and H. W. Lie. Cascading Style Sheets, level 2
revision 1 CSS 2.1 Specification. Candidate recommendation, W3C, February 2004.
http://www.w3.org/TR/CSS21/ .

7. M. Brambring. Mobility and orientation processes of the blind. In D. H. Warren
and E. R. Strelow, editors, Electronic Spatial Sensing for the Blind, pages 493–508,
USA, 1984. Dordrecht, Lancaster, Nijhoff.

8. O. Buyukkokten, H. G. Molina, A. Paepcke, and T. Winograd. Power browser:
Efficient web browsing for PDAs. In Proceedings of the SIGCHI conference on
Human factors in computing systems, pages 430–437. ACM Press, 2000.

9. C. Chen. Structuring and visualising the www by generalised similarity analysis. In
Proceedings of the 8th ACM Conference on Hypertext and Hypermedia, New York,
USA, 1997. ACM Press.

10. A. Chieko and C. Lewis. Home page reader: IBM’s talking web browser. In Closing
the Gap Conference Proceedings, 1998.

11. Codix.net;.Textualize;.http://codix.net/solutions/products/textualise/index.html.
12. D. Connolly. HyperRDF: Using XHTML Authoring Tools with XSLT to produce

RDF Schemas, 2000. http://www.w3.org/2000/07/hs78/.
13. R. Furuta. Hypertext paths and the www: Experiences with walden’s paths. In

Proceedings of the 8th ACM Conference on Hypertext and Hypermedia, New York,
USA, 1997. ACM Press.

14. S. Handschuh and S. Staab, editors. Annotation for the Semantic Web, volume 96
of Frontiers in Artifical Intelligence and Applications. IOS Press, 2003.

15. S. Harper and S. Bechhofer. Semantic Triage for Accessibility. IBM Systems
Journal, 44(3):637–648, 2005.

16. S. Harper, Y. Yesilada, and C. Goble. Proceedings of the International Cross-
Disciplinary Workshop on Web Accessibility. W4A, ACM Press, May 2004.

17. D. Hazaël-Massieux and D. Connolly. Gleaning Resource Descriptions from Di-
alects of Languages (GRDDL). W3c team submission, World Wide Web Consor-
tium, May 2005. http://www.w3.org/TeamSubmission/grddl/.

18. M. Hori, G. Kondoh, K. Ono, S. ichi Hirose, and S. Singhal. Annotation-based
web content transcoding. In In Proceedings of 9th International World Wide Web
Conference, 2000.

19. N. Kew. Why Validate?, 2002. http://lists.w3.org/Archives/Public/
www-validator/2001Sep/0126.html.

20. V. Mirabella, S. Kimani, and T. Catarci. A no-frills approach for accessible web-
based learning material. In Proceedings of W4A 2004, pages 19–27. ACM Press,
2004.

21. W. Myers. BETSIE:BBC Education Text to Speech Internet Enhancer. British
Broadcasting Corporation (BBC) Education. http://www.bbc.co.uk/education/
betsie/.

22. Palmer, Sean B. RDF in HTML: Approaches, 2002. http://infomesh.net/2002/
rdfinhtml/.

23. V. RNIB. A short guide to blindness. Booklet, Feb 1996. http://www.rnib.org.uk.
24. L. Seeman. The semantic web, web accessibility, and device independence. In

Harper et al. [16], pages 67–73.
25. V. Y. S. Shan Chen, Dan Hong. An experimental study on validation problems

with existing html webpages. In International Conference on Internet Computing
ICOMP 2005, pages 373–379, 2005.

26. Simon Harper and Yeliz Yesilada and Carole Goble. Workshop Report: W4A - In-
ternational Cross Disciplinary Workshop on Web Accessibility 2004. In SIGCAPH
Comput. Phys. Handicap., number 76, pages 2–20. ACM Press, November 2004.



SADIe: Semantic Annotation for Accessibility 115

27. H. Takagi and C. Asakawa. Transcoding proxy for nonvisual web access. In Pro-
ceedings of the Fourth International ACM Conference on Assistive Technologies,
pages 164–171. ACM Press, 2000.

28. R. Volz, S. Handschuh, S. Staab, L. Stojanovic, and N. Stojanovic:. Unveiling
the hidden bride: deep annotation for mapping and migrating legacy data to the
Semantic Web. Journal of Web Semantics, 1(2):187–206, February 2004.

29. World Wide Web Consortium, http://www.w3.org/WAI/eval/Overview.html.
Web Accessibility Initiative.

30. Y. Yesilada, S. Harper, C. Goble, and R. Stevens. Dante annotation and transfor-
mation of web pages for visually impaired users. In The Thirteenth International
World Wide Web Conference, 2004.



Automatic Annotation of Web Services Based on
Workflow Definitions

Khalid Belhajjame, Suzanne M. Embury, Norman W. Paton, Robert Stevens,
and Carole A. Goble

School of Computer Science
University of Manchester

Oxford Road, Manchester, UK
{khalidb, sembury, norm, rds, carole}@cs.man.ac.uk

Abstract. Semantic annotations of web services can facilitate the dis-
covery of services, as well as their composition into workflows. At present,
however, the practical utility of such annotations is limited by the small
number of service annotations available for general use. Resources for
manual annotation are scarce, and therefore some means is required by
which services can be automatically (or semi-automatically) annotated.
In this paper, we show how information can be inferred about the se-
mantics of operation parameters based on their connections to other
(annotated) operation parameters within tried-and-tested workflows. In
an open-world context, we can infer only constraints on the semantics
of parameters, but these so-called loose annotations are still of value in
detecting errors within workflows, annotations and ontologies, as well as
in simplifying the manual annotation task.

1 Introduction

Semantic annotations of web services have several applications in the construc-
tion and management of service-oriented applications. As well as assisting in the
discovery of services relevant to a particular task [7], such annotations can be
used to support the user in composing workflows, both by suggesting operations
that can meaningfully extend an incomplete workflow [3] and by highlighting
inappropriate operation selections [1,9]. As yet, however, few usable semantic
annotations exist. Manual annotation is a time-consuming process that demands
deep domain knowledge from individual annotators, as well as consistency of in-
terpretation within annotation teams. Because of this, the rate at which existing
services are annotated lags well behind the rate of development of new services.
Moreover, stable shared ontologies are still comparatively rare, with the result
that the annotations produced by one community may be of limited value to
those outside it.

Since resources for manual annotation are so scarce and expensive, some means
by which annotations can be generated automatically (or semi-automatically) is
urgently required. This has been recognised by a handful of researchers, who have
proposed mechanisms by which annotations can be learnt or inferred. Heß et al.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 116–129, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Automatic Annotation of Web Services Based on Workflow Definitions 117

have designed a tool called ASSAM [4], which uses text classification techniques
to learn new semantic annotations for individual web services from existing anno-
tations [5]. The tool extracts a set of candidate concepts, from which the user se-
lects the correct annotation. Patil et al., taking inspiration from the classic schema
matching problem [10], have constructed a framework for automatically match-
ing WSDL elements to ontology concepts based on their linguistic and structural
similarity [12]. The framework was then adapted to make use of machine learning
classification techniques in order to select an appropriate domain ontology to be
used for annotation [11]. More recently, Bowers et al. have proposed a technique
by which the semantics of the output of a service operation can be computed from
information describing the semantics of the operation’s inputs and a query expres-
sion specifying the transformation it performs [2].

All the above proposals attempt to derive new annotations based on the infor-
mation present in existing annotations. In this paper, we explore the potential
uses of an additional source of information about semantic annotations: namely,
repositories of trusted data-driven workflows. A workflow is a network of service
operations, connected together by data links describing how the outputs of the
operations are to be fed into the inputs of others. If a workflow is known to
generate sensible results, then it must be the case that the operation parame-
ters that are connected within the workflow are compatible with one another
(to some degree). In this case, if one side of a data link is annotated, we can
use that information to derive annotation information for the parameter on the
other side of the link. Or, if both sides are annotated, we can compare their
annotations for compatibility and thus detect errors and inconsistencies in their
manually-asserted semantics.

The remainder of the paper is organised as follows. We begin (in Section 2)
by formally defining the concept of a data-driven workflow, and the notion of
compatibility between connected parameters in such workflows. We then discuss
how far we can use the information contained within a set of tested workflows in
order to automatically derive annotations, and present the derivation algorithm
(Section 3). As we shall show, we cannot derive exact annotations using this
approach, but it is possible to derive a looser form of annotation which indicates
a superset of the concepts that describe the parameters’ semantics. We go on
to demonstrate that these loose annotations have utility, despite their impre-
cise nature, by showing how they can be used to determine the compatibility
of connected service parameters during workflow composition, as well as cutting
down the search-space for manual annotators (Section 4). We present a proto-
type annotation tool that derives loose annotations from workflows (Section 5),
and present the results of applying the tool to a collection of real biological work-
flows and annotations, which show the practical applicability of our approach
(Section 6). Finally, we close by discussing our ongoing work (Section 7).

2 Parameter Compatibility in Data-Driven Workflows

A data-driven workflow is a set of operations connected together using data
links. Thus, for our purposes, we regard a data-driven workflow as a triple swf



118 K. Belhajjame et al.

= 〈nameWf, OP, DL〉, where nameWf is a unique identifier for the workflow, OP
is the set of operations from which the workflow is composed, and DL is the set
of data links connecting the operations in OP.

Operations: an operation op ∈ OP is a quadruple 〈nameOp, loc, in, out〉, where
nameOP is the unique identifier for the operation, loc is the URL of the web
service that implements the operation, and in and out are sets representing the
input and output parameters of the operation, respectively.

Parameters: an operation parameter specifies the data type of an input or out-
put, and is a pair 〈nameP, type〉, where nameP is the parameter’s identifier (unique
within the operation) and type is the parameter’s data type. For web services,
parameters are commonly typed using the XML Schema type system, which
supports both simple types (such as xs:string and xs:int) and complex types con-
structed from other simpler ones.

Data links: a data link describes a data flow between the output of one opera-
tion and the input of another. Let IN be the set of all input parameters of all
operations present in the workflow swf, i.e. IN ≡ { i | i ∈ in ∧ 〈 , , in , 〉 ∈
OP}. Similarly, let OUT be the set of output parameters present in swf, i.e.
OUT ≡ { o | o ∈ out ∧ 〈 , , , out〉 ∈ OP}. The set of data links connecting the
operations in swf must then satisfy:

DL ⊆ (OP × OUT) × (OP × IN)

Notation: in the remainder of this paper, we will use the following notation:

– SWF is the set of trusted workflows given as input to the annotation process.
– OPS is the set of all operations used in SWF, i.e. OPS = { op | op ∈ OP ∧

〈 ,OP , 〉 ∈ SWF )}
– DLS is the set of all data link connections in SWF, i.e. DLS = { dl | dl ∈

DL ∧ 〈 , ,DL〉 ∈ SWF}.
– INS is the set of all input parameters appearing in SWF, i.e. INS = { i | i ∈

in ∧ 〈 , , in, 〉 ∈ OPS}.
– OUTS is the set of all output parameters appearing in SWF, i.e. OUTS =

{ o | o ∈ out ∧ 〈 , , , out〉 ∈ OPS}.

2.1 Parameter Compatibility

If a workflow is well-formed then we can expect that the data links within it will
link only those parameters that are compatible with one another. In its simplest
form, this means that the two parameters must have compatible data types (as
described within the WSDL description file for web service operations). How-
ever, when services are semantically annotated, it is also necessary to consider the
semantic compatibility of connected parameters. Exactly what this means will



Automatic Annotation of Web Services Based on Workflow Definitions 119

depend on the form of annotation used to characterise parameter semantics,
although the basic principles should be the same in most cases.

For the purposes of this paper, we will consider a particular form of semantic
annotation that was developed within the ISPIDER project1, to facilitate the
identification and correction of parameter mismatches in scientific workflows [1].
In ISPIDER, semantic annotations are based upon three distinct ontologies, each
of which describes a different aspect of parameter semantics and each of which
is defined using the Web Ontology Language (OWL) [8]. These are the Domain
Ontology, the Representation Ontology and the Extent Ontology.

The Domain Ontology describes the concepts of interest in the application
domain covered by the operation. This is the commonest form of semantic an-
notation for services, and several domain ontologies have been developed for
different application domains. An example is the ontology that was created with
the myGrid project, that describes the domain of bioinformatics [13]. Typical
concepts in this ontology are ProteinSequence and ProteinRecord.

Although useful for service discovery, the Domain Ontology is not sufficient by
itself to describe parameter compatibility within workflows, hence the need for
the two additional ontologies. The first of these, the Representation Ontology,
describes the particular representation format expected by the parameter. In an
ideal world, the data type of the parameter would give us all the information
required about its internal structuring. Unfortunately, however, it is extremely
common for the parameters of real web services to be typed as simple strings,
on the assumption that the operations themselves will parse and interpret their
internal components. This is partly a legacy issue (for older services) but it is
also partly caused by the weak type systems offered by many current work-
flow management systems, which do not encourage web service authors to type
operation parameters accurately. Because of this, to determine parameter com-
patibility, it is necessary to augment the information present in the WSDL data
types with more detailed descriptions of the representation formats expected,
using concepts from the Representation Ontology. An ontology of this kind for
molecular biology formats has already been developed under the aegis of the
myGrid project [13], containing concepts such as UniprotRecord, which refers to
a well known format for representing protein sequences, and UniprotAC, which
refers to the accession number format dictated by the Uniprot database.

The final annotation ontology that we use is the Extents Ontology, which
contains concepts describing the scope of values that can be taken by some
parameter. Although in general it is not possible to accurately describe the
extents of all parameters, in some cases this information is known. For example,
the TrEMBL database2 is known to contain information about a superset of
the proteins recorded in the SwissProt database3, and there are several species-
specific gene databases that are known not to overlap. Information about the
intended extents of parameters can help us to detect incompatibilities of scope in

1 http://www.ispider.man.ac.uk/
2 http://www.ebi.ac.uk/trembl/
3 http://www.ebi.ac.uk/swissprot



120 K. Belhajjame et al.

workflows that would otherwise appear to be well-formed. An example concept
from the Extent Ontology is UniprotDatastore, which denotes the set of protein
entries stored within the Uniprot database.

In order to state the conditions for parameter compatibility in terms of these
three ontologies, we assume the existence of the following functions for returning
annotation details for a given parameter

domain: OPS × (INS ∪ OUTS) → θdomain

represent: OPS × (INS ∪ OUTS) → θrepresent

extent: OPS × (INS ∪ OUTS) → θextent

where θdomain is the set of concepts in the Domain Ontology, θrepresent the set
of concepts in the Representation Ontology and θextent the set of concepts in the
Extent Ontology. We also assume the existence of the function coveredBy() for
comparing extents (since the standard set of OWL operators are not sufficient
for reasoning with Extent Ontology concepts). Given two extents e1 and e2, the
expression coveredBy(e1, e2) has the value true if the space of values designated
by e1 is a subset of the space of values designated by e2 and the value false
otherwise.

Parameter compatibility: Let (op1,o,op2,i) be a data link connecting the output
parameter o of the operation op1 to the input parameter i of the operation op2.
The parameters op1.o and op2.i are compatible iff4:

(i) o.type � i.type: the data type of the output op1.o is a subtype of the data
type of the input op2.i; and

(ii) domain(op1,o) ⊆ domain(op2,i): the semantic domain of op1.o is a subconcept
of op2.i’s domain; and

(iii) represent(op1,o) = represent(op2,i): the output and input parameters adopt
the same representation; and

(iv) coveredBy(extent(op1,o),extent(op2,i)): the extent of op1.o is contained within
the extent of op2.i.

3 Deriving Parameter Annotations

In addition to using the rules for parameter compatibility to test a workflow
for errors, we can also use them in a generative way to infer information about
the semantics of linked parameters in workflows that the user believes to be
error-free. We will use a simple example to illustrate this idea. Consider the pair
of workflows shown in Figure 1. Both these workflows are intended to perform
simple similarity searches over biological sequences. The first finds the most sim-
ilar protein to the one specified in the input parameter. To do this, it retrieves
the specified protein entry from the Uniprot database, runs the Blast algorithm
to find similar proteins, and then extracts the protein with the highest simi-
larity score from the resulting Blast report. The second workflow finds similar
4 The symbol � stands for a subtype of, and the symbol ⊆ for a subconcept of.



Automatic Annotation of Web Services Based on Workflow Definitions 121

extent(GetDDBJEntry,o) = DDBJDatastore

GetDDBJEntry

i o

oi

i

i
(b)

(a) GetUniprotEntry Blast

Blast

domain(GetDDBJEntry,o) = DNASequence
represent(GetDDBJENtry,o) = Fasta

o

o

o

o

i

i

domain(GetTopHit,i) = SequenceAlignmentReport
represent(GetTopHit,i) = BlastReport
extent(GetTopHit,i) = AnyTextFile

domain(GetResults,i) = DNASeuquenceAlignmentReport
represent(GetResults,i) = BlastReport
extent(GetResults,i) = AnyTextFile

Operation output
Operation inputAnalysis operation

Data link

Legend

GetTopHit

GetResults

domain(GetUniprotEntry,o) = ProteinSequence
represent(GetUniprotEntry,o) = Fasta
extent(GetUniprotEntry) = UniprotDatastore

Fig. 1. Example workflows

sequences to a given DNA sequence. It retrieves the DNA sequence from the
DDBJ database5, searches for similar sequences using Blast and finally extracts
the sequences of all matches from the Blast report.

Notice that, in this simple example, the parameters of the Blast operation
have not been annotated, while the parameters of the other operations have.
However, since these are thoroughly tested workflows, their data links must all
be compatible and we can therefore infer some information about the annota-
tions that the Blast operation ought to have. For example, if we focus on just the
domain annotations, we can see that the input Blast parameter must be compat-
ible with both ProteinSequence and DNASequence, since parameters conforming
to both these concepts are connected to it. In fact, by the rules of parameter
compatibility, just given, we can infer that:

(ProteinSequence ∪ DNASequence) ⊆ domain(Blast , i)

Unfortunately, we cannot infer the exact annotation, as we may not have been
given a complete set of workflows (by which we mean a set of workflows that
contains every possible connection of compatible parameters). All we can safely
do is infer a lower bound on the annotation of the input parameters and an upper
bound on the annotation of the output parameters. Thus, in the case of the Blast
input parameter, we can use the derived lower bound just given to indicate the
fragment of the ontology that must contain its true domain annotation (shown
in Figure 2)—in this case, all the super-concepts of the union of ProteinSequence
and DNASequence6.

5 http://www.ddbj.nig.ac.jp
6 The ontology fragment shown in Figure 2 does not contain the lower bound concept

ProteinSequence ∪ DNASequence , since it is not a (named) concept within the on-
tology. However, since OWL language allows the formation of new concepts using,
amongst others, the union and intersection operators, the true annotation may in
fact be the lower bound itself (i.e. ProteinSequence ∪ DNASequence). Other, less
expressive, ontology languages such as RDFS, do not allow this possibility.



122 K. Belhajjame et al.

Thing

BiologicalDomainConcept

BiologicalModifierConcept

BiologicalFeature

BiologicalSequence
Concept

Subconcept of

Legend

Fig. 2. Fragment of the domain ontology

We call these lower and upper bounds loose annotations, to distinguish them
from the more usual (tight) form of annotation in which the exact concept cor-
responding to the semantics of the parameter is given. All manually asserted
annotations at present are tight annotations (though in the future users may
prefer to assert loose annotations for difficult cases where they are unsure of the
correct semantics).

Based on this reasoning, we can derive a method for inferring loose annota-
tions for operation parameters, given a set of tested workflows SWF and a set of
(tight) annotations for some subset of the operations that appear in SWF. Since
the compatibility relationship between input and output parameters is not sym-
metrical, we must use a different method for deriving input parameter semantics
from that used for deriving output semantics.

3.1 Derivation of Input Parameter Annotations

Given an input parameter of some operation, we can compute three sets of loose
annotations, based on the compatibility rules for each of the three annotation
ontologies, as follows.
− getInputDomains: OPS × INS → P(θdomain)
This function computes a loose domain annotation, by locating the subset of the
ontology that must contain the correct annotation. It first finds all operation
outputs that are connected to the given input in SWF. It then retrieves the do-
main annotations for these outputs, unions them and returns all super-concepts
of the resulting new concept.
− getInputRepresentation: OPS × INS → θrepresent

This function computes a representation annotation. Since we assume that each
parameter can support only one representation format, we can infer a tight
representation annotation for the input parameter, rather than a loose one. To
do this, we first find all output parameters that are connected to the given
input, and retrieve their representations from the annotation repository. If all the
output parameters have the same representation, then this can be returned as the
derived annotation for the input parameter. Otherwise, a null result should be
returned and the conflict should be flagged to the user. In our example (Figure 1),
the representation that is inferred for the Blast input parameter is Fasta.



Automatic Annotation of Web Services Based on Workflow Definitions 123

− getInputExtents: OPS × INS → P(θextent)
This function computes a loose extent annotation, by locating the fragment of
the extent ontology that must contain the correct annotation. It first finds all
output parameters that are connected to the input by workflows in SWF, and
then retrieves their extent annotations. Finally, it searches the Extent Ontology
for all extents known to cover the union of the retrieved extents, and returns the
resulting set of concepts. In our example, the extent of the Blast input parameter
is an extent which covers the union of UniprotDatastore and DDBJDatastore.

3.2 Derivation of Output Parameter Annotations

Derivation of annotations for output parameters follows much the same pattern
as for input parameters, except that we infer upper bounds on their semantics
rather than lower bounds.
− getOutputDomains: OPS × OUTS → P(θdomain)
This function computes a loose domain annotation for the given output parame-
ter. It first finds all input parameters that are connected to it in the workflows
in SWF, and retrieves their domain annotations. It then returns all domain con-
cepts that are subconcepts of the intersection of the retrieved concepts. In our
example, the output parameter of the Blast operation must be a subconcept of
(SequenceAlignmentReport ∩ ProteinSequenceAlignmentReport). Since, accord-
ing to the domain ontology, the second of these two concepts is a subconcept of
the first, this can be simplified to:

domain(Blast, o) ⊆ ProteinSequenceAlignmentReport .
− getOutputRepresentation: OPS × INS → θrepresent

As with the inference of input representation annotations, the representation of
an output parameter should be the same as that given for all connected inputs,
provided there is no conflict. In our example, the annotation inferred for the
Blast operation output parameter is BlastReport.
− getOutputExtents: OPS × OUTS → P(θextent)
This function computes a loose extent annotation by locating the subset of the
Extent Ontology that must contain the correct extent. It first finds all input
parameters that are connected to the given output and retrieves their extent
annotations. It then searches the Extent Ontology for all extents that are cov-
ered by the intersection of the retrieved extents, and returns the result. In our
example, we can infer that the extent of the Blast operation output must be
contained within the AnyTextFile extent.

3.3 Annotation Algorithm

Given the functions for deriving annotations for individual parameters just de-
scribed, we can construct an algorithm (shown in Figure 3) that will derive
all annotations automatically from a set of tested workflows and an incomplete
repository of semantic annotations. This algorithm iterates over the parameters
present in the workflows, deriving new annotations for each of them using the



124 K. Belhajjame et al.

Algorithm DeriveAnnotations
inputs OPS
outputs OPS
begin
1 for each op ∈ OPS do
2 for each i ∈ op.in do
3 Cdomain := getInputDomains(op,i)
4 crepresent := getInputRepresentation(op,i)
5 Cextent := getInputExtents(op,i)
6 ActOnDerivedAnnotations(op,i,Cdomain,crepresent,Cextent)
7 for each o ∈ op.out do
8 Cdomain := getOutputDomains(op,o)
9 crepresent := getOutputRepresentation(op,o)
10 Cextent := getOutputExtents(op,o)
11 ActOnDerivedAnnotations(op,o,Cdomain,crepresent,Cextent)
end

Fig. 3. Annotation algorithm

functions given above. The resulting annotations are then examined by the sub-
routine presented in Figure 4. If there is no existing annotation for a parameter,
then the derived annotation is asserted (i.e. entered into the annotation reposi-
tory). If a manual annotation is already present, then this is compared with the
derived annotation to check for any conflicts. If the two are compatible, then no
further action need be taken. If not then the discrepancy should be flagged to
the user. Conflicts are detected in the following cases:

– Domain conflict: there exists a conflict in the domain semantics when a tight
domain annotation does not belong to the subset of the domain ontology
indicated by the derived (loose) annotation for the same parameter (line 5).

– Representation conflict: there exists a conflict in representation if the de-
rived representation concept is different from the asserted representation
concept for that parameter (line 11).

– Extent conflict: there exists a conflict in extent if the tight extent annotation
does not belong to the subset of the extent ontology specified by the derived
annotation for the same parameter (line 17).

There are several situations that can lead to conflicts, each of which requires a
different corrective action.

− In the case of domain and extent conflicts, it may be that manual and derived
annotations are in reality compatible, but that an error in the ontology means
that this compatibility cannot be detected by our algorithm. In this case, the
problem may be corrected by adding new relationships to the ontology, until the
annotations become compatible.
− One or more of the previously asserted annotations for the parameters involved
in the conflict may be incorrect. Once the user is confident that the incorrect an-
notations have been identified, they can be deleted or refined to remove the con-
flict. However, since the problem parameter may be linked to many services in the



Automatic Annotation of Web Services Based on Workflow Definitions 125

Algorithm ActOnDerivedAnnotations
inputs (op,p) ∈ (OPS × (INS ∪ OUTS),

Cdomain ⊆ θdomain, crepresent ∈ θrepresent, Cextent ⊆ θextent

outputs op ∈ OPS
begin
1 if (Cdomain �= φ) then
2 if (domain(op,p) = null) then
3 assertDomain(op,p,Cdomain)
4 else
5 if (domain(op,p) �∈ Cdomain) then
6 domainConflict(op,p,Cdomain)
7 if (crepresent �= null) then
8 if (represent(op,p) = null) then
9 assertRepresentation(op,p,crepresent)
10 else
11 if (represent(op,p) �= crepresent) then
12 representationConflict(op,p,crepresent)
13 if (Cextent �= φ) then
14 if (extent(op,p) = null) then
15 assertExtent(op,p,Cextent)
16 else
17 if (extent(op,p) �∈ Cextent) then
18 extentConflict(op,p,Cextent)
end

Fig. 4. Algorithm for Acting on Derived Annotations

workflow repository, determining exactly where the problem lies (i.e. with which
parameter annotation) may require some detective work on the part of the user.
If workflow provenance logs exist, then they can help in this process, since they
would allow the user to examine the data values produced by or for the offending
parameter during workflow execution. This may reveal the source of the error.
− One of the workflows involved in the conflict may not in fact have been
thoroughly tested and may contain some connected parameters that are incom-
patible. It should be deleted from the workflow repository and the process of
annotation derivation begun again from scratch.

4 Uses of Loose Annotations

The loose annotations derived by the method described in the preceding sec-
tion contain considerably less information than conventional tight annotations,
and they are therefore correspondingly less useful. This raises the question of
whether the effort in collecting loose annotations is worthwhile. In this section,
we demonstrate that loose annotations do have utility, despite their imprecise
nature, by considering two potential applications: the inspection of parameter
compatibility in workflows and speeding up the process of manual annotation
for unannotated service parameters.



126 K. Belhajjame et al.

4.1 Inspecting Parameter Compatibility in Workflows

One of the original aims of the three annotation ontologies made use of in this
paper was to allow mismatched data links (i.e. data links connecting incompat-
ible parameters) to be detected and flagged to the user for correction. However,
this assumes that all annotations are tight. When we have the possibility of loose
annotations also being present in the annotation repository, can we still detect
parameter compatibility in workflows?

In fact, even with loose annotations, it is still possible to determine com-
patibility of parameters in the following cases. Let op1 and op2 be two linked
operations, and o and i their respective output and input parameters. Suppose
that loose annotations for both parameters op1.o and op2.i have been derived
by the algorithm presented in the previous section. In this case, the parameters
op1.o and op2.i are definitely compatible if:

(i) o.type � i.type, and
(ii) ∀ ci ∈ getOutputDomains(op1,o), ∀ cj ∈ getInputDomains(op2,i), ci ⊆ cj , and
(iii) represent(op1,o) = represent(op2,i), and
(iv) ∀ ci ∈ getOutputExtents(op1,o), ∀ cj ∈ getInputExtents(op2,i), coveredBy(ci,cj).

If we compare these conditions with those for full parameter compatibility (based
on tight annotations), we can see that conditions (i) and (iii) are unchanged.
Conditions (ii) and (iv) have both been altered to take into account the presence
of loose annotations. In the case of domain compatibility, for example, we require
that all the concepts returned by getOutputDomains(op1,o) must be subconcepts of
all the concepts returned by getInputDomains(op2,i). This may well be a stronger
condition for compatibility than is actually required, but it is conservatively
true, given the information we have available in the loose annotations.

If the conditions given above are not satisfied, however, then we cannot say
whether the parameters are compatible or not. We can still flag these connections
to the user for their attention, but must allow the user to accept them as correct
(i.e. compatible) based on their better knowledge of the real semantics of the
parameters involved.

4.2 Supporting the Manual Annotator

Another application for loose annotations is in supporting human annotators in
extending the repository of service annotations. If the user starts to annotate an
operation parameter that has a loose annotation derived for it, then he or she
only has to choose from the (hopefully small) subset of the ontology indicated by
the loose annotation, rather than from the full set of ontology concepts. Where
the ontology is large and/or complex, this can result in a significant time saving
for the human annotator. For example, when specifying the domain semantics
of the input parameter belonging to the Blast operation given in our earlier
example, the user has only to choose from a collection of 5 concepts specified by
the loose annotation, rather than all the concepts in the myGrid ontology. This
also helps to avoid errors and inconsistencies in manual annotation.



Automatic Annotation of Web Services Based on Workflow Definitions 127

5 Implementation

In order to assess the value of this method of deriving annotations, we have
developed a prototype annotation tool that infers loose annotations and presents
the results to the user through the GUI illustrated in Figure 5. The Annotation
Editor, labelled A, shows the contents of the workflow repository being used for
annotation derivation, and any existing (tight) annotations presently stored for
the operation parameters in the annotation repository. This panel also contains
the controls that launch the annotation derivation process.

Fig. 5. Annotation system (GUI)

The resulting annotations are shown in the Operation Parameter Explorer
panel (labelled B). Tight and loose annotations are distinguished here, and any
conflicts will be highlighted. The final panel (labelled C) is the Ontology Ex-
plorer, which allows the user to view the fragments of the ontology indicated by
a loose annotation, and to make a selection of a specific concept, to convert the
loose annotation into a tight one.

6 Application to Bioinformatics Web Services

In order to further assess the value of the annotation derivation mechanism
described here, we applied the algorithm and tool to a repository of work-
flows and annotations taken from the domain of bioinformatics. A large num-
ber of public web services are available in bioinformatics. For example, the
myGrid toolkit provides access to over 3000 third party bioinformatics web ser-
vices. The Taverna repository also contains 131 workflow specifications, and
the myGrid web service registry, Feta [6] provides parameter annotations for 33
services7.
7 Note how the number of annotations lags far behind the number of available services.



128 K. Belhajjame et al.

We used these as inputs to our algorithm, and were able to derive 35 domain
annotations for operation parameters, a selection of which are shown in Table 1.
The concept given in the final column indicates either the upper bound (in
the case of an output parameter) or the lower bound (in the case of an input
parameter) derived by our algorithm. Upon analysis with the help of a domain
expert, 18 of the derived annotations were found to be correct and 11 were found
to be incorrect. A further 6 annotations could not be checked as the parameters
in question belonged to services that have either moved or no longer exist, and
thus could not be examined to determine the semantics of their parameters.

Table 1. Examples of derived parameter annotations

Service operation Providera Parameter I/O Derived concept
1 addTerm EBI geneOntologyID I GeneOntologyTermID
2 blastFileComparer myGrid blastResult I BlastAlignmentReport
3 getFastaDDBJEntry DDBJ result O Sequence
4 getGenePredict VBI in0 I Sequence
5 getHsaIds myGrid query I EMBLAccessionNumber
6 blastx ncbi myGrid query sequence I Sequence
7 lister myGrid listerReturn O EnzRestReport ∩ DNASeq

a EBI stands for European Bioinformatics Institute, DDBJ for DNA Data Bank of Japan, and VBI
for Virginia Bioinformatics Institute.

Of the 11 incorrect annotations, 3 were identified thanks to the conflicts auto-
matically detected between the asserted and derived annotations. For example,
the annotation manually asserted for the input parameter query sequence of the
blastx ncbi operation states that it is a NucleotideSequence, while the derived anno-
tation specified that it must be a superconcept of Sequence (row 6). According to
the myGrid ontology, NucleotideSequence is not a super-concept of Sequence, hence
the conflict. After diagnosis, the derived annotation was found to be incorrect due
to a data link that connect the parameter query sequence to an incompatible para-
meter. 2 further errors were discovered when the derived loose annotation specifies
an empty subset of the ontology, it is the case for the output listerReturn (row 7).

The remaining 6 incorrect derived annotations were not detected automati-
cally by our tool, but were diagnosed when we investigated the derived annota-
tions for correctness. They were all found to be due to either incorrect manual
annotation or incompatibilities in the input workflows. In summary, of the 11
errors, 4 were found to be due to errors in the original annotations and 7 due to
incompatibilities between connected parameters in the workflows.

This experiment showed that it is possible to derive a significant number of
new annotations from even a small annotation repository. We were also able
to detect 5 incorrect parameter annotations—quite a high number given the
small scale of the inputs. However, the results also show that errors in workflows
can lead to errors in derived annotations, and hence highlight the importance
of using only tried and tested workflows. This is not a problem where derived
annotations can be examined for correctness by a user, but more care must be
taken if they are to be created in a wholly automatic manner.



Automatic Annotation of Web Services Based on Workflow Definitions 129

7 Conclusions

In this paper, we have presented an approach for automatically deriving semantic
annotations for web service parameters. Our method improves over existing work
in this area in that, in addition to facilitating the manual annotation task, it can
also be used for examining the compatibility of parameters in workflows.

Our preliminary experiment has provided evidence in support of our annota-
tion mechanism and shown its effectiveness and ability to discover a significant
number of new annotations and to help detecting mistakes in existing annota-
tions, based on a relatively small set of annotations. The next step is to evaluate
the proposed techniques on a larger scale, and to explore their applications in
supporting the annotation task more generally. For example, it may be possible
to use collections of loose annotations to diagnose problems in ontology design,
as well as in semantic annotations and workflows. There are also potential ap-
plications in guiding the work of teams of human annotators, to ensure that the
most useful services are given priority during annotation.

References

1. K. Belhajjame, S. M. Embury, and N. W. Paton. On characterising and identifying
mismatches in scientific workflows. In International Workshop on Data Integration
in the Life Sciences (DILS 06). Springer, 2006.

2. S. Bowers and B. Ludäscher. Towards automatic generation of semantic types in
scientific workflows. In WISE Workshops, 2005.

3. J. Cardoso and A. P. Sheth. Semantic e-workflow composition. J. Intell. Inf. Syst.,
21(3), 2003.

4. A. Heß, E. Johnston, and N. Kushmerick. Assam: A tool for semi-automatically
annotating semantic web services. In ISWC, 2004.

5. A. Heß and N. Kushmerick. Learning to attach semantic metadata to web services.
In ISWC, pages 258–273, 2003.

6. P. W. Lord, P. Alper, Ch. Wroe, and C. A. Goble. Feta: A light-weight architecture
for user oriented semantic service discovery. In ESWC, 2005.

7. E. M. Maximilien and M. P. Singh. A framework and ontology for dynamic web
services selection. IEEE Internet Computing, 8(5), 2004.

8. D. L. McGuinness and F. v. Harmelen. Owl web ontology language overview. In
W3C Recommendation, 2004.

9. B. Medjahed, A. Bouguettaya, and A. K. Elmagarmid. Composing web services
on the semantic web. VLDB J., 12(4), 2003.

10. P. Mitra, G. Wiederhold, and M. L. Kersten. A graph-oriented model for articu-
lation of ontology interdependencies. In EDBT, 2000.

11. N. Oldham, Ch. Thomas, A. P. Sheth, and K. Verma. METEOR-S web service
annotation framework with machine learning classification. In SWSWPC, 2004.

12. A. A. Patil, S. A. Oundhakar, A. P. Sheth, and K. Verma. METEOR-S web service
annotation framework. In WWW, 2004.

13. Ch. Wroe, R. Stevens, C. A. Goble, A. Roberts, and R. M. Greenwood. A suite
of daml+oil ontologies to describe bioinformatics web services and data. Int. J.
Cooperative Inf. Syst., 12(2), 2003.



A Constraint-Based Approach to Horizontal Web
Service Composition

Ahlem Ben Hassine1, Shigeo Matsubara1,2, and Toru Ishida1,3

1 Language Grid Project, National Institute of Information and Communications Technology
ahlem@nict.go.jp

2 NTT Communication Science Laboratories, NTT Corporation
matsubara@cslab.kecl.ntt.co.jp

3 Department of Social Informatics, Kyoto University
ishida@i.kyoto-u.ac.jp

Abstract. The task of automatically composing Web services involves two main
composition processes, vertical and horizontal composition. Vertical composition
consists of defining an appropriate combination of simple processes to perform
a composition task. Horizontal composition process consists of determining the
most appropriate Web service, from among a set of functionally equivalent ones
for each component process. Several recent research efforts have dealt with the
Web service composition problem. Nevertheless, most of them tackled only the
vertical composition of Web services despite the growing trend towards func-
tionally equivalent Web services. In an attempt to facilitate and streamline the
process of horizontal composition of Web services while taking the above limita-
tion into consideration, this work includes two main contributions. The first is a
generic formalization of any Web service composition problem based on a con-
straint optimization problem (COP); this formalization is compatible to any Web
service description language. The second contribution is an incremental user-
intervention-based protocol to find the optimal composite Web service according
to some predefined criteria at run-time. Our goal is i) to deal with many crucial
natural features of Web services such as dynamic and distributed environment,
uncertain and incomplete Web service information, etc; and ii) to allow human
user intervention to enhance the solving process. Three approaches are described
in this work, a centralized approach, a distributed approach and a multi-agent
approach to deal with realistic domains.

1 Introduction

The great success of Web services, due especially to their richness of application made
possible by open common standards, has led to their wide proliferation and a tremen-
dous variety of Web services are now available. However, this proliferation has rendered
the discovery, search and use of an appropriate Web services arduous. These tasks are
increasingly complicated, especially while dealing with composite Web service to re-
sponse to an ostensible long-term complex user’s goal. The automatic Web service com-
position task consists of finding an appropriate combination of existing Web services to
achieve a global goal. Solving this problem involves mixing and matching component
Web services according to certain features. These features can be divided into two main
groups:

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 130–143, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Constraint-Based Approach to Horizontal Web Service Composition 131

– Features related to the user, including the user’s constraints and preferences.
– Features related to Web services and which can be divided into two subgroups,

internal and external features. Internal features include quality of service (QoS)
attributes, and external features include existing restrictions on the connection of
Web services, (e.g., a hotel room should be reserved for the ISWC2006 conference
usually after booking the flight). External features are specified in the Web ser-
vice ontology language, OWL-S [12], through a set of control constructs such as,
Sequence, Unordered, Choice, etc.

However, there is usually a choice of many Web services for each subtask that has to
be done to fulfill the main goal. We refer to these Web services as functionally equiva-
lent Web services. In the sequel of this paper, as is generally done in the literature, we
refer to each of subtasks making up the main goal as an abstract Web service and to
each Web service able to perform a subtask as a concrete Web service. Solving a Web
service composition problem means going through two types of composition process:

– Vertical composition, is aimed at finding the “best” combination of the abstract
Web services, i.e., abstract workflow, for achieving the main goal while satisfying
all existing interdependent restrictions.

– Horizontal composition, is aimed at finding the “best” concrete Web service, from
among a set of available functionally equivalent Web services, i.e., executable
workflow, to perform each abstract Web service. The quality of the response to the
user’s query (the composition task) considerably depends on the selected concrete
Web services. The choice of a concrete Web service is dictated to functional (i.e.,
related to the inputs) and/or non-functional attributes (i.e., related to the quality of
service attributes).

The main benefits from distinguishing between these two composition processes are:
i) simplifying Web service composition problem to reduce it computational complexity,
ii) avoiding any horizontal composition redundancy that may appear while searching for
the “best” orchestration of abstract Web services, and mainly iii) ensuring more flexi-
bility to the user intervention, i.e., user is able to modify/adjust the abstract workflow
when needed.

The combination of Web services has attracted the interest of many researchers,
amongst [9], [13], [8], [14], and several approaches have been reported. Most of these
deal only with vertical composition, where only single concrete Web service is available
for each abstract one. However, the tremendous growing number of functionally equiv-
alent concrete Web services makes the search for an appropriate one, i.e., horizontal
composition of concrete Web services, an NP-hard task [5]. This composition process
has the following characteristics.

– Information is often incomplete and uncertain.
– The environment is naturally distributed and dynamic.
– Many (non)-functional features, inter-related restrictions and especially the prefer-

ences of the user may affect the quality of the response to a user’s query.

Existing research efforts have tackled only some parts of the natural features of the
Web service composition problem [1], [7], none have tried to deal with all of them. Also,



132 A.B. Hassine, S. Matsubara, and T. Ishida

some complex real-world problems require some level of abstract interactions with the
user to better search for a valid composite Web service. Finally, very few studies have
considered the validity of the information concerning a concrete Web service during the
composition process and none have dealt with this question of validity during the exe-
cution process. We have learned from all these works and we have focused our research
on the requirements of the Web service composition problem that are derived from the
natural features of the problem, search-based user interventions and the information va-
lidity during the composition and execution processes. Our main goal is to provide a
means by which an optimal composite executable workflow can be created for a given
set of sub-tasks with their inter-relation restrictions, i.e., an abstract workflow.

This paper consists of two main parts. The first is a generic formalization of any Web
service composition problem as a constraint optimization problem (COP) in which we
try to express most of the Web service composition problem features in a simple and
natural way. Our main purpose is to develop a common and robust means of express-
ing any Web service composition problem that ideally reflects realistic domains. The
second contribution is a real-time interactive protocol to solve any Web service com-
position problem by overcoming most of the above encountered limitations. Although,
there are various techniques for solving a COP, none of these integrate any user interac-
tion issues. The constraint optimization problem formalism is especially promising for
ideally describing any realistic Web service composition problem, because this problem
is a combinatorial problem that can be represented by a set of variables connected by
constraints. Three approaches are proposed in this paper, a centralized approach, a dis-
tributed approach and finally a multi-agent approach to reflect ideally realistic domains.

This paper is organized as follows. In Section 2, we give an overview of existing re-
searches. In Section 3, we present the proposed formalization. In Section 4, we describe
a real-world scenario. In Section 5, we describe the proposed algorithm. In Section 6,
we discuss possibilities of extensions of the previous algorithm. In Section 7, we con-
clude the paper.

2 Related Work

Several solutions to the Web service composition problem have been reported includ-
ing, integer programming (IP)-based techniques [2], [16], non-classical planning-based
techniques and logic-based techniques [9], [11]. Recently, some researchers have sug-
gested applying existing artificial intelligence (AI) optimization techniques, such as
genetic algorithms (GA), mainly to include some Quality of Service attributes in the
search process. Regarding IP-based proposed solutions [2], [16], authors assume lin-
earity of the constraints and of the objective function. As for non-classical planning
techniques, Sirin et al. proposed an HTN-planning based approach [13] to solve this
problem. Their efforts were directed toward encoding the OWL-S Web service de-
scription as a SHOP2 planning problem, so that SHOP2 can be used to automatically
generate a composite web service. McIlraith and Son [9] proposed an approach to build-
ing agent technology based on the notion of generic procedures and customizing user
constraints. The authors claim that an augmented version of the logic programming
language Golog provides a natural formalism for automatically composing services



A Constraint-Based Approach to Horizontal Web Service Composition 133

on the semantic web. They suggested not to consider this problem as a simple plan-
ning, but as a customizations of reusable, high level generic procedures. Canfora et al.
in [5] proposed to tackle QoS-aware composition problem using Genetic Algorithm
(GA). This work deals with both vertical and horizontal compositions. However, to ac-
complish the Web service composition task, the Web service composition procedure
may need to retrieve information from Web services while operating. Most studies have
assumed that such information is static [9], [13], [5]. Other studies have required an
interactive process with the user to get all the necessary information as inputs. Never-
theless, the static information assumption is not always valid, the information of vari-
ous Web services may change (i.e., it may be “volatile information” [1]) either while
the Web service composition procedure is operating or during execution of the compo-
sition process. Kuter et al. [7] present an extension of earlier non-classical planning-
based research efforts to better cope with volatile information. This arises when the
information-providing Web services do not return the needed information immediately
after it is requested (or not at all). In addition, Au et al. [1] proposed two different
approaches for translating static information into volatile information. They propose
assigning a validity duration for each item of information received from information-
providing services.

3 Constraint-Based Formalization of Horizontal Web Service
Composition

The constraint satisfaction problem (CSP) framework is a key formalism for many com-
binatorial problems. The great success of this paradigm is due to its simplicity, its nat-
ural expressiveness of several real-world applications and especially the efficiency of
existing underlying solvers. We therefore believe that CSP formalism allows a better
and more generic representation of any Web service composition problem. Hence, we
formalize the Web service composition problem as a constraint optimization problem
(COP) in which we have two kinds of constraints: hard and soft constraints.

A static CSP is a triplet (X, D, C) composed of a finite set X of n variables, each
of which takes a value in an associated finite domain D and a set C of e constraints
between these n variables [10]. Solving a CSP consists of finding one or all complete
assignments of values to variables that satisfy all the constraints. This formalism was
extended to the COP to deal with applications where we need to optimize an objective
function. A constraint optimization problem is a CSP that includes an objective func-
tion. The goal is to choose values for variables such that the given objective function is
minimized or maximized.

We define a Web service composition problem as a COP by (X, D, C, f (sl)) where:

– X={X1, . . ., Xn} is the set of abstract Web services, each Xi being a complex
variable represented by a pair (Xi.in, Xi.out) where
• Xi.in={ini1, ini2, . . ., inip} represents the set of p inputs of the concrete Web

service, and
• Xi.out={outi1, outi2, . . ., outiq } represents the set of q outputs of the concrete

Web service.



134 A.B. Hassine, S. Matsubara, and T. Ishida

– D={D1, . . ., Dn} is the set of domains, each Di representing possible concrete Web
services that fulfill the task of the corresponding abstract Web service.
Di={sij(sij .in, sij .out) | sij .in ⊆ Xi.in AND Xi.out ⊆ sij .out}

– C=CS ∪ CH

• CS represents the soft constraints related to the preferences of the user and to
some Quality of Service attributes. For each soft constraint CSi ∈ CS we assign
a penalty ρCSi ∈ [0, 1]. This penalty reflects the degree of unsatisfiability of
the soft constraint CSi.

• CH represents the hard constraints related to the inter-abstract Web services
relations, the OWL-S defined control constructs1, and the preconditions of each
concrete Web service. For each hard constraint CHi ∈ CH we assign a weight
⊥ (i.e. it should be imperatively satisfied). It is noteworthy that CH may include
also some hard constraints specified by the user, these hard constraints can be
relaxed upon request whenever no solution is found for the problem.

– For each concrete Web service we assign a weight to express the degree of user
preference, wsij ∈ [0,1]. Weights are automatically accorded to the values of vari-
ables in a dynamic way with respect to the goal.

– f (sl) is the objective function to optimize, f (sl)= ⊗sij∈sl(user’s preferences, penalty
over soft constraints, Quality of Service attributes, probability of information expi-
ration ), and sl is a solution of the problem defined by the instantiation of all the
variables of the problem. In this work, we focus on optimizing both i) the user’s
preferences toward selected concrete Web services denoted by ϕ (sl) and ii) the
penalty over soft constraints denoted by ψ(sl). The Quality of Service attributes
and the probability of information expiration will be tackled in our future work.

Solving a Web service composition problem consists of finding a “good” assignment
sl∗ ∈ Sol:=D1× . . . × Dn of the variables in X such that all the hard constraints are
satisfied while the objective function f (sl) is optimized according to Eq. 1.

f(sl∗) = arg max
sl∈Sol

⊗(ϕ(sl), ψ(sl)) (1)

In this paper, we maximize the summation of the user preferences for all concrete Web
services involved in the solution sl and minimize the summation of the penalties asso-
ciated to all soft constraints2 according to Eq. 2.

f(sl∗) = arg max
sl∈Sol

(
∑

sij∈sl

wsij −
∑

CSi∈CS

ρCSi) (2)

Since the solution might not be only a sequence of concrete Web services, i.e., it may in-
clude concurrent concrete Web services, we use “,” to indicate the sequential execution
and “‖” to indicate concurrent execution. This information is useful in the execution
process. The obtained solution will have a structure such as, sl={s1i, {s2j‖s3k}, s4h,
. . ., snm}. This problem is considered to be a dynamic problem since the set of abstract

1 Our formalization for the OWL-S control constructs will be described below in more detail.
2 To allow more flexible and wider expression, we do not restrict the objective function to any

kind of function.



A Constraint-Based Approach to Horizontal Web Service Composition 135

Web services (the set of variables) is not fixed; i.e., an abstract Web service can be di-
vided into other abstract Web services if there is no available concrete Web services to
perform the required task. In addition, the set of values in the domain of each variable
(the set of possible concrete Web services) is not fixed. Concrete Web services can be
added/removed to/from the system.

In the Web services composition problem, several control constructs connecting Web
services can be used. The main ones, defined in the OWL-S description, can be divided
into four groups and we describe our formalization for these four groups below.

– Ordered, which involves the SEQUENCE control construct, can be expressed using
a hard constraint. Each pair of abstract Web services linked by a sequence control
construct are involved in the same CSequence constraint.

– Concurrency involves the SPLIT, SPLIT+JOIN, and UNORDERED control con-
structs. The natural aspect of the following proposed agent-based approach (Sec-
tion 5) allows the formalization of this control construct in a natural way. Note that
only “JOIN” will be associated with a CJoin constraint. SPLIT and UNORDERED
will be modeled using an “empty” constraint Cempty , that represents a universal
constraint. This constraint will be used to propagate information about parallel ex-
ecution to concerned variables in the following proposed protocol.

– Choice involves IF-THEN-ELSE and CHOICE control constructs. For each set of
abstract Web services (two or more) related by the IF-THEN-ELSE or CHOICE
control construct, the corresponding variables are merged into the same global vari-
able (Xj for example), and their domains are combined and ranked according to the
preference of the user. For example a set of m abstract Web services ({t1, t2, . . .,
tm}) related by the “CHOICE” control construct, we combine them into a global
variable (Xk for example) and rank their domains. For their preconditions, we as-
sign a sub-constraint to each condition {Ccond1, Ccond2, . . ., Ccondm} and create a
global constraint CChoice=∪i Ccondi. At any time we are sure that only one condi-
tion will be satisfied since ∩i Ccondi=∅.

– LOOP, neither the CSP formalism nor any of its extensions can handle iterative
processing. It will be considered in our future work.

4 Real-World Scenario

Consider a situation where a person living in France wants to organize a trip to Japan
to have laser eye-surgery. After the surgery, he will have to make appointments with his
ophthalmologist in France for post-operative examinations. This task involves several
interrelated subtasks as shown in Figure 1(a):

– t1 = Withdraw money from the bank to pay for the plane fare, surgery, accommo-
dation, and treatment,

– t2 = Make an appointment with the doctor, get the address of the clinic and deter-
mine the price of the surgery,

– t3 = Reserve a flight,
– t4 = Reserve accommodation, which involves,



136 A.B. Hassine, S. Matsubara, and T. Ishida

• t4−1 = Reserve accommodation in a nearby hotel if the price is less than or
equal to US$100 per night,

• t4−2 = Reserve accommodation at a hostel if the cost of a hotel exceeds US$100
per night,

– t5 = Make an appointment with his ophthalmologist for an examination one week
after returning to France.

 

t2=s22 

t1=s11 

t3=s34 t4=s44 

t5=s51 

(b) 

t2 

t1 

t3 

t4-1 

t5 

(a) 

t4-2 

If-Then-Else 

Split-Join 

Sequence 

Sequence 

s21 
s31 

s23 
s52 s11 s53 

WSs Repository 

X1 

X2 

X3 

X4 

X5 

Fig. 1. (a) The set of tasks for the example with their pairwise control constructs, (b) The corre-
sponding executable workflow solution for the problem

This problem can be formalized as follow:

– X={X1, X2, X3, X4, X5}, where each Xi=(Xi.in; Xi.out) corresponds to one of the
above tasks (Figure 1(a)).
• X1 corresponds to the task of withdrawing the required amount of money;

X1.in={Id, Password, Amount}; X1.out={RemainAmount};
• X2 corresponds to the task of making an appointment for the surgery; X2.in=
{Disease, Date}; X2.out={ClinicName, Place, Confirmation, Price};

• X3 corresponds to the task of booking a flight; X3.in={Destination, Date, Pa-
tientName}; X3.out={FlightNumber, Price};

• X4 corresponds to the two tasks to reserve accommodation in either a hotel or a
hostel depending to the cost. Recall that in our formalization we combine into
the same variable the tasks implied in the same CHOICE relation. In this exam-
ple t4−1 and t4−2 are involved in the same IF-THEN-ELSE control construct,
so we combine them into X4; X4.in={Name, Place, Date, NightsNumber, Max-
Price}; X4.out={Hotel/hostelName, Address, Price};

• X5.in={DoctorName, PatientName, Date, TreatmentType}; X5.out=
{Confirmation, Price};



A Constraint-Based Approach to Horizontal Web Service Composition 137

– D={D1, D2, D3, D4, D5}, where:
D1={s11}, D2={s21, s22, s23}, D3={s31, s32, s33, s34, s35}3, D4={s41, s42, s43, s44},
D5={s51, s52, s53, s54},

– C=CS ∪ CH , where
• CH including

∗ X1.Id �= nil;
∗ X1.Amount ≥ X2.Price + X3.Price + X4.Price + X5.Price
∗ X2.Date < X3.Date;
∗ X3.Date < X4.Date;
∗ X4.Price ≤ US$100;
∗ X4.Date + X4.NightsNumber+7 < X5.Date;

• CS including
∗ Distance(X4.Place, X2.Place)≤10km4.

– For each sij ∈ Di, we assign a weight wsij to express the degree of preferences of
the user PrefUser(Dj),
PrefUser(D1)={1}, PrefUser(D2)={0.26, 0.73, 0.58}, PrefUser(D3)={0.53, 0.61,
0.35, 0.82, 0.12}, PrefUser(D4)={0.33, 0.71, 0.63, 0.84}, PrefUser(D5)={0.87,
0.25, 0.59, 0.66}.
These degrees of preferences are subjective values and depend on the user.

– The main objective is to find the best combination sl of the above abstract Web ser-
vices and assign the most appropriate concrete Web services such that sl maximizes
the objective function f (sl) defined in Section 3 Eq. 2. Note that for simplicity, we
assume inter-independence between the values of the different domains. We will
consider dependence issues in future work.

Assume that Distance(s21, s44)= 13km, Distance(s22, s44)= 11km and Distance(s23,
s44)=20km, and the penalty over this soft constraint, Distance(X4.Place, X2.Place)≤10km
decreases as the distance converges to 10km, then ρDistance(s22,s44) < ρDistance(s21,s44)
< ρDistance(s23,s44). The most preferred solution for this problem is, sl={s22, {{s34, s51}
‖ s44}, s11} (Figure 1(b)) with ϕ(sl)= 0.73+0.82+0.84+0.87+1=4.26.

5 Constraint Optimization Problem Interactive Algorithm for
Solving the Web Service Composition Problem

The overall objective of our approach is to generate the best executable workflow (ac-
cording to the aforementioned criteria) within a feasible time. Several constraint opti-
mization problem algorithms can be applied to solve this problem, but none allows the
intervention of the human user during the search process. In the following, we propose
an algorithm (Algorithm 1) that allows human interaction with the system to enhance
the solving process.

For each variable Xj
5 we first determine a set of candidate concrete Web services,

CandXj for its abstract Web service that satisfies all the hard constraints CHl ∈ CH (Al-
gorithm 1 line 4), and then we rank CandXj according to the objective function defined

3 For example, Air France Web service, Lufthansa Web service, etc.
4 Distance(x, y) is a function that returns the distance between two places.
5 The variables are ordered according to the input abstract workflow.



138 A.B. Hassine, S. Matsubara, and T. Ishida

in Section 3. This ranked set is used to guide the selection of the next variable Xj+1 in
the search process. For Xj+1 we proceed first by applying join operation to the received
list CandXj and the current one CandXj+1 , i.e., CandXj �� CandXj+1 (Algorithm 1
line 12). The obtained sub-solutions are then filtered (Algorithm 1 line 12) according to
the set of existing hard constraints. Finally, the resulting set of sub-solutions is ranked
according to the objective function for optimization. If the set of candidates CandXj is
large, to avoid explosion in the join operation, we select a fixed number of the most pre-
ferred concrete Web services for each variable, (i.e., a subset of candidates), and try to
propagate these to the next variable. Whenever this subset does not lead to a complete
solution, we backtrack and then seek a solution using the remaining candidates. The
order of the values in the candidate set is established to avoid missing any solution. The
obtained sets of sub-solutions are propagated to the next variable (Algorithm 1 line 16)
and the same dynamic resumes until the instantiation of all the abstract Web services.
If the set of candidate Web services becomes empty (i.e., none of the available Web ser-
vices satisfies the hard constraints), or the set of sub-solutions resulting from the join
and filter operations becomes empty and no more backtrack can be performed, the user
is asked to relax some of his/her constraints (Algorithm 1 line 23). However, if the re-
laxed user’s constraints involve the first instantiated variable in the search tree then the
search process is performed from scratch. It is noteworthy that three issues are possible
in this algorithm, i) Ask user intervention whenever a local failure is detected, which
may reduce the number of backtracks, ii) Ask user intervention only when a global fail-
ure is detected, no more backtracks can be performed, iii) keep trace of the explored
search tree to be able to point directly to the concerned variable by user relaxation and
pursue the solving process and avoid some computational redundancy.

In addition, whenever we need any information concerning any concrete Web ser-
vices, a request-message is sent to an information-providing Web service to get the
necessary information along with both its validity duration and the maximum time re-
quired to execute the underlying Web service. The agent should maintain this time so
that it can detect the information expiration and perform right decision (Algorithm 1
line 20). To deal with the main characteristic of this real-world problem, the dynamic
environment, we maintain the validity of necessary information during the solving and
execution processes, totalTime. totalTime should be less than the minimum validity time
required for any Web service information. We use the following denotation:

– Tplan(sl): necessary time needed to provide a plan sl,
– texe(si): needed time to execute one concrete Web service,
– tval(inf j): estimated time before the expiration of solicited information inf j .

Naturally, the validity of information is usually considered as uncertain. Hence, for each
validity time a probability of information alteration palt(inf i) can be associated with
to the underlying information inf i. We will consider this probability of information
alteration in our future work. The maximal time Tplan required to provide a solution is
defined by Eq. 3.

Tplan(sl) < min
∀ si ∈ sl;

tval(infj) −
∑

sj∈sl

texe(sj); (3)



A Constraint-Based Approach to Horizontal Web Service Composition 139

Algorithm 1. User-intervenstion-based algorithm for Web service composition
WSCSolver(i, setSubSol, totalTime, checkedValues)
1:. if i>‖X‖ then
2:. return setSubSol;
3:. end if
4:. CandX [i] ← {sik ∈ Di | sik satisfies all the CH} \ checkedValues[i];
5:. if information required for any sij ∈ CandX [i] then
6:. Collect necessary information; Update tval, texe and totalTime;
7:. end if
8:. Rank CandX [i] according to wsij and ρCSj and while checking tval, texe and totalTime;
9:. subSol ← ∅;
10:. while subSol = ∅ do
11:. subCand ← subset of the CandX [i]; add(checkedValues[i], subCand);
12:. subSol ← setSubSol �� subCand; Filter and Rank subSol according to f (subSol);
13:. end while
14:. if subSol �= ∅ then
15:. add(setSubSol, subSol);
16:. return WSCSolver(i+1, setSubSol, totalTime, checkedValues);
17:. else
18:. if i > 1 then
19:. reset to ∅ all checkedValues[j] for j>i;
20:. Update totalTime; Update setSubSol;
21:. return WSCSolver(i-1, setSubSol, totalTime, checkedValues);
22:. else
23:. RelaxedConst ← ask User to relax constraints involving Xk where k < i;
24:. Update(CH , CS , RelaxedConst);
25:. i ← j such that ∀ Xk involved in Cl and Cl ∈ RelaxedConst, Xj ≺lo Xk;
26:. Update setSubSol;
27:. return WSCSolver(i+1, setSubSol, totalTime, checkedValues);
28:. end if
29:. end if

Each sub-solution based on expired information will be temporarily discarded but
kept for use in case the agent cannot find any possible solution. This measurement is
an efficient way to cope with Web services with effects characterized mainly by their
volatile information because it allows a forward estimation of the validity of information
during both the composition process and the execution process.

6 Extended Algorithms

6.1 Web Service Composition Problem Distributed Algorithm

The main limitation of the previous algorithm is that it cannot be easily adapted to any
alteration in the environment. Whenever a user decides to relax some of his/her con-
straints, and these constraints involve already invoked variable, especially the first one
in the search tree, the search for a solution will be performed from scratch. However,



140 A.B. Hassine, S. Matsubara, and T. Ishida

distributed approaches can be easily adapted to the user intervention. In this solution
the same algorithm will be split on among set of homogeneous entities. Each entity
will be responsible of one variable and the same algorithm will be performed in paral-
lel by this set of entities. In case of conflicts, i.e., no solution can be generated and no
backtrack can be performed, the system will ask the user to relax some constraints. The
concerned entity will update its view, generate new candidates and exchange them with
other concerned entities. The process resumes until either a solution for the problem is
generated or its insolubility, even with all possible relaxations, is proven. Nevertheless,
this distributed solution might be inefficient for some real-world scenarios where we
need to access a specialized Web service. A specialized Web service maintains infor-
mation about a set of Web services; for example, HotelsByCity.com maintains infor-
mation about several hotels’ Web services. The information concerning involved Web
services is considered private, which makes it difficult to gather Web services needed
information on same site and process them. Hence, we believe that extending the above
algorithm to a multi-agent system is more effective for realistic domains.

6.2 Multi-agent System for Web Service Composition Problem

The underlying multi-agent architecture consists of three kinds of agents, abstract Web
service agents, one or more Information-providing agents and an Interface agent. The
Interface agent is added to the system to inform the user of the result. Each agent Ai

maintains total validity time for all selected Web services, valTimeAi . This information
is locally maintained by each agent and updated each time a requested information is
received. All the agents will cooperate together via sending point-to-point messages
to accomplish their global goal. We assume that messages are received in the order in
which they are sent. The delivery time for each message is finite. The agents are ordered,
according to the input abstract workflow, from higher priority agents to lower priority
ones so that each constraint will be checked by only one agent. For each successive two
subtasks ti and tj such that ti<tj , their corresponding agents will be ordered as follows:
Ai ≺lo Aj , and the agent Ai (resp. Aj) is called Parent (resp. Children) for Aj (resp.
Ai). The ordered links between agents, from the Parents to their Children, represent the
inter-agent hard constraints between the corresponding abstract Web service; i.e., these
relations represent OWL-S control constructs (sequence, choice, ordered, etc.) and/or
hard/soft user constraints.

Each agent Ai first reduces the set of candidate concrete Web services, CandXj for
its abstract Web service by keeping only those that satisfy all the hard constraints (Al-
gorithm 2, line 1), ranks it according to the user preferences (i.e., wsjk

), and to the
degree to which the soft intra-constraints are satisfied (Algorithm 2, line 15), selects
subset of “best” candidates then sends it to its ChildrenAi (Algorithm 2, line 17). If the
set of candidate Web services is empty, then the user is asked to relax some of his/her
constraints. In addition, whenever the agent needs information concerning any concrete
Web service, it sends a message (RequestInformationFor:) to the information-providing
agent to get the necessary information along with its validity and the maximum time
needed to execute the underlying Web service (Algorithm 2, line 10). The agent should
retain this time so that it can detect information expiration and perform right decision,
i.e., update the current solution when necessary. Each agent receiving needed infor-



A Constraint-Based Approach to Horizontal Web Service Composition 141

Algorithm 2. Start message executed by each agent Aj .
Start
1:. Select CandXj ⊆ Dj / all intra-C

Aj

H are satisfied;
2:. listRequest ← ∅;
3:. while CandXj =∅ do
4:. Ask user to relax some of his hard constraints;
5:. end while
6:. for all sk ∈ CandXj do
7:. if inf k required for sk then
8:. listRequest ← listRequest ∪ sk;
9:. end if
10:. send(Information-providing, self, RequestInformationFor:listRequest);
11:. end for
12:. while listRequest �= ∅ do
13:. Wait; /*Information required for Web services*/
14:. end while
15:. Rank CandXj according to wsjk and ρCSl ;
16:. for all Ai ∈ ChildrenAj do
17:. send(Ai, self, process:CandXj within:valTimeAj );
18:. end for

mation from the Information-providing agent first updates its dynamic knowledge, and
then checks whether any of the information may expire before executing the workflow.
If this is the case for any of the received information, the affected Web service, sjk will
be discarded from the set of possible candidates. Finally, the agent ranks the remaining
candidates and sends them to its Children for further processing. Each agent Ai receiv-
ing a message to process candidate concrete Web services from its Parents or to process
a set of sub-solutions proceeds by first performing a join operation on all received lists
(Algorithm 3 line 1). The obtained sub-solutions are then filtered according to the set
of existing hard constraints and then ranked according to the soft constraints and user
preferences (Algorithm 3 line 3). If the set of sub-solutions is empty for the agent Ai,
then a request is sent to parents to ask for more possible candidates in a predefined or-
der to ensure the completeness of the proposed protocol (Algorithm 3, line 7). In case,
all the possible candidates are processed and the set of possible solution is still empty,
the concerned agent asks the user to relax some of his/her constraints related directly
or indirectly to the variable Xi maintained by Ai. Thus, the appropriate agent will be
invoked to first update its set of hard constraints and then define new candidates and
send them again to the Children (Algorithm 3, line 14). The same process resumes until
stable state is detected.

In real-world scenarios, the Web service composition problem is subject to many
changes, defined on one side by the arrival of new Web services and on the other side
by the inaccessibility of one or more Web services. For each new Web service, the
appropriate agent will check whether this Web service can be included in the set of
candidates. If this new Web service satisfies the hard constraints and increases f (sl), it
will be communicated to the Children to upgrade their set of sub-solutions, if possible.



142 A.B. Hassine, S. Matsubara, and T. Ishida

Algorithm 3. Process-within message executed by each agent Ai.

Process:listAh within:t
1:. PossibleTupleAi ← CandXi ; PossibleTupleAi ← PossibleTupleAi �� listAh ;
2:. if All listAh are received from ParentsAi then
3:. Filter PossibleTupleAi such that ∀ tupleXi ∈ PossibleTupleAi , tupleXi satisfies the inter-

agent constraints (CAi
H ) and optimize the predefined criteria (Section 3);

4:. update totalTimeAi ;
5:. if PossibleTupleAi = ∅ then
6:. if Possible backtrack then
7:. send Backtrack message to ParentsAi to ask for more candidates;
8:. else
9:. Ask user to relax some of his hard constraints related in/directly to Xi;
10:. end if
11:. else
12:. Rank PossibleTupleAi according to the criteria defined in Section 3;
13:. for all Aj ∈ ChildrenAi do
14:. send(Aj , self, process:PossibleTupleAi within:valTimeAj );
15:. end for
16:. end if
17:. end if

Otherwise, the new candidate will be ignored. As for each Web service that becomes
inaccessible during the composition process, the appropriate agent should first check
whether this Web service is included in the set of sent candidates. If this is not the
case, the agent will only update its dynamic knowledge; if the inaccessible Web ser-
vice has already been communicated to the Children, the agent should ask its Children
temporarily not consider this Web service in case it is involved in their sub-solutions.

The stable state is progressively detected by all the abstract Web service agents [4].
The main idea is to define an internal state for each agent Ai. This state is set to true
if and only if the internal states of all the children are true and agent Ai succeeds in
finding an appropriate concrete Web service for its abstract one. The stable state will
be detected by the children and progressively propagated to the parents. Each agent that
has no parents, ParentsAi = ∅, informs the Interface agent regarding the final state. The
Interface agent communicates the result to the user.

7 Conclusion

The Web service composition problem is a challenging research issue because of the
tremendous growth in the number of Web services available, the dynamic environment
and changing user needs. In this paper, we have proposed a real-time interactive so-
lution for the Web service composition problem. This problem consists of two main
composition processes, vertical composition and horizontal composition and we have
focused on the horizontal composition process. This work complements existing tech-
niques dealing with vertical composition in that it exploits their abstract workflow to



A Constraint-Based Approach to Horizontal Web Service Composition 143

determine the best executable one according to predefined optimality criteria. We have
developed a protocol that overcomes the most ascertained limitations of the existing
works and comply with most natural features of a realistic Web service composition
problem such as the dynamism of the environment and the need to deal with volatile in-
formation during the composition and execution processes, etc. Three main approaches
were proposed in this paper, the first is a user-intervention based-centralized approach,
the second is a distributed version of the previous one that can be easily adapted to any
environment’s alterations and the third is a multi-agent approach to cope better with re-
alistic domains where problem required information is maintained by specialized Web
services. The multi-agent approach is currently under implementation and testing.

References

1. Au, T-C., Kuter, U. and Nau, D., Web Services Composition with Volatile Information. In
proc. ISWC’05, pp. 52-66, 2005.

2. Aggarwal, R., Verma, K., Miller, J., and Milnor, W. Constraint Driven Web Service Compo-
sition in METEOR-S. In proc. IEEE Int. Conf. on Services Computing, pp.23-30, 2004.

3. Aversano, L., Canfora, G. Ciampi, A., An algorithm for web service discovery through their
composition. In proc. IEEE ICWS’04, 2004.

4. Ben Hassine, A., and T.B. Ho, Asynchronous Constraint-based Approach - New Solution for
any Constraint Problem. In proc. AAMAS RSS’2006, 2006.

5. Canfora, G., Penta, M.D., Esposito, R. and Villani, M.L., An Approach for QoS-aware Ser-
vice Composition bsed on Genetic Algorithms. In proc. ACM GECCO’05, pp. 25-29, 2005.

6. Dechter, R. and Dechter, A., Belief Maintenance in Dynamic Constraint Networks. In proc.
7th National Conf. on Artificial Intelligence, AAAI-88, pp. 37-42, 1988.

7. Kuter, U., Sirin, E., Parsia, B., Nau, D. and Hendler, J., Information Gathering During Plan-
ning for Web Service Composition. In proc. ISWC’04, 2004.

8. Lin, M., Xie, J., Guo, H. and Wang, H., Solving Qos-driven Web Service Dynamic Composi-
tion as Fuzzy Constraint Satisfaction. In proc. IEEE Int. Conf. on e-Technology, e-Commerce
and e-service, EEE’05, pp. 9-14, 2005.

9. McIlraith, S. and Son, T.C., Adapting Golog for Composition of Semantic Web Services.
KR-2002, France, 2002.

10. Montanari, U., NetWorks of Constraints: Fundamental Properties and Applications to Picture
Processing. In Information Sciences, Vol. 7, pp. 95-132, 1974.

11. Narayanan, S. and McIlraith, S., Simulation, Verification and automated Composition of Web
Services. In Proceeding 11th Int. Conf. WWW, 2002.

12. OWL Services Coalition, OWL-S: Semantic markup for web services, OWL-S White Paper
http://www.daml.org/services/owl-s/1.0/owl-s.pdf, 2003.

13. Sirin, E., Parsia, B., Wu, D., Hendler, J. and Nau, D., HTN Planning for Web Service Com-
position Using SHOP2. In Journal of Web Semantic Vol. 1, pp. 377-396, 2004.

14. Ishida, T., Language Grid: An Infrastructure for Intercultural Collaboration. Valued Con-
straint Satisfaction Problems: Hard and Easy Problems. In IEEE/IPSJ Symposium on Appli-
cations and the Internet (SAINT-06), pp. 96-100, 2006.

15. Yokoo, M. Ishida. T, and Kuwabara, K. Distributed Constraints Satisfaction for DAI Prob-
lems. In 10th Int. Workshop in Distributed Artificial Intelligence (DAI-90), 1990.

16. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam, J., and Chang, H. QoS-
aware middleware for web services composition. IEEE Trans. Software Engineering, 30(5),
2004.



GINO - A Guided Input Natural Language
Ontology Editor

Abraham Bernstein and Esther Kaufmann

University of Zurich, Dynamic and Distributed Information Systems, Switzerland
{bernstein, kaufmann}@ifi.unizh.ch

Abstract. The casual user is typically overwhelmed by the formal logic
of the Semantic Web. The gap between the end user and the logic-based
scaffolding has to be bridged if the Semantic Web’s capabilities are to
be utilized by the general public. This paper proposes that controlled
natural languages offer one way to bridge the gap. We introduce GINO,
a guided input natural language ontology editor that allows users to edit
and query ontologies in a language akin to English. It uses a small static
grammar, which it dynamically extends with elements from the loaded
ontologies. The usability evaluation shows that GINO is well-suited for
novice users when editing ontologies. We believe that the use of guided
entry overcomes the habitability problem, which adversely affects most
natural language systems. Additionally, the approach’s dynamic gram-
mar generation allows for easy adaptation to new ontologies.

1 Introduction

The Semantic Web’s logical underpinning provides a stable scaffolding for ma-
chine-based processing. The common or occasional user, however, is typically
overwhelmed with formal logic. The resulting gap between the logical underpin-
ning of the Semantic Web and the average users’ ability to command formal
logic manifests itself in at least two situations. First, the gap manifests itself
when the untrained user tries to use an existing, usually graph-based, ontology
editing tool [14,12] – the editing disconnection. Second, it can be found in the
disconnection between a user’s information needs and the query (language) with
which the user tries to find the required information in an ontology [28,27,9] –
the querying disconnection. Since editing and querying are two of the major in-
teraction modes with the Semantic Web, bridging them is central to its practical
use by end users. Consequently, the question how to bridge the gap is pivotal for
the success of the Semantic Web for end users. This paper proposes to address
these two manifestations of the gap using natural language interfaces (NLIs).

NLI systems have the potential to bridge the editing disconnection between
the untrained user and the triple- and graph-based ontology editing/creating
tools. Although there are good ontology building tools [10,17,22,3,29,30] editing
and building ontologies is hard for experts but close to impossible for common
and occasional users [26]. NLIs can help to overcome this gap by allowing users

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 144–157, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



GINO - A Guided Input Natural Language Ontology Editor 145

to formulate their knowledge domain and information needs in familiar nat-
ural language (NL), rather than having to learn unfamiliar formal and complex
data manipulation and query languages. The major drawback of NLIs, however,
is their adaptivity to new domains. Even though natural language processing
(NLP) has made good progress in recent years, much current NLI research relies
on techniques that remind users more of information retrieval than NLP [19]. The
systems that can perform complex semantic interpretation and inference tend to
require large amounts of domain-specific knowledge- and engineering-intensive
algorithms making the systems hardly (if any) adaptable to other domains and
applications. Hence, they have a substantial adaptivity barrier.

Even if we could provide domain-independent NLI a second problem would
arise from the users’ side. Typically, users do not know what capabilities a NL
system has. Therefore, many of their assertions/questions will not be understood
correctly or might even be rejected because the statements exceed or fall short
of the capability of the system. The mismatch between the users’ expectations
and the capabilities of a NL system is called the habitability problem [32]. Thus,
for the successful use of NLI, users need to know what is possible to say/ask
[2]. Analogously, NLI can help addressing the querying disconnection assuming
that the adaptivity barrier and the habitability problem can be overcome. As
a consequence, the domain-dependency of intelligent NLI and the habitability
problem account for the fact that we are still far away from the successful use
of full NL to command and query the Semantic Web (and arbitrary information
systems). In this paper, we argue that we can address the before-mentioned
problems by using a guided and controlled NLI that supports the user in both
the tasks of ontology building and query formulation. We present GINO, the
guided input natural language ontology editor for the Semantic Web. GINO,
an extension of the purely querying focused Ginseng [5], essentially provides
quasi-NL querying and editing access to any OWL knowledge base [18]. It relies
on a simple static sentence structure grammar which is dynamically extended
based on the structure and vocabulary of the loaded ontologies. The extended
grammar can be used to parse sentences, which strongly resemble plain English.
When the user enters a sentence, an incremental parser relies on the grammar
to constantly check the user’s entries to (1) propose possible continuations of
the sentence similar to completion suggestions in Unix shells or ”code assist”
(or intellisense) in integrated development environments and (2) prevent entries
that would not be grammatical and, hence, not executable/interpretable. Once
a sentence is fully entered, GINO uses some additional statement construction
information in the grammar to translate the quasi English sentence into new
triple sets (to add/change the ontology) or SPARQL statements [25] and pass
them on to the Semantic Web framework Jena for execution.

The main difference between GINO and full NLIs [2] is that GINO does not
use any predefined lexicon beyond the vocabulary that is defined in the static
sentence structure grammar and provided by the loaded ontologies. Furthermore,
it does not try to semantically understand the entries. Instead, GINO ”only
knows” the vocabulary that is being defined by the grammar and by the currently



146 A. Bernstein and E. Kaufmann

loaded ontologies. It relies directly on the semantic relationships of the loaded
ontology. Hence, the vocabulary is closed and the user has to follow it limiting
the user but ensuring that all queries and sentences ”make sense” in the context
of the loaded ontologies and can be interpreted by simple transformations.

The remainder of the paper is structured as follows. First, we will introduce
GINO by describing how the user experiences GINO as an ontology building
and editing tool. Next, we will provide an overview of its technical setup and
functionality. We will then describe the empirical evaluation of the approach and
discuss the results, which leads to a discussion of GINO’s limitations. The paper
closes with a section on related work and some conclusions.

2 GINO - The User Experience

GINO allows users to query any OWL knowledge base using a guided input NL
akin to English. The user enters the query or sentence in English into a free form
entry field (as shown in Fig. 1). Based on the grammar, the system’s incremental
parser offers the possible completions of the user’s entry by presenting the user
with choice pop-up boxes. These pop-up menus offer suggestions on how to
complete a current word or what the next word might be. Obviously, the possible
choices get reduced as the user continues typing. Fig. 1 shows that typing the
letter ”c” within the middle of a query or sentence causes the interface to propose
all the possible completions of the words that begin with ”c.”

Fig. 1. The GINO user interface

Users can navigate the pop-up with the arrow keys or with the mouse and
choose a highlighted proposed option with the space key. Entries that are not
in the pop-up list are ungrammatical and not accepted by the system. In this
way, GINO guides the user through the set of possible sentences preventing
statements unacceptable by the grammar. Once a sentence is completed, GINO
translates the entry to triple-sets or SPARQL statements. Users who are familiar
with the common graph representations or with other ontology editors basing
on graph structures (e.g., Protégé [22]) can also edit elements of an ontology by
using the graph structure on the right side of the interface window (in Fig. 1).



GINO - A Guided Input Natural Language Ontology Editor 147

Consider a user who wants to construct a class lake, a datatype property
lakeDepth, and an instance tahoe to which the value of the before specified
property is added. To create a new class lake and add it to an ontology that
contains geographical information the user starts typing a sentence beginning
with ”there is” or ”there exits.” The pop-up shows possible completions of the
sentence and the user can continue the sentence with ”a” and ”class.” Choos-
ing ”class” (as we want to create a class) leads to the alternatives ”named”
and ”called.” Either choice then prompts the user to enter the class’s label
(i.e., ”lake”). Finishing the sentence with a full stop prompts GINO to trans-
late the completed sentence ”There is a class named lake” into corresponding
OWL triples that are loaded into the Jena ontology model, thereby enabling
that the class can be queried or offered in a pop-up. To ensure consistency
all entries are then checked by the JENA Eyeball RDF/OWL model checker
(http://jena.sourceforge.net/Eyeball/). The newly produced class is immediately
displayed in the graph representation on the right side of the user interface.

Fig. 2. The GINO user interface and property editing window

In order to specify a datatype property lakeDepth to the class lake, the user
again starts a sentence with ”there is.” After entering ”a” or ”a new”, the user is
offered ”property” to choose. Next, the label of the property has to be defined.
When finishing the entry ”There is a new property named lake depth” with a full
stop, a window opens where the user can now specify whether the new property
is a datatype or an object property (Fig. 2). Furthermore, domain and range can
be specified. GINO offers the possible choices for the domain/range specification
by showing the existing classes and datatypes in a pop-up. The user can, for
example, choose the previously created class lake as domain of the property and
click on ”add” to actually add the chosen class. If the property has been declared
as datatype property, GINO offers ”literal” as possible entry for the range of the
property. Again, the user adds the range to the property lakeDepth. Clicking on



148 A. Bernstein and E. Kaufmann

”ok” closes the property editing window and adds the specified information to
the Jena ontology model. The new property appears in the graph representation
as datatype property (Fig. 2). Object properties are created analogously.

An instance of the class lake can now be added by entering a simple sentence
beginning with ”there is an instance.” After continuing the sentence with ”of”
and ”class” GINO’s popup offers the list of currently defined classes. Having
chosen ”lake” the user can then add a label (e.g., tahoe) to the new instance
analogously to when entering a new class resulting in ”there is an instance of
class lake named tahoe.” Alternatively, the user could have entered a sentence
”there is a lake named tahoe” where GINO would have listed the possible classes
at the position of ”lake’ in the sentence. Values of instance attributes can also
be entered using a NL input sentence, e.g. ”the depth of lake tahoe is 1645 feet.”

The graph representation on the right side of the GINO user interface offers
an overview of the classes, properties, and instances as well as an easy editing
function. By double-clicking on an element, an edit window is opened where
the user can add, change, or delete elements, values, etc. Double-clicking on
the instance ”tahoe” in the instance tree, for example, opens an edit window
showing the possible properties of the class to which the instance belongs. The
value ”1645” can be entered as literal of the property lakeDepth.

3 GINO’s Technical Design

From an architectural point of view, GINO has four parts (see Fig. 3): a grammar
compiler, a partially dynamically generated multi-level grammar, an incremen-
tal parser, and an ontology-access layer (i.e., Jena; http://jena.sourceforge.net/).
When starting GINO, all ontologies in a predefined search path are loaded. For
each ontology, the grammar compiler generates the necessary dynamic grammar
rules to extend the static part of the grammar, which contains the ontology-
independent rules specifying general sentence structures. The grammar is used
by the incremental parser in two ways: First, it specifies the complete set of
parsable questions/sentences, which is used to provide the user with alterna-
tives during entry and prevent incorrect entries as described above. Second, the
grammar also contains information on how to construct the SPARQL statements
from entered sentences. Thus, a complete parse tree of an entered question can
be used to generate the resulting SPARQL statements to be executed with Jena’s
SPARQL engine ARQ. As SPARQL does not offer any data manipulation state-
ments (e.g., CREATE, INSERT, DELETE) we have to specify and execute the
generation and insertion of the corresponding triples separately by using the
Jena API in GINO’s source-code.

The incremental parser maintains an in-memory structure representing all
possible parse paths of the currently entered sequence of characters. This has
various benefits. First, it allows the parser to generate a set of possible contin-
uations (i.e., possible next character sequences by expanding all existing parse
paths, which are displayed by GINO’s popup). One parse path might generate
multiple options when the parser expands a non-terminal being specified in more



GINO - A Guided Input Natural Language Ontology Editor 149

OWL
Ontology

OWL
Ontology

Simple
Sentence 
Grammar

Grammar Compiler
Full 

Grammar

Jena SPARQL 
Engine Incremental parserIncremental parserJena Ontology ModelOWL

Ontology
OWL

Ontology

Simple
Sentence 
Grammar

Grammar Compiler
Full 

Grammar

Jena SPARQL 
Engine Incremental parserIncremental parserJena Ontology Model

Fig. 3. The GINO architecture

than one place in the grammar. Second, the parser can compare every character
entered against the possible entries providing immediate feedback when the user
attempts to enter an non-interpretable (i.e., non-parsable) sentence/character
to mitigate the habitability problem. Third, when the user has finished entering
the sentence, the parser can immediately provide the set of acceptable parse
paths. When querying a simple transformation relying on the query construction
grammar elements can translate the parse paths to SPARQL queries avoiding
lengthy semantic interpretation (and possible delays in answering the query) of
the sentence as usual in NLIs. The fact that there might be multiple parse paths
possibly being ambiguous is simply handled by returning the union of answers
back to the user. When making assertions, GINO could use the parse paths to
alleviate possible ambiguities by asking the user. Currently, however, we assured
that the assertions grammar is unambiguous not requiring this interaction.

Since both the use of an ontology access layer and the construction of an
incremental parser are well documented in the literature [5], the rest of the
section will focus on the functionality of the grammar and the grammar compiler.

3.1 The Functionality of the Grammar

The grammar describes the parse rules for the sentences that are entered by the
user. Consider the following grammar excerpt as an example:
(1) <START> ::= there is a <NS S> .

(2) <NS S> ::= class named <ENTER NEW CLASS NAME> .

(3) <NS S> ::= <CLASS> named <ENTER NEW INSTANCE NAME> .

(4) <CLASS> ::= <NCc>|<http://www.w3.org/1999/02/22-rdf-syntax-ns#type><NCc>

(5) <NCc> ::= water area|<http://www.mooney.net/geo#state>

(6) <ENTER NEW CLASS NAME> ::= enter new class name

(7) <ENTER NEW INSTANCE NAME> ::= enter new instance name

The grammar’s representation mostly follows the Backus-Naur-Form nota-
tion: Non-terminal symbols use uppercase characters (e.g., <CLASS>), whereas
terminal symbols such as named that can be displayed to the user in a pop-up
use lowercase characters. Grammar elements after the ”|” symbol denote type
restrictions. Note that we have radically simplified the example rules to keep
things understandable.

While parsing, the incremental parser recursively searches for possible matches
for the symbols on the left side of the rules and replaces them by the symbols on
the right side of a conformable rule. The parse is completed when no non-terminal
symbols are left. By keeping every replacement step during the parsing process,



150 A. Bernstein and E. Kaufmann

a parse tree of an entered sentence is successively built. Every sentence starts
with the <START> symbol. To replace the <START> symbol, this simple grammar
offers the terminal symbols there is a followed by the non-terminal symbol
<NS S> and a full stop (rule 1). The terminal symbol is displayed to the user in
a pop-up menu as possible beginning of an entry. If the user enters ”there is
a”, then the parser can bind <START> to rule 1. Next, the parser tries to match
the non-terminal <NS S>, for which this grammar offers two rules (2 and 3). If
the user enters ”class named”, the parser binds rule 2 to <NS S> and discards
rule 3. To replace the symbol <ENTER NEW CLASS NAME> in rule 2, only rule 6 can
be applied. The application of rule 6 replaces the non-terminal symbol by the
terminal symbol enter new class name. This special terminal symbol additionally
causes the interface to provide the user with a text entry field. If the user enters
a string as label of the class (e.g., lake) and finishes the sentence with a full stop,
GINO uses the complete parse tree to generate the appropriate OWL triples and
loads them into the Jena ontology model. The new class is shown in the graph
representation of the ontology. After entering ”there is a” according to rule 1,
rules 3 and 4 provide the list of all possible class-labels. In our limited grammar,
only rule 5 binds to the terminal <CLASS>. As an alternative to entering ”class
named” as described above the user can, thus, also choose (one of) the class
labels that are shown to the user (e.g.,water area).

3.2 The Grammar Compiler

When loading an ontology, GINO generates a dynamic grammar rule for every
class, property, and instance. These dynamic rules enable the display of the labels
used in the ontology in the pop-up boxes. While the static grammar rules (all
rules above except rule 5) provide the basic sentence structures, the dynamic
rules (rule 5) allow that certain non-terminal symbols of the static rules can
be ”filled” with terminal symbols (i.e., the labels) that are extracted from the
ontology model or provide the structure to specify relationships between elements
in the ontology.

The static grammar rules provide the basic syntactic structures and phrases
for questions and declarative sentences. Its rules supply a small set of declara-
tive sentence structures such as ”There is a subclass of class water area named

lake.” (static grammar terminals in courier) in order to ensure the correct trans-
lation into OWL syntax. The same grammar also handles general question struc-
tures as ”Which state borders Georgia?” as well as other types of queries such as
closed questions (”Is there a city that is the highest point of a state?”, typ-
ically resulting in an answer of ”yes” or ”no”) or questions resulting in numbers
(e.g., ”How many rivers run through Georgia?”). Furthermore, it provides sentence
construction rules for the conjunction or disjunction of two phrases (or sentence
parts). The static grammar consists of about 120 mostly empirically constructed
domain-independent rules. We are currently working on specifying these rules
in an OWL-relying syntax such as SWRL (http://www.daml.org/2003/11/swrl/) to



GINO - A Guided Input Natural Language Ontology Editor 151

be able to use consistency checking and other features from standard Semantic
Web APIs.

The dynamic grammar rules get generated from the loaded OWL ontolo-
gies (rule 5 in the above grammar example). The grammar compiler essentially
parses an ontology and generates a rule for each class, instance, object property,
and data type property. To illustrate the dynamic rule generation, we will show
the translation of an OWL class into its corresponding generated rules. Con-
sider the OWL class definition (in the file specifying the URIs at http://www-
mooney.net/geo):

<owl:Class rdf:ID="waterArea">

<gino:phrase rdf:value="water areas"/>

</owl:Class>

Its transcription generates two GINO rules for noun clauses; one for the actual
class definition and one for the gino tag facilitating that plurals of nouns can be
used in GINO. Since both labels start with a consonant, the resulting rules are
describing the non-terminal <NCc> for noun clause consonants as follows (rather
than <NCv> for vowels1):

<NCc> ::= water area|<http://www.mooney.net/geo#waterArea>

<NCc> ::= water areas|<http://www.mooney.net/geo#waterArea>

GINO also allows that synonyms of the labels used in the ontology model can
be included by annotating the ontology with additional tags from the gino name
space. As such, GINO generates a dynamic grammar rule for each synonym.

<owl:Class rdf:ID="waterArea">

<gino:phrase rdf:value="water areas"/>

<gino:phrase rdf:value="body of water"/>

<gino:phrase rdf:value="bodies of water"/>

</owl:Class>

While such annotations are not necessary for GINO to run correctly, they do
extend its vocabulary and increase its usability. Additionally, they reduce the
limitation that the approach, to some extent, depends on the choice of vocabu-
lary, when the ontology was built. The more meaningful the labels of an ontology
are chosen, the wider and more useful the vocabulary provided by GINO is.

4 Usability Evaluation

To get a first feedback on the usability of GINO, we confronted six users who had
no experience in ontology building and editing whatsoever with our prototype
written in Java. We intended to find out how the controlled NLI of GINO can
support untrained and casual users in an ontology creating and editing task
and help overcome the editing disconnection. Note that we did not test GINO’s
ability to overcome the querying disconnection, as it has already been addressed
in the literature (see the related work section for more details [5,13,23,6,32]).

1 Thus, we handle determiner-noun (e.g., a class vs. an instance) and also subject-
predicate (e.g., Which class is. . . vs. Which classes are. . . ) agreement.



152 A. Bernstein and E. Kaufmann

4.1 Setup of the Experiment

The experiment was based on the Mooney Natural Language Learning Data [31].
Its geography database consists of a knowledge base that contains geographical
information about the US and their logical representations. To make the knowl-
edge base accessible to GINO we translated it to OWL and designed a simple
class structure as meta model. We removed the class lake and the class river
including their instances in order to make the experiment realistic. We recruited
six subjects who were not familiar with Semantic Web technologies and ontolo-
gies; they did not even know what an ontology was in the sense of the Semantic
Web. We purposely recruited people with no computer science background as
GINO is intended for casual or occasional users. Each subject was given a two-
page introduction on what the idea of the Semantic Web is and how contents
of ontologies are basically specified (i.e., subject - predicate - object). The sub-
jects were first asked to enter a query into GINO in order to get used to the
tool. We then gave the subjects the following tasks with respect to the adapted
geography ontology. The subjects were first asked to create a class waterArea.
Second, they had to specify a new class lake as a subclass of waterArea. Next,
the subjects had to define a datatype property lakeDepth as well as an object
property isLocatedIn with the domain lake. They were then requested to add an
instance tahoe to the class lake and to enter values for the two properties’ ranges
that they had defined before. Finally, the subjects had to change the value for
the depth of Lake Tahoe (lakeDepth) from metric to the English units.

Using a key-logger, we logged and timed each key entry. At the end of the ex-
periment, we performed the SUS standardized usability test [7] – a standardized
collection of questions (e.g., ”I think that the interface was easy to use.”) each
answered on the Likert scale providing a global view of subjective assessments
of usability. The test covers a variety of usability aspects such as the need for
support, training, and complexity. To collect more specific details on how the
subjects experienced GINO we followed up on each SUS question with either ”If
you disagreed, what did you find difficult?” or ”If you agreed, what did you find
especially easy?”

4.2 Results of the Experiment

To our surprise all subjects successfully performed the given tasks having only
minor difficulties with the user interface (such as clicking on the wrong button).
Each subject managed to correctly add the two classes, two properties of different
type, and an instance including the specification of the values for its properties.
As only ”mistake” three of the subjects mixed up the definition of domain and
range when entering the object property, but immediately corrected their error
after reconsulting the instructions. One subject even wrote down that the domain
corresponded to subject and the range to object of the subject-predicate-object
triple structure. This questions the suitability of these mathematics-rooted terms
for casual users. Examining the entry logs we found that the subjects corrected
very few of their entries (e.g., using the backspace button) indicating that they
had quickly learned the capabilities of GINO’s NL parser. Even though we can



GINO - A Guided Input Natural Language Ontology Editor 153

only hypothesize that this was due to GINO’s popup-based guidance, we know
that other NLIs without that feature suffer from the habitability problem.

The users gave GINO an average SUS score of 70.83 (σ = 11.15, median =
73.75), which ranges from 0 to 100. As usability is not an absolute criterion
the resulting score can only be understood relatively to others [21,24]. A sim-
ilar SUS evaluation of two NLI-based query systems, for example, resulted in
average SUS scores of 49.29 for GINO’s predecessor Ginseng [5] and 52.14 for a
controlled English based NLI SWAT [6]. As the SUS score shows, users found
GINO significantly better suited to the task. This is a very good result consider-
ing that our subjects were unfamiliar with ontology issues before the experiment
and that ”they were thrown in the deep end of ontology building/editing tasks”
after a very general and brief introduction.

To the questions ”Why would you like to use GINO frequently?” and ”Why
would most people learn to use GINO quickly?” the answer ”easy and intuitive”
was given four out of six times. Two subjects thought that the interface had
a clear and logic design. Nevertheless, four subjects reported that they would
prefer the support of a person for the first time, but after that they would be
able to use GINO on their own. One person specifically stated that the most
convenient feature of GINO was that one can enter elements using NL. Five
subjects found the Semantic Web fundamentals were the most difficult and time-
consuming part of the experiment. The subjects did not use the right-hand graph
view to do any editing apart from the task where they were explicitly asked to
do so.

4.3 Discussion and Summary of Experimental Results

Obviously, our test does not provide (final) quantitative proof of GINO’s suit-
ability for ontology editing by casual users. As we will discuss in the limitations
section below, we need a full user evaluation with many subjects from a variety
of backgrounds to provide such evidence. Nevertheless, our experiment strongly
indicates that novice users (1) can edit ontologies with a NL-based ontology
editor without being overwhelmed by formal logic, (2) can do so with virtually
flawless results, (3) preferred using the NL entry to a direct manipulation graph-
based view, and (4) provided some interesting insight into the confusion behind
the semantics of the terms the Semantic Web uses for the general public. Con-
sequently, we can conclude that the GINO NLI has great potential to overcome
the gap between the average user’s ability to command formal logic and the Se-
mantic Web’s logic-based scaffolding. It also seemed to successfully circumvent
the habitability problem.

5 Limitations and Future Work

Although the preliminary usability evaluation showed promising results, the ap-
proach has its limitations. First, the evaluation is limited with regard to the
number and choice of the subject pool as well as the extent of the task. Further-
more, our subjects had never used any other ontology tool before the experiment,



154 A. Bernstein and E. Kaufmann

therefore making a comparison with these tools impossible. To address this issue
we intend to undertake more intensive user testing in the future to determine
whether NLIs are capable of bridging the logic gap. Such experimentation would
include an extended editing task, a larger subject pool, and the use of additional
tools as a benchmark. Specifically, we need to compare GINO with a simpli-
fied version of an ontology editor (such as Protégé [22]) to establish whether
the users’ ability to edit the ontology came from the deliberate simplification of
GINO or from its langauge capabilities. Nonetheless, we think that our results
are extremely encouraging and provide a strong indication that GINO enabled
the casual/novice users to correctly accomplish a simple ontology editing task.
Users who intend to embark on large ontology editing/design tasks, however,
might prefer to invest the time to learn a full-fledged ontology editor.

Second, GINO is not a full-fledged ontology building and editing tool. It de-
liberately has a simple design to allow its use by novices (who might be over-
whelmed by advanced logic features such as quantified restrictions). However,
the simple approach can also be regarded as a strength, since the casual user is
able to handle the tool and is not confused by many complex functions.

Furthermore, the controlled language limits the expressiveness of the user, but
this restriction is not overly severe as shown in the evaluation. We think that
the limitation is justified by two benefits. First, by using a controlled NL, we can
avoid one of the biggest problems of NL: ambiguity. Handling ambiguity, in turn,
is still regarded as a prerequisite for the successful usage of NLIs [20]. Second,
the use of a controlled language (together with a guidance feature) addresses the
habitability problem.

One question which we left unanswered was GINO’s scalability. As the gram-
mar compiler generates at least one rule for every class/instance/property in the
ontology, the grammar is likely to grow very fast for large ontologies. We believe
that this issue could be easily ddressed by using standard knowledge-base opti-
mization techniques such as storing instances related rules on disk and retrieving
them only when needed.

In the future, we intend to specifically address the adaptivity barrier. To adapt
a new ontology of the size of the geography ontology to GINO took us about one
hour. The task mainly consisted of adding synonyms of words and word phrases
as gino tags to the ontology. Given a graphical user interface this task could be
accomplished by a novice. M-PIRO [1], a tool for multi-lingual ontology-based
language generation, for example, found that users could do so easily. Note that
such a tool could be extended with user support functions based on WordNet
(http://wordnet.princeton.edu/).

6 Related Work

The idea of NLIs is not new. NLIs to databases have repeatedly been developed
since the seventies, but oftentimes with moderate success [2,9,19,32]. Considering
the difficulties with full NL, the side step to restricted NL or menu-guided in-
terfaces, which has often been proposed, seems obvious [8,4,11,32]. Even though
there exist good and sophisticated ontology construction and editing tools (e.g.,



GINO - A Guided Input Natural Language Ontology Editor 155

Ontolingua [10], Chimaera [17], OilED [3], Protégé [22], OntoEdit [29]), they all
follow the menu/graph-based user interface paradigm. Swoop [12] tries to make
use of people’s familiarity with standard web browsers and offers a user interface
that reflects the ”webiness” with which people are used to interact.

There are some NLI-based projects that closely relate to GINO. [26] show
how (OWL) ontologies can be constructed using a controlled NL to express the
specifications. Their approach relies on a bidirectional grammar that translates
entered facts, axioms, and restrictions into OWL abstract syntax. The controlled
language does not have to be learned as a text editor guides the user through
the writing process by offering look-ahead information (i.e., word categories).
Unfortunately, no user evaluation is reported on. One major difference between
their approach and GINO is that their lookahead feature does not show the actual
words but displays the acceptable word-categories. This enhances the cognitive
load on the user, as he/she has to map the grammatical word-category to possible
words. Also, their project is aimed at finding an alternative notation to OWL
resulting in logic-alike statements such as ”Iff X is a pizza then X is a dish.”
While this might be grammatically correct English, it is clearly not aimed at
the casual user but at someone who understands the general principles of first-
order logic. In contrast, [30] offers a simple controlled language for specifying
ontologies. However, it does not provide direct guidance or look-ahead support.

LingoLogic [32] is a user interface technology that combats the habitabil-
ity problem by using menus to specify NL queries and commands that can be
executed on relational databases. A parser checks a user’s entries, displays pos-
sible completions of the words/phrases to the user, and translates the entries
to the target query language SQL. In contrast to GINO LingoLogic seems to
be limited to querying databases. We did not find any data manipulation ca-
pabilities. Hence, LingoLogic seems to belong to the category of NLI-based on-
tology/database querying tools such as PRECISE [23], AquaLog/PowerAqua
[16,15], START [13], SWAT [6], or Ginseng [5] – the GINO predecessor. PRE-
CISE, Ginseng, and SWAT were evaluated with the Mooney databases [31],
which also have associated NL queries collected from users. Ginseng and SWAT
were additionally tested with end users in a task setting. All evaluations show
that NLIs can be successfully used to overcome the querying disconnection.
As such, they complement our findings, which focused on bridging the editing
disconnection.

7 Conclusions

In order to be usable to the casual or novice user, the logic-based scaffolding
of the Semantic Web needs to be made accessible for editing and querying.
We propose that NLIs offer one way to achieve that goal. To that end, we in-
troduced GINO, the guided input natural language ontology editor that allows
users to edit and query ontologies in a quasi-English guided language. Our evalu-
ation with six end users provides some evidence that novice users are capable of
virtually flawlessly add new elements to an ontology. It also showed that end
users were confused by the terms for the major Semantic Web elements that



156 A. Bernstein and E. Kaufmann

the research community currently uses. Additionally, we found that the use of
guided entry seemed to overcome the habitability problem that hampers users’
ability to use most full NLIs. We believe that this paper shows the potential of
NLIs for end user access to the Semantic Web, providing a chance to offer the
Semantic Web’s capabilities to the general public.2

References

1. I. Androutsopoulos, S. Kallonis, and V. Karkaletsis. Exploiting owl ontologies
in the multilingual generation of object. In 10th European Workshop on Natural
Language Generation (ENLG 2005), pages 150–155, Aberdeen, UK, 2005.

2. I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language interfaces
to databases - an introduction. Natural Language Engineering, 1(1):29–81, 1995.

3. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. Oiled: A reason-able ontology
editor for the semantic web. In Intl. Description Logics Workshop, Stanford, CA,
2001.

4. S. Bechhofer, R. Stevens, G. Ng, A. Jacoby, and C. Goble. Guiding the user:
An ontology driven interface. In 1999 User Interfaces to Data Intensive Systems
(UIDIS 1999), pages 158–161, Edinburgh, Scotland, 1999.

5. A. Bernstein and E. Kaufmann. Making the semantic web accessible to the casual
user: Empirical evidence on the usefulness of semiformal query languages. IEEE
Transactions on Knowlwdge and Data Engineering, under review.

6. A. Bernstein, E. Kaufmann, A. Göhring, and C. Kiefer. Querying ontologies: A
controlled english interface for end-users. In 4th Intl. Semantic Web Conf. (ISWC
2005), pages 112–126, 2005.

7. J. Brooke. Sus - a ”quick and dirty usability scale. In P. Jordan, B. Thomas,
B. Weerdmeester, and A. McClelland, editors, Usability Evaluation in Industry.
Taylor Francis, London, 1996.

8. S. K. Cha. Kaleidoscope: A cooperative menu-guided query interface (sql version).
IEEE Transactions on Knowledge and Data Engineering, 3(1):42–47, 1991.

9. S. Chakrabarti. Breaking through the syntax barrier: Searching with entities and
relations. In 15th European Conf. on Machine Learning (ECML 2004), pages 9–16,
Pisa, Italy, 2004.

10. R. Fikes, A. Farquhar, and J. Rice. Tools for assembling modular ontologies in
ontolingua. In AAAI/IAAI, pages 436–441, 1997.

11. C. Hallett, R. Power, and D. Scott. Intuitive querying of e-health data repositories.
In UK E-Science All-hands Meeting, Nottingham, UK, 2005.

12. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies.
Intl. Journal on Semantic Web and Information Systems, 1(1):36–49, 2005.

13. B. Katz, J. Lin, and D. Quan. Natural language annotations for the semantic web.
In Intl. Conf. on Ontologies, Databases, and Applications of Semantics (ODBASE
2002), Irvine, CA, 2002.

14. P. Lambrix, M. Habbouche, and M. Prez. Evaluation of ontology development
tools for bioinformatics. Bioinformatics, 19(12):1564–1571, 2003.

2 The authors would like to thank R. Mooney’s team for having generously supplied
the dataset, Gian Marco Laube for his support in implementing the prototype, and
the anonymous reviewers for their insightful comments. This work was partially
supported by the Swiss National Science Foundation (200021-100149/1).



GINO - A Guided Input Natural Language Ontology Editor 157

15. V. Lopez, E. Motta, and V. Uren. Poweraqua: Fisching the semantic web. In
3rd European Semantic Web Conference (ESWC 2006), pages 393–410, Budva,
Montenegro, 2006.

16. V. Lopez, M. Pasin, and E. Motta. Aqualog: An ontology-portable question an-
swering system for the semantic web. In 2nd European Semantic Web Conference
(ESWC 2005), pages 546–562, Heraklion, Greece, 2005.

17. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In Seventh Intl. Conf. on Principles of Knowledge
Representation and Reasoning (KR2000), pages 483–493, Breckenridge, CO, 2000.

18. D. L. McGuinness and F. van Harmelen. Owl web ontology language overview.
W3c recommendation, 2004.

19. R. J. Mooney. Learning semantic parsers: An important but under-studied prob-
lem. In AAAI 2004 Spring Symposium on Language Learning: An Interdisciplinary
Perspective, pages 39–44, Stanford, CA, 2004.

20. H. A. Napier, D. M. Lane, R. R. Batsell, and N. S. Guadango. Impact of a restricted
natural language interface on ease of learnng and productivity. Communications
of the ACM, 32(10):1190–1198, 1989.

21. J. Nielsen. Usability Engineering. Academic Press, San Diego/New York, 1993.
22. N. F. Noy, M. Sintek, S. Decker, M. Crubzy, R. W. Fergerson, and M. A. Musen.

Creating semantic web contents with protege-2000. IEEE Intelligent Systems,
16(2):60–71, 2001.

23. A.-M. Popescu, O. Etzioni, and H. Kautz. Towards a theory of natural language
interfaces to databases. In 8th Intl. Conf. on Intelligent User Interfaces, pages
149–157, Miami, FL, 2003.

24. J. Preece, Y. Rogers, and H. Sharp. Interaction Design: Beyond Human-Computer
Interaction. John Wiley and Sons, New York, 2002.

25. E. Prud’hommeaux and A. Seaborne. Sparql query language for rdf. Technical
report, W3C Candiate Recommendation, 2006.

26. R. Schwitter and M. Tilbrook. Let’s talk in description logic via controlled natural
language. In Logic and Engineering of Natural Language Semantics (LENLS2006),
Tokyo, Japan, 2006.

27. A. Spink, W. Dietmar, B. J. Jansen, and T. Saracevic. Searching the web: The
public and their queries. Journal of the American Society for Information Science
and Technology, 52(3):226–234, 2001.

28. A. Spoerri. Infocrystal: A visual tool for information retrieval management. In Sec-
ond Intl. Conf. on Information and Knowledge Management, pages 11–20, Wash-
ington, D.C., 1993. ACM Press.

29. Y. Sure, E. Michael, J. Angele, S. Staab, R. Studer, and D. Wenke. Ontoedit:
Collaborative ontology development for the semantic web. In First Intl. Semantic
Web Conf. 2002 (ISWC 2002), pages 221–235, Sardinia, Italy, 2002.

30. V. Tablan, T. Polajnar, H. Cunningham, and K. Bontcheva. User-friendly on-
tology authoring using a controlled language. Research Memorandum CS-05-10,
Department of Computer Science, University of Sheffield, 2005.

31. L. R. Tang and R. J. Mooney. Using multiple clause constructors in inductive logic
programming for semantic parsing. In 12th European Conf. on Machine Learning
(ECML-2001), pages 466–477, Freiburg, Germany, 2001.

32. C. W. Thompson, P. Pazandak, and H. R. Tennant. Talk to your semantic web.
IEEE Internet Computing, 9(6):75–78, 2005.



Fresnel: A Browser-Independent Presentation
Vocabulary for RDF

Emmanuel Pietriga1, Christian Bizer2, David Karger3, and Ryan Lee3,4

1 INRIA & Laboratoire de Recherche en Informatique (LRI), Orsay, France
emmanuel.pietriga@inria.fr

2 Freie Universität Berlin, Germany
chris@bizer.de

3 MIT CSAIL, Cambridge, MA, USA
karger@mit.edu

4 W3C (World Wide Web Consortium), Cambridge, MA, USA
ryanlee@w3.org

Abstract. Semantic Web browsers and other tools aimed at displaying RDF data
to end users are all concerned with the same problem: presenting content primar-
ily intended for machine consumption in a human-readable way. Their solutions
differ but in the end address the same two high-level issues, no matter the un-
derlying representation paradigm: specifying (i) what information contained in
RDF models should be presented (content selection) and (ii) how this informa-
tion should be presented (content formatting and styling). However, each tool cur-
rently relies on its own ad hoc mechanisms and vocabulary for specifying RDF
presentation knowledge, making it difficult to share and reuse such knowledge
across applications. Recognizing the general need for presenting RDF content
to users and wanting to promote the exchange of presentation knowledge, we
designed Fresnel as a browser-independent vocabulary of core RDF display con-
cepts. In this paper we describe Fresnel’s main concepts and present several RDF
browsers and visualization tools that have adopted the vocabulary so far.

1 Introduction

RDF (Resource Description Framework) is designed to facilitate machine interpretabil-
ity of information and does not define a visual presentation model since human read-
ability is not one of its stated goals. Displaying RDF data in a user-friendly manner is a
problem addressed by various types of applications using different representation para-
digms. Web-based tools such as Longwell [1] (see Figure 1-a) and Piggy-Bank [2] use
nested box layouts, or table-like layouts (e.g. Brownsauce [3], Noadster [4], Swoop [5])
for displaying properties of RDF resources with varying levels of details. Other tools
like IsaViz [6] (see Figure 1-b) and Welkin [7] represent RDF models as node-link di-
agrams, explicitly showing their graph structure. A third approach combines these par-
adigms and extends them with specialized user interface widgets designed for specific
information items like calendar data, tree structures, or even DNA sequences, providing
advanced navigation tools and other interaction capabilities: Haystack [8] (see Figure
1-c), mSpace [9] and Tabulator [10].

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 158–171, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Fresnel: A Browser-Independent Presentation Vocabulary for RDF 159

(a) (b) (c)

Fig. 1. Various types of RDF browsers: Longwell, IsaViz and Haystack

Such applications are confronted with the same two issues, independently of the un-
derlying representation paradigm and interface capabilities: selecting what content to
show and specifying how to format and style this content. Each application takes its
own approach and defines its own vocabulary to specify how to present data to users.
As with other kinds of knowledge, we believe that being able to share what we con-
sider presentation knowledge makes sense in the context of the Semantic Web and that
being able to exchange and reuse presentation knowledge between browsers and other
visualization tools will benefit both programmers and end users. However, the current
diversity of approaches and vocabularies for representing this knowledge makes such
exchange and reuse difficult at best, if not impossible.

1.1 Related Work

Early RDF visualization tools rendered RDF models in a predefined, non-customizable
way [3]. Recent tools provide more flexible visualizations that can be customized by
writing style sheets, transformations, or templates, following either a declarative or a
procedural approach.

Procedural approaches consider the presentation process as a series of transformation
steps. One such approach consists in using XSLT to transform RDF graphs encoded as
RDF/XML trees in an environment such as Cocoon [11]. Authoring XSLT templates
and XPath expressions to handle arbitrary RDF/XML is complex, if not impossible,
considering the many potential serializations of a given RDF graph and the present lack
of a commonly accepted RDF canonicalization in XML [12]. This problem has been
partly addressed by Xenon [13], an RDF style sheet ontology that builds on the ideas of
XSLT but combines a recursive template mechanism with SPARQL as an RDF-specific
selector language. Xenon succeeds in addressing XSLT’s RDF canonicalization prob-
lem but still has a drawback common to all procedural approaches, that transformation
rules are tied to a specific display paradigm and output format, thus preventing the reuse
of presentation knowledge across applications.

Declarative approaches are based on formatting and styling rules applied to a generic
representation of the content. They can be compared to XHTML+CSS, which has been
successful for the classic Web. The Haystack Slide ontology [14], used to describe
how Haystack display widgets are laid out, is one example. Another is IsaViz’s Graph
Style Sheets [15], which modifies the formatting, styling, and visibility of RDF graph



160 E. Pietriga et al.

elements represented as node-link diagrams. The main drawback of the declarative ap-
proaches developed so far is that they make strong assumptions about, and are thus tied
to, the specific display paradigm for which they have been developed and are therefore
unlikely to be meaningful across different representation paradigms.

1.2 Toward the Specification of Presentation Knowledge

Providing a single global view of all the information contained in an RDF model is
often not useful. The mass of data makes it difficult to extract information relevant to
the current task and represents a significant cognitive overload for the user. From an
abstract perspective, the first step of the presentation process thus consists in restricting
the visualization to small but cohesive parts of the RDF graph, similarly to views in
the database world. But identifying what content to show is not sufficient for making
a human-friendly presentation from the information. To achieve this goal, the selected
content items must be laid out properly and rendered with graphical attributes that favor
legibility in order to facilitate general understanding of the displayed information. Rely-
ing solely on the content’s structure and exploiting knowledge contained in the schema
associated with the data is insufficient for producing sophisticated presentations and
visualizations. The second step thus consists in formatting and styling selected content
items.

Fresnel’s goal is to provide an RDF vocabulary to encode information about how to
present Semantic Web content to users (i.e., what content to show, and how to show
it) as presentation knowledge that can be exchanged and reused between browsers and
other visualization tools. However, we do not expect all applications, which do not nec-
essarily rely on the same representation paradigms and formats, to exchange and reuse
all formatting and styling instructions as some might not be appropriate for all para-
digms. We therefore identified a set of core presentation concepts that are applicable
across applications and which form the core modules of Fresnel. One of the design
goals of these modules was to make them easy to learn and use, but also easy to imple-
ment in order to promote their adoption by many applications. On top of these modules,
we have also begun to define additional Fresnel vocabulary items which are grouped in
extension modules. The remainder of this article mainly focuses on the core selection
and formatting modules. More information about extension modules can be found in
the Fresnel User Manual [16].

2 Core Vocabulary Overview

Fresnel is an RDF vocabulary, described by an OWL ontology [16]. Fresnel presenta-
tion knowledge is thus expressed declaratively in RDF and relies on two foundational
concepts: lenses and formats (see Figure 2). Lenses specify which properties of RDF
resources are shown and how these properties are ordered while formats indicate how to
format content selected by lenses and optionally generate additional static content and
hooks in the form of CSS class names that can be used to style the output through ex-
ternal CSS style sheets. The following sections introduce the main vocabulary elements
using the examples in Figures 3 and 4.



Fresnel: A Browser-Independent Presentation Vocabulary for RDF 161

Fig. 2. Fresnel foundational concepts

Figure 3 shows a simple lens and associated formats used to present information
about a person described with the FOAF vocabulary [17]. This figure also shows a
possible rendering of such a resource, that a browser like Horus [18] or Longwell [1]
could produce. Examples use the Notation 3 syntax [19].

2.1 Content Selection

The domain of a lens indicates the set of resources to which a lens applies (line 301: the
lens applies to instances of classfoaf:Person). Propertyfresnel:showProperties
is used to specify what properties of these resources to show and in what order (lines
302-308). In this example, the values of both fresnel:classLensDomain and fres-
nel:showProperties are basic selectors, which take the form of plain URIs (rep-
resented here as qualified names), respectively identifying the class of resources and
property types to select. More advanced selection expressions can be written using ei-
ther FSL or SPARQL. They make it possible to associate lenses with untyped RDF re-
sources, which do occur in real-world models since rdf:type properties are not manda-
tory. They can also be used to specify that a lens should display all properties of a given
namespace, or any other complex selection condition(s) that can be represented by an
FSL or SPARQL expression (see Section 3).

Fresnel Core provides additional constructs for specifying what properties of re-
sources to display. The special value fresnel:allProperties is used when the list
of properties that can potentially be associated with resources handled by a lens is un-
known to the lens’ author but should nevertheless be displayed. When it appears as a
member of the list of properties to be shown by a lens, fresnel:allProperties des-
ignates the set of properties that are not explicitly designated by other property URI
references in the list, except for properties that appear in the list of properties to hide
(fresnel:hideProperties). Two other constructs are used to handle the potential
irregularity of RDF data stemming from the fact that different authors might use sim-
ilar terms coming from different vocabularies to make equivalent statements. Sets of
such similar properties can be said to be fresnel:alternateProperties. For in-
stance,foaf:depiction,foaf:img andp3p:image could be considered as providing



162 E. Pietriga et al.

(300) :PersonLens a fresnel:Lens ;
(301) fresnel:classLensDomain foaf:Person ;
(302) fresnel:showProperties (
(303) foaf:name
(304) foaf:mbox
(305) [rdf:type fresnel:PropertyDescription;
(306) fresnel:alternateProperties (
(307) foaf:depiction foaf:img p3p:image )
(308) ] ) .

(309) :nameFormat a fresnel:Format ;
(310) fresnel:propertyFormatDomain foaf:name ;
(311) fresnel:label "Name" .

(312) :mboxFormat a fresnel:Format ;
(313) fresnel:propertyFormatDomain foaf:mbox ;
(314) fresnel:label "Mailbox" ;
(315) fresnel:value fresnel:externalLink ;
(316) fresnel:valueFormat [ fresnel:contentAfter "," ] .

(317) :depictFormat a fresnel:Format ;
(318) fresnel:propertyFormatDomain foaf:depiction ;
(319) fresnel:label fresnel:none ;
(320) fresnel:value fresnel:image .

Fig. 3. A lens and some formats for presenting instances of class foaf:Person

the same information about resources displayed by a given lens. A browser using this
lens would try to display the resource’s foaf:depiction. If the latter did not exist,
the browser would then look for foaf:img or p3p:image (see lines 305-307). Such
knowledge can also be represented through ontology mapping mechanisms, but Fres-
nel provides this alternative as the ontology layer should not be made a requirement of
the Fresnel presentation process. The other construct, fresnel:mergeProperties, is
used to merge the values of related properties (e.g. foaf:homepage and foaf:work-
Homepage) into one single set of values that can later be formatted as a whole.

The presentation of property values is not limited to a single level, and (possibly
recursive) calls to lenses can be made to display details about the value of a property.
Lenses used in this context are referred to as sublenses. Modifying the example of
Figure 3, we specify in Figure 4 that the browser should render values of the property
foaf:knows (lines 405-407) using another lens (PersonLabelLens, lines 410-413).
The FSL expression (see Section 3) on line 406 specifies in an XPath-like manner that
only values of foaf:knows that are instances of foaf:Person should be selected.

The sublens mechanism implies that a lens can recursively call itself as a sublens for
displaying property values. In order to prevent infinite loops caused by such recursive
calls, Fresnel defines a closure mechanism that allows Fresnel presentation designers to
specify the maximum depth of the recursion.



Fresnel: A Browser-Independent Presentation Vocabulary for RDF 163

2.2 Content Formatting

The default layout of selected information items is highly dependent on the browser’s
representation paradigm (e.g. nested box layout, node-link diagrams, etc.), but the final
rendering can be customized by associating formatting and styling instructions with
elements of the representation.

(400) :PersonLens a fresnel:Lens ;
(401) fresnel:classLensDomain foaf:Person ;
(402) fresnel:showProperties (
(403) foaf:name
(404) foaf:mbox
(405) [rdf:type fresnel:PropertyDescription ;
(406) fresnel:property "foaf:knows[foaf:Person]"∧∧fresnel:fslSelector;

(407) fresnel:sublens :PersonLabelLens]
(408) ) ;
(409) fresnel:group :FOAFmainGroup .

(410) :PersonLabelLens a fresnel:Lens ;
(411) fresnel:classLensDomain foaf:Person ;
(412) fresnel:showProperties ( foaf:name ) ;
(413) fresnel:group :FOAFsubGroup .

(414) :nameFormat a fresnel:Format ;
(415) fresnel:propertyFormatDomain foaf:name ;
(416) fresnel:label "Name" ;
(417) fresnel:group :FOAFmainGroup .

(418) :mboxFormat a fresnel:Format ;
(419) fresnel:propertyFormatDomain foaf:mbox ;
(420) fresnel:label "Mailbox" ;
(421) fresnel:value fresnel:externalLink ;
(422) fresnel:valueFormat [ fresnel:contentAfter "," ] ;
(423) fresnel:group :FOAFmainGroup .

(424) :friendsFormat a fresnel:Format ;
(425) fresnel:propertyFormatDomain foaf:name ;
(426) fresnel:label "Friends" ;
(427) fresnel:group :FOAFsubGroup .

(428) :FOAFmainGroup a fresnel:Group .
(429) :FOAFsubGroup a fresnel:Group .

Fig. 4. An example of a lens using another lens to display some property values

Formats apply to resources, or to properties and their values, depending on the speci-
fied domain. The three example formats of Figure 3 apply respectively to the properties
foaf:name, foaf:mbox and foaf:depiction (lines 310, 313, 318). Formats can be
used to set properties’ labels (lines 311, 314, 319). Property fresnel:label does not
specify a particular layout but simply gives a text string that can be used to identify the
property. Labels might already be defined for many properties (e.g., in the associated



164 E. Pietriga et al.

vocabulary description using rdfs:label), but such labels are not guaranteed to exist.
Moreover, a given label might not always be the most appropriate depending on the
context in which the property is displayed. For instance, the default label associated
with property foaf:name in the FOAF schema is name. When displaying the persons
known by the current person in Figure 4, this default label is replaced by Friends (line
426) so as to indicate the appropriate interpretation of the corresponding foaf:name

property values in this context. The customization of labels also proves useful when
displaying property values that are not direct properties of the current resource, as is
made possible by the use of SPARQL or FSL expressions such as:

foaf:knows/*[airport:iataCode/text() = ’CDG’]/foaf:name

which would require an explanatory label such as Friends that leave near Paris.
Formats can also give instructions regarding how to render values. For instance, line

315 indicates that foaf:mbox values should be rendered as clickable links (email ad-
dresses). Values of foaf:depiction should be fetched from the Web and rendered as
bitmap images (line 320).

Property values can be grouped, and additional content such as commas and an end-
ing period can be specified to present multi-valued properties (line 316: inserting a
comma in-between each email address). CSS class names can also be associated with
the various elements being formatted. These names appear in the output document and
can be used to style the output by authoring and referencing CSS style sheets that use
rules with the same class names as selectors.

2.3 Lens and Format Grouping

Lenses and formats can be associated through fresnel:Groups so that browsers can
determine which lenses and formats work together. Fresnel groups are taken into ac-
count by browsers when selecting what format(s) to apply to the data selected by a
given lens, as several formats might be applicable to the same property values.

Figure 4 illustrates the use of Fresnel groups to display different labels for the
foaf:name property depending on the context in which the property is shown: the
property is labeled Name when displayed in the context of the PersonLens lens, but is
labeled Friends when displayed in the context of the PersonLabelLens lens. This is
achieved by associating the PersonLens (lines 400-409) and the nameFormat (lines
414-417) to one group: FOAFmainGroup, and by associating the PersonLabelLens
(lines 410-413) and the friendsFormat (lines 424-427) to a second group: FOAFsub-
Group.

A Fresnel group can also serve as a placeholder for formatting instructions that ap-
ply to all formats associated with that group, thus making it possible to factorize the
declarations. It is also typically used to declare group-wide data, relevant to both lenses
and formats, such as namespace prefix bindings.

3 Fresnel Selectors

Selection in Fresnel occurs when specifying the domain of a lens or format and when
specifying what properties of a resource a lens should show. Such selection expressions



Fresnel: A Browser-Independent Presentation Vocabulary for RDF 165

identify elements of the RDF model to be presented; in other words, specific nodes and
arcs in the graph. As we expect selection conditions to be of varying complexity, we
allow them to be expressed using different languages in an attempt to balance expressive
power against ease of use.

3.1 Basic Selectors

The simplest selectors, called basic selectors, take the form of plain URI references
as shown in section 2. Depending on whether they are used as values of fresnel:
instanceLensDomain or fresnel:classLensDomain, these URI references are
interpreted respectively either as:

– URI equality constraints (the resource to be selected should be identified by this
URI),

– or type constraints (the resources to be selected should be instances of the class
identified by this URI).

Basic selectors are also used to identify properties, which are used for instance as
values of fresnel:showProperties or fresnel:alternateProperties.

Basic selectors are easy to use but have very limited expressive power. For instance,
they cannot be used to specify that a lens should apply to all instances of class foaf:
Person that are the subject of at least five foaf:knows statements. More powerful
languages are required to express such selection constraints.

3.2 Languages for Complex Selection Expressions

Fresnel presentation designers can use two different languages for expressing complex
selection expressions. The first option is the SPARQL query language for RDF [20].
In the context of Fresnel, SPARQL queries must always return exactly one result set,
meaning that only one variable is allowed in the query’s SELECT clause. Figure 5-a
gives an example of a lens whose domain is defined by a SPARQL expression. Alter-
natively, designers who prefer a more XPath-like approach, which proved to be a well-
adapted selector language for XSLT, can use the Fresnel Selector Language (FSL). FSL
is a language for modeling traversal paths in RDF graphs, designed to address the spe-
cific requirements of a selector language for Fresnel. It does not pretend to be a full
so-called RDFPath language (contrary to XPR [21], an extension of FSL) but tries to
be as simple as possible, both from usability and implementation perspectives. FSL is
strongly inspired by XPath [22], reusing many of its concepts and syntactic constructs
while adapting them to RDF’s graph-based data model. RDF models are considered
directed labeled graphs according to RDF Concepts and Abstract Syntax [23]. FSL is
therefore fully independent from any serialization. A lens definition using two FSL ex-
pressions is shown in Figure 5-b. More information about FSL, including its grammar,
data model and semantics is available in the FSL specification [24].

Applications implementing Fresnel are required to support basic selectors, and we ex-
pect a reasonable share of them to support the two other languages: SPARQL is gaining



166 E. Pietriga et al.

# (a) Lens for John Doe’s mailboxes (SPARQL)
:PersonLens a fresnel:Lens ;

fresnel:instanceLensDomain
"SELECT ?mbox WHERE ( ?x foaf:name ’John Doe’ )

( ?x foaf:mbox ?mbox )"ˆˆfresnel:sparqlSelector .

# (b) Lens for foaf:Person instances that know at least five other resources (FSL)
:PersonLens a fresnel:Lens ;

fresnel:instanceLensDomain
"foaf:Person[count(foaf:knows) >= 5]"ˆˆfresnel:fslSelector ;

# and which shows the foaf:name property of all foaf:Person
# instances known by the current resource.

fresnel:showProperties (
"foaf:knows/foaf:Person/foaf:name"ˆˆfresnel:fslSelector) .

Fig. 5. Examples of SPARQL and FSL expressions used in Fresnel lens definitions

momentum as a W3C recommendation, and four open-source Java implementations of
FSL are already available1 for HP’s Jena Semantic Web Toolkit2, for IsaViz (providing
a visual FSL debugger) and for different versions of the Sesame RDF database3.

4 Implementations

Fresnel has been designed as an application- and output format-independent RDF pre-
sentation vocabulary. In this section we give an overview of various applications imple-
menting Fresnel: Longwell [1] and Horus [18] which both render RDF data as HTML
Web pages using nested box layouts, IsaViz [6] which represents RDF graphs as node-
link diagrams, and Cardovan, a browser and lens editor based on the SWT GUI toolkit.

Longwell is a Web-based RDF browser whose foundational navigation paradigm is
faceted browsing. Faceted browsing displays only the properties that are configured
to be ’facets’ (i.e., to be important for the user browsing data in one or more specific
domains) using values for those fields as a means for zooming into a collection by
selecting those items with a particular field-value pair.

The latest version of Longwell relies on the SIMILE Fresnel rendering engine, a Java
library built on the Sesame triple store. The engine implements all of the Fresnel core
vocabulary and the portion of the extended vocabulary relating to linking groups to CSS
stylesheets as well as the option of using FSL as a selector language. The Fresnel engine
output consists solely of an XML representation of the Fresnel lenses and formats as
they apply to one resource. Longwell then applies an XSLT transformation to the XML
to generate XHTML. The default XSLT stylesheet shipped with Longwell will generate
a traditional nested box layout, as Horus does, but the stylesheet can be modified by
XSLT developers to change the model as they see fit.

The left side of Figure 6 shows the rendering of a foaf:Organization resource
using a lens that gives some details about the organization and lists its constituent mem-
bers, all foaf:Persons, each listed with their corresponding nickname information to
assist in identification.

1 http://dev.w3.org/cvsweb/java/classes/org/w3c/IsaViz/fresnel/
2 http://jena.sourceforge.net
3 http://openrdf.org



Fresnel: A Browser-Independent Presentation Vocabulary for RDF 167

Fig. 6. Displaying a view of an organization (left) and a constituent member (right) in Longwell

The nickname list for each person is preceded by the string ’aka: ’, added to the
display by using the fresnel:contentFirst directive. The list is also comma sep-
arated, accomplished by setting fresnel:contentAfter to a comma. Clicking on
a URI in the display brings the user to that URI; clicking on a textual label changes
Longwell’s focus to the resource represented by that label.

On the right side of Figure 6, the focus is on one specific member of the organization
featured in the left side. A sublens is used to generate office contact details, and the
same sublens used in the organization focus (left image) to describe an organization’s
members is used in the person focus (right image) to describe who this person claims
to know.

Horus is an RDF browser that displays RDF information using a nested box layout. The
browser provides a simple navigation paradigm for selecting RDF resources and allows
users to switch between different lenses for rendering the resources. Horus supports
Fresnel lenses and formats, which can be associated together using Fresnel groups.
Groups can refer to external CSS style sheets which are used to define fonts, colors and
borders. Horus supports basic selectors, but does not offer SPARQL and FSL as selector
languages. Horus is implemented using PHP and is backed by a MySQL database.
Applying a lens to an RDF resource results in an intermediate tree, which is formatted
afterwards using the formats that are associated to the group of the selected lens. The
ordered and formatted intermediate tree is then serialized into XHTML.

Figure 7 shows two different views on the same person in Horus. The view on the
left uses a lens that displays many details about persons. The sentence ”This per-
son knows the following people” is a custom label for property foaf:knows. The
disclaimer ”That a person knows somebody does. . . ” is static content added using
property fresnel:contentLast. Some of the links are formatted as external links
(fresnel:value formatting instruction set to fresnel:externalLink), while oth-
ers refer to RDF resources in the knowledge base, and thus have a different rendering.



168 E. Pietriga et al.

Fig. 7. Two different views on the same person in Horus: detailed view (left), friends view (right)

On the right side of Figure 7, the same person is shown using a different lens. This
lens displays less details about the person itself, but refers to a second lens (used as a
sublens) for displaying details about other persons known by this person. As the sub-
lens belongs to a different group, another CSS class is used to style the names of the
person’s friends.

IsaViz is an RDF authoring environment representing RDF models as node-link dia-
grams. The interpretation of Fresnel in IsaViz is inspired by both Generalized Fisheye
Views [25] and Magic Lenses [26]. Fresnel lenses, in conjunction with the formats as-
sociated with them through groups, are considered as “genuine” lenses that modify the
visual appearance of objects below them.

Figure 8 (left) shows the default rendering of a region of an RDF model containing a
foaf:Person resource. At this level of magnification, only a few of the many property
values associated with the resource are visible. Users need to navigate in the graph in
order to get to the values of properties, which can be cumbersome. Alternatively, users
can select a Fresnel lens from the list of available lenses loaded in IsaViz through the
graphical user interface. The selected lens is then tied to the mouse cursor, and when the
lens hovers over a resource that matches its domain, the resource’s visual appearance
gets modified according to the lens and associated format(s). Resources that match the
selected lens’ domain are made visually prominent by rendering all other nodes and all
arcs using shades of gray with minimum contrast. When the lens hovers over a resource,
properties selected by the lens are temporarily rendered with highly-contrasted vivid
colors and brought within the current view, closer to the main resource and reordered
clockwise according to the ordering of properties in the lens definition, as illustrated in
Figure 8 (right). Property values revert back to their original state when the lens moves
away from the resource. All these visual modifications, including color and position
changes, are smoothly animated thanks to the underlying graphical toolkit’s animation
capabilities [27], thus keeping the user’s cognitive load low following the principles of
perceptual continuity.

Fresnel core formatting instructions are interpreted as customizations of the original
layout and rendering of nodes and links in the diagram. For instance, nodes represent-
ing foaf:image property values can be rendered by fetching the actual image from the



Fresnel: A Browser-Independent Presentation Vocabulary for RDF 169

Web, as illustrated in Figure 8 (right). The default labels of nodes and arcs can be
customized using fresnel:label instructions. In case a resource is the subject of
multiple statements involving the same property or properties defined as fresnel:

mergeProperties, the arcs and nodes representing these statements can be merged
as a single arc and node with all values within that node, optionally separated by text
as specified in fresnel:contentBefore, fresnel:contentAfter and related for-
matting instructions.

Fig. 8. Zoomed-in view of a foaf:Person resource in IsaViz: default presentation (left) and
rendered with a Fresnel lens (right)

Fig. 9. Editing a lens (left) and visualizing the result (right) in Cardovan

Cardovan is IBM’s implementation of Fresnel lenses (see Figure 9). Written in Java,
Cardovan renders lenses with the SWT graphical user interface toolkit. Cardovan is
similar to other implementations in that it uses a subset of CSS to specify the layout of
lens components on the screen. A remarkable feature of Cardovan is that it allows users
to modify a lens in place. Users can add new properties to the lens, modify property
values, and rearrange the physical layout of the properties displayed, though it is not



170 E. Pietriga et al.

a full WYSIWYG Fresnel lens designer. The project is still in its early stages, but is
functional and is already being used for internal projects at IBM.

5 Conclusion

We have given an overview of Fresnel, a browser-independent, extensible vocabulary
for modeling Semantic Web presentation knowledge. Fresnel has been designed as a
modularized, declarative language manipulating selection, formatting, and styling con-
cepts that are applicable across representation paradigms and output formats. We have
presented applications implementing Fresnel core modules while based on different
representation and navigation paradigms, thus substantiating the claim that Fresnel can
be used to model presentation knowledge that is reusable across browsers and other
Semantic Web visualization tools.

Although core modules have been frozen for the time being, the Fresnel vocabu-
lary remains a work in progress as new extension modules meeting special needs are
being developed (e.g., for describing the purpose of lenses and for editing informa-
tion). Extension modules are not necessarily aimed at being application- and paradigm-
independent, as they might not be relevant in all cases; but their inclusion in Fresnel
provides users with a unified framework for modeling presentation knowledge. Another
field for future work is enabling Fresnel formats and lenses to be retrieved transparently
from the Web so that RDF browsers could query the Web for display knowledge about
previously unknown vocabularies.

The development of Fresnel is an open, community-based effort and new contrib-
utors are welcome to participate in it. More information can be found on its Web site
http://www.w3.org/2005/04/fresnel-info/.

Acknowledgments

We would like to thank Stefano Mazzocchi, Stephen Garland, David Huynh, Karun
Bakshi, Hannes Gassert, Jacco van Ossenbruggen, Dennis Quan, Lloyd Rutledge, Rob
Gonzalez and Rouben Meschian for their valuable input to the design of the Fresnel
vocabulary, their contributions to the discussions on the Fresnel mailing list, and work
on Fresnel implementations.

References

1. SIMILE: Longwell RDF Browser (2003-2005) http://simile.mit.edu/longwell/.
2. Huynh, D., Mazzocchi, S., Karger, D.: Piggy Bank: Experience the Semantic Web Inside

Your Web Browser. In: Proceedings of the 4th International Semantic Web Conference
(ISWC). (2005) 413–430

3. Steer, D.: BrownSauce: An RDF Browser. http://www.xml.com/pub/a/2003/02/
05/brownsauce.html (2003) XML.com.

4. Rutledge, L., van Ossenbruggen, J., Hardman, L.: Making RDF Presentable: Selection,
Structure and Surfability for the Semantic Web. In: Proceedings of the 14th international
conference on World Wide Web. (2005) 199–206



Fresnel: A Browser-Independent Presentation Vocabulary for RDF 171

5. Kalyanpur, A., Parsia, B., Hendler, J.: A Tool for Working with Web Ontologies. In: Pro-
ceedings of Extreme Markup Languages. (2004)

6. Pietriga, E.: IsaViz: A Visual Authoring Tool for RDF. http://www.w3.org/2001/
11/IsaViz/ (2001-2006)

7. SIMILE: Welkin. http://simile.mit.edu/welkin/ (2004-2005)
8. Quan, D., Huynh, D., Karger, D.R.: Haystack: A Platform for Authoring End User Semantic

Web Applications. In: 2nd International Semantic Web Conference (ISWC). (2003) 738–753
9. mc schraefel, Smith, D., Owens, A., Russell, A., Harris, C.: The evolving mSpace platform:

leveraging the Semantic Web on the Trail of the Memex. In: 16th ACM Conference on
Hypertext and Hypermedia. (2005) 174–183

10. Berners-Lee, T., Chen, Y., Chilton, L., Connolly, D., Dhanaraj, R., Hollenbach, J., Lerer,
A., Sheets, D.: Tabulator: Exploring and Analyzing linked data on the Semantic Web. In:
Proceedings of the 3rd Int. Semantic Web User Interaction Workshop, Athens, USA (2006)

11. ASF: The Apache Cocoon Project. http://cocoon.apache.org (2005)
12. Carroll, J.J., Stickler, P.: TriX: RDF triples in XML. In: In the International Journal on

Semantic Web and Information Systems, Vol.1, No.1, Jan-Mar 2005. (2005)
13. Quan, D., Karger, D.: Xenon: An RDF Stylesheet Ontology. general@simile.mit.

edu mailing list attachment (2004)
14. Huynh, D.: Haystack’s User Interface Framework: Tutorial and Reference. http://

haystack.lcs.mit.edu/documentation/ui.pdf (2003)
15. Pietriga, E.: Semantic Web Data Visualization with Graph Style Sheets. In: Proceedings of

the ACM Symposium on Software Visualization (SoftVis’06), Brighton, UK (2006)
16. Bizer, C., Lee, R., Pietriga, E.: Fresnel - Display Vocabulary for RDF. http://www.w3.

org/2005/04/fresnel-info/manual-20050726/ (2005)
17. FOAFers: Friend-of-a-Friend (FOAF). http://www.foaf-project.org/ (2001)
18. Erdmann, T.I., Bizer, C.: Horus RDF Browser. http://www.wiwiss.fu-berlin.

de/suhl/bizer/rdfapi/tutorial/horus/ (2005)
19. Berners-Lee, T.: Primer: Getting into RDF & Semantic Web using N3. http://www.w3.

org/2000/10/swap/Primer.html (2005)
20. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF. http://www.

w3.org/TR/rdf-sparql-query/ (2005)
21. Cohen-Boulakia, S., Froidevaux, C., Pietriga, E.: Selecting Biological Data Sources and

Tools with XPR, a Path Language for RDF. In: Pacific Symposium on Biocomputing (PSB),
Maui, Hawaii. (2006) 116–127

22. Clark, J., DeRose, S.: XML Path Language (XPath) version 1.0. http://www.w3.org/
TR/xpath (1999)

23. W3C: Resource Description Framework (RDF): Concepts and Abstract Syntax. http://
www.w3.org/TR/rdf-concepts/ (2004)

24. Pietriga, E.: Fresnel Selector Language for RDF. http://www.w3.org/2005/04/
fresnel-info/fsl-20050726/ (2005)

25. Furnas, G.W.: A fisheye follow-up: further reflections on focus + context. In: CHI ’06:
Proceedings of the SIGCHI conference on Human Factors in computing systems, ACM Press
(2006) 999–1008

26. Bier, E.A., Stone, M.C., Pier, K., Buxton, W., DeRose, T.D.: Toolglass and magic lenses:
the see-through interface. In: SIGGRAPH ’93: Proc. of the 20th conference on Computer
graphics and interactive techniques, ACM Press (1993) 73–80

27. Pietriga, E.: A Toolkit for Addressing HCI Issues in Visual Language Environments. In:
IEEE Symposium on Visual Languages and Human-Centric Computing (VL/HCC’05), Dal-
las, USA (2005) 145–152



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 172 – 186, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Software Engineering Approach to Design and 
Development of Semantic Web Service Applications  

Marco Brambilla1, Irene Celino2, Stefano Ceri1, Dario Cerizza2, 
Emanuele Della Valle2, and Federico Michele Facca1 

1 Politecnico di Milano, Dipartimento di Elettronica e Informazione, 20133 Milano, Italy 
{Marco.Brambilla, Stefano.Ceri, Federico.Facca}@polimi.it  

2 CEFRIEL, 20133 Milano, Italy 
{celino, cerizza, dellavalle}@cefriel.it 

Abstract. We present a framework for designing and developing Semantic Web 
Service applications that span over several enterprises by applying techniques, 
methodologies, and notations offered by Software engineering, Web 
engineering, and Business Process modeling. In particular, we propose to 
exploit existing standards for the specification of business processes (e.g., 
BPMN), for modeling the cross enterprise process, combined with powerful 
methodologies, tools and notations (e.g., WebML) borrowed from the Web 
engineering field for designing and developing semantically rich Web 
applications, with semi-automatic elicitation of semantic descriptions (i.e., 
WSMO Ontologies, Goals, Web Services and Mediators) from the design of the 
applications, with huge advantages in terms of efficiency of the design and 
reduction of the extra work necessary for semantically annotating the 
information crossing the organization boundaries.  

Keywords: Business Process Modeling, Semantic Web Services, Software 
Engineering, Web Engineering, Model Driven Design, Methodology. 

1   Introduction 

Taking the e-challenges (e-business, e-government, e-health, etc.) seriously means 
dealing with business processes that: (i) span over several enterprises; (ii) involve 
multiple actors, (iii) require asynchronous communication; and (iv) are situated in 
frequently changing scenarios. Current ICT solutions have serious technological and 
methodological limitations when addressing the abovementioned aspects; the 
emerging field of Semantic Web Services is offering the most promising approach to 
overcome such limitations, providing paradigms based on program annotation and 
self-descriptive implementation, for building cross-enterprise applications which 
favor flexibility, automatic resource discovery, and dynamic evolution. However, the 
development of applications based on Semantic Web Services is currently lacking a 
set of high level software engineering abstractions that may push the spreading of 
such technology. One of the main problems faced by developers to adopt Semantic 
Web technologies is the extra cost of semantic annotation of the developed software 
components. This is mostly because software engineering techniques are seldom used 
in the context of Semantic Web; hence, no automatic mechanism can be applied for 



 A Software Engineering Approach to Design and Development 173 

extracting semantic descriptions. Therefore, annotations are still added manually, in a 
very expensive and subjective manner. 

In this work, we propose both a method and a toolset for fostering the adoption of 
Semantic Web Services (i.e., WSMO) in cross-enterprise applications. We exploit 
Web engineering methods, including visual declarative modeling (i.e., WebML), 
automatic code generation (locally and globally executable through Semantic 
Execution Environments such as WSMX), and automatic elicitation of semantic 
descriptions (i.e., WSMO Ontologies, Goals, Web Services and Mediators) from the 
design of the application. Global choreography (in W3C sense), front-end, and 
services implementations are modeled from Business Process models and WebML 
models, whereas goals, descriptions of Web services (i.e., capability and 
choreography interface), and descriptions of mediators are automatically generated. 
The approach also comprises the importing/ exporting of ontologies. The following 
techniques and notations shall be used for covering the various design aspects: 

• High-level design of the global choreography of the interaction between services: 
we adopt BPMN (Business Process Management Notation) to build process 
models, involving several actors possibly from different enterprises.  

• Design of the underlying data model of the cross-enterprise application: we use 
extended E-R (Entity Relationship) diagrams or equivalent subset of object 
oriented class diagrams (whose expressive power is equivalent to WSML Flight) to 
model the local ontology of the application and to import existing ontologies; we 
expose the resulting set of ontologies to the underling WSMX; 

• Design of web services interfaces, of integration platform, and of application front 
end: we use visual diagrams representing Web sites and services according to the 
WebML models [5], including specific hypertext primitives for Web service 
invocation and publishing [18], and explicit representation of workflows [6]. 

In this way, instead of coping with textual semantic descriptions of Semantic Web 
Services, application developers will obtain them from the use of abstractions that are 
supported by software engineering tools. The use of description generators, 
sometimes helped by designer’s annotations, guarantees the benefits of Semantic Web 
Services at nearly zero extra-cost, thus positioning the implemented applications 
within an infrastructure that allows for flexible and dynamic reconfiguration. 

The paper is structured as follows: Section 2 presents a running example; Section 3 
reviews the background; Section 4 presents the proposed approach to the elicitation of 
semantic descriptions; Section 5 briefly outlines our implementation experience; 
Section 6 offers a view of the related work and finally Section 7 concludes. 

2   Running Example 

We will consider a running example derived by the Purchase Order Mediation and the 
Shipment Discovery scenarios proposed at the SWS Challenge 2006 [8], properly 
extended to represent a classical B2B application. In this scenario, two companies, Blue 
and Moon, need to integrate their purchase process. In summary (Fig. 1), the 
architecture includes the two companies, the mediation service, a general-purpose web 
service built by Blue for interacting with external services, and a discovery engine.Blue 



174 M. Brambilla et al. 

usually handles its purchase orders towards its partners by using a standard RosettaNet 
PIP 3A4 conversation, while the Moon partner offers a set of legacy Web Services. Blue 
employees want to use their usual RosettaNet Purchase Order Interface to interact with 
their counterparts in the Moon company, therefore a mediation component is needed. 
The mediator is in charge of (i) transforming the single RosettaNet message (containing 
all the order details) to the various messages needed by Moon to create and handle a 
purchase order (data mediation); and (ii) of translating the set of confirmation messages 
by Moon into a whole RosettaNet Purchase Order Confirmation to be sent back to Blue 
(process mediation). After completing the purchase of a set of products, Blue 
employees organize the shipment of the products through the Shipment Organize 
Interface. This interface is implemented by a Blue Web Service, whose internal 
orchestration relies on a WSMX compliant Discovery Engine for retrieving available 
shipment services, and hence needs the shipment goal to be described according to the 
WSMO standard. The Web Services returned by the Discovery Engine are then 
invoked to obtain the actual shipment offers. Finally, the system proceeds with the 
orchestration of the chosen service. 

 

Fig. 1. The B2B scenario derived from the Semantic Web Service Challenge 2006 
 



 A Software Engineering Approach to Design and Development 175 

3   Background 

Our approach relies on methodologies, tools and techniques from the fields of 
Software Engineering, Web Engineering, and Business Process Management.  

3.1   Modeling Business Processes Using BPMN 

All the B2B Web applications implement a business process, which is represented by 
using a workflow model. Several notations have been proposed for workflow design. 
We adopt Business Process Management Notation (http://bpmn.org), which is 
associated to the BPML standard, issued by the Business Process Management 
Initiative. The BPMN notation allows one to represent all the basic process concepts 
defined by the WfMC (http://wfmc.org) model and others, such as data and control 
flow, activity, actor, conditional/split/join gateways, event and exception 
management, and others. BPMN activities can be grouped into pools, and one pool 
contains all activities that are to be enacted by a given process participant. The BPMN 
formalization of the running case scenario can be seen in Fig. 4. 

3.2   Semantic Web Service Modeling Using WSMO 

The Web Service Modeling Ontology (WSMO) [23] aims at solving the application 
integration problem for Web services by defining a coherent technology for Semantic 
Web services, using four modeling elements: ontologies, Web services, goals, and 
mediators [13]. Ontologies provide the formal semantics to the information used by all 
other components, by describing concepts, relations, axioms, instances and so on. Web 
services represent the functional and behavioral aspects, which must be semantically 
described in order to allow semi-automated use. Each Web service represents an atomic 
piece of functionality that can be reused to build more complex ones. Web services are 
described in WSMO in terms of non-functional properties, functionality (capabilities), 
and behavior. The behavior of a Web service is described in its interface from two 
perspectives: communication and collaboration. A Web service can be described by 
multiple interfaces, but has one and only one capability. Goals specify objectives that a 
client might have when invoking a Web service. Finally, mediators provide 
interoperability facilities among the other elements, aiming at overcoming structural, 
semantic or conceptual mismatches between the components of a WSMO description.  

3.3   Model-Driven Web Application Design Using WebML 

Several Web engineering methodologies provide conceptual models, notations, and 
tools for the design of Web applications ([20], [14], [12], and others). In this paper, we 
adopt the WebML methodology [5], envisioning the following steps in the development 
process: (i) design of workflow model of the business process to be implemented; (ii) 
automatic generation of hypertext model and data model skeletons implementing the 
workflow; (iii) refinement of the produced skeletons by designers; (iv) automatic 
generation of the running Web application starting from the specified models. 

The specification of a WebML application consists of a set of models: the application 
data model (an extended Entity-Relationship or UML Class Diagram), one or more 
hypertext models (i.e., different site views for different types of users), describing the 



176 M. Brambilla et al. 

Web application structure; the presentation model, describing the visual aspects. The 
hypertext main concept is the site view, which is a graph of pages; pages are composed 
by units, representing publishing of atomic pieces of information, and operations for 
modifying data or performing arbitrary business actions. Units are connected by links, 
to allow navigation, parameter passing, and computation of the hypertext. The WebML 
service model includes a set of Web service units [18], corresponding to the WSDL 
classes of Web service operations, and components for workflow management and 
tracking [6].  

The Web services units include request-response and one-way operations, which 
model services invocation, and notification and solicit-response operations, which are 
instead triggered by the reception of a message (thus they represent the publishing of a 
Web service). The model supports both the grounding of Web services to the XML 
format of Web service messages, and data-mediation capabilities.  

WebML covers also the development Web applications implementing business 
processes [6], thereby supporting full-fledged collaborative workflow-based appli-
cations, spanning multiple individuals, services, and organizations. The data model is 
extended with the meta-data necessary for tracking the execution of the business 
process; in particular, Case stores information about each instantiation of the process 
and Activity stores the status of each executed activity. The hypertext model is extended 
by specifying activity boundaries and business-dependent navigation links. Activities 
are represented by areas tagged with a marker “A”; workflow links traverse the 
boundary of activity areas, starting or ending the activity. Distributed processes can be 
obtained by combining workflow and Web services primitives. 

 

Fig. 2. The Blue Web interface to organize shipments for successful orders 

Fig. 2 shows a WebML hypertext model representing a fragment of the Blue Web 
application: a home page (Select Order to Ship) allows the user to choose an Order 
(with Status “Not shipped”) from the Order List index unit. When an order is chosen, 
the “S” link starts the Organize Shipment activity, showing the Order Details data unit 
and a form (Search Shipment Offers). The data submission triggers the invocation of a 
remote service (searchShipmentOffers), whose results are lifted by storeShipmentOffer 
XML-in. The activity is completed (link “C”) and the following one is started. The 
Select Shipment Offer page is shown, containing a list of Shipment Offers (the results of 
the service call). The user chooses an offer and thus triggers the confirmShipmentOffer. 

 



 A Software Engineering Approach to Design and Development 177 

4   Design of Semantic Web Service Applications 

This section describes our proposal for semi-automatically generating WSMO-
compliant semantic specifications of a Web application. Our approach extends the 
WebML methodology presented in section 3.3 towards the design of semantic Web 
services and Web applications. Fig. 3 summarizes the envisioned development 
process. The main design flow, supported on conventional Web technology [6], 
seamlessly leads the designer from the process modeling to the running Web 
application, by producing some intermediate artifacts (BPMN models, WebML 
skeletons, data models, hypertext models) and by delegating part of the execution to a 
Semantic Execution Environment (e.g. WSMX). Such models are enriched by 
imported ontological descriptions (on top of the figure) and are exploited for devising 
the set of WSMO specifications (at the bottom of the figure): the ontology is derived 
from BP model, data model, and hypertext model; the web services capability 
description is derived from hypertext model; the choreography information is derived 
from BP model and hypertext model; the user goals are derived from the BP model. 

 

Fig. 3. Overall picture of the approach. 

4.1   Design of the Business Process 

The business process (BP) design task, focusing on the high-level schematization of 
the processes underlying the application, results in one or more BP diagrams. The 
reader may refer to [6] for a methodology for the design of business process-based 
Web applications. The BP diagram of the running case is represented in Fig. 4, with a 
well-defined workflow semantics (lacking in Fig. 1): for sake of clarity, the process is 
split into two sub-processes: part (a) describes the purchase and part (b) describes the 
shipment management. In the following, we will exemplify the design of the mediator 
of part (a), and the extraction of ontology, capability and choreography of part (b).  

4.2   Design of the Data Model and Extraction of the Ontologies 

The elicitation of the ontologies involved in the application is addressed by four steps, 
each addressing different aspects of the application ontology (see Fig. 3 again): 
 



178 M. Brambilla et al. 

1. First, existing remote ontologies, possibly provided by third parties, can be imported. 
2. Then, the data model is considered as a piece of ontology. This means that an 

appropriate transformation of the WebML data model transforms it into a WSMO-
compliant ontology, which is then registered on the WSMX resource manager [23]; 

3. Then, the process ontology is extracted from the BPMN specification. The 
elements of the workflow model (e.g., activity names, lanes) are extracted as 
semantic concepts and used as additional piece of the ontology that will be useful 
in defining the state signature of the choreography interfaces of the Web services; 

4. Finally, the BPMN model and the WebML data model are annotated with concepts 
imported from existing ontologies. 

This approach is oriented towards T. Berners-Lee vision for Web applications 
connected by concept annotations [2]. 

 

Fig. 4. Workflow representing the interaction of the running example (BPMN notation) 

Fig. 5 shows the data model used by the Shipment Web Service. It includes three 
main domain entities: Shipment, ShipmentService (shipment partners), and Location 
(geographical places). The diagram includes Case and Activity entities described in 



 A Software Engineering Approach to Design and Development 179 

Section 3.3. Each Shipment is related to a ShipmentService, to an origin and a 
destination Location, and to an Activity indicating its current state. ShipmentService is 
connected to Location through the shipTo relationship, describing the set of possible 
shipment locations for each partner; the hasLocation relationship specifies the set of 
valid pick up points for each carrier.  

 

Fig. 5. A portion of the WebML data model used by the Shipment Web Service 

WebML data model can be easily converted to a WSML-Flight ontology 
maintaining all its constraints. E.g., the EuropeanShipmentService entity is a sub 
entity of the InternationalShipmentService that is located in Europe. This subentity is 
described in the WebML-OQL syntax as: 

 

InternationalShipmentService(as SuperEntity) where 
   InternationalShipmentService.hasLocation isa Europe. 

 

Its translation to WSML-Flight is: 
 

concept EuropeanShipmentService subConceptOf InternationalShipmentService 
   nfp dc#relation hasValue { EuShipmentServiceDef } endnfp 
axiom EuShipmentServiceDef 
   definedBy 
?x memberOf InternationlShipmentService 
and hasLocation(?x,?nation) and ?nation memberOf Europe 
implies ?x memberOf EuropeanShipmentService. 

 

The process of WSML ontologies generation starts by importing external ontologies 
used in the WebML data model to enrich WebML data types definitions. Then, for 
each entity in the data model, a corresponding WSML concept is generated with its 
direct super concept, attributes (also relationships are mapped to attributes), and 
possible axioms. 

4.3   Design of the Service and the User Interfaces in WebML 

Once the business process has been designed, workflow constraints must be turned 
into navigation constraints among the pages of the activities of the hypertext and into 
data queries on the workflow metadata for checking the status of the process. This 
applies both to the human-consumed pieces of contents (i.e., site interfaces) and to the 
machine-consumed contents (i.e., Semantic Web Services interactions). 



180 M. Brambilla et al. 

A flexible transformation, depending on several tuning and styling parameters, has 
been devised for transforming workflow models into skeletons of WebML hypertext 
diagrams [6]. Since no a-priori semantics is implied by the activity descriptions, the 
generated skeleton can only implement with the hypertext and queries that are needed 
for enforcing the workflow constraints. The designer remains in charge of 
implementing the internals of each activity. Additionally, it is possible to annotate the 
activities, thus allowing automatic generation of a coarse hypertext that implements 
the specified behavior, which then needs to be refined by the designer.  

 

Fig. 6. The Blue Shipment Web Service 

For instance, Fig. 6 shows a possible WebML specification of the Blue Shipment 
service. The upper part in Fig. 6 presents the searchShipmentRequest operation: the 
ShipmentObject, is passed to the Goal Composition that transforms it to a Goal 
description for the WSMX compliant Discovery Engine; the obtained goal description is 
passed to the Send Goal, which sends the goal to Web Service exposed by the 
Discovery Engine. The Discovery Engine returns a result with a set of Web Services 
compatible with the original shipment goal. For each Web Service the Lowering and 
Lifting operations by an appropriate XSLT Stylesheet are applied. Then, for each Web 
Service returned, a request for a shipment offer is made. The results are combined and 
converted to the Blue data model and the set of offers is returned the service requester. 
Once the service requester selects one of the offers and he sends it to the 
confirmShipmentRequest operation (lower part of Fig. 6), the offer is purchased by 
invoking the appropriate Web Service and the confirmation message is sent back. 

4.4   Extraction of the Description of the Web Services 

Another important aspect that can be semi-automatically derived from the design 
specification is the description of Web services. Some information about the services 
can be directly extracted by the high-level BPMN description of the interactions (in 
particular, information about possible choreography of the service and basic interface 
and parameter specification). More details can be elicited from the WebML diagrams, 
which provide a more refined representation of the specification of the application. 

 



 A Software Engineering Approach to Design and Development 181 

Extraction of Web Services capabilities. The BPMN and WebML models of the 
Web services provide enough information for describing its behavior. Assuming a 
BPMN activity as an atomic Web service call, we can exploit the BPMN data flow for 
providing good hints for the extraction of inputs and outputs of the service. Indeed, 
the data flow specifies the objects that are passed between the various activities. By 
isolating a single activity, it is possible to automatically extract the WSML pre-
conditions (inputs) and post-conditions (outputs). However, designer refinements are 
then typically required. 

WSML pre-conditions are obtained from the first unit of WebML chain describing a 
Web Service operation (Solicit Unit), while post-conditions are obtained from the last 
one (Response Unit). These two units contain information about the exact structure of 
the exchanged message and eventually the mapping of message elements to the domain 
model and hence to the extracted ontologies (see Section 4.2). Effects are extracted by 
searching for WebML units that modify or create instances of entities that are related to 
the activities involved by the process described in WebML Web Service. Shared 
variables are obtained from the generated conditions by grouping all the variables 
involved in the operations data flow. 

The following WSML description of the Web Service capabilities is automatically 
generated once the WebML models are fully specified. 
 

capability 
 sharedVariables (?Req) 
 precondition 
  definedBy 
   (?Req memberOf searchShipmentRequest) or  
   (?Req memberOf ConfirmShipmentRequest). 
 postcondition 
  definedBy 
   (?Req[ 
   pickupdate hasValue ?pkd, deliverydate hasValue ?dd, 

   start hasValue ?s, destination hasValue ?dest, 
   weight hasValue ?w, maxCost hasValue ?maxc 
   ] memberOf searchShipmentRequest) 

   implies 
   exists ?Res ( 
    ?Res memberOf ShipmentOfferContainer and  
            forall ?offer ( 
     ?Res [offers hasValue ?offer]  
     implies ( 
      ?offer [ 
        offerID hasValue ?OID, pickupdate hasValue ?pkd, 
          deliverydate hasValue ?dd, start hasValue ?s, 
        destination hasValue ?dest, weight hasValue ?w, 
       cost hasValue ?c] memberOf ShipmentOffer  
      and ?c<=?maxc 
   )))) and 
   (?Req[ offerID hasValue ?OID] memberOf ConfirmShipmentRequest) 
   implies 
    exists ?Confirmation ( 
     ?Confirmation[ 
      offerID hasValue ?OID, confirmationID hasValue ?CID 
     ] memberOf ShipmentConfirmation 
   )) 

 



182 M. Brambilla et al. 

Extraction of the service choreography. The service choreography is a piece of 
information that typically requires some annotation by the designer, in order to 
establish all the possible interaction sequences with the service. However, at least one 
of the choreography sequences can be extracted from the BPMN model, by analyzing 
the order of invocation of the different operations of the service. Obviously, this does 
not guarantee that all the possible scenarios are considered, since only one enactment 
can be analyzed. The extraction of this kind of information is rather simple: provided 
that a lane describes a single Web service, we can assume that all the control flow 
links traversing its borders contribute to specifying a possible invocation order of the 
operations, i.e., a choreography interface of the Web service. The automatically 
generated WSML description of the Web Service choreography is the following: 
 

interface 
 choreography 
  stateSignature 
   in 
    searchShipmentRequest withGrounding […] 
    ConfirmShipmentRequest withGrounding […] 
   out 
    ShipmentOfferContainer withGrounding […] 
    ShipmentConfirmation withGrounding […]  
   controlled oasm#ControlState    
   transitionRules 
    forall {?x, ?state} with ( 
     ?state[oasm#value hasValue oasm#InitialState] 
      memberOf oasm#ControlState and 
     ?x memberOf ShipmentRequest 
    ) do 
      add(?state[oasm#value hasValue ShipmentOfferRequested]) 
      delete(?state[oasm#value hasValue oasm#InitialState]) 
      add(_# memberOf ShipmentOfferContainer) 
    endForall 
    forall {?x, ?state} with ( 
      ?state[oasm#value hasValue ShipmentOfferRequested] and 
      ?x memberOf ConfirmShipmentRequest) do 
      add(_# memberOf ShipmentConfirmation) 
    endForall 

4.5   Extraction of User’s Goal 

Extraction of user’s goals can be performed by combining information available at the 
BPMN level with information available at the WebML level. A first level of goal 
elicitation can be achieved by extracting the sequence of conditions and objects 
passed to the Web services by the user’s lane in the BPMN diagram. 

A deeper level of details requires using the WebML hypertext models and analyzing 
the semantics embedded in the navigation and composition of the pages. Such refined 
goal is detailed in terms of the tasks performed by the user and of the data manipulated, 
thus increasing the significance of the WSMO goals that can be generated. In this case 
we omit the automatically generated code due to space limitation. 

4.6   Design of wwMediators with WebML 

One of the main strength points of the approach is the ease of design and 
implementation of complex wwMediators. If a lane is identified as a wwMediator at  
 



 A Software Engineering Approach to Design and Development 183 

 

Fig. 7. The WebML model of wwMediator Web Service 

the BPMN level, the basic information about the design of the mediation services can 
be extracted from the high-level BPMN description of the interactions (in particular, 
information about possible choreography of the service and basic interface and 
parameter specification). The skeleton model of the mediator is automatically 
generated and the designer can refine it at a conceptual design level. Then, the 
WSMO description of the mediator can be derived from the WebML diagrams. 

Fig. 7 presents the detailed specification of the wwMediator within WebML. This 
specification can be used to generate a working Web Service providing mediation 
between Blue and Moon Web Service. The WebML specification includes some 
Lowering and Lifting operations corresponding to WSMO ooMediators and provides 
mediation between the data model of the source Web Service and the destination one. 
In WebML this mediation consists in XSLT stylesheets generated by a visual tool.  

5   Implementation Experience 

The presented approach relies on solid implementation of the background concepts: 
the WebML methodology is supported by a commercial CASE tool called WebRatio 
(www.webratio.com), providing visual design interfaces and automatic code 
generation; the modeling of the business process requirements and their 
transformation into WebML skeletons are implemented in a prototype tool [3].  



184 M. Brambilla et al. 

A proof of concepts of the integration with the semantic aspects discussed in this 
paper has been presented at the SWS Challenge 2006 [4, 8]. The first phase of the 
challenge allowed us to prove the advantages of a Software Engineering approach to 
Semantic Web Services design. We presented the WebML design and implementation 
of the wwMediator of the running case addressed in this paper (Fig. 9) and the usage 
of the CASE tool WebRatio in the context of Semantic Web applications. For 
validating our approach, we developed several prototypical transformers that generate 
WSMO-compliant descriptions of Web applications and services starting from 
WebML models of the applications and BPMN specifications of the processes. The 
pieces of WSMO specification presented in Sections 4.2 and 4.4 are samples of the 
generated output of the transformations. 

6   Related Work 

The Semantic Web is a quite new research area that grew up quickly and in few years 
produced a great number of publications. However, few of them concern the 
systematic and methodological development of Semantic Web applications. Some 
early proposals (e.g., [9]) offered the definition of UML profiles for easily handling 
ontological definitions; however they haven’t been adopted because of the lack of an 
overall methodology. A number of researches concentrated on the development of 
tools to support the generation of semantic descriptions for existing Web Services [17, 
22, 10]. Most of these tools still require the learning of the annotation language used 
(e.g., OWL-S or WSMO) and hence do not push enough the adoption of Semantic 
Web Services towards the standard software development. Furthermore, they do not 
exploit the advantages of conceptual models of the Web Services to semi-
automatically derive any part of the semantic descriptions.  

Our research effort is more similar to the recent efforts of the Object Management 
Group (http://www.omg.org). The OMG proposed the Ontology Definition Metamodel 
(ODM) [19] to define a suitable language for modeling Semantic Web ontology 
languages and hence Semantic Web applications in the context of the Model Driven 
Architecture (http://www.omg.org/mda). In [1] MIDAS, a framework based on MDA to 
model and develop Semantic Web applications, is introduced. The framework proposed 
focuses on the creation of Semantic Web Services and associated WSML descriptions 
using a UML model according to the MDA approach. This proposal inherits the limits 
of the MDA approach: the use of a UML model is not always fitting the Semantic Web 
needs, and often the model is too far from the implementation details to provide an 
effective automatic code generation. Furthermore, MIDAS does not provide a clear 
overall roadmap to the design of Semantic Web applications. 

Other research efforts are converging on the proposal of combining Semantic Web 
Services (SWS) and Business Process Management (BPM) to create one consolidated 
technology, which we call Semantic Business Process Management (SBPM) [16]. This 
is based on the fact that mechanization of BPM can be addressed through machine-
accessible semantics, that can be naturally provided by SWS frameworks (e.g., WSMO). 

In the last years, realizing the benefits of the Semantic Web platform, some 
research from the Web Engineering field is spent to design a methodology to develop 
Semantic Web Information Systems. Traditional Web design methodologies (like 
OOHDM [20]) and new approaches (like Hera [21]) are now focusing on designing 



 A Software Engineering Approach to Design and Development 185 

Semantic Web applications. However, these methodologies are not supported by an 
effective CASE tool and do not consider the development of Semantic Web Services; 
instead, they concentrate only on Semantic Web Portals. 

7   Conclusions and Future Work 

This paper presented an approach for designing Semantic web applications exploiting 
software engineering techniques. The following results have been shown:  

• ontologies can be imported as models of the data necessary for the cross-
enterprise application. They can be extended for addressing the specific needs of 
the application and registered as shared resources in WSMX. 

• WSMO Web Services functional capabilities for delegating sub-processes 
execution from one enterprise to another are automatically provided for each 
Web Service modelled in WebML. Choreography interfaces can be derived by 
combining information in the Business Process Model and at application level in 
the hypertext model of WebML. In particular, service (local) choreography can 
be derived by taking the point of an external observer of the Web Services that 
must know the order in which operation can be invoked and the constrains for 
their successful invocation. In a similar manner we plan to derive an orchestration 
interface by translating in WSMO the hypertext model of the application.  

• WSMO goals can be produced (e.g., goals that triggers the discovery component 
of WSMX) from gathering data required to perform a given action of the 
business process, whereas its choreography interface is derived by the explicit 
representation of workflow primitives within the hypertext.  

• mediation services (except for ontology-to-ontology mediation) can be modeled 
as WebML applications and registered in WSMX according to their roles (e.g., a 
wwMediator).  

At the current stage of development, we propose using existing software engineering 
abstractions for the semi-automatic extraction of the components of the WSMO 
architecture. Thus, by means of “conventional design” (although supported by an 
advanced visual design studio), we build software that can run on conventional Web 
technology and at the same time is ready to become part of a WSMO execution 
environment (i.e. WSMX). Our next steps, which we will do in parallel with the wide-
spreading and enhancement of WSMO standards, will concentrate upon empowering 
our design abstractions so as to further improve and simplify the design of native 
WSMO components. 

References 

1. Acuña, C. J., Marcos, E.: Modeling semantic web services: a case study. In Proceedings of 
the 6th International Conference on Web Engineering (ICWE 2006), Palo Alto, California, 
USA, 32-39. 

2. Berners-Lee, T.: Web Services - Semantic Web Talk. http://www.w3.org/2003/Talks/ 
08-mitre-tbl 



186 M. Brambilla et al. 

3. Brambilla, M.: Generation of WebML Web Application Models from Business Process 
Specifications. 6th International Conference on Web Engineering (ICWE) 2006, Palo Alto, 
ACM press, p. 85-86, 2006. 

4. Brambilla, M., Ceri, S., Cerizza, D., Della Valle, E., Facca, F. M., Fraternali, P., 
Tziviskou, C.: Web Modeling-based Approach to Automating Web Services Mediation, 
Choreography and Discovery. In SWS Challenge I , 2006, Palo Alto, CA. (http://sws-
challenge.org/wiki/index.php/Workshop_Stanford) 

5. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications, Morgan-Kaufmann, December 2002. 

6. Brambilla, M.,  Ceri, S., Fraternali, P., Manolescu, I.: Process Modeling in Web 
Applications. In ACM Transactions on Software Engineering and Methodology (TOSEM), 
2006. In print. 

7. Della Valle, E. and Cerizza, D.: The mediators centric approach to automatic webservice 
discovery of Glue. In MEDIATE2005, volume 168 of CEUR. Workshop Proceedings, 35–50. 

8. DERI Stanford. Semantic Web Services Challenge 2006. http://sws-challenge.org. 
9. Djuri  , D., Gaševi  , D., Devedži , V. , Damjanovi  , V.: UML Profile for OWL. 4th 

International Conference on Web Engineering (ICWE 2004), (LNCS 3140, Springer-
Verlag), pp. 607-608, 2004. 

10. Elenius D., Denker G., Martin D., Gilham F., Khouri J., Sadaati S., Senanayake R.: The 
owl-s editor – a development tool for semantic Web services. In 2nd European Semantic 
Web Conference, May 2005. 

11. Feier, C., Domingue, J.: WSMO Primer. http://www.wsmo.org/TR/d3/d3.1/v0.1/  
12. Fernandez, M.F., Florescu, D., Levy, A.Y., Suciu, D.: Declarative Specification of Web 

Sites with Strudel. In VLDB Journal, 9 (1), 38-55. 
13. Fensel, D., Bussler, C.: The Web Service Modeling Framework WSMF. Electronic 

Commerce Research and Applications, 1(2), 2002. 
14. Fons, J., Pelechano, V., Albert, M. and Pastor, Ó. Development of Web Applications from 

Web Enhanced Conceptual Schemas. In ER 2003, LNCS, 2813, 232-245. 
15. Garrigós, I., Gómez, J. and Cachero, C., Modelling Dynamic Personalization in Web 

Applications. In ICWE 2003, 472-475. 
16. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic Business Process 

Management: A Vision Towards Using Semantic Web Services for Business Process 
Management. In Proceedings of the IEEE ICEBE 2005, October 18-20, Beijing, China, 535-540. 

17. Jaeger M., Engel L, Geihs K.: A methodology for developing owl-s descriptions. 1st Int. 
Conf. on Interoperability of Enterprise Software and Applications. Workshop on Web 
Services and Interoperability. February 2005. 

18. Manolescu, I., Brambilla, M., Ceri, S., Comai, S., Fraternali, P.: Model-Driven Design and 
Deployment of Service-Enabled Web Applications. In ACM TOIT, Vol. 5, number 3 
(August 2005). 

19. OMG: Ontology Definition Metamodel (ODM). http://www.omg.org/cgi-bin/doc?ad/06-
05-01.pdf 

20. Schwabe, D. and Rossi, G. The Object-Oriented Hypermedia Design Model. In 
Communications of the ACM, 38 (8), 45-46. 

21. Vdovjak, R., Frasincar, F., Houben, G. J., Barna, P.: Engineering semantic web 
information systems in Hera. Journal of Web Engineering, Rinton Press, 2(1-2), 3 -26, 
2003. 

22. Web Service Modeling Toolkit. http://sourceforge.net/projects/wsmt 
23. WSMO: Web Service Execution Environment (WSMX). http://www.w3.org/Submission/ 

WSMX. 



A Model Driven Approach for Building OWL DL
and OWL Full Ontologies

Saartje Brockmans1, Robert M. Colomb2, Peter Haase1, Elisa F. Kendall3,
Evan K. Wallace4, Chris Welty5, and Guo Tong Xie6

1 AIFB, Universität Karlsruhe (TH), Germany
2 School of Information Technology and Electrical Engineering, The University of

Queensland, Australia
3 Sandpiper Software, Inc., Los Altos, California

4 US National Institute of Standards and Technology, Gaithersburg, Maryland
5 IBM Watson Research Center, New York

6 IBM China Research Lab, China

Abstract. This paper presents an approach for visually modeling OWL
DL and OWL Full ontologies based on the well-established visual mod-
eling language UML. We discuss a metamodel for OWL based on the
Meta-Object Facility, an associated UML profile as visual syntax, and
transformations between both. The work we present supports model-
driven development of OWL ontologies and is currently undergoing the
standardization process of the Object Management Group. After describ-
ing our approach, we present the implementation of our approach and
an example, showing how the metamodel and UML profile can be used
to improve developing Semantic Web applications.

1 Introduction

The standardization of the Web Ontology Language (OWL, [8]) by the World
Wide Web Consortium (W3C) contributed heavily to the wide-spread use of on-
tologies. In 2003, the Object Management Group (OMG), a standardization con-
sortium for various aspects of software engineering including the well-established
Unified Modeling Language (UML, [24]), replied to this by issuing a Request for
Proposal for an Ontology Definition Metamodel (ODM, [18]). The intention was
to provide a Meta-Object Facility (MOF, [23]) based metamodel to support the
development of ontologies using UML modeling tools and the two-way transfor-
mation between ontologies written in a specific ontology representation language
and ontologies modeled using a dedicated UML syntax. Since that time, a sub-
mission team has developed a submission (see [7] for a concise overview) which
has undergone several revisions, based on comments solicited not only of the
OMG but from the W3C, ISO and Semantic Web communities as well.

The ODM submission supports the knowledge representation languages OWL
[8], RDF [1], Common Logic [15] and Topic Maps [14]. The modular structure
of MOF makes it straightforward for third parties to extend and enhance the
metamodel.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 187–200, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



188 S. Brockmans et al.

This paper focuses on the OWL portions of the ODM submission, which is
currently in adoption recommendation vote at OMG. It supports model-driven
development of OWL DL as well as OWL Full ontologies using UML and two-way
transformations between ontologies modeled in OWL and ontologies modeled us-
ing the UML profile. We have not explicitly covered OWL Lite, but all constructs
are provided in the base OWL and OWL DL packages. The paper starts with an
introduction of the Model Driven Architecture and its Meta-Object Facility, and
UML profiles in Section 2. Then, the metamodel for OWL, the associated UML
profile and the transformations between the different models are described in
Section 3. Section 4 shows the implementation of our approach and an example.
Finally, after discussing related work in Section 5, we conclude by summarizing
our work and addressing future investigations in Section 6.

2 Background

2.1 Model Driven Architecture and the Meta-object Facility

Before presenting the model-driven approach to ontology engineering in the next
sections, we summarize the Object Management Group’s Model Driven Archi-
tecture (MDA, [5]) and its Meta-Object Facility (MOF, [23]), which is one of
the main pillars of our approach.

In the history of software engineering, there has been a notable increase of
the use of models and the level of abstraction in the models. The basic idea
of MDA is that the system functionality is defined as a platform-independent
model, using an appropriate specification language and then translated to one
or more platform-specific models for the actual implementation. To accomplish
this goal, MDA defines an architecture that provides a set of guidelines for struc-
turing specifications expressed as models. The translation between a platform-
independent model and platform-specific models is often performed using auto-
mated tools.

MDA comprises of a four-layer metamodel architecture: meta-metamodel
(M3) layer, metamodel (M2) layer, model (M1) layer, and instance (M0) layer.
At the top of the MDA architecture is the meta-metamodel, i.e., MOF. It defines
an abstract language and framework for specifying, constructing and managing
technology neutral metamodels. It is the foundation for defining any model-
ing language such as UML. MOF also defines a framework for implementing
repositories that hold metadata (models) described by metamodels. The main
objective of having the four layers with a common meta-metamodel is to support
multiple metamodels and models and to enable their extensibility, integration
and generic model and metamodel management. Note that the meta-metamodel
layer is hard wired in the sense that it is fixed, while the layer of the metamodels
is flexible and allows expression of various metamodels. All metamodels, stan-
dard or custom, defined by MOF are positioned at the M2 layer. One of these is
UML, a graphical modeling language for specifying, visualizing and documenting
software systems. The models of the real world, represented by concepts defined
in the corresponding metamodel at M2 layer (e.g., UML metamodel) are at M1



A Model Driven Approach for Building OWL DL and OWL Full Ontologies 189

layer. Finally, at M0 layer, are objects from the real world or information objects
representing these in an information system.

A MOF-based metamodel has clear advantages being based on a standard
meta-metamodelling system with a well-developed suite of software tools and
integrated transformation possibilities with other MOF-based metamodels.[11].

2.2 UML Profiles

UML methodology, tools and technology seem to be a feasible approach for sup-
porting the development and maintenance of ontologies. The UML class diagram
is a rich representation system, widely used, and well-supported with software
tools. However, an ontology cannot be sufficiently represented in UML [12] and
a dedicated visual ontology modeling language is needed. The two representa-
tions share a set of core functionalities but despite this overlap, there are many
features which can only be expressed in OWL, and others which can only be
expressed in UML. Examples for this disjointness are transitive and symmetric
properties in OWL or methods in UML.

The UML profile mechanism is an extension mechanism to tailor UML to spe-
cific application areas. UML profiles provide specializations, using stereotypes,
of existing UML constructs. They are grounded in MOF, in that they are defined
in terms of the MOF meta-metamodel. Moreover, they are based on the UML
Kernel package and the Profiles section defined in [21].

3 Approach

In this section, we present a MOF-based metamodel for OWL DL and OWL Full.
Models based on these metamodels are OWL ontologies. OWL constructs have
a direct correspondence with those of the metamodel. Analogously, we define
a MOF-based UML profile, which is instantiated by concrete UML models, to
enable the use of UML notation and tools for ontology modeling. Within the
MOF framework, the UML models are transformed into OWL definitions and
vice versa.

3.1 A Metamodel for OWL DL and OWL Full

Overview and Design Considerations. As mentioned in Section 1, although
we focus on OWL in this paper, the ODM submission at OMG provides meta-
models for several knowledge representation languages. All these are independent
of each other, except the OWL metamodel which extends the RDFS metamodel,
as the OWL language itself extends the RDF-S language. The metamodel for
OWL specifically, contains three packages. First of all, the primary OWLBase
package contains the metamodel constructs common to both OWL DL and OWL
Full. Two additional subpackages, the OWLDL package and the OWLFull pack-
age, contain constraints and extensions required to distinguish the two dialects
OWL DL and OWL Full from one another, as explained in more detail later in



190 S. Brockmans et al.

this section. Users can elect to support the primary package and either or both
of the subordinate packages in order to have complete coverage of either or both
dialects of OWL. All metamodel packages are provided with constraints in the
Object Constraint Language (OCL, [20]). These expressions specify invariant
conditions that must hold for the ontologies being modeled. For the constraints
on the metamodel, we refer the user to [13].

We now go through the different parts of the OWLBase metamodel package
and show some of the diagrams. Subsequently, we introduce the OWLDL and
OWLFull packages.

Fig. 1. The Ontology Diagram

OWLBase Package - OWL Ontology. The RDF metamodel represents an
RDFStatement as a triple, containing subject, predicate and object whereas an
RDFGraph is a set of triples (RDFStatements). As shown in Figure 1, the OWLGraph
class specifies the subset of RDF graphs that are valid OWL graphs, consisting
of all OWL expressions. Similarly, the subset of RDF statements that are valid
OWL statements is reflected by the OWLStatement class. The distinction be-
tween OWLStatement and RDFStatement is required, as in OWL DL not every
RDFStatement is a valid OWLStatement. An ontology is identified by a URI refer-
ence (inherited from RDFSResource), which allows us to make statements about
that ontology.

OWLBase Package - Class Descriptions. The metamodel has a class
OWLClass for simple OWL class definitions defined as a special type of
RDFSClass. Moreover, it has subclasses which represent special types of OWL
class descriptions: ComplementClass, EnumeratedClass, IntersectionClass,



A Model Driven Approach for Building OWL DL and OWL Full Ontologies 191

Fig. 2. OWL Class Descriptions

OWLRestriction and UnionClass. An EnumeratedClass is connected to
Individuals through an association role OWLoneOf. Associatons between
the classes define the classes in the class descriptions, e.g. the association
IntersectionClassForIntersection between IntersectionClass and
OWLClass connects the classes of an intersection. Associations EquivalentClass
and DisjointClass represent the OWL class axioms, e.g. EquivalentClass
connects a class to another class with which it is defined to be equivalent.

The class OWLRestriction is defined as a subclass of OWLClass. OWL dis-
tinguishes two kinds of property restrictions: value constraints and cardinality
constraints. All OWL property restriction types are defined as subclasses of
the class OWLRestriction. A restriction class should have exactly one property
OWLonProperty linking the restriction to a particular property. The restriction
class must also have a property that represents the value or cardinality constraint
on the property under consideration.

OWLBase Package - Properties. As shown in Figure 3, the OWL meta-
model refines the RDFProperty class to support specific OWL properties. Both
object properties and datatype properties can be declared as "functional". For
this purpose, we define the class FunctionalProperty as a special subclass
of the class Property. Property is an abstract class that simplifies repre-
sentation of property equivalence and deprecation, simplifies constraints for
OWL DL and OWL Full, and facilitates mappings with other metamodels.



192 S. Brockmans et al.

The class InverseFunctionalProperty is a subclass of OWLObjectProperty,
since only object properties can be declared to be inverse functional. A prop-
erty is defined as symmetric or transitive by making it an instance of the class
SymmetricProperty or TransitiveProperty respectively, both defined as sub-
classes of OWLObjectProperty. Equivalent and inverse properties can be speci-
fied with the associations EquivalentProperty and InverseProperty.

Fig. 3. The OWL Properties Diagram

OWLBase Package - Individuals. Individuals are represented in a sub-
class Individual of the class RDFSResource. OWL does not make the so-called
unique name assumption. For the statements that two individuals are differ-
ent or the same, the ODM has two associations DifferentIndividual and
SameIndividual connected to the class Individual. The OWL construct owl:
AllDifferent is represented by a subclass of OWLClass, the class OWLAllDifferent,
for which the property DistinctIndividuals is defined to link an instance of
OWLAllDifferent to a list of Individuals.

OWLBase Package - Datatypes. OWL makes use of the RDF datatyping
scheme and provides an additional construct, OWLDataRange, for defining a range
of data values, namely an enumerated datatype. It makes use of the owl:oneOf
construct. The subject of OWLoneOf is an anonymous node of class OWLDataRange
and the object is a list of RDFSLiterals.

OWLBase Package - OWL Universe. In Figure 4, we provide the part
of the metamodel which facilitates ontology traversal for mapping purposes as
well as utility in defining constraints for distinguishing OWL DL and OWL



A Model Driven Approach for Building OWL DL and OWL Full Ontologies 193

Full. The class OWLUniverse specifies the set of ontology elements (i.e. classes,
individuals, and properties) that together comprise a particular OWL ontology.
It is intended to simplify packaging/mapping requirements for cases where the
ability to determine the set of all elements is required.

Fig. 4. The OWL Universe Diagram

OWLDL and OWLFull Package. The OWLBase package we just described
supports the constructs common to both OWL DL and OWL Full. We provide
two additional subpackages to distinguish between the two dialects. Both consist
of either extensions or constraints on the OWLBase package. Users can use either
or both of the subpackages together with the OWLBase package, depending on
whether they want to work with OWL DL or OWL Full. For a complete listing
of OWLDL and the OWLFull package, we refer the reader to Sections 11.8 and
11.9 of [13]. An extract of them is given here.

Some of the constraints in the OWLDL package are:

– The set of classes, datatypes, datatype properties, object properties, anno-
tation properties, ontology properties, individuals, data values, and other
built-in vocabulary are pairwise disjoint.

– All classes and properties must be explicitly typed as class respectively prop-
erties.

– Axioms about individual equality and difference must be about named indi-
viduals only (a consequence of category separation).

The OWLFull package contains additional extensions to support the lack of
disjointness between classes, properties and individuals. In particular, these ex-
tensions provide additional attributes on the OWLBase metamodel classes as



194 S. Brockmans et al.

well as definitions of new intersection classes required as a workaround to im-
plement OWL Full. The need for this workaround results from a limitation in
the MOF2 instances model, which requires that an InstanceSpecification be as-
sociated with exactly one classifier. This makes it impossible to have an object
as an instance both of Individual and OWLClass, for example. When a future
revision of MOF relaxes the instances model to permit multiple classifiers, the
OWLFull Package will become superfluous.

3.2 A UML Profile for OWL Ontologies

Our UML profile is designed to support modelers developing ontologies in OWL
through reuse of UML notation using tools that support UML2 extension mech-
anisms. The profile reflects the structure of the OWL metamodel (and the OWL
language). We reuse the standard UML2 notation when the constructs have the
same intuitive semantics as OWL, or, when this is not possible, stereotyped
UML constructs that are consistent and as close as possible to OWL semantics.
Stereotypes are leveraged extensively and are represented as the OWL metaclass
names enclosed in ’<<...>>’. In the following, we introduce our UML2 profile
for OWL ontologies. We focus on property representation and refer the reader
to Chapter 14 of [13] for a full account. First, we represent the constructs for
RDF properties, since the OWL profile package imports the RDF profile pack-
age. Then, we show how we refine these RDF property constructs for OWL. We
provide considerable flexibility so that property representation is truly intuitive
for those familiar with UML.

In UML, a property can be defined as part of an association or on the class
that defines the domain of the property. In this case the type of the property
is the class that defines its range. When a property is part of an association,
the association is binary with unidirectional navigation, from the class that de-
fines the domain of the property to the class that defines its range. In RDF and
OWL, properties are defined globally, that is, they are available to all classes in
all ontologies. For RDF properties that are defined without specifying a domain
or range, the profile uses a global Thing class (Thing for RDF/S, owl:Thing
in OWL ontologies) as default for the ŞmissingŤ end class. Properties that are
defined with such a default domain or range may not have multiplicities (other
than [0..*]) or other constraints that correspond to OWL restrictions. Figure
5 shows an example of a property without a specified domain. From a UML
perspective, properties are semantically equivalent to binary associations with
unidirectional navigation (Şone-wayŤ associations). Figure 6 shows the alternate
representation for properties. Just like a UML property, there is efficient navi-
gation from an instance of Thing to an instance of Color through the hasColor
end. Moreover, associations can be classes, as shown in Figure 7. An association
class can have properties, associations, and participate in generalization as any
other class. Notice that the association has a (slightly) different name than the
property, by capitalizing the first letter, to distinguish the association class from
the property itself. A stereotype <<rdfProperty>> is introduced to highlight
such binary, unidirectional association classes, as shown in the Figure.



A Model Driven Approach for Building OWL DL and OWL Full Ontologies 195

Fig. 5. Property hasColor without
specified domain

Fig. 6. Property hasColor without
specified domain - alternate represen-
tation

Fig. 7. Property hasColor - association class representation

The representation of RDF/S and OWL property subtyping (i.e.,
rdfs:subPropertyOf) is depending on which of the three notations above
is used. In case of the UML property representation (Figure 5), we
add a second property entry in the class, and use subsetting by adding
{subsets <super-property-name>} at the end of that property entry. For
the unidirectional association (Figure 6), we add another association for the
subproperty, and add {subsets <super-property-name>} to the association.
In case of the association classes (Figure 7), a UML generalization with the
stereotype <<rdfsSubPropertyOf>> is preferred. For specific OWL properties,
we use stereotypes like <<objectProperty>> instead of <<rdfProperty>>. In
these properties, additional characteristics, e.g. a property being functional or a
property being symmetric, are represented as UML properties.

If users want to specify a owl:equivalentProperty or owl:inverseOf rela-
tion between two properties, the notation is quite straightforward as well. For
instance, Figure 8 shows an owl:inverseOf relation being modeled between two
association classes using an <<inverseOf>> stereotype. An arrowhead is used
opposite from the association class that will have owl:inverseOf in XML syntax.

childOf

parentOf

Fig. 8. Using owl:inverseOf Between Association Classes



196 S. Brockmans et al.

3.3 Mappings Between UML and OWL

This Section introduces mappings to transform models between OWL and UML,
based on the metamodel and the profile described in the previous sections. The
ODM Request for Proposals (RFP [19]) called for a normative mapping be-
tween the single, unified Ontology Definition Metamodel originally envisioned
and UML. If a such a single, normative mapping were provided, for a given
implementation to be considered compliant, it would necessarily support that
exact mapping. Over the course of development of the ODM, we determined that
restricting our potential user community to any specific dialect of OWL (Lite,
DL, or Full) would not support the long term vision we outlined in the usage
scenarios given in Chapter 7 of the specification. Any single, normative mapping
would necessarily force adherence to a specific dialect of OWL.

That said, we claim that the mappings given in the specification can be very
informative, and are included in the specification for a number of reasons. First,
they demonstrate feasibility of mapping in general and implement one set of
design choices, providing a baseline from which a particular implementation can
vary. Second, they bring clearly to the fore the detailed relationships among
the metamodels. These relationships can help those who understand one of the
target languages to come to an understanding of the others. Finally, for many ap-
plications, particularly lighter weight vocabularies and ontologies, the mapping
provided is sufficient to support transformations between OWL and equivalent
UML models, which remains a primary goal of the ODM.

Table 1. Feasible Mappings between UML and OWL

UML Feature OWL Feature Comment
class, type class
instance individual
ownedAttribute, property,
binary association inverseOf
subclass, subclass,
generalization subproperty
N-ary association, association class class, property Requires decomposition
enumeration oneOf
disjoint, cover disjointWith, unionOf
multiplicity minCardinality, OWL cardinality

maxCardinality, restrictions declared
FunctionalProperty, only for range
InverseFunctionalProperty

package ontology

Table 1 provides a very high level summary comparison of some features of
UML giving the equivalent OWL feature. UML features are grouped in clusters



A Model Driven Approach for Building OWL DL and OWL Full Ontologies 197

that translate to a single OWL feature or a cluster of related OWL features.
The mapping itself, as described in Chapter 16 of [13], reflects transformation
of a model represented in the ODM metamodels for RDF and OWL to the cor-
responding UML metamodel element(s), and is informed by the profile(s) given
in Chapter 14. The representation given in the specification includes both ex-
planatory text and a formal mapping expressed in the recently adopted MOF
Query/Views/Transformations (QVT) language [19], which provides a standard-
ized MOF-based platform for mapping instances of MOF metamodels from one
metamodel to another. The mapping provided is explicitly between UML 2 and
the DL dialect of OWL. For a full account of the informative mappings and their
formal expressions in QVT, we refer to [13].

4 Implementation and Examples

This section demonstrates two implementations which have been developed in
the context of the ODM submission at OMG: the Visual Ontology Modeler and
the Integrated Ontology Development Toolkit1.

Fig. 9. A diagram modeled with the VOM tool

1 Commercial equipment and materials might be identified to adequately specify cer-
tain procedures. In no case does such identification imply recommendation or en-
dorsement by the U.S. National Institute of Standards and Technology, nor does it
imply that the materials or equipment identified are necessarily the best available
for the purpose.



198 S. Brockmans et al.

Visual Ontology Modeler. Visual Ontology Modeler (VOM), developed at
the company Sandpiper, is currently implemented as an add-in to IBMŠs Ratio-
nal Rose product. The current release is compatible with our ODM metamodels
and profile for RDFS/OWL. A library of ontology components including on-
tologies representing several metadata and ISO standards are available for use
with the tool. VOM supports forward and reverse engineering of RDFS/OWL
ontologies and import/export of ODM/XMI ([22]) (and thus of any MOF meta-
model or UML model that can be transformed to ODM/XMI). VOM users have
demonstrated measurable productivity gains in ontology development and main-
tenance as well as increased consistency in RDFS/OWL generation for new and
existing ontologies. Figure 9 shows a simple ontology fragment for management
application integration ([17]) modeled using VOM (for lack of space we do not
show a full screenshot). The second-generation VOM, which is currently in de-
velopment, will support IBMŠs Eclipse ([9]) and Eclipse Modeling Framework
(EMF, [6]) based modeling environment. An open-source version of the software
that provides basic functionality will be available for EMF users.

Integrated Ontology Development Toolkit. The EMF-based IBM Inte-
grated Ontology Development Toolkit (IODT) is a toolkit for ontology-driven
development, including an EMF Ontology Definition Metamodel ([25]) (EODM2,
based on our ODM), an Eclipse-based ontology-engineering environment, and an
OWL ontology repository, which has been evaluated to be highly scalable and
perform better than several other well-known systems [16]. The toolkit supports
RDFS/OWL parsing and serialization, TBox and ABox reasoning, transforma-
tion between RDFS/OWL and other data-modeling languages, and SPARQL3

query. This toolkit has over 1,800 downloads in alphaWorks and Eclipse.

5 Related Work

In recent years, an increasing range of software systems engage in a variety of
ontology management tasks, including the creation, storage, search, query, reuse,
maintenance, and integration of ontologies. Recently, there have been efforts to
externalize such ontology management burden from individual software systems
and put them together in middleware known as an ontology management system.
However, as far as we know, other proposals based on the visual UML and MOF
([2], [3], [4], [10]) provide an approach with some similarities and some different
design considerations as well, but no full implementation. [2], [3] and [4] are
currently being merged with our solution.

6 Conclusion and Future Investigations

We presented a MOF based metamodel and a respective UML profile for OWL
DL and OWL Full. Furthermore, we provided feasible mappings which support
2 http://www.eclipse.org/emft/projects/eodm/
3 http://www.w3.org/TR/rdf-sparql-query/



A Model Driven Approach for Building OWL DL and OWL Full Ontologies 199

the transformation between OWL ontologies and UML models and vice versa.
This enables ontology engineers to build OWL ontologies based on UML using
existing UML tools. Considering the amount of people familiar to UML, our
solution will be an good approach to ontology modeling for ordinary develop-
ers. With the ODM defined in MOF, we can further utilize MDA’s support in
modeling tools, model management and interoperability with other MOF-defined
metamodels. We expect that the interoperability with existing software tools and
applications will ease ontology development and thus contribute to the adoption
of semantic technologies and their success in real-life applications.

We have implemented our approach to validate our ideas in the Visual On-
tology Modeler and the Integrated Ontology Development Toolkit.

Next to finishing and evaluating the ODM submission in the near future, we
plan to extend the ODM to facilitate the development of rules as well. Which
rule formalisms we will eventually support, is heavily depending on the outcome
of the Rule Interchange Format working group at W3C ([26]). Some initial work
on a metamodel and UML Profile for rules is presented in [2].

References

1. D. Brickley and R.V. Guha. RDF Vocabulary Description Language 1.0: RDF
Schema. Technical report, W3C, February 2004. W3C Recommendation.

2. S. Brockmans, P. Haase, P. Hitzler, and R. Studer. A Metamodel and UML Profile
for Rule-extended OWL DL Ontologies. In 3rd Annual European Semantic Web
Conference, Budva, Montenegro, June 2006. Springer.

3. S. Brockmans, P. Haase, and H. Stuckenschmidt. Formalism-Independent Speci-
fication of Ontology Mappings - A Metamodeling Approach. In 5th International
Conference on Ontologies, DataBases, and Applications of Semantics (ODBASE
2006, Montpellier, France, November 2006.

4. S. Brockmans, R. Volz, A. Eberhart, and P. Loeffler. Visual modeling of OWL DL
ontologies using UML. In Proceedings of the Third International Semantic Web
Conference, pages 198–213, Hiroshima, Japan, November 2004. Springer.

5. A. Brown. An introduction to Model Driven Architecture - Part I: MDA
and today’s systems, February 2004. http://www-106.ibm.com/developerworks/
rational/library/3100.html.

6. F. Budinsky, R. Ellersick, T. J. Grose, E. Merks, and D. Steinberg. Eclipse Modeling
Framework. The Eclipse Series. Addison Wesley Professional, first edition, 2003.

7. R. Colomb, K. Raymond, L. Hart, P. Emery, C. Welty, G. T. Xie, and E. Kendall.
The Object Management Group Ontology Definition Metamodel. In F. Ruiz,
C. Calero, and M. Piattini, editors, Ontologies for Software Engineering and Tech-
nology. Springer, 2006. to appear.

8. M. Dean and G. Schreiber. OWL Web Ontology Language Reference. Technical
report, World Wide Web Consortium (W3C), Feb 2004. W3C Recommendation.

9. J. des Rivieres and W. Beaton. Eclipse Platform Technical Overview. July 2001.
Updated April 2006 for Eclipse 3.1.

10. D. Djuric, D. GaŽevic, V. Devedđic, and V. Damjanovic. MDA Development of
Ontology Infrastructure. In Proceedings of the IADIS International Conference
Applied Computing, pages II–23–II–26, Lisbon, Portugal, 2004.



200 S. Brockmans et al.

11. D. Frankel, P. Hayes, E. Kendall, and D. McGuinness. The Model Driven Se-
mantic Web. In The 1st International Workshop on the Model-Driven Semantic
Web (MSDW 2004), Monterey, California, USA, September 2004. http://www.
sandsoft.com/edoc2004/FHKM-MDSWOverview.pdf.

12. L. Hart, P. Emery, R. Colomb, K. Raymond, S. Taraporewalla, D. Chang, Y. Ye,
E. Kendall, and M. Dutra. OWL Full and UML 2.0 Compared, March 2004.
http:// www.itee.uq.edu.au/∼colomb/Papers/UML-OWLont04.03.01.pdf.

13. IBM and Sandpiper Software. Ontology Definition Metamodel. Sixth Revised Sub-
mission, Object Management Group, June 2006. http://www.omg.org/cgi-bin/
doc?ad/2006-05-01.

14. ISO/IEC. Topic Maps Ű Data Model. Technical Report 13250-2, December 2005.
15. ISO/IEC. Information technology – Common Logic (CL) - A framework for a

family of logic-based languages. Technical Report 24707, April 2006. Official ISO
FCD Draft.

16. L. Ma, Y. Yang, Z. Qiu, G. Xie, and Y. Pan. Towards A Complete OWL On-
tology Benchmark. In 3rd Annual European Semantic Web Conference, Budva,
Montenegro, June 2006. Springer.

17. T. Nitzsche, J. Mukerji, D. Reynolds, and E. Kendall. Using Semantic Web
Technologies for Management Application Integration. In proceedings of the
workshop on Semantic Web Enabled Software Engineering (SWESE), Galway,
Ireland, November 2005. http://www.mel.nist.gov/msid/conferences/SWESE/
accepted_papers.html.

18. Object Management Group. Ontology Definition Metamodel – Request For Pro-
posal, March 2003. http://www.omg.org/docs/ontology/03-03-01.rtf.

19. Object Management Group. Revised submission for MOF 2.0 Query/Views/Trans-
formations RFP. http://www.qvtp.org/downloads/1.1/qvtpartners1.1.pdf,
August 2003.

20. Object Management Group. OCL 2.0 Specification. Technical Report Version 2.0,
June 2005.

21. Object Management Group. Unified Modeling Language: Superstructure. Techni-
cal Report Version 2.0, August 2005.

22. Object Management Group. XMI Mapping Specification. Technical Report Version
2.1, September 2005.

23. Object Management Group. Meta Object Facility (MOF) Core Specification. Tech-
nical Report Version 2.0, January 2006. OMG Available Specification.

24. Object Management Group. Unified Modeling Language: Infrastructure. Technical
Report Version 2.0, March 2006.

25. Y. Pan, G. Xie, L. Ma, Y. Yang, Z. Qiu, and J. Lee. Model-Driven Ontology
Engineering. In Journal of Data Semantics VII, 2006. Springer.

26. W3C. Rule interchange format working group charter. http://www.w3.org/2005/
rules/wg/charter, 2005.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 201 – 214, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

IRS-III: A Broker for Semantic Web Services Based 
Applications 

Liliana Cabral, John Domingue, Stefania Galizia, Alessio Gugliotta,  
Vlad Tanasescu, Carlos Pedrinaci, and Barry Norton 

Knowledge Media Institute, The Open University, Milton Keynes, UK 
{L.S.Cabral, J.B.Domingue}@open.ac.uk 

Abstract. In this paper we describe IRS-III which takes a semantic broker 
based approach to creating applications from Semantic Web Services by medi-
ating between a service requester and one or more service providers. Business 
organisations can view Semantic Web Services as the basic mechanism for in-
tegrating data and processes across applications on the Web. This paper extends 
previous publications on IRS by providing an overall description of our frame-
work from the point of view of application development. More specifically, we 
describe the IRS-III methodology for building applications using Semantic Web 
Services and illustrate our approach through a use case on e-government.  

1   Introduction 

The integration of business applications on the Web became a far easier task with the 
advent of Web Services as part of a trend in XML-based distributed computing. Web 
Services enable companies to provide services by exposing process functionalities 
through a standard interface description, keeping intact their legacy implementation of 
computing systems. Thus, applications in diverse areas such as e-commerce and  
e-government can interoperate through Web Services implemented in heterogeneous 
platforms. For example, Google (http://www.google.com) has a Web Service inter-
face to its search engine and Amazon (http://www.amazon.com) allows software de-
velopers to access product data through its Web Service platform.  

A key problem with the use of standards for Web Service description (e.g. WSDL) 
and publishing (e.g. UDDI) is that the syntactic definitions used in these descriptions 
do not completely describe the capability of a service and cannot be understood by 
software programs. It requires a human to interpret the meaning of inputs, outputs and 
applicable constraints as well as the context in which services can be used. 

Semantic Web Services (SWS) research aims to automate the development of Web 
Service based applications through Semantic Web technology. By providing formal 
representations based on ontologies we can facilitate the machine interpretation of 
Web Service descriptions.  Thus, business organisations can view Semantic Web Ser-
vices as the basic mechanism for integrating data and processes across applications on 
the Web. 

In this paper we describe IRS-III (Internet Reasoning Service), a framework which 
takes a semantic broker based approach to creating applications from Semantic Web 



202 L. Cabral et al. 

Services by mediating between a service requester and one or more service providers. 
This paper extends previous publications on IRS by providing an overall description 
of our framework from the point of view of application development. More specifi-
cally, we describe the IRS-III methodology for building applications using Semantic 
Web Services and illustrate our approach through a use case on e-government.  

The rest of the paper is structured as follows: section 2 describes the overall ap-
proach and design principles of IRS-III; section 3 describes the IRS-III service ontol-
ogy; in section 4 we present the framework including our approach for choreography, 
orchestration and mediation; section 5 describes how to develop applications using 
IRS-III followed by an example on e-government; finally, the last sections discuss re-
lated work and present our conclusions.  

2   IRS-III Approach 

The IRS project (http://kmi.open.ac.uk/projects/irs) has the overall aim of supporting 
the automated or semi-automated construction of semantically enhanced systems over 
the internet. IRS-I [3] supported the creation of knowledge intensive systems struc-
tured according to the UPML framework [10] and IRS-II [9] integrated the UPML 
framework with Web Service technology. IRS-III [5] has incorporated and extended 
the WSMO ontology [11] so that the implemented infrastructure allows the descrip-
tion, publication and execution of Semantic Web Services (SWS). The meta-model of 
WSMO describes four top level elements (in italics hence forth): 

• Ontologies,
• Goals,
• Web Services, and  
• Mediators.  

Ontologies provide the foundation for semantically describing data in order to 
achieve semantic interoperability and are used by the three other WSMO elements. 
Goals define the tasks that a service requester expects a web service to fulfil. In this 
sense they express the service requester’s intent. Web services represent the functional 
behaviour of an existing deployed Web Service. The description also outlines how 
Web Services communicate (choreography) and how they are composed (orchestra-
tion). Mediators describe the connections between the components above and repre-
sent the type of conceptual mismatches that can occur. In particular, WSMO provides 
four kinds of mediators: oo-mediators link and map between heterogeneous ontolo-
gies; ww-mediators link web services to web services; wg-mediators connect web ser-
vices to goals; gg-mediators link different goals.

IRS-III provides the representational and reasoning mechanisms for implementing 
the WSMO meta-model mentioned above in order to describe Web Services. Addi-
tionally, IRS-III provides a powerful execution environment which enables these de-
scriptions to be associated to a deployed Web Service and instantiated during 
selection, composition, mediation and invocation activities.  

The following describes the main application development activities supported by 
IRS-III when building Semantic Web Services:   



 IRS-III: A Broker for Semantic Web Services Based Applications 203 

• Using domain ontologies – The concepts and relations involved in the applica-
tion scenario which are used to describe client requests and Web Service capa-
bility are provided in domain ontologies.  

• Describing client requests as goals – The request for a service can be ex-
pressed from a business viewpoint and represented as a goal.

• Semantically describing deployed Web Services – The concepts defined in 
domain ontologies can be used in a web service description to represent the 
types of inputs and outputs of services and in logical expressions for expressing 
applied restrictions. This description can also include many other aspects such 
as orchestration and choreography.

• Resolving conceptual mismatches – Mediator descriptions can be used to de-
clare which mediation service or mapping rules will provide conceptual align-
ment between goals, web services and domain ontologies.

• Publishing and invoking semantically described Web Services – Once a se-
mantic description has been created for a deployed Web Service as above, it can 
be registered into IRS-III for goal-based invocation. 

The IRS-III tooling consists of a Java API and a browser/editor which support de-
velopers in building applications out of Semantic Web Services. The IRS-III browser 
provides an easy to use graphical interface to support the creation of WSMO descrip-
tions, to publish deployed Web Services against these descriptions and then to invoke 
the Web Services. The IRS-III Java API provides a data model for our WSMO im-
plementation and remote access to the operations available from the IRS-III server. 
Recently, we have also developed a plug-in for WSMO Studio [4] for interoperability 
purposes, by aligning the IRS-III and WSMO4J (http://wsmo4j.sourceforge.net) APIs.  

2.1   IRS-III Design Principles 

The ever growing popularity of the Semantic Web is largely due to the extensive use 
of ontologies [7]. By providing an explicit formal model, ontologies facilitate knowl-
edge sharing by machines and humans. The IRS-III approach is based on a set of de-
sign principles which use ontological metamodels as the means underlying selection, 
composition, mediation and invocation of Semantic Web Services as follows.  

A) Semantic Descriptions as Knowledge Components – Within IRS-III, semantic 
descriptions of Web Services are provided as knowledge components representing the 
WSMO top-level elements. These knowledge components are executable ontological 
meta-models which are semantically linked and can be represented using our ontology 
representation language OCML [8].  
B) Reasoning is ubiquitous – Reasoning is seen as an essential mechanism of all 
Semantic Web Service activities. IRS-III execution environment can easily invoke on-
tological queries over the underlying WSMO conceptual model as well as existing 
domain ontologies.  
C) Goal-based invocation – A key feature of IRS-III is that Web Service invocation 
is capability driven. IRS-III supports this by providing a goal-centric invocation 
mechanism. A client application simply asks for a goal to be solved and IRS-III se-
lects an appropriate web service invoking the associated Web Service. 



204 L. Cabral et al. 

D) Goal-based decomposition – In IRS-III a web service is either executable or com-
posed. A composite web service expresses its functionality in terms of goals, follow-
ing on the previous design principle for invocation.  
E) Explicit mediation description – IRS-III uses the mediator description for two 
purposes. First, it can represent the role of a specific Web Service as a mediation ser-
vice. Second, the different types of mediators can be associated with different media-
tion activities.  
F) One-click Publishing – For supporting users who have an existing system which 
they would like to be made available for invocation through IRS-III, we provide ‘one 
click’ publishing mechanism of standalone code written in Java or Lisp in addition to 
the publishing of  existing Web Services through WSDL descriptions.  
G) Complete Descriptions – Within an ontological framework, it is easy to represent 
distinct aspects of a Web Service for different uses. The next section describes these 
aspects in more details.

3   The IRS-III Service Ontology 

The IRS-III service ontology has originally been based on the UPML framework [10] 
[9], which forms the epistemological basis for IRS-III. This framework has been ex-
tended in order to incorporate the following main aspects specified by the WSMO 
conceptual model [11]:  

• Non-functional properties – These properties are associated with every main 
WSMO element and can range from information about the provider such as 
organisation, to information about the service such as category, cost or trust, to 
execution requirements such as scalability, security or robustness. 

• Goal-related information – a goal represents the user perspective of the re-
quired functional capabilities. It includes a description of the requested web 
service capability.

• Web Service functional capabilities – Represent the provider perspective of 
what the service does in terms of inputs, output, pre-conditions and post-
conditions. Pre-conditions and post-conditions are expressed by logical ex-
pressions that constrain the state or the type of inputs and outputs.  

• Choreography – The choreography specifies how to communicate with a
Web Service. In WSMO this specification is formalized as Abstract State Ma-
chines. 

• Grounding – The grounding is associated with the web service choreography
and describes how the semantic declarations are mapped to a syntactic specifi-
cation such as WSDL. 

• Orchestration – The orchestration of a web service specifies the decomposi-
tion of its capability in terms of the functionality of other Web Services. In 
WSMO this specification is also formalized as Abstract State Machines. 

• Mediators – In WSMO, a mediator defines which WSMO top elements are 
connected and which type of mismatches can be resolved between them. 



 IRS-III: A Broker for Semantic Web Services Based Applications 205 

The IRS-III implementation of the WSMO conceptual model has been extended in 
the following ways.  

• Explicit input and output role declaration – IRS-III requires that goals and 
web services have input and output roles, which include a name and a semantic 
type. The declared types are imported from domain ontologies. 

• Web Services are linked to Goals via mediators - If a wg-mediator associated 
with a web service has a goal as a source, then this web service is considered 
to solve that goal. An assumption expression can be introduced for further re-
fining the applicability of the web service.

• GG-mediators provide data-flow between sub-goals – In IRS-III, gg-
mediators are used to link sub-goals within an orchestration, and therefore 
they can provide dataflow and data mediation between the sub-goals.

• Web Service can inherit from Goals - Web services which are linked to goals
‘inherit’ the goal’s input and output roles. This means that input role declara-
tions within a web service are not mandatory and can be used to either add ex-
tra input roles or to change an input role type. 

• Client Choreography – The provider of a web service must describe the 
choreography from the viewpoint of the client. This means IRS-III can in-
terpret the choreography in order to communicate with the deployed Web 
Service. 

• Mediation services are goals – A mediator can declare a goal as the media-
tion service which can simply be invoked. The associated web service actually 
performs the necessary data transformation. 

4   The IRS-III Framework 

IRS-III is based on a distributed architecture composed of the IRS-III server, the pub-
lishing platforms and clients which communicate through the SOAP protocol, as 
shown in figure 1. The server handles ontology management and the execution of 
knowledge models defined for WSMO. The server also receives SOAP requests 
(through the API) from client applications for creating and editing WSMO descrip-
tions of goals, web services and mediators as well as goal-based invocation. At the 
lowest level the IRS-III Server uses an HTTP server written in Lisp, which has been 
extended with a SOAP handler.  

The publishing platforms allow providers of services to attach semantic descrip-
tions to their deployed services and provide handlers to invoke services in a specific 
language or platform (Web Services WSDL, Lisp code, Java code, and Web applica-
tions). When a Web Service is published in IRS-III the information about the publish-
ing platform (URL) is also associated with the web service description in order to be 
invoked. The IRS-III server is written in Lisp and is available as an executable file. 
The publishing platforms are delivered as Java Web applications; and client applica-
tions use the Java API.  



206 L. Cabral et al. 

Fig. 1. The IRS-III framework 

The main components of IRS-III are explained in the following: 

• SWS Library – At the core of the IRS-III server is the SWS library where the 
semantic descriptions are stored using our representation language OCML [8]. 
The library is structured into knowledge models for goals, web services and 
mediators. Domain ontologies and knowledge bases (instances) are also avail-
able from the library. 

• Choreography Interpreter – This component interprets the grounding and 
guarded transitions of the choreography description when requested by the 
mediation handler.  

• Orchestration Interpreter – This component interprets the workflow of the 
orchestration description when requested by the mediation handler. 

• Mediation Handler – The brokering activities of IRS-III including selection, 
composition and invocation are each supported by a specific mediation com-
ponent within the mediation handler.  These activities may involve executing a 
mediation service or mapping rules declared in a mediator description. 

• Invoker – The invoker component of the server communicates with the pub-
lishing platform, sending the inputs from the client and bringing the result 
back to the client. 

The following sections give more details of how choreography, orchestration and 
mediation of Semantic Web Services are implemented in IRS-III. 

4.1   IRS-III Choreography 

In IRS-III the choreography describes how to interact with a single deployed Web 
Service (client choreography). At the semantic level the choreography is represented 
by a set of forward-chaining rules and a grounding declaration expressed in OCML 
(see an example in listing 3). A rule executes actions based on communication primi-
tives when the associated conditions (asserted facts) are satisfied. The grounding de-
clares the operations involved in the invocation (communication primitives) and the 
associated mappings to the implementation level. More specifically, each operation 



 IRS-III: A Broker for Semantic Web Services Based Applications 207 

input and output is associated with a lifting or lowering function. The grounding also 
relates to information about the corresponding publishing platform.  

This approach allows the functionality of a Web Service to be realized by calling 
one or more declared operations. The set of core communication primitives, which 
enables the exchange of messages between IRS-III and a deployed service, are listed 
below.  

• init-choreography – The initial assertion made by IRS-III when the state of 
the choreography is initialized. IRS-III obtains the input values of operations 
from the goal invocation request. 

• send-message - Calls a specific operation in the associated Web service. 
• received-message - Contains the result of a successful send-message for a spe-

cific operation.  
• received-error - If an operation generates an error then this primitive is used 

including the error message and the name of the operation causing it.  
• end-choreography - Stops the choreography. No other rule will be executed.  

More details about the formalization of IRS-III choreography, which is based on 
Abstract State Machines can be found in [6]. 

4.2   IRS-III Orchestration 

In IRS-III the orchestration is used to describe a composed Web Service. At the se-
mantic level the orchestration is represented by a workflow model expressed in 
OCML. The distinguishing characteristic of this model is that the basic unit within 
composition is a goal. Thus, the model provides control and data flow constructs over 
a set of goals. Further, dataflow and solving mismatches between goals are supported 
by mediators. An example of an orchestration description is given in listing 3. The set 
of control flow primitives which have been implemented so far in IRS-III are listed 
below. 

• orch-sequence – Contains the list of goals to be invoked sequentially.  A gg-
mediator can optionally be declared between the goals, in which case the out-
put of the source goal is transformed by the mediation service (if there is one) 
and used as input of the target goal.

• orch-if – Contains a condition and a body with one or more workflow primi-
tives. The body part is executed if the declared condition is true. 

• orch-repeat – Contains a condition and a body with one or more workflow 
primitives. The body part is repeated until the declared condition is false. 

• orch-get-goal-value - Returns the result of the last invocation of the declared 
goal (used for example as part of a condition).  

• orch-return – Returns the result of the current goal execution.  

Further work is under specification in order to provide a three-layer orchestration 
model which integrates this semantic representation with a high-level (UML based) 
workflow representation and a low-level Abstract State Machine representation.  



208 L. Cabral et al. 

4.3   IRS-III Mediation 

At the semantic level, IRS-III represents four basic types of conceptual mismatches 
that can occur when using Semantic Web Services. These types correspond to the 
WSMO models of oo-mediator, wg-mediator, gg-mediator and ww-mediator as de-
scribed in section 2. In general there will be mismatches between the goal requests 
and available web services and between the goals themselves. The IRS-III mediation 
handler components are responsible for resolving the conceptual mismatches which 
may occur by reasoning over the given goal, web service and mediator descriptions. 
The mediation handler interprets each type of mediator accordingly during selection, 
invocation and orchestration.  

Basically, a mediator declares a source component, a target component and either a 
mediation service or mapping rules. Hence, the mediator provides a semantic link be-
tween the source component and the target component, which enables mediation ser-
vices or mapping rules to solve mismatches between the two. More details of 
mediation in IRS-III can be found in [1]. 

In this model, the mediation service is just another goal. As an example (see  
listing 3), the mediation service of a wg-mediator can transform input values coming 
from the source goal into an input value used by the target web service.

Mapping rules are used between two ontologies (source and target components).  
These mappings only concern to the concepts used during invocation and consist of 
three main mapping primitives:  

• maps-to – relation created internally for every mapped instance. 
• def-concept-mapping – generate the mappings (maps-to relation) between the 

instances of two concepts within an ontology.  
• def-relation-mapping – generate a mapping between two relations using a rule 

definition within an ontology. As OCML represents concept attributes as rela-
tions, this primitive can be used to map between input and output descriptions.  

5   Application Development with IRS-III 

A Web application can invoke Semantic Web Services by sending “achieve-goal” re-
quests to IRS-III with the input values from the user. IRS-III will then execute the ap-
propriate deployed Web Services (see figure 2). This Semantic Web Service 
brokering scenario enables data and process integration across many business part-
ners. The SWS provided can be shared or used to send common information to the di-
verse participating organisations.  

In our methodology for developing applications using SWS with IRS-III we devise 
a customer team for creating goal descriptions according to user requests and a devel-
opment team for creating web service descriptions for the available deployed Web 
Services. The application developer then creates mediator descriptions which connect 
domain ontologies, goals and web services and provide mediation services or map-
ping rules for solving mismatches between ontological elements.  



 IRS-III: A Broker for Semantic Web Services Based Applications 209 

 
 
 

 

Fig. 2. A simple SWS brokering scenario using IRS-III  

We created a generic application architecture which reflects our methodology for 
using IRS-III following on the steps described on section 2 as depicted in figure 3. 
Briefly, such architecture enables the functionality provided by existing legacy sys-
tems from the involved business partners to be exposed as Web Services, which are 
then semantically annotated and published using the SWS infrastructure. The archi-
tecture consists of four layers as explained next.  

 

Fig. 3. A generic application architecture using IRS-III 

The legacy system layer consists of the existing data sources and information tech-
nology systems available from each organisation involved in the integrated applica-
tion. The service abstraction layer enables the functionality of the legacy systems to 
be available as Web Services, abstracting from the implementation details. Current 
Enterprise Application Integration (EAI) software generally enables the easy creation 
of the necessary Web Services. Note that for the integration of standard databases the 
necessary functionality of the Web Services can simply be implemented as query 
(SQL) functions. The SWS layer is based on the Web Services provided by the ser-
vice abstraction layer. The activities in this layer are mainly supported by the IRS-III 
infrastructure as outlined in section 2. Given a goal request, IRS-III will: a) discover a 
candidate set of web services; b) select the most appropriate one; c) resolve any mis-
matches at the ontological level; and d) invoke the relevant set of Web Services satis-
fying any data, control flow and invocation requirements.  To achieve this, IRS-III, 
utilizes the set of Semantic Web Service descriptions which are composed of goals, 
mediators, and web services, supported by relevant domain ontologies. Finally, the 
presentation layer consists of the user interface, which is built on top of the SWS 



210 L. Cabral et al. 

layer as a Web application accessible using a standard Web browser. Goal invocation 
requests are generated with the data provided by the user through the user interface 
triggering the invocation of applicable SWS and as a result the execution of deployed 
Web Services in the service abstraction layer 

In the next section we will further explain our methodology by mapping each ar-
chitecture layer to the development activities related to a specific application in e-
government. In the following we point out some generic considerations when using 
SWS as outlined in the architecture described above.  

In general, during the requirements phase of application development, the stake-
holders involved in the application scenario should provide information to ontology 
builders in order to create or reuse domain ontologies related to the application con-
text. SWS make this process very simple and efficient because the only knowledge 
which must be modelled is related to the exposed functionality implemented by the 
Web Services. Developers do not need to model entire data sources or create class in-
stances corresponding to thousands of database records; we only model the informa-
tion used by Web Services.  

By taking a top-down approach for semantically annotating services, IRS-III facili-
tates querying and reasoning about the capability of the service before its execution 
since the semantic relations between the descriptions used (goal, web services, media-
tors and domain ontologies) are well defined in the WSMO metamodel. The reason-
ing needed during the invocation of one service is efficient because it is limited to the 
scope of the invocation. 

6   Application Example on E-Government 

In the following we present relevant details of the prototype created for the case study 
on e-government within the DIP project (http://dip.semanticweb.org) for illustrating 
an application based on Semantic Web Services using IRS-III. The main requirement 
for applications in E-government relates to the interoperability of data and processes 
between services provided by different government agencies.  

Our implemented scenario named “Change of Circumstances” involved two gov-
ernmental agencies coordinated by Essex County Council (ECC) in UK. In this scenario 
a disabled mother moves into her daughter’s home and both are eligible to receive ser-
vices and benefits – health and housing equipments – from service providing agencies. 
A case worker of the Community Care department helps a citizen to report her change 
of circumstance (e.g. address) to different agencies involved in the process.  

Following from the architecture in Figure 3, at the presentation level we created an 
application user interface for the Change of Circumstances scenario. From the interface a 
case worker from Essex County Council has access to some functionality such as “update 
client details” and “create client assessment”. Behind each functionality there is one or 
more associated goal requests such as “update citizen address” or “find equipment”. A 
case worker can select a suitable functionality, fill in the required fields and then submit 
his request which will trigger the execution of the defined goals.

At the semantic level, we used IRS-III to provide WSMO descriptions to the de-
ployed Web Services, including mediator descriptions for declaring the mappings be-
tween concepts not aligned. We then published the Web Services in IRS-III. The 



 IRS-III: A Broker for Semantic Web Services Based Applications 211 

relevant integration aspect was the implementation of a composed web service, which 
accesses information from two different agencies. This composed service named 
“change-address-ws” will be explained in more details in the illustration of the se-
mantic descriptions in the next section. This service is composed of two basic ser-
vices. The first changes the address of the citizen within ECC, and the second service 
changes the address of the citizen within the agency providing services related to 
housing equipment.    

At the service level, we developed a set of Web Services which performed basic 
operations on top of the databases of the two involved agencies. These Web services 
were deployed into an application server (SAP Exchange Infrastructure) provided by 
a partner at SAP in Germany and then published in IRS-III, running at the Open Uni-
versity in England. At the legacy systems level, we recreated anonymous content (due 
to privacy reasons) of the existing data sources for each agency involved.  

6.1   Semantic Descriptions 

In the following we present the domain ontologies and Semantic Web Service de-
scriptions used in the application prototype. Each agency involved in the prototype 
development provided a domain ontology which represents its own information con-
cerning the application scenario. A domain ontology can represent the viewpoint of 
the user and then be used to define goals or it can represent the viewpoint of a service 
provider and therefore be used for describing deployed Web Services. The ontologies 
were developed independently but both used a common upper-level ontology describ-
ing general concepts from the e-government domain (e.g. government-organisation, 
county-council, public-service, health-service).  

Listing 1. Partial source code for concepts in the domain ontologies 

(def-class equipment () 
  ((has-product-code :type string) 
   (has-description :type string) 
   (has-cost :type string) 
   (has-max-user-weight :type integer) 
   (has-charging-value :type string) 
   (has-product-widtht :type string) 
   (has-product-height :type string) 
   (has-product-seat-height :type string))) 

(def-class citizen-address () 
  ((has-address-key :type integer) 
   (has-postcode :type post-code-string) 
   (has-premise-number :type integer)
   (has-premise-name :type string) 
   (has-street :type string) 
   (has-locality :type string) 
   (has-town :type string))) 

The two developed ontologies are as follow: 

• Citizens ontology - Domain ontology created by Essex County Council de-
scribing information related to a citizen assessment for social benefits and ser-
vices. Contain classes defining for example: address, assessment, health 
problem, benefit, case worker and others. 



212 L. Cabral et al. 

• Equipment ontology – Domain ontology created by the Housing Department 
describing information related to ordering housing equipments. Contain 
classes defining for example: order, equipment, supplier, delivery descriptor 
and so on. 

Listing 1 shows an excerpt of two concepts defined in the domain ontologies (at-
tributes are self-explanatory). “Equipment” is used as output of the goal (listing 2) 
and “citizen-address” as input of one of the web services. Instances of these classes 
can be created with the values of attributes provided through the user interface. Oth-
erwise they can be lifted from the results of service invocations. 

Listing 2 shows the definition of goal “find-equipment-goal”. This instance of a 
goal defines 2 inputs (“has-input-role” slot) and one output (“has-output-role” slot). 
This goal takes the client weight and purpose and returns a list of suitable equipments.  

Listing 2. Partial source code for the goal FIND-EQUIPMENT-GOAL 

(DEF-CLASS FIND-EQUIPMENT-GOAL (GOAL)?GOAL
      ((HAS-INPUT-ROLE

:VALUE HAS-CLIENT-WEIGHT 
           :VALUE HAS-CLIENT-PURPOSE) 
       (HAS-OUTPUT-ROLE
           :VALUE HAS-SUITABLE-ITEMS-LIST) 
       (HAS-CLIENT-WEIGHT :TYPE NUMBER) 
       (HAS-CLIENT-PURPOSE :TYPE PURPOSE-DESCRIPTOR) 
       (HAS-SUITABLE-ITEM-LIST :TYPE EQUIPMENT) 
       (HAS-NON-FUNCTIONAL-PROPERTIES

           :VALUE E-GOV-ASSESS-ITEM-GOAL-NON-FUNCTIONAL-PROPERTIES))) 

Listing 3 shows a partial definition of the web service “change-address-ws”. This 
description declares a capability and an interface which are described in correspond-
ing classes.  The interface declares an orchestration, which is defined in another 
class. The “problem solving pattern” slot of the orchestration defines the workflow 
(sequence) for the composition of 2 sub-goals. The choreography of one of the sub-
goals is defined by another class (“change-citizen-detatils-ws-choreography”) which 
has a grounding and guarded transitions. The grounding includes information about 
the WSDL associated with the described service, the lowering of the inputs and lifting 
of the output; there is one rule in the guarded transitions which uses the operation 
“change-details-operation” defined.  

Listing 3. Partial source code for the web service CHANGE-ADDRESS-WS 

(DEF-CLASS CHANGE-ADDRESS-WS (WEB-SERVICE) ?WEB-SERVICE 
  ((HAS-CAPABILITY :VALUE CHANGE-ADDRESS-WS-WEB-SERVICE-CAPABILITY) 
    (HAS-INTERFACE :VALUE CHANGE-ADDRESS-WS-WEB-SERVICE-INTERFACE) 
    (HAS-NON-FUNCTIONAL-PROPERTIES
       :VALUE CHANGE-ADDRESS-WS-WEB-SERVICE-NON-FUNCTIONAL-POPERTIES))) 

(DEF-CLASS CHANGE-ADDRESS-WS-WEB-SERVICE-INTERFACE (INTERFACE)?INTERFACE
   ((HAS-ORCHESTRATION :VALUE CHANGE-ADDRESS-WS-ORCHESTRATION) 
    (HAS-NON-FUNCTIONAL-PROPERTIES
        :VALUE CHANGE-ADDRESS-WS-INTERFACE-NON-FUNCTIONAL-PROPERTIES))) 

(DEF-CLASS CHANGE-ADDRESS-WS-ORCHESTRATION (ORCHESTRATION)
    ((HAS-PROBLEM-SOLVING-PATTERN
        :VALUE CHANGE-ADDRESS-WS-ORCHESTRATION-PROBLEM-SOLVING-PATTERN)))



 IRS-III: A Broker for Semantic Web Services Based Applications 213 

(DEF-CLASS CHANGE-ADDRESS-WS-ORCHESTRATION-PROBLEM-SOLVING-PATTERN 
   (PROBLEM-SOLVING-PATTERN)
      ((HAS-BODY :VALUE 
          ((ORCH-SEQUENCE
               CHANGE-CITIZEN-DETAILS-GOAL 
               REDIRECT-EQUIPMENT-GOAL) 
           (ORCH-RETURN (ORCH-GET-GOAL-VALUE REDIRECT-EQUIPMENT-GOAL)))))) 

(DEF-CLASS CHANGE-CITIZEN-DETAILS-WS-CHOREOGRAPHY (CHOREOGRAPHY)
   ((HAS-GROUNDING :VALUE 
       (GROUNDED-TO-WSDL CHANGE-DETAILS-OPERATION 
          (http://changeDetails.wsdl "changeDetails" "changeDetailsPort" 
           http://sap.com/research/dip/wp9/elmdb "AXIS") 
           ((LOWER-TO HAS_CLIENT_ADDRESS "STRING")) 
            (LIFT-TO HAS_ACKNOWLEDGMENT "STRING"))) 
        (HAS-GUARDED-TRANSITIONS :VALUE 
             ((RULE1 
                (INIT-CHOREOGRAPHY)
               THEN 

                (SEND-MESSAGE 'CHANGE-DETAILS-OPERATION))))

Listing 4 shows the definition of mediator "address-mediator". This is an instance 
of a WSMO GG-mediator. It was used to transform “citizen-address” type to a string 
used by “redirect-equipment-goal”. 

Listing 4. Partial source code for the ADDRESS-MEDIATOR mediator  

(DEF-CLASS ADDRESS-MEDIATOR (GG-MEDIATOR) ?MEDIATOR 
    ((HAS-SOURCE-COMPONENT :VALUE CHANGE-ADDRESS-GOAL) 
     (HAS-TARGET-COMPONENT :VALUE REDIRECT-EQUIPMENT-GOAL) 
     (HAS-MEDIATION-SERVICE
        :VALUE ADDRESS-MEDIATION-SERVICE-GOAL) 
     (HAS-NON-FUNCTIONAL-PROPERTIES :VALUE 

         ADDRESS-MEDIATOR-MEDIATOR-NON-FUNCTIONAL-PROPERTIES))))

7   Related Work and Conclusions 

In this paper we have presented our approach to developing Semantic Web Services, 
supporting selection, composition, mediation and invocation of Web Services as well 
as our methodology for developing Web applications which use the IRS-III infrastruc-
ture. We have validated our approach in the context of a case study in e-government, 
which offers a motivating scenario for the use of Semantic Web Services with re-
quirements and data provided by real users. In addition we use the case study to illus-
trate the semantic descriptions used by IRS-III. 

Although a number of Semantic Web Service approaches now exist in addition to 
IRS-III and WSMO, including for example, OWL-S (http://www.w3.org/ Submis-
sion/OWL-S), SWSF (http://www.w3.org/Submission/SWSF) and WSDL-S 
(http://www.w3.org/Submission/WSDL-S); there are few frameworks which can 
comprehensively support the development of Semantic Web Services based applica-
tions. A more detailed comparison between approaches can be found in [2]. 

Overall, the work on IRS-III is more closely related to WSMX (http:// www. 
wsmx.org/) since both environments are based on WSMO. However, IRS-III is 
founded on a knowledge-based approach and infrastructure which introduces distin-
guishing design principles and semantic primitives for executing choreography, or-
chestration and mediation of Semantic Web Services. The SWS approaches listed 
above share a number of common features with IRS-III; in particular, there are  



214 L. Cabral et al. 

similarities between the ontological structures used for Web service functional de-
scriptions. Additionally, these approaches enable grounding to WSDL. The main dif-
ferences concern the behavioral aspects of service description; although a process-
oriented abstraction could be constructed for orchestration, a state-based behavior is 
explicitly represented in our ontology. Moreover, IRS-III focuses on the problems that 
clients need to solve, providing for this reason a goal-centric invocation mechanism.  

Acknowledgements 

This work is supported by the DIP project (Data, Information and Process Integration 
with Semantic Web Services) (EU FP6 - 507483). The authors gratefully acknowl-
edge the members of the DIP project and the WSMO working group for their insight-
ful comments on our work. We also acknowledge the contribution of DIP members 
Mary Rowlatt, Robert Davies and Leticia Gutierrez from Essex County Council - UK. 

References 

1. Cabral, L. and Domingue, J.: Mediation of Semantic Web Services in IRS-III. In Work-
shop on Mediation in Semantic Web Services (MEDIATE 2005) in conjunction with the 
3rd International Conference on Service Oriented Computing (ICSOC 2005), Amsterdam 
(2005) 

2. Cabral, L., Domingue, J., Motta, E., Payne, T. and Hakimpour, F. (2004). Approaches to 
Semantic Web Services: An Overview and Comparisons. In proceedings of the First Euro-
pean Semantic Web Symposium, ESWS 2004, Heraklion, Crete, Greece. LNCS 3053 

3. Crubezy, M., Motta, E., Lu, W. and Musen, M.: Configuring Online Problem-Solving Re-
sources with the Internet Reasoning Service. IEEE Intelligent Systems, 2 (2003) 34-42 

4. Dimitrov, M., Simov, A., Montchev, V. and Ognanov, D.: WSMO Studio: an Interfaced 
Service Environment for WSMO. In Workshop on WSMO Implementations (WIW 2005) 
Frankfurt, Germany. CEUR Workshop Proceedings, Vol. 134  (2005) 

5. Domingue, J., Cabral, L., Hakimpour, F., Sell, D. and Motta, E.: IRS-III: A Platform and 
Infrastructure for Creating WSMO-based Semantic Web Services. In Workshop on 
WSMO Implementations (WIW 2004) Frankfurt, Germany. CEUR Workshop Proceed-
ings, Vol. 113  (2004) 

6. Domingue, J., Galizia, S. and Cabral, L.: The Choreography Model for IRS-III.  In proceed-
ings of Hawaii International Conference on System Sciences (HICSS 2006), Hawaii (2006) 

7. Gruber, T. R.: A Translation Approach to Portable Ontology Specifications.  Knowledge 
Acquisition, 5(2) (1993) 

8. Motta, E.: Reusable Components for Knowledge Modelling. IOSPress, Amsterdam (1999) 
9. Motta, E., Domingue, J., Cabral, L. and Gaspari, M.:  IRS-II: A Framework and Infrastruc-

ture for Semantic Web Services. In proceeding of the 2nd International Semantic Web 
Conference (ISWC 2003). LNCS 2870 (2003) 

10. Omelayenko, B., Crubezy, M., Fensel, D., Benjamins, R., Wielinga, B., Motta, E., Musen, 
M., Ding, Y.: UPML: The language and Tool Support for Making the Semantic Web 
Alive. In: Fensel, D. et al. (eds.): Spinning the Semantic Web: Bringing the WWW to its 
Full Potential. MIT Press  (2003) 141–170 

11. WSMO Working Group. Deliverable D2v1.2 Web Service Modeling Ontology (WSMO).  
http://www.wsmo.org/TR/d2/v1.2/  (2005) 



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 215 – 227, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Provenance Explorer – Customized Provenance Views 
Using Semantic Inferencing 

Kwok Cheung1 and Jane Hunter2 

1 AIBN, The University of Queensland 
St Lucia, Queensland, Australia 
kwokc@itee.uq.edu.au 

2 ITEE, The University of Queensland 
St Lucia, Queensland, Australia 
jane@itee.uq.edu.au 

Abstract. This paper presents Provenance Explorer, a secure provenance 
visualization tool, designed to dynamically generate customized views of 
scientific data provenance that depend on the viewer’s requirements and/or 
access privileges. Using RDF and graph visualizations, it enables scientists to 
view the data, states and events associated with a scientific workflow in order to 
understand the scientific methodology and validate the results. Initially the 
Provenance Explorer presents a simple, coarse-grained view of the scientific 
process or experiment. However the GUI allows permitted users to expand links 
between nodes (input states, events and output states) to reveal more fine-
grained information about particular sub-events and their inputs and outputs. 
Access control is implemented using Shibboleth to identify and authenticate 
users and XACML to define access control policies. The system also provides a 
platform for publishing scientific results. It enables users to select particular 
nodes within the visualized workflow and drag-and-drop them into an RDF 
package for publication or e-learning. The direct relationships between the 
individual components selected for such packages are inferred by the rule-
inference engine.  

Keywords: eScience, Provenance, Visualization, Inferencing. 

1   Introduction and Objectives 

Provenance is essential within science because it provides a history or documentation 
of the steps taken during the scientific discovery process. Understanding the source of 
data or how scientific results were arrived at, is essential in order to verify or trust that 
data and to enable its re-use and comparison. A record of the complete scientific 
discovery process enables peers to review the method of conducting the science as 
well as the final conclusions. Precise, authenticated provenance data reduces 
duplication and insures against data loss because the additional contextual and 
provenance information ensures the repeatability and verifiability of the results[1]. It 
also enables precise attribution of individual credit during collaborations involving 
teams of scientists. 



216 K. Cheung and J. Hunter 

Ideally provenance capture systems are in place that are capable of recording both 
the domain-specific steps in the physical world (e.g., the laboratories or processing 
plants) as well as the data derivation steps in the digital domain. Increasingly, e-
Laboratory notebooks and workflow systems are being developed specifically to 
relieve the effort required by scientists to capture the precise provenance metadata 
required to validate scientific results and enable their duplication. Assuming 
appropriate metadata is being captured at each stage in the workflow associated with 
scientific discovery process, then many of the relationships between the individual 
components are either explicitly captured or can be inferred later, as required. This is 
particularly true of systems that record the sequence of events, inputs and outputs in 
machine-processable descriptions represented using RDF graphs and domain-specific 
OWL ontologies.  

We are interested in those workflow and e-Lab notebook systems that are based on 
RDF. Recentris’ Collaborative Electronic Research Framework (CERF)1. and the 
SmartTea [2] and MyTea [3] systems are examples of RDF-based laboratory 
notebook systems. RDF-based workflow systems that support the capture of 
provenance information include Kepler [4], Taverna [5] and Triana [6]. Our objective 
is to take the output from such systems (i.e., the RDF instances that describe the 
sequence of events and data products recorded during the execution of a scientific 
workflow) and apply reasoning across these sets of records to infer new relationships 
between indirectly related data products. These inferred relationships can be used to 
generate alternative but still correct views of the data provenance. Alternative views 
of provenance are required for a number of reasons. Simplified views of highly 
complex workflows may be required for teaching or publication purposes. Restricted 
views which hide certain information or details are required to protect the intellectual 
property associated with particular scientific processes. This is particularly important 
within collaborating teams of scientists to protect individual IP but still enable 
controlled sharing and validation of the overall process. Hence our objectives are to 
leverage existing RDF-based workflow tools and the captured provenance data and 
metadata in order to: 

• generate visualizations of the lineage of the data and its products i.e., the 
relationships between the different derivative products generated during the 
scientific process; 

• dynamically infer customized views of provenance depending on the user’s 
requirements and privileges; 

• restrict access to specific data or processing steps (using Shibboleth [7] to 
authenticate users and XACML [8] to define policies) - in order to protect 
intellectual property and maintain competitive advantage; 

• streamline the construction of publication or e-learning packages (that link 
the raw data to its derivatives and traditional scholarly publications).  

The remainder of this paper is structured as follows: Section 2 describes related work; 
Section 3 describes the case study we used for evaluation and testing; Section 4 describes 
the system architecture and components; Section 5 describes the implementation and user 
interface and Section 6 concludes with an evaluation, discussion and future work plans. 

                                                           
1 http://www.rescentris.com/ 



 Provenance Explorer – Customized Provenance Views Using Semantic Inferencing 217 

2   Related Work 

Our aim is to take the output from existing RDF-based provenance capture systems 
and to develop a visualization tool that dynamically generates customized views of 
the provenance trail. For example, Kepler [4] is a scientific workflow system 
designed for multiple disciplines that enables scientists to design and execute 
workflows. Recently, Kepler embedded a new provenance recording component that 
collects data and workflow provenance at runtime. Similarly, CERF provides a 
unified electronic record-keeping environment for scientists, in particular for 
biologists, to capture, curate, annotate, and archive their data, and to integrate the data 
into electronic lab notebook-like pages. Either of these two systems could integrate 
seamlessly into Provenance Explorer because they are both java-based applications. 
Furthermore, the Protégé-OWL Plugin API can be used as the interface between 
either system and Provenance Explorer. 

The Prototype Lineage Server [9] allows users to browse lineage information by 
navigating through the sets of metadata that provide useful details about the data 
products and transformations in a workflow invocation. Web server scripts on the 
lineage server query the lineage database, and provide a Web browser interface that 
allows navigation via HTML links. Views are restricted to parent and children 
metadata objects. Clicking on a parent object will move that link to the center of the 
screen and show that object’s parents. Clicking on the metadata object link in the 
center of the screen will bring up the XML metadata for an object.  

Pedigree Graph [10], one of tools in Multi-Scale Chemistry (MCS) portal from the 
Collaboratory for Multi-Scale Chemical Science (CMCS), is designed to enable users 
to view multi-scale data provenance. The portlet provides scientists with a two-
dimensional visualization of a data object or file and all of its scientific pedigree 
relationships. The view is static, and rendered straight from GXL (Graphical 
eXchange Language) files but users are able to traverse the tree by clicking on links. 

The MyGrid project renders graph-based views of RDF-coded provenances using 
Haystack [11]. This is used to visualize networks of semantic relationships among 
provenance resources associated with experiments. Haystack is a Semantic Web 
browser that enables developers to provide tailored views over RDF-metadata. The 
authors point out that Haystack is highly resource-consumptive because its execution 
is based on Adenine, a high level programming language developed on top of Java 
Programming Language. Hence the response time to user’s instructions could be 
slow.  

The VisTrails system [12] was developed by the University of Utah for building, 
storing, editing and visualizing workflows and interactively tracking workflow 
execution and evolution. Although it uses graphs to visualize workflows and 
provenance trails, it differs from the Provenance Explorer in that it is not designed to 
generate personalized views of provenance – adapted for publication or teaching 
purposes or to suit a user’s interest or access permissions. 

So although there are existing systems that enable visualization of RDF-encoded 
provenance graphs, the unique aspect of our Provenance Explorer system is its ability 
to generate personalized views of the provenance relationships automatically using a 
combination of user input, semantic reasoning and access policies. 



218 K. Cheung and J. Hunter 

3   Case Study 

Within the University of Queensland, materials scientists within the Australian 
Institute for Bioengineering and Nanotechnology are investigating the optimization of 
fuel cells – an alternative environment-friendly energy source to fossil fuels. The 
efficiency of a fuel cell depends on the internal structure of the fuel cell components 
and their interfaces. Electrolytes are one of the primary fuel-cell components. Figure 
1 illustrates the complex set of steps involved in manufacturing and testing 
electrolytes. Associated with each step in the workflow is a set of parameters, only 
some of which are controllable. The challenge for the fuel-cell scientist is to 
determine the optimum combination of controllable parameters in order to attain the 
maximum strength, efficiency and longevity of the fuel cell for the minimum cost 
[13]. 

 

Fig. 1. A logical view of the manufacture and testing process of Fuel-Cell Electrolyte 

Through the FUSION project [14] we have been collaborating with a team of fuel 
cell scientists on the development of an eScience workflow and provenance capture 
system that records the data associated with each of the steps in the electrolyte 
manufacturing and testing process and enables its statistical analysis in order to 
generate new workflows [13]. Through this work we have access to data records from 
a series of manufacturing and testing experiments. Hence we decided to use this 
application as a case study for evaluating and attaining user feedback on the 
Provenance Explorer system. The first step involved modeling the workflow in Figure 
1 and representing it in OWL. We decided to use the event-aware ABC ontology [15], 
developed within the Harmony project, to track the life cycle of digital objects. We 
first had to extend the ABC ontology to describe processing, simulation and 
  



 Provenance Explorer – Customized Provenance Views Using Semantic Inferencing 219 

 

Fig. 2. Provenance Model of the Electrolyte Manufacture and Analysis Process 

experimental events. Given this extended ontology, we were able to represent the 
workflow instances corresponding to Figure 1 in OWL. This is illustrated in Figure 2.  

Given the OWL representations of the provenance data associated with the fuel cell 
manufacturing and testing process, the aim was to generate customized graphical 
visualizations of the data using the Provenance Explorer system – to satisfy the 
requirements of the scientists. In addition to the OWL instance data, we also had to 
develop rules for inferring relationships between entities that were not directly related 
and represent them in the Semantic Web Rule Language (SWRL)[16]. For example:  

IF (Experiment A includes Workflow B) AND 
    (Workflow B  contains Slip Batching C) AND 

      (Slip Batching C hasInput Powder D) 
THEN (Experiment A hasInput Powder D) 

4   System Architecture 

Figure 3 illustrates the overall system architecture and its key components. The three 
key components of the system are: 

• The knowledge base which consists of SWRL.OWL files that contain the 
provenance instance data and metadata and the inference rules.  

• the Provenance Visualizer and  
• Algernon, a rule-inference engine.  

The SWRL.OWL files are input to both the Provenance Visualizer and Algernon. 
Jena and Protégé-OWL Plugin act as the interface between the Provenance Visualizer 
and the SWRL.OWL files, and between Algernon and the SWRL.OWL files, 
respectively.  Jena [17], developed by HP Labs, provides the programmatic 



220 K. Cheung and J. Hunter 

environment for RDF, RDFS and OWL. Jena supports SPARQL[18] which is used to 
query the SWRL.OWL files. The Protégé-OWL Plugin was used to generate the 
SWRL.OWL files and to retrieve the rules from the SWRL.OWL files for Algernon 
to process at runtime. Algernon [19] is a rule-inference engine that supports both 
forward and backward chaining rules of inference, and implements Access-Limited 
Logic. However Algernon does not support the inference of subsumption between 
properties or comply with the SWRL rule format, the rules retrieved from 
SWRL.OWL files by Protégé-OWL Plugin APIs had to be transformed to the 
Algernon-compliant rules before being imported to Algernon at runtime. 

The Provenance Visualizer, is the graphical user interface (GUI) powered by 
JGraph [20] (an extension of Java Swing GUI Component to support directed graphs). 
The Provenance Visualizer GUI is divided into three panels horizontally: 

1) The Provenance View, in the upper panel, presents a graphical view of the 
provenance process modeled using RDF graphs.  

2) The Publishing Interface, in the central panel, enables users to construct packages 
for publishing scientific results. The users can drag and drop selected components 
from the upper panel into an RDF package. When two components are linked 
manually then the direct relationship is inferred automatically using the 
inferencing rules and Algernon.  

3) Finally, the Provenance data, in the bottom panel displays the provenance details 
(metadata) for the object highlighted in the upper panel. 

 

Fig. 3. System Architecture 

Access controls are imposed on the upper panel’s graphical view. The granularity 
of the view depends on user privileges and access policies, enforced and defined by 
Shibboleth and XACML. 



 Provenance Explorer – Customized Provenance Views Using Semantic Inferencing 221 

To enforce the inter-institutional authentication and access control, Shibboleth , a 
centralized identity and authorization mechanism developed by the NSF Middleware 
Initiative, was adopted and incorporated within the Provenance Explorer. Shibboleth 
is standards-based, open source middleware software which provides Web Single 
SignOn (SSO) across or within organizational boundaries. Figure 4 demonstrates the 
two primary components of Shibboleth: the Identity Provider (IdP) and Service 
Provider (SP). The IdP maintains user credentials and attributes. Upon request the IdP 
will assert authentication and attribute statements to requesting parties, specifically 
SPs. The SP then uses predefined-XACML policies to control access to the 
Provenance Explorer and fine-grained provenance views on the upper panel.  

XACML complements Shibboleth to address fine-grained access control on the 
resources.  XACML, the Extensible Access Control Markup Language, provides a 
vocabulary for expressing the rules needed to define fine-grained and machine-readable 
policies and make authorization decisions. In this system we use Sun’s XACML2 
implementation which includes an XACML engine and an API for easy integration. 

Initially, authenticated users of Provenance Explorer are presented with the coarsest 
view of provenance. When a user attempts to retrieve finer-grained views by clicking 
on links between entities, a request is generated, the XACML engine compares the 
request with the policies on these entities and makes the authorization decision. 

 

Fig. 4. Authentication and Authorization System Architecture 

5   Demonstration and User Interface 

Within the FUSION project, members of the “Virtual Organization” (those users 
collaborating on the project and sharing different aspects of the data) can be classified 
into three main role types with three different levels of access:  

1. the fuel-cell researcher from the AIBN (also the project leader); 
2. the technicians from the fuel-cell manufacturing company; 
3. post-graduate students from the University of Queensland and Monash 

University. 

The fuel-cell researcher designed the original workflows, over-saw the entire process, 
developed new hypotheses and models, designed new experiments, and wrote 

                                                           
2 http://sunxacml.sourceforge.net/ 



222 K. Cheung and J. Hunter 

publications describing the results and conclusions. The technicians carried out the 
manufacturing (slip batching, tape casting, firing) and performance testing activities. 
Finally, the post-graduate students working on specific aspects of fuel cells were 
entitled to view different components of the process to different levels. The fuel-cell 
researcher had the highest privileges and was entitled to explore the complete set of 
provenance records. He/she was also able to select provenance components to 
incorporate within publication or e-learning packages. The technicians had modest 
privileges – they were able to access the provenance associated with each of their own 
activities, whereas the students had the minimum privileges with restricted access to 
provenance details. In the following section we describe the system from the point of 
view of each of these user types. 

Firstly consider the researcher/project leader. He/she logs onto the Shibboleth 
Service provider where the Provenance Explorer service is installed. Initially, the user 
is redirected to Shibboleth’s Identity Provider for authentication and authorization. 
Once authenticated, the user’s attributes are returned back to the Service Provider and 
the user is granted access to the Provenance Explorer. The researcher searches for the 
provenance of Batch Number 280818. Initially the researcher is presented with the 
basic view of the experiment provenance. This is the default view for all users with 
access privileges to the FUSION project’s Provenance Explorer service. Figure 5 
demonstrates the default expandable view. The pink arrows indicate relationships that 
can be expanded to reveal further fine-grained information about the sub-activities. 

 

Fig. 5. A standard basic view 

When the researcher clicks on a pink arrow, a request for additional information is 
generated and submitted to the XACML engine.  The XACML engine compares the 
request with the policy and makes an authorization decision accordingly. Figure 6 
demonstrates the policy and request. 



 Provenance Explorer – Customized Provenance Views Using Semantic Inferencing 223 

 

Fig. 6. Example policies and requests 

Eventually by interactively drilling down via the links, the researcher is presented 
with the complete view. Figure 7 illustrates the complete view in the upper panel. The 
dark green arrows indicate links that can be collapsed manually back to the original 
view i.e., the pink expandable links. If an individual node on the upper panel is 
selected, the complete provenance metadata for this node is displayed in the bottom 
panel. Figure 7 demonstrates this feature. Node Powder_Spec_001 is highlighted in a 
red circle on the upper panel, and the associated provenance information is displayed 
in the bottom panel. 

 

Fig. 7. An expanded complete provenance view for the Researcher/Project Leader 



224 K. Cheung and J. Hunter 

Furthermore, using this interface, the researcher is able to manually construct a 
package of related components for publication or dissemination. This is performed by 
selecting nodes in the top panel and dragging and dropping them into the middle 
panel. By linking them manually, the relationship between the nodes is inferred by the 
rule-inference engine. For example, Figure 8 demonstrates that the relationship 
inferred between the two selected nodes, Experiment_001 and Electrolyte_Spec_001 
is hasExperimentOutput. The path used to infer this relationship is highlighted in blue 
(with the beginning and end nodes highlighted in red) in the upper panel.  Figure 2 
illustrates that in the ontology we define an experiment as comprising a sequence of 
activities with particular post-event states. The inferencing rule states that any product 
generated by one of the activities in the sequence is an output of the experiment. 

 

Fig. 8. Demonstration of Provenance Inferencing 

Now consider the system from the point of view of the Slip-batching operator. 
After logging in and being authenticated, the operator/technician is presented with the 
default view. This is almost identical to Figure 6, except that there is just one 
expandable pink arrow SB_follows_TC, indicating that further expansion is restricted 
to the slip batching activity.  Finally, the Post-graduate students were also entitled to 
access the default coarse-grained view of the experiment – but with no expandable 
pink arrows.  



 Provenance Explorer – Customized Provenance Views Using Semantic Inferencing 225 

6   Discussion and Conclusion 

6.1   User Feedback 

Initial feedback from the fuel-cell scientists involved in the FUSION project has been 
very positive. The system enables them to quickly and intuitively understand quite 
complex workflows and to compare different workflows. They are able to pinpoint 
problems within a particular workflow and to generate new experimental workflows 
accordingly. Users can understand the system very quickly because of its close 
analogy to the web – using hyperlinks for information exploration and navigation.  
Furthermore, with regard to the data’s validity, the scientists can intuitively track the 
data’s provenance with the aid of the complete graphical view of visualized scientific 
processes and the ability to view detailed metadata associated with any node. The 
users were also very positive about the security framework – in particular the 
advantages of the single sign-on capability of Shibboleth and the ability to hide 
certain steps or the details associated with specific steps in the process. 

However, users did raise concerns regarding scalability and searching. At this 
stage, our demonstration involves multiple instances of a single workflow. In reality, 
the scientists may need to search, retrieve and compare multiple experiments 
simultaneously and the experimental workflows may be very different. Moreover, the 
current methods by which scientists can discover and retrieve experimental 
workflows is limited. Currently the system only permits search and retrieval of 
experiments via a unique ID. Scientists would like to be able to search for 
experiments via particular attributes e.g., particular parameter values. The optimum 
methods for describing, indexing and discovering workflows require further 
investigation and direct input from the end-users. 

6.2   Limitations and Future Work 

The provenance metadata, graphical views and inferencing rules of the Provenance 
Explorer were all based on the provenance model in Figure 2. This model is an 
extension of the ABC model developed within the Harmony project - extended to 
support experiments in laboratories. This model provides the semantic underpinning 
of the system, and the ontology’s robustness may become a significant issue if/when 
the system is expanded across domains and organizations.  Colomb argues that formal 
ontologies, such as DOLCE [21] and BWW [22], provide a rich meta-vocabulary and 
abstract data types, and well-understood structural organizational principles, thereby 
technically enhancing the reliability of material ontologies [23] like our ontology. 
Thus, it may be worth carrying out further investigation on formal ontologies to 
determine how they can make the provenance model more reliable and rational in 
terms of the data structures. 

To date the workflows that we have considered have really only focused on the 
provenance data/metadata and inferencing rules associated with processing events in a 
laboratory or manufacturing/processing plant. We need to extend the underlying 
model and the inferencing rules to support the data processing activities in the digital 
domain e.g., reformatting, segmentation, normalization etc. 



226 K. Cheung and J. Hunter 

Currently the XACML access policies are defined manually and are manually 
associated with relationships between nodes in the RDF graphs. This is a relatively 
time-consuming process. We need to determine a more streamlined mechanism for 
defining access policies and associating them with provenance relationships. For 
example, the individual or type of participant who is responsible for a particular 
activity or set of activities should have access to all of the provenance data associated 
with those activities and all sub-activities.  

Another limitation of the current system is that it only supports expansion down 
one level of detail. Ideally users would be able to incrementally drill down to multiple 
levels of detail. For example one link can be expanded to two links, each of which can 
be further expanded. This may prove quite complex to implement because it involves 
multiple levels of inferencing rules and the specification of access policies associated 
with provenance information at multiple levels. 

Finally the packages of components that are able to be constructed provide a very 
efficient mechanism: for publishing and sharing scientific results; for teaching complex 
scientific concepts; and for the selective archival, curation and preservation of scientific 
data. Although we currently enable these packages to be saved, they are not indexed or 
able to be searched and retrieved. Tools are required to enable these RDF packages to 
be described, stored to institutional repositories and searched and retrieved for reuse.  

6.3   Conclusions 

In this paper, we have described the Provenance Explorer system that we have 
developed. It is a provenance visualization system that dynamically generates 
different graphical views of provenance trails depending on the user’s requirements 
and access privileges.  It enables users to search and retrieve the data provenance 
associated with scientific workflows or experiments, without compromising the 
security of the data. Even within the context of workflows that capture and share data 
across institutional boundaries, the system is able to authenticate users to enforce fine-
grained, role-based access controls.  The hypermedia user interface that we have 
developed enables easy drilling down from simple high-level views to detailed views 
of complex sub-activities by enabling links to be expanded or collapsed. This feature 
was easy to implement and can quickly be refined or customized because it is 
implemented using SWRL rules and the Algernon inferencing engine.  

Finally scientists are under increasing pressure from funding organizations to 
publish their experimental and evidential data together with the related traditional 
scholarly publication(s). This system makes it easy for scientists to wrap related 
outputs into a single package for publication, peer-review, e-learning or selective 
preservation purposes – and to have the provenance trail between the components 
automatically inferred to enable validation and verification.  

References 

1. Goble, C. Position Statement: Musings on Provenance, Workflow and (Semantic Web) 
Annotations for Bioinformatics. in Workshop on Data Derivation and Provenance. 2002. 

2. schraefel, m.c., et al. Breaking the Book: Translating the Chemistry Lab Book into a 
Pervasive Computing Lab Environment. in CHI. 2004. Vienna, Austria. 



 Provenance Explorer – Customized Provenance Views Using Semantic Inferencing 227 

3. Gibson, A., et al. myTea: Connecting the Web to Digital Science on the Desktop. in World 
Wide Web Conference 2006. 2006. Edinburgh. 

4. Altintas, I., O. Barney, and E. Jaeger-Frank. Provenance Collection Support in the Kepler 
Scientific Workflow System. in International Provenance and Annotation Workship 
(IPAW'06). 2006. Chicago, Illinois, USA. 

5. Oinn, T., et al., Taverna: A tool for the composition and enactment of bioinformatics 
workflows. Bioinformatics Journal, 2004. 20(3045-3054). 

6. Majithia, S., et al. Triana: A Graphical Web Service Composition and Execution Toolkit. 
in IEEE International Conference on Web Services (ICWS'04). 2004: IEEE Computer 
Society. 

7. Morgan, R.L.B., et al., Federated Security: The Shibboleth Approach. EDUCAUSE 
QUARTERLY, 2004. 4: p. 12 - 17. 

8. Lorch, M., et al. First Experiences Using XACML for Access Control in Distributed 
Systems. in ACM Workshop on XML Security. 2003. Fairfax, Virginia. 

9. Bose, R. and J. Frew. Composing lineage metadata with XML for custom satellite-derived 
data products. in Scientific and Statistical Database Management, 2004. Proceedings. 
16th International Conference on. 2004. 

10. Myers, J.D., Pancerella, C., Lansing, C., Schuchardt, K.L. & Didier, B. Multi-scale 
science: supporting emerging practice with semantically derived provenance. in ISWC 
2003 Workshop: Semantic Web Technologies for Searching and Retrieving Scientific 
Data,. 2003. Sanibel Island, Florida, USA. 

11. Zhao, J., et al. Using Semantic Web Technologies for Representing E-science Provenance. 
in Third International Semantic Web Conference. 2004. Hiroshima, Japan. 

12. Freire, J., et al. Managing Rapidly-Evolving Scientific Workflows. in International 
Provenance and Annotation Workship (IPAW'06). 2006. Chicago, Illinois, USA. 

13. Hunter, J. and K. Cheung. Generating eScience Workflows from Statistical Analysis of 
Prior Data. in APAC'05. 2005. Royal Pines Resort, Gold Coast. 

14. Hunter, J., J. Drennan, and S. Little, Realizing the Hydrogen Economy through Semantic Web 
Technologies. IEEE Intelligent Systems Journal - Special Issue on eScience, 2004: p. 40-47. 

15. Lagoze, C. and J. Hunter, The ABC Ontology and Model. Journal of Digital Information, 
2001. 2(2). 

16. Horrocks I., P.-S.P., Boley H., Tabet S, Grosof B, Dean M, SWRL: A Semantic Web Rule 
Language Combining OWL and RuleML. 2004. 

17. Carroll, J.J., et al., Jena: implementing the semantic web recommendations, in 
Proceedings of the 13th international World Wide Web conference on Alternate track 
papers \& posters. 2004, ACM Press: New York, NY, USA. p. 74-83. 

18. McCarthy, P., Search RDF data with SPARQL: SPARQL and the Jena Toolkit open up the 
semantic Web, in developerWorks. 2005, IBM. 

19. Crawford, J.M. and B.J. Kuipers, Algernon - a tractable system for knowledge-
representation. SIGART Bull., 1991. 2(3): p. 35-44. 

20. Alder, G., The JGraph Swing Component, in Department of Computer Science. 2002, 
Federal Institute of Technology ETH: Zurich, Switzerland. 

21. Gangemi, A., et al. Sweetening ontologies with DOLCE. in 13th International Conference 
on Knowledge Engineering and Knowledge Management (EKAW02). 2002. Siguenza, 
Spain: Springer, Berlin. 

22. Weber, R., Ontological foundations of information systems. Monograph No. 4. 1997, 
Melbourne: Coopers & Lybrand Accounting Research Methodology. 

23. Colomb, R.M., Formal versus Material Ontologies for information Systems interoperation 
in the Semantic Web. The Computer Journal, 2006. 49(1). 



On How to Perform a Gold Standard Based Evaluation
of Ontology Learning

Klaas Dellschaft and Steffen Staab

Universität Koblenz-Landau, ISWeb Working Group
Universitätsstr. 1, 56070 Koblenz, Germany
{klaasd, staab}@uni-koblenz.de
http://isweb.uni-koblenz.de

Abstract. In recent years several measures for the gold standard based evalua-
tion of ontology learning were proposed. They can be distinguished by the layers
of an ontology (e.g. lexical term layer and concept hierarchy) they evaluate. Judg-
ing those measures with a list of criteria we show that there exist some measures
sufficient for evaluating the lexical term layer. However, existing measures for the
evaluation of concept hierarchies fail to meet basic criteria. This paper presents a
new taxonomic measure which overcomes the problems of current approaches.

1 Introduction

The capabilities of ontology learning approaches may be tested by (i) evaluation in a
running application, (ii) a posteriori evaluation by experts, or (iii) evaluation by compar-
ison of learned results against a pre-defined ”gold standard”. Though approaches (i) and
(ii) exhibit some considerable advantages over approach (iii), when it comes to frequent
and large-scale evaluations and comparisons of multiple ontology learning approaches,
only approach (iii) is feasible in practice. Since such – comparably – easily repeatable
evaluation schemes contributed heavily to the overwhelming success of disciplines like
information retrieval, machine learning or speech recognition, we conjecture that a sim-
ilar success of ontology learning requires an analogous scheme for evaluation with gold
standards, too.

Examples of gold standard-based evaluations of ontology learning can be found in
[1], [2] and [3] – to name but a few. However, it is apparent that there does not ex-
ist a canonical way of performing gold-standard based evaluations of ontology learn-
ing. Moreover, we argue in this paper that existing gold-standard based evaluations are
faulty and that a well-founded evaluation model is largely missing. Therefore, we de-
scribe here a new framework for gold standard-based evaluation of ontology learning
that avoids common mistakes and we show by some analytical considerations and by
some experiments that the new framework fulfills crucial evaluation criteria that other
frameworks do not meet.

2 Related Work

There exist many measures for the reference-based evaluation of ontologies. One may
distinguish between measures which only evaluate the lexical term layer of an ontology,

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 228–241, 2006.
© Springer-Verlag Berlin Heidelberg 2006



On How to Perform a Gold Standard Based Evaluation of Ontology Learning 229

those which also take the concept hierarchy into account and the ones which evaluate
the non-taxonomic relations contained in an ontology. In this paper we will concentrate
on the measures for evaluating concept hierarchies and the lexical term layer.

On the lexical term layer ”binary” measures are often used that compare the terms
from the reference and the learned ontology based on an exact match of strings. Ex-
amples for this kind of measure are the Term Precision and Term Recall as they are
presented in [3]. There exist also several other names for these measures like Lexical
Precision and Recall or simply precision and recall (see [4] and [5]). Another example
of a term level evaluation measure is the String Matching measure presented in [6] and
[7]. This measure is based on the edit distance between two strings. It is therefore more
robust with regard to slightly different spellings and typing errors (e.g. ”center” and
”centre”).

The comparison of concept hierarchies is more complicated than the comparison of
the lexical term layer of ontologies. Such concept hierarchy measures are often divided
into kinds of local and global measures. The local measure compares the similarity of
the positions of two concepts in the learned and the reference hierarchy. The global
measure is then computed by averaging the results of the local measure for concept
pairs from the reference and the learned ontology.

One of the first examples of a concept hierarchy evaluation measure is the Taxo-
nomic Overlap (TO) presented in [6] and [7]. The local taxonomic overlap compares
two concepts based on the set of all their super- and sub concepts. In opposite to the
local overlap, which is a symmetric measure, this is not the case for the global taxo-
nomic overlap measures proposed in [6], [7] and [8], i.e. they can be computed into
two directions. In [8] this asymmetry is interpreted as a kind of precision and recall.
But in section 4.5 we will show that this is a misinterpretation of the asymmetry, as
local taxonomic overlap already constitutes a kind of combination of precision and
recall.

Another example is the Augmented Precision and Recall (AP & AR) presented in
[9]. It is also divided into a global and a local part of the measure. For the local
part two alternatives may be used: The Learning Accuracy (LA) and the Balanced
Distance Metric (BDM). LA was proposed by [10]. It compares two concepts based
on their distance in the tree (e.g. the length of the shortest path between the root
and their most specific common abstraction). BDM further develops the idea of LA
by taking further types of paths and a branching factor of the concepts into account
(see [9]).

The latest measure for comparing concept hierarchies is the OntoRand index pro-
posed in [11]. It is a symmetric measure which extends techniques used in the cluster-
ing community for comparing two partitions of the same set of instances. A concept
hierarchy is seen as a hierarchical partitioning of instances. For OntoRand two alter-
natives exist to measure the similarity of concepts. The first alternative is based on
the set of common ancestors. The second alternative is based on the distance between
two concepts in the tree (like LA and BDM). An important constraint imposed on the
concept hierarchy is that both compared hierarchies must contain the same set of in-
stances.



230 K. Dellschaft and S. Staab

3 Criteria for Good Evaluation Measures

Given this variety of evaluation measures for concept hierarchies it is now the question
what is a ”good” measure and can we give some criteria according to which to evaluate
the different measures. Measures fulfilling the following criteria will help to avoid the
misinterpretation of evaluation results and ease drawing the right conclusions for the
improvement of the evaluated ontology learning procedure.

The most important criterion is that a measure allows to evaluate an ontology
along multiple dimensions. This criterion is formulated in several papers like [9] and
[12]. Thus a user can weight different kinds of errors based on his own preferences.
This enables to better analyze the strengths and weaknesses of a learned ontology.

If a multi dimensional evaluation is performed, each measure should be influenced
just by one dimension, i.e. by one type of error only. For example, if one uses measures
for evaluating the lexical term layer of an ontology (e.g the lexical precision and recall)
and one also wants to evaluate the quality of the learned concept hierarchy (e.g. with
the taxonomic overlap), then a dependency between those measures should be avoided.

The second criterion is that the effect of an error onto the measure should be pro-
portional to the distance between the correct and the given result. For example, an error
near the root of a concept hierarchy should have a stronger effect on the evaluation
measure than an error nearer to the leafs (see also [12]).

The third criterion is closely related to the previous one. For measures with a closed
scale interval (e.g. [0..1]), a gradual increase in the error rate should also lead to a
gradual decrease in the evaluation results. For example, if a measure has the interval
[0..1] as its scale but already slight errors lead to a decrease of the returned results from
1 to 0.2 then it is difficult to distinguish between slight and severe errors (see [11]).

In Tab. 1 it is shown in how far the measures described in section 2 meet the criteria
listed in this section. The rating is based on the descriptions in [7], [9] and [11]. Addi-
tionally, the new findings from section 4.5 were used for rating the taxonomic overlap.
A measure can improve its multi dimensionality by two factors: either by removing the
influence of the lexical term layer on the evaluation of the concept hierarchy or by sep-
arately measuring different aspects of the hierarchy (e.g. precision and recall). None of
the measures removes the influence of the lexical term layer and only the augmented
precision and recall distinguishes between two aspects of the hierarchy. The Learning
Accuracy does not achieve the best score for the proportional error effect because it

Table 1. Rating of concept hierarchy measures

multi dimensionality proportional error effect usage of interval

TO − + ?
AP & AR ◦ + ?

LA − ◦ ?

OntoRand1 − + / − + / −
TPcsc

(cf. section 4.3)
+ + +



On How to Perform a Gold Standard Based Evaluation of Ontology Learning 231

considers the distance between the correct and the given answer only to some small
extent (see [9]). In the following a truly multi dimensional approach for evaluating an
ontology will be presented, thus overcoming the problems of the current measures.

4 Comparing Learned Ontologies with Gold Standards

In this section measures will be presented which can be used for an evaluation of the
lexical term layer and the concept hierarchy of an ontology. The measures extend the
idea of precision and recall to the gold standard based evaluation of ontologies. The
lexical term layer of an ontology will be evaluated with lexical precision and recall (see
section 4.2). For the concept hierarchy a framework of building blocks will be defined
in section 4.3. This framework defines a family of measures and it will be used for
systematically constructing a measure which fulfills the criteria from section 3.

In the following the simplified definition of a core ontology will be used. This de-
finition of an ontology only contains the lexical term layer and the concept hierarchy.
Similarly to [8], we define a core ontology as follows:

Definition 1. The structure O := (C, root,≤C) is called a core ontology. C is a set of
concept identifiers and root is a designated root concept for the partial order ≤C on C.
This partial order is called concept hierarchy or taxonomy. The equation ∀c ∈ C : c ≤C
root holds for this concept hierarchy.

In this definition of a core ontology the relation between lexical terms and their asso-
ciated concept is a bijection, i.e. each term is associated with exactly one concept and
each concept with exactly one term. Thus it is possible to use the a lexical term as the
identifier of a concept. This restriction simplifies the following formulas. Nevertheless
it would be possible to generalize them to the case where an n : m relation between
concepts and lexical terms exists (in analogy to [6] and [7]).

4.1 Precision and Recall

This section gives a short overview of precision, recall and F-measure, as they are
known from information retrieval (see [13]). They are used for comparing a reference
retrieval (Ref ) with a computed retrieval (Comp) returned by a system. Precision and
recall are defined as follows:

P (Ref, Comp) =
|Comp ∩ Ref |

|Comp| R(Ref, Comp) =
|Comp ∩ Ref |

|Ref | (1)

It is interesting that precision and recall are the inverse of each other:

P (Ref, Comp) =
|Comp ∩ Ref |

|Comp| = R(Comp, Ref ) (2)

1 It is shown in [11] that the measures based on tree distance in some cases do not show an
proportional error effect and that they do not use the complete interval. These problems do not
exist for the OntoRand measure based on common ancestors.



232 K. Dellschaft and S. Staab

The F1-measure is used for giving a summarizing overview and for balancing the
precision and recall values. The F1-measure is the harmonic mean of P and R.

F1(Ref, Comp) =
2 · P (Ref, Comp) · R(Ref, Comp)
P (Ref, Comp) + R(Ref, Comp)

(3)

4.2 Lexical Precision and Recall

There exist several measures sufficient for evaluating the lexical term layer of an ontol-
ogy (see section 2). In this subsection the lexical precision and recall measures, as they
are described in [4], will be explained in a bit more detail. Later on they will be used in
conjunction with the measures for evaluating concept hierarchies, as they are presented
in section 4.3. Given a computed core ontology OC and a reference ontology OR, the
lexical precision (LP ) and lexical recall (LR) are defined as follows:

LP (OC ,OR) =
|CC ∩ CR|

|CC |
LR(OC ,OR) =

|CC ∩ CR|
|CR|

(4)

Fig. 1. Example reference ontology (OR1, left) and computed ontology (OC1, right)

The lexical precision and recall reflect how good the learned lexical terms cover the
target domain. For example, if one compares OC1 and OR1 in Fig. 1 with each other,
one gets LP (OC1,OR1) = 4

6 = 0.67 and LR(OC1,OR1) = 4
5 = 0.8.

4.3 Taxonomic Precision and Recall

In this subsection a framework of building blocks is described. It defines a family of
taxonomic precision and recall measures from which two concrete measures will be
selected afterward. Only the equations for the taxonomic precision measures will be
presented. The corresponding equations for the taxonomic recall measures can be easily
derived from them because of equation (2). This framework extends and improves the
framework used for the taxonomic overlap measures in [7]. It especially replaces the
previously used equation for comparing the position of two concepts with each other
leading to a completely different behavior of the measure (see also section 4.5).

Comparing Concepts. As mentioned before, measures for comparing two concept
hierarchies with each other are usually divided into a kind of local and a global measure
(cf. section 2). The local measure compares the positions of two concepts and the global
measure is used for comparing two whole concept hierarchies. We start describing the
framework’s local measure. It is then used in the definition of the global measure.



On How to Perform a Gold Standard Based Evaluation of Ontology Learning 233

For the local taxonomic precision the similarity of two concepts will be computed
based on characteristic extracts from the concept hierarchy. Such an extract should char-
acterize the position of a concept in the hierarchy, i.e. two extracts should contain many
common objects if the characterized objects are at similar positions in the hierarchy.
The proportion of common objects in the extracts should decrease with increasing dis-
similarity of the characterized concepts. Given such an characteristic extract ce, the
local taxonomic precision tpce of two concepts c1 ∈ OC and c2 ∈ OR is defined as

tpce(c1, c2,OC ,OR) :=
|ce(c1,OC) ∩ ce(c2,OR)|

|ce(c1,OC)| (5)

The characteristic extract from the concept hierarchy is an important building block
of the local taxonomic measure and several alternative instantiations exist. As we will
see below, they have a major influence on the properties of the corresponding global
measure. For the taxonomic overlap measure described in [7] it was suggested to char-
acterize a concept by its semantic cotopy, i.e. all its super- and subconcepts. Given the
concept c ∈ C and the ontology O, the semantic cotopy sc is defined as follows:

sc(c,O) := {ci|ci ∈ C ∧ (ci ≤ c ∨ c ≤ ci)} (6)

If one uses the semantic cotopy for defining the local taxonomic precision measure
tpsc, the results will be heavily influenced by the lexical precision of OC because with
decreasing lexical precision more and more concepts of sc(c,OC) are not contained
in OR and sc(c,OR). This increases the probability that sc(c,OC) contains such con-
cepts, leading to a direct dependency between the lexical and the taxonomic precision.
But according to section 3, evaluation measures should be judged by whether the dif-
ferent measures are independent of each other. So taxonomic measures based on the
semantic cotopy shouldn’t be used in conjunction with the lexical precision and recall.

This influence of lexical precision and recall on the taxonomic measures can be
avoided if one uses the common semantic cotopy csc as the characteristic extract. The
common semantic cotopy excludes all concepts which are not also available in the other
ontology’s set of concepts:

csc(c,O1,O2) := {ci|ci ∈ C1 ∩ C2 ∧ (ci <1 c ∨ c <1 ci)} (7)

In Tab. 2 and 3 one can see the influence of inserting and replacing concepts in a
hierarchy. The tables contain the sets sc and csc for the ontologies OR1 and OC1 which
were already used as an example for lexical precision and recall (see Fig. 1). One can
see that inserting and replacing concepts without actually changing the hierarchy has no
effect on the common semantic cotopy while the semantic cotopy is heavily influenced
by these changes on the lexical term layer of an ontology.

Besides the previously described extracts of the concept hierarchy, further extracts
are imaginable. For example, the upwards cotopy (see [7]) or the set of all direct sub-
concepts might be used. In [14] also measures based on the direct subconcepts were
evaluated. But [14] shows also that measures based on the semantic cotopy meet more
of the criteria from section 3.



234 K. Dellschaft and S. Staab

Table 2. Semantic cotopies for the ontologies in Fig. 1

c sc(c, OR1) sc(c, OC1)
root {root, bike, car, van, coupé} {root, bike, BMX, auto, van, coupé}
car {root, car, van, coupé} –

auto – {root, auto, van, coupé}
van {root, car, van} {root, auto, van}

coupé {root, car, coupé} {root, auto, coupé}
bike {root, bike} {root, bike, BMX}

BMX – {root, bike, BMX}

Table 3. Common semantic cotopies for the ontologies in Fig. 1

c csc(c, OR1, OC1) csc(c, OC1, OR1)
root {bike, van, coupé} {bike, van, coupé}
car {root, van, coupé} –
auto – {root, van, coupé}
van {root} {root}

coupé {root} {root}
bike {root} {root}

BMX – {root, bike}

Comparing Concept Hierarchies. It is now possible to define a framework for con-
structing a global taxonomic precision measure. Fig. 2 shows the building blocks used
in this framework for a global taxonomic precision measure.

Fig. 2. Building blocks of the global taxonomic precision measure

The set of concepts whose local taxonomic precision values are summed up is the
first building block. Two alternatives may be used. The first alternative is to use the set
of concepts CC from the learned ontology. If one chooses this alternative, the global
taxonomic precision is influenced by the lexical precision. For example, if the lexical
precision of a learned ontology is approximately 5% (like in the empirical evaluation in
section 5.2) then for 95% of the concepts a local taxonomic precision value has to be
estimated because there doesn’t exist a corresponding concept in the reference ontology
(see below). If such an influence of the lexical precision should be avoided then the set
of common concepts CC ∩CR should be preferred. It especially makes sense if one also
uses a local taxonomic precision value based on the common semantic cotopy.



On How to Perform a Gold Standard Based Evaluation of Ontology Learning 235

The local taxonomic precision is the next building block. It is used for comparing
the position of a concept in the learned hierarchy with the position of the same concept
in the reference hierarchy. Thus the current concept has to exist in both hierarchies.

An estimation of a local taxonomic precision value is the last building block. It is
only used if the current concept isn’t contained in both ontologies. Its usage is therefore
influenced by the chosen set of concepts (see above). In [7] it is suggested to make
an optimistic estimation by comparing the current concept with all concepts from the
reference ontology and choose the highest local taxonomic precision value. This ensures
that concepts which do not match on the lexical term layer (e.g. ”auto” and ”car” in
Fig. 1) will nonetheless match in the concept hierarchy and thus return a high local
taxonomic precision value. The optimistic estimation reduces the influence of lexical
precision but it may also cause misleading results.

In opposite to that, assuming a local taxonomic precision value of 0% if no match
on the lexical term layer can be found maximizes the influence of the lexical precision.
But if one wants to completely eliminate the influence of lexical precision one should
avoid this estimation building block anyway. This is done by only averaging the local
taxonomic precision values of the common concepts.

Concrete Measures. In the following the previously presented building blocks will be
combined to concrete measures fulfilling the criteria from section 3. The measures will
be evaluated in section 5. In [14] further measures are described and evaluated. This
paper only contains the best two pairs of measures.

The first pair of measures consists of TPsc and TRsc. They are based on the semantic
cotopy and are thus influenced by the lexical term layer. In the evaluation in section
5 they will be used for demonstrating the disadvantages of mixing the evaluation of
lexical term layer and concept hierarchy. The other building blocks are selected so that
they further increase this influence. This is achieved by computing the local taxonomic
precision for all learned concepts and by estimating the local taxonomic precision as 0
if the current concept isn’t also contained in the reference ontology.

TPsc(OC ,OR) :=
1

|CC |
∑
c∈CC

{
tpsc(c, c,OC ,OR) if c ∈ CR

0 if c /∈ CR
(8)

TRsc(OC ,OR) := TPsc(OR,OC) (9)

All in all, the measures TPsc and TRsc do not allow a separate evaluation of lexical
term layer and concept hierarchy. For evaluation scenarios where a thorough analysis of
the learned ontologies is needed the measures TPcsc and TRcsc are better suited. Here
the building blocks will be selected so that the influence of the lexical term layer is
minimized. This is achieved by using the common semantic cotopy and by computing
the taxonomic precision values only for the common concepts of both ontologies. The
latter makes the estimation of local taxonomic precision values unnecessary.

TPcsc(OC ,OR) :=
1

|CC ∩ CR|
∑

c∈CC∩CR

tpcsc(c, c,OC ,OR) (10)

TRcsc(OC ,OR) := TPcsc(OR,OC) (11)



236 K. Dellschaft and S. Staab

4.4 Taxonomic F- and F'-Measure

Like it is the case for precision and recall in information retrieval, also the taxonomic
precision and recall have to be balanced if one wants to output a combined measure.
Therefore the taxonomic F-measure is introduced, which is the harmonic mean of the
global taxonomic precision and recall.

TF (OC ,OR) :=
2 · TP (OC ,OR) · TR(OC ,OR)
TP (OC ,OR) + TR(OC ,OR)

(12)

A higher taxonomic F-measure corresponds to a better quality of the concept hierar-
chy. The meaningfulness with regard to the overall quality of the ontology (lexical level
+ taxxonomy) depends on the chosen building blocks. If TF is not influenced by the
lexical level then the taxonomic F'-measure (see [8]) may additionally be computed. It
is the harmonic mean of LR and TF :

TF ′(OC ,OR) :=
2 · LR(OC ,OR) · TF (OC ,OR)
LR(OC ,OR) + TF (OC ,OR)

(13)

4.5 Taxonomic Overlap

In [6] and [8] the taxonomic overlap measure is defined. It is also divided into a global
and a local part of the measure. The global taxonomic overlap TO has the same building
blocks like TP but instead of the local taxonomic precision it uses the local overlap to:

tosc(c1, c2,O1,O2) :=
|sc(c1,O1) ∩ sc(c2,O2)|
|sc(c1,O1) ∪ sc(c2,O2)|

(14)

Because to is a symmetric measure, it depends on the other building blocks (concept
set and estimation component) whether the global taxonomic overlap is symmetric or
asymmetric. We have shown the following lemma (cf. [14] for its proof):

Lemma 1. Symmetric global taxonomic overlap measures can be solely derived from
taxonomic F-measures. The equation TO = TF/(2 − TF ) holds.

This lemma implies that symmetric TO measures behave like TF measures (see [14]
for a symmetric TO measure). In [6] and [8] an asymmetric overlap measure is defined.
There, this asymmetry is interpreted like a kind of precision and recall. But in [14] it
was shown that no strictly monotonic dependency exists between that asymmetric TO
measure and corresponding TP and TR measures. Thus the asymmetry can not be in-
terpreted like precision and recall. It should be avoided to use asymmetric TO measures
until the unclarity with regard to their interpretation is resolved. Instead corresponding
taxonomic precision and recall measures should be used.

5 Evaluation

In this section the measures presented in 4.3 will be analytically and empirically eval-
uated. In the analytical evaluation it will be checked in how far they fulfill the criteria
defined in section 3. Subsequently in the empirical evaluation, it will be shown in how
far the choice of the measure influences the outcome of the evaluation of an ontology
learning task.



On How to Perform a Gold Standard Based Evaluation of Ontology Learning 237

5.1 Analytical Evaluation

First, it will be checked in how far the taxonomic measures are independent of the
measures for the lexical term layer. This corresponds to the first criterion that a good
set of measures allows an evaluation along multiple dimensions. Closely related to this
criterion is the objective that each measure is independent of the other measures. The
ontologies in Fig. 3 will be used for this purpose. Compared to OR2 there are three con-
cepts missing in OC2, but the hierarchy of the remaining concepts is not changed. Also
in OC3 the hierarchy is not changed but the natural language identifier of two concepts
is changed (e.g. ”car” is renamed to ”auto”). Thus the hierarchy of both ontologies is
perfectly learned but there are errors on the lexical term layer. This has to be reflected
by taxonomy measures which are not influenced by errors on the lexical term layer.

As one can see in Tab. 4 and 5 only the measures TPcsc and TRcsc are independent
of the lexical precision and recall. But this was already expected from the properties
of the single building blocks of the taxonomic measures. It is more surprising to which
extent the lexical precision and recall influence TPsc and TRsc. The errors on the
lexical term layer of both learned ontologies lead to a higher decrease of the taxonomic
measures than of the lexical measures. This can be seen by comparing the values of the
taxonomic measures and of the lexical measures in Tab. 4. The values of the taxonomic
measures are lower than the corresponding values of the lexical measures although the
evaluated ontologies only contain errors on the lexical term layer.

The second criterion of good evaluation measures was that the effect of an error onto
the measure should be proportional to the distance between the correct and the given
result. This criterion will be checked with the ontologies in Fig. 4. There, in OC4, the

Table 4. Evaluation of the ontologies in Fig. 3 with a semantic cotopy based measure

Compare OR2 with LP LR TPsc TRsc TFsc TF ′
sc

OC2 100.00% 57.14% 100.00% 51.02% 67.57% 61.92%

OC3 71.43% 71.43% 54.25% 54.25% 54.25% 61.67%

Fig. 3. Reference ontology (OR2, left) and two learned ontologies (OC2, middle; OC3, right)

Table 5. Evaluation of the ontologies in Fig. 3 with a common semantic cotopy based measure

Compare OR2 with LP LR TPcsc TRcsc TFcsc TF ′
csc

OC2 100.00% 57.14% 100.00% 100.00% 100.00% 72.73%

OC3 71.43% 71.43% 100.00% 100.00% 100.00% 83.33%



238 K. Dellschaft and S. Staab

two concepts ”car” and ”bike” are interchanged, corresponding to an error near the root
of the hierarchy. In OC5 the two leaf concepts ”coupé” and ”BMX” are interchanged.
Altogether the errors in OC4 are more serious than the errors in OC5. Thus measures
which fulfill this second criterion should rate OC4 worse than OC5. In Tab. 6 and 7 one
can see that both pairs of measures fulfill this criterion.

Fig. 4. Reference ontology (OR3, left) and two learned ontologies (OC4, middle; OC5, right)

Table 6. Evaluation of the ontologies in Fig. 4 with a semantic cotopy based measure

Compare OR3 with LP LR TPsc TRsc TFsc TF ′
sc

OC4 100.00% 100.00% 66.67% 66.67% 66.67% 80.00%

OC5 100.00% 100.00% 83.33% 83.33% 83.33% 90.91%

The third and last criterion of good evaluation measures was that a gradual increase
in the error rate should lead to a more or less gradual decrease in the evaluation results.
One can see from the previously given examples that TPcsc and TRcsc fulfill this cri-
terion. Especially for the ontologies in Fig. 3 it returned perfect evaluation results. The
opposite is true for TPsc and TRsc: Because these measures are influenced by errors in
the lexical term layer as well as by errors in the concept hierarchy they will drop very
fast if both kinds of errors occur in an ontology. Additionally it was shown that they
are stronger influenced by errors in the lexical term layer than the lexical precision and
recall measure itself.

TPcsc and TRcsc are all in all better suited for evaluating a concept hierarchy and
drawing conclusions about the strengths and weaknesses of the used learning procedure.

Table 7. Evaluation of the ontologies in Fig. 4 with a common semantic cotopy based measure

Compare OR3 with LP LR TPcsc TRcsc TFcsc TF ′
csc

OC4 100.00% 100.00% 52.38% 52.38% 52.38% 68.75%

OC5 100.00% 100.00% 76.19% 76.19% 76.19% 84.49%

5.2 Empirical Evaluation

In this section the previously described measures will be used in a real evaluation of
concept hierarchies learned with Hearst patterns (cf. [15], [1]). In this evaluation it will
be shown in how far the choice of the measure influences the lessons learned from eval-
uating an ontology learning task. For this evaluation, several ontologies for the tourism



On How to Perform a Gold Standard Based Evaluation of Ontology Learning 239

domain were learned from a corpus of 4596 tourism related Wikipedia articles with
6.54 million tokens. The reference ontology was created by an experienced ontology
engineer within the GETESS project (see [16] and Tab. 9 for more details about the on-
tology). A more detailed description of the experiment and further results for ontologies
learned with other learning procedures and from other document corpora are available
for download [14].

Tab. 8 and 10 contain the evaluation results for the ontologies learned with the Hearst
patterns applied on the Wikipedia corpus. The learned ontologies were compared with
the GETESS reference ontology. These raw evaluation results should now be used for
deciding for which threshold the best results were achieved. Both tables contain the
results for the same ontologies but evaluated with the two different measures from sec-
tion 4.3.

Table 8. Evaluation of learned ontologies with TPcsc depending on threshold θ

θ LP LR TPcsc TRcsc TFcsc TF ′
csc

0.0 1.00% 49.66% 22.26% 83.81% 35.18% 41.18%

0.3 7.27% 22.79% 81.01% 59.60% 68.67% 34.22%

0.6 12.09% 11.22% 83.08% 62.11% 71.08% 19.39%

0.9 17.04% 7.82% 84.06% 73.85% 78.62% 14.23%

Looking at the results in Tab. 8 one can see that there is a major improvement of the
taxonomic precision if the threshold is increased from 0.0 to 0.3. But this improvement
on the taxonomic layer of the ontology is accompanied by a decrease of the lexical re-
call. According to the TF ′

csc one would judge the unfiltered ontology better. But from
the low lexical and taxonomic precision of the unfiltered ontology one may also con-
clude that it more or less ”accidentally” contains correct lexical entries and taxonomic
relations. So after a deeper analysis of the evaluation results one may come to the con-
clusion that a moderate filtering based on the confidence value should be applied.

This conclusion based on the results in Tab. 8 are also supported by the ontology’s
additional statistical values in Tab. 9. The first row of the table contains the values of
the reference ontology against which the learned ontologies are compared. The follow-
ing rows contain the statistical values of the learned ontologies. One can see that the

Table 9. Additional statistical values for the reference and the learned ontologies

θ concepts loops avg. depth avg. sub sub. dev. avg. super super dev.

ref 294 1 5.14 5.22 4.42 1.03 0.17

0.0 14569 4973 119.29 3.57 53.2 1.52 2.2

0.3 893 97 3.8 2.81 14.89 1.22 0.87

0.6 246 24 3.29 2.68 8.39 1.16 0.78

0.9 116 2 3.17 2.76 6.06 1.08 0.35



240 K. Dellschaft and S. Staab

unfiltered concept hierarchy contains 4,973 loops (i.e. a concept is also one of its su-
perconcepts) and that a leaf concept has 119 superconcepts in average. Additionally, it
is interesting to look at the branching factor of the hierarchy. There one can see that
a concept has 3.57 direct subconcepts in average with a very high deviation of 53.2.
Also the average number of direct superconcepts is quite high with 1.52 and a deviation
of 2.2. All these statistical values show that the unfiltered ontology is more or less de-
generated. Compared to these results the statistical values of the filtered ontologies are
much better.

This exemplary evaluation with TPcsc and TRcsc shows that they allow to make
conclusions about the real problems of a learned ontology and subsequently to identify
the best parameters for optimizing the used learning procedure. It is now the question
whether an evaluation with TPsc and TRsc leads to the same conclusions.

Looking at the evaluation results in Tab. 10 one may also draw the conclusion that
a moderate filtering of the learned lexical entries and taxonomic relations improves
the results because the best TF ′

sc value is achieved for the ontology filtered with a
threshold of 0.3. But it is not clear in how far this improvement is only caused by
the changes on the lexical level (especially the improvement of the lexical precision)
because the improvement of the taxonomy is superposed by the influence of lexical
precision and recall on TPsc and TRsc. Thus, a truly multidimensional evaluation of
the learned ontologies is impossible because the used measures are not independent of
each other.

Table 10. Evaluation of learned ontologies with TPsc depending on threshold θ

θ LP LR TPsc TRsc TFsc TF ′
sc

0.0 1.00% 49.66% 0.10% 27.84% 0.21% 0.41%

0.3 7.27% 22.79% 3.23% 8.67% 4.71% 7.80%

0.6 12.09% 11.22% 6.44% 3.61% 4.63% 6.55%

0.9 17.04% 7.82% 10.40% 2.53% 4.07% 5.35%

6 Conclusions

This paper presented a framework useful for gold standard based evaluation of ontolo-
gies. It was used for creating a new measure which allows to do a multi dimensional
evaluation. Furthermore, it was ensured that errors are weighted differently based on
their position in the concept hierarchy and that, compared to existing measures, the
scale interval of the measure is used more evenly.

Acknowledgments

This work has been supported by the european projects Lifecycle Support for Net-
worked Ontologies (NeOn, IST-2006-027595) and Semiotic Dynamics in Online Social
Communities (Tagora, FP6-2005-34721).



On How to Perform a Gold Standard Based Evaluation of Ontology Learning 241

References

1. Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning taxonomic relations from
heterogenous sources of evidence. In: Ontology Learning from Text: Methods, Applications,
Evaluation. IOS Press (2005)

2. Spyns, P., Reinberger, M.L.: Lexically evaluating ontology triples generated automatically
from texts. In: Proc. of the second European Conference on the Semantic Web. (2005)

3. Sabou, M., Wroe, C., Goble, C., Stuckenschmidt, H.: Learning domain ontologies for se-
mantic web service descriptions. Journal of Web Semantics 3(4) (2005)

4. Sabou, M., Wroe, C., Goble, C., Mishne, G.: Learning domain ontologies for web service
descriptions: an experiment in bioinformatics. In: Proc. of WWW05. (2005)

5. Reinberger, M.L., Spyns, P.: Unsupervised text mining for the learning of dogma-inspired
ontologies. (In: Ontology Learning from Text: Methods, Applications and Evaluation)

6. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer, Boston (2002)
7. Maedche, A., Staab, S.: Measuring similarity between ontologies. In: Proc. of the European

Conference on Knowledge Acquisition and Management (EKAW-2002). (2002)
8. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora using

formal concept analysis. JAIR – Journal of AI Research 24 (2005) 305–339
9. Maynard, D., Peters, W., Li, Y.: Metrics for evaluation of ontology-based information ex-

traction. In: Proc. of the EON 2006 Workshop. (2006)
10. Hahn, U., Schnattinger, K.: Towards text knowledge engineering. In: Proc. of the 15th

National Conference on Artificial Intelligence (AAAI-98). (1998)
11. Brank, J., Mladenic, D., Grobelnik, M.: Gold standard based ontology evaluation using

instance assignment. In: Proc. of the EON 2006 Workshop. (2006)
12. Hartmann, J., Spyns, P., Maynard, D., Cuel, R., Carmen Suarez de Figueroa, M., Sure, Y.:

Methods for ontology evaluation. Deliverable D1.2.3, Knowledge Web (2004)
13. van Rijsbergen, C.: Information Retrieval. Butterworths, London (1979)
14. Dellschaft, K.: Measuring the similiarity of concept hierarchies and its influence on the

evaluation of learning procedures. Diploma thesis, Universität Koblenz-Landau (2005)
http://www.uni-koblenz.de/FB4/Institutes/IFI/AGStaab/Theses/2005/DADellschaft.pdf.

15. Hearst, M.: Automatic aquisition of hyponyms from large text corpora. In: Proc. of the 14th

International Conference on Computational Linguistics. (1992)
16. Staab, S., et al.: Getess - searching the web exploiting german texts. In: Proc. of the 3rd

Workshop on Cooperative Information Agents. (1999)



Characterizing the Semantic Web on the Web�

Li Ding1 and Tim Finin2

1 Knowledge Systems Laboratory
Stanford University, Stanford CA 94305

ding@ksl.stanford.edu
2 Computer Science and Electrical Engineering

University of Maryland, Baltimore County, Baltimore MD 21250
finin@umbc.edu

Abstract. Semantic Web languages are being used to represent, encode and ex-
change semantic data in many contexts beyond the Web – in databases, multia-
gent systems, mobile computing, and ad hoc networking environments. The core
paradigm, however, remains what we call the Web aspect of the Semantic Web
– its use by independent and distributed agents who publish and consume data
on the World Wide Web. To better understand this central use case, we have har-
vested and analyzed a collection of Semantic Web documents from an estimated
ten million available on the Web. Using a corpus of more than 1.7 million docu-
ments comprising over 300 million RDF triples, we describe a number of global
metrics, properties and usage patterns. Most of the metrics, such as the size of
Semantic Web documents and the use frequency of Semantic Web terms, were
found to follow a power law distribution.

1 Introduction

Unpacking the phrase Semantic Web immediately produces its two constituent concepts:
it is (i) a semantic framework to represent the meaning of data that is (ii) designed for
use on the Web. Most current research, both basic and applied, has focused on the first of
these and largely ignored the second. An obvious lesson from the last ten years of Web-
based developments is we must not underestimate the impact of the (still emerging)
Web on technology and society.

Reviewing recent papers in journals and conferences one finds many on all aspects
of RDF and OWL as knowledge representation languages – complexity, scalability,
completeness, efficient reasoning algorithms, integration with databases, rule exten-
sions, expressing uncertainty, human friendly encodings, etc. Developing systems and
tools that use these languages for ontology engineering, visualization, manual markup,
etc. is also a popular topic. Finally, application papers typically center on using RDF
based representations to express the knowledge and data needed for particular problem
domains, such as workflow models, action descriptions, healthcare records, policy en-
forcement, or user preferences. For the most part, this work touches little on issues that
stem for the (initial) intended use of Semantic Web languages for publishing and using
ontologies and data on the World Wide Web.

� Partial support was provided by NSF awards ITR-IIS-0326460 and ITR-IDM-0219649.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 242–257, 2006.
© Springer-Verlag Berlin Heidelberg 2006



Characterizing the Semantic Web on the Web 243

A great deal of practical work has been done, of course, on developing Web appropri-
ate standards for the Semantic Web and harmonizing them with existing Web standards
and practices. Many applications and testbeds have also focused on core Web para-
digms, such as semantically enhanced Web services and policy-driven negotiation for
Web resource access. Our claim is that we need more research on modeling and under-
standing how Semantic Web concepts and technology is and can be used on the Web.
In this respect, we stand on the shoulders of those who call for “Creating a Science of
the Web” [1].

There are also many useful and important applications of Semantic Web languages
and systems that do not involve the Web. RDF and OWL are used in agent communi-
cation languages [2], instant messaging [3], and in GIS systems [4], to name just a few.
We believe that the Web aspect of the Semantic Web remains as the common, unifying
vision, one in which millions of people, agents and applications publish and consume
knowledge and data using the evolving Web standards and protocols [5].

In this paper, we focus on characterizing the Semantic Web on the Web, i.e., as a col-
lection of loosely federated knowledge bases that are semantically encoded in Semantic
Web languages but are physically published and consumed on the Web by independent
agents. Our work consists of three parts:

– designing a conceptual model. Instead of using the current model of the Semantic
Web, i.e., one universal RDF graph, our new model covers both structure (RDF
graphs) and provenance (Web documents and associated agents).

– creating a global catalog. A global catalog of online Semantic Web data has long
been desired but missing; therefore, we have developed effective harvesting meth-
ods and have accumulated a significant dataset.

– measuring data. Using our conceptual model, we measure the collected dataset to
derive interesting global statistics and implications.

Related work. While some research has tried to characterize the reach and patterns of
use of the Semantic Web on the Web, they have not attempted to be systematic and have
used limited datasets.

Harvesting and simple summary. A number of simple systems have been designed
to find and collect RDF documents on the web, including Eberhart’s RDF crawler [6],
OntoKhoj [7], the DAML Crawler [8]. Several repositories for Semantic Web docu-
ments have been created and maintained using a combination of manual and automatic
techniques. These include the DAML Ontology Library [9] which collected a modest
number of Semantic Web documents (at most 22,000) with a limited summary of doc-
ument properties such as parse error types, document size, documents per website, and
namespace building usage. Additional relevant work can be found in Web characteriza-
tion literature [10,11] which studies global distributions of document properties such as
the average size of web documents.

Characterizing the universal RDF graph. Gil et al. [12] analyzed the structure of a
RDF graph that results from merging nearly 200 documents from the DAML Ontology
Library. The dataset is too limited to be a representative of the entire Semantic Web and
even the subset of ontologies on the Semantic Web.

Rating Semantic Web ontologies. Several studies have tried to measure the quality
of Semantic Web ontologies, i.e. Semantic Web documents that define or contribute



244 L. Ding and T. Finin

to the definition of classes and properties. Most [13,14] employ content analysis on
ontologies with various foci, such as building a comprehensive evaluation framework
[15], qualifying concept consistency [16,17], quantifying the graph structure of class
and property taxonomy hierarchy [18,19,20,21], and measuring the structure and the
instance space of a given ontology [22]. These studies have been limited in two ways.
First, they have only analyzed ontologies, which we estimate account for only about
1% of the RDF documents on the Web. Second, the empirical evaluations are based on
very small datasets, typically of fewer than 30 documents.

Characterizing social networks in FOAF. One of the most successful application
of RDF is the use of the FOAF ontology to encode social networks. Several stud-
ies [23,24,25,26] have analyzed large amounts of FOAF data, typically by collecting
FOAF documents via specialized crawlers and then making statistical measurements
on vocabulary usage and network structure. Although the evaluation datasets are large,
their sources and vocabularies are limited. Most FOAF documents are obtained from a
few portal websites such the www.livejournal.com blogging system.

Contributions. Our work is a systematic study of the semantic aspect and the web as-
pect of the Semantic Web. It is highlighted by contributing a new conceptual model
of the Semantic Web on the Web, harvesting a significant dataset that is much larger
and more diverse than other existing work, and inheriting and introducing wide spec-
trum of measurements for global properties on both semantic structure and knowledge
provenance of the Semantic Web.

In section two of this paper we explain our conceptualization of the Semantic Web
on the Web. Section three briefly illustrates our harvesting methods and evaluates the
significance of harvest result. Sections four and five elaborate our metrics and findings
about the global properties of the Semantic Web and section six offers some concluding
remarks. In this paper, we assume, for simplicity’s sake, that the following namespaces
are defined: rdf for RDF, rdfs for RDF schema, owl for OWL, foaf for FOAF, dc for
Dublin Core Element and wn for WordNet.

2 The Conceptual Model of the Semantic Web on the Web

The foundation for our Semantic Web characterization is the Web Of Belief Ontology
which captures not only the semantic structure of RDF graph but also its provenance in
terms of the Web and the agent world. This paper only covers the essential notions from
the model and readers are invited to see [27] for details.

A Semantic Web document (SWD) is an atomic Semantic Web “data transfer
packet” on the Web. It is both a Web page addressable by a URL and an RDF graph
containing Semantic Web data. It can be a static or dynamic web page, for example
one generated by a database query. In particular, SWDs can be divided into pure SWDs
(PSWDs), which are completely written in Semantic Web languages, and embedded
SWDs (ESWDs), which embed RDF graphs in their text content, e.g., HTML docu-
ments containing Creative Commons license metadata.

The URI reference (URIref) of an rdfs:Resource conveys dual semantics: (i) a unique
identifier for the resource, and (ii) the Web address of the SWD defining the resource.
URIrefs are widely used to merge RDF graphs distributed on the Semantic Web.



Characterizing the Semantic Web on the Web 245

A resource’s semantics depends on its usage in an RDF graph. In particular, we are in-
terested in Semantic Web terms (SWTs), i.e., named resources that have meta-usages
(being used as classes or properties) in SWDs. Six types of use are defined below and
illustrated in Figure 1. For a given RDF graph, a resource X is:

– defined as a class (DEF-C) if there exists a triple of the form (X, rdf:type, C) where
C is rdfs:subClassOf rdfs:Class. For example, foaf:Person is defined as a class in
triple t3.

– defined as a property (DEF-P) if there exists a triple (X, rdf:type, P) where P is
rdfs:subClassOf rdf:Property. For example, foaf:mbox is defined as a property in
triple t1.

– populated (or instantiated) as a class (POP-C) if there exists a triple ( a , rdf:type
, X) where a can be any resource. For example, rdfs:Class has been populated as a
class in triple t3.

– populated (or instantiated) as a property (POP-P) if there exists a triple ( a , X ,
b) where a and b can be any resource (or literal). For example, rdf:type has been

populated as a property in triple t3.
– referenced as a class (REF-C) if X is of type rdfs:Class according to the ontology

constructs from Semantic Web languages except rdf:type. For example, foaf:Person
is referenced as a class in triple t2.

– referenced as a property (REF-P) if X is of type rdf:Property according to ontol-
ogy constructs from Semantic Web languages except rdf:type. For example,
foaf:mbox is referenced as a property in triple t2.

rdf:type

rdfs:Classfoaf:Personfoaf:mbox

rdfs:domainrdf:type

rdf:Property t2 t3t1

Fig. 1. This RDF graph adapted from the FOAF ontology illustrates some of the relations defined
in the Web of Belief ontology

Note that we may find multiple types of meta-usage of a URI in different SWDs, in-
cluding some rare and undesired cases: the SWT rdfs:subClassOf is defined as a prop-
erty by the RDFS ontology and also as a class by another SWD1.

Two additional concepts are used studying ontologies. Semantic Web Ontology
(SWO) is a sub-class of Semantic Web document and physically groups definitions of
SWTs. An SWO is identified by containing (i) DEF-C, DEF-P, RDF-C, REF-P meta-
usages or (ii) instances of owl:Ontology2. Semantic Web Namespace (SWN) is a sub-
class of rdfs:Resource and logically groups SWTs and enables distributed definition
(i.e., users can define the SWTs using the same SWN in different SWOs). An SWN is
identified as the namespace part of an SWT.

1 http://ilrt.org/discovery/2001/09/rdf-schema-tests/rdf-schema.rdfs
2 The Swoogle system has experimented with different heuristics for identifying a SWD as an

SWO and is currently using this very liberal one.



246 L. Ding and T. Finin

3 Creating a Global Catalog

In order to build a global catalog of the Semantic Web on the Web, we need to harvest
publicly accessible SWDs. There are two primary difficulties: (i) SWDs are sparsely
distributed on the Web and found on sites in varying density, e.g. www.cnn.com hosts
no SWDs but www.liverjournal.com has millions; and (ii) Confirming that a document
contains RDF content requires RDF parsing which entails high cost when done for
millions of documents.

3.1 Estimating the Number of Online SWDs

The scale and complexity of harvesting task is dominated by the number of online
SWDs, which we have estimated using the Google search engine3 Since Google does
not index all SWDs and its estimated total result is coarse, we use it to derived an order
of magnitude estimate of the total number of online SWDs.

In theory, the search query “rdf” would suffice because the RDF namespace is de-
clared by virtually all SWDs. In pracice, however, this simple Google query has two
problems. First, it does not cover all indexed SWDs. For example, many RSS 1.0 files,
which are RDF documents, are not matched by it. Second, it matches many documents
that are not SWDs. For example the query “rdf filetype:html” identifies more than 38
million HTML documents. Based on queries run on 12 May 2006, we estimate that
there are between 107 and 109 Semantic Web documents online.

– For a conservative estimate we emphasize precision and use a query where most re-
sults will be SWDs. The query “rdf filetype:rdf” produced 4.91M estimated matches.
The constraint “filetype:rdf” was chosen because it is the most common file exten-
sion used among SWDs, and more than 75% web documents using it are SWDs4.
This yields a conservative estimate of 107 SWDs.

– For an optimistic estimate we emphasize recall using a query whose results will in-
clude most online SWDs. The query “rdf OR inurl:rss OR inurl:foaf -filetype:html”
produces about 205M results. This derives an optimistic estimate of 109 SWDs.

3.2 A Hybrid Semantic Web Harvesting Framework

Most existing harvesting methods are limited in significance or diversity. Conventional
Web crawling approaches [6,7] are inefficient because most hyperlinks in Web docu-
ments (including SWDs) point to conventional Web documents. Similarly, brute-force
sampling, i.e., testing port 80 of reachable IP addresses [11], introduces prohibitive cost
in validating millions of web documents. Meta-search based approaches [28] are lim-
ited by the inability to filter out conventional web documents from search engine results
and the fact that some search engines intentionally ignore SWDs. Manual submission
based approaches, such as that used for the DAML ontology library [9] and SchemaWeb
[29] scale poorly and are difficult to maintain. RDF crawlers (also known as scutters5 or

3 We have found the Google and Yahoo search engines to have the most RDF documents in-
dexed, with Google having more than twice as many as Yahoo.

4 Other constraints usually returns fewer results, e.g. ”owl filetype:owl” returns 55K results.
5 See the Scutter specification at http://rdfweb.org/topic/ScutterSpec.



Characterizing the Semantic Web on the Web 247

Manual

submission

RDF crawlingBounded HTML crawlingMeta crawling

Seeds M Seeds H Seeds R

Swoogle

Sample

Dataset

Inductive 

learner

the Web

Google API call crawl crawl

true

sample

would

sample

G
o
o
g
le

e
s
tim

a
tio

n

Fig. 2. The Swoogle system uses an adaptive Semantic Web harvesting framework with three
different kinds of crawlers

Semantic Web crawlers) [30,31] are limited because the seeding URLs (i.e., the starting
points of crawling) are hard to obtain and surfing heuristics (i.e., patterns for selecting
hyperlinks to SWDs) are often biased.

In order to effectively harvest as many as possible SWDs on the Web with minimum
cost, we developed a automatic, hybrid Semantic Web harvesting framework [27] that
integrates several harvesting methods. Figure 2 illustrates its work-flow, which has the
following major steps.

1. Bootstrapping. Manual submissions are used to bootstrap the harvesting, provid-
ing seeds for Google-based meta-crawling and bounded HTML crawling.

2. Google-based Meta-crawling. Meta crawling [32] involves directly harvesting
URLs from search engines without crawling the Web. Google is chosen because
it indexes the largest number of Web documents and offers richer query constraints
than others. We collect seeds from manual bootstrapping input and the inductive
learner that selects “good” seeds from the harvested Swoogle sample dataset. A
“good” seed is a Google query whose results contain high percentage of SWDs,
e.g., most URLs returned by the query rdf filetype:rdf are indeed SWDs.

3. Bounded HTML crawling. HTML crawling (i.e., conventional Web crawling)
harvests web documents by extracting and following hyperlinks, and is useful in
harvesting clusters of SWDs on the Web. Our bounded HTML crawling imposes
some thresholds (e.g., search depth, maximum number of URLs, and minimum
percentage of SWD) to limit search space and ensure efficiency. For example,
we have harvested many PML documents6 by a bounded HTML crawl starting at
http://iw.standford.edu/proofs. Again, manual submission and automated inductive
learner are involved in collecting seeding URLs.

4. RDF crawling. The RDF crawler enhances conventional HTML crawling by adding
RDF validation and hyperlink extraction components. It visits newly discovered

6 SWDs that populate instances of the Proof Markup Language(PML) ontology
(http://inferenceweb.stanford.edu/2004/07/iw.owl).



248 L. Ding and T. Finin

URLs and periodically revisits pages to keep metadata current. For each URL, it
tries to parse an RDF graph from the document using RDF parsers (e.g. Jena). If
successful, it generates document level metadata and also enqueues the new dis-
covered URLS that may link to SWDs.

5. Inductive learner and Swoogle Sample dataset. The sample dataset covers the
metadata of the SWDs confirmed by RDF crawling. Based on the features (e.g.
URL, term frequency, the source website) of harvested documents and their labels
(e.g. whether they are SWD, embedded SWD or non-SWD), an automated induc-
tive learner is used to generate new seeds for Google-based Meta-crawling and
Bounded HTML crawling.

The crawler schedules its methods using the following harvesting strategies: (i) SWO
harvesting has the highest priority since they are critical for users to encode and under-
stand Semantic Web data; (ii) PSWDs are harvested with higher priorities than ESWDs
because the former usually contain more Semantic Web data than the latter; and (iii)
we delay harvesting URLs from websites where more than 10,000 SWDs have already
been found (e.g., liveJournal) to avoid having the catalog dominated by SWDs from a
few websites.

3.3 Harvesting Result and Performance

The dataset SW06MAY resulted from harvesting data between January 2005 and May
2006. It has 3,675,153 URLs, including 1,448,504 (40%) confirmed as SWDs, 13%
confirmed as non-SWDs, 9% unreachable URLs, and 38% unpinged (not yet visited)
URLs. The confirmed SWDs are from 162,245 websites7 and contribute 279,461,895
triples. Although SW06MAY is much smaller than the Web with its 11.5 billion docu-
ments [33], it is much larger than any existing datasets, including:

– (2002) Eberhard [6] reported 1,479 valid SWDs out of nearly 3,000,000 URLs.
– (2003) OntoKhoj [7] reported 418 ontologies out of 2,018,412 URLs after 48-hour

crawling.
– (2004) DAML Crawler reported 21,021 DAML files out of 743,017 URLs.

Significance of ontology discovery. SW06MAY contributes 83,007 SWOs including
many unintended ones, such as (i) instance data with unnecessary class or property de-
finitions or references, e.g., 55,565 (66.9%) PML documents from onto.stanford.edu,
and 882 (1.1%) semantic blog documents from lojjic.net, and (ii) instance data that
has unnecessary instances of owl:Ontology, e.g., 4,437 (5.3%) publication metadata
pages from www.aifb.uni-karlsruhe.de and more web portal metadata pages from onto-
ware.org. Therefore, the “true” number of SWOs in SW06MAY is just 22,123 (26.7%)
SWOs after removing the “unintended” ones. Moreover, this number can further re-
duced to 13,012 (15.7%) since there are many duplications8.

7 A website is uniquely identified by its domain name (host name part of a URL) but not it’s IP
address. Virtual hosting can result in one IP address hosting many web domains.

8 We are currently detecting duplicate SWDs by simply comparing the md5sum of two tar-
get documents. While crude, the method is efficient and useful. For example, we have found
166 different SWDs having the same md5sum as the SWO http://purl.org/dc/terms. Trying to
proving semantic equivalence is in general, not an option.



Characterizing the Semantic Web on the Web 249

Significance of dataset growth. The significance of SW06MAY can be verified by its
fast growth trend. Figure 3a shows the numbers of total URLs (url), pinged URLs (ping),
confirmed SWDs (swd) and confirmed pure SWDs (pswd) discovered before the date on
x-axis, and it exhibits a steady growing trend. The “ping” curve touches the “url” curve
because our harvesting strategy delays harvesting URLs from websites hosting more
than 10, 000 URLs until all other URLs have been visited. The increasing gap between
“ping” curve and “swd” curve indicates that harvesting recall increases at the expense
of the decrease of precision.

(a) dataset growth

pswd

swd

ping

url

0

1000000

2000000

3000000

4000000

1/17/05 5/17/05 9/17/05 1/17/06 5/17/06

date

(b) website coverage

1

100

10000

1000000

100000000

1 501 1001

websiteGoogle SW06MAY

Fig. 3. The SW06MAY dataset has nearly 4M URLs collected from more than 160K sites. An
analysis of the dataset demonstrates the growth in Semantic Web documents (left) and also pro-
vides evidence that our hybrid harvesting framework is sound (right).

Significance analysis on website coverage. We further evaluate the significance of
SW06MAY by comparing its website coverage (i.e., the number of pure SWDs per web-
site) with Google’s estimation. In Figure 3b, each dot on the curve denotes the web-
site coverage of one website that hosts at least ten pure SWDs. For each of the 1,355
websites in the graph, we use “Google” dots to show the optimistic Google estimation
of website coverage with an additional “site” constraint, e.g., “(rdf OR inurl:foaf OR
inurl:rss) -filetype:html site:www.cs.umbc.edu”. The figure shows that Google’s esti-
mate, even with high variance, exhibits a trend similar to SW06MAY’s estimate. We
conclude that the SW06MAY provides evidence in the basic soundness of our harvesting
approach. Moreover, we suggest three causes of the variance: (i) Google’s estimation
may be too high since it is optimistic; (ii) The Google query site constraint searches all
sub-domains of the site (e.g., site:w3.org also returns results from www4.w3.org), but
SW06MAY’s results only return results from the specified site; and (iii) our harvesting
framework may index fewer SWDs (see Google dots above the curve) because it uses
far less harvesting seeds than Google and keeps a long “unpinged” list, or index more
SWDs (see Google dots below the curve) because it complements Google’s crawling
limitation.

4 Measuring Semantic Web Documents

SWD Top-level Domains. Analyzing the top-level domains (TLDs) of SWDs suggests
the degree to which Semantic Web data is published by region and type of organization.



250 L. Ding and T. Finin

(a) absolute quantity view

0

100000

200000

300000

400000

com jp net org biz de uk edu us pt other

top level domain

#
 S

W
D

s
 (

o
r 

W
e
b

s
it

e
s
)

websites SWOs pure SWDs

(b) relative percentage view

0%

20%

40%

60%

80%

com jp net org biz de uk edu us pt other

top level domain

p
e
rc

e
n

ta
g

e
 o

f 
c
o

v
e
ra

g
e

websites SWOs pure SWDs

Fig. 4. An analysis of the SW06MAY dataset shows the distribution of SWDs and SWOs (after re-
moving unintended ones) over selected top-level domains. Codes used are jp:Japan, de:Germany,
uk:United Kingdom, us:United States, pt:Portugal, and other:remaining TLDs.

Using SW06MAY we calculated the number of websites, SWDs and pure SWDs for the
top ten TLDs as shown in Figure 4. The TLDs are ordered by the number of websites.
Figure 4a shows that pure SWDs dominate the Semantic Web while SWOs are few in
number. Figure 4b reveals several points. First, the “.com” domains have contributed
the largest portion of hosts (71%) and pure SWDs (39%). Examining the data indicated
two reasons: “.com” sites make heavier use of virtual hosting technology and publish
many RSS and FOAF documents. Second, most SWOs are from “.org” domains (46%)
and “edu” (14%). This is likely due of the deep interests in developing ontologies from
academic and non-profit organizations.

SWD Source Websites. Figure 5 depicts the cumulative distribution of the number
of PSWDs per website. The curves do contain skewed parts: (i) the sharp drop at the
tail of curve (near 100,000 on x-axis) is caused by our harvesting strategy that delays
harvesting websites after finding more than 10K SWDs; and (ii) the drop at the head of
curve is due to virtual hosting technology9. Interestingly, livejournal.com is involved in
both. Both curves in Figure 5 show power law distribution and the similar parameters
of the two regressed equations support the conclusion that the distribution is invariant.

(a) distribution collected by May 2006

1, 132972

2, 18196

3, 5507

y = 6840.6x
-0.6515

R
2
 = 0.9592

1

10

100

1000

10000

100000

1000000

1 10 100 1000 10000 100000 1000000

m:  # of pure SWDs 

y
: 

 #
 o

f 
w

e
b

s
it

e
s
 h

o
s
ti

n
g

 >
=

 m
 

S
W

D
s

(b) distribution collected by Aug 2005

y = 6598.8x
-0.7305

R
2
 = 0.9649

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000 1000000

m:  # of pure SWDs 

y
: 

 #
 o

f 
w

e
b

s
it

e
s
 h

o
s
ti

n
g

 >
=

 m
 

S
W

D
s

Fig. 5. Data from SW06MAY shows that the distribution of the number of websites hosting more
than m pure SWDs follows a power law. The straight lines correspond to regression function with
the given equations. The R2 values close to one indicate good regressions.

9 Many social networking sites offer each user a unique virtual host name.



Characterizing the Semantic Web on the Web 251

Table 1. This table lists the ten largest source websites of pure Semantic Web documents
(PSWDs) from May 2006. The unpinged column gives the number of URLs discovered on the
site that are suspected of also being Semantic Web documents but have not yet been processed.

rank website # PSWDs # unpinged content
1 www.livejournal.com 100,518 88,962 foaf, personal profile
2 www.tribe.net 80,402 25,234 foaf
3 www.greatestjournal.com 62,453 849 foaf
4 onto.stanford.edu 45,278 403 pml, portal proof
5 blog.livedoor.jp 31,741 12,776 foaf
6 r622-1.mpiwg-berlin.mpg.de 25,733 136 vml annotation
7 www.ecademy.com 23,242 3,308 foaf
8 www.hackcraft.net 16,238 0 dc, book annotation
9 open.bbc.co.uk 14,544 350,473 dc, BBC program annotation

10 www.uklug.co.uk 13,263 2 rss

Table 1 lists the ten domains hosting the largest number of pure SWDs. The “con-
tent” column shows the topic of website, and the “unpinged” column indicates that
we intentionally delay crawling some giant websites. SWDs from these websites are
automatically generated and well inter-linked. The 6th and 9th websites are recently
promoted to this list.

SWD Age. We measure an SWD’s age by its last-modified time extracted from the
HTTP response header. Figure 6a shows cumulative distribution of last-modified time,
i.e., the number of PSWDs and SWOs with a last-modified before the date on X-axis.
SWD’s with no reported last-modified time are excluded. Note that the “pswd” curve
exhibits an exponential distribution, indicating that many new PSWDs have been added
to the Semantic Web or that many old ones are being actively modified. The “swo”
curve additionally excludes PML documents and exhibits exponential distribution with
a flat tail, which we interpret as indicating a more active ontology development earlier
in the time period transitioning to more reuse later.

Figure 6b shows two distributions of last-modified time collected in Aug 2005 and
May 2006 respectively. The difference before August 2005 represents a loss of 155,709
PSWDs and is due to documents going offline (25%) and being updated (75%). The
difference after that is caused by updated documents and newly discovered PSWDs.
The non-trivial at which PSWDs go offline significantly affects the growth of Semantic
Web data.

SWD Size. We measure an SWD’s size as the number of triples in the SWD’s RDF
graph. Figure 7a shows the distribution of SWD’s size, i.e., the number of SWDs hav-
ing exactly m triples, and Figure 7b the corresponding cumulative distribution. Figure
7c depicts the distribution of ESWD’s size. Most ESWDs are very small with 62%
having exactly three triples and 97% having ten or fewer triples. These contribute sig-
nificantly to the big peak in Figure 7a. Figure 7d shows the distribution of the size
of PSWDs, with most (60%) having five to 1000 triples. The peaks in the curve are
caused by automatically generated SWDs which publish Semantic Web data in fixed
patterns. For example, many PML documents have exactly 28 or 36 triples, and many



252 L. Ding and T. Finin

(a) cumulative distribution of age of PSWDs and 

SWOs in SW06MAY

y = 9E-51e
0.1006x

R
2
 = 0.9891

1

100

10000

1000000

Apr-98 Apr-00 Apr-02 Apr-04 Apr-06

date

#
 o

f 
d

o
c

u
m

e
n

ts

pswd swo Expon. (pswd)

(b) distributions of age of PSWD in SW05AUG 

and SW06MAY

0

100000

200000

300000

400000

May-00 May-01 May-02 May-03 May-04 May-05 May-06

date

n
u

m
b

e
r 

o
f 

d
o

c
u

m
e

n
ts

SW05AUG SW06MAY

Fig. 6. Distributions of the last-modified time of PSWDs and SWOs

RSS documents have exactly 130 triples10. The large number of SWOs with fewer than
four triples are mainly RDF and OWL test documents. SW06MAY’s largest SWO11 has
1,013,493 triples and defines 337,831 classes and properties.

(a) distribution of SWD's size

0

50000

100000

150000

200000

250000

1E+0 1E+2 1E+4 1E+6

# triples

#
 S

W
D

s

(b) cumulative distribution of SWD's size 

y = 8E+07x
-1.1833

R
2
 = 0.972

1

100

10000

1000000

100000000

1E+0 1E+2 1E+4 1E+6

# triples

#
 S

W
D

s

(c) size distribution of embedded SWDs

0

100000

200000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

# of triples

#
 o

f 
e

m
b

e
d

d
e

d
 S

W
D

s

(d) size distribution of pure SWDs

0

10000

20000

30000

1E+0 1E+1 1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

# Triples

#
 p

u
re

 S
W

D
s

Fig. 7. The distributions of the number of triples per SWD

SWD Size Change. Updating a SWD usually result in in a change in its size. We have
investigated this by tracking the size changes for different versions of an SWD. The
SW06MAY dataset has 183,464 PSWDs that are alive (sill online) and for which we

10 A typical RSS file has one rss:channel with eight triples, fifteen rss:item instances each with
seven triples, and one rdf:Seq with seventeen triples connecting the rss:channel to the item
instances.

11 http://www.fruitfly.org/~cjm/obo-download/obo-all/ncbi taxonomy/ncbi taxonomy.owl



Characterizing the Semantic Web on the Web 253

have at least three versions. For these, 37,012 (20%) lost a total of 1,774,161 triples;
73,964 (40%) gained a combination of 6,064,218 triples, and the rest 72,488 (40%)
maintained their original size12. The statistics also show that the total number of triples
keeps increasing; therefore, we hypothesize the volume of Semantic Web data is in-
creasing.

5 Measuring Semantic Web Terms

Semantic Web Terms (SWTs) are classes and properties that are named by non-
anonymous URIrefs. The SW06MAR dataset has 1,576,927 distinct Semantic Web terms
defined with respect to 14,488 Semantic Web namespaces. We derive four SWT-usage
patterns by analyzing the combination of six basic types of meta-usages.

– Only a few classes (1.5%) and properties (1.0%) have both explicit definitions and
instances.

– Most SWTs (95.1%) have no instances, and some SWTs (2.2%) have no definitions.
– Some SWTs (0.08%) mistakenly have both class and property meta-usage.
– Some SWTs (0.08%) only have REF-C or REF-P meta-usages. While some are

XMLSchma terms and not RDF, others appear to be due to errors or misuse.

SWT Definition Complexity. A simple way to measure the complexity of a SWT is to
count the number of triples used to define it. Figure 8a shows the cumulative distribu-
tion of the size of SWT definitions in the curve labeled “all”. This follows a power law
distribution with the deviations at the head and tail reflecting a preference for defining
SWTs using a manageable number of triples, two to ten triples in most cases. Terms that
can be defined in just a few triples are not very useful, and the definitional size of com-
plex terms can be reduced by defining and using auxiliary definitions. One observed
definition has nearly 1000 triples13. We’ve divided definitional triples into two classes:
annotation and relation triples, whose rdf:objects are rdfs:Literals and rdf:objects, re-
spectively. Note that relation triples are more common. We also noticed that 104,152
SWTs have been defined in more than one SWOs.

SWT Instance Space. Since Semantic Web data include both definitions and instance
data, we measure the instance space of the Semantic Web by counting POP-C and POP-
P meta-usages of SWTs14. Figure 8b shows the cumulative distribution of the number
of SWTs populated as a class (or property) by at least m instances (or SWDs). All
four curves follow a power law distribution. For both classes and properties, most are
defined but never directly used. Only 423 classes have been instantiated by more than
100 SWDs and just 2,115 have more than 100 instances. The number of properties used
is somewhat higher, with 1,489 SWTs used to define data in more than 100 SWDs and
5,404 properties used in more than 100 assertions.

12 Most of the PSWDs maintaining their size are RSS documents.
13 The SWD http://elikonas.ced.tuc.gr/ontologies/DomainOntologies/middle ontology defines

the MOSemanticRelationType class using 973 triples.
14 Since no RDFS or OWL inferencing is done, the statistics reflect immediate class instances.



254 L. Ding and T. Finin

(a) definition quality

242

118

241

y = 4E+07x
-2.1655

R
2
 = 0.9892

1

100

10000

1000000

100000000

1 10 100 1000 10000
m : number of triples

#
 o

f 
S

W
T

 d
e
fi

n
it

io
n

 o
c
c
u

re
n

c
e
s
 

u
s
in

g
 a

t 
le

a
s
t 

m
 t

ri
p

le
s

all annotation relation Power (all)

(b) instance space

swd(pop-c)

instance(pop-c)swd(pop-p)

instance(pop-

p)

1

10

100

1000

10000

100000

1 100 10000 1000000 100000000

m: number of occurences

n
u

m
b

e
r 

o
f 

S
W

T
s
 b

e
in

g
 p

o
p

u
la

te
d

 

b
y
 a

s
 l
e
a
s
t 

m
 o

c
c
u

re
n

c
e
s

Fig. 8. The cumulative distribution of meta-usages of SWT

Table 2 lists popular classes and properties. The number of an SWT’s class-instances
is usually proportional to the number of SWDs populating the SWT; however, excep-
tions exist. For example, while the wn:Noun class has significant number of instances,
they are mostly in a few huge SWDs. In general, the Semantic Web’s instance space is
dominated by three categories: (i) instances of meta-ontologies such as OWL, (ii) in-
stances of a small number of very popular ontologies such as DC, FOAF, and RSS; and
(iii) instances from giant data files, such as WordNet and National Library of Medicine’s
Medical Subject Headings (MeSH) ontology.

Table 2. This table shows the most popular Semantic Web classes and properties based on the
number of Semantic Web documents (SWDs) that use them and, for classes, also on the number
of immediate instances.

resource URI #swd #instance
Most instantiated classes ordered by #swd
http://xmlns.com/foaf/0.1/Person 499,671 11,686,519
http://www.w3.org/1999/02/22-rdf-syntax-ns#Seq 290,321 308,907
http://purl.org/rss/1.0/channel 282,677 289,160
http://purl.org/rss/1.0/item 259,220 4,277,868
http://xmlns.com/foaf/0.1/Document 223,510 247,311
Most instantiated classes ordered by #instance
http://xmlns.com/foaf/0.1/Person 499,671 11,686,519
http://purl.org/rss/1.0/item 259,220 4,277,868
http://www.cogsci.princeton.edu/˜wn/schema/Noun 56 3,697,400
http://www.w3.org/2002/07/owl#Class 68,053 1,795,941
http://www.nlm.nih.gov/mesh/2004#Concept 38 1,551,046
Most instantiated properties ordered by #swd
http://www.w3.org/1999/02/22-rdf-syntax-ns#type 1,170,975 43,291,848
http://purl.org/dc/elements/1.1/title 801,254 13,448,548
http://xmlns.com/foaf/0.1/mbox_sha1sum 462,198 2,633,739
http://purl.org/dc/elements/1.1/description 453,826 2,874,327
http://www.w3.org/2000/01/rdf-schema#seeAlso 432,288 12,330,223



Characterizing the Semantic Web on the Web 255

RDFS and OWL usage. To what degree does the current Semantic Web make use
of RDFS and OWL? One simple way of addressing this question is to examine the
number of SWDs that use the RDFS and OWL namespaces. The OWL namespace has
been declared by 112,870 SWDs (8%) and actually used by 108,059 (7%). The RDFS
namespace enjoys more use, being declared by 677,049 (47%) and used by 537,614
(37%) SWDs.

What about their terms? Not surprisingly, owl:Class is the most used term from
the OWL namespace with 1,795,941 instantiations in 68,053 SWDs. Contrasting this
with rdfs:Class, which has 327,485 instantiations by 8,572 SWDs, seems to suggest that
OWL is being more heavily used than RDFS. However, the relationship is not so simple.
When examining properties, rdf:Property has 529,052 immediate instantiations from
58,598 SWDs, considerably more than the OWL property terms owl:ObjectProperty
(169,885 assertions in 8,041 SWDs) and owl:DatatypeProperty (48,386 assertions in
4,557 SWDs).

For RDFS and OWL properties, the most used properties is rdf:type, followed by
some annotation properties such as rdfs:seeAlso and rdfs:label. Among those proper-
ties that are used as ontology constructs, owl:sameAs and rdfs:subClassOf are the most
used. We also noticed significant use of two OWL equality assertions: owl:sameAs
(279,648 assertions in 17,425 SWDs) and owl:equivalentClass (69,681 assertions in
4,341 SWDs). Their common use may be an indication of increased ontology align-
ment. We have found limited use of properties that require OWL DL or OWL FULL
reasoning support. The most common one in our dataset was owl:unionOf which is used
in only 2,527 SWDs.

Instantiation of rdfs:domain. Semantic Web data is published asynchronously by au-
tonomous and distributed agents which may use, and misuse, a variety of ontologies.
Given enough data, we can attempt to reverse-engineer the definitions of classes and
terms introduced by ontologies. Consider instances of the rdfs:domain relation which
associates a class with properties that describe its instances. We have observed 111,071
unique instantiations of rdfs:domain, and the number of instantiations that have been
observed in at least m instances (or SWDs), again, follows a power law distribution.

The highly instantiated rdfs:domain relations are mainly from popular instance space
such as FOAF and RSS documents. An interesting observation is that rdfs:seeAlso prop-
erty has been frequently used as instance property of foaf:Person. This corresponding
definition cannot be found in the RDFS or FOAF ontologies although it has been in-
formally mentioned in FOAF specification. The popularity of instantiation is usually
determined by the number of SWDs that has the instantiation; moreover, we also no-
ticed a popular instantiation – the domain of wn:wordFrom is wn:Noun which has over
6.5 million occurrences in only 56 SWDs.

We can use data on the instantiations of rdfs:domain relation to derive the most
used properties of a given class. For example, for immediate foaf:Person instances, the
most common properties used are foaf:mbox sha1sum (461,922 SWDs), rdfs:seeAlso
(385,516), and foaf:nick (361,901). We can also find strong co-occurrence association
among properties of a class. The properties geo:lat (85,742) and geo:long (85,741) are
virtually always used together in modifying a class geo:Point. This kind of informa-
tion can be used to help publishers choose a good set of properties, which may be from



256 L. Ding and T. Finin

different ontologies, for a given class. Moreover, we can use such information in on-
tology revision, e.g., adding the missing rdfs:domain definition or revise incompatible
definition.

6 Conclusions

The Semantic Web is not just one universal RDF graph but a federated collection doc-
uments distributed on and accessed via the World Wide Web. It must be studied from
both the Web perspective and the semantic perspective. In order to characterize the Se-
mantic Web on the Web and guide Web-scale data access, we estimated the size of the
Semantic Web using Google, implemented a hybrid framework for harvesting Semantic
Web data, and measured the results to answer questions on the Semantic Web’s current
deployment status.

The statistics where characterized by power law distributions and “complex system”
behavior in many cases and, in general, support several conclusions about the emerging
Semantic Web. (i) Semantic Web data is growing steadily on the Web even when many
documents are only online for a short-while. (ii) The space of instances is sparsely
populated since most classes (>97%) have no instances and the majority of properties
(>70%) have never been used to assert data. (iii) Ontologies can be induced or amended
by reverse engineering the instantiations of ontological definition in instance space [27].

Our work raises question about the current paradigm for ontologies and URIrefs.
Is the concept of an “ontology” as a collection or container for Semantic Web terms
needed or even useful? An ontology object encourages self consistency but introduces
some limitations as well. Recent work on ontology partitions argues against large,
monolithic ontologies in favor of having many interconnected components. We might
even eliminate namespaces as boundaries. For example, the Dublin Core Element on-
tology has been widely used together with terms from many other semantic web on-
tologies. Another debatable item is the URIref. We use triples to annotate an URIref
that is an identifier of a resource. Multiple RDF graphs from different documents de-
scribing the same URIref can introduce inconsistency. Integrating these definitions may
encounter several questions: (i) are URIrefs good enough for grouping the triples de-
scribing it; (ii) can we ensure that all of the graphs are accessible to consumers; and (ii)
should all be used or should some be rejected as untrustworthy.

References

1. Berners-Lee, T., Hall, W., Hendler, J., Shadbolt, N., Weitzner, D.J.: Creating a science of the
web. Science 313 (2006) 769–771

2. Zou, Y., Finin, T., Ding, L., Chen, H., Pan, R.: Using Semantic web technology in Multi-
Agent systems: a case study in the TAGA Trading agent environment. In: Proceeding of the
5th International Conference on Electronic Commerce. (2003)

3. Franz, T., Staab, S.: Sam: Semantics aware instant messaging for the networked semantic
desktop. In: Proceedings of the ISWC 2005 Workshop on The Semantic Desktop - Next
Generation Information Management and Collaboration Infrastructure. (2005)

4. Visser, U., Stuckenschmidt, H., Schuster, G., Vogele, T.: Ontologies for geographic informa-
tion processing. Computers and Geoscience 28 (2002) 103–117



Characterizing the Semantic Web on the Web 257

5. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American 284 (2001)
35–43

6. Eberhart, A.: Survey of rdf data on the web. Technical report, International University in
Germany (2002)

7. Patel, C., Supekar, K., Lee, Y., Park, E.K.: OntoKhoj: a semantic web portal for ontology
searching, ranking and classification. In: WIDM’03. (2003)

8. Dean, M., Barber, K.: Daml crawler. http://www.daml.org/crawler/ (August 2006) (2002)
9. DAML: The DAML ontology library. http://www.daml.org/ontologies/ (August 2006)

(2004)
10. Pitkow, J.E.: Summary of www characterizations. Computer Networks 30 (1998)
11. Lawrence, S., Giles, C.L.: Accessibility of information on the web. Nature 400 (1999)
12. Gil, R., Garca, R., Delgado, J.: Measuring the semantic web. SIGSEMIS Bulletin 1 (2004)
13. Hartmann, J., Sure, Y., Giboin, A., Maynard, D., del Carmen Surez-Figueroa, M., Cuel, R.:

Methods for ontology evaluation. Technical report, University of Karlsruhe (2004)
14. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: A theoretical framework for ontol-

ogy evaluation and validation. In: Proc. of the 2nd Italian Semantic Web Workshop. (2005)
15. Lozano-Tello, A., Gomez-Perez, A.: ONTOMETRIC:a method to choose the appropriate

ontology. Journal of Database Management 15 (2003)
16. Welty, C.A., Guarino, N.: Supporting ontological analysis of taxonomic relationships. Data

Knowledge Engineering 39 (2001)
17. Parsia, B., Sirin, E., Kalyanpur, A.: Debugging owl ontologies. In: WWW’05. (2005)
18. Magkanaraki, A., Alexaki, S., Christophides, V., Plexousakis, D.: Benchmarking RDF

schemas for the semantic web. In: ISWC’02. (2002)
19. Supekar, K., Patel, C., Lee, Y.: Characterizing quality of knowledge on semantic web. In:

FLAIRS’02. (2002)
20. Alani, H., Brewster, C.: Ontology ranking based on the analysis of concept structures. In:

K-CAP’05. (2005)
21. Yao, H., Orme, A.M., Etzkorn, L.: Cohesion metrics for ontology design and application.

Journal of Computer Science 1 (2005)
22. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: Ontoqa: Metric-based on-

tology quality analysis. In: Proc. of Workshop on Knowledge Acquisition from Distributed,
Autonomous, Semantically Heterogeneous Data and Knowledge Sources. (2006)

23. John C. Paolillo and Elijah Wright: The Challenges of FOAF Characterization. In: Proc. of
the 1st Workshop on Friend of a Friend, Social Networking and the (Semantic) Web. (2004)

24. Grimnes, G.A., Edwards, P., Preece, A.: Learning meta-descriptions of the foaf network. In:
ISWC’04. (2004)

25. Mika, P.: Social Networks and the Semantic Web: An Experiment in Online Social Network
Analysis. In: Proc. of International Conference on Web Intelligence. (2004)

26. Ding, L., Zhou, L., Finin, T., Joshi, A.: How the semantic web is being used:an analysis of
foaf. In: Proceedings of the 38th International Conference on System Sciences. (2005)

27. Ding, L.: Enhancing Semantic Web Data Access. PhD thesis, UMBC (2006)
28. Zhang, Y., Vasconcelos, W., Sleeman, D.: Ontosearch: An ontology search engine. In: Proc.

of 24th Conf. on Innovative Techniques and Applications of Artificial Intelligence. (2004)
29. Lindesay, V.: The schemaweb repository. http://www.schemaweb.info/ (August 2006) (2005)
30. Biddulph, M.: Crawling the semantic web. In: XML Europe. (2004)
31. Apsitis, K., Staab, S., Handschuh, S., Oppermann, H.: Specification of an RDF Crawler.

http://ontobroker.semanticweb.org/rdfcrawl/help/specification.html (March 2006) (2005)
32. Sherman, C.: Metacrawlers and metasearch engines. http://searchenginewatch.com/links/-

article.php/2156241 (March 2006) (2004)
33. Gulli, A., Signorini, A.: The indexable web is more than 11.5 billion pages. In: WWW’05

(poster). (2005)



MultiCrawler: A Pipelined Architecture for
Crawling and Indexing Semantic Web Data

Andreas Harth, Jürgen Umbrich, and Stefan Decker

National University of Ireland, Galway
Digital Enterprise Research Institute

firstname.lastname@deri.org

Abstract. The goal of the work presented in this paper is to obtain
large amounts of semistructured data from the web. Harvesting semi-
structured data is a prerequisite to enabling large-scale query answering
over web sources. We contrast our approach to conventional web crawlers,
and describe and evaluate a five-step pipelined architecture to crawl and
index data from both the traditional and the Semantic Web.

1 Introduction

The enormous success of Google and similar search engines for the HTML web
has demonstrated the value of both crawling and indexing HTML documents.

However, recently more and more information in structured formats such as
XHTML, microformats, DC, RSS, Podcast, Atom, WSDL, FOAF, RDF/A etc.
has become available – and we expect this trend to continue. In conjunction
with Semantic Web based RDF data, these data formats are poorly handled by
current search engines: for instance, query answering based on keywords does
not allow to exploit the semantics inherent to structured content. Consequently,
current well developed and understood web crawling and indexing techniques
are not directly applicable, since they focus almost exclusively on text indexing.

In other words, to be able to answer queries which exploit the semantics
of Semantic Web sources, different crawling and indexing techniques compared
to conventional search engines are necessary. The differences between conven-
tional crawling/indexing approaches and crawling/indexing heterogeneous se-
mantic data sources can be summarized as follows:

1. URI extraction. HTML crawlers extract links from HTML pages in order
to find additional sources to crawl. This mechanism usually does not work
as straightforwardly for structured sources, since very often there exists no
direct concept of a hyperlink. Therefore different methods for extracting
URIs must be found.

2. Indexing. Conventional text indexes for the HTML web are well understood.
However, these text indexes perform poorly at capturing the structure and
semantics of heterogeneous sources, e.g., a FOAF file or an RSS source. A
different way for indexing and integrating the various data formats is needed.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 258–271, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



MultiCrawler: A Pipelined Architecture 259

These two key differences illustrate the need for new approaches compared
to traditional web crawling. A pipelined document indexing infrastructure has
already been defined and analyzed (see [8]). However, the same approach is not
applicable for Semantic Web data due to the variety of stages and different time
and space behavior.

The main contributions of this paper are:

– Following the general approach of [8] we define a pipelined approach for the
Semantic Web with respect to structured data crawling and indexing. The
pipeline can be adapted to arbitrary content.

– We define a general URI extraction method from structured sources that
helps to find more sources for indexing.

– We describe a general representation format for heterogeneous data on the
web which allows indexing and answering of expressive queries.

– We describe an implementation of our pipelined architecture and determine
the optimal configuration of the entire pipeline to maximize parallel process-
ing and crawling.

– We evaluate the pipeline by conducting experiments on a cluster.

The remainder of this paper is organized as follows: In Section 2 we give an
overview of the architecture. Section 3 describes the processing pipeline in de-
tail, including complexity analysis and experimental results derived from each
individual phase. In Section 4, we analyze the results, discuss tradeoffs for dis-
tributing the pipeline to multiple machines and running multiple pipelines in
parallel. Section 5 covers related work and Section 6 concludes the paper.

2 Crawler and Indexer Architecture

When designing a crawler and indexer architecture a number of requirements
need to be taken into account:

– Performance and scalability. The architecture needs to be as performance
oriented as possible in order to handle data on a web-scale and keep up
with the increase in structured data sources. The system should scale up by
adding new hardware – without a fundamental redesign.

– Utilizing data from different formats and disparate sources. The system has
to syntactically transform and index data from different web sources to arrive
at an integrated dataset.

Text indexing software pipelines have been investigated by [8] as a means
to optimize and decouple the crawling and indexing process. The pipelined ar-
chitecture in [8] has lead to considerable performance improvements. We have
adopted the pipelined architecture and defined a software pipeline for Seman-
tic Web data crawling and indexing. The idea behind a software pipeline is to
improve performance by executing different steps concurrently.

Our crawling algorithm is an adaption of the standard breadth-first search
algorithm. Najork and Wiener [10] argue that breadth-first crawling yields high-
quality pages early on in the crawling process.



260 A. Harth, J. Umbrich, and S. Decker

Fig. 1. Five phases for crawling and indexing Semantic Web data

The process of crawling and indexing Semantic Web data can be logically split
into 5 phases, as illustrated in Figure 1. We refer to these phases as fetch, detect,
transform, index, and extract. During the fetch phase, the information is fetched
from the web. The detect phase detects the type of the content, eg. RDF, WSDL,
GIF etc. The transform phase is a key difference compared to conventional text
indexing and translates the data into the common data format. The index phase
builds an index, which is used during the extract phase to query for URIs to
more information sources.

We provide a rationale for some of the different phases in more detail.

Detect. A challenge in dealing with multiple data formats is to be able to
accurately detect the content type and format of documents. Most of the data
formats can be detected by using the file extension or the content-type returned
with the header part of an HTTP request. In the case of XML files, the MIME
type and the file extension give indication for XML content, but do not give any
information about whether the content is well-formed, or which schema is used.
Sometimes this information is important, therefore the content itself has to be
investigated.

Transform. Since we are aiming at a general indexing and querying in-
frastructure we need mechanisms to extract information from the files and trans-
form them to a structured representation. Ideally, we would like to use a declar-
ative transformation language so that users can define transformations without
the need to write code in a procedural language. However, the system should be
also able to use procedural language code to extract data from binary data or
natural language text, ultimately arriving at a representation of the metadata.

To describe transformations in a declarative way, we decided to use XSL
Transformations (XSLT)1. With XSLT we are able to translate arbitrary XML
content to RDF. Even though XSLT is Turing complete [5] and therefore might
be too expressive, using XSLT has the benefit of permitting the reuse of already
available stylesheets. Besides, it is possible to integrate GRDDL2, a recent effort
which aims at standardizing the mechanism of using XSLT to extract information
from web pages.

Index. An index over the data can be used to extract links and finally perform
searches and answer queries. The index should enable keyword-based searches
because that is a good method to explore a dataset with unknown structure.
Equally important we require an index on the graph structure for the ability to
pose structured queries.

Extract. For extracting URIs, we decided to use an RDF query against the
final cleaned and structured dataset. We perform URI extraction at the end of

1 http://www.w3.org/TR/xslt
2 http://www.w3.org/TeamSubmission/grddl/



MultiCrawler: A Pipelined Architecture 261

the pipeline, since at that stage the indexes over a uniform representation of the
data have been built already and we are able to extract URIs cheaply. Depending
on the crawling strategy (only crawl one site, perform shallow crawling and only
take external links into account, etc), we can adapt queries to extract URIs. We
need to extract links also from HTML pages, otherwise we will not discover the
URI of structured pages, since files with structured data are currently not well
interlinked. URIs to structured sources appear mainly in a href links within
HTML documents.

To be able to scale, we need to parallelize and distribute the system. Fetching
the data takes much less time than processing. Thus, we want to perform steps
in parallel, which means we have to use multiple threads that fetch data and
multiple threads that process data etc. Communication between the steps is done
via queues. If we want to scale up the process even further, we replace threads
with multiple computers, queues with remote/persistent queues, and pipes with
network data transfer. As a result, we are able to speed-up the entire process even
more. Besides, in the distributed setup it is easy to identify bottlenecks – and
resolve them by adding new machines to a phase. Another benefit of a distributed
architecture is that it facilitates the integration of external components (i.e., web
services) into the process.

Our goal is to analyze the complexity of the single tasks and to find the right
balance in server ratios to keep the average utilization of the servers as high as
possible. In the next section we describe each processing step, investigate the
complexity and present experimental measurements.

3 Processing Pipeline

In this section, we describe each step in the processing pipeline in detail. The
processing pipeline is composed of five different modules, each of which is capa-
ble of running the task in a multi-threaded fashion. First, the fetching module
downloads the content and header information of a web page. Second, the de-
tecting module determines the file type of the web page. Third, based on the
file type, the transformation module converts the original content into RDF.
Fourth, the indexing module constructs an index over the RDF data to enable
URI extraction. Fifth, the extracting module poses a query over the index to
extract URIs and feeds the resulting URIs back into the pipeline.

To be able to pass parameters between different phases, the system needs
to store information associated with the URIs. We put the metadata associated
with a URI as RDF triples in a metadata store which runs on a separate machine.

Each phase has an associated queue which contains URIs of pages to be
processed. Each phase takes a URI from the queue, retrieves the content from
a previous phase if necessary, processes the content, stores the content on disk,
and puts the URI into the queue corresponding to the next step in the pipeline.
Content is passed to successive steps via an Apache HTTP server.

In the following sections, we include complexity analysis and experimental
results for each step. We carried out the experiments using a random sample



262 A. Harth, J. Umbrich, and S. Decker

of 100k URIs obtained from the Open Directory Project3. We performed all
experiments on nodes with a single Opteron 2.2 GHz CPU, 4 GB of main memory
and two SATA 160GB disks. The machines were interconnected via a 1GBbp
network adapter on a switched Ethernet network.

3.1 Fetching Data

The functionality of the fetching module includes obtaining a new URI from
the queue, checking for a robots.txt file to adhere to the Robots Exclusion
Protocol4, and fetching and storing header information and content.

After obtaining the next URI from the queue, we retrieve the robots.txt
information for the host either from the metadata store or directly from the
host. Then we determine if the fetcher is allowed to crawl the page or not. If
the URI passes the check, we look at the content length provided by the header
information. To avoid downloading very large files we compare the content-length
from the header-field with a given file size threshold.

If the URI passes all these checks, we connect to the web server and download
the content of the page. Then we store or update the header information on the
metadata store. Finally, we send the URI to the next module in the pipeline and
return to the beginning, to poll the next URI from the queue.

To provide an estimate of the complexity of the step, let N be the size of
the documents fetched, including header information. The fetch step needs to
transfer N bytes from the Internet, which takes linear time in the size of the
content, O(N).

We verified the complexity analysis experimentally. We chose randomly 100k
URIs from ODP’s collection of over 5M sites. Figure 2 shows the experimental
results for the crawling component resulting in 78038 downloaded pages (1.4
GBytes of data). The fetching component achieved an average download rate of
around 600 KBytes/sec.

3.2 Detecting File Types

The detecting module tries to determine the exact content type of the data,
which is used in the transformation phase to execute the right transformation
module. The type detection is based on the information we are able to derive
from the URI, the header fields and the content of the page itself.

In the first step of the file type detection process we try to detect the content
type based on the file extension of the URI. The second step retrieves the content-
type header field from the metadata store and compares the header field to a list
of content types. Table 1 lists all supported content types and the information
the system needs to detect them. If one of these checks successfully detects a
type, we can stop the process and store the type on the metadata repository. In
case of XML content, we perform another check to figure out the schema of this
XML file. In this case we must parse the content itself.
3 http://dmoz.org/
4 http://www.robotstxt.org/wc/exclusion.html



MultiCrawler: A Pipelined Architecture 263

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10000  20000  30000  40000  50000  60000  70000  80000  90000  100000

se
co

nd
s

pages

Fetching pages per seconds

machine 1/200 threads

Fig. 2. Experimental results derived from crawling 100k randomly selected URIs

Table 1. File types the system is currently able to handle

TypeID RFC MIME media type File extension Root element
HTML 2854 text/html .html .htm html
XHMTL 3236 application/xhtml+xml .xhtml xhtml:html
XML 3023 text/xml application/xml .xml -
RSS2.0 - application/rss+xml .rss rss
Atom 4287 application/atom+xml .atom atom:feed
RDF 3870 application/rdf+xml .rdf rdf:RDF

If we detect XML content, we try to find out the special type of the XML
content, that is, we retrieve the content data from the file system and parse it
with a SAX XML parser. We try to extract namespaces and root element of the
XML file and compare the values to the known content types. If all checks fail,
we assume an unknown or unsupported content type. Finally, we store the type
on the metadata store and forward the URI to the next pipeline module.

During the complexity analysis, we do not consider the simplest case where
we can detect the file type based on file extension or header information. Let
N be the size of the XML document which content type we want to detect.
Parsing the XML content utilizing SAX to retrieve the root element has a time
complexity of O(N).

Figure 3 shows the experimental results for the file type detection phase.

3.3 Transforming to RDF

For transforming the content into the common data format RDF, the system
applies different transformation modules depending on the type of the content.
The transformation phase can be split into two steps: (i) conversion from non-
XML data, such as HTML, into XML by using user specified transformation
tools and (ii) transformation of XML data to RDF via XSLTs and xsltproc5.
5 http://xmlsoft.org/XSLT/



264 A. Harth, J. Umbrich, and S. Decker

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0  10000  20000  30000  40000  50000  60000  70000  80000

se
co

nd
s

pages

Detecting pages per seconds

machine 2/200 threads

Fig. 3. Experimental results for detecting file types

For a given URI we retrieve the content type, which has been added in the
detect phase, from the metadata store. Depending on the result of the query, we
execute different transformation modules on the content. Naturally, if the data
format is already RDF, we can skip the transforming step.

To transform non-XML data, we can call out to external services which convert
the data directly into XML or RDF. At the moment our support for non-XML
data consists only of cleaning up HTML using the tool Tidy6 running as a cgi-bin
on a HTTP server, but various external services for extracting metadata from
e.g. image or video files can be easily plugged in.

To transform XML data, we use xsltproc with an XSLT from the file system,
depending on the type identifier of the page. We use an XSLT that transforms RSS
2.0 and Atom to RDF7. We also developed an XSLT8 which transforms XHTML
pages into an RDF representationbased on RDFS, DC, and FOAFvocabularies. In
this stylesheet we extract from a HTML document the following information: title,
email addresses, images, and relative and absolute links and their anchor labels.

After the URI passes successfully all transformation steps, we pass it to next
step of the pipeline.

The worst case scenario when performing the transforming step is in dealing
with HTML documents, because we must first pass the content to Tidy and then
perform the XSLT transformation. Imagine a document of size N and a XSLT
stylesheet of size M. We assume Tidy takes time linear to the size of the content
O(N). The worst-case complexity for XPATH has shown to be O(N4 ∗ M2) [5],
however, for a large fragment called Core XPath the complexity is O(N*M). Our
XHTML XSLT uses only simple Core XPath queries, therefore the worst-case
complexity for the step is O(N*M).

Figure 4 shows the experimental results for the transformation component
utilizing the xhtml2rdf.xsl and rss2rdf.xsl stylesheets. Using 200 threads as
in all other tests, the transformation performance decreased rapidly after around
6 http://tidy.sourceforge.net/
7 http://www.guha.com/rss2rdf/
8 http://sw.deri.org/2006/05/transform/xhtml2rdf.xsl



MultiCrawler: A Pipelined Architecture 265

13k pages because the machine was assigned with too many transformation tasks
and had to swap. Therefore we plotted only the first 60 minutes of running
time. We repeated the tests with only 50 threads to not overload the machine.
In the end, the transformation step yields 907Mbytes of XHTML resulting in
385Mbytes RDF/XML.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  10000  20000  30000  40000  50000  60000  70000  80000

se
co

nd
s

pages

Transforming pages per seconds

machine 3/200 threads
machine 3/50 threads

Fig. 4. Experimental transformation performance using 50 and 200 threads

3.4 Building Indexes

We summarize the index organization and building process here. For a more
detailed description of the index organization we refer the interested reader to a
previous paper [6]. Please observe that we operate on an extension of the RDF
data model which includes the notion of context to store the provenance of RDF
triples. Tracking provenance is achieved by adding a fourth field and therefore
using quadruples.

The goal of the index structure is to support efficient evaluation of select-project-
join queries. The selection operation enables the retrieval of quads, given any com-
bination of subject, predicate, object, and context. To be able to perform the quad
retrieval with just one index lookup, the index organization uses a complete index
on quads which covers all 16 possible access patterns on quadruples. Conceptually,
we have (key, value) pairs stored in a B+ tree, which allows to perform lookups –
especially prefix and range lookups – on keys. We also use an inverted index on
string literals to allow to search the index via keyword-based searches.

The index structure contains two sets of indexes: the Lexicon covers the string
representation of the graph, and the Quad Index covers the quads. The Lexicon
maps values of resources and literals to objects identifiers (OIDs) using two B+
tree indexes for node/OID mapping. In addition we employ an inverted index
for string literals. The quad index covers the triples of the graph plus context.
We use concatenated keys on all combinations of subject, predicate, object, and
context and therefore are able to retrieve any combination with a single index
lookup without performing joins.

When the indexer receives a quad for indexing, it first performs lookups for
each element of the quad in the Lexicon to either retrieve its OID or assign a



266 A. Harth, J. Umbrich, and S. Decker

new OID. New OIDs are assigned monotonically for each new quad element. In
case the element is a string literal, we include the string literal in the inverted
index. Next, the keys for the quad are constructed based on the OIDs of the
individual elements of a quad. Given our index organization with concatenated
keys and prefix lookups, we only need six indexes to cover all 16 quad patterns
[6]. In total, given our index organization, there are 6 keys for insertion into the
6 indexes.

The two indexes mapping from quad element values and back are implemented
in Berkeley DB JE9. Additionally, we store string literals in Apache Lucene10 for
textual search. The quad indexes are maintained in Berkeley DB as well, with
one index acting as the primary index and five secondary indexes, to implement
a complete index on quadruples.

Since index construction is technically involved, we will describe the time
complexity in more detail. Let N be the size of the input in RDF/NTRIPLES,
NL the number of Lexicon entries, NK the number of words per Lexicon entry,
ML the order of the Lexicon B trees, NT the number of quadruples and MT the
order of the B+ tree with respect to the quads. First, the system performs OID
lookups/assignments in the Lexicon which is largely determined by the input
size of the data O(N ∗ 4 ∗ 2 ∗ logMLNL), next creates a text index in Lucene over
the newly added string literals which takes O(NL ∗ NK) time, and finally adds
the quads into the respective B+ trees O(N ∗ 6 ∗ logMT NT ).

Figure 5 shows the experimental results for constructing the index on the
26906 pages that were transformed without errors resulting in 76.3MBytes of
data in RDF/NTRIPLES format (and a total of 571915 triples).

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  10000  20000  30000  40000  50000  60000  70000  80000

se
co

nd
s

pages

Indexing pages per seconds

machine 4/200 threads

Fig. 5. Performance for indexing the syntactically integrated dataset

3.5 Extracting URIs

To feed the processing pipeline with new URIs we have to extract URIs from
the indexed content, which is done in the extracting module. The process can
9 http://www.sleepycat.com/products/bdbje.html

10 http://lucene.apache.org/



MultiCrawler: A Pipelined Architecture 267

be divided into two steps. The first step is to extract URIs from the data and
the second step is to filter the URIs to make sure only URIs matching specified
criteria get processed.

To extract new URIs we execute a query on the index for typical link predi-
cates such as rdfs:seeAlso and rss:link. We are able to perform conjunctive
queries, which are evaluated by translating a N3QL11 query expression to a
relational algebra expression to an executable query plan.

If an extracted URI is to be added to the queue, we pass this URI through
the installed filter. In this filter we can restrict which URI should be sent to
the fetching module. If we want to crawl only a domain or a set of domains, we
can filter the addition of URIs using regular expressions. These expressions are
stored in memory. It is also possible to add new expressions during the runtime
to the filter.

The main functionality for the link extraction phase is the processing of (con-
junctive) queries utilizing the index. Let NL the number of Lexicon entries, ML

the order of the Lexicon B+ trees, NT the number of quadruples, MT the order
of the B tree with the quads, M the number of conjuncts in the query, and R the
result size. We first sort the conjuncts starting with the conjunct which contains
the least number of variables taking O(MlogM) time, then detect the join con-
ditions (similar to union-find) O(MlgM/2), translate the elements of the quads
to OIDs which can be done in O(4 ∗ M ∗ logMLNL), perform the selections on
the index and index nested loops joins, O(logMT NT

M ), and finally translate the
resulting OIDs to element values, which takes O(R ∗ logMLNL).

Figure 6 shows the experimental results for the extraction component. We
discuss the results of all phases in the next section.

 0

 50

 100

 150

 200

 250

 300

 0  10000  20000  30000  40000  50000  60000  70000  80000

se
co

nd
s

pages

Extracting pages per seconds

machine 5/200 threads

Fig. 6. Experimental link extraction performance

4 Analysis and Tradeoffs

In the following we analyze the performance results for the five phases of the
pipeline process and discuss two questions: i) how to distribute the individual
11 http://www.w3.org/DesignIssues/N3QL.html



268 A. Harth, J. Umbrich, and S. Decker

phases to remove potential bottlenecks and fully utilize the processing power
of each machine and ii) how to run multiple pipelines in parallel to achieve a
throughput of the total system which can be calculated by: number of pipelines
* pipeline throughput.

Currently, the transform phase represents the bottleneck in the pipeline and
can only process a fraction of the pages delivered by the fetch and detect phase.
The random sample of URIs are biased towards HTML data, which means that
during the transform phase almost every page has to be processed. If we are able
to reduce the amount of HTML and XML sources and increase the amount of
RDF sources, the transform phase has to process less pages and as a result the
throughput (in terms of time per page) increases. However, given the fact that
the majority of content on the web is in HTML format, we have to distribute
the transform component to achieve acceptable performance.

Assuming an architecture as described in this paper, we can distribute phases
by just adding more machines. Pages are assigned to nodes using a hash func-
tion. In initial experiments we observed that we can scale up the fetch step by
a constant factor if we add more fetcher machines and all fetcher nodes take
URIs concurrently from the queue. The case is a bit different for the transform
step; here, we employ one thread pool with individual threads which retrieve
a URI from the previous step in the pipeline and invoke Tidy and XSLT op-
erations on cgi-bins running on a web server. In other words, while the other
phases employ a pull model, inside the transform component tasks are pushed
to external processors. We chose the push model because the ability to include
external transformation services was a requirement.

Figure 7 shows the performance results where all steps and external processors
run on one node, where one node was used for the steps and two nodes for
external processors (1+2), and the case where four external processors (1+4)
were used. Why was the scale-up not constant in the number of machines added?
The reason is that the hash function assigns the pages equally to the external
processors. In case a single page takes a very long time to process, the external

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0  10000  20000  30000  40000  50000  60000  70000  80000

se
co

nd
s

pages

Transforming pages per second

1 node/50 threads
3 nodes/100 threads
5 nodes/200 threads

Fig. 7. Performance measurement for the transform phase with 1, 3 (1+2), and 5 (1+4)
transform nodes



MultiCrawler: A Pipelined Architecture 269

processor node cannot keep up with the assigned operations and at some point
in time needs to swap, which leads to a decrease in performance.

Apart from the issues described for the transform steps, we claim all other
steps can be scaled by a constant factor (number of machines added) using a
hash function to distribute URIs to nodes since URIs in those phases can be
processed independently. Table 2 shows the throughput in pages per second for
each phase, and a ratio that determines which fraction of the stream (assuming
that the fastest component determines the throughput) one node can process.

Table 2. The number of servers and the achieved performance. Ratio is calculated
based on the fasted phase (1 = 460 pages/sec).

Phase Servers Pages/sec Ratio.
fetch 1 38 0.082
detect 1 460 1.0
transform 1 5 0.011
transform 1+2 13 0.028
transform 1+4 21 0.045
index 1 92 0.2
extract 1 260 0.565

To be able to scale up the system even further, we can just employ more
pipelines and achieve a total throughput which can be calculated by multiplying
the number of pipelines with the throughput achieved on one pipeline. The limit
is then only determined by how many resources (Internet bandwidth and number
of machines) are available.

5 Related Work

There are two types of related work to our framework: the first consist of large
scale web crawling and indexing systems, and the second are systems extracting
information from semistructured sources.

Crawler frameworks such as UbiCrawler [2] or Mercator [7] are focused on the
performance of the crawling step only. Google [3] handles HTML and some link
structure. We focus less on crawling but on detecting Semantic Web data, the
transformation of XHTML and XML to RDF and the indexing.

A few efforts have been undertaken to extract structured content from web
pages, but these efforts differ considerably in scale. Fetch Technologies’ wrapper
generation framework12 and Lixto [1] are examples of commercially available in-
formation extraction tools. Lixto defines a full-fledged visual editor for creating
transformation programs in their own transformation language, whereas we use
XSLT as transformation language and focus on large-scale processing of data.

12 http://www.fetch.com/



270 A. Harth, J. Umbrich, and S. Decker

Fetch (similarly [9]) combine wrapper generation and a virtual integration ap-
proach, whereas we use a data warehousing approach and therefore need scalable
index structures.

SemTag (Semantic Annotations with TAP) [4] perform mostly text analysis
on documents, albeit on a very large scale. In contrast, we extract structured
information from documents and XML sources, and combine the information
with RDF files available on the web.

6 Conclusion

We have presented a distributed system for syntactically integrating a large
amount of web content. The steps involved are crawling the web pages, trans-
forming the content into a directed labelled graph, constructing an index over
the resulting graph, and extracting URIs that are fed back into the pipeline. We
have shown both theoretical complexity and experimental performance of the
five-step pipeline. We are currently working on performing a long-term continu-
ous crawl and testing the system on larger datasets.

Acknowledgements

We thank Hak Lae Kim for discussing various requirements related to RSS crawl-
ing and Brian Davis for commenting on an earlier draft of this paper. This work
is supported by Science Foundation Ireland (SFI) under the DERI-Lion project
(SFI/02/CE1/l131). We gratefully acknowledge an SFI Equipment Supplement
Award.

References

1. R. Baumgartner, S. Flesca, and G. Gottlob. Visual Web Information Extraction
with Lixto. In Proceedings of 27th International Conference on Very Large Data
Bases, pages 119–128, September 2001.

2. P. Boldi, B. Codenotti, M. Santini, and S. Vigna. UbiCrawler: a Scalable Fully
Distributed Web Crawler. Software: Practice and Experience, 34(8):711–726, 2004.

3. S. Brin and L. Page. The Anatomy of a Large-Scale Hypertextual Web Search
Engine. Computer Networks, 30(1-7):107–117, 1998.

4. S. Dill, N. Eiron, D. Gibson, D. Gruhl, R. Guha, A. Jhingran, T. Kanungo, S. Ra-
jagopalan, A. Tomkins, J. A. Tomlin, and J. Y. Zien. SemTag and Seeker: Boot-
strapping the Semantic Web via Automated Semantic Annotation. In Proceedings
of the Twelfth International World Wide Web Conference, pages 178–186, May
2003.

5. G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The Complexity of XPath Query
Evaluation and XML Typing. Journal of the ACM, 52(2):284–335, 2005.

6. A. Harth and S. Decker. Optimized Index Structures for Querying RDF from the
Web. In Proceedings of the 3rd Latin American Web Congress, pages 71–80. IEEE,
2005.



MultiCrawler: A Pipelined Architecture 271

7. A. Heydon and M. Najork. Mercator: A Scalable, Extensible Web Crawler. World
Wide Web, 2(4):219–229, 1999.

8. S. Melnik, S. Raghavan, B. Yang, and H. Garcia-Molina. Building a Distributed
Full-Text Index for the Web. In Proceedings of the 10th International World Wide
Web Conference, pages 396–406, 2001.

9. M. Michalowski, J. L. Ambite, S. Thakkar, R. Tuchinda, C. A. Knoblock, and
S. Minton. Retrieving and Semantically Integrating Heterogeneous Data from the
Web. IEEE Intelligent Systems, 19(3):72–79, 2004.

10. M. Najork and J. L. Wiener. Breadth-First Crawling Yields High-Quality Pages.
In Proceedings of the Tenth International World Wide Web Conference, pages 114–
118, May 2001.



/facet: A Browser for
Heterogeneous Semantic Web Repositories

Michiel Hildebrand, Jacco van Ossenbruggen, and Lynda Hardman�

CWI, Amsterdam, The Netherlands
firstname.lastname@cwi.nl

Abstract. Facet browsing has become popular as a user friendly inter-
face to data repositories. The Semantic Web raises new challenges due to
the heterogeneous character of the data. First, users should be able to se-
lect and navigate through facets of resources of any type and to make se-
lections based on properties of other, semantically related, types. Second,
where traditional facet browsers require manual configuration of the soft-
ware, a semantic web browser should be able to handle any RDFS dataset
without any additional configuration. Third, hierarchical data on the se-
mantic web is not designed for browsing: complementary techniques, such
as search, should be available to overcome this problem. We address these
requirements in our browser, /facet. Additionally, the interface allows the
inclusion of facet-specific display options that go beyond the hierarchical
navigation that characterizes current facet browsing. /facet is a tool for Se-
mantic Web developers as an instant interface to their complete dataset.
The automatic facet configuration generated by the system can then be
further refined to configure it as a tool for end users. The implementation
is based on currentWeb standards and open source software. Thenew func-
tionality is motivated using a scenario from the cultural heritage domain.

1 Introduction

Facet browser interfaces provide a convenient and user-friendly way to navigate
through a wide range of data collections. Originally demonstrated in the Fla-
menco system [1], facet browsing has also become popular in the Semantic Web
community thanks to MuseumFinland [2] and other systems [3]. An individual
facet highlights one dimension of the underlying data. Often, the values of this
dimension are hierarchically structured. By visualizing and navigating this hier-
archy in the user interface, the user is able to specify constraints on the items
selected from the repository. To use an example from the art domain: by navigat-
ing the tree associated with a “location created” facet from the root “World”,
via “Europe” to “Netherlands”, the results set is constrained to contain only
paintings that have been painted in the Netherlands. By combining constraints
from multiple facets, a user is able to specify relatively complex queries through
an intuitive Web navigation interface. All values of a dimension that would lead
to an over-constrained query are dynamically removed from the interface, pre-
venting the user from running into frustrating dead ends containing zero results.
� Lynda Hardman is also affiliated with the Technical University of Eindhoven.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 272–285, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



/facet: A Browser for Heterogeneous Semantic Web Repositories 273

We are working on repository exploration in the context of a national e-culture
project [4]. Our project’s goals are similar to those of MuseumFinland, and aim
at providing a syntactic and semantic interoperable portal to on-line collections
of national museums. A major difference, however, is that we work with each
museum’s original metadata as much as possible. This means, for example, that
we do not map all metadata relations of the various museums to a common set
of ontological properties, nor do we map all metadata values to terms from a
common thesaurus or ontology.

Initially, we experimented with traditional facet browsers, which assume a
fixed set of facets to select and navigate through relatively homogeneous data.
This, however, conflicts with our approach for the following reasons. First, our
dataset is too diverse to use a single set of facets: facets that make perfect sense
for one type of resource are typically inappropriate for other types. A related
problem is that we cannot fix the facets at design time. When new data is
added, the system should be able to add new facets at run time. This requires
an extension of the facet paradigm to cater for resources of multiple types, to
associate a set of appropriate facets to each type dynamically and to navigate
and search larger sets of facets. Second, we use a rich and extensive set of art-
related background knowledge. As a result, users expect to be able to base their
selection not only on facets of museum artifacts, but also on facets from concepts
from the background knowledge, such as artists and art styles. This requires two
other extensions: one that allows users to switch the topic of interest, for example
from artworks to art styles; and another one that allows selection of resources
of one type based on the facets of another. For example, a set of artworks can
be selected based on the properties (facets) of their creators.

This article discusses these extensions as they are realized in /facet, the
browser of the project’s demonstrator1. The article is structured as follows. The
next section introduces a scenario to illustrate the requirements for enhanced
facet-browsing across multiple types. Section 3 discusses the requirements in
detail and section 4 explains our design solutions in a Web-based interface. Sec-
tion 5 discusses related work and open issues.

2 Example Scenario

Throughout the paper, we use examples from the art domain. The system it-
self, however, is domain independent and used on several other domains2. The
scenario is divided in two parts: the first part illustrates typical usage of facet
browsers; the second part illustrates search tasks that go beyond the current
state of the art and introduce new requirements for facet browsers.

Our protagonist is Simon, a high school student who recently visited the
Dutch Kröller-Müller museum. The museum’s collection features several works
1 See [4] for a more detailed description and http://e-culture.multimedian.nl/
demo/facet for an on-line demo of /facet.

2 Demos on various domains are available at the /facet website http://slashfacet.
semanticweb.org/



274 M. Hildebrand, J. van Ossenbruggen, and L. Hardman

from Vincent van Gogh. Back at home, Simon has to write an essay on post-
impressionism. He remembers seeing a particular post-impressionist painting but
can no longer remember the name of the painter nor the title of the painting.
The only thing he remembers is that the painting depicted a city street at night
time. He uses a facet browser to restrict the search space step by step. He selects
the current location of the painting (Kröller Müller), the art style of the painting
(post-impressionist), its subject type (cityscape), and the subject time (night).
He finds the painting he was looking for among the few results matching his
constraints (Vincent van Gogh’s ”Cafe Terrace on the Place du Forum”).

He now wants to further explore the work of Van Gogh, and selects this painter
from the creator facet, and resets all previous selections. The interface displays
the 56 paintings from Van Gogh that are in the repository. The facets now only
contain values of the remaining paintings. For example, the create location facet
instantly shows Simon that van Gogh made paintings in the Netherlands and
in France, and how many in each country. Simon asks the system to group the
results on create location and notices the significant difference in the color palette
Van Gogh used in each country. By selecting “France” he zooms in further to
explore potential differences on the city level.

In addition to the types of browsing possible in typical facet browsers, Si-
mon also wants to explore works from painters born in the area of Arles. Un-
fortunately, the artworks in the repository have not been annotated with the
birthplace of their creator. Simon uses multi type facet browsing and switches
from searching on artworks to searching on persons. The interface now shows
the facets available for persons, which include place of birth. Searching on Ar-
les, he sees that four painters with unfamiliar names have been born here, but
that the repository does not contain any of their works. Expanding his query
by navigating up the place name hierarchy, he selects artists from the Provence-
Alpes-Côte d’Azur, the region Arles is part of. He quickly discovers that Paul
Cézanne, a contemporary of Van Gogh, was born in Aix-en-Provence in the same
region.

Simon reaches his original goal by switching back from searching on persons
to searching on artworks. Despite this switch, the interface allows him to keep
his constraint on Provence-Alpes-Côte d’Azur as a place of birth. It thus shows
only artworks created by artists that were born in this region.

Backstage area. The experimentation environment in which /facet was devel-
oped, contains sufficient data to cover the scenario above. It uses a triple store
containing three different collections with artwork metadata: the collection of the
Dutch National Museum of Ethnology3, the ARIA collection from the Rijksmu-
seum4, and Mark Harden’s Artchive collection5. RDF-versions of WordNet6 and

3 http://www.rmv.nl/
4 http://www.rijksmuseum.nl/collectie/, thanks to the Dutch CATCH/CHIP

project (http://chip-project.org/) for allowing us to use their translation of the
dataset to RDF.

5 http://www.artchive.com/
6 http://www.w3.org/2001/sw/BestPractices/WNET/wn-conversion.html



/facet: A Browser for Heterogeneous Semantic Web Repositories 275

the Getty AAT, ULAN and TGN thesauri7 are also included. For the annotation
schema, we use Dublin Core8 and VRA Core 39.

In total, the store contains more than 10.8 million RDF triples. Artwork images
are served directly from the websites of the museums involved. All the collection
metadata has been converted to RDF, with some minimal alignment to fit the
VRA Core 3 schema. In addition, explicit links were created from the art works to
the Getty thesauri: literal names of painters and other artists were automatically
converted to a URI of the ULAN entry; literal names of art styles and art materials
to a URI of the AAT entry; and literal place names to a URI of the TGN entry.
For example, in the scenario, some vra:Works have a dc:creator property referring
to the painter ulan:Person Paul Cézanne, born in tgn:Place Aix-en-Provence in
the tgn:Region of Provence-Alpes-Côte d’Azur. Additionally, some artworks have
been manually annotated using concepts from the Getty thesauri and WordNet. In
the remainder of the paper, we will use the following prefixes for the corresponding
namespaces: wn, aat, tgn, ulan, vp, dc and vra.

3 Requirements for Multi-type Facet Browsing

While the second half of the scenario sketches a seemingly simple means of
accessing information, a number of issues have to be addressed before it can
become a reality. Most facet browsers provide an interface to a single type of
resource. Including multiple types, however, leads to an explosion in the number
of corresponding properties and thus the number of available facets. A facet
browser still needs to be able to present instances of all the types and allow a
user to select a particular type of interest. In addition, the relations between the
types also need to be made explicit and selectable by the user. To a large extent,
the requirements we discuss are a direct consequence of these two key points.

3.1 Dynamically Selecting Facets

Fortunately, a first way to deal with the increased number of facets lies in the
facet paradigm itself. One of the key aspects of all facet browsers is that, while
constraining the dataset, all links that would lead to an over-constrained query
are automatically removed from the interface, thus protecting the user against
dead ends. As a consequence, if no instance in the current result set has a
particular property, the facet associated with this property is removed from the
interface. In our multiple type scenario, this means that if two types have no
properties in common, the entire set of facets displayed is replaced when the
user switches from one type to the other.

Facets in context of the rdfs:subClassOf hierarchy. For most classes that
have no subclasses, just hiding facets of properties that have no corresponding
7 http://www.getty.edu/research/conducting_research/vocabularies/, used with

permission
8 http://dublincore.org/documents/dcq-rdf-xml/
9 http://www.w3.org/2001/sw/BestPractices/MM/vra-conversion.html



276 M. Hildebrand, J. van Ossenbruggen, and L. Hardman

instances will result in an interface with a set of facets that intuitively belong
to instances of that class10. For the superclasses, however, it is not immediately
obvious what this “intuitive” set of facets is.

A first possibility is to associate with a specific class the union of the facets of
its subclasses. This has the advantage that users can immediately start browsing,
even if they have selected a class too high up in the hierarchy. By selecting a
facet that only applies to instances of one of the subclasses, the result set is
automatically constrained to instances of the intended class. A major drawback
is that the number of facets displayed rapidly grows when moving up the class
hierarchy, culminating in the complete set of all facets for rdf:Resource.

An alternative is to use the intersection of the facets of the rdfs:subClassOf

hierarchy. This has the advantage that the user only sees facets that are common
to all subclasses, and in practice these are, from the perspective of the super-
class, often the most important ones. A drawback is that when moving up the
hierarchy, one quickly reaches the point where the intersection becomes empty,
leaving no facet to continue the search process. This forces the user to navigate
down the class hierarchy to return to a usable facet interface.

A final possibility is to view the association of a set of facets with a certain
class as an aspect of the personalization of the system. While personalization is
one of the key aspects in our project, it is beyond the scope of this paper.

Facets in context of the rdfs:subPropertyOf hierarchy. As described
above, the rdfs:subClassOf hierarchy helps to reduce the number of facets by
only showing facets that are relevant to a particular class. A similar argument
applies to the rdfs:subPropertyOf hierarchy. On the one hand, the property hi-
erarchy worsens the problem by introducing even more facets: in addition to
the facets corresponding to the “leaf node” properties, their superproperties
also become facet candidates. On the other hand, the property hierarchy also
provides an opportunity for an interface to organize and navigate the property
(and thus the facet) hierarchy, allowing the user to select facets as part of the
interaction.

3.2 Search in Addition to Navigation

While the beauty of facet browsing lies in the ease of constructing queries by
navigation, an often heard critique is that navigating deep tree structures is
complex, in particular for users who are not expert in the domain modeled
by the hierarchy. A second critique is that facet browsers become complex in
applications with many facets and when users do not know what facets to use
for their task. Multi-type facet browsing only makes this problem worse, by
radically increasing the number of facets in the system. A search interface in
addition to the navigation interface is thus required, and the two interaction
styles should be well integrated and complement each other.

10 For simplicity, we ignore the question of whether or not to show sparsely populated
properties, of which only a few instances have values.



/facet: A Browser for Heterogeneous Semantic Web Repositories 277

3.3 Creating Multi-type Queries

The example of selecting artworks created by artists born in a particular region
requires a facet on a resource of one type (ulan:Person) to be applied to find
resources of another type (vra:Work). This is just one example of how such com-
binations can be used to exploit background knowledge in the selection process.

Using facets across types only makes sense if the resources involved are seman-
tically related so the browser is required to know which relation to use. For the
end user, the power of the facet interface lies in the ease of combining multiple
facets to construct a complex query. This should be no different in a multi-type
browser. So in addition a transparent interface needs to be available to easily
constrain a dataset of one type, based on facets of another type.

3.4 Run-Time Facet Specification

Manual definition of relevant facets and hard-coding them in a facet browser
might be feasible for homogeneous datasets. This approach does not scale, how-
ever, to heterogeneous datasets, where typically each type of resource has its
own set of associated facets. Even for simple applications, the total number
of facets might rapidly grow to several hundreds. Instead of hard-coding the
facets in the browser software, some means is needed to externalize the facet
definitions and make them configurable independently from the software. This
simplifies maintenance and, by simply reloading a new configuration, allows
adding and changing facets at runtime. The system also needs to be able to
derive facet configurations from the dataset automatically. This allows the facet
browser to run instantly on any dataset without prior manual configuration,
while also allowing later manual refinement of the generated configuration. The
latter is important, since it allows developers to tune the interface for specific
end users, who might not be best served by a generic tool that gives access to
all data.

3.5 Facet-Dependent Interfaces

A typical facet browser visualizes the possible values of the facet either as a
hierarchy or as a flat list. Related interfaces, such as those of mSpace [5] and
Piggybank [6], have shown that some facets are better shown using a more
specialized visualization or interaction technique, such as geographical data dis-
played in an interactive map. To be able to tune a generic, multi-type facet
browser to a tool for end-users that have a specific task in a specific domain, we
require a mechanism for supporting visualization and interaction plug-ins.

4 Functional Design for Multi-type Facet Browsing

We have explored the design consequences of these requirements in /facet. This
section explains and motivates our design decisions in the prototype.



278 M. Hildebrand, J. van Ossenbruggen, and L. Hardman

Fig. 1. Snapshot of the /facet GUI. vra:Work has been selected in the type facet on the
left, so only facets applicable to artworks are visible. Simon has restricted the results
to have tgn:Arles as the place of creation. The interface shows Simon that the four
matching paintings are created by either ulan:Gauguin or ulan:Van Gogh (picked from
a flat list of artists), and that all four have aat:post-impressionist as the art style
(shown in the context of its place in the AAT hierarchy).

4.1 Browsing Multiple Resource Types

To support facet search for all resource types, the /facet user interface needs a
way to search for resources other than artworks11. A natural and convenient way
to integrate such functionality is by regarding the rdf:type property as “just”
another facet. The facet applies to all resources and the values from its range are
typically organized by the rdfs:subclassOf hierarchy, allowing navigation just
as for any other facet. Since the semantics of this facet is derived directly from
that of rdfs:type, by making a selection users indicate the type of resource they
are interested in. This constraint automatically selects which other facets are
also active.

This is illustrated in Figure 1, which shows the upper half of the /facet in-
terface. On the left is the type facet with a part of the domain’s class hierarchy.
Simon has already selected artworks (e.g. resources of rdf:type vra:Work) and,
as a result, only facets applicable to artworks are available from the facet bar
at the top. Simon has expanded three of these from submenus of the facet bar:
Creation Site, Creator and Style/Period. He selected “Arles” in the Creation
Site facet. Apparently, the dataset contains only four resources of type vra:Work

that were painted in Arles, indicated next to the selected type and location
tgn:Arles. Simon has made no selections in the Creator and Style/Period facets,
indicating that all four paintings are “post-impressionist” and that one painting
is by Gauguin and three are by Van Gogh.

4.2 Semantic Keyword Search

In Figure 1, the art style’s full path in the AAT concept hierarchy is automati-
cally unfolded because all paintings with “Arles” as the Creation Site share the
same style “post-impressionist”. Showing the tree structure has the advantage
11 We still use artworks as the default type to give users a familiar interface when

starting up the browser.



/facet: A Browser for Heterogeneous Semantic Web Repositories 279

Fig. 2. Three types of keyword suggestion and search. (a) show search on all instances,
helping to select the right type. (b) shows search within a single facet, helping to move
in complex facet hierarchies. (c) searches across all active facets, showing the user the
different uses of the keyword “Arles” in different facets.

that Simon could quickly select related art styles by simply navigating this hi-
erarchy. This illustrates a well-known disadvantage of navigating complex tree
structures: if Simon had instead started by selecting the art style, he would need
to have known the AAT’s art style classification to navigate quickly to the style
of his choice, which is hidden six levels deep in the hierarchy.

To overcome this problem, we added a keyword search box to each facet, with
a dynamic suggestion facility, (b) in Figure 2. This allows Simon to find the style
of his choice based on a simple keyword search. This interface dynamically starts
suggesting possible keywords after Simon has typed a few characters. Note that
the typical “no dead ends” style of facet browsing is retained: only keywords that
produce actual results are suggested. Backstage, this means that in this case the
suggested keywords are picked from the (labels of) concepts under the AAT
“Style and Periods” subtree that are associated with art works in the current
result set. In practice, the intended keyword is typically suggested after only a
few keystrokes. This makes the interaction often faster than navigating the tree,
even for expert users who know the tree structure by heart.

The keyword search discussed above addresses the problem of navigation dif-
ficulties within the hierarchy of a single facet. Another problem could be picking
the right facet in the first place. The keyword search box shown in (c) of Figure 2
addresses this problem. It provides the same search as the facet keyword search
in (b), only across all facets of the selected type. For the figure, no type was
selected and all facets have been searched. Arles is suggested as a TGN con-
cept used in the facet corresponding to the vra:location.creationSite property
(for paintings created in Arles), but also as the place used in the facet of the



280 M. Hildebrand, J. van Ossenbruggen, and L. Hardman

Fig. 3. Facet search on type vra:Work, but with a still active constraint on ulan:Person
(birthplace Provence-Alpes-Côte d’Azur). Also note the timeline in the bottom, visu-
alizing multiple time-related facets. Images courtesy of Mark Harden, used with per-
mission.

vra:subject property (for paintings that depict Arles), the birth and death place
of Persons, etc. As a result, this search box can be used to find the right facet,
but also to disambiguate keywords that have different meanings or are used in
different ways.

A final problem can be that the user does not know the type to select to start
with. This is addressed by adding also a keyword search box to the type facet, as
shown in (a) in Figure 2. This searches over all literal properties of all instances
and highlights matching instances and their types in the context of their location
in the class hierarchy.

4.3 Specifying Queries over Multiple Resource Types

We strive to support selection of facets from resources with different types in
a transparent way, without further complicating the interface. In the



/facet: A Browser for Heterogeneous Semantic Web Repositories 281

example scenario, Simon searched on resources of ulan:Person, selecting
ulan:Provence-Alpes-Côte d’Azur as the place of birth.

After making this selection, Simon can just switch back to searching on art-
works by selecting vra:Work in the type facet. In /facet, this would yield a page
such as the one shown in Figure 3. Note that under the facets, the currently ac-
tive constraints are shown, including the ulan:Provence-Alpes-Côte d’Azur con-
straint on the ulan:birthPlace facet of ulan:Person. For comparison, also a facet
on vra:Work has been selected, in this case ulan:Paul Cezanne as the dc:creator.

To realize the example above, the facet browser needs to know the relation
that can be used to connect a set of vra:Works with a set of ulan:Persons born
in ulan:Provence-Alpes-Côte d’Azur. The current prototype searches for such
properties at run time, and in this case finds the dc:creator property, as in-
tended. To keep the user interface simple, we only support one property (that
is, the first suitable candidate found by the system) to connect the different
sets. Properties with the same domain and range can be used for normal facet
browsing within a single type, but not for relating instances of different types.

4.4 Run-Time Facet Specification

The facets that are shown in the interface can be configured in a separate file. Be-
cause a facet is defined in terms of RDF classes and properties, the configuration
file itself is also in RDF, using a simple RDF vocabulary.

The vocabulary defines instances of Facet by three key properties. For exam-
ple, the birthday facet is modeled by the hierarchyTopConcept and
hierarchyRelation properties defining the hierarchy to be shown in the interface,
by specifying the top of the tree (tgn:World) and the rdf:Property used for the
hierarchical relation (in this case vp:parent, the universal parent relation that
is used across the Getty vocabularies). The resourceProperty defines how places
are related to the painters, in this case by the ulan:birthPlace property.

Some other properties are optional and used to speed up or improve the user
interface. The explicit definition of the type of resources the facet applies to, for
example, makes it much more efficient to quickly switch to the right set of facets
when users move from one type to the other. The rdfs:label property can be
used to specify the name of the facet, which defaults to the label or name of the
corresponding property.

To generate a first configuration file (that can later be hand edited), /facet
analyzes the dataset and generates a set of RDF facet definitions similar to the
birthPlace facet example given above. For each property, the current algorithm
search for a hierarchical relation in the set of related values to find the top
concepts. If this relation is not found, or if the values literal are literals, it
generates a facet with a flat list of values. For the scenario dataset, 22 hierarchical
facets, 84 literal facets and 154 facets with a flat list of resource values were found.

4.5 Facet-Specific Interface Extensions

The values of a facet are typically presented in a list or a tree structure with
textual labels. However, some structures are more easy to understand when



282 M. Hildebrand, J. van Ossenbruggen, and L. Hardman

presented differently. In particular, data which can be ordered linearly can be
presented as points on an axis. Time, in particular, is a quantity that is often
associated with resources, not only in the cultural heritage domain. It is useful
to give a timeline representation of date data where this is appropriate. We have
developed a timeline plug-in to visualize time-related facets (such as dc:date and
it subproperties).

Not only artworks have associated dates, but also related resources such
as the lifespan of the artist, Van Gogh, and the period associated with the
aat:post-impressionist art style. Since the temporal information is related to
the set of resources, this can be displayed together on a single timeline, as shown
on the bottom of Figure 3.

A timeline interface could also be extended to not only show the temporal in-
formation, but also allow it to be used as part of the facet constraint mechanism.
A similar facet dependent interface extension would be to relate geographical
information together and display it on a two-dimensional spatial-axes interface
such as a map.

5 Discussion and Related Work

Initial development of /facet has been heavily inspired by the facet interface of
the MuseumFinland portal [2]. Where MuseumFinland is built on a strongly
aligned dataset, we focus on supporting heterogeneous, loosely coupled collec-
tions with multiple thesauri from external sources. They provide mapping rules
that hide the peculiarities of the underlying data model from the user interface.
We have sacrificed this abstraction level and expose the underlying data model,
but with the advantage that the software is independent of the data model and
requires no manual configuration or mapping rules.

In comparison with mSpace [5], /facet retains the original facet browsing
principle to constrain a set of results. In a visually oriented domain such as ours,
this leads to an intuitive interface where, after each step, users can see a set
of images that reflect their choices: even users who do not know what “post-
impressionist” paintings are, can immediately see from the results whether they
like them or not. Also note that a heterogeneous dataset, such as ours, would
lead to an m-dimensional space with m > 250, which would make the mSpace
interface unusable. Alternatively, we could split up the data in multiple smaller
mSpaces, but would then have no way of connecting them.

Unlike /facet, the Simile project’s Longwell [3] facet browser requires to be
configured for a specific dataset and its interface provides no solutions for dealing
with large numbers of facets. An advantage of Longwell over /facet is that the
display of the results is fully configurable using Fresnel [7].

While Noadster [8] is not specifically a facet browser, it is a generic RDF
browser. Noadster applies concept lattices to cluster search results based on
common properties. It clusters on any property, but ignores “stop properties”
that occur too frequently. The resulting hierarchy forms a Table of Contents,
with the original search results typically as leaf nodes, and common properties



/facet: A Browser for Heterogeneous Semantic Web Repositories 283

as branches. An advantage of Noadster is that its clustering prioritizes facets
by placing those occurring more frequently in the matches higher in the tree. A
disadvantage is the occasional ”noisy” excess of properties in the clustering.

While we claim that /facet has some key advantages over the systems dis-
cussed above, the current prototype also suffers from some limitations. First,
the algorithm for determining the facet configuration automatically needs fur-
ther refinement. We now treat every RDF property as a potential facet. We
then filter out many “schema level” properties from the RDF, RDFS and OWL
namespace, and from our own internal namespaces (including the namespace we
use for our facet specifications). It is still possible that a certain type of resource
will be associated with so many facets that the interface becomes hard to use.
The techniques discussed in this paper only partially address this problem, and
they are highly dependent on the structure of the rdfs:subpropertyOf hierarchy.
More research is needed to classify facets into a hierarchy that is optimized for
usage in a user interface. In addition, we currently generate facets for all literal
properties. On the one hand, this has the disadvantage that facets are gener-
ated for properties such as comments in RDFS, gloss entries in WordNet and
scope notes in the AAT. The values of such properties are unlikely to become
useful for constraining the dataset. On the other hand, other properties with
literal values, such as labels in RDFS or titles in Dublin Core, provide useful
facets. More research is needed to provide heuristics for determining the type
of literal values that are useful in the facet interface. In the type hierarchy, we
display all classes from the underlying domain, filtering out only the classes from
the RDF(S) and OWL namespaces and the system’s internal namespaces. Still,
this often leaves classes that are not helpful for most users. Examples include
the abstract classes that characterize the top levels of many thesauri, such as
the vp:Subject, aat:Subject and aat:Concept classes in our domain. The proto-
type’s current facet-mining algorithm is unable to deal with multiple hierarchies
within a single facet. For example, many of our paintings have subject matter
annotations referring to concepts from WordNet. There are, however, several
different relations that can be used to organize these into a hierarchy, such as
hypernym/hyponym and holonym/meronym. For the user interface, it may be
appropriate to merge the different hierarchies in a single tree or to keep them
separate.

On the implementation side, the current prototype is developed directly on
SWI-Prolog. The server side is a Prolog module built on top of the SWI-Prolog
Semantic Web Server [9,10]. The client side is a standard Web browser that
uses AJAX [11] for the dynamics of the suggestion interface. A drawback of this
implementation is that users have to upload their data into /facet’s triple store.
We are planning to make future versions of the browser using the SPARQL [12]
API, so that /facet can be used to browse any RDF repository that is served
by a SPARQL compliant triple store. The large amount of RDFS and OWL-
based reasoning at run time slowed down the system and gave the impression of
an unresponsive interface. To address this, we reduced the amount of run-time
reasoning by explicitly deriving the triples needed for calculating the result set



284 M. Hildebrand, J. van Ossenbruggen, and L. Hardman

when starting up the server so we can quickly traverse the expanded RDF-graph
at run time. For example, we compute and add closures of transitive and inverse
properties to the triple set at start up or when new data is added.

6 Conclusion and Future Work

We have discussed the requirements for a fully generic RDFS/OWL facet browser
interface: automatic facet generation; support for multiple resource types; cross-
type selection so resources of one type can be selected using properties of another,
semantically related, type; keyword search to complement hierarchical naviga-
tion; and supporting visualization plug-ins for selected data types.

We developed the /facet Web interface to experiment with facet browsing
in a highly heterogeneous semantic web environment. The current prototype
meets the requirements discussed, it fulfills the described scenario in a cultural
heritage domain and similar scenarios in other domains. A number of drawbacks
remain, which we would like to address in future work. First, determining the
facets automatically needs further refinement. Second, we are still fine tuning
which classes from the class hierarchy we want to show and which facets we want
to associate with the superclasses. Third, the prototype’s current facet-mining
algorithm is unable to deal with multiple hierarchies within a single facet. Finally,
we need to develop a version of /facet that is independent of a particular triple
store implementation and runs on any SPARQL compliant triple store.

Acknowledgments. We like to thank our CWI colleagues and members of
the MultimediaN E-culture project for their feedback on the /facet prototype
and earlier versions of this paper. Jan Wielemaker developed the SWI-Prolog
infrastructure and helped solve many problems during development. Alia Amin
provided invaluable feedback on the user interface design. Željko Obrenović pro-
vided helpful insights on the conceptual architecture of the system.

This research was supported by the MultimediaN project funded through the
BSIK programme of the Dutch Government and by the European Commission
under contract FP6-027026, Knowledge Space of semantic inference for auto-
matic annotation and retrieval of multimedia content — K-Space.

References

1. Yee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted Metadata for Image Search
and Browsing. In: CHI ’03: Proceedings of the SIGCHI conference on Human
factors in computing systems, Ft. Lauderdale, Florida, USA, ACM Press (2003)
401–408

2. Hyvönen, E., Junnila, M., Kettula, S., Mäkelä, E., Saarela, S., Salminen, M.,
Syreeni, A., Valo, A., Viljanen, K.: MuseumFinland — Finnish museums on the
semantic web. Journal of Web Semantics 3(2-3) (2005) 224–241

3. SIMILE: Longwell RDF Browser. http://simile.mit.edu/longwell/ (2003-2005)



/facet: A Browser for Heterogeneous Semantic Web Repositories 285

4. Schreiber, G., Amin, A., van Assem, M., de Boer, V., Hardman, L., Hildebrand, M.,
Hollink, L., Huang, Z., van Kersen, J., de Niet, M., Omelayenjko, B., van Ossen-
bruggen, J., Siebes, R., Taekema, J., Wielemaker, J., Wielinga, B.: MultimediaN
E-Culture demonstrator. In: International Semantic Web Conference (ISWC2006).
(2006) to be published.

5. m.c. schraefel, Smith, D.A., Owens, A., Russell, A., Harris, C., Wilson, M.L.: The
evolving mSpace platform: leveraging the Semantic Web on the Trail of the Memex.
In: Proceedings of Hypertext 2005, Salzburg (2005) 174–183

6. Huynh, D., Mazzocchi, S., Karger, D.R.: Piggy Bank: Experience the Semantic
Web Inside Your Web Browser. [13] 413–430

7. Bizer, C., Lee, R., Pietriga, E.: Fresnel — A Browser-Independent Presentation
Vocabulary for RDF. In: Proceedings of the Second International Workshop on
Interaction Design and the Semantic Web, Galway, Ireland (2005)

8. Rutledge, L., van Ossenbruggen, J., Hardman, L.: Making RDF Presentable –
Integrated Global and Local Semantic Web Browsing. In: The Fourteenth Inter-
national World Wide Web Conference, Chiba, Japan, IW3C2, ACM Press (2005)
199–206

9. Wielemaker, J., Schreiber, G., Wielinga, B.: Prolog-Based Infrastructure for RDF:
Scalability and Performance. In: The SemanticWeb - ISWC 2003, Sanibel Island,
Florida, USA, Springer-Verlag Heidelberg (2003) 644–658

10. Wielemaker, J.: An optimised Semantic Web query language implementation in
Prolog. In: ICLP 2005. (2005) 128–142 LNCS 3668.

11. Paulson, L.D.: Building Rich Web Applications with Ajax. IEEE Computer 38(10)
(2005) 14–17

12. W3C: SPARQL Query Language for RDF. W3C Candidate Recommendations are
available at http://www.w3.org/TR (2006) Edited by Eric Prud’hommeaux and
Andy Seaborne.

13. Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A., eds.: 4th International Semantic
Web Conference, ISWC 2005. In Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A.,
eds.: 4th International Semantic Web Conference, ISWC 2005. Lecture Notes in
Computer Science, Galway, Ireland, Springer (2005)



Using Ontologies for Extracting Product
Features from Web Pages�

Wolfgang Holzinger, Bernhard Krüpl, and Marcus Herzog

Database and Artificial Intelligence Group, Vienna University of Technology,
Favoritenstraße 9-11, A-1040 Wien, Austria

{holzing, kruepl, herzog}@dbai.tuwien.ac.at

Abstract. In this paper, we show how to use ontologies to bootstrap
a knowledge acquisition process that extracts product information from
tabular data on Web pages. Furthermore, we use logical rules to reason
about product specific properties and to derive higher-order knowledge
about product features. We will also explain the knowledge acquisition
process, covering both ontological and procedural aspects. Finally, we
will give an qualitative and quantitative evaluation of our results.

1 Introduction

The World Wide Web is an excellent source for product information. Product
descriptions are posted on numerous Web sites, be it manufacturer Web sites,
review portals, or online shops. However, product presentations on the Web are
primarily designed for a human audience. Product features are not encoded in a
way that they can be automatically processed by machines. In this paper, we in-
vestigate the task of extracting product features, i.e., attribute name-value pairs,
from Web pages. The extraction process is assumed to work fully autonomous,
given some seed knowledge about a product domain of interest. We will use the
digital camera domain to illustrate our approach.

Due to the very nature of the World Wide Web, information about the same
product is often spread over a large number of Web sites and is presented in quite
different formats. However, technical product information tends to be presented
in a more structured way, usually in some form of list or table structure. Still,
the presentation variety of this semi-structured information is enormous. In the
AllRight project, we strive for distilling knowledge about products and their
features from the product descriptions found on large numbers of Web sites.
This project is also part of a larger research initiative that deals with various
aspects of data extraction from Web pages [2].

We assume that the product descriptions are posted on “regular” Web pages
that are not semantically annotated in any way. It is therefore part of our task to
annotate to these Web data as much relevant semantics as possible. Semantics

� This research is supported in part by the Austrian Federal Ministry for Transport,
Innovation and Technology under the FIT-IT contract FFG 809261 and by the REW-
ERSE Network of Excellence.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 286–299, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Using Ontologies for Extracting Product Features from Web Pages 287

is always a matter of perspective: when examined from different points of view,
completely different properties of a subject matter may become important. For
most technical products, though, a common understanding about the relevance
of features exists. It is exactly this feature set that manufacturers, dealers, and
reviewers list when they post product descriptions on the Web. We exploit this
common feature set when we retrieve information about products. For each
product, we build a feature space and populate it with instance data extracted
from Web pages.

Related work. Table extraction from Web documents has been addressed in a
number of publications [4,6] and has been used as a basis for the more general
notion of knowledge extraction [13,1] from the Web by the way of constructing
ontologies from tables [10,11]. In most of these approaches however ontologies
are only used for storing the knowledge gathered from the extraction process
performed by conventional procedural algorithms.

In [3], the authors describe the use of a domain ontology to create a wrap-
per for data extraction from Web tables. They use data integration techniques
to match the extracted data to the domain description. In the same line, our
approach tries to integrate table extraction with table interpretation [6], but
uses the classification capabilities of the OWL reasoner Pellet [8] to resolve the
gap between tabular presentation and the domain model’s semantics, without
resorting to external matching algorithms.

The OntoGenie system [9] populates a given ontology with instances using the
linguistic WordNet ontology as an interpretative bridge between the unstructured
data from the Web and the target ontology. Our system has the same goal of in-
stantiating a domain ontology, but relies on structural information about the data
in the form of tabular arrangement and a small domain specific vocabulary.

We believe that migrating parts of the logic to OWL reasoning helps building
a modular system with easily exchangeable logical table and domain models.
The logic needed to build higher level semantic concepts can be formulated in a
natural declarative manner, which helps development and elaboration of these
concepts. The procedural components in the process are decoupled from each
other, with each component having a clear purpose and responsibility. Usage of
OWL as a glue representation between them helps keeping the whole system
transparent and eases debugging and evaluation.

Architecture. The overall knowledge acquisition process is outlined in Figure 1.
In a first step, the table extraction algorithm analyzes an input HTML page for
tabular structures, given a specific table ontology T . The output of this step is an
instantiated table ontology I(T ) resembling the information found in a tabular
structure on the HTML page. Note that the tabular structure on the HTML
page is not necessarily encoded in HTML table elements, but only needs to
look like a table. This will be explained in more detail later.

In the next step, a content spotter algorithm analyzes the instantiated table
ontology I(T ) for occurrences of specific domain dependent concepts. The con-
tent spotter algorithm utilizes keywords and expressions defined in the domain



288 W. Holzinger, B. Krüpl, and M. Herzog

Fig. 1. The knowledge acquisition process, covering both ontological and procedural
aspects

ontology D and annotates the content found in the table structure with the re-
spective concepts. The output of this step is the combination of both the instanti-
ated table ontology I(T ) and the instantiated domain ontology I(D), containing
enough basic facts to allow for derivation of higher level concepts in D.

The final step interprets the instantiated ontologies using a standard OWL
reasoner which classifies the instances present in terms of the higher level con-
cepts of the domain ontology. The relevant product information is extracted and
stored externally for further processing.

In the following section we will describe how we use OWL ontologies to formal-
ize knowledge about both table structures and product features, as well as how
we represent intermediate and final results of the knowledge acquisition process.
Section 3 describes in detail the process depicted in Figure 1, covering the ta-
ble extraction algorithm, the content spotting algorithm, and the derivation of
higher-level domain concepts from pure facts extracted from the Web pages. Sec-
tion 4 presents a quantitative and qualitative evaluation of our process. Finally,
in Section 5 we discuss our main findings and discuss further ideas and potential
improvements.

2 Ontologies

We use two separate ontologies to represent different aspects in our problem
domain: knowledge about table structures, i.e., rows and columns, and knowledge
about product features, i.e., product attribute keyword–value pairs. We use OWL
to represent the ontologies. Moreover, we use the Pellet [8] OWL reasoner to
reason about concepts in our ontologies.



Using Ontologies for Extracting Product Features from Web Pages 289

(a) Table ontology (b) Meta domain ontology

(c) Digicam ontology

Fig. 2. The two base ontologies and a sample domain ontology

2.1 Modeling

Figure 2a shows our ontological modeling of tables. The most concise concept is
the table cell, represented as concept Cell, which contains a textual unformatted
string value modeled as an OWL datatype property. Cells are grouped into
rows and columns, which is reflected by the contains–relation and the concepts
Row and Column. This table model can represent the most basic table type, the
rectangular grid table [6] and is adequate in modelling the tables found in the
digital camera domain.

The meta domain ontology (Figure 2b) is our basic schema for the description
of products. This ontology represents a product as a flat list of attributes, where
each attribute is associated with a set of keywords and a typed attribute value.
For the description of specific products, we subclass the concepts in the meta do-
main ontology 2b and fill it with domain specific information, i.e., domain specific
attributes. Figure 2c shows an extension of the base ontology for digital cameras
(only 3 attributes of the 23 modelled are shown.) For each feature of the cam-
era, we provide an appropriately named attribute. Each attribute is associated



290 W. Holzinger, B. Krüpl, and M. Herzog

with a matching keyword and value concept. Keyword concepts are basically sin-
gleton concepts with only one instance representing the keyword. However, as seen
on the instance kw sensorsize in Figure 2c, this single instance can have multiple
independent string representations, allowing for various syntactic variants of the
keyword. In this way, the domain dictionary is integrated in the domain ontology.
Attribute values contain a reference to a type concept which denotes the allowed
attribute types. Besides simple numerical types like RatioType and ProductType
that have no further elaborated description in the domain ontology, enumera-
tion types are described in the ontology in a way similar to keywords. For in-
stance, the SensorTypeValueof a digital camera can be either v sensortype ccd
or v sensortype cmos, which are tagged with the respective strings "ccd"
and "cmos".

2.2 Reasoning: The ”Containment Forms Context” Assumption

Up to this point, we have two distinct ontologies that are not related to each
other. To make a successful interpretation of the content of a table with the
semantics defined by the domain model, we have to provide a way to integrate
those two ontologies.

Our method is based on the observation that individuals that belong to a
certain concept in one ontology, e.g. being a Cell in the table ontology, can at
the same time belong to another unrelated concept in a different ontology, i.e.,
being the value of a specific attribute in the product ontology.

The crucial point is what we call the ”containment forms context” assumption.
We use the hierarchical containment relation between texts and cells and rows
and columns that is present in the table model to decide on the context that a
cell is in. The fact that a cell c belongs to a row r establishes a common context
on all the members ci of r.

Consider the attribute value SensorSizeValue. We want to classify a cell as
a valid sensor size value, iff its text contains both a numerical value and a length
unit (like ”in” or ”cm”). Any cell containing both text fragments binds this two
fragments into a common context that we call SensorSizeValue:

SensorSizeValue == ∃.contains NumericalType ∩ ∃.contains LengthUnit

In the same way, we recognize an individual to be an sensor dimension at-
tribute, iff it contains both a sensor dimension attribute keyword and a sensor di-
mension attribute value. Any individual that contains both a SensorSizeValue
and SensorSizeValue should become a SensorSizeAttribute also:

SensorSizeAttribute == ∃.contains SensorSizeValue

∩ ∃.contains SensorSizeValue

At present all definitions of values and attributes follow this simple schema.
However, we perceive it to be one of the strong points of our approach that those
simple definitions can easily be replaced by more intricate ones if the need arises,



Using Ontologies for Extracting Product Features from Web Pages 291

without having to modify any other part of the system, because the handling of
these rules is encapsulated in the ontology reasoner.

3 The Knowledge Acquisition Process

In the following we will give a detailed description of the knowledge acquisi-
tion process as introduced in Section 1. Once started, this process works au-
tonomously until a specified number of product descriptions are harvested from
the Web.

3.1 Table Extraction

Typical tasks that cannot be handled efficiently by ontological means only are
the location and recognition [6] of tabular data regions on Web pages. While
table location aims at finding tables in a document, the task of table recognition
is to identify the spatial properties of a table. For these tasks we rely on an
algorithmic approach that is described in this section. Our approach to table
extraction [7] is quite different from previously described ones: we do not operate
on the DOM tree or any other incarnation of the HTML source code, but rely
on the visual rendition of the Web page. (See [5] for a different variant where
they also use positional information of non-text nodes.)

Figure 3 through Figure 5 visualize the process of table extraction, starting
from the input HTML page and ending at the output table structure that con-
tains the unlabeled product features. The extraction algorithm detects a prod-
uct feature table on a Web page, and extracts the spatial features of the table
structure along with its content. The result is an explicit representation of the
table structure derived from the interpretation of the spatial table features. Note
that we do not rely on the structural properties of the HTML source code, e.g.
<table> elements, to interpret the table structure, but instead utilize visual fea-
tures that are also accessible to a typical human reader, i.e., word positions and
styles. No matter how a table was realized in the HTML source code, whatever
looks like a table, i.e., follows certain alignment conditions, will be interpreted
as a table.

The table extraction algorithm first groups adjacent words into larger cells
(➀), thus working in a bottom-up manner starting from the bounding boxes of
individual words in a table. Next, the algorithm tries to identify possible table
columns (➁). We consider a possible table column a set of vertically neighboring
cells that are aligned either on the left-hand side, right-hand side, or at the
middle. If any cells are found that interrupt the sequence of directly neighboring
cells within an identified column candidate, we check if these cells could be
intermediate table headings by also testing against an alignment hypothesis (➂).
Such headings can be important for the further processing because they can give
an important context for the cells below the headings.

Once all possible columns were found, the table extraction algorithm tries to
identify the column combinations that actually form tables. The strategy looks
for adjacent columns that share a common row structure (➃): All gaps between



292 W. Holzinger, B. Krüpl, and M. Herzog

Fig. 3. Sample
HTML page

L C R

L C R

L C R

1

1

2 2
3

4

4

4

Fig. 4. Schema of table extraction
algorithm

...
...

Image Ratio 3:2
Sensor size 8.4 x 5.2 mm
Sensor type CMOS
ISO rating 100,200,400
...

...

Fig. 5. Tabular data struc-
ture for product features

the column rows must also be found in the adjacent column. By loosening this
requirement to hold only in one direction, we can also allow for rows where
a cell in one column corresponds to many cells in another column. We call
that procedure comb alignment of columns. The strategy also allows for the
identification of top, centre, and bottom aligned cells within any table row.
Tables that fulfill the comb alignment criterion for columns are returned for
further processing.

3.2 Applying the Table Ontology

In the next step, we express the structural relationships of the identified tables
by means of our table ontology. To this means we translate the spatial properties
from the bounding box model into a qualitative model. Consider Figure 5, show-
ing four rows from a typical table describing the features of some digital camera.
Applying the table ontology will derive the shown facts about the table, where
r1 refers to the first row, c1 to the left-hand side cell in the first row, and c2 to
the right-hand cell in the first row. Furthermore, Row and Cell are concepts of
the table ontology, and contains and stringValue are relations defined in the
table ontology. The result is an instance of the table ontology expressing facts
about the structural properties of tables produced by analyzing the Web page
by means of the table extraction algorithm.

r1 a Row. c1 a Cell. c2 a Cell.
r1 contains c1. r1 contains c2.
c1 stringValue "Image Ratio". c2 stringValue "3:2".

3.3 Content Spotting

Once the structure of a table is represented in the table domain ontology, we turn
to the content within the table cells to derive the meaning of the table, i.e., to
interpret the table structure in terms of product features represented as attribute



Using Ontologies for Extracting Product Features from Web Pages 293

name-value pairs. We utilize content spotters for this task. Content spotters are
small programs with the purpose to recognize certain semantic concepts in texts.
A content spotter is equipped with the necessary knowledge to detect an instance
of the concept it represents and, more importantly, to name it and to state the
fact in an OWL statement.

Table 1. Type spotters detect values with distinctive formatting

NumberType 2,453
ProductType 8.4 x 5.2 mm
TripleProductType 3.9 x 8.4 x 5.2 in
FractionType 1/400
RatioType 1:2.8

Presently we employ two types of content spotters: keyword spotters and type
spotters. Keyword spotters detect the presence of a particular word or phrase in
a number of alternative syntactic representations. Keyword spotters utilize the
domain ontology by accessing the regular expressions associated with instances
of the various keywords concepts. The keyword spotter remembers the most
specific concept for each keyword and will use this concept when it detects the
regular expression in a text.

Type spotters contain more intrinsic knowledge than keyword spotters. While
keyword spotters are only able to detect a limited number of alternative expres-
sions, type spotters are able to detect a whole class of expressions that follow a
common schema. Table 1 shows a number of type spotters and the kind of values
they typically detect.

Both kinds of content spotters operate by matching a text to a regular expres-
sion. Content spotters fetch their regular expressions from the domain ontology.
If a substring of the text matches the regular expression of a content spotter,
that substring is extracted and annotated with the reference to the annotating
spotter.

3.4 Applying the Domain Ontology

Once the content spotters have annotated the content within the table cells, the
domain ontology can be employed to derive additional facts. Given the table
ontology instance as described in Subsection 3.2 and the annotated content, the
application of the product ontology can derive the following facts:

c1 contains kw_imageratio. c2 contains v1. v1 a TypeRatio.
c3 contains kw_sensorsize. c4 contains v2. v2 a DoubleProduct.
c4 contains u_mm.

Since cell c2 contains an individual that is of type RatioType, the definition
given for the concept ImageRatioValue is triggered: cell c2 is classified accord-
ingly as an attribute value. Moreover, row r1 contains c1, which in turn contains



294 W. Holzinger, B. Krüpl, and M. Herzog

the keyword kw imageratio. Row r1 also contains c2, which in turn contains a
value of the matching type TypeRatio. Therefore it is concluded that r1 is an
ImageRatioAttribute according to the product ontology. The following facts
are added to the domain knowledge:

c2 a ImageRatioValue.
r1 a ImageRatioAttribute.

In this way, table rows are successively identified as instances of product
attributes.

To conclude, we started from an HTML page, identified the tabular structure
containing text fragments, annotated the text fragments with simple semantic
concepts according to the domain ontology, and finally derived from those basic
building blocks high–level product attributes. The following section gives an
evaluation of the quality of both the intermediate and the final derived concepts.

4 Evaluation

The automatic, unsupervised identification and extraction of product attributes
from Web pages is our ultimate goal. We perform the evaluation of our approach
in two steps:

– Firstly, we provide an analysis of the performance of the content spotters
that we described in Section 3.3.

– Secondly, we analyze the performance of the whole system by comparing the
automatically generated results with manually generated ground truth.

4.1 Content Spotter Evaluation

We used the AllRight crawler [2] to automatically locate and retrieve about 6400
Web pages. The crawler searches for pages that, with a high likelihood, contain
tables representing the technical specification of digital cameras. The pages orig-
inated from manufacturer, dealer and review sites. Due to space constraints, we
will not present the AllRight crawler in detail here. It is worth mentioning,
though, that the crawling process runs completely unsupervised. The table ex-
traction algorithm we described in Section 3.1 was used to extract 1955 product
specification tables from the crawled pages. These 1955 Web pages were then
used as candidate pages for the content spotting process.

Figure 6a shows the distribution of the number of rows in the candidate
pages along with the distribution of recognized keywords in those tables. The
distributions are of similar form, with about 35% of the rows showing an attribute
match. The mean value of the identified table rows is 50.4, whereas the mean
value for the number of identified attributes is 17.8

Figure 7 shows an overview of how many times each of the keywords matched
within the textual content of a table, measuring the ambiguity a of the keyword.
There is a clear distinction between keywords appearing with relative high fre-
quency, which also have a tendency to generate outliers — matching extremely



Using Ontologies for Extracting Product Features from Web Pages 295

Fig. 6. Attribute distribution and quality

often in a table —, and low frequency keywords that seldom match and never
produce excessive multiple matches.

Closely related to Figure 7 is Table 2, showing the number of candidate tables
in which each keyword matched at least once, measuring the coverage c of a
keyword. Again, the distinction between frequent and infrequent matchers is
clearly visible: most keywords either match on more than 80% of the tables, or
they match in less than 5%. The keyword p weight matched in 94% of all tables,
and produced on average 1.5 matches per table. It is our prime example for a
perfect attribute: matching in almost every case, and matching with minimum
ambiguity. We strive for high coverage of a keyword to be of maximum use
in every case, and we need low ambiguity of the keyword to achieve precise
classification.

We measured keyword quality using the simple formula q = c
a , where quality

is proportional to coverage and inversely proportional to ambiguity. Figure 6b,
displaying keyword qualities in descending order, shows that keyword quality

Fig. 7. Keyword ambiguity (see table 2 for keyword names)



296 W. Holzinger, B. Krüpl, and M. Herzog

decreases exponentially. Therefore, the top 1/3 keywords are responsible for most
of the semantic annotation, while the remaining keywords are almost useless.
This is a hint that those attributes were either underspecified in the domain
knowledge, or that these attributes are really so infrequently mentioned to make
them negligible. In any case, they should be used with caution in subsequent
evaluations of the generated data.

Table 2. Keyword coverage

1 p rechargeable 649 2 p resolution 1380
3 p batterytype 1465 4 p denomination 242
5 p pixels 1669 6 p display size 4
7 p movieclips 1620 8 p firewire 688
9 p weight 1850 10 p guarantee 140
11 p vendor 11 12 p internal memory 11
13 p lcd display 3 14 p brand 895
15 p optical finder 1432 16 p price 866
17 p productdescription 27 18 p slrcamera 5
19 p storagemedia 1805 20 p usb 1854
21 p videoout 7 22 p zoomfactor digital 7
23 p zoomfactor optical 6

4.2 Evaluation Against Ground Truth

As explained in a previous section, the extraction stage is fed by a retrieval
component that automatically retrieves domain relevant pages containing semi-
structured data. We randomly selected 30 of these retrieved pages for manual
annotation by a human domain expert. To make the annotation process less
time consuming and error prone, we devised a ground truth annotation tool
that we use to annotate relevant Web pages. We do not try to annotate all of
the information on a page, but cover only a fraction of it by selecting a set of 5
attributes. We assume that the extraction quality for the other attributes will
be comparable.

We need to provide ground truth to be able to verify results at different stages
in our process: the location of tables on a page, the recognition of the table, and
the interpretation of the function of table cells. Therefore, ground truth has to
provide information about: left top and right bottom corners of the table, which
word tokens in the table form a table cell, and the functional relations of table
cells.

Several table models have been proposed in the literature [4,6,12]. We restrict
our analysis to those table types that only contain a single level of table nesting,
i.e., the nesting that is defined by intermediate headings. In addition to reducing
the complexity of the problem, we can give more arguments for this restriction:
Our system is not an isolated experiment in the table extraction field, but has
to link the table interpretation results into our domain ontology. This ontology
is centered around the concepts of products and attributes. If there are more



Using Ontologies for Extracting Product Features from Web Pages 297

complex structural relationships contained in a particular table, it is very likely
that these relationships, or the table as a whole, just are not appropriate for our
extraction task.

The notion of subjectivity is an important factor in our considerations. When
we want to extract product information from tables, we want it to be aligned
with our (subjective) domain ontology, therefore we need to find those tables on
the Web that share the same conceptualization basics. If an author describes a
product from a completely unique perspective, this document cannot be included
in our analysis, even when it is semi-structured. This is due to the fact that a
common ontological understanding is missing in this case.

The ground truth generation tool we devised lets the user operate on the
visual rendition of a Web page. We implemented an extension for the Mozilla
Firefox browser that can be invoked for any Web page displayed in the browser.
If activated, the user will be able to select any word on the page by pointing
the mouse cursor over it; the selected word can then be annotated as a certain
attribute keyword or value by performing some key strokes. In addition, there is
a mode to indicate which of the word tokens belong together to form a functional
unit. The results of the annotation process are stored in instances of an OWL
ontology that allows for an easy comparison with the automatically generated
results of our system.

Table 3. Results of evaluation against ground truth

Average number of Average number
(per document) (per document)
ground truth identified

keywords values attributes keywords values attributes
5.13 6.78 4.82 3.22 4.02 3.38

Recall Precision
keywords values attributes keywords values attributes

62.8% 59.3% 70.1% 65.8% 41.6% 92.4%
F-measure

keywords values attributes
64.27% 48.90% 79.72%

4.3 Results

We asked different users to annotate 30 documents with 5 concepts from our
domain ontology. We quickly found out that the annotation heavily depends on
qualification of the user in the domain: Identifying CCD sensor sizes in docu-
ments is very difficult for users who do not have an appropriate background. On
the other hand, even within the group of domain experts, there were differences
in what users considered being related to a domain concept or not (e.g. in the
case of sensor resolutions). For us, this proves our assumption that subjectivity
plays a key role in the extraction process that has been underestimated so far.



298 W. Holzinger, B. Krüpl, and M. Herzog

Table 3 summarizes the results. The section “average number of ground truth”
gives the average numbers for annotated keywords, values and attributes
within a document. Keyword and value denote the respective parts of a keyword-
value pair. Together, these elements form an attribute, i.e., a product feature.
Note that the total number of keywords, values, and attributes is not equal.
This is due to the fact that multiple values can exist for a single keyword, and
attributes must comprise both a keyword and a value. The “average number
identified” section gives the average numbers for the automatically identified
attributes over all documents examined. For both recall and precision we get
significantly better values for attributes than for keywords and values alone,
showing the benefit of the effort to derive higher level domain concepts.

5 Conclusions and Outlook

We presented a system that uses ontology reasoning to integrate table extraction
and table interpretation. A first evaluation has shown that the classification work
done by the reasoner can significantly increase precision and recall of high level
semantic product information.

Presently, the content spotters use regular expressions to match keywords
and types. Experience has shown that tables frequently contain phrases that are
not easily recognizable by regular expressions. Recognizing only simple phrases
and assembling them with complex ontology concepts is computationally expen-
sive. Simple grammars with a limited capability of recognizing natural language
phrases could be used in place of the regular expressions.

Our current rectangular table model, while capturing the essential informa-
tion, does not make use of the additional structural information that is present
in more complex layouts. For example, many tables in our testing set used col-
umn spanning rows as sub–headers to segment a long table. The information in
these sub–headers can give valuable context information to the interpretation of
the row–attributes. We are currently working on an extended table model that
can represent segmented nested tables. Such a model requires generalizing the
containment–context axiom to multiple levels.

References

1. Harith Alani, Sanghee Kim, David E. Millard, Mark J. Weal, Wendy Hall, Paul H.
Lewis, and Nigel R. Shadbolt. ”Automatic Ontology-Based Knowledge Extraction
from Web Documents” In IEEE Intelligent Systems, Vol. 18, No. 1, pages 14–21,
2003.

2. Julien Carme, Michal Ceresna, Oliver Frölich, Georg Gottlob, Tamir Hassan, Mar-
cus Herzog, Wolfgang Holzinger, and Bernhard Krüpl. ”The Lixto Project: Explor-
ing New Frontiers of Web Data Extraction” In Proc. of the 23rd British National
Conf. on Databases, 2006.

3. David W. Embley, Cui Tao, Stephen W. Liddle. ”Automatically Extracting On-
tologically Specified Data from HTML Tables of Unknown Structure” In Proc. of
the 21st Int. Conf. on Conceptual Modeling (ER02), Tampere, Finland, 2002.



Using Ontologies for Extracting Product Features from Web Pages 299

4. David W. Embley, Daniel Lopresti, and George Nagy. ”Notes on Contemporary
Table Recognition” In Proc. of the 2nd IEEE Int. Conf. on Document Image
Analysis for Libraries, 2006.

5. Wolfgang Gatterbauer and Paul Bohunsky. Table Extraction Using Spatial Rea-
soning on the CSS2 Visual Box Model In Proc. of the 21st National Conf. on
Artificial Intelligence, 2006.

6. Matthew Hurst. ”Layout and Language: Challenges for Table Understanding on
the Web” In Proc. of the 1st Int. Workshop on Web Document Analysis, 2001.

7. Bernhard Krüpl and Marcus Herzog. Visually Guided Bottom-Up Table Detection
and Segmentation in Web Documents. In Proc. of the 15th Int. World Wide Web
Conf., 2006.

8. Bijan Parsia, Evren Sivrin, Mike Grove, and Ron Alford. Pellet OWL Reasoner,
2003. Maryland Information and Networks Dynamics Lab
http://www.mindswap.org/2003/pellet/ (as of May 2006).

9. Chintan Patel, Kaustubh Supekar, and Yugyung Lee. ”Ontogenie: Extracting On-
tology Instances from WWW” In Human Language Technology for the Semantic
Web and Web Services, ISWC’03, Sanibel Island, Florida, 2003.

10. Masahiro Tanaka and Toru Ishida. ”Ontology Extraction from Tables on the Web”
In Proc. of the Int. Symposium on Applications on Internet, 2006.

11. Yuri A. Tijerino, David W. Embley, Deryle W. Lonsdale, and George Nagy. ”Ontol-
ogy Generation from Tables” In Proc. of the Fourth Int. Conf. on Web Information
Systems Engineering, 2003.

12. Xinxin Wang. ”Tabular Abstraction, Editing, and Formatting” PhD thesis, Univ.
of Waterloo, 1996.

13. Alan Wessman, Stephen W. Liddle, and David W. Embley. ”A Generalized Frame-
work for an Ontology-Based Data-Extraction System” In Proc. of the 4th Int. Conf.
on Information Systems Technology and its Applications, pages 239–253, 2005.



Block Matching for Ontologies

Wei Hu and Yuzhong Qu

School of Computer Science and Engineering, Southeast University,
Nanjing 210096, P.R. China
{whu, yzqu}@seu.edu.cn

Abstract. Ontology matching is a crucial task to enable interoperation
between Web applications using different but related ontologies. Today,
most of the ontology matching techniques are targeted to find 1:1 map-
pings. However, block mappings are in fact more pervasive. In this pa-
per, we discuss the block matching problem and suggest that both the
mapping quality and the partitioning quality should be considered in
block matching. We propose a novel partitioning-based approach to ad-
dress the block matching issue. It considers both linguistic and structural
characteristics of domain entities based on virtual documents, and uses a
hierarchical bisection algorithm for partitioning. We set up two kinds of
metrics to evaluate of the quality of block matching. The experimental
results demonstrate that our approach is feasible.

1 Introduction

Web ontologies written in RDF [12] or OWL [19] play a prominent role in the
Semantic Web. Due to the decentralized nature of the Web, there always exist
multiple ontologies from overlapped domains or even from the same domain. In
order to enable interoperation between Web applications using different but re-
lated ontologies, we need to establish mappings between ontologies for capturing
the semantic correspondence between them.

The common relationship cardinality of mappings between concepts, relations
or instances (we uniformly name them as domain entities) of ontologies is 1:1.
However, mappings between sets of domain entities are more pervasive. In par-
ticular, 1:1 mappings can be viewed as a special case of mappings between sets
of domain entities. In this paper, a block is a set of domain entities. A block
mapping is a pair of matched blocks from two ontologies in correspondence. We
refer to the process of discovering block mappings as block matching.

Block matching is required in many occasions. Two discriminative examples
are illustrated as follows.

Example 1. Given two ontologies (denoted by O1 and O2), O1 contains three
domain entities: Month, Day and Year; while O2 contains a single domain entity:
Date. We can see Month, Day and Year are parts of Date. So it is more natural
to match the block {Month, Day, Year} in O1 with the block {Date} in O2.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 300–313, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Block Matching for Ontologies 301

Example 2. When two ontologies being compared, block matching can provide
us a general picture at a higher level to explore macroscopical correspondences
between the main topics assigned to these two ontologies, and it may also help
to generate some new focused ontologies from the original block mappings.

The blocking matching problem can be transformed to a special kind of parti-
tioning problem. Usually, it is required that blocks in either of the two ontolo-
gies should be disjointed with each other. So all the block mappings essentially
compose a partitioning of all domain entities from the two ontologies with the
requirement that each partition should contain at least one domain entity from
each of the two ontologies. From the viewpoint of partitioning, the cohesiveness
within each block mapping should be high; while the coupling crossing different
block mappings should be low. Therefore, in addition to the inherent difficulties
in discovering the high quality mappings, the block matching problem is exac-
erbated by having to consider the partitioning quality of the block matching.

Nowadays, quite a lot of algorithms have been proposed in literature address-
ing the ontology matching problem. Glue [6], Qom [7], Ola [8], S-Match [10],
Hcone-merge [13], Prompt [14], V-Doc [20] and I-Sub [23] are such works.
However, these algorithms cannot solve the block matching problem since they
are targeted to find 1:1 mappings. To our knowledge, the block matching prob-
lem has only been addressed before in Pbm [11]. But it merely partitions two
large class hierarchies separately without considering the correspondence be-
tween them. Certainly, the mapping quality is not satisfied. In addition, it just
copes with mappings between classes, thus it is not a general solution for ontol-
ogy matching.

In this paper, we propose a new partitioning-based approach to address the
block matching problem. Partitioning entails both developing a relatedness mea-
sure and choosing an appropriate partitioning algorithm. We consider both
linguistic and structural characteristics of domain entities based on virtual docu-
ments for the relatedness measure [20]. The novelty of this measure is that both
the mapping quality and the partitioning quality can be guaranteed simultane-
ously. We present a hierarchical bisection algorithm for partitioning, which can
provide block mappings at different levels of granularity. We also describe an
automatical process to extract the optimal block mappings with a given number
of block mappings. Besides, we assume the mappings between blocks is 1:1 in
order to avoid the combinatorial explosion of the search space.

The remainder of this paper is organized as follows. Section 2 sketches out
our approach. Section 3 introduces the computation of the relatedness among
domain entities by virtual documents. Section 4 presents a hierarchical bisection
algorithm based on the relatedness, and describes a method to automatically
extract the optimal block mappings for a flat partitioning. Section 5 sets up two
kinds of metrics to evaluate of the quality of the block matching generated by
our approach. Section 6 discusses some related works on ontology matching as
well as some related works on ontology partitioning. Finally, Section 7 provides
concluding remarks.



302 W. Hu and Y. Qu

2 Overview of the Approach

The overview of the approach is illustrated in Figure 1. Generally speaking, our
approach starts with two ontologies to be compared as input, and then after four
processing stages, the output returns block mappings between the two ontologies.

Constructing
virtual

documents
Computing

relatedness
among
domain
entities

Partitioning
by a

hierarchical
bisection
algorithm

Constructing
virtual

documents

ontology 1

ontology 2

block mapping 1

Extracting
the optimal

block
mappings

1

2 3 4

block
mapping 2

Fig. 1. The overview of the approach

1. Constructing virtual documents. The process constructs virtual document
for each domain entity of the input ontologies. We make use of the virtual
documents as the features of domain entities to be compared. The virtual
document of a domain entity consists of a collection of weighted words; these
words come from not only the local descriptions (e.g., labels) but also the
neighboring information to reflect the intended meaning of the entity.

2. Computing relatedness among domain entities. The process sets up the relat-
edness for any two domain entities by computing the similarity between the
virtual documents of them in correspondence. More precisely, it includes the
comparison among domain entities within each of the two ontologies as well
as those crossing the two ontologies. Therefore, the linguistic and structural
characteristics are both revealed simultaneously in a uniform process.

3. Partitioning by a hierarchical bisection algorithm. The hierarchical bisection
algorithm acts on the set of domain entities from the two ontologies. It re-
cursively partitions the unrelated or dissimilar domain entities into disjoint
blocks mappings. As a result, the similar ones are fallen into the same block
mapping (containing the domain entities from the two ontologies). The al-
gorithm returns a dendrogram (a typical type of tree structure) consisting
of layers of block mappings at different levels of granularity.

4. Extracting the optimal block mappings. The process finds the optimal block
mappings in the dendrogram derived from the hierarchical bisection algo-
rithm for a flat partitioning with a given number of block mappings.

We will further describe each process in the next two sections.



Block Matching for Ontologies 303

3 Relatedness Among Domain Entities

In this section, we construct virtual documents for the domain entities declared
in OWL/RDF ontologies. Then, we compute the relatedness among the domain
entities by calculating the similarity among the virtual documents.

3.1 Construction of Virtual Documents

The RDF graph model is the foundation of the Semantic Web ontologies, and
OWL ontologies can also be mapped to RDF graphs [19]. Therefore, we uniformly
use the RDF graph model to represent ontologies.

An RDF graph is a set of triples (statements). An RDF triple is conventionally
written in the order (subject, predicate, object). A node in an RDF graph may
be a literal, a URI with an optional local name (URI reference, or URIref), or a
blank node. Please note that a predicate is always a URIref, and a literal cannot
be a subject.

In the field of Information Retrieval, the content of a document might be
represented as a collection of tokens: words, stems, phrases, or other units derived
or inferred from the text of the document. These tokens are usually weighted to
indicate their importance within the document which can then be viewed as a
vector in a high dimensional space. In this paper, a virtual document represents a
collection of weighted tokens, and the weights are rational numbers. To simplify
the expression, we use the term a collection of words instead of a collection of
weighted tokens.

As a collection of words, the virtual document of a domain entity contains
not only the local descriptions but also the neighboring information to reflect
the intended meaning of the entity.

– Local descriptions. For a literal node, the local description is a collection of
words derived from the literal itself. For a URIref, it is a collection of words
extracted from the local name, rdfs:label(s), rdfs:comment(s) and other pos-
sible annotations. For a blank node, it is a collection of words extracted from
the information originated from the forward neighbors. A weighting scheme
is incorporated in the formation of the description.

– Neighboring Information. We capture different kinds of neighbors (subject
neighbors, predicate neighbors and object neighbors) by distinguishing the
places the nodes occurred in triples. The descriptions of these neighbors are
integrated as neighboring information in the virtual document of a domain
entity to reflect the structural information of the domain entity.

For formal definitions, please refer to [20].

3.2 Computation of Relatedness

The similarity among virtual documents of domain entities is calculated in the
Vector Space Model (VSM) [17]. In this model, the virtual document of a domain



304 W. Hu and Y. Qu

entity is considered to be a vector. In particular, we employ the TF/IDF [21]
term weighting model, in which each virtual document can be represented as
follows:

(tf1 · idf1, tf2 · idf2, ..., tfn · idfn), (1)

where tfi is the frequency of the ith word in a given virtual document and idfi

is the distinguishability of the word in such document w.r.t. the whole. So the
TF/IDF term weighting model gives prominence to the words close by related
to the given virtual documents, which to some extent exposes the latent features
of the virtual documents.

The similarity between virtual documents is measured by the cosine value
between the two vectors

−→
Ni and

−→
Nj, corresponding to two virtual documents Di

and Dj in the Vector Space Model. The measure is defined as follows:

sim(Di, Dj) = cos(
−→
Ni,

−→
Nj) =

∑d
k=1 niknjk√

(
∑d

k=1 n2
ik)(

∑d
k=1 n2

jk)
, (2)

where d is the dimension of the vector space, and nik (njk) is the kth component
of the vector

−→
Ni (

−→
Nj). If the two virtual documents do not share any words, the

similarity will be 0.0. If all the word scores equal completely, it will be 1.0.
After computing the similarity among virtual documents within each of the

two ontologies as well as crossing the two ontologies, we can obtain a relatedness
matrix, denoted by W . The matrix has the following block structure:

W =
(

W11 W12
WT

12 W22

)
, (3)

where W11 is a matrix representing the relatedness among domain entities within
the ontology O1, and W22 is similarly defined for the ontology O2. W12 is a matrix
representing the relatedness among domain entities between O1 and O2. Please
note that we assume that the relatedness among domain entities is symmetric
in our approach.

The relatedness matrix W has two features. Firstly, both of linguistic and
structural relatedness within each of the two ontologies are reflected in W11
and W22, respectively. For example, to exhibit structural relatedness within O1
or O2, each domain entity collects its neighboring information, i.e., the local
descriptions of the subject, predicate or object neighbors, and then the structural
affinity between any two entities is revealed through shared words obtained from
neighborhood relationship in Vector Space Model. In other words, two entities
within O1 or O2 are more related if they co-occur in more statements. Secondly,
linguistic relatedness crossing ontologies is characterized by W12. This matrix is
one of the most important key points in this paper.



Block Matching for Ontologies 305

4 Partitioning for Block Matching

In this section, we present a hierarchical bisection algorithm based on the relat-
edness among domain entities. Besides, we describe a method to automatically
find the optimal block mappings with a given number of block mappings.

4.1 The Hierarchical Bisection Algorithm

The objective of a partitioning solution is seeking to partition the set of vertices
V into disjoint clusters V1, V2, ..., Vn, where by some measure the cohesiveness
among the vertices in a cluster Vi is high; while the coupling crossing different
clusters Vi, Vj is low. In the context of this paper, we seek to partition domain
entities of two ontologies into block mappings, so that the relatedness among
the domain entities in a block mapping is high, and that crossing different block
mappings is low.

The partitioning approach we present in this paper is a hierarchical bisection
algorithm. In each bisection, it partitions the domain entities into two disjoint
block mappings B1, B2. We adopt the min-max cut (Mcut) function [5] as the
criterion function. It minimizes the relatedness between the two block mappings
meanwhile maximizes the relatedness within each block mapping. The Mcut
function is defined as follows:

Mcut(B1, B2) =
cut(B1, B2)

W (B1)
+

cut(B1, B2)
W (B2)

, (4)

where cut(B1, B2) is the sum of the relatedness among domain entities across B1
and B2. W (B1) is the sum of the relatedness within B1 and W (B2) is similarly
defined. The optimal bisection is the one that minimizes the Mcut.

The optimal solution of Mcut is NP-complete. However, the relaxed version of
this objective function optimization can be well solved in a spectral way. Roughly
speaking, spectral partitioning makes use of the eigenvalues and eigenvectors of
the relatedness matrix to find a partitioning. The merit of the spectral methods
is the easiness in implementation and the reasonable performance. Furthermore,
they do not intrinsically suffer from the problem of local optima.

In addition, our approach is a hierarchical approach. The reason is that it is
usually difficult to specify the exact partitioning for a given domain, and there
may not be a single correct answer. The block mappings in each bisection form a
dendrogram. The dendrogram provides a view of the block mappings at different
levels of granularity, which allows flat partitions of different granularity to be
extracted. In Section 4.2, we make use of the dendrogram to extract the optimal
block mappings.

The algorithm is illustrated in Table 1. The input of the algorithm is a related-
ness matrix W . During a run, it recursively bisects a matrix into two submatrices
by searching the minimum Mcut. In the end, it returns a dendrogram consisting
of layers of block mappings at different levels of granularity. The eigenvector cor-
responding to the second smallest eigenvalue in Step 3 is also called the Fielder
vector [9]. It provides a linear search order (Fielder order). The discussion on



306 W. Hu and Y. Qu

the properties of the Fielder vector is out of the scope of this paper. In Step 4,
we set a parameter ε to limit the minimum number of domain entities in each
block mapping, which can decrease the recursion times. In our experiments, we
set the parameter ε to 10.

Table 1. The hierarchical bisection algorithm

Algorithm. The hierarchical bisection algorithm.

Input. A relatedness matrix W , and a parameter ε.
Output. A dendrogram consisting of layers of block mappings.

1. Initialize a diagonal matrix D with the row sums of W on its diagonal.
2. Solve the eigenvalues and eigenvectors of (D − W ).
3. Let v be the eigenvector corresponding to the second smallest eigenvalue.

3.1 Sort v so that vi < vi+1

3.2 Find the splitting point t such that
(A, B) = ({1, ..., t}, {t + 1, ..., |v|}) minimizes the Mcut.

4. Let WA, WB be the submatrices of W , respectively.
4.1 Recurse (Steps 1–3) on WA until

the number of domain entities within WA is less than ε.
4.2 Recurse (Steps 1–3) on WB until

the number of domain entities within WB is less than ε.

The time complexity of Steps 1–4 is O(m+n), where m denotes the number of
nonzero components in W and n denotes the number of domain entities (equals
to the row (or column) dimension of W ). The most time-consuming step is Step
2. Usually, the time complexity of eigenvalue decomposition is O(n3). Since we
only need a vector with the second smallest eigenvalue, the time complexity can
be decreased to O(m + n) via the Lanczos method [16].

4.2 Extraction of the Optimal Block Mappings

So far, we have constructed a dendrogram by the hierarchical bisection algorithm
presented above. In some cases, we would like to obtain a flat partitioning with
a given number of block mappings k. For this purpose, we need to extract the
optimal block mappings from the dendrogram. In this paper, we use the dynamic
programming method proposed in [2,5].

Let opt(Bi, p) be the optimal block mappings for Bi using p block mappings.
Bl, Br denotes the left and right children of Bi in the dendrogram, respectively.
Then, we have the following recurrence:

opt(Bi, p) =

{
Bi if p = 1
arg min1≤j<p g(opt(Bl, j) ∪ opt(Br, p − j)) otherwise

, (5)



Block Matching for Ontologies 307

where g is the objective function, which is defined as follows:

g({B1, B2, ..., Bp}) = min(
cut(B1, B1)

W (B1)
+

cut(B2, B2)
W (B2)

+ · · ·+ cut(Bp, Bp)
W (Bp)

). (6)

By computing the optimal block mappings from the leaf nodes in the den-
drogram firstly, we can finally gain opt(Broot, k), which includes k optimal block
mappings for a flat partitioning.

5 Evaluation

We have implemented our approach in Java, called Bmo, and then evaluated its
performance experimentally. Due to lack of space, we cannot list all the details
about our experiments. The test cases and all the experimental results can be
downloaded from our website 1. Please note that in our evaluation, we focus on
the domain entities at the schema level, i.e., we just consider the classes and
properties in ontologies. However, it is worthy of noting that our approach can
easily be extended to the ontologies containing instances.

5.1 Case Study

In our evaluation, we choose two pairs of ontologies: russia12 and tourismAB.
They can be downloaded from the website 2. The reasons for selecting them as
test cases are: (i) they are from real world domains and famous in the field of
ontology matching, (ii) their sizes are moderate. If the sizes of ontologies are
too small, it is unnecessary to partition them into blocks; while if the sizes are
too large, they are not appropriate for human observation, and (iii) they have
reference files contains aligned domain entity pairs. Short descriptions of the two
pairs of ontologies are given below.

– russia12. The two ontologies are created independently by different people
from the contents of two travel websites about Russia. russia1 contains 151
classes and 76 properties. russia2 contains 162 classes and 81 properties.
The reference alignment file contains 85 aligned domain entity pairs.

– tourismAB. The two ontologies are created separately by different communi-
ties describing the tourism domain of Mecklenburg-Vorpommern (a federal
state in the northeast of Germany). tourismA contains 340 classes and 97
properties. tourismB contains 474 classes and 100 properties. The reference
alignment file contains 226 aligned domain entity pairs.

5.2 Experimental Methodology and Evaluation Metrics

Let us recall that the ideal block mappings should have both high mapping qual-
ity and high partitioning quality. In order to measure the two kinds of quality,
1 http://xobjects.seu.edu.cn/project/falcon/
2 http://www.aifb.uni-karlsruhe.de/WBS/meh/foam/



308 W. Hu and Y. Qu

two experiments are designed to evaluate the effectiveness of Bmo. The first
experiment is to measure the mapping quality of block mappings. The other one
is to assess the partitioning quality of block mappings. Besides, we also make a
comparison between Bmo and Pbm [11].

In the first experiment, we evaluate the mapping quality of the computed block
mappings by observing the correctness with the variation of the number of the
block mappings. The rationale is that the higher the quality of the block matching
is, the more aligned domain entity pairs could be found in the block mappings.

Let B be a set of the computed block mappings (|B| = n). Bi denotes the ith
block mapping in B. Let R be a set of aligned domain entity pairs in a reference
alignment file (|R| = r). Rp denotes the pth aligned domain entity pair in R.
The correctness of B is defined as follows:

correctness(B) =
1
r

n∑
i=1

|{Rp|Rp ⊆ Bi, 1 ≤ p ≤ r}|. (7)

Intuitively, the correctness of B increases when the number of the block mappings
decreases. In particular, when n = 1, the correctness of B is 1.0. However, it is
clear that merely considering the metric of the correctness is not sound. We need
to evaluate the quality of block mappings in other aspects.

In the second experiment, we focus on evaluating the partitioning quality
of the block matching. Three volunteers are trained to set up manual block
mappings. We assess the partitioning quality of the computed block mappings
by comparing with the manual ones. In this experiment, we set n equal to the
number of block mappings of the manual ones. This kind of measurement is
widely adopted in the field of Data Clustering.

We use two well-known metrics to compare the gained block mappings with
the manual ones. The first metric is f-measure. The other one is entropy. Before
introducing the two metrics, we firstly defined two basic operations (precision
and recall), which are used to compare a gained block mapping with a manual
one. Let C be the set of the manual block mappings (|C| = m). Cj denotes
the jth block mapping in C. |Bi| returns the number of domain entities in Bi,
and |Cj | is defined analogously. |Bi ∩ Cj | calculates the mutual domain entities
in both Bi and Cj . The precision and recall of a computed block mapping Bi

referring to Cj are defined as follows respectively:

prec(Bi, Cj) =
|Bi ∩ Cj |

|Bi|
, (8)

reca(Bi, Cj) =
|Bi ∩ Cj |

|Cj |
. (9)

The f-measure is defined as a combination of the precision and recall. Its score
is in the range [0, 1], and a higher f-measure score implies a better partitioning
quality. The f-measure of the set of computed block mappings B is defined as
follows:



Block Matching for Ontologies 309

f -measure(B) =
1∑n

i=1 |Bi|
·

n∑
i=1

f -measure(Bi) · |Bi|, (10)

f -measure(Bi) = max
1≤j≤m

2 · prec(Bi, Cj) · reca(Bi, Cj)
prec(Bi, Cj) + reca(Bi, Cj)

. (11)

The other metric is the entropy. It considers the distribution of domain entities
in block mappings and reflects the overall partitioning quality. A lower entropy
score implies a better partitioning quality. The best possible entropy score is 0;
while the worst is 1. The entropy of the set of the computed block mappings B
is defined as follows:

entropy(B) =
1∑n

i=1 |Bi|
·

n∑
i=1

entropy(Bi) · |Bi|, (12)

entropy(Bi) = − 1
logm

·
m∑

j=1

prec(Bi, Cj) · log(prec(Bi, Cj)). (13)

In the last experiment, we compare both the mapping quality and the parti-
tioning quality of Bmo with Pbm [11]. Because Pbm merely copes with mappings
between classes, for comparing the mapping quality, we remove the aligned prop-
erty pairs in the reference alignment files, only retaining 70 aligned class pairs
in russia12 and 190 aligned class pairs in tourismAB. In addition, we construct
the manual block mappings only between classes to evaluate the partitioning
quality of these two approaches.

5.3 Discussion on Experimental Results

Firstly, the correctness with the variation of the number of the block mappings
(denoted by n) is depicted in Figure 2. We can see that in the two test cases,
when n increases, the correctness of the block mappings decreases. We can also
find that in most situations, the correctness of the results is fine. In particular, in
tourismAB, when n = 50, the correctness is still larger than 95%. It demonstrates
that the mapping quality of the block mappings computed by Bmo is high. In
addition, the correctness does not decrease drastically as n increases. It implies
that Bmo is stable with a pretty good accuracy.

Secondly, by setting the number of the required block mappings (25 block
mappings for russia12, and 26 block mappings for tourismAB), we can compare
the the results of Bmo with the manual ones to evaluate the partitioning quality.
The partitioning quality of the computed block mappings are shown in Table 2.
Both the f-measure and the entropy are moderate.

Finally, the comparison results of the mapping quality and the partitioning
quality between Bmo and Pbm are presented in Table 3. Both the number of the
required block mappings for russia12 and for tourismAB are 13. From the table,
we can see that the partitioning quality between the two approach are almost
the same. However, the mapping quality of the Bmo approach is far beyond the
one of Pbm. For example, in russia12, the correctness of the Bmo approach is
0.84; while the one of Pbm is merely 0.57.



310 W. Hu and Y. Qu

0.75

0.8

0.85

0.9

0.95

1

0 5 10 15 20 25 30 35

n

co
rr

ec
tn

es
s

russia

(a) russia12

0.94

0.95

0.96

0.97

0.98

0.99

1

0 5 10 15 20 25 30 35 40 45 50 55

n

co
rr

ec
tn

es
s tourism

(b) tourismAB

Fig. 2. The correctness with the variation of the number of the block mappings n

Table 2. The partitioning quality of Bmo

number f-measure entropy
russia12 25 0.61 0.28
tourismAB 26 0.52 0.22

Table 3. The comparison between Bmo and Pbm

approach number correctness f-measure entropy

russia12
Bmo 13 0.84 0.56 0.37
Pbm 13 0.57 0.65 0.33

tourismAB
Bmo 13 0.98 0.67 0.31
Pbm 13 0.66 0.57 0.30

Based on the observations above, we can make a preliminary and empirical
conclusion that our approach is feasible for achieving a good mapping quality as
well as a good partitioning quality.

6 Related Work

In this section, we firstly discuss some related works on ontology matching, and
then we present some related works on ontology partitioning.

6.1 Ontology Matching

Despite many works (e.g., [6,7,8,10,11,13,14,20,23]) have addressed the ontology
matching (also called ontology mapping or alignment) problem, there exist very
few approaches raising the issue of block matching. Pbm [11] is the only work
we know so far that considers the block matching problem. It exploits block
mappings between two class hierarchies by firstly partitioning them into blocks
respectively, and then constructing the mappings between blocks via the pre-
defined anchors generated by the string comparison techniques. The weakness



Block Matching for Ontologies 311

of that work is that it ignores the correspondence between the two hierarchies
when doing partitioning, so the mapping quality is not satisfied. Furthermore,
it just copes with mappings between classes, so it might not be applicable to
ontology matching in general.

In the field of schema matching (please see [18] for a survey), iMap [4] is semi-
automatically discovers both the 1:1 and complex mappings (e.g., room-price =
room-rate∗ (1+tax-rate)). It embeds two new kinds of domain knowledge (over-
lapped data and external data) to find complex mappings. However, iMap may
not be a universal solution, because it is not easy to specify the domain knowl-
edge in some cases. Artemis [1] is another work which vaguely presents the idea
of block matching. It firstly computes the 1:1 mappings between two ontologies
by using WordNet, and then constructs block mappings from the 1:1 mappings
via a clustering algorithm. This is similar to the framework of our approach.
But it is clear that the method always suffers from the high computational com-
plexity for calculating the 1:1 mappings. More importantly, it discards both the
linguistic and structural characteristics in each of the two ontologies, thus the
partitioning quality cannot be guaranteed.

6.2 Ontology Partitioning

From another viewpoint, our method partitions two ontologies into blocks
throughout the process of searching the block mappings. So it might be broken
down into the category of ontology partitioning. [3,15,22,24] are some represen-
tative works. However, these works only provide a flat partitioning on a single
ontology; while our work supports a hierarchical view with different levels of
granularity, and partitions two ontologies at the same time. But, we should note
that these ontology partitioning techniques might also be used to find block map-
pings by partitioning two ontologies separately, and then matching these blocks.
This is just the method adopted in Pbm. Although this kind of methodology
could deal with the block matching problem between large-scale ontologies, as
shown in our experiments, the mapping quality is usually not so good as Bmo’s.

7 Concluding Remarks

In summary, the main contributions of this paper are as follows.

– We discussed the block matching problem and suggested both the mapping
quality and the partitioning quality should be considered in block matching.

– We proposed a relatedness measure based on virtual documents that simul-
taneously importing both linguistic and structural characteristics of domain
entities.

– We presented a hierarchical bisection algorithm to provide block mappings at
different levels of granularity. Also, we described a method to automatically
extract the optimal block mappings for a flat partitioning.

– We set up two kinds of metrics to evaluate of the quality of block matching.
The experimental results demonstrated that our approach is feasible.



312 W. Hu and Y. Qu

The work reported here is a first step towards block matching for ontologies,
and many issues still need to be addressed. In future work, we plan to find
other possible approaches to block matching, and compare them with each other.
Furthermore, in order to make steady progress on the block matching problem,
it is valuable to set up systematic test cases for block matching. Another issue
is block matching for very large-scale ontologies.

Acknowledgements

The work is supported in part by the NSFC under Grant 60573083, and in part
by the 973 Program of China under Grant 2003CB317004, and also in part by
the JSNSF under Grant BK2003001. We are grateful to Prof. Jianming Deng and
Dr. Yanbing Wang for their valuable suggestions. We also thank Gong Cheng,
Yuanyuan Zhao and Dongdong Zheng for their work in the experiments related
to this paper. In the end, we appreciate anonymous reviewers for their precious
comments.

References

1. Castano, S., De Antonellis, V., and De Capitani Di Vimercati, S.: Global view-
ing of heterogeneous data sources. IEEE Transactions on Knowledge and Data
Engineering. 13(2) (2001) 277–297

2. Cheng, D., Kannan, R., Vempala, S., and Wang, G.: A divide-and-merge method-
ology for clustering. In Proceedings of the 24th ACM Symposium on Principles of
Database Systems (PODS’05). (2005) 196–205

3. Cuenca Grau, B., Parsia, B., and Sirin, E.: Combining OWL ontologies using ε-
connections. Journal of Web Semantics. 4(1) (2005)

4. Dhamankar, R., Lee, Y., Doan, A. H., Halevy, A., and Domingos, P.: iMAP: Dis-
covering complex semantic matches between database schemas. In Proceedings of
the 23th ACM International Conference on Management of Data (SIGMOD’04).
(2004) 383–394

5. Ding, C. H. Q., He, X., Zha, H., Gu, M., and Simon, H. D.: A min-max cut
algorithm for graph partitioning and data clustering. In Proceedings of the 2001
IEEE International Conference on Data Mining (ICDM’01). (2001) 107–114

6. Doan, A., Madhavan, J., Dhamankar, R., Domingos, P., and Halevy, A. Y.: Learn-
ing to match ontologies on the semantic web. VLDB Journal. 12(4) (2003) 303–319

7. Ehrig, M., and Staab, S.: QOM - quick ontology mapping. In Proceedings of the
3rd International Semantic Web Conference (ISWC’04). (2004) 683–697

8. Euzenat, J., and Valtchev, P.: Similarity-based ontology alignment in OWL-Lite. In
Proceedings of the 16th European Conference on Artificial Intelligence (ECAI’04).
(2004) 333–337

9. Fiedler, M.: A property of eigenvectors of nonnegative symmetric matrices and
its application to graph theory. Czechoslovak Mathematical Journal. 25 (1975)
619–633

10. Giunchiglia, F., Shvaiko, P., and Yatskevich, M.: S-Match: An algorithm and an
implementation of semantic matching. In Proceedings of the 1st European Semantic
Web Symposium (ESWS’04). (2004) 61–75



Block Matching for Ontologies 313

11. Hu, W., Zhao, Y. Y., and Qu, Y. Z.: Partition-based block matching of large class
hierarchies. In Proceedings of the 1st Asian Semantic Web Conference (ASWC’06).
(2006) 72–83

12. Klyne, G., and Carroll, J. J. (eds.): Resource description framework (RDF): Con-
cepts and abstract syntax. W3C Recommendation 10 February 2004. Latest version
is available at http://www.w3.org/TR/rdf-concepts/

13. Kotis, K., Vouros, G. A. , and Stergiou, K.: Towards automatic merging of domain
ontologies: The HCONE-merge approach. Journal of Web Semantics. 4(1) (2005)

14. Noy, N. F., and Musen, M. A.: The PROMPT suite: Interactive tools for ontol-
ogy merging and mapping. International Journal of Human-Computer Studies. 59
(2003) 983–1024

15. Noy, N. F., and Musen, M. A.: Specifying ontology views by traversal. In Proceed-
ings of the 3rd International Semantic Web Conference (ISWC’04). (2004) 713–725

16. Parlett, B. N.: The symmetric eigenvalue problem. SIAM Press. (1998)
17. Raghavan, V. V., and Wong, S. K. M.: A critical analysis of vector space model

for information retrieval. Journal of the American Society for Information Science.
37(5) (1986) 279–287

18. Rahm, E., and Bernstein, P.: A survey of approaches to automatic schema match-
ing. VLDB Journal. 10 (2001) 334–350

19. Patel-Schneider, P. F., Hayes, P., and Horrocks, I. (eds.): OWL web ontology lan-
guage semantics and abstract syntax. W3C Recommendation 10 February 2004.
Latest version is available at http://www.w3.org/TR/owl-semantics/

20. Qu, Y. Z., Hu, W., and Cheng, G.: Constructing virtual documents for ontology
matching. In Proceedings of the 15th International World Wide Web Conference
(WWW’06). (2006) 23–31

21. Salton, G., and McGill, M. H.: Introduction to modern information retrieval.
McGraw-Hill. (1983)

22. Seidenberg, J., and Rector, A.: Web ontology segmentation: analysis, classification
and use. In Proceedings of the 15th International World Wide Web Conference
(WWW’06). (2006) 13–22

23. Stoilos, G., Stamou, G., and Kollias, S.: A string metric for ontology alignment. In
Proceedings of the 4th International Semantic Web Conference (ISWC’05). (2005)
623–637

24. Stuckenschmidt, H., and Klein, M.: Structure-based partitioning of large concept
hierarchies. In Proceedings of the 3rd International Semantic Web Conference
(ISWC’04). (2004) 289–303



A Relaxed Approach to RDF Querying

Carlos A. Hurtado1,�, Alexandra Poulovassilis2, and Peter T. Wood2

1 Universidad de Chile
churtado@dcc.uchile.cl

2 Birkbeck, University of London
{ap, ptw}@dcs.bbk.ac.uk

Abstract. We explore flexible querying of RDF data, with the aim of
making it possible to return data satisfying query conditions with varying
degrees of exactness, and also to rank the results of a query depending
on how “closely” they satisfy the query conditions. We make queries
more flexible by logical relaxation of their conditions based on RDFS en-
tailment and RDFS ontologies. We develop a notion of ranking of query
answers, and present a query processing algorithm for incrementally com-
puting the relaxed answer of a query. Our approach has application in
scenarios where there is a lack of understanding of the ontology under-
lying the data, or where the data objects have heterogeneous sets of
properties or irregular structures.

1 Introduction

The conjunctive fragment of most RDF query languages (e.g., see [8,9]) consists
of queries of the form H ← B, where the body of the query B is a graph pattern,
that is, an RDF graph over IRIs, literals, blanks, and variables. The head of the
query H is either a graph pattern or a tuple variable (list of variables). The
semantics of these queries is simple. It is based on finding matchings from the
body of the query to the data and then applying the matchings to the head of
the query to obtain the answers.

Recently, the W3C RDF data access group has emphasized the importance
of enhancing RDF query languages to meet the requirements of contexts where
RDF can be used to solve real problems. In particular, it has been stated that
in RDF querying “it must be possible to express a query that does not fail
when some specified part of the query fails to match” [5]. This requirement
has motivated the OPTIONAL clause, presented in the emerging SPARQL W3C
proposal for querying RDF [13] and previously introduced in SeRQL [3]. The
OPTIONAL clause allows the query to find matchings that fail to match some con-
ditions in the body. In contrast to other approaches to flexible querying (e.g.,
[1,11]), the OPTIONAL construct incorporates flexibility from a “logical” stand-
point, via relaxation of the query’s conditions. This idea, however, is exploited
only to a limited extent, since the conditions of a query could be relaxed in ways

� Carlos A. Hurtado was supported by Millennium Nucleus, Center for Web Research
(P04-067-F), Mideplan, and by project FONDECYT 1030810, Chile.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 314–328, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Relaxed Approach to RDF Querying 315

other than simply dropping optional triple patterns, for example by replacing
constants with variables or by using the class and property hierarchies in an
ontology associated with the data (such as that shown in Figure 1).

1.1 RDFS Ontologies

It is common that users interact with RDF applications in the context of an
ontology. We assume that the ontology is modeled as an RDF graph with inter-
preted RDFS vocabulary. The RDFS vocabulary defines classes and properties
that may be used for describing groups of related resources and relationships be-
tween resources. To state that a resource is an instance of a class, the property
rdf:type may be used. In this paper we use a fragment of the RDFS vocabu-
lary, which comprises (in brackets is the shorter name we will use) rdfs: range
[range], rdfs:domain [dom], rdf:type [type], rdfs: subClassOf [sc] and rdfs:sub-
PropertyOf [sp]1.

ConferenceArticle

Article

sc

sc

sc

WebPage

sc

contributorOf

editorOf

authorOf

sp

spsp

Publication

range

range

range

range
Document

proceedingsEditorOf

Fig. 1. An RDFS ontology modeling documents and people who contribute to them

As an example, the ontology of Figure 1 is used to model documents along with
properties that model different ways people contribute to them (e.g., as authors,
editors, or being the editor of the proceedings where an article is published).

1.2 The RELAX Clause

In this paper, we propose the introduction of a RELAX clause as a generalization
of the OPTIONAL clause for conjunctive queries. As an example, consider the
following SPARQL-like query Q2:

?Z, ?Y ← {(?X, name, ?Z), OPTIONAL{(?X, proceedingsEditorOf , ?Y )}}.
1 We omit in this paper vocabulary used to refer to basic classes in RDF/S such as

rdf: Property, rdfs: Class, rdfs:Resource, rdfs:Literal, rdfs:XMLLiteral, rdfs:Datatype,
among others. We also omit vocabulary for lists, collections, and variations on these,
as well as vocabulary used to place comments in RDF/S data.

2 SPARQL has SQL-like syntax; for brevity, in this paper we express queries as rules.



316 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

The body of this query is a graph pattern comprising two triple patterns. This
query returns names of people along with the IRIs of conference articles whose
proceedings they have edited. Because the second triple pattern in the body
of the query is within the scope of an OPTIONAL clause, the query also returns
names of people for which the second pattern fails to match the data (i.e., people
who have not edited proceedings).

Now consider the ontology of Figure 1. Although the user may want to re-
trieve editors of proceedings at first, she/he might also be interested in knowing
about people who have contributed to publications in other roles, along with the
publications themselves. In order to save the user the effort of inspecting the
ontology and rewriting the query, the system could automatically return more
relaxed answers for the same original query. This is achieved by rewriting Q to
replace OPTIONAL with RELAX. Now after returning editors of conference proceed-
ings, the system can replace the triple pattern (?X, proceedingsEditorOf , ?Y )
with (?X, editorOf , ?Y ), yielding a new, relaxed query that returns editors of
publications along with their publications. Subsequently, this triple pattern can
be rewritten to the triple pattern (?X, contributorOf , ?Y ) to obtain more general
answers.

Group A (Subproperty) (1) (a,sp,b) (b,sp,c)
(a,sp,c) (2) (a,sp,b) (x,a,y)

(x,b,y)

Group B (Subclass) (3) (a,sc,b) (b,sc,c)
(a,sc,c) (4) (a,sc,b) (x,type,a)

(x,type,b)

Group C (Typing) (5) (a,dom,c) (x,a,y)
(x,type,c) (6) (a,range,d) (x,a,y)

(y,type,d)

(Simple Entailment) (7) For a map μ : G′ → G : G
G′

Fig. 2. RDFS Inference Rules

The idea of making queries more flexible by the logical relaxation of their
conditions is not new in database research. Gaasterland et al. [7] established the
foundations of such a mechanism in the context of deductive databases and logic
programming, and called the technique query relaxation.

1.3 Notion of Query Relaxation for RDF

We study the query relaxation problem in the setting of the RDF/S data model
and RDF query languages and show that query relaxation can be naturally
formalized using RDFS entailment. We use an operational semantics for the
notion of RDFS entailment, denoted |=, characterized by the derivation rules
given in Figure 2 (for details, see [8,10]). Rules in groups (A), (B), and (C)
describe the semantics of the RDFS vocabulary we use in this paper (i.e., sp,
sc, type, dom, and range), and rule 7 (which is based on the notion of map
which we will explain in Section 2), essentially states that blank nodes behave



A Relaxed Approach to RDF Querying 317

like existentially quantified variables. As an example, from a graph we can entail
another graph which replaces constants with blanks or blanks with other blanks.

Intuitively, as RDFS entailment is characterized by the rules of Figure 2, a
relaxed triple pattern t′ can be obtained from triple t by applying the deriva-
tion rules to t and triples from the ontology. As an example, the triple pattern
(?X, proceedingsEditorOf , ?Y ) can be relaxed to (?X, editorOf , ?Y ), by apply-
ing rule 3 to the former and the triple (proceedingsEditorOf , sp, editorOf ) in
the ontology of Figure 1. The different relaxed versions of an original query are
obtained by combining relaxations of triple patterns that appear inside a RELAX
clause.

The notion of query relaxation we propose naturally subsumes two broad
classes of relaxations (further types of relaxations within these two classes are
listed in Section 3.4). The first class of relaxation, which we call simple relax-
ations, consists of relaxations that can be entailed without an ontology, which
include dropping triple patterns, replacing constants with variables, and break-
ing join dependencies. These are captured by derivation rule 7 (Figure 2). The
second class of relaxations, which we call ontology relaxations, includes relax-
ations entailed using information from the ontology and are captured by rule
groups (A),(B) and (C); these include relaxing type conditions, relaxing proper-
ties using domain or range restrictions and others.

1.4 Summary of Contributions and Outline

In this paper, we develop a framework for query relaxation for RDF. We intro-
duce a notion of query relaxation based on RDFS entailment, which naturally
incorporates RDFS ontologies and captures necessary information for relaxation
such as the class and property hierarchies.

By formalizing query relaxation in terms of entailment, we obtain a semantic
notion which is by no means limited to RDFS and could also be extended to more
expressive settings such as OWL entailment and OWL ontologies, to capture
further relaxations. Our framework generalizes, for the conjunctive fragment
of SPARQL, the idea of dropping query conditions provided by the OPTIONAL
construct.

An essential aspect of our proposal, which sets it apart from previous work on
query relaxation, is to rank the results of a query based on how “closely” they
satisfy the query. We present a notion of ranking based on a structure called
the relaxation graph, in which relaxed versions of the original query are ordered
from less to more general from a logical standpoint. Since the relaxation graph is
based on logic subsumption, ranking does not depend on any syntactic condition
on the knowledge used for relaxation (such as rule ordering in logic-programming
approaches [7]). Finally, we sketch a query processing algorithm to compute the
relaxed answer of a query, and examine its correctness and complexity.

The rest of the paper is organized as follows. Section 2 introduces prelimi-
nary notation. Section 3 formalizes query relaxation and Section 4 studies query
processing. In Section 5 we study related work and in Section 6 we present some
concluding remarks.



318 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

2 Preliminary Definitions

In this section we present the basic notation and definitions that will be used
subsequently in this paper. Some of these were introduced in [2,8,10,12].

RDF Graphs. In this paper we work with RDF graphs which may mention the
RDFS vocabulary. We assume there are infinite sets I (IRIs), B (blank nodes),
and L (RDF literals). The elements in I ∪B ∪L are called RDF terms. A triple
(v1, v2, v3) ∈ (I∪B)×I×(I∪B∪L) is called an RDF triple. In such a triple, v1 is
called the subject, v2 the predicate and v3 the object. An RDF graph (just graph
from now on) is a set of RDF triples. Given two RDF graphs G1, G2, a map from
G1 to G2 is a function μ from terms of G1 to terms of G2, preserving IRIs and
literals, such that for each triple (a, b, c) ∈ G1 we have (μ(a), μ(b), μ(c))) ∈ G2.

Entailment. We will decompose RDFS entailment into two notions of entailment.
The first is simple entailment [10], which depends only on the basic logical form
of RDF graphs and therefore holds for any vocabulary. An RDF graph G1 simply
entails G2, denoted G1 |=simple G2, if and only if there exists a map from G2 to
G1. That is, simple entailment is captured by rule 7 of Figure 2.

The second notion of entailment captures the semantics added by the RDFS
vocabulary. We write that G1 |=rule G2 if G2 can be derived from G1 by it-
eratively applying rules in groups (A), (B) and (C) of Figure 2. In this paper,
we also use a notion of closure of an RDF graph G [10], denoted cl(G), which
is the closure of G under the rules in groups (A), (B) and (C). We have that
G1 |=rule G2 if and only if G2 ∈ cl(G1).

Now, by a result from from [10], RDFS entailment (for the fragment of RDFS
we use in this paper) can be characterized as follows: G1 RDFS-entails G2,
denoted G1 |=RDFS G2, if and only if there is a graph G such that G1 |=rule G
and G |=simple G2. An alternative characterization of RDFS entailment is the
following: G1 |=RDFS G2 if and only if there is a map from G2 to cl(G1). Therefore,
in order to test the entailment G1 |=RDFS G2, we can first apply rules in groups
(A), (B), and (C) to compute cl(G1), and then check whether there exists a map
from G2 to cl(G1).

Graph Patterns. Consider a set of variables V disjoint from the sets I, B, and
L. A triple pattern is a triple (v1, v2, v3) ∈ (I ∪ V ) × (I ∪ V ) × (I ∪ V ∪ L). A
graph pattern is a set of triple patterns. Given a graph pattern P , we denote by
var(P ) the variables mentioned in P . The following notation is needed to define
triple pattern relaxation in Section 3. The notion of map is generalized to graph
patterns by treating variables as blank nodes. . In addition, t1 is S-isomorphic
to t2 if there are maps μ1 from t1 to t2 and μ2 from t2 to t1 that both preserve
S. In our examples, variables are indicated by a leading question mark, while
literals are enclosed in quotes.

Conjunctive Queries for RDF. A conjunctive query Q is an expression T ← B,
where B is a graph pattern, and T = 〈T1, . . . , Tn〉 is a list of variables which
belongs to var(B). (The framework formalized in this paper can be easily ex-
tended to queries with graph patterns as query heads.) We denote T by Head(Q),



A Relaxed Approach to RDF Querying 319

and B by Body(Q). A query Q may be formulated over an RDFS ontology
O, which means that Q may mention vocabulary from O and its answer is
obtained taking into account the semantics of O. We assume that the ontol-
ogy is well designed in the sense that predicates of triples in O cannot be in
the set {type, dom, range, sp, sc}. We define a matching to be a function from
variables in Body(Q) to blanks, IRIs and literals. Given a matching Θ, we de-
note by Θ(Body(Q)) the graph resulting from Body(Q) by replacing each vari-
able X by Θ(X). Given an RDF graph G, the answer of Q is the set of tu-
ples, denoted ans(Q, O, G), defined as follows: for each matching Θ such that
Θ(Body(Q)) ⊆ cl(O∪G), return Θ(Head(Q)). When O is clear from the context,
we omit it, and write ans(Q, G) instead of ans(Q, O, G).

3 Formalizing Query Relaxation

We will present a relaxed semantics for queries in a stepwise manner. In Sec-
tion 3.1, we present the notion of relaxation of triple patterns, and in Section 3.2
we introduce the notion of the relaxation graph of a triple pattern. This is used
in Section 3.3 to define the relaxation graph of a query. The relaxation graph is
the basis for the notion of the relaxed answer and ranking of a query we propose
in Section 3.5. In Section 3.4, we explain different types of relaxations.

3.1 Triple Pattern Relaxation

We model relaxation as a combination of two types of relaxations, ontology
relaxation and simple relaxation. Intuitively, the former comprises relaxations
that are based on the ontology at hand and do not replace terms of the original
triple pattern. In contrast, simple relaxations consist only of replacements of
terms of the original triple pattern (e.g., replacing a literal or URI with a variable
or a variable with another variable).

Relaxation will be defined in the context of an ontology, denoted by O, and a
set of variables, called fixed variables, denoted by F . So we fix O and F for the
definitions that follow.

Let t1, t2 be triple patterns, where t1 �∈ cl(O), t2 �∈ cl(O), and var(t2) =
var(t1) ⊆ F . Ontology relaxation is defined as follows: t1 ≺∗

onto t2 if ({t1} ∪
O) |=rule t2. As an example, let O be the ontology of Figure 1 and let F = {?X}.
Then, we have that (?X, type,ConferenceArticle) ≺∗

onto (?X, type,Article), and
we have that (JohnRobert ,ContributorOf , ?X) ≺∗

onto (?X, type,Document),
among other ontology relaxations. It is not the case that (?X,ContributorOf , ?Y )
≺∗

onto (?Y, type,Document), since the set of variables of the triples are different.
Simple relaxation is defined as follows: t1 ≺∗

simple t2 if t1 |=simple t2 via a map μ
that preserves F (recall the notion of a map preserving a set of variables from Sec-
tion 2). As an example, we have (?X, type,Article) ≺∗

simple (?X, type, ?Z) and
(?X, type,Article) ≺∗

simple (?X, ?W,Article), among other simple relaxations.
We now define relaxation. We say that t2 relaxes t1, denoted t1 ≺∗ t2, if one

of the following hold: (i) t1 ≺∗
onto t2, (ii) t1 ≺∗

simple t2, or (iii) there exists a triple



320 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

pattern t such that t1 ≺∗ t and t ≺∗ t2. The following proposition proves that
simple relaxations always arise after ontology relaxations.

Proposition 1. Let t1, t2 be triple patterns. Then t1 ≺∗ t2 if and only if there
exists t such that t1 ≺∗

onto t and t ≺∗
simple t2.

We will end this section by proving some properties of the relaxation relation-
ships introduced. We define an ontology O to be acyclic if the subgraphs defined
by sc and sp are acyclic. Acyclicity is considered good practice in modeling on-
tologies. Recall the notion of graph pattern isomorphism with respect to a set
of fixed variables from Section 2.

Proposition 2. Let ≺∗
onto, ≺∗

simple and ≺∗ be defined in the context of an on-
tology O and a set F of fixed variables. (i) ≺∗

onto is a partial order if and only
if O is acyclic. (ii) ≺∗

simple is a partial order up to F -isomorphism. (iii) ≺∗ is a
partial order up to F -isomorphism if and only if O is acyclic.

In what follows we assume that O is acyclic, and assume triple patterns to be
equal if they are F -isomorphic. Therefore, we consider the relaxation relations
to be partial orders. In particular, if a variable is not in F , without loss of
generality we assume it appears in no more that one triple pattern. We denote
by ≺ (direct relaxation) the reflexive and transitive reduction of ≺∗ (relaxation).
We use similar notation for ontology and simple relaxation.

3.2 Relaxation Graph of a Triple Pattern

We are interested in relaxing each of the triple patterns that occurs inside the
RELAX clause of a query, so we next adapt the relaxation relationship to use
relaxation “above” a given triple pattern. The relaxation relation “above” a
triple pattern t, denoted by ≺∗

t , is ≺∗ restricted to triple patterns t′ such that
t ≺∗ t′, and where F = var(t) (i.e., the variables of t are the fixed variables in
the relaxation). The relaxation graph of a triple pattern t is the directed acyclic
graph induced by ≺t.

As an example, consider the ontology O of Figure 1. Let t be the triple pattern
(?X, type,Publication). Figure 3 (A) shows the relaxation graph of (?X, type,
Publication). We have that ?X is the unique fixed variable. The non-fixed vari-
ables in this graph are ?V 1, . . . , ?V 5. Figure 3 (B) shows the relaxation graph
of (JohnRobert, editorOf , ?X). Now the non-fixed variables are ?U1, . . . , ?U9.
Notice that this pattern directly relaxes to (?X, type,Publication), so this re-
laxation graph has as a subgraph the relaxation graph of Figure 3 (A).

3.3 Query Relaxation

In this section, we define query relaxation as the direct product of the relaxation
relations of its triple patterns. We define the direct product of two partial order
relations α1, α2, denoted α1 ⊗α2, as the relation α such that (e1, e2) α (e′1, e′2)
if and only if e1 α1 e′1 and e2 α2 e′2. The generalization of this definition to
more than two relations is straightforward.



A Relaxed Approach to RDF Querying 321

(?X,type,Publication)

(?X,type,Document)

(?X,?V1,Publication) (?X,?V2,Document)

(?X,?V4,?V5)

(?X,type,?V3)

(?X,type,Publication) (John Robert,contributorOf,?X)

(John Robert,editorOf,?X)

(?X,type,Document)

(?X,?U1,Publication) (?X,?U2,Document) (?X,type,?U3)

(?X,?U4,?U5)

(John Robert,?U7,?X)(?U6,contributorOf,?X)

(?U8,?U9,?X)

(A) (B)

Fig. 3. (A) Relaxation graph of the triple pattern (?X, type,Publication). (B) Relax-
ation graph of the triple pattern (JohnRobert, editorOf , ?X).

Given a query Q, let Body(Q) = {t1, . . . , tn}. For any triple ti not inside a
RELAX clause, we overload the notation ≺∗

ti
and assume that ti relaxes only to

ti. The relaxation relation “above” Q, denoted by ≺∗
Q, is defined as ≺∗

t1 ⊗ ≺∗
t2

. . .⊗ ≺∗
tn

. Direct relaxation, denoted ≺Q, is the reflexive and transitive reduction
of ≺∗

Q. The relaxation graph of Q is the directed acyclic graph induced by ≺Q.
Each node (t′1, . . . , t′n) in the relaxation graph of Q denotes the conjunctive

query Head(Q) ← t′1, . . . , t
′
n. In order to avoid name clashes, we assume that

the sets of non-fixed variables introduced in the relaxation relations of the triple
pattern are pairwise disjoint.

3.4 Types of Relaxation

The notion of relaxation that we propose in this paper encompasses several
different types of relaxation. Those captured by simple relaxation are as follows:

1. Dropping triple patterns. We can model the dropping of triple patterns by
introducing an “empty” triple pattern, which can be regarded as a “true”
condition to which any triple pattern relaxes. In this form, relaxation gen-
eralizes the use of the OPTIONAL clause within the conjunctive fragment of
SPARQL.

2. Constant relaxation: replacing a constant with a variable in a triple pattern.
This can be further classified according to whether the variable replaces a
property or a subject/object constant.

3. Breaking join dependencies: generating new variable names for a variable
that appears in multiple triple patterns. In order to model this type of re-
laxation, we first transform queries by applying variable substitution. If a
variable ?X appears n > 1 times in a query Q we replace each occurrence
with a different variable and add triple patterns (?Xi, equal, ?Xj) for each
pair of new variables ?Xi, ?Xj introduced. The predicate equal represents
equality. Each of the equality clauses in a query can now also be subject to
relaxation.



322 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

The following types of relaxation are captured by our notion of ontology
relaxation (the examples given use the ontology of Figure 1):

1. Type relaxation: replacing a triple pattern (a, type, b) with (a, type, c),
where (b, sc, c) ∈ cl(O). For example, the triple pattern (?X, type,
ConferenceArticle) can be relaxed to (?X, type,Article) and then to
(?X, type,Publication).

2. Predicate relaxation: replacing a triple pattern (a, p, b) with (a, q, c), where
(p, sp, q) ∈ cl(O). For example, the triple pattern (?X, proceedingsEditorOf ,
?Y ) can be relaxed to (?X, editorOf , ?Y ) and then to (?X, contributorOf , ?Y ).

3. Predicate to domain relaxation: replacing a triple pattern (a, p, b) with
(a, type, c), where (p, dom, c) ∈ cl(O). There are no domain declarations in
Figure 1.

4. Predicate to range relaxation: replacing a triple pattern (a, p, b) with
(b, type, c), where (p, range, c) ∈ cl(O). For example, the triple pattern
(?X, editorOf , ?Y ) can be relaxed to (?Y, type,Publication).

5. Additional relaxations induced by additional rules from Figure 2. Combina-
tions of rules yield additional forms of relaxation. For example, the triple
pattern (Article, sc, ?Y ) can be relaxed to (ConferenceArticle , sc, ?Y ).

3.5 Relaxed Answer and Ranking

Any algorithm that computes a relaxed answer to a query should also return
the tuples in the relaxed answer according to some ordering. So the output of
a query processing algorithm can be viewed as twofold: (a) the relaxed answer
(already defined) and (b) a rank function that defines an ordering for the tuples
in the relaxed answer. We next define the notions of relaxed answer, rank function
and consistency of a rank function. Roughly, consistency means that the tuple
ordering defined by the rank function agrees with the ordering of queries imposed
by the query relaxation graph.

Let Q be an RDF query and G be an RDF graph. The level of a query
Qi in the relaxation graph of Q is the length of the shortest path from Q
to Qi. We denote by relax(Q, k) the set of queries in the relaxation graph
whose level is less than or equal to k. The relaxed answer of Q over G at level
k ≥ 1, ansrelax(Q, G, k), is the set of tuples

⋃
Q′∈relax(Q,k) ans(Q

′, G). We will
frequently mention ansrelax(Q, G, k) in a context where k is fixed, and in this
context we will write ansrelax(Q, G, k) simply as ansrelax(Q, G).

For a query Q′ in the relaxation graph of Q, and an RDF graph G, we define
newAnswer(Q′, G) as ans(Q′, G) − (

⋃
Qi:Qi≺∗

QQ′ ans(Qi, G)).
Let Q be a query and G be an RDF graph. A rank function for the relaxed

answer of Q over G is any function τQ,G with signature τQ,G : (ansrelax(Q, G)) →
N . A rank function τQ,G is consistent if and only if for each pair of tuples
ti, tj ∈ ansrelax(Q, G), if there are queries Qi, Qj such that Qi ≺∗

Q Qj , ti ∈
newAnswer(Qi, G), tj ∈ newAnswer(Qj , G), then τQ,G(ti) < τQ,G(tj).

Notice that in consistent rank functions, tuples in ans(Q, G) are returned first
among the tuples in the relaxed answer. The notion of answer ranking sketched



A Relaxed Approach to RDF Querying 323

here can be improved in several directions. We may impose additional ordering
constraints in the relaxation graph. Other extensions may consider distance
metrics based on paths in the relaxation graph.

4 Query Processing

In this section, we study the problem of computing the relaxed answer of a
query. We propose an algorithm that incrementally generates matchings from
a query to an RDF graph and also ranks tuples in the answer. In Section 4.1,
we provide a procedure that computes the relaxation graph of a given triple
pattern. In Section 4.2 we present an algorithm that efficiently computes the
relaxed answer.

4.1 Computing Relaxations of a Triple Pattern

We first describe the computation of the relaxation graph for ontology relax-
ations. The procedure we propose is based on a variation of the notion of reduc-
tion of an RDFS ontology from [8]. The idea is to compute relaxed versions of a
triple pattern t by applying the derivation rules (Figure 2) to t and and triples
from the reduction. Given an ontology O, we denote by red(O) the RDF graph
resulting as follows (reverse rule means deleting the triple deduced by the rule):
(i) compute cl(O); (ii) apply reverse rules 2 and 4 until no longer applicable; and
(iii) apply reverse rules 1 and 3 until no longer applicable. In what follows, we
assume that red(O) has been precomputed.

We denote by Γ (t) the set containing triples t′ such that (i) there exists a
triple to ∈ red(O) and t,to

t′ is an instance of a rule from groups (A), (B), or (C)
(Figure 2), (ii) var(t′) = var(t), and (iii) t′ �∈ cl(O).

Proposition 3. Let t be a triple pattern, such that t �∈ cl(O) and var(t) ⊆ F ,
where F is the set of fix variables. (i) {t′ : t ≺onto t′} ⊆ Γ (t). (ii) Γ (t) ⊆ {t′ :
t ≺∗

onto t′}.

Proposition 3 (i) does not longer hold if we reduce the ontology also using reverse
rules 5 or 6. Proposition 3 (ii) follows directly from the definition of ontology
relaxation. The set Γ (t) can be easily computed in time O(|red(O)|) by searching
for triples to ∈ red(O) such that t, to instantiates the antecedent of a rule,
and testing the additional conditions given in the definition of Γ for the triple
patterns derived. The relaxation graph of a triple t can be computed as follows.
We start by computing Γ (t), and in iteration i, we compute Γ (t′) with each new
triple pattern t′ obtained in iteration i− 1, and add to the graph an edge (t′, t′′)
for each t′′ ∈ Γ (t′). In each iteration, we detect and delete transitive edges (an
edge is transitive if it connects two nodes that are also connected by a path
of length greater than one). In addition, we keep a list with triple patterns for
which Γ has been already computed so that we do not repeat computations of
Γ for the same triple pattern.

It is straightforward to generalize this procedure to compute direct simple
relaxations. We just need to add in each iteration direct relaxations to triples



324 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

that rename a constant with a variable or a variable (not in the original triple
pattern t) with another variable. In each iteration, we also have to delete triple
patterns that are isomorphic to some triple pattern already in the graph, and
delete transitive edge.

Proposition 4. Let t = (a, p, b) be a triple pattern and O be an ontology. Let
R be the relaxation graph of t. (i) R has O(m2) triples, where m is the number
of triples in red(O). (ii) Computing R takes time in O(r2m), where r is the
number of triples in R.

From Proposition 4, it follows that the relaxation graph of a query has O(m2n)
nodes, where n is the number of triple patterns inside RELAX clauses in the query.

4.2 Computing the Relaxed Answer

In this section, we sketch a query processing algorithm which works by adapting
the RDQL query processing scheme provided by Jena [15] to the processing
of successive relaxations of a query. We assume the simplest storage scheme
provided by Jena, in which the RDF triples are stored in a single table, called
the statement table. The Jena query processing approach is to convert an RDF
query into a pipeline of “find patterns” connected by join variables. Each triple
pattern (find pattern in Jena’s terminology) can be evaluated by a single SQL
select query over the statement table. We formalize this with an operator called
find that receives a triple pattern t and a statement table G and returns all
matchings from t to the table.

In what follows, Q is the query whose relaxed answer we intend to compute,
and Q′ is an arbitrary query in the relaxation graph of Q. We have that H =
Head(Q) = Head(Q′). For the sake of simplicity, we assume that each triple
pattern in the body of Q is inside a RELAX clause. We assume that Body(Q) =
{t1, . . . , tn}, and Body(Q′) = {t′1, . . . , . . . , t′n}. We also fix the statement table G
we are querying. The answer of Q′ can be computed by processing (in a pipelined
fashion) a view, denoted VQ′ , defined by the following expression:

πH(find(t′1, G) �� . . . �� find(t′n, G)),

where π is the standard projection operator and �� is the natural join on vari-
ables shared by triple patterns. The answer of Q can be computed by a naive
algorithm that traverses the relaxation graph of Q upwards, and in each step
of the traversal, builds a view VQ′ , computes it, and returns those tuples which
were not returned in previous steps.

Next, we propose an algorithm that avoids the redundant processing of tuples
that arises with this naive approach. We define deltaFind(t′i, G) as the set
containing triples p ∈ G such that t′i matches p, and no triple pattern directly
below t′i in the relaxation graph of ti, matches p. The set deltaFind(t′i, G)
can be computed similarly to find(t′i, G) by filtering triples from the statement
table. Define a delta view for Q′, denoted ΔQ′ , as the following expression:

πH(deltaFind(t′1, G) �� . . . �� deltaFind(t′n, G)).



A Relaxed Approach to RDF Querying 325

The following proposition shows that new answers (Section 3.5) correspond
to delta views.

Proposition 5. Let Q be a query and G be a RDF graph. For each query
Q′ in the relaxation graph of Q, (i) ans(Q′, G) =

⋃
Qi:Qi≺∗

QQ′ ΔQi(G), and
(ii) newAnswer(Q′, G) = ΔQ′(G).

The algorithm we propose (Figure 4), called RelaxEval, performs a breadth-first
traversal of the relaxation graph of Q, building and processing each delta view
ΔQ′ in each step of the traversal. The function level returns the level of a triple
pattern t′i in the relaxation graph Ri of ti. Line 3(a) outputs the new answer
of each query at level k. In order to find the queries at level k of the relaxation
graph, the algorithm applies the following property. The queries Q′ (defined by
the join expression in Line 3 (a)) that belong to the level k of the relaxation
graph of Q are those satisfying

∑
i level(t′i, Ri) = k.

Algorithm RelaxEval
Input: a query Q (interpreted over an ontology O), where Body(Q) = {t1, . . . , tn}, a
statement table G, and an integer maxLevel .
Output: the set of tuples ansrelax(Q,G,maxLevel ), where new answers are returned
successively at each level of the relaxation graph.

1. k := 0, stillMore := true
2. For each triple pattern ti ∈ Body(Q), compute the relaxation graph Ri of ti up to

level maxLevel (see Section 4.1).
3. While (k ≤ maxLevel and stillMore) do

(a) For each combination t′
1 ∈ R1, . . . , t

′
n ∈ Rn such that i level(t′

i, Ri) = k
do output πH(deltaFind(t′

1, G) �� . . . �� deltaFind(t′
n, G))

(b) k := k + 1
(c) stillMore := exist nodes t′

1 ∈ R1, . . . , t
′
n ∈ Rn such that i level(t′

i, Ri) = k

Fig. 4. Algorithm that computes the relaxed answer of a query

The algorithm RelaxEval induces a rank function, denoted rankQ,G, which
maps each tuple to the position at which RelaxEval returns it. The following
proposition proves the correctness of RelaxEval (recall the notion of a con-
sistent rank function from Section 3.5), where for a level k of the relaxation
graph, we denote by RelaxEval(Q, G, k) the set of tuples returned in Line 3(a)
of RelaxEval.

Proposition 6. Let Q be a query and G be a RDF graph. (i) For all k we
have RelaxEval(Q, G, k) = ansrelax(Q, G, k). (ii) The rank function rankQ,G is
consistent.

Both (i) and (ii) follow from Proposition 5 and the fact that the algorithm
RelaxEval traverses the relaxation graph of Q in breadth-first fashion.



326 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

We end this section by comparing the computation cost of RelaxEval with
the naive approach. We estimate the cost of computing a view VQ′ as the ex-
pression |find(t′1, G)|× . . .×|find(t′n, G)|, which represents the cost of the join
operations. Roughly, it can be assumed that the find and deltaFind opera-
tions have the same cost, so we omit this cost in the expression. In the following
proposition, we assume that δ = |find(t′

i,G)|
|deltaFind(t′

i,G)| is constant for every t′i in the
relaxation graph of every triple pattern ti ∈ Body(Q).

Proposition 7. Let Q be a query (assume for simplicity that all its triple pat-
tern are subject to relaxation), O be an ontology and G an RDF graph. (i) The
naive approach to compute the relax answer at level k runs in time O(δnpT ),
where T denotes the time taken by RelaxEval(Q, G, k), n = |Body(Q)|, and
p = |relax(Q, k)|. (ii) RelaxEval(Q, G, k) runs in time O(m2n|G|n), where m
is the number of triples in red(O).

The above proposition shows that the algorithm has exponential complexity,
however its complexity is polynomial in the size of the data queried for a fixed
query Q (data complexity). In addition, the answer is generated incrementally
and hence the processing can be halted at any level in the relaxation graph. The
number of triples in red(O) provides an upper bound for k, the number of levels
in the evaluation.

An improvement to the algorithm would be to process several delta views at
the same time in an integrated pipelined fashion. In practice, we can improve
query processing performance by further caching the results of deltaFind(t, G)
for all triple patterns t that occur more than once in the query relaxation graph
(such duplicate occurrences can be detected as the relaxation graphs of the
individual triple patterns in the original query are being constructed).

5 Related Work

Query languages based on regular expressions provide a form of flexible query-
ing. The G+ query language by Cruz et al. [6] proposes graph patterns where
edges are annotated with regular expressions over labels. In this form, each graph
pattern represents a set of more basic graph patterns, and therefore, a query ex-
tracts matchings that relate to its body in a variety of ways. This work considers
queries over directed labeled graphs.

Kanza and Sagiv [11] propose a form of flexible querying based on a notion
of homeomorphism between the query and the graph. Their data model is a
simplified form of the Object Exchange Model (OEM).

Bernstein and Kiefer [1] incorporate similarity joins into the RDQL query
language. This is done by allowing sets of variables in an RDQL query to be
declared as imprecise. Bindings for these variables are then compared based on
a specified similarity measure, such as edit distance.

Stuckenschmidt and van Harmelen [14] consider conjunctive queries over a
terminological knowledge base that includes class, relation and object definitions.
They also use query containment as a way of viewing query approximations, but



A Relaxed Approach to RDF Querying 327

are concerned about evaluating less complex queries first, so that the original
query is evaluated last. They use a query graph to decide which conjuncts from
the original query should be successively added to the approximate query. This
is analogous to SPARQL queries in which every conjunct is optional.

Bulskov et al. [4] consider the language Ontolog which allows compound
concepts to be formed from atomic concepts attributed with semantic relations.
They define a similarity measure between concepts based on subsumption in
a hierarchy of concepts. This gives rise to a fuzzy set of concepts similar to a
given concept. They also introduce specialization/generalization operators into
a query language that allow specializations or generalizations of concepts to be
returned. They admit that combining this with similarity may make answers
confusing.

6 Concluding Remarks

Despite being a relatively unexplored technique in the semantic Web, query
relaxation may have an important role in improving RDF data access. One
motivation for this technique is for querying data where there is a lack of un-
derstanding of the ontology that underlies the data. Another application is the
extraction of objects with heterogeneous sets of properties because the data is in-
complete or has irregular structure. As an example, a relaxed query can retrieve
the properties that are applicable to each resource among a set of resources hav-
ing different properties. Query relaxation can also make it possible to retrieve
data that satisfies the query conditions with different degrees of exactitude.

There are several areas for future work. One is the introduction of relaxation
into general SPARQL queries, including disjunctions and optionals. This should
also involve a generalization of the RELAX clause so that it can be applied to entire
graph patterns instead of single triple patterns. Another important issue for
future work is the design, implementation and empirical evaluation of algorithms
for computing relaxed answers. The graph-like nature of RDF provides additional
richness for a query relaxation framework, which can be exploited in future
work. For example, join dependencies between triple patterns of the query can
be relaxed to connectivity relationships in RDF graphs.

References

1. A. Bernstein and C. Kiefer. Imprecise RDQL: Towards generic retrieval in ontolo-
gies using similarity joins. In 21th Annual ACM Symposium on Applied Computing
(SAC/SIGAPP), Dijon, France, 2006.

2. D. Brickley and R. V. Guha, editors. RDF Vocabulary Description Language 1.0:
RDF Schema, W3C Recommendation, 10 February 2004.

3. J. Broekstra. SeRQL: Sesame RDF query language. In In M. Ehrig et al., editors,
SWAP Deliverable 3.2 Method Design, pages 55+68,
http://swap.semanticweb.org/public/Publications/swap-d3.2.pdf, 2003.



328 C.A. Hurtado, A. Poulovassilis, and P.T. Wood

4. H. Bulskov, R. Knappe, and T. Andreasen. On querying ontologies and databases.
In 6th International Conference on Flexible Query Answering Systems, pages 191–
202, 2004.

5. K. G. Clark, editor. RDF Data Access Use Cases and Requirements, W3C Working
Draft, 25 March 2005.

6. I. F. Cruz, A. O. Mendelzon, and P. T. Wood. A graphical query language sup-
porting recursion. In SIGMOD Conference, pages 323–330, 1987.

7. T. Gaasterland, P. Godfrey, and J. Minker. Relaxation as a platform for cooperative
answering. J. Intell. Inf. Syst., 1(3/4):293–321, 1992.

8. C. Gutierrez, C. Hurtado, and A. O. Mendelzon. Foundations of semantic web
databases. In 23rd Symposium on Principles of Database Systems, pages 95–106,
2004.

9. P. Haase, J. Broekstra, A. Eberhart, and R. Volz. A comparison of RDF query
languages. In International Semantic Web Conference, 2004.

10. P. Hayes, editor. RDF Semantics, W3C Recommendation, 10 February 2004.
11. Y. Kanza and Y. Sagiv. Flexible queries over semistructured data. In Symposium

on Principles of Database Systems, 2001.
12. F. Manola and E. Miller, editors. RDF Primer, W3C Recommendation, 10 Febru-

ary 2004.
13. E. Prud’hommeaux and A. Seaborne, editors. SPARQL Query Language for RDF,

W3C Candidate Recommendation, 6 April 2006.
14. H. Stuckenschmidt and F. van Harmelen. Approximating terminological queries.

In 5th International Conference on Flexible Query Answering Systems, pages 329–
343, 2002.

15. K. Wilkinson, C. Sayers, H. Kuno, and D. Reynolds. Efficient RDF storage and
retrieval in Jena. In Proceedings of VLDB Workshop on Semantic Web and Data-
bases, 2003.



Mining Information for Instance Unification

Niraj Aswani, Kalina Bontcheva, and Hamish Cunningham�

Department of Computer Science, University of Sheffield
Regent Court, 211 Portobello Street, Sheffield, UK

{niraj, kalina, hamish}@dcs.shef.ac.uk

Abstract. Instance unification determines whether two instances in an
ontology refer to the same object in the real world. More specifically,
this paper addresses the instance unification problem for person names.
The approach combines the use of citation information (i.e., abstract,
initials, titles and co-authorship information) with web mining, in order
to gather additional evidence for the instance unification algorithm. The
method is evaluated on two datasets – one from the BT digital library
and one used in previous work on name disambiguation. The results
show that the information mined from the web contributes substantially
towards the successful handling of highly ambiguous cases which lowered
the performance of previous methods.

1 Introduction

Many Semantic Web (SW) and knowledge management applications need to pop-
ulate their ontologies1 from structured, semi-structured, or unstructured data
sources. Frequently the same name (e.g., a person or a company name) would
appear in more than one source (e.g. database records) and the system then
needs to decide whether these names refer to the same real-world object or not.
This problem is known as instance unification [2], i.e., given two instances in an
ontology one needs to determine whether or not they refer to the same object. A
typical example in applications such as Google scholar is the need to determine
whether the authors “N.J. Davies” and “J. Davies” of two different papers are
actually the same person. Or even, whether there are two different individuals
both called J. Davies and therefore it is wrong to assume that two papers whose
author is “J. Davies” are authored by the same person.

In this paper we address the instance unification problem for person names.
The work is carried out in the context of the British Telecom digital library, as
part of the SEKT project2, which aims to build the next generation of knowl-
edge management technology. The digital library consists of metadata about
� This work is partially supported by the EU-funded SEKT project (http://www.sekt-

project.com)
1 For the purposes of this paper an ontology is defined as the datamodel that describes

classes (a.k.a. concepts), instances (a.k.a. individuals), attributes (a.k.a. properties)
and relations (i.e. ways that objects can be related to one another).

2 For further details see http://www.sekt-project.com

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 329–342, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



330 N. Aswani, K. Bontcheva, and H. Cunningham

papers, including paper authors (initials and surname), title, place and date of
publication, abstract, and, optionally, author affiliation. Some of the records also
provide a link to the full text of the paper, however, we decided to not use it
in the current experiment as only 30% of all papers have full text available. In
addition, we wanted to develop a method that can work using only information
from the ontology, without access to the original data sources.

Due to name variations, identical names and spelling mistakes, disambiguat-
ing person names is difficult. Researchers have been exploring various ways to
address this problem. Perhaps the closest in spirit is work on Ontocopi [1] and
name disambiguation in author citations [8]. Ontocopi exploits relations in the
ontology in order to calculate the similarity between two instances, based on the
overlap between their properties. The overlap is calculated based on string sim-
ilarity and the approach was deployed in the context of disambiguating authors
and project members. Similarly, the work on name disambiguation in author
citations [8] exploits overlap in the co-authors, paper titles, and place of pub-
lication. The main shortcoming of these approaches is that they have difficulty
distinguishing between authors with the same name, who work in the same area,
and where the number of citations is not sufficient to build a good co-authorship
model as is the case with our data.

This paper presents a fully automatic web-based approach for instance unifi-
cation in ontologies containing publications, titles, authors, abstracts, etc., where
different instances of these are created from bibliography records. In other words,
the ontology population algorithm has assumed that all authors of all publica-
tions are different and a corresponding instance is created in the ontology for
each of them. Then the instance unification task addressed here is to determine
how many authors are there in the real world and insert the required “sameIn-
dividualAs” statements in the ontology.

The approach is evaluated on two datasets – one from the BT digital library
and one used in previous work on name disambiguation. The results show that
the information mined from the web contributes substantially towards the suc-
cessful handling of highly ambiguous cases which lowered the performance of
previous methods.

A major part of the work focused on identifying which features lead to the
best performance on the author disambiguation task and, consequently, these
features are specific to this problem. Nevertheless, the algorithms discussed here
(normalising names, identifying an author’s publication page, identifying an au-
thor’s full name) and the evaluation methodology can be applied to the more
generic problem of instance unification.

The paper is structured as follows. Section 2 discussed related work and iden-
tifies outstanding problems. Next Section 3 presents the ontology used in these
experiments. The web-based instance disambiguation algorithm is presented in
Section 4. Several issues, such as normalising names, identifying author’s publi-
cation page, identifying author’s full name, calculating similarities based on the
collected features and making the overall decision are discussed in this section.
Evaluation results are discussed in Section 5. The paper concludes by outlining
future work.



Mining Information for Instance Unification 331

2 Related Work

The author disambiguation problem bears similarities to citation matching,
which typically applies machine learning in order to identify whether two ci-
tations actually refer to the same publication, by using string similarity and
frequency-based features (e.g., [10]). However, citation matching is different from
the problem of resolving person name ambiguities, because it is only concerned
with paper references and does not disambiguate the authors in them.

The research most relevant to our is on name disambiguation. A survey car-
ried out in the United States showed that names can be very ambiguous as over
90,000 names are being shared by 100 million people in the United States alone
[6]. However, name disambiguation is particularly difficult when there is limited
contextual data. Such problem arises in the domain of citations, or in bibliogra-
phies, where no additional information other than the citation itself is available.
Various approaches have been tried, some directly linked to the problem of dis-
ambiguating authors in citations (e.g., [6], [8]) and others to disambiguation of
person names (e.g., [9]).

One such recent approach for author name disambiguation uses a K-means
clustering algorithm based on an extensible Naive Bayes probability model [7].
The algorithm is based on three features collected from citations: co-author
names, the title of the paper and the title of the journal or proceedings. The
work is based on the assumption that a researcher usually has research areas
that are stable over a period and tends to co-author papers with a particular
group of people during that period. The disambiguation system, given an author
name, clusters the citations of different similar named entities. However, their
method uses manually collected publications pages, where the correct publication
pages are identified manually among the results returned by Google with a query
consisting of the author name and “publication” as a keyword.

The approach is evaluated on two names “J Anderson”(6) and “J Smith”(9)
with accuracy of 70.6% and 73.6% respectively. The work was improved further
by using information about aliases and name invariants from a database [8].
Co-author names were identified as the most robust attribute for name disam-
biguation. They also show that using journal titles gives better performance than
using words from the paper title. The reported results are more than 90% accu-
rate in disambiguating the two names “J Anderson” and “J Smith”. This paper
demonstrates how these results can be improved further by mining information
from the web.

Another method [6] is semi-automatic and uses user feedback where people
are asked to provide some contextual information to help identify the author
unambiguously. Examples include Location, Contact such as email or phone,
Organization, Relation to other person(s), etc. While the goal of their work is
different from ours, they use co-occurrence of the given person name and the
contextual information as disambiguation evidence, which bears similarities to
the way we identify the person’s full name (see Section 4.1).



332 N. Aswani, K. Bontcheva, and H. Cunningham

Fietelson [5] discusses disambiguating first names using lexical means. In his
approach, elements of a name, the first name and the last name, are identified
using self-citations among other features. Afterwards, the names are normalised
into lower-case and foreign accents and special characters are replaced. In our
approach we employ part of the described technique in order to normalise author
names. In addition, [5] demonstrated that full names lead to better results than
initials and surname information. Consequently, given an abbreviated name of
an author, we first search the web and try to identify their full name.

As our approach mines the web for people’s publication pages as part of
the instance unification process, therefore work on finding such pages is also
relevant. Perhaps the most similar in spirit is the Armadillo system [3], which
discovers who works for a given department and their home pages. The system
identifies automatically person names and checks them against DBLP, then relies
on HomePageSearch3 to identify the author’s home page. Alternatively, the given
department web site is searched for the home page. However, this approach
is not applicable in our case for two reasons. Firstly, Armadillo assumes that
the homepage is located within a specified website, whereas in the general case
(e.g., a digital library) the system does not have such information. Secondly,
the algorithm for checking the person name is dependent on the existence of
an external domain-specific resource, which means that the system needs to be
tailored specifically for each domain.

In the SW context, instance unification in ontologies is important for inter-
operability among ontologies and for cross ontology reasoning. Two general
means of detecting whether two instances refer to the same real-world object
have been identified [2]. One of them is the exact case, where the instances are
unifiable and the another one is the probabilistic case, where each pair of two
instances is assigned some probability (between 0 and 1). A threshold is used
to decide if the instances are same. The aim of our work is precisely to identify
the features which are important for the instance disambiguation task. There-
fore, we experiment with various combinations of features and collect probability
measures for each of these combinations of features. Having obtained these mea-
sures, one can use machine learning methods to learn a threshold and unify or
disambiguate instances automatically.

In the section below we describe our work on instance disambiguation and
present different experiments.

3 The Ontology and the Author Instance Disambiguation
Problem

The ontology used in these experiments is Proton4, a basic upper-level ontology
developed in the SEKT project which contains about 300 classes and 100 prop-
erties, providing coverage of the general concepts necessary for a wide range of
tasks, including semantic annotation, indexing, and retrieval of documents.
3 http://hpsearch.uni-trier.de/
4 http://proton.semanticweb.org/



Mining Information for Instance Unification 333

Table 1. An example dataset for the name “J. Davies”

ID Author Name Co-authors Publication Title
1 Davies, J Merali, Y Knowledge capture and utilization in

virtual communities
2 Davies, J Chaomei, C Integrating spatial, semantic, and social

structures for knowledge management
3 Davies, B.J. Shuliang Li Key issues in using information systems

for strategic marketing decisions
4 Davies, N.J. Krohn, U Concept lattices for knowledge

Weeks, R. management
5 Davies, J Mabin, V.J. Knowledge management and the framing

of information: a contribution to
OR/MS practice and pedagogy

6 Davies, N. J. Crossley, M. The knowledge garden
McGrath, A.J.
Rejman-Green, M.A.Z.

The metadata from the digital library is automatically inserted as instances
in the ontology. The total number of papers in the library is 5 million and our
test set contains 4429 instances of papers in the area of knowledge management
with 9065 author names.

Table 1 shows an example dataset for the author “J. Davies” giving informa-
tion on his publications (author name, co-author names, and publication titles)5.

As discussed in Section 2, previous work has used a number of features to dis-
ambiguate author names: compatibility between initials and first names, overlap
in paper titles, co-authorship, the name of conference or journal where the paper
is published, etc. The disambiguation problem is made harder on our dataset,
as the papers were chosen from within the same field (knowledge management),
where different authors would publish at the same set of conferences and journals
and have similar words in the paper titles. In addition, the data only provides the
surname and initials of the authors. In case of “B.J. Davies” and “N.J. Davies”,
where the first name initials are also available, one can easily distinguish them
by simply referring to their names. On the other hand, it is difficult to identify
whether the first “J. Davies” is same as any other “Davies” in the table. There is
a very little overlap in the names of co-authors of different “J. Davies” (Table 1).
Similar to “J. Davies”, we could not find any overlap in the names of co-authors
of “Smith” (21 instances).

Consequently, it is difficult to disambiguate author names by computing sim-
ilarities only on the basis of the citation details. However, the information avail-
able on the web can be exploited to perform instance disambiguation. An ap-
proach specifically tailored to mining computer science department web sites
was discussed earlier in Section 2. In the following section, we describe a more
general method for web-based instance disambiguation.

5 Abstract details are excluded from the table due to space limitations.



334 N. Aswani, K. Bontcheva, and H. Cunningham

4 Web-Assisted Instance Disambiguation

Given the ontology and a surname, the first step is to retrieve all publications
authored by authors with the given surname. For each citation information such
as co-authors, title of the paper and abstract is collected.

After collecting all citations of authors with the given surname, the task is
to exploit these features and identify which author names refer to the same
real persons and how many real persons have authored each of the papers in
our dataset. Below we describe an application, which, step-by-step, carries out
various operations to disambiguate instances of different authors in the ontology.

It is assumed that each author with the same surname has a different instance
ID and therefore the task is to identify which two IDs (i.e., instances) refer to
the same author. For each pair of author IDs we calculate a number of similarity
measures based on features such as the following:

– whether the authors have the same full names as identified from the web
(Section 4.1)

– whether the authors share the same publication page (Section 4.2)
– title similarity (Section 4.3)
– abstract similarity (Section 4.3)
– name initials similarity (Section 4.3)
– co-author similarity (Section 4.4)

Based on the collected individual similarity measures, the overall similarity is
calculated for each author pair and a binary equivalence decision is made. Next
we explain the method of calculating similarity for each of the features.

4.1 Finding Authors’ Full Names

As explained in [5], people write their names in different forms, so as a first
step we try to calculate the similarity in authors’ names. In our case, however
most of the names in citations remain ambiguous due to the use of initials or
incomplete names. For example “D. Jones” can refer to either “David Jones”
or “Daniel Jones” or maybe to some other author whose first name starts with
“D”. Consequently if the authors’ full names are discovered, then the ambiguity
problem can be reduced substantially.

Therefore we implemented a method which from a surname and a publication
tries to retrieve the author’s full name from the web—based on the assumption
that a web page may exist that contains the author’s full name and the given
publication. The method first tries to locate such a page and, if successful, verifies
that the name is indeed a full name according to the following orthographig
constraints6.

1. If the name consists of two words:
(a) the first letters of both words must be in uppercase
(b) if one of the words is identical to the surname, and if the length of the other

word is two characters, they must not be in upper case. If they are, they are
considered to be the initials of the first and second names.

6 The algorithm assumes that the first and the middle names are one token each.



Mining Information for Instance Unification 335

2. If the name consists of three words:
(a) the first letters of all three words must be in upper case
(b) if the first word is identical to the surname, the second word must contain at

least two letters. In this case the last word is considered to be the middle name
and can have a single upper case initial.

(c) if the last word is identical to the surname, the first word must contain at least
two letters. In this case, the middle word is considered to be the middle name.

The top five pages that contain the author surname and the publication are
considered as candidates for retrieval of the full name. Using the above heuristics,
names are retrieved from each of these pages and the distance between the full
name and the publication in terms of number of characters is calculated. The name
that is nearest to the publication title is deemed to be the full name of the author
under consideration. Having obtained as many full names as possible, for each pair
of author IDs we calculate a full-name similarity matrix as follows: a value of 1 is
given to authors having identical full names and 0 otherwise (including cases in
which full names were not found for either or both of the authors).

4.2 Identifying Authors’ Publication Pages

For each pair of author IDs and their associated publications, Google or Yahoo
is queried in an attempt to find a page that contains the author surname and
the titles of the two publications. This search is based on the assumption that if
the author IDs refer to the same real person, the relevant papers will most likely
appear together on his publication page.

Digital libraries such as ACM and CiteSeer are the most likely and obvious
source of bibliographies. Since they use various approaches to index citations
(e.g. conservative or normalizing names), when queried, they are the most likely
hits. As a result, they show the entire bibliography page that contains both the
titles and the surname specified. Since such bibliography pages are the results
of pure text search, they do not help in disambiguating names but add more
complexity to the problem, so such digital libraries are excluded from this search.
The Google query is prepared with the following elements:

– The keyword “publication” or “papers”
– Author Surname
– Title of the publication of the first author
– Title of the publication of the second author
– -site:<sitesToExclude> digital libraries such as acm.org, sigmond.ord,

ist.psu.edu and informatik.uni-trier.de

The query is then sent to a search engine. An empty result set is interpreted
as an indication against considering the two author IDs as references to the same
person. However, the final decision on whether these IDs should be unified is not
based on this criterion alone, as there can be other explanations for the lack of
matching pages. (For instance, the author’s publications page may not be up to
date or he may not have one.)

Although we exclude some digital libraries from the engine query, this does
not guarantee that the results will not contain any bibliography pages, e.g.,



336 N. Aswani, K. Bontcheva, and H. Cunningham

a bibliography of knowledge management publications. These need to be filtered
out as they are not single-person publication pages (and therefore not evidence
that the two papers were written by the same person).

After a careful analysis of several bibliography web pages, we developed a
filtering module that removes a whole web page from the search results if it
contains the word “bibliography” in any of the following contexts:

– title
– headers (i.e. h1, h2, h3, h4, h5 and h6)
– boldface tag
– italic tag
– head
– meta
– centered

The top five pages in the result set after filtering out bibliographies are
processed further in order to identify the author’s publication page (assuming
that indeed both publications have been authored by the same person).

The formulation of the query means that all matched pages will contain the pub-
lication titles and the author’s surname and, if it is indeed a publication page, the
author’s name would appear in it with a higher frequency than any other person
name. Therefore each page is processed with the ANNIE named entity recognition
system [4] in order to identify sentence boundaries and locate person names.

The final step is to determine which of several returned pages is actually the
given author’s publication page. Analysis of the matching pages showed that
some would be the author’s publication page but others would be more complex
( e.g., CVs). The contents of such complex web pages tend to be divided into
several sections, such as personal interests, work history, names of supervised
students, recommended readings, publications, etc. Consequently, straightfor-
ward counting of the frequency of author names cannot reliably distinguish the
publication page from other pages. Instead, the algorithm assigns the highest
score to the page which contains the highest percentage of author names and
references over its total length.

Another assumption is that it is likely to find more of a given author’s pub-
lications on his own publication page than on any other webpage and therefore
the page that contains, for example, 5 publications by that author out of 10
references in total is deemed less relevant than the page that contains 10 publi-
cations by the given author out of 20 or 25 references. In other words, preference
is given to the page that contains the most publications by the given author.

Each pair of author IDs for which a page is successfully identified is given
the score 1 to indicate a possible match. When no page is located, the score
0 is assigned instead. It is possible that the search engine does not respond to
some queries and in such case the score of -1 is given to indicate that the results
should not be taken into account. The identified page is re-used later to find
other titles of other authors under consideration. If the match is located for any
other author name, the author name is considered to be the same as the other
two names for which originally the page was identified.



Mining Information for Instance Unification 337

4.3 Use of Titles, Abstracts and Initials

Before computing overlap in titles and abstracts, stop words such as articles and
prepositions are removed and the remaining content words (e.g. nouns, proper
names, adjectives and verbs) are stemmed so that their lemmas can be compared.
Word order is not important for comparing titles and abstracts, but it plays a very
important role when comparing initials and surnames. For example, given a pair of
author IDs and titles (or abstracts), the similarity measure is calculated as follows:

S(e1,e2) =
2n

L1 + L2
(1)

where
S = similarity
e1 = instanceidofthefirstauthor
e2 = instanceidofthesecondauthor
n = numberofidenticaltokensinthetitle(orabstract)featureofe1ande2
L1 = totalnumberoftokensinthetitle(orabstract)featureofe1
L2 = totalnumberoftokensinthetitle(orabstract)featureofe2

The same formula is used for titles and abstracts. When there are co-authors,
the number of identical co-authors is taken into account. As pointed out before,
the order of tokens is very important when comparing initials of two authors: for
example the initials “N.D.” would mean different from the initials “D.N.”. Sim-
ilarly, the initials “N.D.” can have some similarity with the initial “N.” but not
with the initial “D.”. In the former case, it is possible that the first name of both
authors is same and hence the initials. One can not exclude a possibility of people
using their middle name as first name, but considering it as a first initial is more
likely to introduce more errors so this comparison is not used in our algorithm.

4.4 Co-authorship Information

In the case of co-authorship information, the overlap among the co-authors of
each pair of publications is calculated. Consider Table 2, which presents co-
authorship information for various instances referring to the same author.

In this case, co-authors of each instance are compared with co-authors of
other instances. The third column shows the similarity figures. In this case,
the first two instances do share at least one co-author but none of the rest
have any common co-authors. The results show some probability for the first
two instances referring to the same author, but it will be unfair to comment
anything for the third and the fourth instances. If the instances are identified
as referring to different authors, just because they do not share any co-author,
the disambiguation would be incorrect—at least for the given example where all
instances do refer to the same author. The same is true for the earlier example of
“J. Davies” (see Table 1), where actually the first, second, fourth and the sixth
instances in the table are referring to the same author and none of them share
any co-author. Thus, in our dataset, the co-authorship does not give us much
evidence in some cases.



338 N. Aswani, K. Bontcheva, and H. Cunningham

Table 2. Co-authorship information for the name “Y. Wilks”

ID Author Name Co-authors similarities
1 Y. Wilks N. Webb, H. Hardy, M. Ursu, id:2=0.33, id:3=0, id:4=0

T. Strzalkowski
2 Y. Wilks N. Webb, M. Hepple id:1=0.33, id:3=0, id:4=0
3 Y. Wilks N. Ide id:1=0, id:2=0, id:4 =0
4 Y. Wilks - id:1=0, id:2=0, id:3=0

5 Overall Similarity and Results

After independently obtaining similarity measures for the various features, the
overall similarity needs to be calculated for each pair of author IDs. Because the
features vary in importance, each feature is assigned a weight and the overall
similarity for a given pair of author IDs (e1 and e2) is computed as the sum of
each individual similarity measure multiplied by its weight. Equation 2 is used
for obtaining the overall similarity for the given pair of author IDs (e1 and e2).
Finally, we specify a minimum similarity threshold for for a pair of author IDs
to be deemed torefer to the same author.

Table 3 shows the name disambiguation results for the author “J. Davies”.
The instance pairs in bold refer to the same person and consequently the in-
stance unification algorithm should consider them the same. The overall similar-
ity measures in bold indicate a correct result, whereas those in italics indicate
an incorrect result. The first six columns show the individual similarity measures
for the features (shared publication page, identical full name, etc.). Columns C1
to C6 then show the overall similarity measure for the given pair of IDs, when a
given set of features is taken into account. C1 corresponds to only using titles,
initials, and abstracts for disambiguation; whereas C2 uses the co-authorship
information as well. Therefore, C2 uses the features suggested in previous name
disambiguation work, as discussed in Section 2.

f =
6∑

i=1

wiSi(e1,e2) (2)

where

f = overallsimilarity
wi = weightassignedtotheithfeature

i =

1 sharingpublication
2 identicalfullname
3 abstractsimilarity
4 initialssimilarity
5 titlesimilarity
6 co − authorsimilarity

Si = similarityfortheithfeature
where,

S1 =
1 authorssharepublicationpage
0 authorsdonotshareanypublicationpage
−1 searchenginedoesnotrespond

S2 =
1 authorshavesamefullname
0 authorshavedifferentfullname
−1 searchenginedoesnotrespond

Si∈{3,4,5,6} = (seeequation 1)

For the initial experiments, all the features were given equal weight. Table 4
shows the name disambiguation results for the authors “D. Smith”, “J. Davies”,
“Cooper”, “Williams”, “Brown”, and “Jones”, using different combinations of



Mining Information for Instance Unification 339

Table 3. Instance unification results for a particular person called “J. Davies” (the
author IDs in bold refer to this person)

ID1 ID2 P F A I T C C1 C2 C3 C4 C5 C6
threshold 0.4 0.26 0.4 0.4 0.35 0.385
14Davies,N.J. 65Davies,J. 1 1 0.12 0.67 0.22 0 0.34 0.25 0.45 0.40 0.60 0.50
14Davies,N.J. 68Davies,N.J. 0 1 0.28 1 0.33 0 0.54 0.40 0.58 0.52 0.52 0.44
14Davies,N.J. 89Davies,J. -1 0 0.13 0.67 0.18 0 0.33 0.25 0.20 0.20 0.25 0.20
14Davies,N.J. 30Davies,J. 1 1 0.27 0.67 0.33 0 0.42 0.32 0.49 0.45 0.65 0.54
14Davies,N.J. 98Davies,B.J. -1 0 0.09 0 0 0 0.03 0.02 0.02 0.02 0.02 0.02
65Davies,J. 68Davies,N.J. 0 1 0.18 0.67 0.36 0 0.40 0.30 0.47 0.44 0.44 0.37
65Davies,J. 89Davies,J. -1 0 0.08 1 0.25 0 0.44 0.33 0.28 0.27 0.33 0.27
65Davies,J. 30Davies,J. 1 1 0.16 1 0.18 0 0.45 0.33 0.54 0.47 0.67 0.56
65Davies,J. 98Davies,B.J. -1 0 0.10 0.67 0 0 0.25 0.19 0.19 0.15 0.19 0.15
68Davies,N.J. 89Davies,J. -1 0 0.18 0.67 0.31 0 0.38 0.29 0.22 0.23 0.29 0.23
68Davies,N.J. 30Davies,J. -1 1 0.20 0.67 0.25 0 0.37 0.28 0.47 0.42 0.53 0.42
68Davies,N.J. 98Davies,B.J. -1 0 0.12 0 0 0 0.04 0.03 0.03 0.02 0.03 0.02
89Davies,J. 30Davies,J. -1 0 0.16 1 0.15 0 0.44 0.33 0.29 0.26 0.33 0.26
89Davies,J. 98Davies,B.J. -1 0 0.20 0.67 0.12 0 0.33 0.25 0.22 0.20 0.25 0.20
30Davies,J. 98Davies,B.J. -1 0 0.30 0.67 0 0 0.32 0.24 0.24 0.19 0.24 0.19
Accuracy 73.33 73.33 100 100 100 100
KEY:P=Sharing Publication Page, F=Identical Full Name, A=Abstract Similarity
I=Initials Similarity, T=Title Similarity, C=Co-author Similarity
C1=AIT, C2=AITC, C3=FAIT, C4=FAITC, C5=PFAIT, C6=PFAITC

features. As discussed earlier, the similarity threshold for each different combi-
nation of features needs to be determined empirically. Therefore, we chose the
values that yielded the maximum accuracy for the given combination of features
on the first two authors “D. Smith” and “J. Davies”, and used these threshold
values to evaluate the algorithm’s performance on the remaining authors.

To enable comparison between our approach to name disambiguation and
previous work, we re-created the evaluation sets used in [8] by manually col-
lecting the publications of the six authors named J. Anderson and seven named
J. Smith. The original evaluation used eleven J. Smith authors, but we had to
exclude four of them whose publications we could not find on the web. In com-
parison to the best score of 90% for the six J. Anderson authors reported in
[8], our approach obtained 97.01% accuracy using all features (i.e. including the
mined information). In case of J. Smith, [8] obtained accuracy of about 90%,
whereas the accuracy obtained by our algorithm (although only for 7 authors in
comparison to their 11 J. Smith authors) is 97.78%.

Since the main goal of this work is to identify which features lead to the best
performance, we carried out an analysis of the results and the most interesting
findings are as follows:

1. In some cases (e.g. D. Smith, J. Anderson), the combination of basic features
(such as abstract, initials and title similarities) performed better than any
other combinations. There are two reasons: (1) in these cases there were
many similar words in the paper titles and abstracts, thus leading to high
similarity scores on these features; and (2) some of these authors do not



340 N. Aswani, K. Bontcheva, and H. Cunningham

Table 4. Evaluation of instance disambiguation for various authors

Name AIT AITC FAIT FAITC PFAIT PFAITC
threshold 0.4 0.26 0.4 0.4 0.35 0.385
D. Smith(7) 95.24 95.24 85.71 85.71 80.95 90.48
J. Davies(6) 73.33 73.33 100 100 100 100
Cooper(5) 90 90 90 90 90 90
Brown(10) 100 100 100 100 100 100
Jones(10) 93.28 93.28 99.16 99.16 98.32 99.16
J. Anderson(6) 97.01 97.01 77.61 88.06 85.07 97.01
J. Smith(7) 93.33 93.33 84.44 95.56 93.33 97.78
Mean 94.72 94.72 90.24 94.56 93.34 96.79

maintain their own publication pages or the web mining algorithm was not
able to find them.

2. Co-authorship information does not help in most cases in our dataset. Given
100 author IDs, each ID pair referring to the same author, the algorithm
was able to find only 23 author IDs where there was some overlap in the
co-authors. On the other hand, surprisingly, we could find only 1 overlap in
the names of co-authors among 300+ author ID pairs, where the authors
were not identical. The first and the second columns in Table 4 show that
there is no change in the results after co-authorship information is added.

3. Although though the algorithm for identifying authors’ publication pages is
very efficient, due to various limitations of the Google API (such as commu-
nication problems with the main Google server), results7 are not guaranteed
every time a query is issued. On the other hand, the Yahoo search engine’s
ranking algorithm has a poorer performance than Google’s, so there is often
a trade-off in using them.

4. As explained earlier, if the authors’ full names are known, the names them-
selves can be used as the first disambiguation step (e.g. see results for “Jones”
in Table 4). But in some cases (e.g. J. Anderson), where all the names in
the dataset have the same first name “James”, the similarity for each such
pair will be equal to 1 (given that the middle name can not be identified or
it is the same). Also, the initials similarities will be nearing 1. In such cir-
cumstances, the features such as full name similarity and initials similarity
do not contribute much and should not be used on their own.

5. Last but not least, it must be noted that the evaluation experiments reported
here are somewhat limited by the lack of bigger human-annotated datasets.

6 Conclusion and Future work

This paper addresses the instance unification problem and presents a fully auto-
matic method which, given an ontology and an author name (either surname or
7 A result is a valid response from the Google server (i.e. it may return a set of

documents, or no documents). By the term communication problems, we mean that
the server encounters some errors and does not respond correctly.



Mining Information for Instance Unification 341

initials and surname), retrieves the author IDs (instances) and relevant publica-
tions for the given name. It then tries to unify all instances which refer to the
same individual in the real world. Citation information typically used in citation
matching and author name disambiguation work is used as a basis (i.e., abstract,
initials, titles and co-authorship information). The novel aspect is in the use of
web mining in order to retrieve the full name of a given author and to find a
publication page which contains the publications corresponding to the author
IDs being considered for unification.

The approach is evaluated in a number of experiments carried out over some
of the ambiguous author names in our ontology (i.e. “D. Smith”, “J. Smith”,
“J. Davies”, “J. Anderson” etc.). Since the aim of this work is to identify a
set of relevant features that can be used for the instance disambiguation task,
we perform an analysis over the results. In addition, we demonstrate that the
information mined from the web leads to a substantial performance improvement
on previous name disambiguation work using the J. Anderson and J. Smith
dataset.

In our approach the two values weight and threshold are very important in de-
ciding whether the two author IDs refer to the same person. For the experiments
shown in this paper, equal weight was assigned to all features and the threshold
was determined from the results of two authors “J. Davies” and “D. Smith”.

As part of our future work, we will assign different weights to the features
based on their importance and contribution in the overall result. Most of the
previous work on instance disambiguation is based on Machine Learning (ML)
algorithms. Having identified the correct combinations of relevant features, the
next task will be to use these features and train some ML model (e.g., SVM
or Naive Bayes). The threshold value, which helps in transforming probabilistic
results into the exact results, will be derived for different combinations of fea-
tures. According to the results “sameIndividualAs” statements will be added to
the ontology.

References

1. H. Alani, S. Dasmahapatra, N. Gibbins, H. Glaser, S. Harris, Y. Kalfoglou,
K. O’Hara, and N. Shadbolt. Managing Reference: Ensuring Referential Integrity of
Ontologies for the Semantic Web. In 13th International Conference on Knowledge
Engineering and Knowledge Management (EKAW02), pages 317–334, Siguenza,
Spain, 2002.

2. J. Bruijn and A. Polleres. Towards An Ontology Mapping Specification Language
For the Semantic Web. Technical report, Digital Enterprise Research Institute,
2004.

3. F. Ciravegna, S. Chapman, A. Dingli, and Y. Wilks. Learning to Harvest Infor-
mation for the Semantic Web. In Proceedings of the 1st European Semantic Web
Symposium, Heraklion, Greece, May 2004.

4. H. Cunningham, D. Maynard, K. Bontcheva, and V. Tablan. GATE: A Framework
and Graphical Development Environment for Robust NLP Tools and Applications.
In Proceedings of the 40th Anniversary Meeting of the Association for Computa-
tional Linguistics (ACL’02), 2002.



342 N. Aswani, K. Bontcheva, and H. Cunningham

5. D. G. Feitelson. On identifying name equivalences in digital libraries. Information
Research, 9(4), 2004.

6. R. V. Guha and A. Garg. Disambiguating People in Search. In Proceedings of the
13th World Wide Web Conference (WWW 2004), ACM Press, 2004.

7. H. Han, C. L. Giles, and H. Zha. A model-based k-means algorithm for name dis-
ambiguation. In Proceedings of the 2nd International Semantic Web Technologies
for Searching and Retrieving Scientific Data, Florida, USA, 2003.

8. H. Han, L. Giles, H. Zha, C. Li, and K. Tsioutsiouliklis. Two supervised learning
approaches for name disambiguation in author citations. In Proceedings of the 4th
ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’04), 2004.

9. G. S. Mann and D. Yarowsky. Unsupervised personal name disambiguation. In
W. Daelemans and M. Osborne, editors, Proceedings of the 7th Conference on
Natural Language Learning (CoNLL-2003), pages 33–40. Edmonton, Canada, May
2003.

10. B. Wellner, A. McCallum, F. Peng, and M. Hay. An integrated, conditional model
of information extraction and coreference with application to citation matching. In
Proceedings of the 20th conference on Uncertainty in artificial intelligence, pages
593 – 601, Banff, Canada, 2004.



The Summary Abox: Cutting Ontologies
Down to Size

Achille Fokoue1, Aaron Kershenbaum1, Li Ma2,
Edith Schonberg1, and Kavitha Srinivas1

1 IBM Watson Research Center,P.O.Box 704, Yorktown Heights, NY 10598, USA
{achille, aaronk, ediths, ksrinivs}@us.ibm.com

2 IBM China Research Lab, Beijing 100094, China
malli@cn.ibm.com

Abstract. Reasoning on OWL ontologies is known to be intractable in
the worst-case, which is a serious problem because in practice, most OWL
ontologies have large Aboxes, i.e., numerous assertions about individu-
als and their relations. We propose a technique that uses a summary of
the ontology (summary Abox) to reduce reasoning to a small subset of the
original Abox, and prove that our techniques are sound and complete. We
demonstrate the scalability of this technique for consistency detection in
4 ontologies, the largest of which has 6.5 million role assertions.

1 Introduction

Description Logic (DL) provides the theoretical foundation for semantic web
ontologies (OWL). A DL ontology can be divided conceptually into three com-
ponents: the Tbox, the Rbox and the Abox. The Tbox contains assertions about
concepts such as subsumption (Man 
 Person) and equivalence (Man ≡
MaleHuman). The Rbox contains assertions about roles and role hierarchies
(hasSon 
 hasChild). The Abox contains role assertions between individuals
(hasChild(John, Mary)) and membership assertions (John : Man).

All common reasoning tasks in expressive DL ontologies, such as query an-
swering [1], reduce to consistency detection. As an example, a standard approach
to testing if John is a member of the concept Man requires testing if the addi-
tion of the assertion (John : ¬Man) makes the Abox inconsistent. A challenge
is that consistency detection in expressive DL is well known to be intractable
in the worst-case [2]. Given that the size of an Abox may be in the order of
millions of assertions, this complexity poses a serious problem for the practi-
cal use of DL ontologies, which often reside in frequently updated transactional
databases. Although highly optimized DL tableau algorithms exist, they can-
not be easily adapted to Aboxes in secondary storage, especially for frequently
changing Aboxes. One approach that has been applied to reasoning on Aboxes
in secondary storage is to convert DL to disjunctive datalog, and use deductive
databases to reason over the Abox [3].

We propose an alternative technique that operates on Aboxes stored in tra-
ditional relational databases. Our technique exploits a key observation about

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 343–356, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



344 A. Fokoue et al.

real world Aboxes, namely, similar individuals are related to other individuals
in similar ways (e.g. fathers and mothers are related to their children by the
hasChild role). Specifically, our technique builds a summary Abox A′ of the
original Abox A, by aggregating similar individuals and assertions. The advan-
tages of our summary Abox A′ are: (a) A′ is dramatically smaller than A; (b)
Reasoning on A′ isolates a small relevant portion of A needed to obtain the cor-
rect answer; (c) A′ can be computed efficiently using straightforward relational
database queries; (d) A′ can be maintained as changes occur to A, and is thus
resilient to change; (e) A′ only needs to be computed once, and can be reused
for answering subsequent queries.

To isolate relevant portions of A for a specific reasoning task, we introduce
efficient filtering techniques that operate on A′. In this paper, we demonstrate
the utility of such filtering techniques for the task of Abox consistency detec-
tion, although the approach can be generalized to query answering. Our filtering
techniques are based on the conservative assumption that any individual in the
Abox may be inferred to be a member of any concept in the closure of the Abox.
Informally, the closure is the set of concepts used in the Abox, and their sub-
expressions. (To generalize this to query answering, the closure would include
the negated concept in the query.) The effect of filtering is to produce multiple
partitions in the summary Abox. In practice, most partitions consist of a single
individual, which can be checked with a concept satisfiability test. For partitions
of A′ with multiple individuals, if the partition is consistent, then the image in
A that corresponds to the partition is also consistent. If a partition is inconsis-
tent, the inconsistency could arise from either the summarization technique, or
a real inconsistency in the original Abox. In this case, we perform a consistency
check on the image in A of the inconsistent partition in A′.

Our techniques proved very effective on the 4 large Aboxes that we studied:
a vast majority of partitions (95%) had just one individual. Only one of the
4 ontologies we studied required us to check the image of the partition in the
original Abox. Even in this case, our consistency check was performed in 6.3 s
on 4045 individuals and 2942 role assertions instead of the 1,106,858 individuals
and 6,494,950 role assertions in the entire Abox.

Our key contributions in this paper are as follows: (a) We present a technique
to summarize an Abox in secondary storage into a dramatically smaller A′. (b)
We describe the use of filtering techniques to construct a reduced version of A′.
This filtering produces many partitions, which are then exploited in scaling the
consistency check. The filtering techniques we describe works for SHIN Aboxes
(SHIN is a DL language that is described in the Background). (c) We show
the application of these techniques to 4 ontologies, where we show dramatic
reductions in space and time requirements for consistency checking.

1.1 Background

The techniques we apply in this paper assume ontologies of SHIN expressiveness.
In this section, we briefly introduce the semantics of SHIN, which is equivalent to
OWL-DL (http://www.w3.org/2001/sw/WebOnt)minus nominals and datatype



The Summary Abox: Cutting Ontologies Down to Size 345

reasoning, as shown in Table 1 (We assume the reader is familiar with Description
Logics). In the definition of the semantics of SHIN, I= (ΔI , .I) refers to an
interpretation where ΔI is a non-empty set (the domain of the interpretation),
and .I , the interpretation function, maps every atomic concept C to a set CI ⊆
ΔI , every atomic role R to a binary relation RI ⊆ ΔIXΔI , and every individual
a to aI ∈ ΔI . Trans(R) in the table refers to a transitive role R.

Table 1. SHIN Description Logic

Definitions Semantics
C � D CI ∩ DI

C � D CI ∪ DI

¬C ΔI\CI

∃R.C {x|∃y. < x, y >∈ RI , y ∈ CI}

∀R.C {x|∀y. < x, y >∈ RI ⇒ y ∈ CI}

≤ nR {x| |{< x, y >∈ RI}| ≤ n}

≥ nR {x| |{< x, y >∈ RI}| ≥ n}

R− {< x, y > | < y, x >∈ RI}

Axioms Satisfiability conditions
Trans(R) (RI)+ = RI

R � P < x, y >∈ RI ⇒< x, y >∈ P I

C � D CI ⊆ DI

a : C aI ∈ CI

R(a, b) < aI , bI >∈ RI

a ˙�=b aI �= bI

(a) Constructors (b) Axioms

An RBox R is a finite set of transitivity axioms of the form Trans(R) and
role inclusion axioms of the form R 
 P where R and P are roles. 
∗ denotes
the reflexive transitive closure of the 
 relation on roles. A Tbox T is a set
of concept inclusion axioms of the form C 
 D where C and D are concept
expressions. An Abox A is a set of axioms of the form a : C, R(a, b), and a ˙�=b.

An interpretation I is a model of an Abox A w.r.t. a Tbox T and a Rbox
R iff it satisfies all the axioms in A, R, and T (see Table 1(b)). An Abox A is
said to be consistent w.r.t. a Tbox T and a Rbox R iff there is a model of A
w.r.t. T and R. If there is no ambiguity from the context, we simply say that
A is consistent. A standard technique for checking the consistency of a SHIN
Abox is to use a tableau algorithm [4], which executes a set of non-deterministic
expansion rules to satisfy constraints in A until either no rule is applicable or
an obvious inconsistency (clash) is detected.

2 Summary Abox

Intuitively, the Abox contains many redundant assertions from the point of view of
consistency checking that can be collapsed to create a reduced summaryAbox. The
summary Abox captures this redundancy by collapsing across individuals that are
members of the same concept sets as shown in Figures 1 and 2 below. As shown in
Figure 2, a single node a represents a1 and a2 because they are both members of
A, and they are not explicitly asserted to be different from each other (similarly for
b and d). Any explicit assertions that two individuals are different from each other
(c1 and c2) are maintained in the summary Abox. Reasoning over such a summary
corresponds to reasoning over the original Abox, as shown formally below.



346 A. Fokoue et al.

Fig. 1. Original Abox Fig. 2. Canonical Summary Abox

Definition 1. A summary Abox is an Abox A′ that is generated from any SHIN
Abox A using a mapping function f that satisfies the following constraints:

(1) if a : C ∈ A then f(a) : C ∈ A′

(2) if R(a, b) ∈ A then R(f(a), f(b)) ∈ A′

(3) if a ˙�=b ∈ A then f(a) ˙�=f(b) ∈ A′

Theorem 2. If the summary Abox A′ obtained by applying the mapping func-
tion f to A is consistent w.r.t. a Tbox T and a Rbox R, then A is consistent
w.r.t. T and R.
However, the converse of Theorem 2 does not hold.

Proof. Let us assume that A′ is consistent w.r.t. T and R. Therefore there is a
model I ′ = (ΔI′

, .I
′
) of A′ w.r.t. T and R. A model of A can easily be built from

I′ by interpreting an individual a in A in the same way as f(a) is interpreted
by I ′. Formally, let I = (ΔI , .I) be the interpretation of the A w.r.t. T and R
defined as follows: ΔI = ΔI′

; for a concept C ∈ T , CI = CI′
; for a role R in R,

RI = RI′
; for an individual a in A, aI = f(a)I

′
. I is a model of A w.r.t. T and

R as a direct consequence of the fact that I′ is a model of A′ and A′ satisfies
the 3 conditions stated in definition 1 (See [5] for more details). 	�
Let L be a mapping from each individual in A to a set of concepts, such that
a : C ∈ A iff C ∈ L(a). We call L(a) the concept set of a. In practice, we
use a canonical function f to create a summary Abox, which maps non-distinct
individuals that have identical concept sets to the same individual in A′. More
precisely, the converse of constraints (1) and (3) hold for the canonical summary,
and:

(4) If R(a′, b′) ∈ A′ then there are a and b in A such that a′ = f(a), b′ = f(b) and
R(a, b) ∈ A.

(5) If for all x ∈ A, a ˙�=x /∈ A, b ˙�=x /∈ A, and L(a) = L(b), then f(a) = f(b).
(6) f(a) ˙�=f(b) ∈ A′ implies a is the only individual in A mapped to f(a) (same for b).

If a summary Abox A′ is not consistent, either there is a real inconsistency in
A or the process of summarization caused an artificial inconsistency. In section
3.4, we explain how we apply filtering to partition the summary, to provide
a scalable consistency check of the original Abox even when the summary is



The Summary Abox: Cutting Ontologies Down to Size 347

inconsistent. Note that the summary Abox can be computed efficiently from a
relational database. Furthermore, it only needs to be computed once, and can
be maintained incrementally with changes to the Abox.

3 Abox Filtering

We perform filtering on the canonical summary Abox described in Section 2, but
for the purpose of exposition, we describe filtering techniques on the original Abox
first. Our filtering technique assumes that the Tbox T is transformed, through
splitting and absorption [6], into two disjoint sets Tu and Tg such that Tu, the
unfoldable part of T , only contains axioms of the form A 
 D and ¬A 
 D,
where A is an atomic concept. Tg contains general concept inclusions of the form
C 
 D that could not be absorbed in Tu (where C is a complex concept).

We assume that for an Abox A, an Rbox R, and a Tbox T = Tu ∪ Tg, all
concepts appearing in T and A are in the negation normal form (NNF). For a
concept expression C in NNF, clos(C, T ,R) is the smallest set X containing C,
closed under concept sub-expression, such that, for an atomic concept A, (1) if
A ∈ X and A 
 D ∈ Tu, then D ∈ X , (2) if ¬A ∈ X and ¬A 
 D ∈ Tu, then
D ∈ X , and (3) if ∀P.C ∈ X and there is a role R with R 
∗ P and Trans(R),
then ∀R.C ∈ X . Formally, we define the closure of A w.r.t. T and R, denoted
clos(A, T ,R), as

⋃
a:C∈A clos(C, T ,R) ∪

⋃
C
D∈Tg

clos(NNF (¬C) � D, T ,R).
When there is no ambiguity, we use clos(A) instead of clos(A, T ,R).

3.1 Motivation

To provide an intuition for our criteria for filtering role assertions, we first in-
formally describe a subset of tableau expansion rules defined in [4]. We assume
that a and b are named individuals in A, x is an unnamed individual, C is a
concept in clos(A), and R is a role. Named individuals are in A before applying
any expansion rules, while unnamed individuals are introduced as a result of
expansion rules. An individual b is defined to be an R-neighbor of a iff there is
an assertion Q(a, b) or Q−(b, a) in A where Q 
∗ R.

∀-rule: a : (∀R.C) ∈ A, b is an R-neighbor of a, and b : C /∈ A ⇒ add b : C to A.
≤-rule: a : (≤ nR) ∈ A and, for 1 ≤ i ≤ m, m > n, bi is an R-neighbor of a, and for two of these

bk and bj the assertion bk
˙�=bj is not in A ⇒

(i) Merge (identify) bj with bk (the precise rules to determine which of bj or bk is selected
is detailed in [4].)

(ii) add the assertions in L(bj) to L(bk)
(iii) for every role assertion with bj , replace bj with bk. In effect, this step adds new role

assertions to the A.
∃-rule: a : (∃R.C) ∈ A and for R-neighbors b of a, b : C /∈ A ⇒ add R(a, x) and x : C to A.
≥-rule: a : (≥ nR) ∈ A and a does not have n distinct R-neighbors ⇒ add R(a, xi) to A, 1 ≤ i ≤ n

where the xi are new distinct unnamed individuals.
∀+-rule: a : ∀R.C ∈ A, P 
∗ R is transitive, b is a P -neighbor of a, and b : (∀P.C) /∈ A ⇒ add

b : (∀P.C) to A.

We make the key observation that role assertions of the form R(a, b) may
affect the outcome of an execution of the tableau algorithm only if one of the
following two conditions holds:



348 A. Fokoue et al.

1. They can be used to trigger the application of tableau rules that alter the
original Abox. As an example of such alteration, a role assertion can be
used to add new membership assertions about named individuals (e.g., a
new concept C can be propagated to b’s concept set through a role assertion
R(a, b) by the application of the ∀ rule on a if a : (∀R.C) ∈ A, and b is an
R-neighbor of a).

2. They can be involved in clash detection due to a violation of a maximum
cardinality restriction. As an example, if a : (≤ nR) is in the Abox and b is
one of n + 1 mutually distinct R-neighbors of a, then R(a, b) is important
for clash detection.

These conditions can only be brought about by either the application of the ∀,
≤ or ∀+-rules or the presence of a maximum cardinality constraint. In contrast,
the ∃-rule and ≥-rule do not use existing role assertions R(a, b); instead, they
result in the creation of new role assertions and new unnamed individuals for
satisfying the ∃R.C and ≥ nR constraints.

3.2 Criteria for Filtering Role Assertions

Our filtering criteria guarantee that the absence of a role assertion will not af-
fect the outcome of any execution of the non-deterministic tableau algorithm.
Our goal is to define criteria which are efficient to evaluate using simple queries
against relational databases, while balancing the tradeoff between filtering pre-
cision and cost. For instance, by assuming any concept in the clos(A) can reach
the concept set of any individual in the Abox during any execution of the tableau
algorithm, we avoid tableau operations which are expensive in relational data-
bases. We will say that a role R is part of a universal restriction ∀P.C iff R 
∗ P .
(Similarly for maximum cardinality restriction).

To filter a role assertion R(a, b), it must satisfy either 1) or both 2) and 3):

1) Absence of universal and maximum cardinality restrictions: We make
the simple observation that if a role R and its inverse R− are not part of any
universal or maximum cardinality restrictions, then R(a, b) can never be used to
alter the original Abox or detect a clash, so it can be ignored.
2) Absence of universal rules triggering: Even if R is part of a universal
restriction, it may never trigger the application of the universal rules ( ∀+, ∀). We
define the conditions under which we can guarantee that the universal rules will
never be triggered as follows. If R (resp. R−) is part of a universal restriction
∀P.C in clos(A), then R(a, b) is irrelevant with respect to ∀P.C if b : C ∈ A
(resp. a : C ∈ A) and R (resp. R−) has no transitive superroles.

To satisfy the filtering condition, R(a, b) must be irrelevant with respect to
all universal restrictions ∀P.C in clos(A), where R or R− is part of ∀P.C.
3) Absence of maximum cardinality restrictions triggering: For the ≤-
rule to be triggered, there needs to be a violation of a maximum cardinality
constraint a :≤ nP , where the individual a has more than n P -neighbors, which
then causes a merger between individuals. We introduce a technique to conser-
vatively estimate an upper bound on P -neighbors, such that at any step of any



The Summary Abox: Cutting Ontologies Down to Size 349

possible execution of tableau algorithm, the number of P -neighbors of a is less
than or equal to this upper bound. If R (resp. R−) is part of a maximum car-
dinality restriction ≤ nP in clos(A), then R(a, b) is irrelevant with respect to
≤ nP if the upper bound on the number of P -neighbors of a (resp. b) is less
than or equal to n. Note that this also guarantees that no clash can occur from
the presence of the role assertion.

To satisfy the filtering condition, R(a, b) must be irrelevant with respect to
all maximum cardinality restrictions ≤ nP in clos(A), where R or R− is part of
≤ nP .

Upper bound on the number of P -neighbors. Unfortunately, in expressive
logics such as SHIN, computing an upper bound does not simply involve counting
the number of explicit P -neighbors of a that are present in A. Figure 3 shows
examples of the three ways that an individual a can acquire a new P -neighbor
during the execution of the tableau algorithm:

3(A) Individual a acquires a new P -neighbor x, where x is an unnamed indi-
vidual, to satisfy ∃P.C in a’s concept set.

3(B) Individual a is merged with a named individual d and acquires a new P -
neighbor in order to satisfy a maximum cardinality restriction c :≤ nQ.

3(C) Individual a is merged with an unnamed individual x and acquires a
new P -neighbor c, where c is either a named or unnamed individual.
This occurs in this example because of two conditions: (i) there is a role
S− that is attracted to P− because a common super role Q is part of
a maximum cardinality restriction and (ii) a role generator of the form
∃T.B or ≥ mT is in the concept set of c, where T 
∗ P−.

Fig. 3. Acquisition of P -neighbors

Accounting for P -neighbors acquired through situations like 3(B) and 3(C) is
not obvious. Therefore we define sufficient conditions under which these situa-
tions cannot occur, so that an upper bound of a′s P -neighbors can be computed
safely and efficiently. If any of these conditions are violated, then a merger of
a may result in an increase of its number of P -neighbors, and hence we do not
filter R(a, b):

(C1) P is safe in A.
Intuitively, the notion of safety ensures that a merger of a named individ-
ual a with an unnamed individual x that would increase the number of P -
neighbors of a, as illustrated in 3(C), cannot occur. If P is safe, then either



350 A. Fokoue et al.

condition (i) or (ii) in 3(C) must be false. More generally, for a given role
P , we say that T belongs to the set attractant(P ) iff there is a role Q such
that P 
∗ Q, T 
∗ Q, and ≤ nQ ∈ clos(A). A role P is safe if one of the
two conditions hold: (a) attractant(P ) ⊆ {P} and attractant(P−) ⊆ {P−}
(b) For all subroles Q of P or P− there are no Q-generators (i.e. ≥ mQ or
∃Q.C) in clos(A).

(C2) For any role Q, if a is a Q-neighbor of some named individual c then
there is no concept of the form (≤ nQ) in clos(A).

(C3) For any role S, if some named individual c is a S-neighbor of a and ≤ nS
is in clos(A), then S is safe in A.

Conditions (C2) and (C3) ensure that a merger of a and a named individual
as illustrated in 3(B) is impossible. (C2) by itself is not sufficient because, even
if Q is not part of a maximum cardinality restriction, Q− may have an attrac-
tant T−, where ∃T−B is in the concept set of a. As described in 3(C), these
conditions can cause a merger between c and an unnamed individual x, so that
a becomes a T -neighbor of c. If T is part of a maximum cardinality restriction,
a itself may become mergable. Condition (C3) prevents mergers between c and
unnamed individuals that would make a a T -neighbor of c, thus preventing a
from becoming mergable.

If a and P satisfy (C1), (C2) and (C3), an upper bound on the number of
P -neighbors can be computed using the following formula:

|P (a)| + |Some(P, a)| +
≥mP ∈Min(P,a)

m

where before the application of any tableau rules, |P (a)| denotes the number of
P -neighbors of a, Some(P, a) = {∃P.C ∈ clos(A) | there is no P -neighbor d of
a such that d : C ∈ A }, and Min(P, a) = {≥ mP ∈ clos(A) | there are no
individuals di such that, for 1 ≤ i ≤ m , di is a P -neighbors of a, and if j �= k,
then dk

˙�=dj ∈ A }
Intuitively, the upper bound is the sum of the explicit P -neighbors of a be-

fore the application of tableau rules, plus the maximum number of unnamed
individuals that can be generated by the application of the ∃- and ≥- rules,
excluding any existential or minimum cardinality restrictions that are already
satisfied prior to the application of tableau rules.

3.3 Correctness of Filtering Criteria

Since some of the notions introduced in the previous section are defined in the
context of the tableau algorithm, we first briefly present some important concepts
related to this algorithm. As described in [4], the tableau algorithm operates on
completion forest F = (G,L, ˙�=, =̇) where G is graph; L is a mapping from a
node x in F to a set of concepts, L(x), in clos(A), and from an edge < x, y >
in F to a set of roles, L(< x, y >), in R; =̇ is an equivalence relation on nodes
of G; and ˙�= is the binary relation distinct from on nodes of G. To check the
consistency of A, F is initialized as follows. There is a node a in G iff there is an
individual a in A. < x, y > is an edge in G with R ∈ L(< x, y >) iff R(x, y) ∈ A.



The Summary Abox: Cutting Ontologies Down to Size 351

For x and y in G, x ˙�=y iff x ˙�=y ∈ A. A root node a is a node present in the initial
forest, and unnamed nodes are created by ∃ and ≥ rules.

Next, we show that conditions (C1), (C2) and (C3) in Section 3.2 are sufficient
to rule out mergers which can increase the number of P -neighbors as shown in
Figure 3(B) and (C). Lemma 3 below is an important step towards this goal.

Lemma 3. Let P be a role that is safe in A. At any step of any execution of the
tableau algorithm on A, the following holds: if there is an unnamed node x such
that P or P− is in the L(< parent(x), x >), then |L(< parent(x), x >)| = 1,
where parent(x) denotes the parent node of x in the completion forest (Note
that in a SHIN completion forest, unnamed nodes are always in a tree rooted at
a root node).

Proof. Easily proven by induction on the iterations of the tableau algorithm.
See [5] for more details. A direct consequence of this lemma is that a merger
between a and an unnamed node cannot increase the number of P -neighbors of
a if P is safe (See [5] for more details).

Now, we need to prove that if (C2) and (C3) are satisfied for a named indi-
vidual a, a cannot be merged with another named individual. First, we formally
define the notion of mergeability with a named individual.

Definition 4. A named individual a in A is mergeable with named individuals
in A iff there is at least one execution of the tableau algorithm on A such that,
at some step, the root node a is merged with another root node b. When there
is no ambiguity, we simply say that a is mergeable.

Theorem 5: If a named individual a in A satisfies conditions (C2) and (C3),
then a is not mergeable with named individuals in A.

Proof Sketch. By induction on the iterations of the tableau algorithm using
Lemma 3 [5]. 	�

Finally, the correctness of our filtering criteria relies on the following theorem:

Theorem 6. A role assertion R(a, b) can safely be ignored in an Abox A if it
is irrelevant with respect to universal restrictions and irrelevant with respect to
maximum cardinality restrictions, as defined in section 3.2.

Proof. Let R(a, b) be a role assertion irrelevant w.r.t. maximum cardinality
and universal restrictions in an Abox A. Let A′ be the Abox defined as A′ =
A − {R(a, b), R−(b, a)}. If A is consistent, A′ is obviously consistent. We show
that if A′ is consistent, a model of A can be constructed by applying the tableau
algorithm rules in a particular way. 1

First, for a root node c in the completion forest F , the root node α(c) is
defined as follows (Informally, α(c) corresponds to the node in which c has been
directly or indirectly merged): if L(c) �= ∅ then α(c) = c; otherwise, α(c) = d,
where d is the unique root node in F with L(d) �= ∅ and d=̇c.

1 A direct model-theoretic proof cannot easily be provided here, see [5] for details.



352 A. Fokoue et al.

Since A′ is consistent, we can apply the tableau expansion rules on A′ without
creating a clash in such a way that: (1) ∃-rule is never triggered to satisfy a
constraint ∃P.C ∈ L(α(a))(resp. L(α(b))) where ≤ nP ∈ clos(A), R (resp. R−)
is part of ≤ nP , and b : C ∈ A (resp. a : C ∈ A); and (2) ≥-rule is never triggered
to satisfy a constraint ≥ nP ∈ L(α(a)) (resp. L(α(b))) where ≤ nP ∈ clos(A),
R (resp. R−) is part of ≤ nP , and, in the Abox A, b (resp. a) is one of n
P -neighbors of a (resp. P -neighbors of b) explicitly asserted to be distinct. Such
a rule application yields a clash-free completion forest F , and the only nodes on
which expansion rules may be applicable are α(a) and α(b) (The only applicable
rules are ∃-rule and ≥-rule).

Next, we modify F to create a completion forest F ′ by adding to F the edge
< α(a), α(b) > if it was not already in F , and by adding R to L(< α(a), α(b) >
), if it was not already there. We show that F ′ is complete (i.e. no rules are
applicable) and clash-free. The fact that, in F ′, R ∈ L(< α(a), α(b) >) ensures
that the ∃ and ≥ rules, which may have been applicable on α(a) or α(b) in F , are
not applicable on α(a) and α(b) in F ′. However, the same fact may now make
the ∀, ∀+, ≤, and ≤r rules applicable on α(a) or α(b) in F ′. We show that this
cannot be the case.

The definition of irrelevance w.r.t. universal restrictions given in section 3.2
obviously ensures that ∀ and ∀+ rules are not applicable on α(a) or α(b) in F ′.
≤, and ≤r rules are not applicable on α(a) or α(b) in F ′ as a direct consequence
of the following claim: Claim: if R(a, b) is irrelevant w.r.t ≤ nP ∈ clos(A) and R
(resp. R−) is part ≤ nP , then the number of P -neighbors of a (resp. P -neighbors
of b) in F is less than or equal to n. Furthermore, if it is equal to n, then, in F ,
α(b) is a P -neighbor of α(a) (resp. α(a) is a P -neighbor of α(b)).

The proof of this claim is a direct consequence of Lemma 3, Theorem 5 and
the fact that the upper-bound (defined in section 3.2) of P -neighbors of a is less
than or equal to n (See [5] for more details).

The addition of R ∈ L(< α(a), α(b) >) to F cannot create a clash of the form
{C,¬C} in F ′, and the previous claim implies that a clash in F ′ due to a violation
of a maximum cardinality constraint on α(a) or α(b) is not possible. Thus, F ′

is a complete clash-free completion forest such that R ∈ L(< α(a), α(b) >).
Therefore, a tableau for A can be built from F ′ as in [4], so A has a model. 	�

3.4 Summary Abox Filtering

We apply the filtering criteria described in Section 3.2 to a canonical summary
Abox A′. For correctness with respect to cardinality restrictions, we need to
augment the canonical summary Abox with role assertion statistics, since role
assertions are merged by the summary Abox transformation. For each role R
that is part of a cardinality restriction, we associated with R the maximum
number of R-neighbors that any individual a has in A. With this augmentation,
it is clear that the proofs in Section 3.3 apply to the canonical summary Abox.

Typically, filtering A′ creates distinct partitions, and we apply the tableau
algorithm to each partition separately. If all of the partitions are consistent,
then we are done. Otherwise, we need to check A. However, even when A′ itself



The Summary Abox: Cutting Ontologies Down to Size 353

is inconsistent, some of its partitions may be consistent, and we only have to
check portions of A which correspond to the filtered inconsistent partitions of A′.
Thus, partitioning a summary Abox is an effective way of isolating a potential
inconsistency in A. Furthermore, filtering A′ is very efficient since A′ is relatively
small. For partitions consisting of a single individual, checking consistency is just
checking concept satisfiability.

More precisely, let A′
p be a partition of individuals and assertions in A′. The

image of A′
p in A is defined to be the maximum subset of the individuals and

assertions in A which map to A′
p via the summary Abox function f. If a role

assertion R(a, b) is irrelevant in A′, then all role assertions in its image in A
are also irrelevant. By theorem 2, if a partition A′

p is consistent, then its entire
image in A can be ignored. Finally, retrieving the image in A of an inconsistent
partition A′

p is a simple database operation.
For example, suppose we filter all R-role assertions from the summary Abox

A′ in Figure 2. The resulting summary Abox shown in Figure 4 consists of three
partitions: X, Y, and Z. We run the consistency check on each partition. For
singleton partition Z, we just need to check concept satisfiability. Assuming only
partition X is inconsistent, we need to check only the consistency of its image
in A, shown in Figure 5, which is d1, d2 : D; b1− b6 : B; T (d1, b1) and P (d2, b4).
Checking isolated individuals b2, b3, b5 and b6, involves just concept satisfiability.

Fig. 4. Filtered summary Abox Fig. 5. Filtered Abox

4 Computational Experience

We tested our approach on the four ontologies shown in Table 2(a). Their ex-
pressiveness is given in the first column (Exp) of Table 2(a) . The number of
concepts (C) and roles (R) reported in the table reflect concepts and roles ac-
tually used in the Abox. In the tables, R.A. stands for role assertions, and I for
individuals. In all the experiments reported here, the Aboxes were stored in a
relational database on a 64 bit AMD 997 Mhz dual processor 8G RAM machine.
We tested our program as a client to the database server both on a 32 bit single
1.8 Ghz processor 1.5 G RAM machine, and on the 64 bit machine described
above. Running times reported in the tables are in seconds on the 64 bit ma-
chine. On the 32 bit machine the times were 2 times slower, but the program
ran on both machines with minimal space requirements (512 M heap).

The Biopax ontology contains biological pathway data for 11 organisms pub-
licly available from Biocyc (http://biocyc.org). LUBM [7] is a benchmark ontology



354 A. Fokoue et al.

that was scaled to different numbers of universities (5-30) in our experiments. We
used an OWL-DL version of LUBM [8], but with nominals removed. The NIMD
ontology expresses relationships between persons, places and events (http://
ksl.stanford.edu/projects/NIMD/Kani-dl-v1.owl). Its Abox was generated from
text analysis of unstructured documents [9]. The semantic traceability (ST) ontol-
ogy specifies the relationships among software artifacts. Its Abox was generated
from a program that extracted relationships between software artifacts of a mid-
dleware application. The sizes of the last 4 Aboxes shown in Table 2(a) are beyond
the capabilities of in-memory reasoners such as Pellet and KAON2, when tested
on the 64-bit machine with a 4G heap size.

Table 2. ABoxes and Summary Aboxes prior to filtering

Ontology Exp C R I R.A.
Biopax ALCHF 31 40 261,149 582,655
LUBM-1 SHIN 91 27 42,585 214,177
LUBM-5 SHIN 91 27 179,871 927,854
LUBM-10 SHIN 91 27 351,422 1,816,153
LUBM-30 SHIN 91 27 1,106,858 6,494,950
NIMD SHIF 19 27 1,278,540 1,999,787
ST SHI 16 11 874,319 3,595,132

Ontology C R I R.A Time
Biopax 31 40 81 583 46
LUBM-1 91 27 410 16,233 12
LUBM-5 91 27 598 35,375 60
LUBM-10 91 27 673 49,176 128
LUBM-30 91 27 765 79,845 485
NIMD 19 27 19 55 77
ST 16 11 21 183 197

(a) Experimental Aboxes (b) Summaries

Table 2(b) shows the size of the corresponding summary Aboxes prior to any
filtering, and the time to compute the summaries. As noted in earlier sections,
the summary Abox can be computed once, and maintained with changes to the
Abox.

Table 3(a) shows the effectiveness of filtering the summary ABox for the con-
sistency detection test, and the time to perform filtering. Note that the filtering
step is dynamic, i.e., it must be computed on the summary box for each incoming
query. The filtering step can create partitions. In Table 3(a), the first number in
the first column (Sin.+Mult) indicates the number of partitions with single indi-
viduals, and the second number indicates the number of partitions with multiple
individuals. The rest of the columns show the size of the Abox that is left after
removing all partitions with single individuals.

Table 3(b) shows the size of the Abox on which we had to perform the consis-
tency check. All times for the consistency check were measured using the Pellet
OWL reasoner. For those Aboxes where the filtered summary Abox in Table 3(a)
was consistent, the size of the ABox was simply that in Table 3(a) . For some
ontologies, however (e.g., all LUBM ontologies marked with an asterisk), the fil-
tered Abox was inconsistent because of our summarization techniques. For these
ontologies, we had to retrieve the image of the inconsistent partition from the
original Abox. In these cases, the size shown in Table 3(b) is the image of the
partition in the original Abox. Time for consistency check is provided in seconds.
This includes the time for the concept satisfiability check for partitions with sin-
gle individuals, the time for the consistency check on the filtered summary, and



The Summary Abox: Cutting Ontologies Down to Size 355

Table 3. Filtering and consistency check

Ontology Sin.+Mult. C R I R.A. Time
Biopax 42+1 13 1 38 98 1.6
LUBM-1 130+2 28 5 280 284 1.4
LUBM-5 172+2 28 5 426 444 2.1
LUBM-10 199+2 28 5 474 492 2.5
LUBM-30 220+2 28 5 545 574 2.8
NIMD 17+1 2 1 2 1 0.6
ST 3+1 15 2 18 50 0.3

Ontology I R.A. Time Consistent
Biopax 38 98 0.7 Yes
LUBM-1* 140 102 1 Yes
LUBM-5* 644 466 1.5 Yes
LUBM-10* 1283 938 2 Yes
LUBM-30* 4045 2942 3.5 Yes
NIMD 2 1 0.2 Yes
ST - - 0.1 No

(a) Summary Aboxes after filtering (b) Sizes for consistency check

the time for retrieving and checking the image of the inconsistent partition on
the original Abox. As shown in Table 3(b), ST was an inconsistent ontology, but
we determined this purely based on a concept satisfiability check for partitions
with single individuals. We also deliberately injected an inconsistency for one
of the Biopax databases (agrocyc), to check if we could detect an inconsistency
that could not simply be detected by a concept satisfiability check. We were able
to detect that the Abox was inconsistent using our algorithm.

5 Related Work

There are many highly optimized reasoners such as Pellet [10], Racer [11], In-
stanceStore [12], and Kaon2 [3] designed for consistency checking, but only In-
stanceStore and Kaon2 can be extended to Aboxes in secondary storage 2. Kaon2
applies to deductive databases, whereas our techniques work with relational data-
bases. InstanceStore is limited to role-free Aboxes. In theory, Instance Store can
handle Aboxes with role assertions through a technique called precompletion
[13], but this may not be practical for large Aboxes stored in databases be-
cause it could result in an exponential number of Aboxes. Our approach can be
compared with optimization techniques such as model caching and Abox con-
traction [14], and partitioning techniques [15], but again, it is unclear how such
techniques can be applied to large Aboxes in databases.

6 Conclusions

We have demonstrated a technique to scale consistency detection to large Aboxes
in secondary storage by extracting a small representative Abox. Further, we have
shown that, in practice, this technique works efficiently on four large ontologies.
Our plan is to extend this approach to apply more accurate analysis techniques,
extend its applicability to more expressive languages, and to optimize these
techniques for efficient query processing.

2 RacerPro version 1.9.0 does not provide that capability, but its user guide indicates
that it will be available in a future version.



356 A. Fokoue et al.

References

1. Horrocks, I., Tessaris, S.: Querying the semantic web: a formal approach. In Hor-
rocks, I., Hendler, J., eds.: Proc. of the 1st Int. Semantic Web Conf. (ISWC 2002).
Number 2342 in Lecture Notes in Computer Science, Springer-Verlag (2002) 177–191

2. Donini, F.: Complexity of reasoning. In Baader, F., Calvanese, D., McGuinness,
D., Nardi, D., Patel-Schneider, P., eds.: Description Logic Handbook. Cambridge
University Press (2002) 101–141

3. U.Hustadt, Motik, B., Sattler, U.: Reducing shiq description logic to disjunctive
datalog programs. (Proc. of 9th Intl. Conf. on Knowledge Representation and
Reasoning (KR2004)) 152–162

4. Horrocks, I., Sattler, U., Tobies, S.: Reasoning with individuals for the description
logic SHIQ∗. Proc. of 17th Int.Conf. on Automated Deduction (2000) 482–496

5. Fokoue, A., Kershenbaum, A., Ma, L., Schonberg, E., Srini-
vas, K.: Scalable reasoning: Cutting ontologies down to size.
In: http://www.research.ibm.com/iaa/techReport.pdf. (2006)

6. Horrocks, I., Tobies, S.: Reasoning with axioms: Theory and practice.
In: KR. (2000) 285–296

7. Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large owl
datasets. Third International Semantic Web Conference (2004) 274–288

8. Ma, L., Yang, Y., Qiu, Z., Xie, G., Pan, Y.: Towards a complete owl ontology
benchmark. In: Proc. of the third European Semantic Web Conf.(ESWC 2006).
(2006) 124–139

9. Welty, C., Murdock, J.W.: Towards knowledge acquisition from information ex-
traction. In: Proc. of the fifth International Semantic Web Conf.(ISWC 2006).
(2006)

10. Sirin, E., Parsia, B.: Pellet: An owl dl reasoner. In: Description Logics. (2004)
11. Haarslev, V., Moller, R.: Racer system description. Conf. on Automated Reasoning

(IJCAR 2001) (2001) 701–705
12. Bechhofer, S., Horrocks, I., Turi, D.: The owl instance store: System description.

Proc. of 20th Int.Conf. on Automated Deduction (2005) 177–181
13. Tessaris, S., Horrocks, I.: Abox satisfiability reduced to terminological reasoning

in expressive description logics. In: LPAR. (2002) 435–449
14. Haarslev, V., Moller, R.: An empirical evaluation of optimization strategies for abox

reasoning in expressive description logics. Proc. of the International Workshop on
Description Logics (1999) 115–199

15. Grau, B.C., Parsia, B., Sirin, E., Kalyanpur, A.: Automatic partitioning of owl
ontologies using e-connections. In: Description Logics. (2005)



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 357 – 370, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Semantic Metadata Generation for Large Scientific 
Workflows 

Jihie Kim, Yolanda Gil, and Varun Ratnakar 

Information Sciences Institute, University of Southern California 
4676 Admiralty Way, Marina del Rey CA 90292, United States 

{jihie, gil, varunr}@isi.edu  

Abstract. In recent years, workflows have been increasingly used in scientific 
applications. This paper presents novel metadata reasoning capabilities that we 
have developed to support the creation of large workflows. They include 1) use 
of semantic web technologies in handling metadata constraints on file 
collections and nested file collections, 2) propagation and validation of 
metadata constraints from inputs to outputs in a workflow component, and 
through the links among components in a workflow, and 3) sub-workflows that 
generate metadata needed for workflow creation.  We show how we used these 
capabilities to support the creation of large executable workflows in an 
earthquake science application with more than 7,000 jobs, generating metadata 
for more than 100,000 new files. 

Keywords: metadata reasoning, workflow generation, grid workflows. 

1   Introduction 

Scientists have growing needs to use workflows to manage large distributed 
computations [13, 5, 2, 24]. In recent years, uses of large workflows have been 
significantly increased.  Often they adopt grid-based environments that enable 
efficient execution of workflows by making use of distributed shared resources [22].  
In such cases, computations in scientific workflows are represented as grid jobs that 
describe components used, input files required, and output files that will be produced 
as well as file movements, and deposition to distributed repositories [4].   

Metadata describe the data used and generated by workflow components. Semantic 
web techniques have been applied for metadata reasoning on workflows such as 
validation of input parameters based on provenance data using component semantics 
[23], representing and managing dependencies between data products [14], helping 
scientists relate and annotate data and services through ontology-based generation and 
management of provenance data [25], etc. However, most of the existing metadata 
reasoning approaches focus on analyses of provenance data that are created from 
execution [18] rather than generation of input and output file descriptions needed in 
the workflow before execution.  

The metadata reasoning capabilities of existing systems focus on files and simple 
collections and cannot effectively handle constraints on nested collections. Existing 
checks on files are limited to validation of inputs for individual components. 



358 J. Kim, Y. Gil, and V. Ratnakar 

However, often there are global constraints on inputs and outputs of multiple 
components, and the workflow should be validated against such constraints in order to 
prevent execution of invalid workflows and wasting of expensive computations.  In 
addition, unnecessary execution of individual components or multiple components in 
the given workflow should be detected and avoided when datasets that are equivalent 
to the ones to be produced already exist.  

The creation of large workflows in the domains we use required several novel 
metadata reasoning capabilities:   

• Keeping track of constraints on datasets used (i.e. files and file collections), 
including global constraints among multiple components as well as local 
constraints within individual components.  

• Describing datasets that are used or created by the workflow. 
• Detecting equivalent datasets and prevent unnecessary execution of workflow 

parts when datasets already exist. 
• Managing large datasets and their provenance. 

This paper presents novel metadata reasoning capabilities that we have developed 
to support the creation of large workflows. They include 1) use of semantic web 
technologies in handling metadata constraints on file collections and nested file 
collections, 2) propagation and validation of metadata constraints from inputs to 
outputs in a workflow component, and through the links among components in a 
workflow, and 3) sub-workflows that generate metadata needed for workflow 
creation.  We illustrate these novel capabilities to support the creation of large 
workflows in an earthquake science application.  

2   Motivation 

A computational workflow is a set of executable programs (called components) that 
are introduced and linked together to pass data products to each other.  The purpose of 
a computational workflow is to produce a desired end result from the combined 
computation of the programs.  We will call a computational workflow as a workflow
in this paper for brevity. Whereas a workflow represents a flow of data products 
among executable components, a workflow template is an abstract specification of a 
workflow, with a set of nodes and links where each node is a placeholder for a 
component or component collections (for iterative execution of a program over a file 
collection), and each link represents how the input and output parameters are 
connected. For example, Figure 1-(a) shows a template that has been used by 
earthquake scientists in SCEC (Southern California Earthquake Center) in Fall 2005. 
The template has two nodes (seismogram generation and calculation of spectral 
accelerations), each one containing a component collection. The workflow created 
from the template is shown in Figure 1-(b). This workflow was used in estimating 
hazard level of a site with respect to spectral acceleration caused by ruptures and their 
variations over time. 



 Semantic Metadata Generation for Large Scientific Workflows 359 

(a) Workflow template (b) Workflow

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.rvm127_6.rvm

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_7.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_7.txt.variation-s0000-h0000127_7.txt.variation-s0000-h0000

127_7.rvm127_7.rvm

Seismograms_PAS_127_7.grmSeismograms_PAS_127_7.grm

SeismMeta_127_7SeismMeta_127_7

PeakVals_allPAS_127_7.bsaPeakVals_allPAS_127_7.bsa

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000140_11.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000140_11.txt.variation-s0000-h0000140_11.txt.variation-s0000-h0000

140_11.rvm140_11.rvm

Seismograms_PAS_140_11.grmSeismograms_PAS_140_11.grm

SeismMeta_140_11SeismMeta_140_11

PeakVals_allPAS_140_11.bsaPeakVals_allPAS_140_11.bsa

…

FileCollection_

RVM1 CollCollection_RuptureVariations1

FileCollection_

Seismogram1

FileCollection_

SeisMetadataforPVC

FileCollection_SAOutputFile1

Node_SynthSGT_CollectionNode_SynthSGT_Collection

Node_PeakValCal_CollectionNode_PeakValCal_Collection

 

Fig. 1. Workflow creation for seismic hazard analysis in Fall 2005 

(a) Workflow template

FileCollection_SAOutputFile1

FileCollection_Seismogram1

Node_PeakValCal_Collection

FileCollection_SeisMetadataforPVC1

CollOfCollection_SGTCollection1

FileCollection_SGTFileDescriptions1

CollOfCollection_RuptureVariations1

FileCollection_RVM1

Node_SynthSGT_Collection

Node_GenMetadataforPeakValCal

Node_BoxNameCheck

Node_XYZGRD

SortedSRLFile_1

File_SeisParamVals1

GRDFile_1

XYZInputFile_1

(a) Workflow template

FileCollection_SAOutputFile1

FileCollection_Seismogram1

Node_PeakValCal_Collection

FileCollection_SeisMetadataforPVC1

CollOfCollection_SGTCollection1

FileCollection_SGTFileDescriptions1

CollOfCollection_RuptureVariations1

FileCollection_RVM1

Node_SynthSGT_Collection

Node_GenMetadataforPeakValCal

Node_BoxNameCheck

Node_XYZGRD

SortedSRLFile_1

File_SeisParamVals1

GRDFile_1

XYZInputFile_1

GRDIn

3971 independent instances for each rupture,  >100,000 variations for a site

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grm

SeismMeta_127_6

PeakVals_allPAS_127_6.bsa

SGT_127_6

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals

SGTFileDesc127_6

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

Seismograms_PAS_127_6.grmSeismograms_PAS_127_6.grm

SeismMeta_127_6SeismMeta_127_6

PeakVals_allPAS_127_6.bsaPeakVals_allPAS_127_6.bsa

SGT_127_6SGT_127_6SGT_127_6

BoxNameCheck

127_6.rvm

SRL127_6

GenMetaForPVC

SeisVals
127_6.rvm127_6.rvm

SRL127_6SRL127_6

GenMetaForPVC

SeisValsSeisVals

SGTFileDesc127_6SGTFileDesc127_6

XYZGRD

GRDGRD

PeakValCal

SynthSGT

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000140_11.txt.variation-s0000-h0000
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000140_11.txt.variation-s0000-h0000140_11.txt.variation-s0000-h0000

Seismograms_PAS_140_11.grmSeismograms_PAS_140_11.grm

SeismMeta_140_11SeismMeta_140_11

PeakVals_allPAS_140_11.bsaPeakVals_allPAS_140_11.bsa

SGT_140_11SGT_140_11SGT_140_11

BoxNameCheck

140_11.rvm

SRL140_11

GenMetaForPVC

SeisVals
140_11.rvm140_11.rvm

SRL140_11SRL140_11

GenMetaForPVC

SeisValsSeisVals

SGTFileDesc140_11SGTFileDesc140_11

…

(b) Workflow  

Fig. 2. Workflow creation for seismic hazard analysis in Spring 2006 

The workflow was generated from manually created scripts that specify how to 
bind files to input parameters of the components and what are the expected output file 
names. An important feature of the workflow is that their data products are stored in 



360 J. Kim, Y. Gil, and V. Ratnakar 

files, often organized in directory structures that reflect the structure of the 
workflows.  The names of the files and the directories follow conventions to encode 
metadata information in the names such as the creation date or the relative area 
covered by the analysis.  Therefore, the scripts that generate the workflow must 
orchestrate the creation of very particular data identifiers, namely file names that 
comply with those conventions and are instantiated to the appropriate constants.  For 
example, a file containing the points for a hazard curve would be named using 
the rupture id and the fault id that were used in the simulation of the wave, as well as 
the lat-long of the location for the curve. The script included calls to functions or 
other scripts that generate information needed by the workflow (e.g. seismic 
parameter values). These manual ‘seam’ steps were not a part of the workflow. Most 
of the validation checks on the files and the collections were done by hand.  

Figure 2-(a) shows an extension in the template in Spring 2006. This extension was 
needed to include strain green tensors (SGTs) as additional data input for seismogram 
generation. As the workflow template and descriptions of components become more 
complex, the script based approach becomes infeasible.  First of all, there are more 
manual seam steps to handle. For example, since the SGT files that should be used in 
the workflow are unknown, the function that generates appropriate SGT file names 
should be executed beforehand.  Validation of the workflow requires more checks. 
For example, now we need to check whether the SGTs use in generating seismogram 
are consistent with the rupture variations used for calculating peak values. If the 
seismogram generation step uses ruptures for Pasadena and their corresponding SGTs 
but the peak value calculation uses a rupture variation map for LA, the execution of 
the workflow will fail. When there exists a dataset that is equivalent to the expected 
output from executions of some components (e.g.  SGT name datasets for Pasadena 
already exist), scientists had to identify them by hand. 

In summary, generation of large workflows for this type of applications requires 
flexibility in adding or changing components to the template, systematic identification 
of files that are needed and generated by the workflow, incorporation of manual 
‘seam’ steps into the workflow (making them a part of the workflow), and automatic 
validation of files and collections that are input to the workflow. 

3   Approach 

In developing new metadata reasoning capabilities for workflow creation, we use a 
workflow creation framework called Wings [6]. Wings takes a workflow template and 
initial input file descriptions, and creates an abstract workflow called DAX (DAG 
XML description). A DAX is transformed into an executable concrete workflow 
through a mapping that assigns available grid resources for execution by Pegasus [4]. 
Wings uses OWL-DL for representing files and collections, components, workflow 
templates, and workflows [6]. Currently Jena supports the reasoning.  

In this work, Wings was extended to support metadata reasoning and generation. 
We developed an approach for representing metadata constraints on files and 
collections, and supporting metadata reasoning capabilities.  Figure 3 shows an 
overview of the relevant components in the system, described in the following 
subsections. Although the descriptions rely on earthquake science examples, the same 
approach is used for other applications [6]. 



 Semantic Metadata Generation for Large Scientific Workflows 361 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3. Metadata reasoning for workflow creation 

3.1   Representing Metadata Constraints  

One of the novel capabilities addresses the issue of keeping track of constraints on 
individual files, constraints on collections and their elements, constraints on inputs 
and outputs of each component, and global constraints among multiple components.  

3.1.1   Metadata Constraints on Individual Files  

RuptureVarFile

Int

Metadata:4DigitInt

hasSourceID
hasRuptureID

hasSlipRealizationN
hasHypoCenterN

File

xsd:int

flns:hasValue

hasMetadata MetadataMetadata

RuptureVarFile_Skolem_SlipRealizationNum

hasInitialValue

00

…hasSourceID

hasRuptureID

usedAs

Domain
independent
definitions

Domain 
dependent
definitions

: classes

: instances

: properties
Constraints on value types

<RuptureVariationFile rdf:ID="RuptureVarFile_Skolem"> <rdf:type rdf:resource="&flns;FileSkolem"/> 

<hasRuptureID rdf:resource="#RuptureVarFile_Skolem_RuptureID"/> 

<hasSlipRealizationNumber rdf:resource="#RuptureVarFile_Skolem_SlipRealizationNum"/> 

…</RuptureVariationFile> 

<flns:Int rdf:ID=“RuptureVariationFile_Skolem_RuptureID“/> 

<FourDigitInt rdf:ID="RuptureVarFile_Skolem_SlipRealizationNum"> <flns:hasInitialValue
rdf:datatype="&xsd;int">0</flns:hasInitialValue> …</FourDigitInt> 

…

: instance of

: subclass of

Skolem
instance
definitionsRupVarFile_SkolemRupVarFile_Skolem

flns contains domain 
independent 
definitions on files 
and collections
scecflns contains 
domain dependent 
definitions on files 
and collections

hasSlipRealizationN

RuptureVarFile_Skolem_HypoCenterNum

RuptureVarFile_Skolem_RuptureID

RuptureVarFile_Skolem_SourceID

hasHypoCenterN

flns:hasIntValue

…

 

Fig. 4. Metadata constraints on individual files 

OWL ontologies

CC-Rup-Vars-View

C-Rup-Vars-for-Rup-ViewC-Rup-Vars-for-Rup-ViewC-Rup-Vars-for-Rup-View

O
nt

ol
og

y 
A

P
I

fi
le

 A
P

I
127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

…

Wings File Ont

Wings Component Ont

Domain component Ont

Workflow templates

CC-Rup-Vars

C-Rup-Vars-for-Rup

File Library

Domain File Ont

…

Metadata 
constraints

Constraint Reasoner
- Handle constraints on files and collections
- Handle constraints on components
- Handle constraints on templates

F-RV1F-RV1

•current wf instance
•logical files used
•bindings 
•new file objects &     

metadata created

Workflow
Generator

Workflows

External File /Metadata Store

User 

Metadata
generator

OWL ontologies

CC-Rup-Vars-View

C-Rup-Vars-for-Rup-ViewC-Rup-Vars-for-Rup-ViewC-Rup-Vars-for-Rup-View

O
nt

ol
og

y 
A

P
I

O
nt

ol
og

y 
A

P
I

fi
le

 A
P

I
127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

127_6.txt.variation-s0000-h0001
- source_id: 127
- rupture_id: 6
- slip_realization_#:0
- hypo_center_#: 1

…

Wings File Ont

Wings Component Ont

Domain component Ont

Workflow templates

CC-Rup-Vars

C-Rup-Vars-for-Rup

File Library

Domain File Ont

…

Metadata 
constraints

Constraint Reasoner
- Handle constraints on files and collections
- Handle constraints on components
- Handle constraints on templates

F-RV1F-RV1F-RV1F-RV1

•current wf instance
•logical files used
•bindings 
•new file objects &     

metadata created

Workflow
Generator

Workflows

External File /Metadata Store

User 

Metadata
generator



362 J. Kim, Y. Gil, and V. Ratnakar 

 

Each file class can have one or more metadata properties associated with it. In 
representing metadata constraints of a file class, we use a skolem instance (e.g., 
RupVarFile_Skolem) that represents prototypical instances of the class. The metadata 
can describe what the file contains, how it was generated, etc. For example, a rupture 
variation file can have Ruptupre ID, SourceID, SlipRealizationN, and HypoCenterN 
that represent what it contains. Each metadata property has value ranges and can have 
some initial values. Other workflow generation functions such as how to derive 
filenames from metadata can be represented using the skolem instance. The actual 
metadata property values of file instances can be used in checking constraints on input 
and output files/collections used in the workflow, as described below.  

3.1.2   Handling Constraints on Nested Collections  

hasType

Rupture
Variations

CollOf
Collection

FileCollection
hasType

FileFile
hasType

RuptureVarsFor
ForRupture

RuptureVarFilehasType

hasSiteName

Metadata:String

hasType

hasSourceID

Metadata:IntMetadata:Int

hasSourceID

hasRuptureID

hasSiteName SiteName1

hasSiteName

SourceID1
hasSourceID

hasRuptureID

RuptureID1

Constraints on collection element types

metadata constraints on collections & their elements

…

hasRuptureID

<owl:Class rdf:ID="CollOfCollection"> <rdfs:subClassOf rdf:resource="#Collection"/> </owl:Class> 

<owl:Class rdf:ID="FileCollection"> <rdfs:subClassOf rdf:resource="#Collection"/> </owl:Class>

<owl:Class rdf:ID="RuptureVariations"> <rdfs:subClassOf rdf:resource="&flns;CollOfCollection"/> 
<rdfs:subClassOf> <owl:Restriction> <owl:onProperty rdf:resource="&flns;hasType"/> <owl:allValuesFrom
rdf:resource="#RuptureVariationsforRupture"/> </owl:Restriction> </rdfs:subClassOf> </owl:Class>

<owl:Class rdf:ID="RuptureVariationsforRupture"> <rdfs:subClassOf> <owl:Restriction> <owl:onProperty
rdf:resource="&flns;hasType"/> <owl:allValuesFrom rdf:resource="#RuptureVariationFile"/> 
</owl:Restriction> </rdfs:subClassOf> <rdfs:subClassOf rdf:resource="&flns;FileCollection"/> </owl:Class>

<scecflns:RuptureVariationsforRupture rdf:ID="BNCI_RuptureVariationsforRupture"> <scecflns:hasSourceID
rdf:resource="#BNCI_SourceID"/> <flns:hasFileType rdf:resource="#BNCI_RuptureVariationFile"/> 
<scecflns:hasRuptureID rdf:resource="#BNCI_RuptureID"/> </scecflns:RuptureVariationsforRupture> 

<scecflns:RuptureVariationFile rdf:ID="BNCI_RuptureVariationFile">                                                              
<scecflns:hasSourceID rdf:resource="#BNCI_SourceID"/>                                                             
<scecflns:hasRuptureID rdf:resource="#BNCI_RuptureID"/> </scecflns:RuptureVariationFile>   

CC-RuptureVariations-Skolem

C-RupVars-Skolem

RupVar-Skolem

hasType

hasType

hasItems
CollectionListCollectionList FileListFileListhasItems

…
CC-Rup-Vars-for-Pasadena

C-Rup-Vars-for-Rup_127_6

C-Rup-Vars-for-Rup_127_7

C-Rup-Vars-for-Rup_150_11

hasItems

Domain
independent
definitions

Domain 
dependent
definitions

Skolem
instance
definitions

hasItems
127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_7.txt.variation-s0000-h0001127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_7.txt.variation-s0000-h0001

127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000150_11.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000127_6.txt.variation-s0000-h0000150_11.txt.variation-s0000-h0000

…

hasItems

hasItems

example 
files and
collections

…

 

Fig. 5. Nested file collections and their metadata constraints 
 



 Semantic Metadata Generation for Large Scientific Workflows 363 

In general, for a given site (e.g. Pasadena), several ruptures are used in performing 
the hazard analysis. According to rupture dynamics of earthquakes that depend on 
hypocenter and slip values, each temporal variation of the stress is described in a 
rupture variation file. That is, rupture variations for a site are naturally structured as a 
collection of file collections. In our ontology, the concept collection represents both 
simple file collections and nested collections. Each collection should specify the type 
for the collection element using the ‘hasType’ property. There can be constraints 
between a collection and its elements. For example, for a rupture variation collection 
for a rupture, the SourceID and the RuptureID of individual rupture variation file 
should be the same as the rupture’s SourceID and RuptureID. That is, if the rupture 
variation collection for a rupture has SourceID 127 and RuptureID 6, each element (a 
rupture variation file) should have SourceID 127 and RuptureID 6. Figure 5 shows 
how these constraints on collections and nested collections are represented with 
skolem instances. 

3.1.3   Constraints on Components: Constraints on Input and Output Files and 
Collections  

SeismogramGen

Component
Type

Component
Type

hasInputs FileOrCollection
ListhasOutputs

hasInputs

SeismogramGen_InputsSeismogramGen_Inputs

SeismogramGen_OutputsSeismogramGen_Outputs

hasOutputs

hasSourceID

RVM_SourceID1

RVM_RuptureID1
hasRuptureID

hasSiteName SGTsSiteName1

metadata constraints on
input and output files

Constraints on the types of input and output file and collections

…

…

…

e.g. 127_6.rvm

e.g. a rup var collection 
sourceID 127 and rupID 6

e.g. SGT collection   
for PAS

e.g. PeakVals_PAS_127_6.bsa

<scecflns:RVMFile rdf:ID="SynthSGTInput_RVM"> <scecflns:hasSourceID
rdf:resource="#SynthSGTInput_RVM_SourceID1"/> <scecflns:hasRuptureID
rdf:resource="#SynthSGTInput_RVM_RuptureID1"/> </scecflns:RuptureVariationMetadataFile> 

<scecflns:SGTCollectionforRupture rdf:ID="SynthSGTInput_SGTCollectionforRupture"> 
…<scecflns:hasSiteName rdf:resource="#SynthSGTInput_SGTCollectionforRupture_SiteName1"/> 
<flns:hasFileType rdf:resource="#SynthSGTInput_SGTFile1"/></scecflns:SGTCollectionforRupture> 

<scecflns:SeismogramFile rdf:ID="SynthSGTOutput_SeismogramFile"> <scecflns:hasSourceID
rdf:resource="#SynthSGTInput_RVM_SourceID1"/> <scecflns:hasRuptureID
rdf:resource="#SynthSGTInput_RVM_RuptureID1"/> <scecflns:hasSiteName
rdf:resource="#SynthSGTInput_SGTCollectionforRupture_SiteName1"/> </scecflns:SeismogramFile> 

SeismogramGen_Skolem

RVM-1

C-RupVars-1

C-SGT-1

Seismogram-1

 
Fig. 6. Constraints on metadata properties of input/output files or collections 

Each workflow component is described in terms of its input and output data types. 
In Figure 6, the SeismogramGen component has three inputs: an RVM (rupture 
variation map) file, a rupture variation collection, and a SGT file collection. Each 



364 J. Kim, Y. Gil, and V. Ratnakar 

RVM file has a SourceID and a RuptureID of the rupture that it represents. In order to 
create valid results, their values should be the same as the RuptureID and SourceID of 
the input rupture variation collection.  The input SGT collection should have a site 
name associated with it.  Given these inputs, the SeismogramGen component 
produces a seismogram file.  

The metadata for the generated seismogram file depends on the metadata of the 
inputs. In the above example, the site name of the SGT collection (PAS), and the 
SourceID and RuptureID of the RVM file (127 and 6)are propagated to corresponding 
metadata properties of the output seismogram file. The procedure for metadata 
validation and propagation during workflow creation is described in Section 3.2. 

3.1.4   Global Constraints on Templates: Constraints Among Different Nodes 
and Links 

Fig. 7. Global constraints on metadata properties among files and collections used by different 
components in a template 

There are additional validation checks that should be made in order to create a valid 
workflow. First of all, the components should use seismic data for the same site (e.g. 
PAS) in performing hazard analysis. In Figure 7, the site name of the XYZinput file 
used in generating a mesh for simulation should be the same as the site name of the SGT 
collection of collections. (We also use a isSameAs property in representing equalities of 
metadata.) In addition, the components should use the same number of ruptures 
throughout the workflow.  For example, the number of elements in a collection of 

HazardAnalysis
Template1

InputLink_XYZInputFi
le_to_XYZGRD hasSiteName

InputLink_RuptureVars
_to_SeisgmogramGen

hasLink

InputLink_SGTCollforRu
p_to_SeismogramGen

hasFile

hasFile

hasFile

hasSiteName SiteName1

N_Ruptures
hasN_Items

hasN_Items

…

…

Constraints on number of elements in different collections

metadata constraints on 
files/collections of different components 

<scecflns:XYZInputFile rdf:ID="XYZInputFile_1"> <scecflns:hasSiteName rdf:resource="#SiteName_1"/> 
</scecflns:XYZInputFile>

<scecflns:SGTCollection rdf:ID="CollOfCollection_SGTCollection1"> <scecflns:hasSiteName
rdf:resource="#SiteName_1"/> <flns:hasN_items rdf:resource="#N_Ruptures"/> <flns:hasCollectionType
rdf:resource="&scecclns;SynthSGTInput_SGTCollectionforRupture"/> <flns:hasDescriptionFile
rdf:resource="#FileCollection_SGTFileDescriptions1"/> </scecflns:SGTCollection> 

<scecflns:RuptureVariations rdf:ID="CollOfCollection_RuptureVariations1"> <scecflns:hasSiteName
rdf:datatype="&xsd;string"></scecflns:hasSiteName> <flns:hasN_items rdf:resource="#N_Ruptures"/> 
<flns:hasCollectionType rdf:resource="#RuptureVariationsforRupture_1"/> </scecflns:RuptureVariations> 

XYZInputFile1

CollOfCollection
_SGTCollection1

CollOfCollection_
RuptureVariations1



 Semantic Metadata Generation for Large Scientific Workflows 365 

collection rupture variations indicates the number of ruptures used in modeling the site.  
This number (i.e. the number of ruptures) should be the same as the number of elements 
(SGT collections) in the collection of collection SGTs that are used. If the specific 
number of ruptures is known, the value can be given for the N_Ruptures using the 
flns:hasValue property. Figure 7 shows the current representations.  In representing 
these global constraints, we make use of link skolems. Each link skolem is a placeholder 
for a file or collection that is bound to the input and output parameters of the 
components associated with the link during workflow creation. If more than one link 
skolems in a template share the same metadata objects, when the bindings for the links 
are created their corresponding metadata values should be the same. These constraints 
are used by metadata reasoner in creating consistent and correct workflows. The details 
of metadata based validation are described below. 

3.2   Metadata Propagation and Validation 

Table 1. Steps for propagating metadata and checking constraints during workflow creation 

Table 1 shows the procedure for propagating metadata constraints and validating 
workflows created using metadata constraints. The procedure significantly extends 
the existing Wings algorithm by including steps for metadata propagation and 
validation checks. It traverses links in the workflow template and generates consistent 
bindings for link skolems. There are three classes of links: InputLink, InOutLink, and 
OutputLink. An InputLink is a link from an initial input file or collection to a node. 
Each InOutLink represents a connection from an output parameter of a node to an 

Bind&ValidateWorkflow (WorkflowTemplate wt, InputLinks ILinks) 
  1.  Assign ILinks to LinksToProcess. 
  2.  While LinksToProcess is not empty 
      2.2. Remove one from LinksToProcess and assign it to L1. 
      2.2. Let F1 be the link skolem for binding files or collections to L1. 

2.3. If metadata for F1 should be generated from an execution of a component 
2.3.1. if the execution results are not available, continue.  

               ;; i.e. exclude this link in the sub-workflow 
      2.4. If any metadata of F1 depends on a link L2 that is not bound yet,  
          2.4.1. Mark L1 as a dependent of L2 and continue. 
      2.5. If L1 is an input link,  
          2.5.1. Get metadata of the file from the user or a file server 
          2.5.2. Check consistencies with links that L1 depends on  
          2.5.3. Check consistencies with existing bindings based on template-level constraints 
          2.5.4. If any metadata are inconsistent, report inconsistency and return.  
          2.5.5. Bind file/collection name and metadata to F1. 
          2.5.6. If the file type for F1 is a collection, recursively get the metadata of its elements 
     2.6. Else (i.e. L1 is InOutLink or OuputLink)  
          2.6.1. Generate file names and metadata base on the definition of the depending links. 
                ;; metadata propagation
     2.7. For each link L2 that is dependent on l1,  
          2.7.1. if all the links that L2 is depending on are bound, put L2 in LinksToProcess. 
     2.8. If L1 is an output link, continue. 
     2.9. Else (L1 is InputLink or InOutLink) 
          2.9.1. If all the inputs to the destination node (i.e. the component that L1 provides an input to)  
                have been bound,  
             2.9.1.1. Add all the OutputLinks and InOutLinks from the destination node to the   
                    LinksToProcess.



366 J. Kim, Y. Gil, and V. Ratnakar 

input parameter of another node. An OutputLink represents an end result from a node. 
The procedure specifies how the system starts with the input links of a template, 
identifies dependencies among the links based on definitions of metadata constraints, 
binds link skolems to files or collections, propagates and checks constraints of the 
bindings based on metadata constraints, and traverses the next unbound links based on 
the dependencies.  

A link l1 is dependent on l2 if some of the metadata of l1 needs to be filled in 
based on some metadata of l2. For example, in Figure 6, the metadata of the output of 
SeismogramGen step depends on the metadata of the RVM file and the SGT 
collection. The input link for a rupture variation collection depends on the input link 
for an RVM, if the SourceID and the RuptureID of the rupture variations are derived 
from the values in the RVM file. We assume that there are no cyclic dependencies in 
the definition of metadata constraints.    

The file names and the metadata for initial input files or collections can be given 
from the user or existing file library (in OWL) through a file API. The metadata of the 
initial inputs can also be retrieved from other external file stores using the same API.  
Currently we use a web repository, but we are exploring uses of grid catalogs such as 
MCS (Metadata Catalog Service) [19]. The italicized steps handle sub-workflows, 
which are explained in the next section.  

3.3   Sub-workflows for Generating Metadata Needed for Workflow Creation 

FileCollection_SAOutputFile1

FileCollection_Seismogram1

Node_PeakValCal_Collection

FileCollection_SeisMetadataforPVC1

CollOfCollection_SGTCollection1

FileCollection_SGTFileDescriptions1

CollOfCollection_RuptureVariations1

FileCollection_RVM1

Node_SynthSGT_Collection

Node_GenMetadataforPeakValCal

Node_BoxNameCheck

Node_XYZGRD

SortedSRLFile_1

File_SeisParamVals1

GRDFile_1

XYZInputFile_1

FileCollection_SAOutputFile1

FileCollection_Seismogram1

Node_PeakValCal_Collection

FileCollection_SeisMetadataforPVC1

CollOfCollection_SGTCollection1

FileCollection_SGTFileDescriptions1

CollOfCollection_RuptureVariations1

FileCollection_RVM1

Node_SynthSGT_Collection

Node_GenMetadataforPeakValCal

Node_BoxNameCheck

Node_XYZGRD

SortedSRLFile_1

File_SeisParamVals1

GRDFile_1

XYZInputFile_1

Fig. 8. Identifying and executing sub-workflows for full workflow creation 

As described in Section 2, creation of workflows needed manual ‘seam’ steps that 
call functions that generate information needed by the workflow, such as file names and 
parameter values. In order to minimize such manual steps, we have created new 
workflow components that model such steps. For example, in Figure 8 (an enlargement 
of Figure 2-(a)), individual files in CollOfCollection_SGTCollection1 are unknown 



 Semantic Metadata Generation for Large Scientific Workflows 367 

initially and the file names should be generated by executing the BoxNameCheck 
component. Previously, the execution of BoxNameCheck was done manually. We 
represent such components as workflow components, and link them to the depending 
component inputs or outputs (e.g. SGT files needed by SynthSGT) in the template.  

In generating grid workflows, for each execution of a component, the names of the 
inputs and output files for the component should be specified beforehand. That is, 
what data are created, and what data are staged in and out of the computation should 
be known before execution. Names (or descriptions) of some of the files in the 
workflow are not given initially, and their names should be automatically generated 
from metadata of other files.  

As shown in Table 1, our Bind&ValidateWorkflow procedure checks these 
dependencies, and generates a ‘sub’-workflow that includes only the parts that can be 
instantiated with the currently available data. For the template in Figure 8, a sub-
workflow with bindings for input and output links of the three components (XYZGRD, 
GenMetaForPeakValCal and BoxNameCheck), highlighted with dotted lines, is 
generated. The resulting sub-workflow is mapped to grid resources through Pegasus [5] 
and executed in a grid environment. The execution of a sub-workflow provides results 
for dependent input/output links, such as file names needed for component inputs or 
outputs. The metadata for these new file names are generated and added to our file 
repository by the metadata generator (shown in Figure 3) so that they can be used in 
creating an expanded workflow.  The creation and execution of sub-workflows can be 
interleaved until the complete workflow is generated.  The above workflow template 
needs only one iteration of sub-workflow creation and execution. 

4   Results 

Table 2. Number of files and OWL instances created during workflow generation

The above metadata reasoning capabilities are used in creating workflows for seismic 
hazard analysis. In creating a workflow for an LA site with the template in Figure 8, 
there were about 3,971 ruptures and 97,228 variations of ruptures to take into account. 
As the number of files and file collections become large, many OWL objects that 
represent file and collections and their metadata should be created and queried. The 
number of files in the workflow we have represented was 117,379, as shown in Table 2. 
The number of OWL individuals created was over two million. (We excluded the 
anonymous individuals that are created as a by-product of rdf:list in the count, so the 
actual number is larger.) For the full workflow, the DAX included 7,945 jobs. Large 
workflows pose challenges on computational resources (CPUs and memory) used 

2,001,972 

322,473 

Number of OWL 
individuals created

117,379

15,888

Number of file instances 
created for the workflow

Workflow creation time

22 minutes, 52 seconds

7 minutes, 

59 seconds 

A full workflow for 
hazard analysis

A sub workflow for 
hazard analysis

2,001,972 

322,473 

Number of OWL 
individuals created

117,379

15,888

Number of file instances 
created for the workflow

Workflow creation time

22 minutes, 52 seconds

7 minutes, 

59 seconds 

A full workflow for 
hazard analysis

A sub workflow for 
hazard analysis



368 J. Kim, Y. Gil, and V. Ratnakar 

during workflow creation. Currently it takes about 8 minutes to create a sub workflow 
and about 23 minutes to generate the full workflow on a Pentium 4 3.0GHz with 1GB of 
RAM. The current system is being used for other applications including statistical 
natural language processing tasks where parallel processing of a large corpus is needed. 

In order to efficiently perform the required metadata reasoning with many objects, 
we split a workflow into multiple independent workflow parts and create each 
separately. In splitting, we make use of metadata properties that can divide collections 
into independent sub-collections. For example, separate sub-trees in Figure 2-(b) can be 
independently generated.  We currently use the SourceID to split rupture file collections 
into sub-collections. Other collections such as rupture variation collections are divided 
using the same set of metadata properties. Currently we select such metadata properties 
by hand, but we are investigating an automatic approach that takes into account sizes of 
file collections.  The independent workflow parts are accumulated in the workflow 
generator and are automatically merged in the end, creating a complete workflow.  

Using the same collection splitting approach described above, we can store the 
resulting files and collections into separate file library entities. The objects can be 
selectively loaded and used in creation of new workflows. Equivalent files or 
collections can be identified using metadata, which enables detection of unnecessary 
execution of components or workflow parts that will produce equivalent datasets. 

5   Related Work 

Semantic web techniques have been used in supporting many e-science workflow 
systems [10, 7]. Applications include semantic description of web services, resource 
discovery, data management, composition of workflow templates [17, 20, 1], etc. Our 
work complements existing work by supporting creation of large workflows needed 
for data and/or compute intensive scientific applications.  

Recently various data management and provenance techniques have been 
developed for e-Science applications [18,8]. Most of the existing work focuses on 
pedigree or lineage metadata that describes the data resources and the processes 
used in generating data products.  These provenance metadata are often used in 
qualifying data products and supporting data management and reuse. Our current 
work focuses on metadata reasoning that support workflow creation and validation. 
The metadata that are generated during workflow creation can be used in 
combination with other provenance metadata for supporting file reuse. Our work 
extends existing approaches for validating workflows in that we take into account 
constraints on nested collections and global constraints among multiple 
components as well as constraints on inputs within individual components [23,14]. 
Another difference is that we make use of metadata in generating valid workflows 
before execution instead of validating already executed workflows with 
provenance data, also enabling detection of unnecessary jobs before execution. 

6   Conclusion and Future Work 

We presented a semantic metadata generation and reasoning approach that supports 
creation of large workflows. Given the metadata of initial input files, the system 



 Semantic Metadata Generation for Large Scientific Workflows 369 

propagates metadata constraints from the inputs to the outputs, and through the links 
among the components during workflow creation. Both global constraints among 
multiple components and local constraints are used for workflow validation. The files 
that will be produced from workflow execution as well as the input files are identified 
during the metadata propagation and validation process. Some of the metadata are 
generated through creation and execution of sub-workflows when the metadata need 
to be computationally generated. Because we are able to identify data collections and 
their properties before the workflow is executed, we can detect whether the data has 
been generated before by querying an existing data repository.  This is important for 
optimizing execution performance: If some intermediate data product already exists 
then there is no need to re-execute the portion of the workflow that produces it.  We 
also use the metadata in managing large collections and their provenance. 

We are currently working on extensions of the workflow template shown in Figure 
2-(a) and they will use more datasets for seismic analysis of different sites in Southern 
California. In order to further improve the efficiency of the workflow creation and 
metadata reasoning, we are considering several extensions to our system. One area of 
improvement is creating a scalable metadata repository. Currently we can store 
metadata in multiple OWL file libraries, but we are planning to explore its integration 
with MCS that can store metadata of data products (such as files) published on the 
Grid [19].  With this approach, when there are new files and metadata added to MCS 
by a different workflow or system, we will be able to use them in creating new 
workflows.  In order to perform iterative sub-workflow generation and execution 
more efficiently, we are investigating a client-server style approach where our system 
can call a workflow execution server with a newly generated sub-workflow, and the 
execution results can be notified to our system (a client). The newly generated 
metadata during workflow creation can be used in combination with other metadata 
for data provenance applications. For example, the metadata can tell whether the two 
files (or collections) contain the same kind of information, even when they are 
generated from different workflows. We are exploring various uses of metadata in 
relating datasets used in scientific workflows.  

Acknowledgments. We thank David Okaya, Philip Maechling, Scott Callaghan, 
Hunter Francoeur, and Li Zhao in the Southern California Earthquake Center (SCEC) 
for valuable discussions on seismic hazard analysis workflows.  We would also like to 
thank Gaurang Mehta and Ewa Deelman for their help in executing workflows with 
Pegasus.This research was funded by the National Science Foundation (NSF) with 
award number EAR-0122464.  The SCEC contribution number for this paper is 1016.  

References 

1. Altintas, I., Berkley, C., Jaeger, E., Jones, M., Ludäscher, B., Mock, S.: Kepler: Towards a 
Grid-Enabled System for Scientific Workflows. The Workflow in Grid Systems Workshop 
in GGF10 - The Tenth Global Grid Forum, Berlin, Germany (2004) 

2. Campobasso, M., Giles, M.:Stabilization of a Linear Flow Solver for Turbomachinery 
Aeroelasticity Using Recursive Projection Method. AIAA Journal, 42(9) (2004) 



370 J. Kim, Y. Gil, and V. Ratnakar 

3. Churches, D., Gombas, G., Harrison, A., Maassen, J., Robinson, C., Shields, M., Taylor, 
I., Wang, I.: Programming Scientific and Distributed Workflow with Triana Services. Grid 
Workflow Special Issue of Concurrency and Computation: Practice and Experience (2004) 

4. Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M., Vahi, K., 
Livny, M.: Pegasus: Mapping Scientific Workflows onto the Grid. Across Grids 
Conference (2004) 

5. Deelman, E., Blythe, J., Gil, Y., Kesselman, C.: Workflow Management in GriPhyN. The 
Grid ResourceManagement, Kluwer (2003) 

6. Gil, Y., Ratnakar, V., Deelman, E., Spraragen, M., Kim, J.: Wings for Pegasus: A Semantic 
Approach to Creating Very Large Scientific Workflows. Internal project report (2006) 

7. Goble, C.: Using the Semantic Web for e-Science: Inspiration, Incubation, Irritation. 
Lecture Notes in Computer Science 3729:1-3, (2005) 

8. Goble, C.: Position Statement: Musings on Provenance, Workflow and (Semantic Web) 
Annotations for Bioinformatics. Workshop on Data Derivation and Provenance (2002) 

9. Guo, Y., Pan, Z.,  Heflin, J.:  An Evaluation of Knowledge Base Systems for Large OWL 
Datasets,. Proc. of the Third International Semantic Web Conference (2004) 

10. Hendler, J.: Science and the Semantic Web. Science 299 (2003) 520-521 
11. Hustadt, U., Motik, B., Sattler, U.: Data Complexity of Reasoning in Very Expressive 

Description Logics. Proc. of the 19th International Joint Conference on AI (2005) 
12. Kim, J., Spraragen, M., Gil, Y.: An Intelligent Assistant for Interactive Workflow 

Composition. Proceedings of the Intl. Conference on Intelligent User Interfaces(2004) 
13. Maechling, P. Chalupsky, H., Dougherty, M., Deelman, E., Gil, Y., Gullapalli, S., Gupta, 

V., Kesselman, C., Kim, J., Mehta, G., Mendenhall, B., Russ, T., Singh, G., Spraragen, M., 
Staples, G., Vahi, K.: Simplifying Construction of Complex Workflows for Non-Expert 
Users of the Southern California Earthquake Center Community Modeling Environment. 
ACM SIGMOD Record, special issue on Scientific Workflows, 34 (3) (2005) 

14. Myers, J., Pancerella, C., Lansing, C., Schuchardt, K., Didier, B.: Multi-scale Science: 
Supporting Emerging Practice with Semantically-Derived Provenance. Semantic Web 
Technologies for Searching and Retrieving Scientific Data Workshop (2003) 

15. openRDF, 2006: http://www.openrdf.org/ (2006) 
16. OWL Web Ontology Language, 2006: http://www.w3.org/TR/owl-features/ (2006) 
17. Sabou, M., Wroe, C., Goble, C., Mishne, G.: Learning Domain Ontologies for Web Service 

Descriptions: an Experiment in Bioinformatics. Intl. Conf. on World Wide Web. (2005) 
18. Simmhan Y., Plale B., Gannon, D.: A Survey of Data Provenance in e-Science. SIGMOD 

Record, vol. 34, 2005, pp. 31-36 (2005) 
19. Singh, G., Bharathi, S., Chervenak, A., Deelman, E., Kesselman, C., Manohar, M., Patil, 

S., Pearlman, L.: A Metadata Catalog Service for Data Intensive Applications. SC (2003) 
20. Sirin, E., Parsia, B., Hendler, J.: Filtering and selecting semantic web services with 

interactive composition techniques. IEEE Intelligent Systems, 19(4) (2004) 
21. Sycara, K., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated Discovery, Interaction 

and Composition of Semantic Web services. Journal of Web Semantics 1(1) (2003) 
22. TeraGrid 2006. NSF Teragrid Project, http://www.teragrid.org/ (2003) 
23. Wong, S., Miles, S., Fang, W., Groth, P., Moreau, L.: Validation of E-Science Experiments 

using a Provenance-based Approach. Proc. of 4th Intl. Semantic Web Conference (2005) 
24. Wroe, C., Goble, C., Greenwood, M., Lord, P., Miles, S., Papay, J., Payne, T., Moreau, L.: 

Automating Experiments Using Semantic Data on a Bioinformatics Grid. IEEE Intelligent 
Systems special issue on e-Science (2004) 

25. Zhao, J., Goble, C., Stevens R., Bechhofer, S: Semantics of a Networked World: Semantics 
for Grid Databases. Proc. of the First International IFIP Conference, ICSNW (2004) 



Reaching Agreement over Ontology Alignments

Loredana Laera1, Valentina Tamma1, Jérôme Euzenat2,
Trevor Bench-Capon1, and Terry Payne3

1 Department of Computer Science, University of Liverpool, UK
{lori, valli, tbc}@csc.liv.ac.uk

2 INRIA Rhône-Alpes, Montbonnot, France
Jerome.Euzenat@inrialpes.fr

3 Department of Electronics and Computer Science, University of Southampton, UK
trp@ecs.soton.ac.uk

Abstract. When agents communicate, they do not necessarily use the same vo-
cabulary or ontology. For them to interact successfully, they must find correspon-
dences (mappings) between the terms used in their respective ontologies. While
many proposals for matching two agent ontologies have been presented in the
literature, the resulting alignment may not be satisfactory to both agents, and thus
may necessitate additional negotiation to identify a mutually agreeable set of cor-
respondences.

We propose an approach for supporting the creation and exchange of differ-
ent arguments, that support or reject possible correspondences. Each agent can
decide, according to its preferences, whether to accept or refuse a candidate cor-
respondence. The proposed framework considers arguments and propositions that
are specific to the matching task and are based on the ontology semantics. This
argumentation framework relies on a formal argument manipulation schema and
on an encoding of the agents’ preferences between particular kinds of arguments.
Whilst the former does not vary between agents, the latter depends on the inter-
ests of each agent. Thus, this approach distinguishes clearly between alignment
rationales which are valid for all agents and those specific to a particular agent.

1 Introduction

Ontologies play an important role in inter-agent communication, by providing the de-
finitions of the vocabularies used by agents to describe the world [11]. An agent can
use such a vocabulary to express its beliefs and actions, and so communicate about
them. Ontologies contribute to semantic interoperability when agents are embedded in
open, dynamic environments, such as the Web and its proposed extension, the Seman-
tic Web [4]. However, in this type of environment there cannot be a single universally
shared ontology that is agreed upon by all the parties involved, as this would result in
imposing a standard communication vocabulary. Instead, every agent will typically use
its own private ontology, which may not be understandable by other agents. Interoper-
ability therefore relies on the ability to reconcile different existing ontologies that may
be heterogeneous in format and with partially overlapping domains [19]. This reconcil-
iation usually relies on the existence of correspondences (or mappings) between agent
ontologies, and using them in order to interpret or translate messages exchanged by
agents. The underlying problem is usually termed an ontology matching problem [10].

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 371–384, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



372 L. Laera et al.

There are many matching algorithms that are able to produce such alignments [14].
In general, alignments can be generated by independent, trustable alignment services
that can be invoked in order to obtain an alignment between two ontologies, and use
it for translating messages [9]. Alternatively, they can be retrieved from libraries of
alignments. However, in an open environment where autonomous agents try to pursue
their own objectives, the acceptability of a partial alignment provided by such services
cannot be taken for granted. For a given context, agents might have different and in-
consistent perspectives; i.e. interests and preferences, on the acceptability or not of a
candidate mapping, each of which may be rationally acceptable. This may be due, for
instance, to the subjective nature of ontologies, to the context and the requirement of the
alignments and so on. For example, an agent may be interested in accepting only those
mappings that have linguistic similarities, since its ontology is too structurally simple
to realise any other type of mismatch. In addition, any decision on the acceptability of
these mappings has to be made dynamically at run time, due to the fact that the agents
exist within an open environment, and thus have no prior knowledge of either the ex-
istence or constraints of other agents. These constraints are also relevant in Semantic
Web Service applications, where services performing the same tasks may advertise their
capabilities differently, or where service requests, and service offers may be expressed
by using different ontologies, and thus need to be reconciled dynamically at run time.

In order to address this problem, we present a framework that allows agents to reach
a consensus on the terminology they use in order to communicate. The framework we
present was primarily motivated by open-agent environments, and although in the re-
minder of the paper we refer to agents, the framework can equally be applied to seman-
tic web services. The framework allows agents to express their preferred choices over
candidate correspondences. This is achieved by adapting argument-based negotiation,
used in multi-agent systems, to deal specifically with arguments that support or oppose
the proposed correspondences between ontologies. The set of potential arguments are
clearly identified and grounded on the underlying ontology languages, and the kinds
of mapping that can be supported by any such argument are clearly specified. In order
to compute the preferred ontology alignments for each agent, we use a value-based ar-
gumentation framework [3] allowing each agent to express its preferences between the
categories of arguments that are clearly identified in the context of ontology alignment.
Our approach is able to give a formal motivation for the selection of any correspon-
dence, and enables consideration of an agents’ interests and preferences that may influ-
ence the selection of a given correspondence. Therefore, this work provides a concrete
instantiation of the “meaning negotiation” process that we would like agents to achieve.
Moreover, in contrast to current ontology matching procedures, the choice of alignment
is based on two clearly identified elements: (i) the argumentation framework, which is
common to all agents, and (ii) the preference relations which are private to each agent.

The remainder of this paper is structured as follows. Section 2 defines the assump-
tions underlining the framework. In Section 3 we present in detail the argumentation
framework and how it can be used. Section 4 defines the various categories of arguments
that can support or attack mappings. Section 5 defines the notion of agreed and agree-
able alignments for agents, and a procedure to find them is proposed in Section 6. Next,
in section 7, an example is provided to illustrate the argumentation process. Section 8



Reaching Agreement over Ontology Alignments 373

presents some related work, and finally, Section 9 draws some concluding remarks and
identifies directions for further exploration.

2 Assumptions Underlining the Framework

In this paper, we focus on autonomous agents situated in an open system. Each agent has
a name and a knowledge base, expressed using an ontology. Moreover, we assume that
the mental attitudes of an agent towards correspondences are represented in terms of
interests and preferences. These represent the motivations of the agent, that determine
whatever a mapping is accepted or rejected. Indeed, each agent has a (partial or total)
pre-ordering of preferences over different types of ontology mismatches (Pref ).

In order for agents to communicate, they need to establish alignments between their
ontologies1. We assume that potential alignments are generated by a dedicated agent,
called an Ontology Alignment Service (OAS) [10]. The alignment provided will consist
of a set of all possible correspondences between the two ontologies. A correspondence
(or a mapping) can be described as a tuple: m = 〈e, e′, n, R〉, where e and e′ are the
entities (concepts, relations or individuals) between which a relation is asserted by the
correspondence; n is a degree of confidence in that correspondence; and R is the re-
lation (e.g., equivalence, more general, etc.) holding between e and e′ asserted by the
correspondence [14]. There are a number of approaches that an Ontology Alignment
Service can use for deriving such correspondences. A correspondence which has been
provided by an OAS, but for which no agreement has been made by the agents will be
called a candidate mapping. Moreover, we assume that for each correspondence m, an
OAS is able to provide a set of justifications G, that explain why it has generated a can-
didate mapping. Agents will use such information to exchange arguments supplying the
reasons for their mapping choices. In addition, every agent has a private threshold value
ε which will be compared to the degree of confidence that an OAS associates with each
mapping. Although few approaches for ontology alignment provide such justification
[15] [5], tools such as [8] combine different similarity metrics, and these measures can
be used to extend the system and provide the required justifications.

An agent will apply its pre-ordering of preferences and threshold, ε, when gener-
ating the arguments for and against a candidate mapping. Furthermore, we note that
the process of reaching agreement should be as automatic as possible and should not
require any involvement from human users.

3 Argumentation Framework

In order for the agents to consider potential mappings and the reasons for and against
accepting them, we use an argumentation framework. Our framework is based on Value-
based Argument Frameworks (V AFs) [3].This work is an experimental research and
a prototype of the framework is under development. We start with the presentation of
Dung work [7], upon which the V AFs rely.

1 Although the agents’ ontologies may differ, we assume that ontologies are encoded in the same
language, the standard OWL (http://www.w3.org/OWL/), thus eliminating the problem
of integrating different ontology languages.



374 L. Laera et al.

Definition 1. An Argumentation Framework (AF ) is a pair AF = 〈AR, A〉, where
AR is a set of arguments and A ⊂ AR × AR is the attack relationship for AF . A
comprises a set of ordered pairs of distinct arguments in AR. A pair 〈x, y〉 is referred
to as ”x attacks y”. We also say that a set of arguments S attacks an argument y if y is
attacked by an argument in S.

An argumentation framework can be simply represented as a directed graph whose
vertices are the arguments and whose edges correspond to the elements of A. In Dung’s
work, arguments are atomic and cannot be analysed further. In this paper, however, we
are concerned only with arguments about mappings. We can therefore define arguments
as follows:

Definition 2. An argument x ∈ AF is a triple x = 〈G, m, σ〉 where m is a correspon-
dence 〈e, e′, n, R〉; G is the grounds justifying a prima facie belief that the correspon-
dence does, or does not hold; σ is one of {+,−} depending on whether the argument
is that m does or does not hold.

An argument x is attacked by the assertion of its negation ¬x, namely the counter-
argument, defined as follows:

Definition 3. An argument y ∈ AF rebuts an argument x ∈ AF if x and y are ar-
guments for the same mapping but with different signs, e.g. if x and y are in the form
x = 〈G1, m, +〉 and y = 〈G2, m,−〉, x counter-argues y and vice-versa.

Moreover, if an argument x supports an argument y, they form the argument (x → y)
that attacks an argument ¬y and is attacked by argument ¬x.

When the set of such arguments and counter arguments have been produced, it is nec-
essary for the agents to consider which of them they should accept. Given an argument
framework we can use definitions from [7] to define acceptability of an argument.

Definition 4. Let 〈AR, A〉 be an argumentation framework. Let R, S, subsets of AR.
An argument s ∈ S is attacked by R if there is some r ∈ R such that 〈r, s〉 ∈ A. An
argument x ∈ AR is acceptable with respect to S if for every y ∈ AR that attacks x
there is some z ∈ S that attacks y. S is conflict free if no argument in S is attacked by
any other argument in S. A conflict free set S is admissible if every argument in S is
acceptable with respect to S. S is a preferred extension if it is a maximal (with respect
to set inclusion) admissible subset of AR.

In addition, an argument x is credulously accepted if there is some preferred extension
containing it; whereas x is sceptically accepted if it is a member of every preferred
extension.

The key notion here is the preferred extension which represents a consistent position
within AF , which is defensible against all attacks and which cannot be further extended
without becoming inconsistent or open to attack.

In Dung’s framework, attacks always succeed. This is reasonable when dealing with
deductive arguments, but in many domains, including the one under consideration, ar-
guments lack this coercive force: they provide reasons which may be more or less per-
suasive. Moreover, their persuasiveness may vary according to their audience. To handle



Reaching Agreement over Ontology Alignments 375

such defeasible reasons giving arguments we need to be able to distinguish attacks from
successful attacks, those which defeat the attacked argument, therefore we use a Value-
based Argumentation Framework , which prescribes different strengths to arguments on
the basis of the values they promote and the ranking given to these values by the audi-
ence for the argument. This allows us to systematically relate strengths of arguments to
their motivations, and to accommodate different audiences with different interests and
preferences.

Definition 5. A Value-Based Argumentation Framework (V AF ) is defined as
〈AR, A,V , η〉, where (AR, A) is an argumentation framework, V is a set of k values
which represent the types of arguments and η: AR → V is a mapping that associates a
value η(x) ∈ V with each argument x ∈ AR

In section 4, the set of values V will be defined as the different types of ontology mis-
match, which we use to define the categories of arguments and to assign to each argu-
ment one category.

Definition 6. An audience for a V AF is a binary relation R ⊆ V ×V whose (irreflex-
ive) transitive closure, R∗, is asymmetric, i.e. at most one of (v, v′), (v′, v) are members
of R∗ for any distinct v, v′ ∈ V . We say that vi is preferred to vj in the audience R,
denoted vi #R vj , if (vi, vj) ∈ R∗.

Let R be an audience, α is a specific audience (compatible with R) if α is a total
ordering of V and ∀ v, v′ ∈ V , (v, v′) ∈ α ⇒ (v′, v) �∈ R∗

In this way, we take into account that different agents (represented by different audi-
ences) can have different perspectives on the same candidate mapping. Acceptability of
an argument is defined in the following way: 2

Definition 7. Let 〈AR, A,V , η〉 be a V AF and R an audience.

a. For arguments x, y in AR, x is a successful attack on y (or x defeats y) with respect
to the audience R if: (x, y) ∈ A and it is not the case that η(y) #R η(x).

b. An argument x is acceptable to the subset S with respect to an audience R if: for
every y ∈ AR that successfully attacks x with respect to R, there is some z ∈ S
that successfully attacks y with respect to R.

c. A subset S of AR is conflict-free with respect to the audienceR if: for each (x, y) ∈
S × S, either (x, y) �∈ A or η(y) #R η(x).

d. A subset S of AR is admissible with respect to the audience R if: S is conflict free
with respect to R and every x ∈ S is acceptable to S with respect to R.

e. A subset S is a preferred extension for the audience R if it is a maximal admissible
set with respect to R.

f. A subset S is a stable extension for the audienceR if S is admissible with respect to
R and for all y �∈ S there is some x ∈ S which successfully attacks y with respect
to R.

In order to determine whether the dispute is resolvable, and if it is, to determine the
preferred extension with respect to a value ordering promoted by distinct audiences, [3]
introduces the notion of objective and subjective acceptance as follows:

2 Note that all these notions are now relative to some audience.



376 L. Laera et al.

Definition 8. Given a V AF , 〈AR, A,V , η〉, an argument x ∈ AR is subjectively ac-
ceptable if and only if, x appears in the preferred extension for some specific audiences
but not all. An argument x ∈ AR is objectively acceptable if and only if, x appears
in the preferred extension for every specific audience. An argument which is neither
objectively nor subjectively acceptable is said to be indefensible.

4 Categories of Arguments for Correspondences

As we mentioned in Section 2, potential arguments are clearly identified and grounded
on the underlying ontology language OWL. Therefore, the grounds justifying corre-
spondences can be extracted from the knowledge in ontologies. This knowledge in-
cludes both the extensional and intensional OWL ontology definitions. Our classifica-
tion of the grounds justifying correspondences is the following:

semantic (M ): the sets of models of two entities do or do not compare;
internal structural (IS): two entities share more or less internal structure (e.g., the

value range or cardinality of their attributes);
external structural (ES): the set of relations, each of two entities have, with other

entities do or do not compare;
terminological (T ): the names of two entities share more or less lexical features;
extensional (E): the known extension of two entities do or do not compare.

These categories correspond to the type of categorizations underlying ontology match-
ing algorithms [19].

In our framework, we will use the types of arguments described above as types for the
V AF ; hence V = {M, IS, ES, T, E}. Therefore, for example, an audience may spec-
ify that terminological arguments are preferred to semantic arguments, or vice versa.
Note that this may vary according to the nature of the ontologies being aligned. Seman-
tic arguments will be given more weight in a fully axiomatised ontology, compared to
that in a lightweight ontology where there is very little reliable semantic information on
which to base such arguments.

Table 1 summarises a number of reasons capable of justifying candidate OWL ontol-
ogy alignments. Therefore, the table represents an (extensible) set of argument schemes,
instantiations of which will comprise AR. Attacks between these arguments will arise
when we have arguments for the same mapping but with conflicting values of σ, thus
yielding attacks that can be considered symmetric. Moreover, the relations in the map-
pings can also give rise to attacks: if relations are not deemed exclusive, an argument
against inclusion is a fortiori an argument against equivalence (which is more general).

Example 1. Consider a candidate mapping m = 〈c, c′, ,≡〉 between two OWL ontolo-
gies O1 and O2, with concepts c and c′ respectively. An argument for accepting the
mapping m may be that the labels of c and c′ are synonymous. An argument against
may be that some of their super-concepts are not mapped.

Therefore, in V AFs, arguments against or in favour of a candidate mapping are seen as
grounded on their type. In this way, we are able to motivate the choice between preferred
extensions by reference to the type ordering of the audience concerned. Moreover, as



Reaching Agreement over Ontology Alignments 377

mentioned in section 2, the pre-ordering of preferences Pref for each agent will be
over V , that corresponds to the determination of an audience. Specifically, for each
candidate mapping m, if there exist justification(s) G for m that corresponds to the
highest preferences Pref (with the respect of the pre-ordering), assuming n is greater
than its private threshold ε, an agent will generate arguments x = 〈G, m, +〉. If not, the
agent will generate arguments against: x = 〈G, m,−〉. The generation is achieved by
instantiating the argumentation schema.

Table 1. Argument scheme for OWL ontological alignments

Mapping σ Grounds Comment
〈e, e′, n,≡〉 + ∃mi = 〈ES(e), ES(e′), n′,≡〉 e and e′ have mapped neighbours (e.g., super-entities,

sibling-entities, etc.) of e are mapped in those of e′

〈e, e′, n,
〉 + ∃mi = 〈ES(e), ES(e′), n′,≡〉 (some or all) Neighbours (e.g., super-entities, sibling-entities,
etc.) of e are mapped in those of e′

〈e, e′, n,≡〉 - � ∃mi = 〈ES(e), ES(e′), n′,≡〉 No neighbours of e and e′ are mapped
〈e, e′, n,
〉 - � ∃mi = 〈ES(e), ES(e′), n′,≡〉 No neighbours of e are mapped to those of e′

〈e, e′, n,
〉 - ∃mi = 〈ES(e′), ES(e), n′,≡〉 (some or all) Neighbours of e′ are mapped to those of e
〈c, c′, n,
〉 + ∃mi = 〈IS(c), IS(c′), n′,≡〉 (some or all) Properties of concept c are mapped to those

of concept c′

〈c, c′, n,
〉 - � ∃mi = 〈IS(c), IS(c′), n′,≡〉 No properties of c are mapped to those of c′

〈c, c′, n,
〉 - ∃mi = 〈IS(c′), IS(c), n′,≡〉 (some or all) Properties of c’ are mapped to those of c
〈c, c′, n,≡〉 + ∃mi = 〈IS(c′), IS(c), n′,≡〉 The concepts c and c′ have mapped properties
〈c, c′, n,≡〉 - � ∃mi = 〈IS(c′), IS(c), n′,≡〉 No properties in c and c′ are mapped
〈p, p′, n,≡〉 + ∃mi = 〈IS(p), IS(p), n′,≡〉 The range and/or the domain of the property p is mapped

with those of p′

〈p, p′, n,
〉
〈p, p′, n,≡〉 - � ∃mi = 〈IS(p), IS(p), n′,≡〉 The range and/or the domain of the properties p and p′

are not mapped
〈p, p′, n,
〉
〈i, i′, n,≡〉 + ∃mi = 〈IS(i, i′′), IS(i′, i′′), n′,≡〉 Each individual i and i’ referees to a third instance i”
〈p, p′, n,
〉 via two properties that are mapped
〈p, p′, n,≡〉 - � ∃mi = 〈IS(i, i′′), IS(i′, i′′), n′,≡〉 The properties that link each individual i and i’ to a
〈p, p′, n,
〉 third instance i” are not mapped
〈e, e′, n,≡〉 + ∃mi = 〈E(e), E(e′), n′,≡〉 (some or all) Instances of e and e′ are mapped
〈e, e′, n,
〉 + ∃mi = 〈E(e), E(e′), n′,≡〉 (some or all) Instances of e are mapped to those of e′

〈e, e′, n,≡〉 - � ∃mi = 〈E(e), E(e′), n′,≡〉 No instances of e and e′ are mapped
〈e, e′, n,
〉 - � ∃mi = 〈E(e), E(e′), n′,≡〉 No instances of e are mapped to those of e′

〈e, e′, n,
〉 - ∃mi = 〈E(e′), E(e), n′,≡〉 (some or all) Instances of e’ are mapped to those of e
〈e, e′, n,≡〉 + label(e) ≈T label(e′) Entities’s labels share lexical features (e.g., synonyms

and lexical variants)
〈e, e′, n,
〉
〈e, e′, n,≡〉 - label(e) �≈T label(e′) Entities’ labels do not share lexical features (e.g., homonyms)
〈e, e′, n,
〉
〈e, e′, n,≡〉 + URI(e) ≈T URI(e′) Entities’ URIs share lexical features
〈e, e′, n,
〉
〈e, e′, n,≡〉 - URI(e) �≈T URI(e′) Entities’ URIs do not share lexical features
〈e, e′, n,
〉

5 Agreed and Agreeable Alignments

Although in V AFs there is always a unique non-empty preferred extension with respect
to a specific audience, provided the AF does not contain any cycles in a single argument
type, an agent may have multiple preferred extensions either because no preference
between two values in a cycle has been expressed, or because a cycle in a single value
exists. The first may be eliminated by committing to a specific audience, but the second



378 L. Laera et al.

cannot be eliminated in this way. In our domain, where many attacks are symmetric,
two cycles will be frequent and in general an audience may have multiple preferred
extensions.

Thus, given a set of arguments justifying mappings organised into an argumenta-
tion framework, an agent will be able to determine which mappings are acceptable by
computing the preferred extensions with respect to its preferences. If there are multiple
preferred extensions, the agent must commit to the arguments present in all preferred
extensions, but has some freedom of choice with respect to those in some but not all
of them. This will partition arguments into three sets: desired arguments, present in all
preferred extensions, optional arguments, present in some but not all, and rejected ar-
guments, present in none. If we have two agents belonging to different audiences, these
sets may differ. Doutre et al. [6] describe a means by which agents may negotiate a
joint preferred extension on the basis of their partitioned arguments so as to maximise
the number of desired arguments included, whilst identifying which optional arguments
need to be included to support them.

Based on the above considerations, we thus define an agreed alignment and an agree-
able alignment as follows. An agreed alignment is the set of correspondences sup-
ported3 by those arguments which are in every preferred extension of every agent. An
agreeable alignment extends the agreed alignment with those correspondences sup-
ported by arguments which are in some preferred extension of every agent. Whilst the
mappings included in the agreed alignments can be considered valid and consensual
for all agents, the agreeable alignments have a uncertain background, due to the differ-
ent alternative positions that each agent can take. However, given our context of agent
communication, we seek to accept as many candidate mappings as possible. We will
therefore take into consideration both set of alignments - agreed and agreeable.

6 Instantiating Argumentation Frameworks

In order to reach agent consensus about ontology alignments, first we have to build the
argumentation frameworks and evaluate them to find which arguments are agreed and
agreeble. There are four main steps in applying our argumentation approach:

1. Given a single agent, and for each candidate mapping, we construct an argumenta-
tion framework by considering the repertoire of argument schemes available to the
agent, and constructing a set of arguments by instantiating these schemes with re-
spect to the interests of the agent. Each argument either supports or rejects the con-
clusion that the mapping is valid. Internally, an argument is represented by a simple
identifier (letter A,B,C, etc.), the type of value which it promoted, and optionally,
the agent(s) introducing the argument. Having established the set of arguments, we
then determine the attacks between them by considering their mappings and signs,
and the other factors discussed above. The formulation of suitable attacks is a key
part of representing the different point of views of agents. Arguments may have
different strength, which depends on the values they promote. Therefore, an attack
can fail, since the attacked argument may be stronger than its attacker.

3 Note that a correspondence m is supported by an argument x if x is 〈G, m, +〉.



Reaching Agreement over Ontology Alignments 379

2. Given multiple agents, we simply merge their individual frameworks by forming
the union of their individual argument sets and attack relations, and then extend
the attack relations by computing the attacks between the arguments present in the
framework of each agent with the arguments of all the other agents.

3. Then, for each V AF , we determine which of the arguments are undefeated by at-
tacks from other arguments. We employ the algorithm in [2] for computing the
preferred extensions of a value-based argumentation framework given a value or-
dering. The global view is considered by taking the union of these preferred exten-
sions for each audience.

4. Finally, we consider which arguments are in every preferred extension of every
audience. The mappings that have only arguments for will be included in the agreed
alignments, and the mappings that have only arguments against will be rejected.
For those mappings where we cannot establish their acceptability, we extend our
search space to consider those arguments which are in some preferred extension of
every audience. The mappings supported by those arguments are part of the set of
agreeable alignments. An algorithm to find such agreed and agreeable alignments
is available in Laera et al. [12].

The dialogue between agents can thus consist simply of the exchange of individual ar-
gumentation frameworks, from which they can individually compute acceptable map-
pings. If necessary and desirable, these can then be reconciled into a mutually accept-
able position through a process of negotiation, as suggested in [6] which defines a di-
alogue process for evaluating the status of arguments in a V AF , and shows how this
process can be used to identify mutually acceptable arguments. In the course of con-
structing a position, an ordering of values best able to satisfy the joint interests of the
agents concerned is determined. However, such issues are the subject of ongoing re-
search.

The above technique considers sets of mappings and complete argumentation frame-
works. If instead the problem is to determine the acceptability of a single mapping it
may be more efficient to proceed by means of a dialectical exchange, in which a map-
ping is proposed, challenged and defended.

7 A Walk Through Example

Let us assume that some agents or services need to interact with each other using two
independent but overlapping ontologies. The first agent, Ag1 uses the bibliographic
ontology4 from the University of Toronto, based on bibTeX; whereas the second agent,
Ag2, uses the General University Ontology5 from the French company Mondeca6. For
space reasons, we will only consider a subset of these ontologies, shown in Table 2,
where the first and second ontologies are represented by O1 and O2 respectively.

4 http://www.cs.toronto.edu/semanticweb/maponto/ontologies/BibTex.owl
5 http://www.mondeca.com/owl/moses/univ.owl
6 Note that ontology O2 has been slightly modified for the purposes of this example.



380 L. Laera et al.

Table 2. Excerpts of O1 and O2 ontologies

O1 Ontology O2 Ontology
Artifact � � Document � �

Print Media � Artifact Publication � Document
Press � Print Media Periodical � Publication

Magazine � Press Magazine � Periodical
Newspaper � Press Newspaper � Periodical

publication � ∀hasPublisher.Publisher Newsletter � Periodical
publication � Print Media Journal � Periodical
Publisher � Organization Publication � Document

Publication � ∀publishedBy.Organization

We will reason about the following candidate mappings, provided by the OAS:
m1=〈O1: Press, O2: Periodical, n,=〉;7
m2=〈O1: publication, O2: Publication, n,=〉;
m3=〈O1: hasPublisher, O2: publishedBy, n, =〉;
m4=〈O1: Magazine, O2: Magazine, n,=〉;
m5=〈O1: Newspaper, O2: Newspaper, n, =〉;
m6=〈O1: Organization, O2: Organization, n,=〉.

As mentioned in Section 2, the generation of the arguments and counter-arguments
is based on the agent’s preferences and threshold. However, here we assume that all
above candidate mappings have a degree of confidence n that is above the threshold of
each agent, and so will not influence their acceptability.

Assume now that there are two possible audiences,R1, which prefers terminology to
external structure, (T #R1 ES), and R2, which prefers external structure to terminol-
ogy (ES #R2 T ). The pre-ordering of preference Pref will correspond to the agents’s
audience.

We can identify a set of arguments and the attacks between them. We assume that a
set of arguments is generated by instantiating the argumentation schemes, given in table
1, with respect to the interests and preferences Pref of the agents and taking into consid-
eration the justifications G, provided by the OAS. Table 3 shows each argument, labeled
with an identifier Id, its type V , and the attacks A that can be made on it by opposing
arguments. Based upon these arguments and the attacks, we can construct the argumen-
tation frameworks which bring the arguments together so that they can be evaluated.
These are shown in Figure 1, where nodes represent arguments (labelled with their Id)
with the respective type value V . The arcs represent the attacks A, whereas the direc-
tion of the arcs represents the direction of the attack. By instantiating the general VAF
according to their own preferences, Ag1 and Ag2 obtain two possible argumentation
frameworks, (a) and (b). In the argumentation framework (a), we have two arguments
against m1, and one for it:

– A is against the correspondence m1, since none of the super-concepts of the
O1: Press are mapped to any super-concept of O2: Periodical.

7 m1 states an equivalence correspondence with confidence n between the concept Press in
the ontology O1 and the concept Periodical in the ontology O2.



Reaching Agreement over Ontology Alignments 381

Table 3. Arguments for and against the correspondences m1, m2, m3, m4, m5 and m6

Id Argument A V
A 〈� ∃m = 〈superconcept(Press), superconcept(Periodical), n,≡, 〉, m1,−〉 B,L,O ES
B 〈∃m = 〈subconcept(Press), subconcept(Periodical), n,≡, 〉, m1, +〉 A,C ES
C 〈Label(Press) �≈T Label(Periodical), m1,−〉 B T
D 〈Label(publication) ≈T Label(Publication), m2, +〉 E T
E 〈� ∃m = 〈superconcept(publication), superconcept(Publication), n,≡, 〉, m2,−〉 D,F ES
F 〈∃m = 〈property(publication), property(Publication), n,≡, 〉, m2, +〉 E IS
G 〈� ∃m = 〈range(hasPublisher), range(publishedBy), n,≡, 〉, m3,−〉 F,H IS
H 〈Label(hasPublisher) ≈T Label(publishedBy), m3, +〉 G T
I 〈∃m = 〈superconcept(Publisher), Organization, n,≡, 〉, m7, +〉 G ES
J 〈Label(Magazine) ≈T Label(Magazine), m4, +〉 T

K 〈∃m = 〈siblingConcept(Magazine), siblingConcept(Magazine), n, ≡, 〉, m4, +〉 ES
L 〈∃m = 〈superconcept(Magazine), superconcept(Magazine), n,≡, 〉, m4, +〉 ES

M 〈Label(Newspaper) ≈T Label(Newspaper), m5, +〉 T
N 〈∃m = 〈siblingConcept(Newspaper), siblingConcept(Newspaper), m5, +〉 ES
O 〈∃m = 〈superconcept(Newspaper), superconcept(Newspaper), n,≡, 〉, m5, +〉 ES
P 〈Label(Organization) ≈T Label(Organization), m6, +〉 T

– B argues for m1 because two sub-concepts of O1: Press, (O1: Magazine and
O1: Newspaper), are mapped to two sub-concepts of
O2: Periodical, (O2: Magazine and O2: Newspaper), as established by m4 and
m5.

– C argues against m1, because Press and Periodical do not have any lexical sim-
ilarity.

Moreover, we have six arguments supporting the correspondences m4, m5 and m6. K ,
L and M justify the mapping m4, since, respectively, the labels of O1: Magazine and
O2: Magazine are lexically similar; their siblings are mapped, as established by m5
and their super-concepts; O1: Press and O2: Periodical are mapped by m1. There is
a similar situation for the arguments M , N and O. Clearly, argument A attacks the
arguments L and O.

Fig. 1. Value-Based Argumentation Frameworks

In the second argumentation framework (b) we relate the following arguments: D jus-
tifies the mapping m2, since the labels of O1: publication and O2: Publication are lex-
ically similar. Their super-concepts, however, are not mapped (argument E). Argument
F is based on the fact that O1: publication and O2: Publication have mapped prop-
erties, O1: hasPublisher and O2: publishedBy, as defined in m3. F is then attacked
by G, which states that the range of these properties, respectively O1: Publisher and



382 L. Laera et al.

O2: Organization, are not mapped. This is in turn counter-attacked by the argumentsH
and I . The argument H states that the mapping m3 is correct, since O1: hasPublisher
and O2: publishedBy are lexically similar. The argument I attacks the justification of
G stating that the ranges of these properties are similar, since a super-concept of O1:
Publisher, (O1: Organization), is already mapped to O2: Organization. The argu-
ment P states that O1: Organization and O2: Organization are mapped since their
labels are lexically similar.

The above analysis gives different, but sometimes overlapping reasons to argue for
and against several candidate mappings. Given the two audiences, R1 and R2, the pre-
ferred extensions for the union of the argumentation frameworks (a) and (b) is shown
in Table 4.

Table 4. Preferred Extensions

Preferred Extensions for the union of (a) and (b) Audience
{A, C, J, K, M, N, D, F, I,H, P } R1

{A, C, J, K, M, N, D, F, I, H,P }, {B, O, L, J, K, M, N, D, F, I,H, P } R2

{A, C, J, K, M, N, E, I, H,P }, {B, O, L, J, K, M, N, E, I,H, P }

Therefore, the arguments that are accepted by both audiences are {I, H, J, K, M,
N, P}. Arguments A, C, D, E, and F are, however, all potentially acceptable, since
both audiences can choose to accept them, as they appear in some preferred exten-
sion for each audience. This means that the mapping m1 will be rejected (since B is
unacceptable to R1), while the mappings m3, m4, m5 and m6 will be all accepted
(they are all accepted by R1 and all acceptable to R2). m2 will be acceptable too, be-
cause the arguments supporting it are in some preferred extension for these audiences,
as defined in section 5. The agreed alignment is then m3, m4, m5 and m6, while the
agreeable alignment adds m2. Interestingly, in this scenario, should an agent wish to
reject the mappings m2 and m3, it can achieve this by considering a new audience
R3, in which internal structure is valued more than external structure, which is valued
more than terminology (IS #R3 ES #R3 T ). In this case, the preferred extension
from framework (b) is {E, G, I, P}, since the new preference allows G to defeat H
and resist I . G will also defeat F leaving E available to defeat D. This clearly shows
how the acceptability of an argument crucially depends on the audience to which it is
addressed.

8 Related Work

There are few approaches in the literature which have addressed the use of argumen-
tation or negotiation between agents w.r.t. ontology alignments. An ontology mapping
negotiation [17] has been proposed to establish a consensus between different agents
which use the MAFRA alignment framework. The approach is based on the utility and
meta-utility functions used by the agents to establish if a mapping is accepted, rejected
or negotiated. However, the approach is highly dependent on the use of the MAFRA



Reaching Agreement over Ontology Alignments 383

framework and cannot be flexibly applied in other environments. van Diggelen et al.
[18] present an approach for agreeing on a common grounding ontology in a decen-
tralised way. Rather than being the goal of any one agent, the ontology mapping is a
common goal for every agent in the system. Bailin and Truszkowski [1] present an on-
tology negotiation protocol which enables agents to exchange parts of their ontology,
by a process of successive interpretations, clarifications, and explanations. However, the
end result of this process is that each agent will converge on a single, shared ontology
consisting of the union of all the terms and their relations. In our context, agents keep
their own ontologies that they have been designed to reason with, while keeping track of
the mappings with other agent’s ontologies. Contrastingly, significant research exists in
the area of argumentation-based negotiation [16][13] in multi-agent systems. However,
none has been apply in area of ontology alignments.

9 Summary and Outlook

In this paper we have outlined a framework that provides a novel way for agents, who
use different ontologies, to come to agreement on an alignment. This is achieved us-
ing an argumentation process in which candidate correspondences are accepted or re-
jected, based on the ontological knowledge and the agent’s preferences. Argumentation
is based on the exchange of arguments, against or in favour of a correspondence, that
interact with each other using an attack relation. Each argument instantiates an argu-
mentation schema, and utilises domain knowledge, extracted from extensional and in-
tensional ontology definitions. When the full set of arguments and counter-arguments
has been produced, the agents consider which of them should be accepted. As we have
seen, the acceptability of an argument depends on the ranking - represented by a par-
ticular preference ordering on the type of arguments. Our approach is able to give a
formal motivation for the selection of a correspondence, and enables consideration of
an agent’s interests and preferences that may influence the selection of a correspon-
dence. We believe that this approach will aim at reaching more sound and effective
mutual understanding and communicative work in agents system.
In the current state of the implementation, the ontology alignments is provided man-
ually. The next step is to extend the developed prototype to utilize an ontology align-
ment services in oder to obtain the alignment automatically. An empirical evaluation
is planned. Moreover, in future work we intend to investigate the use of a negotiation
process to enable agents to reach an agreement on a mapping when they differ in their
ordering of argument types. Another interesting topic for future work would be to inves-
tigate how to argue about the whole alignments, and not only the individual candidate
mapping. These arguments could occur when a global similarity measure between the
whole ontologies is applied.

Acknowledgements. The research has been partially supported by Knowledge Web
(FP6-IST 2004-507482) and PIPS (FP6-IST 2004-507019). Special thanks to Floriana
Grasso and Ian Blacoe.



384 L. Laera et al.

References

1. S. C. Bailin and W. Truszkowski. Ontology Negotiation: How Agents Can Really Get to
Know Each Other. In Proceedings of the WRAC 2002, 2002.

2. T. Bench-Capon. Value based argumentation frameworks. In Proceedings of Non Monotonic
Reasoning, pages 444–453, 2002.

3. T. Bench-Capon. Persuasion in Practical Argument Using Value-Based Argumentation
Frameworks. In Journal of Logic and Computation, volume 13, pages 429–448, 2003.

4. T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific American,
284(5):34–43, 2001.

5. R. Dhamankar, Y. Lee, A. Doan, A. Halevy, and P. Domingos. iMAP: Discovering complex
semantic matches between database schemas. In Proceedings of the International Confer-
ence on Management of Data (SIGMOD), pages 383–394, 2004.

6. S. Doutre, T. Bench-Capon, and P. E. Dunne. Determining Preferences through Argumenta-
tion. In Proceedings of AI*IA’05, pages 98–109, 2005.

7. P. Dung. On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic
Reasoning, Logic Programming and n-person Games. In Artificial Intelligence, volume 77,
pages 321–358, 1995.

8. M. Ehrig and S. Staab. QOM - Quick Ontology Mapping. In Proceedings of the International
Semantic Web Conference, 2004.

9. J. Euzenat. Alignment infrastructure for ontology mediation and other applications. In
M. Hepp, A. Polleres, F. van Harmelen, and M. Genesereth, editors, Proceedings of the First
International workshop on Mediation in semantic web services, pages 81–95, 2005.

10. J. Euzenat and P. Valtchev. Similarity-based ontology alignment in OWL-Lite. In Proceed-
ings of the European Conference on Artificial Intelligence (ECAI 2006), 2004.

11. T. R. Gruber. A Translation Approach to Portable Ontology Specifications. Knowledge
Acquisition, 5(2):199–220, 1993.

12. L. Laera, V. Tamma, T. Bench-Capon, and J. Euzenat. Agent-based Argumentation for On-
tology Alignments. In Proceedings of the Workshop on Computational Models of Natural
Argument (CMNA 2006), 2006.

13. I. Rahwan, S. D. Ramchurn, N. R. Jennings, P. McBurney, S. Parsons, and L. Sonenberg.
Argumentation-based negotiation. In The Knowledge Engineering Review, volume 18, pages
343–375, 2003.

14. P. Shvaiko and J. Euzenat. A survey of schema-based matching approaches. Journal on data
semantics, 4:146–171, 2005.

15. P. Shvaiko, F. Giunchiglia, P. Pinheiro da Silva, and D. McGuinness. Web explanations for
semantic heterogeneity discovery. In Proceedings of ESWC, pages 303–317, 2005.

16. C. Sierra, N. R. Jennings, P. Noriega, and S. Parsons. A Framework for Argumentation-
Based Negotiation. In Proceedings of the 4th International Workshop on Intelligent Agents
IV, Agent Theories, Architectures, and Languages, 1997.

17. N. Silva, P. Maio, and J. Rocha. An Approach to Ontology Mapping Negotiation. In Pro-
ceedings of the Workshop on Integrating Ontologies, 2005.

18. J. van Diggelen, R. Beun, F. Dignum, R. van Eijk, and J.-J. Meyer. A decentralized approach
for establishing a shared communication vocabulary. In Proceedings of the AMKN, 2005.

19. P. Visser, D. Jones, T. Bench-Capon, and M. Shave. Assessing Heterogeneity by Classifying
Ontology Mismatches. In N. Guarino, editor, Proceedings of the FOIS’98, 1998.



A Formal Model for Semantic Web Service Composition

Freddy Lécué1,2 and Alain Léger1

1 France Telecom R&D, France,
4, rue du clos courtel F-35512 Cesson Sévigné

{freddy.lecue, alain.leger}@orange-ft.com
2 École Nationale Supérieure des Mines de Saint-Étienne, France

158, cours Fauriel F-42023 Saint-Étienne cedex 2

Abstract. Automated composition of Web services or the process of forming
new value added Web services is one of the most promising challenges in the
semantic Web service research area. Semantics is one of the key elements for
the automated composition of Web services because such a process requires rich
machine-understandable descriptions of services that can be shared. Semantics
enables Web service to describe their capabilities and processes, nevertheless
there is still some work to be done. Indeed Web services described at functional
level need a formal context to perform the automated composition of Web ser-
vices. The suggested model (i.e., Causal link matrix) is a necessary starting point
to apply problem-solving techniques such as regression-based search for Web
service composition. The model supports a semantic context in order to find a
correct, complete, consistent and optimal plan as a solution. In this paper an in-
novative and formal model for an AI planning-oriented composition is presented.

Keywords: Semantic Web, Web service, AI planning, Automated composition,
Automated reasoning.

1 Introduction

Web service [1] provides the feature richness, flexibility and scalability needed by en-
terprises to manage the SOA challenges. By Web services we mean loosely coupled,
reusable software components that semantically encapsulate discrete functionality and
are distributed and programmatically accessible over standard internet protocols.

Web services proliferation over the web implies difficulties to find specific services
that can perform specialized tasks. Nevertheless a combination of existing services is
an alternative and promising approach although manual Web service combination from
scratch can be difficult and time consuming. That is why new abilities are necessary to
support dynamic and automated tasks such as discovery, selection and composition. The
main ability is to describe capability (inputs, outputs, preconditions, and effects: IOPEs)
and process model (Web services activities, interaction protocol) of Web services. The
latter needs are covered by means of semantic Web services. Indeed a semantic Web
service [2] is described as a Web service whose internal and external description is in a
language that has well-defined semantics.

Composition of Web services is probably the most interesting challenge spawned by
this paradigm. Most of the work in semantic Web services composition has focused on

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 385–398, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



386 F. Lécué and A. Léger

two main levels of composition: functional [3,4,5] and process [6,7,8] levels. The for-
mer level considers Web services as “atomic” components described in terms of their
IOPEs, and executed in a simple request-response step. The latter level supposes Web
services as stateful processes with an interaction protocol involving in different sequen-
tial, conditional, and iterative steps. The functional and process level composition are
complementary methods to propose solutions for composition. In this paper, we study
an AI planning-oriented functional composition of Web services through a new formal
model i.e., the Causal link matrix (CLM). The CLM aims at not only storing all rele-
vant Web services in a semantic way but also pre-chaining Web services according to
a semantic link i.e., the causal link. According to a CLM, the Ra4C algorithm pro-
poses a Regression-based Approach for Composition. Thus the issue of the paper is an
automated process of chaining Web services according to their functional description.

The rest of the paper is organized as follows. Section 2 introduces a motivating ex-
ample through an e-healthcare scenario. Section 3 presents the causal link matrix as a
formal model to describe Web services at functional level. In section 4, an AI planning-
oriented method is presented to solve a Web service composition with a specific CLM.
We briefly comment on related work in section 5. Finally in section 6, we draw some
conclusions and we talk about possible future directions.

2 A Motivating Example: An e-Healthcare Scenario

One of the most challenging problems in healthcare domain is providing a way to order
and compose medical devices. Such a composition does not only improve the patient
follow-up but also reduce the number of consultations, examinations, medical check-
ups and consequently their price. Indeed a long-standing clinical observation in hospital
is no longer a realistic issue for cost reasons since the elderly. In order to tackle this
problem and propose an automated process of composition, we propose an AI planning
oriented composition approach through the Causal link matrix. For this purpose, the
existing applications and medical devices (e.g., sphygmomanometer) are wrapped as
Web services. Thus telemedical collaborations are possible through the Web service
paradigm. A solution of such a problem consists in implementing a composite and
value-added Web service that can automate the patient follow-up by a reliable Web
service interoperation, hence a long distance follow-up.

Fig. 1. A sample of an e-healthcare ontology T



A Formal Model for Semantic Web Service Composition 387

Consider the above scenario with six different Web services: Sa returns the blood
pressure (BP) of a patient given his PatientID (PID) and DeviceAddress (Add); Sb and
Sb′ return respectively the supervisor (Person) and a physician of an organisation (Org);
Sc returns a Warning level (WL) given a blood pressure; Sd returns the Emergency
department given a level of Warning; Se returns the Organization given a Warning level.

3 Formal Model

3.1 Motivation

Algorithms for Web service composition have to not only find feasible plans with rele-
vant Web services, but also find the optimal plan according to an optimization criteria.
The latter criteria will be viewed as a quality of semantic connection between Web ser-
vices (Input and output parameters relation). Indeed the semantic connection between
Web services is considered as essential to form new value-added Web services. The
formal model (i.e., the Causal link matrices) aims at storing all those connections (i.e.,
causal links) in order to find the best Web service composition. The CLM pre-computes
all semantic links between Web services as an Output-Input matching because a Web
service composition is mainly made up of semantic connections. Indeed a solution of
a Web service composition have to design and define a plan of Web services wherein
all Web services are semantically well ordered and well linked. The latter links are
computed and stored in CLMs.

The idea behind the CLM is a formal model to store Web services in an adequate and
semantic context for functional level composition of Web services hence a clear for-
malization of the Web service composition. The CLM aims at proposing a composition
model for a finite set of Web services. The latter Web services are supposed to be rele-
vant according to a discovery criteria [9,2]. In such a case, the CLM pre-computes and
defines all the possible semantic matching functions between Web services to improve
the performance of Web service composition, and also to make Web service composi-
tion easier. Moreover CLMs allow us to consider a simpler composition problem i.e.,
the causal link composition. Thus the Web service composition is mapped to a causal
link composition wherein causal links inform about semantic connections between Web
service. A composition solution is mainly oriented by the CLM of the domain.

3.2 Semantic Web Context

Parameters (i.e., input and output) of Web services are concepts referred to in an on-
tology T (e.g., OWL-S profile [10], WSMO capability [11]). Finding a semantic sim-
ilarity between two parameters Out sy and In sx is similar to find a mapping [12]
between two knowledge representations encoded using the same ontology T . Causal
links store this semantic similarity between parameters of Web services. Indeed a causal
link describes a semantic relation between an output parameter Out sy ∈ T of a
Web service sy and an input parameter In sx ∈ T of a Web service sx. Thereby
sx and sy are semantically and partially linked according to a matchmaking function
SimT (Out sy, In sx) with T a terminology (e.g., Figure 1).



388 F. Lécué and A. Léger

Table 1. Semantic matching functions described by SimT

Match Type Exact Plug-in Subsume Fail
SimT (Out sy, In sx) 1 2

3
1
3 0

Logic meaning Out sy ≡ In sx Out sy ⊂ In sx Out sy ⊃ In sx Otherwise

Despite some methods [13,14,15], solving a mapping problem is hard because the
syntactic form of two knowledge representations rarely matches exactly. Four kinds
of semantic matching functions [13] are considered in our model to check semantic
similarity between a concept Out sy and a concept In sx. The semantic similarity is
valued by the SimT function (Table 1) in order to estimate the semantic degree of link
between parameters of Web services. In other words the semantic similarity valuation
is necessary to chain Web services parameters with the most appropriate links. For ex-
ample, the Plug-in match means that an output parameter of a service sy is subsumed
by an input parameter of the succeeding service sx whereas the Subsume match means
that an output parameter of a service sy subsumes an input parameter of the succeeding
service sx. Besides these four semantic matching functions (Table 1), non-empty inter-
section [14], concept abduction or contraction [15] might be proposed in order to add
expressivity of the SimT function.

Suppose two Web services sy and sz with a respective output parameter Out sy and
Out sz . In case one finds a Web service sx such that Out sy and Out sz semantically
match with In sx, a semantic similarity function is necessary to value Web services
connections. Thus the latter function aims at ordering the different kinds of matching
(Out sy, In sx). The similarity function described as SimT (Out sy, In sx) is clearly
analogous to degreOfMatch(Out sy, In sx) function [13].

3.3 Web Service Composition Formalism

Web service composition is close to function composition in the mathematical area.
A trivial Web service composition of two Web services sy and sx is considered as a
mathematical composition sx ◦ sy . The latter composition means that sy precedes sx

and there exists a positive value of SimT between all input parameters of sx and some
output parameters of sy . CLMs (i.e., matrices of semantic connections) are introduced
with the aim of finding not only trivial but also more complex composition.

3.4 Causal Link Matrices

The CLMs contribute to the automated process of Web service composition by classify-
ing Web services according to a formal link called “causal link”. A causal link is related
to a logical dependency among input and output parameters of different Web services.

A causal link1 [16,17] is refined as a triple 〈sy, SimT (Out sy, In sx), sx〉 such
that sx and sy refer to two Web services in a set of available Web services SWs.
The concept Out sy is an output parameter of the service sy whereas the concept
In sx is an input parameter of the service sx. The function SimT is the function

1 In AI planning area, some authors call causal link protection intervals [16].



A Formal Model for Semantic Web Service Composition 389

of semantic similarity described in Table 1. SimT returns a value in [0, 1] depend-
ing on the matching degree between the concepts Out sy, In sx ∈ T . A causal link
〈sy, SimT (Out sy, In sx), sx〉 requires that i) sy precedes sx, ii) no Web service is
interleaved between sx and sy .

Definition 1. (Valid Causal link)
A causal link 〈sy, SimT (Out sy, In sx), sx〉 is valid iff SimT (Out sy, In sx) > 0.

Example 1. (Valid Causal link illustration)
According to the motivating example, 〈Sd, SimT (EmergencyDpt, Organization),
Sb′〉 is a valid causal links whereas 〈Sb, SimT (Person, Organization), Sb′〉 is not.

A causal link matrix contains all enabled, legal and valid transitions for a composition
goal because causal links help to detect inconsistencies (Fail case in Table 1) of se-
mantic link between Web services. Indeed all valid causal links between Web services
are explicitly represented with a value pre-computed by the SimT function. The latter
value is based on the semantic quality of valid causal links. The Causal link matrix aims
at storing all those valid causal links in an appropriate way. The more valid causal links
there are, the better it is for a functional composition problem.

Definition 2. (Causal link matrix CLM)
The set of p×q CLMs2 is defined as Mp,q(P((SWs∪T )×(0, 1])). Columns cj,j∈{1,...,q}
are labelled by (Input(SWs) ∪ β) ⊆ T , the inputs parameters of services in SWs

and/or the concepts described by the goal set β ⊆ T . Rows ri,i∈{1,...,p} are labelled by
Input(SWs), the inputs parameters of services in SWs. Each entry mi,j of a CLM M
is defined as a set of pairs (sy , score) ∈ (SWs ∪ T ) × (0, 1] such that

(sy, score) =

{
(sy, SimT (Out sy, cj)) if sy ∈ SWs, Out sy ∈ Out(sy)

(sy, 1) if sy ∈ T
(1)

with ri ∈ T ∩ In(sy) ⊆ Input(SWs) is the label of the ith row.
with cj ∈ T ∩ (Input(SWs)∪β) is the label of the jth column.

Out(sy) is the set of output parameters of the Web services sy whereas In(sy) is its
set of input parameters. β contains the set of goals, described as concepts in a termi-
nology T . Those concepts have to be reached. The variable score refers to the degree
of match SimT (Out sy, cj) between an output parameter Out sy ∈ T of sy and cj ∈
Input(SWs)∪β in case sy ∈ SWs. In the alternative case sy ∈ T , the value score is 1.
A CLM pre-computes the semantic similarities between all output and input parameters
of a closed set of Web services. All entries defined in P((SWs ∪ T ) × (0, 1]) are valid
causal links . Indeed SimT is restricted on (0, 1] according to definition 2.

A CLM is seen as a matrix with entries in P((SWs ∪ T ) × (0, 1]). Thus each entry
of a CLM refers to a set of pairs (sy, score) such that the score refers to a semantic
similarity between an output parameter of a Web service sy and an input parameter
of another Web service in SWs. All semantic connections (i.e., Causal links) are pre-
computed in such a matrix to make Web service composition easier.

2 P(S) refers to power set of S whereas #S refers to the Cardinality of S.



390 F. Lécué and A. Léger

Table 2. Labels of the rows ri and columns cj of the 5 × 6 matrix M

i/j index 1 2 3 4 5 6
ri.label Address (Add) BloodPressure (BP) Org Patient (PID) Warning Level (WL)
cj.label Address (Add) BloodPressure (BP) Org Patient (PID) Warning Level (WL) Person

Table 3. Semantic Web services of SWs and their capabilities

Web Services Sa Sb Sc Sd Se

Input PID (r4, c4),Add (r1, c1) Org (r3, c3) BP (r2, c2) WL (r5, c5) WL (r5, c5)
Output BP (r2, c2) Person (c6) WL (r5, c5) Emerg. Dpt Org (r3, c3)

According to definition 2, Causal link matrices are defined with p rows and q columns,
with #(β) is the cardinality of goals:

p = #(Input(SWs)) (2)

q = p + #(β) − #(β ∩ Input(SWs)) (3)

The variables p and q refer, respectively, to the cardinality of input parameters of all
Web services in SWs and the cardinality of input parameters of all Web services in SWs

and β. In compliance with [18], dimension of a causal link matrix in Mp,q(P(SWs ×
(0, 1]) is defined by dimP(SWs×(0,1])Mp,q(P(SWs × (0, 1])) = p × q. In the general
case, CLMs are not square matrices since q > p.

Example 2. (Illustration of Causal link matrix indexes and labels.)
Let {Sa, Sb, Sc, Sd, Se} be the set of Web services SWs (section 2) and {Person} be
the goal β. p and q are respectively equal to 5 and 6 (Tables 2, 3) according to equalities
(2), (3) and Definition 2. Thus rows, columns of the CLM M are respectively indexed by
{1, ..., 5}, {1, ..., 6} and labelled by concepts ri,i∈{1,...,5}, cj,j∈{1,...,6} of T . M refers
to a causal link matrix with entries in P((SWs ∪ T ) × { 1

3 , 2
3 , 1}).

The causal link matrices construction is function of the cardinality of output and input
parameters of Web services in SWs. Suppose #(Output(SWs)) and #(Input(SWs

)) be respectively the cardinality of output parameters of Web services in SWs and the
cardinality of input parameters of Web services in SWs. The algorithmic complexity
for the causal link matrix construction is θ(#(Input(SWs)) × #(Output(SWs))) or
θ((Max{#(Input(SWs)), #(Output(SWs))}2) so square in the worst case [19]. In
other words, the CLMs construction consists of finding a semantic similarity score
between the output parameters of all Web services sy ∈ SWs and the input parameters
of another Web service in SWs. In case score is not null, the pair (sy, score) is added
in the CLM according to the Definition 2. For further details, [19] studies the whole
process of the CLM construction.

Example 3. (Causal link matrix illustration with Tables 2, 3)
The entry m5,3 (i.e., mWarningLevel,Organization) is equal to {(Sd,

2
3 ), (Se, 1))}. In-

deed a Web service Sd with one input parameter WarningLevel and an output



A Formal Model for Semantic Web Service Composition 391

EmergencyDpt semantically similar to Organization exists in SWs. 〈Sd, SimT
(EmergencyDpt, Organization), Sb〉 is a valid causal link. The EmergencyDpt
and Orga-nization concepts match with the Plug-in match according to the definition
of SimT . According to examples 1 and 2, the causal link matrix M follows:

M =

⎛⎜⎝
∅ {(Sa,1)} ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {(Sc,1)} ∅
∅ ∅ ∅ {(Sb, 1

3 )} ∅ {(Sb,1)}
∅ {(Sa,1)} ∅ ∅ ∅ ∅
∅ ∅ {(Sd, 23 ),(Se,1)} ∅ ∅ ∅

⎞⎟⎠
Given a set of instantiated concepts in KB, definition 3 initialises a CLM M and the
property 1 follows.

Definition 3. (Causal link matrix initialisation)
Let M be a CLM in Mp,q(P((SWs ∪ T ) × (0, 1])) and KB be the set of instantiated
concepts {C1, . . . , Ct} such that KB ⊆ Input(SWs) ∩ T . M is initialised with KB iff

mi,k ⊇ (Ck, 1), ∀i ∈ {1, . . . , p}, ∀k ∈ {1, . . . , t}

Example 4. (Illustration of a causal link matrix initialisation)
Let {Address, PatientID} be the knowledge base KB and M be the CLM (example
3). According to the definition 2, Tables 2 and 3, the initialised CLM is:

M0 =

⎛⎜⎝
{(Add,1)} {(Sa,1)} ∅ {(PID,1)} ∅ ∅
{(Add,1)} ∅ ∅ {(PID,1)} {(Sc,1)} ∅
{(Add,1)} ∅ ∅ {(PID,1),{(Sb, 13 )} ∅ {(Sb,1)}
{(Add,1)} {(Sa,1)} ∅ {(PID,1)} ∅ ∅
{(Add,1)} ∅ {(Sd, 2

3 ),(Se,1)} {(PID,1)} ∅ ∅

⎞⎟⎠
Property 1. An entry mi,j from a causal link matrix M ∈ Mp,q(P((SWs∪T )×(0, 1]))
is different from the empty set if and only if one of the following conditions is satisfied:

i) ∃sy ∈ SWs with at least one input ri.label ∈ T and one output Out sy ∈ Out(sy)∩
T such that SimT (Out sy, cj.label) �= 0 (definition 2);

ii) cj.label is a concept in KB (definition 3).

Once all Web services in SWs are semantically chained according to the causal link
criteria, the Web service composition problem is mapped to an AI planning problem.

3.5 Causal Link Matrix Issues

The key contribution of the Causal link matrix is a formal and semantic model to control
a set of Web services which are relevant for a Web service composition. Web services of
SWs are supposed to be relevantly discovered in a discovery process [2,9]. Thus the set
of Web services SWs is closed in order to limit the dimension of the Causal link matrix.
This model allows performance analysis of proposed plans with a concrete view of the
composition background: causal links and their semantic dependency. The Causal link
matrix aims at pre-chaining Web services according to a semantic similarity based on
their Output/Input specification. Thus the CLM describes all possible interactions be-
tween all the known Web services in SWs as semantic connections. Moreover the CLM



392 F. Lécué and A. Léger

model in an interesting trade-off to support processes such as Web service verification
(valid causal link) or repairing by insertion and deletion of Web services. The Causal
link matrix is able to prepare a suitable context for an AI planning problem [7,20] with
the purpose of obtaining complete, correct, consistent and optimal plan.

A set of ontologies T , a set of Web services SWs, a goal β, a knowledge base KB
and a semantic similarity function SimT are required in order to satisfy such a chal-
lenging solution. With a terminology T , we deal with conceptual analysis (inference
problems) and knowledge representation. A set of Web services refers to a set of ac-
tions for a planning problem. β informs about plan directions (as searching concepts).
A knowledge base KB informs about initial conditions (instantiated concepts). Finally
the similarity function SimT semantically compares two parameters as concepts in T .

4 AI Planning and Causal Link Matrices

The planning problem is formalized as a triple Π = 〈SWs,KB, β〉. SWs refers to a
set of possible state transitions, KB is an Initial state and β ⊆ T is an explicit goal
representation. The Web service composition method consists of finding a plan that
produces the desired outputs β according to a knowledge base KB. The causal link
score allows the early detection of impossible, feasible and best links between Web
services (Definitions 1 and 2). That is why our method is based on the causal link
validity between Web service. The CLM of a specified domain allows to detect all
Web service composition with semantic connections. Composition as sequences of Web
service is a necessary requirement to propose a solution plan. Such a composition is
defined by the sequence-composability. The latter composability defines a composition
sx ◦ sy if an output of sy is consumed by an input of another Web service sx. The
sequence-composability knowledge is expressed in CLMs according to the Theorem 1.

Theorem 1. Let M be a CLM, and sx, sy be two Web services in SWs. sx and sy are
sequence-composable iff

– ∃i ∈ {1, .., p}, ∃j ∈ {1, .., q}, ∃v ∈ (0, 1] such that (sy, v) ⊆ mi,j . cj.label and
ri.label are respectively inputs of sx (In(sx)) and sy (In(sy)).

Proof. Consider the proof of theorem 1 as the following two implications.

(⇒) Let sx, sy be two Web services in SWs andM be a CLM with entries inP((SWs∪
T )×(0, 1]). Moreover, we consider the Sequence-composability of sx and sy such
that an output of the Web service sy is consumed by the input of another Web ser-
vice sx i.e., sx◦sy . According to the CLM definition, input parameters of sx are la-
belled inM as concepts in T . Thus we may suppose {1, ..., psx} as the index of the
sx input parameters in M without loss of generalities. According to the Sequence-
composability definition, ∃j ∈ {1, ..., qsx} such that SimT (Out sy, cj.label) > 0
since an output Out sy ∈ Out(sy) of one Web service sy is consumed by an input
cj.label of another web service sx. Consequently 〈sy, SimT (Out sy, cj.label), sx〉
is a valid causal link. According to the property 1.i), an entry mi,j fromM is differ-
ent from the empty set. Finally ∃i ∈ {1, ..., psx} ⊆ {1, ..., p}, ∃j ∈ {1, ..., qsx} ⊆
{1, ..., q} such that (sy, SimT (Out- sy, cj.label)) ⊆ mi,j with cj.label ∈ In(sx)
and ri.label ∈ In(sy).



A Formal Model for Semantic Web Service Composition 393

(⇐) Suppose ∃i ∈ {1, ..., p}, ∃j ∈ {1, ..., q}, ∃score ∈ (0, 1] such that (sy, score)
⊆ mi,j with cj.label ∈ In(sx) ⊆ T and ri.label ∈ In(sy) ⊆ T . According to def-
inition 2 and property 1.i), an entry mi,j from M is different from the empty set.
Thus ∃sy ∈ SWs with at least one input ri.label ∈ T and one output Out sy ∈ T
such that SimT (Out sy, cj.label) �= 0. Since cj.label ∈ In(sx), two Web services
sx and sy in SWs exist such that an output of the Web service sy is consumed by
an input of another Web service sx. Thus sx and sy are sequence-composable.

Remark 1. In case of more complex composition, more than one Web service needs to
be chained with sx in order to produce input parameters of sx (in case of a regression-
base search). So parallel constructs may be applied. The latter constructs is conceivable
in case the entry cardinality (in the CLM) is greater than 1.

Example 5. Suppose the CLM M in section 3. Sc and Sd are sequence-composable
in SWs if and only if Sd ◦ Sc (Theorem 1). Indeed there exists (i, j) = (2, 5) in M
such that(ri.label, cj.label) = (BloodPressure, WarningLevel). (Sc, 1) ⊆ mi,j with
cj.label ∈ In(Sd) ⊆ T and ri.label ∈ In(Sc) ⊆ T . Therefore the output Sc is consumed
by the input of Sd because SimT (Out Sc, In Sd) �= 0 (Table 1).

4.1 AI Planning Context and Regression-Based Approach

A simpler form of AI planning is introduced to avoid problems [21] from planning-
based Web services composition, e.g., non determinism and implicit goal. The set of
Web services SWs (i.e., Actions) is closed by assumption and the goal set β refers to a
set of concepts in a terminology T . Thus we propose a solution plan in a well-defined
domain: goals are explicitly given, initial state is well defined and Web services are
strictly defined at functional level. So non determinism, implicit goal, fuzzy Web service
description and behaviour are out of the question. Therefore it does seem possible to
directly apply current AI planning methods to our specific problem.

The composition process consists of a recursive and regression-based approach. The
main idea is to propose a controlled and adequate matrix parsing. Thus each causal
link takes place in the solution plan as a semantic link between Web services. Accord-
ing to the Ra4C algorithm, a goal β needs to be solved. In case the previously goal
is fulfilled by the initial condition i.e., the knowledge base KB, the process of consis-
tent plans discovery is stopped. Otherwise a Web service sx with a goal β as an output
parameter should be discovered in SWs. This discovery process is eased by the CLM
of the domain. In case of a discovery success, the process is iterated with the sx in-
put parameters as new goals. Alternatively, the process is stopped and the (or a part
of the) plan is reduced to ∅. All the process is recursive until all goals and new goals
are concepts in KB (stop condition). The algorithm 1 presents the complete process
of composition and returns a disjunction of consistent plans consisted of valid and
“sequence-composable”causal links. CLMs ease the regression-based search because
all Web services are semantically well ordered in a robust and formal model. The so-
lutions are plans wherein Web services are semantically chained by causal links. The
complexity of the algorithm 1 depends on the filling rate of the CLM. The more the
CLM is sparse the faster the Ra4C algorithm is. Instead a regression-based approach,
other problem-solving techniques - called heuristic reasoning - may be applied [22].



394 F. Lécué and A. Léger

Plan constructs are necessary to describe a partial ordering [23] of Web services in
Π , hence ∧ the conjunction operator (parallel construct), ∨ the disjunction operator
(non determinism construct), ◦ the sequence construct, and ∧ > ∨ > ◦ their priority
order. The operator ◦ defines the sequence-composability between two Web services.

Algorithm 1. Composition by regression-based approach Ra4C

Input: A CLM M ([mi,j]), a (or disjunction of) plan(s) π, a planning problem
〈SWs,KB, β〉, a set of solved goals G, a set of non valid goals βnv .

Result: A disjunction of consistent plans π.
begin

Sc ← ∅; // Temporary set of pairs in (SWs ∪ T ) × (0, 1].
// Stop condition of the Ra4C algorithm.
if ((∃Ck ∈ KB) & (SimT (Ck, β) �= 0)) then π ← β;
// Web services discovery with β output.
foreach Ii ∈ Input(SWs) do

if ∃(sy, v) ∈ mIi,β then Add((sy, v), Sc);
// Plan for Web service composition.
if Sc �= ∅ then

foreach pair (sy, v) ∈ Sc such that sy ∈ SWs do
π ← π ∨ sy ;
foreach In sy ∈ In(sy) do

if β ∈ G then π ← π ∧ ∅; Add(G, βnv); // inconsistent plan
else

Add(β, G); Π ← 〈SWs,KB, In sy〉;
π ← π ∨ (

∧
In(sy)Ra4C(M,π,Π ,G));

else π ← π ∧ ∅; // inconsistent plan
return π;

end

sx ◦ sy if ∃Out sy, In sx ∈ T | 〈sy, SimT (Out sy, In sx), sx〉 is a valid causal
link. The conjunction operator is used to express parallel plans. Such a situation is
possible if a Web service contains more than one input parameter (e.g., m1,2, m4,2). The
latter parameters consider new parallel goals in the Ra4C algorithm. The disjunction
operator is used if more than one output parameter is consumed by the goal (e.g., m5,3).

4.2 Consistency, Completeness and Correctness Properties of Solutions

Consistency is a necessary condition for a solution plan. Such a condition is satisfied
by plans which contain no cycle in the ordering constraints and no causal link conflicts
[17]. The Ra4C algorithm builds such a plan and avoid cycles and conflicts to dispose
of inconsistent causal links. The latter inconsistency is tackled by the Algorithm 1 with
an update of solved goals. Thus the Ra4C algorithm do not solve goals already solved.
The correctness proof of algorithm 1 is detailed in [24].



A Formal Model for Semantic Web Service Composition 395

Example 6. (Set of consistent plans)
Let M0 be the CLM (section 3) and Π = 〈{Sa, Sb, Sc, Sd, Se}, {Add, PatientID},
{Person}〉 be the planning-oriented Web service composition problem. We are looking
for a “Person” with skills to understand hypertension troubles. The result is a disjunc-
tion of four consistent plans: πa1 = Sb ◦ ((Sd ◦ Sc ◦ Sa(Add ∧ PID))), πb1 =
Sb ◦ ((Se ◦Sc ◦Sa(Add∧PID))), πa2 = Sb ◦ ((Sd ◦Sc ◦Sa(Add∧(Sb ◦∅)))), πb2 =
Sb ◦ ((Se ◦ Sc ◦ Sa(Add ∧ (Sb ◦ ∅)))).

Plans suggested by Algorithm 1 do not necessarily satisfy the correctness and complete-
ness properties of plan. Regarding a complete plan [17] as a plan where every input of
every Web service is achieved by some other previous Web service, a complete plan is
a partial order of well-ordered causal links. By definition, a CLM contains all necessary
information about complete plans because a CLM explicitly stores all valid causal links
between Web services. Non-complete plans contain empty plan ∅ (Algorithm 1) hence
open goals. Plans with open goals (e.g., πa3, πb3) are removed from the solutions set
since those goals can not be satisfied by KB or the SWs Web services.

The plans refinement follows a backward chaining strategy from a goal to initial
states. In other words the goal β ∈ T is recursively produced from a (or some) valid
causal link(s) 〈sy , SimT (Out sy, β), sx〉. So correctness of the solution plans is guar-
anteed by the causal link between the input and output parameters of Web services.

Therefore the algorithm 1 returns a set of correct, complete and consistent plans.
However such a set may contain a large number of plans. So pruning strategies for plan-
space is necessary to propose a solution. A “causal link”-based optimization criteria is
proposed to detect the optimal plan, hence the computation of best causal links in a
regression process. The process is recursively executed until the plan is a solution or
until the inputs In(sy) ⊆ T of the service sy are concepts in KB. The weight of the
optimal plan is computed by means of the CLM and algorithm 1 previously introduced:

WMax(β) = MaxSc{
1

#In(sy)2
∑

In(sy)

mIi,β .score × (
∏

In(sy)

(WMax(Ii)))} (4)

The recursive function WMax returns the weight of the best plan depending on the
goal β. (4) is based on the weight of valid causal links of suggested plans. Sc is a
set of couple (sy, v) such that sy is a Web service with an output β and input Ii. In
other words, 〈sy, SimT (Out sy, β), sx〉 is a valid causal link. The In(sy) set is the
inputs set of sy ∈ SWs whereas Ii is an input of sy . M is a CLM with coefficients in
P((SWs ∪ T ) × (0, 1]). mIi,β.score is the second component of a couple (sy , v) ⊆
mIi,β . MaxS is a n-arity function which returns the maximum value between n float
value(s). Given a CLM, the combination of algorithm 1 and (4) is an interesting trade-
off to find an optimal, consistent, correct and complete plan when one exists.

Example 7. According to example 6, π is divided into a disjunction of four consitent
plans {πai, πbi}1≤i≤2. The plans πa2 and πb2 are not complete. The weights of different
plans have been computed with formula (4). Weight(πa1) = 1× 2

3×1× 1
22×(1+1) = 1

3
whereas Weight(πb1) = 1 × 1 × 1 × 1

22 × (1 + 1) = 1
2 . Thus πb1 is the optimal plan.



396 F. Lécué and A. Léger

4.3 The Flexibility and Scalability of the Model

The flexibility of Web service composition models is a fundamental criteria for a rel-
evant evaluation. In particular such models should be as robust as possible in order to
evolve in a volatile environment such as the Web services area. The formal model for
semantic Web service composition introduced in this paper takes into account this flex-
ibility criteria. Indeed the alteration and modification (e.g., addition, deletion, and the
update of Web services in the set SWs) is the scope of CLMs. Each new update of SWs

is supported by a Causal link matrix revision since the CLM is responsible for storing
Web service in a semantic way through the causal relationship. Thus incremental sys-
tems wherein new Web services are progressively added, are supported by the previous
model of composition and especially the CLMs. For instance the integration of a new
Web service is related to the insertion of new labelled rows and columns in the worst
case. In the alternative case the integration of a Web service sy means a simple insertion
of sy in the relevant entry(ies) of the specific CLM. The flexibility of the model allows
us to apply a dynamic process of Web service discovery. The only constraint is a simple
update of the CLM before applying the Ra4C algorithm.

Scalability [25] of Web service composition and discovery models is still an open
issue. However the formal model scales well in France Telecom scenarios (about twenty
Web services) such as the e-healthcare (six Web services and a 5 × 6 CLM) scenario.

5 Related Work

Two different approaches [26,27] propose matrices to represent the Web services do-
main. [26] solve an AI planning problem where actions are viewed as tasks. Actions are
formally described with Preconditions and Effects. These tasks are executed by con-
crete Web services, according to a service/task (row/column) matrix. [27] proposes a
simple method to store Web service according to an input/output (row/column) matrix.
The Matrix model used in [26,27] does not propose reasoning about those matrices. In
fact, such the matrices are simply considered as representation models. Moreover no
semantic feature is introduced in their models.

From HTNs [28] to regression planning based on extensions of PDDL [29], different
planning approaches have been proposed for the composition of Web services. However
there is still the issue of how to deal with non determinism in these frameworks. Some
composition planners [20] propose output/input mapping with type characteristics of
these parameters and initial, final state predicates to generate compositions (i.e., plans).
However, services need to be composed using a specification technique that character-
izes ongoing behaviour of the service in order to ensure a sound composition. Situation
calculus is proposed in [7] to represent Web service and Petri nets for describing the
execution behaviours of Web services. A planner is declared as a state chart in [30],
and the resulting composite services are executed by replacing the roles in the chart by
selected individual services. With the aim of generating a composite service plan out of
existing services, [31] propose a composition path, which is a sequence of operators that
compute data, and connectors that provide data transport between operators. The search
for possible operators to construct a sequence is based on the shortest path algorithm
on the graph of operator space. However, they only considered two kinds of services



A Formal Model for Semantic Web Service Composition 397

operator and connector with one input and one output parameter (i.e., the simplest case
for a service composition). [32] propose a forward chaining approach to solve a plan-
ning problem. Their composition process terminates when a set of Web services that
matches all expected output parameters given the inputs provided by a user is found.

6 Conclusion and Future Work

Despite the fact that Web service composition is in its infancy some proposals are being
studied, but no theoretical model has been proposed to help automation of composi-
tion at the best stage of our knowledge. Nevertheless many work directions may need
such clearer formalizations, for instance for verification purposes. In this paper we out-
lined the main challenge faced in semantic Web services. Indeed we showed how the
CLM tackles this challenge by providing a necessary formal model which draws a con-
crete context for automatic Web service composition. This concrete context captures
semantic connections between Web services. The composition model has its roots in
AI planning domain and takes advantage of causal link expressivity by extending its
definition in a semantic context. Semantically weighted by the SimT function, the lat-
ter link refers to a local optimization criteria in order to find solution plans. Moreover
solution plans have properties of completeness, correctness, consistency and optimality.
The model of functional level composition is easily applied to Web services which are
described according to OWL-S (service profile) or WSMO (capability model) specifi-
cation. Finally, contrary to [26,27], our matrix model pre-computes the semantic simi-
larities between Web services (individual inputs and outputs) according to causal links.
Web service composition is viewed as causal link composition.

For further studies new optimization algorithms and scalability of the model need to
be studied. Finally a process level composition needs to be associated to our functional
level composition to guarantee a full correctness of the composition process.

References

1. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applictions. Springer-Verlag (2004)

2. Sycara, K.P., Paolucci, M., Ankolekar, A., Srinivasan, N.: Automated discovery, interaction
and composition of semantic web services. J. Web Sem 1(1) (2003) 27–46

3. Paolucci, M., Sycara, K.P., Kawamura, T.: Delivering semantic web services. In: Proceedings
of the international conference on WWW (Alternate Paper Tracks). (2003) 829–837

4. Sirin, E., Parsia, B., Hendler, J.A.: Filtering and selecting semantic web services with inter-
active composition techniques. IEEE Intelligent Systems 19(4) (2004) 42–49

5. Klusch, M., Fries, B., Khalid, M., Sycara, K.: Owls-mx: Hybrid owl-s service matchmaking.
In: AAAI Fall Symposium Series. (2005)

6. Berardi, D., Calvanese, D., Giacomo, G.D., Lenzerini, M., Mecella, M.: Automatic compo-
sition of e-services that export their behavior. In: 1st ICSOC. (2003) 43–58 volume 2910.

7. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition of web
services,. Eleventh International World Wide Web Conference (2002) 7–10

8. Pistore, M., Roberti, P., Traverso, P.: Process-level composition of executable web services:
”on-the-fly” versus ”once-for-all” composition. In: ESWC. (2005) 62–77



398 F. Lécué and A. Léger

9. Benatallah, B., Hacid, M.S., Leger, A., Rey, C., Toumani, F.: On automating web services
discovery. VLDB J 14(1) (2005) 84–96

10. Ankolenkar, A., Paolucci, M., Srinivasan, N., Sycara, K.: The owl services coalition, owl-s
1.1 beta release. Technical report (2004)

11. Fensel, D., Kifer, M., de Bruijn, J., Domingue, J.: Web service modeling ontology (wsmo)
submission, w3c member submission. (2005)

12. Küsters, R.: Non-Standard Inferences in Description Logics. Volume 2100 of Lecture Notes
in Computer Science. Springer (2001)

13. Paolucci, M., Kawamura, T., Payne, T., Sycara, K.: Semantic matching of web services
capabilities. In: Proceedings of the First International Semantic Web Conference, LNCS
2342, Springer-Verlag (2002) 333–347

14. Li, L., Horrocks, I.: A software framework for matchmaking based on semantic web tech-
nology. In: Proceedings of the Twelfth International Conference on WWW. (2003) 331–339

15. Colucci, S., Noia, T.D., Sciascio, E.D., Mongiello, M., Donini, F.M.: Concept abduction
and contraction for semantic-based discovery of matches and negotiation spaces in an e-
marketplace. In: Proceedings of the 6th ICEC, ACM Press (2004) 41–50

16. McAllester, D., Rosenblitt, D.: Systematic nonlinear planning, Menlo Park, CA, AAAI
(1991) 634–639

17. Russell, S., Norvig, P.: Artificial Intelligence: a modern approach. Prentice-Hall (1995)
18. Baker, A.: Matrix Groups: An Introduction to Lie Group Theory. Springer undergraduate

mathematics series. Springer-Verlag, London (2002)
19. Lécué, F., Léger, A.: Semantic web service composition through a matchmaking of domain.

In: 4th IEEE European Conference on Web Services (ECOWS) (to appear). (2006)
20. Desjardins, M., Sheshagiri, M., Finin, T.: A planner for composing services described in

DAML-S. In: AAMAS Workshop on Web Services and Agent-based Engineering. (2003)
21. Srivastava, B., Koehler, J.: Web service composition - current solutions and open problems.

In: ICAPS 2003 Workshop on Planning for Web Services. (2003)
22. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan

Kaufmann Publishers (2004)
23. Sacerdoti, E.: The nonlinear nature of plan. In: IJCAI-4. (1975) 206–214
24. Lécué, F., Léger, A.: Semantic web service composition based on a closed world assumption.

In: 4th IEEE European Conference on Web Services (ECOWS) (to appear). (2006)
25. Constantinescu, I., Faltings, B., Binder, W.: Type-based composition of information services

in large scale environments. In: The International Conference on Web Intelligence. (2004)
26. Claro, D.B., Albers, P., Hao, J.K.: Selecting web services for optimal composition. In: ICWS

International Workshop on Semantic and Dynamic Web Processes, Orlando - USA (2005)
27. Constantinescu, I., Faltings, B., Binder, W.: Type based service composition. In: WWW

(Alternate Track Papers & Posters). (2004) 268–269
28. Wu, D., Parsia, B., Sirin, E., Hendler, J.A., Nau, D.S.: Automating DAML-S web services

composition using SHOP2. In: ISWC. (2003) 195–210
29. Dermott, D.M.: PDDL - the planning domain definition language (1997)
30. Benatallah, B., Sheng, Q.Z., Ngu, A.H.H., Dumas, M.: Declarative composition and peer-to-

peer provisioning of dynamic web services. In: ICDE. (2002) 297–308
31. Mao, Z.M., Katz, R.H., Brewer, E.A.: Fault-tolerant, scalable, wide-area internet service

composition. Technical report (2001)
32. Zhang, R., Arpinar, I.B., Aleman-Meza, B.: Automatic composition of semantic web ser-

vices. In: ICWS. (2003) 38–41



Evaluating Conjunctive Triple Pattern Queries
over Large Structured Overlay Networks�

Erietta Liarou1, Stratos Idreos2, and Manolis Koubarakis3

1 Technical University of Crete, Chania, Greece
2 CWI, Amsterdam, The Netherlands

3 National and Kapodistrian University of Athens, Athens, Greece

Abstract. We study the problem of evaluating conjunctive queries com-
posed of triple patterns over RDF data stored in distributed hash tables.
Our goal is to develop algorithms that scale to large amounts of RDF
data, distribute the query processing load evenly and incur little network
traffic. We present and evaluate two novel query processing algorithms
with these possibly conflicting goals in mind. We discuss the various
tradeoffs that occur in our setting through a detailed experimental eval-
uation of the proposed algorithms.

1 Introduction

Research at the frontiers of P2P networks and Semantic Web has recently re-
ceived a lot of interest [23]. One of the most interesting open problems in this
area is how to evaluate queries expressed in Semantic Web query languages (e.g.,
RDQL [22], RQL [17], SPARQL [21] or OWL-QL [10]) on top of P2P networks
[9,4,19,20,25,18].

In this paper we study the problem of evaluating conjunctive queries com-
posed of triple patterns on top of RDF data stored in distributed hash tables.
Distributed hash tables (DHTs) are an important class of P2P networks that
offer distributed hash table functionality, and allow one to develop scalable, ro-
bust and fault-tolerant distributed applications [2]. DHTs have recently been
used for the distributed storage and retrieval of various kinds of data e.g., re-
lational [12,14], textual [27], RDF [9] etc. Conjunctions of triple patterns are
core constructs of some RDF query languages (e.g., RDQL [22] and SPARQL
[21]) and used implicitly in all others (e.g., in the generalized path expressions
of RQL [17]).

The contributions of this paper are the following. We present two novel algo-
rithms for the evaluation of conjunctive RDF queries composed of triple patterns
on top of the distributed hash table Chord [24]. This has been an open prob-
lem since the proposal of RDFPeers [9] where only atomic triple patterns and
conjunctions of triple patterns with the same variable or constant subject and
possibly different constant predicates have been studied. Extending these query
� This work was supported in part by the European Commission project Ontogrid

(http://www.ontogrid.net/).

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 399–413, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



400 E. Liarou, S. Idreos, and M. Koubarakis

classes considered by RDFPeers to full conjunctive queries is an important issue
if we want to deal effectively with the full functionality of existing RDF query
languages [22,17,21]. But notice that the resulting query class is more challenging
than the ones considered in RDFPeers. In the terminology of relational data-
bases: we now have to deal with arbitrary selections, projections and joins on a
virtual ternary relation consisting of all triples.

The focus of our work is on the experimental evaluation of the proposed al-
gorithms. We concentrate on three parameters that are critical in a distributed
setting: amount of data stored in the network, load distribution and generated
network traffic. Our algorithms are designed so that they involve in the query eval-
uation as many network nodes as possible, store as little date in the network as
possible, and minimize the amount of network traffic they create. Trying to achieve
all of these goals involves a tradeoff, and we demonstrate how we can sacrifice good
load distribution to keep data storage and network traffic low and vice versa.

The rest of the paper is organized as follows. Section 2 presents a synopsis
of the underlying assumptions regarding network architecture, data model and
query language. Sections 3 and 4 present the alternative data indexing and query
processing algorithms. Then, in Section 5, we present an optimization to further
reduce the network traffic generated by the algorithms. In Section 6, we show a
detailed experimental evaluation and comparison of our algorithms under various
parameters that affect performance. Finally, Section 7 discusses related work,
and Section 8 presents conclusions and future work directions.

2 System Model and Data Model

System model. We assume an overlay network where all nodes are equal, they
run the same software and have the same rights and responsibilities. Each node
n has a unique key (e.g., its public key), denoted by key(n). Nodes are orga-
nized according to the Chord protocol [24] and are assumed to have synchronized
clocks. This property is necessary for the time semantics we describe later on in
this section. In practice, nodes will run a protocol such as NTP and achieve ac-
curacies within few milliseconds [6]. Each data item i has a unique key, denoted
by key(i). Chord uses consistent hashing to map keys to identifiers. Each node
and item is assigned an m-bit identifier, that should be large enough to avoid
collisions. A cryptographic hash function, such as SHA-1 or MD5 is used: func-
tion Hash(k) returns the m-bit identifier of key k. The identifier of a node n is
denoted as id(n) and is computed by id(n) = Hash(key(n)). Similarly, the iden-
tifier of an item i is denoted by id(i) and is computed by id(i) = Hash(key(i)).
Identifiers are ordered in an identifier circle (ring) modulo 2m, i.e., from 0 to
2m − 1. Key k is assigned to the first node which is equal or follows Hash(k)
clockwise in the identifier space. This node is called the successor node of iden-
tifier Hash(k) and is denoted by Successor(Hash(k)). We will often say that
this node is responsible for key k. A query for locating the node responsible for
a key k can be done in O(log N) steps with high probability [24], where N is the
number of nodes in the network. Chord is described in more detail in [24].



Evaluating Conjunctive Triple Pattern Queries 401

The algorithms we describe in this paper use the API defined in [26,14,13].
This API provides two functionalities not given by the standard DHT protocols:
(i) send a message to multiple nodes (multicast) and (ii) send d messages to
d nodes where each node receives exactly one of these messages (this can be
thought of as a variation of the multicast operation). Let us now briefly describe
this API. Function send(msg, id), where msg is a message and id is an identifier,
delivers msg from any node to node Successor(id) in O(log N) hops. Function
multiSend(msg, I), where I is a set of d > 1 identifiers I1, ..., Id, delivers msg to
nodes n1, n2, ..., nd such that nj = Successor(Ij), where 1 < j ≤ d. This happens
in O(d log N) hops. Function multiSend() can also be used as multiSend(M, I),
where M is a set of d messages and I is a set of d identifiers. In this case, for
each Ij , message Mj is delivered to Successor(Ij) in O(d log N) hops in total.
A detailed description and evaluation of alternative ways to implement this API
can be found in [13].

Data model. In the application scenarios we target, each network node is able
to describe in RDF the resources that it wants to make available to the rest
of the network, by creating and inserting metadata in the form of RDF triples.
In addition, each node can submit queries that describe information that this
node wants to receive all possible answers that are available at this time. We
use a very simple concept of schema equivalent to the notion of a namespace.
Thus, we do not deal with RDFS and the associated reasoning about classes
and instances. Different schemas can co-exist but we do not support schema
mappings. Each node uses some of the available schemas for its descriptions and
queries.

We will use the standard RDF concept of a triple1. Let D be a countably infi-
nite set of URIs and RDF literals. A triple is used to represent a statement about
the application domain and is a formula of the form (subject, predicate, object).
The subject of a triple identifies the resource that the statement is about, the
predicate identifies a property or a characteristic of the subject, while the object
identifies the value of the property. The subject and predicate parts of a triple
are URIs from D, while the object is a URI or a literal from D. For a triple t,
we will use subj(t), pred(t) and obj(t) to denote the string value of the subject,
the predicate and the object of t respectively.

As in RDQL [22], a triple pattern is an expression of the form (s, p, o) where s
and p are URIs or variables, and o is a URI, a literal or a variable. A conjunctive
query q is a formula

?x1, . . . , ?xn : (s1, p1, o1) ∧ (s2, p2, o2) ∧ · · · ∧ (sn, pn, on)

where ?x1, . . . , ?xn are variables, each (si, pi, oi) is a triple pattern, and each
variable ?xi appears in at least one triple pattern (si, pi, oi). Variables will always
start with the ’?’ character. Variables ?x1, . . . , ?xn will be called answer variables
when we want to distinguish them from other variables of the query. A query
will be called atomic if it consists of a single conjunct.

1 http://www.w3.org/RDF/



402 E. Liarou, S. Idreos, and M. Koubarakis

Let us now define the concept of valuation (so we can talk about values that
satisfy a query). Let V be a finite set of variables. A valuation v over V is a total
function v from V to the set D. In the natural way, we extend a valuation v to be
identity on D and to map triple patterns (si, pi, oi) to triples, and conjunctions
of triple patterns to conjunctions of triple patterns.

We will find it useful to use various concepts from relational database theory
in the presentation of our work. In particular, the operations of the relational
algebra utilized in algorithm QC below follow the unnamed perspective of the
relational model (i.e., tuples are elements of Cartesian products and co-ordinate
numbers are used instead of attribute names) [5].

An RDF database is a set of triples. Let DB be an RDF database and q a
conjunctive query q1 ∧ · · · ∧ qn where each qi is a triple pattern. The answer
to q over database DB consists of all n-tuples (v(?x1), . . . , v(?xn)) where v is a
valuation over the set of variables of q and v(qi) ∈ DB for each i = 1, . . . , n.

In the algorithms we will describe below, each query q has a unique key,
denoted by key(q), that is created by concatenating an increasing number to the
key of the node that posed q.

3 The QC Algorithm

Let us now describe our first query processing algorithm, the query chain algo-
rithm (QC). The main characteristic of QC is that the query is evaluated by a
chain of nodes. Intermediate results flow through the nodes of this chain and
finally the last node in the chain delivers the result back to the node that sub-
mitted the query. We will first describe how triples are stored in the network
and then how an incoming query is evaluated by QC.

Indexing a new triple. Assume a node x that wants to make a resource
available to the rest of the network. Node x creates an RDF description d that
characterizes this resource and publishes it. Since, we are not interested in a
centralized solution, we do not store the whole description d to a single node.
Instead, we choose to split d into triples and disperse it in the network, trying
to distribute responsibility of storing descriptions and answering future conjunc-
tive queries to several nodes. Each triple is handled separately and is indexed
to three nodes. Let us explain the exact details for a triple t = (s, p, o). Node x
computes the index identifiers of t as follows: I1 = Hash(s), I2 = Hash(p) and
I3 = Hash(o). These identifiers are used to locate the nodes r1, r2 and r3, that
will store t. In Chord terminology, these nodes are the successors of the relevant
identifiers, e.g., r1 = Successor(I1). Then, x uses the multiSend() function to
index t to these 3 nodes. Each node that receives a triple t stores it in its local
triple table TT . In the discussion below, TT will be formally treated as a ternary
relation (in the sense of the relational model).

Evaluating a query. Assume a node x that poses a conjunctive query q which
consists of triple patterns q1, . . . , qk. Each triple pattern of q will be evaluated by
a (possibly) different node; these nodes form the query chain for q. The order we



Evaluating Conjunctive Triple Pattern Queries 403

use to evaluate the different triple patterns is crucial and we discuss the issues
involved later on. Now, for simplicity, we assume that we first evaluate the first
triple pattern, then the second and so on.

Query evaluation proceeds as follows. Node x determines the node that will
evaluate triple pattern q1 by using one of the constants in q1. For example, if
q1 = (?s1, p1, ?o1) then x computes identifier I1 = Hash(pred(qj)) since the
predicate part is the only constant part of qj . This identifier is used to locate the
node r1 (the successor of I1) that may have triples that satisfy q1, since according
to the way we index triples, all triples that have pred(qj) as their predicate will
be stored in rj . Thus, n sends the message QEval(q, i, R, IP (x)) to node r1
where q is the query, i is the index of the triple pattern to be evaluated by node
r1, IP (x) is the IP address of node x that posed the query, and R is the relation
that will be used to accumulate triples that are intermediate results towards the
computation of the answer to q. In this call, R receives its initial value (formally,
the trivial relation {()} i.e., the relation that consists of an empty tuple over an
empty set of attributes).

In case that q1 has multiple constants, x will heuristically prefer to use first
the subject, then the object and finally the predicate to determine the node that
will evaluate q1. Intuitively, there will be more distinct subject or object values
than distinct predicates values in an instance of a given schema. Thus, our de-
cision help us to achieve a better distribution of the query processing load.

Local processing at each chain node. Assume now that a node n receives
a message QEval(q, i, R, IP (x)). First, n evaluates the i-th triple pattern of
q using its local triple table i.e., it computes the relation L = πX(σF (TT ))
where F is a selection condition and X is a (possibly empty) list of natural
numbers between 1 and 3. F and X are formed in the natural way by tak-
ing into account the constants and variables of qi e.g., if qi is (?si, pi, oi) then
L = π1(σ2=pi∧3=oi(TT )). Then, n computes a new relation with intermediate
results R′ = πY (R �� L) where Y is the (possibly empty) list of positive integers
identifying columns of R and L that correspond to answer variables or variables
with values that are needed in the rest of the query evaluation (i.e., variables
appearing in a triple pattern qj of q such that j > i). Note that the special case
of i = 1 (when R′ = πY (L)) is covered by the above formula for R′, given the
initial value {()} of R. If R′ is not the empty relation then n creates a message
QEval(q, i + 1, R′, IP (x)) and sends it to the node that will evaluate triple pat-
tern qi+1. If R′ is the empty relation then the computation stops and an empty
answer is returned to node x.

In the case that i = k, the last triple pattern of q is evaluated. Then, n simply
returns relation R′ back to x using a message Answer(q, R′). Now R′ is indeed
a relation with arity equal to the number of answer variables and contains the
answer to query q over the database of triples in the network.

In the current implementation, R′ = πY (R �� πX(σF (TT ))) is computed as
follows. For each tuple t of R, we first rewrite qi by substituting variables of qi

by their corresponding values in R. Then, we use qi to probe TT for matching
triples. For each matching triple, the appropriate tuple of R′ is computed on



404 E. Liarou, S. Idreos, and M. Koubarakis

Fig. 1. The algorithm QC in operation

the fly. Access to TT can be made vary fast (essentially constant time) using
hashing. In relational terminology, this is a nested loops join using a hash index
for the inner relation TT . This is a good implementation strategy given that
we expect a good evaluation order for the triple patterns of q to minimize the
number of tuples in intermediate relation R (see relevant discussion at the end
of this section).

Example. QC is shown in operation in Figure 1. Each event in this figure
represents an event in the network, i.e., either the arrival of a new triple or
the arrival of a new triple pattern. Events are drawn from left to right which
represents the chronological order in which these events have happened. In each
event, the figure shows the steps of the algorithm that take place due to this
event. For readability, in each event we draw only the nodes that do something
due to this event, i.e., store or search triples, evaluate a query etc. Finally, note
that we use S for the function Successor(), H for the function Hash() and we
use comma to denote a conjunction between two triple patterns.

In Event 1, node n inserts three triples t1, t2 and t3 in the network. In Event
2, node n submits a conjunctive query q that consists of three triple patterns.
The figure shows how the query travels from node n to r2, then to r4 and finally
to r7, where the answer is computed and returned to n.

Order of nodes in a query chain. The order in which the different triple
patterns of a query are evaluated is crucial, and affects network traffic, query
processing load or any other resource that we try to optimize. For example, if
we want to minimize message size for QC, we would like to put early in the
query chain nodes that are responsible for triple patterns with low selectivity.
Selectivity information can be made available to each node if statistics regarding
the contents of TTs are available. Then, when a node n determines the next triple
pattern qi+1 to be evaluated, n has enough statistical information to determine
a good node to continue the query evaluation. The details of how to make our
algorithms adaptive in the above sense are the subject of future work.



Evaluating Conjunctive Triple Pattern Queries 405

Fig. 2. Comparing the query chains in QC and SBV

4 The SBV Algorithm

Let us now present our second algorithm, the algorithm spread by value (SBV).
SBV extends the ideas of QC to achieve a better distribution of the query
processing load. It does not create a single chain for a query as QC does, but by
exploiting the values of matching triples found while processing the query incre-
mentally, it distributes the responsibility of evaluating a query to more nodes
than QC. In other words, it is essentially constructing multiple chains for each
query. A quick understanding of the difference between QC and SBV can be
obtained from Figure 2. There, we draw for each algorithm, all the nodes that
participate in query processing for a query q that consists of 3 triple patterns.
QC creates a single chain that consists of only 3 nodes and query evaluation is
carried out by these nodes only. On the contrary, SBV creates multiple chains
which can collectively be seen as a tree. Now the query processing load for q is
spread among the nodes of this tree. Each path in this tree is determined by the
values used by triples that match the respective triple patterns at the different
nodes (thus the name of the algorithm).

Indexing a new triple. Assume a new triple t = (s, p, o). In SBV t will be
stored at the successor nodes of the identifiers Hash(s), Hash(p), Hash(o),
Hash(s + p), Hash(s + o), Hash(p + o) and Hash(s + p + o). We will exploit
these replicas of triple t to achieve a better query load distribution.

Evaluating a query. As in QC, the node that poses a new query q of the form
q1 ∧ · · · ∧ qk sends q to a node r1 that is able to evaluate the first triple pattern
q1. From this point on, the query plan produced by SBV is created dynamically
by exploiting the values of the matching triples that nodes find at each step in
order to achieve a better distribution of the query processing load. For example,
r1 will use the values for variables of q1, that it will find in local triples matching
q1, to bind the variables of q2 ∧ · · · ∧ qk that are common with q1 and produce
a new set of queries that will jointly determine the answer to the original query
q. Since we expect to have multiple matching values for the variables of q1, we
also expect to have multiple next nodes where the new queries will continue their
evaluation. Thus, multiple chains of nodes take responsibility for the evaluation
of q. The nodes at the leafs of these chains will deliver answers back to the node
that submitted q. Our previous discussion on the order of nodes/triple patterns
in a query chain is also valid for SBV. For simplicity, in the formal description



406 E. Liarou, S. Idreos, and M. Koubarakis

of SBV below, we assume again that the evaluation order is determined by the
order that the triple patterns appear in the query.

To determine which node will evaluate a triple pattern in SBV, we use the
constant parts of the triple pattern as in QC. The difference is that if there
are multiple constants in a triple pattern, we use the combination of all constant
parts. For example, if qj = (?sj , pj , oj), then Ij = Hash(pred(qj)+obj(qj)) where
the operator + denotes concatenation of string values. We use the concatenation
of constant parts whenever possible, since the number of possible identifiers that
can be created by a combination of constant parts is definitely higher and will
allow us to achieve a better distribution of the query processing load.

Assume a node x that wants to submit a query q with set of answer variables
V . x creates a message Eval(q, V, u, IP (x)), where u is the empty valuation. x
computes the identifier of the node that will evaluate the first triple pattern and
sends the message to it with the send() function in O(log N) hops.

When a node r receives a message Eval(q, V, u, IP (x)) where q is a query
q1 ∧ · · · ∧ qn and n > 1, r searches its local TT for stored triples that satisfy
triple pattern q1. Assume m matching triples are found. For each satisfying triple
ti, there is a valuation vi such that ti = vi(q1). For each vi, r computes a new
valuation v′i = u∪vi and a new query q′i ≡ vi(q2∧· · ·∧qn). Then r decides the node
that will continue the algorithm with the evaluation of q′i (as we described in the
previous paragraph), and creates a new message msgi = Eval(q′i, V, v′i, IP (x))
for that node. As a result, we have a set of at most m messages and r uses
the multiSend() function to deliver them in O(m log N) hops. Each node that
receives one of these messages reacts as described in this paragraph.

In the case that a node r receives a message Eval(q, V, u, IP (x)) where q
consists of a single triple pattern q1 (i.e., r is the last node in this query chain),
then the evaluation of q finishes at r. Thus, r simply computes all triples t in TT
and valuations v such that t = v(qn) and sends the set of all such valuations v
back to node x that posed the original query in one hop (after projecting them
on the answer variables of the initial query). These valuations are part of the
answer to the query. This case covers the situation where n = 1 as well (i.e., q
consists of a single conjunct). Figure 3 shows an example of SBV in operation.

5 Optimizing Network Traffic

In this section we introduce a new routing table, called IP cache (IPC) [14] that
can be used by our algorithms to significantly reduce network traffic. In both
our algorithms, the evaluation of a query goes through a number of nodes. The
observation is that similar queries will follow a route with some nodes in common
and we can exploit this information to decrease network traffic. Assume a node
xj that participates in the evaluation of a query q and needs to send a message
to a “next” node xj+1 that costs O(log N) overlay hops. After the first time that
node xj has sent a message to node xj+1, xj can keep track of the IP address
of xj+1 and use it in the future when the same query or a similar one obliges it
to communicate with the same node. Then, xj can send a message to xj+1 in



Evaluating Conjunctive Triple Pattern Queries 407

Fig. 3. The algorithm SBV in operation

just 1 hop instead of O(log N). The cost for the maintenance of the IPC is only
local. As we will show in the experiments section, the use of IPCs significantly
improves network traffic. Another effect of IPC, is that we reduce the routing
load incurred by nodes in the network. The routing load of a node n is defined
as the number of messages that n receives so as to forward them closer towards
their destination, i.e., these are messages not sent to n but through n. Without
using the IPC, each message that forwards intermediate results will pass through
O(log N) nodes while with IPCs, it will go directly to the receiver node.

6 Experiments

In this section, we experimentally evaluate the algorithms presented in this pa-
per. We implemented a simulator of Chord in Java on top of which we developed
our algorithms. Our metrics are: (a) the amount of network traffic that is cre-
ated and (b) how well the query processing load and storage load are distributed
among the network nodes. Each metric will be carefully described in the rele-
vant experiment. We create a uniform workload of queries and data triples. We
synthetically create RDF triples and queries assuming an RDFS schema of the
form shown in Figure 4, i.e., a balanced tree with depth d and branching factor
k. We assume that each class has a set of k properties. Each property of a class
C which is at level l < d − 1 ranges over another class which belongs to level
l +1. Each class of level d−1 has also k properties which have values that range
over XSD datatypes. These data types are located at the last level d.

To create an RDF triple t, we first randomly choose a depth of the tree of our
schema. Then, we randomly choose a class Ci among the classes of this depth.
After that, we randomly choose an instance of Ci to be subj(t), a property p of
Ci to be pred(t) and a value from the range of p to be obj(t). If the range of
the selected property p are instances of a class Cj that belongs to the next level,
then obj(t) is a resource, otherwise it is a literal.

For our experiments, we use conjunctive path queries of the following form:

?x : (?x, p1, ?o1) ∧ (?o1, p2, ?o2) ∧ · · · ∧ (?on−1, pn, on)



408 E. Liarou, S. Idreos, and M. Koubarakis

Fig. 4. The schema used in our experiments

In other words, we want to know the nodes in the graph ?x for which there is a
path of length n to node o1 labeled by predicates p1, . . . , pn. Path queries are an
important type of conjunctive queries for which database and query workloads
over the schema of Figure 4 can be created easily. To create a query of this type,
we randomly choose a property p1 of class C0. Property p1 leads us to a class
C1 from the next level. Then we randomly choose a property p2 of class C1.
This procedure is repeated until we create n triple patterns. For the last triple
pattern, we also randomly choose a value (literal) from the range of pn to be on.

Our experiments use the following parameters. The depth of our schema is
d = 4. The number of instances of each class is 500, the number of properties
that each one has is k = 3 while the a literal can take up to 200 different values.
Finally, the number of triple patterns in each query we create is 5.

E1: Network traffic and IPC effect. This experiment provides a comparison
of our algorithms in terms of the network traffic that they create. To estimate
better the network traffic, we use weighted hops, i.e., each hope has as weight
the amount of intermediate results that it carries. Furthermore, we investigate
the effect of the IPC in each algorithm and the cost of this optimization. We
set up this experiment as follows. We create a network of 104 nodes and install
104 triples. Then, in order to count how expensive it is to insert and evaluate a
query, in terms of network traffic, we pose a set Q of 100 queries and calculate
the average cost of answering them. In order to understand the effect of IPCs
the experiment continues as follows. We train IPCs with a varying number of
queries, starting from 5 queries up to 640. After each training phase, we insert
the same set of queries Q and count (a) the average amount of network traffic
that is created and (b) the average size of IPCs in the network. Each training
phase, as we call it, has two effects: query insertions cause the algorithms to work
so query chains are created and the rewritten queries are transferred through
these chains, but also because of these forwarding actions IPCs are filled with
information that can reduce the cost of a subsequent forwarding operation. After
each training phase, we measure the cost of inserting a query in the network after
all the queries inserted so far, by exploiting the content of IPCs.

In Figure 5(a) we show the network traffic that each algorithm creates. The
point 0 on the x-axis has the maximum cost, since it represents the cost to insert
the first query in the network. In this case all IPCs are empty and their use has
no effect. Thus, this point reflects the cost of the algorithms if we do not use



Evaluating Conjunctive Triple Pattern Queries 409

(a) Traffic cost (b) IPC effect

Fig. 5. (E1) Traffic cost and IPC effect as more queries are submitted

IPCs. However, in the next phases where IPCs have information that we can
exploit, we see that the network traffic required to answer a query is decreased.
For example, observe that after the last phase the cost of QC is 87% lower
than it was at point 0. Another important observation is that QC causes less
network traffic than SBV. In QC the nodes that participate in query chains are
successors of a single value (of the predicate value for the queries we use in these
experiments), so it is more possible that a query can use the IPC. SBV always
creates more network traffic since the nodes that participate in query chains are
successors of the combination of two values (a subject plus a predicate value).
Since the combinations of these values are more then just a single one, it is less
possible to use the IPC. QC is also cheaper at the point 0 on the x-axis since
SBV has to sent the information though multiple chains.

In Figure 5(b) we show the average storage cost of the IPCs. Note, that here for
readability we use a logarithmic scale for the y-axis. During the training phases,
nodes fill their IPCs so we see that the size of IPC increases, as the number of
submitted queries increases. Since even a small IPC size can significantly reduce
network traffic, we can allow each node to fill its IPC as long as it can handle
its size. The IPC cost in SBV is much more greater than in QC which happens
again because SBV creates multiple chains for each query.

E2: Load distribution. In this experiment we compare the algorithms in terms
of load distribution. We distinguish between two types of load: query processing
load and storage load. The query processing load that a node n incurs is defined
as the number of triple patterns that arrive to n and are compared against its
locally stored triples. Note that for algorithm QC the comparison of a triple
pattern with the triples stored in TT happens for each tuple of relation R when
R′ is computed. Thus, the query processing load of a node n in QC is equal to
the number of tuples in R whenever a message QEval() is received. The storage
load of a node n is defined as the sum of triples that n stores locally. For this
experiment, we create a network of 104 nodes where we insert 3 ∗ 105 triples.
Then we insert 103 queries and after that, we count the query processing and
the storage load of each node in the network.



410 E. Liarou, S. Idreos, and M. Koubarakis

(a) Cumulative query processing load (b) Cumulative storage load

Fig. 6. (E2) Query processing and storage load distribution

In Figure 6(a) we show the query processing load for both algorithms. On the
x-axis of this graph, nodes are ranked starting from the node with the highest
load. The y-axis represents the cumulative load, i.e, each point (a, b) in the graph
represents the sum of load b for the a most loaded nodes. First, we observe that
both algorithms create the same total query processing load in the network. SBV
achieves to distribute the query processing load to a significantly higher portion
of network nodes, i.e, in QC there are 306 nodes (out of 104) participating in
query processing, while in SBV there are 9666 nodes. SBV achieves this nice
distribution since it exploits the values used to create rewritten queries by for-
warding the produced intermediate results to nodes that are the successors of a
combination of two or three constant parts.

Finally, in Figure 6(b) we present the storage load distribution for both al-
gorithms. As before, nodes are ranked starting from the node with the highest
load while the y-axis represents the cumulative storage load. We observe that
in QC the total storage load is less than in SBV. This happens because in QC
we store each triple according to the values of its subject, its predicate and its
object, while in SBV we also use the combinations per two and three of these
values. Thus, in SBV a triple is indexed/stored four more times than in QC. The
highest total storage load in the network is a price we have to pay for the better
distribution of the query processing load in SBV.

Notice that our load balancing techniques are at the application level. Thus,
they can be used together with DHT-level load balancing techniques, e.g., [16].

7 Related Work

The recent book [23] is an up-to-date collection of papers on work at the frontiers
of P2P networks and Semantic Web. In the rest of this section, we only survey
works that are closely related to our own.

In [9], Min Cai et al. studied the problem of evaluating RDF queries in a scal-
able distributed RDF repository, named RDFPeers. RDFPeers is implemented
on top of MAAN [8], which extends the Chord protocols [24] to efficiently an-
swer multi-attribute and range queries. [9] was the first work to consider RDF



Evaluating Conjunctive Triple Pattern Queries 411

queries on top of a DHT. The authors of [9] propose algorithms for evaluat-
ing triple pattern queries, range queries and conjunctive multi-predicate queries
for the one-time query processing scenario. Furthermore, a simple replication
algorithm is used to improve load distribution. Finally, [9] sketches some ideas
regarding publish/subscribe scenarios in RDFPeers. In previous work [18], we
have presented algorithms that go beyond the preliminary ideas of [9] regarding
publish/subscribe for conjunctive multi-predicate queries.

The ideas in [9] have influenced the design of QC. However, we deal with the
full class of conjunctive queries which is an extension of the class of conjunctive
multi-predicate queries considered in [9]. In addition, we have presented the more
advanced algorithm SBV which achieves efficient load distribution in a novel way.

The other interesting work in the area of RDF query processing on top of
DHTs is GridVine [4]. GridVine is built on top of P-Grid [1] and can deal with
the same kind of queries as RDFPeers. In addition, it has an original approach
to global semantic interoperability by utilizing gossiping techniques [3].

Another distributed RDF repository that provides a general RDF-based meta-
data infrastructure for P2P applications is the Edutella system [19,20]. Edutella
has two differences with our proposal: it is based on super-peers (while our pro-
posal assumes that all nodes are equal) and concentrates on data integration
issues (while we do not study this topic). Edutella uses HyperCup in its super-
peer layer to achieve efficient routing of messages, but it does not consider issues
such as the distribution of triples in the network to achieve scalability, load
balancing etc. as in our approach.

The paper [25] is another interesting work on distributed RDF query process-
ing focusing on the optimization of path queries over multiple sources.

Our research is also closely related with work on P2P databases based on
the relational model [7,11,12,14]. Currently, one can distinguish two orthogonal
research directions in this area: work that emphasizes semantic interoperability
of peer databases [7,11] and work that attempts to push the capabilities of
current database query processors to new large-scale Internet-wide applications
by utilizing DHTs [12]. Our work can be categorized in the latter direction since
it studies the processing of a subclass of conjunctive relational queries on top of
DHTs. The only existing study of conjunctive relational queries on top of DHTs
is [12] where join queries are studied. The ideas in this paper complement the
ones in [12] and could also be used profitably in the relational case. This is an
avenue that we plan to explore in future work together with extensions of our
current results on continuous relational queries [14].

8 Conclusions and Future Work

In this paper we presented two novel algorithms for the distributed evaluation
of conjunctive RDF queries composed of triple patterns. The algorithms manage
to distribute the query processing load to a large part of the network while
trying to minimize network traffic and keep storage cost low. The key idea is
to decompose each conjunctive query to the triple patterns that it consists of,



412 E. Liarou, S. Idreos, and M. Koubarakis

and then handle each triple pattern separately at a different node. The first
algorithm establishes a chain of nodes that carry out the query evaluation. The
second algorithm dynamically exploits matching triples to determine the next
node in the query plan and creates multiple node chains that carry out the query
evaluation. As a result, it achieves a better distribution of the query processing
load at the expense of extra network traffic and storage load in the network.

Our future work concentrates on extending our algorithms so that they can
be adaptive to changes in the environment (e.g., changes in the data distribu-
tion), be able to handle skewed workloads efficiently, take into account network
proximity etc. We also plan to extend our algorithms to deal with RDFS reason-
ing. Eventually, we want to support the complete functionality of languages such
RDQL [22], RQL [17] and SPARQL [21]. The algorithms will be incorporated
in our system Atlas [15] which is developed in the context of the Semantic Grid
project OntoGrid2 (Atlas currently implements QC).

References

[1] K. Aberer. P-Grid: A Self-Organizing Access Structure for P2P Information Sys-
tems. In CoopIS ’01.

[2] K. Aberer, L. O. Alima, A. Ghodsi, S. Girdzijauskas, M. Hauswirth, and S. Haridi.
The essence of P2P: A reference architecture for overlay networks. In IEEE P2P
2005.

[3] K. Aberer, P. Cudré-Mauroux, and M. Hauswirth. Start making sense: The chatty
web approach for global semantic agreements. Journal of Web Semantics, 1(1),
December 2003.

[4] K. Aberer, P. Cudre-Mauroux, M. Hauswirth, and T. V. Pelt. GridVine: Building
Internet-Scale Semantic Overlay Networks. In WWW ’04.

[5] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison Wesley,
1995.

[6] M. Bawa, A. Gionis, H. Garcia-Molina, and R. Motwani. The Price of Validity in
Dynamic Networks. In SIGMOD ’04.

[7] P. A. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopoulos, L. Serafini,
and I. Zaihrayeu. Data Management for Peer-to-Peer Computing: A Vision . In
WebDB ’02.

[8] M. Cai, M. Frank, and J. C. P. Szekely. MAAN: A Multi-Attribute Addressable
Network for Grid Information Services. In Grid ’03.

[9] M. Cai, M. R. Frank, B. Yan, and R. M. MacGregor. A Subscribable Peer-to-
Peer RDF Repository for Distributed Metadata Management. Journal of Web
Semantics, 2(2):109–130, December 2004.

[10] R. Fikes, P. Hayes, and I. Horrocks. OWL-QL: A Language for Deductive Query
Answering on the Semantic Web. Journal of Web Semantics, 2(1):19–29, Decem-
ber 2004.

[11] S. Gribble, A. Halevy, Z. Ives, M. Rodrig, and D. Suciu. What Can Peer-to-Peer
Do for Databases, and Vice Versa? In WebDB ’01.

[12] R. Huebsch, J. M. Hellerstein, N. Lanham, B. T. Loo, S. Shenker, and I. Stoica.
Querying the Internet with PIER. In VLDB ’03.

2 http://www.ontogrid.net



Evaluating Conjunctive Triple Pattern Queries 413

[13] S. Idreos. Distributed evaluation of continuous equi-join queries over large struc-
tured overlay networks. Master’s thesis, 2005.

[14] S. Idreos, C. Tryfonopoulos, and M. Koubarakis. Distributed Evaluation of Con-
tinuous Equi-join Queries over Large Structured Overlay Networks. In ICDE ’06.

[15] Z. Kaoudi, I. Miliaraki, M. Magiridou, A. Papadakis-Pesaresi, and M. Koubarakis.
Storing and querying RDF data in Atlas. In Demo Papers ESWC ’06.

[16] D. Karger and M. Ruhl. Simple Efficient Load Balancing Algorithms for Peer to
Peer Systems. In SPAA ’04.

[17] G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl.
RQL: A Declarative Query Language for RDF. In WWW ’02.

[18] E. Liarou, S. Idreos, and M. Koubarakis. Publish-Subscribe with RDF Data over
Large Structured Overlay Networks. In DBISP2P ’05.

[19] W. Nejdl, B. Wolf, C. Qu, S. Decker, M. Sintek, A. Naeve, M. Nilsson, M. Palmer,
and T. Risch. EDUTELLA: A P2P Networking Infrastructure Based on RDF. In
WWW ’02.

[20] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M. Schlosser, I. Brunkhorst, and
A. Loser. Super-Peer-Based Routing and Clustering Strategies for RDF-Based
Peer-To-Peer Networks. In WWW ’03.

[21] E. Prud’hommeaux and A. Seaborn. SPARQL Query Language for RDF.
http://www.w3.org/TR/rdf-sparql-query/, 2005.

[22] A. Seaborne. Rdql - a query language for RDF. W3C Member Submission, 2004.
[23] S. Staab and H. Stuckenschmidt. Semantic Web and Peer-to-Peer. Springer, 2006.
[24] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan. Chord: A

scalable peer-to-peer lookup service for internet applications. In SIGCOMM ’01.
[25] H. Stuckenschmidt, R. Vdovjak, J. Broekstra, and G.-J. Houben. Towards Distrib-

uted Processing of RDF Path Queries. International Journal of Web Engineering
and Technology, 2(2/3):207–230, 2005.

[26] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. LibraRing: An Architecture for
Distributed Digital Libraries Based on DHTs. In ECDL ’05.

[27] C. Tryfonopoulos, S. Idreos, and M. Koubarakis. Publish/Subscribe Functionality
in IR Environments using Structured Overlay Networks. In SIGIR ’05.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 414 – 427, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

PowerMap: Mapping the Real Semantic Web on the Fly 

Vanessa Lopez, Marta Sabou, and Enrico Motta 

Knowledge Media Institute (KMi), The Open University.  
Walton Hall, Milton Keynes, MK7 6AA, United Kingdom 
{v.lopez, r.m.sabou, e.motta}@open.ac.uk 

Abstract. Ontology mapping plays an important role in bridging the semantic 
gap between distributed and heterogeneous data sources. As the Semantic Web 
slowly becomes real and the amount of online semantic data increases, a new 
generation of tools is developed that automatically find and integrate this data. 
Unlike in the case of earlier tools where mapping has been performed at the 
design time of the tool, these new tools require mapping techniques that can be 
performed at run time. The contribution of this paper is twofold. First, we 
investigate the general requirements for run time mapping techniques. Second, 
we describe our PowerMap mapping algorithm that was designed to be used at 
run-time by an ontology based question answering tool.  

Keywords: Semantic Web, question answering, heterogeneity, and ontology 
mapping. 

1   Introduction 

The Semantic Web (SW) is evolving towards an open, distributed and heterogeneous 
environment. Core to the information integration tasks that would be supported by 
SW technology are algorithms that allow matching between the elements of several, 
distributed ontologies. The importance of mapping for the SW has been widely 
recognized [1] and a range of techniques and tools have already been developed. 
However, the predominant view of mapping is that it will be performed at “design 
time”, e.g. when deciding on mapping rules between a set of ontologies [2]. This was 
a plausible assumption because, until recently, only a limited amount of semantic data 
was available; therefore, there was little need for run time integration. Indeed, one of 
the main characteristics of SW based applications built so far is that they tackle the 
data heterogeneity problem in the context of a given domain or application by 
integrating a few, a-priori determined sources [3, 4]. As such, they act more as smart, 
database centered applications rather than tools that truly explore the dynamic and 
heterogeneous nature of the SW [5]. 

Recently, things have started to change. There is now a reasonable amount of 
online semantic data, to such an extent that the need has arisen for a semantic search 
engine, Swoogle [6], which can crawl and index all these data. Hence, we are now 
slowly reaching a key point in the history of this very young discipline, where we can 
start moving away from the early applications characterized by limited heterogeneity 
and start developing the kind of applications, which will define the SW of the future. 



 PowerMap: Mapping the Real Semantic Web on the Fly 415 

These tools will dynamically find and integrate data from online available sources 
depending on their current information need. However, mapping still remains an 
important step. Rather than being performed during the development of the 
application it now needs to be performed at “run time”. Obviously, this new scenario 
brings novel challenges for ontology mapping techniques. 

In this paper we present a mapping algorithm, PowerMap, which is a core component 
of the PowerAqua ontology based question answering system. PowerAqua belongs to 
the new generation of SW tools as it tries to answer questions asked in natural language 
by leveraging on the semantic data available online. As a result, PowerMap needs to be 
able to create mappings between heterogeneous data on-the-fly and with no pre-
determined assumption about the source and the ontological structure of these data. 

The paper is organized as follows. Section 2 provides a perspective about the novel 
scenarios that the evolving SW tools will impose on mapping. Section 3 describes the 
context in which our own mapping algorithm was developed, the PowerAqua 
question answering system, and illustrates through an example some of the challenges 
that such run time mapping operations face. Section 4 details the major design 
components that underlie PowerMap. In Section 5 we present the details of the 
algorithm. Finally, we provide an example (Section 6). We summarize in Section 7. 

2   Mapping in the Context of Semantic Web Tools 

The problem of ontology schema mapping has been investigated by many research 
groups which have proposed a large variety of approaches [1, 7]. While all this 
research has produced increasingly complex algorithms, the setting in which the 
mapping problem was tackled was almost always the same: given two ontologies, find 
all the possible mappings between their entities attaching a confidence level to the 
mappings that are returned. One of the challenges in the field of ontology mapping 
now is not so much perfecting these algorithms, but rather trying to adapt them to 
novel scenarios, which require SW applications to automatically select and integrate 
semantic data available online. Obviously, mapping techniques are crucial in 
achieving this goal. However, the setting in which the mapping would take place is 
quite different from the “traditional” ontology mapping scenario.  Indeed, the focus is 
not on mapping complete ontologies but rather small snippets that are relevant for a 
given task. These new scenarios impose a number of requirements: 

1) More ontologies – when integrating data from online ontologies it is often 
necessary to map between several online ontologies. This is very unlike the 
traditional scenario where only two ontologies were mapped at a time.  

2) Increased heterogeneity – traditional mapping techniques often assume that the 
ontologies to be matched will be similar in structure, describe more or less the same 
topic domain. For example, S-Match [8] is targeted towards matching classification 
hierarchies. Or, due to its structure based techniques, Anchor-PROMPT [9] works 
best if the matched ontologies have structures of similar complexity. Such similarity 
assumptions fail on the SW: we cannot predict whether relevant information will be 
provided by a simple FOAF file or by WordNet, or top level ontologies, or 
combined from these different sources. Mapping techniques should function without 
any pre-formulated assumptions about the ontological structure. 



416 V. Lopez, M. Sabou, and E. Motta 

3) Time Performance is important - As already pointed out in [10], the majority of 
mapping approaches focus on the effectiveness (i.e., quality) of the mapping rather 
than on its efficiency (i.e., speed). This is a major challenge that needs to be 
solved in the context of run-time mappings where the speed of the response is a 
crucial factor. The above mentioned paper also shows that some minor 
modifications of the mapping strategy can highly improve response time and have 
only a marginal negative effect on the quality of the mappings. Unfortunately the 
work presented in [10] is rather unique in the context of mapping research -- 
although we think that such research is crucial for making mapping techniques 
usable during run-time. 

4) Consider relation and instance mappings – much of the work in ontology 
mapping has focused on matching the concepts in two schemas, while other 
ontology entities, such as relations and instances, have largely been ignored so far 
(although relations and instances are taken into account as evidence to support the 
matching process in some approaches). However, SW tools are often used to find 
out information about specific entities (traditionally modeled as ontology 
instances), as well as the relations between entities. Therefore, we think that 
mapping techniques should be developed to efficiently map also between these 
kinds of entities, for example, on instance mapping, by reusing earlier work on 
tuple matching from the database community.  

5) Cross-ontology mapping filtering - several approaches adopt the model of first 
generating all possible mappings and then filtering the relevant ones. However, in 
these approaches mappings are typically created between two ontologies 
describing the same domain. When performing mappings on the SW, we are also 
likely to discover several mappings but this time the mapping candidates might be 
drawn from different ontologies. Therefore we need to be able to reason about 
ontologies which may only have very few concepts in common.  As discussed 
later in this paper, this requires mechanisms to assess whether or not such ‘sparse 
concepts’ are related.   

6) Produce Semantic output – with the exception of S-Match, most mapping 
algorithms simply determine a similarity coefficient between the concepts that are 
mapped. Such coefficients are not very useful if the mappings have to be 
automatically used by a tool. In the scenario of SW tools, to support automatic 
processing of the mapping results, it would be more useful to return the semantic 
relations between the mapped entities (equivalent, more generic/specific) rather than 
just a number. 

3   Motivating Scenario: Question Answering on the Semantic Web 

Question answering has been investigated for many years by several different 
communities [11] (e.g., information retrieval). These approaches have largely been  
focused on retrieving the answer from raw text1. An obvious hypothesis is that QA 
would become easier if the answers could be retrieved from semantic data.  

                                                           
1 Sponsored by the American National Institute (NIST) and the Defence Advanced Research 

Projects Agency (DARPA), TREC introduced an open-domain QA track in 1999 (TREC-8). 



 PowerMap: Mapping the Real Semantic Web on the Fly 417 

Based on this hypothesis, we have developed the AquaLog [12] ontology-based 
question answering system. The novelty of the system with respect to traditional QA 
systems is that it relies on the knowledge encoded in the underlying ontology and its 
explicit semantics to disambiguate the meaning of the questions and to provide 
answers. AquaLog has been developed during a period when little semantic data was 
available online. As a result it only uses one ontology at a time, even though AquaLog 
is portable from one domain to the other, being agnostic to the domain of the ontology 
that it exploits. In other words, while AquaLog is ontology independent, the user 
needs to tell the system which ontology is going to be used to interpret the queries. To 
briefly illustrate the question answering process, imagine that the system is asked the 
following question: “Who are the researchers in KMi that have publications at 
ISWC?”. The major task of the system is to bridge between the terminology used by 
the user and the concepts used by the underlying ontology.  In a first step, by using 
linguistic techniques, the system breaks up the question into the following binary 
linguistic triples (person, researcher, Knowledge Media Institute) (?, have 
publication, ISWC). Then, these terms are linked and mapped to ontology elements, 
generating the following ontology compliant triples (researcher, works-for, 
knowledge-media-institute-at-the-open-university) (researcher, has-publications, 
international-semantic-web-conference) from where the answer is derived. 
Obviously, if one of the terms of the question cannot be mapped to the ontology then 
no answer will be retrieved. 

One way to overcome this limited scope is to take advantage of online available 
semantic data. The new version of AquaLog, PowerAqua [13], adopts an “open 
question answering strategy” by consulting and aggregating information derived from 
multiple heterogeneous ontologies on the Web. PowerAqua will function in the same 
way as AquaLog does, with the essential difference that the terms of the question will 
need to be dynamically mapped to several online ontologies. This run time mapping 
brings up several challenges in comparison with Aqualog, which need to be solved by 
the PowerMap mapping algorithm of PowerAqua: 

a) Finding the right ontologies. PowerMap matching operations first need to 
determine the ontology(ies) from where the answer will be derived. Syntactic 
matching techniques can be used in a first step to identify all those ontologies with 
potential mappings to the terms in the triples. For example, “researcher” is a 
concept appearing in almost all ontologies about the academic domain, while 
“KMi” appears only in one of those ontologies2. For the second triple, we find 
many concepts related to “publication” and “iswc”. 

b) Semantic relevance analysis. When multiple mapping candidates are discovered, 
only semantically relevant ones should be selected.  

c) Filtering the right mappings. From the identified ontologies the ones that 
potentially provide the most information need to be selected. PowerMap relies on 
two criteria. First, at least a complete mapping coverage for each triple is crucial 
(i.e., one triple should not be spread over many ontologies. However, triples can 
be mapped over several ontologies that provide equivalent information, or whose 
information can be partially combined and integrated through similar 

                                                           
2 This populated ontology can be browsed through at: http://semanticweb.kmi.open.ac.uk. 



418 V. Lopez, M. Sabou, and E. Motta 

semantically interoperable classes from different ontologies to provide a 
complete mapping. In the example above, it is easy to choose the first ontology 
which completely covers the “researcher” and “KMi” terms. Second, in case of 
ambiguity (more than one interpretation of the same query term) the correct 
interpretation for the given term in the context of the user query (triples) and the 
ontology relatedness should be returned.  In case this is not enough to perform 
disambiguation, the final decision should be left to the target tools or to the user. 
For the second triple, there are considerably more ontologies that completely 
cover the triple. However, all of them are semantically equivalent solutions. 
Nevertheless, only one ontology contains a path between “researcher”, 
“publication” and “iswc”. 

d) Composing heterogeneous information. PowerAqua will use PowerMap 
mapping results to find the relations that link those entities and the triples, so the 
resulting ontology triples will be (researcher, works-in, knowledge-media-
institute) referring to the  KMi ontology and, e.g., the triples (researchers, wrote, 
publications) (publications, published, iswc) in a second ontology, although other 
equivalent triples in other ontologies will also be valid. Finally, PowerAqua needs 
to combine partial answers from these different ontologies, e.g., to obtain the 
researchers on KMi and the researchers that have publications at ISWC. Among 
other things, to give an answer this requires the ability to recognize whether two 
instances from different sources may refer to the same individual. Some co-
relation and disambiguation methods to determine if two resources refer to the 
same individual have been used in Flink [4]. 

4   PowerMap at a Glance 

The requirements imposed by SW applications, like PowerAqua, that open up to 
harvest the rich ontological knowledge on the Web are the foundations for the design 
of PowerMap. In PowerMap the mapping process is driven by the task that has to 
be performed, more concretely by the query that is asked by the user. Indeed, this is 
novel in comparison with traditional approaches where mappings are done prior to the 
ontology being used for a specific task. An input query is represented by a triple or set 
of triples that indicated how the words are related together (in fact, better results are 
expected considering the triples than by only considering isolated words). We 
envision a scenario where a user may need to interact with thousands of knowledge 
bases structured according to hundreds of ontologies. However, we believe that good 
performance could be obtained also at such scale because  PowerMap avoids a global 
interpretation of the mapped ontologies, in which the level of effort is at least linear in 
the number of matches to be performed [8] (e.g., the Match operator). In this sense 
only relevant concepts to the user’s query are analyzed.  

PowerMap is a hybrid matching algorithm comprising terminological and 
structural schema matching techniques with the assistance of large scale ontological 
or lexical resources. Figure 1 depicts the three main phases of PowerMap.  



 PowerMap: Mapping the Real Semantic Web on the Fly 419 

Phase I: Syntactic Mapping. The role of this phase is to identify candidate mappings 
for all query terms in different online ontologies (therefore identify potentially  
relevant ontologies for that particular query). This is the simplest phase as it only 
considers concept labels (i.e., ignores the structure of ontologies). It relies on simple, 
string-based comparison methods (e.g., edit distance metrics) and WordNet to look-
up lexically related words (synonyms, hypernyms and hyponyms). 

Phase II: Semantic Mapping. This phase operates on the reduced set of ontologies 
identified in the previous phase. The goal is to verify the syntactic mappings 
identified previously and exclude those that do not make sense from a semantic 
perspective (e.g., the intended meaning of the query term differs from the intended 
meaning of the concept that was proposed as a candidate match). For example, if the 
term “capital” is matched to concepts with identical labels in a geographical ontology 
and a financial ontology, these two meanings are not semantically equivalent. Unlike 
the previous phase, this phase relies on more complex methods. First, it exploits the 
hierarchical structure of the candidate ontologies to elicit the sense of the candidate 
concepts. Second, it uses WordNet based methods to compute the semantic similarity 
between the query terms and the ontology classes. 

 

Fig. 1. Mapping process example to obtain potential ontology mappings for a triple 

Phase III: Semantic Filtering. The mappings filtered out by the previous phase are 
spread over several ontologies. The goal of this final phase is to filter out the 
meaningful mappings that better represent the query domain by (a) determining those 
ontologies that cover entire triples and not just individual terms of the triples and by 
(b) studying the ontology relatedness to determine the valid semantic interpretation 
(e.g. to decide which ontology interpretation of “capital” is valid for the sense of the 
query term). In this phase we employ relation mapping techniques to match between 
the predicates of the triples and relations in the identified ontologies. This step will 
return a small set of ontologies that jointly cover all terms and hopefully contain 
enough information to deduce the answer to the question.  

Note that, in order to optimize performance, the complexity of these phases 
increases both because of the type of ontology entities that they consider and because 
of the techniques they use. Hence the most time-consuming techniques are executed 
last, when the search has been narrowed down to a smaller set of ontologies.  



420 V. Lopez, M. Sabou, and E. Motta 

5   Details of the PowerMap Algorithm 

We explore each major step of this algorithm that is currently being implemented.  

5.1   Phase I: Syntactic Mapping  

The syntactic mapping phase identifies candidate entities from different ontologies to be 
mapped to each input term in the triple(s) by means of syntax driven techniques (SDT) 
using the labels and local names of the ontology elements. We test our prototype on a 
collection of ontologies saved into online repositories but in the mean time we are 
working on adapting it to directly fetch relevant ontologies from Swoogle. 

This phase is responsible to bridge the gap between user terminology and the 
multiple heterogeneous ontologies. This is done through two mechanisms. First, the 
set of query terms is broadened with semantically equivalent terms using WordNet. 
We take into account synonyms, hypernyms and hyponyms. Currently we experiment 
with using the SUMO upper level ontology and extending it with the mappings to the 
WordNet lexicon [14]. The mappings of SUMO to WordNet avoid the excessive fine-
grainedness of WN sense distinctions, which is the most frequently cited problem of 
WordNet [15]. The second mechanism to ensure a high recall, is to perform so called 
“fuzzy” syntactic matches between terms and ontology entities (e.g. “PhDStudent” is 
a fuzzy match to “Student”). We are also considering the use of wikipedia [16] to find 
similar names, abbreviations, and acronyms in the case of instances.  

SDT (fuzzy searches and lexically related words) are good mechanisms to broaden 
the search space as they can return a lot of hits that contain the term. However, they 
have two main weaknesses. First, SDT become increasingly computationally 
expensive as the number of ontologies increases. Second, many of the discovered 
ontology elements syntactically related with the query terms may be similarly spelled 
words (labels) that do not have precisely the same meaning. 

The first weakness is addressed by using efficient and large-scale ontology 
repositories [17] in combination with Lucene3. Lucene indexes the semantic entities in 
the online and distributed back-end repositories into one or more indexes, and is used 
as our fast search engine4, which supports fuzzy searches based on the Lavenshtein 
Distance, or Edit Distance algorithm. Moreover, it includes a Spell Checker to suggest 
a list of words close to a misspelled word using the n-gram technique. Also, query 
terms and in some cases relations are mapped to instances or classes therefore the 
system searches for classes, instances, properties and literals. Studying relations is 
computationally expensive and it is done only after the arguments are well know 
(although if one of the argument is unmapped, they can also be used to broaden the 
search space of candidate classes, i.e., through the ontology relationships that are 
valid for the mapped term, we can identify a set of possible candidate classes that can 
complete the triple). Relations are considered on the third phase to help filtering out 
the most relevant mapping candidates (Section 5.4).  

                                                           
3 http://lucene.apache.org 
4 A first implementation of the search engine can be found on the KMi semantic web portal:  

http://semanticweb.kmi.open.ac.uk:8080/ksw/pages/semantic_searching.jsp 



 PowerMap: Mapping the Real Semantic Web on the Fly 421 

The second weakness is addressed in the next semantic phases, where we will 
focus on the issue of checking the semantic validity of the mappings and 
disambiguating among the possible interpretations of a query.  

5.2   Phase II: Semantic Mapping 

Semantic mapping checks the semantic validity of the previously identified syntactic 
ontology mappings for each query term in the triple. We perform two main steps. In 
the first step (Section 5.3.1) we discard mappings established between terms and 
concepts with different meaning. Then, in the next step (Section 5.3.2), we cluster the 
resulting mappings according to the senses that they cover. These steps rely on two 
more generic algorithms to determine the similarity between two senses in WN 
(Section 5.3.3) and to obtain the meaning of a concept and compare the senses of 
concepts in different ontologies (Section 5.3.4). 

5.2.1   Step1: Verifying the Meaning of Mappings Respect to Query Terms 
In this step we verify whether a mapping is also valid at a semantic level, i.e., the 
intended meaning of the term is the same as that of the concept. Mappings between 
elements with completely different meaning will be discarded (e.g. the “research-
area” = “researcher” mapping).  

We rely on sense information provided by WordNet to check the semantic 
similarity between the mapped terms. We perform the following steps:  

1) For a term T, we extract all its WordNet senses, ST 
2) For the proposed mapping of T, a concept C, we also extract its senses SC 
3) We compute semantic similarity, using the algorithm in Section 5.3.3, between T 

and C to obtain the shared senses ST,C 
4) Based on the value of ST,C, we determine the semantic relation between T and C as 

follows 
a. If ST,C, is empty, the terms share no sense, and therefore the mapping is 

discarded 
b. If ST,C, is not empty there is a semantic relation between the two terms which 

needs to be further investigated (ST,C,  SC) 
c. If ST,C, = ST, then the terms share all senses and they are potentially 

semantically identical (see “capital” example in Section 6). 

Note that in this step we took into account all possible senses for C. However, the true 
senses of C are determined by its place in the hierarchy of the ontology. Because this 
sense is more costly to compute, to improve performance we use it only in the next 
step after the obviously wrong mappings have been discarded in this step. 

5.2.2   Step 2: Sense-Based Clustering of Retrieved Mappings 
The previous step might result in several mappings for the same term to concepts in 
different ontologies and these ontologies might have different subject domains (thus 
enforcing different meaning on their concepts). In this step we compare the concepts 
to which the term is mapped to determine whether they have the same sense (in case 
of instances we study the class they belong to). For this we rely on their place in the 
hierarchy of the ontology.  



422 V. Lopez, M. Sabou, and E. Motta 

Apart from the senses being delimited by the query term {ST,C}, the senses of the 
candidate mapped ontology class C are also delimited by its meaning in the ontology. 
For each concept C, we determine its sense as restricted by its place in the hierarchy 
SH

C by using the algorithm presented in Section 5.3.4.. We then intersect this sense 
with the senses that C and T share according to our previous step, ST,C,. Obviously, if 
this intersection (SH

C  ST,C) is empty it means that the sense of the concept in the 
hierarchy is different from the sense that we though it might have in the previous step, 
and therefore that mapping should be discarded. Otherwise, the intersection represents 
the sense which is captured by the mapping. For example, if the term “queen” was 
previously mapped to two concepts Bee/Queen and Royalty/Queen having the same 
label, after interpreting the meaning of the two concepts according to their parent 
concept, we deduce that they have two different meanings as their intersection with 
the senses of the query term contains different senses (in case the two mapped 
concepts don’t share the same label, the intersection or shared senses are computed 
using the semantic similarity notion on Section 5.3.3). Mappings with different 
meanings or interpretations are not semantically equivalent and therefore the correct 
interpretation should be disambiguate and filtered in the next step (5.3.4).  

We group the mappings that refer to the same sense together. 

5.2.3   Computing Semantic Similarity 
In this section we detail the semantic similarity algorithm used to find shared senses 
of two words by relying on WordNet. In Hierarchy distance based matchers [18] the 
relatedness between words is measured by the distance between the two 
concept/senses in a given input hierarchy. In particular, similarity between words is 
measured by looking at the shortest path between two given concepts/sense in the WN 
IS-A taxonomy of concepts. Note that similarity (“bank-trust”) is a more specialized 
notion than association or relatedness (i.e. any kind of functional relationship or 
frequent association, which cannot always be determined purely from a priori lexical 
resources such as WN,  like “penguin-Antarctica”) [19]. 

We say that two words are similar if any of the following hold: 

1. They have a synset(s) in common (e.g. “human” and “person”) 
2. Any of the senses of a word is a hypernym/hyponym in the taxonomy of any of 

the senses of the other word. 
3. If there exists an allowable “is-a” path (in the WN taxonomy) connecting a synset 

associated with each word. To evaluate this, we make use of two WN indexes: the 
depth and the common parent index (C.P.I). The rationale of this point is based on 
the two criteria of similarity between concepts established by Resnik in [20]. The 
first one is that the shorter the path between two terms the more similar they are, 
this is measured using the depth index. However, a widely acknowledged problem 
is that the approach typically “relies on the notion that links in the taxonomy 
represent uniform distances”, but typically this is not true and there is a wide 
variability in the “distance” covered by a single taxonomic link [19]. As a 
consequence the second criterion of similarity is the extent to which the concepts 
share information in common, which in an IS-A taxonomy can be determined by 
inspecting the relative position of the most-specific concept that subsumes them 
both, which is the C.P.I index. With the use of the C.P.I we can immediately 
identify the lowest super-ordinate concept (lso) between the two terms, also called 



 PowerMap: Mapping the Real Semantic Web on the Fly 423 

the most specific common subsumer.  Apart from point 1 of the algorithm, in 
which the words have a synset in common, the most immediate case occurs in 
point 2 (C.P.I = 1, Depth = 1), e.g. while comparing “poultry” and “chicken” we 
notice that “poultry#2” is the common subsumer (hypernym) of “chicken#1”. 

4. Additionally, if any of the previous cases is true and the definition (gloss) of one 
of the synsets of the word (or its direct hypernyms/hyponyms) includes the other 
word as one of the synonyms, we say they are strongly similar.  

For example, for the input triple (investigators, work, akt project) using string 
algorithms over WordNet synonyms, PowerMap discovers the following candidate 
mappings for “investigators”: “researcher”, “research-area”. Going back to the step 1 
(Section 5.3.1), using the WordNet “IS-A” taxonomy we must find at least one synset 
in common with the mapped ontology class and the query term or a short/relevant 
path in the IS-A WordNet taxonomy that relates them together. Otherwise it is 
discarded as a solution. Here, “researcher” and “investigator” have a synset in 
common, namely “research-worker, researcher, investigator – a scientist who devotes 
himself to doing research”. However “research-area” will be discarded because not 
only do they not share any sense in common but also there is not a relevant “IS-A” 
path that connects “researcher” with “research-area” -- “researcher” is connected to 
the root through the path “scientist/man of science” and “person”, while “research-
area” is connected through “investigation” which is connected to “work”. 

5.2.4   Ontology Structure Based Sense Disambiguation 
The meaning of an ontology term should be made explicit by an interpretation of its 
label through a WordNet sense and its position in the ontology taxonomy. 

According to the algorithm presented by Magnini et al. in [21] to make explicit the 
semantics hidden in schema models, in a nutshell, given a concept c and either one of 
its ancestors or descendants r all WordNet synsets for both labels are retrieved. Then, 
if any of the senses for c is related to any of the senses for r either by being a 
synonym, hypernym, holonym, hyponym or a meronym, then that sense of c is 
considered the right one. 

Our algorithm, originally based on Magnini et al., is adapted to use ontologies 
rather than catalogues or classifications, therefore we can exploit the use of the notion 
of similarity IS-A given by the ontology taxonomy explicit semantics instead of the 
notion of relatedness (e.g. “hospital” is not a good match for “nurse” even if they are 
highly related). The WN senses of an ontology class are obtained by looking at the 
similarity (as previously defined) between the class and its ascendant/descendant in 
the ontology. The senses of the class that are similar to at least one of the senses of its 
ascendant/descendant are retained and the rest of the senses discarded.  

5.3   Phase III: Semantic Filtering 

Having worked at the level of individual term mappings so far, in this step we select 
those ontologies that cover entire triples (ontologies with better domain coverage). 
Moreover, we take advantage of the relatedness expressed in the ontology semantics 
and input triples to filter out the semantically interoperable candidate mappings for 
the query terms. Also, if different ontologies cover different triples then we must 



424 V. Lopez, M. Sabou, and E. Motta 

make sure that the concepts that link between the triples have the same sense in those 
ontologies (semantic interoperable concepts, as studies in Section 5.3.2).  

Previous steps have only determined mappings of concepts and instances from the 
query. The reason for this is based on our experience with AquaLog where mapping 
relations is more difficult than mapping concepts. In the case of PowerAqua due to 
the increasing number of heterogeneous ontologies the challenge is to semantically 
map the terms. Once the terms are mapped the meaning of a relation is given by the 
type of its domain and its range rather than by its name (typically vaguely defined as 
e.g. “related to”), so the precondition of a mapping between two relations is that their 
domain and range classes match to some extent. With the exception of the cases in 
which some relations are presented in some ontologies as a concept (e.g. has Author 
can be modeled as a concept Author in a given ontology), in PowerMap relations are 
treated as “second class citizens” to help disambiguating the candidate classes, and 
ontologies, that better cover the query domain. 

The following is a disambiguating example considering the coverage criterion. The 
query “Which wine is appropriate with chicken?” translated into the triple (wine, 
appropriate, chicken) has syntactic mappings with the class “wine” in an ontology of 
colors, and in an ontology of food and wines. Similarly, the term “chicken” maps to 
an ontology of farming and to the same food and wine ontology. Since the food and 
wine ontology presents a complete potential translation for the triple we retain it, and 
we discard the partial translations from both the farming and color ontologies. A 
disambiguating example using ontology relations is described in Section 6. 

6   Experimental Example 

In this section we present an example run on our prototype. Consider the query “what 
is the capital of Spain?” translated in a triple without information about the focus of 
the query: (?, capital, Spain). After the execution of phase I we get the following 
mappings for the terms and their lexical variations:  

• Geographical ontology. Contains the class “capital-city” and “Spain” as an instance 
of “country”, “capital-city” and “country” are connected by a direct relation. 

• Financial ontology. Contains the class “capital” and “Spain” as an instance of 
“country”, “capital” and “country” are related through the concept “company”. 

• Country statistics ontology. Contains the term “Spain”.  

The coverage criterion can be already applied to this stage of the algorithm, 
however the three interpretations will remain because both ontology 1 and 2 cover the 
terms “capital” and “Spain”, and ontology 3 only covers the term “Spain” but “capital” 
is considered as a relation and as such it may be mapped into an ontology relation.  

There is only one possible sense for “Spain”, therefore we only study the semantic 
similarity for the term “capital”. In principle, both interpretations remain (step 1, 
Section 5.3.1), as the lemma for both terms is the same as the query term, potentially 
they have all the synset in common. Semantic equivalence between both classes is. 
then determined by studying their ontology meaning (step 2, Section 5.3.2.). When 
running the similarity algorithm between “capital” and its ancestor “city” in the 
geographical ontology we obtained the results presented in Table 3.  



 PowerMap: Mapping the Real Semantic Web on the Fly 425 

Table 1. Similarity between “capital” and its ontology ancestor “city”  

 City#1: large and densely 
populated urban area.., 
metropolis 

City#2: an incorporated 
administrative district .. 

City#3: 
people living 
in large 
municipality  

Capital#a (assests ..) Not an allowable path or  depth is too long to be considered relevant 
Capital#b (wealth ..) -------------------------- -------------------------- ----------------- 
Capital#c 
(seat of government) 

Depth = 8, lso = region 
Num_so(common_subsumers) 
= 3 (region, location, entity) 

Depth = 7,  lso = region 
Num_so = 3  (entity, 
location, region) 

------------------
------ 

Capital#d  
(capital letter) 

-------------------------- -------------------------- ------------------
------ 

Capital#e 
(book by Karl Marx) 

-------------------------- -------------------------- ------------------
----- 

Capital#f 
(upper part column) 

Depth = 8,  lso = location 
Num_so = 2 (entity, location) 

Depth = 7,  lso = location 
Num_so=2 (entity,location) 

------------------
------ 

Analyzing the results of Table 1 we can quickly filter capital#c, capital#f, city#1, 
city#2 and discard the others. A deeper study will show that capital#c is more likely 
than capital#f because there are only 2 common subsumers in the latter (entity and 
location), both of them representing abstract top elements of the WordNet taxonomy, 
while in the former we have 3 common subsumers. We can not study the descendants 
of “capital” in the ontology because none exist. The study of the next direct ascendant 
of “city” (“geographical-unit”) does not offer additional information. Moreover, the 
hypernym of capital#c is “seat#5”, defined as “seat –centre of authority (city from 
which authority is exercised)”. The word “city” is used as part of its definition, 
therefore capital#c is strongly related to “city”. 

After the semantic similarity analysis the sense of “capital” is made explicit as 
senses #1 and #2 in the financial ontology, while the geographical ontology is referred 
to sense #3. Therefore both terms in different ontologies are not semantically 
equivalent and the system must select one of them using ontology semantics or query 
relatedness. Using SUMO’s mapping files to WordNet synsets we can identify senses 
that are not very distinctive (they are mapped to the same SUMO concept), e.g. for 
city {#1 an incorporated administrative district, #2: metropolis, and #3: people living 
in large municipality}, all its senses map to the same SUMO class. 

A deeper analysis of the ontology relationships to narrow down between the two 
valid non-equivalent mappings “capital” shows a direct relation that connects any 
country, e.g. Spain, with its capital for the geographical ontology. However, in the 
financial ontology there is not a direct relation between countries and capital. There is 
a mediating concept that represents a company, that has a series of capital goods and 
it is based in a country. This is a strong indication that the geographical ontology is 
more related to our query and should be selected. For the country statistics ontology, 
where capital is considered a relation, a relationship analysis simply using of string 
distance metrics [22] will uncover the relation “is-capital-of” between “country” and 
“city”. Therefore both mappings in the geographical and statistics ontologies will be 
valid semantically equivalent representations of the query.  



426 V. Lopez, M. Sabou, and E. Motta 

7   Summary  

The main message of this paper is that the new context introduced by the evolving 
SW tools will require mapping techniques that can be used at run-time rather than at 
the design time of such tools and applications. Our main contribution is to recognize 
and analyze this need which could present a turning point in the field of ontology 
mapping. We presented some of the requirements that have to be addressed by such 
novel mapping techniques. In particular, such techniques need to balance the 
heterogeneity and large scale of online available semantic data and the requirement of 
being fast so that they can be used at run-time.  

The core of the paper exemplifies the requirements for run time ontology mapping 
in the context of a concrete application, PowerAqua, an ontology based QA system 
and then describes the PowerMap algorithm which performs such run-time mappings. 
Unlike traditional mapping algorithms, PowerMap is focused towards dealing with 
several, heterogeneous ontologies which are not given a priory but rather discovered 
depending on the content of the user’s query (thus we fulfill requirements 1 and 2). 
To maintain a good performance, as requested by our third requirement, PowerMap 
employs three steps that are increasingly complex: we start with syntactic mappings 
that take into account only concept labels to find potentially useful ontologies, then 
we rely on WordNet information and on the meaning of the mapped concepts in their 
hierarchy to verify that the proposed mappings are also semantically sound. Finally, 
we rely on the structure of the triples and techniques to map between relations in 
order to filter out a set of relevant ontologies from which PowerAqua will extract the 
answers (requirement 5). 

PowerMap is currently under implementation and our obvious future work is in 
finalizing the prototype and evaluating it. In particular we are working on extending 
the technique to work directly with Swoogle and to provide mappings between 
instances as well (see requirement 4).  However, we think that our ideas about run-
time ontology mapping and the proposed algorithm could benefit the ontology 
mapping community in particular, and the SW research in general.  

Acknowledgments. This work was partially supported by the AKT project sponsored 
by UK EPSRC and by the EU OpenKnowledge project (FP6-027253). Thanks to 
Yuangui Lei and Victoria Uren for all the technical help and relevant input.  

References 

1. Shvaiko, P., Euzenat, J.: A Survey of Schema-Based Matching Approaches. J. of Data 
Semantics IV , 2005. 146-171. 

2. Bouquet P., Serafini L. and Zanobini S. Semantic coordination: a new approach and an 
application. In Proc of ISWC, 2003, 130-145. 

3. Hyvonen, E., Makela, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila, M., 
Kettula, S.. MuseumFinland – Finnish Museums on the SemanticWeb. Journal of Web 
Semantics, 3(2), 2005 

4. Mika, P. Flink: SemanticWeb Technology for the Extraction and Analysis of Social 
Networks. Journal of Web Semantics, 3(2), 2005 



 PowerMap: Mapping the Real Semantic Web on the Fly 427 

5. Motta, E., Sabou, M., Language Technologies and the Evolution of the Semantic Web. In 
Proceedings of LREC, 2006 

6. Ding, L., Pan, R., Finin, T., Joshi, A., Peng, Y., Kolari, P. Finding and Ranking 
Knowledge on the Semantic Web. In Proceedings of ISWC, 2005, p. 156 – 170.  

7. Rahm E. and Bernstein P. A. A survey of approaches to automatic schema matching. The 
International Journal on Very Large Data Bases 10(4): 334-350, 2001. 

8. Giunchiglia F., Shvaiko P and Yatskevich M. S-Match: an algorithm and an 
implementation of semantic matching. In Proc. of the 1st European Semantic Web 
Symposium, 2004. 

9. N. Noy and M. Musen. Anchor-PROMPT: using non-local context for semantic matching. 
In Proceedings of the workshop on Ontologies and Information Sharing at the 
International Joint Conference on Artificial Intelligence (IJCAI), 2001, pages 63–70. 

10. M. Ehrig and S. Staab. QOM: Quick ontology mapping. In Proceedings of ISWC, 2004, 
pages 683–697. 

11. Hirschman, L., Gaizauskas, R.: Natural Language question answering: the view from here. 
Natural Language Engineering, Special Issue on QA, 7(4) 275-300, 2001 

12. Lopez V., Pasin M. and Motta E. AquaLog: An Ontology-portable Question Answering 
System for the Semantic Web. In Proc. of ESWC, 2005. 

13. Lopez V., Motta E. and Uren, V. PowerAqua: Fishing the Semantic Web. In Proc. of 
ESWC, 2006. 

14. Pease, A., Niles, I., and Li, J. The Suggested Upper Merged Ontology: A Large Ontology 
for the Semantic Web and its Applications. In Working Notes of the AAAI Workshop on 
Ontologies and the Semantic Web, 2002. 

15. Ide N. and Veronis J. Word Sense Disambiguation: The State of the Art. Computational 
Linguistics, 24(1):1-40, 1998. 

16. Bunescu, R., Pasca, M. Using Encyclopedic Knowledge for Named Entity 
Disambiguation. In Proceedings of the 11th Conference of the European Chapter of the 
Association for Computational Linguistics (EACL-06), 2006. 

17. Guo, Y., Pan, Z., Heflin, J. An Evaluation of Knowledge Base Systems for Large OWL 
Datasets. In Proc of ISWC,  2004, pages 274-288. 

18. Giunchiglia F. and Yatskevich M. Element Level Semantic Matching. Meaning 
Coordination and Negotiation Workshop, ISWC, 2004. 

19. Budanitsky, A. and Hirst, G. Evaluating WordNet-based measures of semantic distance. 
Computational Linguistics, 2006. 

20. Resnik P. Disambiguating noun grouping with respect to WordNet senses. In  Proc. of the 
3rd Workshop on very Large Corpora. MIT, 1995. 

21. Magnini B., Serafín L., and Speranza M. Making Explicit the Semantics Hidden in 
Schema Models. In Proc. of the Workshop on Human Language Technology for the 
Semantic Web and Web Services, held at ISWC-2003, Sanibel Island, Florida, 2003. 

22. Cohen, W., W., Ravikumar, P., Fienberg, S., E.: A Comparison of String Distance Metrics 
for Name-Matching Tasks. In Proc.  of the 2nd  Web Workshop at  IJCAI ,2003. 



Ontology-Driven Information Extraction with
OntoSyphon

Luke K. McDowell1 and Michael Cafarella2

1 Computer Science Department, U.S. Naval Academy,
Annapolis MD 21402 USA

lmcdowel@usna.edu
2 Dept. of Computer Science and Engineering, University of Washington,

Seattle WA 98195 USA
mjc@cs.washington.edu

Abstract. The Semantic Web’s need for machine understandable con-
tent has led researchers to attempt to automatically acquire such content
from a number of sources, including the web. To date, such research has
focused on “document-driven” systems that individually process a small
set of documents, annotating each with respect to a given ontology. This
paper introduces OntoSyphon, an alternative that strives to more fully
leverage existing ontological content while scaling to extract compara-
tively shallow content from millions of documents. OntoSyphon oper-
ates in an “ontology-driven” manner: taking any ontology as input, On-
toSyphon uses the ontology to specify web searches that identify possible
semantic instances, relations, and taxonomic information. Redundancy
in the web, together with information from the ontology, is then used
to automatically verify these candidate instances and relations, enabling
OntoSyphon to operate in a fully automated, unsupervised manner. A
prototype of OntoSyphon is fully implemented and we present experi-
mental results that demonstrate substantial instance learning in a vari-
ety of domains based on independently constructed ontologies. We also
introduce new methods for improving instance verification, and demon-
strate that they improve upon previously known techniques.

1 Introduction

The success of the Semantic Web critically depends upon the existence of a suf-
ficient amount of high-quality, relevant semantic content. But to date relatively
little such content has emerged. In response, researchers have investigated sys-
tems to assist users with producing (or annotating) such content, as well as sys-
tems for automatically extracting semantic content from existing unstructured
data sources such as web pages.

Most systems for automated content generation work as follows. Given a small
to moderate size set of hopefully relevant documents, the system sequentially
processes each document. For each document, the system tries to extract rele-
vant information and encode it using the predicates and classes of a given on-
tology. This extraction might utilize a domain-specific wrapper, constructed by

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 428–444, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Ontology-Driven Information Extraction with OntoSyphon 429

hand [1] or via machine learning techniques [2]. More recent domain-independent
approaches have utilized a named entity recognizer to identify interesting terms,
then used web searches to try to determine the term’s class [3]. In either case,
these are document-driven systems whose workflow follows the documents.

This paper describes OntoSyphon, an alternative ontology-driven information
extraction (IE) system. Instead of sequentially handling documents, OntoSyphon
processes the ontology in some order. For each ontological class or property,
OntoSyphon searches a large corpus for instances and relations than can be ex-
tracted. In the simplest case, for instance, a Mammal class in the ontology causes
our system to search the web for phrases like “mammals such as” in order to
identify instances (and subclasses) of Mammal. We then use redundancy in the
web and information in the ontology to verify the candidate instances, subclasses,
and relations that were found. In this paper, we focus on learning instances.

Compared to more traditional document-driven IE, OntoSyphon’s ontology-
driven IE extracts relatively shallow information from a very large corpus of doc-
uments, instead of performing more exhaustive (and expensive) processing of a
small set of documents. Hence, the approaches are complementary, and real world
systemsmayprofitably utilize both.Wenote, however, several benefits of ontology-
driven IE. First, driving the entire IE process directly from the ontology presents
a very natural path for exploiting all kinds of ontological data, e.g., utilizing class
labels and synonyms for broader searching and exploiting instances and stated re-
strictions for verifying candidate facts. Second, a search-based system enables us
to consider a much larger set of documents than could be handled via individual,
document-driven processing. Only a small fraction of the corpus will be used for
any one system execution, but much more potentially relevant information is ac-
cessible. Finally, ontology-driven IE can be easily focused on the desired results.
Rather than processing all content from some documents and then looking for the
desired info, we can instruct the system to search directly for relevant classes.

Our contributions are as follows. First, we introduce the ontology-driven par-
adigm for information extraction and explain its benefits compared to comple-
mentary approaches. Second, we explain how to apply this general paradigm
to find instances from the web and demonstrate successful instance population
for three different, independently created ontologies. Third, we evaluate several
different techniques for improving the accuracy of instance identification and
classification. In addition, we introduce two simple but highly effective improve-
ments to previously known assessment techniques for such extractions. These
improvements relate to adding or improving upon frequency-based normaliza-
tion, and can be used even in contexts without an explicit ontology. Finally, we
describe techniques for further improving accuracy based on explicitly leveraging
the structure of the ontology.

The next section summarizes related work in this area. Section 3 summarizes
OntoSyphon’s operation, while Section 4 describes our methodology and evalu-
ation metrics. Section 5 describes the existing and new techniques that we use
for the key problem of assessing candidate instances. Finally, Section 6 presents
experimental results, Section 7 discusses our findings, and Section 8 concludes.



430 L.K. McDowell and M. Cafarella

Table 1. A summary of work that attempts to (semi-)automatically extract instance-
like content from the web or other text corpora. Note that an ontology-based system al-
most always utilizes a domain-specific ontology, but may still be a domain-independent
system if it can easily exploit input ontologies from many different domains.

Text-based Ontology-based
Document-driven Ontology-driven

Domain-
specific

Crystal[4], Citeseer,
Opine[5]

WebKB[6], TAP[1],
OntoMiner[7],
OntoSophie[8],

Armadillo[2], ADEL[9]

Cyc “web
population”[10,11],
van Hage et al.[12]

Domain-
independent

MindNet[13],
Snowball[14], Cederberg
et al.[15], KnowItAll[16],

Pantel et al.[17]

Hahn et al.[18],
S-CREAM[19],

SemTag[20], KIM[21],
PANKOW[3],

OntoSyphon

2 Related Work on Information Extraction from the Web

The general task we face is to learn information from some textual source, such
as the WWW, and encode that information in a structured language such as
RDF. Table 1 provides an interpretation of the most relevant other work in this
area. The rows of this table distinguish systems that are domain-independent
from those that rely on domain-specific techniques or extraction patterns.

The columns of Table 1 explain the extent to which each system utilizes an
explicit ontology. In the leftmost column (“Text-based”) are information extrac-
tion systems that are not explicitly based on an ontology. For instance, Citeseer
automatically extracts metadata about research publications, Opine [5] focuses
on product reviews, and Crystal [4] uses a domain-specific lexicon to learn text
extraction rules by example. Amongst more domain-independent systems, Mind-
Net [13] builds a semantic network based on dictionary and encyclopedia entries,
while Snowball [14] learns relations (such as headquartersOf) based on an ini-
tial set of examples. KnowItAll [16] learns instances and other relations from the
web. Many such systems [15,16,17] learn hyponym or is-a relationships based
on searching for particular lexical patterns like “cities such as ...,” inspired by
Hearst’s original use of such patterns [22]. Our work uses these same patterns as
building blocks, but exploits an ontology to guide the extraction and assessment,
and to formally structure the results.

Some of these text-based systems, such as MindNet, use their input corpus to
derive an ontology-like structured output. In contrast, we call a system ontology-
based if it specifies its output in terms of a pre-existing, formal ontology. These
systems almost always use a domain-specific ontology in their operation, but we
consider a system to be domain-independent if it can operate without modifica-
tion on ontologies covering a wide range of domains.

The majority of these ontology-based systems are document-driven: start-
ing from a particular document (or set of documents), they try to annotate all
of the entities in that document relative to the target ontology. For instance,



Ontology-Driven Information Extraction with OntoSyphon 431

TAP [1] exploits a variety of wrappers to extract information about authors, ac-
tors, movies, etc. from specifically identified websites such as Amazon.com. We-
bKB [6] and Armadillo [2] both use supervised techniques to extract information
from computer science department websites. Amongst more domain-independent
systems, SemTag [20] and KIM [21] scan documents looking for entities corre-
sponding to instances in their input ontology. Likewise, S-CREAM [19] uses
machine learning techniques to annotate a particular document with respect to
its ontology, given a set of annotated examples. PANKOW [3] annotates a spec-
ified document by extracting named entities from the document and querying
Google with ontology-based Hearst phrases. For instance, if the entity “South
Africa” is found in a document, PANKOW would issues multiples queries like
“South Africa is a river” and use hit count results to determine which ontol-
ogy term (river, country, etc.) was the best match. These systems all use an
ontology to specify their output, but make limited use of information that is
contained in the ontology beyond the names of classes and properties that may
be relevant.

OntoSyphon offers a complementary approach of being ontology-based and
ontology-driven. Instead of trying to learn all possible information about a par-
ticular document, we focus on particular parts of an ontology and try to learn all
possible information about those ontological concepts from the web. In addition,
we seek to use ontological data and structure to enhance our assessment of the
content that is found (see Section 6).

The only work of which we are aware that adopts a somewhat similar approach
is that of Matuszek et al. [10,11] and van Hage et al. [12]. Both systems use an
ontology to generate web search terms, though neither identifies this ontology-
driven approach or examines its merits. van Hage et al. use the searches to find
mappings between two given ontologies, whereas Matuszek et al. use the searches
to identify instances and relations that could be inserted into the (large) Cyc
ontology. Matuszek et al. use more sophisticated natural language processing
than we do, and use the existing Cyc ontology to perform more kinds of reason-
ing. Compared to OntoSyphon, however, the systems of van Hage and Matuszek
perform much less accurate verification of content learned from the web, either
assuming that a human will perform the final verification [10] or treating all web
candidates as correct because of data sparsity [12]. In addition, both systems
only discover information about instances or classes that are already present in
their ontology, and both are domain-specific. Matuszek’s system, for instance,
depends upon manually generated search phrases for a few hundred carefully
chosen properties.

Ontology learning systems seek to learn or extend an ontology based on exami-
nation of a particular relevant corpus [23,24,25,26]. Some such systems [24,25,26]
use Hearst-like patterns to identify possible subclass relations. Ontology learn-
ing systems, however, presume a particularly relevant corpus and do not fo-
cus on learning instances (with some limited document-driven exceptions, e.g.,
Text2Onto [26]). In addition, the goal of producing a very accurate ontology
leads to very different verification techniques, usually including human guidance



432 L.K. McDowell and M. Cafarella

Init: SearchSet = {R} + O.subclassesOf(R)
SearchSet = {Animal} + {Amphibian, Arthropod, Bird, Fish,...}

1. C = PickAndRemoveClass (SearchSet)
C = Bird

2. Phrases = ApplyPatterns(C)
Phrases = {“birds such as ...”, “birds including ...”, “birds especially ...”,

“... and other birds”, “... or other birds”}
3. Candidates += FindInstancesFromWeb (Phrases)

Candidates = {..., (kookaburra, Bird, 20), (oriole, Bird, 37), ... }
4. If MoreUsefulWork(SearchSet, Candidates), goto Step 1
5. Results = Assess (O, Candidates)

(kookaburra, Bird, 20)

=⇒

Results = {
(kookaburra, Mammal, 1) (kookaburra, Bird, 0.93), LA: 1.00
(leather, Animal, 1) (leather, Animal, 0.01), LA: 0.00
(oriole, Bird, 37) (oriole, Bird, 0.93), LA: 1.00
(wildebeest, Animal, 56) (wildebeest, Animal, 0.91) LA: 0.67
(wildebeest, Mammal, 6) }

Fig. 1. OntoSyphon’s algorithm (bold lines), given a root class R, for populating an
ontology O with instances, and partial sample output (other lines). The text (oriole,
Bird, 37) describes a candidate instance that was extracted 37 times. Step 5 converts
these counts into a confidence score or a probability, and chooses the most likely
class for candidates that had more than one possible class (results shown computed
via Urns, see Section 5). “LA” is the “Learning Accuracy” of the final pair (see
Section 4).

and/or final verification. OntoSyphon instead operates in a fully automatic, un-
supervised manner, and uses the web rather than require that a domain-specific
corpus be identified.

This paper focuses on demonstrating how a domain-independent, ontology-
driven system can reliably extract instances using a few simple techniques. Over-
all performance could be increased even more by incorporating other techniques
such as domain-specific pattern learning [14,27,16], automatic subclass identifi-
cation [16], non-pattern based extraction [18,24,25,23], and the combination of
multiple sources of evidence [28].

3 Overview of OntoSyphon’s Operation

Figure 1 gives pseudocode for OntoSyphon’s operation. The input to OntoSyphon
is an ontology O and a root class R such as Animal. The search set is initialized
to hold the root term R and all subclasses of R. OntoSyphon then performs the
following steps: pick a “promising” class C from the ontology (step 1), instantiate
several lexical phrases to extract instances of that class from the web (steps 2-3),
then repeat until a termination condition is met (step 4). Finally, use the ontol-
ogy and statistics obtained during the extraction to assess the probability of each
candidate instance (step 5). Below we explain in more detail.



Ontology-Driven Information Extraction with OntoSyphon 433

1. Identify a Promising Class: OntoSyphon must decide where to focus
its limited resources. For our initial experiments, we pragmatically chose
to completely explore all subclasses of the user-provided root class. Future
work should consider how best to use OntoSyphon’s limited resources when
broader explorations are desired. For instance, we might like to chose the
class that we know the least about (fewest instances), or instead focus at-
tention on classes that are similar to those that yielded good results in the
past. Finally, note that some classes (e.g., zip codes) may produce very large
amounts of data that is accurate but uninteresting.

2. Generate Phrases: Given a class C, we search for lexico-syntactic phrases
that indicate likely instances of C. For instance, phrases like “birds such
as” are likely to be followed by instances of the class Bird. We use the 5
Hearst phrase templates [22] listed in the sample output of Figure 1. To
generate the phrases, we use heuristic processing to convert class IDs such
as SweetDessert to the search label “sweet desserts.” Where present we also
exploit alternative class labels that can be inferred from the ontology, e.g.,
through the definition of an equivalent class.

3. Search and extract: Next, we search the web for occurrences of these
phrases and extract candidate instances. This could be done by submitting
the phrases as queries to a search engine, then downloading the result pages
and performing extraction on them. For efficiency, we instead use the Binding
Engine (BE) [29]. BE accepts queries like “birds such as <NounPhrase>”
and returns all possible fillers for the <NounPhrase> term in about a minute,
but for only a 90-million page fragment of the web.

4. Repeat (for this paper, until SearchSet is empty).
5. Assess Candidate Instances (see Section 5).

We focus in this paper on basic instance learning, but this algorithm naturally
lends itself to several future enhancements. For instance, in step 3, the candidate
instances that are discovered will also discover subclasses. Such subclasses might
be added to the SearchSet and/or might be used to extend the ontology itself.
Our initial experiments have shown that, as is to be expected, such steps will
increase recall but at some cost of precision. The next section discusses how we
grade discovered subclasses for this work; future work will more fully investigate
the benefits of exploiting these candidate subclasses.

4 Methodology

We ran OntoSyphon over the three ontologies shown in Table 2. All three on-
tologies were created by individuals not associated with OntoSyphon, and were
freely available on the web. For each, we selected a prominent class to be the
“root class,” thereby defining three different domains for evaluation: Animals,
Food, and Artists. Note that instances for the first two domains are dominated
by common nouns (horses, sushi), whereas the latter yields mostly proper nouns
(Michelangelo). These choices encompass a variety of domains and ontology



434 L.K. McDowell and M. Cafarella

Table 2. The domains and ontologies used for our experiments. The third column
gives the number of subclasses of the chosen root term, followed by the average (and
maximum) depth of these subclasses relative to the root term. The last column is the
number of candidates that were human-graded for evaluation (5% of the total found).

Domain Ontology used # Subs. Avg. Depth # Graded

Animals sweet.jpl.nasa.gov/ontology/biosphere.owl 28 1.04 (max 2) 300
Artists www.kanzaki.com/ns/music.rdf 39 2.63 (max 4) 940
Food www.w3.org/TR/owl-guide/food.rdf 31 2.13 (max 3) 170

types. For instance, the Animal ontology was fairly complete but shallow, while
the Artist ontology covers artists in general but most classes focus on musical
artists. The Food ontology has been used for demonstrating OWL concepts; it
contains more complex constructions and classes such as NonSpicyRedMeat.

OntoSyphon operates in a totally unsupervised manner and outputs a ranked
list of candidate instances for the ontology. Because there is no accurate, au-
thoritative source for determining the full, correct set of instances for our three
domains, we cannot report recall as an absolute percentage, and instead re-
port just the number of distinct, correct instances found. In addition, we must
evaluate correctness by hand. To do this, we created a “gold standard” as fol-
lows: all system configurations produce the same basic set of candidate instances
for a given ontology. A human evaluator (one of the authors) classified a ran-
dom sample of 5% of this set (see Table 2). For each candidate, the evaluator
chose the best, most specific ontology class available, while allowing for mul-
tiple senses. So a dog would be marked as a Mammal rather than the less spe-
cific Animal, while Franz Liszt would be marked as a Composer, Pianist,
and Conductor. Two classes, ExoticSpecies and IndigenousSpecies, were
removed from Animals because they were too subjective for a human to evalu-
ate. To reduce bias, the evaluator had no knowledge of what class OntoSyphon
assigned to each candidate nor OntoSyphon’s assigned probability for that
candidate.

Candidates with no correct class for that domain (e.g., truck) were marked as
incorrect, as were misspelled or incomplete terms (e.g., the artist “John”). To
decide whether a candidate was a proper instance or a subclass, we assumed that
the ontology was fairly complete and tried to follow the intent of the ontology.
Candidates that could be properly classified as an instance of a leaf node in the
ontology were treated as instances. Candidates that were already present in the
ontology as a class or that seemed to parallel an existing class (e.g., the discovered
“fiddler” and the existing class Pianist) were counted as incorrect. Finally,
candidates that did not fit the intent of the ontology were marked incorrect.
For instance, we considered the Animal ontology to be about types of animals
(dogs, cats), so specific animals like “King Kong” or “Fido” were incorrect; other
animal ontologies might make different decisions (see Section 7).



Ontology-Driven Information Extraction with OntoSyphon 435

This evaluation produced the function goldO(), where goldO(i) is the set of
classes assigned to candidate instance i by the evaluator for ontology O. Then,
given a candidate instance i and a class c, we define the pair (i, c) to be:

• correct if c ∈ goldO(i),

• sensible if ∃c′ ∈ goldO(i) s.t. c′ ∈ subclasses(c),

• or incorrect otherwise.

For instance, if goldO(dog) = {Mammal}, then (dog, Mammal) is correct,
(dog, Animal) is sensible, and (dog, Reptile) is incorrect.

Let X be the output of the system for some experimental condition, where X
consists of a set of pairs of the form (i, c), and where each candidate instance i
appears in only one pair.1 Then the recall is the number of pairs in X that are
correct, and the precision is the fraction of pairs in X that are correct. These
metrics are useful, but count only instances that were assigned to the most
correct class possible, and thus do not fully reflect the informational content
of the result. Consequently, we primarily report our results using the sensible-
recall, which is the number of pairs in X that are sensible. In addition, we follow
the example of several others in using learning accuracy (LA) instead of exact
precision. The LA measures how close each candidate pair (i, c) was to the gold
standard (i, goldO(i)). This measurement is averaged over all pairs to yield a
precision-like number ranging from zero to one where LA(X) = 1 indicates that
all candidate pairs were completely correct.

We follow the general definition of Learning Accuracy from Cimiano et al. [3],
which requires the least common superconcept (lcs) of two classes a and b for
ontology O:

lcsO(a, b) = arg min
c∈O

(δ(a, c) + δ(b, c) + δ(top, c)) (1)

where δ(a, b) is the number of edges on the shortest path between a and b. Given
this definition, the taxonomic similarity Tsim between two classes is:

TsimO(d, e) =
δ(top, f) + 1

δ(top, f) + 1 + δ(d, f) + δ(e, f)
(2)

where f = lcsO(d, e). We then define the average learning accuracy for ontology
O of a set X of candidate pairs as:

LAX =
1
|X |

∑
(i,c)∈X

max(0, max
c′∈gold(i)

TsimO(c, c′)) (3)

5 Assessing Candidate Instances

Extracting candidate instances from the web is a noisy process. Incorrect in-
stances may be extracted for many reasons including noun phrase segmentation
1 OntoSyphon assigns only a single class to each instance, which is often sufficient

but restrictive for domains like Artists. Future work should consider more general
techniques.



436 L.K. McDowell and M. Cafarella

errors, incorrect or incomplete sentence parsing, or factual errors in the web cor-
pus. Because OntoSyphon operates in an unsupervised manner, it is thus critical
to be able to automatically assign a confidence value to the instances that are
produced. These values can be then used to expunge instances that are below
some confidence threshold and/or to provide reliability estimates to applications
that later make use of the output data.

Below we describe the five assessment techniques that we consider in our initial
results. Each is used to assign a confidence score or probability to a candidate
pair (i, c). In what follows, count(i, c, p) is the number of times that the pair
(i, c) was extracted using the pattern p, and hits(y) is the number of hits for the
term y alone in the corpus.

1. Strength: Intuitively, if the pair (dog, Mammal) is extracted many times
from our web corpus, this redundancy gives more confidence that that pair is
correct. The Strength metric thus counts the number of times a candidate pair
was observed across all extraction patterns P :

Scorestrength(i, c) =
∑
p∈P

count(i, c, p) (4)

This metric was also used by PANKOW [3], although the counts were obtained
in a different manner.

2. Str-Norm: The Strength metric is biased towards instances that appear very
frequently on the web. To compensate, Str-Norm normalizes the pattern count
by the number of hits for the instance alone:

Scorestr−norm(i, c) =

∑
p∈P count(i, c, p)

hits(i)
(5)

Similar normalization techniques are found in many systems (e.g., [16,28]).

3. Str-Norm-Thresh: The normalization performed by Str-Norm can be mis-
leading when the candidate instance is a very rare term or a misspelling. Con-
sequently, we created a modified Str-Norm where the normalization factor is
constrained to have at least some minimum value. We found that a variety of
such thresholds worked well. For this work we sort the instances by hits(i) and
then select Hit25, the hit count that occurs at the 25th percentile:

Scorestr−norm−thresh(i, c) =

∑
p∈P count(i, c, p)

max(hits(i), Hit25)
(6)

4. Urns: OntoSyphon, like some other systems, extracts candidate facts by ex-
amining a large number of web pages (though we use the aforementioned Binding
Engine to perform this process very efficiently). Prior work has developed the
Urns model to apply in such cases [30,31] and has shown it to produce signifi-
cantly more accurate probabilities than previous methods such as PMI (point-
wise mutual information) or noisy-or. The Urns model treats each extraction
event as a draw of a single labeled ball from one or more urns, with replacement.
Each urn contains both correct labels (from the set C), and incorrect labels
(from the set E); where each label may be repeated on a different number of



Ontology-Driven Information Extraction with OntoSyphon 437

balls. For instance, num(C) is the multi-set giving the number of balls for each
label i ∈ C. Urns is designed to answer the following question: given that a
candidate i was extracted k times in a set of n draws from the urn (i.e., in n
extractions from the corpus), what is the probability that i is a correct instance?
For a single urn, if s is the total number of balls in the urn, then this probability
is computed as follows:

P (i ∈ C|NumExtractionsi(n) = k) =

∑
r∈num(C)

r
s

k(1 − r
s)n−k∑

r′∈num(C∪E)
r′
s

k
(1 − r′

s )n−k
(7)

Urns operates in two phases. In the first phase, the set of all candidate
extractions is used to estimate the needed model parameters (num(C) and
num(C ∪ E)), using Expectation Maximization (EM). In particular, num(C)
is estimated by assuming that the frequency of correct extractions is Zipf-
distributed, and then estimating the exponent z which parameterizes this distri-
bution. In the second phase, a single pass is made over the extractions and each
is assigned a probability using the estimated model parameters and an integral
approximation to Equation 7 [30].

Urns was designed to assign probabilities to a set of extractions that were tar-
geting a single class, and the EM phase relies upon having a sufficient number of
samples (roughly 500) for estimation. In our context, very few classes yield this
many extractions on their own. Fortunately, we found that combining the can-
didates from all of the classes of a single ontology together for model estimation
yielded good results, better than performing per-class model fitting with prior
parameters for low-sample classes.

5. Urns-Norm: The Urns model, like Strength, does not exploit the frequency
with which a candidate appears in the corpus. Instead, each instance is assumed
to occur with equal probability anywhere along the aforementioned Zipf dis-
tribution. Introducing an appropriate prior probability of an input candidate’s
location along this curve would improve accuracy, but would significantly com-
plicate the model and computation.

Fortunately, we can approximate the benefit of such a change with a much
simpler approach. We begin by sorting the input data set X by hits(i). We
then run EM both on the “lower” half (which contains the less frequent terms),
obtaining parameter zL and on the whole data set, obtaining the aforementioned
z. We then compute a parameter zi for each instance i as follows:

zi = max(zL, z + log(hits(i))−
∑

(j,c)∈X

log(hits(j))
|X | ) (8)

The probability for candidate (i, c) is then computed using zi. Intuitively, the
log functions increase zi when a candidate i is more frequent than average, thus
forcing i to have more pattern matches to obtain a high probability. On the
other hand, the max function ensures that very infrequent words (particularly
misspellings) do not obtain an artificially high probability, by insisting that the
minimum zi is a value appropriate for the “lower” half of the inputs (zL).



438 L.K. McDowell and M. Cafarella

Strength, Str-Norm, and Urns have been used in some form in other work,
though Urns required some adaption for our multi-class problem. Both Str-
Norm-Thresh and Urns-Norm, however, are novel contributions of this work
that we found to be very effective, and that should also provide significant im-
provements in other systems.

6 Experimental Evaluation

In this section we experimentally evaluate OntoSyphon. We first consider its
overall performance and the impact of different assessment techniques, then ex-
amine how to further improve accuracy by exploiting ontological structure.

6.1 Assessing Instances

Figures 2-4 show the results of executing OntoSyphon on our sample ontologies.
Each line represents one output of the system using a particular assessment
technique. To create one point on the line, we chose a threshold and then removed
from the output set all candidate pairs whose assigned confidence values were
below that threshold. The x-axis measures the sensible-recall of this modified set,
and the y-axis shows the LA of this set. Varying the threshold thus produces a
line with properties similar to a classical precision/recall tradeoff curve.

The data demonstrates that OntoSyphon was able to find a substantial num-
ber of sensible instances for all 3 domains. In addition, the data shows that
some of our tested assessment techniques are quite effective at identifying the
more reliable instances. In particular, the techniques that perform normalization
(Str-Norm, Str-Norm-Thresh, and Urns-Norm) show consistent improvements
over both techniques that do not (Strength and Urns). Consider, for instance,
the “50% recall” point, where each technique has a sensible-recall equal to half
of the maximum achieved under any situation (e.g., where sensible-recall equals
900 for Animals). At this point, Urns-Norm and Str-Norm-Thresh increase LA
compared to the no-normalization techniques by 82-110% for Animals, 19% for
Artists, and 51-56% for Food.

Overall, both Urns-Norm and Str-Norm-Thresh perform consistently well.
Str-Norm also performs well, except that it has many false positives at low
recall. It gets fooled by many incorrect terms that are very infrequent on the
web, and thus have a high score after normalization, even though they were
extracted only once or a few times. For instance, Str-Norm incorrectly gives a
high score to the misspelled terms “mosquities” for Animals, “Andrea Cotez”
for Artists, and “pototato” for Food.

OntoSyphon found the most sensible instances for Artists, but our assessment
techniques worked least well on this domain, showing a fairly flat curve. One
reason is that the assessment techniques are fooled by a large number of spurious
candidates that come from one ambiguous class, Players. This class (intended
for musical instrument players), finds mostly sports team participants (e.g. “Greg
Maddux”) and a few digital music software products (“WinAmp”). Figure 5
shows the results if this class is removed from OntoSyphon’s search process



Ontology-Driven Information Extraction with OntoSyphon 439

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000 1200 1400 1600 1800

Le
ar

ni
ng

 A
cc

ur
ac

y

Sensible Recall

Str-Norm-Thresh
Str-Norm
Strength

Urns-Norm
Urns

Fig. 2. Animal Domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  200  400  600  800  1000  1200

Sensible Recall

Str-Norm-Thresh
Str-Norm
Strength

Urns-Norm
Urns

Fig. 3. Food Domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000 6000 7000 8000

Le
ar

ni
ng

 A
cc

ur
ac

y

Sensible Recall

Str-Norm-Thresh
Str-Norm
Strength

Urns-Norm
Urns

Fig. 4. Artist Domain

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1000 2000 3000 4000 5000 6000 7000 8000

Sensible Recall

Str-Norm-Thresh
Str-Norm
Strength

Urns-Norm
Urns

Fig. 5. Artist (without Player)

(Section 7 describes how this could be done automatically). With Str-Norm-
Thresh, LA increases from 0.49 to 0.64 at 50% recall.

A more fundamental problem is the smaller amount of redundancy in our
corpus for the Artists domain. For instance, a sensible instance for Animals
is extracted by OntoSyphon’s patterns on average 10.9 times vs. 2.1 times for
an incorrect instance (23.9 vs 3.5 hits for Food). However, Artists, even with
Player removed, averages only 3.0 hits for sensible instances vs. 2.1 hits for
incorrect instances. This smaller split yields a much more difficult assessment
task, and additional work is needed to more fully exploit the potential of such
domains.

6.2 Leveraging Ontological Structure

When confronted with multiple possible classes for a candidate instance (e.g.,
is “lemur” an Animal, Mammal, or Reptile?), the results above chose the in-
stance/class pair with the highest score. We also tried normalizing the metrics
above by class frequency to influence this choice of classes, but we found that this



440 L.K. McDowell and M. Cafarella

produced erratic results without improving accuracy. Instead, we found better
results by more explicitly leveraging the ontology to pick the best class via an av-
erage score computed over all classes. The component that each class contributes
is weighted by class frequency and by the taxonomic similarity Tsim:2

Class(i) = arg max
c∈O

∑
c′∈O

Score(i, c′)
˙TsimO(c, c′)

hits(c′)
(9)

For our corpus and domains, only about 25% of distinct instance terms were
extracted for more than one subclass. Thus, this enhancement had a very small
effect on overall results. However, looking only at that 25% of the results where
a class decision must be made, we found that this new technique consistently
improved LA for both Animals and Artists, and had negligible effect for Food.
For instance, for Str-Norm-Thresh at 50% recall, LA improved from 0.88 to 0.95
for Animals and from 0.62 to 0.76 for Artists.

Thus, exploiting taxonomic relationships in the ontology can improve ac-
curacy, though the small number of possible classes found for each instance
limits the impact of this technique. There remains room for improvement, be-
cause even with this enhancement in the full results only 44-69% (average 60%)
of the instances that were assigned a valid class by the evaluator were as-
signed that same fully correct class by the system. In the future, we would
like to explore combining this technique with web-wide statistics computed via
pointwise mutual information (PMI) [16]. Using PMI would require a signifi-
cant number of additional search queries, and would need to be expanded to
deal with our multi-class scenario. However, this approach should boost perfor-
mance by providing additional supporting data while still enabling us to lever-
age our efficient gathering of candidate instances from our base 90 million page
corpus.

7 Discussion and Future Work

Overall, we conclude that OntoSyphon was highly effective at extracting in-
stances from a web corpus, and that our new assessment techniques (Str-Norm-
Thresh and Urns-Norm) significantly improved the accuracy of the results. In
particular, using Str-Norm-Thresh OntoSyphon was able to achieve a LA of
about 0.6 while extracting 1400 sensible Animal instances (78% of the total
found), 1100 Food instances (93% of the total), and (after removing Player)
7500 Artist instances (87% of the total). Even higher accuracy may be obtained
for Animals and Food at a cost of reduced recall.

A Learning Accuracy of 0.6 is on par with the results surveyed by Cimiano et
al. [3]. They report LA of between 0.44 and 0.76 (with an average of 0.61 for inde-
pendent systems) and recall ranging from 0.17 to 0.31 (with an average of 0.24).

2 Maedche et al. previously used a similar, non-normalized technique (“tree ascent”)
for ontology learning, with some mixed success [24].



Ontology-Driven Information Extraction with OntoSyphon 441

These results are not directly comparable with ours, since these systems perform
a different task (annotating individual documents rather populating a ontology
from many documents), use different ontologies, and in some cases evaluate LA
using only those terms marked by the evaluator as valid for some class.3 Also, these
systems generally define recall as the percentage of results from the complete gold
standard that was found by the system. For our open-web system, however, recall
is reported as a raw number or as a percentage of the set of all answers found by
any execution of the system (as with [16]). Nonetheless, the magnitude of these
previous results demonstrate that an LA of 0.6 is reasonable, and our results show
that OntoSyphon can find many instances at this accuracy level.

Normalization was essential to our results. Such normalization is particularly
important for OntoSyphon, as opposed to document-driven systems, because the
candidate terms are not guaranteed to come from domain-relevant, somewhat
reliable input documents. These same factors caused us to achieve the best, most
consistent results only when that normalization was constrained by a minimum
threshold to account for very rare or misspelled words.

Our two metrics that performed such normalization, Str-Norm-Thresh and
Urns-Norm, both performed well and about comparably. These results are con-
sistent with earlier, non-normalized findings: while Urns was found to be greatly
superior to many other techniques in terms of producing accurate probabili-
ties [30], simple Strength-like measures performed almost as well if only a rela-
tive confidence ranking, not a probability was required [31]. Because Urns and
Urns-Norm are more complex to compute, many situations may thus call for
using the simpler Str-Norm-Thresh. On the other hand, users of the final, popu-
lated ontology may find actual probabilities very helpful for further processing,
in which case Urns-Norm may be best.

Finally, OntoSyphon in its present form is clearly not suited for populating
every kind of ontology. For instance, ontologies describing things or events that
are mentioned only a handful of times on the web are not well suited to our cur-
rent strategy of using simple pattern-based extractions followed by redundancy-
based assessment. Likewise, classes that are either complex (NonBlandFish) or
ambiguous (Player) will not yield good results. We intend to develop tech-
niques to address these issues, for instance, by recognizing ambiguous classes
by the small degree of overlap between a class and its parent (as is the case
with Player and Artist) or by adding additional search terms to disambiguate
such classes during extraction. Lastly, deciding whether a term such as “dog”
should be a subclass or an instance can be challenging even for human on-
tologists. More work is needed to help OntoSyphon honor the intent of an
ontology, e.g., by considering subclasses and instances already present in that
ontology.

3 For instance, C-PANKOW [3] appears to compute LA using only instances that were
assigned a class by both the system and an evaluator. For our system (see Equation 3)
it seemed more accurate to instead assign a value of zero to a pair (i, c) produced by
the system but for which goldO(i) = ∅ (e.g. for (truck, Animal)). This decision lowers
our LA values in comparison.



442 L.K. McDowell and M. Cafarella

8 Conclusion

The Semantic Web critically needs a base of structured content to power its
applications. Because of the great variety of information, no one approach will
provide everything that is needed. Much content can only be created by human
annotators, and incentives are needed to motivate this work. Other data is con-
tained in documents that can be effectively leveraged via the document-driven
approaches described in Section 2. This paper has focused on an alternative
ontology-driven method to extract large amounts of comparatively shallow in-
formation from millions of web pages. This approach lets us leverage the existing
work of skilled ontology designers, extract information from a very large corpus,
and focus extraction efforts where it is most valuable and relevant.

While additional work is needed to demonstrate that OntoSyphon is robust
across an even wider range of ontologies and can extract non-instance infor-
mation, our initial results have demonstrated the feasibility of OntoSyphon’s
ontology-driven, domain-independent approach. We successfully extracted a large
number of instances from a variety of independently-created ontologies. We
demonstrated how different assessment techniques affect the accuracy of the out-
put, and introduced simple improvements to existing assessment techniques that
significantly improved upon these results. Because these techniques, Str-Norm-
Thresh and Urns-Norm, are easy to implement modifications to techniques that
have been used for other tasks, our improvements should carry over easily to
many other systems (e.g., [3,16,10,17,12]). Future work will examine the many
promising directions for further improvements in this area.

Acknowledgements. Thanks to Christopher Brown, Martin Carlisle, Frederick
Crabbe, Oren Etzioni, Jeff Heflin, and the anonymous referees for their helpful
comments on aspects of this work. This work was partially supported by the
Naval Research Council, ONR grants N0001405WR20153 & N00014-02-1-0324,
NSF grant IIS-0312988, DARPA contract NBCHD030010, as well as gifts from
Google, and carried out in part at the University of Washington’s Turing Center.

References

1. Guha, R., McCool, R., Miller, E.: Semantic search. In: World Wide Web. (2003)
2. Chapman, S., Dingli, A., Ciravegna, F.: Armadillo: harvesting information for

the semantic web. In: Proc. of the 27th Annual Int. ACM SIGIR conference on
Research and development in information retrieval. (2004)

3. Cimiano, P., Ladwig, G., Staab, S.: Gimme’ the context: Context-driven automatic
semantic annotation with C-PANKOW. In: Proc. of the Fourteenth Int. WWW
Conference. (2005)

4. Soderland, S.: Learning to extract text-based information from the World Wide
Web. In: Knowledge Discovery and Data Mining. (1997) 251–254

5. Popescu, A.M., Etzioni, O.: Extracting product features and opinions from reviews.
In: Proceedings of the Conference on Empirical Methods in Natural Language
Processing (EMNLP). (2005)



Ontology-Driven Information Extraction with OntoSyphon 443

6. Craven, M., DiPasquo, D., Freitag, D., McCallum, A.K., Mitchell, T.M., Nigam,
K., Slattery, S.: Learning to construct knowledge bases from the World Wide Web.
Artificial Intelligence 118(1/2) (2000) 69–113

7. Davalcu, H., Vadrevu, S., Nagarajan, S.: OntoMiner: Bootstrapping and populating
ontologies from domain specific web sites. IEEE Intelligent Systems 18(5) (2003)
24–33

8. Celjuska, D., Vargas-Vera, M.: Ontosophie: A semi-automatic system for ontology
population from text. In: International Conference on Natural Language Processing
(ICON). (2004)

9. Lerman, K., Gazen, C., Minton, S., Knoblock, C.A.: Populating the semantic web.
In: Proceedings of the AAAI 2004 Workshop on Advances in Text Extraction and
Mining. (2004)

10. Matuszek, C., Witbrock, M., Kahlert, R., Cabral, J., Schneider, D., Shah, P., Lenat,
D.: Searching for common sense: Populating cyc from the web. In: Proc. of AAAI.
(2005)

11. Schneider, D., Matuszek, C., Shah, P., Kahlert, R., Baxter, D., Cabral, J., Wit-
brock, M., Lenat, D.: Gathering and managing facts for intelligence analysis. In:
Proceedings of the International Conference on Intelligence Analysis. (2005)

12. van Hage, W., Katrenko, S., Schreiber, G.: A method to combine linguistic
ontology-mapping techniques. In: Fourth International Semantic Web Conference
(ISWC). (2005)

13. Richardson, S., Dolan, W., Vanderwende, L.: Mindnet: acquiring and structuring
semantic information from text. In: COLING. (1998)

14. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text
collections. In: Proceedings of the Fifth ACM International Conference on Digital
Libraries. (2000)

15. Cederberg, S., Widdows, D.: Using LSA and noun coordination information to
improve the precision and recall of automatic hyponymy extraction. In: Seventh
Conference on Computational Natural Language Learning (CoNLL). (2003)

16. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland,
S., Weld, D., Yates, A.: Unsupervised named-entity extraction from the web: An
experimental study. Artificial Intelligence 165(1) (2005) 91–134

17. Pantel, P., Ravichandran, D., Hovy, E.: Towards terascale knowledge acquisition.
In: 20th International Conference on Computational Linguistics (COLING). (2004)

18. Hahn, U., Schnattinger, K.: Towards text knowledge engineering. In: AAAI/IAAI.
(1998)

19. Handschuh, S., Staab, S., Ciravegna, F.: S-CREAM - semi-automatic creation of
metadata. In: EKAW. (2002)

20. Dill, S., Eiron, N., Gibson, D., Gruhl, D., Guha, R.: Semtag and seeker: Boot-
strapping the semantic web via automated semantic annotation. In: Proc. of the
Twelth Int. WWW Conference. (2003)

21. Kiryakov, A., Popov, B., Terziev, I., Manov, D., Ognyanoff, D.: Semantic annota-
tion, indexing, and retrieval. Journal of Web Semantics 2(1) (2004) 49–79

22. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Proc.
of the 14th Intl. Conf. on Computational Linguistics. (1992)

23. Cimiano, P., Hotho, A., Staab, S.: Learning concept hierarchies from text corpora
using formal concept analysis. Journal of Artificial Intelligence Research 24 (2005)
305–339

24. Maedche, A., Pekar, V., Staab, S.: Ontology learning part one – on discovering
taxonomic relations from the web. In: Web Intelligence, Springer (2002)



444 L.K. McDowell and M. Cafarella

25. Alfonesca, E., Manandhar, S.: Improving an ontology refinement method with
hyponymy patterns. In: Language Resources and Evaluation (LREC). (2002)

26. Cimiano, P., Volker, J.: Text2onto - a framework for ontology learning and data-
driven change discovery. In: Int. Conf. on Applications of Natural Language to
Information Systems. (2005)

27. Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hy-
pernym discovery. In: NIPS 17. (2004)

28. Cimiano, P., Pivk, A., Schmidt-Thieme, L., Staab, S.: Learning taxonomic relations
from heterogeneous evidence. In: ECAI-2004 Workshop on Ontology Learning and
Population. (2004)

29. Cafarella, M., Etzioni, O.: A search engine for natural language applications. In:
Proc. of the Fourteenth Int. WWW Conference. (2005)

30. Downey, D., Etzioni, O., Soderland, S.: A probabilistic model of redundancy in
information extraction. In: Proc. of IJCAI. (2005)

31. Cafarella, M., Downey, D., Soderland, S., Etzioni, O.: KnowItNow: fast, scalable
information extraction from the web. In: Proc. of HLT-EMNLP. (2005)



Ontology Query Answering on Databases

Jing Mei1,2, Li Ma2, and Yue Pan2

1 Department of Information Science
Peking University

Beijing 100871, China
mayyam@is.pku.edu.cn

2 IBM China Research Lab
Beijing 100094, China

{malli, panyue}@cn.ibm.com

Abstract. With the fast development of Semantic Web, more and more
RDF and OWL ontologies are created and shared. The effective manage-
ment, such as storage, inference and query, of these ontologies on data-
bases gains increasing attention. This paper addresses ontology query
answering on databases by means of Datalog programs. Via epistemic
operators, integrity constraints are introduced, and used for conveying
semantic aspects of OWL that are not covered by Datalog-style rule lan-
guages. We believe such a processing suitable to capture ontologies in
the database flavor, while keeping reasoning tractable. Here, we present
a logically equivalent knowledge base whose (sound and complete) infer-
ence system appears as a Datalog program. As such, SPARQL query an-
swering on OWL ontologies could be solved in databases. Bi-directional
strategies, taking advantage of both forward and backward chaining, are
then studied to support this kind of customized Datalog programs, re-
turning exactly answers to the query within our logical framework.

1 Introduction

The Resource Description Framework (RDF) [25] has been recognized as a pop-
ular way to represent information in the Semantic Web, accompanying with a
standardized query language, SPARQL [27]. An important vocabulary extension
of RDF is the Web Ontology Language (OWL) [24], whose formalisms rely closely
on the Description Logic (DL) [2]. The Semantic Web Rule Language (SWRL)
[28] arises, when rules are considered to work with OWL in a syntactically and
semantically coherent manner.

Given an RDF document, having information of ontologies (i.e. upgraded to
an OWL document) even rules (i.e. further upgraded to a SWRL document), a
SPARQL query is to extract implicit and explicit RDF data, with query answer-
ing as an underlying reasoning service. Compared with weak DL query languages,
SPARQL is expressible for the union of conjunctive queries on RDF triples, not
only concerning traditional DL queries (e.g. instantiation, realization and re-
trieval [14]), but also allowing predicates (could be DL classes and properties)
being queried as variables.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 445–458, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



446 J. Mei, L. Ma, and Y. Pan

Database (DB) technologies provide a solid support for various data-intensive
applications and could be used for ontology management. So, SPARQL queries
on ontologies possibly work in a similar way as SQL queries on relational data in
databases. Meanwhile, the intention of making the Semantic Web more accept-
able to the industry is another underlying promotion to impede the connection
to database communities [9]. However, relational DBs are not rich enough to
capture semantics implied in ontologies. Thus, Datalog is regarded as a suitable
intermedium, and the next section motivates this opinion in detail.

Technically, this paper generalizes a (negation-free) Datalog program P w.r.t.
a given DL KB Σ =< T ,A >, whose EDB (extensional database) consists of the
inferred DL TBox T ∗ and the original DL ABox A, and whose IDB (intensional
database) is composed of 7 inference rules devised by DL semantics. We state
that P is a syntax variant of an inference system Γ , and Γ is proved sound and
complete with a specified MKNF-DL [10] KB Σ′, where Σ′, assuming satisfi-
able, extends Σ with integrity constraints (ICs). By epistemic interpretations,
those ICs exactly reflect the semantic discrepancy between DL and DB, making
query answering in DL accessible to the DB community. As such, we elaborate
a strategy, which benefits from the tractable data complexity of Datalog, to ad-
dress popular SPARQL queries on databases, provided by RDF data obtained
from OWL documents. Within such a framework, it is possible to futher sup-
port SWRL rules which are user-defined Datalog rules sharing predicates with
the ontology classes and properties.

The paper is organized as follows. Section 2 is our motivation including an
analysis to encountered problems and existing approaches. Section 3 introduces
the preliminaries and notions used in this paper. In Section 4, a so-called DL2DB
KB Σ′ w.r.t. a given DL KB Σ is defined, along with a natural deduction sys-
tem Γ consisting of DL-driven inference rules. Also, the correspondence of Σ′ to
its original Σ, as well as the soundness and completeness of Γ with Σ′, are pre-
sented. A Datalog program, corresponding to Γ , is demonstrated in Section 5 for
query answering in Σ. There, we discuss computation strategies and evaluation
approaches as well. Section 6 envisions the desirable extension with user-defined
rules, and shows preliminary experiments in our prototype implementation. Fi-
nally, the conclusion is drawn in Section 7. (Readers can find more details on the
proofs in the paper at http://www.is.pku.edu.cn/~mayyam/appendix.pdf.)

2 Motivation

Our objective is to perform SPARQL query answering on databases which are
used to store RDF data (including OWL ontologies). However, it has been stud-
ied in DL-Lite [6] that data complexity of query answering in DL has a LOGSPACE

boundary, above which query answering is not expressible as a first-order logic
formula and hence a SQL query. However, most DLs are more expressive than
DL-Lite. The worst case is an unrestricted combination of OWL and rules, such
as SWRL, leading to the undecidability of interesting reasoning problems [28].
An EXPTIME complexity is reobtained, for query answering in a less expressive



Ontology Query Answering on Databases 447

extension to OWL with DL-safe rules [19], but the exponential data complexity
greatly weakens the efficiency.

The discrepancy between DL and DB is actually remarkable. As well-known,
DL is based on an open world assumption (OWA) permitting incomplete infor-
mation in an ABox, while DB adopts a closed world assumption (CWA) requir-
ing information always understood as complete. The unique name assumption
(UNA) is often emphasized in DB but not in DL. OWL Flight [9], furthermore,
clarifies restrictions in DL and constraints in DB, of which the former is to infer
and the latter to check. When negation comes, DBs prefer to “non-monotonic
negation”, while DLs rely on “monotonic negation”.

Facing to these open issues, various proposals have been presented. According
to the engines which do reasoning indeed, existing ontology persistent systems
can be roughly divided into two categories: DL-based and rule-based. The In-
stance Store [4] is a representative of DL-based systems, where DB serves mainly
for voluminous storage and convenient retrieval, and classical DL tableaux algo-
rithms help make implicit information explicit. In the Instance Store, whatever
queries are (particularly, those queries involving properties and variables can be
handled by rolling-up techniques [14]), a reduction to checking the KB unsatis-
fiability provides support for query answering. Rule-based approaches are a bit
different, which intuitively translate the meaning of DL constructors into rules.
Due to the expressive power of rules, those DL constructors (e.g. existential
restrictions) are either partially forbidden (as DLP [12] does) or assigned new
meanings (as OWL Flight [9] does). Unlike DL tableaux algorithms, the eval-
uation of queries adopts strategies by forward chaining or backward chaining.
More tractably, DL-lite [6] is proposed to execute the ABox using a SQL engine,
whose language itself is restrictive while keeping low complexity of reasoning,
namely polynomial in the size of instances in the knowledge base.

Since rule-based approaches are more extensible to SWRL, we make an attempt
to give inference rules as a translation of DL semantics, while RDF data (from
OWL documents) is stored in databases. Concentrating on query answering, this
paper introduces a DL2DB deduction system Γ and studies which sub-language of
DLs is equivalent to the so-called DL2DB. Surely, DLP (Description Logic Pro-
grams [12]) is a nice measure, as cited by most related work. However, inspired
by MKNF-DL (Description Logics of Minimal Knowledge and Negation as Fail-
ure [10]), also motivated by bridging DL and DB, we exploit integrity constraints
to a DL KB Σ, resulting in a special MKNF-DL KB Σ′. Checking satisfiability
of (DB) integrity constraints has been well investigated (e.g. in [5]), and our pro-
posed ICs, in the DL setting, admit of C�D (respectively, ∃P.C) being known only
if holding an autoepistemic belief of either C or D (respectively, P and C). That
is, we contribute Σ′ as a logically equivalent version of Σ in the sense of query
answering. Particularly, the DL2DB system Γ proves sound and complete with
Σ′ for non-epistemic queries. With a focus on query answering, we assume both
Σ and Σ′ are satisfiable. Generally speaking, it makes little sense, in classical log-
ics, when everything is possible to be entailed by inconsistent KBs. Also, checking



448 J. Mei, L. Ma, and Y. Pan

satisfiability of a DL KB or a MKNF-DL KB has been studied in [2] and [10], but
not scoped in this paper.

We remark this paper does not propose to “change” or “weaken” the semantics
of a DL KB. Instead, for keeping DL in classical first-order semantics, we move
to a MKNF-DL “world” whose unique epistemic model is identical to that of
DL, provided by integrity constraints on demand. In other words, we capture an
epistemic perception for those rule-based approaches, and gain an insight into
integrity constraints for DL constructors, rather than tying to change or weaken
the classical DL semantics.

On the other hand, we do realize nonmonotonic features are gaining increasing
interest in the context of the Semantic Web initiatives [26], and the paper [8]
provides a good survey. A latest work is [18], which proposes hybrid MKNF KBs
integrating decidable DLs with nonmonotonic rules. However, our paper here
belongs to the direction of research for query answering over ontologies relying
over database technologies by making use, in a “natural” way as a rational agent
does, of well established formalizations and computing mechanisms.

3 Preliminaries

Consider the main layers of the DL family bottom-up [2][13], ALC is a basic
and simple language, permitting class descriptions via C 	 D, C � D,¬C, ∀P.C,
and ∃P.C, where C, D are classes and P is a property. Augmented by transitive
properties, ALC becomes ALCR+ , denoted by S in the following. SI is an exten-
sion to S with inverse properties, followed by SHI with property hierarchies. It
is called SHIF if extending by functional restrictions, SHIN if by cardinality
restrictions, and SHIQ if by qualified number restrictions. Support for datatype
predicates (e.g. string, integer) brings up the concrete domain of D, and using
nominals O helps construct classes with singleton sets.

With the expected pervasive use of OWL, SHIF(D) and SHOIN (D) are
paid more attention: one is the syntax variant to OWL Lite and the other is to
OWL DL. This paper currently takes SHI into account, and more expressive ex-
tensions will be explored in our ongoing work. Alternately, DB built-in features,
such as arithmetic operators and aggregate functions, might be considered as a
workaround for F ,N ,Q and D, while list operations for O. In the following, if
not stated otherwise, C, D denote SHI classes and P, Q denote SHI properties.

A DL KB Σ is defined as a pair Σ =< T ,A >. The TBox T is a finite set of
class and property subsumptions having the form of C 
 D and P 
 Q, resp.
The ABox A is a finite set of class and property assertions having the form of
C(a) and P (a, b). Also, an interpretation I = (Δ, •I) consists of a nonempty set
Δ (the domain of I) and a function •I (the interpretation function of I) that
maps every class to a subset of Δ and every property to a subset of Δ × Δ. An
interpretation I is a model of a DL KB Σ (denoted as I |= Σ) iff every sentence
(subsumption or assertion) of Σ is satisfied in I. For a complete presentation of
other definitions, such as the satisfiability of sentences, we direct readers to the
classical DL handbook [2]. Query answering for q(x̄) in Σ attempts to receive



Ontology Query Answering on Databases 449

all ground substitutions t̄ to x̄ such that Σ |= q(t̄), and two KBs Σ and Σ′ are
equivalent in the sense of query answering iff those obtained results are identical
in both Σ and Σ′ [6].

Next, a more sophisticated language, namely MKNF-DL [10], is sketched. One
epistemic operator K works for minimal knowledge, and the other epistemic op-
erator A plays a role to default assumption. The syntax of MKNF-DL extends
DL with KC,KP,AC and AP , where C is a DL class and P is a DL property.
The semantics of MKNF-DL resorts to epistemic interpretations. An epistemic
interpretation is a triple (I,M,N ) where I is a (first-order) interpretation and
M,N are sets of (first-order) interpretations. Non-epistemic classes and prop-
erties are interpreted same as in I, i.e. CI,M,N = CI and P I,M,N = P I . The
other semantic conditions state that:

�I,M,N = Δ; ⊥I,M,N = ∅; (¬C)I,M,N = Δ\CI,M,N ;
(C � D)I,M,N = CI,M,N ∩ DI,M,N ; (C � D)I,M,N = CI,M,N ∪ DI,M,N ;
(∃P.C)I,M,N = {a ∈ Δ|∃b.(a, b) ∈ P I,M,N and b ∈ CI,M,N };
(∀P.C)I,M,N = {a ∈ Δ|∀b.(a, b) ∈ P I,M,N implies b ∈ CI,M,N };
(KC)I,M,N = J ∈M(CJ ,M,N ); (KP )I,M,N = J ∈M(P J ,M,N );
(AC)I,M,N = J ∈N (CJ ,M,N ); (AP )I,M,N = J ∈N (P J ,M,N );

For any property Q being the inverse of P , if (a, b) ∈ P I,M,N then (b, a) ∈ QI,M,N ;
For any transitive property P , if (a, b), (b, c) ∈ P I,M,N then (a, c) ∈ P I,M,N .

A set of interpretations M is an epistemic model for Σ (denoted as M |= Σ)
iff the structure (M,M) satisfies Σ and, for each set of interpretations M′, if
M ⊂ M′ then (M′,M) does not satisfy Σ. A structure (M,N ) satisfies Σ
(denoted as (M,N ) |= Σ) iff each interpretation I ∈ M is such that every sen-
tence (subsumption or assertion) of Σ is satisfied in the epistemic interpretation
(I,M,N ). The paper of MKNF-DL [10] provides a complete presentation of
other definitions, such as the satisfiability of sentences, and we follow its con-
vention. Notice that, for any (non-epistemic) DL KB Σ, it has one and only one
epistemic model, i.e. the set of all first-order models for Σ, denoted as M(Σ).

Finally, this paper adopts assumptions that are suitable for the semantics of
MKNF (cf. [8][10][18]): (1) Every first-order interpretation is over the same fixed,
countably infinite domain; (2) There is a one-to-one correspondence between
individuals in the language and elements in the domain. Thus, the set of all
individuals O is fixed to I, i.e., Δ = O, and we denote the interpretation of
a ∈ O simply as a itself, i.e., aI = a. The assumption of (2) also implies that
two distinct individuals denote two distinct elements, referred as to UNA.

4 Bridging DL and DB

Given a DL KB Σ, a specified MKNF-DL KB, namely the DL2DB KB Σ′,
is studied. We guarantee the equivalency of Σ′ and Σ in the sense of query
answering, for non-epistemic queries. And then, we generalize an inference sys-
tem, namely the DL2DB system Γ , and this contribution of Γ is posed by its
soundness and completeness with Σ′, building a bridge between DL and DB.



450 J. Mei, L. Ma, and Y. Pan

4.1 The DL2DB KB

Inspired by representing integrity constraints (ICs) in MKNF-DL [10], we pro-
pose ICs for some DL constructors to strengthen beliefs, meeting the requirement
that w.r.t. certain information the KB is prone to be complete.

Before introducing definitions, we recall how to formalize ICs using an example
from [10]. For instance, a TBox T : Kemployee
 Amale�Afemale corresponds
to an IC that “each known employee must be known to be either male or female”.
Having only one assertion in ABox A: employee(Bob), makes this KB < T ,A >
lack of epistemic models. That is, this IC is violated. Turning to a system level,
we require each known DL class of C � D must be known to be either C or D,
viz. sub1 as defined below, while sub2 is for ∃P.C. Considering the discrepancy
between DL and DB, we believe that ICs bridge them in a semantic ”pay-as-
you-go” manner.

We use clos(C) for the closure of a class C, and clos(C) is the smallest set
containing C that is closed under subclasses and negation (in Negation Normal
Form), while the size of clos(C) is linear in the length of C [13]. Given a set
of classes M , clos(M) =

⋃
C∈M clos(C), the size of clos(M) is polynomial in

the size of M .

Definition 1. Let Σ =< T ,A > be a DL KB, and ΣC be the set of classes
occurring in Σ. A DL2DB KB w.r.t. Σ is Σ′ =< T ′,A > where T ′ = T ∪ sub1
∪ sub2,
sub1={K(C � D) 
 AC � AD | C � D ∈ clos(ΣC)} and
sub2={K(∃P.C) 
 ∃AP.AC | ∃P.C ∈ clos(ΣC)}.

The following proposition helps gain insights into the nature of epistemic mod-
els for Σ′ and Σ. Due to space limitation, the detailed proof can be found at
http://www.is.pku.edu.cn/~mayyam/appendix.pdf.

Proposition 1. Let Σ be a DL KB, and Σ′ be a DL2DB KB w.r.t. Σ. A set of
interpretations M is an epistemic model for Σ′ iff (1) M is an epistemic model
for Σ; (2) for each subsumption ϕ ∈sub1∪sub2 in Σ′, (M,M) satisfies ϕ.

As pointed out above, the (non-epistemic) DL KB Σ has a unique epistemic
model, namely M(Σ), consisting of all first-order models for Σ. This propo-
sition indicates that Σ′ has the same unique epistemic model as M(Σ) if the
structure (M(Σ),M(Σ)) satisfies all subsumptions in sub1∪sub2, otherwise Σ′

is unsatisfiable. Thus, under the assumption that both Σ and Σ′ are satisfiable,
the two KBs Σ and Σ′ are equivalent in the sense of query answering.

It possibly happens that Σ is satisfiable but Σ′ is not, which implies some
of those ICs have been violated. In this case, we fail to returning complete
answers to queries via Σ′, although incomplete information in Σ would not at-
tack Σ itself. For example, a DL KB Σ, having a TBox T : male
person and
female
person in addition to an ABox A: male�female(Bob), is satisfiable
and entails person(Bob) but neither male(Bob) nor female(Bob). Obviously,
the IC of K(male�female)
 Amale�Afemale is violated, making this Σ′ un-
satisfiable. In real DB-based applications, it is highly possible to have complete



Ontology Query Answering on Databases 451

information on Bob’s gender, which leads to person(Bob) in Σ′ and reobtaining
the satisfiability of Σ′.

4.2 The DL2DB System

DL TBox reasoning has been well-developed, but scalable DL ABox reasoning
deserves more investigation. Instead of using classical DL tableaux calculus, we
aim at exploiting an alternative way to ABox reasoning on databases, which are
initialized by an inferred TBox and an original ABox.

Since the complexity of deciding SHI DL class satisfiability is EXPTIME-
complete [13], computing the closure of the TBox is in coEXPTIME, provided that
C is subsumed by D iff C	¬D is unsatisfiable [2]. Although, such computational
impact might be non-negligible, TBoxes are relatively fixed and certain data
preprocessing at the back end is feasible for applications, to some extent.

So far, a DL2DB system Γ w.r.t. a DL KB Σ =< T ,A > is constructed as
below. Starting by initialization, a TBox taxonomy T ∗ = {C 
 D|Σ |= (C 

D)} ∪ {P 
 Q|Σ |= (P 
 Q)}, derived from external DL reasoners, is uploaded
to Γ together with the original ABox A.

Initialization:

TBox: If ϕ ∈ T ∗, then ϕ ∈ Γ .
ABox: If ϕ ∈ A, then ϕ ∈ Γ .

Inference rules:

∈: If ϕ ∈ Γ , then Γ % ϕ.
	: If Γ % C(a) and Γ % D(a), then Γ % (C 	 D)(a).
∃: If Γ % P (a, b) and Γ % C(b), then Γ % ∃P.C(a).
∀: If Γ % P (a, b) and Γ % ∀P.C(a), then Γ % C(b).

T : If Γ % (C 
 D) and Γ % C(a), then Γ % D(a).

P : If Γ % (P 
 Q) and Γ % P (a, b), then Γ % Q(a, b).
Pi: If Γ % P (a, b), then Γ % Q(b, a), where Q is inverse of P .
Pt: If Γ % P (a, b) and Γ % P (b, c), then Γ % P (a, c), where P is transitive.

Symbols of a, b, C, D, P, Q etc. will be instantiated by corresponding individ-
uals, classes and properties in Σ. Classical SHI DL [13] depicts another rule of
∀+: If Γ % P (a, b) and Γ % ∀Q.C(a), where P is transitive and Γ % (P 
 Q), then
Γ % ∀P.C(b). However, support for TBox reasoning gives ∀Q.C 
 ∀P.(∀P.C),
because of P 
 Q where P is transitive. As a result, Rule[∀] covers the situation
of Rule[∀+], i.e., if Γ % P (a, b) and Γ % ∀P.(∀P.C)(a), then Γ % ∀P.C(b).

Applying these inference rules, a sentence ϕ is called derivable if Γ % ϕ, and
its derivation length n counts in the times of applying inference rules. A conflict
is defined in Γ by the facts that Γ % C(a) and Γ % ¬C(a). In this paper,
conflict-free systems are focused, unless otherwise noted.

As far as we know, these above inference rules, more or less, play a role in
most “state of the art” Semantic Web reasoning engines, in particular for those
which adopt rule-based approaches. Thus, a corresponding KB fit in with this
Γ is expected, and Σ′ defined previously happens to be the candidate.



452 J. Mei, L. Ma, and Y. Pan

Theorem 1. Let Σ be a DL KB, Σ′ be a satisfiable DL2DB KB w.r.t. Σ, Γ be
a conflict-free DL2DB system w.r.t. Σ, and ϕ be a non-epistemic sentence.
Γ % ϕ if and only if Σ′ |= ϕ.

For proofs of this theorem (or called as soundness and completeness), please
refer to the report at http://www.is.pku.edu.cn/~mayyam/appendix.pdf.

5 Query Answering

Moving the proposed DL2DB system into practice, a (negation-free) Datalog
program is presented in this section. Also, we discuss rewriting techniques which
make SPARQL queries processable, even those syntactic sugars involving pred-
icates as variables. By implementing a bi-directional strategy of top-down and
bottom-up, we believe that, following some optimization techniques, e.g. Magic
Set [3] and Tabling [1], scalable ontology query answering is hopeful.

5.1 SPARQL Queries

SPARQL is a query language for obtaining information from RDF graphs. An
RDF graph is a set of triples and each triple consists of a subject, a predicate
and an object. From DL perspective, a reserved predicate rdf:type, for ex-
ample, indicates DL class assertions with individuals as the subject and DL
classes as the object. Possibly, a SPARQL query concerns the retrieval of those
objects standing for DL classes, e.g. asking for all types of a specific individual.

Ignoring non-logical constitutions in SPARQL, such as filters, prefixes and so
on, we denote a SPARQL query q(x̄) by an expression of the form {x̄|dnf(x̄, ȳ)}.
Here, x̄ are the so-called distinguished variables that will be bound with individ-
uals in the KB, and ȳ are the non-distinguished variables which are existentially
qualified variables [6]. dnf(x̄, ȳ) is a disjunctive normal form of Rel(sub, pre, obj),
and Rel, being a logical predicate, has three parameters: sub, pre, obj, each of
which is either a constant in the RDF DB or a variable in x̄ or ȳ.

A question naturally arises, facing to “constants in the RDF DB”: what the
RDF DB is and what the constants are. Rewriting techniques are introduced to
address the problem. Given a DL KB, C(a) and P (a, b) in the ABox are rewrit-
ten by Rel(a, rdf:type, C) and Rel(a, P, b), while C 
 D and P 
 Q in the TBox
are rewritten by Rel(C, rdfs:subClassOf, D) and Rel(P , rdfs:subPropertyOf, Q),
where rdf:type, rdfs:subClassOf, and rdfs:subPropertyOf are reserved
predicates. Actually, rewriting not only provides support for SPARQL queries,
but also bridges DL and relational databases. DL constructive classes such as
∃P.C are not straightforwardly expressible inside of DBs. So, we use unique
IDs to make them recognizable as for participating in sub, pre, obj. Thus, an
RDF DB is a storage of triples w.r.t. a DL KB, where constants are those IDs
representing individuals, DL classes and DL properties.

5.2 A Datalog Program

Rewriting techniques, additionally, give our inference rules a new version. For
instance, Rule[∃] is depicted as Rel(a, rdf:type, ∃P.C) ← Rel(a, P, b),



Ontology Query Answering on Databases 453

Rel(b, rdf:type, C). Attention should be paid for variable bindings of a, b, P, C,
and ∃P.C, which impose semantic conditions into the rule body such that a, b are
individuals and ∃P.C is a pending DL class together with its affiliated DL prop-
erty P and class C. Other rules are processed similarly. For example, Rule[
T ]
turns to Rel(a, rdf:type, D) ← Rel(C, rdfs:subClassOf, D), Rel(a, rdf:type, C).

As such, given a DL KB Σ =< T ,A >, the DL2DB system Γ w.r.t. Σ appears
as a Datalog program P . The IDB of P consists of those inference rules (except
Rule[∈]) in Γ rewritten in triples. The EDB of P is exactly an RDF DB w.r.t.
Σ storing triples for the original ABox A and the inferred TBox T ∗, driven by
Rule[∈]. With the help of DL reasoners, we regard the computation of TBoxes
as a preprocessing. It is T ∗ instead of T that plays a role in this program. Since
Datalog has P-complete data complexity [7], query answering in Γ is polynomial
in size of the KB Σ∗ =< T ∗,A >.

Grounding a Datalog program P on the defined RDF DB needs k·NM binding
operations in maximum, where k, M and N are the number of Datalog rules,
variables and constants, resp. In the case of our DL2DB system Γ , we have k = 7
Datalog rules excluding Rule[∈], each of which has maximally M = 5 variables
acting as sub, pre, obj. The number N of constants counts those IDs representing
individuals, DL classes and DL properties in Σ. Consequently, interpreting Γ in
Datalog rules has a computational cost of O(7 · n5).

5.3 Strategies

Although, a theoretical complexity is tractable, the evaluation strategy in prac-
tice is another story. For example, a cyclic DL TBox of ∃P.C 
 C indicates the
query of C(x) is based on that of ∃P.C(x) which relies on C(y) and P (x, y).
The backward chaining becomes C(x) ← P (x, y), C(y), getting entangled in the
recursive retrieval of C. Meanwhile, a pitfall exists when using forward chaining
freely in this example. Thinking about an ABox of P (a, a) and C(a), we receive
an infinite series of ∃P.C(a), ∃P.∃P.C(a), ∃P.∃P.∃P.C(a), and so on. A straight-
forward top-down implementation can take exponential time using these rules
while a bottom-up approach is faster (generally polynomial), but still wastes
time exploring other rules which are never used in the solution of the query [3].

To improve performance, we can use a procedure which collects subgoals of
a given query top-down firstly, and then evaluates all subgoals bottom-up. Re-
ferring to techniques involved in Deductive Databases [21], the repetition of
computing is by all means avoided on the one hand, and the irrelevant goals
may as well be ignored on the other hand.

We are now ready to define algorithms, as shown in Table 1. To improve
legibility, Rule[*] is presented, where * is the placeholder of every inference rule
introduced in the DL2DB system, such as Rule[∃] and Rule[
T ], except for
Rule[∈]. For computing the answers to a subgoal g over the KB Σ∗ =< T ∗,A >,
we first exploit the relational DB to obtain A(g) which means a ground base of
g asserted in A, and then answers are propagated until reaching a fixpoint.

In fact, this proposed strategy, to simulate top-down semantics in a bottom-up
framework, is not new, tracing back to the Magic Set [3] developed in Deductive



454 J. Mei, L. Ma, and Y. Pan

Table 1. Algorithms of TopDown and BottomUp

Algorithm TopDown(q, T ∗) ButtomUp(S, T ∗, A)
A query q and A set S of subgoals for q and

Input an inferred TBox T ∗ an inferred TBox T ∗ and
an original ABox A

Output A set S of subgoals for q A set Ans of answers to subgoals in S

S := {q}; top := 0; Ans := {A(g)|g ∈ S}
while (top < sizeOf(S)) do do Ans′ := Ans

for each g in S do if an instantiated Rule[*] is settled
Steps if g matches the consequent with its antecedents in Ans′

of an instantiated Rule[*] then Ans′ := Ans′∪
then top := top + 1; S := S∪ {the consequent of Rule[*]}
{those antecedents of Rule[*]}; while Ans = Ans′;

return S return Ans

Databases. Not providing a general magic set transformation,we regard the collec-
tion of subgoals as a magic set s.t. Ruel[∃], for example, appears as Rel(a, rdf:type,
∃P.C) ← Magic(∃P.C), Rel(a, P, b), Rel(b, rdf:type, C). Unless required, such
class expression ∃P...∃P.C as mentioned above would not be generated by the
Rule[∃] with Magic.

Meanwhile, there are various algorithms to address the termination of top-
down methods, most of which may be considered as variants of OLDT-resolution
[21]. Being a representative and used in XSB Prolog [1], the Tabling method
declares tabled predicates (manually or automatically) whose evaluation is by
means of a so-called SLG resolution, while non-tabled predicates are resolved as
normal, i.e., using the SLD resolution steps, by which the termination reaches
without infinite loops. However, complex and large DL TBoxes expect tabled
predicates declared automatically. Only to exploring all instantiated rules by a
‘compilation’ of the TBox, those predicates are detected. It means, a top-down-
like static analysis in Tabling looks similar to the collection of subgoals in our
approach. Besides, we observe that, in Tabling, the table entry associated with
calls to tabled predicates is enriched by inserting new derived answers, step
by step. Such a gradual insertion is executed also similarly in our bottom-up
computation for obtained subgoals. Briefly, running in our strategy seems not
more expensive than in Tabling, equipped with physical optimizations.

So far, we believe that a bi-directional strategy is suitable for query answering
in a DL-driven Datalog program. Specifically, the (indirect) cyclic DL TBox is
legal which leads to the recursion unavoidable, while the superfluous computa-
tion (particularly encountering voluminous data in the Semantic Web) has been
cut down by the collection of subgoals. Finally, our bi-directional strategy will
terminate for a given DL KB, provided by the facts that

1. A finite number of subgoals is encountered, whose worst case is the collec-
tion of all DL classes and DL properties appearing in the KB, and

2. Each of these subgoals has a finite number of instances with the maximum
of all individuals in the KB.



Ontology Query Answering on Databases 455

5.4 Comparisons

In this section, we summarize and compare systems and approaches for rule-
based ontology query answering.

Knowledge compilation, making implicit information explicit in advance, has
been widely used in some systems. For example, OWLIM [15], being a semantic
repository, builds a materialized RDF database with the inferred closure of an
OWL DLP KB. Similarly, Minerva1 performs entailment rules bottom-up for the
DL ABox inferences, plugged with a DL reasoner for precomputing the DL TBox
subsumptions [16][29]. Creating DB views has been preprocessed in DLDB-OWL
[20], of which each view stands for a DL class. Briefly, this kind of tools fills in
DBs with data by a bottom-up precompilation, pushing a direct retrieval to
back-end databases, but at the risk of a whole re-computation when updating.

Querying on-the-fly during reasoning alleviates the suffering caused by updat-
ing. There are two frameworks, KAON2 [19] and DL-lite [6], getting deserved
attention. KAON2 reduces a DL KB to a disjunctive Datalog program, using
the magic set algorithm developed for disjunctive programs. DL-lite is less ex-
pressive, although, any query is expressible as the union of conjunctive queries
in SQL via a KB normalization, making SQL engines responsible to return the
exact answers. Thus, our DL2DB stands in the middle of KAON2 and DL-lite.
Generally speaking, this kind of tools follows a solid logical language, to address
the challenges of expressivity and reasoning power.

It leaves a straightforward way, in which existing (top-down, bottom-up) rule
engines are borrowed as a whole. In this trend, a production rule engine Jess
is used by OWLJessKB2 and OWL2Jess [17], while XSB Prolog is preferred
in FLORA-23 and TRIPLE4. Also, SWI-Prolog5 provides a Semantic Web Li-
brary dealing with the RDF data extracted from RDF(S) and OWL documents.
Taking negation into account, deduction in ontologies via ASP (Answer Set
Programming) has been discussed in [23] but regarding classical negation ¬
as default not, and HEX-Programs [11] provide a hybrid platform integrating
ASP rules with external DL atoms, both of which utilize underlying ASP rule
engines.

6 Discussions

Not surprising, user-defined rules are expected in real applications. Viewing
those inference rules in a system level, we envision a common platform with
support for SPARQL query answering in SWRL. Learning from our preliminary
experiments, performance problems (e.g. running time and memory space) are
discussed below, towards the development of a powerful Semantic Web tool.

1 http://www.alphaworks.ibm.com/tech/semanticstk
2 http://edge.cs.drexel.edu/assemblies/software/owljesskb/
3 http://flora.sourceforge.net/
4 http://triple.semanticweb.org/
5 http://www.swi-prolog.org/



456 J. Mei, L. Ma, and Y. Pan

6.1 Extensions

SWRL [28] is a combination of OWL DL and unary/binary Datalog rules. Tech-
nically, let S be a SWRL knowledge base, where OC is a set of OWL classes,
OP is a set of OWL properties, and ST is a set of OWL individuals and SWRL
variables. A SWRL rule has the form: h1 ∧ · · · ∧ hn ← b1 ∧ · · · ∧ bm , where
hi, bj , 1 ≤ i ≤ n, 1 ≤ j ≤ m are atoms of the form C(t) with C ∈ OC and t ∈ ST ,
or atoms of the form P (t1, t2) with P ∈ OP and t1, t2 ∈ ST .

We are more interested in SWRL rules with a unique head atom, and rewrit-
ing techniques are still suitable s.t. each SWRL rule appears as: Rel(s0, p0, o0) ←
Rel(s1, p1, o1) · · · Rel(sn, pn, on). Facing to a rule body having Rel(a, rdf:type,
∃P.C), for instance, a rewritten version of Rule[∃] as mentioned above is applied
to obtain corresponding entailments, also Rule[
T ] and others are applicable.
Thus, assuming that a Datalog program works for our DL2DB system, the situ-
ation is not aggravated when more rules, in the same style, are involved. Being
a preliminary work, our prototype is towards support for query answering with
SWRL rules, whose semantics appeals, however, for integrity constraints.

A large variety of features have been captured in MKNF-DL [10], such as
default rules and epistemic queries. Our future work includes a more general
formalization concerning non-monotonic logics and latest work in [8] [11] [18] is
well deserved studying.

6.2 Preliminary Experiments

We conducted initial experiments on a DBMS-based OWL repository, Minerva
(DB2 in experiments). Test data sets are from the extended LUBM [16], an
OWL ontology including 69 atomic classes, 39 intersection classes, 10 existential
restrictions, 55 properties, 263 class subsumptions, 16 property subsumptions,
46450 class assertions, 239933 property assertions, and 25461 individuals. These
documents involve one terminology file of size 66 KB, one university file of size
207 KB and twenty department files each of which is about 1300 KB.

Not tangling with complex DL class descriptions, such queries as finding in-
stances typed of “Organization” receive answers (counting to 229 none of which
is asserted in the ABox) in 0.91 second. However, the query to “Chair”, defined
as Person 	 ∃ headOf.Department where Department
Organization, requires
the evaluation of “Person” firstly. There are 35 classes being recognized as the
subclasses of “Person”, inducing totally 90 subgoals. Finally, it counts to 14995
persons (none exists in the ABox) and 40 chairs (half asserted, half inferred) in
29.73 second. As for a certain individual, who is asserted as “Man” and “Full-
Professor” in the ABox, our engine further knows him typed of “Professor”,
“Faculty”, “Employee”, “Person” and “Chair” in 21.48 second.

We found that how to process intermediate results obtained from subgoals
becomes a bottleneck of performance, and the worse case reports “out of mem-
ory” if temporary results are carried out in memory. Inserting them into DBs
is considered, but it takes minutes since various indexes need to be established
and DB needs to write logs. Thus, we turn to declared global temporary tables
(without logging in DB2), in which inferred results are cached. At running time,



Ontology Query Answering on Databases 457

top-down and bottom-up procedures proceed, followed by inserting intermedi-
ate answers into temporary tables active in a session. SQL engines serve for the
final retrieval, concerning unions of conjunction queries on arbitral RDF triples,
from temporary tables (filled by inferred results) together with other physical
DB tables.

7 Conclusions

On the Semantic Web, SPARQL is for query answering in the RDF community.
An OWL ontology is RDF-based, adopting DL as its logical foundation. Given a
DL KB Σ, by introducing integrity constraints inspired by MKNF-DL [10], we
present its logically equivalent version, namely the DL2DB KB Σ′, in the sense
of query answering. Meanwhile, an inference system, the DL2DB system Γ w.r.t.
Σ, takes effect, while preserving sound and complete with Σ′ for non-epistemic
queries. The appearance of a Datalog program moves Γ into practice, getting
SPARQL queries solved.

Our proposal, to some extent, is not beyond DLP, where DLP has syntactical
expressive restrictions while DL2DB has semantical integrity constraints. We still
believe this paper, in an epistemic perspective, generalizes those using rules to
perform OWL reasoning. As a preliminary implementation, an engine, coupled
with a scalable OWL storage (e.g. Minerva [29] but not committing its ABox
inferences), is developed. Answers to SPARQL queries are received in seconds
on a data set of a medium size. A better performance is expected by using
more optimization techniques from existing Datalog engines (e.g. [21]) and other
Semantic Web applications (e.g. [22]).

References

1. The XSB System Version 2.7.1 Volume 1: Programmer’s Manual.
2. Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter

Patel-Schneider. The Description Logic Handbook: Theory, Implementation, and
Applications. Cambridge University Press, 2003.

3. François Bancilhon, David Maier, Yehoshua Sagiv, and Jeffrey D. Ullman. Magic
Sets and Other Strange Ways to Implement Logic Programs. In Proceedings of the
5th ACM Symposium on Principles of Database Systems, pages 1–15, 1986.

4. Sean Bechhofer, Ian Horrocks, and Daniele Turi. The OWL Instance Store: System
Description. In Proceedings of CADE-20, LNCS 3632, pages 177–181, 2005.

5. Francois Bry, Norbert Eisinger, Heribert Schutz, and Sunna Torge. SIC: Satisfi-
ability Checking for Integrity Constraints. In Proceeding of Deductive Databases
and Logic Programming, pages 25–36, 1998.

6. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini,
and Riccardo Rosati. DL-Lite: Tractable Description Logics for Ontologies. In
Proc. of the 20th Nat. Conf. on Artificial Intelligence, pages 602–607, 2005.

7. Evgeny Dantsin, Thomas Eiter, Georg Gottlob, and Andrei Voronkov. Complexity
and Expressive Power of Logic Programming. ACM Computing Surveys, 33(3):374–
425, 2001.



458 J. Mei, L. Ma, and Y. Pan

8. Jos de Bruijn, Thomas Eiter, Axel Polleres, and Hans Tompits. On Representa-
tional Issues About Combinations of Classical Theories with Nonmonotonic Rules.
In Proceedings of KSEM, LNCS 4092, pages 1–22, 2006.

9. Jos de Bruijn, Axel Polleres, Rubén Lara, and Dieter Fensel. OWL DL vs. OWL
Flight: Conceptual Modeling and Reasoning on the Semantic Web. In Proceedings
of the 14th International World Wide Web Conference, Chiba, Japan, 2005. ACM.

10. Francesco M. Donini, Daniele Nardi, and Riccardo Rosati. Description Logics of
Minimal Knowledge and Negation as Failure. ACM Transactions on Computational
Logic, 3(2):177–225, 2002.

11. Thomas Eiter, Giovambattista Ianni, Roman Schindlauer, and Hans Tompits. Ef-
fective Integration of Declarative Rules with External Evaluations for Semantic-
Web Reasoning. In Proceedings of ESWC, LNCS 4011, pages 273–287, 2006.

12. Benjamin N. Grosof, Ian Horrocks, Raphael Volz, and Stefan Decker. Description
Logic Programs: Combining Logic Programs with Description Logic. In Proceedings
of the 12th International World Wide Web Conference, pages 48–57. ACM, 2003.

13. Ian Horrocks, Ulrike Sattler, and Stephan Tobies. A Description Logic with Tran-
sitive and Converse Roles, Role Hierarchies and Qualifying Number Restrictions.
LTCS-Report 99-08, RWTH Aachen, Germany, 1999.

14. Ian Horrocks and Sergio Tessaris. Querying the Semantic Web: a Formal Approach.
In Proceedings of ISWC, LNCS 2342, pages 177–191, 2002.

15. Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov. OWLIM: A Pragmatic
Semantic Repository for OWL. In Proceeding of International Workshop on WISE,
LNCS 3807, pages 182–192, 2005.

16. Li Ma, Yang Yang, Zhaomin Qiu, Guotong Xie, Yue Pan, and ShengPing Liu.
Towards A Complete OWL Ontology Benchmark. In Proceedings of ESWC, LNCS
4011, pages 124–139, 2006.

17. Jing Mei, Elena Paslaru Bontas, and Zuoquan Lin. OWL2Jess: A Transformational
Implementation of the OWL Semantics. In Proceedings of International Workshops
on ISPA, LNCS 3759, pages 599–608, 2005.

18. Boris Motik and Riccardo Rosati. Closing Semantic Web Ontologies. Technical
report, University of Karlsruhe, May 2006. http://kaon2.semanticweb.org/.

19. Boris Motik, Ulrike Sattler, and Rudi Studer. Query Answering for OWL-DL with
Rules. Journal of Web Semantics, 3(1):41–60, 2005.

20. Zhengxiang Pan and Jeff Heflin. DLDB: Extending Relational Databases to Sup-
port Semantic Web Queries. In Practical and Scalable Semantic Systems, 2003.

21. Kotagiri Ramamohanarao and James Harland. An introduction to deductive data-
base languages and systems. The VLDB Journal, 3(2):107–122, 1994.

22. Edna Ruckhaus, Eduardo Ruiz, and Maria-Esther Vidal. Query Evaluation and
Optimization in the Semantic Web. In Proc. of ALPSWS, 2006.

23. Terrance Swift. Deduction in Ontologies via ASP. In Proceedings of Logic Pro-
gramming and Nonmonotonic Reasoning, LNCS 2923, 2004.

24. W3C. OWL: Web Ontology Language. http://www.w3.org/TR/owl-absyn/.
25. W3C. Resource Description Framework (RDF): Concepts and Abstract Syntax.

http://www.w3.org/TR/rdf-concepts/.
26. W3C. Rule Interchange Format WG. http://www.w3.org/2005/rules/wg.
27. W3C. SPARQL Query Language. http://www.w3.org/TR/rdf-sparql-query/.
28. W3C. SWRL: A Semantic Web Rule Language Combining OWL and RuleML.

http://www.w3.org/Submission/SWRL/.
29. Jian Zhou, Li Ma, Qiaoling Liu, Lei Zhang, Yong Yu, and Yue Pan. Minerva: A

Scalable OWL Ontology Storage and Inference System. In Proceedings of Asia
Semantic Web Conference, To appear, 2006.



Formal Model for Ontology Mapping Creation�

Adrian Mocan, Emilia Cimpian, and Mick Kerrigan

Digital Enterprise Research Institute, University of Innsbruck, Austria
{adrian.mocan, emilia.cimpian, mick.kerrigan}@deri.org

Abstract. In a semantic environment data is described by ontologies
and heterogeneity problems have to be solved at the ontological level.
This means that alignments between ontologies have to be created, most
probably during design-time, and used in various run-time processes.
Such alignments describe a set of mappings between the source and tar-
get ontologies, where the mappings show how instance data from one
ontology can be expressed in terms of another ontology. We propose a
formal model for mapping creation. Starting from this model we explore
how such a model maps onto a design-time graphical tool that can be
used in creating alignments between ontologies. We also investigate how
such a model helps in expressing the mappings in a logical language,
based on the semantic relationships identified using the graphical tool.

1 Introduction

Ontology mapping is becoming a crucial aspect in solving heterogeneity problems
between semantically described data. The benefits of using ontologies, especially
in heterogenous environments where more than one ontology is used, can only be
realized if this process is effective. The trend is to provide graphical tools capable
of creating alignments during design-time in a (semi-)automatic manner [2,10,9].
These alignments consist of mapping rules, frequently described as statements
in a logical language. One of the main challenges is to fully isolate the domain
expert (who is indispensable if 100% accuracy is required) from the burdens of
logics using a graphical tool, and in the same time to be able to create complex,
complete and correct mappings between the ontologies.

It is absolutely necessary to formally describe the mapping creation process
and to link it with the instruments available in a graphical tool and with a
mapping representation formalism that can be used later during run-time. This
allows the actions performed by the user to be captured in a meaningful way
with respect to the visualized ontology structure and to associate the results
of these actions (mappings) with concrete statements in a mapping language
(mapping rules).

� Work funded by the European Commission under the projects ASG, DIP, enIRaF,
InfraWebs, Knowledge Web, Musing, Salero, SEKT, Seemp, SemanticGOV, Super,
SWING and TripCom; by Science Foundation Ireland under the DERI-Ĺıon Grant
No.SFI/02/CE1/I13; by the FFG (Österreichische Forschungsfrderungsgeselleschaft
mbH) under the projects Grisino, RW2, SemNetMan, SeNSE, TSC, OnTourism.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 459–472, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



460 A. Mocan, E. Cimpian, and M. Kerrigan

The document structure is as follows: the next section presents the context and
motivation for the work. Section 3 introduces the model we propose expressed
using First-Order Logic [4]. Section 4 describes how this model can be applied to
WSMO [3] ontologies, while Section 5 presents the creation of mapping rules; the
prototype that implements and applies the proposed formal model is described
in Section 6. Following, related work and conclusions are presented.

2 Context and Motivation

The work described in this paper has been carried out in the Web Service Execu-
tion Environment (WSMX) working group, whose scope is to build a framework
that enables discovery, selection, mediation, invocation and interoperation of
Semantic Web Services [6]. Web Services are semantically described using on-
tologies, but as they are generally developed in isolation, heterogeneity problems
appear between the underlying ontologies. Without resolving these problems the
communication (data exchanged) between Web Services cannot take place. The
data mediation process in WSMX includes two phases: a design-time and a run-
time phase. The mismatches between the ontologies are resolved at design-time,
while these findings are used at run-time to transform the data passing through
the system. The run-time phase can be completely automated, while the design-
time phase remains semi-automatic, requiring the inputs of a domain expert.

For the design-time a semi-automatic ontology mapping tool was developed
that allows the user to create alignments between ontologies and to make these
alignments available for the run-time process. There has been much research
in the area of graphical mapping tools, e.g. [9,10], however we believe there
are many challenges still to be addressed. In particular, our focus has been on
defining strategies that hide the burden of logical languages, that are generally
used to express ontology alignments, from the domain expert. The mapping
process must remain simple to use but simultaneously allow the creation of
complex mappings between two ontologies.

Table 1. Ontology Fragment

concept person
name ofType xsd:string
age ofType xsd:integer
hasGender ofType gender
hasChild ofType person
marriedTo ofType person

concept gender
value ofType xsd:string

instance male memberOf gender
value hasValue "male"

instance female memberOf gender
value hasValue "female"

As described in [8], we noticed that the graphical point of view adopted to
visualize the source and target ontologies makes it easier to identify certain types
of mappings. The ontology fragment in Table 1 can be visualized using differ-
ent viewpoints by shifting the focus from one ontology element to another (see
Table 2). We call such a viewpoint a perspective and argue that only by switching



Formal Model for Ontology Mapping Creation 461

between combinations of these perspectives on the source and target ontologies,
can certain types of mappings be created using only one simple operation, map,
combined with mechanisms for ontology traversal and contextualized visualiza-
tion strategies.

A formal model that describes the general principles of the perspectives allows
a better understanding of the human user actions in the graphical tool and
of the effects of these actions on the ontology alignment (i.e. mapping rules)
that is being created. This model defines the main principles that support the
graphical instruments (e.g. perspectives) and how they fit with the underlying
logical mechanism (e.g. decomposition, context updates). The same model is also
used to describe how the inputs placed through these graphical instruments by
the domain expert effects the generated mappings. Having this formal model as
a link between the graphical elements and the mappings, defines precisely the
process of hiding from the domain expert the complexity of the underlying logical
languages; it also allows some of the mapping properties such as (in)completeness
or (in)consistency to be reflected back into the graphical tool. Additionally, such
a model allows experts to become more familiar with the tools and to create
extensions that are more suited to capturing certain types of mismatches.

Table 2. PartOf, InstanceOf and RelatedBy Perspectives

• string
• integer
• person

� name → string
� age → integer
� hasGender → gender
� hasChild → person�

marriedTo → person
• gender�

value → string

• string
• integer
• person

� hasGender → male:gender�
hasGender → female:gender

• gender

• name
� hasDomain → person�

hasRange → string
• hasGender

� hasDomain → person�
hasRange → gender

• marriedTo
� hasDomain → person�

hasRange → person
...
• value

� hasDomain → gender�
hasRange → string

3 A Model for Mapping Creation

This section defines a model to be used in the creation of mappings between
ontologies. The roles that appear in the graphical user interface, and which will
be later associated with ontological entities, are defined here. First-Order Logic
[4] is used as a formalism to represent this model.

3.1 Perspectives

In our approach the ontologies are presented to the user using perspectives. A
perspective can be seen as a vertical projection of the ontology and it will be
used by the domain expert to visualize and browse the ontologies and to define
mappings. We can define several perspectives on an ontology as presented in
Section 4, all of them characterized by a set of common elements.



462 A. Mocan, E. Cimpian, and M. Kerrigan

Table 3. Types of items for the perspectives in Table 2

PartOf InstanceOf RelatedBy
ci person, gender person name, hasGender, marriedTo, value
pi string, integer string, integer, gender -
di name, age, hasChild, marriedTo hasGender hasDomain, hasRange
si string, integer, gender, person male, female person, string, gender

We identify four types of such elements (items): compound, primitive, descrip-
tion and successor. We use the following unary relations to denote each of them,
ci(x) where x is a compound item, pi(x) where x is a primitive item, di(x) where
x is a description item and si(x) where x is a successor item. Both primitive and
compound items represent first-class citizens of a perspective while description
and successor items link the compound and the primitive items in a graph-based
structure. In addition we define a set of general relationships between these items
that hold for all perspectives:

– Each compound item is described by at least one description item:

∀x.(ci(x) <=> ∃y.(di(y) ∧ describes(y, x))) (1)

where describes is a binary relation that holds between a compound item
and one of its description items. The participants in this relation are always
a compound item and a description item:

∀x.∀y.(describes(x,y) => ci(y) ∧ di(x)) (2)

– Each description item points to at least one successor item:

∀x.(di(x) <=> ∃y.(si(y) ∧ successor(y, x))) (3)

where successor is a binary relation that holds between a description item
and one of its successor items. The participants in this relation are always a
description item and a successor item:

∀x.∀y.(successor(x,y) => di(y) ∧ si(x)) (4)

– The successor items are either primitive or compound items:

∀x.(si(x) => pi(x) ∨ ci(x))) (5)

– The compound, primitive and description items are mutually exclusive for
the same perspective:

∀x.(¬((ci(x) ∧ pi(x)) ∨ (ci(x) ∧ di(x)) ∨ (di(x) ∧ pi(x)))) (6)

This is a set of minimal descriptions for our model, but by inference other useful
consequences can be inferred. For example, note that sentences 1 and 6 im-
ply that primitive items have no description items. Table 4 shows examples of
relationships for the perspectives in Table 2.

As a consequence we can define a perspective as being a set φ = {x1, x2, ..., xn}
for which we have:

∀x.∀φ.(member1(x, φ) => pi(x) ∨ ci(x) ∨ di(x)) (7)

1 member is a relationships expressing the membership of an element to a list.



Formal Model for Ontology Mapping Creation 463

Table 4. Relations between items in the perspectives depicted in Table 2

successor(·, ·) describes(·, ·)
PartOf (string, name), (gender, hasGender) (name, person), (hasGender, person)

(person, marriedTo) (marriedTo, person)
InstanceOf (male, hasGender), (female, hasGender) (hasGender, person)
RelatedBy (person, hasDomain), (string, hasRange) (hasDomain, name), (hasRange, name)

(gender, hasRange) (hasRange, hasGender)

In addition, for any perspective the following sentences hold:

∀x.∀y.∀φ.(describes(y,x) => (member(x, φ) <=> member(y, φ))) (8a)

∀x.∀y.∀φ.(successor(y,x) => (member(x, φ) <=> member(y, φ))) (8b)

Sentences 8a and 8b together with 2 and 4 state that the description of a com-
pound item appears in the perspective iff the compound item appears in the
perspective as well. Similarly, a successor of a description item appears in a
perspective iff the description item appears in the perspective too.

3.2 Contexts

Not all of the information modeled in the ontology is useful in all stages of the
mapping process. The previous section shows that a perspective represents only
a subset of an ontology, but we can go further and define the notion of context. A
context is a subset of a perspective that contains only those ontological entities,
from that perspective, relevant to a concrete operation. We can say that γφ is a
context of the perspective φ if:

∀x.(member(x, γφ) => member(x, φ)) (9)

For a context from formulas 8a and 8b only 8a holds, such that:

∀x.∀y.∀γφ.(describes(y, x) => (member(x, γφ) <=> member(y, γφ))) (10)

As a consequence we can say that all perspectives are contexts but not all con-
texts are perspectives.

A notion tightly related with contexts is the process of decomposition. A
context can be created from another context (this operation is called context
update) by applying decomposition on an item from a perspective or a context.
Let decomposition(x, φ) be a binary function which has as value a new context
obtained by decomposing x in respect with the context γφ. We can define the
following axioms:

∀x.∀y.∀γφ.(member(x, γφ) ∧ pi(x) =>

(member(y, decomposition(x, γφ)) <=> member(y, γφ))) (11)

∀x.∀y.∀γφ.(member(x, γφ) ∧ ci(x) =>

(member(y, decomposition(x, γφ)) <=> y = x ∨ describes(y, x))) (12)

∀x.∀y.∀z.∀γφ.(member(x, γφ) ∧ di(x) ∧ successor(z, x) ∧ (pi(z) ∨ (ci(z) ∧ member(z, γφ))) =>

(member(y, decomposition(x, γφ)) <=> member(y, γφ))) (13)

∀x.∀y.∀z.∀γφ.(member(x, γφ) ∧ di(x) ∧ successor(z, x) ∧ ci(z) ∧ ¬(member(z, γφ)) =>

(member(y, decomposition(x, γφ)) <=> member(y, decomposition(z, φ)))) (14)



464 A. Mocan, E. Cimpian, and M. Kerrigan

Intuitively, formula 11 specifies that the decomposition of a primitive concept
does not update the current context (the context remains unchanged). Also, de-
composition applied on a description item that has a primitive successor (formula
13) leaves the current context unchanged. The same formula also does not allow
the decomposition of those description items that have as successor a compound
item already contained by the current context (recursive structures).

Table 5 presents some examples of decompositions and context updates: each
column shows how the context changes by decomposing any of the marked items
in the top row. The decomposition can be applied simultaneously on multiple
items, and the result of decomposing each item is contributing to the new con-
text. Note as described over for column 1 no change occurs as all of the marked
items cannot trigger decomposition conforming to formulae 11 and 13.

Table 5. Decomposition and context updates

Original Context

• string

• integer

• person
� name → string

� age → integer

� hasGender → gender

� hasChild → person
�

marriedTo → person
• gender�

value → string

• string
• integer
• person

� name → string
� age → integer
� hasGender → gender
� hasChild → person�

marriedTo → person
• gender�

value → string

• string
• integer
• person

� name → string
� age → integer

� hasGender → gender

� hasChild → person�
marriedTo → person

• gender

�
value → string

New Context
• string
• integer
• person

� name → string
� age → integer
� hasGender → gender
� hasChild → person�

marriedTo → person
• gender�

value → string

• person
� name → string
� age → integer
� hasGender → gender
� hasChild → person�

marriedTo → person

• gender�
value → string

3.3 Mappings

To create mappings between ontologies, a source and target perspective is used
to represent the source and target ontologies. We refer to this approach as inter-
active mapping creation. It means that the mapping creation process relies upon
the domain expert, who has the role of choosing an item from the source perspec-
tive and one from the target perspective (or contexts) and explicitly marking
them as mapped items. We call this action map and using this the domain expert
states that there is a semantic relationship between the mapped items. Choos-
ing the right pair of items to be mapped is not necessarily a manual task: a
semi-automatic solution can offer suggestions that are eventually validated by
the domain expert [8].



Formal Model for Ontology Mapping Creation 465

We define a mapping context as a quadruple Mc =< φS , γφS , φT , γφT > where
φS and φT are the source and target perspectives associated to the source and
target ontologies. γφS and γφT are the current contexts derived out of the two
perspectives φS and φT . Initially, γφS ≡ φS and γφT ≡ φT .

We also define mapMc(x, y) the action of marking the two items x and y as
being semantically related with respect to the mapping context Mc. Thus, we
have the following axiom:

∀x.∀y.∀φS.∀φT .∀γφS
.∀γφT

mapMc(x, y) ∧ Mc =< φS , γφS
, φT , γφT

> ∧
((ci(x) ∨ pi(x)) ∧ (ci(y) ∨ pi(y))) ∨ (di(x) ∧ di(y)) =>

member(x, γφS
) ∧ member(y, γφT

) (15)

Formula 15 defines the allowed types of mapping. Thus we can have mappings
between primitive and/or compound items and between description items. As
described in [8] the set of the allowed mappings can be extended or restricted
by a particular, concrete perspective.

Each time a map action occurs the mapping context is updated; we denote the
updates using: Mc � Mc

′
meaning that at least one element of the quadruple

defining Mc has changed and the new mapping context is Mc
′
. The mapping

context updates occur as defined in axiom 16:

∀x.∀y.mapMc(x, y) ∧ Mc =< φS , γφS
, φT , γφT

> => (16)

Mc
′ =< φS , decomposition(x, γφS

), φT , decompositin(y, γφT
) > ∧Mc � Mc

′

There are cases when Mc and Mc′ are identical; such situations occur when
the source and target context remain unchanged, e.g. when creating mappings
between primitive items.

4 Grounding the Model to Ontologies

This section explores the way in which the model presented above can be applied
to a real ontological model and how we can use it to define concrete perspectives
that could be used to create meaningful mappings between ontologies. We first
introduce the main aspects of WSMO ontologies and a mechanism to link these
ontologies with our model and then we will present the three types of concrete
perspectives we identified as being useful in the mapping process.

The Web Service Modeling Ontology (WSMO) defines the main aspects re-
lated to Semantic Web Services: Ontologies, Web Services, Goals and Mediators
[3], from these only Ontologies are interesting in this work. We will focus only
on concepts, attributes and instances in this paper, however we intend to ad-
dress other ontological elements in the future. WSMO ontologies are expressed
using the Web Service Modeling Language (WSML) which is based on differ-
ent logical formalisms namely, Description Logics, First-Order Logic and Logic
Programming [5].

Table 1 presents an example of concepts and their attributes, and some in-
stances of these concepts. The concept person is modeled as having 5 attributes,



466 A. Mocan, E. Cimpian, and M. Kerrigan

each of them having a type (i.e. a range) that is either another concept or a
data type. For the concept gender there are two instances defined (i.e. male and
female) that have attributes pointing to values of the corresponding types.

4.1 PartOf Perspective

The PartOf perspective is the most common perspective that can be used to
display an ontology, focusing on the concepts, attributes and attributes’ types
hierarchies. To link this perspective with our model we define the unary relations
ciPartOf (x), piPartOf (x) and diPartOf (x) such that:

ci(x) iff ciP artOf (x) pi(x) iff piP artOf (x) di(x) iff diP artOf (x) (17)

ciPartOf (x), piPartOf (x) and diPartOf (x) have to be defined in the logical lan-
guage used to represent the ontologies to be aligned, in our case WSML2 as can
be seen in 18. In the PartOf perspective the role of compound items is taken
by those concepts that have at least one attribute - we call them compound con-
cepts. Naturally, the description items are in this case attributes, as stated in
19. Primitive items are data types or those concepts that have no attributes, as
expressed by axiom 20 where x subconceptOf true holds iff x is a concept and
naf stands for negation as failure. Finally we link the describes and successor
relations with the WSML ontologies in 21. The ontology fragment presented in
Table 1 can be visualized using the PartOf perspective as in Table 2.

axiom ciP artOf definedBy ciP artOf (x) equivalent exists ?y, ?z(?x[?y ofType ?z]) (18)
axiom diP artOf definedBy diPartOf (y) equivalent exists ?x, ?z(?x[?y ofType ?z]) (19)

axiom piP artOf definedBy piP artOf (x) :- ?x subconceptOf true and naf ciP artOf (x) (20)
describes(y, x) ∧ successor(z, y) iff ?x[?y ofType ?z] (21)

4.2 InstanceOf Perspective

The InstanceOf perspective can be used to create conditional mappings based
on predefined values and instances. To link this perspective with our model we
define ciInstanceOf (x), piInstanceOf (x) and diInstanceOf (y, w) such that:

ci(x) iff ciInstanceOf (x) pi(x) iff piInstanceOf (x) di(< y, w >) iff diInstanceOf (y, w) (22)

The description items are tuples < y, w > where y is an attribute matching the
above conditions and w is an instance member of y’s type explicitly defined in the
ontology or an anonymous id representing a potential instance of the y’s type. In
the same way as above, ciInstanceOf (x), piInstanceOf (x) and diInstanceOf (x) are
defined using WSML; also the describes and successor relations can be linked
with the WSML ontologies in a similar manner as presented in the previous
section. From space reasons, they are omitted from this paper. The fragment of
ontology presented in Table 1 can be visualized using the InstanceOf perspective
as in Table 2.
2 In WSML α[β ofType γ] is an atomic formulas called molecule; in here both α

and γ identifies concepts while β identifies an attribute and ’?’ is used to de-
note variables. An example of a molecule for the ontology fragment in Table 1 is
person[name ofType string].



Formal Model for Ontology Mapping Creation 467

4.3 RelatedBy Perspective

The RelatedBy perspective focuses on the attributes of the ontology, and de-
scribes them from their domain and type perspective.

ci(x) iff ciRelatedBy(x) pi(x) iff piRelatedBy(x) di(x) iff diRelatedBy(x) (23)

In the same way as above, ciRelatedBy(x), piRelatedBy(x) and diRelatedBy(x) are
defined using WSML; also the describes and successor relations can be linked
with the WSML ontologies in a similar manner as presented in Section 4.1.
From space reasons, they are omitted from this paper. The fragment of ontology
presented in Table 1 can be visualized using the RelatedBy perspective as in
Table 2.

5 Linking the Model to a Mapping Language

In this section we specify the allowed mappings for each of the perspectives
described in Section 4. We start from the following premise mapMc(xS , yT ) ∧
Mc =< φS , γφS , φT , δφT > which means that the elements xS and yT from
the source and target ontology, respectively, are to be mapped in the mapping
context Mc. In the following subsection we will discuss the situations that can
occur for a pair of perspectives (due to space reasons we address only those
cases when the source and target perspectives are of the same type). The types
of mapping that can be created will be analyzed with respect to the Abstract
Mapping Language proposed in [1], briefly described in 5.1.

5.1 Abstract Mapping Language

We chose to express the mappings in the abstract mapping language proposed in
[1] because it does not commit to any existing ontology representation language.
Later, a formal semantic has to be associated with it and to ground the mappings
to a concrete language (such a grounding can be found in [8]). We provide only
a brief listing of some of the abstract mapping language statements:

– classMapping - By using this statement, mappings between classes in the
source and the target ontologies are specified. Such a statement can be con-
ditioned by class conditions (attributeValueConditions, attribuiteTypeCondi-
tions, attributeOccurenceConditions).

– attributeMapping - Specifies mappings between attributes. Such statements
usually appear together with classMappings and can be conditioned by at-
tribute conditions (valueConditions, typeConditions).

– classAttributeMapping - It specifies mappings between a class and an at-
tribute (or the other way around) and it can be conditioned by both class
conditions and attribute conditions.

– instanceMapping - It states a mapping between two individuals, one from
the source and the other from the target.

In the next sections we illustrate how these mapping language statements are
generated during design time by using a particular combination of perspectives.



468 A. Mocan, E. Cimpian, and M. Kerrigan

5.2 PartOf to PartOf Mappings

When using the PartOf perspective to create mappings for both the source and
target ontologies we have the following allowed cases (derived from axiom 15):

− piPartOf (xS) ∧ piPartOf (xT ). In this case, the mapping will generate a
classMapping statement in the mapping language and leaves the mapping
context unchanged (axioms 11 and 16).

− ciPartOf (xS) ∧ ciPartOf (xT ). Generates a classMapping statement and up-
dates the context for the source and target perspectives (axioms 12 and 16).

− diPartOf (xS) ∧ diPartOf (xT ). In this case successor(yS , xS) ∧
successor(yT , xT ) holds and we can distinguish the following situations:
• piPartOf (yS) ∧ piPartOf(yT ). An attributeMapping is generated between

xS and xT followed by a classMapping between yS and yT . Conforming
to the axioms 13 and 16, the mapping context remains unchanged.

• ciPartOf (yS) ∧ ciPartOf(yT ). An attributeMapping is generated having as
participants xS and xT . The mapping context is updated conform to the
axioms 13, 14 and 16.

• piPartOf (yS) ∧ ciPartOf(yT ). Generates a classAttributeMapping between
zS and the xT , where describes(xS , zS). The new mapping context keeps
the source context unchanged while decomposing the target context over
yT .

• ciPartOf (yS) ∧ piPartOf(yT ). This case is symmetric with the one pre-
sented above and it generates a classAttributeMapping between xS and
the zT where describes(xT , zT ).

− ciPartOf (xS) ∧ piPartOf (xT ). It is not allowed for this combination of per-
spectives. To take an example, such a case would involve a mapping between
ciPartOf (person) and piPartOf (string) where describes(hasName, person)∧
successor(string, hasName), which does not have any semantic meaning.
A correct solution would be a mapping between ciPartOf (person) and
ciPartOf (uT ) such as ∃vT .(describes(vT , uT ) ∧ successor(string, vT ).

− piPartOf (xS) ∧ ciPartOf (xT ). The same explanation applies as above.

5.3 InstanceOf to InstanceOf Mappings

When using the InstanceOf perspectives we can create similar mappings to those
created with the PartOf perspectives, the difference being that conditions are
added to the mappings, and by this, the mappings hold only if the conditions are
fulfilled. The mappings between two primitive items or between two compound
items in the InstanceOf perspective are identical with the ones from the PartOf
perspective. For the remaining cases we have:

− diInstanceOf (xS , wS) ∧ diInstanceOf (xT , wT ). In this case, we have
successor(< xS , wS >, yS) ∧ successor(< xT , wT >, yT ) and we can dis-
tinguish the following situations:
• piInstanceOf (yS) ∧ piInstanceOf (yT ). An attributeMapping is generated be-

tween xS and xT conditioned by two attributeValueConditions imposing



Formal Model for Ontology Mapping Creation 469

the presence of wS and wT in the mediated data. Also a classMapping
between yS and yT is generated. Conforming to the axioms 13 and 16
the mapping context remains unchanged.

• ciInstanceOf (yS) ∧ ciInstanceOf (yT ). An attributeMapping is generated
having as participants xS and xT conditioned by two typeConditions.
The mapping context is updated conforming to the axioms 13, 14 and 16.

• piInstanceOf (yS) ∧ ciInstanceOf (yT ). This case generates a classAttribut-
eMapping between zS and the xT , where describes(xS , zS). A typeCon-
dition is added for xT attribute. The new mapping context keeps the
source context unchanged while decomposing the target context over yT .

• ciInstanceOf (yS) ∧ piInstanceOf (yT ). This case is symmetric with the one
presented above and it generates a classAttributeMapping between xS

and the zT . where describes(xT , zT ). A typeCondition is added for xS .
− diInstanceOf (xS , wS) ∧ piInstanceOf (xT ). InstanceOf extends the set of allowed

mappings as defined in 15. For zS such that describes(< xS , wS >, zS), a
classMapping between zS and xT is generated, conditioned by an attribute-
ValueCondition on the attribute xS and value wS .

− piInstanceOf (xS) ∧ diInstanceOf (xT , wT ). Similar with the above case.
− ciInstanceOf (xS) ∧ piInstanceOf (xT ). It is not directly allowed for this combi-

nation of perspectives, but the intended mapping can be created as described
by previous case.

− piInstanceOf (xS) ∧ ciInstanceOf (xT ). The same explanation applies as above.

5.4 RelatedBy to RelatedBy Mappings

In the RelatedBy perspective attributes are seen as root elements, having only
two descriptions: their domain and their type. We identify the following cases:

− piRelatedBy(xS) ∧ piRelatedBy(xT ). This case does not appear as we do not
have primitive items in the RelatedBy perspective.

− ciRelatedBy(xS) ∧ ciRelatedBy(xT ). The mapping will generate an attribute-
Mapping statement in the mapping language having as participants xS

and xT .
− diRelatedBy(xS) ∧ diRelatedBy(xT ). The source and the target perspectives are

changed from RelatedBy to PartOf and the context is obtained by decompos-
ing the perspectives over zS and zT , where successor(zS , xS) ∧
successor(zT , xT )

5.5 Mapping Examples

Table 6 shows examples of mappings in the abstract mapping language and
how these mappings look like when grounded to WSML when mapping the
person concept in the the source ontology with human (and man) in the target
ontology. When evaluated, the WSML mapping rules will generate instances
of man if the gender condition is met, or of human otherwise. The construct
mediated(X, C) represents the identifier of the newly created target instance,
where X is the source instance that is transformed, and C is the target concept
we map to.



470 A. Mocan, E. Cimpian, and M. Kerrigan

Table 6. Decomposition and context updates

Abstract Mapping Language Mapping Rules in WSML
Mapping(o1#persono2#man

classMapping(one-way
person man))

Mapping(o1#ageo2#age
attributeMapping(one-way

[(person)age=>integer]
[(human)age=>integer]))

Mapping(o1#nameo2#name
attributeMapping(one-way

[(person)name => string]
[(human)name => string]))

Mapping(o1#hasGendero2#man
attributeClassMapping(one-way

[(person)hasGender => gender] man))
valueCondition(

[(person)hasGender => gender] male)

axiom mapping001 definedBy
mediated(X_1, o2#man) memberOf o2#man:-

X_1 memberOf o1#person.
axiom mapping001 definedBy

mediated(X_2, o2#human) memberOf o2#human:-
X_2 memberOf o1#person.

axiom mapping005 definedBy
mediated(X_5, o2#human)[o2#age hasValue Y_6]:-

X_5[o1#age hasValue Y_6]:o1#person.
axiom mapping006 definedBy

mediated(X_7, o2#human)[o2#name hasValue Y_8]:-
X_7[o1#name hasValue Y_8]:o1#person.

axiom mapping007 definedBy
mediated(Y_11, o2#man)[A_9 hasValue AR_10]:-

mediated(Y_11, o2#human)[A_9 hasValue AR_10 ],
Y_11[o1#hasGender hasValue o1#male].

6 Implementation and Prototype

The ideas and methods presented in this paper are used in the mediation com-
ponent of the WSMX architecture. The WSMX Data Mediation component is
designed to support data transformation, which means to transform the source
ontology instances entering the system into instances expressed in terms of the
target ontology. As described above, in order to make this possible the data
mediation process consists of a design-time and a run-time phase. Each of these
two phases has its own implementations: the Ontology Mapping Tool and the
Run-time Data Mediator.

The Ontology Mapping Tool is implemented as an Eclipse plug-in, part of
the Web Service Modeling Toolkit (WSMT)3 [7] an integrated environment for
ontology creation, visualization and mapping. The Ontology Mapping Tool is
currently compatible with WSMO ontologies (but by providing the appropriate
wrappers different ontology languages could be supported); it offers different
ways of browsing the ontologies using perspectives and allows the domain expert
to create mappings between two ontologies (source and target) and to store them
in a persistent mapping storage. Currently only the PartOf and InstanceOf
perspectives are implemented while decomposition and context principles are
fully supported. These principles, together with the suggestion mechanisms make
the prototype a truly semi-automatic ontology mapping tool.

The Run-time Data Mediator plays the role of the data mediation component
in WSMX (available together with the WSMX system4. It uses the abstract
mappings created during design-time, grounds them to WSML and uses a rea-
soner to evaluate them against the incoming source instances. The storage used
is a relational data base. The Run-time Data Mediator is also available as a
stand alone application.

3 Open Source Project available at http://sourceforge.net/projects/wsmt
4 Open Source Project available at http://sourceforge.net/projects/wsmx



Formal Model for Ontology Mapping Creation 471

7 Related Work

MAFRA [10] proposes a Semantic Bridge Ontology to represent the mappings.
This ontology has as central concept, the so called ”Semantic bridge” which
is the equivalent of our mapping language statements. The main difference to
our approach is that MAFRA does not define any explicit relation between the
graphical representation of the ontologies in their tool and the generation of
these Semantic Bridges or between the user’s actions and the particular bridges
to be used. The formal abstract model we propose links the graphical elements
of the user interface with the mapping representation language, ensuring a clear
correspondence between user actions and the generated mappings.

PROMPT[9] is an interactive and semi-automatic algorithm for ontology
merging. The user is asked to apply a set of given operations to a set of possible
matches, based on which, the algorithm recomputes the set of suggestions and
signals the potential inconsistencies. The fundamental difference in our approach
is that instead of defining several operations we have only one operation (map)
which will take two ontology elements as arguments, and multiple perspectives to
graphically represent the ontologies in the user interface. Based on the particular
types of perspectives used and on the roles of the map action arguments in that
perspective the tool is able to determine the type of mapping to be created. Such
that, by switching between perspectives, different ontology mismatches can be
addressed by using a single map action. An interesting aspect is that PROMPT
defines the term local context which perfectly matches our context definition:
the set of descriptions attached to an item together with the items these de-
scriptions point to. While PROMPT uses the local context in decision-making
when computing the suggestions, we also use the context when displaying the
ontology.

Instead of allowing browsing on multiple hierarchical layers, as PROMPT and
MAFRA do, we adopt a context based browsing that allows the identification of
the domain experts intentions and generates mappings.

8 Conclusion and Further Work

In this paper we define a formal model for mapping creation. This model sits
between the graphical elements used to represent the ontologies and the result of
the mapping process, i.e. the ontology alignment. By defining both the graphical
instruments and the mapping creation strategies in terms of this model we assure
a direct and complete correspondence between human user action and the effect
on the generated ontology alignment. In addition we propose a set of different
graphical perspectives that can be linked with the same model, each of them
offering a different viewpoint on the displayed ontology. By combining this types
of perspectives different types of mismatches can be addressed in an identical
way from one pair of views to the other.

As future work, we plan to focus in identifying more relevant perspectives and
to investigate the possible combination of these perspectives in respect with the



472 A. Mocan, E. Cimpian, and M. Kerrigan

types of mappings to be created. These would lead in the end to defining a set
of mapping patterns in terms of our model, which will significantly improve the
mappings finding mechanism. Another point to be investigated is the mapping
with multiple participants from the source and from the target ontology. In this
paper we investigated only the cases when exactly one element from the source
and exactly one element from the target can be selected at a time to be mapped.
We plan to also address transformation functions from the perspective of our
model. Such transformation functions (e.g. string concatenation) would allow
the creation of new target data based on a combination of given source data.

References

1. J. de Bruijn, D. Foxvog, and K. Zimmerman. Ontology mediation patterns library.
SEKT Project Deliverable D4.3.1, Digital Enterprise Research Institute, University
of Innsbruck, 2004.

2. M. Ehrig, S. Staab, and Y. Sure. Bootstrapping ontology alignment methods with
APFEL. Fourth International Semantic Web Conference (ISWC-2005), 2005.

3. C. Feier, A. Polleres, R. Dumitru, J. Domingue, M. Stollberg, and D. Fensel. To-
wards intelligent web services: The web service modeling ontology (WSMO). In-
ternational Conference on Intelligent Computing (ICIC), 2005.

4. M. R. Genesereth and N. J. Nilson. Logical Foundations of Artificial Inteligence.
Morgan-Kaufmann, 1988.

5. A. Polleres H. Lausen, J. de Bruijn and D. Fensel. WSML - A Language Framework
for Semantic Web Services. W3C Workshop on Rule Languages for Interoperability,
April 2005.

6. A. Haller, E. Cimpian, A. Mocan, E. Oren, and C. Bussler. WSMX - A Semantic
Service-Oriented Architecture. International Conference on Web Services (ICWS
2005), July 2005.

7. M. Kerrigan. WSMOViz: An Ontology Visualization Approach for WSMO. 10th
International Conference on Information Visualization, 2006.

8. A. Mocan and E. Cimpian. Mapping creation using a view based approach. 1st
International Workshop on Mediation in Semantic Web Services (Mediate 2005),
December 2005.

9. N.F. Noy and M. A. Munsen. The PROMPT suite: Interactive tools for ontology
merging and mapping. International Journal of Human-Computer Studies, 6(59),
2003.

10. N. Silva and J. Rocha. Semantic web complex ontology mapping. Proceedings of
the IEEE Web Intelligence (WI2003), page 82, 2003.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 473 – 486, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Semantic Context-Aware Access Control Framework 
for Secure Collaborations in Pervasive Computing 

Environments 

Alessandra Toninelli1, Rebecca Montanari1, Lalana Kagal2, and Ora Lassila3 

1 Dipartimento di Elettronica, Informatica e Sistemistica 
Università di Bologna 

Viale Risorgimento, 2 - 40136 Bologna - Italy 
{atoninelli, rmontanari}@deis.unibo.it 

2 MIT CSAIL 
32 Vassar Street, Cambridge, MA 02139, USA 

lkagal@csail.mit.edu 
3 Nokia Research Center Cambridge 

3 Cambridge Center, Cambridge, MA 02142, USA 
ora.lassila@nokia.com 

Abstract. Wireless connectivity and widespread diffusion of portable devices 
offer novel opportunities for users to share resources anywhere and anytime, 
and to form ad-hoc coalitions. Resource access control is crucial to leverage 
these ad-hoc collaborations. In pervasive scenarios, however, collaborating 
entities cannot be predetermined and resource availability frequently varies, 
even unpredictably, due to user/device mobility, thus complicating resource 
access control. Access control policies cannot be defined based on entity’s 
identities/roles, as in traditional access control solutions, or be specified a priori 
to face any operative run time condition, but require continuous adjustments to 
adapt to the current situation. To address these issues, this paper advocates the 
adoption of novel access control policy models that follow two main design 
guidelines: context-awareness to control resource access on the basis of context 
visibility and to enable dynamic adaptation of policies depending on context 
changes, and semantic technologies for context/policy specification to allow 
high-level description and reasoning about context and policies. The paper also 
describes the design of a semantic context-aware policy model that adopts 
ontologies and rules to express context and context-aware access control 
policies and supports policy adaptation.   

1   Introduction 

Telecommunication systems and the Internet are converging towards an integrated 
pervasive scenario that permits users to access services anytime and anywhere even 
when they are on the move. Recent technological advances in both computational 
capabilities and connectivity of portable devices are also enabling mobile users in 
physical proximity of each other to form ad-hoc networks for spontaneous coalitions 
and to engage in opportunistic and temporary resource sharing without relying on the 
availability of a fixed network infrastructure.   



474 A. Toninelli et al. 

However, these ad-hoc collaborations impose several challenges to the secure 
retrieval of and operation on distributed resources, undermining several assumptions 
of traditional access control solutions. These solutions usually assign permissions to 
principals depending on their identity/role. In the new pervasive scenario, however, 
users typically share services with unknown entities and, more importantly, with 
entities whose identity may not be sufficiently trustworthy. In addition, since 
spontaneous collaborations among users are typically established in an impromptu 
and opportunistic fashion, it may not be possible to rely on formal collaboration 
agreements to decide who can access which resources and how, thus excluding the 
possibility to exploit access control policies defined on a contractual basis as in 
medium or long-term inter-organizational coalitions. Access control in spontaneous 
coalitions is further complicated by the high dynamicity in resource availability. Each 
collaborating entity may alternatively play the role of either a service client or 
provider or both, depending on dynamic conditions and the current status of 
interaction. When playing the service provider role, an entity may introduce new 
services into the environment, thus changing the set of available resources. Variations 
in resource availability occur also because of the transience of ad-hoc coalitions 
where entities -resource providers- leave and/or enter a coalition, unpredictably, at 
any time. 

Appropriate access control models are needed to enable resource sharing and 
access in spontaneous coalition scenarios. It is crucial that the definition and 
enforcement of access control policies take into account the heterogeneity  
and dynamicity of the environment in terms of available services, computing devices, 
and user characteristics. To address these issues, this paper advocates a paradigm shift 
from subject-centric access control models to context-centric ones. Hereinafter, at a 
high level, the term “context” is defined as any information that is useful for 
characterizing the state or the activity of an entity or the world in which this entity 
operates [1]. Differently from subject-centric solutions where context is an optional 
element of policy definition that is simply used to restrict the applicability scope of 
the permissions assigned to the subject, in context-centric solutions, context is the 
first-class principle that explicitly guides both policy specification and enforcement 
process and it is not possible to define a policy without the explicit specification of 
the context that makes policy valid. We also claim that context-centric access control 
solutions need to adopt ontological technologies as key building blocks for supporting 
expressive policy modeling and reasoning. Semantically-rich policy representations 
permit description of policies at different levels of abstraction and support reasoning 
about both the structure and properties of the elements that constitute a pervasive 
system, i.e., the context and the management policies, thus enabling policy analysis, 
conflict detection, and harmonization. 

This paper describes an implementation of these ideas in a policy model that 
exploits context-awareness and ontological technologies for the specification and the 
evaluation of access control policies. In our access control framework the role of 
context exploitation for controlling access control is twofold. Drawing inspiration 
from the RBAC model that exploits the concept of role as a mechanism for grouping 
subjects based on their properties [2], we state that, the same as with role, the concept 
of context can provide a level of indirection between entities requesting resource 
access and their permitted set of actions on requested resources. Instead of assigning 



 A Semantic Context-Aware Access Control Framework for Secure Collaborations 475 

permissions directly to the subjects and defining the contexts in which these 
permissions should be considered valid and applicable, a system administrator defines 
for each resource the contextual conditions that enable one to operate on it. When an 
entity operates in a specific context, she automatically acquires the ability to perform 
the set of actions permitted in the current context.  

In addition, we consider context crucial for enabling policy adaptation. In 
pervasive environments the conditions that characterize interactions between users 
and resources may be largely unpredictable. Consequently, policies cannot all be 
specified a priori to face any operative run-time situations, but may require dynamic 
adjustments to be able to control access to resources. We use the term “policy 
adaptation” to describe the ability of the policy-based management system to adjust 
policy specifications and evaluation mechanisms in order to enable their enforcement 
in different, possibly unforeseen situations. In this scope, it is crucial to be able to 
represent the various operative conditions under which policies should be applied, i.e., 
the context, and to define the expected behaviour of the policy framework on the basis 
of such context variations. 

Another fundamental design guideline of our access control model is the adoption 
of an ontological approach using Description Logic (DL) to context/policy 
specification to enable context/policy classification, comparison, and static conflict 
detection. We also adopt a rule-based approach taking the perspective of Logic 
Programming (LP) to encode rules that allows policy makers to specify policies based 
on context variables whose value is unknown at policy definition time, thus enabling 
the efficient enforcement of policies defined over dynamically determined context 
values. Let us note that our work does not aim at providing a unifying logical 
framework for DL and LP, which have well-known crucial logical mismatches, but 
rather at combining the logical results obtained by means of their respective reasoning 
features. 

The paper is organized as follows. Section 2 outlines some crucial requirements for 
the definition of access control policies in dynamic scenarios like inter-organizational 
spontaneous coalitions. Section 3 presents our proposed semantic context-aware 
policy model, while Section 4 compares it with related state-of-the art access control 
solutions. Final remarks and future activities follow in Section 5. 

2   Policy Requirements for Spontaneous Coalition Scenarios 

To point out some unique challenges in dynamic mobile environments, we start by 
considering the spontaneous coalition scenario of a meeting occurring during a 
conference among members of different universities working on a common project. In 
the remainder of the paper, we use this meeting scenario as a running example to 
illustrate the main access control challenges and our solution guidelines. In this 
meeting scenario, each participant may wish to grant access to her resources to other 
participants, in order to enable cooperation and knowledge sharing. Access to 
personal resources must be regulated in order to protect them from malicious access 
or misuse. However, the specification of adequate access control policies in the 
depicted scenario presents us with several challenges. For example, the complete list  
 



476 A. Toninelli et al. 

of participants may not be known in advance or it may be modified just before the 
meeting starts or even during a meeting, thus making it infeasible to define access 
control policies based on the requestor’s identity.  

Even the role-based approach seems cumbersome in controlling access to cross-
organizational resources, since role definitions and hierarchies might vary across 
parties, thus making their interpretation difficult outside the specific boundaries of 
each organization. A possible solution might be the creation of a common ad-hoc role 
for all meeting participants, to which each participant delegates her roles, so that 
others are able to access her resources [3]. However, since roles required to access 
resources have to be separately assigned by each participant to this ad-hoc role, 
inconsistencies may arise between the access rights of the different members, e.g., in 
the case of a member being allowed to access another member’s resources, but not 
vice versa. Moreover, the activation/deactivation of such temporary roles represents a 
critical security issue.  

In order to properly control access to resources, we claim the need for a more 
general and comprehensive approach that exploits not only identity and role 
information but also other contextual information, such as location, time, ongoing 
activities, etc. In particular, we believe that it may be advantageous for each 
participant to define the access control policies for his managed resources simply 
according to the current conditions of the requestor, the resource, and of the 
surrounding environment, i.e., the current resource context. For instance, in an 
informal meeting, access should be granted to those who are currently located in the 
same room where the resource owner is located, if they actually participate in  
the activity/project relating to the meeting, as long as current time corresponds to 
the time scheduled for the meeting. Access control policies should be associated 
with the combination of one or more context conditions and users should be 
instantaneously granted/denied access to resources on the basis of those specific 
context conditions. 

The integration of access control with contextual information has two main 
characteristics. First, it is an example of an active access control model [4]. Active 
security models are aware of the context associated with an ongoing activity in 
providing access control and thus distinguish the passive concept of permission 
assignment from the active concept of context-based permission activation. Second, the 
exploitation of context as a mechanism for grouping policies and for evaluating 
applicable ones simplifies access control management by increasing policy specification 
reuse and by making policy update and revocation easier. In fact, in subject-based 
access control solutions, the tight coupling of the identities/roles of principals with their 
permissions and with the operating conditions in the system to grant permitted actions 
requires security administrators to foresee all contexts in which each principal is likely 
to operate. In pervasive environments where principals are typically unknown and 
where contextual conditions frequently change, this traditional approach may lead to a 
combinatorial explosion of the number of policies to be written, force a long 
development time, and even introduce potential bugs. The traditional approach, when 
applied to pervasive scenarios, also lacks flexibility. New access control policies need to 
be designed and implemented from scratch for any principal when new context 
situations occur. In a context-centric access control approach, instead of managing  
 



 A Semantic Context-Aware Access Control Framework for Secure Collaborations 477 

principals and their permissions individually, administrators define the set of permitted 
actions for each context. When a principal operates in a specific context, the evaluation 
process of his permissions in that context is triggered. 

Another difficulty in dynamic collaboration scenarios is that it is impossible to 
define in advance all necessary policies for all possible situations. These 
environments should permit new policies to be dynamically and easily specified on 
demand as new situations occur as well as allow existing policies to be adapted to 
meet changing conditions. For example, let us consider the case of a meeting that 
continues beyond its originally scheduled end time. It is essential to ensure that 
meeting participants can continue to access each other’s resources as long as the 
meeting is actually taking place. It is therefore necessary to adapt previous policies to 
reflect the new conditions of the meeting. In the absence of policy adaptation support, 
access to the policy owner’s resources would be denied after the scheduled time, since 
the conditions that limit the applicability of the policy, specifically the condition 
concerning time, would be evaluated to be false. In a traditional approach, the policy 
owner would have to specify another policy to grant access to her resources after the 
scheduled end time of the meeting. However, this solution presents several 
disadvantages. First, the resource owner might not be the policy administrator of her 
resources, and might be unable to specify the policy when needed. In addition, the 
specification of ad-hoc policies is not a correct approach to policy definition because 
it does not favor clarity or traceability, thus complicating policy management. Finally, 
in such a case, efficiency and security might collide. If the policy owner specifies an 
access control policy that grants access to her resources for a short time interval, e.g., 
ten minutes, she might possibly be forced to specify the same policy several times 
because the eventual end time of the meeting is not known in advance. Conversely, a 
policy granting access for a longer period might allow undesired access to the user’s 
resources after the meeting. 

This simple example demonstrates the need for a new approach to policy 
specification that not only defines policies based on context information, but also 
allows the seamless adaptation of policies depending on current context. In this 
example, we need to “instruct” the system such that, if certain context conditions 
hold, the context activating the policy is still considered active. Essential for policy 
adaptation is appropriate modeling of contextual information that enables the policy 
framework to sense and reason about the current situation. This ensures adequate 
access control even in changing and possibly unforeseen conditions. 

Another important principle is the adoption of semantically-rich representations 
for policy definition. A semantics-based approach allows description of contexts 
and associated policies at a high level of abstraction, in a form that enables their 
classification and comparison. This feature is essential, for instance, in order to 
detect conflicts between policies before they are actually enforced. In addition, 
semantic techniques can provide the reasoning features needed to deduce new 
information from existing knowledge. This ability may be exploited by the policy 
framework when faced with unexpected situations to react in a contextually 
appropriate way.  



478 A. Toninelli et al. 

3   A Semantic Context-Aware Access Control Policy Model 

Our access control model is centered around the concept of context that we consider 
to be any characterizing information about the controlled resources and about the 
world surrounding them. We adopt a resource-centric approach to context modeling: 
contexts are associated with the resources to be controlled and represent all and only 
those conditions that enable access to the resources. Contexts act as intermediaries 
between the entities requesting access to resources and the set of operations that can 
be performed on these resources. Access control policies define for each context how 
to operate on the associated resource(s). In particular, access control policies can be 
viewed as one-to-one associations between contexts and allowed actions. Drawing 
inspiration from Java protection domains [5], we call these contexts hereinafter as 
protection contexts: they provide users with a controlled visibility of the considered 
resource in terms of performable access actions on it (action view). Protection 
contexts are determined by the defined policies. Entities can perform only those 
actions that are associated with the protection contexts currently in effect (active 
context), i.e., the contexts whose defining conditions match the operating conditions 
of the requesting entity, requested resource, and environment as measured by specific 
sensors. All entities sharing the same active protection context share the same abilities 
to operate on the context-related resource. 

3.1   Context Model 

A protection context consists of all the characterizing information that is considered 
relevant for access control, logically organized in parts that describe the state of the 
resource associated with the protection context, such as availability or load (the 
resource part), the entities operating on the resource (the policy/resource owner and 
the requestor), such as their roles, identities or security credentials (the actor part), 
and the surrounding environment conditions, such as time, or other available 
resources (the environment part).  

A protection context is a set of attributes and predetermined values, labelled in 
some meaningful way and associated with desirable semantics [6]. Instead of a single 
value, an attribute could also define constraints for a range of allowed values. Let us 
note that an attribute value can be assigned to a fixed constant or can be a variable 
over a value domain. The current state of the surrounding world is also represented in 
terms of attribute/value pairs where the attribute values represent the output of sensors 
(with the term “sensor” used loosely). For a protection context to be “in effect”, the 
attribute values that define the current state of the world have to match the definition 
of the context (as given above).  

We adopt description logics (DL) and associated inferencing to model and process 
protection context data. In particular, we use Web Ontology Language (OWL) -based 
ontologies as shown in Figure 1a. A protection context is defined as a subclass of a 
generic context and consists of the resource, the actor and the environment context 
elements. Each context element is characterized by an identity property and a location 
property defining the physical or logical position of an entity. Single context elements 
are characterized by specific additional properties.  

 



 A Semantic Context-Aware Access Control Framework for Secure Collaborations 479 

Current_Project_Resource ≡ Project_Resource 

is_resource_of_project.Current_Project

Meeting_Env ≡ Environment time.In_Current_Meeting_Time

Meeting_Actor ≡ Actor is_currently_working_on.Current_Project 

located.Meeting_Space is_involved_in.Current_Project

Meeting_Context ≡ Protection_Context owner.Meeting_Actor 

requestor.Co-located_Meeting_Actor environment.Meeting_Env 

resource.Current_Project_Resource 

Co-located_Meeting_Actor ≡ ... (see Table 1)

Meeting Context Specification

Current_Project_Resource ≡ Project_Resource 

is_resource_of_project.Current_Project

Meeting_Env ≡ Environment time.In_Current_Meeting_Time

Meeting_Actor ≡ Actor is_currently_working_on.Current_Project 

located.Meeting_Space is_involved_in.Current_Project

Meeting_Context ≡ Protection_Context owner.Meeting_Actor 

requestor.Co-located_Meeting_Actor environment.Meeting_Env 

resource.Current_Project_Resource 

Co-located_Meeting_Actor ≡ ... (see Table 1)

Meeting Context Specification

a)

b)

 

Fig. 1. Context ontology model and an OWL context specification example 

Figure 1b shows an OWL-based protection context representation example related 
to the meeting scenario depicted in Section 2. This example assumes that each actor 
taking part to the meeting owns a set of resources that relates to the project/activity 
the meeting is about and shares these resources with the other participants. In 
particular, the protection context shown in Figure 1b grants access to these resources 
under certain conditions: the resources must be specifically pertaining the project 
discussed at the current meeting; the resource owner must be involved in the 
meeting’s project as “project partner”, must be currently work on the project-related 
set of resources, and must be located in the place where the meeting is planned to take 
place to guarantee that he is attending the meeting. The entities requesting access to 
resources must be involved in the project as “project partners”, co-located with the 
resource owner, and currently working on project-specific resources on their devices. 
In addition, resources can be accessed when the time in the environment corresponds 
to the time scheduled for the meeting. Let us note that the core context ontology has 
been extended to model the specific meeting-related concepts. For example, a 
resource is associated with the project it relates to, an actor has attributes describing 
the project she is involved in or she is currently working on, and the environment time 
can be expressed in terms of scheduled events in an actor’s calendar. The meeting 
ontology also explicitly defines the concept of “current event”, which is an event or 
activity occurring at the moment of context and policy evaluation. In addition, we 
make use of a location ontology that is provided within the basic context model1.  

                                                           
1 All our ontologies are available at http://lia.deis.unibo.it/research/SemanticPolicies.  



480 A. Toninelli et al. 

Let us note that the use of DL in context modeling and reasoning has well-known 
benefits. For instance, considering protection contexts as classes and a set of sensor 
inputs (i.e., the current state of the world) as individuals, DL-based reasoning allows 
one to determine which protection contexts are in effect by verifying which protection 
context classes the current state is an instance of, and to figure out how defined 
protection contexts relate to each other (nesting, etc.) [6].  

However, DL-based reasoning may not always be sufficient. Our context-aware 
access control model needs more expressive context reasoning in order to be 
effective. On the one hand, we need to correlate contexts using not only class 
definitions (as in pure DL-based reasoning) but also property path relationships 
between anonymous individuals. For instance, in a meeting context we need to state 
that if the resource owner is located in a certain place and the resource requestor is 
located in the same place, the two are co-located. On the other hand, we need to bind 
the context attribute values to specific instances depending on application-specific 
context attribute/value relationships. For instance, to enforce the meeting-related 
policies, we must be able to determine, at each moment, what the actual current 
project is, so that the corresponding resources belonging to each actor are identified 
and protected. To overcome some DL-based reasoning restrictions we combine it with 
LP-based reasoning. In particular, we define two types of rules: context aggregation 
rules to support reasoning using property path relationships and context instantiation 
rules to provide OWL assertions for attribute values. For instance, the condition of 
co-location between two collaborating entities at a conference is expressed with an 
aggregation rule, whereas the condition of current project with an instantiation rule. 
Both types of rules are expressed according to the following pattern: 

if context attributes C
1
...C

n
 then context attribute  C

m
 

that corresponds to a Horn clause, where predicates in the head and in the body are 
represented by classes and properties defined in the context and application-specific 
ontologies.  

3.2   Context-Aware Access Control Policy Model 

Our policy model consists of three distinct phases (see Figure 2a): policy 
specification, policy refinement, and policy evaluation. In the policy specification 
phase resource administrators specify OWL-based policies representing ontological 
associations between actions and protection contexts ontology definitions. Figure 2b 
shows an example of a policy that controls access to the meeting resources. The 
protection contexts may have attribute values assigned to constants or may be 
variables. In the latter case, attributes are assigned proper values by combining DL-
based and LP-based reasoning over the context ontology and the context aggregation 
and activation rules. In particular, the output of LP rules is fed into the DL knowledge 
base to determine the value of each attribute given the current context. This means 
that OWL-based policies cannot be directly enforced into the system, but need to be 
further processed. By adopting an object-oriented terminology, OWL-based policies 
can be viewed as policy types: they define the actions that are allowed in a set of 
context types. In order to be enforced in the real world, policy types need to be 
transformed into policy objects that associate sets of actions with specific instantiated 



 A Semantic Context-Aware Access Control Framework for Secure Collaborations 481 

contextual conditions. In the policy specification phase, administrators have to define 
aggregation and evaluation rules to enable effective enforcement and adaptation of 
OWL policies. For instance, in the meeting scenario an instantiation rule is needed to 
instantiate the current project attribute value included in the specification of the 
Colocated_Meeting_Actor class. The resource administrator could also define an 
aggregation rule to represent the “co-location” property as a relationship path based 
on the “location” property by means of variables. 

LP-BASED 
INSTANTIATION 

RULES

LP-BASED 
AGGREGATION 

RULES

DL-BASED 
POLICIES

APPLICABLE 
POLICIES 

(CONTEXT-BASED)

VALID ACCESS 
CONTROL 
POLICIES

CURRENT 
STATE

CURRENT 
STATE

2. POLICY 
REFINEMENT

3. POLICY 
EVA LUATION

1. POLICY AND 
RULES 

SPECIFICATION

a)

Meeting_Policy ≡ Access_Control_Policy 

controls.Access_Action 

protection_context.Meeting_Context

b) Meeting_Policy

Access_Action Meeting_Context

controls protection_context

LP-BASED 
INSTANTIATION 

RULES

LP-BASED 
AGGREGATION 

RULES

DL-BASED 
POLICIES

APPLICABLE 
POLICIES 

(CONTEXT-BASED)

VALID ACCESS 
CONTROL 
POLICIES

CURRENT 
STATE

CURRENT 
STATE

2. POLICY 
REFINEMENT

3. POLICY 
EVA LUATION

1. POLICY AND 
RULES 

SPECIFICATION

a)

Meeting_Policy ≡ Access_Control_Policy 

controls.Access_Action 

protection_context.Meeting_Context

b) Meeting_Policy

Access_Action Meeting_Context

controls protection_context

 

Fig. 2. The Context-Aware Policy Model and the DL-based meeting policy specification 

In the policy refinement phase, OWL policies are instantiated by adapting them to 
the particular state of the world, in order to obtain the set of applicable policies. In the 
policy evaluation stage, the protection contexts of applicable policies are verified 
against the current state of context elements as measured by sensors to determine the 
set of currently active policies. Let us note that the context-aware transformation 
process comprising of policy refinement and evaluation may be triggered by any 
resource context change, such as a new user requesting to access the resource or a 
significant change in the resource state, e.g., its location. 

It is worth noticing that our policy model adopts a combined approach to policy 
specification and reasoning. DL reasoning is exploited to perform static classification 
and conflict resolution of context and policy ontologies. LP reasoning is used to adapt 
the specification of OWL policies to the current state and allow their dynamic 
evaluation at access request time by means of appropriate rules. Adopting a combined 
approach allows us to benefit from the advantages of a pure ontology-based approach 
and those of a pure rule-based approach, both of which exhibit some limitations with 
respect to the definition and evaluation of policies and contexts [6, 7]. It is worth 
noting that our context model does not require the tight integration of the DL and the 
LP logical frameworks, which have well-known logical mismatches, but it is rather a 
combination of the two aiming at achieving more expressive description and 
reasoning capabilities about contexts and policies. 



482 A. Toninelli et al. 

In the following subsections we focus on the policy refinement and evaluation 
phases which characterize our model and distinguish it from other state-of-the art 
related access control solutions [8, 9, 3]. 

3.2.1   Policy Refinement 
Let us recall the meeting scenario to describe how policy refinement works. In the 
protection context of the meeting policy, shown before, the resource requestor 
property must belong to the Co-located_Meeting_Actor class that imposes that the 
resource requestor is co-located with the resource owner. Table 1 shows the definition 
of this context element, using a compact DL notation instead of OWL. Let us consider 
the restrictions applying to the properties is_currently_working_on and 
is_involved_in. These properties are restricted to a variable value, represented by the 
Current_Project class. This is an intrinsically variable value since the current project 
varies over time due to the changing activities of the resource owner and requestor, 
thus corresponding to different instances at different time instants. 

Table 1. Co-located_Meeting_Actor class specification and instantiation and aggregation rules 

Aggregation Rule to determine co-location
Actor(? x) Actor(?y) SymbolicSpace(?z) located(?x,?z) 

located(?y,?z) colocated_with(?x,?y)

Colocation_Rule

Scheduled_Calendar_Slot(?x) Idle(?x) 

Past_Calendar_Slot(?y) Meeting(?y) Current_Project(?z) 

meeting_on_project(?y,?z) Current_Meeting(?y)

Current_Meeting_Rule-2

Colocated Meeting Actor Specification
Meeting_Actor ≡ is_currently_working_on.Current_Project 

is_involved_in.Current_Project colocated_with.Resource_Owner 

Instantiation Rules to be applied in case of an ordinary scheduled meeting

Instantiation Rules to be applied in case of a meeting prolongation
Actor(?y) Last_Current_Project(?x) 

is_currently_working_on(?y,?x) 

Scheduled_Calendar_Slot(?z) Idle(?z) 
Current_Project(?x)

Current_Project_Rule-2

Scheduled_Calendar_Slot (?x) Meeting (?x) 
Current_Meeting (?x)

Current_Meeting_Rule

Current_Meeting(?x) Project(?y) 

meeting_on_project(?x,?y) Current_Project(?y)

Current_Project_Rule

Aggregation Rule to determine co-location
Actor(? x) Actor(?y) SymbolicSpace(?z) located(?x,?z) 

located(?y,?z) colocated_with(?x,?y)

Colocation_Rule

Scheduled_Calendar_Slot(?x) Idle(?x) 

Past_Calendar_Slot(?y) Meeting(?y) Current_Project(?z) 

meeting_on_project(?y,?z) Current_Meeting(?y)

Current_Meeting_Rule-2

Colocated Meeting Actor Specification
Meeting_Actor ≡ is_currently_working_on.Current_Project 

is_involved_in.Current_Project colocated_with.Resource_Owner 

Instantiation Rules to be applied in case of an ordinary scheduled meeting

Instantiation Rules to be applied in case of a meeting prolongation
Actor(?y) Last_Current_Project(?x) 

is_currently_working_on(?y,?x) 

Scheduled_Calendar_Slot(?z) Idle(?z) 
Current_Project(?x)

Current_Project_Rule-2

Scheduled_Calendar_Slot (?x) Meeting (?x) 
Current_Meeting (?x)

Current_Meeting_Rule

Current_Meeting(?x) Project(?y) 

meeting_on_project(?x,?y) Current_Project(?y)

Current_Project_Rule

 

The defined context instantiation rules are used to determine the correct instance of 
the current project class at access request time. In particular, let us consider the first 
couple of rules shown in Table 1. The first rule establishes that, if the user’s calendar 
shows a meeting for the current time, then that meeting has to be considered the 
current meeting. The second rule states that the project discussed at the current 
meeting is the current project. Once the facts about the user’s calendar are inserted 
into the refinement fact base, the first rule is triggered and the inferred current 
meeting instance is used as a new fact to trigger the second rule. Then, the protection 
context is instantiated by re-writing it with the inferred context element values. For 
instance, if SwapMe-Meeting is scheduled on the user calendar, and SwapMe-Project 



 A Semantic Context-Aware Access Control Framework for Secure Collaborations 483 

is the corresponding project, then Current_Project is replaced by SwapMe-Project in 
the Colocated_Meeting_Actor specification. A new protection context is thus 
instantiated with the SwapMe-Project value and the corresponding policy generated 
with the instantiated protection context. 

The combined adoption of OWL policies and LP rules enables policy adaptation 
when needed. For example, let us suppose that the meeting has gone beyond the 
allotted time. Given this state, the first group of rules cannot be applied because there 
are no valid facts in their head. Therefore, a new set of rules has to be defined during 
the definition phase to cover the situation of an extended meeting. In particular, the 
first rule determines the owner’s current project on the basis of her past and current 
activities, independently from her calendar schedule. For instance, if the last instance 
of current project (determined at pre-defined intervals or at access request time) was 
the SwapMe-Project, if the calendar does not show any event for the current time, and 
if the actor is working on the SwapMe-Project, then the SwapMe-Project is still the 
current project instance. The second rules checks for the last and the current 
scheduling in the actor calendar. If there is no current event, and the last event was a 
meeting, and that meeting was about the current project (as determined with the first 
rule), then the last meeting is also the current one. In our example, the current meeting 
instance is the SwapMe-Meeting. 

3.2.2   Policy Evaluation 
We now describe the evaluation phase by using the same meeting scenario. When the 
current state of context elements, measured by sensors, is matched against the 
protection context of the meeting applicable policy, it is necessary to determine 
whether the protection context is currently in effect. During the evaluation phase the 
Co-located_Meeting_Actor definition of Table 1 is considered as well as the 
aggregation rule of Table 1 stating that if two actors are located in the same place 
(defined with the use of variables), they are co-located. Then, the resource owner’s 
and the requestor’s location are determined and inserted as facts into the evaluation 
fact base, which causes the execution of the co-location aggregation rule. Let us 
suppose that the requestor is co-located with the resource owner. In this case, a new 
fact is inferred that states that the resource requestor is co-located with the owner. 
This information is used to build the description of the current state of the world. In 
particular, an instance of the resource requestor element is created using the resource 
owner (which is known) as the value for the attribute co-location, and this instance of 
requestor is used in the protection context instance that describes the current state of 
the world. The created protection context instance is then compared with the 
protection context of the meeting policy by making use of ontology classification to 
recognize whether the former is an instance of the latter. 

4   Related Work 

Several research efforts have addressed the issue of access control in dynamic 
environments. We do not intend to provide a general survey of the state-of-the-art 
access control solutions in dynamic environments, but only to focus on the research 
that either integrates context-awareness and semantic technologies into access control 



484 A. Toninelli et al. 

policy frameworks for pervasive environments or addresses access control issues in 
similar coalition application scenarios. 

Considering context explicitly for access control is a very recent research direction 
with only few context-dependent policy model proposals. The importance of taking 
context into account for securing pervasive applications is particularly evident in [8] 
that allows policy designers to represent contexts through a new type of role called 
environment role. Environment roles capture relevant environmental conditions that 
are used for restricting and regulating user privileges. Permissions are assigned both 
to roles (both traditional and environmental ones) and role activation/deactivation 
mechanisms regulate the access to resources. Environmental roles are similar to our 
contexts in that they act as intermediaries between users and permissions. However, 
because environmental roles are statically defined in terms of attribute-constant value 
pairs their evaluation cannot provide support for policy adaptation as in our proposed 
semantic context-aware approach. In addition, differently from our approach, in [8] 
there is no integrated support for representing at a high level of abstraction and 
reasoning about environmental roles and policies.  

By focusing on access control in spontaneous coalitions in pervasive environments, 
[3] proposes a delegation-based approach, where users participating to a 
communication session can delegate a set of their permissions to a temporary session 
role, in order to enable access to each other’s resources. In particular, one end-point 
user assigns the session role to the entities he is willing to communicate with. 
Contextual information is used to define the conditions that must hold in the system in 
order for the assignment to take place, thus limiting the applicability scope of this 
process. Only a limited set of contextual information can be specified and no semantic 
technologies are exploited to represent nor the session role nor the delegation context 
constraint. In addition, security problems may arise whenever an entity delegated to 
play the session role leaves the communication session. In fact, unless the user 
explicitly states she is leaving the session, there is no way for the framework to be 
aware that the session role must be revoked for the departing user.  

The importance of adopting a high level of abstraction for the specification of all 
security policy building elements (subjects, actions, context, etc.. ) is starting to 
emerge in well-known policy frameworks, such as KAoS and Rei [9]. KAoS and Rei 
represent, respectively, significant examples of DL-based and LP-based policy 
languages. In particular, KAoS uses OWL as the basis for representing and reasoning 
about policies within Web Services, Grid Computing, and multi-agent system 
platforms [10]. Contextual information is represented as ontologies and is used to 
constrain the applicability of policies. The KAoS approach, however, relying on pure 
OWL capabilities, encounters some difficulties with regard to the definition of certain 
kinds of policies, specifically those requiring the definition of variables. Rei adopts 
OWL-Lite to specify policies and can reason over any domain knowledge expressed 
in either RDF or OWL [11]. A policy basically consists of a list of rules expressed as 
OWL properties of the policy and a context represented in terms of ontologies that is 
used to restrict the policy’s applicability. Though represented in OWL-Lite, Rei still 
allows the definition of variables that are used as placeholders as in Prolog. In this 
way, Rei overcomes one of the major limitations of the OWL language, and more 
generally of description logics. i.e., the inability to define variables. On the other 
hand, the choice of expressing Rei rules similarly to declarative logic programs 



 A Semantic Context-Aware Access Control Framework for Secure Collaborations 485 

prevents it from exploiting the full potential of the OWL language. In particular, the 
Rei engine is able to reason about domain-specific knowledge, but not about policy 
specification. Our policy model shares some commonalities with regard to 
context/policy representation with both KAoS and Rei, but differs in how it deals with 
context. Our approach considers context as the primary basis that allows one to 
deduce which policies apply to a subject acting in the system whereas KAoS and Rei, 
similarly to traditional approaches, exploit context to build filtering mechanisms for 
policy applicability. 

5   Conclusions and Future Work 

The dynamicity and heterogeneity of pervasive scenarios introduce new access 
control challenges. A paradigm shift in policy models is needed to move focus from 
the identity/role of the principal to the context that the principal is operating in. We 
propose a semantic context-aware policy model, which treats context as a first-class 
principle for policy specification and adopts a hybrid approach to policy definition 
based on DL ontologies and LP rules. We are currently working on implementing  
a prototype for the meeting scenario using OWL to specify ontologies and  
SWRL to encode rules. For this implementation, we are using Pellet 
[www.mindswap.org/2003/pellet/] to reason about ontologies and Jess 
[herzberg.ca.sandia.gov/jess/] for forward-chained reasoning about rules, both 
accessed through a Java interface (via Jena [jena.sourceforge.net/] with Pellet). We 
are also working on the design of a deployment model that includes different 
components in charge of monitoring contexts, installing policies into the system, 
performing policy refinement and evaluation, and enforcing policies. Future work will 
include providing alternative implementations of the model using different languages, 
such as N3Logic [http://www.w3.org/DesignIssues/Notation3.html], which provides a 
uniform notation for ontology and rule specification, and the cwm reasoner 
[http://www.w3.org/2000/10/swap/doc/cwm.html]. We also plan to further develop 
application scenarios in order to analyse the usability and effectiveness of our 
semantic context-aware model.  

References  

[1] Dey, A., Abowd, G.,  and Salber: D.. A conceptual framework and a toolkit for 
supporting the rapid prototyping of context-aware applications. Human-Computer 
Interaction, 16:97-166, 2001. 

[2] Sandu, R., et al. : “Role based access control models”, IEEE Computer, Vol.29, No.2, 
February (1996). 

[3] Liscano, R. and Wang, K.: “A SIP-based Architecture model for Contextual Coalition 
Access Control for Ubiquitous Computing”, In: Proceedings of the Second Annual 
Conference on Mobile and Ubiquitous Systems (MobiQuitous ’05). IEEE Computer 
Society Press (2005). 

[4] Georgiadis, C.K., et al.: “Flexible Team-Based Access Control Using Contexts”, In: 
Proc. of the 6th ACM Symposium on Access Control Models and Technologies 
(SACMAT 2001), May 3-4, Chantilly, Virginia, USA. ACM (2001). 



486 A. Toninelli et al. 

[5] Gong, L.: “Inside Java 2 Platform Security”, Addison Wesley, 1999. 
[6] Lassila, O. and Khushraj: D., “Contextualizing Applications via Semantic Middleware”, 

In: Proc. of the Second Annual Conference on Mobile and Ubiquitous Systems 
(MobiQuitous ’05). IEEE Computer Society Press (2005).  

[7] Toninelli, A.,  Kagal, L., Bradshaw, J.M., and Montanari, R.: “Rule-based and Ontology-
based Policies: Toward a Hybrid Approach to Control Agents in Pervasive 
Environments.” In: Proc. of the Semantic Web and Policy Workshop (SWPW), in conj. 
with ISWC 2005, Galway, Ireland, Nov. 7 (2005). 

[8] Covington, M.J., et al.: “Securing Context-Aware Applications Using Environmental 
Roles”, In: Proc. of the 6th ACM Symposium on Access Control Models and 
Technologies (SACMAT 2001), May 3-4, Chantilly, Virginia, USA. ACM (2001). 

[9] Tonti, G., Bradshaw, J. M., Jeffers, R., Montanari, R., Suri, N., Uszok, A.: “Semantic 
Web languages for policy representation and reasoning: A comparison of KAoS, Rei, and 
Ponder”, In: Proc. of the Second International Semantic Web Conference (ISWC2003), 
LNCS, Vol. 2870. Springer-Verlag, Berlin, pp. 419-437, Sanibel Island, Florida, USA, 
October 2003. 

[10] Uszok, A., et al.: “KAoS policy management for semantic web services”. IEEE 
Intelligent Systems, 19(4), p. 32-41, 2004. 

[11] Kagal, L., Finin, T., Joshi, A.: “A Policy Language for Pervasive Computing 
Environment” In: Proc. of IEEE Fourth International Workshop on Policy (Policy 2003). 
Lake Como, Italy, pp. 63-76, IEEE Computer Society Press 4-6 June 2003. 

 



Extracting Relations in Social Networks from
the Web Using Similarity Between Collective

Contexts

Junichiro Mori1,2, Takumi Tsujishita1, Yutaka Matsuo2, and Mitsuru Ishizuka1

1 University of Tokyo, Japan
{jmori, tjstkm, ishizuka}@mi.ci.i.u-tokyo.ac.jp

2 National Institute of Advanced Industrial Science and Technology, Japan
y.matsuo@aist.go.jp

Abstract. Social networks have recently garnered considerable interest.
With the intention of utilizing social networks for the Semantic Web,
several studies have examined automatic extraction of social networks.
However, most methods have addressed extraction of the strength of
relations. Our goal is extracting the underlying relations between enti-
ties that are embedded in social networks. To this end, we propose a
method that automatically extracts labels that describe relations among
entities. Fundamentally, the method clusters similar entity pairs accord-
ing to their collective contexts in Web documents. The descriptive la-
bels for relations are obtained from results of clustering. The proposed
method is entirely unsupervised and is easily incorporated into exist-
ing social network extraction methods. Our method also contributes to
ontology population by elucidating relations between instances in social
networks. Our experiments conducted on entities in political social net-
works achieved clustering with high precision and recall. We extracted
appropriate relation labels to represent the entities.

1 Introduction

Social networks have recently attracted considerable interest. For the Semantic
Web, there is great potential to utilize social networks for myriad applications
such as trust estimation [1], ontology construction [2], and end-user ontology [3].

Aiming at using social networks for the Semantic Web, several studies have
addressed extraction of social networks automatically from various sources of
information. Mika developed a system for extraction, aggregation, and visual-
ization of online social networks for a Semantic Web community, called Flink [4].
In that system, social networks are obtained using Web pages, e-mail messages,
and publications. Using a similar approach, Matsuo et al. developed a system
called Polyphonet [5]. In line with those studies, numerous studies have explored
automatic extraction of social networks from the Web [6,7,8,9].

Given social network extraction using the methods described above, the next
step would be to explore underlying relations behind superficial connections in
those networks. However, most automatic methods to extract social networks

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 487–500, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



488 J. Mori et al.

merely provide a clue to the strength of relations. For example, a link in Flink
[4] is only assigned the strength of its relation. A user might wonder what kind of
underlying relation exists behind the link. In the field of social network analysis,
it has been shown that rich information about underlying social relationships
engenders more sophisticated analysis [10,11].

One reason for the lack of information about underlying relations is that
most automatic extraction methods [6,4,8,9] use a superficial approach (e.g. co-
occurrence analysis) instead of profound assessment to determine the type of
relation. Matsuo et al. defines four kinds of relations in a research community and
classifies the extracted relation [5]. They adopt a supervised machine learning
method, which requires a large annotated corpus that requires a great deal of
time and effort to construct and administer. In addition, it is necessary to gather
domain-specific knowledge a priori to define the extracted relations.

Our goal is to extract underlying relations among entities (e.g., person, loca-
tion, company) from social networks (e.g., person-person, person-location net-
work). Thereby, we are aiming at extracting descriptive labels of relations
automatically, such as affiliations, roles, locations, part-whole, and social re-
lationships. In this paper, we propose a method that automatically extracts the
labels that describe relations among entities in social networks. We obtain a local
context in which two entities co-occur on the Web, and accumulate the context
of the entity pair in different Web pages. Given the collective contexts of each
entity pair, the key idea is clustering all entity pairs according to the similar-
ity of their collective contexts. This clustering using collective contexts is based
on our hypothesis that entity pairs in similar relations tend to occur in similar
contexts. The representative terms in context can be regarded as representing
a relationship. Therefore, the labels to describe the relations among entities are
extracted from the clustering process result. As an exemplary scenario for our
approach, we address a political and social network that is composed of two
types of entities: politicians and geopolitical entities (GPEs).

Our method uses context information that is obtained during extraction of
social networks. Consequently, the proposed method is easily incorporated into
existing methods of social network extraction; it serves to enrich such networks
by adding relation labels. In addition, the proposed method is entirely unsuper-
vised. For that reason, our method requires neither a priori definition of relations
nor preparation of large annotated corpora. It also requires no instances of rela-
tions as initial seeds for weakly supervised learning.

Identifying underlying relations is also important in ontology development.
Recent studies have shown that social networks and collective knowledge con-
tribute greatly to ontology extraction [2]. Because relation labels assigned to
pairs of entities in social network can be regarded as non-taxonomic relations
between instances, our work can be regarded as a specific case of ontology pop-
ulation in the context of social networks.

The remainder of this paper is structured as follows. Section 2 describes basic
ideas of our approach and detailed steps of the proposed method. Section 3
describes our experiment. Section 4 describes results and evaluation. Section



Extracting Relations in Social Networks from the Web 489

5 compares our approach to other ongoing relevant research in social network
extraction, relation extraction, and ontology population for the Semantic Web.
We end our presentation with a discussion of future work, after which we provide
concluding remarks in section 6.

2 Method

2.1 Problem Setting

In this paper, as an exemplary scenario for our approach, we use a political
social network. Many studies of social network extraction from the Web have
addressed researchers or students as entities [4,7,5]. Those individuals are easy
for researchers to evaluate: they typically provide more than sufficient relational
evidence (e.g., co-authors of a paper, co-members in a project, co-participants in
a conference) through Web-based materials. Relations among political entities
(e.g., politicians, geopolitical-entities) are also widely various; information for
clues of relations is readily available from the Web (e.g., news sites, weblogs).
In fact, political and social networks are one research target of social network
analyses1 Therefore, it is worthwhile to examine political social networks.

Figure 1 shows an automatically extracted social network from the Web us-
ing Mika and Matsuo’s method [4,5]. The social network, including two types
of political entities (a politician and a geopolitical location (GPE)), was ex-
tracted according to co-occurrence of two types of entities (politician-politician,
politician-location) on the Web. In the network, a circular node represents a
location entity and an elliptical node represents a political entity. Each edge in
the network implies that there is a relation between entities. Given the social
network, our task is to extract descriptive relation labels between entities in
that social network. In particular, as an example of our approach, we address
the relations between politicians and locations. Various relations exist among
politicians and locations, for example “born in”, “originally from”, “elected in”,
“representing”, and so on. These relations between politicians and locations have
also been addressed in relation-extraction tasks of natural language processing
and information extraction.

Given entity pairs in the social network (e.g., George W. Bush – United States,
Junichiro Koizumi – Japan, etc.), our present goal is to extract labels to describe
the relations of respective entity pairs (to discover relevant terms that relate a
politician to a location). In the following section, we explain our basic idea to
this purpose.

2.2 Concept

A simple approach to extract the labels that are useful for describing relations
in social networks is to analyze the surrounding local context in which entities of

1 Two focused sessions exist in the international social network conference (Sunbelt):
politics and networks, politics and network structures.



490 J. Mori et al.

Fig. 1. Political social network extracted from the Web: a circular node represents a
location entity and an elliptical node represents a political entity. Each edge in the
network implies a relation between entities.

interest co-occur on the Web, and to seek clues to describe that relation. Local
context is often used to identify entities or relations among entities in tasks of
natural language processing or information extraction [12,13,14].

Table 1 shows keywords 2 that were extracted from local contexts of four en-
tity pairs (Junichiro Koizumi – Japan, Yoshiro Mori – Japan, Junichiro Koizumi
– Kanagawa, Yoshiro Mori – Ishizuka 3). Keywords were extracted from the col-
lective local contexts where co-occurrence of each entity pair was found. For each
entity pair, the local contexts from 100 Web pages were collected. The keywords
are ordered according to TF-IDF-based scoring, which is a widely used method
in many keyword extraction methods to score individual words within text doc-
uments to select concepts that accurately represent the documents’ contents.
The keywords scored by TF-IDF can be considered as a bag-of-words model to
represent the local context surrounding an entity pair.

2 In our experiment, we mainly used Web pages in Japanese. Therefore, keywords in
the table are translated from their original Japanese. The keyword beginning with
a capital letter represents a Japanese proper noun.

3 Junichiro Koizumi is the current Prime Minister of Japan and Yoshiro Mori is a
former Prime Minister. Kanagawa is the prefecture where Koizumi was elected and
Ishikawa is the prefecture where Mori was elected.



Extracting Relations in Social Networks from the Web 491

Table 1. Keywords obtained from each local context of four kinds of entity pairs:
Junichiro Koizumi – Japan, Yoshiro Mori – Japan, Junichiro Mori – Kanagawa, and
Yoshiro Mori – Ishikawa

(1) Junichiro Koizumi – Japan
pathology, Fujiwara, prime minister, Koizumi, Kobun-sha, politics,
prime minister, visit, page,prime minister, products, cabinet, citizen,
reform, minister, Warsaw, United States, Yasukuni, Yasukuni Shrine,
revitalization, society

(2)Yoshiro Mori – Japan
rugby, prime minister, chairman, bid, minister, association, science,
administration, prime minister, director, soccer, Africa, world,
universe, competition, page, sport, gaffes, media, cabinet, director

(3) Junichiro Koizumi – Kanagawa
election, prime minister, Yokosuka, candidate,
congressional representative, Saito, Liberal Democratic Party,
Miura, Koizumi, Democratic Party, lower house, page, fair adversary,
politics, endorsement, Liberal Democratic Party, house, president,
running in a election, by-elections, constituent

(4) Yoshiro Mori – Ishikawa
Ichikawa, Yasuo, prime minister, election, Liberal Democratic Party,
Okuda, candidate, Komatsu, congressional representative,
Liberal Democratic Party, Yuji, Nomi, Kaga, Kanazawa, Nishimura,
Page, Shinshin, answer, Matsutou, Komeito, winning in a election

We find that some keywords can serve as relevant labels to describe relations of
an entity pair. However, other noise keywords that are irrelevant to describe the
relations are also included because the keywords were extracted from collective
local contexts of various kinds of Web pages. Using this simple approach, no
additional information to decide relevant relation labels for entity pairs exists
aside from the TF-IDF scoring. Therefore, we must find another clue to select
relevant keywords for relation labels.

From a slightly different perspective, if we examine the common keywords
(shown in bold typeface in the table) shared by (1) and (2), we note that the
keywords that describe the relations of each entity pair, such as “prime minister”
and “cabinet”, are commonly shared. In fact, Koizumi and Mori are the current
and former prime ministers of Japan. Similarly, if we look at common keywords
of (3) and (4), we find that the keywords that describe the relations of each entity
pair such as “election” and “candidate” are shared. In fact, Koizumi was elected
in Kanagawa, a prefecture, and Mori was elected in Ishikawa. In contrast, if we
compare Koizumi’s keywords (1) with another of his keywords (3), we find that
different keywords appear because of their respective links to different locations:
Japan and Kanagawa (although both keywords are Koizumi’s.).



492 J. Mori et al.

Fig. 2. Outline of the proposed method

Based on the observations described above, we hypothesize that if the local
contexts of entity pairs in the Web are similar, then the entity pairs share a sim-
ilar relation. Our hypothesis resembles previously tested hypotheses related to
context [15,14]: words are similar to the extent that their contextual representa-
tions are similar. According to that hypothesis, our method clusters entity pairs
according to the similarity of their collective contexts. Then, the representative
terms in a cluster are extracted as labels to describe the relations of each entity
pair in the cluster, assuming that each cluster represents different relations and
that the entity pair in a cluster is an instance of a certain relation. The key
point of our method is that we determine the relation labels not by examining
the local context of one single entity pair, but by the collective local contexts of
all entity pairs of interest. In the following section, we explain the precise steps
of our proposed method.

2.3 Procedure

Our method for extraction of relation labels in social networks includes the
following steps.

1. Collect co-occurrence information and local context of an entity pair
2. Extract a social network that is composed of entity pairs.
3. Generate a context model of each entity pair.
4. Calculate context similarity between entity pairs.
5. Cluster entity pairs.
6. Select representative labels to describe relations from each cluster.

Figure 2 depicts the outline of our method. Our method requires a list of
entities (e.g., personal name, location name) to form a social network as the
input; it then outputs the social network and a list of relation labels for each
entity pair. Although collection of a list of entities is beyond the scope of this
paper, one might use named entity recognition to identify entities and thereby
generate a list of entities of interest.



Extracting Relations in Social Networks from the Web 493

The first step is to collect co-occurrence and local contexts of each entity pair
from the Web. Many existing methods of social network extraction use a search
engine and its resultant query hit counts to obtain co-occurrence information of
entities from the Web [Matsuo, Mika]. In line with such methods, we use Google
4 to collect co-occurrence information and generate a social network, as shown
in Fig. 1.

Using co-occurrence information, we also collect local contexts in which ele-
ments of an entity pair of interest co-occur within a certain contextual distance
of one another within the text of a Web page. For this, we downloaded the top
100 web pages included in the search result of corresponding search query to
each entity pair (in our example of a politician and location name, the query is
“Junichiro Koizumi AND Japan”). This can be accomplished in the process of
collecting co-occurrence information, which uses search query hit counts.

2.4 Context Model and Similarity Calculation

For each entity pair, we accumulate the context terms surrounding it; thereby,
we obtain the contexts of all entity pairs. As the next step, to calculate the
similarity between collective contexts of each entity pair, we require a certain
model that represents the collected context. In our method, we propose a context
model that represents the context using a bag-of-words and a word vector [16].
We define the context model as a vector of terms that are likely to be used to
describe the context of an entity pair (e.g., the keywords list shown in Table 1
can be considered as an example of the context model.). A context model Ci,j of
an entity pair (ei, ej) is defined as the set of N terms t1, ..., tN that are extracted
from the context of an entity pair as Ci,j(n, m) = t1, ..., tN , where both n and m
are parameters of the context window size, which defines the number of terms
to be included in the context. In addition, m is the number of intervening terms
between ei and ej ; n is the number of words to the left and right of either entity.

Each term ti in the context model Ci,j(n, m) of an entity pair (ei, ej) is assigned
a feature weight according to TF-IDF-based scoring defined as tf(ti) · idf(ti).
Therein, tf(ti) is defined by the term frequency of term ti in all the contexts of
the entity pair (ei, ej). Furthermore, idf(ti) is defined as log(|C|/df(ti))+1, where
|C| is the number of all context models and df(ti) is the number of context models
including term ti. With the weighted context model, we calculate the similarity
sim(Ci,j , C

′
i,j) between context models according to the cosine similarity as fol-

lows: sim(Ci,j , C
′
i,j) = Ci,jC

′
i,j/(|Ci,j ||C

′
i,j |).

In our exploratory experiment, we tried probability distribution-based scoring
and several similarities such as L1 norm, Jensen-Shannon and Skew divergence
[13]. According to those results, TFIDF-based cosine similarity performs well.

2.5 Clustering and Label Selection

Calculating the similarity between the context models of entity pairs, we cluster
all entity pairs according to their similarity. This is based on our hypothesis
4 http://www.google.com



494 J. Mori et al.

described in Sect. 2.2: the local contexts of entity pairs in the Web are similar,
and the entity pairs share a similar relation.

Ideally, the clustering process terminates when it generates a relevant number
of clusters that correspond to the number of relations that entity pairs can hold.
However, we do not know what kinds of relation pertain. Therefore, we do not
know in advance how many clusters we should make. For that reason, we employ
hierarchical agglomerative clustering, which is similarity-based and which uses
a bottom-up clustering method.

Several clustering methods exist for hierarchical clustering: single linkage,
average linkage and complete linkage. We used those different methods in our
exploratory experiment. According to those results, complete linkage performs
well because it is conservative in producing clusters and does not tend to generate
a biased large cluster. In complete linkage, the similarity between the clusters
CL1, CL2 is evaluated by considering the two most dissimilar elements as follows:
minCi,j∈CL1,C

′
i,j∈CL2

sim(Ci,j , C
′
i,j).

Initially, each entity pair forms its own cluster. Then the clustering algorithm
repeats the step that merges the two most similar clusters still available until
the cluster quality drops below a predefined threshold. The cluster quality is
evaluated according to two measures [17]: the respective degrees of similarity of
entity pairs within clusters and among clusters.

After the clustering process terminates and creates a certain number of clus-
ters, we extract the terms from a cluster as labels to describe the relations of
each entity pair in the cluster. This is based on the assumption that each cluster
represents a different relation and each entity pair in a cluster is an instance of
similar relation. The term relevancy, as a cluster label, is evaluated according
to a TFIDF-based measure in the same manner as weighting the terms in a
context model. However, in this process, the term frequency is determined for
all contexts of a cluster. The underlying idea is to extract terms that appear
in the cluster, but which do not appear in other clusters. With a cluster CL’s
labels l1, ..., ln scored according to the term relevancy, an entity pair, ei and ej ,
that belongs to the CL can be regarded as holding the relations described by
l1, ..., ln.

3 Experiment

Using our proposed method, we extracted labels to describe relations of each
entity pair in a social network. We chose 143 distinct entity pairs (a politician
and a GPE) that comprise the social network shown in Fig. 1. The politicians
mainly include chiefs of state of Japan and other countries. The GPE includes
locations such as country, prefectural district, and city. Examples of entity pairs
are “Junichiro Koizumi – Japan”, “George W. Bush – United States of America”,
and “Shintaro Ishihara – Tokyo”.

We created a context model of each entity pair using nouns and noun phrases
from parts-of-speech (POS) surrounding entity pairs in a Web page. We exclude
stop words, symbols, and highly frequent words. For each entity pair, we download



Extracting Relations in Social Networks from the Web 495

Table 2. Manually assigned relation labels of entity pairs of “Junichiro Koizumi –
Japan”, “George W. Bush – United States of America”

Junichiro Koizumi-Japan prime minister
George W. Bush – United States of America president, chief of state

the top 100 web pages in the process of collecting co-occurrence information for
extraction of social network. For the context size, we used two parameters, m and
n, as explained in Sect. 2.4. As a baseline of the context size, we assigned 10 and
5, respectively, to m and n.

We used complete-linkage agglomerative clustering to cluster all entity pairs.
Thereby, we created five distinct clusters according to the predefined thresholds
of two quality measures within the clusters and among the clusters, as explained
in Sect. 2.5. To evaluate the clustering results and the extracted labels, two
human subjects analyzed the context terms of each entity pair and manually
assigned the relation labels (three or fewer possible labels for each). Examples
of manually assigned relation labels of the entity pair of “Junichiro Koizumi –
Japan”, “George W. Bush – United States of America” are shown in Table 2.
Then, a cluster label was chosen as the most frequent term among the manually
assigned relation labels of entity pairs in the cluster. The manually assigned
relation labels are used as ground truth in the subsequent evaluation stage.

In Table 3 5, the left column shows the label of each cluster. The right column
shows the highly scored terms that are extracted automatically from each cluster.
They can be considered as the labels that describe relations of each entity pair
in the cluster. The terms are sorted by relevancy score.

4 Evaluation

We first evaluated the clustering results. For each cluster cl, we counted the
number of entity pairs EPcl,correct whose manually assigned relation labels in-
cluded the label of cluster cl. We also counted the entity pairs EPcl,total in the
cluster cl. Next, for each relation label l, we counted the number of entity pairs
EPl,correct that have the relation label l whose cluster label is l. We also counted
the entity pairs EPl,total that have the relation label l. Then, precision and recall
of the cluster were calculated as:

precision = Σcl∈CL
EPcl,correct

EPcl,total
, recall = Σl∈L

EPl,correct

EPl,total
.

According to precision and recall, we evaluated clusters based on the F measure
as F = 2 ∗ precision ∗ reall/(precision + recall).

The graph depicted in Fig. 3 shows that the clustering results vary depending
on the context size. Consequently, to find the optimal context size, we calculate
5 In our experiment, we mainly used Web pages in Japanese. Therefore, keywords in

the table are translated from their original Japanese.



496 J. Mori et al.

Table 3. Cluster label and automatically extracted relation labels from a cluster

1 mayor mayor, citizen, hosting, president, affairs,
officer, matter, answer, city, conference

2 president president, administration, world, Japan, economics,
policy, war, principle, politics, Iraq

3 prime minister prime minister, administration, politics, article,
election, prime minister, government, peace

4 governor prefectural governor, governor, president, prefectural-
government, committee, Heisei, prefectural administration,
mayor, comment, prefectural assembly

5 congressional congressional representative, election,
representative Liberal Democratic Party, candidate, lower house,

Democratic Party, proportional representation

the F-measure by changing two size parameters: m and n. Expanding the con-
text size from the minimum, the F-measure takes an optimal value when m is
around 30 and n is around 10 (Fig. 3 and Table 4) . We employed this optimal
context size to extract the relation labels in our experiment. After reaching the
peak, the value of the F-measure decreases as the context size increases. The
wider context window tends to include noise terms that are not appropriate to
represent the context, thus rendering the similarity calculation between the con-
texts irrelevant. The optimal context size depends on the structural nature of
language. Consequently, we must choose the context size carefully when applying
our methods to a different language.

To evaluate the automatically extracted relation labels, we compared the clus-
ter label (left column of Table 3) with the automatically extracted relation labels
(right column of Table 3). We found that the relation label that has the highest
score is equal to the corresponding cluster’s relation label. Precision of the clus-
tering results in our experiment is quite high, as shown above. Therefore, we can
say that each entity pair in a cluster is represented properly by the highest-scored
relation label from the cluster. In addition, if we examine other automatically
extracted relation labels, we find that various terms that represent the relations
are extracted.

5 Related Work

Aiming at extracting underlying relations in social networks from the Web, our
method is related closely to existing extraction methods of social networks. Sev-
eral studies have addressed extraction of social networks automatically from vari-
ous sources of information such as the Web, e-mail, and contacts [6,7,8,9,4]. While
most approaches for social network extraction have focused on the strength of the
relation, few studies have addressed automatic identification of underlying rela-
tions. Matsuo et al. employed a supervised machine learning method to classify
four types of relations in a research community [5]. There have also been several
important works that have examined supervised learning of relation extraction



Extracting Relations in Social Networks from the Web 497

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 5  10  15  20  25  30  35  40  45

av
er

ag
ed

 F
 m

ea
su

re
 

window size (the number of POS)

window size between entities
window size at sides of entities

Fig. 3. F measure of clustering results vs. Context window size with two parameters:
one is the number of intervening terms between entities and another is the number of
words to the left and right of either entity

Table 4. Clustering performance in parameters of context window size with two pa-
rameters: m and n

Context window size n, m Precision Recall F-measure
n = 10, m = 30 0.992 0.995 0.994
n = 5, m = 10 0.88 0.85 0.86
All terms in a Web page 0.76 0.677 0.716

in the field of natural language processing and information extraction [18,19,20].
However, a supervised method requires large annotated corpora, which cost a
great deal of time and effort. In addition, it is necessary to know the domain spe-
cific knowledge to define extracted relations a priori. Our method is fully unsuper-
vised and requires no annotated corpora. Furthermore, our method works domain
independently and requires no pre-defined relations. For further improvement of
our method, it might be worth considering exploitation of weakly supervised and
bootstrapping methods [21,22] that rely on a small set of pre-defined initial seeds
instead of a large annotated corpus.

Because recent studies have shown that social networks greatly contribute to
ontology extraction [2], identifying underlying relations is important for ontol-
ogy development. Currently, several studies are examining the use of relation
extraction for ontology learning and population [23]. Although ontology learn-
ing and population share the common goal of facilitating ontology construction,
they differ slightly. Whereas ontology learning mainly addresses extraction of
taxonomic relations among concepts, the goal of ontology population is extrac-
tion of non-taxonomic relations among instances of concepts [24]. In our case,
because the labels (non-taxonomic relations) of relations are assigned to pairs
of entities of social networks (relation instances), our work can be regarded as a
specific case of ontology population in the context of social networks.



498 J. Mori et al.

Relation extraction for ontology population is typically an unsupervised ap-
proach. Because ontology population is usually intended to extract information
about instances from large and heterogeneous sources such as the Web, a fully
supervised approach that assumes numerous training instances is not feasible for
large-scale exploitation, as pointed out in some precedent studies [25]. Therefore,
several studies have exploited unsupervised or semi-supervised approaches. Par-
ticularly, the current approaches for relation extraction in ontology population
are classifiable into two types: those that exploit certain patterns or structures,
and those that rely on contextual features.

Pattern-based approaches [26,27,28] seek phrases or sentence structures that
explicitly show relations between instances. However, most Web documents have
a very heterogeneous structure, even within individual web pages. Therefore, the
effectiveness of the pattern-based approach depends on the domain to which it is
applied. Rather than exploiting patterns or structures, context-based approaches
[29,30,31] assess contextual syntactic, semantic, and co-occurrence features. Sev-
eral studies have employed contextual verb arguments to identify relations in
text [29,31], assuming that verbs express a relation between two ontology classes
that specify a domain and range. Although verbs are relevant features to iden-
tify relations, we assume that syntactic and dependency analyses are applicable
to text collections. Because the Web is highly heterogeneous and often unstruc-
tured, syntactic and dependency structures are not always available. For that
reason, we employed a contextual model that uses a bag-of-words to assess con-
text. Therefore, the method is applicable to any unstructured documents in the
Web. As shown in our experiment, the simple context model performed well to
extract descriptive relation labels without depending on any syntactic features
in text.

Aiming at extraction of the relation labels in automatically extracted social
network from the Web, our method is a Web mining method. Recent approaches
of Web mining toward the Semantic Web use the Web as a huge language corpus
and combine it with a search engine. This trend is observed not only in recent
social network extraction [4,5] but also in ontology population for entities [32,33]
and relations [27,34]. The underlying concept of these methods is that it uses
globally available Web data and structures to annotate local resources semanti-
cally to bootstrap the Semantic Web. In line with this, our approach utilizes the
Web to obtain the collective contexts that engender extracting representative
relations in social network. As pointed in [35], we claim that relations should be
defined not by local information, but rather by a global viewpoint of a network
composed of individual relations.

6 Conclusions and Future Work

We propose a method that automatically extracts labels that describe relations
between entities in social networks. The proposed method is entirely unsuper-
vised and domain-independent; it is easily incorporated into existing extraction
methods of social networks.



Extracting Relations in Social Networks from the Web 499

Future studies will explore the possibilities of extending the proposed method
to relations in other types of social networks. Enriching social networks by adding
relation labels, our method might contribute to several social network applica-
tions such as finding experts and authorities, trust calculation, community-based
ontology extraction, and end-user ontology.

References

1. Golbeck, J., Hendler, J.: Accuracy of metrics for inferring trust and reputation in
semantic web-based social networks. In: Proceedings of the 14th International Con-
ference on Knowledge Engineering and Knowledge Management (EKAW). (2004)

2. Mika, P.: Ontologies are us: A unified model of social networks and semantics. In:
Proceedings of the 4th International Semantic Web Conference (ISWC). (2005)

3. Brickley, D., Miller, L.: Foaf vocabulary specification. namespace document. (2005)
4. Mika, P.: Flink:semantic web technology for the extraction and analysis of social

networks. Journal of Web Semantics 3(2) (2005)
5. Matsuo, Y., Mori, J., Hamasaki, M., Ishida, K., Nishimura, T., Takeda, H.,

Hashida, K., Ishizuka, M.: Polyphonet: An advanced social network extraction
system. In: Proceednings of the 15th International Word Wide Web Conference
(WWW). (2006)

6. Kautz, H., Selman, B., Shah, M.: The hidden web. AI Magazine 18(2) (1997)
27–36

7. Adamic, L.A., Adar, E.: Friends and neighbors on the web. Social Networks 23(3)
(2003)

8. Harada, M., Sato, S., Kazama, K.: Finding authoritative people from the web. In:
Proceedings of the Joint Conference on Digital Libraries (JCDL). (2004)

9. Culotta, A., Bekkerman, R., McCallum, A.: Extracting social networks and contact
information from email and the web. In: Proceedings of the 1st Conference on Email
and Anti-Spam (CEAS). (2004)

10. Scott, J.: Social Network Analysis: A Handbook. Sage Publications, London (2000)
11. Wasserman, S., Faust, K.: Social network analysis. Methods and Applications.

Cambridge University Press, Cambridge (1994)
12. Grefenstette, G.: Explorations in Automatic Thesaurus Construction. Kluwer

(1994)
13. Lin, D.: Automatic retrieval and clustering of similar words. In: Proceedings of

COLING-ACL98. (1998)
14. Schutze, H.: Automatic word sense dicrimination. Computational Linguistics 24(1)

(1998)
15. Harris, Z.: Mathematical Structures of Language. Wiley (1968)
16. Raghavan, V., Wong, S.: A critical analysis of vector space model for information

retrieval. Journal of the American Society for Information Retrieval 35(5) (1998)
17. Kannan, R., Vempala, S., Vetta, A.: On clustering: Good, bad and spectral. Com-

puter Science (2000)
18. Zelenko, D., Aone, C., Richardella, A.: Kernel methods for relation extraction.

Machine Learning Research 2003(2) (2003)
19. Culotta, A., Sorensen, J.: Dependency tree kernel for relation extraction. In:

Proceedings of the 42nd Annual Meeting of the Association for Computational
Linguistics (ACL). (2004)



500 J. Mori et al.

20. Kambhatla, N.: Combining lexical, syntactic, and semantic features with maximum
entropy models for extracting relations. In: Proceedings of ACL. (2004)

21. Brin, S.: Extracting patterns and relations from the world wide web. In: Pro-
ceedings of the WebDB Workshop at 6th International Conference on Extending
Database Technology (EDBT). (1998)

22. Agichtein, E., Gravano, L.: Extracting relations from large plain-text collec-
tions. In: Proc. of the 5th ACM International Conference on Digital Libraries
(ACMDL00). (2000) 85–94

23. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology Learning from Text: Methods,
Evaluation and Applications. IOS Press, Amsterdam (2005)

24. Maedche, A.: Ontology Learning for the Semantic Web. Kluwer (2002)
25. Cimiano, P.: Ontology learning and populations. In: Proceedings of the Dagstuhl

Seminar Machne Learning for the Semantic Web. (2005)
26. Velardi, P., Navigli, R., Cuchiarelli, A., Neri, F.: Evaluation of ontolearn, a method-

ology for automatic population of domain ontologies. In: P. Cimiano, and B.
Magnini, editors, Ontology Learning from Text: Methods, Applications and Eval-
uation. IOS Press. (2005)

27. Geleijnse, G., Korst, J.: Automatic ontology population by googling. In: Pro-
ceedings of the 17th Belgium-Netherlands Conference on Artificial Intelligence
(BNAIC). (2005)

28. Ciravegna, F., Chapman, S., Dingli, A., Wilks, Y.: Learning to harvest informa-
tion for the semantic web. In: Proceednings of the 1st European Semantic Web
Symposium. (2004)

29. Kavalec, M., Maedche, A., Svatek, V.: Discovery of lexical entries for non-
taxonomic relations in ontology learning. In: Van Emde Boas, P., Pokorny,
J.,Bielikova, M.,Stuller, J. (eds.). SOFSEM 2004. (2004)

30. Cimiano, P., Volker, J.: Towards large-scale open-domain and ontology-based
named entity classification. In: Proceedings of the International Conference on
Recent Advances in Natural Language Processing (RANLP). (2005)

31. Schutz, A., P.Buitelaar: Relext: A tool for relation extraction from text in ontology
extension. In: Proceedings of the 4th International Semantic Web Conference
(ISWC). (2005)

32. Cimiano, P., Ladwig, G., Staab, S.: Gimme’ the context: Context-driven automatic.
semantic annotation with c-pankow. In: Proceednings of the 14th International
Word Wide Web Conference (WWW). (2005)

33. Etzioni, O., Cafarella, M., Downey, D., Kok, S., Popescu, A., Shaked, T., Soderland,
S., Weld, D., Yates, A.: Web-scale information extraction in knowitall(preliminary
results). In: Proceednings of the 13th International Word Wide Web Conference
(WWW). (2004)

34. Boer, V., Someren, M., Wielinga, B.: Extracting instances of relations from web
documents using redundancy. In: Proceedings of the 3rd European Semantic Web
Conference (ESWC). (2006)

35. Matsuo, Y., Hamasaki, M., Takeda, H., Mori, J., Danushka, B., Nakamura, H.,
Nishimura, T., Hashida, K., Ishizuka, M.: Spinning multiple social network for
semantic web. In: Proceedings of the 21st National Conference on Artificial Intel-
ligence (AAAI). (2006)



Can OWL and Logic Programming
Live Together Happily Ever After?

Boris Motik1, Ian Horrocks1,
Riccardo Rosati2, and Ulrike Sattler1

1 University of Manchester, Manchester, UK
2 Università di Roma “La Sapienza”, Rome, Italy

Abstract. Logic programming (LP) is often seen as a way to overcome
several shortcomings of the Web Ontology Language (OWL), such as the
inability to model integrity constraints or perform closed-world querying.
However, the open-world semantics of OWL seems to be fundamentally
incompatible with the closed-world semantics of LP. This has sparked a
heated debate in the Semantic Web community, resulting in proposals for
alternative ontology languages based entirely on logic programming. To
help resolving this debate, we investigate the practical use cases which
seem to be addressed by logic programming. In fact, many of these re-
quirements have already been addressed outside the Semantic Web. By
drawing inspiration from these existing formalisms, we present a novel
logic of hybrid MKNF knowledge bases, which seamlessly integrates OWL
with LP. We are thus capable of addressing the identified use cases with-
out a radical change in the architecture of the Semantic Web.

1 Introduction

In the past couple of years, a significant body of Semantic Web research was
devoted to defining a suitable language for ontology modeling. In 2004, this
endeavor resulted in the Web Ontology Language (OWL). OWL is based on
Description Logics (DLs) [1]—a family of knowledge representation formalisms
based on first-order logic and exhibiting well-understood computational prop-
erties. OWL has been successfully applied to numerous problems in computer
science, such as information integration or metadata management. Prototypes
of OWL reasoners,1 such as RACER, FaCT++, Pellet, or KAON2, have been
implemented and applied in research projects; commercial implementations and
projects using them are currently emerging.

However, the experience in building practical applications has revealed sev-
eral shortcomings of OWL. For example, OWL does not allow for integrity con-
straints or closed-world reasoning. Rule-based formalisms grounded in logic
programming have repeatedly been proposed as a possible solution, so adding
a rule layer on top of OWL is nowadays seen as a central task in the develop-
ment of the Semantic Web language stack. The Rule Interchange Format (RIF)

1 A list of reasoners is available at http://www.cs.man.ac.uk/∼ sattler/reasoners.html.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 501–514, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



502 B. Motik et al.

working group2 of the World Wide Web Consortium (W3C) is currently working
on standardizing such a language.

Responding to popular demand, the Semantic Web Rule Language (SWRL)
was proposed in [13]. However, as the authors point out, SWRL is a sim-
ple extension of OWL with material (first-order) implication and, due to the
straightforward way in which the rules are integrated with OWL, it is triv-
ially undecidable. Furthermore, SWRL was designed as a first-order language,
so it does not address nonmonotonic reasoning tasks, such as expressing in-
tegrity constraints. OWL and SWRL were criticized on these accounts in [4],
and an alternative ontology language OWL-Flight, based entirely on logic pro-
gramming, was proposed. In [14], the authors go even further by saying that
a true rule formalism grounded in logic programming is intrinsically incom-
patible with OWL. They propose to change the layering architecture of the
Semantic Web: instead of building rules on top of OWL, they propose OWL
and rules to exist side-by-side, with semantic interoperability grounded in De-
scription Logic Programs (DLP) [11]—a straightforward intersection of DLs
and LP. Furthermore, the authors propose the Web Service Modeling Language
(WSML) [3] or F-Logic [15] as suitable ontology languages based on logic pro-
gramming. These approaches were criticized in [12] on the grounds that sep-
arating OWL and rules creates two Semantic Webs with little or no semantic
interoperability.

To help in resolving this debate, in Section 3 we investigate the practical
use cases which are difficult or impossible to realize in OWL, but seem to be
addressed by logic programming. These use cases are not novel to knowledge
representation: numerous formalisms addressing different subsets of these re-
quirements have already been developed, so we present an overview of the most
relevant ones in Section 4. Many existing proposals are based on description
logics, so analyzing them provides valuable insights into integrating logic pro-
gramming with OWL without sacrificing backwards compatibility.

By combining the ideas from the existing formalisms with the principles of
logic programming, we developed a novel formalism of hybrid MKNF knowl-
edge bases, which we overview in Section 5. This formalism, based on the logic
MKNF by Lifschitz [18], is fully compatible with both OWL and logic pro-
gramming, and thus addresses the identified use cases without sacrificing back-
wards compatibility. Because it subsumes logic programming, our logic pro-
vides a foundation for integrating OWL with languages such as WSML and
F-Logic. Thus, it is possible to obtain a coherent stack of logical languages
without establishing the “twin towers of the Semantic Web” [12], and our for-
malism provides a framework for integrating several proposals considered within
RIF.

Due to space constraints, we present hybrid MKNF knowledge bases only
at a high level by means of an example. For precise definitions and decision
procedures, please refer to [19].
2 http://www.w3.org/2005/rules/



Can OWL and Logic Programming Live Together Happily Ever After? 503

2 Preliminaries

2.1 The OWL Family of Languages

OWL is actually a family of three ontology languages: OWL-Lite, OWL-DL,
and OWL-Full. The first two languages can be considered syntactic variants
of the SHIF(D) and SHOIN (D) description logics, respectively, whereas the
third language was designed to provide full compatibility with RDF(S). We focus
mainly on the first two variants of OWL because OWL-Full has a nonstandard
semantics that makes the language undecidable and therefore difficult to imple-
ment. OWL comes with several syntaxes, all of which are rather verbose. Hence,
in this paper we use the standard DL syntax, which we overview next. For a full
introduction to the syntax and the semantics of DLs, please refer to [1].

The main building blocks of DL knowledge bases are concepts (or classes),
representing sets of objects, roles (or properties), representing relationships be-
tween objects, and individuals, representing specific objects. Concepts such as
Person are atomic. Using a rich set of concept constructors, one can construct
complex concepts, which describe the conditions on concept membership. For
example, the concept ∃hasFather .Person describes those objects that are re-
lated through the hasFather role with an object from the concept Person . A
DL knowledge base O typically consists of a TBox T and an ABox A. A TBox
contains axioms about the general structure of all allowed worlds, and is there-
fore akin to a database schema. For example, the TBox axiom (1) states that
each instance of the concept Person must be related by the role hasFather with
an instance of the concept Person . An ABox contains axioms that describe the
structure of a particular world. For example, the axiom (2) states that Peter is
a Person , and (3) states that Paul is a brother of Peter .

Person 
 ∃hasFather .Person(1)
Person(Peter)(2)

hasBrother (Peter ,Paul)(3)

A DL knowledge base can be given semantics by translating it into first-order
logic with equality. Atomic concepts are translated into unary predicates, com-
plex concepts into formulae with one free variable, and roles into binary predi-
cates. The basic reasoning problems for OWL are checking if an individual a is
an instance of a concept C (written O |= C(a)) or if the a concept C is subsumed
by another concept D (written O |= C 
 D). These problems are decidable for
OWL-Lite and OWL-DL in ExpTime and NExpTime, respectively.

The concept-centric style of modeling endorsed by OWL has proven to be
particularly suitable for modeling taxonomic knowledge. Furthermore, the open-
world semantics of OWL grounded in first-order logic allows one to state general
truths, and not only statements about known objects. In fact, in OWL one can
introduce new, unknown individuals to express such truths, which provides an
elegant way of modeling incomplete information.



504 B. Motik et al.

2.2 Logic Programming

Logic programming (LP) is a family of KR formalisms centered around the
notion of rules—statements of the following form:

H ← B+
1 , . . . , B+

n ,notB−
1 , . . . ,notB−

k(4)

Different semantics for LP have been considered in practice, with stable models
[9] being the most widely accepted one: a set of atoms M is a stable model of
a set of rules P if it is the minimal model of a program PM , where the latter
is obtained by replacing each atom notB−

i with its value in M . A set of rules
P can have zero, one, or several stable models, and checking satisfiability of P
is an NP-complete problem, assuming P is function-free. Numerous variants of
these basic formalisms have been considered, such as rules with disjunctions in
the rule heads or extensions with classical negation; a combination of these two
features is commonly known as answer set programming [10].

F-Logic [15] is a language layered on top of logic programming, providing
object-oriented primitives for modeling concept hierarchies, concept instantia-
tion, relationships between individuals, and inheritance. For execution, F-Logic
theories can be compiled into logic programming; hence, the relationship between
F-Logic and LP is somewhat similar to the relationship between C++ and as-
sembler. OWL-Flight [4] and the Web Service Modeling Language (WSML) [3]
are other notable object-oriented front-ends for logic programming.

Logic programming partly evolved as an extension of relational databases with
deductive features. Therefore, LP typically focuses on efficient query answering
over a bounded data set, and is often used in data-intensive applications that
require managing large amounts of data. With the introduction of answer set
programming, LP is increasingly seen as a general problem-solving formalism,
capable of succinctly expressing hard computational problems.

3 Why Integrate OWL with Logic Programming?

In this section we motivate the need for integrating OWL and LP. In particular,
we present several important modeling problems that are hard, if not impossible
to solve using OWL alone, but can easily be addressed using logic programming.

Higher Relational Expressivity. OWL provides a rich set of primitives for ex-
pressing concepts; however, the set of primitives regarding roles is often not
sufficient for practical applications. Roughly speaking, OWL can model only
domains where objects are connected in a tree-like manner; however, many real-
world applications require modeling general relational structures. For example,
saying that “an uncle of a person is a brother of that person’s father” requires
expressing a triangle between the person, the father, and the uncle. An in-depth
discussion about the relational expressivity of OWL can be found in [20].



Can OWL and Logic Programming Live Together Happily Ever After? 505

Polyadic Predicates. The basic modeling constructs of OWL are concepts and
roles, which correspond to unary and binary predicates. However, many relation-
ships encountered in practice are of arity larger than two. For example, flight
connections between cities together with the airline providing the service can
naturally be represented using a ternary predicate, so flight(MAN ,STR,HLX )
might mean that HLX offers flights between Manchester and Stuttgart.

Closed-World Reasoning. Consider an OWL knowledge base O containing an
assertion flight(a, b) for each pair of cities connected by a flight. Due to the
open-world semantics of OWL, we can use O to answer positive queries—that
is, queries about which cities are connected by a flight. However, we cannot use
O to answer negative queries: O does not contain explicit information about
not connected cities, so, for each c and d, we have O �|= ¬flight(c, d). Answering
queries about negative information in an intuitive way usually requires some
form of closed-world reasoning.

The difference between open- and closed-world reasoning can be intuitively
described as follows. In first-order logic, if a fact α holds only in a subset of the
models of O, then we can conclude neither O |= α nor O �|= α; in a way, O
is underspecified with respect to α. In contrast, closed-world formalisms make
the common-sense conjecture that all relevant information is explicitly known,
so all unprovable facts should be assumed not to hold in O. Hence, closed-world
reasoning can be understood as reasoning where O �|= α implies O |= ¬α.

The requirement for closed-world reasoning comes in practice in two distinct
forms. Certain applications require only closed-world querying of open-world
knowledge bases. A closed-world query language can be layered on top of OWL
without changing the semantics of OWL itself.

Alternatively, closed-world reasoning can be integrated into the reasoning
process itself. For example, after determining that c and d are not connected
by a flight, a travel planning application might check for a train connection.
This is usually enabled through a form of default or weak negation, commonly
denoted with not. Default negation is closely related to closed-world reasoning:
intuitively, from O �|= α one concludes O |= notα. Unlike a closed-world query
language, default negation must be built into the foundations of the knowledge
representation formalism, affecting its semantics significantly.

We point out two common misconceptions about closed-world reasoning. The
first one is that closed-world reasoning can be emulated within first-order logic
by specifying complete information—for example, using a form of role closure.
The following axiom states that flights exist only between cities a and b, and b
and c, thus making the role flight closed:

∀x, y : flight(x, y) ↔ (x ≈ a ∧ y ≈ b) ∨ (x ≈ b ∧ y ≈ c)(5)

Assuming that O contains only (5), we can now conclude O |= ¬flight(a, d),
so role closure seems to solve the problem. However, such a solution is not
satisfactory since it does not provide the required support for inferencing. For
example, it is natural to query O for nondirect flights between cities—that is,



506 B. Motik et al.

to query the transitive closure of flight . A natural solution is to add a transitive
role anyLengthFlight and the axiom flight 
 anyLengthFlight . However, O can
again answer only positive queries, since we did not say that anyLengthFlight is
a minimal transitive relation containing flight . In fact, transitive closure is not
axiomatizable in first-order logic, so answering our (quite natural) query requires
some form of closed-world, non-first-order reasoning.

Furthermore, closed-world reasoning is often confused with closed-domain rea-
soning. Consider a knowledge base O containing axioms (1)–(3). Axioms (1) and
(2) state that Peter has a father without saying who the father is. The only per-
sons known in O are Peter and Paul , but in open-domain reasoning the unnamed
father of Peter is not required to be either of them: the existential quantifier in
(1) can refer to an object not explicitly mentioned by name. However, the fact
that the existential quantifier makes the domain of the ontology open is unre-
lated to the problems of open- or closed-world reasoning. As explained earlier,
closed-world reasoning is about drawing common-sense conjectures regarding ex-
plicit or implicit objects; it has nothing to do with the ability to refer to new
individuals. In fact, closing the domain of O can be done without leaving first-
order logic, by including the axiom � 
 {Peter ,Paul}. Now, the father of Peter
is either Paul or Peter (note that we did not say that fatherhood is acyclic), so
the domain of O is closed. However, closing the domain does not provide any
new default consequences. For example, the sex of Peter has not been explic-
itly specified, so O �|= Man(Peter) and O �|= ¬Man(Peter). It is also possible to
combine closed-world reasoning with the ability to refer to unknown individuals.
For example, if we additionally state that Peter , Paul , and the unnamed father
are different objects, by closed-world reasoning we can deduce that the domain
contains exactly three objects, even though only two individuals are known by
name. The domain in this example is open in the (weaker) sense that it is not
restricted to named individuals.

Integrity Constraints. In OWL, domain and range restrictions constrain the type
of objects that can be related by a role. For example, (6) states that fatherhood
is defined only for persons and animals. Also, participation restrictions specify
that certain objects have relationships to other objects. For example, (7) states
that each person has a social security number.

∃hasFather .� 
 Person �Animal(6)
Person 
 ∃hasSSN .SSN(7)

Under standard first-order semantics, (6) and (7) imply new facts: from O =
{hasFather (Peter ,Paul), Person(Ann)}, we conclude Person � Animal(Peter)
and that Ann has a social security number (we do not know which one).

Axioms (6) and (7) describe the structure of the world being modeled. How-
ever, one often wants to describe the required structure of the knowledge base. In
traditional object-oriented modeling, (6) means “fatherhood can be stated only
for objects known to be persons or animals”; similarly, (7) means “a social secu-
rity number must be known for each person.” Under such an interpretation, the



Can OWL and Logic Programming Live Together Happily Ever After? 507

axioms (6) and (7) would be interpreted as integrity constraints. Now O would
invalidate the integrity constraints, since it is incomplete. It is well-known that
integrity constraints cannot be realized within first-order logic [22].

Modeling Exceptions. Exceptions abound in the natural world. For example,
most people have the heart on the left, but some people (called dextrocar-
diacs) have it on the right side of the body. Such a domain cannot be mod-
eled in OWL: the axioms Human 
 HeartOnLeft , Dextrocardiac 
 Human, and
Dextrocardiac 
 ¬HeartOnLeft make the concept Dextrocardiac unsatisfiable. To
enable exception modeling, one must go beyond first-order logic and apply a non-
monotonic formalism, usually involving some form of default negation.

One might argue that exceptions should be handled extralogically: one could
preprocess a knowledge base and add an assertion HeartOnLeft(α) to each object
α that is provably a Human and not an Dextrocardiac. However, this solution is
far from ideal. The preprocessing algorithm would be defined in an ad-hoc way,
thus destroying the well-defined semantics—something deemed to be a crucial
feature of OWL. Also, it would be difficult to describe the interaction between
preprocessing and the actual reasoning. Nonmonotonic formalisms provide a
coherent framework for studying such issues.

4 Existing Solutions to the Problems Mentioned

The use cases from Section 3 are not novel to knowledge representation, and
they have been addressed previously by different formalisms. Many of them are
based on DLs, so they provide important guidelines for integrating OWL with
logic programming without introducing backwards incompatibility.

4.1 First-Order Rule Formalisms for DLs

Many different proposals exist for extending DLs with first-order rules.3 The gen-
eral idea is quite simple: one allows for the axioms of the form H ← B1, . . . , Bn

where H (the rule head) and Bi (the rule body) can be of the form C(s) or
R(s, t), for C a concept, R a role, and s and t terms (i.e., variables or in-
dividuals). The rules are interpreted under standard first-order semantics as
∀x : H ∨ ¬B1 ∨ . . . ∨ ¬Bn, where x is the set of free variables of all H and Bi.
The Semantic Web Rule Language (SWRL) [13] was layered on top of OWL
based on these principles. The following rule models the relationship about un-
cles from Section 3:

hasUncle(x, z) ← hasFather (x, y), hasBrother (y, z)(8)

It is straightforward to extended SWRL with n-ary predicates, in which case one
usually distinguishes the DL-predicates (the predicates allowed to occur in DL
axioms) from the non-DL-predicates (the predicates occurring solely in rules).
3 Some authors insist on calling first-order rules clauses, reserving the term “rules”

for nonmonotonic formalisms. This has not established itself in the Semantic Web.



508 B. Motik et al.

First-order extensions of DLs with rules are quite straightforward from the
standpoint of the semantics: the rules are actually standard first-order material
implications, just like standard DL inclusion axioms. All first-order properties,
such as contrapositive inferences, apply to the rules as well: from A(x) ← B(x)
and ¬A(a) we can derive ¬B(a).

Unfortunately, extending DLs with rules significantly affects the computa-
tional properties of the resulting formalism. In [17], it was shown that integrat-
ing recursive Horn rules with even moderately expressive DLs makes reasoning
undecidable. Hence, various syntactic restrictions on the rules and the DL have
been investigated to regain decidability. For example, CARIN [17] proposes role
safety, according to which at least one variable from a literal with a role predi-
cate must also occur in a non-DL-literal in the rule body. AL-log [6] and DL-safe
rules [20] explore a related notion, which was recently generalized in DL+log [23]
to weak safety: each variable from the rule head must occur in a non-DL-literal
in the rule body. Weakly safe rules can derive facts only about explicitly known
individuals; however, in contrast to AL-log and DL-safe rules, the body literals
of DL+log rules can be matched to existentially introduced individuals. Thus,
DL+log generalizes conjunctive queries over DL knowledge bases.

Note that the shortcomings in relational expressivity have been partially ad-
dressed in the DL SROIQ [16]. This logic extends OWL-DL with complex role
inclusion axioms, such as hasFather ◦ hasBrother 
 hasUncle , where ◦ stands
for role concatenation. To make reasoning decidable, these axioms must be reg-
ular—that is, compatible with a certain acyclic ordering. For example, the pre-
vious axiom alone is allowed, but it cannot be used together with the axiom
hasChild ◦ hasUncle 
 hasBrother , as this would create a cycle in the defini-
tions of hasBrother and hasUncle . We discuss the relationship between SROIQ
and rule-based solutions on an example in Section 5.

4.2 Autoepistemic Nonmonotonic Extensions of DLs

Many extensions of DLs with nonmonotonic features are based on autoepistemic
logics, as they allow for introspection—the ability to reason about one’s own
beliefs. In these proposals, DLs are extended with an autoepistemic knowledge
operator K, which can be applied to concepts and roles with an intuitive meaning
“is known to hold.” Consider again the example from Section 3 of asking whether
two cities are not connected by a flight: whereas O �|= ¬flight(c, d) holds due
to the open-world semantics of OWL, we have O |= ¬Kflight(c, d), intuitively
meaning that “c and d are not known to be connected by a flight.” A formula
Kα is true if α is true in each first-order model I of a knowledge base O.
Autoepistemic reasoning can be integrated with DLs in two distinct ways.

Epistemic Operators in Queries. An approach to autoepistemic querying of DL
knowledge bases4 was presented in [5], and it was recently generalized to the
4 Actually, a more general KR formalism was presented in [5], in which K can also

occur in the DL knowledge base. However, a reasoning algorithm has been presented
only for the case of ordinary knowledge bases and epistemic queries.



Can OWL and Logic Programming Live Together Happily Ever After? 509

Epistemic Query Language (EQL) [2]. We overview here EQL-Lite(Q)—a frag-
ment of EQL with favorable computational properties. Given a first-order DL
query language Q, EQL-Lite(Q) queries are first-order formulae built over the
atoms of the form K q, where q is a query expressed in the language Q. For
example, the cities not connected by a flight can be retrieved using the query
q[x, y] = ¬K q′[x, y], where q′[x, y] = hasFlight (x, y) is a first-order (conjunc-
tive) query. Since K can occur only in queries, the semantics of K is layered
on top of the standard DL semantics in a nonintrusive way. In fact, K can be
understood as the consequence operator, and EQL-Lite(Q) can be understood
as an algebra for manipulating first-order consequences of O.

Epistemic Operators in the Knowledge Base. Autoepistemic query languages
do not provide default negation or exception modeling; to enable such features,
autoepistemic reasoning must be tightly integrated with ordinary DL reason-
ing. This can be achieved by allowing K to occur in DL axioms. Usually, a
negation-as-failure operator not—intuitively understood as “can be false”—is
added as well. The first-order version of such a logic is known as the logic of min-
imal knowledge and negation-as-failure (MKNF) [18], and it generalizes several
important nonmonotonic formalisms, such as logic programming under stable
model semantics [9] and default logic [21].

Based on these principles, the authors extend in [7] the DL ALC with an
autoepistemic knowledge operator K and an autoepistemic assumption opera-
tor A (which is semantically equivalent to ¬not from the first-order MKNF).
The authors also present a decision procedure for an expressive fragment of this
logic. Such a logic elegantly addresses the problems from Section 3 related to non-
monotonic reasoning, while being fully compatible with the underlying semantics
of DLs. It clearly provides for closed-world querying, and A directly corresponds
to default negation. It also enables defining integrity constraints and provides for
exception modeling. For example, the problem of dextrocardiacs from Section 3
can be modeled as KHuman 	 ¬ADextrocardiac 
 KHeartOnLeft .

5 Integrating OWL and LP by Hybrid MKNF KBs

Related approaches presented in Section 4 may give us important clues on how
to seamlessly integrate OWL with logic programming. On the one hand, a rule
formalism layered on top of a DL may address the problems related to rela-
tional expressivity and the lack of polyadic predicates. On the other hand, the
autoepistemic extensions of DLs integrate closed- and open-world reasoning and
thus provide a common logical framework for nonmonotonic extensions of DLs.
By integrating these two formalisms, we have developed a novel approach that
can be used to seamlessly integrate any DL with LP-style rules. Due to space
constraints, we give here only a high-level overview of our proposal; for a com-
plete definition, complexity, and decision algorithms, please see [19].



510 B. Motik et al.

A hybrid MKNF knowledge base K consists of a knowledge base O in any
decidable description logic DL and a set P of MKNF rules of the following form:

KH1 ∨ . . . ∨ KHn ← KB+
1 , . . . ,KB+

m,notB−
1 , . . . ,notB−

k(9)

As in SWRL, Hi, B+
i , and B−

i are first-order atoms of the form P (t1, . . . , tn). For
P = ≈ or a predicate occurring in O, the atom is a DL-atom; otherwise, it is a
non-DL-atom. We assume that DL comes with an operator π that translates any
DL knowledge base O into a formula π(O) of first-order logic with equality. The
semantics of our formalism is defined by mapping K into the following first-order
MKNF formula,where x is the set of free variables of a rule r:

π(K) = Kπ(O) ∧
∧
r∈P

∀x : r

To obtain a logic with intuitive consequences, we make the standard names
assumption, which imposes certain restrictions on the models of π(K); for more
details, please refer to [19]. All inference problems for K, such as satisfiability or
entailment, are defined w.r.t. π(K) in the obvious way.

As we discuss in [19], such a formalism can fully capture the semantics of
SWRL and DL+log [23]. The only approach for combining (possibly nonmono-
tonic) rules with DLs that we are aware of and that cannot be captured using
hybrid MKNF rules is the one by Eiter et al. [8]

Similarly to related extensions of DLs with rules, our logic is undecidable in
the general case. We address this using the well-known concept of DL-safety: an
MKNF rule is DL-safe if each variable in the rule occurs in a non-DL-atom of
the form KA in the rule body. Notice that a rule r can automatically be made
DL-safe by appending to its body a special literal KO(x) for each variable x,
and by adding an assertion KO(α) for each individual α occurring in K. We shall
discuss the consequences of this transformation on the semantics of r shortly;
moreover, an in-depth discussion of this issue can be found in [20]. We believe
that our approach can easily be extended to handle weakly safe rules.

In [19] we present decision procedures for different types of rules. Further-
more, we analyze the data complexity of reasoning (the complexity under the
assumption that the TBox and the rules are fixed, but the ABox varies). As-
suming that reasoning in DL is data complete for NP (which is the case for
expressive DLs such as SHIQ), our logic has the same complexity as the cor-
responding fragment of logic programming. Furthermore, we identify fragments
with polynomial data complexity, which are particularly interesting for practice.

The semantics of hybrid MKNF knowledge bases exhibits two important prop-
erties. On the one hand, it is fully compatible with OWL: if P = ∅, then K |= α if
and only if O |= α for any first-order formula α. In other words, all standard DL
questions are answered in the usual way. On the other hand, MKNF is also fully
compatible with logic programming: in [18] it was shown that a disjunctive logic
program under stable model semantics is equivalent to the MKNF theory where
each rule is replaced by an MKNF implication (9). Hence, our formalism reduces
to logic programming for O = ∅. Function symbols are not allowed to occur in
the rules, since this would make query answering undecidable. However, from



Can OWL and Logic Programming Live Together Happily Ever After? 511

Table 1. A Hybrid MKNF Knowledge Base about Cities

(10) historicCity � ∃hasChurch .church Historic cities have churches.
(11) church � ∃designedBy .architect Churches are designed by architects.

(12)
K famousCitizen(x, z) ←

K hasChurch(x, y), K designedBy(y, z),
KO(x), KO(y), KO(z)

Architects are famous citizens in cities
where they build their churches.

(13) ∃famousCitizen.� � interestingCity Cities with famous people are interesting.
(14) historicCity(Barcelona) Barcelona is a historic city.
(15) hasChurch(Barcelona , SagradaFamilia) The famous church in Barcelona...
(16) designedBy(SagradaFamilia ,Gaudi) ...was designed by Antonio Gaudi.
(17) seasideCity � ∃hasRegion .beach Seaside cities have a beach.
(18) beach � recreational Beaches are for recreation.
(19) ∃hasRegion .recreational ≡ livableCity Livable cities provide for recreation.
(20) portCity(Barcelona) Barcelona is a city with a port.
(21) portCity(Hamburg) Hamburg is a city with a port.
(22) ¬seasideCity(Hamburg) Hamburg is not a seaside city.

(23) KDesignOK(x) ← K designedBy(x, y),
KO(x), KO(y) Auxiliary for the following rule.

(24) ← K church(x), notDesignOK(x), KO(x) Each church must have an architect.
(25) church(HolyFamily) Holy Family is a church.
(26) HolyFamily ≈ SagradaFamilia Definition of synonyms.
(27) ¬seasideCity ≡ notSC An atomic name for ¬seasideCity .

(28) K seasideCity(x) ←
K portCity(x), not notSC (x), K O(x) Port cities are usually at the seaside.

(29) KSuggest(x) ←
K livableCity(x), K historicCity(x) Suggest to visit livable and historic cities.

(30) ¬livableCity ≡ notLivableCity An atomic name for ¬livable.

(31) KConsider(x) ←
notnotLivableCity(x), KO(x)

Take cities that are not known to be
unlivable into consideration as well.

Note: DL-predicates start with a lowercase, and non-DL-predicates with an uppercase
letter. There is an assertion O(α) for each object α.

the standpoint of the semantics, extending the formalism with function symbols
is straightforward, and identifying decidable fragments is an interesting topic for
future research. Finally, MKNF rules can also be used to integrate OWL with
languages providing an object-oriented view over logic programming, such as
F-Logic or WSML.

At first glance, our proposal may seem to be difficult to use and understand.
However, we believe MKNF rules to be quite intuitive: just read KA as “A is
known to hold” and notA as “it is possible for A not to hold.” We demonstrate
this on the following example, which also shows how MKNF rules address the
requirements from Section 3. Imagine a system helping us to decide where to go
on holiday, based on the tourism ontology K shown in Table 1.

The impact of DL-safety is demonstrated by axioms (10)–(13). By (10) and
(11), each historic city α has at least one church β, which has at least one
architect γ. By (12), γ is a famous citizen of α so, by (13), α is an interest-
ing city. Now if (12) were a normal (non-DL-safe, first-order) rule, one might
perform this inference for any individuals α, β, and γ, which would thus im-
ply K |= historicCity 
 interestingCity . However, (12) is DL-safe—all variables
occur in an atom with the predicate O. Hence, it is applicable only to the individ-
uals known in the ABox by name, and not to those introduced by the existential



512 B. Motik et al.

quantifier, so we cannot conclude that interestingCity subsumes historicCity .
Note that (12) could be stated in SROIQ using a “non-DL-safe” role inclusion
axiom, and this would correctly imply the subsumption relationship.

Whereas making rules DL-safe usually restricts the subsumption inferences,
it typically has less impact on ABox query answering. Namely, (14)–(16) specify
the names of a church in Barcelona and its architect. All variables in (12) can
now be bound to known individuals, so K |= famousCitizen(Barcelona ,Gaudi);
by (13), we derive K |= interestingCity(Barcelona). Hence, DL-safety is a com-
promise that provides for ABox query answering at the expense of some sub-
sumption inferences if expressivity beyond SROIQ is needed, but without losing
decidability. DL-safety is crucial for nonmonotonic reasoning: without it, most
nonmonotonic logics with existential quantification are not even semidecidable.

Consider an integrity constraint requiring that an architect should be explic-
itly specified for each explicitly mentioned church. One might intuitively write
the rule ← K church(x),not designedBy (x, y),KO(x),K O(y) (paraphrased as
“it is an error to have a known church without a known designer”). However,
this rule is incorrect: all variables in rules are universally quantified, so this rule
requires each church to be connected through designedBy to each other object.
To formulate the integrity constraint correctly, we introduce the auxiliary rule
(23) which projects the variable y from designedBy(x, y), and then use the result
in (24) to identify the churches without a designer.

Nonmonotonic formalisms usually assume that distinct constants mean dif-
ferent things—a feature known as unique name assumption (UNA). Let us for
the moment assume that K does not contain (26). We would then intuitively
expect (24) to be violated, since the designer of HolyFamily has not been spec-
ified. However, without UNA, K would be satisfiable, and it would entail that
HolyFamily and SagradaFamilia are the same things. To avoid such counterin-
tuitive consequences, logic programming assumes UNA by default.

In contrast, OWL does not employ UNA: explicit equality statements can
be used to define synonyms. We integrate OWL with logic programming by
using the standard names assumption. Roughly speaking, we allow that two
individuals are equal only if there is explicit evidence for doing so. For more
information on this issue, please refer to [19]; we just note here that such a
semantics does not change any standard OWL consequences. Returning to our
example, we make HolyFamily and SagradaFamilia synonyms by (26), which
then makes (24) satisfied for (16) and (25).

Rule (28) asserts the common-sense knowledge that port cities are usually at
the seaside, allowing us to conclude K |= seasideCity(Barcelona). However, (28)
allows for exceptions: the atom notnotSC (x) basically says “if not proven not
to be at the seaside.” (Axiom (27) is needed because only atomic concepts can
occur in MKNF rules.) According to (22), Hamburg is an exception (it is located
on the river Elbe), so the default conclusion K |= seasideCity(Hamburg) of (28)
is suppressed, as it would lead to contradiction.

The rule (29) is intended as a query that suggests which cities to visit. Even
though the conclusion seasideCity(Barcelona) was derived by nonmonotonic



Can OWL and Logic Programming Live Together Happily Ever After? 513

reasoning, it implies further conclusions through monotonic reasoning. Namely,
axioms (17)–(19) imply K |= livableCity(Barcelona), which is derived by stan-
dard DL reasoning involving unnamed individuals (introduced by ∃hasRegion .
Beach). Hence, K |= Suggest(Barcelona).

Finally, (31) shows how default negation is layered over open-world seman-
tics. Intuitively, MKNF performs open- and closed-world inferences “in paral-
lel.” For example, K �|= livableCity(Hamburg) and K �|= ¬livableCity(Hamburg)
hold according to the usual DL semantics. By reformulating these questions
with closed-world interpretation in mind, we get K |= not livableCity(Hamburg)
(Hamburg is not known to be livable) and K |= notnotLivable(Hamburg) (Ham-
burg is not known not to be livable either). Hence, (31) allows us to conclude
Consider (Hamburg)—even though we do not know for sure that Hamburg is
a livable city, we do not know the opposite either, so it might still be worth
a visit. Intuitively speaking, the DL part of K is interpreted under open-world
semantics; however, K and not allow the user to put on “closed-world glasses”
and examine the nonmonotonic consequences of the DL part. By using these
consequences in rules, one can enforce new nonmonotonic conclusions.

6 Conclusion

Motivated by the ongoing controversy in the Semantic Web community about the
proper layering of a nonmonotonic rule formalism on top of OWL, we analyze the
shortcomings of OWL that are deemed to be solvable using logic programming.
Furthermore, we overview existing formalisms that address these requirements.
We thus gain insight into how OWL could be integrated with rules without
sacrificing semantic compatibility with either formalism.

By combining the ideas of SWRL and DL-safe rules with the approaches for
autoepistemic extensions of DLs, we propose a new formalism of hybrid MKNF
knowledge bases that seamlessly integrates OWL with logic programming. We
present the features of our formalism on a nontrivial example. Under the stan-
dard DL-safety assumption, our formalism is decidable, and its data complexity
is not higher than for plain logic programming. Therefore, our formalism pro-
vides a solid foundation for the integration of OWL and logic programming, as
well as a framework for integrating several considered proposals within RIF.

The main challenge for our future work is to implement our approach in the
KAON25 reasoner and thus validate the usefulness of our formalism in practice.

References

1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, ed-
itors. The Description Logic Handbook: Theory, Implementation and Applications.
Cambridge University Press, January 2003.

2. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Epistemic
First-Order Queries over Description Logic Knowledge Bases. In Proc. DL 2006,
Lake District, UK, May 30–June 1 2006.

5 http://kaon2.semanticweb.org/



514 B. Motik et al.

3. J. de Bruijn, H. Lausen, A. Polleres, and D. Fensel. The Web Service Modeling
Language: An Overview. In Proc. ESWC2006, Budva, Serbia and Montenegro,
June 11–14 2006. 590–604.

4. J. de Bruijn, A. Polleres, R. Lara, and D. Fensel. OWL DL vs. OWL Flight:
Conceptual Modeling and Reasoning on the Semantic Web. In Proc. WWW2005,
pages 623–632, Chiba, Japan, May 10–14 2005.

5. F. M. Donini, M. Lenzerini, D. Nardi, W. Nutt, and A. Schaerf. An Epistemic
Operator for Description Logics. Artificial Intelligence, 100(1–2):225–274, 1998.

6. F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf. AL-log: Integrating Datalog
and Description Logics. Journal of Intelligent Information Systems, 10(3), 1998.

7. F. M. Donini, D. Nardi, and R. Rosati. Description Logics of Minimal Knowledge
and Negation as Failure. ACM Transactions on Computational Logic, 3(2):177–225,
2002.

8. T. Eiter, T. Lukasiewicz, R. Schindlauer, and H. Tompits. Combining Answer Set
Programming with Description Logics for the Semantic Web. In Proc. KR 2004,
pages 141–151, Whistler, Canada, June 2–5, 2004 2004.

9. M. Gelfond and V. Lifschitz. The Stable Model Semantics for Logic Programming.
In Proc. ICLP ’88, pages 1070–1080, Seattle, WA, USA, August 15–19 1988.

10. M. Gelfond and V. Lifschitz. Classical Negation in Logic Programs and Disjunctive
Databases. New Generation Computing, 9(3–4):365–386, 1991.

11. B. N. Grosof, I. Horrocks, R. Volz, and S. Decker. Description Logic Programs:
Combining Logic Programs with Description Logic. In Proc. WWW 2003, pages
48–57, Budapest, Hungary, May 20–24 2003.

12. I. Horrocks, B. Parsia, P. F. Patel-Schneider, and J. Hendler. Semantic web ar-
chitecture: Stack or two towers? In Proc. PPSWR 2005, pages 37–41, Dagstuhl
Castle, Germany, September 11–16 2005.

13. I. Horrocks and P. F. Patel-Schneider. A Proposal for an OWL Rules Language.
In Proc. WWW 2004, pages 723–731, New York, NY, USA, May 17–22 2004.

14. M. Kifer, J. de Bruijn, H. Boley, and D. Fensel. A Realistic Architecture for the
Semantic Web. In Proc. RuleML 2005, pages 17–29, Galway, Ireland, 2005.

15. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-
based languages. Journal of the ACM, 42(4):741–843, 1995.

16. O. Kutz, I. Horrocks, and U. Sattler. The Even More Irresistible SROIQ. In Proc.
KR 2006, Lake District, UK, June 2–5 2006. 57–67.

17. A. Y. Levy and M.-C. Rousset. Combining Horn Rules and Description Logics in
CARIN. Artificial Intelligence, 104(1–2):165–209, 1998.

18. V. Lifschitz. Nonmonotonic Databases and Epistemic Queries. In Proc. IJCAI ’91,
pages 381–386, Sydney, Australia, August 24–30 1991.

19. B. Motik and R. Rosati. Closing Semantic Web Ontologies. Technical report,
University of Manchester, UK, 2006.
http://www.cs.man.ac.uk/∼ bmotik/publications/papers/mr06closing-report.pdf.

20. B. Motik, U. Sattler, and R. Studer. Query Answering for OWL-DL with rules.
Journal of Web Semantics, 3(1):41–60, 2005.

21. R. Reiter. A Logic for Default Reasoning. Artificial Intelligence, 13(1–2), 1980.
22. R. Reiter. What Should a Database Know? Journal of Logic Programming, 14

(1–2):127–153, 1992.
23. R. Rosati. DL + log: A Tight Integration of Description Logics and Disjunctive

Datalog. In Proc. KR 2006, pages 68–78, Lake District, UK, June 2–5 2006.



Innovation Detection Based on User-Interest
Ontology of Blog Community

Makoto Nakatsuji, Yu Miyoshi, and Yoshihiro Otsuka

NTT Network Service Systems Laboratories, NTT Corporation,
9-11 Midori-Cho 3-Chome, Musashino-Shi, Tokyo 180-8585, Japan

{nakatsuji.makoto, miyoshi.yu, otsuka.yoshihiro}@lab.ntt.co.jp

Abstract. Recently, the use of blogs has been a remarkable means to
publish user interests. In order to find suitable information resources
from a large amount of blog entries which are published every day, we
need an information filtering technique to automatically transcribe user
interests to a user profile in detail. In this paper, we first classify user blog
entries into service domain ontologies and extract interest ontologies that
express a user’s interests semantically as a hierarchy of classes according
to interest weight by a top-down approach. Next, with a bottom-up ap-
proach, users modify their interest ontologies to update their interests in
more detail. Furthermore, we propose a similarity measurement between
ontologies considering the interest weight assigned to each class and in-
stance. Then, we detect innovative blog entries that include concepts
that the user has not thought about in the past based on the analysis of
approximated ontologies of a user’s interests. We present experimental
results that demonstrate the performance of our proposed methods using
a large-scale blog entries and music domain ontologies.

1 Introduction

Blogs are becoming more popular for publishing and discussing interests among
users who share interests between each other. In blog search, users can auto-
matically pull blog entries from RDF Site Summary (RSS)1 feed by entering
keywords about their interests beforehand. Information-sharing systems of this
type have the potential to enable users to expand their interests by browsing
collected blog entries published by other users in blog communities.

However, information retrieval in current blog services relies only on keyword
searches of blogs using Google or based on simple metadata such as that of an
RSS. Moreover, there is no function to generate personalized searches easily, so
users need to consider and enter search keywords that suit their own interests
appropriately. Such a keyword search is time consuming and troublesome. More-
over, users cannot perform a keyword search if they do not understand what they
want to search for to some degree beforehand. Thus, when keywords cannot be
specified, information retrieval from blog entries often cannot be performed even
if users might become interested in a topic.
1 http://blogs.law.harvard.edu/tech/rss

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 515–528, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



516 M. Nakatsuji, Y. Miyoshi, and Y. Otsuka

To counteract the above problems, in the research on Adaptive Information
Filtering (AIF) [2], the user profile is constructed cooperatively with a user, and
recommendations based on the profile are offered. Making a user profile interac-
tively beforehand is good for offering recommendations to users, as indicated by
the high-accuracy performance of AIF. A common complaint about AIF is the
user’s task of making his/her own profiles, and a user often encounters known
information many times because he/she cannot distinguish documents including
new information in the recommendation results.

For filtering these redundant documents, researchers on novelty detection [7]
define novelty as a document that includes new information that is relevant to
a user profile. They extract relevant documents from a document stream. Then,
they classify the documents as novel or not, and provide novelty documents
to users. However, detecting novelty provides documents with information that
includes concepts only in a user profile.

In this paper, we define innovation as new concepts which seem to be inter-
esting to the user even though they are not included in a user profile. Then, we
try to expand user interests significantly by recommending innovative informa-
tion. Especially, we adopt innovation detection to blogs because they become a
popular architecture of publishing and searching information that expands user
interests.

For achieving above-mentioned purpose, we first construct user profile auto-
matically as a user-interest ontology, which is a class hierarchy of user interests
with interest weights. Then, we propose measuring the similarity of interest on-
tologies considering the degree of interest agreement to each class and instance.
We apply our techniques to help users create a blog community by browsing
innovative blog entries which include information unknown to users with a high
probability of being interesting.

The specific contributions of this paper are the following.

– First, in order to analyze user interests in detail, we propose an automatic
extraction of an interest ontology with an interest weight assigned to each
class and instance. Bloggers are apt to describe their interests about topics
in several service domains freely. Thus, we use blog entries for specifying user
interests by introducing a template ontology, which is a domain ontology of
each service. We classify user entries according to a template ontology, and
remove classification mistakes by using class characteristics and continuity of
descriptions about user interests. This mechanism of improving entry clas-
sification is one of the reasons for applying the ontology technique to our
research.

– We propose measuring the similarity between interest ontologies that have
interest weight. By introducing interest ontologies, we can help users create
interest-based communities considering the width and depth of concepts of
users’ interests. Furthermore, we can calculate the similarity between on-
tologies more accurately than in previous ontology mapping techniques from
the viewpoint of the agreement of the weights of user interests. Then, we
can detect innovative blog entries for each user u by analyzing the classes



Innovation Detection Based on User-Interest Ontology of Blog Community 517

C of other users’ ontologies that have a high similarity to the ontology of
the user u though the interest ontology of user u lacks those classes C. This
new approach of recommending innovative information is another reason for
applying the ontology technique to our research.

– We describe a comprehensive set of experiments. Our experimental results
are based on a large number of blog entries (1,600,000 entries of 55,000
users) and a music template ontology (114 classes and 4,300 instances). We
confirm that our automatic ontology extraction and innovation detection
have potential for creating a user-oriented blog community according to user
interests. We also investigate the appropriate granularity of a community by
analyzing the similarity of users’ interests among the community extracted
by our similarity measurements.

The paper is organized as follows. Section 2 introduces related works. Section
3 describes our automatic user-interest ontology-extraction, and Section 4 de-
scribes innovative blog-entry detection by our similarity measurement. Section
5 describes our experimental study, and Section 6 concludes this paper.

2 Related Works

Many online content providers such as Amazon2, offer recommendations based
on collaborative filtering (CF) [5] which is a broad term for the process of rec-
ommending items to users based on the intuition that users within a particular
group tend to behave similarly under similar circumstances. One advantage of
previous CF techniques is that they can recommend relevant items that are dif-
ferent from those in a user’s profile. However, they cannot detect innovative blog
entries because only the similarity between user profiles based on instances such
as selling items is measured. Therefore, CF often offers items that have the same
concept to users. We want blog users to expand their interests by detecting in-
novative blog entries whose information is not included in the concepts (classes)
of their interest ontology.

For applying a semantic approach to retrieving information from a blog, sem-
blog [6] tries to construct a user profile using a personal ontology which is a
manual construction of a users’ classification of blog entries in a category direc-
tory of the ontology according to their interests. A category directory is built
by users beforehand to construct an ontology-mapping-based search framework.
However, manual ontology creation is a time-consuming and troublesome task
for users, and applying a semantic ontology to a blog community is difficult.
We automatically extract a user-interest ontology; thus, creating and updating
ontologies is easy for users.

In researches of ontology mapping [1,3], similarity measurements considering
approximation of classes and class topologies are proposed in [3]. In addition
to class topology, we consider each user’s weighted interest in each class and
instance. Furthermore, in analyzing conjunctions in class topologies of ontologies
2 http://www.amazon.com



518 M. Nakatsuji, Y. Miyoshi, and Y. Otsuka

Title
Artist
Label
Genre
Album

Rock/Pop Adult Contemporary

Light 
Rock

Adult Alternative

Artist

(2) Choosing metadata for extracting user interests.
(1) Designer chooses music domain for creating blog community.

(3) Classifying artists into classes as instances.Select

Class

Metadata

Property: rock/pop
Domain: music

Artist

(3)For example, 
classifying artists by genre.

Property: rock/pop, 
adult contemporary
Domain: music

Property: rock/pop, adult 
contemporary, light rock
Domain: music

Property: rock/pop, adult 
contemporary, adult alternative
Domain: music

Artist

Instance

Fig. 1. Procedure for designing template ontology

with high similarity scores, we detect innovative instances that a user does not
have in his/her ontology, though other users have them with a high probability.

3 Interest Ontology Extraction

We first explain the template ontology design of each service domain such as
those of content delivery services of music and movies and then describe an
automatic method of extracting interest ontologies.

3.1 Design for Template Ontology

We use OWL (Web Ontology Language) [4] for describing a template ontology.
We can express a domain ontology in detail using OWL. However, the genera-
tion and spread of a detailed ontology is obstructed because users have difficulty
of designing it. Therefore, we design template ontologies as lightweight ontolo-
gies that only use a hierarchical relationship among the classes and a property
description restricts the succession condition of a class hierarchy. Then, we au-
tomatically extract an interest ontology by classifying user blog entries into
template ontologies without user intervention in Section 3.2.

As shown in Fig. 1, first, the ontology designer chooses a service domain for
extracting user interests. Then, the designer chooses metadata that reflects user
interests. In a music domain, the designer chooses metadata of genres or artists,
considering the exsisting community is generated with such metadata. Finally,
the designer chooses metadata as a restriction property of a class hierarchy
and classifies other metadata as instances of classes. For example, the designer
chooses genres as a property and classifies artists as instances of classes. In this
way, we distinguish classes from instances and define the characteristics of classes
based on the restriction properties of a class hierarchy and classified instances.
We make use of these class characteristics to improve the accuracy of interest
ontology generation in Section 3.2.

The service designers only has to construct a template ontology with the
intended domains and gradually increase the number of ontologies along with
expanding the service. Designers also should adjust granularity of the end classes



Innovation Detection Based on User-Interest Ontology of Blog Community 519

Class

Instance

All blog entries (1) Creating index 
for all entries.

(2) Classifying entries 
into template ontology.

Entries of 
user A

(3) Analyzing user's interest distribution 
based on user ID of classified blog entry. 

(4) Extracting interest 
ontology by arranging 
entries based on user ID.

Alternative Madchester 

Stone Temple Pilots Farm 

New Order 

Interest ontology 
of user A

Alternative

Madchester 

Shoegaze 

Nirvana

New Order Stone Roses 

My Bloody 
Valentine 

Alternative Madchester 

Farm 
Happy Mondays 

New Order 

Stone Roses 

Shoegaze 

Coldplay

My Bloody Valentine 

Verve 

Nirvana

Stone Temple Pilots

120
32

89

22

26
47

42

210

88

92

69

420

Number of users.

Entries of 
user B

Entries of 
user X

Interest ontology 
of user X

(5) User modifies 
interest ontology.

Ride

delete

add

Alternative Madchester 

Farm Happy Mondays 

New Order 

Stone Roses 

Shoegaze 

Coldplay

My Bloody Valentine 

Verve 

Nirvana

Stone Temple Pilots

Fig. 2. Procedure for generating interest ontologies

for reflecting user interests in detail. Fortunately, content directories such as goo
music3 set granularity in detail for users to browse contents according to their
interests. Therefore, we first construct template ontologies according to these
directories and evaluate the granularity through the analysis in Section 5.

3.2 Interest Ontology Generation Algorithm

We explain our interest ontology generation algorithm by analyzing the interest
distribution of users, as shown in Fig. 2.

Basic ontology generation algorithm. First, we describe the basic ontology
generation algorithm (BOGA) as follows.

(1) First, we make index files for all blog entries collected through the ping
server. Here, we assume that collected blog entries have a unique user ID.

(2) Second, we classify all collected blog entries into a template ontology. We
classify blog entry Ei into class Ci if there is a name attribute value of Ci in Ei.
We also classify blog entry Ei into instance Ii(∈ Ci) if there is a name attribute
value of Ii in Ei. We permit the blog entries to be classified into two or more
classes. For example, consider the template ontology in Fig. 2. We classify the
blog entry into instance ”Happy Mondays” of class ”Madchester” when there is
a ”Happy Mondays” character string in the description in the blog entry.

(3) Then, we measure the number of interested users in each instance of Ce,
which is one of the end classes in the template ontology. On calculating the
number of interested users, we count the number of users as one, even if the
same user is describing the same instance or class in two or more blog entries.
We calculate the number of interested users in class Ce by obtaining the number
of interested users in all instances in Ce and in class Ce. Thus, the interested
user distribution in the domain can be measured by recurrently counting the
number of users from Ce to the root class Cr.
3 http://music.goo.ne.jp/



520 M. Nakatsuji, Y. Miyoshi, and Y. Otsuka

(4) Next, by extracting only the classification results about a user ID from all
classification results, we can extract an interest ontology for this user ID. In Fig.
2, we can extract an interest ontology of user A when the blog entries of this
user describe instances of ”Stone Temple Pilots”, ”New Order”, and ”Farm”.

(5) Finally, the user inspects and updates the interest ontology according to
their interests. Furthermore, we can develop a template ontology that is more
suitable by merging this modified information into a template ontology.

Ontology filtering algorithms. For example, BOGA classifies blog entries that
describe ”Farm”, which means an agricultural farm, into the instance ”Farm”
of class ”Madchester”. For filtering these mistakes caused by words with several
meanings, we make use of the following characteristics such as class relationships
in ontologies and durability of user interests in a blog.

– Instances that belong to the same class have the same characteristics.
– Adjacent classes have similar characteristics. Instances of those classes also

have similar characteristics.
– User interests that continue for a certain period and describe an interest for

two or more days.

We propose two filtering algorithms FA1 and FA2. First, we explain FA1.

Filtering algorithm 1. We subdivide procedure (2) of BOGA for performing FA1.
(2-1) When the name attribute value n(Ii) of instance Ii(∈ Ci) is described

in blog entry Ei, FA1 checks whether a name attribute value of an instance of
the same class (concept) Ik{(Ik ∈ Ci) ∩ (Ik �= Ii)} or Ci is described in all
blog entries that the user accumulates. We call instances Ik and Ci classification
decision elements(CDEs).

(2-2) Entry Ei is classified as mentioning instance Ii when there is a descrip-
tion of CDEs, and not classified in Ii when there is no description. In Fig. 3,
when the description of ”Farm” exists in Ei, and ”New Order” is described
among all accumulation blog entries of a user, Ei is assumed to be a blog entry
about instance ”Farm” of ”Madchester” and classified.

Filtering algorithm 2. We propose filtering algorithm 2 (FA2) whose classifica-
tion is stronger than FA1. In procedure (2-1) of FA1, FA2 checks whether CDEs
are described in blog entry Ei. Then, blog entry Ei is classified in Ii when there
is a description of CDEs, and not classified in Ii when there is no description.

Adjusting the range of CDEs0. We give a mechanism that adjusts the range
of CDEs by using the class hierarchy. We consider that descriptions of classes
and instances of interest often appear with instances of the neighboring classes.
We add a new adjustment parameter, hop, which defines the range of CDEs. In
Fig. 3-(a), we assume brother classes, the grandfather class, and instances that
belong to each of CDEs when there are two hops from end classes.



Innovation Detection Based on User-Interest Ontology of Blog Community 521

Rock

Alternative

Madchester 

Shoegaze 

Coldplay

My Bloody Valentine 

Ride

Verve 

Hop 0

nirvana

I like Stone Roses and 
My Bloody Valentine
recently. I love R.E.M.
in Athens much more.

User A, Entry 1

I think Ride and My 
Bloody Valentine are the 
best Shoegaze groups. 

User A, Entry 2

Alternative

Madchester 

Shoegaze 

My Bloody Valentine 

7/12

Ride 1/3
5/4

Total entries of user A

1/4

3/2

Interest weight 
for class

Interest weight 
for instance

(a) Hop counts in filtering algorithms. (b) Applying weight to interest ontology.

Athens

Elephant 6

US Indie

Olivia Tremor 
ControlElf PowerR.E.M.

Athens
Elephant 6

US 
Indie

Elf Power

R.E.M.

Rock

1/2

1/2

2

3/4

2

7/2

I was listening to R.E.M.
and Elf Power all day 
long today. 

User A, Entry 3

Charlatans Farm 

New 
Order 

Stone Roses 

The character string of italics 
indicates the class. 

Hop 2

Hop 1

Stone Roses 1/4

Fig. 3. (a) hops in filtering algorithms, and (b) applying interest weight to ontology

3.3 Introducing Interest Weight to Ontology

In addition, we introduce the interest weight as a parameter that shows the
degree of a user’s interest in each class and instance of an interest ontology. By
using this parameter, we can create a community among users who have almost
the same degree of interest in the same classes or instances.

Here, we define interest weight, as shown in Fig. 3-(b). First, the interest
weight of every blog entry is one. Second, if there are N(Ei) kinds of name
attribute values of interest classes and instances that appear in blog entry Ei,
the interest weight of each class and instance in Ei becomes 1/N(Ei). Third,
when we define the set of all accumulation blog entries of a user as E, the interest
weight S(Ii) of each instance Ii is S(Ii) =

∑|E|
(Ii∈Ei)

(1/N(Ei)), and the interest

weight S(Ci) of each class Ci is S(Ci) =
∑|E|

(Ci∈Ei)
(1/N(Ei)) +

∑
Ii∈Ci

S(Ii).
Fourth, the interest weight of the instances is reflected in that of the class that
includes the instance. The interest weight of the classes is reflected in that of the
super class. For example, in Fig. 3-(b), we give the interest weight of instance
”Elf Power” as 1/2, instance ”R.E.M.” as 1/4 + 1/2 = 3/4, class ”Elephant 6”
as 1/2, and class ”Athens” as 1/2 + 3/4 + 1/2 + 1/4 = 2.

4 Detecting Innovative Blog Entries Using Similarity
Measurements

We propose measuring the similarity between ontologies considering interest
weight. Then, we describe innovative blog-entry detection and community cre-
ation support based on the analysis of interest ontologies with high similarity.

4.1 Interest-Weight-Based Similarity Measurement

We now explain our similarity measurement in detail by using Fig. 4.
We first define terminologies. We give interest ontology OA of user A and

OB of user B, topology T1, which is defined as the relation between a class and



522 M. Nakatsuji, Y. Miyoshi, and Y. Otsuka

3

c4

a1

b3
n

Interest ontology of user A: OA

Class Instance

2

4
5

2

1

1

2

1

2

3

6
1

3
3

3

2

a1

b1 b2

a
c

g
h

km n
b1

b2

c3 c4c1

c j

l
12 93 6

18
21

3

3 2

d

26

5

23

Interest weight of 
instance.

Interest weight 
of class.

Interest ontology of user B: OB

a e p

2

c3
b

2

1

Topology Topology1T 2T

0

0

0

000

0

0

Fig. 4. Measuring similarity based on the degree of interest agreement

subclasses, and topology T2, which is defined as the relation between a class and
instances. Furthermore, we define common classes of both ontologies as Ci, and
common instances as Ii. In particular, we define common class set, C(T1), as that
which characterizes topology T1, and common class set, C(T2), as that which
characterizes topology T2. For example, in Fig. 4, C(T1) has common classes a1
and b2, and C(T2) has common classes b2, b3, and c4. We also give the degree
of interest agreement of common instance Ii as I(Ii), that of common class Ci

as I(Ci), and that of common topology created by common class Ci as It(Ci).
In [3], the authors calculate the similarity between ontologies considering the

degree of similarity between class topologies T1. In addition, we take the following
ideas from the view point of creating a user-interest-based community.

– Evaluating the degree of interest agreement between Cis and Iis as a smaller
value of interest weight. This idea is for filtering users who only enumerate
a lot of instances in an entry, and creating a community among users who
have similar or larger interest weight values from the viewpoint of each user.

– Separately treating topologies T1 and T2 because we consider that T1 reflects
the width and depth of a user’s interests and T2 reflects the objects in which
users are interested.

– Achieving a low computational complexity by generating the class schema of
user-interest ontologies accroding to that of template ontologies. This is im-
portant for ontology mapping to adopt large-scale dataset of blog community
such as that of our experiments in Section 5.

(1) We analyze classes common to OA and OB and extract common classes
which belong to C(T1) and C(T2).

(2) When common class Ci has common instance Ii between ontologies, we
assign the smaller value of the interest weight of common instances Ii to I(Ii).
For example, I(a) is 2.

(3) Similarly, we assign the smaller value of the interest weight of common
class Ci to I(Ci). For example, I(b1) is 3.



Innovation Detection Based on User-Interest Ontology of Blog Community 523

Fig. 5. Community creation service of recommending innovative blog entries

(4) We define product sets of subclasses of Ci, which are common to a class
set, as N(Ci), and the set union of subclasses of Ci among Ci ∈ C(T1) as U(Ci).
For example, N(a1) = {b1, b2} and U(a1) = {b1, b2, b3}. Then, we give It(Ci)

as Cj ∈N(Ci)
I(Cj)

|U(Ci)| . For example, It(a1) is given by (3 + 18 + 0)/3 = 7. Thus, we
obtain degree of interest agreement S(T1) of C(T1) as

∑
Ci∈C(T1) It(Ci). In Fig.

4, S(T1) = (3 + 18 + 0)/3 + (9 + 3)/2.
(5) We also define an instance set of Ci in ontology OA as IA(Ci), and an

instance set of Ci in ontology OB as IB(Ci) among Ci ∈ C(T2). Then, we

give It(Ci) as Ii∈Ci
I(Ii)

|IA(Ci)∪IB(Ci)| . For example, It(c3) is given by ((2 + 0 + 3 +
0)/4) = 5/4. Thus, we assign the degree of interest agreement S(T2) of C(T2) as∑

Ci∈C(T2) It(Ci). In Fig. 4, S(T2) = 2/1 + 5/4 + 0.
(6) By using evaluation function f(X) corresponding to the relative degree of

importance of a topology, we finally assign the similarity score between ontologies
SO(AB) as S(T1) + f(S(T2)).

4.2 Innovative Blog-Entry Detection

We adopt our similarity measurement to innovative blog-entry detection.
(1) We calculate the similarity between the ontology of user A and ontologies

of other users in set U . By using the heuristic threshold X , we derive X users
who have a high similarity to user A as an interest-sharing community GU .

(2) Then, we analyze difference instances between the ontology of user A and
ontologies of GU . We also define a parameter, degree of innovation, which indi-
cates how many hops we need to get from difference instances of an ontology of
GU to the class of the ontology of user A. In Fig. 5, we need 3 hops to go from
difference instance ”Elf Power” of ontology of user B to class ”Rock” of ontol-
ogy of user A. By recommending blog entries with a high degree of innovation,
users may significantly expand their interests. Otherwise, users may receive new
concept with a low degree of innovation comparatively more acceptable.

(3) Finally, we extract innovative instances GI , which user A does not have,
even though users in GU have with a high possibility, and recommend innovative
blog entries about GI for user A with innovation degree.



524 M. Nakatsuji, Y. Miyoshi, and Y. Otsuka

Fig. 5 depicts an example of our community creation. We can analyze whether
a user who is interested in instance ”Happy Mondays” of class ”Madchester”
and so on has a possibility to become interested in instance ”Elf Power” of class
”Elephant 6”. By browsing blog entries concerning these innovative instances,
users expand their interests and share interests with each other.

5 Experimental Results

We now present experimental results that show the performance of interest on-
tology extraction and innovative blog-entry detection.

5.1 Datasets and Methodology

We evaluated the performance of our proposed methods based on the large-scale
blog portal Doblog4, which has 1,600,000 blog entries of 55,000 users. We also
used the template ontology of the music domain, as shown in Fig. 2, which was
created referring to public information about web portals such as goo music. Our
experimental template ontology contains 114 classes as genres and 4,300 artists
as instances, and each class and instance have two or more name attribute values.
For example, the instance ”R.E.M.” has the name attribute values of ”R.E.M.”
and ”REM”. Thus, we gave 7,600 name attribute values to 4,300 instances.

For evaluating accuracy, we defined correct answers as blog entries that have
descriptions of classified classes or instances and evaluated the generated interest
ontology by using precision and recall in classified results. In this paper, precision
means the proportion of correct answers in classified results and recall means
that of correct answers in all blog entries. When the recall is high, extracted in-
terest ontologies cover user interests better. However, when the precision is lower,
created interest ontologies include classified mistakes, and innovation detection
for the user becomes unreliable. Thus, achieving high precision is indispensable.
In evaluation, we adopted filtering algorithms to instances with one word such
as ”police”, because we considered one word has a high possibility of having
several meanings. For generating index files of blog entries, we used Namazu5.

5.2 Measuring Interest Distributions of Blog Users

Graphs of user distributions in the music domain of our experiment are depicted
in Fig. 6-(a). There are about 200 users, even in end classes. By checking the blog
entries classified in end classes, we confirmed that these blog entries frequently
have unique words, which describe the features of these classes. For example,
blog entries classified into the end class ”Death Metal” have the phrase ”death
voice” with a high probability. This is because the end classes in our template
ontology have an appropriate granularity to extract the feature of the blog entries
classified into these classes. The granularity of end classes is important because
it affects whether we can determine if a user is interested in the community.
4 http://www.doblog.com
5 http://www.namazu.org/



Innovation Detection Based on User-Interest Ontology of Blog Community 525

(b) Comparing  the precision of instances with one word among BOGA, FA1 and FA2.

(a) Interest distributions of blog users in experimental template ontology.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

FA2 FA1 BOGA

Genre/ArtistsFunk
Rock

Glam
Rock

Metal
Rock

Folk
Rock

Hard
Rock

Adult
Contemporary

Art & Progressive

Precision

Number of users in each class hierarchy

0

200

400

600

800

1000

1200

1400

1600

(Genre)

Number of users

2nd hierarchy 3rd hierarchy 4th hierarchy

Rock / Pop Alternative/Punk Soul R&B Jazz Blues Classical

Fig. 6. Experimental results of user distributions and ontology extraction

5.3 Measuring Performance of Extracted Interest Ontology

We evaluated the accuracy of FA2 by checking 1/4 of classified blog entries,
which were randomly selected. As shown in Table. 1-(a), the achieved precision
is higher than 90% with a high recall of 80%. Thus, our filtering algorithm is
effective for generating suitable user-interest ontologies.

5.4 Comparing Filtering Algorithms

Then, we compared BOGA and filtering algorithms by randomly checking 1/4
of the blog entries, which were classified into instances with one word.

Graphs of the precision of BOGA, FA1, and FA2 over 83 instances, which were
randomly selected among 827 instances with one word, are shown in Fig. 6-(b).
The accuracy between BOGA and filtering algorithms is compared in Table. 1-
(b). These results indicate that precision improves in the order of BOGA, FA1,
and FA2, and recall decreases significantly in FA2, even though FA1 drops only
slightly from BA. For improving recall with high precision in FA2, we will add
a method that checks for CDEs in the blog entries with a high probability of
appearing these elements such as entries near each other in a time series.

Analyzing Fig. 6-(b) in more detail, there are eight instances in which the
precision cannot be improved even with FA2, and they lower the overall precision.
Then, we extracted instances in which the number of classifications increases by
ten times or more when changing from FA2 to FA1. As a result, we extracted
28 instances and the precisions of 5 of those instances were 0. The reason is
that they do not co-occur in the same blog entry with CDEs, even though the
user was interested in them and described the name attribute value of these



526 M. Nakatsuji, Y. Miyoshi, and Y. Otsuka

Table 1. Experimental results of our ontology extraction and innovation detection

(a) Accuracy of extracted interest ontology (FA2, hop 2). (b) Comparing accuracy of instances with one word.

(c) Comparing accuracy by changing hop counts.
(d) Recall of innovation detection.

(e) Comparing degree of innovation in recommendation lists. (f) Comparing degree of innovation in our detections.

Precision
94.9%

Recall
80.3%

X=30 X=60 X=90
Recall 64.8% 76.7% 80.1%

FA2 FA1 BOGA
Precision 70.0% 57.9% 18.9%

Recall 32.6% 93.0% 100.0%

Degree of
innovation

0 1 2 3

Proportion 57.6% 15.2% 23.2% 4.0%

Degree of
innovation

0 1 2 3

Proportion 23.4% 23.1% 44.3% 9.2%

Hop 0 Hop 2 Hop 4
Precision 89.1% 91.0% 85.6%

instances often. Thus, to improve the precision, deleting these instances from
template ontology is effective.

We also evaluated the accuracy of FA2 based on the change in the hop num-
ber. Hop 2 is better than hop 0 with respect to the number of correct answers
and precision, as shown in Table. 1-(c). However, hop 4 is lower than hop 2
in precision, although the number of correct answers is slightly better. That is
because our template ontology has a large number of instances in end classes,
and the relationship between end classes and super classes is closer than the re-
lationship between super classes and grandfather classes. For example, end class
”Acid Metal” has the super class ”Metal” and grandfather class ”Rock”. In this
case, the relationship between ”Acid Metal” and ”Metal” is closer than the rela-
tionship between ”Metal” and ”Rock”. Thus, hop 2 has a better precision than
hop 0 because hop 2 has many CDEs, and hop 4 has a lower precision than hop
2 because we consider CDEs in hop 4 as instances that are far from end classes.

5.5 Measuring Performance of Innovation Detection

We evaluated innovative blog-entry detection. In the evaluation, we defined cor-
rect answers for each instance by referring to recommendation lists such as ”you
might like these artists” in a music portal like goo music. Designers of music por-
tals in this evaluation manually defined artists (An) that are relevant to another
artist (Ai) for recommending relevant artists (An) to users who are interested in
artist (Ai). Then, we evaluated our technique by checking the recall of 1/20 of
1503 users who were judged to be interested in the music domain of our template
ontology. In this evaluation, recall means the proportion of correct answers in
our recommended instances.

We evaluated recall in the change of X described in Section 4.2. Table. 1-(d)
indicates that recall of our recommendation was about 80%. In particular, recall
improves significantly when X = 30− 60, even though X = 90 improves slightly
from X = 60. This result indicates that we can extract innovative instances by
only checking 60 high-rank interest ontologies among interest ontologies of 1503
users from the viewpoint of the user who receives the recommendation. Table. 1-
(e) and (f) compare the proportion of degree of innovation in extracted instances



Innovation Detection Based on User-Interest Ontology of Blog Community 527

0

50

100

150

200

250

300

10 20 30 40 50 60 70

   
   

N
um

be
r o

f u
se

rs
 w

ho
 a

re
   

  
in

te
re

st
ed

 in
 a

rti
st

s 
of

 e
ac

h 
gr

ou
p.

X: Number of users in community Gu.

famous group
ordinary group

0

100

200

300

400

500

600

700

10 20 30 40 50 60 70
X: Number of users in community Gu.

(a) Number of users by changing X. (b) Number of users with high interest weight by changing X.

famous group
ordinary group

not-famous group   
   

N
um

be
r o

f u
se

rs
 w

ho
 a

re
   

  
in

te
re

st
ed

 in
 a

rti
st

s 
of

 e
ac

h 
gr

ou
p.

not-famous group

Fig 7. (a) number of users obtained by changing X. (b) number of users obtained that
have high interest weight by changing X.

between recommendation lists in a music portal and our detected instances.
These results indicate that our technique detects instances with high degree of
innovation more in number than recommendation lists.

5.6 Analyzing the Suitable Granularity of User-Oriented
Community

We also investigated suitable number of users for creating a community. First, we
selected a user among all users extracted by our template ontology and analyzed
suitable granularities of GU by changing parameter X described in Section 4.2.
In this evaluation, we divided innovative instances GI into 3 instance groups in
order of the appearance rate of instances when we set X to 70: a famous group,
an ordinary group, and a not-famous group. We calculated the number of users
who are interested in the artists of each group by changing X from 10 to 70.

Graphs of the number of users who are interested in each group obtained by
changing X are shown in Fig. 7-(a). Next, we focused on users who have a high
interest weight in their interest ontologies. Graphs of the number of such users
obtained by changing X are shown in Fig. 7-(b). A famous group is recommended
to users in spite of changes in X in Fig. 7-(a). On the other hand, in Fig. 7-(b),
a not-famous group is recommended most when X is 10, and a normal group
comes to be recommended gradually as X grows. This is because users with a
high interest weight have a tendency of discussing not-famous instances, in spite
of discussing famous instances. Furthermore, the number of users of each group
increases suddenly when X is greater than 60. This is because the gap between
a user’s ontology and ontologies of Gu is larger when X is greater than 60, and
instances with a low possibility of being interesting come to be recommended
more often. From the results of Section 5.5 and 5.6, our innovation detection is
effective according to detailed user interests when X is smaller than 60.

6 Conclusion

We proposed an interest ontology generation method and similarity measurement
considering interest weight. Then, we adapted our technique to detect innovative



528 M. Nakatsuji, Y. Miyoshi, and Y. Otsuka

blog entries in a blog community. We also performed large-scale experiments
and confirmed that our techniques achieved automatic ontology extraction and
detection of innovative blog entries with high accuracy.

We offer an experimental service DoblogMusic6 for Doblog users and con-
firm the effectiveness of our innovative blog-entry recommendation method for
creating a blog community by analyzing user access during a period of time.

Acknowledgments

In the verification of this research we used data from blog portal Doblog of
NTT DATA Corporation. I wish to express my gratitude to the Doblog team
and Hottolink Corporation, which pleasantly cooperated in offering the data and
discussing the blog community creation service.

References

1. Doan, A., Madhavan, J., Domingos, P., and Halevy, A.: Learning to map between
ontologies on the semantic web, in The 11th International WWW Conference (2002).

2. Godoy, D. and Amandi, A.: User Profiling in Personal Information Agents: A Survey,
Knowledge Engineering Review, Cambridge University Press (2005).

3. Maedche, A. and Staab, S.: Measuring Similarity between Ontologies, Proc. Of the
European Conference on Knowledge Acquisition and Management - EKAW-2002.
Madrid, Spain, LNCS/LNAI 2473, Springer , pp. 251–263 (2002).

4. McGuinness, D. L. and v. Harmelen, F.: Web Ontology Language (OWL): Overview,
W3C Recommendation, http://www.w3.org/TR/owlfeatures/ (2004).

5. O’Donovan, J. and Dunnion, J.: Evaluating Information Filtering Techniques in an
Adaptive Recommender System, Proceedings of Adaptive Hypermedia and Adaptive
Web-Based Systems, pp. 312–315 (2004).

6. Ohmukai, I. and Takeda, H.: Metadata-Driven Personal Knowledge Publishing.,
International Semantic Web Conference, pp. 591–604 (2004).

7. Zhang, Y., Callan, J. and, Minka, T.: Novelty and redundancy detection in adaptive
filtering, Proceedings of the 25th annual international ACM SIGIR conference on
research and development in information retrieval , pp. 81–88 (2002).

6 http://music.doblog.com/exp/index



Modeling Social Attitudes on the Web

Matthias Nickles

AI/Cognition Group, Department of Computer Science,
Technical University of Munich

D-85748 Garching b. München, Germany
nickles@cs.tum.edu

Abstract. This paper argues that in order to allow for the representa-
tion, comparison and assessment of possibly controversial or uncertain
information on the web, the semantic web effort requires capabilities for
the social reasoning about web ontologies and other information acquired
from multiple heterogeneous sources. As an approach to this, we propose
formal means for the representation of possibly controversial opinions of
groups and individuals, and of several other social attitudes regarding
information on the web. Doing so, we integrate concepts from distrib-
uted artificial intelligence with approaches to web semantics, aiming for
a social semantics of web content.

Keywords: Semantic Web, Description Logic, Information Integration,
Agent Communication, Modal Logic.

1 Introduction

Social aspects of the web have attracted increased attention in the field of se-
mantic web research recently. This development is certainly driven in part by
the tremendously growing interest in web-based collaboration by means of so-
cial software (e.g., for blogging, collaborative tagging, wiki creation etc.). But
the increasing interest in sociality also seems to be stemming from the general
insight, that the semantic web can never become some kind of huge distributed
knowledge base in the traditional sense. Instead, it will in our opinion become a
more and more realistic emergent image of the current ”non-semantic” web, i.e.,
an open environment with heterogenous groups of information sources and users,
both with different and often conflicting viewpoints and interests, and with a
high amount of personal interaction. This development will likely accelerate with
new interaction-oriented developments like semantic blogging.

Approaches like emergent semantics [1], dynamic ontologies [14] and advances
in the field of information integration in general and ontology mapping and
merging specifically (e.g., [13,2]) already provide strong responses to some of the
challenges posed by open information environments. But nevertheless, to their
major part, current approaches to web semantics are concerned with the model-
ing of homogenous information, or the assessment and filtering of heterogenous
information in terms of trustability and suitability. What is still widely missing

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 529–543, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



530 M. Nickles

are formal means for the modeling of (knowledge-related) sociality on the web
itself, especially the simultaneous and comparative representation of heteroge-
neous and possibly inconsistent viewpoints of multiple information sources. Such
means would not only allow for a rich modeling of social (i.e., communication)
structures of web information (providing meta-information useful for, e.g., a
subsequent resolution of conflicts and credibility issues). They would also allow
for the social reasoning about the social meaning of information contributions
on a logical level (as opposed to semi-formal approaches like social networks
or provenance information). In this regard, the annotation of web information
with meta-information denoting their provenance already received significant
attention, but provenance modeling is to its main part strongly tailored to the
problem of trustability, and it usually provides ”only” meta-data (i.e., identifiers
of the information sources), not an integrated logical model suitable for social
reasoning.

As a response to the described issues, the main contribution of this paper is
a general approach to a social semantics for the web by introducing a formal
framework for a ”social” multi-modal description logic, as informally outlined in
the next section, and formally presented in Section 3 (including the semantics
and decidability results). 3.4 introduces a social semantics of web publishing acts
building on the formal framework, and Section 4 demonstrates our approach by
means of a case study. Section 5 concludes.

2 A Communication-Oriented Model of Web Semantics

The basic concept underlying our approach is that of the integration of (”first-
level”) information with (”second-level”) information about the social meaning
of the former. This can in principle be done by the assignment of appropriate
second-level meta-data to first-level information artifacts, using various tech-
niques (e.g., higher-order logic, modal logic, or even RDF’s reification). Hence-
forth, this way of reifying information is called social reification (or social higher-
order modeling, if a higher-order logic shall be used). In demarcation from more
informal ways of annotating information with meta-data (and the problematic
and semantically extremely weak reification facility of RDF), we focus in this
work on the formal integration of first-level and second-level information items
which correspond (as a compound pair) to formulas and expressions of logic
languages, e.g., axioms and facts represented in description logic (DL). E.g., a
simple form of such a socially reified statement could look like ”Frank informs:
Sheep are pink” (or ”Frank informs us that sheep are pink”), in contrast to
the un-reified and hopefully highly controversial first-level statement ”Sheep are
pink”.

Supposedly, it is easier for agents (including humans) to agree on a statement
which quotes the opinion of someone else, compared to the less likely agreement
with that opinion content itself (”agree to disagree” probably, so to say). Thus
we believe that the (selective) social reification of web statements would achieve
a great deal of increased semantic consistency of the web. In addition, social



Modeling Social Attitudes on the Web 531

reification provides in many cases a rather safe way of semantic linkage among
different information sources or documents (like different ontologies), and is thus
expected to provide a means for information integration in case there exists not
enough meta-knowledge (like trust) in order to decide about the alignment and
merging of the information into a consistent set of un-reified axioms and facts.
Although, e.g., OWL already allows for the inclusion of foreign ontologies and
class descriptions, this works on a syntactical, constraint-less level, possibly lead-
ing to inconsistencies. Information integration using social reification in contrast
allows to integrate foreign information in a relatively ”safe” manner even if some
reified first-level information is mutually inconsistent, and later integration steps
can use the meta-information about the social meaning of the reified information
for tasks like conflict resolution or credibility assignment.

Most important, social reification enables social reasoning about web informa-
tion within a logic-based knowledge representation framework itself, not needing
the help of ”external”, non-logical approaches (although we expect that a com-
bination of such approaches - especially that of social networks - with social
reification could be very fruitful).

So, the question is how such meta-knowledge about the social meaning of web
information should look like in detail. In this work, we claim that - independently
of technical information authorship or message-passing means - authoring infor-
mation on the web is implicitly and unavoidably a communication performed
by an autonomous, self-interested source, namely an assertive or informational
speech act performed in order to express a subjective opinion (probably about
some formerly published opinion). Thereby, it is not even necessary to make
either the authorship or the propositional attitude towards the act content ex-
plicit. But we find a formal account to such second-order information highly
useful, namely to have a means for its representation using semantic web lan-
guages.

To this end, the direct inclusion of speech act locutions as with agent com-
munication languages would not be adequate for languages like OWL or RDF
since speech acts are on a different conceptual level. Therefore, we propose a
logical means for the modeling of asserted information. Intuitively, we want to
express that, after uttering, the knowledge source (human, agent, web service...)
is committed to his assertion. To represent such states, we have chosen the ap-
proach introduced in [7,4] and the more or less equivalent approach presented in
[6,5] as a starting point for the semantics of web communication. Our approach
demarcates itself strongly both from the well-known BDI agent model and from
multiagent belief modeling (including dynamic epistemic models such as public
announcement logic, which is not concerned with opinions in our sense but with
the effects of announcements on beliefs [3]). At this, we distinguish sincere indi-
vidual and group beliefs (which might be not visible on the web) from publicly
visible alleged beliefs and subjective claims (the latter also to be distinguished
from objective knowledge), and from public intentions.

Observe in this respect that it would not be sufficient to extend web knowledge
representation languages with modal operators for belief or epistemic knowledge



532 M. Nickles

modalities. The former denotes a mentalistic concept, which cannot be extended
to information publishing since information sources in open environments like
the web are autonomous actors with opaque beliefs and intentions. A certain
publisher might assert some statement a to audience A, assert at the same time
¬a to another audience B, while believing neither a nor ¬a. In contrast, the
modality of knowing would provide epistemic introspection, but would not be
particularly useful in regard to the mentioned issues stemming from opinion
controversies and the absence of an authoritative ”truth” in the web.

In order to model public1 attitudes of web actors towards information (and
thus assign second-order information about social meaning), we introduce the
modalities public assertion and belief and public intention as communication-
level pendants to the mental attitudes belief and intention, and thus lift mental
attitudes to the ”social stage”.

Examples demonstrating the high expressivity of a DL language with social
attitudes are:

– �{s1,s4,s5},{a1,a7}∃loves.� = �
(The group of web actors {s1, s4, s5} (e.g., bloggers) publicly express facing {a1, a7}
the opinion that everybody loves somebody)

– �{a1,a5}AssertsFrank�all
(∃loves.� = �)

(Group {a1, a5} publicly believes that Frank asserts that everybody loves someone)
– PIntFrank�{a1,a5}(∃loves.� = �)

(Frank publicly intends towards group {a1, a5} that everybody shall love someone)
– PIntFrank�{a1}(Assertsexpr

a1�all(∃loves.� = �))
(Frank publicly intends that a1 publicly announces that everybody shall love some-
one (while probably privately intending the opposite))

– �{Sarah}Customer = �{F rank}Customer ∧ ∃has.Money
(Sarah’s customers are Frank’s customers, but only those with money. Modalities
for social attitudes are thus also attachable to concept names (and role names),
not only to axioms.)

Social attitudes will be given an intuitive but precise formal semantics which re-
sembles the modalities of an actor’s belief and intention in many ways [9]. They
are nevertheless cleanly separated from mental attitudes (as in the BDI agent
model and related multiagent belief frameworks), and can thus be used together
with these without any interference. An agent might, e.g., reason simultaneously
about the ”real” beliefs of another agent and about the information this other
agent gave to the public communicatively, which is not possible using BDI. Note
in this respect that our approach is to its main part settled on a different con-
ceptual level than related fields like multi-agent belief revision and information
integration: Whereas these are mainly concerned with the determination of cor-
rect, consistent and useful information, the primary purpose of social attitudes
is to represent communicatory properties of and differences among semantically
heterogeneous attitudes, possibly preceding their assessment in terms of trusta-
bility and reliability.
1 We use the term ”public” not necessarily in the sense of ”everyone attending”, but to

refer to communicatively disclosed information within specific closed or open groups
(including ”the web public”), as well as single persons (in form of singleton groups).



Modeling Social Attitudes on the Web 533

What mainly distinguishes an agents social attitude of public belief from her
mental attitude of belief is that the former is an ostensible belief expressed com-
municatively (maybe restricted to a specific audience), and triggered and revised
by social conditions (in our context namely web publishing and reception). Dif-
ferent groups and even subgroups of some groups can hold different public beliefs
without causing logical inconsistencies. Public assertions in addition aim at os-
tensibly convincing their addressees. While public assertions and beliefs might
as well reflect the true beliefs of benevolent, trustworthy information sources,
this should be considered a special case for autonomous, self-interested sources
in open environments. Also, uttering a public assertion doesn’t necessarily mean
that the agent truthfully intends to make someone adopt this public assertion
as a mentalistic belief (that would be unrealistic), but as a public belief. Essen-
tially this denotes that the release of information on the web is understood to an
important part as a request which asks the readers of the information to show
a positive attitude regarding the released information (i.e., implicit or explicit
approval).

The general provision of meaning for data found on the web in terms of
social attitudes as described in the next sections is henceforth called social web
semantics (or just social semantics).

In a nutshell, we see the main benefits of modeling social attitudes in the
provision of means for:

– Representation of and reasoning about public opinions (with sub-types such
as agreement and disagreement), as opposed to mental beliefs, and also as
opposed to (”objective”) knowledge. We claim that virtually any kind of
information published on the (semantic) web initially falls in the category
of opinion, since such information is initially (from an observers point of
view without any meta-knowledge such as about reliability) neither known
as sincere subjective belief of the publisher nor knowledge. But quite sur-
prisingly, to our knowledge no explicit, sufficiently powerful formal means
for the modeling of opinions existed so far (i.e., with a required expressivity
higher than BDI or other Kripke-style multi-belief frameworks).

– Representation of and reasoning about public intentions (like the intentions
behind web publishing acts, e.g., the intention to make others agree with the
respective claims)

– Modeling of different audiences. E.g., someone (using different nicknames)
might utter inconsistent information depending on the addressees of these
opinions. Such issues will likely become increasingly important with the rise
of social software and the use of semantic web technology for the represen-
tation of discourses like in web blogs or web-based negotiation platforms.

All social attitudes introduced in this paper can be restricted to specific
audiences (part-publics, so to say).

– A social semantics of web publishing acts (and some other internet-relevant
communication acts such as request) in terms of social attitudes.



534 M. Nickles

2.1 Related Works

Apart from the related research field of ontology integration, the storage of het-
erogeneous information from multiple sources also has some tradition in the fields
of data warehousing and view-generation for distributed and enterprise database
systems [15,2], whereby such approaches do not take a social or communication-
oriented perspective. Contexts are also used for the integration of heterogeneous
information [12], but contexts in this sense originate from McCarthy’s truth con-
texts, as opposed to the essentially pragmatic ”social contexts” implicitly used for
social reification. The assignment of provenance information is mostly based on
annotation, or makes use of the reification facility found in RDF, which also lacks
a social semantics of course. Approaches to provenance are already very useful
if it is required to specify who contributed some information artifact (which is
also done with a similar intent on the basis of social networks [11]), but they do
not provide a logic model of the meaning of being an opinion source. Precisely,
they allow to specify that someone asserts some information, but they do not
handle what asserting (requesting, denying...) actually means, in contrast to the
semantics introduced in this paper.

3 A Description Logic with Social Modalities

This section presents a description logic enhanced with modalities for the previ-
ously introduced social attitudes public assertion, public belief and public inten-
tion. The latter modality is mainly introduced for the purpose of providing a web
publishing semantics later in this work; since we omit the specification of cross-
modality axioms in this paper, it could be safely removed from the language in
case one only wants to model public assertions and beliefs.

Our language is based on the ”standard” DL ALC (Attributive concept de-
scription Language with Complements) [8], with modal extensions in the style
of [9,10]. A further extension with additional features found in SHOIN (D) (the
description logic equivalent to OWL-DL) is omitted here as being not relevant
in the context of this work, but should be completely straightforward, since they
do not affect the model-based semantics of our modalities (see below).

3.1 The Language S − ALC
Definition 1. The language S −ALC (Social ALC ) is defined as follows. The
syntax allows both to specify terminological knowledge about concepts and roles
(”TBox”), and assertional knowledge2 about their instances (”ABox”). Modali-
ties can be attached not only to formulas, but also to roles and concepts.
Atomic concepts : C = {C0, C1, ...}
Atomic Roles : R = {R0, R1, ...}
Individuals: I = {o0, o1, ...}
2 The double meaning of ”assertion” in this paper is unfortunate, but we wanted to

stick with the usual DL terminology.



Modeling Social Attitudes on the Web 535

Inductively, we define (compound) concepts and roles now. Let R be a role and
C and D concepts. Then �iR, �iR and atomic roles are roles, and
�, C 	 D, ¬D, ∃R.C, �iC, �iC and atomic concepts are concepts (i ∈ N).
Observe that in our framework � is not he dual of �.

Formulas (in other DLs often called axioms) are either the atomic formulas
�, C = D, aRb, a : C (with a, b ∈ I), or compound formulas �iφ, �iφ, ¬φ,
φ ∧ ψ, with φ and ψ being formulas.

For convenience, we also define φ → ψ = ¬(φ ∧ ¬ψ).
Let authors = {s1, ..., sn} be a finite set of information sources (web ac-

tors, publishers, web sites, peers...), and addressees = {a1, ..., am} the set
of recipients (possibly overlapping or identical with authors). Let actors =
authors ∪ addressees be the set of all participants.

Then we define the following social attitudes, where θ : 2authors×2addressees →
N maps elements of the cartesian product of the powerset of authors and the
powerset of addressees unequivocally to a multi-modality index number (e.g.,
({s5, s7}, {a1, a6}) �→ 570160), s ∈ authors, S ⊆ authors, and A ⊆ addressees.
Possibly empty or singleton subsets of authors ∪ addressees are called groups.
Opinion / Public weak assertion :
�S,Aφ = �θ((S,A))φ (analogously for �S,AC and �S,AR).

This attitude denotes that group S holds towards group A the opinion that
φ is true. Opinions need not to be honest (thus they are also called ostensible
beliefs [7]), and a certain author or a group can hold mutually inconsistent
opinions (precisely: inconsistent propositional contents of the resp. opinions)
facing different addressees.

In case S and A are identical in the definition of opinion, we use the following
abbreviation:
Ostensible group belief :
�Iφ = �I,Iφ,
with I ⊆ actors, |I| > 1, denoting that in a group I φ is the ostensibly accepted
group belief (while it is possible that a member or a subgroup of I ostensibly or
sincerely believes ¬φ - an example for such a subgroup would be some politically
dissident group which can articulate its true beliefs only in the underground).
This important special case is close to the notion of grounding [5,6].
(Analogously for �IC and �IR)
Public intention : PInts,A(φ) = �θ(({s},A))φ
This modality denotes that s publicly (i.e., facing A) intends that φ becomes
true. A public intention is also ostensible only, and might have nothing in com-
mon with any true (i.e., mental) intention of s. Again, ”public” means group A
plus s.
Public assertion :
Assertss,A(φ) = �{s},Aφ ∧ PInts,A(�A,{s}φ)
(analogously for classes and roles instead of φ.)
Thus, informally, a public assertion modality states that an actor ostensibly be-
lieves some content, and ostensibly intends other actors to adopt his viewpoint
in this regard (not necessarily explicitly)).



536 M. Nickles

The difference of assertion (Asserts) and weak assertion / opinion is sim-
ply that the latter attitude does by itself not include convincing the addressee
from its propositional content but the information source just expresses herself.
For a simplified notation for the expression of disagreement with some given
information cf. 3.4.

Upon these definitions, various constraints extending the well-known KD45
axioms scheme could be imposed optionally, which is omitted here for lack of
space (but see [4,7] for an - non-terminological - approach to this issue).
Private belief : Bels(φ) = �{s},{s}φ
(analogously for classes and roles instead of φ.)
Private intention : Ints(φ) = PInts,{s}(φ).
Maybe surprisingly at a first glance, the ordinary mental (i.e., private) belief
Bels of a single actor can be modeled as a special case of the former public
belief, namely the ostensible belief of a singleton group. Informally, one can
imagine that actor s always expresses her honest private belief if she is within a
group consisting of herself only (talking to herself, so to say). Although we don’t
encourage the use of this operator without being prefixed with another modal-
ity (denoting, e.g., that it is publicly believed that someone privately believes
something), it allows S −ALC to model multi-agent beliefs also.

Note that while the Asserts operator distinguishes information source and
addressee, this differentiation is not required for the semantics of the public belief
operator �I . The latter just expresses that a certain proposition (concept, role) is
ostensibly (but not necessarily sincerely or correctly) believed by a certain group
of agents (not to be confused with the traditional concepts of multiagent group
belief and common belief, which have a different meaning - recall that ostensible
group belief does not entail that any of the group members or subgroups believes
the respective statement). E.g., Assertss3,{a1,a5}(φ) denotes that φ is asserted by
source s3, addressing recipients a1 and a5, which is equivalent to saying that i)
�{s3},{a1,a5}φ (i.e., s3 ostensibly believes φ) and ii) PInts3,{a1,a5}(�{a1,a5},s3φ).
We will later describe in detail the semantics of making public assertions (i.e.,
announcing ostensible beliefs) in a speech act -sense.

3.2 Model-Based Semantics

The following provides a model-based semantics for S −ALC, with an inte-
gration of multi-modalities �i and �i using a multiple-world approach (a.k.a.
Kripke-style semantics) enhancing [9]. For details on modal description logics in
general please refer to [9,10].

Definition 2. A model (of S −ALC) is a pair M = (F, I) with F = (W, �PI ,
�PB). W is a non-empty set of worlds, �i

PI⊆ W×W and �i
PB⊆ W×W are a so-

called binary accessibility relations for public intentions and beliefs respectively,
with each element linking one world to another, i ∈ N. Each �i

PB shall be serial,
transitive and euclidian, �i

PI shall be serial. Moreover, for each �i
PB shall exist



Modeling Social Attitudes on the Web 537

one irreflexive predecessor element (thus this relation shall reflect the axioms of
a KD45 modal logic - cf. [4] for details on these axioms).

I is an interpreting function which associates with each world in W an ALC
model I(w) = (D, RI,w

0 , ..., CI,w
0 , ..., oI,w

0 , ...). At this, D is the domain of the
model, RI,w

i ⊆ D ×D, CI,w
i ⊆ D, and oI,w

i ∈ D (i.e., the oi’s are objects within
the domain).

Definition 3. The values of concepts and roles, and truth-relation (M, w) |= φ
for formulas are defined as follows:

1. �I,w = D, CI,w = CI,w
i , RI,w = RI,w

j for C = Ci, R = Rj

2. x(�iR)I,wy iff ∀v �i
PI w : xRI,vy

3. x(�iR)I,wy iff ∀v �i
PB w : xRI,vy

4. (C 	 D)I,w = CI,w ∩ DI,w

5. (¬C)I,w = D − CI,w

6. x ∈ (�iC)I,w iff ∃v �i
PI w : x ∈ CI,v

7. x ∈ (�iC)I,w iff ∃v �i
PB w : x ∈ CI,v

8. x ∈ (∃R.C)I,w iff ∃y ∈ CI,w : xRI,wy
9. (M, w) |= C = D iff CI,w = DI,w

10. (M, w) |= a : C iff aI,w ∈ CI,w

11. (M, w) |= aRb iff aI,wRI,wbI,w

12. (M, w) |= �iφ iff ∀v �i
PI w : (M, v) |= φ

13. (M, w) |= �iφ iff ∀v �i
PB w : (M, v) |= φ

14. (M, w) |= φ ∧ ψ iff (M, w) |= φ and (M, w) |= ψ
15. (M, w) |= ¬φ iff (M, w) � φ

3.3 Decidability

A formula φ is satisfiable w.r.t. the semantic above if there exists a pair (M, w)
such that (M, w) |= φ.

Theorem 1. The satisfaction problem for S −ALC formulas is decidable.

As shown in [9], the satisfaction problem (i.e, whether there exists a model and a
world such that (M, w) |= φ) is decidable for ALCM , which apart from the multi-
modalities has an identical semantics. ALCM uses arbitrary models, as well as
such models which have two constrained accessibility relations corresponding to
the modal logics S5 and KD45, the latter commonly used to model agent belief
(as well as multi-agent belief when using multi-modalities �i (KD45n). Since
our accessibility relations �i

PI/PB observe S5n respectively KD45n, and we are
effectively mapping agent and group beliefs to single pseudo-agent beliefs (of
pseudo-agents representing groups and ostensible attitudes) using θ, S −ALC is
decidable as well.

Related to this, it can be also easily seen that in the case we would allow only
singletons for indexing the multi-modalities �i, we would gain multi-agent belief
modalities (in the sense of [10]). If we would additionally do the same with �i,



538 M. Nickles

and also remove all constraints on the accessibility relation �, S −ALC would
”deflate” to a syntactic variant of ALCM. The former is expressed with

Theorem 2. Public singleton group belief corresponds to private individual belief.

Thus, mental propositional attitudes can be written as a special case of social
attitudes.

3.4 Social Semantics of Web Publishing

The data found on web pages or any other content on the web is in general, if
taken ”as is”, neither knowledge nor private belief. Instead, web content needs
to be interpreted as the content of communication acts. By means of such an
interpretation (which essentially unfolds the semantics in the semantic web), the
recipient can then classify the web artifact as knowledge (e.g., via trust), and,
usually in a previous step, as opinions and other social attitudes. The step from
the respective speech act of publishing (asserting, requesting, denying...) web
content to its meaning in terms of social attitudes is specified in the following.
Note that although we use an action notation, it would of course not be necessary
to rewrite web pages as speech acts, since the speech act meaning of publishing
web content is implicit. A web page claiming that ”sheep are pink” is essentially
nothing else than the description of an assertive speech act.

But technically, the following acts could also be used more or less directly
within a document as ”social semantics links” to external content (similar to the
import-directive of OWL).

The following provides both a semantics for typical publishing acts in terms
of their pre- and post-conditions, and at the same time an alternative (but
under-specified) operational semantics for social attitudes in terms of those acts
which are allowed to take place when certain attitudes hold. We achieve both
by using the formal style (but not the content) of mentalistic semantics of agent
communication languages, i.e., by specifying for each act its so-called feasibility
precondition (FP) and its rational effect (RE) [6]. The former denotes what
needs to hold (in terms of social attitudes in this work), the latter denotes both
guaranteed illocutionary and perlocutionary effect(s) of the respective act.
Publishing acts are denoted as
identifier1 : author.Performative(audience, φ|C|R|identifier2 ), with author ∈
authors, audience ⊆ addressees, and identifier ∈ N.
If audience is omitted, the respective act is either not addressed at someone,
or at an unspecified group of potential recipients (as it is usually in case when
the locution is asynchronously given in form of a web site, which addresses
potentially the whole internet).

identifier optionally assigns the act an unequivocal number (or a time stamp
or an URI), or refers to another act. The helper function content maps an
identifier to the propositional or terminological content of the respective act.

The content of an act (class, role or axiom) is denoted as ω.



Modeling Social Attitudes on the Web 539

Note that in regard to the semantics of speech acts it is not of importance
whether the acts are technically performed asynchronously with its potential
reception (like it is the usual case on the web), or synchronously, e.g., as steps
in an interactive argumentation process.

– id : s.assert(A, ω) (author s asserts ω towards the recipients A )
FP: ¬Assertss,A(ω) and ¬Assertss,A(¬ω) and ¬�A∪{s}�Aω
RE: Assertss,A(ω)
The feasibility preconditions (FP) here express that in order to perform
an assert act, neither the information source nor the audience have already
publicly announced their alleged belief in ω already (otherwise the act would
not make sense). ¬Assertss,A(¬ω) ensures that the information source does
not contradict herself communicating with A (but she might expose a public
assertion inconsistent with ω towards a different audience).

The postcondition expresses that it became public that s asserts ω (which
includes the public intention of s to convince A that ω). In the case that
no trustability or other expectations are existing in regard to ω and/or its
provenance a1, the postcondition makes the assert-act essentially a request
do adopt a public assertion, with a more or less uncertain effect on the
addressee.

– id : s.inform(A, ω) (author s informs the recipients A that ω)

FP: ¬�{s},A(ω) and ¬�{s},A(¬ω)
RE: �{s},A(ω)
The inform act is thus a weaker form of the assert act in that the author
does not necessarily aim to convince the receivers.

Note that we can not simply define similar publishing acts for the utterance
of group belief corresponding to �group (except in the case that the group is
in fact a single actor on the web, like an organization - but this is already
covered with assert and inform). Uttering such a group belief would require some
judgement aggregation procedure (like voting), and can for principle reasons not
be successful in all cases.

In order to provide convenient means for the agreement or disagreement with
certain information, the following macro acts are proposed. We suppose they
are particularly useful if the implemented language provides some sort of linkage
facility, such as OWL’s owl:imports and class or property descriptions in form
of URI references. Interpreting the interlinked items (documents, class descrip-
tions, meta-data etc.) as assertions, the graph formed from such items related
by URL/URL references effectively maps to a communication process.

– id0 : s.agree(a, id1) ≡ s.assert({a}, content(id1))
– id0 : s.deny(a, id1) ≡ s.assert({a},¬content(id1))

We also propose the following intend and request acts, which (e.g.) allow to
announce that a certain proposition is intended to be true, or to ask someone
to publish a certain information. Note that our notion of intending includes as a
special case desiring that another actor makes something true (like on request):



540 M. Nickles

– id : s.intend(A, ω) (author s announces to an audience A that she intends
that ω)
FP: ¬PInts,A(ω)
RE: PInts,A(ω)

– id : s.request(a, ω) ≡ s.intend({a}, P Inta,{s}(ω))
– id : s.requestEach(A, ω) ≡ ∀a ∈ A : s.intend({a}, P Inta,{s}(ω)) The latter

two acts express requests directed to another agent (or a group thereof) to
make some desired state come true. The act types agree and deny can be
used to utter positive or negative replies to such requests, by asserting to
intend resp. not to intend the requested act/state.

These makro acts are not unproblematic, since they request a potentially
insincere intention (PInta,{s}). Instead, we could write PInta,{a} to demand
a sincere intention, but this would also be problematic.

4 Case Study

In order to demonstrate the properties and one possible application of our ap-
proach, this section presents a brief case study in form of a shortened purchase
negotiation scenario (adapted from a scenario presented in [6]), which should be
quite typical for the semantic modeling of, e.g., seller/buyer platforms on the
web.

The interaction roughly follows protocols for purchase negotiation dialogue
games, but we omit some details which are not relevant for our purposes (e.g.,
specification of selling options). Although the example deals with negotiation, the
approach is expected to be usable for the modeling of other types of interaction
on the (semantic) web also (such as argumentation).

Our scenario consists of four participants {s1, s2, c1, c2}, representing potential
car sellers and customers (implemented, e.g., in form of two seller web services
and two agents of the customers). In the discourse universe exists two instances
ϑ1 and ϑ2 of some car type ϑ (e.g., specimen of the Alfa Romeo 159).
The interaction course is presented as a sequence of steps in the following form.
Note that the interaction course consists of multiple interlaced conversations
among different sender/receiver pairs. In particular, c2 is involved in two selling
dialogues at the same time. The different dialogues shall be visible only for the
participants (senders and receivers of the respective communication acts).
Utterance id. sender→receiver(-s): Descriptive act title
Message
Effect (optionally) gives the effect of the act in terms of social attitudes.

In contrast to Effect, Private information (PI) optionally unveils relevant
mental attitudes before or after an act has been uttered and understood by the
respective agents. The PIs are not determined by preceding communication acts,
due to agent autonomy. They are also of course usually not available to observers
on the web, and thus just given here for the reader’s information.



Modeling Social Attitudes on the Web 541

PIs1 : Bels1 discounts
U1 s1 → {c1, c2}: Information about discount

s1.assert({c1, c2}, ¬discounts)
Effect : �{s1},{c1,c2}¬discounts
∧PInts1,{c1,c2}�{c1,c2},{s1}¬discount
Seller s1 asserts that no discounts can be given while believing that the opposite is
true (there might be the company policy that discounts should be given, but that
might reduce the seller’s individual profit).

Note that such a contradiction between private and public (communicated)
beliefs or intentions could not be modeled using BDI or known semantic web
languages, although being, as already pointed out, crucial for the semantic web as
a public opinions platform.

Intentions can also not be modeled with any current web semantics framework
known to us, including the highly relevant ostensible public intentions (PInt...).

U2 s1 → {c2}: Information about discount
s1.assert({c2}, discounts)
Effect : �{s1},{c2}discounts ∧PInts1,c2�{c2},{s1}discount
While seller s1 informed group {c1, c2} that there would be no price discounts,
he informs customer c2 that this is not true (likely because s1 thinks that c2 is a
valued customer whereas c1 is not).

Such different, inconsistent assertions addressed to different (even nested) groups
of addressees can not be modeled using any current web semantics language (and
also not by means of the BDI framework).

U3 c2 → {s1}: Query if car type has high accident rate
c2.request({s1}, InformIfAccidentRateHigh)
Effect : PIntc2,s1Done(s1 : InformIfAccidentRateHigh) ∧ ... , with

InformIfAccidentRateHigh
def
=

s1.inform({c2}, accidentRateHigh(ϑ)) ∨ s1.inform({c2}, ¬accidentRateHigh(ϑ))
PIs1 : Bels1 accidentRateHigh(ϑ)
U4 s1 → {c2}: Information about accident rate

s1.assert({c2}, ¬accidentRateHigh(ϑ))
Effect : �{s1},{c2}¬accidentRateHigh(ϑ)
Seller s1 asserted ¬accidentRateHigh(ϑ) while thinking the opposite. Privately,
c2 believes this information (see PIc2 below) and publicly agrees in the next step,
but will revise her private (but not her public) belief this later.

U5 c1 → {s2}: Expression of belief
c2.inform({s1}, ¬accidentRateHigh(ϑ))
Effect : �{c2},{s1}¬accidentRateHigh(ϑ)
Since c2 has himself asked s1 to provide him the information uttered in the previous
step, he publicly believes it.

PIc2 : Belc2 ¬accidentRateHigh(ϑ)
U6 c2 → {s2}: Query if car type has high accident rate

c2.request({s2}, InformIfAccidentRateHigh)
To make sure, the potential buyer c2 asks s2 the same question.

U7 s2 → {c2}: Information about accident rate
s2.assert({c2}, accidentRateHigh(ϑ))
Effect : c2 publicly believes the information facing s2, and even trusts it for some
reason privately more than the information given by seller s1 earlier. Nevertheless,
it remains true that he also still publicly believes the opposite towards the other
seller (i.e., that �{c2},{s1}¬accidentRateHigh(ϑ)).



542 M. Nickles

PIc2 : Belc2 accidentRateHigh(ϑ)
U8 c2 → {s2}: Propose to buy at a low price

c2.intend({s2}, buy(ϑ2, 4000£))
U9 s2 → {c2}: Accept proposal

s2.intend({c2}, sell(ϑ2, 4000£))
Effect (together with the previous act):
PIntc2,s2buy(ϑ2, 4000£) ∧ PInts2,c2sell(ϑ2, 4000£) (i.e., c2 and s2 are publicly
committed to buy resp. sell ϑ2 at the price of 4000£ now).

5 Conclusion

This paper argued that in order to allow for the logical representation of possibly
controversial or uncertain web information on the web, current formal represen-
tation frameworks for web knowledge need to be enhanced for the modeling of
the social meaning of information. To this end, we proposed a socially-enhanced
description logic for the foundational modeling of socially acquired knowledge on
the web, and a social semantics of web publishing acts in terms of the dynamics
of social (i.e., communication) attitudes. Next steps will concentrate on a practi-
cal evaluation, the enhancement of other relevant languages such as SHOIN (D)
with operators for social attitudes, and a full axiomatization of the modal logic.

Acknowledgements. This work is funded by Deutsche Forschungsgemein-
schaft (DFG) (research project Open Ontologies and Open Knowledge Bases,
contract BR609/13-1). I would also like to thank the anonymous reviewers for
their very valuable comments.

References

1. A. Maedche, F. Nack, S. Santini, S. Staab, L. Steels. Emergent Semantics. IEEE
Intelligent Systems, Trends & Controversies, 17(2), 2002.

2. D. Calvanese, G. De Giacomo, M. Lenzerini. Ontology of Integration and Inte-
gration of Ontologies. Procs. of the 2001 Description Logic Workshop (DL 2001),
2001.

3. J. A. Plaza. Logics of Public Communications. In M. L. Emrich et al (eds.). Procs.
of the 4th International Symposium on Methodologies for Intelligent Systems, 1989.

4. F. Fischer, M. Nickles. Computational Opinions. Procs. of the 17th European Con-
ference on Artificial Intelligence (ECAI-06), 2006.

5. B. Gaudou, A. Herzig, D. Longin. Grounding and the expression of belief. Procs.
of the 10th Intl. Conf. on Principles of Knowledge Representation and Reasoning
(KR 2006), 2006.

6. B. Gaudou, A. Herzig, D. Longin, M. Nickles. A New Semantics for the FIPA Agent
Communication Language based on Social Attitudes. Procs. of the 17th European
Conference on Artificial Intelligence (ECAI’06), 2006.

7. M. Nickles, F. Fischer, G. Weiss. Communication Attitudes: A Formal Approach
to Ostensible Intentions, and Individual and Group Opinions. Procs. of the 3rd
Intl. Workshop on Logic and Communication in Multiagent Systems (LCMAS-05),
2005.



Modeling Social Attitudes on the Web 543

8. M. Schmidt-Schau, G. Smolka. Attributive concept descriptions with complements.
Articial Intelligence, 48(1):1-26, 1991.

9. F. Wolter, M. Zakharyaschev. Modal description logics: Modalizing Roles. Funda-
menta Informaticae, v.39 n.4, p.411-438, 1999.

10. A. Laux. Beliefs in multi-agent worlds: A terminological approach. In Procs. of the
11th European Conference on Artificial Intelligence, 1994.

11. J. Golbeck, B. Parsia, J. Hendler. Trust networks on the semantic web. Procs. of
the 7th International Workshop on Cooperative Information Agents (CIA), 2003.

12. A. Farquhar, A. Dappert, R. Fikes, W. Pratt. Integrating Information Sources using
Context Logic. Procs. of the AAAI Spring Symposium on Information Gathering
from Distributed Heterogeneous Environments, 1995.

13. V.A.M. Tamma. An Ontology Model Supporting Multiple Ontologies for Knowl-
edge Sharing. PhD Thesis, The University of Liverpool, 2002.

14. J. Heflin, J. A. Hendler. Dynamic Ontologies on the Web. Procs. of the Seven-
teenth National Conference on Artificial Intelligence and Twelfth Conference on
Innovative Applications of Artificial Intelligence, 2000.

15. R. Hull. Managing semantic heterogeneity in databases: A theoretical perspective.
In Procs. of PODS-97, 1997.



A Framework for Ontology Evolution in Collaborative
Environments

Natalya F. Noy, Abhita Chugh, William Liu, and Mark A. Musen

Stanford University, Stanford, CA 94305
{noy, abhita, wsliu, musen}@stanford.edu

Abstract. With the wider use of ontologies in the Semantic Web and as part of
production systems, multiple scenarios for ontology maintenance and evolution
are emerging. For example, successive ontology versions can be posted on the (Se-
mantic) Web, with users discovering the new versions serendipitously; ontology-
development in a collaborative environment can be synchronous or asynchronous;
managers of projects may exercise quality control, examining changes from pre-
vious baseline versions and accepting or rejecting them before a new baseline is
published, and so on. In this paper, we present different scenarios for ontology
maintenance and evolution that we have encountered in our own projects and in
those of our collaborators. We define several features that categorize these scenar-
ios. For each scenario, we discuss the high-level tasks that an editing environment
must support. We then present a unified comprehensive set of tools to support dif-
ferent scenarios in a single framework, allowing users to switch between different
modes easily.

1 Evolution of Ontology Evolution

Acceptance of ontologies as an integral part of knowledge-intensive applications has
been growing steadily. The word ontology became a recognized substrate in fields out-
side the computer science, from bioinformatics to intelligence analysis. With such ac-
ceptance, came the use of ontologies in industrial systems and active publishing of
ontologies on the (Semantic) Web. More and more often, developing an ontology is
not a project undertaken by a single person or a small group of people in a research
laboratory, but rather it is a large project with numerous participants, who are often
geographically distributed, where the resulting ontologies are used in production envi-
ronments with paying customers counting on robustness and reliability of the system.

The Protégé ontology-development environment1 has become a widely used tool
for developing ontologies, with more than 50,000 registered users. The Protégé group
works closely with some of the tool’s users and we have a continuous stream of requests
from them on the features that they would like to have supported in terms of managing
and developing ontologies collaboratively. The configurations for collaborative devel-
opment differ significantly however. For instance, Perot Systems2 uses a client–server

1 http://protege.stanford.edu
2 http://www.perotsystems.com

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 544–558, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Framework for Ontology Evolution in Collaborative Environments 545

mode of Protégé with multiple users simultaneously accessing the same copy of the on-
tology on the server. The NCI Center for Bioinformatics, which develops the NCI The-
saurus3 has a different configuration: a baseline version of the Thesaurus is published
regularly and between the baselines, multiple editors work asynchronously on their
own versions. At the end of the cycle, the changes are reconciled. In the OBO project,4

ontology developers post their ontologies on a sourceforge site, using the sourceforge
version-control system to publish successive versions. In addition to specific require-
ments to support each of these collaboration models, users universally request the abil-
ity to annotate their changes, to hold discussions about the changes, to see the change
history with respective annotations, and so on.

When developing tool support for all the different modes and tasks in the process of
ontology evolution, we started with separate and unrelated sets of Protégé plugins that
supported each of the collaborative editing modes. This approach, however, was diffi-
cult to maintain; besides, we saw that tools developed for one mode (such as change
annotation) will be useful in other modes. Therefore, we have developed a single uni-
fied framework that is flexible enough to work in either synchronous or asynchronous
mode, in those environments where Protégé and our plugins are used to track changes
and in those environments where there is no record of the change steps. At the center
of the system is a Change and Annotation Ontology (CHAO) with instances recording
specific changes and meta-information about them (author, timestamp, annotations, ac-
ceptance status, etc.). When Protégé and its change-management plugins are used for
ontology editing, these tools create CHAO instances as a side product of the editing
process. Otherwise, the CHAO instances are created from a structural diff produced by
comparing two versions. The CHAO instances then drive the user interface that displays
changes between versions to a user, allows him to accept and reject changes, to view
concept history, to generate a new baseline, to publish a history of changes that other
applications can use, and so on.

This paper makes the following contributions:

– analysis and categorization of different scenarios for ontology maintenance and
evolution and their functional requirements (Section 2)

– development of a comprehensive solution that addresses most of the functional
requirements from the different scenarios in a single unified framework (Section 3)

– implementation of the solution as a set of open-source Protégé plugins (Section 4)

2 Ontology-Evolution Scenarios and Tasks

We will now discuss different scenarios for ontology maintenance and evolution, their
attributes, and functional requirements.

2.1 Case Studies

We now describe briefly some specific scenarios that we encountered in studying vari-
ous collaborative projects which members work closely with the Protégé group. Most of

3 http://nciterms.nci.nih.gov/NCIBrowser/
4 http://obo.sourceforge.net



546 N.F. Noy et al.

these projects focus on developing ontologies in biomedical domain and thus represent
scenarios that occur when domain experts develop ontologies collaboratively.

Perot Systems5 provides technology solutions for organizations. In one of their
projects, they are developing an ontology for a Hospital Enterprise Architecture using
Protégé. There are almost 100 editors involved in ontology development. These editors
use a client–server version of Protégé. The ontology resides on a central server that all
editors access remotely. Changes made by one user are immediately visible to every-
one. Therefore, there is no separate conflict-resolution stage or maintenance of various
archived versions.

Another team with which we work closely is the team developing the NCI Thesaurus
at the NCI Center for Bioinformatics [1]. NCI regularly publishes baseline versions of
the NCI Thesaurus. Users access the Thesaurus through an API or browse it using
the NCI’s Terminology Browser.6 Intermediate versions between the baselines are for
internal editing only. Currently, each editor edits his own copy of the Thesaurus and
checks in his changes regularly. The tools then merge the changes from different editors
and identify conflicts. A conflict in this context is any class that was edited by more than
one person. A curator then examines the merged ontology and the changes performed
by all the editors, resolves the conflicts, and accepts or rejects the changes.

Currently, NCI is switching to producing the NCI Thesaurus directly in OWL and to
using Protégé for this purpose. In the new workflow, editors will use the Protégé client–
server mode and access the same version of the ontology. Therefore, the merging step
will no longer be needed. The curation step will still be present, as the curator still needs
to perform quality control and to approve the changes.

The Open Biomedical Ontology repository7 (OBO) is our final example of an ap-
proach to ontology development. OBO is a Web site established by the Gene Ontology
Consortium to enable biologists to share their ontologies. The OBO site is a sourceforge
site that serves many biological ontologies and vocabularies. Ontology developers post
successive versions of their ontologies in the repository, without posting a specific list
of changes between the versions. Developers use different tools to edit the ontologies
in their local environments (e.g., Protégé, OBO-Edit, Swoop) and create the ontologies
in different languages. In many cases, the tools do not create any record of changes and
when they do create such a record, the authors do not make it accessible to the outside
world when they post their ontology in a repository.

2.2 Attributes of Collaborative Development

Analyzing various scenarios (like the ones described in Section 2.1), we identified sev-
eral dimensions that we can use to classify scenarios for collaborative ontology evo-
lution. Depending on the values for each of these dimensions, projects have different
functional requirements, which we discuss in Section 2.3

Synchronous vs asynchronous editing. In synchronous editing, collaborators work on
the same version of an ontology that resides on a server accessible to all members
of the team. Changes made by one editor are immediately visible to others. Thus,

5 http://www.perotsystems.com
6 http://nciterms.nci.nih.gov/NCIBrowser
7 http://obo.sourceforge.net



A Framework for Ontology Evolution in Collaborative Environments 547

the possibility of conflicts is reduced or, essentially, eliminated since users know
what changes others have made to the concept they are editing. With proper trans-
action support, where operations are wrapped in a transaction and two users cannot,
for example, overwrite each others’ values without knowing about it, conflicts are
technically impossible. In asynchronous editing, collaborators check out an ontol-
ogy or a part of it and edit it off-line. Then they merge their changes into the common
version. In this case, conflicts may occur and need to be resolved during the merge.

Continuous editing vs periodic archiving. In continuous editing, there is no separate
step of archiving a particular version, giving it a name, making it accessible. In
this case, the only version of an ontology that exists is the latest one, and any roll-
back is performed using an undo operation. Alternatively, versions can be archived
periodically, and one can roll back to any of the archived versions.

Curation vs no curation. In many centralized environments, new versions of an on-
tology do not get published externally until a designated curator or curators had a
chance to examine all the changes and accept or reject them, and to resolve con-
flicts. In these scenarios, after editors perform a set of edits, a separate curation step
takes place. By its nature, curation almost always happens in the scenarios with pe-
riodic versions, as the creation of a new archived version is a natural point for the
curation step.

Monitored vs non-monitored. In monitored editing, the tools record the changes and,
possibly, metadata about these changes, making the declarative description of
changes available to other tools. In non-monitored development, the tools either do
not log the changes, or these records are not readily available to other tools. For
instance, any case where successive versions are published in a repository without
change logs being available could be considered non-monitored editing.

2.3 Functional Requirements for Collaborative Ontology Development

We start by discussing the functional requirements that are relevant for all modes of on-
tology evolution and maintenance. Essentially in any collaborative project users request
the following features:

– Change annotations that explain the rationale for each change, and refer to citations
or Web links that precipitated the change.

– Change history for a concept that describes all the changes that were made to the
concept, who performed the changes, when, what was the rationale for the change.
Programmatic access to such information is particularly important as tools may rely
on earlier versions of the concept definition and they must be able to process the
changes and adjust to them.

– Representation of changes from one version to the next, including information on
• which classes were changed, added, deleted, split, merged, retired;
• which elements of each class definitions where added, deleted, changed;
• who edited each change (possibly simply a list of editors that have altered a

class since the previous version; ideally, a more detailed account, with com-
plete trace of how each editor changed the class, with old and new values, etc);

• which classes have more than one editor.



548 N.F. Noy et al.

– Definition of access privileges where each author can edit only a particular subset
of an ontology, thus avoiding clashes with other editors.

– The ability to query an old version using the vocabulary of the new version.
– A printed summary of changes and a programmatically accessible record of changes

between an old and a new baseline.

If ontology editing by multiple authors is asynchronous, with each author editing
his own copy of the ontology, additional requirements ensure that authors can resolve
conflicts afterwards when the different copies are merged back together:

– Identification of conflicts between the local version being checked in and the shared
version This identification must include treatment of “indirect” conflicts: it is not
sufficient to identify concepts that were edited by more than one person. One person
may have edited a class A, and another person may have edited its subclass B.
While only one person has edited B, there may still be a conflict at B with the
changes it inherited from A.

– Negotiation mechanism to resolve conflicts if they are caused by someone else’s
changes. Since check-ins are usually prevented until conflicts are resolved, mech-
anisms such as chats and emails (integrated with the ontology-development envi-
ronment) can enable users to resolve conflicts efficiently.

In continuous editing, where essentially only a single version of the ontology exists
(the current one) and there is no archiving, the main additional requirement is being
able to revert back to an earlier version. Since in continuous editing no archives exist,
this capability is usually implemented through the undo mechanism and earlier versions
are virtual versions since they can be generated on demand, but are not explicitly saved.
In other words, the following key feature is required for continuous editing:

– An ability to roll-back to a particular state of the ontology, for example, to the state
of affairs in a particular date.

The following features provide support for curated editing by enabling the curator
to perform quality control before a new version of an ontology is made public or is used
in production:

– A mechanism to accept and reject individual changes and groups of changes; groups
can be identified structurally (e.g., accept all changes in a subtree) or based on who
performed the change and when (e.g., accept all changes from a particular editor);

– Ability to save the current state of reviewing (in the middle of the curation process)
and to come back to it to continue reviewing the changes;

– Specialized views of changes, such as changes from specific editors or views that
display only conflicts between editors.

In non-monitored editing, there is no explicit record of changes and all that the user
has available are two successive versions. Therefore, in this mode there are a number
of requirements that deal with comparing the versions and identifying and describing



A Framework for Ontology Evolution in Collaborative Environments 549

the changes. More specifically, the following features support change management in
non-monitored mode:

– Version comparison at the structural level, understanding what was added, what
was deleted, and what was modified.

– Ability to post and describe new versions, specify where the previous version is,
and whether the new version is backwards compatible (see, for example, work by
Heflin and colleagues on backwards compatibility of ontology versions [4]).

3 Components of a Comprehensive Ontology-Evolution System

Figure 1 presents the architecture for an ontology-evolution system that we developed
and that provides support for most of the tasks that we have outlined in Section 2. At
the center of the system is the Change and Annotation Ontology (CHAO) [8]. Instances
in this ontology represent changes between two versions of an ontology and user anno-
tations related to these changes. For each change, the ontology describes the following
information: its type; the class, property, or instance that was changed; the user who
performed the change; the date and time when the change was performed. In addition
to change information, we also record annotations on changes. In our implementation
(Section 4), we store the annotations as part of the change ontology, but the annotations
can be as easily separated into a different ontology with cross-references between the
two.8 Annotations are stored as instances that refer to the change instances (Figure 2).
Our representation of annotations extends the Annotea schema.9 Therefore, the anno-
tations can be saved to an Annotea store and be accessible to applications that process
Annotea data.

3.1 CHAO: The Change and Annotations Ontology

Our Change and Annotation Ontology (CHAO) is based on our earlier work [8] and
on the work of our colleagues [7]. In this paper, we highlight only the most relevant
features of the ontology. We suggest that the interested reader downloads the plugin
and examines the ontology that comes with it for specific details.

The ontology contains two main classes, the class Change represents changes in the
ontology and the class Annotation stores related annotations on changes. These two
classes are linked by a pair of inverse properties (Figure 2). Subclasses of the Change
class describe changes at a more fine-grained level. These subclasses include changes
to classes such as adding, deleting, or modifying class properties, subclasses, or restric-
tions; changes to properties; changes to individuals, and changes to a whole ontology,
such as creating or deleting classes. There is also a class to group multiple changes into
a higher-order change. Changes performed by users are represented as instances of the
corresponding subclass of the class Change. These instances contain the information
describing the change as well as the class, property, or individual to which the change
is applied. For example, if a superclass Csuper is added to a class Csub, we record that
a Superclass Added change is applied to the class Csub.

8 In Figure 1 we show the two parts—changes and annotations—separately.
9 http://www.w3.org/2001/Annotea



550 N.F. Noy et al.

Ontology
version 1

Ontology
version 2

Editing

input

produces

Annotationhas subprocess

produces
produces

Instances in the 
change ontology

Annotation of 
changes

refers
to

PromptDif
algorithm

produces

input input

Text file with 
changes input

Changes per 
user/conflicts

Accept/reject
changes

input

input

Ontology
version 2'

produces

input

produces

produces
input

Version
comparison

Fig. 1. Components of the ontology-evolution framework. The rounded rectangles represent ver-
sions of an ontology. The diamonds represent processes performed by a user. Through the Edit-
ing and Annotation processes, an ontology version 1 becomes ontology version 2. The CHAO
instances are created as by-product of the editing process. If the CHAO instances are not present,
the two versions themselves serve as input to the PROMPTDIFF algorithm that creates a ver-
sion comparison, from which CHAO instances are generated. The CHAO instances and author,
timestamp, and annotation information contained therein are used in the process of accepting and
rejecting changes. Each accept or reject operation is recorded as a Boolean flag on the corre-
sponding change instance.

3.2 Generation of the CHAO Instances

We must use different mechanisms to generate instances in CHAO, depending on
whether editing is monitored or not (Section 2.2). With monitored editing, the tools
can generate CHAO instances as a by-product of the ontology-editing process. There-
fore, when users look at a new version of an ontology, they (or the tools they use) also
have access to the CHAO instances describing all the changes, and the corresponding
annotations.

In many cases, however, particularly in the de-centralized environment of the Se-
mantic Web, tools have access only to successive versions of an ontology, and not to
the description of changes from one version to another. In this case, we need to compare
the two versions first in order to understand what the differences are. We then can save
the differences as instances in CHAO. Naturally, we will not have specific author and
timestamp information for each change.

3.3 Using CHAO Instances in Ontology-Evolution Tasks

The instances in CHAO provide input for many of the tasks that support functional
requirements that we identified in Section 2.3.

Examining changes Many of the scenarios that we discuss involve having a user ex-
amine changes between versions. Users need to understand what changed between ver-
sions and what changes others have performed. The task is similar to tracking changes



A Framework for Ontology Evolution in Collaborative Environments 551

Fig. 2. The Change and Annotation classes in the change and annotations ontologies, a se-
lection of their properties, and some examples of subclasses of Change

in Microsoft Word. The instances in CHAO provide data that inform the display of
changes. Some examples of such a display include a table that lists concepts that have
been changed and what has been changed for each of the concepts and a tree of classes
with deleted, added, or moved classes marked in different fonts and colors and, possibly,
underlined or crossed-out (see Figure 3).

Accepting and rejecting changes. In curated ontology-evolution in particular, but also
in other modes, one may want not only to examine changes between two versions, but
also to accept or reject these changes (not unlike accepting or rejecting changes in a
Word document). We also need to save the state of the reviewing process (i.e, what has
been accepted or rejected) so that the user may come back to it. We use CHAO to record
the state of accept/reject decisions if the user wants to save a session and come back
to it later. Consider a non-monitored editing where CHAO instances are generated by
comparing the old and the new version of the ontology. Note that accepting a change
does not involve any actual change to the new version, it is just a decision approving a
change that has already been made. Therefore, if we start a new session and compare the
two versions again (the old one and the version with which the editor had been working),
the accepted change will appear as a change again. To avoid this behavior, any time a
user accepts or rejects a change, we record the decision in the corresponding instance
of CHAO. So, for instance, a change instance can be flagged as “accepted.” A rejection
of a change is an actual change, and we record this as another instance in CHAO. The
link to the annotation instances enables the user to put additional annotations that, for
example, explain his acceptance or rejection decision.

Viewing concept history. For each change, CHAO contains the information on the
concept to which the change was applied and author and timestamp of the change (if
the editing was monitored). We can readily process this information to provide con-
cept history. Thus, for each concept, we can present the history of its changes, who
performed them and when. Because CHAO links the changes to the annotations where
users can describe rationale for and make other comments about each change or a group
of changes, we can also provide annotations in the concept history. As a result, the user
can see not only what changes where made to the concept, but also the explanation of
why the changes were made, and, if available, the discussion about these changes.



552 N.F. Noy et al.

Fig. 3. Comparison of versions in PROMPTDIFF. Classes that were added are underlined; deleted
classes are crossed out; moved classes are grayed out.

Providing auditing information. We can compile the information about authors and
timestamps for the changes to create auditing information for a curator. For instance, a
curator can see which editors have performed changes in a particular time period, how
many concepts each editor has edited, how many concepts where edited by more than
one editor in a particular time period.

The use of an ontology to record changes and annotations enables us to have a mod-
ular system that supports multiple tasks. For instance, regardless of how the CHAO
instance are generated (as a by-product of monitored editing or through version com-
parison in non-monitored editing), once we have it, we can use it in other tasks, such
as presenting concept history, displaying changes between versions, and so on. When
the user accepts or rejects a change, we can again use the same set of structures to
record his decisions and corresponding annotations. As a result, when a user, for in-
stance, accepts a change to a concept C and records his rationale for this decision, this
comment appears in the concept history for C. Furthermore, the use of an ontology
to record changes and annotations can potentially enable sharing of this information
between ontology-editing tools.

4 Implementation Details

We have implemented a system to support the different modes of ontology evolution in
a single comprehensive framework that we described in Section 3 as a set of plugins to
the Protégé ontology-development environment. The framework is implemented as two
related Protégé plugins:

The Change-management plugin provides access to a list of changes and enables
users to add annotations to individual changes or groups of changes; when this



A Framework for Ontology Evolution in Collaborative Environments 553

plugin is activated, the changes are stored as instances in CHAO. Further, this
plugin enables users to see a concept history for the class and the corresponding
annotations, when they are examining the classes in the standard Classes tab.

The PROMPT plugin for ontology management provides comparisons of two versions
of an ontology and facilities to examine a list of users who performed changes and
to accept and reject changes [9].

In addition, the Protégé environment itself provides many of the facilities necessary to
support the scenarios we outlined in Section 2, such as synchronous editing in a client–
server mode, transaction support, undo facilities, and other features. The Protégé API
provides convenient access to changes as they are performed, to facilities to create and
edit ontologies, and to the user interface components that the plugins use.

We now describe these components and where they fall in the overall framework.

4.1 The Change-Management Plugin

The Change-management plugin to Protégé performs several functions. First, when the
user enables the plugin, each ontology change is recorded as an instance in CHAO with
the timestamp and the author of the change. Thus, with this plugin in place, the editing
is monitored and a declarative record of changes is stored. CHAO instances are saved
when the user saves the project. If needed, users can open CHAO in Protégé or access
it through the Protégé knowledge-base API, just as they would any other ontology.

Second, users can see the “Changes” tab that provides an overview of changes and
corresponding annotations (Figure 4). There are two views for the changes: the “de-
tailed” view shows low-level changes that correspond to each operation in the ontology.
The “summary” view (the default) groups the low-level changes into higher-level ones
that roughly correspond to the operations that the user performs in the user interface.
For instance, when a user creates an OWL restriction for a class, a series of low-level
operations happen: an anonymous class is created, property values for this class are
assigned, and this class becomes a superclass for the class that it restricts. This set of
operations corresponds to a single high-level operation “Restriction added.”

The user can select a change and view annotations for this change and any of the
groups of changes that involve the selected change. The user can also provide annota-
tions for the selected change or select a group of changes and provide annotation for the
whole group. For example, a user can describe the rationale for adding a set of classes.
The tab also provides search capabilities.

In the Classes tab (the standard Protégé tab for browsing and editing classes), an ad-
ditional menu item—“Change info”—appears when the Change-management plugin is
activated. Through this menu, the user can view the concept history and the correspond-
ing annotations for the class selected in the Classes tab. The display is similar to the
change and annotation display in Figure 4, but the list of changes is limited to the changes
that pertain to the class of interest. The user can also create additional annotations here.

4.2 The PROMPT Tab

PROMPT is a Protégé plugin that provides a number of ontology-management functions.
Here we discuss only the functionality that is relevant for ontology evolution.



554 N.F. Noy et al.

A

B

C

D

Fig. 4. The Change-management tab in Protégé. The table at the top (A) displays all the changes
to the current project. When the user selects a change in the top table, the middle table(B) shows
all annotations associated with this change. For selected annotation, the bottom table (C) shows
other changes in the group if annotation applied to a group of changes rather than a single change.
The user can create new annotations, examine the details of existing ones through this display,
and search through annotations (D).

When the user activates the PROMPT tab and instructs it to compare two versions of
an ontology, one of the two things happens: (1) If instances of CHAO are present (the
editing was monitored), PROMPT uses these instances to compile the changes and to
present them to the user. (2) If there are no CHAO instances and the user has only the
two version of the ontology, and no record of the changes between them, the PROMPT-
DIFF algorithm compares the two versions and creates a structural diff, using a set of
heuristics to determine what has changed between the versions. It determines, for exam-
ple, when classes are renamed, when classes are moved in the class hierarchy, or when
their definitions change. Recall that we designed the architecture for ontology evolu-
tion to have CHAO drive all other components in order to have a modularized structure
and to have the same components work in different editing modes. Thus, if there is no
declarative record of changes in the form of CHAO, PROMPT generates these instances
from the results of the PROMPTDIFF algorithm.

One of the unique features of version comparison in PROMPT, is the ability to exam-
ine changes using an intuitive interface, based on the Protégé interface for class editing
(Figure 3), and to accept and reject changes. In the class hierarchy, the users can see
which classes and subtrees were deleted or added, which were changed, moved, and so
on. For each class, PROMPT provides a list of changes for that class. Users can also view
the old and the new definitions of the class side-by-side. Users then can accept or reject
each specific change, all changes for a class, or all changes for a particular subtree.

If CHAO exists, PROMPT also generates a list of users who changed the ontology.
For each user, PROMPT displays the number of concepts he created or modified, and the
number of concepts that are in conflict with modification performed by others. Here we
define a conflict (something that a curator might want to verify) as one concept modified



A Framework for Ontology Evolution in Collaborative Environments 555

by more than one user. Curators can also accept or reject all changes performed by a
specific user in a single click or all changes that are not in conflict with others.

4.3 Client–Server Mode for Ontology Editing in Protégé

Of the many features of the Protégé core system that support ontology evolution, we
focus on the one that specifically addresses one of the modes of ontology editing: syn-
chronous editing by multiple users. The multi-user mode in Protégé uses a client–server
architecture, with the ontologies being stored on the machine running the Protégé server.
Users then remotely connect to this server using a thick Protégé client. All users editing
an ontology always see the same version of it, and changes made by one user are visible
immediately to other users. If the Change-management plugin is installed on the server,
it records all the changes that happen on the server machine made by different users.

Most of the features described in this Section are already available for beta-testing
at the time of this writing as part of the Protégé beta distribution. A small number of
features, such as saving to Annotea, are currently in alpha-testing or under development.

5 Related Work

We have developed initial ideas on how a change ontology can drive various ontology-
evolution tasks in our earlier work [8]. We have borrowed many ideas on the CHAO
structure from there, but extended it with additional pragmatic information such as
identification of a concept to which the change applies, author and timestamp of the
change, and link to relevant annotations. Thus, in this paper, we have not focused on
the representation of changes per se using the detailed work by others in this area [7].

Many ontology-development tools support monitored ontology evolution by record-
ing change logs. However, in most cases, the changes are recorded as sequences of
changes rather than a set of instances in a change ontology [6,11]. While one form of
representation can be inferred from the other and vice versa, representation in the form
of ontology instances facilitates querying for concept histories and enables attaching
annotations to changes.

The SWOOP ontology editor [6] supports an extensive set of annotations, distin-
guishing between comments, advices, examples, and so on. We currently do not enable
users to categorize annotations in different ways, but plan to add such capability in the
future. As a practical matter, since our annotation ontology already extends the Annotea
RDF Schema, we need to develop only the user interface for such support.

The ontology-evolution support in KAON [13,3] focuses on the effects of changes.
Users can specify their desired strategies for ontology evolution in terms of handling
of changes. Recent work [3] focuses on maintaining consistency during evolution for
DL-based ontologies. The authors consider various scenarios, such as maintaining con-
sistency as the ontology changes, repairing inconsistencies, or answering queries over
inconsistent ontologies.

There is one aspect of ontology evolution and versioning that we do not currently
deal with in this work—effects of changes on applications. This analysis requires an
understanding of which version of an ontology an application is compatible with, in



556 N.F. Noy et al.

particular in the context of ongoing ontology development where newer versions may
not be consistent. The issue of compatibility is addressed in the MORE framework for
reasoning with multi-version ontologies [5] and in the work of Heflin and colleagues
on declarative specifications of compatibility between versions [4].

6 Discussion

In summary, the two plugins—the Change-management plugin and the PROMPT

plugin—in combination with Protégé’s own facilities, provide support for all modes
of ontology evolution that we have identified among our projects.

Because Protégé can import ontologies developed by other tools (in OWL, RDFS, and
a number of other formats), developers can benefit from the Protégé change-manage-
ment facilities even if they first develop their ontologies in a different tool. For example,
if an OWL ontology was originally developed in SWOOP, the developer can still use
PROMPT to compare its versions, accept or reject changes, create a new baseline, and
then continue editing in SWOOP.

While we have not yet performed a summative evaluation of our tools, we have
run formative evaluations with the developers of NCI Thesaurus. In these evaluations,
five NCI Thesaurus editors and a curator used Protégé and some of the tools we de-
scribed here to edit portions of the Thesaurus in parallel with their regular environment
(Apelon’s TDE). Mainly, the curator used the PROMPT plugin to examine the changes
performed by the editors and to accept or reject them. We also used the PROMPT rep-
resentation of changes to generate the concept-history output in a database format that
the APIs for accessing the NCI Thesaurus expect. Many of the features we discussed
here (e.g., side-by-side views of the old and the new version of the class, the ability to
save the status of the accept/reject process, the ability to annotate changes and curation
decisions, etc.) resulted from usability studies during these evaluations. As the result of
the studies, NCI is moving towards switching to Protégé and its change-management
plugins as their primary editing environment for NCI Thesaurus.

There are several limitations of our current work that we plan to address in the future.
First, we currently assume that when there is a record of changes between two versions,
this record is complete. In many cases, however, this record will not be complete. For
instance, a user may disable the change-management support, perform edits, and then
enable it again or he may edit a portion of the ontology in a different tool and then
import it back into Protégé. We need to address two questions to deal with incomplete
change records: (1) how do we determine automatically that a record is indeed incom-
plete; and (2) in the case of incomplete change record, can we have a hybrid solution
that uses the author, date, annotation, and other pertinent information that is available
in the incomplete record and combines it with the record generated by PROMPTDIFF.

Migration of instances from one version of an ontology to the next is a critical issue
in the context of evolving ontologies. Some ontology changes, such as creating new
classes or properties, do not affect instances; when these changes occur, instances that
were valid in the old version are still valid ini the new version. However, a large num-
ber of changes may potentially affect instances. In this latter case, some strategies can
include having tools take their best guess as to how instances should be transformed,



A Framework for Ontology Evolution in Collaborative Environments 557

allowing users to specify what to do for a specific class of changes (e.g., similar to
evolution strategies [13]), or flagging instances that might be invalidated by changes.

Ontology modularization [12,2] is also critical for support of ontology evolution, in
particular in the asynchronous mode. It will be impractical if the whole ontology is the
only unit that users can check out. Rather, editing in asynchronous mode would be much
more effective if ontology consists of well-delineated modules that cross-reference one
another. Users must be able to check out a specific module rather than a whole ontology.

Finally, consistency checking and ontology debugging [14,10], while important for
ontology development in general, are particularly critical in the collaborative setting.
Users must be able to understand what the effects changes performed by others have,
to understand the rationale for those changes, and to check consistency of the ontology
when all the changes are brought together.

We continue to work with our collaborators that use Protégé in large collaborative
ontology-development projects to identify new requirements and modes of collabora-
tion. As it exists today, however, we believe that the environment that we described in
this paper is one of the most complete sets of components to support ontology evolution
today. And the framework that underlies our implementation provides for flexible and
modular development of ontology-evolution support.

Acknowledgments

This work was supported in part by a contract from the U.S. National Cancer Institute.
Protégé is a national resource supported by grant LM007885 from the United States
National Library of Medicine.

References

1. G. Fragoso, S. de Coronado, M. Haber, F. Hartel, and L. Wright. Overview and utilization of
the nci thesaurus. Comparative and Functional Genomics, 5(8):648–654, 2004.

2. B. C. Grau, B. Parsia, and E. Sirin. Working with multiple ontologies on the semantic web.
In Third Internatonal Semantic Web Conference (ISWC2004), 2004.

3. P. Haase, F. van Harmelen, Z. Huang, H. Stuckenschmidt, and Y. Sure. A framework for
handling inconsistency in changing ontologies. In Fourth International Semantic Web Con-
ference (ISWC2005), 2005.

4. J. Heflin and Z. Pan. A model theoretic semantics for ontology versioning. In Third Interna-
tional Semantic Web Conference, page 6276. Springer, 2004.

5. Z. Huang and H. Stuckenschmidt. Reasoning with multiversion ontologies: a temporal logic
approach. In Fourth International Semantic Web Conference (ISWC2005), 2005.

6. A. Kalyanpur, B. Parsia, E. Sirin, B. Cuenca-Grau, and J. Hendler. SWOOP: A web ontology
editing browser. Journal of Web Semantics, 2005.

7. M. Klein. Change Management for Distributed Ontologies. PhD thesis, Vrije Universiteit
Amsterdam, 2004.

8. M. Klein and N. F. Noy. A component-based framework for ontology evolution. In Workshop
on Ontologies and Distributed Systems at IJCAI-03, Acapulco, Mexico, 2003.



558 N.F. Noy et al.

9. N. F. Noy and M. A. Musen. The PROMPT suite: Interactive tools for ontology merging and
mapping. International Journal of Human-Computer Studies, 59(6):983–1024, 2003.

10. B. Parsia, E. Sirin, and A. Kalyanpur. Debugging OWL ontologies. In 14th Intl Conference
on World Wide Web, pages 633–640, New York, NY, 2005. ACM Press.

11. P. Plessers and O. De Troyer. Ontology change detection using a version log. In Fourth
International Semantic Web Conference (ISWC2005), 2005.

12. J. Seidenberg and A. Rector. Web ontology segmentation: Analysis, classification and use.
In 15th International World Wide Web Conference, Edinburgh, Scotland, 2006.

13. L. Stojanovic. Methods and Tools for Ontology Evolution. PhD thesis, University of Karl-
sruhe, 2004.

14. H. Wang, M. Horridge, A. Rector, N. Drummond, and J. Seidenberg. Debugging OWL-
DL ontologies: A heuristic approach. In 4th International Semantic Web Conference
(ISWC2005), Galway, Ireland, 2005. Springer.



Extending Faceted Navigation for RDF Data

Eyal Oren, Renaud Delbru, and Stefan Decker

DERI Galway, Ireland
firstname.lastname@deri.org

Abstract. Data on the Semantic Web is semi-structured and does not
follow one fixed schema. Faceted browsing [23] is a natural technique
for navigating such data, partitioning the information space into or-
thogonal conceptual dimensions. Current faceted interfaces are manu-
ally constructed and have limited query expressiveness. We develop an
expressive faceted interface for semi-structured data and formally show
the improvement over existing interfaces. Secondly, we develop metrics
for automatic ranking of facet quality, bypassing the need for manual
construction of the interface. We develop a prototype for faceted navi-
gation of arbitrary RDF data. Experimental evaluation shows improved
usability over current interfaces.

1 Introduction

As Semantic Web data emerges, techniques for browsing and navigating this data
are necessary. Semantic Web data, expressed in RDF1, is typically very large,
highly interconnected, and heterogeneous without following one fixed schema [1].
Any technique for navigating such datasets should therefore be scalable; should
support graph-based navigation; and should be generic, not depend on a fixed
schema, and allow exploration of the dataset without a-priori knowledge of its
structure.

We identified four existing interface types for navigating RDF data: (1) key-
word search, e.g. Swoogle2, (2) explicit queries, e.g. Sesame3, (3) graph visualisa-
tion, e.g. IsaViz4 , and (4) faceted browsing [12, 19, 23]. None of these fulfill the
above requirements: keyword search suffices for simple information lookup, but
not for higher search activities such as learning and investigating [13]; writing
explicit queries is difficult and requires schema knowledge; graph visualisation
does not scale to large datasets [7]; and existing faceted interfaces are manu-
ally constructed and domain-dependent, and do not fully support graph-based
navigation.

In this paper we 1. improve faceted browsing techniques for RDF data, 2. de-
velop a technique for automatic facet ranking, 3. develop a formal model of
faceted browsing, allowing for precise comparison of interfaces, and 4. support
our conclusions with a formal analysis and an experimental evaluation.
1 http://www.w3.org/RDF/
2 http://swoogle.umbc.edu/
3 http://www.openrdf.org/
4 http://www.w3.org/2001/11/IsaViz/

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 559–572, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



560 E. Oren, R. Delbru, and S. Decker

2 Faceted Browsing

An exploratory interface allows users to find information without a-priori knowl-
edge of its schema. Especially when the structure or schema of the data is un-
known, an exploration technique is necessary [21]. Faceted browsing [23] is an
exploration technique for structured datasets based on the facet theory [17].

In faceted browsing the information space is partitioned using orthogonal con-
ceptual dimensions of the data. These dimensions are called facets and represent
important characteristics of the information elements. Each facet has multiple
restriction values and the user selects a restriction value to constrain relevant
items in the information space. The facet theory can be directly mapped to nav-
igation in semi-structured RDF data: information elements are RDF subjects,
facets are RDF predicates and restriction-values are RDF objects.

A collection of art works can for example have facets such as type of work,
time periods, artist names and geographical locations. Users are able to constrain
each facet to a restriction value, such as “created in the 20th century”, to limit
the visible collection to a subset. Step by step other restrictions can be applied
to further constrain the information space.

A faceted interface has several advantages over keyword search or explicit
queries: it allows exploration of an unknown dataset since the system suggests
restriction values at each step; it is a visual interface, removing the need to write
explicit queries; and it prevents dead-end queries, by only offering restriction
values that do not lead to empty results.

3 A Faceted Interface for RDF Data

In this section we introduce our faceted interface for arbitrary RDF data, ex-
plain its functionality, and formally describe its expressive power. The formal
treatment allows us to clearly show the improvement in expressive power over
existing interfaces, which we will do in Sec. 5.1.

3.1 Overview

A screenshot of our BrowseRDF prototype5, automatically generated for arbi-
trary data, is shown in Fig. 1. This particular screenshot shows the FBI’s most
wanted fugitives6. These people are described by various properties, such as their
weight, their eye-color, and the crime that they are wanted for. These proper-
ties form the facets of the dataset, and are shown on the left-hand side of the
screenshot.

Users can browse the dataset by constraining one or several of these facets.
At the top-center of the screenshot we see that the user constrained the dataset
to all fugitives that weigh 150 pounds, and in the middle of the interface we see
that three people have been found conforming to that constraint. These people
5 available at http://browserdf.org.
6 http://sp11.stanford.edu/kbs/fbi.zip



Extending Faceted Navigation for RDF Data 561

Fig. 1. Faceted browsing prototype

are shown (we see only the first), with all information known about them (their
alias, their nationality, their eye-color, and so forth). The user could now apply
additional constraints, by selecting another facet (such as citizenship) to see only
the fugitives that weigh 150 pounds and speak French.

3.2 Functionality

The goal of faceted browsing is to restrict the search space to a set of relevant
resources (in the above example, a set of fugitives). Faceted browsing is a visual
query paradigm [15, 9]: the user constructs a selection query by browsing and
adding constraints; each step in the interface constitutes a step in the query
construction, and the user sees intermediate results and possible future steps
while constructing the query.

We now describe the functionality of our interface more systematically, by
describing the various operators that users can use. Each operator results in
a constraint on the dataset; operators can be combined to further restrict the
results to the set of interest. Each operator returns a subset of the information
space; an exact definition is given in Sec. 3.3.

Basic selection. The basic selection is the most simple operator. It selects
nodes that have a direct restriction value. The basic selection allows for example
to “find all resources of thirty-year-olds”, as shown in Fig. 2a. It selects all nodes



562 E. Oren, R. Delbru, and S. Decker

that have an outgoing edge, labelled “age”, that leads to the node “30”. In the
interface, the user first selects a facet (on the left-hand side) and then chooses a
constraining restriction value.

(a) Basic selection (b) Existential selection

(c) Join selection

Fig. 2. Selection operators

Existential Selection. There might be cases when one is interested in the
existence of a property, but not in its exact value, or one may be interested
simply in the non-existence of some property. For example, we can ask for “all
resources without a spouse” (all unmarried people), as shown in Fig. 2b. In the
interface, instead of selecting a restriction value for the facet, the user clicks on
“any” or “none” (on the left-hand side, after the facet name).

Join Selection. Given that RDF data forms a graph, we often want to select
some resources based on the properties of the nodes that they are connected to.
For example, we are looking for “all resources who know somebody, who in turn
knows somebody named Stefan”, as shown in Fig. 2c. Using the join-operator
recursively, we can create a path of arbitrary length7, where joins can occur on
arbitrary predicates. In the interface, the user first selects a facet (on the left-
hand side), and then in turn restricts the facet of that resource. In the given
example, the user would first click on “knows”, click again on “knows” and then
click on “first-name”, and only then select the value “Stefan”.

Intersection. When we define two or more selections, these are evaluated in
conjunction. For example, we can use the three previous examples to restrict the
resources to “all unmarried thirty-years old who know some other resource that
knows a resource named Stefan Decker”, as shown in Fig. 3. In the interface, all
constraints are automatically intersected.

Inverse Selection. All operators have an inverse version that selects resources
by their inverse properties. For example, imagine a dataset that specifies com-
panies and their employees (through the “employs” predicate). When we select
a person, we might be interested in his employer, but this data is not directly

7 The path can have arbitrary length, but the length must be specified; we, or any
RDF store [1], do not support regular expression queries, as in e.g. GraphLog [3].



Extending Faceted Navigation for RDF Data 563

Fig. 3. Intersection operator

available. Instead, we have to follow the inverse property: we have to look for
those companies who employ this person. In the user interface, after all regular
facets, the user sees all inverse facets. The inverse versions of the operators are:

Inverse basic selection. For example, when the graph only contains state-
ments such as “DERI employs ?x”, we can ask for “all resources employed by
DERI”, as shown in Fig. 4a.

Inverse existential selection. We could also find all employed people, regard-
less of their employer, as shown in Fig. 4b.

Inverse join selection. The inverse join selection allows us to find “all re-
sources employed by a resource located in Ireland”, as shown in Fig. 4c.

(a) Inverse basic selection (b) Inverse existential selec-
tion

(c) Inverse join selection

Fig. 4. Inverse operators

We can merge the last example with the intersection example to find “all
unmarried thirty-year-olds who know somebody –working in Ireland– who knows
Stefan”, as shown in Fig. 5.

3.3 Expressiveness

In this section we formalise our operators as functions on an RDF graph. The
formalisation precisely defines the possibilities of our faceted interface, and allows
us to compare our approach to existing approaches (which we will do in Sect. 5.1).



564 E. Oren, R. Delbru, and S. Decker

Fig. 5. Full selection

First, we define the graph on which the operations are applied. Our notion
of an RDF graph differs from the standard one8: we only consider the explicit
statements in an RDF document and do not infer additional information as
mandated by the RDF semantics. The latter is not a “violation” of the semantics,
because we assume the RDF store to perform the necessary inferences already;
we regard a given RDF graph simply as the graph itself.

Definition 1 (RDF Graph). An RDF graph G is defined as G = (V, E, L, l)
where V is the set of vertices (subjects and objects), E is the set of edges
(predicates), L is the set of labels, l : E → label is the labelling function for
predicates and with V and E disjoint9. The projections, source : E → V and
target : E → V , return the source and target nodes of edges.

Table 1 gives a formal definition for each of the earlier operators. The operators
describe faceted browsing in terms of set manipulations: each operator is a func-
tion, taking some constraint as input and returning a subset of the resources
that conform to that constraint. The definition is not intended as a new query
language, but to demonstrate the relation between the interface actions in the
faceted browser and the selection queries on the RDF graph. In our prototype,
each user interface action is translated into the corresponding sparql10 query
and executed on the RDF store.

The primitive operators are the basic and existential selection, and their in-
verse forms. The basic selection returns resources with a certain property value.
The existential selection returns resources that have a certain property, irre-
spective of its value. These primitives can be combined using the join and the
intersection operator. The join returns resources with a property, whose value is
8 http://www.w3.org/TR/rdf-mt/
9 In RDF E and V are not necessarily disjoint but we restrict ourselves to graphs in

which they actually are.
10 http://www.w3.org/TR/rdf-sparql-query/



Extending Faceted Navigation for RDF Data 565

part of the joint set. The intersection combines constraints conjunctively. The
join and intersection operators have closure: they have sets as input and out-
put and can thus be recursively composed. As an example, all thirty-year-olds
without a spouse would be selected by: intersect(select(age, 30), not(spouse)).

Table 1. Operator definitions

operator definition
basic selection select(l, v′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v

target(e) = v′}
inv. basic selection select−(l, v′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v′

target(e) = v}
existential exists(l) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v}
inv. existential exists−(l) = {v ∈ V | ∀e ∈ E : label(e) = l, target(e) = v}
not-existential not(l) = V − exists(l)
inv. not-existential not−(l) = V − exists−(l)
join join(l, V ′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) = v

target(e) ∈ V ′}
inv. join join−(l, V ′) = {v ∈ V | ∀e ∈ E : label(e) = l, source(e) ∈ V ′

target(e) = v}
intersection intersect(V ′, V ′′) = V ′ ∩ V ′′

4 Automatic Facet Ranking

By applying the previous definitions a faceted browser for arbitrary data can
be built. But if the dataset is very large, the number of facets will typically
also be large (especially with heterogeneous data) and users will not be able to
navigate through the data efficiently. Therefore, we need an automated technique
to determine which facets are more useful and more important than others. In
this section, we develop such a technique.

To automatically construct facets, we need to understand what character-
istics constitute a suitable facet. A facet should only represent one important
characteristic of the classified entity [17], which in our context is given by its
predicates. We need to find therefore, among all predicates, those that best rep-
resent the dataset (the best descriptors), and those that most efficiently navigate
the dataset (the best navigators).

In this section, we introduce facet ranking metrics. We first analyse what
constitutes suitable descriptors and suitable navigators, and then derive metrics
to compute the suitability of a facet in an dataset. We demonstrate these metrics
on a sample dataset.

4.1 Descriptors

What are suitable descriptors of a data set? For example, for most people the
“page number” of articles is not very useful: we do not remember papers by
their page-number. According to Ranganathan [17], intuitive facets describe a



566 E. Oren, R. Delbru, and S. Decker

property that is either temporal (e.g. year-of-publication, date-of-birth), spatial
(conference-location, place-of-birth), personal (author, friend), material (topic,
color) or energetic (activity, action).

Ranganathan’s theory could help us to automatically determine intuitive facets:
we could say that facets belonging to either of these categories are likely to be intu-
itive for most people, while facets that do not are likely to be unintuitive. However,
we usually lack background knowledge about the kind of facet we are dealing with
since this metadata is usually not specified in datasets. Ontologies, containing such
background knowledge, might be used, but that is outside the scope of this paper.

(a) (b)

Fig. 6. Faceted browsing as decision tree traversal

4.2 Navigators

A suitable facet allows efficient navigation through the dataset. Faceted brows-
ing can be considered as simultaneously constructing and traversing a decision
tree whose branches represent predicates and whose nodes represent restriction
values. For example, Fig. 6a shows a tree for browsing a collection of publica-
tions by first constraining the author, then the year and finally the topic. Since
the facets are orthogonal they can be applied in any order: one can also first
constrain the year and topic of publication, and only then select some author,
as shown in Fig. 6b.

A path in the tree represents a set of constraints that select the resources of
interest. The tree is constructed dynamically, e.g. the available restriction values
for “topic” are different in both trees: Fig. 6b shows all topics from publications
in 2000, but Fig. 6a shows only Stefan Decker’s topics.

4.3 Facet Metrics

Regarding faceted browsing as constructing and traversing a decision tree helps
to select and use those facets that allow the most efficient navigation in the tree.



Extending Faceted Navigation for RDF Data 567

In this section we define this “navigation quality” of a facet in terms of three
measurable properties (metrics) of the dataset. All metrics range from [0..1]; we
combine them into a final score through (weighted) multiplication. We scale the
font-size of facets by their rank, allowing highlighting without disturbing the
alphabetical order11.

The metrics need to be recomputed at each step of the decision tree, since the
information space changes (shrinks) at each decision step. We give examples for
each metric, using a sample12 of the Citeseer13 dataset for scientific publications
and citations, but these example metrics only apply on the top-level (at the root
of the decision-tree).

We would like to rank facets not only on their navigational value, but also on
their descriptive value, but we have not yet found a way to do so. As a result,
the metrics are only an indication of usefulness; badly ranked facets should not
disappear completely, since even when inefficient they could still be intuitive.

Predicate Balance. Tree navigation is most efficient when the tree is well-
balanced because each branching decision optimises the decision power [20,
p. 543]. We therefore use the balance of a predicate to indicate its navigation
efficiency.

For example, we see in Table 2a that institution and label are well balanced,
but publication type is not, with a normalised balance of 0.3. Table 2b shows in
more detail why the type of publications is unbalanced: among the 13 different
types of publications, only three occur frequently (proceeding papers, miscella-
neous and journal articles); the rest of the publication types occur only rarely.
Being a relatively unbalanced predicate, constraining the publication type would
not be the most economic decision.

We compute the predicate balance balance(p) from the distribution ns(oi) of
the subjects over the objects as the average inverted deviation from the vector
mean μ. The balance is normalised to [0..1] using the deviation in the worst-case
distribution (where Ns is the total number of subjects and n is the number of
different objects values for predicate p):

balance(p) = 1 −
∑n

i=1 | ns(oi) − μ |
(n − 1)μ + (Ns − μ)

Object Cardinality. A suitable predicate has a limited (but higher than one)
amount of object values to choose from. Otherwise, when there are too many
choices, the options are difficult to display and the choice might confuse the user.

For example, as shown in Table 2c, the predicate type is very usable since
it has only 13 object values to choose from, but the predicate author or title
would not be directly usable, since they have around 4000 different values. One

11 font scaling has not yet been implemented.
12 http://www.csd.abdn.ac.uk/~ggrimnes/swdataset.php
13 http://citeseer.ist.psu.edu/



568 E. Oren, R. Delbru, and S. Decker

solution for reducing the object cardinality is object clustering [11, 22], but that
is outside the scope of this paper.

We compute the object cardinality metric card(p) as the number of different
objects (restriction values) no(p) for the predicate p and normalise it using the a
function based on the Gaussian density. For displaying and usability purposes the
number of different options should be approximately between two and twenty,
which can be regulated through the μ and σ parameters.

card(p) =

{
0 if no(p) ≤ 1

exp− (no(p)−μ)2

2σ2 otherwise

Predicate Frequency. A suitable predicate occurs frequently inside the collec-
tion: the more distinct resources covered by the predicate, the more useful it is in
dividing the information space [4]. If a predicate occurs infrequently, selecting a re-
striction value for that predicate would only affect a small subset of the resources.

For example, in Table 2d we see that all publications have a type, author,
title, and URL, but that most do not have a volume, number, or journal.

We compute the predicate frequency freq(p) as the number of subjects ns(p)=
|exists(p)| in the dataset for which the predicate p has been defined, and nor-
malise it as a fraction of the total number of resources ns: freq(p) = ns(p)

ns
.

Table 2. Sample metrics in Citeseer dataset

predicate balance
institute 1.00
label 1.00
url 1.00
title 1.00
text 0.99
author 0.96
pages 0.92
editor 0.82
isbn 0.76
...

...
type 0.30

(a) balance

type perc.
inproc. 40.78%
misc 28.52%
article 19.44%
techrep. 7.59%
incoll. 2.66%
phd 0.47%
book 0.21%
unpub. 0.19%
msc 0.07%
inbook 0.05%
proc. 0.02%

(b) objects in type

predicate objects
title 4215
url 4211
author 4037
pages 2168
text 1069
booktitle 1010
number 349
address 341
journal 312
editor 284
...

...
type 13

(c) cardinality

predicate freq.
type 100%
author 99%
title 99%
url 99%
year 91%
pages 55%
booktitle 37%
text 25%
number 23%
volume 22%
journal 20%
...

...

(d) frequency

5 Evaluation

We first evaluate our approach formally, by comparing the expressiveness of
our interface to existing faceted browsers. We then report on an experimental
evaluation.



Extending Faceted Navigation for RDF Data 569

5.1 Formal Evaluation

Several approaches exist for faceted navigation of (semi-)structured data, such
as Flamenco [23], mSpace [19], Ontogator [12], Aduna Spectacle14, Siderean Sea-
mark Navigator15 and Longwell16. Our formal model provides a way to compare
their functionality explicitly.

Existing approaches cannot navigate arbitrary datasets: the facets are manu-
ally constructed and work only on fixed data structures. Furthermore, they as-
sume data homogeneity, focus on a single type of resource, and represent other
resources with one fixed label. One can for example search for publications writ-
ten by an author with a certain name, but not by an author of a certain age,
since authors are always represented by their name.

Table 3 explicitly shows the difference in expressive power, indicating the
level of support for each operator. The existing faceted browsers support the ba-
sic selection and intersection operators; they also support joins but only with a
predefined and fixed join-path, and only on predefined join-predicates. The com-
mercial tools are more polished but have in essence the same functionality. Our
interface adds the existential operator, the more flexible join operator and the
inverse operators. Together these significantly improve the query expressiveness.

Table 3. Expressiveness of faceted browsing interfaces

operator BrowseRDF Flamenco mSpace Ontogator Spectacle Seamark
selection + + + + + +
inv. selection + − − − − −
existential + − − − − −
inv. exist. + − − − − −
not-exist. + − − − − −
inv. not-exist. + − − − − −
join + ± ± ± ± ±
inv. join + − − − − −
intersection + + + + + +

Other related work. Some non-faceted, domain-independent, browsers for RDF
data exist, most notably Noadster [18] and Haystack [16]. Noadster (and its
predecessor Topia) focuses on resource presentation and clustering, as opposed
to navigation and search, and relies on manual specification of property weights,
whereas we automatically compute facet quality. Haystack does not offer faceted
browsing, but focuses on data visualisation and resource presentation.

Several approaches exist for generic visual exploration of RDF graphs [6, 5]
but none scale for large graphs: OntoViz17 cannot generate good layouts for
more than 10 nodes and IsaViz18 is ineffective for more than 100 nodes [7].
14 http://www.aduna-software.com/products/spectacle/
15 http://www.siderean.com/
16 http://simile.mit.edu/longwell
17 http://protege.stanford.edu/plugins/ontoviz/
18 http://www.w3.org/2001/11/IsaViz/



570 E. Oren, R. Delbru, and S. Decker

Related to our facet ranking approach, a technique for automatic classification
of new data under existing facets has been developed [4], but requires a prede-
fined training set of data and facets and only works for textual data; another
technique [2], based on lexical dispersion, does not require training but it is also
limited to textual data.

5.2 Experimental Evaluation

We have performed an experimental evaluation to compare our interface to al-
ternative generic interfaces, namely keyword-search and manual queries.

Prototype. The evaluation was performed on our prototype, shown earlier in
Fig. 1. The prototype is a web application, accessible with any browser. We use
the Ruby on Rails19 web application framework to construct the web interface.
The prototype uses ActiveRDF20 [14], an object-oriented API for arbitrary RDF
data, to abstract the RDF store and translate the interface operators into RDF
queries. The abstraction layer of ActiveRDF uses the appropriate query language
transparently depending on the RDF datastore. We used the YARS [10] RDF
store because its index structure allows it to answer our typical queries quickly.

Methodology. Mimicking the setup of Yee et al. [23], we evaluated21 15 test
subjects, ranging in RDF expertise from beginner (8), good (3) to expert (4).
None were familiar with the dataset used in the evaluation.

We offered them three interfaces, keyword search (through literals), manual
(N3) query construction, and our faceted browser. All interfaces contained the
same FBI fugitives data mentioned earlier. To be able to write queries, the test
subjects also received the data-schema.

In each interface, they were asked to perform a set of small tasks, such as
“find the number of people with brown eyes”, or “find the people with Kenyan
nationality”. In each interface the tasks were similar (so that we could compare
in which interface the task would be solved fastest and most correctly) but not
exactly the same (to prevent reuse of earlier answers). The questions did not
involve the inverse operator as it was not yet implemented at the time. We
filmed all subjects and noted the time required for each answer; we set a two
minute time-limit per task.

Results. Overall, our results confirm earlier results [23]: people overwhelmingly
(87%) prefer the faceted interface, finding it useful (93%) and easy-to-use (87%).

As shown in Table 4, on the keyword search, only 16% of the questions were
answered correctly, probably because the RDF datastore allows keyword search
only for literals. Using the N3 query language, again only 16% of the questions
were answered correctly, probably due to unfamiliarity with N3 and the un-
forgiving nature of queries. In the faceted interface 74% of the questions were
answered correctly.
19 http://rubyonrails.org
20 http://activerdf.org
21 evaluation details available on http://m3pe.org/browserdf/evaluation.



Extending Faceted Navigation for RDF Data 571

Where correct answers were given, the faceted interface was on average 30%
faster than the keyword search in performing similar tasks, and 356% faster than
the query interface. Please note that only 10 comparisons could be made due to
the low number of correct answers in the keyword and query interfaces.

Questions involving the existential operator took the longest to answer, indi-
cating difficulty understanding that operator, while questions involving the basic
selection proved easiest to answer — suggesting that arbitrarily adding query ex-
pressivenessmight have limitedbenefit, if users cannot use the added functionality.

Table 4. Evaluation results

solved unsolved
keyword 15.55% 84.45%
query 15.55% 84.45%
faceted 74.29% 25.71%

(a) Task solution rate

keyword query faceted
easiest to use 13.33% 0% 86.66%
most flexible 13.33% 26.66% 60%
most dead-ends 53.33% 33.33% 13.33%
most helpful 6.66% 0% 93.33%
preference 6.66% 6.66% 86.66%

(b) Post-test preferences

6 Conclusion

Faceted browsing [23] is a data exploration technique for large datasets. We have
shown how this technique can be employed for arbitrary semi-structured content.
We have extended the expressiveness of existing faceted browsing techniques
and have developed metrics for automatic facet ranking, resulting in an auto-
matically constructed faceted interface for arbitrary semi-structured data. Our
faceted navigation has improved query expressiveness over existing approaches
and experimental evaluation shows better usability than current interfaces.

Future work. Our additional expressiveness does not necessarily result in higher
usability; future research is needed to evaluate the practical benefits of our ap-
proach against existing work. Concerning the ranking metrics, we performed an
initial unpublished evaluation showing that although the search space is divided
optimally, the ranking does not always correspond to the intuitive importance
people assign to some facets; again, further research is needed.

Acknowledgements. This material is based upon works supported by the Science
Foundation IrelandunderGrantsNo. SFI/02/CE1/I131 andSFI/04/BR/CS0694.
We thank Jos de Bruijn and the anonymous reviewers for valuable comments on a
previous version.

References

[1] R. Angles and C. Gutierrez. Querying RDF data from a graph database perspec-
tive. In ESWC, pp. 346–360. 2005.

[2] P. Anick and S. Tipirneni. Interactive document retrieval using faceted termino-
logical feedback. In HICSS. 1999.



572 E. Oren, R. Delbru, and S. Decker

[3] M. P. Consens and A. O. Mendelzon. Graphlog: a visual formalism for real life
recursion. In PODS, pp. 404–416. 1990.

[4] W. Dakka, P. Ipeirotis, and K. Wood. Automatic construction of multifaceted
browsing interfaces. In CIKM. 2005.

[5] C. Fluit, M. Sabou, and F. van Harmelen. Ontology-based information visualiza-
tion. In [8], pp. 45–58.

[6] C. Fluit, M. Sabou, and F. van Harmelen. Supporting user tasks through visual-
isation of light-weight ontologies. In S. Staab and R. Studer, (eds.) Handbook on
Ontologies, pp. 415–434. Springer-Verlag, Berlin, 2004.

[7] F. Frasincar, A. Telea, and G.-J. Houben. Adapting graph visualization techniques
for the visualization of RDF data. In [8], pp. 154–171.

[8] V. Geroimenko and C. Chen, (eds.) Visualizing the Semantic Web. Springer-
Verlag, Berlin, second edn., 2006.

[9] N. Gibbins, S. Harris, A. Dix, and mc schraefel. Applying mspace interfaces to
the semantic web. Tech. Rep. 8639, ECS, Southampton, 2004.

[10] A. Harth and S. Decker. Optimized index structures for querying RDF from the
web. In LA-WEB. 2005.

[11] M. A. Hearst. Clustering versus faceted categories for information exploration.
Comm. of the ACM, 46(4), 2006.

[12] E. Hyvönen, S. Saarela, and K. Viljanen. Ontogator: Combining view- and
ontology-based search with semantic browsing. In Proc. of XML Finland. 2003.

[13] G. Marchionini. Exploratory search: From finding to understanding. Comm. of
the ACM, 49(4), 2006.

[14] E. Oren and R. Delbru. ActiveRDF: Object-oriented RDF in Ruby. In Scripting
for Semantic Web (ESWC). 2006.

[15] C. Plaisant, B. Shneiderman, K. Doan, and T. Bruns. Interface and data architec-
ture for query preview in networked information systems. ACM Trans. Inf. Syst.,
17(3):320–341, 1999.

[16] D. Quan and D. R. Karger. How to make a semantic web browser. In WWW.
2004.

[17] S. R. Ranganathan. Elements of library classification. Bombay: Asia Publishing
House, 1962.

[18] L. Rutledge, J. van Ossenbruggen, and L. Hardman. Making RDF presentable:
integrated global and local semantic Web browsing. In WWW. 2005.

[19] m. schraefel, M. Wilson, A. Russell, and D. A. Smith. mSpace: Improving informa-
tion access to multimedia domains with multimodal exploratory search. Comm.
of the ACM, 49(4), 2006.

[20] R. Sedgewick. Algorithms in C++. Addison-Wesley, 1998.
[21] R. W. White, B. Kules, S. M. Drucker, and mc schraefel. Supporting exploratory

search. Comm. of the ACM, 49(4), 2006.
[22] R. Xu and D. W. II. Survey of clustering algorithms. IEEE Trans. on Neural

Networks, 16(3):645–678, 2005.
[23] K.-P. Yee, K. Swearingen, K. Li, and M. Hearst. Faceted metadata for image

search and browsing. In CHI. 2003.



Reducing the Inferred Type Statements with
Individual Grouping Constructs

Övünç Öztürk, Tuğba Özacar, and Murat Osman Ünalır

Department of Computer Engineering,
Ege University

Bornova, 35100, Izmir, Turkey
{ovunc.ozturk, tugba.ozacar, murat.osman.unalir}@ege.edu.tr

Abstract. A common approach for reasoning is to compute the deduc-
tive closure of an ontology using the rules specified and to work on the
closure at query time. This approach reduces the run time complexity
but increases the space requirements. The main reason of this increase is
the type and subclass statements in the ontology. Type statements show
a significant percentage in most ontologies. Since subclass is a transitive
property, derivation of other statements, in particular type statements
relying on it, gives rise to cyclic repetition and an excess of inferred
type statements. In brief, a major part of closure computation is deriv-
ing the type statements relying on subclass statements. In this paper,
we propose a syntactic transformation that is based on novel individual
grouping constructs. This transformation reduces the number of inferred
type statements relying on subclass relations. Thus, the space require-
ment of reasoning is reduced without affecting the soundness and the
completeness.

1 Introduction

Semantic web applications will require multiple large ontologies for querying [1].
Although current reasoners are capable of schema reasoning with these real world
ontologies, they break down for reasoning and retrieving the individuals in an on-
tology when the number of instances becomes large [2] [3]. It is a common and
space consuming approach to compute the deductive closure of these large ontolo-
gies and to work on the closure at query time. This approach is known as offline
reasoning that reduces run time complexity but increases space requirements.

Present work focusses at query-rewriting techniques. For example, [4] presents
the true RDF processor. This processor provides a slot access function which
allows the underlying graph to be viewed as if its RDFS-closure had been gener-
ated. This model has problems in dealing with domain and range restrictions and
does not cover the complete RDF semantics. Another query rewriting approach
for RDF reasoning [5], computes a small part of the implied statements offline
thereby reducing space requirements, upload time and maintenance overhead.
The computed fragment is chosen in such a way that the problem of inferring
implied statements at run time can be reduced to a simple query rewriting. In

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 573–582, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



574 Ö. Öztürk, T. Özacar, and M.O. Ünalır

contrast to [4], [5] covers the complete RDF semantics by precomputing the
transitive closure of hierarchical relations. These approaches do not compute
complete closure offline thus they require online reasoning, which increases the
runtime complexity.

In this paper,we propose a model that introduces novel individual grouping con-
structs for reducing the number of inferred type statements. The major problem
with reasoning about individuals is deriving type statements relying on subclass
relations between the classes. Our approach solves this problem with only a syn-
tactic transformation. Instead of relating the class with each of its instances, this
transformation relates the class with a group of sets where each set is a partial
extension of that class. The advantages of our approach are listed below:

– covers complete semantics of RDF-based languages, since it is only a syn-
tactic transformation

– does not affect the soundness and the completeness of the reasoning
– does not require query-rewriting and online reasoning
– does not require online reasoning

The rest of the paper is organized as follows: Section 2 introduces the model
in detail and its subsections describe the transformations required by the model.
Section 3 formulates the utilization rate of the model and evaluates utilization
with large scale ontologies by means of ontology metrics in [6]. Finally Section 4
concludes the paper with an outline of some potential future research.

2 A Model with Individual Grouping Constructs

In this paper we propose a model that introduces individual grouping constructs
for reducing the number of inferred type statements without affecting the sound-
ness and the completeness of the reasoning.

An individual grouping construct is a partial extension of a class. The union of
these partial extensions defines the exact list of class individuals. An individual
of a class may be in one or more partial extensions of that class. These partial
extensions are called subExtensions. A subExtension is related to one or more
classes via hasSubExt predicate and it is related to individuals of the class with
contains predicate. A subExtension is direct or inherited according to its relation
with the class.

All individuals of a class, except the ones derived through a subclass relation,
are added to the directSubExtension of that class. Each anonymous and non-
anonymous class in the ontology has zero or one directSubExtension. Any class
that has at least one individual has a directSubExtension. A class is related with
its directSubExtension with hasDirectSubExt predicate. A subExtension can be
related to one and only one class via hasDirectSubExt predicate.

An inheritedSubExtension of a class is the directSubExtension of a subclass of
that class. In other words, an inheritedSubExtension holds the class individuals
that are inherited to that class from one of its subclasses. A class is related
to one or more inheritedSubExtensions with hasInheritedSubExt predicate. A



Reducing the Inferred Type Statements 575

subExtension is related to one or more classes via an inferred hasInheritedSubExt
relation. Note that, since every class is a subclass of itself, the directSubExtension
of the class is also one of its inheritedSubExtensions. Thus every subExtension
of a class is also an inheritedSubExtension of that class.

In our model the ontology is syntactically transformed to a semantically equiv-
alent ontology with newly introduced individual grouping constructs. In order to
preserve the completeness and the soundness of the reasoning, rules and queries
are transformed in needs of these grouping constructs. These transformations 1

are described in the following subsections.

2.1 Triple Transformation

Let O be the set of triples in the ontology to be transformed, t be a type state-
ment with subject I and object C then t is replaced with triple set S where;

S =
{contains(E, I)}, if hasDirectSubExt(C,E) ∈ O

{contains(E, I), hasDirectSubExt(C,E)}, otherwise.

It is worth to note that the same replacement is done whenever a type state-
ment is added to or removed from ontology.

2.2 Rule/Query Transformation

Transforming rules is necessary to derive new statements with the transformed on-
tology without changing the completeness and the soundness of the reasoning. Af-
ter the transformation, some rules have a form like head : − body1 ∨ body2. These
rules can be transformed easily via the following Lloyd-Topor transformation [7]:

head : − body1 ∨ body2 ⇒ head : − body1 and head : − body2

Note that it is necessary to extend the rule set to include the following rule,
which specifies that every directSubExtension and inheritedSubExtension of a
class is also a subExtension of that class:

hasDirectSubExt(B,E)∨hasInheritedSubExt(B,E)
hasSubExt(B,E)

The following is the standard rule transformation, which is valid for all rules
other than RDF Rule 7 :

– A rule having a body condition with a type predicate is transformed in the
following way :

...∧type(U,B)∧...
h1

⇒ ...∧hasSubExt(B,E)∧contains(E,U)∧...
h1

– A rule having a head condition with a type predicate is transformed in the
following way :

b1∧...∧bn

type(U,B) ⇒ b1∧...∧bn∧hasDirectSubExt(B,E)
contains(E,U)

1 The transformation overhead is small enough to be considered negligible.



576 Ö. Öztürk, T. Özacar, and M.O. Ünalır

RDF Rule 7 computes the type statements relying on subclass relations. In
order to reduce the number of inferred type statements, this rule is transformed
in a different manner than the standart rule transformation. Instead of deriving
a type relation between every individual of subclass and its superclass (Fig. 1a),
RDF Rule 7 simply derives only one relation with predicate hasInheritedSubExt
between the directSubExtension and each inheritedSubExtension of subclass and
its superclass (Fig. 1b). Table 1 demonstrates the transformation of some RDF
rules from RDF Semantics [8], including RDF Rule 7.

Table 1. Transformation of RDF Rules

Rule No RDFS Rule Transformed Rule

(1) A(X,Y )
type(A,Property)

A(X,Y )∧hasDirectSubExt(Property,E)
contains(E,A)

(2) domain(A,X)∧A(U,Y )
type(U,X)

domain(A,X)∧A(U,Y )∧hasDirectSubExt(X,E)
contains(E,U)

(3) range(A,X)∧A(Y,V )
type(V,X)

range(A,X)∧A(Y,V )∧hasDirectSubExt(X,E)
contains(E,V )

(4) A(U,B)∨A(B,U)
type(U,Resource)

(A(U,B)∨A(B,U))∧hasDirectSubExt(Resource,E)
contains(E,U)

(5) type(U,Property)
subPropertyOf(U,U)

hasSubExt(Property,E)∧contains(E,U)
subPropertyOf(U,U)

(6) type(U,Class)
subClassOf(U,Resource)

hasSubExt(Class,E)∧contains(E,U)
subClassOf(U,Resource)

(7) subClassOf(U,X)∧type(V,U)
type(V,X)

subClassOf(U,X)∧hasSubExt(U,E)
hasInheritedSubExt(X,E)

(8) type(U,Class)
subClassOf(U,U)

hasDirectSubExt(Class,E)∧contains(E,U)
subClassOf(U,U)

A query is a rule without a head thus the standard rule transformation is also
applicable to queries. The queries are transformed in the following way where
h1 is an empty set:

...∧type(U,B)∧...
h1

⇒ ...∧hasSubExt(B,E)∧contains(E,U)∧...
h1

It is also important to represent the answer in the standard way. Let S be
the set of all triples in the answer set then replace the following triple sets with
triple type(U, B):

– {hasDirectSubExt(B,E), contains(E, U)}
– {hasInheritedSubExt(B,E), contains(E, U)}
– {hasSubExt(B,E), contains(E, U)}



Reducing the Inferred Type Statements 577

Fig. 1. Reducing the inferred type statements relying on subclass relations

3 Analyzing the Utilization of the Model

3.1 Computation of the Utilization Rate

Computation of the utilization rate reveals whether the model is valuable to use
with a specific ontology. In order to calculate the utilization rate, the number
of type statements in the ontology and the number of subclass relations in the
closure of the ontology must be known. Since it is necessary to know only the
number of subclass statements in the closure, it is enough to find the closure of
the schema of the ontology.

The following formula calculates the decrease in the inferred triple count by
applying the proposed model. Let Δ be the decrease in the inferred triple count
by applying the model. The formula finds Δ by calculating the difference be-
tween the decrease in inferred type statements and the newly added or inferred
triples related with grouping constructs. Before applying the model, every in-
dividual of a subclass is added to the individuals of its every superclass if the
superclass does not have this individual. The number of these additions is T . This
value is the decrease in inferred type statements. In order to calculate the exact
decrease in the inferred statements by applying the model, we have to minus
the number of newly added hasDirectSubExt, hasInferredSubExt and hasSubExt
statements from this value. Let D be the number of newly added hasDirect-
SubExt statements, I be the number of inferred hasInferredSubExt statements
and S be the number of hasSubExt statements, then;

Δ = T − (I + D + S) (1)

Let n be the number of classes in the ontology, ECx be the set of all explicit
individuals of class Cx where 1 ≤ x ≤ n, |X | be the number of elements in set



578 Ö. Öztürk, T. Özacar, and M.O. Ünalır

X , \ be the set minus operator and δ (Cx, Cy) be a function which returns 1 if
Cx is an explicit or implicit subclass of Cy . Otherwise the returned value is 0.
And let φ (Cx) be a function, which computes the number of elements in the
set-theoretic difference of U and Cx, where U is the union of all explicit and
implicit subclasses of Cx.

T =
n∑

i=1

Φ(Ci) (2)

Φ(Cx) = |
n⋃

i=1

σ(Ci, Cx)|

σ(Cx, Cy) =

⎧⎨⎩
ECx \ ECy , if Cx is a subclass of Cy

∅, otherwise.

I =
n∑

i=1

n∑
j=1

δ (Ci, Cj) (3)

δ (Cx, Cy) =

⎧⎨⎩
1, if Cx is a subclass of Cy

0, otherwise.

Let γ (Cx) be a function which returns 0, if Cx is an empty set. Otherwise
the returned value is 1. Each non-empty class in the ontology has one and only
one directSubExtension, thus

D =
n∑

i=1

γ (Ci) (4)

γ(Cx) =

⎧⎨⎩
0, if ECx = ∅

1, otherwise.

One and only one subExtension of a class is related to that class with hasDi-
rectSubExt predicate. All the other subExtensions are related to the class with
hasInheritedSubExt predicate. Since every class is a subclass of itself, the only
subExtension that is related to the class with hasDirectSubExt predicate is also
related to that class with hasInheritedSubExt predicate. Thus, all subExtensions
of a class are also related to the class with hasInheritedSubExt predicate. Then,
we can conclude that:

S = I (5)

The utilization rate is the ratio between the reduction in inferred statements
and the number of statements in the closure without implementing the model.
Let t be the number of statements in the ontology before inference, ρ be the
number of inferred statements without implementing the model, then the uti-
lization rate of the model U is;



Reducing the Inferred Type Statements 579

U = 1 − Δ

t + ρ

If the model is useful and reduces the number of inferred statements, the uti-
lization rate is in the interval of (0, 1]. The closer the value is to 0, the higher
the utilization of the model. If the utilization rate is equal to 1, then applying
the model shows no impact. If the utilization rate is greater than 1, then apply-
ing the model shows a negative impact (i.e., the number of inferred statements
increases).

3.2 Estimation of the Utilization Rate Using Ontology Metrics

The model shows a negative impact when the ontology has no subclass relation
or the number of type statements in the ontology is less than the number of class
definitions and subclass relations in the ontology. These two factors result in a
relatively low number of inferred type statements in the closure of the ontology.
In this case, the number of additional statements required by the technique is
greater than the decrease in the number of inferred type statements.

Obviously, this case is not very common in real world ontologies and also
is not meaningful from the perspective of knowledge representation. Table 2
depicts this issue by supplementing the number of subclass and type relations in
representative ontologies. The common characteristics of ontologies in Table 2 are
the reasonable amount of type and subclass statements and a significant increase
in type statements in their corresponding closures [5]. Consequently, the model
is valuable enough with these ontologies, but we enumerate the factors that
increase the utilization rate in order to figure out when the model is applicable.
These factors are:

– high number of subclass relations
– high number of individuals

Table 2. Behaviour of realistic data

CIA WFB TAP KB SUMO WordNet
orig. closure orig. closure orig. closure orig. closure

type 376 4150 36988 191972 6709 18198 99653 277267
subClassOf 9 60 283 1491 3797 18439 78446 606418
other 25899 26077 71148 71253 8637 10584 295529 374032

In order to estimate whether the model is suitable for a particular ontology,
the preceding factors can be associated with ontological metrics. Ontological
metrics are used to assess the quality of an ontology. The quality of an ontology
can be valuated in different aspects. These aspects are mainly grouped according
to their relevance with ontology, they are related either with schema or with
knowledge base, or both. Previous work in the literature is classified in [6], and
one dimension of this classification is the relevance with ontology. In accordance
with the classification, we decided to use metrics defined in OntoQA [6].



580 Ö. Öztürk, T. Özacar, and M.O. Ünalır

OntoQA metrics are mainly divided into schema metrics and instance met-
rics. Schema metrics are about the structure of the ontology. Instance metrics
are about the population and its distribution over the classes. We selected two
metrics from the OntoQA metric set: inheritance richness and average popula-
tion. In [6], inheritance richness is defined as “the average number of subclasses
per class”, and average population is defined as “the number of instances of
the knowledge base divided by the number of classes defined in the ontology
schema”. These metrics are proportional to the utilization of the model. Al-
though an increase in average population results in an increase in the utilization
of the model, it is necessary to note that the population intensifying in the leaf
classes has a greater effect.

3.3 Evaluation of the Utilization Rate with Large Scale Ontologies

We also applied the model on a RETE based inference engine [9], with Lehigh
University Benchmark (LUBM) in order to exemplify utilization of the model
[10]. LUBM is developed to evaluate the inference and query performance of
semantic web repositories over a large data set. The data set is generated ac-
cording to one ontology, named univ-bench, using the synthetic data generation
tool provided with the benchmark. LUBM can generate datasets with chosen
size using the schema, for example LUBM(2,0) means the ontology includes two
university instances with their corresponding dataset.

We conducted the test using four different rule sets. The first two sets are re-
lated with RDF semantics. The first one contains rules covering the semantics of
partial rdfs [11], where some of the normative RDFS entailments are discharged
for performance reasons. The second one is the transformed form of the previous
rule set in needs of the proposed model. The remaining two sets are related with
OWL semantics [12]. The first one contains rules covering the semantics of a
DL that is between OWL Lite and OWL DL. This set contains 30 rules, which
satisfy completeness and soundness of LUBM queries by 100 percent. Finally,

Fig. 2. Number of inferred statements in LUBM ontologies



Reducing the Inferred Type Statements 581

the last rule set is the transformed form of the rule set having 30 OWL rules, in
needs of the proposed model.

As can be seen from Figure 2, the model significantly reduces the number of
inferred triples and also the number of total triples in the closure of the ontology.
Therefore, the inferencing time of the ontology and the memory required to open
the ontology decrease. The utilization is higher in RDFS level because in RDFS
the ratio between inferred type statements and inferred statements is greater
than in OWL. Also query time is not affected because there is no need to make
backward chaining as in [5].

4 Conclusion and Future Work

This work is an attempt to reduce the number of inferred statements in the
closure of web ontologies. It is just a syntactic transformation that does not
change the soundness or the completeness of the reasoning. Instead of relating
a class with each of its instances, this transformation relates the class with a
group of sets where each set is a partial extension of that class.

The model is valuable with real world ontologies having a reasonable amount
of individuals. This work formulates the utilization and also tries to associate
it with ontology metrics in literature to estimate the utilization with a specific
ontology. Since there is not enough work related with ontology metrics and
the values of existent metrics with well known ontologies are not presented, we
couldn’t give a detailed work on the association of the utilization and the metrics.
It will be an interesting future work to define the intervals of metrics in which
the utilization is best.

Another potential future work is to reduce the semantic coverage of the model
and specialize it to a specific ontology language, in order to gain additional
utilization rate. This will be possible by defining not only individual grouping
constructs, but also additional specific grouping constructs for a specific ontology
language (e.g. grouping constructs specific for RDF).

References

1. Wielemaker, J., Schreiber, G., Wielinga, B.J.: Prolog-based infrastructure for rdf:
Scalability and performance. In: International Semantic Web Conference. (2003)
644–658

2. Haarslev, V., Möller, R.: High performance reasoning with very large knowledge
bases: A practical case study. In: IJCAI. (2001) 161–168

3. Horrocks, I., Li, L., Turi, D., Bechhofer, S.: The instance store: Dl reasoning with
large numbers of individuals. In: Description Logics. (2004)

4. Lassila, O.: Taking the rdf model theory out for a spin. In: International Semantic
Web Conference. (2002) 307–317

5. Stuckenschmidt, H., Broekstra, J.: Time - space trade-offs in scaling up rdf schema
reasoning. In: WISE Workshops. (2005) 172–181



582 Ö. Öztürk, T. Özacar, and M.O. Ünalır

6. Tartir, S., Arpinar, I.B., Moore, M., Sheth, A.P., Aleman-Meza, B.: Ontoqa:
Metric-based ontology quality analysis. In: Proceedings of IEEE ICDM 2005 Work-
shop on Knowledge Acquisition from Distributed, Autonomous, Semantically Het-
erogeneous Data and Knowledge Sources. (2005)

7. Lloyd, J.W.: Foundations of Logic Programming, 2nd Edition. Springer (1987)
8. Hayes, P.: Rdf semantics (2004)
9. Ünalir, M., Özacar, T., Öztürk, Ö.: Reordering query and rule patterns for query

answering in a rete-based inference engine. In: WISE Workshops. (2005) 255–265
10. Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large owl

datasets. In: International Semantic Web Conference. (2004) 274–288
11. Horst, H.J.: Combining rdf and part of owl with rules: Semantics, decidability,

complexity. In: International Semantic Web Conference. (2005) 668–684
12. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: Rdf semantics (2004)



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 583 – 596, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Framework for Schema-Driven Relationship Discovery 
from Unstructured Text 

Cartic Ramakrishnan, Krys J. Kochut, and Amit P. Sheth 

LSDIS Lab, Dept. of Computer Science, University of Georgia, Athens, GA 
{cartic, kochut, amit}@cs.uga.edu  

Abstract. We address the issue of extracting implicit and explicit relationships 
between entities in biomedical text. We argue that entities seldom occur in text 
in their simple form and that relationships in text relate the modified, complex 
forms of entities with each other. We present a rule-based method for (1) 
extraction of such complex entities and (2) relationships between them and (3) 
the conversion of such relationships into RDF. Furthermore, we present results 
that clearly demonstrate the utility of the generated RDF in discovering 
knowledge from text corpora by means of locating paths composed of the 
extracted relationships.  

Keywords: Relationship Extraction, Knowledge-Driven Text mining. 

1   Introduction 

Dr. Vannevar Bush, in 1945 [1], referring to the human brain said, “It operates by 
association. With one item in its grasp, it snaps instantly to the next that is suggested 
by the association of thoughts, in accordance with some intricate web of trails carried 
by the cells of the brain.” This vision may seem anachronistic given that topic 
hierarchies are used extensively today to index and retrieve documents (non-
hyperlinked) in many domains. But as we demonstrate in this paper, this vision 
emphasizing relationships and associations continues to be highly relevant, and can 
indeed drive the next generation of search and analysis capabilities. 

A good quality hierarchical organization of topics can serve as a very effective 
method to index and search for documents. A great example in the biomedical domain 
is the PubMed [2] database which contains over 16 million manually classified 
abstracts of scientific publications. In this domain, it is rare that the information 
sought by the user is completely contained in one document. The nature of biomedical 
research is such that each scientific publication in this domain serves to corroborate or 
refute a fact. Let us assume for the sake of argument that some publication asserts that 
“stress can lead to loss of magnesium in the human body”. Another publication might 
present evidence of the fact that “Migraine Patients seem to be experiencing stress”. 
It is therefore implicitly expected that the user of PubMed will piece together the 
partial information from relevant documents returned by PubMed searches to 
conclude that, for instance, “Migraine could lead to cause a loss of Magnesium”.  

One major drawback of this expectation was pointed out by Dr. D.R. Swanson in 
1986. By searching biomedical literature manually, he discovered previously 



584 C. Ramakrishnan, K.J. Kochut, and A.P. Sheth 

unknown connections between Fish Oils and Raynaud’s Syndrome [3], which were 
implicit in the literature. He followed this up with several more examples such as the 
association between Magnesium and Migraine [4]. In fact, the paper revealed eleven 
neglected, potentially beneficial effects that Magnesium might have in alleviating 
Migraine. These discovered connections have since been validated by clinical trials 
and experiments. Such hidden, valuable relationships have been termed Undiscovered 
Public Knowledge. However, there is practically no support in contemporary 
information systems for users to unearth such undiscovered knowledge from public 
text in an automated manner. 

2   Background and Motivation 

It is clear that there are large bodies of knowledge in textual form that need to be 
utilized effectively (e.g. PubMed [2]). The creation of MeSH and UMLS are steps 
aimed at making such textual knowledge more accessible. PubMed, however, has 
been growing at a phenomenal rate. Consequently, the amount of Undiscovered 
Public Knowledge is also likely to increase at a comparable rate. Meanwhile, in the 
Semantic Web community analytical operators over semi-structured data have been 
receiving increased attention. Notable among these are Semantic Association [5] and 
Relevant sub-graph Discovery [6]. Both are aimed at discovering named relationships 
between entities in RDF data. Guha et. al. [7] introduced the notion of a “Research 
Search” as a type of Semantic Search. Users start with a search phrase which refers to 
an entity. The “Research Search” then helps users to gather pieces of information 
from multiple documents which collectively satisfy their information need. 

It is critical to support such search, query and analytics paradigms over text data. 
Currently, these paradigms assume the existence of a rich variety of named 
relationships connecting entities in an instance base. Our aim, and indeed one of the 
aims of the Semantic Web community, is to apply these search and analytics 
paradigms to text data. It is clear that to enable this, we need to bridge the gap 
between unstructured data (free text) and semi-structured data (such as that 
represented in RDF, a W3C standard). As a step towards bridging this gap, in this 
paper, we address the challenge of extracting implicit and explicit relationships 
between known entities in text. 

Recently, relationship extraction from biomedical text has received a lot of 
attention among several research communities. A comprehensive survey of current 
approaches to biomedical text mining is presented in [8]. Particular attention has been 
paid to surveying Named Entity Recognition. Most of the attention in this sub-area 
has focused on identifying gene names. One very effective method is AbGene [9]. 
This method uses training data in the form of hand-tagged sentences that contain 
known gene and protein names and is combined with the Brill Tagger [10] to extract 
names of genes and proteins. According to the authors in [8], most approaches to the 
relationship extraction consider very specific entities (such as genes), while 
relationships vary from general (e.g., any biochemical relationship) to specific (e.g., 
regulatory relationships). This becomes clear when we look at the approaches to 
relationship extraction surveyed in [8]. These include pattern based approaches [11] 
where patterns such as “also known as” are used to identify synonymy in protein and 



 A Framework for Schema-Driven Relationship Discovery from Unstructured Text 585 

gene names. Template based approaches have also been investigated in the PASTA 
system [12]. Natural Language Processing (NLP) methods have been used in [13] and 
[14]. In [13] the authors focus their attention on cellular pathways and extract 
structured information from biomedical literature. Since they focus on cellular 
pathways their GENESIS system processes the entire article as opposed to just the 
abstract. Their system considers 125 fine-grained verbs that are classified into 14 
broad semantic classes. The critical difference between GENESIS and our system is 
that our system uses empirical rules as opposed to grammatical rules to extract 
relationships between entities. In [14], the author uses NLP techniques to generate 
underspecified parses of sentences in biomedical text. Semantics from UMLS are then 
used to extract assertions from these parses. Our technique is most similar to this 
approach. The difference, however, is that our approach extracts modified and 
composite entities and relationships between them. This allows us to extract variants 
of known entities and assertions involving these variants. 

From our perspective, all relationships of interest in these approaches are very 
specific. One obvious reason for this is that there is a dire need for such specific 
relationships to be extracted. In this paper, our approach focuses on more general 
relationships that are defined in UMLS and is not dependent on any specific type of 
relationship. The reasons for this are two-fold. First, our long-term goal is to support 
semantic browsing, searching and analysis of biomedical abstracts. The intended 
users of such a system could range from a layperson to domain experts. The second 
reason is that once instances of genes, proteins, etc. and relationships among them are 
extracted (by approaches discussed above) these could be integrated with clinical 
trials data which is arguably at the same level of specificity. Such integration would 
only be possible if the more general entities and the relationships between them were 
known.  

The main difference between our work in this paper and all previous work aimed at 
relationship extraction is, that our extraction mechanism, in contrast with most past 
work, can easily be applied to any domain where a well defined ontology schema and 
set of know entity instances is available. For this project, we choose the biomedical 
domain since it has all the characteristics that are required to demonstrate the 
usefulness of the structured data we extract.  

3   Our Approach 

The general problem of relationship extraction from text is very hard.  Our approach 
recognizes and takes the advantage of special circumstances associated with the 
biomedical domain. More specifically, we leverage the availability of a controlled 
vocabulary called the Medical Subject Headings (MeSH) [15] and domain knowledge 
in the form of the Unified Medical Language System (UMLS) [16].  We combine this 
domain knowledge with some of the established NLP techniques for relationship 
extraction. The use of domain knowledge eliminates the need for two key constituent, 
but challenging steps, namely Named Entity Identification and Named Entity 
Disambiguation/Reference Reconciliation, both of which are required before 
relationships can be extracted. 



586 C. Ramakrishnan, K.J. Kochut, and A.P. Sheth 

MeSH is a controlled vocabulary organized as a taxonomy, which is currently used 
to index and retrieve biomedical abstracts from the PubMed database. We treat MeSH 
terms as entities. These entities may be mentioned in several different contexts in 
PubMed abstracts. MeSH terms (simple entities) may be combined with other simple 
entities to form composite entities or may occur as modified entities.  They may be 
related to each other by complex relationships.   Our aim in this paper is to identify 
and extract these three types of entities and relationship between them occurring in 
biomedical text. In this paper: 

1. We use an off-the-shelf part-of-speech tagger [17] and a chunk parser [18] to 
produce parse trees of sentences in biomedical abstracts. This is described 
briefly in Section 4.2.1. 

2. We present a rule-based post-processing technique to enrich the generated parse 
trees. The rules serve to identify complex entities and known relationships 
between them. This is described in detail in Section 4.2.2. 

3. The conversion of these processed trees to the corresponding RDF structures is 
described in Section 4.3. Sample sentences from PubMed abstracts are used to 
illustrate the effectiveness of our methodology. 

4. An evaluation of the effectiveness of our post-processing rules in terms of 
precision and recall is presented in Section 5. The dataset which provides the 
framework for this study is also discussed in Section 5. 

5. Finally, we demonstrate the usefulness of our results in the context of Semantic 
Analytics, presented in Section 5. 

4   Relationship Discovery 

In this section we describe the features of our dataset used in our research. We then 
detail the methodology for relationship extraction. 

4.1   Dataset 

As mentioned earlier, PubMed contains over 16 million abstracts of biomedical 
publications. Each abstract is uniquely identified by a PubMed ID (PMID). These 
abstracts are manually classified by domain experts and annotated as pertaining to one 
or more entities in the MeSH hierarchy. MeSH contains 22,807 named entities which 
include 316 pharmacological names. UMLS contains a Semantic Network containing 
136 classes which are related to each other by one or more of 49 named relationships. 
Each named entity in MeSH has been manually asserted as an instance of one or more 
classes in UMLS. Furthermore, MeSH contains synonyms of entities. For instance, 
“Neoplasms” has the synonym “Tumors”. This obviates the need for Named Entity 
Identification and Disambiguation for the purposes of this paper.  Further, UMLS also 
contains synonyms of the 49 relationships. These synonyms have been created by 
domain experts and used in biomedical abstracts indexed by PubMed. We use this 
information to spot named relationships occurring in PubMed abstracts. We split 
biomedical abstracts into sentences and generate RDF on a per-sentence basis. 
Therefore, in this paper we do not address the problem of Co-Reference Resolution or 
Pronominal Anaphora Resolution. 



 A Framework for Schema-Driven Relationship Discovery from Unstructured Text 587 

4.2   Methodology 

Throughout this section, we will use a sample abstract from PubMed to illustrate the 
steps of our methodology. We chose this abstracts at random. The only criterion was 
that it should contain known entities (MeSH terms) and known relationships (from 
UMLS) so as to allow us to illustrate all structure types that we extract. The sentence 
listing of this abstract is shown below. 

 

Fig. 1. Sample sentences from abstract of PMID-1254239 for illustration (Numbers in the 
figure indicate PubMed ID-Sentence Number) 

4.2.1   Part-of-Speech Tagging and Parsing 
Given a sentence, our first step is to tag parts-of-speech in the sentence and parse it to 
generate a parse tree. We use the SS-Tagger [17] to tag sentences, which claims to 
offer fast tagging (2400 tokens/sec) with state-of-the-art accuracy (97.10% on the Wall 
Street Journal corpus). This tagger uses an extension of Maximum Entropy Markov 
Models (MEMM), in which tags are determined in the easiest-first manner. To parse 
the result of this tagger and produce a parse tree we use the SS-parser [18]. According 
to the authors, this CFG parser offers a reasonable performance (an f-score of 85%) 
with high-speed parsing (71 sentences/sec). Although there are possibly more accurate 
parsers available [19-21], the speed of this parser makes it a better choice for us. A 
comparison of our results obtained by using each of these parsers is something we plan 
to investigate in the future. We also plan to consider domain specific parsers [22].  

The output of the SS-Parser is converted into a main-memory tree representation. 
The figure below shows such a tree for the sentence 1254239-1. As is shown in Fig. 2, 
known entities (MeSH terms) and relationships (from UMLS) are identified in the 
parse tree. In this example, estrogen (D004967), hyperplasia (D006965) and 
endometrium (D004717) are the simple entities spotted. The verb induces turns out to 
be a synonym of the relationship causes (UMLS ID-T147). Besides recording the 
known entities and relationships occurring in each node, pointers are maintained to 
their siblings. For ease of discussion, we group the nodes in the tree into terminal 
nodes (referred to as _T henceforth) and non-terminal nodes (referred to as _NT 
henceforth). The text corresponding to a _T node is a single word and that for a _NT 
node is the phrase formed by its children. This text for each node will be referred to as 
the token of that node throughout this paper. 



588 C. Ramakrishnan, K.J. Kochut, and A.P. Sheth 

4.2.2   Rule Based Post Processing 
Entities that occur in biomedical text (or in any text for that matter) seldom occur in 
their simple unmodified form. They typically occur in a sentence, combined with 
other entities to form a composite entity or are combined with some modifier to form a 
modified entity. Consequently, relationships in such sentences may connect two 
entities which may be either composite entities, modified entities or just simple 
entities. In the following sub-sections, we define the three types of entities. We 
present the rules for identifying them in a sentence along with an algorithm for 
applying these rules. Finally, we present an algorithm for extracting relationships 
between the identified entities in the sentence. 

 

Fig. 2. Fragment of the parse Tree (Shaded nodes are terminals (_T) and clear nodes are non-
terminals (_NT)) 

4.2.2.1 Entity Types. We define simple entities as MeSH terms. Modifiers are siblings 
of any entity type which are not entities themselves and have one of the following 
linguistic types: 

• determiners (except the words “the”, “an” or “a”) 
• noun/noun-phrases 
• adjectives/adjective-phrases 
• prepositions/prepositional-phrases.  

Determiners are included in the definition of modifiers to account for negative 
modifiers such as the words no, not, etc. which identify negative facts. Modified 



 A Framework for Schema-Driven Relationship Discovery from Unstructured Text 589 

Entities are Simple Entities or other Modified Entities that have a sibling which is a 
Modifier. Composite Entities are those that are composed of one or more Simple or 
Modified Entities. 

Table 1. Symbols used and their definitions 

Symbols Definitions 
SE Simple Entity 
M Modifier 

ME Modified Entity 
CE Composite Entity 
R Relationship 
_T Terminal node in parse tree 

_NT Non-Terminal node in parse tree 

The definitions discussed above form a rather simple model that can be used to 
describe the patterns that trigger the extraction of entities and relationships from text. 
In some ways, our model is very similar to the one in [23] which the author uses to 
learn linguistic structures from text. In [23], the model described treats certain 
linguistic types (Noun Phrases, Personal pronouns,etc.) occurring in parse trees as 
nuclei to which adjuncts (Adjectival Phrases) may be attached. Furthermore, linkers 
are defined as either conjunctions or punctuations. The purpose of this model is the 
induction of rules that capture linguistic structure. However, it does not account for 
named relationships connecting entities. Therefore, although some of our ideas are 
similar to the ones in [23], the overall purpose is very different.  

4.2.2.2 Rules for entity identification. We use the following rules to identify the 
defined entity types in sentences.  

Rule 1: Modifiers attach themselves to Simple Entities in sentences forming Modified 
Entities. Therefore, if a Modifier M is a sibling of a Simple Entity SE a Modified 
Entity is produced. 
Rule 2: Modifiers can attach themselves to other Modified Entities to form other 
modified entities. Therefore, if a Modifier M is a sibling of a Modified Entity ME 
another Modified Entity is produced. 
Rule 3: Any number of modified or simple entities can form a composite. Therefore, 
if one or more Modified Entities ME and Simple Entities SE are siblings then a 
Composite Entity CE comprising of all these siblings is produced. 

4.2.3   Algorithm for Modified and Composite Entity Identification 
In this section we describe the algorithm for systematic application of the rules 
discussed above. The algorithm (Identify_Entities) makes two passes over the parse 
tree in a bottom-up manner.  

Pass 1 
Step 1: The first pass of Identify_Entities begins with Simple Entities found in 
terminal nodes. It propagates this information about identified simple entities up the 



590 C. Ramakrishnan, K.J. Kochut, and A.P. Sheth 

parse tree recording this information in all _NT nodes till a sentence node is reached. 
This information will later be useful when identifying modified non-terminal entities. 
Instances of relationships found in _T nodes are also propagated up in a similar 
manner. This information will later be useful when identifying the subject and object 
of a relationship in that sentence.   
Step 2: The next step in the first pass is to look at siblings of all _T nodes carrying 
simple entities to identify modifiers. For every identified modifier Rule 1 is triggered 
and the parent node is marked as containing a modified entity.  

Pass 2 
Step 1: Next, the set of non-terminal (_NT) nodes which were marked as carrying 
entities in Pass 1 is considered. For each node in this set which is not a Verb Phrase 
(VP) or an Adverb Phrase (ADVP), its siblings are checked.  
Case 1: If modifiers are found in the siblings Rule 2 is triggered and the parent of the 
current node is marked as containing a Modified Entity.  
Case 2: If Simple entities or other Modified entities are found Rule 3 is triggered and 
the parent node is marked as a Composite Entity. 

4.2.4   Algorithm for Relationship Identification 
After Identify_Entities has processed a parse tree, the children of the node marked S 
(Sentence) contain the information necessary to produce a relationship between the 
entities involved. To identify this relationship, we use the following algorithm. 

 

Fig. 3. Processed tree showing modified entities, composite entities and a relationship "induces" 

If the children of the node marked S contain an entity followed by a relationship 
and another entity then such a pattern suggests the existence of a relationship between 
those entities. To guarantee that this relationship R is indeed valid, we use the 



 A Framework for Schema-Driven Relationship Discovery from Unstructured Text 591 

information from the UMLS schema. Note that a candidate subject (Subject) and 
object (Object) of the suggested relationships could be composite or modified entities 
as per our definitions. Further, note that RDFS allows a property to have multiple 
domains and ranges. Let the domain and the range of R be the sets domain(R) ={C1, 

C2… ,Cn} and range(R) ={C1, C2… ,Cm}. If jCC ,i∃  for ni ≤≤1 and mj ≤≤1  

such that SubjectCi ∈ and ObjectC j ∈  then we say that the Subject and Object 

are related by the relationship R. Fig.3. shows the relationship “induces” between the 
modified entity “An excessive endogenous or exogenous stimulation by estrogen” and 
“adenomatous hyperplasia of the endometrium”. 

4.3   Serializing Identified Structures in RDF 

In this section we use the running example of sentence 1254239-1 to describe the 
RDF resources generated by our method.  

4.3.1   Simple Entities in RDF 
Fig. 4. shows the RDF generated for simple entities. Note that the MeSH term 
identifiers are used here as URIs for the resources corresponding to each simple entity. 

 

Fig. 4. RDF serialization of Simple Entities 

4.3.2   Modified Entities in RDF  
To generate RDF for the modified entities we need to create a resource corresponding 
to each modifier. Therefore, we have augmented the UMLS schema with a generic 
class which we call umls:ModifierClass. In addition, we have created a special 
property umls:hasModifier. This property has domain rdf:resource and range 
umls:ModifierClass. Using this property. instances of umls:ModifierClass are 
attached to instances of rdf:resource that are entities. Fig. 5(a). shows the RDF 
resources generated for the modified entities in sentence 1254239-1. 

4.3.3   Composite Entities in RDF 
By definition, composite entities are made up of one or more simple of modified 
entities. To create such composites, we had to further augment the UMLS schema to 
include a new class umls:CompositeEntityClass and a new property umls:hasPart. 



592 C. Ramakrishnan, K.J. Kochut, and A.P. Sheth 

The new property has as its domain and range rdf:resource and therefore serves to 
connect the parts of a composite to the resource that represents the composite entity. 
Fig. 5(b) shows the composite extracted from sentence 1254239-1. 

4.3.4   Property Instances in RDF  
Each of the 49 relationship in UMLS has been defined with its appropriate domain 
and range in the UMLS schema. For instance, the verb induces is a synonym of the 
property umls:causes. This property has several domains and ranges. One pair of 
classes that this property relates is umls:Pharmacologic_Substance and 
umls:Pathologic_Function. Since estrogen is an instance of 
umls:Pharmacologic_Substance (Fig. 5(a)) and “hyperplasia” is an instance of class 
umls:Pathologic_Function, we generate the RDF shown in Fig. 5(c). 

 

 

 

Fig. 5. RDF serialization of (a) Modifiers and Modified entities (b) Composite Entities and  (c) 
Instance of a relationship between entities 

5   Discussion of Results 

In our experiments, we tested our methodology for relationship extraction on two 
datasets. Both datasets are subsets of PubMed. The first is the set of abstracts obtained 
by querying PubMed with the keyword “Neoplasms”. Unless otherwise specified, 
PubMed returns all abstracts annotated with a MeSH term as well as its descendants 
defined in MeSH. As of today, such a query returns over 500,000 abstracts. This 
forms the dataset which we refer to as ALLNEOPLASMS in this paper. The second 
dataset is a more focused, smaller set containing abstracts of papers that describe the 
various roles of Magnesium in alleviating Migraine. Among the eleven neglected 
connections described in [4], we focus our attention on four connections. These 
involve the intermediate entities Stress, Calcium Channel Blockers, Platelet 
Aggregation and Cortical Spreading Depression. To retrieve documents pertaining to 
these intermediate entities and either Migraine or Magnesium we searched PubMed 
with pair-wise combinations of each intermediate entity with both Migraine and 
Magnesium, respectively. This resulted in a set of approximately 800 abstracts. We 



 A Framework for Schema-Driven Relationship Discovery from Unstructured Text 593 

call this set MAGNESIUMMIGRAINE. Our objective in extracting triples from the 
ALLNEOPLASM set at this point is to test the scalability of our system. In the future, 
we plan to sample the generated triples to evaluate our methodology in terms of 
precision and recall. Processing approximately 1.6 million candidate sentences from 
the ALLNEOPLASM set resulted in over 200,000 triples. In the case of the 
MIGRAINEMAGNESIUM test our objective was to investigate two aspects of our 
results. They can be characterized by the following questions.  

Question 1: How effective are our rules in extracting relationships and the entities 
involved from text?  
Questions 2: How useful is the extracted RDF data? 

We identify candidate sentences for relationship extraction as those that contain at 
least two instances of MeSH terms and at least one instance of a named relationship 
(or its synonym). In the MIGRAINEMAGNESIUM set, we identified 798 candidate 
sentences. These sentences are therefore the ones which we expect to generate 
instances of relationships. In our results, these relationships never relate simple 
entities but always seem to relate modified or composite entities. The number of 
entities of each type and the relationship instances extracted for the 
MIGRAINEMAGNESIUM set are as follows: Simple Entities (752), Modifiers 
(2522), Modified Entities (4762), Composite Entities (377) and Relationships (122). 
We found that 122 relationship instances were extracted from the 798 candidate 
sentences. To measure recall accurately, a domain expert would have to read each of 
the 798 sentences manually to see if they should generate a relationship. We plan to 
conduct just such an experiment in the future. This is however infeasible for larger 
datasets. We analyzed those candidate sentences that did not produce relationship 
instances. In our approach to relationship extraction we used the fairly simple rule 
which expected the subject and the object entity in the same sentence. Close to 90% 
of the candidate sentences that failed to generate relationships were of a more 
complex form where the subject is an entity and the object is a sentence itself. Such a 
structure is an ideal candidate for a reified statement in RDF. We plan to increase the 
recall of our system by adding a rule to generate such a structure.  

Of the 122 relationships, 5 were incorrect extractions resulting in 95% precision. 
Precision directly affects the usefulness of the extracted relationships. We therefore 
study the usefulness of the extracted relationships in the context of the Undiscovered 
Public Knowledge.  

In the RDF produced, every modified entity is “connected” to its constituent 
modifiers by the umls:hasModifier relationship and to its constituent simple or modified 
entities by the umls:hasPart relationship. In the case of a composite entity, each of its 
constituents are “connected” to it by the umls:hasPart relationships. Besides these 
“connections” there are named relationships connecting entities (SE, ME and CE). As 
described earlier, the entities Stress, Platelet Aggregation, Spreading Cortical 
Depression and Calcium Channel Blockers are some of the intermediate entities that 
serve to describe the beneficial affect that Magnesium has in alleviating Migraine. The 
usefulness of the RDF extracted from the MIGRAINEMAGNESIUM could therefore 
be demonstrated if the abovementioned intermediate entities occur in paths connecting 
Migraine and Magnesium in the RDF. To test for this, we run a simple bidirectional 
length-limited breadth first search for paths connecting Migraine and Magnesium. We 



594 C. Ramakrishnan, K.J. Kochut, and A.P. Sheth 

decided to limit the path length since we expected the number of paths to be 
prohibitively large, and since very long paths are seldom of interest. As expected, there 
are a very large number of paths and this number increases exponentially with path 
length. Only the paths that contain named relationships (besides umls:hasPart and 
umls:hasModifier) are considered interesting to us. The results of these length-limited 
searches on the MIGRAINEMAGNESIUM RDF data are shown below. 

Table 2. Paths between Migraine and Magnesium 

Paths between Migraine and Magnesium 
Path length Total Number of paths 

found 
# of interesting paths Max. # of named 

relationships  in any path 

6 260 54 4 

8 4103 1864 5 

10 106450 33403 5 

To see the value of these paths, we examined some of the paths among those of 
length 6. We focused our attention on the ones that had 2-3 named relationships. Fig. 
6 below shows an example of such a path. This path indicates that migraine is caused 
by abnormality of platelet behavior (PMID 2701286, sentence number 1), collagen 
stimulates platelets (PMID 8933990, sentence number 9) and Magnesium has an 
inhibitory effect on collagen induced platelet aggregation (PMID 10357321, sentence 
number 7). We have included here the pointers to the specific sentences in each 
abstract that corroborates each of the 3 facts above to form the said path. This 
example clearly demonstrates that our extraction process was successful in extracting 
relationship instances from PubMed abstracts. It further demonstrates that by virtue of 
the umls:hasPart and umls:hasModifier these relationship instances extracted from 
different documents can be chained together to form paths.  

 

Fig. 6. Example path between Magnesium and Migraine 

The edges in the figure are left undirected although the relationships are directed in 
the generated RDF. Directionality of these relationships can be deduced from the 
schema. The generated RDF can serve as the foundation for applying analytical 
operators such as those in [5] and [6] to provide support for discovering Undiscovered 
Public Knowledge. All the generated data from our experiments in this paper is 
available at http://lsdis.cs.uga.edu/projects/semdis/relationExt/. 



 A Framework for Schema-Driven Relationship Discovery from Unstructured Text 595 

6   Applications and Future Work  

In order to thoroughly evaluate the accuracy of our extracted relationships and 
consequently that of the resulting paths, we plan to enlist the help of a domain expert. 
We plan to do this for the MIGRAINEMAGNSIUM dataset. We also plan to test this 
on the Fish Oils and Raynaud’s disease associations. We plan to investigate the 
following potential applications resulting from our work: 
“Semantic” Browsing - Our next natural step is to superimpose the extracted RDF 
back onto the original text and annotate biomedical abstracts with entities and 
relationships between them. We envision a Semantic Browsing paradigm in which the 
user of such a Semantic Browser will be able to traverse a space of documents based 
on named relationships between entities of interest. This vision is in line with the 
“trailblazing” idea posited by Dr. Vannevar Bush [1].  
Knowledge-Driven (“Semantic”) Document Retrieval - Paths between entities in 
our generated RDF instance base can be used as a query for documents. A simple 
example of such a query can be seen in the association between Migraine and 
Magnesium, where intermediate entities like Stress or Calcium Channel Blockers 
would serve to constrain the returned documents to only that set which corroborates 
the said associations.  
Semantic Analytics over Literature - The operators described in [5] return paths 
between entities in the query. The sub-graph discovery operator described in [6] takes 
as input two entities in an RDF instance base and returns a set of paths between them 
that are not vertex-disjoint (i.e. forming a sub-graph). Applying these queries to RDF 
generated by mining biomedical literature will allow us to quantify the relevance of 
the returned paths. This gives rise to a very powerful mechanism for exploratory 
analysis of large document sets.   

7   Conclusions 

Our experiments have demonstrated the utility of extracting relationships from 
biomedical text to support analytical queries.  The effectiveness of our method 
augmented with rules to extract more complex structures remains to be investigated. It 
is however clear that domain knowledge can be effectively combined with NLP 
techniques to good effect. We intend to continue this work and investigate the use of 
other vocabularies in addition to MeSH to aid in relationship extraction. The 
relationship-centric view of document organization, in our opinion, will mark the next 
generation of search and analytics over document corpora. This work is funded by 
NSF-ITR-IDM Award#0325464 (SemDIS: Discovering Complex Relationships in the 
Semantic Web). 

References 

1. Bush, V., As We May Think. The Atlantic Monthly, 1945. 176(1): p. 101-108. 
2. NLM, PubMed, The National Library Of Medicine, Bethesda MD. 
3. Swanson, D.R., Fish Oil, Raynaud's Syndrome, and Undiscovered Public Knowledge. 

Perspectives in Biology and Medicine, 1986. 30(1): p. 7-18. 



596 C. Ramakrishnan, K.J. Kochut, and A.P. Sheth 

4. Swanson, D.R., Migraine and Magnesium: Eleven Neglected Connections. Perspectives in 
Biology and Medicine, 1988. 31(4): p. 526-557. 

5. Anyanwu, K. and A. Sheth, -Queries: enabling querying for semantic associations on the 
semantic web, in Proceedings WWW. 2003, ACM Press: Budapest, Hungary. 

6. Ramakrishnan, C., et al., Discovering informative connection subgraphs in multi-
relational graphs. SIGKDD Explor. Newsl., 2005. 7(2): p. 56-63. 

7. Guha, R., R. McCool, and E. Miller, Semantic search, in WWW '03 p. 700-709. 
8. Cohen, A.M. and W.R. Hersh, A survey of current work in biomedical text mining. Brief 

Bioinform, 2005. 6(1): p. 57-71. 
9. Tanabe, L. and W.J. Wilbur, Tagging gene and protein names in biomedical text. 

Bioinformatics, 2002. 18(8): p. 1124-1132. 
10. Brill, E., Transformation-based error-driven learning and natural language processing: a 

case study in part-of-speech tagging. Comput. Linguist., 1995. 21(4): p. 543-565. 
11. Yu, H., et al., Automatically identifying gene/protein terms in MEDLINE abstracts. J. of 

Biomedical Informatics, 2002. 35(5/6): p. 322-330. 
12. Gaizauskas, R., et al., Protein structures and information extraction from biological texts: 

the PASTA system. Bioinformatics, 2003. 19(1): p. 135-143. 
13. Friedman, C., et al., GENIES: a natural-language processing system for the extraction of 

molecular pathways from journal articles. Bioinformatics, 2001. 17 Suppl 1: p. 1367-
4803. 

14. Rindflesch, T.C., et al., EDGAR: extraction of drugs, genes and relations from the 
biomedical literature. Pac Symp Biocomput, 2000: p. 517-528. 

15. NLM, Medical Subject Heading (MeSH), The National Library Of Medicine, Bethesda, 
MD. 

16. NLM, Unified Medical Language System (UMLS), The National Library Of Medicine, 
Bethesda, MD. 

17. Tsuruoka, Y. and J.i. Tsujii, Bidirectional Inference with the Easiest-First Strategy for 
Tagging Sequence Data, in Proceedings of Human Language Technology Conference and 
Conference on Empirical Methods in Natural Language Processing. 2005, Association. p. 
467-474. 

18. Tsuruoka, Y. and J.i. Tsujii, Chunk Parsing Revisited, in Proceedings of the 9th 
International Workshop on Parsing Technologies (IWPT 2005). 2005. p. 133-140. 

19. Charniak, E., A maximum-entropy-inspired parser, in Proceedings of the first conference 
on North American chapter of the ACL. 2000, Morgan. p. 132-139. 

20. Collins, M., Head-driven statistical models for natural language parsing. 1999. 
21. Collins, M. and N. Duffy, New ranking algorithms for parsing and tagging: kernels over 

discrete structures, and the voted perceptron, in ACL '02 p. 263-270. 
22. Tsuruoka, Y., et al., Developing a Robust Part-of-Speech Tagger for Biomedical Text. 

Lecture Notes in Computer Science. 2005. 382-392. 
23. Déjean, H., Learning rules and their exceptions. J. Mach. Learn. Res., 2002. 2: p. 669-693. 



Web Service Composition Via Generic
Procedures and Customizing User Preferences

Shirin Sohrabi, Nataliya Prokoshyna, and Sheila A. McIlraith

Department of Computer Science, University of Toronto, Toronto, Canada
{shirin, nataliya, sheila}@cs.toronto.edu

Abstract. We claim that user preferences are a key component of Web
service composition – a component that has largely been ignored. In this
paper we propose a means of specifying and intergrating user prefer-
ences into Web service composition. To this end, we propose a means
of performing automated Web service composition by exploiting generic
procedures together with rich qualitative user preferences. We exploit the
agent programming language Golog to represent our generic procedures
and a first-order preference language to represent rich qualitative tempo-
ral user preferences. From these we generate Web service compositions
that realize the generic procedure, satisfying the user’s hard constraints
and optimizing for the user’s preferences. We prove our approach sound
and optimal. Our system, GologPref, is implemented and interacting
with services on the Web. The language and techniques proposed in this
paper can be integrated into a variety of approaches to Web or Grid
service composition.

1 Introduction

Web services provide a standardized means for diverse, distributed software ap-
plications to be published on the Web and to interoperate seamlessly. Simple Web
accessible programs are described using machine-processable descriptions and
can be loosely composed together to achieve complex behaviour. The weather ser-
vice at www.weather.com and the flight-booking services at www.aircanada.ca,
are examples of Web applications that can be described and composed as Web
services. They might be coupled as part of a travel-booking service, for example.

Automated Web service composition is one of many interesting challenges fac-
ing the Semantic Web. Given computer-interpretable descriptions of: the task
to be performed, the properties and capabilities of available Web services, and
possibly some information about the client or user’s specific constraints, auto-
mated Web service composition requires a computer program to automatically
select, integrate and invoke multiple Web services in order to achieve the speci-
fied task in accordance with any user-specific constraints. Compositions of Web
or Grid services are necessary for realizing both routine and complex tasks on
the Web (resp. Grid) without the need for time-consuming manual composition
and integration of information. Compositions are also a useful way of enforcing
business rules and policies in both Web and Grid computing.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 597–611, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



598 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

Fully automated Web service composition has been characterized as akin to
both an artificial intelligence (AI) planning task and to a restricted software
synthesis task (e.g., [1]). A composition can be achieved using classical AI plan-
ning techniques by conceiving services as primitive or complex actions and the
task description specified as a (final state) goal (e.g., [2,3]). This approach has
its drawbacks when dealing with data. In general, the search space for a com-
position (aka plan) is huge because of the large number of available services
(actions), which grow far larger with grounding for data.

A reasonable middle ground which we originally proposed in [4,1] is to use
generic procedures to specify the task to be performed and to customize these
procedures with user constraints. We argued that many of the tasks performed on
the Web or on intranets are repeated routinely, and the basic steps to achieving
these tasks are well understood, at least at an abstract level – travel planning
is one such example. Nevertheless, the realization of such tasks varies as it is
tailored to individual users. As such, our proposal was to specify such tasks
using a workflow or generic procedure and to customize the procedure with user
constraints at run time. Such an approach is generally of the same complexity as
planning but the search space is greatly reduced, and as such significantly more
efficient than planning without such generic advice.

In [1] we proposed to use an augmented version of the agent programming
language Golog [5] to specify our generic procedures or workflows with sufficient
nondeterminism to allow for customization. (E.g., “book inter-city transporta-
tion, local transportation and accommodations in any order”). User constraints
(e.g., “I want to fly with Air Canada.”) were limited to hard constraints (as
opposed to “soft”), were specified in first-order logic (FOL), and were applied to
the generic procedure at run-time to generate a user-specific composition of ser-
vices. A similar approach was adopted using hierarchical task networks (HTNs)
to represent generic procedures or templates, and realized using SHOP2 (e.g.,
[6]) without user customization of the procedures.

In this paper, we extend our Golog framework for Web service composition,
customizing Golog generic procedures not only with hard constraints but with
soft user constraints (henceforth referred to as preferences). These preferences are
defeasible and may not be mutually achievable. We argue that user preferences
are a critical and missing component of most existing approaches to Web service
composition. User preferences are key for at least two reasons. First, the user’s
task (specified as a goal and/or generic procedure with user constraints) is often
under constrained. As such, it induces a family of solutions. User preferences
enable a user to specify properties of solutions that make them more or less
desirable. The composition system can use these to generate preferred solutions.

A second reason why user preferences are critical to Web service composition
is with respect to how the composition is performed. A key component of Web
service composition is the selection of specific services used to realize the com-
position. In AI planning, primitive actions (the analogue of services) are selected
for composition based on their preconditions and effects, and there is often only
one primitive action that realizes a particular effect. Like actions, services are



Web Service Composition Via Generic Procedures 599

selected for composition based on functional properties such as inputs, output,
preconditions and effects, but they are also selected based on domain-specific
nonfunctional properties such as, in the case of airline ticket booking, whether
they book flights with a carrier the user prefers, what credit cards they accept,
how trusted they are, etc. By integrating user preferences into Web service com-
position, preferences over services (the how) can be specified and considered
along side preferences over the solutions (the what).

In this paper we recast the problem of Web service composition as the task of
finding a composition of services that achieves the task description (specified as
a generic procedure in Golog), that achieves the user’s hard constraints, and that
is optimal with respect to the user’s preferences. To specify user preferences, we
exploit a rich qualitative preference language, recently proposed by Bienvenu et
al. to specify users’ preferences in a variant of linear temporal logic (LTL) [7]. We
prove the soundness of our approach and the optimality of our compositions with
respect to the user’s preferences. Our system can be used to select the optimal
solution from among families of solutions that achieve the user’s stated objective.
Our system is implemented in Prolog and integrated with a selection of scraped
Web services that are appropriate to our test domain of travel planning.

The work presented here is cast in terms of FOL, not in terms of one of the
typical Semantic Web languages such as OWL [8] nor more specifically in terms of
a semantic Web service ontology such as OWL-S [9], WSMO [10] or SWSO [11].
Nevertheless, it is of direct significance to semantic Web services. As noted in (e.g.,
[9]) process models, necessary for Web service composition, cannot be expressed
in OWL while preserving all and only the intended interpretations of the process
model. OWL (and thus OWL-S) is not sufficiently expressive. Further OWL rea-
soners are not designed for the type of inference necessary for Web service composi-
tion. For both these reasons, Web service composition systems generally translate
the relevant aspects of service ontologies such as OWL-S into internal representa-
tions such as PDDL that are more amenable to AI planning (e.g., [6,12]). Golog
served as one of the inspirations for what is now OWL-S [4] and all the OWL-S
constructs have translations into Golog [13]. Further, the semantics of the OWL-
S process model has been specified in situation calculus [11,14]. Thus, our Golog
generic procedures can be expressed in OWL-S and likewise, OWL-S ontologies
can be translated into our formalism. We do not have a current implementation of
this translation, but it is conceptually straightforward.

2 Situation Calculus and Golog

We use the situation calculus and FOL to describe the functional and nonfunc-
tional properties of our Web services. We use the agent programming language
Golog to specify composite Web services and to specify our generic procedures.
In this section, we review the essentials of situation calculus and Golog.

The situation calculus is a logical language for specifying and reasoning about
dynamical systems [5]. In the situation calculus, the state of the world is ex-
pressed in terms of functions and relations (fluents) relativized to a particular



600 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

situation s, e.g., F (x, s). In this paper, we distinguish between the set of fluent
predicates, F , and the set of non-fluent predicates, R, representing properties
that do not change over time. A situation s is a history of the primitive ac-
tions, a ∈ A, performed from a distinguished initial situation S0. The function
do(a, s) maps a situation and an action into a new situation thus inducing a tree
of situations rooted in S0. Poss(a,s) is true if action a is possible in situation s.

Web services such as the Web exposed application at www.weather.com are
viewed as actions in the situation calculus and are described as actions in terms
of a situation calculus basic action theory, D. The details of D are not essential
to this paper but the interested reader is directed to [5,14,1] for further details.

Golog [5] is a high-level logic programming language for the specification and
execution of complex actions in dynamical domains. It builds on top of the situ-
ation calculus by providing Algol-inspired extralogical constructs for assembling
primitive situation calculus actions into complex actions (aka programs) δ. These
complex actions simply serve as constraints upon the situation tree. Complex
action constructs include the following:

a — primitive actions if φ then δ1 else δ2 – conditionals
δ1; δ2 — sequences δ1|δ2 — nondeterministic cho ice of actions
φ? — tests π(x)δ — nondeterministic choice of arguments
while φ do δ — while loops proc P (v) δ endProc — procedure

We also include the construct anyorder[δ1, . . . , δn] which allows any permuta-
tion of the actions listed. The conditional and while-loop constructs are defined
in terms of other constructs. For the purposes of Web service composition we
generally treat iteration as finitely bounded by a parameter k. Such finitely
bounded programs are called tree programs.

if φ then δ1 else δ2
def= [φ?; δ1] | [¬φ?; δ2]

while1(φ) δ
def= if φ then δ endIf 1

whilek(φ) δ
def= if φ then [δ; while k−1(φ)δ] endIf

These constructs can be used to write programs in the language of the domain
theory, or more specifically, they can be used to specify both composite Web
services and also generic procedures for Web service composition. E.g.2,

bookAirTicket(x) ; if far then bookCar(y) else bookTaxi(y) endIf
bookCar(x) ; bookHotel(y).

In order to understand how we modify Golog to incorporate user preferences,
the reader must understand the basics of Golog semantics. There are two popular
semantics for Golog programs: the original evaluation semantics [5] and a related
single-step transition semantics that was proposed for on-line execution of con-
current Golog programs [15]. The transition semantics is axiomatized through
1 if-then-endIf is the obvious variant of if-then-else-endIf.
2 Following convention we will generally refer to fluents in situation-suppressed form,

e.g., at(toronto) rather than at(toronto, s). Reintroduction of the situation term is
denoted by [s]. Variables are universally quantified unless otherwise noted.



Web Service Composition Via Generic Procedures 601

two predicates Trans(δ, s, δ′, s′) and Final(δ, s). Given an action theory D, a
program δ and a situation s, Trans defines the set of possible successor configu-
rations (δ′, s′) according to the action theory. Final defines whether a program
successfully terminated, in a given situation. Trans and Final are defined for
every complex action. A few examples follow. (See [15] for details):

Trans(nil, s, δ′, s′) ≡ False

Trans(a, s, δ′, s′) ≡ Poss(a[s], s) ∧ δ′ = nil ∧ s′ = do(a[s], s)

Trans(φ?, s, δ′, s′) ≡ φ[s] ∧ δ′ = nil ∧ s′ = s

Trans([δ1; δ2], s, δ′, s′) ≡ Final(δ1, s) ∧ Trans(δ2, s, δ
′, s′)

∨ ∃δ′′.δ′ = (δ′′; δ2) ∧ Trans(δ1, s, δ
′′, s′)

Trans([δ1 | δ2], s, δ′, s′) ≡ Trans(δ1, s, δ
′, s′) ∨ Trans(δ2, s, δ

′, s′)

Trans(π(x)δ, s, δ′, s′) ≡ ∃x.T rans(δv
x, s, δ′, s′)

Final(nil, s) ≡ TRUE Final(a, s) ≡ FALSE

Final([δ1; δ2], s) ≡ Final(δ1, s) ∧ Final(δ2, s)

Thus, given the program bookCar(x); bookHotel(y), if the action bookCar(x) is
possible in situation s, then

Trans([bookCar(x); bookHotel(y)], s, bookHotel(y), do(bookCar(x), s))
describes the only possible transition according to the action theory.
do(bookCar(x), s) is the transition and bookHotel(y) is the remaining program
to be executed. Using the transitive closure of Trans, denoted Trans∗, one can
define a Do predicate as follows. This Do is equivalent to the original evaluation
semantics Do [15].

Do(δ, s, s′) def= ∃δ′.Trans∗(δ, s, δ′, s′) ∧ Final(δ′, s′). (1)

Given a domain theory, D and Golog program δ, program execution must
find a sequence of actions a (where a is a vector of actions) such that: D |=
Do(δ, S0, do(a, S0)). Do(δ, S0, do(a, S0)) denotes that the Golog program δ, start-
ing execution in S0 will legally terminate in situation do(a, S0), where do(a, S0)
abbreviates do(an, do(an−1, . . . , do(a1, S0))). Thus, given a generic procedure, de-
scribed as a Golog program δ, and an initial situation S0, we would like to infer
a terminating situation do(a, S0) such that the vector a denotes a sequence of
Web services that can be performed to realize the generic procedure.

3 Specifying User Preferences

In this section, we describe the syntax of the first-order language we use for
specifying user preferences. This description follows the language we proposed
in [7] for preference-based planning. The semantics of the language is described
in the situation calculus. We provide an informal description here, directing
the reader to [7] for further details. Our language is richly expressive, enabling
the expression of static as well as temporal preferences. Unlike many preference
languages, it provides a total order on preferences. It is qualitative in nature,



602 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

facilitating elicitation. Unlike many ordinal preference languages, our language
provides a facility to stipulate the relative strength of preferences.

Illustrative example: To help illustrate our preference language, consider the
task of travel planning. A generic procedure, easily specified in Golog, might say:
In any order, book inter-city transportation, book local accommodations and book
local transportation. With this generic procedure in hand an individual user can
specify their hard constraints (e.g., Lara needs to be in Chicago July 29-Aug 5,
2006.) together with a list of preferences described in the language to follow.

To understand the preference language, consider the composition we are trying
to generate to be a situation – a sequence of actions or Web services executed
from the initial situation. A user specifies his or her preferences in terms of
a single, so-called General Preference Formula. This formula is an aggregation
of preferences over constituent properties of situations (i.e., compositions). The
basic building block of our preference formula is a Basic Desire Formula which
describes properties of (partial) situations (i.e., compositions).

Definition 1 (Basic Desire Formula (BDF)). A basic desire formula is a
sentence drawn from the smallest set B where:

1. F ⊂ B
2. R ⊂ B
3. f ∈ F, then final(f) ∈ B
4. If a ∈ A, then occ(a) ∈ B
5. If ϕ1 and ϕ2 are in B, then so are ¬ϕ1, ϕ1 ∧ ϕ2, ϕ1 ∨ ϕ2, (∃x)ϕ1, (∀x)ϕ1,
next(ϕ1), always(ϕ1), eventually(ϕ1), and until(ϕ1, ϕ2).

final(f) states that fluent f holds in the final situation, occ(a) states that action
a occurs in the present situation, and next(ϕ1), always(ϕ1), eventually(ϕ1), and
until(ϕ1, ϕ2) are basic LTL constructs.

BDFs establish properties of preferred situations (i.e., compositions of ser-
vices). By combining BDFs using boolean connectives we are able to express a
wide variety of properties of situations. E.g.3

final(at(home)) (P1)

(∃ c).occ′(bookAir(c, economy, direct)) ∧ member(c, starAlliance) (P2)

always(¬((∃ h).hotelBooked(h) ∧ hilton(h))) (P3)

(∃ h, r).(occ′(bookHotel(h, r)) ∧ paymentOption(h, visa)

∧ starsGE(r, 3) (P4)

P1 says that in the final situation Lara prefers to be at home. P2 says that
Lara prefers to eventually book direct economy air travel with a Star Alliance
carrier. Recall there was no stipulation in the generic procedure regarding the
mode of transportation between cities or locally. P3 expresses the preference

3 To simplify the examples many parameters have been suppressed. For legibility,
variables are bold faced, we abbreviate eventually(occ(ϕ)) by occ′(ϕ), and we
refer to the preference formulae by their labels.



Web Service Composition Via Generic Procedures 603

that a Hilton hotel never be booked while P4 expresses a preference for hotels
that accept visa credit cards and have a rating of 3 stars or more.

To define a preference ordering over alternative properties of situations, we
define Atomic Preference Formulae (APFs). Each alternative being ordered com-
prises 2 components: the property of the situation, specified by a BDF, and a
value term which stipulates the relative strength of the preference.

Definition 2 (Atomic Preference Formula (APF)). Let V be a totally or-
dered set with minimal element vmin and maximal element vmax. An atomic preference
formula is a formula ϕ0[v0] � ϕ1[v1] � ... � ϕn[vn], where each ϕi is a BDF, each
vi ∈ V, vi < vj for i < j, and v0 = vmin. When n = 0, atomic preference formulae
correspond to BDFs.

An APF expresses a preference over alternatives. In what follows, we let V =
[0, 1], but we could instead choose a strictly qualitative set like {best < good <
indifferent < bad < worst} since the operations on these values are limited to
max and min. The following APFs express an ordering over Lara’s preferences.

P2[0]

� (∃ c, w).occ′(bookAir(c, economy, w) ∧ member(c, starAlliance)[0.2]

� occ′(bookAir(delta, economy, direct))[0.5] (P5)

(∃ t).occ′(bookCar(national, t))[0] � (∃ t).occ′(bookCar(alamo, t))[0.2]

� (∃ t).occ′(bookCar(avis, t))[0.8] (P6)

(∃ c).occ′(bookCar(c, suv))[0] � (∃ c).occ′(bookCar(c, compact))[0.2] (P7)

P5 states that Lara prefers direct economy flights with a Star Alliance car-
rier, followed by economy flights with a Star Alliance carrier, followed by direct
economy flights with Delta airlines. P6 and P7 are preference over cars. Lara
strongly prefers National and then Alamo over Avis, followed by any other car-
rental companies. Finally she slightly prefers an SUV over a compact with any
other type of car a distant third.

To allow the user to specify more complex preferences and to aggregate prefer-
ences, General Preference Formulae (GFPs) extend our language to conditional,
conjunctive, and disjunctive preferences.

Definition 3 (General Preference Formula (GPF)). A formula Φ is a gen-
eral preference formula if one of the following holds:

• Φ is an APF
• Φ is γ : Ψ , where γ is a BDF and Ψ is a GPF [Conditional]
• Φ is one of

- Ψ0 &Ψ1 & ... &Ψn [General Conjunction]
- Ψ0 | Ψ1 | ... | Ψn [General Disjunction]

where n ≥ 1 and each Ψi is a GPF.



604 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

Continuing our example:

(∀ h, c, e, w).always(¬hotelBooked(h) : ¬occ′(bookAir(c, e, w))) (P8)

far : P5 (P9)

P3& P4& P6& P7& P8&P9 (P10)

P8 states that Lara prefers not to book her air ticket until she has a hotel
booked. P9 conditions Lara’s airline preferences on her destination being far
away. (If it is not far, she will not fly and the preferences are irrelevant.) Finally,
P10 aggregates previous preferences into one formula.

Semantics: Informally, the semantics of our preference language is achieved
through assigning a weight to a situation s with respect to a GPF, Φ, written
ws(Φ). This weight is a composition of its constituents. For BDFs, a situation
s is assigned the value vmin if the BDF is satisfied in s, vmax otherwise. Recall
that in our example above vmin = 0 and vmax = 1, though they could equally
well have been a qualitative e.g., [excellent, abysmal]. Similarly, given an APF,
and a situation s, s is assigned the weight of the best BDF that it satisfies
within the defined APF. Returning to our example above, for P6 if a situation
(composition) booked a car from Alamo rental car, it would get a weight of 0.2.
Finally GPF semantics follow the natural semantics of boolean connectives. As
such General Conjunction yields the maximum of its constituent GPF weights
and General Disjunction yields the minimum of its constituent GPF weights. For
a full explanation of the situation calculus semantics, please see [7]. Here we also
define further aggregations that can be performed. These are mostly syntactic
sugar that are compelling to the user and we omit them for space.

We conclude this section with the following definition which shows us how to
compare two situations (and thus two compositions) with respect to a GPF:

Definition 4 (Preferred Situations). A situation s1 is at least as preferred as
a situation s2 with respect to a GPF Φ, written pref(s1, s2, Φ) if ws1(Φ) ≤ ws2(Φ).

4 Web Service Composition

In this section, we define the notion of web service composition with generic
procedures and customizing user preferences, present an algorithm for computing
these compositions and prove properties of our algorithm. Our definition relies
on the definition of Do from (1) in Section 2.

Definition 5 (WebService Compositionw/UserPreferences (WSCP)).
A Web service composition problem with user preferences is described as a 5-tuple

(D, O, δ, C, Φ) where:

• D is a situation calculus basic action theory describing functional properties of the
Web services,

• O is a FOL theory describing the non-functional properties of the Web services4,

4 The content of D and O would typically come from an OWL-S, SWSO, or other
semantic Web service ontology.



Web Service Composition Via Generic Procedures 605

• δ is a generic procedure described in Golog,
• C is a formula expressing hard user constraints, and
• Φ is a GPF describing user preferences.

A Web Service Composition (WSC) is a sequence of Web services a such that

D ∧ O |= ∃s.Do(δ, S0, s) ∧ s = do(a, S0) ∧ C(s)

A preferred WSC (WSCP) is a sequence of Web services a such that

D ∧ O |= ∃s.Do(δ, S0, s, Φ) ∧ s = do(a, S0) ∧ C(s)

∧ � ∃s′.[Do(δ, S0, s
′, Φ) ∧ C(s′) ∧ pref(s′, s, Φ)]

I.e., a WSC is a sequence of Web services, a, whose execution starting in the
initial situation enforces the generic procedure and hard constraints terminating
successfully in do(a, s). A WSCP yields a most preferred terminating situation.

4.1 Computing Preferred Compositions

A Golog program places constraints on the situation tree that evolves from S0. As
such, any implementation of Golog is effectively doing planning in a constrained
search space, searching for a legal termination of the Golog program. The actions
that define this terminating situation are the plan. In the case of composing web
services, this plan is a web service composition.

To compute a preferred composition, WSCP, we search through this same
constrained search space to find the most preferred terminating situation. Our
approach, embodied in a system called GologPref, searches for this optimal ter-
minating situation by modifying the PPLAN approach to planning with prefer-
ences proposed in [7]. In particular, GologPref performs best-first search through
the constrained search space resulting from the Golog program, δ; C. The search
is guided by an admissible evaluation function that evaluates partial plans with
respect to whether they satisfy the preference formula, Φ. The admissible eval-
uation function is the optimistic evaluation of the preference formula, with the
pessimistic evaluation and the plan length used as tie breakers where necessary,
in that order.

The preference formula is evaluated over intermediate situations (partial com-
positions) by exploiting progression as described in [7]. Informally, progression
takes a situation and a temporal logic formula (TLF), evaluates the TLF with
respect to the state of the situation, and generates a new formula representing
those aspects of the TLF that remain to be satisfied in subsequent situations.

Fig 1 provides a sketch of the basic GologPref algorithm following from PPLAN .
The full GologPref algorithm takes as input a 5-tuple (D, O, δ, C, Φ). For ease of
explication, our algorithm sketch in Fig 1 explictly identifies the initial situation
of D, init, the Golog program, δ; C which we refer to as pgm and Φ, which we re-
fer to as pref. GologPref returns a sequence of Web services, i.e. a plan, and the
weight of that plan. The frontier is a list of nodes of the form [optW, pessW, pgm,
partialPlan, state, pref ], sorted by optimistic weight, pessimistic weight, and then
by length. The frontier is initialized to the input program and the empty partial



606 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

GologPref(init, pgm, pref )
frontier ← initFrontier(init, pgm, pref )
while frontier �= ∅

current ← removeFirst(frontier)
% establishes current values for progPgm, partialPlan, state, progPref
if progPgm=nil and optW =pessW

return partialPlan, optW
end if
neighbours ← expand(progPgm, partialPlan, state, progPref )
frontier ← sortNmergeByVal(neighbours, frontier)

end while
return [], ∞

expand(progPgm, partialPlan, state, progPref ) returns a list of new nodes to add
to the frontier. If partialPlan=nil then expand returns [ ]. Otherwise, expand uses
Golog’s Trans to determine all the executable actions that are legal transitions of
progPgm in state and to compute the remaining program for each.
It returns a list which contains, for each of these executable actions a a node

(optW, pessW,newProgPgm, newPartialPlan, newState, newProgPref )
and for each a leading to a terminating state, a second node

(realW, realW, nil, newPartialPlan, newState, newProgPref ).

Fig. 1. A sketch of the GologPref algorithm

plan, its optW, pessW, and pref corresponding to the progression and evaluation
of the input preference formula in the initial state.

On each iteration of the while loop, GologPref removes the first node from
the frontier and places it in current. If the Golog program of current is nil then
the situation associated with this node is a terminating situation. If it is also
the case that optW =pessW, then GologPref returns current’s partial plan and
weight. Otherwise, it calls the function expand with current’s node as input.

expand returns a new list of nodes to add to the frontier. If progPgm is
nil then no new nodes are added to the frontier. Otherwise, expand generates
a new set of nodes of the form [optW, pessW, prog, partialPlan, state, pref ], one
for each action that is a legal Golog transition of pgm in state. For actions leading
to terminating states, expand also generates a second node of the same form
but with optW and pessW replaced by the actual weight achieved by the plan.
The new nodes generated by expand are then sorted by optW, pessW, then
length and merged with the remainder of the frontier. If we reach the empty
frontier, we exit the while loop and return the empty plan.

We now prove the correctness of our algorithm.

Theorem 1 (Soundness and Optimality). Let P=(D, O, δ, C, Φ) be a Web
service composition problem, where δ is a tree program. Let a be the plan returned by
GologPref from input P. Then a is a WSCP of (D, O, δ, C, Φ).



Web Service Composition Via Generic Procedures 607

Proof sketch: We prove that the algorithm terminates appealing to the fact that
δ is a tree program. Then we prove that a is a WSC by cases over Trans and
Final. Finally we prove that a is also optimal, by exploiting the correctness of
progression of preference formuale proven in [7], the admissibility of our evalua-
tion function, and the bounded size of the search space generated by the Golog
program δ; C.

4.2 Integrated Optimal Web Service Selection

Most Web service composition systems use AI planning techniques and as such
generally ignore the important problem of Web service selection or discovery,
assuming it will be done by a separate matchmaker. The work presented here
is significant because it enables the selection of services for composition based,
not only on their inputs, outputs, preconditions and effects but also based on
other nonfunctional properties. As such, users are able to specify properties of
services that they desire along side other properties of their preferred solution,
and services are selected that optimize for the users preferences in the context
of the overall composition.

To see how selection of services can be encoded in our system, we reintroduce
the service parameter u which was suppressed from the example preferences in
Section 3. Revisiting P2, we see how the selection of a service u is easily realized
within our preference framework with preference P2’.

(∃ c, u).occ′(bookAir(c, economy, direct, u)) ∧ member(c, starAlliance)

∧ serviceType(u, airT icketV endor) ∧ sellsT ickets(u, c) (P2’)

5 Implementation and Application

We have implemented the generation of Web Service compositions using generic
procedures and customizing user preferences as described in previous sections.
Our implementation, GologPref, builds on an implementation of PPLAN [7]
and an implementation of IndiGolog [5] both in SWI Prolog5.

GologPref interfaces with Web services on the Web through the implemen-
tation of domain-specific scrapers developed using AgentBuilder 3.2, and Agen-
tRunner 3.2, Web agent design applications developed by Fetch Technologies c©.
Among the sites we have scraped are Mapquest, and several air, car and hotel
services. The information gathered is collected in XML and then processed by
GologPref.

We tested GologPref in the domain of travel planning. Our tests serve pre-
dominantly as a proof of the concept and to illustrate the utility of GologPref.

Our generic procedure which is represented in Golog was very simple, allowing
flexibility in how it could be instantiated. What follows is an example of the
Prolog encoding of a GologPref generic procedure.
5 See [5] for a description of the translation of D to Prolog.



608 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

anyorder [bookAcc, bookCityToCityTranspo, bookLocalTranspo]

proc(bookAcc(Location, Day, Num),
[ stayWithFriends(Location) | bookHotel(Location, Day, Num) ]).

proc(bookLocalTranspo(Location, StartDay, ReturnDay),
[ getRide(Location, StartDay, ReturnDay) |

walk(Location) | bookCar(Location, StartDay, ReturnDay) ]).

proc(bookCityToCityTranspo(Location, Des, StartDay, ReturnDay),
[ getRide(Location, Des, StartDay, ReturnDay) |

bookAir(Location, Des, StartDay, ReturnDay) |
bookCar(Location, Des, StartDay, ReturnDay) ]).

We tested our GologPref generic procedure with 3 different user profiles: Jack
the impoverished university student, Lara the picky frequent flyer, and Conrad
the corporate executive who likes timely luxury travel. Each user lived in Toronto
and wanted to be in Chicago for specific days. A set of rich user preferences were
defined for each user along the lines of those illustrated in Section 3. These
preferences often required access to different Web information, such as driving
distances. Space precludes listing of the preferences, code and full test results,
but these are available at http://www.cs.toronto.edu/~sheila/gologpref/.

Not surprisingly, in all cases, GologPref found the optimal WSC for the user.
Compositions varied greatly ranging from Jack who arranged accommodations
with friends; checked out the distance to his local destinations and then arranged
his local transportation (walking since his local destination was close to where he
was staying); then once his accommodations were confirmed, booking an econ-
omy air ticket Toronto-Chicago with one stop on US Airways with Expedia. Lara
on the other hand, booked a hotel (not Hilton), booked an intermediate-sized
car with National, and a direct economy air ticket with Star Alliance partner
Air Canada via the Air Canada Web site. The optimality and the diversity of
the compositions, all from the same generic procedure, illustrate the flexibility
afforded by the WSCP approach.

Figure 2 shows the number of nodes expanded relative to the search space size
for 6 test scenarios. The full search space represents all possible combinations
of city-to-city transportation, accommodations and local transportation avail-
able to the users which could have been considered. These results illustrate the
effectiveness of the heuristic used to find optimal compositions.

6 Summary and Related Work

In this paper we argued that the integration of user preferences into Web service
composition was a key missing component of Web service composition. Building
on our previous framework for Web service composition via generic procedures
[1] and our more recent work on preference-based planning [7], we proposed a
system for Web service composition with user preferences. Key contributions of
this paper include: characterization of the task of Web service composition with



Web Service Composition Via Generic Procedures 609

Case Nodes Nodes Time Nodes in
Number Expanded Considered (sec) Full Search Space

1 104 1700 20.97 28,512
2 102 1647 19.93 28,512
3 27 371 2.88 28,512
4 27 368 2.92 28,512
5 99 1692 21.48 28,512
6 108 1761 21.29 28,512

Fig. 2. Test results for 6 scenarios run under Windows XP with a 593MHz processor
and 512 MB of RAM. The times shown are five run averages.

generic procedures and user preferences, provision of a previously developed lan-
guage for specifying user preferences, provision of the GologPref algorithm that
integrates preference-based reasoning into Golog, a proof of the soundness and
optimality of GologPref with respect to the user’s preferences, and a working
implementation of our GologPref algorithm. A notable side effect of our frame-
work is the seamless integration of Web service selection with the composition
process.

We tested GologPref on 6 diverse scenarios applied to the same generic pro-
cedure. Results illustrated the diversity of compositions that could be generated
from the same generic procedure. The number of nodes expanded by the heuris-
tic search was several orders of magnitude smaller than the grounded search
space, illustrating the effectiveness of the heuristic and the Golog program in
guiding search.

A number of researchers have advocated using AI planning techniques to
address the task of Web service composition including using regression-based
planners [2], planners based on model checking (e.g., [3]), highly optimized hi-
erarchical task network (HTN) planners such as SHOP2 (e.g., [16]), and most
recently a combination of classical and HTN planning called XPLAN [12]. Like
Golog, HTNs afford the user the ability to define a generic procedure or template
of how to perform a task.

Recently Sirin et al. incorporated simple service preferences into the SHOP2
HTN planner to achieve dynamic service binding [6]. Their preference language
is significantly less expressive than the one presented here and is restricted to
the task of service selection rather than solution optimization. Nevertheless, it is
a promising start. The most related previous work was performed by Fritz and
the third author in which they precompiled a subset of the preference language
presented here into Golog programs that were then integrated with a decision-
theoretic Golog (DTGolog) program [17]. The main objective of this work was
to provide a means of integrating qualitative and quantitative preferences for
agent programming. While both used a form of Golog, the form and processing
of preferences was quite different. We know of no other work integrating pref-
erences into Web service composition. Nevertheless, there is a recent focus on
preference-based planning. Early preference-based planners include PPLAN [7]



610 S. Sohrabi, N. Prokoshyna, and S.A. McIlraith

and an approach to preference-based planning using answer set programming
[18]. A number of preference-based planners were developed for the 2006 Inter-
national Planning Competition (IPC-5) and are yet to be published. Preliminary
descriptions of these planners can be found at http://zeus.ing.unibs.it/ipc-5/.

Acknowledgements

Thanks to Meghyn Bienvenu for her work on PPLAN which was fundamental
to the realization of this work. Thanks to Christian Fritz for useful discussions
and to Fetch Technologies for allowing us to use their AgentBuilder software.
We also gratefully acknowledge the Natural Sciences and Engineering Research
Council of Canada (NSERC) and the CRA’s Canadian Distributed Mentorship
Project (CDMP) for partially funding this research.

References

1. McIlraith, S., Son, T.C.: Adapting Golog for composition of semantic web services.
In: Proceedings of the Eighth International Conference on Knowledge Representa-
tion and Reasoning (KR02), Toulouse, France (2002) 482–493

2. McDermott, D.V.: Estimated-regression planning for interactions with web ser-
vices. In: Proceedings of the Sixth International Conference on AI Planning and
Scheduling (AIPS-02). (2002) 204–211

3. Traverso, P., Pistore, M.: Automatic composition of semantic web services into
executable processes. In: Proceedings of the Third International Semantic Web
Conference (ISWC2004). (2004)

4. McIlraith, S., Son, T., Zeng, H.: Semantic Web services. In: IEEE Intelligent
Systems (Special Issue on the Semantic Web). Volume 16. (2001)

5. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Imple-
menting Dynamical Systems. MIT Press, Cambridge, MA (2001)

6. Sirin, E., Parsia, B., Wu, D., Hendler, J., Nau, D.: HTN planning for web service
composition using SHOP2. Journal of Web Semantics 1(4) (2005) 377–396

7. Bienvenu, M., Fritz, C., McIlraith, S.: Planning with qualitative temporal pref-
erences. In: Proceedings of the Tenth International Conference on Knowledge
Representation and Reasoning (KR06). (2006) 134–144

8. Horrocks, I., Patel-Schneider, P., van Harmelen, F.: From SHIQ and RDF to
OWL: The making of a web ontology language. Journal of Web Semantics 1(1)
(2003) 7–26

9. Martin, D., Burstein, M., McDermott, D., McIlraith, S., Paolucci, M., Sycara, K.,
McGuinness, D., Sirin, E., Srinivasan, N.: Bringing semantics to web services with
owl-s. World Wide Web Journal (2006) To appear.

10. Bruijn, J.D., Lausen, H., Polleres, A., Fensel, D.: The web service modeling lan-
guage WSML: An overview. Technical report, DERI (2006)

11. Battle, S., Bernstein, A., Boley, H., Grosof, B., and R. Hull, M.G., Kifer, M.,
Martin, D., McIlraith, S., McGuinness, D., Su, J., Tabet, S.: Semantic web ser-
vice ontology (SWSO) first-order logic ontology for web services (FLOWS) (2005)
http://www.daml.org/services/swsl/report/.



Web Service Composition Via Generic Procedures 611

12. Klusch, M., Gerber, A., Schmidt, M.: Semantic web service composition planning
with OWLS-Xplan. In: Working notes of the AAAI-05 Fall Symposium on Agents
and the Semantic Web, Arlington VA, USA (2005)

13. McIlraith, S.A., Fadel, R.: Planning with complex actions. In: 9th International
Workshop on Non-Monotonic Reasoning (NMR), Toulouse, France (2002) 356–364

14. Narayanan, S., McIlraith, S.: Simulation, verification and automated composition
of web services. In: Proceedings of the Eleventh International World Wide Web
Conference (WWW-2002). (2002)

15. de Giacomo, G., Lespérance, Y., Levesque, H.: ConGolog, a concurrent program-
ming language based on the situation calculus. Artificial Intelligence 121(1–2)
(2000) 109–169

16. Sirin, E., Parsia, B., Hendler, J.: Template-based composition of semantic web
services. In: Working notes of the AAAI-05 Fall Symposium on Agents and the
Semantic Web. (2005)

17. Fritz, C., McIlraith, S.: Decision-theoretic GOLOG with qualitative preferences.
In: Proceedings of the Tenth International Conference on Principles of Knowledge
Representation and Reasoning (KR06). (2006)

18. Son, T., Pontelli, E.: Planning with preferences using logic programming (2007)
Theory and Practice of Logic Programming. To appear.



Querying the Semantic Web with Preferences

Wolf Siberski1, Jeff Z. Pan2, and Uwe Thaden1

1 L3S and University of Hannover, Hannover
{siberski, thaden}@l3s.de

2 University of Aberdeen
jpan@csd.abdn.ac.uk

Abstract. Ranking is an important concept to avoid empty or overfull and un-
ordered result sets. However, such scoring can only express total orders, which
restricts its usefulness when several factors influence result relevance. A more
flexible way to express relevance is the notion of preferences. Users state which
kind of answers they ‘prefer’ by adding soft constraints to their queries.

Current approaches in the Semantic Web offer only limited facilities for spec-
ification of scoring and result ordering. There is no common language element to
express and formalize ranking and preferences. We present a comprehensive ex-
tension of SPARQL which directly supports the expression of preferences. This
includes formal syntax and semantics of preference expressions for SPARQL.
Additionally, we report our implementation of preference query processing,
which is based on the ARQ query engine.

Keywords: preferences, query language, semantic web.

1 Introduction

With the abundance of available information, the issue of information filtering becomes
more and more pressing. Instead of receiving empty or possibly huge and unordered
result sets, users want to get just a manageable set of ‘best’ answers, which satisfy the
query best, even if there are no exact matches.

As widely established in information retrieval and other areas, ranking has shown
to be useful to improve the quality of result lists. As more and more Semantic Web
applications emerge, this aspects gains importance for the information available in that
context. However, the current Web solutions for ‘best’ answers are not easily applicable
to this new context. User queries usually consist of a set of words that have to appear
in the document and/or in some metadata of the documents. The support for structured
search is very limited; only very first steps in the direction of integrating structured
information, such as taxonomies, have been taken.

On the other hand, the benefit of introducing the ‘best match’ notion has already been
identified for several Semantic Web applications (e.g., [1,2,3]). For example, Bibster [3]
allows to search for publications by topic and ranks results according to their similarity
to the requested topic. However, the preferences used in these systems typically apply
to specific properties, and hard-coded, unmodifiable scoring functions are used.

The same issue has been tackled in database research in the last years. Top-k queries
have been introduced which allow to identify the ‘best matches’ according to a numer-
ical score [4]. Skyline queries have extended this notion to contexts where multiple

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 612–624, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Querying the Semantic Web with Preferences 613

independent scores have to be taken into account [5]. The most general notion devel-
oped in the database area is the notion of preference-based querying [6,7], where logic
formulas can be used to specify which items are preferred.

Preference queries are based on the observation that expressions of the form “I like A
more than B” are easily stated by users when asked for their wishes. For example, when
buying a car, it is easy for one to say which colors he prefers, that he likes cars more for
which he has to pay less, that he likes automatic transmission more than manual gear
change, etc. Therefore, it should be optimal if a query engine can derive best matches
directly from such preference expressions.

The notion of preference is very important in the Semantic Web context, too. Ac-
tually, we show in Section 2 that the motivating example from the seminal Semantic
Web article [8] written by Tim Berners-Lee et al. can in fact be easily interpreted as
preference-based search. A variety of potential Semantic Web applications can ben-
efit from preference queries, e.g. advanced document search or service matchmaking
(cf. Section 6).

Therefore, we propose to add preference-based querying capabilities to Semantic
Web query languages. As SPARQL is currently the most important of these query lan-
guages, we have used it as basis to formally integrate and implement such capabilities
as language extension.

2 Motivating Example

In this section we revisit the motivating scenario from [8] in detail. We use this example
to show how preferences fit into the Semantic Web vision, and what is needed to specify
preferences as part of a query in an informal fashion.

Let us first summarize the scenario: Lucy and Pete are looking for suitable appoint-
ments at a physical therapist for their Mom1. They have some hard constraints for their
search with respect to therapist rating, location, etc., which are not relevant in our con-
text. We therefore only keep the constraint that the therapist’s rating must be very good
or excellent.

When Pete sees the first answer to this search, it turns out that there are also some
soft constraints he did not consider yet. Therefore, he has to reformulate his query with
“stricter preferences”. The following preferences can be identified:

1. prefer a nearer therapist over one more far away.
2. prefer excellent therapists over very good ones.
3. prefer an appointment which does not overlap with the rush hour.
4. prefer appointments with a late starting time over early ones, to avoid the necessity

to leave during the work hours.

If these preferences would be expressed as hard constraints, this would most likely
lead to an empty result set, because it happens rarely that a result matches exactly to the
optimal values with respect to each single preference in the query. The usual case is a
trade-off, i.e. results optimal with respect to one dimension tend to have disadvantages

1 Note that here we do not aim at providing an agent environment as sketched in [8].



614 W. Siberski, J.Z. Pan, and U. Thaden

in other dimensions. Therefore, a user would have to adapt to the system and relax his
query manually (typically by try and error), until some suitable results are found.

Furthermore, in multidimensional queries a user normally is not able to prioritize
his different preferences, since he does not know how this will affect the outcome. Is it
more important to to have a nearby appointment or is it more important to avoid rush-
hour? Is it more important to have an excellent therapist, or more important to get a
late appointment? Typically these trade-offs are not weighed by the user in advance,
but only when he sees the different options with their concrete advantages and disad-
vantages. Therefore, it has to be possible to specify multiple (independent) preference
dimensions. Note that with current Semantic Web query languages such as SPARQL
this is not possible (cf. Section 3.2).

To specify the mentioned preferences, we need atomic preference expressions and
facilities for combination. For atomic preferences, two types can be distinguished:

– Boolean preferences expressed by a boolean condition (preference 2 and 3 from the
example). Results satisfying that condition are preferred over results which do not
satisfy it.

– Scoring preferences specified by a value expression (preferences 1 and 4) . Results
for which this expression leads to a higher value are preferred over results with a
lower value (rsp. the other way round).

While we do not want to force the user to prioritize all of his preferences, for some
preferences it might be desired to specify priorities. For example, it might be more
important to Pete to avoid rush hour than to get a late appointment. Therefore we need
two different ways to combine preferences, one for independent preferences and one
for prioritized ones.

Now we take a look at what results a user would actually expect for given prefer-
ences. To simplify the presentation, we omit some hard constraints and preferences of
the example, and continue with a reduced query:
Return all excellent and very good therapists, with the following preferences:

Prefer excellent therapists over very good ones (preference 2).
Prefer appointments outside rush hour over appointments overlapping it
(preference 3).

Prefer the later appointment over an earlier one, if both are equal
with respect to rush hour (preference 4).

Note that this removes no complexity with respect to preference specification.
A sample knowledge base on which the query can be executed is shown in Figure 1.

Physical therapists have an associated rating and associated appointments. Appoint-
ments have start and end time.

Based on this knowledge base, let us analyze what a user would expect as results.
Definitely, he does not want to get any result A which is worse than another one B with
respect to one preference dimension, and not better in any other dimension. If this is
the case, we say that A is dominated by B. The interesting results are therefore those
which are not dominated by others.

We assume that rush hour is from 16:00 to 18:00. Then, as Figure 2 shows, the
non-dominated results are appointment1 and appointment5. appointment1 is in every
preference dimension better or equal to appointment2 and appointment3. The same



Querying the Semantic Web with Preferences 615

pt:rated <#john>

pt:excellent

pt:very-good

pt:offers

<#appointment 5>
pt:starts
pt:ends

19:00

19:55

<#mary>pt:rated

pt:offers

<#appointment 1>
pt:starts
pt:ends

15:00

15:55

pt:offers <#appointment 2> pt:starts
pt:ends

16:00

16:55

pt:offers

<#appointment 3>
pt:starts
pt:ends

17:00

17:55

pt:offers
<#appointment 4> pt:starts

pt:ends

18:00

18:55

Fig. 1. Example Knowledge Base

applies to appointment5 with respect to appointment4. The hatched regions denote the
domination areas of these results: all answers lying in these areas are dominated and
thus not optimal. On the other hand, appointment1 and appointment5 can’t dominate
each other, because appointment1 is better with respect to rating, but appointment5 is
superior with respect to appointment time. Therefore, these two should be returned as
result to the user.

better

be
tte

r

Domination Area of 
<#appointment5>

Domination Area of 
<#appointment1>

<#appointment 1><#appointment 3><#appointment 2>

ra
tin

g 
pr

ef
er

en
ce

time preference

<#appointment 5><#appointment 4>

rating
excellent

rating 
very good 

overlapping with rush hour outside rush hour

later later

Fig. 2. Appointment Preference Relations

We will show in Section 3.2 what part of the requirements derived from the exam-
ple SPARQL can cover, and pick up the scenario to illustrate our proposed language
extension in Section 4.

3 Background

3.1 Querying with Preferences

Preferences have one of their origins in decision theory, as a way to support com-
plex, multifactorial decision processes [9]. Another important source are personalized



616 W. Siberski, J.Z. Pan, and U. Thaden

systems (e.g. [10]), where preferences capture a users likings and dislikes. In databases,
this thread was picked up by Lacroix and Lavency [11].

Following Chomicki [7], we distinguish between quantitative and qualitative ap-
proaches to preferences. In quantitative approaches, each preference is associated with
an atomic scoring function, and combination operations are used to compute a score
for each result tuple [12]. This restricts the approach to total orderings of result tuples.
Top-k queries return the k best matches according to such a score [4]. A formal exten-
sion of relational algebra by a specific top-k operator has been proposed in [13]. The
qualitative approach is more general than the quantitative one. It does not impose a total
order on the result tuples, but allows treating preferences independently, which results
in a partial preference order. For relational databases, the qualitative approach has been
formalized independently by Kießling [6] and Chomicki [7].

In the following we rely on Chomicki’s preference query formalization [7]. In this
extension to relational algebra, preferences are expressed as binary relations between
tuples from the same database relation. The central concept is the notion of domination
(as introduced informally in the previous section).

Definition 1. Given a relation schema R(A1, . . . , An) such that Ui, 1 ≤ i ≤ n, is the
domain of the attribute Ai, a relation # is a preference relation over R if it is a subset
of (U1 × · · · × Un) × (U1 × · · · × Un). A result tuple t1 is said to be dominated by t2,
if t1 # t2.

We restrict this very general notion to relations that are defined by so-called intrinsic
preference formulas, first order logic expressions in which a limited set of constraint
operators occur.

Definition 2. Given a relation schema R, an intrinisic preference formula C(t1, t2) is
a first order formula over two tuples of R which only uses equality and rational order
(<, >) constraints. Such a preference formula C defines a preference relation #C:
t1 #C t2 ≡ C(t1, t2).

For a more convenient notation, we introduce an additional operator to denote incom-
parability between two result tuples.

Definition 3. Given a preference formula C and two tuples t1 and t2, the incompara-
bility operator ∼C is defined as

t1 ∼C t2 ≡ t1 �#C t2 ∧ t2 �#C t1.
If t1 either dominates t2 or is incomparable with it, this is denoted as

t1 *C t2 ≡ t1 #C t2 ∨ t1 ∼C t2.

Now we can define the new operator, called winnow operator, that selects all non-
dominated objects from a set of tuples.

Definition 4. If R is a relation schema and C a preference formula defining a prefer-
ence relation #C over R, the winnow operator ωC is defined as ωC(R), and for every
instance r of R:

ωC(r) = {t ∈ r|¬∃t′ ∈ r. t′ #C t}.

ωC therefore selects all non-dominated objects from a set of tuples. In Section 4, we
show how to apply these concepts for our extension of SPARQL.



Querying the Semantic Web with Preferences 617

3.2 Ontology Querying

An ontology [14] typically consists of a set of important classes, important proper-
ties, and constraints about these classes and properties. An ontology language provides
some constructors to construct class and property descriptions based on named classes
and properties, as well as some forms of axioms about classes, properties and indi-
viduals. For example, RDFS [15] provides some axioms (such as domain and range
axioms), but no class or property constructors. OWL DL [16] provides class construc-
tors (e.g. conjunction C 	 D and number restriction �nR), property constructors (e.g.
inverse properties R−) and more kinds of axioms (such as individual equality axioms
a ≈ b) than RDFS. Furthermore, OWL DL distinguishes individual properties (prop-
erties relating individuals to individuals) from datatype properties (properties relating
individual to data literals). Data literals are literal forms of data values. Due to space
limitation, the reader is referred to [15] and [16] for details of the RDFS and OWL DL
languages, respectively.

A conjunctive query (CQ) q is of the form

q(X) ← ∃Y .conj(X, Y, Z)

or simply q(X) ← conj(X, Y, Z), where q(X) is called the head, conj(X, Y, Z) is
called the body, X are called the distinguished variables, Y are existentially quantified
variables called the non-distinguished variables, Z are individual names or data liter-
als, and conj(X, Y, Z) is a conjunction of atoms of the form C(v), r(v1, v2), s(v, t),
or E(t1, . . . , tn), where C, r, s, E are respectively classes, object properties, datatype
properties and datatype built-ins, v, v1 and v2 are individual variables in X and Y or
individual names in Z , and t, t1, . . . , tn are data variables in X and Y or data literals
in Z . As usual, an interpretation I satisfies an ontology O if it satisfies all the axioms in
O; in this case, we say I is a model of O. Given an evaluation [X �→ S], if every model
I of O satisfies q[X �→S], we say O entails q[X �→S]; in this case, S is called a solution
of q. A solution sequence S = (S1, . . . , Sn) is a list of solutions. A disjunctive query
(DQ) is a set of conjunctive queries sharing the same head.

SPARQL. SPARQL [17] is a query language (W3C candidate recommendation) for
getting information from such RDF graphs. It introduces a notion of E-entailment
regime, which is a binary relation between subsets of RDF graphs. The default SPARQL
setting is simple entailment [18]; examples of other E-entailment regime are RDF en-
tailment [18], RDFS entailment [18] and OWL entailment [18].

SPARQL provides solution modifiers which allow to transform the solution list de-
rived from a CQ in several ways. The following solution modifiers are available: Dis-
tinct, Order, Limit and Offset. Here is the SPARQL syntax for the last three solution
modifiers.

SolutionModifier::= OrderClause? LimitClause? OffsetClause?
OrderClause ::= ’ORDER’ ’BY’ OrderCondition+
OrderCondition ::= ( ( ’ASC’ | ’DESC’ ) ’(’ Expression ’)’ ) |

( FunctionCall | Var | ’(’ Expression ’)’)
LimitClause ::= ’LIMIT’ INTEGER
OffsetClause ::= ’OFFSET’ INTEGER



618 W. Siberski, J.Z. Pan, and U. Thaden

Distinct. The Distinct solution sequence modifier D (used in the SELECT clause) en-
sures solutions in the sequence are unique; i.e., D(S) = S′ = (S′

1, . . . , S
′
k) so that

{S′
1, . . . , S

′
k} ⊆ {S1, . . . , Sn} and S′

i �= S′
j for all 1 ≤ i < j ≤ k.

OrderClause. The Order solution sequence modifier O applies ordering conditions to
a solution sequence, and thus provides a limited form of preference expressions. An
ordering condition can be a variable or a function call, and it can be explicitly set to
ascending or descending by enclosing the condition in ASC() or DESC() respectively.2

In general, an expression is a disjunctive normal form of numeric expression (see [17]
for details) but typically is a variable. Given an order condition C, we have O(S, C) =
S′ = (S′

1, . . . , S
′
n) so that {S′

1, . . . , S
′
n} = {S1, . . . , Sn} and S′

i *C S′
j or S′

i ∼C S′
j

for all 1 ≤ i < j ≤ n. We say that S′
i dominates S′

j w.r.t. C if S′
i #C S′

j holds.
The semantics of multiple order conditions (ORDER BY C1, C2, ...) are treated as
prioritised composition (cf. 4.2):

S′
i #C1,C2 S′

j ≡ S′
i #C1 S′

j ∨ (S′
i ∼C1 S′

j ∧ S′
i #C2 S′

j)

i.e., ordering according to C2 unless C1 is applicable. To sum up, with the Ordering-
Clause SPARQL supports only unidimensional (prioritized) composition of ordering
expressions.

LimitClause. The Limit solution sequence modifier L puts an upper bound m on the
number of solutions returned; i.e., L(S, m) = S′ = (S1, . . . , Sk) where k = m if
n ≥ m and k = n otherwise.

OffsetClause. The Offset solution sequence modifier OS causes the solutions generated
to start after the specified number of solutions; i.e., OS(S, m) = S′ = (Sm, . . . , Sn),
where m ≤ n, and OS(S, m) = S′ = (), otherwise. The combination of the Order,
Limit and Offset solution sequence modifiers can result in returning partial results.

Example. Now let us take a look at what we can achieve with respect to the example
from Section 2 using the current solution modifiers. As we cannot specify independent
preferences, we have to decide for either rating preference or time preference. Here, we
show the query for the latter:

PREFIX pt: <http://physical-therapists.org/schema>

SELECT ?t ?app ?start ?end ?rating

WHERE ?t pt:offers-appointment ?app .

?t pt:rating ?rating .

?app pt:starts ?start .

?app pt:ends ?end .

?t pt:has-rating ?rating

FILTER (?rating = pt:very-good || ?rating = pt:excellent) .

ORDER BY DESC(?end <= ’16’ || ?start >= ’18’ ) DESC(?start)

2 The default is ascending.



Querying the Semantic Web with Preferences 619

As we can see, expression of prioritized preferences is possible using several order
conditions. In contrast to the discussion in Section 2, the shown query will also return
dominated appointments, but only at the bottom of the solution list.

4 Preference-Based Querying for SPARQL

In this section, we will introduce our formal extension of SPARQL solution modifiers
to support the kind of preference that we need in ontology querying answering. For
illustrative purposes we start with an informal description of our sample preference
query according to the proposed extension:

1 SELECT ?t, ?app
2 WHERE {?t pt:offers-appointment ?app .
3 ?t pt:has-rating ?rating .
4 ?app pt:starts ?start .
5 ?app pt:ends ?end .
6 FILTER (?rating = pt:very-good || ?rating = pt:excellent)}
7 PREFERRING
8 ?rating = pt:excellent
9 AND

10 (?end <= ’16:00’ || ?start >= 18:00)
11 CASCADE HIGHEST(?start)
Line 1–6 of the query contains the solution pattern and hard constraints, defined as

usual. The PREFERRING keyword on line 7 starts the preference definition. Line 8
specifies that results where ?rating = pt:excellent is true are preferred over the ones
where this is not the case. The ‘AND’ keyword (line 9) is used to separate indepen-
dent preference dimensions. The avoid rush hour preference is expressed in line 10,
and line 11 contains the the late appointment preference. The ‘CASCADE’ keyword
expresses that the left-hand preference (avoid rush hour) takes priority over the right
hand preference (late appointment).

4.1 The Preferring Solution Sequence Modifier

Now we extend SPARQL with a new Preferring solution sequence modifier, in order
to facilitate the representation of preference motivated by the examples presented in
Section 2. Our extension covers the following two features:

1. Skyline queries: find all the solutions that are not dominated by any other solutions.
2. Soft constraints: Preferably return only the solutions that satisfy all the (hard and

soft) constraints; otherwise, relax some or all soft constraints and return only the
best answers.

In our extension, preference is a first-class construct in the query language. The ex-
tended SPARQL syntax is listed below.

SolutionModifier ::= PreferringClause? OrderClause? LimitClause?
OffsetClause?

PreferringClause ::= ’PREFERRING’ MultidimensionalPreference
MultidimensionalPreference ::= CascadedPreference



620 W. Siberski, J.Z. Pan, and U. Thaden

(’AND’ CascadedPreference)*
CascadedPreference ::= AtomicPreference

(’CASCADE’ AtomicPreference)*
AtomicPreference ::= BooleanPreference

| HighestPreference | LowestPreference
BooleanPreference::= Expression
HighestPreference::= ’HIGHEST’ Expression
LowestPreference ::= ’LOWEST’ Expression

Intuitively, users can specify preferences that do not overwrite each other, by us-
ing the Preferring clauses with the definitions independent preference separated by the
‘AND’ construct. In each of these dimensions, atomic preferences can be nested using
the ‘CASCADE’ construct. Here, the leftmost part of the preference expression is eval-
uated first, and only if two solutions are equal with respect to this part, the next atomic
preference expression is evaluated.

4.2 Semantics of the Preferring Modifier

Formally, we define the semantics of atomic and combined preference relations, as fol-
lows:

Boolean preferences. Boolean preferences are specified by a boolean expression BE.
For any solutions Si and Sj , the domination relation for such a preference, #CBE is
defined as

Si #CBE Sj ≡ BE(Si) ∧ ¬BE(Sj).

Scoring preferences. They are specified by an expression which evaluates to a number
or a value in other SPARQL domains that have total ordering. For such an ordering <
and any solutions Si and Sj , the domination relation #CLOWEST,<

is defined as

Si #CLOWEST,<
Sj ≡ Si < Sj ,

and #CHIGHEST,<
is defined as

Si #CHIGHEST,<
Sj ≡ Sj < Si.

Multidimensional Preferences. For any solutions Si and Sj , the domination relation to
combine independent preferences #[C1 AND C2] is defined as

Si #[C1 AND C2] Sj ≡ Si *C1 Sj ∧ Si *C2 Sj ∧ (Si #C1 Sj ∨ Si #C2 Sj).

Intuitively, this says that Si is dominated by Sj in neither C1 nor C2, and that Si domi-
nates Sj in either C1 or C2.



Querying the Semantic Web with Preferences 621

CascadedPreference. For any solutions Si and Sj , the domination relation to combine
prioritized preferences #[C1 CASCADE C2]

is defined as
Si #[C1 CASCADE C2]

Sj ≡ Si #C1 Sj ∨ (Si ∼C1 Sj ∧ Si #C2 Sj).
With these definitions, we can now define the preferring solution modifier PS: Given a
domination relation C, PS(S, C) = S′ = (S′

1, . . . , S
′
n) so that, for any S′

i ∈ S′, there
exists no Sj ∈ S such that Sj #C S′

i. Thus, the solution modifier PS gives us exactly
the non-dominated solutions in S.

Depending on the given preferences and solutions, PS may deliver just one (the best)
solution. We iteratively define the next best solutions as follows:

PS1(S, C) = PS(S, C)
PSn+1(S, C) = concat (PSn(S, C), PS(S \ PSn(S, C), C))

When combined with the LIMIT k solution modifier, n is selected such that
|PSn(S, C)| > k .

5 Implementation

As a proof of concept, the SPARQL implementation ARQ [19] has been extended.
ARQ is based on a query operator approach, where an operator class is implemented
for each solution modifier. This architecture allows to plug in additional solution mod-
ifiers easily. Query processing in ARQ is a three-stage process (see ’Query Engine’ in
Fig. 3):

Fig. 3. ARQ Query Engine with Sample Query Plan and Preference Expression

First, the query is parsed and converted into an internal representation. To enable
preference handling for this step, productions according to the syntax specified in the
previous section have been added to the parser. Preference expression classes which are



622 W. Siberski, J.Z. Pan, and U. Thaden

responsible for evaluating the different preference constructs have been implemented.
The extended parser instantiates objects from these classes and assembles them to a
preference relation representation (see right-hand side of Fig. 3).

Second, ARQ creates a query plan for each incoming query, consisting of accord-
ingly chained operators. Such an operator for preference handling, has been added
which which contains the algorithm for determining dominating objects, based on the
given preference relation representation. The structure of an example query plan is
shown in the middle of Fig. 3. The planning algorithm has been extended to insert
the preference operator into the plan if a preference clause is present.

Finally, the query is executed on the given knowledge base. During this execution,
the preference operator filters all dominated solutions. In our prototype, we use the
BNL (Blocked Nested Loop) algorithm [5] for this purpose. The computation of the
preference relation is delegated to its representation which was generated during query
planning.

The ARQ query engine interface can be used by applications as before, and we have
implemented a Web interface to test applications of our extension which calls the mod-
ified query engine to evaluate preference queries.3

6 Related Work

Most of the approaches that deal with ranking in the Semantic Web offer very specific
(hard-coded) ways to specify some of the properties and scoring functions, which are
not editable by the users.

Bibster [3] is a system for storing and sharing information about publications. It al-
lows to search for publications by topic and uses a very specific and unmodifiable pref-
erence function, which makes it impossible to define scores and constraints on arbitrary
properties.

More domain dependent is the Textpresso-system [1], a system that allows for
ontology-based search for biological literature. Textpresso focuses on optimized
ontology-creation for this domain. Querying can be done combining fulltext and con-
cept search, i.e., using known associations or the combination of concepts. Explicit
rankings are not definable.

Aleman-Meza et al. [20] present a ranking approach which is based on measuring
complex relationships. Two entities are related (semantically associated) if there is at
least one binding property. They present several ways to rank the complex relation-
ships, but also do not propose a query language extension. A more general approach is
the Corese Search Engine [2], a search engine based on conceptual graphs. It is based
on RDF, and its expressivity is comparable to RQL or SqishQL. The extension for ap-
proximate search is not done by extending one of the existing query languages but is
designed as a completely new language.

A more flexible solution is proposed in [21]. Here, the way in which a result of
a query is derived is used to rank the results of that query (based on how the results
”relate”). The relevance is defined on the level of the relation instances, while the

3 available at http://prefs.l3s.uni-hannover.de



Querying the Semantic Web with Preferences 623

results are a set of concept instances. The scoring functions used are in IR-style, but
not definable by the user.

The only approach known to the authors that also extends a query language is Impre-
cise RDQL [22]. This approach introduces the concept of similarity to enable ranking
on arbitrary properties. Their idea of similarity joins is based on the work of [23]. The
specification of soft constraints is still rather limited: IMPRECISE defines the variable
that shouldn’t be matched exactly. The measure to be used for an imprecise variable
is specified by the SIMMEASURE clause, but the measures which can be used are
constrained to a set of predefined metrics which the authors defined in a library. Fur-
thermore, like the previous approaches Imprecise RDQL offers only scoring for one
dimension.

Often, users won’t express their preferences directly, but the application might in-
fer preferences from a user profile or other context information, and amend an explicit
query accordingly (e.g. [24]). Various techniques for preference mining and elicitation
have already been developed, e.g. [25,26], which can be used in Semantic Web appli-
cations as well.

7 Conclusion

In this paper we showed that ranking and preferences as established concepts in re-
lational databases also play an important role in querying the Semantic Web. We dis-
cussed why preferences are needed and how this concept can be transferred to Semantic
Web query languages such as SPARQL. The presented formal model can be used as uni-
fying framework for of a wide variety of ranking specifications. Finally, we described
our ARQ implementation of the SPARQL extension. Thus, the solution presented here
provides the basis for combining the strengths of logic-based precise querying and ben-
efits of ranking-based retrieval.

References

1. Müller, H., Kenny, E., Sternberg, P.: Textpresso: An ontology-based information retrieval
and extraction system for biological literature. PLoS Biol 2 (2004)

2. Corby, O., Dieng-Kuntz, R., Faron-Zucker, C.: Querying the semantic web with corese
search engine. In: Proceedings of the 16th Eureopean Conference on Artificial Intelligence
(ECAI). (2004) 705–709

3. Haase, P., Broekstra, J., Ehrig, M., Menken, M., Mika, P., Olko, M., Plechawski, M., Pyszlak,
P., Schnizler, B., Siebes, R., Staab, S., Tempich, C.: Bibster – a semantics-based bibliographic
peer-to-peer system. In: Proceedings of 3rd International Semantic Web Conference (ISWC).
(2004) 122 – 136

4. Fagin, R., Lotem, A., Naor, M.: Optimal aggregation algorithms for middleware. In: Pro-
ceedings of the Twentieth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems (PODS), Santa Barbara, California, USA (2001)

5. Börzsönyi, S., Kossmann, D., Stocker, K.: The skyline operator. In: Proceedings of the
17th International Conference on Data Engineering (ICDE), Heidelberg, Germany (2001)
421–430



624 W. Siberski, J.Z. Pan, and U. Thaden

6. Kießling, W.: Foundations of preferences in database systems. In: Proceedings of the 28th
International Conference on Very Large Data Bases (VLDB), Hong Kong, China (2002)
311–322

7. Chomicki, J.: Preference formulas in relational queries. ACM Trans. Database Syst. 28
(2003) 427–466

8. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American (2001)
9. Fishburn, P.C.: Utility Theory for Decision Making. Wiley, New York (1970)

10. Riecken, D.: Introduction: personalized views of personalization. Commun. ACM 43 (2000)
26–28 (Introduction to Special Issue on Personalization).

11. Lacroix, M., Lavency, P.: Preferences; putting more knowledge into queries. In: Proceedings
of 13th International Conference on Very Large Data Bases (VLDB), Brighton, UK (1987)
217–225

12. Agrawal, R., Wimmers, E.L.: A framework for expressing and combining preferences. In:
Proceedings of the ACM SIGMOD International Conference on Management of Data (SIG-
MOD), Dallas, TX, USA (2000) 297–306

13. Li, C., Soliman, M.A., Chang, K.C.C., Ilyas, I.F.: Ranksql: Supporting ranking queries in re-
lational database management systems. In: Proceedings of the 31st International Conference
on Very Large Data Bases (VLDB), Trondheim, Norway (2005) 1342–1345

14. Uschold, M., Gruninger, M.: Ontologies: Principles, Methods and Applications. The Knowl-
edge Engineering Review (1996)

15. Brickley, D., Guha, R.: RDF Vocabulary Description Language 1.0: RDF Schema (2004)
W3C recommendation, http://www.w3.org/TR/rdf-schema/.

16. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Semantics and
Abstract Syntax (2004) W3C Recommendation, http://www.w3.org/TR/owl-semantics/.

17. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (2006) W3C Candi-
date Recommendation, http://www.w3.org/TR/rdf-sparql-query/.

18. Hayes, P.: RDF Semantics (2004) W3C recommendation, http://www.w3.org/TR/rdf-mt/.
19. Seaborne, A.: An open source implementation of SPARQL (2006) WWW2006 Developers

track presentation, http://www2006.org/programme/item.php?id=d18.
20. Aleman-Meza, B., Halaschek-Wiener, C., Arpinar, I.B., Ramakrishnan, C., Sheth, A.P.:

Ranking complex relationships on the semantic web. IEEE Internet Computing 9 (2005)
37–44

21. Stojanovic, N.: An approach for defining relevance in the ontology-based information re-
trieval. In: Proceedings of the International Conference on Web Intelligence (WI), Com-
piegne, France (2005) 359–365

22. Bernstein, A., Kiefer, C.: Imprecise RDQL: Towards Generic Retrieval in Ontologies Using
Similarity Joins. In: 21th Annual ACM Symposium on Applied Computing (SAC), New
York, NY, USA, ACM Press (2006)

23. Cohen, W.W.: Data integration using similarity joins and a word-based information repre-
sentation language. ACM Trans. Inf. Syst. 18 (2000) 288–321

24. Dolog, P., Henze, N., Nejdl, W., Sintek, M.: The personal reader: Personalizing and en-
riching learning resources using semantic web technologies. In: Proceedings of the Third
International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems (AH),
Eindhoven, Netherlands (2004) 85–94

25. Sai, Y., Yao, Y., Zhong, N.: Data analysis and mining in ordered information tables. In:
Proceedings of the International Conference on Data Mining (ICDM), San Jose, CA, USA
(2001) 497–504

26. Blum, A., Jackson, J.C., Sandholm, T., Zinkevich, M.: Preference elicitation and query learn-
ing. Journal of Machine Learning Research 5 (2004) 649–667



ONTOCOM: A Cost Estimation Model for Ontology
Engineering

Elena Paslaru Bontas Simperl1, Christoph Tempich2, and York Sure2

1 Free University of Berlin, Takustr. 9, 14195 Berlin, Germany
paslaru@inf.fu-berlin.de

2 Institute AIFB, University of Karlsruhe, 76128 Karlsruhe, Germany
{tempich, sure}@aifb.uni-karlsruhe.de

Abstract. The technical challenges associated with the development and de-
ployment of ontologies have been subject to a considerable number of research
initiatives since the beginning of the nineties. The economical aspects of these
processes are, however, still poorly exploited, impeding the dissemination of
ontology-driven technologies beyond the boundaries of the academic community.
This paper aims at contributing to the alleviation of this situation by proposing
ONTOCOM (Ontology Cost Model), a model to predict the costs arising in on-
tology engineering processes. We introduce a methodology to generate a cost
model adapted to a particular ontology development strategy, and an inventory
of cost drivers which influence the amount of effort invested in activities per-
formed during an ontology life cycle. We further present the results of the model
validation procedure, which covered an expert-driven evaluation and a statistical
calibration on 36 data points collected from real-world projects. The validation
revealed that ontology engineering processes have a high learning rate, indicat-
ing that the building of very large ontologies is feasible from an economic point
of view. Moreover, the complexity of ontology evaluation, domain analysis and
conceptualization activities proved to have a major impact on the final ontology
engineering process duration.

1 Introduction

The popularity of ontologies grows with the emergence of the Semantic Web. Nev-
ertheless, their large scale dissemination – in particular beyond the boundaries of the
academic community – is inconceivable in the absence of methods which address the
economic challenges of ontology engineering processes in addition to the technical and
organizational ones. A wide range of ontology engineering methodologies have been
elaborated in the Semantic Web community [6]. They define ontology development as
a well-structured process, which shows major similarities with established models from
the neighboring area of software engineering. Unlike adjacent engineering disciplines
these methodologies, however, ignore the economic aspects of engineering processes,
which are fundamental in real-world business contexts. Topics such as costs estima-
tion, quality assurance procedures, process maturity models, or means to monitor the
business value and the impact of semantic technologies at corporate level have been
marginally exploited so far.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 625–639, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



626 E. Paslaru Bontas Simperl, C. Tempich, and Y. Sure

This paper aims at contributing to the alleviation of this situation. We introduce ON-
TOCOM (Ontology Cost Model), a model for predicting the costs related to ontology
engineering processes. In this context we describe a methodology to generate a cost
model suitable for particular ontology development strategies, and an inventory of cost
drivers for which we demonstrate to have a direct impact on the amount of effort in-
vested during an ontology life cycle. ONTOCOM has been subject to an extensive vali-
dation procedure. This covered two phases: an expert-driven evaluation and a statistical
calibration, which adjusted the predictions of the model according to 36 data points
collected from empirical ontology engineering processes.

The remaining of this paper is organized as follows: Section 2 examines general-
purpose cost estimation methods w.r.t. their relevance for the ontology engineering
field. Building upon the results of this analysis Section 3 gives a detailed description of
the ONTOCOM cost prediction model and explains how it can be applied to arbitrary
ontology engineering processes. Section 4 discusses the results of the evaluation. We
conclude the paper with related and future work (Section 5).

2 Cost Estimation Methodologies

In order to reliably approximate the development efforts the engineering team needs
to specify a method for cost estimation in accordance with the particularities of the
current project as regarding product, personnel and process aspects. This specification
task can be accomplished either by building a new cost model with the help of dedicated
methodologies or by adapting existing general-purpose ones to the characteristics of a
specific setting.

Due to its high relevance in real-world situations cost estimation is approached by a
wide range of methods, often used in conjunction in business context due to their opti-
mal applicability to particular classes of situations. We give an overview of some of the
most important ones [1,10,15]:

1) Analogy Method. The main idea of this method is the extrapolation of available
data from similar projects to estimate the costs of the proposed project. The method
is suitable in situations where empirical data from previous projects is available and
trustworthy. It highly depends on the accuracy in establishing real differences between
completed and current projects.
2) Bottom-Up Method. This method involves identifying and estimating costs of in-
dividual project components separately and subsequently combining the outcomes to
produce an estimation for the overall project. It can not be applied early in the life cycle
of the process because of the lack of necessary information related to the project compo-
nents. Nevertheless since the costs to be estimated are related to more manageable work
units, the method is likely to produce more accurate results than the other approaches.
3) Top-Down Method. This method relies on overall project parameters. For this pur-
pose the project is partitioned top-down into lower-level components and life cycle
phases (so-called work breakdown structures [1,10]). The method is applicable to early
cost estimates when only global properties are known, but it can be less accurate due
to the decreased focus on lower-level parameters and technical challenges. These are
usually predictable later in the process life cycle, at most.



ONTOCOM: A Cost Estimation Model for Ontology Engineering 627

4) Expert Judgment/Delphi Method. This approach is based on a structured process
for collecting and distilling knowledge from a group of human experts by means of a se-
ries of questionnaires interspersed with controlled opinion feedback. The involvement
of human experts using their past project experiences is a significant advantage of this
approach. The most extensive critique point is related to the subjectivity of the estima-
tions and the difficulties to explicitly state the decision criteria used by the contributors.
5) Parametric/Algorithmic Method. This method involves the usage of mathemati-
cal equations based on research and previous project data. The method analyzes main
cost drivers of a specific class of projects and their dependencies, and uses statistical
techniques to adjust the corresponding formulas. The generation of a proved and tested
cost model using the parametric method is directly related to the availability of reliable
project data to be used in calibrating the model.

Given the current state of the art in ontology engineering the top-down, parametric
and expert-based methods form a viable basis for the development of a cost estima-
tion model in this field.1 A combination of the three is considered in many established
engineering disciplines as a feasible means to reach a balance between the low amount
of reliable historical data and the accuracy of the cost estimations [1,15]. The work
breakdown structure for ontology engineering is to a great extent described by existing
ontology engineering methodologies. Further on, the cost drivers associated with the
parametric method can be derived from the high number of case studies available in
the literature. The limited amount of accurate empirical data can be counterbalanced by
taking into account the significant body of expert knowledge available in the Semantic
Web community. The next section describes how the three methods were jointly applied
to create ONTOCOM.

3 The ONTOCOM Model

The cost estimation model is realized in three steps. First a top-down work breakdown
structure for ontology engineering processes is defined in order to reduce the complex-
ity of project budgetary planning and controlling operations down to more manageable
units [1,10]. The associated costs are then elaborated using the parametric method. The
result of the second step is a statistical prediction model (i.e. a parameterized mathe-
matical formula). Its parameters are given start values in pre-defined intervals, but need
to be calibrated on the basis of previous project data. This empirical information com-
plemented by expert estimations is used to evaluate and revise the predictions of the
initial a-priori model, thus creating a validated a-posteriori model.

3.1 The Work Breakdown Structure

The top-level partitioning of a generic ontology engineering process can be realized by
taking into account available process-driven methodologies in this field.2 According to
them ontology building consists of the following core steps (cf. Figure 1):

1 By contrast the bottom-up method can not be applied in early stages of the ontology engi-
neering process, while the analogy method requires means to compare among ontologies and
associated development processes.

2 Refer, for instance, to [6] for a recent overview on ontology engineering methodologies.



628 E. Paslaru Bontas Simperl, C. Tempich, and Y. Sure

1) Requirements Analysis. The engineering team consisting of domain experts and
ontology engineers performs a deep analysis of the project setting w.r.t. a set of pre-
defined requirements. This step might also include knowledge acquisition activities
in terms of the re-usage of existing ontological sources or by extracting domain infor-
mation from text corpora, databases etc. If such techniques are being used to aid the
engineering process, the resulting ontologies are to be subsequently customized to the
application setting in the conceptualization/implementation phases. The result of this
step is an ontology requirements specification document [16]. In particular this contains
a set of competency questions describing the domain to be modelled by the prospected
ontology, as well as information about its use cases, the expected size, the information
sources used, the process participants and the engineering methodology.
2) Conceptualization. The application domain is modelled in terms of ontological
primitives, e. g. concepts, relations, axioms.3

3) Implementation. The conceptual model is implemented in a (formal) representation
language, whose expressivity is appropriate for the richness of the conceptualization.
If required reused ontologies and those generated from other information sources are
translated to the target representation language and integrated to the final context.
4) Evaluation. The ontology is evaluated against the set of competency questions. The
evaluation may be performed automatically, if the competency questions are repre-
sented formally, or semi-automatically, using specific heuristics or human judgement.
The result of the evaluation is reflected in a set of modifications/refinements at the re-
quirements, conceptualization or implementation level.

Fig. 1. Typical Ontology Engineering Process

Depending on the ontology life cycle underlying the process-driven methodology,
the aforementioned four steps are to be seen as a sequential workflow or as parallel
activities. Methontology [6], which applies prototypical engineering principles, consid-
ers knowledge acquisition, evaluation and documentation as being complementary
support activities performed in parallel to the main development process. Other method-
ologies, usually following a classical waterfall model, consider these support activities
as part of a sequential engineering process. The OTK-Methodology [16] additionally
introduces an initial feasibility study in order to assess the risks associated with an

3 Depending on methodology and representation language these ontological primitives might
have different names, e.g. class or concept, relation or relationship, slot, axiom, constraint.



ONTOCOM: A Cost Estimation Model for Ontology Engineering 629

ontology building attempt. Other optional steps are ontology population/instantiation
and ontology evolution/maintenance. The former deals with the alignment of concrete
application data to the implemented ontology. The latter relates to modifications of the
ontology performed according to new user requirements, updates of the reused sources
or changes in the modelled domain. Further on, likewise related engineering disciplines,
reusing existing knowledge sources—in particular ontologies—is a central topic of on-
tology development. In terms of the process model introduced above, ontology reuse
is considered a knowledge acquisition task.

The parametric method integrates the efforts associated with each component of this
work breakdown structure to a mathematical formula as described below.

3.2 The Parametric Equation

ONTOCOM calculates the necessary person-months effort using the following equation:

PM = A ∗ Sizeα ∗ CDi (1)

According to the parametric method the total development efforts are associated with
cost drivers specific for the ontology engineering process and its main activities. Expe-
riences in related engineering areas [1,7] let us assume that the most significant factor
is the size of the ontology (in kilo entities) involved in the corresponding process or
process phase. In Equation 1 the parameter Size corresponds to the size of the ontol-
ogy i.e. the number of primitives which are expected to result from the conceptualiza-
tion phase (including fragments built by reuse or other knowledge acquisition methods).
The possibility of a non-linear behavior of the model w.r.t. the size of the ontology is
covered by parameter α. The constant A represents a baseline multiplicative calibration
constant in person months, i.e. costs which occur “if everything is normal”. The cost
drivers CDi have a rating level (from Very Low to Very High) that expresses their im-
pact on the development effort. For the purpose of a quantitative analysis each rating
level of each cost driver is associated to a weight (effort multiplier EMi). The produc-
tivity range PRi of a cost driver (i.e. the ratio between the highest and the lowest effort
multiplier of a cost driver PRi = max(EMi)

min(EMi)
) is an indicator for the relative importance

of a cost driver for the effort estimation [1]. In the a-priori cost model a team of five on-
tology engineering experts assigned productivity ranges between 1.75 and 9 to the effort
multipliers, depending on the perceived contribution of the corresponding cost driver to
the overall development costs. The final effort multipliers assigned to the rating levels
are calculated such that the contribution of an individual rating level is linear and the
resulting productivity range for a cost driver corresponds to the average calculated from
the expert judgements. In the same manner, the start value of the A parameter was set
to 3.12. These values were subject to further calibration on the basis of the statistical
analysis of real-world project data (cf. Section 4).

3.3 The ONTOCOM Cost Drivers

The ONTOCOM cost drivers, which are expected to have a direct impact on the total
development efforts, can be roughly divided into three categories:



630 E. Paslaru Bontas Simperl, C. Tempich, and Y. Sure

1) PRODUCT-RELATED COST DRIVERS account for the impact of the characteristics of
the product to be engineered (i.e. the ontology) on the overall costs. The following cost
drivers were identified for the task of ontology building:

• Domain Analysis Complexity (DCPLX) to account for those features of the appli-
cation setting which influence the complexity of the engineering outcomes,
• Conceptualization Complexity (CCPLX) to account for the impact of a complex
conceptual model on the overall costs,
• Implementation Complexity (ICPLX) to take into consideration the additional ef-
forts arisen from the usage of a specific implementation language,
• Instantiation Complexity (DATA) to capture the effects that the instance data re-
quirements have on the overall process,
• Required Reusability (REUSE) to capture the additional effort associated with the
development of a reusable ontology,
• Evaluation Complexity (OE) to account for the additional efforts eventually invested
in generating test cases and evaluating test results, and
• Documentation Needs (DOCU) to state for the additional costs caused by high doc-
umentation requirements.
2) PERSONNEL-RELATED COST DRIVERS emphasize the role of team experience, abil-
ity and continuity w.r.t. the effort invested in the engineering process:
• Ontologist/Domain Expert Capability (OCAP/DECAP) to account for the per-
ceived ability and efficiency of the single actors involved in the process (ontologist and
domain expert) as well as their teamwork capabilities,
• Ontologist/Domain Expert Experience (OEXP/DEEXP) to measure the level of
experience of the engineering team w.r.t. performing ontology engineering activities,
• Language/Tool Experience (LEXP/TEXP) to measure the level experience of the
project team w.r.t. the representation language and the ontology management tools,
• Personnel Continuity (PCON) to mirror the frequency of the personnel changes in
the team.
3) PROJECT-RELATED COST DRIVERS relate to overall characteristics of an ontology
engineering process and their impact on the total costs:
• Support tools for Ontology Engineering (TOOL) to measure the effects of using
ontology management tools in the engineering process, and
• Multisite Development (SITE) to mirror the usage of the communication support
tools in a location-distributed team.

The ONTOCOM cost drivers were defined after extensively surveying recent ontol-
ogy engineering literature and conducting expert interviews, and from empirical find-
ings of numerous case studies in the field.4 For each cost driver we specified in detail
the decision criteria which are relevant for the model user in order for him to determine
the concrete rating of the driver in a particular situation. For example for the cost driver
CCPLX—accounting for costs produced by a particularly complex conceptualization—
we pre-defined the meaning of the rating levels as depicted in Table 1. The human ex-
perts assigned in average a productivity range of 6.17 to this cost driver. The resulting

4 See [11,12] for a detailed explanation of the approach.



ONTOCOM: A Cost Estimation Model for Ontology Engineering 631

non-calibrated values of the corresponding effort multipliers are as follows: 0.28 (Very
Low), 0.64 (Low), 1 (Nominal), 1.36 (High) and 1.72 (Very High) [11]. The appropriate
value should be selected during the cost estimation procedure and used as a multiplier in
equation 1. Depending on their impact on the overall development effort, if a particular
activity increases the nominal efforts, then it would be rated with values such as High
and Very High. Otherwise, if it causes a decrease of the nominal costs, then it would be
rated with values such as Low and Very Low.

Table 1. The Conceptualization Complexity Cost Driver CCPLX

Rating Level Effort multiplier Description

Very Low 0.28 concept list
Low 0.64 taxonomy, high nr. of patterns, no constraints
Nominal 1.0 properties, general patterns available, some constraints
High 1.36 axioms, few modelling patterns, considerable nr. of constraints
Very High 1.72 instances, no patterns, considerable nr. of constraints

The decision criteria associated with a cost driver are typically more complex than
in the previous example and might be sub-divided into further sub-categories, whose
impact is aggregated to the final effort multiplier of the corresponding cost driver by
means of normalized weights [11,12].

3.4 Using ONTOCOM in Ontology Engineering Processes

ONTOCOM is intended to be applied in early stages of an ontology engineering process.
In accordance to the process model introduced above the prediction of the arising costs
can be performed during the feasibility study or, more reliably, during the requirements
analysis. Many of the input parameters required to exercise the cost estimation are ex-
pected to be accurately approximated during this phase: the expected size of the ontol-
ogy, the engineering team, the tools to be used, the implementation language etc.5

The high-level work breakdown structure foreseen by ONTOCOM can be further
refined depending of the ontology development strategy applied in an organization in
a certain application scenario. As explained in Section 3.1 ONTOCOM distinguishes
solely between the most important phases of ontology building: requirements analysis,
conceptualization, implementation, population, evaluation and documentation. Further
on, it focuses on sequential development processes (as opposed to, for instance, rapid
prototyping, or iterations of the building workflow). In case the model is applied to a
different ontology development process, the relevant cost drivers are to be aligned (or
even re-defined) to the new sub-phases and activities, while the parametric equation
needs to be adapted to the new activity breakdown. An example of how ONTOCOM
can be applied to an ontology development methodology targeted at rapid prototyping
in distributed scenarios is provided in [12].

5 Ontology engineering methodologies foresee this information to be collected in a ontology
requirements document at the end of this phase [16].



632 E. Paslaru Bontas Simperl, C. Tempich, and Y. Sure

After this optional customization step the model can be utilized for cost predictions.6

For this purpose the engineering team needs to specify the rating levels associated with
each cost driver. This task is accomplished with the help of decision criteria which have
been elaborated for each of the cost driver rating levels (such as those for the CCPLX
cost driver illustrated in Figure 2). Cost drivers which are not relevant for a particular
scenario should be rated with the nominal value 1, which does not influence the result
of the prediction equation.

4 Evaluation

For the evaluation of the model we relied on the quality framework for cost models
by Boehm[1], which was adapted to the particularities of ontology engineering. The
framework consists of 10 evaluation criteria covering a wide range of quality aspects,
from the reliability of the predictions to the model ease-of-use and its relevance for
arbitrary ontology engineering scenarios (Table 2).

Table 2. The ONTOCOM Evaluation Framework

No Criterion Description
1 Definition - clear definition of the estimated and the excluded costs

- clear definition of the decision criteria used to specify the cost drivers
- intuitive and non-ambiguous terms to denominate the cost drivers

2 Objectivity - objectivity of the cost drivers and their decision criteria
3 Constructiveness - human understandability of the model predictions
4 Detail - accurate phase and activity breakdowns
5 Scope - usability for a wide class of ontology engineering processes
6 Ease of use - easily understandable inputs and options

- easily assessable cost driver ratings based on the decision criteria
7 Prospectiveness - model applicability in early phases of the project
8 Stability - small differences in inputs produce small differences in outputs
9 Parsimony - lack of highly redundant cost drivers

- lack of cost drivers with no appreciable contribution to the results
10 Fidelity - reliability of the predictions

The evaluation was conducted in two steps. First a team of experts in ontology en-
gineering evaluated the a-priori model, in particular the ONTOCOM cost drivers, w.r.t.
their relevance to cost issues (Criteria 1 to 8 in the table above) . Second the predictions
of the model were compared with 36 observations from real world projects (Criteria 9
and 10 of the quality framework).

4.1 The Expert-Based Evaluation

The evaluation of the a-priori model was performed by conducting interviews with two
groups of independent experts in the area of ontology engineering. Considering that the

6 However, if new cost drivers have been defined in addition to the ones foreseen by ONTOCOM,
these should be calibrated using empirical data.



ONTOCOM: A Cost Estimation Model for Ontology Engineering 633

people best placed to give a comprehensive assessment of the cost estimation model are
IT practitioners or researchers being directly involved in theoretical or practical issues
of ontology engineering, we organized two experts groups affiliated in both communi-
ties, which evaluated the model sequentially. The first group consisted of 4 academics
whose research was in the area of Semantic Web and Ontology Engineering. The sec-
ond group brought together 4 researchers and 4 IT senior managers from companies
with a Semantic Web profile. Participants were given a one hour overview of the ON-
TOCOM approach, followed by individual interviews. We summarize the key findings
of the conducted interviews categorized according to the criteria depicted in Table 2:
• Definition/Constructiveness. The first draft of the model did not include the ontology
evaluation activity. The cost driver Evaluation Complexity (OE) was introduced to the
model for this purpose. The Ontology Instantiation (OI) cost driver was extended with
new decision criteria and minor modifications of the terminology were performed.
• Objectivity. The objectivity of the cost drivers and the associated decision criteria
were evaluated by the participants favorably. Both suffered minor modifications. W.r.t.
the size of the ontology, a key parameter of the model, some of the participants ex-
pressed the need for a more careful distinction between the impact of the different
types of ontological primitives (e.g. concepts, axioms, relationships) w.r.t. the total ef-
forts. In particular, as axioms and relationships between concepts are more challenging
to be modelled than simple concepts and taxonomical structures, they recommended
that this difference should be reflected by the parametric model. While the current ver-
sion of ONTOCOM does not include this option, we are investigating the possibility
of introducing a revised size formula which associates particular ontology primitives’
categories to normalized weights:

Size = w1 ∗ NoClassesα1 + w2 ∗ NoRelationsα2 + (1 − w1 − w2) ∗ NoAxiomsα3 (2)

A final direction w.r.t this issue is planed for the a-posteriori model, as we require a
significant set of empirical data in order to prove the validity of the experts’ recommen-
dations.
• Detail/Scope. The cost drivers covered by the model were unanimously estimated to
be relevant for the ontology engineering area. The collection of empirical data demon-
strated that the model accommodates well to many real-world settings, situation which
was also confirmed by applying ONTOCOM to the DILIGENT ontology engineering
methodology[12]. However, the majority of the evaluators emphasized the need of a
revised model for reuse and evolution purposes, an issue which will be investigated in
the future. W.r.t. the detail of the cost drivers covered by the model, three new product
drivers stating for the complexity of the domain analysis, conceptualization and imple-
mentation (DCPLX, CCPLX and ICPLX, see Section 3.3) were introduced in return to
an original cost driver Ontology Complexity (OCPLX). Some of the participants also
expressed the need for a more detailed coverage of the ontology evaluation task in en-
gineering processes, so as to distinguish between the evaluation of an ontology against
a set of competency questions and its fitness of use within a particular software system.
A final decision w.r.t. this modification requires, however, a more significant set of em-
pirical data.
• Ease of use.The goal and the scope of the model were easily understood by the inter-
viewees. During the data collection procedure, the only factor which seemed to require
additional clarification was the size of the ontology, which was conceived to cover all
types of ontological primitives (e.g. concepts/classes, properties, axioms, rules,



634 E. Paslaru Bontas Simperl, C. Tempich, and Y. Sure

constraints, manually built instances). Further on, the experiments revealed that there
is no clear understanding between the re-usage of existing ontologies and the acquisi-
tion of ontologies from more un-structured knowledge sources such as text documents.
However, this latter issue can not be necessarily considered as a weakness of the model
itself, but as the result of a potentially ambiguous definition of the two activities in cur-
rent ontology engineering methodologies.
• Prospectiveness. Some of the participants manifested concerns w.r.t. the availability
of particular model parameters in early phases of the engineering process. However,
as underlined in a previous section, many of the input parameters are foreseen to be
specified in the ontology requirements specification document in the last part of the re-
quirements analysis phase.
• Stability. This is ensured by the mathematical model underlying ONTOCOM.

4.2 Evaluation of the Prediction Quality

The remaining two evaluation criteria Fidelity and Parsimony were approached af-
ter the statistical calibration of the model. In order to determine the effort multipliers
associated with the rating levels and to select non-redundant cost drivers we followed
a three-stage approach: First experts estimated the a-priori effort multipliers based on
their experience as regarding ontology engineering. Second we applied linear regres-
sion to real world project data to obtain a second estimation of the effort multipliers.7

Third we combined the expert estimations and the results of the linear regression in a
statistically sound way using Bayesian analysis [2].

Data Collection. The results reported in this paper are based on 36 structured interviews
with ontology engineering experts [13]. The interviews were conducted within a three
months period and covered 35 pre-defined questions related to the aforementioned cost
drivers. The survey participants are representative for the community of users and devel-
opers of semantic technologies. The group consisted of individuals affiliated to industry
or academia, who were involved in the last 3 to 4 years in ontology building projects
in areas such as skill management, human resources, medical information systems, le-
gal information systems, multimedia, Web services, and digital libraries.8 The average
number of ontology entities in the surveyed ontologies is 830 with a median at 330. It
took the engineers in average 5.3 month (median 2.5) to build the ontologies. 40% of
the ontologies were built from scratch. Reused ontologies contributed in average 50%
(median 50%) of ontology entities to the remaining 60% of the surveyed ontologies.

Data Analysis. In order to adapt the prediction model in accordance to experiences
from previous ontology engineering processes we derived estimates of the cost driver
productivity ranges from the collected data set. The estimates were calculated following
a linear regression approach combined with Bayesian analysis. This approach allows the
usage of human judgement and data-driven estimations in a statistically consistent way,

7 Linear regression is a mathematical method to calculate the parameters of a linear equation so
that the squared differences between the predictions from the linear equation and the observa-
tions are minimal [14].

8 Around 50% of the interviewees were affiliated to industry.



ONTOCOM: A Cost Estimation Model for Ontology Engineering 635

such that the variance observed in either of the two determines its impact to the final
values.9 Linear regression models perform better with an increasing number of incor-
porated observations and a decreasing number of parameters to estimate. Its drawbacks
can be compensated with the help of human estimations [4] and by excluding those
parameters which have an insignificant influence on the final prediction value or are
highly correlated.

In order to select relevant cost drivers for the ONTOCOM model we performed a cor-
relation analysis on the historical data (Table 3). We excluded the following cost drivers

Table 3. Selection of Relevant Cost Drivers using Correlation Analysis

Cost driver Correlation Cost driver Correlation Comment
with PM with PM

SIZE 0.50 DATA 0.31 strong correlation with DCPLX
OE 0.44 SITE 0.27 low number of different data points
DCPLX 0.39 DOCU 0.22 moderated influence; strong
REUSE 0.38 correlation with OE
ICPLX 0.29 LEXP/TEXP 0.13 little influence; strong
CCPLX 0.24 correlation with OXEP/DEEXP
OCAP/DECAP -0.19 PCON 0.04 low number of different data points
OXEP/DEEXP -0.36 SizeReused

SizeTotal
-0.10 little influence

in order to get more accurate results. The cost driver DATA is strongly correlated with
the cost driver DCPLX. Most of the surveyed projects took place at one site resulting in
limited information about the actual influence of the SITE parameter, which was there-
fore excluded. The cost driver DOCU highly correlates with the OE cost driver and has
only moderate influence on the effort. A similar line of reasoning applies to the cost
drivers LEXP/TEXP which are highly correlated with OXEP/DEEXP while modestly
contributing to the prediction variable. The surveyed projects did not experience a per-
manent personnel turnover, resulting in a very low correlation coefficient for the cost
driver PCON. Intriguingly, reusing ontologies had only a limited effect on the ontology
building effort as indicated by the small negative correlation between SizeReused

SizeT otal
and the

effort. Most interviewees reported major difficulties translating and modifying reused
ontologies, which obviously offset most of the time savings expected from ontology
reuse. The cost driver TOOL was not considered in the calibration, because it did not
differentiate the projects (i.e. all data points utilized only ontology editors).

The exclusion of the mentioned cost drivers from the current ONTOCOM calibration
does not mean, that those cost drivers are not relevant for predicting the ontology build-
ing effort. With the currently available data set it is, however, not possible to provide
accurate estimates for these cost drivers. The prediction quality for multi-site develop-
ments and projects with a high personal turnover might suffer from the exclusion of the
corresponding drivers. However, the accuracy of the prediction for the remaining cost
drivers increases.

9 Refer to [4] for an exhaustive explanation of the application of Bayesian analysis for cost
estimation purposes.



636 E. Paslaru Bontas Simperl, C. Tempich, and Y. Sure

Calibration Results. The approximation of the effort multipliers with the linear re-
gression approach implies a reformulation of equation 1. After applying the logarithm
function and introducing the parameters βi as exponents for the cost drivers we ob-
tained the equivalent equation 3.10 βi are scaling factors by which the existing effort
multipliers should be scaled in order to fit the model. We recall that α is a learning rate
factor also used to model economies of scale.

ln(PMX) = ln(A) + α ∗ ln(SizeX) + βi ∗ ln(CDXi) (3)

The linear regression delivers a best fit for the effort multipliers w.r.t. to the surveyed
empirical data. However, the relatively small sample size results in a limited accuracy
of the estimated effort multipliers. This drawback can be overcome with the help of
the a-priori estimations of the parameters, which were defined by human experts. A
linear combination of expert estimations and historical data is, however, sub-optimal.
The combination should take into account the number of data points used for the linear
regression and the variance observed in the expert ratings as well as in the data points.
A mulitplier which all experts have given the same rating, while the linear regression
results in a high variance should be influenced less by the data than by the experts.
Bayesian analysis is a way to achieve the desired outcome [4].

β∗∗ = [
1
s2 X ′X + H∗]−1 × [

1
s2 X ′Xβ + H∗b∗] (4)

Equation 4 delivers the estimations of the scaling factor β∗∗ combining expert
knowledge and empirical data in a statistically sound way. s2 is the variance of the resid-
ual data of the sample; X is the matrix of observations; and H∗ and b∗ is the inverse
of the covariance matrix and the mean of the expert estimations, respectively. Figure 2
exemplifies the approach. The lines depict the probability distribution of the produc-
tivity range estimations for the expert judgement, the data analysis and the Bayesian
combination, respectively. The arrows point to the corresponding means. We note that
the experts judgement indicates a productivity range for the cost driver CCPLX of 6.17
with a small variance. Estimating the productivity range based on the data results in a
mean of 7.05 with a higher variance, though. The Bayesian analysis induces a shift of
the estimation towards the data-driven estimation, but only with a small fraction because
its higher data variance.

Table 4 summarizes the results of the Bayesian analysis. In column Correlation with
PM we list the correlation coefficients for the reduced number of cost drivers with
the effort in person months (PM). In the Significance column we plot the confidence
level for the estimation. Not all effort multipliers could be determined with the same
accuracy. A lower confidence level indicates a better estimation. The calibration is very
good for, for instance, the exponent α (SIZE), but less accurate for the effort multipliers
related to OCAP/DECAP. The Productivity range column lists the relative influence a
cost driver has on the final prediction.

Based on the results of the calibration Figure 4.2 compares the predictions from
the calibrated model with the observations. In order to visualize the results we have

10 This step is only possible if the data is distributed exponentially, thus we have significantly
more data points with a low number of entities than with a high number of entities. This holds
true for the collected data.



ONTOCOM: A Cost Estimation Model for Ontology Engineering 637

Conceptualization Complexity Cost Driver CCPLX

0

0,1

0,2

0,3

0,4

0,5

0,6

0 2 4 6 8 10 12 14

Expert Rating

Data Analysis

Results of Bayes Analysis

6.17 6.29 7.05

Fig. 2. Productivity Range: Conceptualization
Complexity

Prediction vs. Observation

0,01

0,1

1

10

100

0,01 0,1 1 10

Observation normalized (PM)

Prediction normalized (PM)

75% Range normalized -

75% Range normalized +

Fig. 3. Comparison of Observed Data with
Predictions

Table 4. Statistical Data and Productivity Range of the Effort Multipliers

Cost Driver Correlation Significance Productivity range
with PM

SIZE 0.50 0.001 α = 0.5
OE 0.44 0.034 4.0
DCPLX 0.39 0.063 3.2
REUSE 0.38 0.528 5.2
CCPLX 0.24 0.311 6.3
OXEP/DEEXP -0.36 0.060 1.5
ICPLX 0.29 0.299 0.6
OCAP/DECAP -0.19 0.925 1.5

normalized the data with the product of the corresponding cost drivers. The gray lines
indicate a range around the prediction adding and subtracting 75% of the estimated
effort. 75% of the historical data points lie within this range. For the corresponding 30%
range the model covers 32% of the real-world data. This indicates a linear behavior of
deviation which we consider quite accurate for a very first model. Our goal is that 75%
of the data lie in the range of adding and subtracting 20% of the estimated effort.

Discussion of the Calibration Results. Although any prediction model provides solely
an approximation of the true building efforts, this calibration is already helpful to get
an early impression on the expected values. Experiences with cost estimation models in
established engineering disciplines suggest that a calibration for a particular company
or project team yields more accurate estimations than a general-purpose calibration.
Our calibration may therefore predominantly serve as an example for a more context-
specific calibration process and may help to identify the resource-intensive activities in
a generic ontology engineering process. Moreover, project teams can compare their es-
timations against a general average value as provided by us. Note also that a calibration
uses historical data to estimate future outcomes. Although the average and the variation
observed in the historical data may remain constant in future projects, the predicted
effort for any specific project may still significantly differ from the actual effort.



638 E. Paslaru Bontas Simperl, C. Tempich, and Y. Sure

Regarding the quality of our model w.r.t. the calibration accuracy it is important
to note that the estimations for the cost drivers OCAP/DECAP and REUSE have a
low significance. For the cost drivers OCAP/DECAP this leaves room for improve-
ment, as the data analysis counterintuitively suggests that more capable project teams
need longer to develop an ontology. We obtained the same result for the cost driver
OEXP/DEEXP. The main reason for this artefact may be the fact that ontology engi-
neers from academia were more experienced, implying that they invested more time in
developing ontologies than people from industry, whose mode of operation might have
been motivated by different factors as in academic projects.

Another interesting finding of the analysis is the relative importance of the cost
drivers Ontology evaluation (OE), Domain complexity (DCPLX) and Conceptual-
ization complexity (CCPLX) in correlation with the observed significance. This in-
dicates that any facilitation in those areas may result in major efficiency gains w.r.t.
the overall ontology engineering effort. Moreover, the very high learning rate indicates
that the building of very large ontologies is feasible from an economic point of view,
although we admit that the number of data points for ontologies larger than 1.000 on-
tology entities is comparatively low.

5 Related Work

Cost estimation methods have a long-standing tradition in more mature engineering
disciplines such as software engineering or industrial production [1,7,15]. Although
the importance of cost issues is well-acknowledged in the community, as to the best
knowledge of the authors, no cost estimation model for ontology engineering has been
published so far. Analogue models for the development of knowledge-based systems
(e.g., [5]) implicitly assume the availability of the underlying conceptual structures. [9]
provides a qualitative analysis of the costs and benefits of ontology usage in application
systems, but does not offer any model to estimate the efforts. [3] presents empirical
results for quantifying ontology reuse. [8] adjusts the cost drivers defined in a cost
estimation model for Web applications w.r.t. the usage of ontologies. The cost drivers,
however, are not adapted to the requirements of ontology engineering and no evaluation
is provided. We present an evaluated cost estimation model, introducing cost drivers
with a proved relevance for ontology engineering, which can be applied in the early
stages of an ontology development process.

6 Conclusion

The application of ontologies in commercial applications depends on the availability of
appropriate methodologies guiding the ontology development process and on methods
for an effective cost management. We propose a parametric cost estimation model for
ontologies by identifying relevant cost drivers having a direct impact on the effort in-
vested in ontology building. We evaluate the model a-priori and a-posteriori.

The a-priori evaluation shows the validity of the approach to cost estimation and
the meaningful selection of the cost drivers. The a-posteriori evaluation results in high
quality estimations for the learning rate α and the cost drivers related to the ontology
evaluation and the requirements complexity. These are also among the more relevant



ONTOCOM: A Cost Estimation Model for Ontology Engineering 639

cost drivers. Provision of tool support for these two areas of ontology engineering may
thus be particularly effective to facilitate the ontology engineering process. The collec-
tion of data will continue towards a more accurate calibration of the model. In particu-
lar we intend to approach the suggestions received during the a-priori evaluation w.r.t.
a more differentiated size parameter and w.r.t. the support for ontology reuse activities
on the basis of a larger number of data points. In the near future we also plan to make
the results of our survey public and to provide a service which offers on-the-fly cost
estimations for ontology engineering processes based on the available data.

Acknowledgements. This work has been partially supported by the European Network
of Excellence “KnowledgeWeb-Realizing the Semantic Web” (FP6-507482), as part of
the KnowledgeWeb researcher exchange program T-REX, and by the European project
“Sekt-Semantically-Enabled Knowledge Technologies”(EU IP IST-2003-506826) and
“NeOn - Lifecycle Support for Networked Ontologies” (EU IP IST-2005-027595). We
thank all interviewees for the valuable input without which this paper could not have
been produced.

We encourage the community to participate and contribute experiences from ontol-
ogy engineering projects at http://ontocom.ag-nbi.de.

References

1. B. W. Boehm. Software Engineering Economics. Prentice-Hall, 1981.
2. G. Box and G. Tiao. Bayesian Inference in Statistical Analysis. Addison Wesley, 1973.
3. P. R. Cohen, V. K. Chaudhri, A. Pease, and R. Schrag. Does Prior Knowledge Facilitate the

Development of Knowledge-based Systems? In AAAI/IAAI, pages 221–226, 1999.
4. S. Devnani-Chulani. Bayesian Analysis of the Software Cost and Quality Models. PhD thesis,

Faculty of the Graduate School University of Southern California, 1999.
5. A. Felfernig. Effort Estimation for Knowledge-based Configuration Systems. In Proc. of the

16th Int. Conf. of Software Engineering and Knowledge Engineering SEKE04, 2004.
6. A. Gomez-Perez, M. Fernandez-Lopez, and O. Corcho. Ontological Engineering – with

examples form the areas of Knowledge Management, e-Commerce and the Semantic Web.
Springer Verlag, 2004.

7. C. F. Kemerer. An Empirical Validation of Software Cost Estimation Models. Communica-
tions of the ACM, 30(5), 1987.

8. M. Korotkiy. On the Effect of Ontologies on Web Application Development Effort. In Proc.
of the Knowledge Engineering and Software Engineering Workshop, 2005.

9. T. Menzies. Cost benefits of ontologies. Intelligence, 10(3):26–32, 1999.
10. National Aeronautics and Space Administration. NASA Cost Estimating Handbook, 2004.
11. E. Paslaru Bontas and M. Mochol. Ontology Engineering Cost Estimation with ONTOCOM.

Technical Report TR-B-06-01, Free University of Berlin, January 2006.
12. E. Paslaru Bontas and C. Tempich. How Much Does It Cost? Applying ONTOCOM to

DILIGENT. Technical Report TR-B-05-20, Free University of Berlin, October 2005.
13. E. Paslaru Bontas and C. Tempich. Ontology Engineering: A Reality Check. In 5th Int. Conf.

on Ontologies, DataBases, and Applications of Semantics (ODBASE2006), 2006.
14. G.A.F. Seber. Linear Regression Analysis. Wiley, New York, 1977.
15. R. D. Stewart, R. M. Wyskida, and J. D. Johannes. Cost Estimator’s Reference Manual.

Wiley, 1995.
16. Y. Sure, S. Staab, and R. Studer. Methodology for Development and Employment of Ontol-

ogy based Knowledge Management Applications. SIGMOD Record, 31(4), 2002.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 640 – 653, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Tree-Structured Conditional Random Fields for  
Semantic Annotation* 

Jie Tang1, Mingcai Hong1, Juanzi Li1, and Bangyong Liang2 

1 Department of Computer Science, Tsinghua University 
12#109, Tsinghua University, Beijing, 100084. China 
j-tang02@mails.tsinghua.edu.cn, 

{hmc, ljz}@keg.cs.tsinghua.edu.cn 
2 NEC Labs China 

11th Floor, Innovation Plaza, Tsinghua Science Park, Beijing, 100084, China 
liangbangyong@research.nec.com.cn 

Abstract. The large volume of web content needs to be annotated by ontologies 
(called Semantic Annotation), and our empirical study shows that strong 
dependencies exist across different types of information (it means that 
identification of one kind of information can be used for identifying the other 
kind of information). Conditional Random Fields (CRFs) are the state-of-the-art 
approaches for modeling the dependencies to do better annotation. However, as 
information on a Web page is not necessarily linearly laid-out, the previous 
linear-chain CRFs have their limitations in semantic annotation. This paper is 
concerned with semantic annotation on hierarchically dependent data (hierarch-
ical semantic annotation). We propose a Tree-structured Conditional Random 
Field (TCRF) model to better incorporate dependencies across the hierarchic-
ally laid-out information. Methods for performing the tasks of model-parameter 
estimation and annotation in TCRFs have been proposed. Experimental results 
indicate that the proposed TCRFs for hierarchical semantic annotation can 
significantly outperform the existing linear-chain CRF model. 

1   Introduction 

Semantic web requires annotating existing web content according to particular 
ontologies, which define the meaning of the words or concepts in the content [1].  

In recent years, automatic semantic annotation has received much attention in the 
research community. Many prototype systems have been developed using information 
extraction methods. The methods usually convert a document into an ‘object’ 
sequence and then identify a sub-sequence of the objects that we want to annotate (i.e. 
targeted instance). (Here, the object can be either natural language units like token 
and text line, or structured units indicated by HTML tags like “<table>” and 
“<image>”). The methods make use of the contexts information that is previous to 
and next to the target instances for the identification task.  

Empirical study shows that strong dependencies exist across different types of 
targeted instances. The type of dependencies varies in different kinds of documents 
                                                           
* Supported by the National Natural Science Foundation of China under Grant No. 90604025. 



 Tree-Structured Conditional Random Fields for Semantic Annotation 641 

and different applications, for instance, in Part-Of-Speech (POS) tagging from NLP, 
the dependencies between POS labels can be linear-chain [20]; while in object 
extraction from web pages, the dependencies can be two-dimensional [26]. 

Conditional Random Fields (CRFs) are the state-of-the-art approaches in 
information extraction taking advantage of the dependencies to do better annotation, 
compared with Hidden Markov Model (HMMs) [8] and Maximum Entropy Markov 
Model (MEMMs) [17]. However, the previous linear-chain CRFs only model the 
linear-dependencies in a sequence of information, and is not able to model 
hierarchical dependencies [14] [26].  

In this paper, we study the problem of hierarchical semantic annotation. In 
hierarchical semantic annotation, targeted instances on a web page can have 
hierarchical dependencies with each other, for example, an instance may have a 
dependency with another instance in the upper level (i.e. child-parent dependency), 
have a dependency with one in the lower level (i.e. parent-child dependency), or have 
a dependency with one in the same level (i.e. sibling dependency).  

To better incorporate dependencies across hierarchically laid-out information, a 
Tree-structured Conditional Random Field (TCRF) model has been proposed in this 
paper. We present the graphical structure of the TCRF model as a tree (see Figure 3) 
and reformulate the conditional distribution by defining three kinds of edge features. 
As the tree structure can be cyclable, exact inference in TCRFs is expensive. We 
propose to use the Tree Reparameterization algorithm to compute the approximate 
marginal probabilities for edges and vertices. Experimental results indicate that the 
proposed TCRF models perform significantly better than the baseline methods for 
hierarchical semantic annotation.  

The rest of the paper is organized as follows. In Section 2, we introduce related 
work. In Section 3, we formalize the problem of hierarchical semantic annotation. In 
Section 4, we describe our approach to the problem. Section 5 gives our experimental 
results. We make some concluding remarks in Section 6. 

2   Related Work 

Semantic annotation is an important area in semantic web. Many research efforts have 
been made so far. However, much of the previous work views web page as an ‘object’ 
sequence and focuses on annotating web page by using existing information 
extraction techniques. To the best of our knowledge, no previous work has been done 
on semantic annotation of hierarchically laid-out information. 

1. Semantic Annotation Using Rule Induction 
Many semantic annotation systems employ rule induction to automate the annotation 
process (also called as ‘wrapper’ induction, see [13]).  

For example, Ciravegna et al propose a rule learning algorithm, called LP2, and 
have implemented an automatic annotation module: Amilcare [4]. The module can 
learn annotation rules from the training data. Amilcare has been used in several 
annotation systems, for instance, S-CREAM [12]. See also [18] [22]. 

The rule induction based method can achieve good results on the template based 
web pages. However, it cannot utilize dependencies across targeted instances. 

 



642 J. Tang et al.  

2. Semantic Annotation as Classification 
The method views semantic annotation as a problem of classification, and automates 
the process by employing statistical learning approaches. It defines features for 
candidate instances and learns a classifier that can detect the targeted instance from 
the candidate ones. 

For example, SCORE Enhancement Engine (SEE) supports web page annotation 
by using classification model [11]. It first classifies the web page into a predefined 
taxonomy; then identifies name entities in the classified web pages; finally recognizes 
the relationships between the entities via analysis of the web content. 

The classification based method can obtain good results on many annotation tasks. 
However, it cannot also use the dependencies across different targeted instances. 

3. Semantic Annotation as Sequential Labeling 
Different from the rule induction and the classification methods, sequential labeling 
enables describing dependencies between targeted instances. The dependencies can be 
utilized to improve the accuracy of the annotation. 

For instance, Reeve et al propose to utilize Hidden Markov Model (HMM) in 
semantic annotation [19]. As a generative model, HMM needs enumerate all possible 
observation sequences, and thus requires the independence assumption to ease the 
computation. Despite of its usefulness, limited research has been done using the 
sequential labeling method in semantic annotation. 

4. Information Extraction Methods 
Many information extraction methods have been proposed. Hidden Markov Model 
(HMM) [8], Maximum Entropy Markov Model (MEMM) [17], Conditional Random 
Field (CRF) [14], Support Vector Machines (SVM) [6], and Voted Perceptron [5] are 
widely used information extraction models. 

Some of the methods only model the distribution of contexts of target instances 
and do not model dependencies between the instances, for example, SVM and Voted 
Perceptron. Some other methods can model the linear-chain dependencies, for 
example, HMM, MEMM, and CRF.  

Recently, several research efforts have been also made for modeling the non-linear 
dependencies. For instance, Sutton et al propose Dynamic Conditional Random Fields 
(DCRFs) [21]. As a particular case, a factorial CRF (FCRF) was used to jointly solve 
two NLP tasks (noun phrase chunking and Part-Of-Speech tagging) on the same 
observation sequence. Zhu et al propose 2D Conditional Random Fields (2D CRFs) 
[26]. 2D CRFs is also a particular case of CRFs. It is aimed at extracting object 
information from two-dimensionally laid-out web pages. See also [3]. 

3   Hierarchical Semantic Annotation 

For semantic annotation, we target at detecting targeted instances from a document 
and annotating each of the instances by concepts/attributes of a particular ontology. 

Information on a web page can be laid-out differently, for example, product 
information on a web page is typically two-dimensionally laid-out [26]; and in 
Natural Language Processing, word’s POS (Part-Of-Speech) can be organized as a 
sequence, and thus viewed as linearly laid-out [20]. In this paper, we concentrate on  
 



 Tree-Structured Conditional Random Fields for Semantic Annotation 643 

3. Company Directorate Info
      Company directorate secretary: Haokui Zhou
      Representative of directorate: He Zhang
      Address: No. 583-14, Road Linling, Shanghai, China
      Zipcode: 200030
      Email: ajcoob@mail2.online.sh.cn
      Phone: 021-64396600
      Fax: 021-64392118
4. Company Registration Info
      Company registration address: No. 838, Road Zhang Yang, Shanghai, China
      Zipcode: 200122
      Company office address: No. 583-14, Road Linling, Shanghai, China
      Zipcode: 200030
      Email: ajcorp@online.sh.cn
      Phone: 021-64396654

dependency

dependency

 

Fig. 1. Example of Hierarchical laid-out information  

semantic annotation on hierarchically laid-out information that we name as 
hierarchical semantic annotation. In hierarchical semantic annotation, information is 
laid-out hierarchically. An example is shown in Figure 1. 

In Figure 1, there are two emails. One is the email of the company directorate 
secretary and the other is the email of the company registration office. Previous 
linear-chain models such as linear-chain CRFs view the text as a token-sequence (or 
text-line sequence) and assign a label to each token in the sequence by using 
neighborhood contexts (i.e. information previous to and next to the targeted instance).  

However, the neighborhood contexts of the two emails are the same with each 
other in the linear-chain token-sequence. The neighborhood contexts include tokens 
previous to and next to the emails. Tokens previous to the two emails are both 
“Email: ” and tokens next to them are also identical “<return>Phone:”. It is inevitable 
that the linear-chain CRF models will fail to distinguish them from each other.  

By further investigation, we found that the information is hierarchically laid-out: 
the two emails are respectively located in two sections and each section has a heading, 
i.e. “3. Company directorate Info” and “4. Company Registration Info”. The two 
headings can be used to distinguish the two emails from each other. We call it as 
hierarchically laid-out information when existing hierarchical dependencies across 
information and call the task of semantic annotation on hierarchically laid-out 
information as hierarchical semantic annotation. In hierarchical semantic annotation, 
we target at improving the accuracy of semantic annotation by incorporating 
hierarchical dependencies. For instance, in Figure 1, we can use the upper level 
information “3. Company directorate Info” to help identify the email “ajcoob@ 
mail2.online.sh.cn”.  

4   Tree-Structured Conditional Random Fields 

In this section, we first introduce the basic concepts of Conditional Random Fields 
(CRFs) and introduce the linear-chain CRFs, and then we explain a Tree-structured 
CRF model for hierarchically laid-out information. Finally we discuss how to perform 
parameter estimation and annotation in TCRFs. 



644 J. Tang et al.  

4.1   Linear-Chain CRFs 

Conditional Random Fields are undirected graphical models [14]. As defined before, 
X is a random variable over data sequences to be labeled, and Y is a random variable 
over corresponding label sequences. All components Yi of Y are assumed to range 
over a finite label alphabet Y. CRFs construct a conditional model p(Y|X) with a given 
set of features from paired observation and label sequences. 

CRF Definition. Let G = (V, E) be a graph such that Y=(Yv)v V, so that Y is indexed 
by the vertices of G. Then (X, Y) is a conditional random field in case, when 
conditioned on X, the random variable Yv obey the Markov property with respect to 
the graph: p(Yv|X, Yw, w v) = p(Yv|X, Yw, w v), where w v means that w and v are 
neighbors in G. 

Thus, a CRF is a random field globally conditioned on the observation X. Linear-
chain CRFs were first introduced by Lafferty et al [14]. The graphical structure of 
linear-chain CRFs is shown in Figure 2. 

By the fundamental theorem of random fields [10], the conditional distribution of 
the labels y given the observations data x has the form 

, ,

1
( | ) exp ( , | , ) ( , | , )

( ) j j e k k v
e E j v V k

p y x t e y x s v y x
Z x

λ μ
∈ ∈

= +  (1) 

where x is a data sequence, y is a label sequence, and y|e and y|v are the set of 
components of y associated with edge e and vertex v in the linear chain respectively; tj 
and sk are feature functions; parameters j and k correspond to the feature functions tj 
and sk respectively, and are to be estimated from the training data; Z(x) is the 
normalization factor, also known as partition function. 

4.2   Tree-Structured Conditional Random Fields (TCRFs) 

Linear-chain CRFs cannot model dependencies across hierarchically laid-out 
information. This paper proposes a Tree-structured Conditional Random Field 
(TCRF) model which is also a particular case of CRFs. The graphical structure of 
TCRFs is a tree (see Figure 3).  

From Figure 3, we see that y4 is the parent vertex of y2 and yn-1 (for simplifying 
description, hereafter we use parent-vertex to represent the upper-level vertex and use 
child-vertex to represent the lower-level vertex of the current vertex). TCRFs can 
model the parent-child dependencies, e.g. y4-y2 and y4-yn-1. Furthermore, y2 and yn-1 are 
in the same level, which are represented as a sibling dependency in TCRFs.  

Here we also use X to denote the random variable over observations, and Y to 
denote the random variable over the corresponding labels. Yi is a component of Y at 
the vertex i. Same as the linear-chain CRFs, we consider one vertex or two vertices as 
a clique in TCRFs. TCRFs can also be viewed as a finite-state model. Each variable Yi 
has a finite set of state values and we assume the one-to-one mapping between states 
and labels. And thus dependencies across components Yi can be viewed as transitions 
between states. 



 Tree-Structured Conditional Random Fields for Semantic Annotation 645 

yn-1y3 yn

xn-1

y2y1

x1 x2 x3 xn

…..

 

yn-1

y4

yn

xn-1

y2

y1

x1 x2 x4 xn

…..

x3

y3

xn-2

yn-2

 

Fig. 2. The Graphical structure of Linear-
chain CRFs 

Fig. 3. The Graphical structure of TCRFs 

Let (yp, yc) be the dependency between a parent- and a child-vertices, (yc, yp) be 
the dependency between a child- and a parent-vertices, and (ys, ys) be the 
dependency between sibling vertices. A TCRF model, as a particular case of CRFs, 
has the form 

,{ , , },

1
( | ) exp ( , | , ) ( , | , )

( ) pc cp ss
j j e k k v

v V ke E E E j

p y x t e y x s v y x
Z x

λ μ
∈∈

= +  (2) 

where Epc denotes the set of (yp, yc), E
cp denotes the set of (yc, yp), and Ess denotes the 

set of (ys, ys). tj and sk are feature functions. 
TCRFs have the same form as that of linear-chain CRFs except that in TCRFs the 

edges include parent-child edges, child-parent edges, and sibling-vertices edges while 
in CRFs the edges mean the transitions from the previous-state to the current-state. 

In semantic annotation, the observation x in TCRFs can correspond to a document 
(as the example shown in Figure 1). The label y thus corresponds to the annotation 
result for the document. Specifically, xi is a token in the document, and label yi is the 
annotation result (called label) to the token, where the label corresponds to either one 
of the concept/attribute from a particular ontology or none.  

4.3   Parameter Estimation 

The parameter estimation problem is to determine the parameters ={ 1, 2,…; k, 

k+1,…} from training data D={(x(i), y(i))} with empirical distribution ( , )p x y . More 

specifically, we optimize the log-likelihood objective function with respect to a 
conditional model p(y|x, ): 

( ) ( ) ( ) ( )( , ) log ( | )i i i i

i

L p x y p y xΘ Θ=  (3) 

In the following, to facilitate the description, we use f to denote both the edge 
feature function t and the vertex feature function s; use c to denote both edge e and 
vertex v; and use  to denote the two kinds of parameters  and . Thus, the derivative 
of the object function with respect to a parameter j associated with clique index c is: 



646 J. Tang et al.  

( ) ( ) ( ) ( )
( ) ( ) ( )( , , ) ( | ) ( , , )i i i i

j c c j c
i c y cj

L
f c y x p y x f c y x

δ
δλ

Θ = −  (4) 

where yi
(c) is the label assignment to clique c in x(i), and y(c) ranges over label 

assignments to the clique c. We see that it is the factors p(y(c)|x
(i)) that require us to 

compute the marginal probabilities. The factors p(y(c)|x
(i)) can be again decomposed 

into four types of factors: p(yp, yc|x
(i)), p(yc, yp|x

(i)), p(ys, ys|x
(i)), and p(yi|x

(i)), as we 
have three types of dependencies (described as edges here) and one type of vertex. 
Moreover, we also need to compute the global conditional probability p(y(i)|x(i)).  

The marginal probabilities can be done using many inference algorithms for 
undirected model (for example, Belief Propagation [25]). However, as the graphical 
structure in TCRFs can be a tree with cycles, exact inference can be expensive in 
TCRFs. We propose utilizing the Tree Reparameterization (TRP) algorithm [24] to 
compute the approximate probabilities of the factors. TRP is based on the fact that 
any exact algorithm for optimal inference on trees actually computes marginal 
distributions for pairs of neighboring vertices. For an undirected graphical model over 
variables x, this results in an alternative parameterization of the distribution as: 

( , ) ( , )

( , )1
( ) ( ) ( , ) ( ) ( )

( ) ( )
st s t

s s st s t s s
s V s t V s V s t V s s t t

p x x
p x x x x p x p x

Z p x p x
ϕ ϕ

∈ ∈ ∈ ∈

= =∏ ∏ ∏ ∏  (5) 

where ( )s sxϕ  is the potential function on single-vertex xs and ( , )st s tx xϕ  is the 

potential function on edge (xs, xt); and Z is the normalization factor. 
TRP consists of two main steps: Initialization and Updates. The updates are a 

sequence of Tn Tn+1 on the undirected graph with edge set E, where T represents the set 
of marginal probabilities maintained by TRP including single-vertex marginals Tu

n+1(xu) 
and pairwise joint distribution Tuv

n+1(xu, xv); and n denotes the iteration number. The 
TRP algorithm is summarized in Figure 4. (The algorithm is adopted from [21]). 

1. Initialization: for every node u and every pair of nodes (u, v), initialize T0 by 
0

u uT κϕ=  and 0
uv uvT κϕ= , with  being a normalization factor. 

1. TRP Updates: for i=1, 2, …, do: 

 Select some spanning tree i R with edge set Ei, where R={ i} is a set 
of spanning trees. 

 Use any exact algorithm, such as belief propagation, to compute exact 
marginals pi(x) on i. For all (u, v) Ei, set 

1 ( ) ( )i i
u u uT x p x+ = , 1 ( , )

( , )
( ) ( )

i
i u v

uv u v i i
u v

p x x
T x x

p x p x
+ =  

 Set Tuv
i+1 = Tuv

i for all (u, v) E/Ei (i.e. all the edges not included in the 
spanning tree i). 

 Stop if termination conditions are met. 

Fig. 4. The TRP Algorithm 



 Tree-Structured Conditional Random Fields for Semantic Annotation 647 

So far, the termination conditions are defined as: if the maximal change of the 
marginals is below a predefined threshold or the update times exceed a predefined 
number (defined as 1000 in our experiments), then stop the updates. When selecting 
spanning trees R={ i}, the only constraint is that the trees in R cover the edge set of 
the original undirected graph U. In practice, we select trees randomly, but we select 
first edges that have never been used in any previous iteration. 

Finally, to reduce overfitting, we define a spherical Gaussian weight prior p( ) 
over parameters, and penalize the log-likelihood object function as: 

2

( ) ( ) ( ) ( )
2

( , ) log ( | )
2

i i i i

i

L p x y p y x const
λ
σΘ Θ= − +  (6) 

with gradient 

( ) ( ) ( )
( ) 2

( , , ) log ( ) ji i i
j c

i cj

L
f c y x Z x

λδ
δλ σ

Θ = − −  (7) 

where const is a constant. 
The function L  is convex, and can be optimized by any number of techniques, as 

in other maximum-entropy models [14] [2]. In the result below, we used gradient-
based L-BFGS [15], which has previously outperformed other optimization 
algorithms for linear-chain CRFs [20]. 

4.4   Annotation 

Annotation (also called as ‘labeling’) is the task to find labels y* that best describe the 
observations x, that is, y*=maxyp(y|x). Dynamic programming algorithms are the most 
popular methods for this problem. However, it is difficult to directly adopt it for 
annotation in TCRFs. Two modes exist in the annotation of TCRFs: known structure 
and unknown structure. In the first mode, the hierarchical structure is known, for 
example, one can use the document logic structure to infer the hierarchical structure. 
Hence, we can use the TRP algorithm to compute the maximal value of p(y|x). In the 
second mode, the hierarchical structure is unknown. We used a heuristics based 
method and performed the annotation for a given observation xi as follows: (1) use 
vertex features to preliminary identify the possible labels for each vertex; (2) 
incorporate the edge features to compute all possible label results (that is, to 
enumerate all possible hierarchical structures) for an observations xi; (3) use equation 
(6) to compute the log-likelihood for each structure and choose one as the annotation 
result y* that has the largest log-likelihood. (The annotation in the second mode can 
be expensive, the issue and some of the related problems are currently researching, 
and will be reported elsewhere.) 

4.5   Using TCRFs for Semantic Annotation 

Currently, there is still not sufficient Semantic Web content available. Existing web 
content should be upgraded to Semantic Web content. Our proposed TCRFs can be 
used to create an annotation service, especially for the hierarchically laid-out data. 



648 J. Tang et al.  

The output of the service will be generated according to the language pyramid of 
Semantic Web, so that agents can automatically handle the semantic information.  

TCRFs can be used in two ways. One is to extract the web content (that we are 
interested) from its source, annotate it by an ontology, and store it in knowledge base. 
The other is to add the annotation results into the web page. 

5   Experimental Results 

5.1   Data Sets and Evaluation Measures 

1. Data Sets 
We carried out the experiments on two data sets, one synthetic and one real. For the 
real data set, we collected company annual reports from Shanghai Stock Exchange 
(http://www.sse.com.cn). We randomly chose in total 3,726 annual reports (in 
Chinese) from 1999 to 2004. To evaluate the effectiveness of our approach, we 
extracted the Section “Introduction to Company” from each annual report for 
experiments. For Chinese tokenization, we used a toolkit proposed in [16]. 

Company

Basic-Information

Company_Chinese_Name

Company_English_Name

Legal_Representative

Person Company_Secretary

Name

Registered_Address

Secretary_Email

Office_Address

Company_Email

ConceptConceptual relation subClassOf

Newspaper

Accounting_Agency

has_name has_email

has_baic_info has_reg_addr

disseminate_info_for

has_email

has_Accounting_agency
locate_at

has_Chinese_name

has_English_name

legal_representative_of

has_company_secretary

 

Fig. 5. Ontology of company annual report 

Figure 5 shows the ontological information (that is we need to annotate) defined 
for the annual report. In total, fourteen concepts were defined in the ontology and the 
annotation task is to find instances for the fourteen concepts. Most of the concepts 
have hierarchical dependencies. Human annotators conducted annotation on all 
annual reports.  

We also constructed a synthetic data set. The data set contains 62 company annual 
reports chosen from the real data set. In this data set, four concepts are defined only: 
“Company_Secretary”, “Secretary_Email”, “Registered_Address”, and “Company_ 
Email”. Where the first two concepts and the last two concepts have the parent-child 
dependencies respectively and the concepts “Company_Secretary”, “Registered-
_Address” have the sibling dependency. Every report in the data set exclusively has 
the four types of instances and the four instances are organized hierarchically. 



 Tree-Structured Conditional Random Fields for Semantic Annotation 649 

2. Features in Annotation Models 
Table 1 indicates the features used in the annotation models. 

Table 1. Features used in the annotation models 

Category Feature 
Edge Feature f(yp, yc), f(yc, yp), f(ys, ys) 

{wi}, {wp}, {wc}, {ws} 
Vertex Feature 

{wp, wi}, {wc, wi}, {ws, wi} 

Given the j-th vertex in the observation xi, f(yp, yc), f(yc, yp), and f(ys, ys) represent 
whether the current vertex has a parent-child dependency with a parent vertex, 
whether it has a child-parent dependency with a child vertex, and whether it has a 
sibling dependency with a sibling vertex, respectively. For vertex features, each 
element in {wi} represents whether the current vertex contains the word wi. Similarly, 
each element in {wp}, {wc}, and {ws} represents whether the parent vertex of the 
current vertex contains word wp whether its child vertices contain wc, and whether its 
sibling vertices contain ws, respectively. {wp, wi} represents whether the current 
vertex contains word wi and its parent vertex contains word wp. To save time in some 
of our experiments, we omitted the vertex features that appear only once. 

3. Evaluation Measures 
In all the experiments of annotation, we conducted evaluations in terms of precision, 
recall, and F1-measure. By comparison of the previous work, we also give statistical 
significance estimates using Sign Test [9]. 

4. Baselines 
To evaluate our model’s effectiveness of incorporating hierarchical dependencies for 
semantic annotation, we choose linear-chain CRFs as the baseline models for their 
outstanding performance over other sequential models. The linear-chain CRF models 
are trained using the same features as those in table 1 (the only difference is that the 
linear-chain CRFs uses the linear edge features and the TCRFs uses the hierarchical 
edge features). 

We also compared the proposed method with the classification based annotation 
method, which is another popular annotation method. The classification based method 
treats a company annual report as a sequence of text lines, employs two classification 
models to respectively identify the start line and the end line of a target instance, and 
then view lines that between the start line and the end line as a target (see [7] and [23] 
for details). In the experiments, we use Support Vector Machines (SVMs) as the 
classification models. In the SVMs models, we use the same features as those in table 
1 (excluding the edge features). 

5.2   Experiments 

We evaluated the proposed method on the two data sets. We conducted the 
experiments in the following way. First, we converted each company annual report 



650 J. Tang et al.  

into a sequence of text lines; for the SVMs base method, we use the vertex features 
and train two SVM models for each concept; for the linear-chain CRFs, we use the 
vertex features and the linear edge features to train the models; for TCRFs, we use the 
vertex features and the hierarchical edge features to train the models. For training 
SVM models we use SVM-light, which is available at http://svmlight.joachims.org/. 
For training linear-chain CRF models, we use KEG_CRFs, which is available at 
http://keg.cs.tsinghua.edu.cn/persons/tj/. 

5.2.1   Experimental Results on the Synthetic Data Set 
Table 2 shows the five-fold cross-validation results on the synthetic data set. SVM, 
CRF, and TCRF respectively represent the SVMs based method, the linear-chain 
CRFs method, and the proposed TCRFs method. Prec., Rec., and F1 respectively 
represent the scores of precision, recall, and F1-measure. 

Table 2. Performance of semantic annotation on the synthetic data set (%) 

SVM CRF TCRF 
Annotation Task 

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 

Company_Secretary 99.26 88.74 93.71 100.0 100.0 100.0 100.0 100.0 100.0 

Secretary_Email 50.00 7.52 13.07 50.00 42.86 46.15 100.0 100.0 100.0 

Registered_Address 97.46 89.84 93.50 100.0 100.0 100.0 100.0 100.0 100.0 

Company_Email 0.00 0.00 0.00 46.15 50.00 48.00 100.0 100.0 100.0 

Average 61.68 46.53 50.07 89.15 89.15 89.15 100.0 100.0 100.0 

We see that for both “Company_Secretary” and “Registered_Address”, all of the 
three methods can achieve high accuracy of annotation. Compared with the SVMs 
based method, CRF and TCRF can obtain better results. We can also see that for 
“Secretary_Email” and “Company_Email”, the proposed method TCRF significantly 
outperforms the SVMs based method and the linear-chain CRFs based method. We 
conducted sign tests on the results. The p values are much smaller than 0.01, 
indicating that the improvements are statistically significant. 

5.2.2   Experimental Results on the Real Data Set 
Table 3 shows the five-fold cross-validation results on the real data set. In the table, 
we also use SVM, CRF, and TCRF to respectively represent the SVMs based method, 
the linear-chain CRFs method, and the proposed TCRFs method; and use Prec., Rec., 
and F1 to respectively represent the scores of precision, recall, and F1-measure. 

From the results we see that TCRF can achieve the best performance 89.87% in 
terms of F1-measure (outperforming CRF+7.67% and SVM+14.10% on average). In 
terms of both precision and recall, CRF can outperform SVM. TCRF again 
outperform CRF +3.14% in terms of precision and +12.08% in terms of recall. We 
conducted sign tests on the results. The p values are much smaller than 0.01, 
indicating that the improvements are statistically significant. 



 Tree-Structured Conditional Random Fields for Semantic Annotation 651 

5.2.3   Discussions 
(1) Effectiveness of TCRF.  In the synthetic data set, the data are hierarchically 
organized. TCRF can indeed improve the annotation performance. On annotation of  
“Secretary_Email” and “Company_Email”, the SVMs based method only uses the 
neighborhood contexts and thus cannot disambiguate them from each other (only 
13.07% and 0.00% in terms of F1-measure). The linear-chain CRFs based method can 
improve the annotation result by making use of linear dependencies (46.15% and 
48.00% respectively). However, as the linear-chain CRFs cannot model hierarchical 
dependencies, the improvements are limited. The proposed TCRFs based method can 
model the hierarchical dependencies, and obtain the best performance (100.00% and 
100.00% respectively). This indicates that the proposed Tree-structured Conditional 
Random Fields are effective for the problem of hierarchical semantic annotation. 

Table 3. Performance of semantic annotation on the real data set (%) 

SVM CRF TCRF 
Annotation Task 

Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 

Company_Chinese_Name 88.82 89.40 89.11 82.10 80.69 81.37 84.34 92.72 88.33 

Company_English_Name 90.51 95.33 92.86 71.68 80.14 75.66 89.26 88.67 88.96 

Legal_Representative 94.84 97.35 96.08 92.86 96.60 94.66 94.84 97.35 96.08 

Company_Secretary 99.29 93.33 96.22 91.65 96.99 94.23 77.96 96.67 86.31 

Secretary_Email 57.14 8.89 15.39 69.94 56.53 62.34 73.86 97.01 83.87 

Registered_Address 98.66 96.71 97.68 94.75 87.20 90.80 84.05 90.13 86.98 

Office_Address 70.41 97.54 81.78 77.41 87.06 81.94 86.93 89.86 88.37 

Company_Email 0.00 0.00 0.00 84.57 85.64 85.09 95.20 90.84 92.97 

Newspaper 100.0 99.34 99.67 94.51 91.97 93.21 98.69 100.0 99.34 

Accounting_Agency 83.15 95.63 88.95 73.81 56.77 62.73 79.57 97.19 87.50 

Average 78.28 77.35 75.77 83.33 81.96 82.20 86.47 94.04 89.87 

(2) Improvements over CRF. In the real data set, TCRF significantly outperforms 
the linear-chain CRF for the annotation of most concepts. For the concepts that have 
strong hierarchical dependencies, TCRF can achieve much better results than CRF, 
for example, on “Secretary_Email” and “Company_Email” TCRF outperforms CRF 
by +21.53% and +7.88%, respectively.  
(3) Improvements over SVM. In the real data set, TCRF outperforms SVM +8.19% in 
terms of precision and +16.69% in terms of recall. The SVMs based method suffers from 
the extremely bad results on the annotation of “Secretary_Email” and 
“Company_Email”. This is due to that the SVMs based method considers only 
neighborhood contexts. Besides the two concepts, TCRF also outperforms SVM on 
annotation of some other concepts, for example “Office_Address”. We need notice that 
in some cases, TCRF underperforms SVM. For example on “Company_Chinese_Name” 
and “Company_English_Name”, TCRF underperforms SVM by -0.78% and -2.9%, 



652 J. Tang et al.  

respectively. This is because instances of such concepts seem to be independent and do 
not have dependencies with instances of the other concepts. 
(4) Time complexity. We conducted analysis of time complexity of our approach. 
We tested the three methods on a computer with two 2.8G Dual-Core CPUs and three 
Gigabyte memory. In total, for training and annotating the fourteen concepts, the 
SVMs based method takes about 96 seconds and 30 seconds respectively, while the 
CRF method takes about 5 minutes 25 seconds and 5 seconds respectively. Our 
current implementation of the TCRF method used more time for training and 
annotation (about 50 minutes 40 seconds and 50 seconds respectively.) This indicates 
that the efficiency of TCRF still needs improvements.  
(5) Error analysis. We conducted error analysis on the results of our approach. 

There are mainly three types of errors. The first type of errors (about 34.85% of the 
errors) is that in some concepts, there are no hierarchical dependencies, for example 
“Company_Chinese_Name” and “Company_English_Name”. In such cases, the 
proposed TCRFs contrarily result in worse performance than the SVMs based method 
that does not consider dependencies. About 28.05% of the errors occur when there are 
extra email addresses in the text. The third type of errors was due to extra line breaks 
in the text, which mistakenly breaks the targeted instance into multiple lines. 

6   Conclusions 

In this paper, we investigated the problem of hierarchical semantic annotation. We 
proposed a Tree-structured Conditional Random Field (TCRF) model. This model 
provides a novel way of incorporating the dependencies across the hierarchical 
structure to improve the performance of hierarchical semantic annotation. Using an 
approximate algorithm, i.e. Tree Reparameterization (TRP), efficient parameter 
estimation and annotation can be performed. Experimental results on two data sets 
show that the proposed model significantly outperforms the linear-chain CRF models 
and the SVMs based models for annotating hierarchically laid-out data. We also 
found that the efficiency of the proposed TCRF model still needs improvements. 

References 

[1] R. Benjamins and J. Contreras. Six challenges for the semantic web. Intelligent Software 
Components. Intelligent Software for the Networked Economy (isoco). 2002. 

[2] A. L. Berger, S. A. Della Pietra, and V. J. Della Pietra. A maximum entropy approach to 
natural language processing. Computational Linguistics, Vol,22,1996. pp. 39-71 

[3] R. C. Bunescu, R. J. Mooney. Collective information extraction with relational Markov 
networks. In Proceedings of the 42nd Annual Meeting of the Association for 
Computational Linguistics (ACL’04), 2004. pp. 439-446 

[4] F. Ciravegna. (LP)2, an adaptive algorithm for information extraction from web-related 
texts. In Proceedings of the IJCAI’2001 Workshop on Adaptive Text Extraction and 
Mining held in conjunction with 17th IJCAI'2001, Seattle, USA. 2001. pp. 1251-1256 

[5] M. Collins. Discriminative training methods for hidden Markov models: Theory and 
Experiments with Perceptron Algorithms. In Proceedings of EMNLP’02. 2002. 

[6] C. Cortes and V. Vapnik. Support-Vector Networks. Machine Learning, Vol. 20, 1995, 
pp. 273-297 



 Tree-Structured Conditional Random Fields for Semantic Annotation 653 

[7] A. Finn and N. Kushmerick. Multi-level boundary classification for information 
extraction. In Proceedings of the ECML’2004, Pisa, 2004. pp.156-167 

[8] Z. Ghahramani and M. I. Jordan. Factorial hidden Markov models. Machine Learning, 
Vol.29, 1997, pp. 245-273 

[9] L. Gillick and S. Cox. Some statistical issues in the compairson of speech recognition 
algorithms. In International Conference on Acoustics Speech and Signal Processing, 
1989, Vol. 1: 532-535 

[10] J. Hammersley and P. Clifford. Markov fields on finite graphs and lattices. Unpublished 
manuscript. 1971. 

[11] B. Hammond, A. Sheth, and K. Kochut. Semantic enhancement engine: a modular 
document enhancement platform for semantic applications over heterogeneous content, in 
real world semantic web applications. IOS Press, 2002. pp. 29-49 

[12] S. Handschuh, S. Staab, and F. Ciravegna. S-CREAM - semi-automatic creation of 
metadata. In Proceedings of the 13th International Conference on Knowledge Engineering 
and Management (EKAW'2002), Siguenza, Spain, 2002. pp. 358-372 

[13] N. Kushmerick, D. S. Weld, and R. B. Doorenbos. Wrapper induction for information 
extraction. In Proceedings of the International Joint Conference on Artificial Intelligence 
(IJCAI). Nagoya, Japan, 1997. pp. 729-737 

[14] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: probabilistic models 
for segmenting and labeling sequence data. In Proceedings of the 18th International 
Conference on Machine Learning (ICML’01), 2001. pp. 282-289 

[15] D. C. Liu and J. Nocedal. On the limited memory BFGS method for large scale 
optimization. Mathematical Programming, 1989. pp. 503-528 

[16] T. Lou, R. Song, W.L. Li, and Z.Y. Luo. The design and implementation of a modern 
general purpose segmentation system, Journal of Chinese Information Processing, (5), 2001. 

[17] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models for 
information extraction and segmentation. In Proceedings of the 17th International 
Conference on Machine Learning (ICML’00), 2000. pp. 591-598 

[18] B. Popov, A. Kiryakov, A. Kirilov, D. Manov, D. Ognyanoff, and M. Goranov. KIM - 
semantic annotation platform. In Proceedings of 2nd International Semantic Web 
Conference (ISWC'2003), Florida, USA, 2003. pp. 834-849 

[19] L. Reeve. Integrating hidden Markov models into semantic web annotation platforms. 
Technique Report. 2004. 

[20] F. Sha and F. Pereira. Shallow parsing with conditional random fields. In Proceedings of 
Human Language Technology, NAACL. 2003. 

[21] C. Sutton, K. Rohanimanesh, and A. McCallum. Dynamic conditional random fields: 
factorized probabilistic models for labeling and segmenting sequence data. In Proceedings 
of ICML’2004. 2004. 

[22] J. Tang, J. Li, H. Lu, B. Liang, and K. Wang. 2005a. iASA: learning to annotate the 
semantic web. Journal on Data Semantic, IV. Springer Press. pp. 110-145 

[23] J. Tang, H. Li, Y. Cao, and Z. Tang. Email data cleaning. In Proceedings of 
SIGKDD’2005. August 21-24, 2005, Chicago, Illinois, USA. Full paper. pp. 489-499 

[24] M. Wainwright, T. Jaakkola, and A. Willsky. Tree-based reparameterization for 
approximate estimation on graphs with cycles. In Proceedings of Advances in Neural 
Information Processing Systems (NIPS'2001), 2001. pp. 1001-1008 

[25] J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. Advances in 
Neural Information Processing Systems (NIPS). 2000. 

[26] J. Zhu, Z. Nie, J. Wen, B. Zhang, and W. Ma. 2D conditional random fields for web 
information extraction. In Proceedings of ICML’2005. 



Framework for an Automated Comparison of
Description Logic Reasoners

Tom Gardiner, Dmitry Tsarkov, and Ian Horrocks�

University of Manchester
Manchester, UK

{gardiner, tsarkov, horrocks}@cs.man.ac.uk

Abstract. OWL is an ontology language developed by the W3C, and
although initially developed for the Semantic Web, OWL has rapidly
become a de facto standard for ontology development in general. The
design of OWL was heavily influenced by research in description logics,
and the specification includes a formal semantics. One of the goals of this
formal approach was to provide interoperability: different OWL reasoners
should provide the same results when processing the same ontologies. In
this paper we present a system that allows users: (a) to test and compare
OWL reasoners using an extensible library of real-life ontologies; (b) to
check the “correctness” of the reasoners by comparing the computed
class hierarchy; (c) to compare the performance of the reasoners when
performing this task; and (d) to use SQL queries to analyse and present
the results in any way they see fit.

1 Introduction

OWL is an ontology language (or rather a family of three languages) developed
by the World Wide Web Consortium (W3C) [21]. Although initially developed
in order to satisfy requirements deriving from Semantic Web research [13], OWL
has rapidly become a de facto standard for ontology development in general, and
OWL ontologies are now under development and/or in use in areas as diverse as
e-Science, medicine, biology, geography, astronomy, defence, and the automotive
and aerospace industries.

The design of OWL was heavily influenced by research in description logics
(DLs); investigations of (combinations of) DL language constructors provided a
detailed understanding of the semantics and computational properties of, and
reasoning techniques for, various ontology language designs [1,10,14,15]; this un-
derstanding was used to ensure that, for two of the three OWL dialects (OWL DL
and OWL Lite), key reasoning problems would be decidable. Basing the language
on a suitable DL also allowed for the exploitation of existing DL implementations
in order to provide reasoning services for OWL applications [11,20,7].

The standardisation of OWL has led to the development and adaption of a
wide range of tools and services, including reasoners such as FaCT++ [26], Racer-
Pro [7], Pellet [24] and KAON2 (http://kaon2.semanticweb.org/). Reasoners
� This work was partially supported by EPSRC, project IST-2006-027269 ”Sealife”.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 654–667, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Framework for an Automated Comparison of Description Logic Reasoners 655

are often used with editing tools, e.g., Protégé [23] and Swoop [17], in order
to compute the class hierarchy and alert users to problems such as inconsistent
classes.

One of the key benefits that a formal language standard provides to users
of web-based technologies is interoperability. In the case of OWL, this should
mean that users can load ontologies from the internet and use them in applica-
tions, possibly answering queries against them using one of the available OWL
reasoners. One of the goals of standardisation is that the result of this process
is independent of the chosen reasoner. Up to now, however, relatively little at-
tention has been given to checking if this goal is indeed satisfied by available
OWL reasoners—the OWL standard includes a test suite [4], but this mainly
focuses on small tests that isolate some particular language feature; it does not
include many complex cases that involve interactions between different features,
nor tests that use realistic ontologies.

This kind of comparison is also of great value to implementors of DL reason-
ing systems, who typically use testing in order to check the correctness of their
implementations. This may be relatively easy for small examples, where man-
ual checking is possible, but will usually not be feasible for realistic ontologies.
In such cases, the best (perhaps the only) way to check the correctness of an
implementation may be by checking for consistency with the reasoning of other
systems.

Once we have confirmed that some or all reasoners are correct (or at least
consistent), we may also want to compare their performance. Reasoning with
expressive DLs (like those underlying OWL-DL) has high worst case complexity,
and this means that, in general, reasoning is highly intractable for these logics.
The hope/claim is, however, that modern highly optimised systems perform
well in “realistic” ontology applications. To check the validity of this claim it
is necessary to test the performance of these systems with (the widest possible
range of) ontologies derived from applications.

Real-world ontologies vary considerably in their size and expressivity. While
they are all valuable test cases, it is still important to understand each ontology’s
properties in order to provide efficient and relevant testing. For example, a user
(or potential user) of OWL may have some particular application in mind, and
might like to know which of the available OWL reasoners is most suitable. In
this case, it would be useful if they could compare the performance of reasoners
with ontologies having similar characteristics to those that will be used in their
application. System developers might also find this kind of testing useful, as it
can help them to identify weaknesses in their systems and to devise and test new
optimisations.

In this paper we present a system that allows users:

– to test and compare OWL reasoners using an extensible library of real-life
ontologies;

– to check the “correctness” of the reasoners by comparing the computed class
hierarchy;



656 T. Gardiner, D. Tsarkov, and I. Horrocks

– to compare the performance of the reasoners when performing this task;
– to use SQL queries to analyse and present the results in any way they see fit.

2 Background and Related Work

There is extensive existing work on benchmarking DL (as well as modal logic)
reasoners. E.g., the TANCS comparisons and benchmark suites [18], the DL com-
parisons and benchmark suite [12], the OWL benchmark suite and test results,
and various test results from papers describing systems such as M-SPASS [16],
FaCT and DLP [9,8], FaCT++ [25], KAON2, Pellet [24], Racer [6], Vampire [27],
etc.

Due to the fact that relatively few (large and/or interesting) ontologies were
available, earlier tests often used artificially generated test data. For some tests
of this kind (e.g. the DL-98 tests, [12]) are hand crafted, or constructed according
to a pattern, in such a way that a correct answer is known; in this case they can
be used both to test correctness and to measure the performance of reasoners
on a certain class of tasks. Other artificial benchmarks (like [22]) are randomly
generated, so no correct answer is known for them; in this case they can only
be used for performance testing (or for comparing results from more than one
reasoner). The Lehigh University Benchmark [5] has been developed specifically
for testing OWL reasoners, and uses a synthetic ontology and randomly gener-
ated data to test their capabilities using specific weightings to compare systems
on characteristics of interest. Results from such tests are, however, of doubtful
relevance when gauging performance on real-life ontologies. The popularity of
OWL means that many more real-life ontologies are now available, and recent
benchmarking work has focused on testing performance with such ontologies.

One such example involved benchmarking of a number of reasoners against a
broad range of realistic ontologies [19]. Note that only performance was tested
in that work; no results regarding any comparison of the outputs of the reasoner
are known. Additionally, not all reasoners used in that comparison supported
OWL as an input language, so quantitative comparison of performance would
have been difficult/un-justified. This latter problem is eased by the popular-
ity of the DIG (DL Implementation Group) interface [2], which is widely used
by application developers and has thus been implemented in most modern DL
Reasoners.

Our work builds on these earlier efforts, taking advantage of the DIG standard
to provide a generic benchmarking suite that allows the automatic quantitative
testing and comparison of DL Reasoners on real-world ontologies with a wide
range of different characteristics, e.g., with respect to size and the subset of OWL
actually used in the ontology. We aim to make the testing process as automatic
as possible, taking care, for example, of (re)starting and stopping reasoners as
necessary, to make the results available as and when required by storing them
in a database, and to make the analysis of results as easy and flexible as possi-
ble by allowing for arbitrary SQL queries against the collected data. We also aim



Framework for an Automated Comparison of Description Logic Reasoners 657

to provide (in the form of a publicly available resource) a library of test on-
tologies where each ontology has been checked for expressivity (i.e., the subset
of OWL actually used) and syntactic conformance, translated into DIG syntax
(which is much easier to work with for the benchmarking purposes than OWL’s
RDF/XML syntax), and includes (where possible) results (such as the class hi-
erarchy) that can be used for testing the correctness of reasoning systems.

3 Methodology

The system we present here has three main functions. The first is to collect real-
world OWL ontologies (e.g., from the Web), process them and add them to a
library of ontologies which can be used as a test suite. The second is to auto-
matically run benchmarking tests for one or more reasoners, using the ontology
library and storing the results (both performance data and reasoning results) in
a database. The third is to allow users to analyse and compare saved results for
one or more reasoners.

When processing ontologies, the system takes as an input a list of OWL
ontology URIs. Before they can be used in testing, some preprocessing of these
ontologies is required. The process involves generating of valuable meta-data
about each ontology, as well as converting each of the OWL ontologies into DIG.

The meta-data is generated using code written for SWOOP [17], and specifies
some details w.r.t. the expressivity (i.e. the constructs present in the ontology)
together with the number of classes, object properties, data properties, individ-
uals, class axioms, property axioms and individual axioms present. This is in-
valuable information in helping to understand and analyse the results obtained
through testing; it can be used, e.g., to study the strengths and weaknesses of
particular systems, or to identify ontologies with similar characteristics to those
that will be used in a given application.

The OWL-to-DIG conversion uses the OWL-API (http://sourceforge.net/
projects/owlapi). This process is far from being trivial as OWL’s RDF syntax is
complex, and it is easy to (inadvertently) cause ontologies to fall outside OWL-DL,
e.g., by simply forgetting to explicitly type every object. Moreover, the current
DIG interface supports only the most basic of datatypes, such as <xsd:string>
and <xsd:integer>.1 The result is that many of the available OWL ontologies we
found could not be successfully converted to DIG, due to either being OWL-Full
or to using more expressive data types than those that are allowed in DIG. In the
former case, i.e., OWL-Full ontologies, it is almost always the case that they are
OWL-Full only as the result of some trivial syntax error; usually missing typing
information. Such ontologies can easily be “repaired” and added to the library.

Local copies of both the OWL ontology and the DIG version are stored in
a database. This is done not only for efficiency during the testing, but also to
ensure consistency (as online ontologies rarely remain static). Moreover, this
allows us to fix trivial errors (like missing type information for an object) in
1 A new DIG standard, DIG 2.0, is currently under development, and will provide

support for all OWL compatible datatypes.



658 T. Gardiner, D. Tsarkov, and I. Horrocks

OWL ontologies in order to ensure that they are in OWL-DL. This can be
done by using a technique described in [3]. Such “repaired” ontologies can be
successfully translated into DIG, and thus can be used for testing purposes.
These files, together with their properties/meta-data, are stored as database
entries for easy access and manipulation.

The main function of the benchmark suite itself is to gather the classification
information for each ontology and each reasoner. This information includes the
time spent by a reasoner in performing certain queries, and the query answer
returned by the reasoner.

To promote fairness, each reasoner is terminated and then restarted before
loading each ontology. This ensures that every reasoner is in the same “state”
when working on a given ontology, regardless of how successful previous attempts
were. This also simplifies the management of cases for which the time-out limit
was exceeded.

One problem that arises when trying to compare the performance of different
reasoners is that they may perform reasoning tasks in different ways. For exam-
ple, some may take an “eager” approach, fully classifying the whole ontology and
caching the results as soon as it is received; others may take a “lazy” approach,
only performing reasoning tasks as required in order to answer queries. To try
to get around this problem, we use a five step test, for each ontology, that forces
reasoners to fully classify the ontology, whether eagerly or lazily. The steps are
as follows:

1. Load the ontology into the reasoner;
2. Query the reasoner for all the named (atomic) classes in the ontology;
3. Query the reasoner for the consistency of the ontology by checking the sat-

isfiability of the class owl:Thing;
4. Query the reasoner for the satisfiability of each of the named classes in the

ontology;
5. Query the reasoner for the ontology taxonomy (i.e., the parents and children

of all named classes).

Each of these individual steps is timed, providing interesting information
about when different reasoners do their work. It is, however, the total time
for this complete (classification) test that is probably of most interest.

Each test can end in one of three ways. It can either complete successfully,
fail due to lack of resources (either time or memory), or fail because the reasoner
could not parse/process the ontology and/or query successfully. In case of suc-
cess, the answers given by the reasoner are saved in the database. These answers
can be used for testing the correctness of reasoning (or at least comparing results
with those obtained from other reasoners).

The benchmarking process is fully automatic, dealing with most errors au-
tonomously, meaning that the testing can be left to run over-night or over a
week-end (which may be necessary when using a large time-out). All data is
recorded in a database, making it easy for the user to view and analyse the data
in a variety of ways.



Framework for an Automated Comparison of Description Logic Reasoners 659

As discussed in Section 1, in order to get a clearer indication of how DL
Reasoners perform in the real world, we aim to build a large library of OWL
ontologies from those that are publicly available. Currently, our library contains
over 300 OWL ontologies, but so far only 172 of these have been successfully
converted to DIG. This has, however, provided us with a total of just under
72,000 classes and over 30,000 individuals in a DIG format. Only 18% of the
ontologies had the expressivity corresponding to the DL ALC or higher, which
suggests that the majority of real-world ontologies are not, in fact, very complex,
but it also means that we have a useful number of “interesting” examples.

4 Data Storage

As we have mentioned on several occasions, the database is used to store all
processed data. We have used a database as it provides persistence, and allows
the user to quickly summarize data and to analyse it in any way that is deemed
appropriate. The database contains a wealth of information about both the on-
tologies and the behaviour of the reasoners, allowing users to produce high level
summaries or to focus on and investigate results of particular interest.

Moreover, the database is designed so that any data obtained through our tests
is stored with a normalised layout. For example, the responses to the queries in
our 5 step test are returned by the reasoners as large XML documents (in DIG
format) which can represent the same information in a number of different ways.
Our system parses these responses and records them as simple class names, along
with information such as satisfiability status (i.e., satisfiable or not), parents
(i.e., named classes that are direct subsumers) and children (i.e., named classes
that are direct subsumees). This makes it easy to use SQL queries to look for
similarities or differences between different reasoner’s responses.

The advantages of our approach are demonstrated in Section 5 below, where
we show examples of the kind of query that we could issue and the resulting
information that would be extracted from the database.

5 Testing

Our system as it stands is fully automatic and runs the classification tests suc-
cessfully through our whole library. The times taken by each reasoner, for each
step and for each ontology are recorded, together with the parsed and normalised
version of the responses returned by each reasoner.

We have performed tests using our system with several state-of-the-art DIG
reasoners, and we provide here some examples of the kinds of information that
the system can produce. It is important to note that we simply set up our
benchmarking system to run overnight for each ontology with each reasoner.
All the information described in the following sub-sections was then obtained
by querying the resulting database to extract the information that we were
interested in.



660 T. Gardiner, D. Tsarkov, and I. Horrocks

FaCT++ v1.1.3, KAON2, Pellet v1.3 and RacerPro v1.8.1 are four of the most
widely used OWL/DIG reasoners, and we therefore decided to use these to test
the current capabilities of our system. The tests were performed using an Intel
Pentium-M processor 1.60 GHz and 1Gb of main memory on Windows XP. The
time-out period was set to 10 minutes (in real time). Pellet and KAON2 are
Java applications, and for these tests were run with a maximum heap space of
200Mb. RacerPro and FaCT++ were left to run at their default settings. Our
system does not try to optimise the performance of the reasoners for particular
ontologies, as we believe this is the job of the reasoners themselves: users of
OWL reasoners cannot be expected to be experts in how to tune them in order
to optimise their performance.

5.1 Correctness

Every step of our benchmarking is timed to allow performance comparison of the
reasoners in question. However, this data only becomes relevant if we can confirm
the correctness of the responses returned by these systems when answering the
queries we put to them (test steps 2-5): a reasoner that quickly but incorrectly
answers queries is of little use (or at least cannot be fairly compared to one that
gives correct answers).

When reasoner implementors test the correctness of their systems, they typi-
cally use small artificially generated examples and manually check the correctness
of their system’s responses. Due to the sheer size of the ontologies in our library,
it is not feasible to check responses by hand, so we needed a way of automating
this task.

It is impossible to say any one reasoner is universally correct, and we are
therefore unable to base correctness on any one reasoner’s answers. Our solu-
tion was to base our measure of correctness on tests of consistency of different
reasoner’s answers. Our claim is that consistency between multiple reasoners im-
plies a high probability of correctness, especially when the reasoners have been
designed and implemented independently, and in some cases even use different
reasoning techniques.2

With normalised entries of the parsed responses stored in our database, check-
ing for consistency was a simple matter of writing a few short SQL queries to
see if each reasoner had symmetrical entries for each of the DIG queries. Nat-
urally, this required that at least two reasoners had successfully completed the
5-step classification test. Of our 172 DIG ontologies, 148 had this property; of
the remaining 24 ontologies, more than half were not successfully classified by
any of the reasoners.

We started by checking for 100% consistency on each of the classification steps,
where 100% consistency meant that all reasoners that successfully completed the
test gave the same answers w.r.t. the class hierarchy. Where there were conflicts,
we used more specific SQL queries to analyse the reason in detail, allowing us
to see exactly how big the differences were.
2 KAON2 uses a resolution based technique; the other reasoners tested here use a

tableaux based technique.



Framework for an Automated Comparison of Description Logic Reasoners 661

Our findings were surprisingly impressive, with only 7 of the 148 ontologies
(that were fully classified by at least two reasoners) not being 100% consistent
on all tests. This reflects very positively on the OWL standardisation process
(and on the developers of these reasoners), and shows that the OWL standard
really does result in a high degree of interoperability.

The inconsistencies between reasoners on the seven aforementioned ontologies
raised some interesting issues.

Starting with step 2 (querying for the list of classes in each ontology), there
were only three ontologies on which there were inconsistencies. The reason for the
inconsistencies was due to the existence of nominals (i.e., extensionally defined
classes resulting, e.g., from the use of the OWL oneOf or hasValue construc-
tors). RacerPro was actually returning nominals as classes, while the other three
reasoners were not. (These three ontologies were also the only three ontologies
containing nominals that RacerPro successfully classified). We assume that this
happens because RacerPro does not claim to be sound and complete in the
presence of nominals, but instead tries to approximate them using classes to
represent them.

Step 3 (querying for the satisfiability of owl:Thing) was 100% consistent for
all ontologies. This is, however, not surprising as owl:Thing is satisfiable for all
of the ontologies in the library.

Step 4 (querying for the satisfiability of each named class in the ontology)
found only two ontologies with inconsistent answers. Interestingly, they were
both only successfully classified by FaCT++ and Pellet, and on one of the on-
tologies they disagreed about the satisfiability of over 2/3 of the classes present.

The first ontology was in SHIN (Tambis) and the other was in DL-Lite with
Datatypes and Inverse roles. Other properties of these ontologies suggested no
obvious challenges. We therefore selected a few of the classes on which there was
disagreement, and used SWOOP to analyse them. Using this tool we found that
FaCT++ was clearly inconsistent in its reasoning w.r.t. these classes.

Taking one class as an example: FaCT++ answered that the class RNA was
satisfiable, while Pellet disagreed. SWOOP showed that the definition of RNA
consisted of the intersection of the class Macromolecular-compound and a
number of other classes. However, FaCT++ and Pellet both agreed that
Macromolecular-compound was not satisfiable, hence implying that RNA was
definitely unsatisfiable. As a result of this investigation, a bug in FaCT++ has
been identified and is now in the process of being fixed. This demonstrates how
valuable the information provided by our system can be to system developers as
well as to users of OWL reasoners.

As hoped, step 5 (querying for the parents and children of each named class
in the ontology) found that the taxonomies defined by the parent and children
relations were consistent in the vast majority of cases, and there were only three
ontologies on which the reasoners were not in agreement. In each of these cases,
FaCT++ was not in agreement with the other reasoners. Due to the detailed
information recorded by our system holds, we are easily able to identify the
classes that are causing this problem, and thus investigate it more closely. In



662 T. Gardiner, D. Tsarkov, and I. Horrocks

this way we can not only find bugs that have not been discovered before, but
the detailed analysis allows a system implementor to quickly find exactly what
is causing the bug, and hopefully to fix it.

5.2 Efficiency

We present here some examples of the kinds of performance related information
that can be extracted from the database using suitable SQL queries. Table 1
provides an overview of the performance of the four reasoners: it shows how
many of the test ontologies they were able to classify within the specified time
limit, and then breaks this information down by focussing on sets of ontologies
using particular language features. Finally, it also shows their performance on
OWL-Lite ontologies, i.e., all those with expressivity up to and including SHIF .
Note that only 100% consistent ontologies are compared here; as we mentioned
before, the performance analysis is of doubtful value when different reasoners do
not agree on query results.

It is important to note that “Could not process” most often means that the
reasoner does not support the constructs present within that particular ontology
(and does not claim to either).

Table 1. Sample of Overall Performance for 100% Consistent Ontologies

Type Status FaCT++ KAON2 Pellet RacerPro
All Success 137 43 143 105
All CouldNotProcess 24 119 20 60
All ResourcesExceeded 4 3 2 0
Nominals Success 4 0 2 0
Nominals CouldNotProcess 0 5 3 5
Nominals ResourcesExceeded 1 0 0 0
TransRoles Success 9 5 9 6
TransRoles CouldNotProcess 2 6 3 7
TransRoles ResourcesExceeded 2 2 1 0
Datatypes Success 91 0 98 62
Datatypes CouldNotProcess 19 112 14 50
Datatypes ResourcesExceeded 2 0 0 0
OWL-Lite Success 43 41 42 43
OWL-Lite CouldNotProcess 5 6 6 7
OWL-Lite ResourcesExceeded 2 3 2 0

The SQL statement below shows how easily we filled the transitive-roles part
of Table 1. Here, “name” refers to the name of the reasoner, “status” is a choice
of “Succes”, “CouldNotProcess” or “ResourcesExceeded” and the COUNT func-
tion returns a count of the number of ontologies that meet the given criteria.



Framework for an Automated Comparison of Description Logic Reasoners 663

SELECT name, status, COUNT(status)
FROM resultsview
WHERE rplus
AND ontology IN
(
/*Get the list of ontologies that had full consistency on all steps*/
SELECT ontology
FROM consistency
WHERE clist AND topsat AND allsat AND parents

)
GROUP BY name, status;

Fig. 1. Comparison of Reasoners on the Top 10 Most Challenging Ontologies

Table 2 presents some information describing the features of the the 10 most
“challenging” (w.r.t. reasoning) ontologies in the library. We did this by selecting
all those ontologies that were successfully classified by at least two reasoners,
and then ordering these ontologies by the average classification time for those
reasoners that successfully classified them. Note that this is just an example of
the way in which the data can be analysed, and we do not claim this to be the
“correct” way to select challenging ontologies.

This table is useful in helping us understand what makes these particular
Ontologies so time-consuming to reason over. In the case of the NCI and Gene
Ontologies (1st and 2nd), it can be clearly seen that it is their sheer size that pro-
vides the challenge. The Hydrolic Units ontologies (7th and 10th) have very few
classes (only 5 and 6 respectively), but relatively large numbers of individuals.
The world-fact-book ontology (4th) uses only a minimal subset of the ontology
language (no more than the DL subset of RDFS), but has a reasonably large



664 T. Gardiner, D. Tsarkov, and I. Horrocks

Table 2. Properties of Top 10 Most Challenging Ontologies

Expressivity nClass nIndiv Ontology
1 DLLite 27652 0 NCI
2 ALR+ 20526 0 GeneOntology
3 SHF 2749 0 Galen
4 RDFS(DL) 1108 3635 WorldFactBook
5 RDFS(DL) 1514 0 DataCenter
6 SHIF 37 0 DolceLite
7 ALR+HI(D) 5 2744 HydrolicUnits2003
8 RDFS(DL) 382 1872 Tambis
9 RDFS(DL) 98 0 MovieDatabase

10 RDFS(DL) 6 2744 HydrolicUnits

number of both classes and individuals. Finally, the Galen ontology (2nd) has
a moderately large number of classes, and also uses a relatively rich subset of
OWL. This demonstrates the kinds of insight that can be achieved using suitable
queries. In this case we examined just three properties (specifically expressivity,
number of classes and number of individuals) of our chosen ontologies; we could
easily have extended our analysis to include available information such as the
number of object/data properties, kinds of axiom occurring, etc.

In Figure 1, we present a graphical view of the amount of time each Reasoner
took to classify the 10 most challenging ontologies according to the above men-
tioned measure (where negative time represents unsuccessful classification). It is
interesting to note that there is no clear “winner” here; for example, FaCT++
performs well on the ontologies with very large numbers of classes (the NCI and
Gene Ontologies), but relatively poorly on some ontologies with large numbers
of individuals (e.g., the world-fact-book ontology).

Regarding the ontologies that include large numbers of individuals, it is im-
portant to note that our testing procedure (the 5-step classification) does not
yet include any ABox queries (adding this kind of testing will be part of fu-
ture work). This is clearly disadvantageous to systems such as KAON2 that are
mainly designed to optimise ABox query answering rather than classification.

Table 3. Average Division of Task Time

Reasoner Load ClassList SatofTop SatOfClasses Hierarchy

FaCT++ 16% 26% 16% 21% 21%
KAON2 48% 44% 1% 2% 5%
Pellet 69% 21% 1% 2% 7%
RacerPro 57% 10% 4% 9% 19%

Finally, in Table 3, we present the average proportion of the classification time
that the reasoners spent on each of the five steps. This shows, for example, that



Framework for an Automated Comparison of Description Logic Reasoners 665

Pellet performs a lot of work as soon as it receives the Ontology (the Load step),
while FaCT++ does relatively little work until the first query (the ClassList
step).

Note that the reason for the Load step taking such a large proportion of
the total time may be the result of the relatively high overhead of loading an
ontology into a reasoner via the DIG interface; it is not necessarily due to time
taken performing “eager” reasoning.

6 Discussion

As we mentioned in Section 1, testing is useful for reasoner and tool developers
as well as for application users. Building on existing work, we have developed a
system for testing reasoners with real-life ontologies. The benefits of our approach
include autonomous testing, flexible analysis of results, correctness/consistency
checking and the development of a test library that should be a valuable resource
for both the DL and ontology community. We will continue to extend the library,
and will publish the computed class hierarchy in case a consistent answer is
obtained. We will also continue to analyse the reasons for the inconsistencies we
have found, and would eventually like to analyse which implementation strategies
and optimisations seem to be most effective for particular kinds of ontology and
reasoning problems.

While there are an increasingly large array of OWL ontologies available for
public use, other Ontology formats (e.g. OBO: the Open Biomedical Ontologies,
http://obo.sourceforge.net) are still in widespread use, and would make a
valuable addition to our test examples. It is also the case, as described in [3], that
a large proportion of the available OWL-Full ontologies, could relatively easily
be “repaired” so as to be OWL-DL; adding a few extra typing statements is all
that is typically required. In the future we hope to use semi-automated repair
of OWL-Full ontologies and translation from formats such as OBO to increase
the size and scope of our ontology library.

So far we have focused on testing TBox reasoning (classification). Although
the use of nominals in OWL-DL blurs the separation between TBox and ABox,
it would still be useful to explicitly test ABox reasoning, e.g., by asking for the
instances of some query class. In fact, for ontologies that include far more indi-
viduals than classes (such as the world-fact-book, Tambis and Hydrolic Units on-
tologies), it makes little sense to test classification and not to test query answer-
ing. Focusing on classification also fails to give a fair picture of the performance
of systems such as KAON2 that aim to optimise query answering. Extending
the testing regime to include querying will be part of our future work.

Apart from the future work described above, there are a number of extensions
to our benchmarking system that would enhance its utility. Allowing users to
define their own customised tests would help reasoner developers to test specific
optimisations and implementations as they are developed. It would also be useful



666 T. Gardiner, D. Tsarkov, and I. Horrocks

to be able to investigate how multiple concurrent queries affect reasoner perfor-
mance, and whether reasoners perform better or worse if they are not restarted
between tests.

Both the testing system and the ontology library are publicly available re-
sources, and can be downloaded from http://www.cs.man.ac.uk/ horrocks/
testing/.

References

1. Franz Baader and Ulrike Sattler. An overview of tableau algorithms for description
logics. Studia Logica, 69(1):5–40, October 2001.

2. Sean Bechhofer, Ralf Möller, and Peter Crowther. The DIG description logic in-
terface. In Proceedings of DL2003 International Workshop on Description Logics,
September 2003.

3. Sean Bechhofer, Raphael Volz, and Phillip Lord. Cooking the semantic web with
the OWL API. In Dieter Fensel, Katia Sycara, and John Mylopoulos, editors, Proc.
of the 2003 International Semantic Web Conference (ISWC 2003), number 2870
in Lecture Notes in Computer Science. Springer, 2003.

4. Jeremy J. Carroll and Jos De Roo. OWL web ontology language test cases.
W3C Recommendation, 10 February 2004. Available at http://www.w3.org/
TR/owl-test/.

5. Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin. An evaluation of knowledge base
systems for large OWL datasets. In Sheila A. McIlraith, Dimitris Plexousakis,
and Frank van Harmelen, editors, Proc. of the 2004 International Semantic Web
Conference (ISWC 2004), number 3298 in Lecture Notes in Computer Science,
pages 274–288. Springer, 2004.

6. Volker Haarslev and Ralf Möller. High performance reasoning with very large
knowledge bases: A practical case study. In Proc. of the 17th Int. Joint Conf. on
Artificial Intelligence (IJCAI 2001), pages 161–168, 2001.

7. Volker Haarslev and Ralf Möller. RACER system description. In Proc. of the Int.
Joint Conf. on Automated Reasoning (IJCAR 2001), volume 2083 of Lecture Notes
in Artificial Intelligence, pages 701–705. Springer, 2001.

8. I. Horrocks. Benchmark analysis with FaCT. In Proc. of the 4th Int. Conf. on An-
alytic Tableaux and Related Methods (TABLEAUX 2000), number 1847 in Lecture
Notes in Artificial Intelligence, pages 62–66. Springer-Verlag, 2000.

9. I. Horrocks and P. F. Patel-Schneider. FaCT and DLP. In Proc. of Tableaux’98,
pages 27–30, 1998.

10. I. Horrocks, U. Sattler, and S. Tobies. Practical reasoning for expressive description
logics. In H. Ganzinger, D. McAllester, and A. Voronkov, editors, Proc. of the
6th Int. Conf. on Logic for Programming and Automated Reasoning (LPAR’99),
number 1705 in Lecture Notes in Artificial Intelligence, pages 161–180. Springer,
1999.

11. Ian Horrocks. The FaCT system. In Harrie de Swart, editor, Proc. of the 2nd Int.
Conf. on Analytic Tableaux and Related Methods (TABLEAUX’98), volume 1397
of Lecture Notes in Artificial Intelligence, pages 307–312. Springer, 1998.

12. Ian Horrocks and Peter F. Patel-Schneider. DL systems comparison. In Proc.
of the 1998 Description Logic Workshop (DL’98), pages 55–57. CEUR Electronic
Workshop Proceedings, http://ceur-ws.org/Vol-11/, 1998.



Framework for an Automated Comparison of Description Logic Reasoners 667

13. Ian Horrocks, Peter F. Patel-Schneider, and Frank van Harmelen. From SHIQ
and RDF to OWL: The making of a web ontology language. J. of Web Semantics,
1(1):7–26, 2003.

14. Ian Horrocks and Ulrike Sattler. Ontology reasoning in the SHOQ(D) description
logic. In Proc. of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI 2001),
pages 199–204, 2001.

15. Ian Horrocks and Ulrike Sattler. A tableaux decision procedure for SHOIQ. In
Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005), pages
448–453, 2005.

16. U. Hustadt and R. A. Schmidt. Using resolution for testing modal satisfiability
and building models. In I. P. Gent, H. van Maaren, and T. Walsh, editors, SAT
2000: Highlights of Satisfiability Research in the Year 2000, volume 63 of Frontiers
in Artificial Intelligence and Applications. IOS Press, Amsterdam, 2000. Also to
appear in a special issue of Journal of Automated Reasoning.

17. A. Kalyanpur, Bijan Parsia, Evren Sirin, Bernardo Cuenca-Grau, and James
Hendler. SWOOP: a web ontology editing browser. J. of Web Semantics, 4(2),
2005.

18. Fabio Massacci and Francesco M. Donini. Design and results of TANCS-00. In
R. Dyckhoff, editor, Proc. of the 4th Int. Conf. on Analytic Tableaux and Related
Methods (TABLEAUX 2000), volume 1847 of Lecture Notes in Artificial Intelli-
gence. Springer, 2000.

19. Zhengxiang Pan. Benchmarking DL reasoners using realistic ontologies. In Proc.
of the First OWL Experiences and Directions Workshop, 2005.

20. P. F. Patel-Schneider. DLP system description. In Proc. of the 1998 Description
Logic Workshop (DL’98), pages 87–89. CEUR Electronic Workshop Proceedings,
http://ceur-ws.org/Vol-11/ , 1998.

21. Peter F. Patel-Schneider, Patrick Hayes, and Ian Horrocks. OWL web ontology
language semantics and abstract syntax. W3C Recommendation, 10 February
2004. Available at http://www.w3.org/TR/owl-semantics/.

22. Peter F. Patel-Schneider and Roberto Sebastiani. A new general method to gen-
erate random modal formulae for testing decision procedures. J. of Artificial In-
telligence Research, 18:351–389, 2003.

23. Protégé. http://protege.stanford.edu/, 2003.
24. E. Sirin, B. Parsia, B. Cuenca Grau, A. Kalyanpur, and Y. Katz. Pellet: A practical

OWL-DL reasoner. Submitted for publication to Journal of Web Semantics, 2005.
25. Dmitry Tsarkov and Ian Horrocks. Ordering heuristics for description logic reason-

ing. In Proc. of the 19th Int. Joint Conf. on Artificial Intelligence (IJCAI 2005),
pages 609–614, 2005.

26. Dmitry Tsarkov and Ian Horrocks. FaCT++ description logic reasoner: System de-
scription. In Proc. of the Int. Joint Conf. on Automated Reasoning (IJCAR 2006),
volume 4130 of Lecture Notes in Artificial Intelligence, pages 292–297, 2006.

27. Dmitry Tsarkov, Alexandre Riazanov, Sean Bechhofer, and Ian Horrocks. Using
Vampire to reason with OWL. In Sheila A. McIlraith, Dimitris Plexousakis, and
Frank van Harmelen, editors, Proc. of the 2004 International Semantic Web Con-
ference (ISWC 2004), number 3298 in Lecture Notes in Computer Science, pages
471–485. Springer, 2004.



Integrating and Querying
Parallel Leaf Shape Descriptions

Shenghui Wang1 and Jeff Z. Pan2

1 School of Computer Science, University of Manchester, UK
2 Department of Computing Science, University of Aberdeen, UK

Abstract. Information integration and retrieval have been important
problems for many information systems — it is hard to combine new in-
formation with any other piece of related information we already possess,
and to make them both available for application queries. Many ontology-
based applications are still cautious about integrating and retrieving in-
formation from natural language (NL) documents, preferring structured
or semi-structured sources. In this paper, we investigate how to use on-
tologies to facilitate integrating and querying information on parallel leaf
shape descriptions from NL documents. Our approach takes advantage
of ontologies to precisely represent the semantics in shape description, to
integrates parallel descriptions according to their semantic distances, and
to answer shape-related species identification queries. From this highly
specialised domain, we learn a set of more general methodological rules,
which could be useful in other domains.

1 Introduction

Information integration and retrieval have been important problems for many in-
formation systems [1] — it is hard to combine new information with any other piece
of related information we already possess, and to make them both available for
application queries. Most information in descriptive domains is only available in
natural language (NL) form and often comes parallel, i.e., the same objects or phe-
nomena are described in multiple free-styled documents [2]. With ontologies being
shared understandings of application domains, ontology-based integration and re-
trieval [3] is a promising direction. However, many ontology-based applications
avoiding integrating and retrieving information from NL documents, preferring
structured or semi-structured sources, such as databases and XML documents.

In this paper, we investigate how to use ontologies to facilitate integrating
and querying information on parallel leaf shape descriptions from botanical doc-
uments. As one of the premier descriptive sciences, botany offers a wealth of
material on which to test our methods. Our observation is that if the parallel
information can be extracted and represented in a uniform ontology, the explic-
itly written information can be accessed easily and the implicit knowledge can
also be deduced naturally by applying reasoning on the whole ontology. We have
recently demonstrated that it is feasible for an ontology-based system to use this
method to capture, represent and use the semantics of colour descriptions from

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 668–681, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Integrating and Querying Parallel Leaf Shape Descriptions 669

botanical documents [4]. In this paper, we focus on another specialised aspect
— leaf shape descriptions.

As a highly domain-dependent property, shapes are not easily described in NL.
Unlike colours, a specialist terminology is used to describe shapes that naturally
occur in each domain, combined with general NL syntax. For instance, the leaves
of the aspen trees are described differently in five floras:1

– broadly ovate to suborbicular or oblate-orbicular
– broadly ovate to orbicular
– kidney-shaped, reniform or oblate
– suborbicular
– almost round

To capture the semantics in these descriptions and formalise them into an on-
tology system is our concern. Our approach takes advantage of ontologies to
represent the semantics in shape descriptions precisely, to integrate parallel de-
scriptions according to their semantic distances, and to answer shape-related
species identification queries.

1. Firstly, we need an appropriate semantic model in which the semantics in
shape descriptions can be captured and the compatibility between descrip-
tions can be measured. We adopt a known shape model, called SuperFor-
mula [5], to model common leaf shape terms. Based on this we derive a
domain-dependent four-feature leaf shape model. The semantics of complex
descriptions are precisely constructed from those of simple terms by apply-
ing a small number of morpho-syntactic rules. The quantitative semantics is
then represented in the OWL-Eu ontology language [6].

2. Secondly, we propose a distance function, based on the four-feature leaf shape
model, to calculate distances between parallel information (e.g., the distance
between “linear to ovate” and “narrowly elliptic”), so as to facilitate a proper
strategy of integrating such information.

3. Thirdly, we use the OWL-Eu subsumption reasoning to check if one shape
description is more general than another one. Such a reasoning service is
helpful in answering species identification queries, for example, to search all
species which have “ovate to elliptic” leaves (more examples in Section 5)
over the integrated information.

In order to check the feasibility of the above approach, we develop and imple-
ment a shape reasoner, based on the FaCT-DG Description Logic reasoner [7,8].
The shape reasoner integrates parallel shape information based on their seman-
tic distances; it also answers queries over the integrated information. We will
show that semantic distances can also improve the presentation of the query
results: they help by (i) measuring how well the results match the query, and (ii)
presenting the best results first. We evaluate our approach in two steps. Firstly,
we ask a domain expert to check how good our proposed semantic model and

1 A flora is a treatise on or list of the plants of an area or a period.



670 S. Wang and J.Z. Pan

semantic distance function are. Secondly, we evaluate the query results from our
shape reasoner based on the reliable semantic distance function.

The rest of the paper is structured as follows. Section 2 introduces a known
shape model and our four-feature leaf shape model. In Section 3, we show how
the semantics in a complex leaf shape description is constructed and represented
formally. Section 4 introduces distance-based integration and some experimental
results. Section 5 investigates how to query on the integrated information and
improve the presentation of returned results by ranking them, based on their
degree of match to a particular query. Section 6 discusses related work and
Section 7 concludes this paper.

2 A Multi-parametric Semantic Model for Leaf Shapes

Shape modelling is not easy, in the sense that it is highly domain dependent.
People have tried to use cylinders [9] or superquadrics [10] as primitives to
model abstract shapes. For real shapes in nature, several modelling methods
have also been tried, such as interpolation methods which use polynomials or
splines to fit curves. Since the pioneering work of D’Arcy Thompson [11], bio-
mathematicians have investigated describing natural shapes and forms by using
morphometric methods [12]. Outlines and landmark-based patterns are used to
represent natural shapes. However, their high-dimensional representation cannot
be interpreted easily and is not suitable in a logic-based system.

Gielis [5] recently proposed the Superformula, which in polar co-ordinates (r,
θ), is:

r(θ) =
1

n1 (| 1
a

cos(m
4 θ)|)n2 + (| 1

b
sin(m

4 θ)|)n3

(1)

This can generate approximations to many naturally occurring shapes and
forms. Although it is not easy to find the precise parameters (m, a, b, n1, n2,
n3) for a particular shape, the simplicity and expressiveness of this formula
encouraged us to use it for modelling leaf shapes.

Here, we consider only simple leaves2 for demonstrating the feasibility of
our method. We selected 21 common simple leaf shape terms from Botanical
Latin [13]. Based on our experiments and experts’ evaluation, for each term, we
found a 6D vector (m, a, b, n1, n2, n3) which generates its prototypical shape.
For instance, the parameters (2, 1, 1, 1,−0.5, 0.5) generates a “cordate” shape.
Figure 1 (a) shows some other shapes.

The terminology is limited while real shape variations are continuous. There-
fore, in order to describe continuous shape variations, one has to compare the real
shapes with prototypical ones. If a real shape Si is similar enough to the pro-
totypical shape S of a shape term T , i.e., their distance d(Si, S) < ε, then it
can be named by term T . Thus each term does not correspond to a point but
a region around that point in the multi-parametric space.3 Complex leaf shape
2 Simple leaves are entire (without teeth or lobes) and bilaterally symmetric about

their main vein.
3 According to the conceptual space theory [14], this region must be convex.



Integrating and Querying Parallel Leaf Shape Descriptions 671

linear oblong rhombic lanceolate

ovate elliptic obovate cuneate

spatulate oblanceolate orbicular reniform

cordate deltoid hastate sagittate

(a) Common leaf shapes generated (b) 4-feature leaf shape model
by the SuperFormula derived from the SuperFormula

Fig. 1. Leaf shape modelling

descriptions, such as “narrowly ovate to elliptic”, also correspond to certain re-
gions. Since the shape of such regions is still unknown [14], we use a simple defini-
tion: the region for a shape term contains all points whose distance to its prototype
point is smaller than a predefined threshold.

Unfortunately, the six parameters of the Superformula are not directly related
to any visible leaf features, which makes it extremely difficult to measure shape
distance directly based on the 6D vectors. Therefore, we devised a special leaf
shape model. Four basic features are calculated from the shape generated by the
Superformula, see Figure 1 (b):

– length-width ratio: f1 = L1
width ;

– the position of the widest part: f2 = L2
L1

;
– the apex angle: f3 = a;
– the base angle: f4 = b.

In this four-feature shape model, each term corresponds to a region with a
small range in each feature while the region of a complex shape description
is constructed from those of simple terms (see next section for details). The
distance function between shape regions is defined in Section 4.

3 From NL Phrases to Ontological Representation

3.1 Morpho-syntactic Rules

One term is usually not enough to cover the natural shape variations of one
species, hence complex descriptions have to be used (as shown in Section 1). In
order to capture the semantics of these descriptions, we need to know how they
are constructed from basic terms. We carried out a morpho-syntactic analysis



672 S. Wang and J.Z. Pan

Table 1. Leaf shape description patterns

Leaf Shape Description Pattern Example
1. Single term “ovate”
2. Modified term “broadly elliptic”
3. Hyphenated expression “linear-lanceolate”
4. Range built by “to” “oblong to elliptic”
5. Multiple ranges connected by coordinators “linear, lanceolate or narrowly elliptic”

(“and”,“or”), or punctuations “ovate and cordate”

on 362 leaf shape descriptions of 291 species from five floras.4 The description
patterns are summarised in Table 1.

3.2 Semantics for Complex Descriptions

The semantics of complex descriptions is constructed by applying certain opera-
tions on that of basic terms. Firstly, basic shape regions are generated, including:

Single term: Given the 6D vector of a simple term, we calculate its four fea-
tures (f1, f2, f3, f4), then we generate a region with a small range in each
feature, i.e., (rf1 , rf2 , rf3 , rf4), where rfi = [fi × 0.9, fi × 1.1], for i = 1, . . . , 4.

Modified term: Leaf shapes are normally modified in terms of their length-
width ratio, e.g., “narrowly” and “broadly.” As side effects, apex and base an-
gle also change. According to our experiments, if “narrowly” and “broadly”
are defined as:

“narrowly:” f1
′
= f1 × 1.2

fi
′
= fi × 0.9, for i = 3, 4

“broadly:” f1
′
= f1 × 0.8

fi
′
= fi × 1.1, for i = 3, 4

then the region around the new point (f1
′
, f2, f3

′
, f4

′
) represents the best

“narrowly” and “broadly” shape of this term.
Hyphenated expression: According to the experts we consulted, a hyphen-

ated expression “X-Y” means an intermediate shape between X and Y. The
intermediate features between X and Y are calculated as follows:

hfi =
fXi + fY i

2
, for i = 1, . . . , 4 (2)

The region is generated correspondingly.

Secondly, we combine basic regions to construct the region for the complex
descriptions.

1. If basic shapes are connected by one or more “to”s, the final region should be
the whole range from the first one to the last one. That is, the range which
covers two basic regions (r1

f1
, r1

f2
, r1

f3
, r1

f4
) and (r2

f1
, r2

f2
, r2

f3
, r2

f4
) is (Rf1 , Rf2 ,

Rf3 , Rf4), where Rfi = [min(r1
fi

, r2
fi

), max(r1
fi

, r2
fi

)].

4 They are Flora of the British Isles [15], New Flora of the British Isles [16], Flora
Europaea [17], The Wild Flower Key [18] and Gray’s Manual of Botany [19].



Integrating and Querying Parallel Leaf Shape Descriptions 673

2. If basic shapes are connected by any of these symbols: “or,” “and,” comma
(“,”) or slash (“/”), they are kept as separate regions, i.e., disjoint from each
other. Notice that “and” is treated as a disjunction symbol, because it does
not indicate a logical conjunction in a NL scenario [20]. Instead, it normally
indicates that the shapes could both be found in nature for the same species,
similar to the meaning of “or”.

By using an NL parser with corresponding operations, the semantics of a
complex description can be constructed into a multi-parametric representation.
Next, we need to formalise the semantics in our plant ontology.

3.3 Representing Shape Descriptions in Ontologies

As the W3C standard ontology language OWL DL [21] does not support XML
Schema user-defined datatypes, we use the OWL-Eu language [6] suggested by a
W3C Note [22] from the Semantic Web Best Practice and Deployment Working
Group. OWL-Eu supports customised datatypes through unary datatype expres-
sions (or simply datatype expressions) based on unary datatype groups. This
support of customised datatypes is just what we need here to capture feature
information of leave shapes. Like an OWL DL ontology, an OWL-Eu ontology
typically contains a set of class axioms, property axioms and individual axioms.5

Here we use the FaCT-DG ontology reasoner, a Datatype Group extension of
the FaCT reasoner, which supports reasoning in OWL-Eu ontologies that do not
contain nominals.6

The fragment of our plant ontology Os contains Species, Leaf and LeafShape as
primitive classes; important object properties include hasPart and hasShape; im-
portant datatype properties include hasLengthWidthRatio, hasBroadestPosition,
hasApexAngle and hasBaseAngle, which are all functional properties.7 Each
datatype property and its range is also defined, for example,

DatatypeProperty(hasBaseAngle Functional range(and(≥ 0, ≤ 180))),

where and(≥ 0,≤ 180) is a unary conjunctive datatype expression representing
the sub-type [0,180] of Integer. Typical relations between classes include:

Species � ∃hasPart.Leaf (Each species has a part: leaf)
Leaf � ∃hasShape.LeafShape (Each leaf has a property: leafshape)

Actural leaf shapes are defined using the above primitive classes and properties,
where datatype expressions are used to restrict the values of four features. For
example, the shape “ovate” is defined as the following OWL-Eu class:

Ovate ≡ LeafShape �
∃hasLengthWidthRatio.(and(≥ 15, ≤ 18)) � ∃hasApexAngle.(and(≥ 41, ≤ 50))
∃hasBroadestPosition.(and(≥ 39, ≤ 43)) � ∃hasBaseAngle.(and(≥ 59, ≤ 73))

5 See [6] for more details on datatype expressions and unary datatype groups.
6 Details of the FaCT-DG reasoner as well as its flexible reasoning architecture can

be found in [8] and http://www.csd.abdn.ac.uk/$\sim$jpan/factdg/.
7 A functional datatype property relates an object with at most one data value.



674 S. Wang and J.Z. Pan

L2

L1

r1

r2

(b)

L2

L1

r1

r2

(a)

L2

L1

r1 r2

(C)

Fig. 2. Three relations between two ranges

Similarly, complex shape descriptions are also represented as OWL-Eu classes
based on the regions with constraints on the four features. Ontological represen-
tations of shape descriptions enable us to carry out species identification queries
based on their leaf shapes (see Section 5 for more details).

4 Distance-Based Integration

The example in Section 1 shows that parallel descriptions are very common
among existing floras. In this section, we present a distance-based integration
approach for parallel shape descriptions.

4.1 Distance Definition for Leaf Shape Descriptions

Parallel information is assumed to be complementary, possibly with a certain
degree of overlap.8 It is not appropriate to simply combine two or more pieces
of information without carefully studying how similar or how different they are.
However, measuring the distances between shape descriptions is not easy, while
defining the distance between shapes itself is already an inherently ill-defined
problem. For example, how far is “linear to ovate” from “linear to elliptic”?

As introduced in Section 3, a complex shape description is translated into a
vector, and each element is a range in one feature, i.e., (Rf1 , Rf2 , Rf3 , Rf4). In
order to calculate the distance between such vectors, distances in each element
range should first be calculated. There are three different types of relations
between two ranges, shown in Figure 2. We define the following distance function
for two arbitrary ranges r1 and r2:

d(r1, r2) =
1 − L1

L2
if r1 and r2 overlap

1 + L1
L2

otherwise;
(3)

where L2 is the length of minimal super-range which contains both r1 and r2,
and L1 is defined as follows: when r1 and r2 overlap (see (a) and (b)), L1 is the
length of the overlapping part; otherwise, for (c), L1 is the length of the gap
between two ranges. If two ranges r1 and r2 only share one point, we say they
meet each other and L1 = 0.

The distance d(r1, r2) is nicely scaled into the range [0, 2): if d(r1, r2) = 0, r1
equals r2; if 0 < d(r1, r2) < 1, r1 and r2 overlap; if d(r1, r2) = 1, r1 meets r2; if
8 [23] showed that, when information was collected from six parallel descriptions of a

representative sample of plant species, over half the data points came from a single
source, while only 2% showed outright disagreement between sources.



Integrating and Querying Parallel Leaf Shape Descriptions 675

1 < d(r1, r2) < 2, r1 and r2 are disjoint; as two ranges move further apart from
each other, the distance gets closer to 2.

The distance along each feature is calculated by using Formula (3). The whole
distance between two shape regions R1 and R2 is then calculated as:

d(R1, R2) =
4

i=1

wi × dfi (4)

where dfi is the distance in the feature fi, wi is the corresponding weight for
the feature fi, and

∑4
i=1 wi = 1 holds.9 The d(R1, R2) has similar mathematical

properties to d(r1, r2), but is harder to interpret due to the influence of the
weighting. According to our experiments with a domain expert from the Museum
of Manchester,10 this similarity distance function is valid and corresponds closely
to how experts judge similarity between shapes.

4.2 Integration Based on Semantic Distances

We can now compute the distance between two descriptions, as calculated by
Formula 4. If two descriptions are “close” or “similar” enough, although they
might not be identical (for various reasons), it is better to combine them into one
single “super-description” so that redundancies can be removed. Otherwise, it is
safer to leave them separate because they are likely to provide complementary
information of the same object. If a reasonable threshold is chosen, our inte-
gration process can automatically combine similar descriptions and keep others
separate.

So, for a single species, the recursive integration process on the collections of
shape regions from parallel descriptions is as follows:

Step 1 Calculate the distances between any pair of regions.
Step 2 Select two closest regions and check whether they are similar enough,

i.e., whether their distance is less than the threshold. If they are not similar
enough then the integration stops; otherwise, the smallest region containing
both of them is generated (this is same operation as building “to” ranges).
This new region replaces the original two as their integrated result.

Step 3 Go back to Step 1 to check the updated collection of regions to see
whether there are any further pairs of regions requiring integration.

4.3 Experiments on Integration

We selected 410 species from the floras mentioned in Section 3 and the online
efloras,11 so that each of the selected species is described in at least two flo-
9 From our statistical analysis on real text data, f2 is the most distinguishing feature.

However, there is no satisfactory way to find the optimal weights.
10 The contact information for our domain expert is available on request.
11 This is an international project (http://www.efloras.org/) which collects plant tax-

onomy data from several main floras, such as Flora of China, Flora of North America,
Flora of Pakistan, etc. Plant species descriptions are available in electronic form, but
are still written in the common style of floras, i.e., semi-NL.



676 S. Wang and J.Z. Pan

Table 2. Examples of integration results, where Rf1 is the range of the length-width
ratio, Rf2 is the range of the position of the widest part, Rf3 is the range of the apex
angle: Rf4 is the range of the base angle

Species Leaf Shape Descriptions Integration Results
Rf1 Rf2 Rf3 Rf4

ovate or ovate-elliptical to

1.21–2.87 0.27–0.57 0.10–0.35 0.27–0.37

Salix elliptical- or obovate-lanceolate
pentandra broadly lanceolate to ovate-oblong
(Laurel willow) broadly elliptical

broadly lanceolate, ovate-oblong,
or elliptic-lanceolate

Glinus obovate or orbiculate to broadly spatulate
0.90–2.33 0.46–0.80 0.34–0.47 0.04–0.44lotoides obovate to oblong-spatulate

orbiculate or more or less cuneate
Spinacia hastate to ovate 1.22–1.63 0.08–0.39 0.17–0.25 0.37–0.63
oleracea ovate to triangular-hastate 1.81–2.21 0.45–0.55 0.27–0.33 0.27–0.33

oblong
Alternanthera oblanceolate or spatulate 2.83–3.46 0.62–0.76 0.28–0.34 0.09–0.11
paronychioides elliptic, ovate-rhombic, or oval 2.39–2.92 0.72–0.88 0.34–0.42 0.03–0.04

elliptic, oval or obovate 1.45–2.57 0.40–0.69 0.17–0.38 0.22–0.32

ras. Some species only exist in particular regions, so parallel information is not
guaranteed for each species.

In order to calculate the threshold for the integration, we selected a group
of parallel descriptions from the dataset, which are not identical yet are still
considered to be similar enough to be combined. The average distance of these
parallel descriptions is used as the threshold, which turned out to be 0.98.

In Table 2, we list the original descriptions of several species with their in-
tegrated results. An overview of these parallel data is presented clearly. Some
species’ leaves, such as the first two, are described differently but all descriptions
more or less agree with each other, therefore they are integrated into a single re-
gion with combined constraints on its four features. Here, the integration reduces
the redundancies among the parallel information.

Other species, such as the last two, have quite different leaf shapes. These
shapes are “dissimilar” enough to be kept as complementary information. If the
species itself has wide variations, one author might not capture them all. Inte-
gration of parallel information makes the whole knowledge as nearly complete as
possible. By comparing original descriptions and integrated ones, we can easily
find some geographically-caused variations.

5 Results on Ranking of Responses to Queries

One of the advantages of putting NL information into a formal ontology is to make
the knowledge in NL documents easier to access. After leaf shape information is
represented formally, we can query species based on their leaf shapes. Similar to
the method used in [4], firstly, the queried shape is represented by an OWL-Eu
class Q. The shape reasoner interacts with FaCT-DG reasoner and returns a list of
species, whose leaf shapes (in terms of the four features) either exactly match Q,are
subsumed by Q,subsume Q (also called plugin matching), or intersect with Q.



Integrating and Querying Parallel Leaf Shape Descriptions 677

Table 3. Query results for “lanceolate to elliptic” (partial)

Species Leaf Shape Descriptions Matching Distance RankingType
Comastoma muliense lanceolate to elliptic Exact 0.00 1
Polygonatum biflorum narrowly lanceolate to broadly elliptic Plugin 0.23 6
Hydrangea longifolia lanceolate Subsume 0.85 453

Rhodiola smithii linear to oblong Intersection 0.44 64narrowly ovate to ovate-linear

Some results for the query: “any possible species with lanceolate to elliptic
leaves,” is shown in Table 3. The matching type indicates the logic relations
between the matched species and the query. Because our method uses the real
semantics for querying, it can find some hidden results which are ignored by
keyword matching, e.g., the last species in Table 3. However, the problem is
that it is not clear how well a result matches the query. The user has to go
through the whole list and judge by himself.

Since our distance measure has been confirmed to be valid (see Section 4.1),
we can use this distance as a criterion to quantify how well a logically matched
species matches the query. A shorter distance means a better match. We sort the
whole list based on the distance between each species’ leaf shape and the queried
one. Based on the matching ranks, as those in the last column of Table 3, the
better matched results can be recovered easily.

We further enlarged our dataset from the eFloras, including 1154 species,
some of which were described in more than one flora. Parallel descriptions were
integrated first and then all queries are based on integrated knowledge. If one
species has more than one shape region which matches the query, only the “best-
match” (with the smallest distance to the query) is selected to join the ranking.
We carried out 10 queries on basic terms and range phrases. Most queries finished
in 1–2 seconds, the others took less than 5 seconds, on a 2G Hz Pentium 4 PC.

We compared our method with the keyword-based method over the 10 queries.
For each query, results returned by both methods were merged into a single
list, in the ascending order of their distances to the query. The ordered list
was then divided into five groups, representing top 20% matched species, 20–
40% matched ones, and so on. In each group, we counted the number of the
species that the keyword-based method missed and that our method missed,
respectively (see Figure 3 (a)). The numbers above each pair of columns is the
mean similarity distance of that group. It shows that our method is able to
find some well matched results (with small similarity distances) which are not
matched by keyword search.

Due to the strictness of logic reasoning, our method failed to find some good
results (judged by the expert). Therefore, we decreased the strictness level; if there
are at least three features matched, the species is also returned if its distance to the
query is less than the threshold which was used for integration. The performance
was evaluated similarly, shown in Figure 3 (b). More hidden results were returned
by our method while the quality (i.e., mean distances) keeps stable.



678 S. Wang and J.Z. Pan

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(a) All four features are matched

O
cc

ur
re

nc
e

(d
iv

id
ed

 b
y 

th
e 

to
ta

l n
um

be
r 

of
 a

ll 
re

su
lts

)

0.36056
0.64407

0.7767

0.8517

0.98799
4−feature matched but not keyword matched
keyword matched but not 4−feature matched

1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

(b) At least three features are matched

O
cc

ur
re

nc
e

(d
iv

id
ed

 b
y 

th
e 

to
ta

l n
um

be
r 

of
 a

ll 
re

su
lts

)

0.38171 0.66679

0.79547

0.87475

1.0074

(3+)−feature matched but not keyword matched
keyword matched but not (3+)−feature matched

Fig. 3. Comparison of semantic-based query and keyword-based query

Table 4. Comparison between different levels of matching

Condition Semantic matching Keyword matching
Precision Recall Precision Recall

4 features are perfectly matched 0.99888 0.55237 0.84474 0.65417
At least 3 features are matched 0.96642 0.72727 0.84430 0.65327

We use the standard precision/recall12 to measure the performance of our
method against keyword-based querying. From Table 4, we can see that when
the strictness of matching criterion is loosened the precision decreases while the
recall increases; this is a typical balancing problem.

In short, our approach outperforms the keyword-based method; this is because
the former takes the real semantic of shape descriptions into account, while the
latter simply checks the word matching of the descriptions.

6 Related Work

Sharing information among multiple sources occurs at many different levels.
Access to a semantics is crucial for successful information integration and re-
trieval [1,3]. Instead of working on structured or semi-structured data, our work
focuses mainly on integrating parallel NL information extracted from homoge-
neous monolingual (English) documents.

Many information integration systems have adopted ontologies as their work-
ing platform because of the various semantic expression of domain knowledge
contained in ontologies [3,24,25] and powerful formal-logical reasoning tools sup-
ported by them [26,27,28]. Unfortunately, most systems stop at collecting and

12 The precision indicates the proportion of answers in the returned list that were
correct, while the recall is the proportion of correct answers in the whole data set
that were found. Here, the correctness of a species is judged by whether the distance
of its leaf shape description to the query is less than the integration threshold.



Integrating and Querying Parallel Leaf Shape Descriptions 679

re-organising information from multiple sources instead of really integrating
them based on their meanings.

The main obstacle for an ontology-based system to process NL documents is
that the NL semantics is difficult to interpret. Many methods to capture and
represent the semantics in NL have been tried, such as those multi-dimensional
concept modelling including Osgood’s semantic differential [29], lexical decompo-
sition [30], etc. Using spatial or geometrical structures to model concepts has also
been exploited in the cognitive sciences [31,14]. The limitations of their methods
are either the dimensions are difficult to interpret or they are qualitative which
prevents the semantics to be precisely captured.

It is not easy for a logic system to represent continuous ranges. OWL-Eu
supports representing numerical ranges but still cannot express other ranges, e.g.,
“ovate to elliptic”. Using a semantic model to some extend helps the ontology
system to represent such ranges. Furthermore, our work shows that datatype-
enabled ontology reasoning can be very useful for real world applications.

Similarity measurement has been investigated in different knowledge represen-
tation systems and used in many applications [14,32], while similarity ranking
is still one of the new ideas for current ontology techniques [33]. Traditionally,
only subsumption checking is used to answer queries. Until recently, some other
types of matching, such as intersection matching, are also considered for special
cases [34]. However, there is little effort to integrate logic reasoning and similar-
ity measuring. Such integration can determine how well results match the query
and therefore can improve the usability of final results.

7 Conclusion

Ontology-based information integration in descriptive domains often comes to
grief when comparison and integration have to be based on real semantics. En-
couraged by our earlier work on processing parallel colour descriptions [4], we
have applied the same methodology on leaf shape descriptions, where we intro-
duced the notion of semantic distance to help parallel information integration
and improve the usability of query results.

It turns out that the distances between shape descriptions are very hard to
define. To solve the problem, we have derived a domain-dependent four feature
leaf shape model. In our model, distances between the shapes are very well
captured by the distances between the features, which has been evaluated by our
domain expert. Besides the support of distance-based integration, our ontology-
based approach (OA) outperforms the keyword-based approach (KA) because
OA considers both the syntax and semantics of shape descriptions, while KA
considers neither.

Most importantly, from the experiments in colour and leaf shape domain,
we have learnt a set of more general methodological rules for processing par-
allel descriptive information in an ontology-based system. Key tasks we have
identified include: (i) it is unlikely that a universal semantic model for all differ-
ent domains exists, so for each domain, an appropriate (no need to be perfect)



680 S. Wang and J.Z. Pan

model has to be chosen in order to get useful results; (ii) based on the semantic
model, single terms have to be located, the effect of modifiers has to be defined
and ranges have to be built properly; (iii) in order to integrate parallel informa-
tion, a proper distance measurement is crucial to quantify the similarities among
information from multiple sources; (iv) depending on the application, more ex-
pressive representation and additional reasoning may be necessary to solve real
problems.

References

1. Stuckenschmidt, H., van Harmelen, F.: Information Sharing on the Semantic Web.
Springer-Verlag (2004)

2. Ceusters, W., Smith, B., Fielding, J.M.: Linksuite: Formally robust ontology-based
data and information integration. In: Proceedings of First International Workshop
of Data Integration in the Life Sciences (DILS’04). Volume 2994 of Lecture Notes
in Computer Science., Springer (2004) 124–139

3. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Huebner, S.: Ontology-based integration of information - a survey of existing ap-
proaches. In: Proceedings of the IJCAI-01 Workshop: Ontologies and Information
Sharing, Seattle, WA (2001) 108–117

4. Wang, S., Pan, J.Z.: Ontology-based representation and query colour descriptions
from botanical documents. In: Proceedings of OTM Confederated International
Conferences. Volume 3761 of Lecture Notes in Computer Science., Springer (2005)
1279–1295

5. Gielis, J.: A generic geometric transformation that unifies a wide range of natural
and abstract shapes. American Journal of Botany 90 (2003) 333–338

6. Pan, J.Z., Horrocks, I.: OWL-Eu: Adding Customised Datatypes into OWL. In:
Proceedings of Second European Semantic Web Conference (ESWC 2005). (2005)
An extended and revised version is published in the Journal of Web Semantics,
4(1). 29-39.

7. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD
thesis, School of Computer Science, The University of Manchester (2004)

8. Pan, J.Z.: A Flexible Ontology Reasoning Architecture for the Semantic Web.
In: IEEE Transactions on Knowledge and Data Engineering, Specail Issue on the
Semantic Web. (2006) To appear.

9. Marr, D., Nishihara, H.: Representation and recognition of the spatial organization
of three-dimensional shapes. In: Proceedings of the Royal Society B 200, London
(1978) 269–294

10. Pentland, A.: Perceptual organization and the representation of natural form.
Artificial Intelligence 28 (1986) 293–331

11. Thompson, D.: On growth and form. Cambridge University Press, London (1917)
12. Adams, D.C., Rohlf, F.J., Slice, D.E.: Geometric morphometrics: Ten years of

progress following the “revolution”. Italian Journal of Zoology 71 (2004) 5–16
13. Stearn, W.T.: Botanical Latin: history, grammar, syntax, terminology and vocab-

ulary. David and Charles, Newton Abbot, England (1973)
14. Gärdenfors, P.: Conceptual Spaces: the geometry of thought. The MIT Press,

Cambridge, Massachusetts (2000)
15. Clapham, A., Tutin, T., Moore., D.: Flora of the British Isles. Cambridge Univer-

sity Press (1987)



Integrating and Querying Parallel Leaf Shape Descriptions 681

16. Stace, C.: New Flora of the British Isles. Cambridge University Press (1997)
17. Tutin, T.G., Heywood, V.H., Burges, N.A., Valentine, D.H., Moore(eds), D.M.:

Flora Europaea. Cambridge University Press (1993)
18. Rose, F.: The Wild Flower Key: British Isles and North West Europe. Frederick

Warne (1981)
19. Fernald, M.: Gray’s Manual of Botany. American Book Company, New York (1950)
20. Dik, S.C.: Coordination: Its implications for the theory of general linguistics.

North-Holland, Amsterdam (1968)
21. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L.,

Patel-Schneider, P.F., eds., L.A.S.: OWL Web Ontology Language Reference.
http://www.w3.org/TR/owl-ref/ (2004)

22. Carroll, J.J., Pan, J.Z.: XML Schema Datatypes in RDF and OWL. Technical
report, W3C Semantic Web Best Practices and Development Group (2006) W3C
Working Group Note, http://www.w3.org/TR/swbp-xsch-datatypes/.

23. Lydon, S.J., Wood, M.M., Huxley, R., Sutton, D.: Data patterns in multiple botan-
ical descriptions: implications for automatic processing of legacy data. Systematics
and Biodiversity (2003) 151–157

24. Goble, C., Stevens, R., Ng, G., Bechhofer, S., Paton, N., Baker, P., Peim, M.,
Brass, A.: Transparent access to multiple bioinformatics information sources. IBM
Systems Journal Special issue on deep computing for the life sciences 40 (2001)
532 – 552

25. Williams, D., Poulovassilis, A.: Combining data integration with natural language
technology for the semantic web. In: Proceedings of Workshop on Human Language
Technology for the Semantic Web and Web Services, at ISWC’03. (2003)

26. Calvanese, D., Giuseppe, D.G., Lenzerini, M.: Description logics for information
integration. In Kakas, A., Sadri, F., eds.: Computational Logic: Logic Programming
and Beyond, Essays in Honour of Robert A. Kowalski. Volume 2408 of Lecture
Notes in Computer Science. Springer (2002) 41–60

27. Maier, A., Schnurr, H.P., Sure, Y.: Ontology-based information integration in
the automotive industry. In: Proceedings of the 2nd International Semantic Web
Conference (ISWC2003), Sanibel Island, Florida, USA, Springer (2003) 897–912

28. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured informa-
tion processing in the corporate research environment. Journal of Natural Language
Engineering 10 (2004) 327–348

29. Osgood, C., Suci, G., Tannenbaum, P.: The Measurement of Meaning. University
of Illinois Press, Urbana, IL (1957)

30. Dowty, D.R.: Word Meaning and Montague Grammar. D. Reidel Publishing Co.,
Dordrecht, Holland (1979)

31. Lakoff, G.: Women, Fire, and Dangerous Things: What Categories Reveal about
the Mind. University of Chicago Press (1987)

32. Schwering, A.: Hybrid models for semantics similarity measurement. In: Pro-
ceedings of OTM Confederated International Conferences. Volume 3761 of Lecture
Notes in Computer Science., Springer (2005) 1449–1465

33. Anyanwu, K., Maduko, A., Sheth, A.P.: Semrank: ranking complex relationship
search results on the semantic web. In Ellis, A., Hagino, T., eds.: WWW, ACM
(2005) 117–127

34. Li, L., Horrocks, I.: A Software Framework For Matchmaking Based on Semantic
Web Technology. In: Proceedings of the Twelfth International World Wide Web
Conference (WWW 2003), ACM (2003) 331–339



A Survey of the Web Ontology Landscape

Taowei David Wang1, Bijan Parsia2, and James Hendler1

1 Department of Computer Science,
University of Maryland, College Park, MD 20742, USA

{tw7, hendler}@cs.umd.edu
2 The University of Manchester, UK

bparsia@cs.man.ac.uk

Abstract. We survey nearly 1300 OWL ontologies and RDFS schemas. The col-
lection of statistical data allows us to perform analysis and report some trends.
Though most of the documents are syntactically OWL Full, very few stay in
OWL Full when they are syntactically patched by adding type triples. We also re-
port the frequency of occurrences of OWL language constructs and the shape of
class hierarchies in the ontologies. Finally, we note that of the largest ontologies
surveyed here, most do not exceed the description logic expressivity of ALC.

1 Introduction

The Semantic Web envisions a metadata-rich Web where presently human-readable
content will have machine-understandable semantics. The Web Ontology Language
(OWL) from W3C is an expressive formalism for modelers to define various logical
concepts and relations. OWL ontologies come in three species: Lite, DL, and Full, or-
dered in increasing expressivity. Every Lite ontology is also a DL ontology, and every
DL ontology is also a Full ontology. OWL Lite and OWL DL are the species that use
only the OWL language features in the way that complete and sound reasoning proce-
dures exist. OWL Full, on the other hand, is undecidable. While OWL recently became
a W3C recommendation in 2004, people have been working with it a few years, and
many interesting ontologies already exist on the Web. We are interested in evaluating
these ontologies and see if there are interesting trends in modeling practices, OWL con-
struct usages, and OWL species utilization.

2 Related Work

Using statistics to assess ontologies is not a new idea. Several approaches to create
benchmarking for Semantic Web applications have exploited the statistical measures to
create better benchmarks. Wang and collegues describe an algorithm to extract features
of instances in a real ontology in order to generate domain-specific data benchmark that
resembles the real ontology [16]. A method to count the types of triples of instances
is employed, and the distribution of these triples is used to create the synthetic data.
Tempich and Volz surveyed 95 DAML ontologies and collected various usage infor-
mation regarding classes, properties, individuals, and restrictions [15]. By examining

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 682–694, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Survey of the Web Ontology Landscape 683

these numbers, they were able to cluster the ontologies into 3 categories of significant
difference.

In [11], Magkannaraki et al. looked at a collection of existing RDFS schemas and
extracted statistical data for size and morphology of the RDFS vocabularies. Here we
attempt a similar survey for both OWL and RDFS files. However, our focus is primarily
on OWL, and the data from RDFS documents serve as a good measuring stick for
comparisons.

Bechhofer and Volz studied a sample of 277 OWL ontologies and found that most of
them are, surprisingly, OWL Full files [2]. They showed that many of these OWL Full
ontologies are OWL Full because of missing type triples, and can be easily patched syn-
tactically. Here we collect a much larger size of samples, and we apply similar analysis
to attempt to patch these OWL Full files. In addition, we show how many OWL Full
files can be coerced into OWL Lite and OWL DL files. With the expressivity binning
of the surveyed ontologies, we show that the number of OWL Lite files that makes use
of OWL Lite’s full expressivity is relatively small.

3 Methodology

Here we describe the steps taken to collect the ontologies from the Web, how the data
was then gleaned, and how we analyzed the data. Our goal was to analyze the various
aspects of ontological documents, not RDF documents that make use of ontologies
or schemas. Inspite of FOAF 1 (and DOAP 2 and RSS) being a large percentage of
the semweb documents out there, they exhibit almost no ontological variance, being
primarily data with a thin schema, and are not in the scope of this study.

3.1 Ontology Collection

We used several Web resources to collect the ontologies and schemas. We collected just
the URIs at this stage, as our analysis tools will retrieve documents from the web given
dereferenceable URIs. First, we used the Semantic Web Search engine Swoogle [7] to
obtain a large number of semantic documents that Swoogle classify as ontologies. Us-
ing sort:ontology 3 as the search term, we were able to crawl on the list 4000+
files. They were a mixture of OWL, DAML, RDF, and RDFS documents. Since we are
interested primarily in OWL ontologies, and wanted to get a representatively large sam-
ple to perform our analysis, we also searched on Google 4. Using the search term owl
ext:owl, we were able to obtain 218 hits 5 at the time of data collection (February 9,
2006). We also collected OWL ontologies from well-known repositories: Protégé OWL

1 http://xmlns.com/foaf/0.1/index.rdf
2 http://usefulinc.com/doap
3 Swoogle 2005 http://swoogle.umbc.edu/2005/ allows this type of search. The new

Swoogle 2006, which was released after the survey was completed, does not.
4 http://www.google.com
5 As noted in [2], the number of search results returned by Google is only an estimate. Further-

more, Google has since changed how OWL files are indexed, and the numbers returned today
are orders of magnitudes larger.



684 T.D. Wang, B. Parsia, and J. Hendler

Library 6, DAML Ontology Library, 7, Open Biological Ontologies repository 8, and
SchemaWeb 9.

Since we collected our URIs from several resources, some URIs appeared more than
once in our collection. We first pruned off these duplicate URIs. Next, we threw away
the unsuitable data for our analysis. We pruned off all the DAML files as they are not
the focus of this study. We threw away the various test files for OWL from W3G and
test files for Jena [4]. Though these are valid ontologies or schema files, they were
created specifically for the purpose of testing, and do not resemble realistic ontological
documents. Around 1000 WordNet RDFS files were also dropped. While WordNet as
a whole is useful, each separate WordNet RDFS file does not preserve the meaning
of that specific fragment. Finally, we discard any URIs that no longer existed. At the
end, we had 1276 files. We looked at each of the documents to see if the OWL or the
RDFS namespaces are defined to determine whether they are OWL ontologies or RDFS
schemas. Of the 1275 collected, 688 are OWL ontologies, and 587 are RDFS schemas.
Resolving these URIs, We keep local copies of these documents for future references.

Table 1. Sample Statistics Collected

Basic Statistics Dynamic Statistics
No. Defined/Imported Classes No. Subsumptions

No. Defined/Imported Properties No. Multiple Inheritance in Class Hierarchy
No. Defined/Imported Instances Graph Morphology of the Class Hierarchy

DL Expressivity Depth, Bushiness of the Class Hierarchy
No. Individual (Type/Property) Assertions Depth, Bushiness of the Property Hierarchy

OWL Species Whether the Ontology is Consistent
No. of Symmetric Properties No. Unsatisfiable Classes

3.2 Statistics Collection

We used the OWL ontology editor SWOOP [9] as a framework for automating the
analysis tasks. For each URI we collected a set of statistics of that document. There
were two types of statistics we collected. The first set contains the statistics that do not
change when a reasoner processes the ontology. We call this set static statistics, and it
includes, for example, number of defined classes, what ontologies are imported (if any),
or which of the OWL species the document belongs to. On the other hand, a second set
of statistics changes depending on whether a reasoning service is present. We call this
set dynamic statistics. For example, the number of concepts that have more than one
parent may change when reasoning is applied since new subsumption relationships can
be discovered by the reasoner. Because dynamic statistics change, we collected both the
told (without reasoning), and the inferred (with reasoning) versions. Our method is to
load each URI into SWOOP, collect the static statistics and the told dynamic statistics,

6 http://protege.stanford.edu/plugins/owl/owl-library/
7 http://www.daml.org/ontologies/
8 http://obo.sourceforge.net/main.html
9 http://www.schemaweb.info/



A Survey of the Web Ontology Landscape 685

then turn on the Pellet [13] reasoner and collect the inferred dynamic statistics. We list
a few selected categories that are relevant to our discussion in Table 1.

For each OWL ontology, we also collect what OWL constructs are used. We do this
by inserting each ontology into a Jena model and check all triples for OWL vocabulary.
There are 38 boolean values, one for each OWL construct, for each ontology. Note
that we are not keeping track of the usage of OWL:Thing and OWL:Nothing. RDF and
RFDS vocabulary such as rdfs:subClassOf are also not collected.

4 Results

Here we report the analysis performed, results from our analysis, and what trends we
discover.

4.1 OWL Species, DL Expressiveness, Consistency

There are several reasons that make an ontology OWL Full. Bechhofer and Volz dis-
cusses each reason in detail in [2]. Here we summarize them into 4 categories to facili-
tate discussion.

1. (Syntactic OWL Full). In this category, the document contains some syntactic
features that make the ontology OWL Full. This category includes ontologies that
are missing rdf:type assertions for its classes, properties, individuals, or itself
(untyped ontology). Missing type triples is easily amended as proposed in [2]. Our
tool Pellet can generate a patch in RDF/XML to add to the original document to
eliminate this type of OWL Fullness.
Another way to be in OWL Full is to have structural sharing. Here we discuss the
sharing of a restriction as an example, but any bnode sharing is likely to lead to
OWL Full. An OWL Restriction in RDF is represented as a bnode. A modeler can
reuse an existing restriction by referring to the bnode ID. However, doing so will
make the ontology OWL Full. On the other hand, if the same modeler creates a
new restriction with the same semantics instead of referring to the existing one,
structural sharing is avoided.

2. (Redefinition of Built-In Vocabulary). Documents that attempt to redefine known
vocabulary (such as those in the OWL or RDFS specification) will be in OWL Full.
Attempting to add new terms in known namespaces (OWL, RDF, RDFS, etc.) will
place the document under OWL Full as well, even innocuous statements such as
subclassing rdf:label.

3. (Mixing Classes, Properties, and Individuals). In OWL DL, the sets of owl:
Class, owl:Property, and owl:Individualmust be disjoint. The ontolo-
gies that use, for example, classes as instances or classes as properties do not respect
such disjointness, and are classified as OWL Full documents. Some authors do in-
tend to use instances as classes, for example, for metamodeling purposes. However,
there are many other cases where simply an oversight had occurred. We also men-
tion that in RDFS semantics, the set of rdfs:Class and rdf:Property are
not assumed to be disjoint, therefore any RDFS schema will be considered as a



686 T.D. Wang, B. Parsia, and J. Hendler

OWL Full file. Though if the schema does not use classes and properties inter-
changeably, patching up with type triples will likely take the RDFS document out
of OWL Full.

4. (Need for Beyond OWL DL). This group uses OWL constructs to create an ontol-
ogy that has expressivity going beyond what OWL DL has to offer. Examples are
those that declare a DatatypeProperty to be inverse functional (e.g. FOAF), or those
that declare cardinality restrictions on transitive properties.

Table 2. Number of Documents in Each Species (species determined by Pellet)

Species RDFS Lite DL Full Error
Count 587 199 149 337 3

Now we have a better idea of the syntactic and semantic elements that make an OWL
ontology OWL Full, we are ready to look at our data. By looking at the namespaces
declared in each document, we decide which files are in RDFS, and which ones in
OWL. Using Pellet as an OWL species validation tool, we obtain the distribution of
each OWL species in Table 2. Note that since RDFS does not enforce the disjointness
of the set of classes, the set of properties, and the set of instances, the RDFS files are
technically OWL Full.

We inspected the results Pellet outputs. Out of 924 OWL Full files (including RDFS),
863 can be patched. 30 OWL and 31 RDFS documents can not. Of the 863 patchable
ones, 115 become OWL DL, 192 become OWL Lite, and the remaining 556 documents
are RDFS. Table 3 shows the updated counts.

Table 3. Number of Documents in Each Species (After Patching)

Species RDFS(DL) Lite DL Full Error
Count 556 391 264 61 3

Though Table 3 resembles Table 2, there is one important difference. Note that we
use RDFS(DL) [5] instead of RDFS in this case to emphasize that RDFS(DL) assumes
the disjointness of classes and properties, and is a proper subset of OWL Lite. Of the
307 OWL Full documents that can be patched, 63% become OWL Lite documents, and
just 37% become OWL DL. Two observations can be made. First, The majority (91%)
of the OWL Full documents (from Table 2) can be turned into a decideable portions of
the languages by adding type triples. Secondly, the majority of RDFS documents (95%)
can transition to OWL easily by adding type triples and use OWL vocabulary instead of
RDFS vocabulary.

Of the 30 OWL documents that cannot be patched, nearly all of them contain prob-
lems of redefining built-in vocabulary. One ontology contains structural sharing. There
are 8 ontologies that mix the usage of instances, classes, or properties. And there are 2
cases where beyond OWL DL features are detected. In both of these cases, a Datatype-
Property is defined to be inverse functional.



A Survey of the Web Ontology Landscape 687

Of the 31 RDFS documents that cannot be patched, most contain wrong vocabulary,
redefinition of known vocabulary, or liberal use built-in vocabulary ( such as using
rdfs:subClassOf on xsd:time ).

Although species validation gives us a rough idea of the distribution of expressivity
among ontologies, it is not a fine enough measure. OWL Lite has the same expressivity
as the description logic SHIF(D), and OWL DL is equivalent to SHOIN (D). There
is a large expressivity gap between RDFS(DL) and OWL Lite. We group the DL ex-
pressivity of the documents into bins in atttempt to find out how many ontologies make
full use of OWL Lite’s features.

We bin the expressivity of the documents as follows. For simplicity, we ignore the
presence of datatype, so SHIF(D) is considered the same as SHIF . For all ontolo-
gies that contain nominals O or number restrictions N , we put them in the most ex-
pressive bin (Bin 4). For example, SHOIN belongs to Bin 4. The next group Bin 3
contains the ones that make use of inverses I or complements C but not nominals or
number restrictions. SHIF belongs to this group. Bin 2 consists of role hierarchies H
or functional properties F , but not the features Bin 4 or Bin 3 care about. Bin 2 would
contain ALHF , which is more expressive than RDFS(DL). Lastly, everything else will
fall into the Bin 1, e.g. AL. We expect the first two bins to contain all of the RDFS(DL)
documents and some OWL Lite documents. The question is, of course, how many?

Table 4. Expressivity Binning

Bin Bin 1 (AL) Bin 2 (ALHF ) Bin 3 (SHIF) Bin 4 (SHOIN )
Count 793 55 262 151

Table 4 shows the count of each expressivity bin. 14 OWL documents cannot be
processed and are not included in this part of the analysis. The 848 documents in bin
1 and 2 consists of those that are less expressive than SHIF . Subtracting 848 by the
number of RDFS documents from Table 2, we reveal 261 documents that are OWL
Lite. This is the number of OWL Lite files that do not make use of its full language
expressivity. If we subtract this number from the number of OWL Lite documents in
Table 3, we get 130. Therefore, the number of ontologies that make good use of OWL
Lite features is less than 20% of the total number of OWL ontologies we surveyed here.
This is an indication that the OWL Lite vocabulary guides users to create ontologies
that are far less expressive than what OWL Lite can express. In fact, of the total number
of OWL Lite documents (after patching), 67% use very little above RDFS(DL).

Out of the 688 OWL ontologies, 21 are inconsistent. 18 of the inconsistent ontologies
are due to missing type on literal values. These are simple causes for inconsistency that
can be detected syntactically. Data type reasoners should have a way to automatically
fix it. The other three contain actual logical contradictions. There are also 17 consistent
ontologies that contain unsatisfiable classes. 12 belong to bin 4, while the rest belong
to bin 3.

4.2 Usage of OWL Constructs

In Table 5, we show, for each OWL construct, the number of ontologies that use it.
The table is organized in 5 sections: Ontology, Class, Property, Individual, or



688 T.D. Wang, B. Parsia, and J. Hendler

Restriction-Related. Not surprisingly, owl:Class, owl:ObjectProperty, and
owl:Data-typeProperty are used in many ontologies.owl:ObjectProperty
occurs in 185 more ontologies than owl:DatatypeProperty does. One possible
explanation is that modelers wish to use the semantically rich property types in OWL
such as owl:InverseFunctionalProperty, owl:SymmetricProperty,
owl: TransitiveProperty, and owl:InverseOf, which can only be used
with owl: ObjectProperty in OWL DL. The fact that owl:InverseOf alone
is used in 128 ontologies seem to support this hypothesis.

Looking at the Class-Related Constructs, we note that owl:Union (109) is used
more often than owl:IntersectionOf (69). We believe the difference stems from
the fact that OWL semantics assumes intersection by default when a modeler says ’A
is a subclass of B’ and in a different part of the document ’A is a subclass of C’. This is
semantically equivalent to saying ’A is a subclass of (B and C)’ in OWL. This means in
these non-nested boolean cases, one can express an AND relationship without explic-
itly using ’owl:IntersectionOf’. Another possible contribution to the higher number of
owl:Union is tool artifact. It is well-known that Protégé assumes union semantics for
multiple range and domain axioms. That is, if one were to say ’R has domain A’ and
’R has domain B’, then Protégé assumes that the user means ’R has domain (A OR B)’
and uses owl:Union. However, we are not sure how many ontologies were created
by using Protégé.
owl:Imports appears in 221 OWL documents. This seems to suggest that a good

number of ontologies are being reused. However, we do not know how widely an ontol-
ogy is being imported, nor do we know how many ontologies are being imported. Many
institutions that create a suite of ontologies often have heavy use of imports among these
ontologies (e.g. SWEET JPL 10 ). However cross-institutional ontology sharing seems
less common.

There are 253 OWL ontologies that have at least 1 defined individual in this survey.
However, Table 5 shows that very few Individual-Related OWL constructs are used.
Though owl:SameAs is used much more often than the others.

4.3 Tractable Fragments of OWL

There has recently been interest in finding useful yet tractable fragments of OWL in the
community 11. Recent proposals for tractable Description Logics include EL + + [1]
and DL-Lite [3]. EL + + is an extension of EL, which is used to model certain medical
domains. DL-Lite, on the other hand, is designed for query answering. We inspect our
OWL ontologies to see how many fall into the expressivities the two languages provide.
We also look at how many OWL ontologies fall into RDFS(DL). Because Pellet’s DL
expressivity checker checks on normalized models, and is not very fine grained (starts
with AL), we use expressivity as reported by SWOOP.

Table 6 confirms that many OWL files are in RDFS(DL). Of the other two more
expressive fragments, the number of DL-Lite documents nearly doubles that of EL++.
We also look at the OWL constructs for the ontologies that fall into these two fragments.
Table 7 shows the highlight. Although conjunction is the only logical connective the two

10 http://sweet.jpl.nasa.gov/ontology/
11 http://owl-workshop.man.ac.uk/Tractable.html



A Survey of the Web Ontology Landscape 689

Table 5. OWL Construct Usage

Construct Count Construct Count
Ontology-Related Constructs Class-Related Constructs

owl:Ontology 567 owl:Class 580
owl:OntologyProperty 0 owl:ComplementOf 21

owl:BackwardCompatibleWith 0 owl:DeprecatedClass 2
owl:Imports 221 owl:DisjointWith 97

owl:InCompatibleWith: 1 owl:EquivalentClass 77
owl:PriorVersion 8 owl:IntersectionOf 69
owl:VersionInfo 305 owl:OneOf 43

Individual-Related Constructs owl:Union 109
owl:AllDifferentFrom 6 Property-Related Constructs

owl:DifferentFrom 5 owl:AnnotationProperty 28
owl:DistinctMembers 6 owl:DataRange 14

owl:SameAs 18 owl:DatatypeProperty 277
Restriction-Related Constructs owl:DeprecatedProperty 2

owl:AllValuesFrom 118 owl:EquivalentProperty 25
owl:Cardinality 120 owl:FunctionalProperty 114
owl:hasValue 48 owl:InverseFunctionalProperty 30

owl:MaxCardinality 60 owl:InverseOf 128
owl:MinCardinality 99 owl:ObjectProperty 462

owl:onProperty 263 owl:SymmetricProperty 20
owl:Restriction 263 owl:TransitiveProperty 39

owl:SomeValuesFrom 85

Table 6. Tractable fragments of OWL and how many of each fragment appears in this survey

Fragment RDFS(DL) DL-Lite EL + + Non-Tractable
Count 230 94 56 287

fragments allow fully, owl:Intersection not widely used. The EL++ ontologies
have a much higher percentage in using restrictions and object Properties than DL-Lite.
However, much higher percentage of DL-Lite files use datatype property. The large
disparity in the number of ELs++ that use datatype property and object property is
surprising. Finally, we note that DL-Lite does not allow cardinality greater than one.

Table 7. OWL construct usage for DL-Lite and EL + +

Constructs DL-Lite EL + +
owl:Intersection 1(1%) 3(5%)
owl:Restriction 35 (37%) 36 (64%)

owl:ObjectProperty 45 (48%) 43(77%)
owl:DatatypeProperty 44 (0.47%) 4 (7%

owl:FunctionalProperty 20 (20%) 0 (0%)
owl:Cardinality 21 (22%) 0 (0%)

owl:SomeValuesFrom 0(0%) 33(60%)



690 T.D. Wang, B. Parsia, and J. Hendler

However, it does allow for functionality. All the DL-Lite documents that make use of
cardinality restrictions are only using cardinality of 1.

4.4 Shape of Class Hierarchy

When we think of defined vocabularies in schemas and ontologies, we often think of
the structure as a tree, where each class is a node, and each directed edge from a parent
to a node denotes subsumption. It may be because of our experience as seeing the
terms being displayed as tree widgets in our ontology editing tools such as SWOOP
or Proétegé or because trees are easier to mentally visualize. However, the vocabulary
hierarchy can be all kinds of more general graph structures. In Figure 1 we show the
kinds of graph structure a defined set of vocabulary can take shape. The black-dotted
circle denotes the top concept (e.g. owl:Thing in OWL ontologies). List, lists, tree,
and trees should be familiar to the reader. Multitrees can be seen as a directed acyclic
graph (DAG) where each node can have a tree of ancestors and a tree of children. There
cannot be a diamond structure in a mulitree [8]. If a diamond structure exists, then it
is a general DAG. We can consider the categories list, lists, tree, trees, multitree, and
DAG as a strictly ordered list in increasing order of graph complexity.

We point out that a general graph (where cycles exist) is possible. However, because
the edges represent subsumptions, all the nodes on the cycle are semantically equiva-
lent. Some paths on the cycle may not be obvious, but sound and complete reasoners
will always discover them. Therefore when a reasoner is present, no cyclic graphs of
subsumption hierarchies can appear. There can be cycles in a told structure, though
these are easy to detect syntactically. In addition, because turning on reasoning services
will discover these equivalences and more subsumptions, the graph morphology may
change between the told and the inferred structure. Below we show scatterplots of the
graph morphological changes in the OWL documents. The scatterplots are fashioned
using Spotfire 12.

In Figure 2, each square represents an OWL document, and the size of the square
indicates how many classes are in the document. Using the grid point (x,y) closest to
each document and referring to the two axes, we can find out what morphology the class
hierarchy is in. The vertical axis indicates the morphology in the told structure. The
horizontal axis indicates the morphology in the inferred structure. The data points do
not lie strictly on an intersection of the grid lines because we have jittered the positions
of the data points to avoid occlusions. The jittering also gives a better idea of how many
datapoints are in each grid intersection.

If an ontology is inconsistent when reasoner is turned on, the class hierarchy will
collapse, and there are no structures. We use the category INCONSISTENT to denote
this case. The None structure denotes that the ontology contains no classes, hence there
are no structures. In Figure 2, note the clusters along the diagonal. These indicate that
most ontologies retain their told morphology after a reasoner has been applied. How-
ever, 75 of them did change, 21 of which became inconsistent. 42 ontologies went up
to a more complex structure (e.g. from trees to multitrees). Of the 42 that went up in
graph complexity, 25 came from trees to either DAGs or multitrees. 3 multitrees and
3 lists became DAGs. 5 ontologies that had lists as the told strucure had the tree or

12 http://www.spotfire.com/



A Survey of the Web Ontology Landscape 691

trees strucure when reasoning is turned on. 6 lists became multitrees. The graph mor-
phological changes in increasing graph complexity indicate that more subsumptions are
discovered. The ones in decreasing graph complexity means that equivalences are dis-
covered. The most interesting ones are the ontologies that discover multiple inheritance
in the inferred structure when there was none in the told structure. These are the list,
lists, tree, and trees that became multrees or DAGs. This indicates that some interesting
modeling is at work here, and there are 34 of them.

Figure 2 shows the same scatterplot, but for the RDFS documents. We do not expect
there to be many, if any, changes in graph morphology because every subclass rela-
tionship must be explicitly asserted. In this graph, we clearly see that no RDFS class
strucure has changed as a result of a reasoning service.

Because the morphology changes between the told and the inferred structures can
give indication on which classes are undermodeled or heavily modeled, to be able to
compare them side-by-side and interactively explore them can be potentially useful to
modelers and users. Current ontology editors and visualizers, such as the ones described
in [9] [12] [10] [14], do not directly support this task.

Here we look at the distribution of the largest ontologies in this survey. Of the 19
ontologies that have more than 2000 classes, 14 have the expressivity of ALC or lower.
2 have the expressivity SHF , 2 have S, and 1 has SHOIF(D). In the top right corner
of Figure 2, we see that there are a number of large OWL ontologies sitting in the
(DAG, DAG) position. To explore further, we plotted the inferred graph morphology
against OWL species in Figure 3. The upper right corner shows that many large on-
tologies belong to the OWL Lite species, and their class structures are DAGs. There are
6 ontologies with more than 10000 classes in this survey, 5 of the 6 are in the (DAG,
Lite) cluster. Of these 5, 4 have DL expressivity of ALC, 1 has the the expressivity of
S. The combination of the most generalized graph structure and the least expressive
species is interesting because it suggests that these ontologies are modeling fairly com-
plex domains where the class structures are DAGS. However, none of the OWL DL
features are used in the modeling process. Whether the modelers purposely intended
to stay in OWL Lite (for fear of computational complexity in reasoning), or that OWL
Lite provides all the constructs they needed is unclear.

Fig. 1. Possible graph morphology of class hierarchies



692 T.D. Wang, B. Parsia, and J. Hendler

Fig. 2. Scatterplots of the graph morphology of OWL documents (on left), and the RDFS docu-
ments (right)

Fig. 3. Scatterplot of the graph morphology of OWL documents against OWL species

5 Future Work

The future work includes a survey on a larger pool of ontologies. For example, many
DAML files can be converted to OWL without any loss of semantics. The only major
difference between the two languages is that DAML has qualified number restrictions.
It would be an interesting to see how many DAML files uses qualified number restric-
tions. In addition, the newly released Swoogle 2006 claims to have indexed many more
semantic documents, including over 10000+ ontologies.

We see in this study that a fairly large number of ontologies use imports. It would
be interesting to find out which ontologies are being imported and by how many others,
what percentage of imports are not used by ontologies developed in the same institution.
Related to this issue is finding out which are the most popularly used ontologies by RDF
files (such as people’s FOAF files). Another issue related to imports is to find out how
many terms are being used in an ontology without importing the ontologies the terms
are defined in.



A Survey of the Web Ontology Landscape 693

It would also be interesting to attempt to partition the OWL ontologies using the
modularity framework outlined in [6]. Partitionability of an ontology indicates that there
are, informally, self-contained domains that can be separated, and possibly reused by
other ontologies. The number of ontologies that can be partitioned and the distribution
of the sizes of the partitions can shed some light about practitioners’ modeling practices
in terms of how often/many disjoint domains are used in an ontology.

6 Conclusions

As use OWL grows, assessments of how the language is being used and how modeling
trends begin to emerge is both useful and interesting to the community. By collection
nearly 1300 ontological documents from the Web and analyzing the statistics collected
from them, we were able to note several trends and make interesting observations. There
are higher percentage of OWL DL and OWL Lite files than it was previously reported
in [2]. Most of the OWL Full files surveyed here can be syntactically patched. Of the
patched OWL Full files, roughly one-third becomes OWL DL two-thirds become OWL
Lite. In addition, by adding type triples, most of the RDFS files can easily transition to
OWL files.

We showed that majority of OWL Lite documents fall into the bins of very inexpres-
sive ontologies. The number of ontologies that contain interesting logical contradictions
in this survey is small. But they all have high expressivity. In OWL construct analysis,
we showed that owl:intersection is used in fewer ontologies than owl:union.
owl:ObjectProperty is more prevalent than owl:DatatypeProperty.
Though about one-third of the ontologies contain instances, very few instance con-
structs are being used currently. Looking at the graph morphologies, we are able to see
where the interesting modeling practices occur. In addition, we conjecture that tools
that presents/exploits the changes between told and inferred structures may allow users
to gain understanding otherwise hard to obtain. We also observe that the largest of the
OWL files have the characteristic that they have a high graph-morphological complexity
and relatively low DL expressivity.

Acknowledgments

This work was supported in part by grants from Fujitsu, Lockheed Martin, NTT Corp.,
Kevric Corp., SAIC, the National Science Foundation, the National Geospatial Intelli-
gence Agency, DARPA, US Army Research Laboratory, and NIST. Special thanks to
Evren Sirin and Aditya Kalyanpur for their insightful discussions.

References

1. Franz Baader, Sebastian Brandt, and Carsten Lutz. Pushing the el envelope. Proceedings of
the 19th International Joint Conference on Artificial Intelligence (IJCAI-05), 2005.

2. Sean Bechhofer and Raphael Volz. Patching syntax in owl ontologies. Proceedings of the
3rd International International Semantic Web Conference, 2004.



694 T.D. Wang, B. Parsia, and J. Hendler

3. Diego Calvanese, Giuseppe De Giacomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. DL-Lite: Tractable description logics for ontologies. Proceedings of American
Association for Artificial Intelligence (AAAI05), 2005.

4. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. Jena: Im-
plementing the semantic web recommendations. Proceedings of the 13th World Wide Web
Conference, 2004.

5. Bernardo Cuenca Grau. A possible simplification of the semantic web architecture. Pro-
ceedings of the 13th International World Wide Web Conference (WWW2004), 2004.

6. Bernardo Cuenca-Grau, Bijan Parsia, Evren Sirin, and Aditya Kalyanpur. Modularity and
web ontologies. 2006. To Appear in Proceedings of the 10th International Conference on
Principles of Knowledge Representation and Reasoning (KR2006).

7. Li Ding et al. Swoogle: A search and metadata engine for the semantic web. Proceedings of
the Thirteenth ACM Conference on Information and Knowledge Management, 2004.

8. G. W. Furnas and J.Zacks. Multitrees: Enriching and reusing hierarchical structure. Pro-
ceedings of ACM CHI 1994 Conference on Human Factors in Computing Systems, 1994.

9. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies. Int. J. on
Semantic Web and Info. Syst., 1(1), 2004.

10. Thorsten Liebig and Olaf Noppens. OntoTrack: Combining browsing and editing with rea-
soning and explaining for OWL Lite ontologies. Proceedings of the 3rd International Inter-
national Semantic Web Conference, 2004.

11. A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking rdf
schemas for the semantic web. Proceedings of the 1rd International International Semantic
Web Conference, 2002.

12. Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen. Creating semantic web content with protégé-2000. IEEE Intelligent Sys-
tems, 16(11):60–71, 2001.

13. Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and Yarden Katz. Pel-
let: A practical owl-dl reasoner. Submitted for publication to Journal of Web Semantics.

14. M.-A. D. Storey, M. A. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. F. Noy. Jam-
balaya: Interactive visualization to enhance ontology authoring and knowledge acquisition
in Protégé. Workshop on Interactive Tools for Knowledge Capture (K-CAP-2001), 2001.

15. Christoph Tempich and Raphael Volz. Towards a benchmark for semantic web reasoners -
an analysis of the daml ontology library.

16. Sui-Yu Wang, Yuanbo Guo, Abir Qasem, and Jeff Heflin. Rapid benchmarking for semantic
web knowledge base systems. Proceedings of the 4th International Semantic Web Confer-
ence(ISWC2005), 2004.



CropCircles: Topology Sensitive Visualization of OWL
Class Hierarchies

Taowei David Wang1 and Bijan Parsia2

1 Department of Computer Science,
University of Maryland, College Park, MD 20742, USA

tw7@cs.umd.edu
2 The University of Manchester, UK

bparsia@cs.man.ac.uk

Abstract. OWL ontologies present many interesting visualization challenges.
Here we present CropCircles, a technique designed to view the class hierarchies
in ontologies as trees. We place special emphasis on topology understanding
when designing the tool. We drew inspiration from treemaps, but made substan-
tial changes in the representation and layout. Most notably, the spacefillingness
of treemap is relaxed in exchange for visual clarity. We outline the problem scape
of visualizing ontology hierarchies, note the requirements that go into the de-
sign of the tool, and discuss the interface and implementation. Finally, through a
controlled experiment involving tasks common to understanding ontologies, we
show the benefits of our design.

1 Introduction

The vision of the Semantic Web is a meta-data rich Web where presently human-
readable content will have machine-understandable semantics. The Web Ontology Lan-
guage (OWL) is a W3C recommendation that allows modelers to use its expressive
formalism to define various logical concepts and relations1. A content-creator can use
appropriate ontologies to, for example, annotate existing Web content. The enriched
content can then be consumed by machines to assist humans in various tasks.

However, expressive ontologies can be difficult to understand. Content-creators often
need to locate and inspect concepts of interest in detail to determine whether specific
concepts are suitable for their use. The hierarchical structure of the concepts in an on-
tology can reveal a great deal about how these concepts are organized and how they are
intended to be used. Effective presentation of the hierarchies can be a big win for the
users.

In an OWL ontology, if we ignore owl:Thing as the root of the tree, and view the
structure starting at the second level, an OWL ontology hierarchy can take the form of
list(s) , tree(s), multitrees [9], or a direct acyclic graph. One may believe that cycles of
subclasses can occur. However, since the classes define sets, a cycle of subsets indicate
that all classes in the cycle are equivalent. In OWL ontology editors such as Protégé
[17] or SWOOP [14] the class trees are shown as standard tree widgets. Although the

1 In this paper, we will use the term concept and class interchangeably.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 695–708, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



696 T.D. Wang and B. Parsia

widget is adequate for browsing node labels, it gives no additional information on how
bushy or how deep a subtree is without further expanding it.

We present CropCircles, a technique to enhance user’s ability to view the class struc-
ture at a glance. CropCircles is a tree visualizer, and like a treemap [13], CropCircles
uses containment to represent the parent-child relationship. However, CropCircles sac-
rifices the space-fillingness for better visual clarity, enhancing understanding of the
topology. This paper presents the design goals of CropCircles, the interface, and a vali-
dation of our design through a controlled experiment with treemap and SpaceTree.

2 Related Work

There are a number of ontology visualization tools available. Most of them are deriv-
atives of tree visualizers. There are two major types of representations of trees. One is
the traditional node-link diagram. The other is using geometric containment. Trees rep-
resented by node-link diagrams typically suffer from inefficient use of space. The root
of the tree is usually situated where there is a lot of unused space. On the other hand,
the nodes in the deep part of the tree have little room among themselves.

To remedy the inefficient use of space, hyperbolic tree viewer [15] places the hierar-
chy on a hyperbolic plane, and then maps the plane onto a circular region. User’s focus
on the tree will be given more space, accentuating the structures around it. The layout
of the tree smoothly animates as the user clicks and drags at different parts of the tree.
OntoRama [8] uses a hyperbolic approach to view RDF graphs. OntoRama can visu-
alize RDF serialization of an OWL ontology, which is more verbose and consequently
makes it more difficult to understand the hierarchy. One problem with the hyperbolic
representation is that the constant relayout makes it difficult to maintain a mental map
of where the nodes are or what the structure is.

SpaceTree [18] is a tree browser combined with a rich set of interactions to help
users explore the tree. The dynamic rescaling of branches to fit the available screen
space minimizes user interaction. Preview icons and miniature trees are used to give
users a sense of the depth, breadth, and size of the subtrees. The smooth 3-stage anima-
tion to expand/contract subtrees help keeping the context without overwhelming users.
Though it is possible to view 2 subtrees simultaneously using SpaceTree, it requires
some careful user interaction. OntoTrack [16] builds on SpaceTree to browse and edit
the ontology. It augments SpaceTree to use cross links to represent multiple inheri-
tance. The implementation of the cross links, however, is awkward. Sharp bends of the
links occur. Link occlusion by node labels often arise, and no optimization is done to
minimize edge crossings.

Instead of using edges to represent the parent-child relationship in trees, a second
type of tree representation uses geometric containment. Treemap [13] is a spacefill-
ing representation of a tree using nested rectangles. The leaf nodes can use color and
size to indicate their associated attributes. Labels for the nodes are displayed in place
when there is enough room. The original treemap uses the slice-and-dice algorithm
[13], which often produces elongated rectangles that are difficult to see and interact
with. Squarified treemaps [5] and ordered treemaps [4] have been proposed to explic-
itly maintain good aspect ratio of the rectangles. Although treemaps were first applied



CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies 697

to visualize directory structures, they have been widely applied to other areas, among
them, stock market 2, news 3, sports reporting [12], microarray analysis using hierar-
chies from the gene ontology [1], and digital photo management system [3]. As widely
as used treemaps are, they are most effective when the main focus is to understand
the attribute distributions of the leaf nodes. Topological understanding is not one of its
strengths.

Jambalaya [19] uses nested rectangles to show the hierarchy of classes and instances.
It has a treemap view option. Different relations among the classes and instances are
represented via edges between them. Users can filter both node and edge types. The
visualization typically can show only 3 levels deep without serious user intervention.

There have been attempts to use geometric shapes other than rectangles to imple-
ment treemaps. Voronoi treemaps [2] use iterative relaxation of Voronoi tesselation to
compute a layout of arbitrary polygons to fill a screenspace. The approach aims to
address the high aspect ratio problem in treemaps and to better delineate boundaries
among polygons. Kai Wetzel created a circular treemap to visualize Linux directories 4.
There is also recent work focusing on circle packing in directory viewing [20]. Though
these algorithms are used to pack in the circles as tight as possible, nested circles can
obviously not fill a space. However, this extra space makes it easier to distinguish the
different levels of a tree.

3 Design and Implementation

Given an ontology, users typically want to find out whether some classes in the ontology
is suitable for their use. They are interested in how many subclasses a paticular class has,
as these subclasses are more specific than their parents and are differentiated from their
siblings. In an unknown ontology, by exploring the larger branches of the hierarchy,
a user is more likely to find out what the ontology is about. Likewise, in an inferred
tree, one can tell that classes that lack subclasses and are children of owl:Thing
are often undermodeled. By comparing the structural differences between the told the
inferred class hierarchies, a user can also tell whether an ontology is mostly asserted, or
is intricately modeled. An effective visualization should allow users to comparatively
distinguish depth, bushiness, and size of subtrees.

The subsumption hierarchy in OWL is a directed graph, and to visualize it as a graph
is natural and has the advantage that we do not need to duplicate nodes that have mul-
tiple parents. However, this often creates nonplanar graphs where intersecting edges
cannot be avoided. Cross links are not desirable for both aesthetic and usability issues.
As a result many graph drawing approaches name minimal edge-crossing as a require-
ment [6] [11]. Matrix representations of graphs represent edges implicitly, avoiding
messy edge crossings and occlusions. But it is difficult to, for example, find how many
subclasses a concept C has. This is a natural task in a tree, however. A user only needs
to explore the subtree rooted at C. In a tree structure, users can better recoginze the

2 http://www.smartmoney.com/marketmap/
3 http://www.marumushi.com/apps/newsmap/newsmap.cfm
4 http://lip.sourceforge.net/ctreemap.html



698 T.D. Wang and B. Parsia

bushiness at a certain node and whether a branch can lead to a deep node. By imposing
tree structures onto a graph, we believe this will enable users to perform these tasks
better.

Treemap’s ability to show multiple branches and multiple levels simultaneously is
attractive. It allows users to compare depth, bushiness, and size of several subtrees at
once. However, despite adjustable border size and depth filters, it is still difficult to
gather topological information. In particular, treemaps emphasize on visualizing leaf
node attributes. The intermediate nodes are deemphasized. In visualizing ontology hi-
erarchies, however, intermediate nodes are as important as leaf nodes. Scanning for a
node’s children is also problem, as they are scattered in 2D space, and labels can be
cropped or completely hidden.

Our visualization design requirements are aimed to address the problems and tasks
outlined above. They are summarized below.

– Topology Overview. In supporting the tasks to discern size, depth, and bushiness,
we aim to show multiple subtrees and multiple levels at once in a tree structure. This
should allow users to better comparatively gauge the subtrees. But unlike treemaps,
we sacrifice spacefillingness to increase clarity.

– Linearity in Node Reading. At any level of the tree, the user should be able to
quickly read the labels of the children. Node-link representation of trees usually
have sibling nodes arranged closely on a line or a curve. Reading and counting
node labels in such situations is easy.

– Node Duplication Detection. Because we are imposing a graph structure onto a
graph, we need to support users to detect duplications due to multiple inheritance.

– Aesthetics. Though not the most important requirement, we feel that a visually
pleasing presentation would encourage users to look at the data and gain insights
from the visualization.

3.1 Layout

In CropCircles circles represent nodes in a tree. Every child circle is nested inside its
parent circle. Every circle’s diameter is proportional to the size of the subtree rooted at
that node. The smallest subtrees (the leaf nodes) have the minimum size of all circles.
For every node, CropCircles sorts its children in descending order according to their
subtree sizes, and then lays them out in that order. The sorting creates a sense of order
in an otherwise unorderd 2D space within a circle. The larger nodes occupy more space,
showing more importance, and encourage users to explore them first.

Depending on the size distribution of the children nodes, we employ 4 different lay-
out strategies. These layout strategies are aimed to allow users to quickly gauge how the
subtree sizes are distributed. To recognize whether a node has subtrees of equal size, a
single subtree, or a predominant subtree can aid users’ decisions on whether to explore
such node further. When there is only one single child, the child node is concentrically
placed inside its parent. When there are a number of equal sized children nodes, they
are laid out on a concentric circle inside the parent, uniformly distributed. When there
are no dominant children ( a subtree that has more than 37% of the total number of de-
scendents the parent subtree contains), all children are laid out along the lower arc of its



CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies 699

parent, the largest node first. When at least one dominant child is present, smaller chil-
dren are laid out on an arc, equidistant from the center of the largest child. The layout
for dominant child introduces a deviation from the philosophy of the other 3 layouts. In
this case, the arc the layout relies on does not depend on the parent node. It brings focus
to the dominant child, and gives users a visual cue that something different is there. The
four layout strategies can be seen in Figure 15.

In addition to the layout strategies, every child is rotated by an amount , proportional
to its size-sorted rank, with respect to the either the center of of the parent, or the center
of its largest child. This lessens the regularity of the layout, and the result is more visu-
ally pleasing. Because of these intricately nested circles, we name our tool CropCircles.
We believe the sorting of child nodes and the regularity in layout can facilitate user’s
understanding of the structures where the current circle-packing approaches such as Kai
Wetzel’s circular treepmaps and [20] are not placing emphasis on.

Fig. 1. From left to right, the figure shows the different layout strategies: single-child, all-
children-of-equal-size, dominant-child, and no-dominant-child

3.2 Interface

The interface for CropCircles has two major components: a visualization area to the
right, and a panel serving both nagivation needs and detailed views to the left (see Figure
2). The visualization area shows the tree as nested circles. Users can left click on any
circle to highlight that subtree in white. Each double click on a circle will pan and fit that
subtree to the screen. All the zooming and panning are done in one step (no animation).
Mousing over any circle will show its statistics: label of the node, depth at which it is
rooted, and how large its subtree is. To effectively support multiple inheritance, when
users select a circle, all other duplicated circles will be highlighted, making it easy to
spot all the parents of the selected node.

For each selected node, all its immediate children are displayed on a list to the left
of the visualization. Above the list, user can utilize the navigation buttons to move
forward and backward to previously selected nodes. If multiple ontologies are being
visualized, users can select to view any subset of them in the ontology list on top of the
nagivation buttons. Instead of seeing a list of immediate children, users may elect to see

5 We note that the colors in the screen shots have been altered to ensure readability. For unaltered
images, please see http://www.mindswap.org/˜tw7/work/iswc2006/CropCircles/



700 T.D. Wang and B. Parsia

Fig. 2. This figure on the left shows the CropCircles interface. The visualization on shows the
inferred class tree of galen. Note that the class ”NAMEDInternalBodyPart” is multiply inherited
in two places (hence the highlights). The left panel shows the children of the class. Alternatively,
user can select the Concise Format tab to see the definition and inferred facts about the class, as
shown in the right figure.

its definitions by click on the tab ”Concise Format”. Finally, there is a search box for
name lookup. The current implementation of CropCircles uses the JUNG 6 framwork,
and is downloadable as part of the open source OWL ontology editor SWOOP 7.

4 Empirical Evaluation

4.1 Choice of Tools

In the controlled experiemnt, we chose to compare the following 3 tree visualizers:
CropCircles, treemap (Treemap 4.1 8), and SpaceTree (SpaceTree 1.6 9). Although
treemaps are best when used to visualize node attributes at the leaf level, because much
of our design decision was derived from treemap, we want to show that CropCircles
is an improvement over treemaps on topological tasks. On the other hand, SpaceTree
has been shown to be effective in conveying the structure of trees well in several tasks,
though not without its own weaknesses [18]. We show that CropCircles is effective
in conveying topological information and addresses the weaknesses of the other two

6 http://jung.sourceforge.net/
7 http://www.mindswap.org/2004/SWOOP/
8 from http://www.cs.umd.edu/hcil/treemap/
9 from http://www.cs.umd.edu/hcil/spacetree/



CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies 701

tools. We used the default settings on Treemaps in our experiment. SpaceTree uses a
left-to-right layout and triangle and miniature trees as visual cues. Figure 3 shows visu-
alizations of the experimental data using the three tools.

4.2 Choice of Tasks

For each tool, we ask users to perform the following tasks.

– Find Unknown Node. Users are asked to find a node in the hierarchy. They are
not allowed to use search boxes. Users must rely on the visual representation of the
trees and labels to find the node, and have up to 2 minutes to complete the task. If
they are unable to finish the task within the time limit, the experiment administrator
shows the user the steps to find the node. Users are asked to perform this task twice,
each time with a different target node.

– Return to Previously Visited Node. Users are asked to locate a node that they
found in a previous node-finding task. Users are asked to click on the node to show
that they have found it. They can rely on their memory of the location of the node
or any nagivational interfaces the tool supports. Users have up to 2 minutes to com-
plete the task.

– Comparison of Subtrees. Users are asked to compare and contrast two subtrees.
The experiment administrator brings the tool to a state where both subtrees are
visible. Users are then free to explore the subtrees to state any structural similarities
and differences of the two subtrees. Users are told to ignore label similarities, but
are welcome to use them as references.

– Find the Bushiest Child Node. Given a node, users are asked to identify which
one of its child nodes has the most immediate children. Users have up to 2 minutes
to complete the task.

– Find the Largest Subtree. Given a node, users are asked to identify which one of
its child nodes has the most descendents. Users have up to 2 minutes to complete
the task. The node given to the participants has 18 immediate children, and total of
207 descendents.

– Find a Deepest Node. Given a subtree, users are asked to find a node that resides
at the deepest level they can find. A time limit of 3 minutes is enforced.

– Find 3 Nodes with at Least 10 Children. Users are instructed to find 3 nodes that
have at least 10 immediate descendents. Time limit is 2 minutes.

– Find 3 Top-level Nodes that Root a subtree of Depth of at Least 5. Users are
asked to find 3 top level nodes (children of OWL:Thing) that root a subtree with
depth of at least 5. Two minute limit is enforced.

Node-finding is an elementary task for any tree visualizer. When ontology users wish
to use an ontology that is potentially suitable for their purposes, they must locate the
class(es) they are interested in in order to examine if the modeling of these classes are
compatible with the users’ intended usage.

Ontology browsing often requires successive browsing of semantically related con-
cepts. However, these related concepts often are not closely related in the hierarchy. That
is, these concepts may not have an ancestor-descendent or even a sibling relationship.



702 T.D. Wang and B. Parsia

One concept may be related to multiple concepts semantically. Users may need to adopt
a breadth-first browsing pattern on the semantic relations to gain understanding of the
specific concept semantically. A tool that allows users to quickly return to previously
visited nodes would be favored.

Structural similarities are not uncommon in ontologies. The obvious case are the
concepts that have multiple parents. These subtrees would be duplicated within an on-
tology. However, when an ontology imports another, and builds on top of the imported
ontology, subtrees of different parents may no longer be the same. To be able to visu-
ally recognize similar trees is a plus. For example, the Federal Enterprise Architecture
Reference Model (FEARMO) ontology 10 makes heavy reuse of imported concepts. By
inspecting the structure alone and knowing where subtrees are reused, one can quickly
grasp the modeling patterns.

The last five tasks have to do with topology of the tree. Tree topology in an ontol-
ogy conveys information about where in the ontology the most well-defined parts are.
The number of immediate children of a node indicate how fine-grained this particular
concept is being modeled. The depth of a subtree indicates how specific a particular
concept is modeled. Of course, the size of the subtree is a reflection of the above two
measures.

4.3 Choice of Data

We use an older version of NASA SWEET JPL ontologies as our data 11. Since the
ontologies import one another, we stitched them together into a single file without
changing the semantics. There are a total of 1537 defined classes. Adding the dupli-
cate subtrees due to multiple inheritance creates a tree of 2104 nodes. We use this told
tree for the first 3 tasks we described above. We then turn on an OWL reasoner to obtain
the inferred tree, which contains 2007 total nodes. These two trees have sufficiently dif-
ferent topology. The told tree has a maximum depth of 11, average depth of leaf nodes
4.2, maximum branching factor 154, average branching factor of non-leaf nodes 3.9,
and 103 nodes that have multiple inheritance. The inferred tree has the following, re-
spectively, statistics: 12, 5.1, 74, 3.7, 125. We use the inferred tree to carry out the
experiments on the topological tasks to prevent the effect of user learning the topology
of the tree performing the first 3 tasks.

To mitigate users’ possible prior familiarity with the ontology and the domain knowl-
edge, we obfuscate the ontology by renaming the classes. The class are renamed in a
pre-order traversal fashion. Given a starting integer N , the root of a subtree is given
the name ”CN”. Then a pre-order traversal takes place to rename all its descendents
recursively by incrementing N everytime a new node is encountered. We keep track of
which number has been assigned to which node, so when duplicate nodes are encoun-
terd multiples in the traversal they can be assigned the same names. We create 3 pairs
of the told tree and the inferred tree, every pair using a different starting N . We then
cross-pair a told tree and an inferred tree so that each tree in every pair has different

10 http://www.topquadrant.com/owl/2004/11/fea/FEA.owl
11 http://www.mindswap.org/ontologies/debug-sweet-jpl.owl. The most current version can be

obtained via http://sweet.jpl.nasa.gov/ontology/



CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies 703

starting N . One pair is used for one tool in the experiment. We explain how the nodes
are numbered prior to the experiment so users can search for nodes they have not seen
before.

4.4 Experimental Setup

There are 18 subjects in our study. They are computer science graduate or undergradu-
ate students or researchers who are familiar with tree structures. We give an overview to
each subject on what they will be asked to do, and begin 3 sessions of training and ex-
perimentation phases, one session per tool. In each session, we spend up to 10 minutes
training the subject on how to use the specific tool in that session. We make sure the
subject understands the visual representation of the tree, whatever visual cues are avail-
able in the specific tool, ways to nagivate the tree, and how to obtain vital tree topology
statistics (depth of a node, size of a subtree, etc.). We show users how to use features in
the tools to help them accomplish the tasks effectively. In particular, we train users to
use the depth filter in treemap, and to use bookmarks in SpaceTree. After the directed
instructions are done, the user is allowed to freely experiment with the tool. When a
user is comfortable with the tool, or when the 10 minute time is up, we proceed to the
experimental phase. After each experimental phase, we ask users to fill out a section
of a survey pertaining to the tool they just used with respect to the tasks they just per-
formed. After the experiment, users are asked to complete the survey for other feedback
and background information.

The order in which the tools are presented to the users are counterbalanced to elimi-
nate learning effects and fatigue. All experiments are done on an IBM T41 laptop with
1.4GHz CPU 1.28GB of RAM running Windows XP. Each tool occupies 1240x740
pixels. The entire experiment does not exceed 75 minutes.

5 Results

We analyze each task separately. For each continuous dependent variable (e.g. time), we
use a repeated measures one-way ANOVA. We check for the sphericity condition and
then perform a modified F test in the ANOVA as suggested by [10]. This means that we
first conduct an unmodifed univariate F test, and if the test is not significant, we accept
the null hypothesis that the means obtained across the three tools are not different. If this
first test is significant, we then lower the degrees of freedom and perform a conservative
F test, which relies on, in our case, F1,17 distribution. Tukey’s HSD method is used for
multiple comparisons when spheiricity is not grossly violated. Otherwise we use Bon-
ferroni correction on subsequent pairwise two-tailed t-tests. We use p = 0.05 for the
ANOVA and the post hoc procedures (note that the Bonferroni correction will lower p
to ensure the overall significance is 0.05). For binomial variables (e.g. success/failure),
we use Cochran-Mantel-Haenzsel general association statistic (which follows χ2 dis-
tribution) to test whether the response profiles of the three tools are different [7]. We
then use Bonferroni correction on the pairwise comparisons. Here we also use p = 0.05
for the CMH test and the pairwise comparisons. In the following sections, we present
the experimental results, observations, and offers possible explanation to the observed



704 T.D. Wang and B. Parsia

Fig. 3. The initial view of the inferred tree in the study by the three tools (top-down): CropCircles,
Treemap 4.11, and SpaceTree 1.6



CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies 705

results. The results are summarized in Table 1. Unless otherwise specified, units used
on performance is time in seconds.

Table 1. Results of the experiments. Each cell shows the recorded mean and the standard devi-
ation of the dependent variable for a particular task and a particular tool. The statistic column
shows the relevant statistics used and the level of significance obtained (if the test is significant).
∗ denotes p < 0.01, + denotes p < 0.05. The last column shows only the statistically signifi-
cant findings of the three tools: (C)ropcircles, (T)reemap, (S)paceTree. X > Y indicates that X
outperforms Y with statistical significance.

Task C T S Statistic significance
mean SD mean SD mean SD

Node Finding 1 87.6 34.24 77.87 37.9 30.40 13.58 F1,17 = 20.53∗ S > C, S > T
Node Finding 2 62.31 34.0 63.42 31.6 28.91 13.13 F1,17 = 15.85∗ S > C, S > T

Return to Visited Node 19.94 7.64 59.75 41.23 17.44 5.34 F1,17 = 15.86∗ C > T, S > T
Subtree Compare (succ. rate) 1.0 0.0 0.78 0.43 0.83 0.38 χ2

2 = 5.2 none
Bushiest Child 27.42 19.04 55.45 31.70 12.15 7.88 F1,17 = 19.08∗ C > T, S > T

Largest Subtree 26.09 16.25 39.23 17.88 34.66 17.54 F2,34 = 2.97 none
A Deepest Node (error rate) 0.22 0.43 0.67 0.49 0.33 0.49 χ2

2 = 6.93+ C > T
3 Nodes with ≥ 10 Children 19.56 6.14 26.14 23.39 53.59 27.27 F1,17 = 15.26∗ C > S, T > S

3 Subtrees of Depth ≥ 5 47.90 20.4 54.09 27.81 50.84 11.86 F2,34 = 0.40 none

5.1 Navigational Tasks

– (First Time Node-Finding) SpaceTree performed significantly better than Crop-
Circles and treemap. However, there was no statistically significant difference be-
tween CropCircles and Treemap. Seven participants used the depth slider in Treemap
to help reduce visual clutter. Participants also used the fact that they can read labels
at multiple levels of tree simultaneously to their advantage in Treemap. Participands
had problems finding nodes in CropCircles. The list of size-sorted labels is difficult
to digest, particularly at the root level, where there are 154 branches to explore.

– (Return to Visited Node) In returning to a previously visited node, both CropCir-
cles and SpaceTree outperformed Treemap with statistical significance. There was
no significant difference between CropCircles and SpaceTree. Treemap’s represen-
tation does not seem to help users much in this task. In fact, the relayout to achieve
space-fillingness at each zoom disorients users even though they have already done
the same traversal once before. Though CropCircle users can use history to navi-
gate backwards, only 3 participants used it. Most participants used their memory
on the traversal process on the class list to accomplish this task. Participants asso-
ciated well with the steps they had taken to find the node using SpaceTree. Many
remembered where to look at each stage of tree expansion.

5.2 Topology Recognition Tasks

– (Subtree Comparison) Although all participants were successful in making the
observation using CropCircles, and some portions of particiants failed in Treemap
and SpaceTree, the differences among the tools are not statistically significant.



706 T.D. Wang and B. Parsia

– (Finding the Child Node that has the Most Immediate Children) CropCir-
cles and SpaceTree allowed users to complete this task significantly faster than
Treemap. But there is no statistical sigificance between CropCircles and Space-
Tree. When the target node was expanded in SpaceTree, it fully expanded both its
child and its grand child level, but not its great-grand child level. This is exactly the
right amount of information users needed to complete the task. The children nodes
are presented in a linear list, making it easy to count. Many participants were ob-
served to use the depth slider in treemap to filter out unnecessary nodes to quickly
obtain the answer.

– (Finding the Largest Subtree) There was no statistical significance among the
three tools. This was a surprising result. We observed that although participants are
told that the nodes were sorted by size in CropCircles, users would spend time to
verify the sizes as if they do not trust the visual representation. Similar situation
is observed in SpaceTree. Users moused over all children to read the size of the
subtree reported in the tooltips when only the subtrees with dark preview triangles
should require closer inspection.

– (Finding a Deepest Node) We measured how successful users were at finding a
node that is at the deepest level of the given subtree. We performed analyses on
the error rate. CropCircles had significantly lower error rate than treemap, but the
difference between SpaceTree and CropCircles was not significant. There was also
no significant difference between SpaceTree and treemap.

– (Finding 3 Nodes with at Least 10 Immediate Descendents) Both CropCricles
and Treemap outperformed SpaceTree significantly, but there was no statistically
significant difference between the two. The nodes that CropCircles users reported
tend to be at the upper levels of the tree, as they took no additional zooming to
see. On the contrary, all nodes reported by Treemap users are the ones that contain
many leaf nodes, which are white, and are easy to see.

– (Finding 3 Top-Level Nodes that Root Subtrees of Depth of at Least 5) There
were no statistically significant differences among the three tools.

6 Discussion

Ignoring statistically insignificant results, CropCircles performed well against Treemap
and SpaceTree in topological tasks. CropCircles edged SpaceTree in finding 3 nodes
with at least 10 children, and was better than Treemap in finding a deepest node and
finding the bushiest child. Although there was no one task that CropCircles was bet-
ter than both of the other two tools, there was also no one topology task that Crop-
Circles performed unsatisfactorily. In this sense CropCircles is the most balanced of
the three tools in topology recognition tasks. By avoiding Treemap’s and SpaceTree’s
weaknesses, CropCircles is an appropriate visualization for class hierarchy. For ex-
ample, ontology modelers who wish to visually explore where an ontology is under-
modeled (characterized by subtrees that lack depth and bushiness in the inferred tree),
CropCircles would be a good choice. The results also suggest that ontology hierarchy
visualizers that use SpaceTree or treemap as the underlying technique should be aware
of their shortcomings and address them.



CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies 707

On the other hand, not all of our design decisions were validated. Although listing
children in a list that enables level-traversal allows users to remember the path they took
to a particular visited node, the list is inadequate to support label browsing. An option
to sort the labels alphabetically would have helped the users a great deal in node-finding
tasks. We were also not able to show that CropCircles can outperform the other tools
with statistical significance in finding the largest subtree, even though the subtrees are
ranked by size.

Our participants gave us valuable feedbacks on how to improve CropCircles in our
post experimental survey. Many mentioned better context support when details are fo-
cused. Several users suggested a more tightly integrated history with the visualization.
Almost all participants commented on the lack of support to sort node labels alphabeti-
cally. Information density in CropCircles is a concern, and several users have mentioned
the desire to see the space utilized better. These comments and our experimental results
are observed, and will be the main focus in the next step of our iterative design process.

7 Conclusions

We describe CropCircles and our requirements in designing a tool to visualize the topol-
ogy of OWL class hierarchy. While our design exploited several useful principles, not
all design decisions are helpful in completing the tasks in the experiments. However,
we are able to show that in topological tasks, CropCircles’s performance is comparable
to strengths of the two other tools, and is an improvement over their known weaknesses.
This result makes CropCircles an attractive alternative in viewing class hierarchies in
OWL.

Acknowledgments

This work was supported in part by grants from Fujitsu, Lockheed Martin, NTT Corp.,
Kevric Corp., SAIC, the National Science Foundation, the National Geospatial Intelli-
gence Agency, DARPA, US Army Research Laboratory, and NIST. Special thanks to
Jennifer Golbeck for her helpful comments and suggestions.

References

1. Eric H Baehrecke, Niem Dang, Ketan Babaria, and Ben Shneiderman. Visualization and
analysis of microarray and gene ontology data with treemaps. BMC Bioinformatics, 84(5),
2004.

2. Michael Balzer, Oliver Deussen, and Claus Lewerentz. Voronoi treemaps for the visualiza-
tion of software metrics. In Proceedings of the IEEE Symposium on Information Visualiza-
tion, 2005.

3. Benjamin B. Bederson. Quantum treemaps and bubblemaps for a zoomable image browser.
In Proceedings of User Interface Systems and Technology, pages 71–80, 2001.

4. Benjamin B. Bederson, Ben Shneiderman, and Martin Wattenberg. Ordered and quantum
treemaps: Making effective use of 2d space to display hierarchies. ACM Transations on
Graphics, 21(4):833–854, 2002.



708 T.D. Wang and B. Parsia

5. Mark Bruls, Kees Huizing, and Jarke J. van Wijk. Squarified treemaps. Proc. IEEE Sympo-
sium on Information Visualization ’99, pages 284–291, 2000.

6. Ron Davidson and David Harel. Drawing graphs nicely using simulated annealing. ACM
Tran. on Graphics, 15:301–331, 1996.

7. Charles S. Davis. Statistical Methods for the Analysis of Repeated Measurements. Springer,
2002.

8. P. Eklund, N. Roberts, and S. P. Green. Ontorama: Browsing an rdf ontology using a
hyperbolic-like browser. In Proceedings of the 1st International Symposium on CuberWorlds
(CW2002), pages 405–411, 2002.

9. G. W. Furnas and J.Zacks. Multitrees: Enriching and reusing hierarchical structure. Pro-
ceedings of ACM CHI 1994 Conference on Human Factors in Computing Systems, 1994.

10. S. W. Greenhouse and S. Geisser. On methods in the analysis of profile data. Psychometrika,
29:95–112, 1959.

11. David Harel and Meir Sardas. Randomized graph drawing with heavy-duty preprocessing.
Journal of Visual Language and Computing, 6:233–253, 1995.

12. Liquin Jin and David C. Banks. Tennisviewer: A browser for competition trees. IEEE
Computer Graphics and Applications, 17(4):63–65, 1997.

13. Brian Johnson and Ben Shneiderman. Tree-maps: A space-filling approach to the visualiza-
tion of hierarchical information structures. In Proceedings of the 2nd International IEEE
Visualization Conference, pages 284–291, 1991.

14. A. Kalyanpur, B. Parsia, and J. Hendler. A tool for working with web ontologies. Int. J. on
Semantic Web and Info. Syst., 1(1), 2004.

15. J. Lamping, R. Rao, and P. Pirolli. A focus+context technique based on hyperbolic geometry
for visualizing large hierarchies. Conference Proceedings on Human factors in computing
systems, pages 401–408, 1995.

16. Thorsten Liebig and Olaf Noppens. OntoTrack: Combining browsing and editing with rea-
soning and explaining for OWL Lite ontologies. In Proceedings of the 3rd International
International Semantic Web Conference, 2004.

17. Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy, Ray W. Fergerson, and
Mark A. Musen. Creating semantic web content with protégé-2000. IEEE Intelligent Sys-
tems, pages 60–71, 2000.

18. Catherine Plaisant, Jesse Grosjean, and Benjamin B. Bederson. Spacetree: Supporting ex-
ploration in large node link tree, design evolution and empirical evaluation. In Proceedings
of IEEE Symposium on Information Visualization, pages 57–64, 2002.

19. M.-A. D. Storey, M. A. Musen, J. Silva, C. Best, N. Ernst, R. Fergerson, and N. F. Noy. Jam-
balaya: Interactive visualization to enhance ontology authoring and knowledge acquisition
in Protégé. Workshop on Interactive Tools for Knowledge Capture (K-CAP-2001), 2001.

20. Weixin Wang, Hui Wang, Guozhong Dai, and Hongan Wang. Visualization of large hierar-
chical data by circle packing. In Proceedings of SIGCHI Conference on Human Factors in
Computing Systems (CHI’06), pages 517–520, 2006.



 

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 709 – 722, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Towards Knowledge Acquisition from Information 
Extraction 

Chris Welty and J. William Murdock 

IBM Watson Research Center 
Hawthorne, NY 10532 

{welty, murdock}@us.ibm.com 

Abstract. In our research to use information extraction to help populate the 
semantic web, we have encountered significant obstacles to interoperability 
between the technologies. We believe these obstacles to be endemic to the basic 
paradigms, and not quirks of the specific implementations we have worked 
with.  In particular, we identify five dimensions of interoperability that must be 
addressed to successfully populate semantic web knowledge bases from 
information extraction systems that are suitable for reasoning. We call the task 
of transforming IE data into knowledge-bases knowledge integration, and 
briefly present a framework called KITE in which we are exploring these 
dimensions. Finally, we report on the initial results of an experiment in which 
the knowledge integration process uses the deeper semantics of OWL 
ontologies to improve the precision of relation extraction from text. 

Keywords: Information Extraction, Applications of OWL DL Reasoning. 

1   Introduction 

Ontologies describe the kinds of phenomena (e.g., people, places, events, 
relationships, etc.) that can exist.  Reasoning systems typically rely on ontologies to 
provide extensive formal semantics that enable the systems to draw complex 
conclusions or identify unintended models.  In contrast, systems that extract 
information from text (as well as other unstructured sources such as audio, images, 
and video) typically use much lighter-weight ontologies to encode their results, 
because those systems are generally not designed to enable complex reasoning. 

We are working on a project that is exploring the use of large-scale information 
extraction from text to address the “knowledge acquisition bottleneck” in populating 
large knowledge-bases.  This is by no means a new idea, however our focus is less on 
theoretical properties of NLP or KR systems in general, and more on the realities of 
these technologies today, and how they can be used together.  In particular, we have 
focused on state-of-the art text extraction components, many of which consistently 
rank in the top three at competitions such as ACE (Luo, et al, 2004) and TREC (Chu-
Carroll, et al, 2005), that have been embedded in the open-source Unstructured 
Information Management Architecture (UIMA) (Ferrucci & Lally, 2004), and used to 
populate semantic-web knowledge-bases. 



710 C. Welty and J.W. Murdock 

 

This, too, is not a particularly new idea; recent systems based on GATE (e.g. 
(Popov, et al 2004)) have been exploring the production of large RDF repositories 
from text. In our project, however, we are specifically focused on the nature of the 
data produced by information extraction techniques, and its suitability for reasoning. 
Most systems that we have come across (see the related work section) do not perform 
reasoning (or perform at best the most simplistic reasoning) over the extracted 
knowledge stored in RDF, as the data is either too large or too imprecise. This has led 
many potential adopters of semantic web technology, as well as many people in the 
information extraction community, to question the value of the semantic web (at least 
for this purpose). We believe this community can be important in helping drive 
adoption of the semantic web. 

In this paper we will discuss our general approach to generating OWL knowledge-
bases from text, present some of the major obstacles to using these knowledge-bases 
with OWL- and RDF-based reasoners, and describe some solutions we have used. 
Our research is not in information extraction, ontologies, nor reasoning, but in their 
combination. Our primary goal is to raise awareness of the real problems presented by 
trying to use these technologies together, and while we present some solutions, the 
problems are far from solved and require a lot more attention by the community. 

2   Related Work 

Research on extraction of formal knowledge from text (e.g., Dill, et al. 2003) 
typically assumes that text analytics are written for the ontology that the knowledge 
should be encoded in. Building extraction directly on formal ontologies is particularly 
valuable when the extraction is intended to construct or modify the original ontology 
(Maynard, Yankova, et al. 2005; Cimiano & Völker, 2005). However, there is a 
substantial cost to requiring text analytics to be consistent with formal ontology 
languages. There are many existing systems that extract entities and relations from 
text using informal ontologies that make minimal semantic commitments (e.g., 
Marsh, 1998; Byrd & Ravin, 1999; Liddy, 2000; Miller, et al., 2001; Doddington, et 
al., 2004).  These systems use these informal ontologies because those ontologies are 
relatively consistent with the ambiguous ways concepts are expressed in human 
language and are well-suited for their intended applications (e.g., document search, 
content browsing). However, those ontologies are not well-suited to applications that 
require complex inference.   

Work on so-called ontology-based information extraction, such as compete in the 
ACE program, (e.g. (Cunningham, 2005), (Bontcheva, 2004)) and other semantic-web 
approaches like (Maynard, 2005), (Maynard, et al, 2005), and (Popov, et al, 2004), 
focus on directly populating small ontologies that have a rich and well-thought out 
semantics, but very little if any formally specified semantics (e.g. using axioms). The 
ontologies are extensively described in English, and the results are apparently used 
mainly for evaluation and search, not to enable reasoning. Our work differs in that we 
provide an explicit knowledge integration step that allows us to populate fully 
axiomatized ontologies from information extraction. 



 Towards Knowledge Acquisition from Information Extraction 711 

 

Our emphasis actually makes our work similar to work in semantic integration or 
schema matching (e.g., Milo & Zohar, 1998; Noy & Musen, 2001), which typically 
focuses on finding very simple (e.g., one-to-one) mappings among terms in 
ontologies. Schema matching is useful when the ontologies are large and complex, so 
that these mappings, while individually simple, are numerous and challenging to find. 
Our work however focuses on the opposite circumstance: We assume that the 
ontologies are small and manageable enough that one can find the correspondences 
manually and that the mappings may be more complex (conditional, many-to-many, 
etc.) than an automated matching system can handle. 

Schema-matching technologies have typically been used when the applications that 
the source and target ontologies were designed for are identical or at least quite 
similar; e.g., matching one e-commerce database schema to another.  In those cases, 
the assumption that individual mappings will tend to be very simple can be valid; 
since the designers of the ontologies had the same basic purpose in mind.  Mapping 
extracted information into formal reasoning ontologies does not have this 
characteristic; these applications are radically different and tend to lead to radically 
different conceptualizations of basic content.  For these sorts of differences, it is not 
feasible to restrict the mappings between terms to be sufficiently simple and obvious 
enough that they can be discovered by state-of-the-art fully-automated matching 
techniques. 

We use in our work components implemented within the Unstructured 
Information Mangagement Architecture (UIMA). UIMA is an open-source 
middleware platform for integrating components that analyze unstructured sources 
such as text documents. UIMA-based systems define “type systems” (i.e., ontologies 
with extremely limited semantic commitments) to specify the kinds of information 
that they manipulate (Götz & Suhre, 2004). UIMA type systems include no more 
than a single-inheritance type/subtype hierarchy, thus to do substantive reasoning 
over the results of UIMA-based extraction, one needs to convert results into a more 
expressive representation. 

3   Generating RDF from Text 

The context of our application deserves some attention, as our results are somewhat 
dependent on the assumptions that arise from it. First of all, we are taking the 
approach that analytics are more expensive to produce than ontologies. This 
presumes, of course, that we are talking about smaller, lightweight ontologies of no 
more than 100 classes and 100 object properties, which makes sense if they are to be 
populated from text analysis, as typical information extraction ontologies are 
extremely small. Analytics are available in reusable components that can be 
embedded in frameworks like UIMA, in which they are composed into larger 
aggregate analysis engines. The individual components overlap to varying degrees in 
the types of entities and relations they discover, and in the cases of overlap, need to 
have their results combined. While this has in general been shown to improve overall  
 



712 C. Welty and J.W. Murdock 

 

precision and recall, it does create interesting anomalies in the non-overlapping types 
of data (which we will discuss below). The individual analytic components we treat as 
black boxes, their operation is for the most part functional (producing the same output 
for the same input). Ontologies therefore are custom built to suit particular application 
needs, whereas analytics are reused and composed off the shelf.  Our experiences are 
that this characterizes hundreds, if not thousands, of users today looking to populate 
their part of the semantic web from textual sources. These users are in the medical 
domain, national and business intelligence, compliance, etc., and many have resources 
to fund research in the area.  The work described here was funded jointly by IBM and 
the U.S. Government. 

3.1   Text to Knowledge Pipeline 

In our evaluation prototype, we produce knowledge-bases from text in a pipeline that 
proceeds through several stages: 

Keyword Indexing. The simplest and most scalable processing is the generation of an 
inverted index to support keyword search. Although techniques such as link analysis, 
query expansion, etc., can offer minor improvements, this approach is generally very 
low in precision. In addition to its current established usage, we consider the function 
of keyword search to be domain corpus production.  We employ recall-improving 
techniques such as query expansion to reduce the size of the target corpus to the scale 
required by the next stage of processing (information extraction) – this is typically 1-2 
orders of magnitude. 

Information Extraction. Information extraction (IE) in general can be viewed as the 
analysis of unstructured information to assign labels (or annotations) that carry some 
semantics to regions of the data. The canonical example would be to label the text 
“George Bush” with Person. The field has advanced considerably since these 
beginnings, and are well represented by the ACE program (Doddington, et al, 2004), 
participants in which produce annotations for entities (Person, Organization, etc.), 
relations (partOf, citizenOf, etc.), and coreference analysis. While almost any kind of 
information processing can be folded into an information extraction view, in our 
system, IE components play the role of providing relatively shallow processing in 
order to be scalable. In particular, this stage limits itself to processing data in 
documents, and performs the same analysis on each document independently.  As a 
result, IE processing scales linearly with the size of the domain corpus. 

Coreference Across Documents. The annotations produced in the IE stage are used as 
input to corpus-level processing, the most important to our purposes of which is 
coreference analysis – the identification of individual entities that are mentioned (and 
annotated) in multiple places. Many of our IE components produce coreference 
analysis within documents, but connecting these results across the entire corpus clearly 
requires processing that can collect information across the documents, and thus will 
typically scale at a polynomial rate. In our experiece, the most critical properties of co-
reference are recognition of aliases and nicknames, common spelling variations of 
names (especially in other languages), common diminutives, abbreviations, etc. This is 
a wide-open research area that requires significant attention. 



 Towards Knowledge Acquisition from Information Extraction 713 

 

Knowledge Integration. Although it is not required, the data produced in the first three 
stages of our system are all based on the same underlying format (discussed in 
Ferrucci&Lally, 2004), which is a simple extension of an OO programming model 
with a tight programmatic API and a loose semantics (that is, the semantics of a data 
model can be interpreted by software as the programmers choose). The process of 
mapping the information from the previous stages into OWL is analogous to the 
general problem of semantic integration (schema matching, ontology alignment, etc.) 
with some additional challenges, which we discuss below. We call this stage 
knowledge integration. The result of knowledge integration, an OWL knowledge-base 
that can be viewed as a graph, provides the ability to use OWL-based reasoning to 
perform more sophisticated deductive search. For example, we can express axioms of 
spatial or temporal containment in OWL, and conclude obvious (but nevertheless 
implicit) results, such as a person in Paris is also in France. 

3.2   Knowledge Integration Challenges 

Knowledge Integration is analogous to semantic integration. The basic problem is to 
align the type system of the analytic components with the ontology of the reasoning 
components (see the beginning of this section for a discussion of why they are not the 
same), such that the data produced by the analytic components can “instantiate” the 
ontology. Knowledge integration is difficult however, and to our knowledge is not 
often attempted, due to the vastly different requirements, and different communities, 
on each side. As a result, what seems on the surface to be a natural connection – 
producing structured representations from unstructured information and then 
reasoning over those structures – turns out to be a difficult challenge. Below we list 
the five dimensions of interoperability we have identified and brief notes on how we 
are addressing them: 

Precision. Formal reasoning systems are notoriously intolerant of errors, and IE 
systems are notoriously prone to producing them. This is probably the most 
fundamental problem in putting them together. In particular, logical reasoning 
becomes meaningless in the face of contradiction, most inference engines will 
prove any statement to be true if the knowledge-base is inconsistent to begin with. 
Although improving precision is an obvious approach to this problem, we take it as 
a given that IE processes will never be perfect, and furthermore even in the 
presence of perfect IE, data sources can contradict each other intentionally (e.g. 
reports from CNN and the pre-war Iraqi News Agency), and instead we focus on 
making the reasoning systems more tolerant of errorful data.  Our simplest 
technique is to perform limited reasoning such as semantic constraints that can be 
checked rapidly, and that in our evaluations we find to be indicative of IE errors and 
not intended contradictions.  We discuss this further below. 

Recall. Imperfect recall is another significant obstacle to interoperability. The amount 
of knowledge we typically get from documents is quite small compared to what a 
human might produce from the same document. The reasoning system is, therefore, 
crippled by major gaps in the input. Using inference can actually help improve recall, 
however it is a different sense than is typically used in IE measurements. Recall 
measurements are based on comparison to a “ground truth” (i.e. a human annotated 
corpus), in which implicit information does not appear. For example, in the sentence 



714 C. Welty and J.W. Murdock 

 

“Joe arrived in Paris”, we would not expect a test corpus to include the relationship 
that Joe arrived in France, yet this inferred information clearly increases the recall. 

Relationships. Simple IE systems that produce type annotations (such as Person, 
Organization, etc.) are not of much use as input to a reasoning system.  These end up 
in a knowledge base as assertions that something is an instance of something else.  
There is very little reasoning that can be done with only that information. In order 
for reasoning to produce useful results, we need relationships to be extracted as well. 
For example, there is not much to conclude from the sentence, “Joe was in Paris,” if 
all that was produced was that “Joe” is a person and “Paris” is a place. In this case, a 
located-in relation would be useful as well, as simple spatial containment axioms 
plus basic world knowledge (e.g. that Paris is in France) would allow a reasoner to 
conclude that Joe was in France. We use a number of IE components that produce 
relations over text, however the state-of-the-art in relation extraction is very poor on 
precision and recall. 

Annotations vs. Entities. In our experience, relation annotation by itself creates 
another problem. Every relation annotation creates a tuple whose elements are the 
spans of text that participate in the relation, and thus do not appear in other 
relations. This severely limits the usefulness of reasoning, since the elements of the 
relation tuples are the mentions not the entities. For example, from the sentences, 
“Joe was in Paris. Fred was in Paris, too,” relation annotation would produce two 
tuples, however the elements of the tuples are not the strings, “Joe”, “Fred”, and 
“Paris”, but the regions containing those strings in the original text, and as a result 
we have four elements identified by their position in text, not by their contents. 
Thus the first and second occurrences of “Paris” are different elements, and we 
could not conclude in a reasoner that, e.g. Joe and Fred are in the same place. In 
fact, without connecting these two mentions of Paris (both within and across 
documents), we end up with a large list of unconnected relation tuples. We address 
this problem with coreference analysis, and although we do not discuss it in this 
paper, coreference analysis is an essential task in populating knowledge-bases from 
text. In particular, consider that the output of knowledge integration is a graph – the 
graph without coreference analysis would be a disconnected set of connected pairs.  

Scalability. IE techniques scale far better than KR techniques, and as a result we also 
need to limit the amount of data that any reasoning component has to deal with.  In 
our experience, documents provide an excellent and reliable heuristic for KB size, as 
well as for consistency. We have found that, excluding IE errors, in excess of 90% of 
the documents we process are internally consistent, and thus far all documents (we 
focus mainly on news articles, intelligence reports and abstracts) have been the basis 
of small enough KBs for any of our advanced reasoning systems. Still, document-
based partitioning is inadequate for a lot of information gathering tasks that we have 
focused on, so a variety of incremental capabilities are required, as are efforts at more 
scalable reasoning. 

We attempt to address these dimensions in a component-based framework for 
supporting knowledge integration, discussed in the next section.  Due to space 
considerations we cannot discuss all five dimensions, and will focus mainly on  
 



 Towards Knowledge Acquisition from Information Extraction 715 

 

UIMA Extraction 
Database  

Source Plugin

UIMA Type 
System Plugin

HUTT→KANI 
Aggregate 

Mapper

RDF Store
Target Plugin

OWL Ontology 
Plugin

Source Data Target Data

Extraction→RDF
Provenance Plugin

UIMA
Extraction
Database

RDF Store
Database

UIMA/RDF
Provenance
Database

HUTT
Type System

KANI OWL
Ontology

 

Fig. 1. Example KITE-based application 

experiments we have performed to use deeper semantics expressed in OWL-DL to 
improve precision. 

4   Knowledge Integration and Transformation Engine (KITE) 

KITE (Murdock & Welty, 2006) is a middleware platform for use by developers of 
knowledge integration applications. KITE consists of two major components: 

• KITE Core Framework: Java interfaces, data structures, and a central 
control mechanism for mapping entities and relationships from one ontology 
to another. 

• KITE Commons: A set of broadly applicable plugins that comply with the 
interfaces specified in the core framework. 

A KITE-based integrator takes as input a Source Repository (e.g., a database, an 
RDF/XML file). Information in that repository is encoded in the Source Ontology 
(which is accessed via an Ontology Language Plugin). The Source Plugin reads from 
the source repository and outputs Source Data encoded in KITE data structures for 
instances and tuples. Mapper Plugins may be primitive or aggregate. Aggregate 
mapper plugins are composed of other (primitive or aggregate) mapper plugins. 
Primitive mapper plugins are Java objects that take Source Data as input and output 
Target Data (which consist of the same data structures, but are encoded in the Target 
Ontology). The Target Plugin writes that data to a Target Repository and the 
Provenance Plugin writes the mappings from source to target data into a Provenance 
Repository.  

Figure 1 shows an example of a KITE-based knowledge integrator. Source data  
for this application is encoded in HUTT (Hierarchical Unified Type Taxonomy),  
 



716 C. Welty and J.W. Murdock 

 

a UIMA type system based on a variety of established information extraction 
taxonomies (e.g., Doddington, et al., 2004; Sauri, Litman, et al., 2004). The output 
ontology for this application is the OWL ontology used in the KANI project (Fikes, 
Ferrucci, & Thurman, 2005). 

The input data for the example application is stored in a database designed to 
contain UIMA extracted information. The KITE Commons includes a plugin (UIMA 
Extraction Database Source Plugin) that accesses this database and outputs KITE 
instances and tuples (Source Data). This source data is provided to an aggregate 
mapper composed of an assortment of both generic mappers from the KITE 
Commons and specialized mappers that were written for the HUTT to KANI 
integrator. These mappers output target data.  That data is consumed by two plugins 
from the KITE Commons: the RDF Store Target Plugin writes the target data alone 
into a relational database for RDF triples, and the Extraction → RDF Provenance 
Plugin records (potentially complex) mappings from source data in the extraction 
database to target data in the RDF database; these mappings are stored in the 
UIMA/RDF Provenance Database. 

Systems that access instances and triples from the RDF store can request traces 
of the information extraction and knowledge integration processes that created 
those instances and triples. The provenance database is able to return that 
information either as database entries or in the OWL-based Proof Markup 
Language, PML (Pinheiro da Silva, McGuinness & Fikes, 2006).  Systems that 
perform additional reasoning over the extracted knowledge can provide integrated 
end-to-end PML traces that explain their conclusions as a combination of logical 
inferences from the RDF knowledge and extraction inferences used to obtain that 
knowledge from text (Murdock, et al., 2006). 

The most complex mappers that were written for this application involve the 
handling of temporal information.  The representation of time in HUTT is based on 
TimeML (Sauri & Littman, 2004), a language for marking up expressions of time in 
natural-language text.  The representation of time in the KANI ontology is OWL-
Time (Hobbs, 2004), a semantic web ontology.  OWL-Time makes relatively subtle 
distinctions that are usually implicit in text (e.g., distinguishing between time 
intervals and time interval descriptions). Furthermore, OWL-Time has distinct 
properties to encode different aspects of a description of a time (year, month, day, 
hour, etc.). In contrast, TimeML does not encode a time and its expression 
separately, and uses a relatively compact normalized form to encode a full time 
description in a single string. These differences are motivated by the different 
applications that these ontologies were designed for; OWL-Time directly enables a 
wide variety of logical inferences about times, while TimeML provides a 
convenient and compact formalism for identifying, normalizing, and linking 
expressions of time in text. A generic mapping component that was expressive 
enough to handle the mapping between these two portions of the HUTT and KANI 
ontologies would be extremely complicated to develop and to use.  However, many 
of the other terms in HUTT and KANI are handled easily by simple, generic 
mappers from the KITE Commons. 



 Towards Knowledge Acquisition from Information Extraction 717 

 

5   Improving Annotator Precision & Recall Using OWL 

One particularly promising result of our knowledge integration efforts supported by 
the KITE framework has been using the kind of deep, axiomatic, semantics that OWL 
enables, to help improve precision and recall in the results.  We present here our 
technique and a preliminary evaluation of its effectiveness with a large UIMA-based 
application that includes dozens of “off the shelf” analytic components run on a 
corpus of news articles. 

5.1   Technique and Evaluation for Improving Precision 

The most problematic kind of extraction produced by analytic components we have 
experienced is relation extraction.  A common type of error we see in extracted 
relations is the violation of simple domain and range constraints.  For example, in the 
following sentence: 

 
In February 1993, US officials said that US President Bush's decision in September  
1991 to withdraw tactical nuclear bombs, missiles and torpedoes from US Navy ships 
has caused the impetus for naval arms control to whither. 
 

our analytics extract an ownership relation in the underlined text between “nuclear” 
(annotated as a weapon), and “bombs” (also a weapon), which maps to a ownerOf 
relation in the ontology. The ownerOf relation has a restriction limiting the domain to 
Person or Organization or GPE and a disjointness constraint between each of these 
and Weapon.   

Our approach is a simple one. During knowledge integration, we construct an 
intermediate knowledge base (in fact, a Jena model) consisting of only the mapped 
entities and their type information. Then, during the mapping process producing 
relations, we add resulting triples to this KB one at a time. With each addition, we run 
the KB through a consistency check using Pellet. If the KB is not consistent, we 
“drop” the triple, if it is consistent, we add the triple to the output of the 
transformation. Obviously this technique does not scale particularly well and is 
entirely dependent on the degree to which the ontology is axiomatized. In preliminary 
experiments, however, the technique appears promising and does quite well – offering 
a clear improvement in precision by dropping incorrect triples. We are still exploring 
how these results generalize, but we present here some concrete examples, analysis, 
and discussion:   

Ontology. The ontology we tested consists of 56 classes and 62 object properties in 
the domain of nuclear arms proliferation. Other than a few specific classes for 
weapons, the classes and properties are fairly generic (people, places, facilities, etc.). 
All properties have global domain and range constraints, however some are not that 
restrictive. Five classes have local range constraints. Cardinality constraints are not of 
use in our domain. The most effort was spent assigning appropriate disjointness 
constraints, as these are key to the technique.   

Analytics. Our analytics are 42 off-the-shelf components that were developed for 
other projects such as TREC and ACE, and that we aggregated using the composition 



718 C. Welty and J.W. Murdock 

 

capabilities of UIMA. The merged type system contains 205 entity and 79 relation 
types; most of our analytic components overlap on common types such as PERSON 
and ORGANIZATION, etc., but each adds some unique functionality to the overall 
aggregate.  We have special purpose components for arbitrating between conflicting 
annotation assignments and for computing co-reference across documents.  

Corpus. The corpus contains over 30K documents that average about a page in length. 
Most are news articles or summaries of news articles in the domain of interest.  Due 
to the extensive cost of evaluation (which must be done by hand), the experiments 
were performed on 10, 41, and 378 documents. We report here the results of the 378 
document test.  On average our analytics produce 322 entity annotations and 21 
relation annotations per document, and coreference merges an average of 15 
annotations per entity and 1.8 annotations per relation.  The KITE-based knowledge 
integrator maps those entities and relations into instances and tuples in the KB. For 
the 378 document corpus, the end result is a KB of 6281 individuals and 834 object 
property triples. These numbers clearly demonstrate the significance of recall in this 
process, only a fraction of the generated knowledge base is of any real use to the 
semantic web, more than 70% of the entities simply have a label and a type. 

Results. Our technique dropped 67 (object property) triples of the 834 produced by 
the mapping process. Of the 67 dropped, 2 were actually correct and should not have 
been dropped (see the analysis below). This is a relative improvement in precision of 
8.7%., which is considerably more than the difference between the first and fifth place 
competitors in the ACE competition relation extraction task (for which this scale is 
also appropriate). The cost of this improvement is high; the system without this check 
takes about 5 minutes to generate a KB from 378 documents, and with the reasoning 
check takes over an hour. There is a lot that can be done to improve this, however, 
and our precision improvement results are encouraging enough that we are exploring 
alternatives, such as a much more rapid heuristic consistency checker (Fokue,  
et al, 2006), partitioning the KB by document instead of checking global consistency, 
and others.  

5.2   Analysis of Evaluation 

Of the 67 triples we reported dropped, 2 should not have been dropped. A further 11 
triples fell into a special category in which the triples themselves were correct, but the 
coreference resolution or type assignments for relation arguments were wrong, so a 
more robust solution would have been to amend the coreference or typing. 

Many (but not all) of the correct filtering of incorrect relations is a result of the 
combination of multiple independent annotators to determine the type of an entity. An 
example of this occurred in the following phrase: 

 
With the use of these pits, landmines, and guerrilla attacks, Khmer Rouge 
forces allegedly drove off the personnel sent to repair the road. 

 
One of our entity and relation annotators incorrectly determines that “Khmer Rouge” 
is a person who is the leader of the “forces.”  However, the combination of annotators 
concludes that “Khmer Rouge” is actually an organization. Since the OWL ontology 



 Towards Knowledge Acquisition from Information Extraction 719 

 

indicates that an organization can’t be the leader of another organization, this triple is 
correctly dropped. 

The two erroneously dropped triples were due to a combination of weak typing of 
entities and errors in another relation that did not manifest as inconsistencies until the 
triple in question was added to the KB.  For example, consider the phrase: 

 
… of countries like Pakistan, India, Iran, and North Korea, who are building … 

 
A comma between two geopolitical entities often indicates a subPlace relation (e.g., 
“Delhi, India”), and one of our annotators incorrectly extracts a subPlace relation 
between India and Iran. The cross-document coreference process is unable to 
authoritatively assign the “Country” label to the entity corresponding to “India”, so it 
ends up as a GPE (geopolitical entity), a superclass of Country. The entity 
corresponding to “Iran”, however, is correctly typed as a Country. In the ontology, there 
is a local range restriction on the Country class that prevents it from being a subPlace of 
another country. So, if the entity corresponding to “India” had been correctly labeled as 
a country, our technique would have dropped the “India subPlace Iran” relation when it 
was mapped, however since some countries are subplaces of GPEs (e.g. France 
subPlace EU), the weaker GPE assignment for India allows the erroneous triple through.  
By happenstance, a subsequent triple in the mapping process results from this passage, 

 
… were seized by Indian authorities after a raid on a suspected weapons lab … 

 
where our analytics correctly extract a citizenOf relation in the underlined text 
between “authorities” and “Indian”, correctly coreference “Indian” with the entity 
for “India” in the previous passage, and correctly assign the type Person to the 
entity corresponding to “authorities”. The ontology contains a global range 
restriction for the citizenOf relation to instances of Country. Since the erroneous 
subPlace triple added previously prevents India from being a country (since a 
country cannot be a subPlace of a country), adding this correct triple causes an 
inconsistent KB. This shows the technique has some order dependences, had these 
triples been added in a different order the correct one would have been dropped. 
Fortunately our initial results indicate these circumstances to be rare (2 erroneous 
drops out of 834 triples). 

There were eleven examples of dropped triples where problems were actually in the 
assignment of types to the entities or in coreference, so that a better approach would 
have been to fix the type assignments or undo a coreference merge. For example: 

 
… and the increase in organized criminal groups in the FSU and Eastern Europe. 

 
In this case, the analytics produce a basedIn relation between “groups” and “FSU” in 
the underlined text, but multiple annotators disagree on the type of “FSU” (some 
correctly say GPE, some incorrectly say Organization), and the incorrect label 
(Organization) ends up winning. Overall our technique for combining annotations 
does improve precision, but like all IE techniques it isn’t perfect, as in this case. 
Therefore we end up with an organization being basedIn an organization, and the 
ontology requires organizations to be basedIn GPEs, and specifies that GPEs and 
Organizations are disjoint. 



720 C. Welty and J.W. Murdock 

 

It is somewhat debatable whether dropping this triple is a mistake – clearly it 
would be better to fix the type, but the entity corresponding to “FSU”, as presented to 
the KB, is an organization and cannot be the object of a basedIn relation. Thus the KB 
does end up cleaner without it. 

5.3   Techniques for Improving Recall 

Our initial motivation for combining IE with semantic technology in general was the 
possibility of improving information access beyond keyword-based approaches 
through inference. For example, in the passage “Joe arrived in Paris”, no keyword 
search, nor search enhanced by semantic markup, would retrieve this passage in 
response to the query, “Who is in France?” Clearly with some world knowledge (that 
Paris is in France) and the ability to accurately recognize the relation in the passage 
(& query), we could employ reasoning to catch it. 

OWL-DL is not particularly strong in its ability to perform the kinds of “A-box” 
reasoning that would be needed to make a significant improvement in this kind of recall. 
Other choices are RDF rules and translating the KBs into more expressive languages 
(like KIF). A semantic web rules language would obviously help here as well.  

An interesting challenge is in measuring the impact of this kind of reasoning. It 
makes sense to call this an improvement in recall; in the simple example above 
clearly the passage in question contains an answer to the query, and clearly keyword 
search would not find it. However, it is a different sense of recall than is typically 
used in IE measurements. Recall measurements are based on comparison to a “ground 
truth” (i.e. a human annotated corpus), in which implicit information does not appear. 
In textual entailment (Dagan et al, 2005) the measurement problem is similar, 
however they address this in evaluations by always making the determination based 
on pairs of text passages. So we can show improvement in recall by selecting 
meaningful queries and determining if and how reasoning improves the recall for each 
query, but measuring recall improvements in the KB itself is more difficult. 

6   Conclusions 

In our research to use information extraction to help populate the semantic web, we 
have encountered significant obstacles to interoperability between the technologies. 
We believe these obstacles to be endemic to the basic paradigms, and not quirks of 
the specific implementations we have worked with.  In particular, we identified five 
dimensions of interoperability that must be addressed to successfully populate 
semantic web knowledge bases from information extraction systems that are suitable 
for reasoning. We called the task of transforming IE data into knowledge-bases 
knowledge integration, and briefly presented a framework called KITE in which we 
are exploring these dimensions.  Finally, we reported on the initial results of an 
experiment in which the knowledge integration process used the deeper semantics of 
OWL ontologies to improve the precision of relation extraction from text. By adding 
a simplistic consistency-checking step, we showed an 8.7% relative improvement in 
precision over a very robust IE application without that checking.  

This work is still in the beginning stages, but we do have results and conclusions, 
the most important of which is to address a long-standing problem that presents an 



 Towards Knowledge Acquisition from Information Extraction 721 

 

obstacle to interoperability: being realistic. IE and NLP systems do not produce 
perfect output of the sort that KR systems deal with, and KR systems are not capable 
of handling the scale, precision, and recall that NLP and IE systems produce. These 
are not criticisms but realities. We cannot just sit back and wait for the two 
technologies to eventually meet, rather we must begin exploring how to realistically 
integrate them. 

We should also point out that none of the implemented systems we used were 
baseline “strawman” systems, but reportedly state-of-the-art systems in each area. It is 
not our intention to advance research in information extraction nor in knowledge 
representation and reasoning, but rather in the combination of the two. We believe 
that the combination will be better than either individually, and have demonstrated 
one example of how this is so, using deeper semantics and reasoning to improve 
precision of relation extraction. 

Acknowledgements 

This work was supported in part by the ARDA/NIMD program. 

References 

K. Bontcheva. 2004. Open-source Tools for Creation, Maintenance, and Storage of Lexical 
Resources for Language Generation from Ontologies. Fourth International Conference on 
Language Resources and Evaluation (LREC'2004). Lisbon, Portugal. 2004. 

Roy Byrd & Yael Ravin. 1999. Identifying and Extracting Relations in Text. 4th International 
Conference on Applications of Natural Language to Information Systems (NLDB). 
Klagenfurt, Austria. 

Jennifer Chu-Carroll, Krzysztof Czuba, Pablo Duboue, and John Prager. 2005. IBM’s 
PIQUANT II in TREC2005. The Fourteenth Text REtrieval Conference (TREC 2005). 

Philipp Cimiano, Johanna Völker. 2005. Text2Onto - A Framework for Ontology Learning and 
Data-driven Change Discovery. 10th International Conference on Applications of Natural 
Language to Information Systems (NLDB). Alicante, Spain.  

Ido Dagan, Oren Glickman and Bernardo Magnini. The PASCAL Recognising Textual 
Entailment Challenge. In Proceedings of the PASCAL Challenges Workshop on Recognising 
Textual Entailment, 2005. 

Hamish Cunningham.  2005.  Automatic Information Extraction.  Encyclopedia of Language 
and Linguistics, 2cnd ed.  Elsevier. 

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas 
Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, & Jason Y. Zien. 2003. 
SemTag and Seeker: Bootstrapping the semantic web via automated semantic annotation.  
12th International World Wide Web Conference (WWW), Budapest, Hungary. 

George Doddington, Alexis Mitchell, Mark Przybocki, Lance Ramshaw, Stephanie Strassel, & 
Ralph Weischedel. 2004.  Automatic Content Extraction (ACE) program - task definitions 
and performance measures.  Fourth International Conference on Language Resources and 
Evaluation (LREC). 

David Ferrucci & Adam Lally. 2004. UIMA: an architectural approach to unstructured 
information processing in the corporate research environment. Natural Language 
Engineering 10 (3/4): 327–348. 



722 C. Welty and J.W. Murdock 

 

Richard Fikes, David Ferrucci, & David Thurman. 2005. Knowledge Associates for Novel 
Intelligence (KANI). 2005 International Conference on Intelligence Analysis McClean, VA.  

Achille Fokoue, Aaron Kershenbaum, Li Ma, Edith Schonberg and Kavitha Srinivas.  2006. 
The Summary Abox: Cutting Ontologies Down to Size. Proceedings of the 5th International 
Semantic Web Conference. Springer-Verlag. 

T. Götz & O. Suhre. 2004. Design and implementation of the UIMA Common Analysis 
System. IBM Systems Journal 43 (3): 476-489. 

Jerry R. Hobbs and Feng Pan.  2004.  An OWL Ontology of Time.  http://www.isi.edu/~pan/ 
time/owl-time-july04.txt 

Elizabeth D. Liddy.   2000.  Text Mining.  Bulletin of American Society for Information Science 
& Technology. 

Xiaoqiang Luo, Abraham Ittycheriah, Hongyan Jing, Nanda Kambhatla, Salim Roukos: A 
Mention-Synchronous Coreference Resolution Algorithm Based On the Bell Tree. ACL 
2004: 135-142. 

Elaine Marsh.  1998.  TIPSTER information extraction evaluation: the MUC-7 workshop. 
D. Maynard. 2005. Benchmarking ontology-based annotation tools for the Semantic Web. 

AHM2005 Workshop "Text Mining, e-Research and Grid-enabled Language Technology", 
Nottingham, UK, 2005. 

Diana Maynard, Milena Yankova, Alexandros Kourakis, and Antonis Kokossis.  2005. 
Ontology-based information extraction for market monitoring and technology watch.  
ESWC Workshop “End User Apects of the Semantic Web,” Heraklion, Crete, May, 2005. 

Scott Miller, Sergey Bratus, Lance Ramshaw, Ralph Weischedel, Alex Zamanian. 2001. 
FactBrowser demonstration.  First international conference on Human language technology 
research HLT '01. 

T. Milo, S. Zohar. 1998. Using Schema Matching to Simplify Heterogeneous Data Translation. 
VLDB 98, August 1998.  

J. William Murdock & Chris Welty.  2006.  Obtaining Formal Knowledge from Informal Text 
Analysis.  IBM Research Report RC23961. 

J. William Murdock, Deborah L. McGuinness, Paulo Pinheiro da Silva, Christopher Welty, 
David Ferrucci. 2006. Explaining Conclusions from Diverse Knowledge Sources. 
Proceedings of the 5th International Semantic Web Conference. Springer-Verlag. 

N. F. Noy & M. A. Musen. 2001. Anchor-PROMPT: Using Non-Local Context for Semantic 
Matching. Workshop on Ontologies and Information Sharing, Seattle, WA. 

Paulo Pinheiro da Silva, Deborah L. McGuinness & Richard Fikes.  A proof markup language 
for Semantic Web services.  2006.  Information Systems 31(4-5): 381-395. 

Borislav Popov, Atanas Kiryakov, Damyan Ognyanoff, Dimitar Manov, Angel Kirilov.  2004. 
KIM - A Semantic Platform for Information Extraction and Retrieval. Journal of Natural 
Language Engineering, 10(3-4): 375-392. 

Roser Sauri, Jessica Littman, Robert Gaizauskas, Andrea Setzer, & James Pustejovsky.  2004. 
TimeML Annotation Guidelines, Version 1.1. http://www.cs.brandeis.edu/%7Ejamesp/arda/ 
time/timeMLdocs/guidetest.pdf 

Alexander Schutz and Paul Buitelaar. 2005. RelExt: A Tool for Relation Extraction from Text 
in Ontology Extension.  Proceedings of ISWC-05. 

Johanna Voelker, Denny Vrandecic, York Sure. 2005. Automatic Evaluation of Ontologies 
(AEON). In Proceedings of ISWC-05. 



A Method for Learning Part-Whole Relations

Willem Robert van Hage1,2, Hap Kolb1, and Guus Schreiber2

1 TNO Science & Industry Delft
wrvhage@few.vu.nl, hap.kolb@tno.nl

2 Vrije Universiteit Amsterdam
schreiber@cs.vu.nl

Abstract. Part-whole relations are important in many domains, but typically re-
ceive less attention than subsumption relation. In this paper we describe a method
for finding part-whole relations. The method consists of two steps: (i) finding
phrase patterns for both explicit and implicit part-whole relations, and (ii) ap-
plying these patterns to find part-whole relation instances. We show results of
applying this method to a domain of finding sources of carcinogens.

1 Introduction

A plethora of existing vocabularies, terminologies and thesauri provide key knowledge
needed to make the Semantic Web work. However, in using these sources witinin one
context, a process of alignment is needed. This has already been identified as a central
problem in semantic-web research. Most aligment approaches focus on finding equiv-
alence and or subclass relations between concepts in diffeent sources. The objective of
this paper is to identifying alignment relations of the part-whole type. Part-whole rela-
tions play a key role in many application domains. For example, part-whole is a central
structuring principle in artefact design (ships, cars), in chemistry (structure of a sub-
stance) and medicine (anatomy). The nature of part-whole has been studied in the area
of formal ontology (e.g., [1]). Traditionally, part-whole receives much less attention
than the subclass/subsumption relation.

The main objective of this paper is to develop a method for learning part-whole re-
lations from existing vocabularies and text sources. Our sample domain is concerned
with food ingredients. We discuss a method to learn part-whole relations by first learn-
ing phrase patterns that connect parts to wholes from a training set of known part-whole
pairs using a search engine, and then applying the patterns to find new part-whole rela-
tions, again using a search engine. We apply this method in a use case of assisting safety
and health researchers in finding sources of carcinogenic substances using Google. We
evaluate the performance of the pattern-learning and the relation-learning steps, with
special attention to the performance of patterns that implicitly mention part-whole re-
lations. Furthermore we perform an end-to-end task evaluation to establish whether our
method accomplishes the task.

In Sec. 2 we describe the use case on which we evaluate end-to-end performance
and pose performance criteria. In Sec. 3 we discuss the experimental set-up we use to
learn part-whole relations. In Secs. 4 and 5 we describe the learning and application
of patterns to find part-whole relations and evaluate the performance of the patterns in

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 723–735, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



724 W.R. van Hage, H. Kolb, and G. Schreiber

terms of Precision. In Sec. 6 we evaluate Recall on four sample carcinogens. Sec. 7
discusses related work. We conclude with a discussion of the results and open research
questions in Sec. 8.

2 Use Case

An important application area of part-whole learning is health and safety research. Ex-
perts in this field are faced with hard information retrieval tasks on a regular bases.
News of a benzene spill in a river, for example, will trigger questions like “Is the gen-
eral public’s health in danger?”, “Are there any foodstuffs we should avoid?”, and “Are
there any occupational risks, fishermen perhaps?”. The first task the health and safety
researchers are faced with is to find out via which pathways the substance in question
can reach humans. Only then can they investigate if any of these pathways apply to the
current situation. A sizable part of this problem can be reduced to finding all part-whole
relations between the substance and initially unknown wholes in scientific literature and
reports from authorities in the field such as the United States Food and Drugs Admin-
istration1 (FDA) and Environmental Protection Agency2 (EPA), and the World Health
Organization3 (WHO).

The wholes should be possible routes through which humans can be exposed to the
substance. For example, tap water, exhaust fumes, or fish. We will not go into detail
discussing the roles these concepts play that leads to the actual exposure. For example,
when humans are exposed to benzene in fish by eating the fish, fish assumes the role
of food. Relevant part-whole relations can be of any of the types described by Winston,
Chaffin, and Herrmann [12].

component/integral object “Residents might have been exposed to benzene in their
drinking water.”

member/collection “Benzene belongs in the group of BTX-aromatics.”
portion/mass “3 tons of the benzene emissions can be attributed to the dehydrator.”
stuff/object “Aftershave used to contain benzene.”
feature/activity “Benzene is used in the dehydration process.” The part in this case is

not benzene itself, but the application of benzene, which is abstracted over with the
word “used”.

place/area “Benzene was found in the river.” The part in this case is the location where
the benzene was found, which is left anonymous.

The automation of the knowledge discovery task described above is a success if and
only if the following criteria are met:

1. The key concepts of each important pathway through with a carcinogen can reach
humans should be found. (i.e., Recall should be very high.)

2. The researchers should not be distracted by too many red herrings. (i.e., Precision
should be sufficient.)

1 http://www.fda.gov
2 http://www.epa.gov
3 http://www.who.int



A Method for Learning Part-Whole Relations 725

Precision can be evaluated in a straightforward manner by counting how many of the re-
turned part-whole relations are valid. The evaluation of Recall however poses a greater
problem. We are attempting to learn unknown facts. How can one measure which per-
centage of the unknown facts has been learnt when the facts are unknown? For this
use case we will solve this problem by looking at exposure crises for four substances
(acrylamide, asbestos, benzene, and dioxins) that have been documented in the past. We
know now which pathways led to the exposure in the past. This means we can construct
sets of pathways we should have known at the time of these crises and use these sets to
evaluate Recall.

3 Experimental Set-Up

In this paper we will use two-step method to learn part-whole relations. First we learn
lexical patterns from known part-whole pairs, using search engine queries. Then we
apply these patterns to a set of parts to find wholes that are related to these parts, also
using search engine queries. To constrain the size of the search space we will constrain
both the set of parts and the set of wholes to controlled vocabularies. In more detail, the
method works as follows:

1. Learning part-whole patterns.
(a) Construct a search query for each part-whole pair in a training set.
(b) Collect phrases from the search results that contain the part-whole pair.
(c) Abstract over the parts and wholes in the phrases to get patterns.
(d) Sort the patterns by frequency of occurrence. Discard the bottom of the list.

2. Learning wholes by applying the patterns.
(a) Fill in each pattern with all parts from a set of part instances, while keeping the wholes

free.
(b) Construct search queries for each filled in pattern.
(c) Collect phrases from the search result that contain the filled in pattern.
(d) Extract the part-whole pairs from the phrases.
(e) Constrain the pairs to those with wholes from a controlled vocabulary.
(f) Sort the pairs by frequency of occurrence. Discard the bottom of the list.

In the following two sections we will describe the details of the data sets we used and
we will motivate the decisions we made.

4 Learning Part-Whole Patterns

In this section we will describe the details of step 1 in our part-whole learning method,
described in the previous section. We will describe the training set we used and the
details of the application of step 1 on this training set, and analyze the resulting patterns.

Our training set consists of 503 part-whole pairs, derived from a list of various kinds of
food additives and food product types they can occur in created by the International Food
Information Council4 (IFIC) and the FDA.5 The list contains 58 additives (parts) and 113
food products (wholes), grouped together in 18 classes of additives such as sweeteners
and preservatives. An example is shown in Fig. 1. It is not specified which additives occur
4 http://www.ific.org
5 http://www.cfsan.fda.gov/˜dms/foodic.html



726 W.R. van Hage, H. Kolb, and G. Schreiber

in which food products. To discover this, we took the cartesian product of the additives
and the food products and filtered out the pairs that yielded no hits on Google6 when
put together in a wildcard query. For example, the pair 〈table-top sugar,aspartame〉 is
filtered out, because the query "table-top sugar * aspartame" or "aspartame *
table-top sugar" yields no hits.

Type Sweeteners
What They Do Add sweetness with or without the extra calories.
Examples of Uses Beverages, baked goods, confections, table-top sugar, sub-

stitutes, many processed foods.
Product Label Names Sucrose (sugar), glucose, fructose, sorbitol, mannitol, corn

syrup, high fructose corn syrup, saccharin, aspartame, su-
cralose, acesulfame potassium (acesulfame-K), neotame

Fig. 1. An excerpt from the IFIC and FDA list of food additives

For all 503 part-whole pairs that did yield results we collected the first 1000 snippets
(or as many snippets as were available). We attempted to part-of-speech tag these snip-
pets. This did not produce good results, because nearly all snippets were incomplete
sentences and many were lists of substances. For example, “. . . Water)*, Xanthan Gum,
Brassica Campestris (Rapeseed), Essential Oils [+/- CI 77491,CI . . . ”. None of the part-
of-speech taggers we tried were able to deal with this. Therefore we used the untagged
snippets and looked up all consistent phrases that connected the part and whole from
the query. In these phrases we substituted all parts and wholes by the variables “part
and whole”. This yielded 4502 unique patterns, which we sorted by frequency of occur-
rence. The frequencies of the patterns are shown in Fig. 2.

Due to the fact that there were many lists of substances in our data there were
also many patterns that did not describe a part-whole relation, but that were merely
part of a list of substances containing the part and the whole. These patterns can be
easily recognized, because they contain names of substances. For example, for the
pair 〈cheese,enzymes〉 the following snippet was returned: “cheese (pasteurized milk,
cheese cultures, salt, enzymes)”. An example of a good snippet is: “All cheese contains
enzymes.”. To exclude lists we removed all patterns that contain, apart from the part and
whole, labels of concepts in agricultural thesauri. The thesauri we used are the NAL
Agricultural Thesaurus7 and the AGROVOC Thesaurus8. (We used the SKOS9 version
of these thesauri.) This filtered out 1491 patterns, of which only 12 were correct part-
whole patterns. Fig. 2 shows a Precision graph of the list of patterns before and after
the filtering step.

To restrict the number of Google queries needed to find wholes for parts we decided
not to use all of the remaining 3011 patterns, but to select the most productive patterns.
We analyzed the 300 patterns that produce the most results. For each pattern we looked

6 http://www.google.com
7 http://agclass.nal.usda.gov/agt
8 http://www.fao.org/agrovoc
9 http://www.w3.org/2004/02/skos



A Method for Learning Part-Whole Relations 727

 1

 10

 100

 1000

 1  10  100  1000  10000

fr
eq

ue
nc

y

pattern #

pattern frequency

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  50  100  150  200  250  300

P
re

ci
si

on

pattern #

patterns
filtered patterns

Fig. 2. (left) Frequency distribution in the training set of the learnt patterns. Referred to as T in
Table 3. (right) Precision@n (i.e., # correct part of patterns in the top-n / n) graph over the top-300
most frequent patterns, before and after filtering out patterns that contain labels of AGROVOC or
NALT concepts.

at the snippets it returned. If the majority of the occurrences of the pattern described a
proper part-whole relation (i.e., Precision ≥ .5) we classified the pattern as part-whole.
Otherwise we classified it as not part-whole.

We distinguished the following groups of patterns, based on the most common types
of errors that led to the classification of the pattern as not part-whole. A pattern can
yield more than one type of false relations, but the classification is based on the most
common of the error types.

too specific Too training-set specific to be useful. Either the pattern contains adjectives
or it yields no hits due to over-training.

too generic The pattern matches part-whole relations, but also too many non-part-whole
relations to be useful. For example, the pattern “whole part”, as in “barn door”, can
match any type of collocation.

is a The pattern primarily matches hyponyms. The language used to describe mem-
ber/collection relations is also used for hyponyms.

conjunction/disjunction The pattern primarily matches conjunctions / disjunctions.
related The pattern connects terms that are related, but not part-whole related.
wrong Not a proper pattern for any other reason. Most of the errors in the wrong cate-

gory can be attributed to the lack of sophisticated linguistic analysis of the phrases.

Table 2 shows the build-up of the different error types.
We corrected 6 patterns that were classified as not part-whole, and added them to

the part-whole patterns. These patterns are not counted in Table 2. They are listed in
Table 1. Notice that in the English grammar, hyphenation turns a part-whole relation
into its inverse. For example, “sugar-containing cake” and “cake containing sugar”.

While analyzing the correct part-whole patterns we noticed that the phrases that deal
with part-whole relations do not always explicitly state that relation. Often, the part-
whole relation has to be inferred from the description of a process that led to the inclu-
sion of the part in the whole or the extraction of the part from the whole. For example,
from the sentence “I add honey to my tea.” we can infer that honey is part of the tea,
even though the sentence only mentions the process of adding it. In addition to explicit



728 W.R. van Hage, H. Kolb, and G. Schreiber

Table 1. Manually corrected patterns

“part to whole” → “add part to whole”,
“added part to whole”

“part to the whole” → “add part to the whole”,
“added part to the whole”

“part gives the whole” → “part gives the whole its”
“part containing whole” → “part-containing whole”
“part reduced whole” → “part-reduced whole”
“part increased whole” → “part-increased whole”

descriptions of part-whole relations we distinguish two types of phrases that mention
part-whole relations implicitly.

part of The phrase explicitly describes a part-whole relation. For example, “There’s
alcohol in beer.”.

source of The phrase implicitly describes a part-whole relation by describing the action
of acquiring the part from the whole. For example, “Go get some water from the
well.”.

made with The phrase implicitly describes a part-whole relation by describing a (con-
struction) process that leads to a part-whole relation. For example, “I add honey to
my tea”.

Table 2 shows that together, the implicit patterns account for a third of the total number
of part-whole pairs.

When applying patterns to learn part-whole relations it is useful to make this dis-
tinction into three types, because it turns out that these three types have rather different
Precision and Recall properties, listed in Table 3. The patterns in the part of class yield
the most results with high Precision. The patterns in the made with class also yield many
results, but—somewhat surprisingly—with much lower Precision, while the patterns in
the source of class yield few results, but with high Precision.

The 91 patterns we used for the discovery for wholes are the 83 classified as part-
whole in Table 2 and the 8 listed in Table 1 on the right side. They are listed in Table 6.

5 Finding Wholes

In this section we will describe the details of step 2 in our part-whole learning method,
described in the previous section. We will describe the sets of part and whole instances
we used, and analyze the resulting part-whole relations.

In the use case we focus on finding wholes that contain a specific substance. Ini-
tially, any concept name is a valid candidate for a whole. We tackle this problem by
first reducing the set of valid wholes to those that occur in a phrase that matches one
of the patterns learnt in step 1 of our method. This corresponds to step 2c and 2d of
our method. Then we prune this set of potential wholes using two large, agricultural,
and environmental thesauri that are geared to indexing documents relevant to our use
case. We remove all wholes that do not match a concept label in either thesaurus. This



A Method for Learning Part-Whole Relations 729

Table 2. Analysis of the top-300 most frequently occurring patterns

pattern class example pattern # patterns in class
part-whole 83

part of whole containing part 40
made with part added to whole 36
source of part found in whole 7

not part-whole 217
wrong part these whole, part organic whole 186
too specific part in commercial whole 10
too generic part of whole 7
is a whole such as part 5
related part as well as whole 4
conjunction part and whole, whole and part 3
disjunction part or whole, whole or part 2

corresponds to step 2e of our method. The former reduction step asserts that there is a
part-whole relation. The latter that the whole is on topic.

We select the possible part instances from a list of carcinogens provided by the In-
ternational Agency for Research on Cancer10 (IARC). In the IARC Monographs on
the Evaluation of Carcinogenic Risks to Humans11 carcinogenic agents, mixtures and
exposures are classified into four groups: positively carcinogenic to humans, probably
or possibly carcinogenic to humans, not classifiable as carcinogenic to humans, and
probably not carcinogenic to humans. We took the agents and mixtures from the group
of positively carcinogenic factors. We interpreted each line in the list as a description
of a concept. We removed the references and expanded the conjunctions, interpreting
each conjunct as a label of the concept. i.e., For example, we transform the list entry
“Arsenic [7440-38-2] and arsenic compounds (Vol. 23, Suppl. 7;1987)” into a concept
arsenic with the labels “Arsenic” and “arsenic compounds”. The resulting list contains
73 concepts, with 109 labels in total. We applied the 91 patterns that resulted from the
process described Sec. 4 on these 109 labels to discover wholes. We allow for words—
generally articles and adjectives—to appear in between the whole and the rest of the
pattern. For example, the pattern “part in whole” can be interpreted as “part in ∗ whole”,
and hence will match “part in deep-sea whole” and “part in the whole”. This also means
there can be overlap between the sets of part-whole pairs retrieved by patterns. From
the resulting filled-in patterns we extracted the wholes. We filtered out all wholes from
this list that do not appear in the UN FAO AGROVOC Thesaurus and the USDA NAL
Agricultural Thesaurus. When put together, these thesauri contain 69,746 concepts with
87,357 labels in total. Thus limiting the set of discoverable wholes to 69,746 concepts.
For each remaining whole in the list we construct a part-whole relation.

An assessment of the part-whole results is shown in Table 6. We approximated Pre-
cision for the 91 patterns we used to find wholes based on a random sample of 25
discovered pairs. The results are shown under “Precision”. The number of hits per pat-
tern are listed under D. This number includes duplicate phrases and multiple phrases

10 http://www.iarc.fr
11 http://monographs.iarc.fr/ENG/Classification



730 W.R. van Hage, H. Kolb, and G. Schreiber

describing the same part-whole pair. Table 4 in Sec. 6 shows how many unique wholes
are found for four example parts.

Table 3. Average pattern performance per pattern class. T is the number of times patterns in the
class occur in the training set. D is the number of discovered part-whole phrases.

pattern class # patterns in class T D avg. Precision
part of 40 744 84852 .81
made with 36 525 33408 .69
source of 7 111 8497 .83

6 Analysis

In Sec. 2 we stated two criteria that have to be met for the application of our part-whole
learning method to be a success. Precision has to be sufficient, and Recall has to be very
high. In Secs. 4 and 5 we analyzed the results in terms of frequency and Precision. We
achieved an average Precision of .74. In this section we will assess Recall.

Since even the knowledge of experts of whether or not a substance is contained in
some whole is far from complete we can not create a complete gold standard to measure
Recall. It is simply infeasible. We can, however, approximate Recall by computing it
on samples.

We set up four test cases centered towards discovering possible causes of exposure to
a specific carcinogenic agent. The agents we chose are acrylamide, asbestos, benzene,
and dioxins. These substances have all caused health safety crises in the past and pos-
sible exposure to them has been extensively documented. For each case we decided on
15 important concepts that contain the carcinogen and define a possible exposure route.
For example, you can be exposed to acrylamide by eating fried food such as french fries,
because acrylamide can be formed in the frying process. The selection of the wholes
was based on reports from the United States Environmental Protection Agency (EPA)
and the Netherlands Organization for Applied Scientific Research (TNO) Quality of
Life. The cases were set up without knowledge of the data set and the learning system,
to minimize the hindsight bias, but with knowledge of the concepts in the AGROVOC
and NALT thesauri. The sets of wholes are shown in Table 5, along with the rank at
which the whole occurs in the list of discovered wholes. Recall and the total number of
discovered wholes are shown in Table 4.

For all of the cases we found a large majority of the important concepts. For half of
the missed concepts we found concepts that are very closely related. For example, we

Table 4. Recall on four sample substances

concept (part) # of wholes found Recall
acrylamide 350 13/15 (.86)
asbestos 402 11/15 (.73)
benzene 479 13/15 (.86)
dioxins 439 12/15 (.80)



A Method for Learning Part-Whole Relations 731

did not find the concept “cement pipes”, but we did find “cement” and “pipes”, and we
did not find “air”, but we did find “air pollution” and “atmosphere”.

The data sets and the results can be found at the following web location: http://
www.few.vu.nl/˜wrvhage/carcinogens.

7 Related Work

The method of automatic learning of relations by first learning patterns and then ap-
plying these patterns on a large corpus is widely used. An example in the domain of
business mergers and production is described in the 1999 article by Finkelstein-Landau
and Morin [5]. Their work on extracting companies-product relations touches lightly
upon the subject of this paper. Another example of pattern-based relation learning on
the web is the KnowItAll system of Etzioni et al. [4]. The learning of part-whole re-
lations however is quite rare. Two examples, are the work of Berland and Charniak in
1999 [2] and Girju, Badulescu and Moldovan in 2003 [6].

Berland and Charniak learn part-whole patterns from a part-of-speech tagged cor-
pus, the Linguistic Data Consortium’s (LDC) North American News Corpus (NANC).
To illustrate the pattern learning phase they mention five example patterns. “whole’s
part”, “part of {the|a} whole”, “part in {the|a} whole”, “parts of wholes”, and “parts
in wholes”. The domain they used for evaluation is component/integral object relations
between artifacts such as cars and windshields. Even though our domain is quite differ-
ent, we found all five of their example patterns using our training data, respectively at
rank 294, 290, 12, 128, and 2 (of 4502 learnt patterns).

Girju, Badulescu, and Moldovan, used the SemCor 1.7 corpus and the LA Times
corpus from the Ninth Text Retrieval Conference (TREC-9). They used the meronyms
from WordNet [9], mainly component/integral object and member/collection relations.
Girju, Badulescu, and Moldovan also make the distinction between explicit and im-
plicit part-whole constructions, but the implicit constructions they focus on are mainly
possessive forms like “the girl’s mouth”, “eyes of the baby”, “oxygen-rich water”, and
“high heel shoes”. They list the three most frequent patterns, which also contain part-
of-speech tags. “part of whole”, “whole’s part”, and “part Verb whole”. We found the
first two patterns, as mentioned above, and many instances of the third pattern, such as
“part fortified whole” at rank 4.

Other applications of part-whole relations than discovering sources of substances are
query expansion for image retrieval [8, Ch. 6], and geographical retrieval [3].

8 Discussion

Our experimental setup assumes that all interesting information pertaining to some car-
cinogenic substance can be obtained in one single retrieval step. The construction of
complex paths from the substance to the eventual exposure has to happen in the mind of
the user—and depends solely on his expertise and ingenuity. This is a severe limitation
that leaves room for considerable improvement. A relatively straightforward extension
would be to iterate the retrieval step using suitable wholes found in retrieval step n−1
in the part slot in retrieval step n. Separation of roles, classes, etc. amongst the wholes



732 W.R. van Hage, H. Kolb, and G. Schreiber

Table 5. Recall bases for four sample substances

Acrylamide

concept (whole) rank
coffee 18
fried food 22
plastics industry 39
smoke 42
drinking water 43
olives 103
paper 109
dyes 114
soil 144
fish 158
herbicide 181
water treatment 195
textiles 275
air not found
baked food not found

Benzene

concept (whole) rank
leaded gasoline 1
water 4
solvents 9
smoke 10
dyes 32
pesticides 68
soil 69
detergents 76
cola 84a

rubber 161
bottled water 191
rivers 228
lubricants 340
air not foundb

fats not found

a soft drinks appear at rank 5
b found air pollution and atmosphere

Asbestos

concept (whole) rank
insulation 5
vermiculite 9
roofing 12
building materials 16
flooring 23
rocks 37
water 47
brakes 67
adhesives 127
cars 160
mucus 211
cement pipes not founda

sewage not foundb

air not found
feces not found

a found cement and pipes
b found refuse and wastewater

Dioxins

concept (whole) rank
fish 2a

paper 3
soil 7
herbicides 8
defoliants 17b

water 32
smoke 38
bleach 39
chickens 75
animal fat 106
animal feed 138
waste incineration 142
pigs not foundc

air not foundd

diesel trucks not founde

a also found fishermen
b also found vietnam
c found cattle and livestock
d found air quality
e found exhaust gases



A Method for Learning Part-Whole Relations 733

Table 6. The 91 patterns used for the learning of wholes, ordered by the number of correct pairs
it yielded. Prec. is Precision approximated on a sample of 25 occurrences (or less if freq. < 25).
D is the number of discovered part-whole phrases.

Prec. D pattern Prec. D pattern
.84 26799 part in whole .76 980 part content in the whole
.68 8787 whole with part .96 745 part-treated whole
.84 5266 part in the whole .84 786 part derived from whole
.96 4249 part from whole .76 852 whole rich in part
.68 5917 part for whole .28 2306 whole high part
.60 5794 part content whole .88 617 part-containing whole
.88 3949 whole contain part .20 2571 whole add part
1 2934 whole containing part .72 700 part in most whole
.64 4415 part based whole .80 623 part for use in whole
.72 3558 whole using part .40 1169 part to make whole
.92 2591 part levels in whole .72 630 add part to the whole
1 2336 part-laden whole .72 580 part enriched whole
.84 2327 part content in whole .56 703 part in many whole
1 1945 whole contains part .96 404 part-enriched whole
.76 2536 whole have part .72 527 part contents in whole
.72 2622 part into whole .52 608 added part to whole
.88 2035 part is used in whole .92 314 part occurs naturally in whole
1 1760 part found in whole .84 288 part extracted from whole
.52 3217 part free whole .96 226 whole enriched with part
1 1672 part is found in whole .68 310 part to our whole
.88 1834 part-rich whole .16 1160 whole provide part
.80 1994 part used in whole .68 247 added part to the whole
.92 1680 part content of whole .72 220 whole with added part
.20 7711 whole for part .96 137 part found in many whole
.96 1497 part is present in whole 1 124 whole containing high part
.84 1600 add part to whole .76 134 part replacement in whole
.88 1496 part added to whole .60 133 part for making whole
.80 1597 part in their whole .88 64 whole fortified with part
.92 1372 part-based whole .76 74 whole have part added
.88 1421 part in these whole .96 54 part-fortified whole
1 1218 whole that contain part .36 120 part compound for whole
1 1203 part levels in the whole .36 120 part fortified whole
.84 1361 part in all whole 1 24 whole sweetened with part
1 1112 part contained in whole .16 89 whole preserves part
.76 1455 part in some whole .91 11 part-reduced whole
.84 1301 part in your whole .90 10 part gives the whole its
1 1058 part present in whole .04 85 part sweetened whole
.76 1350 part in our whole .27 11 part-increased whole
1 985 part laden whole .67 3 part-added whole
.32 3052 whole use part 1 1 part-sweetened whole
.52 1648 whole mit part 1 1 part to sweeten their whole
.84 930 whole made with part 1 1 part fortification of whole
.88 885 part-free whole 0 0 part additions in various whole
.52 1477 part is in whole 0 0 part used in making whole
.80 945 part is added to whole 0 242 part hydrogenated whole
.92 811 whole high in part



734 W.R. van Hage, H. Kolb, and G. Schreiber

by means of classification (cf., e.g., [7]) might be necessary to limit the inevitable loss
of precision. For example, if step n−1 yielded that there is benzene in some fish, then
proceeding to investigate in step n whether these fish are part of people’s diet. If, how-
ever, step n−1 yielded that benzene is part of a group of carbon-based chemicals, then
proceeding to investigate these chemicals might lead to excessive topic drift.

The usefulness of such an extension depends to a large extent on the validity of
some sort of transitive reasoning over the paths. Yet, the transitivity characteristics of
part-whole expressions are notoriously quirky. Existing accounts actually either take the
classical route set out by Stanislaw Lesniewski in the 1920’s, defining the relations in
question axiomatically and with little consideration for actual usage, or they formulate
reasoning patterns for specific application domains and expressions (cf., e.g., [10]). Nei-
ther approach is applicable to the mixed bags of “interesting” token relations our setup
derives from natural language usage. A rare attempt to ground reasoning patterns in the
general usage of part-whole expressions is contained in [12]. Even though our lay-out
is orthogonal (and not even coextensive) to their influential classification of part-whole
relations, their basic intuition w.r.t. transitivity does carry over to our case. In short:

1. The part-whole relations, P, expressed in natural language form a partial order P =
〈P,≥〉;

2. The weakest link determines the interpretation of a chain of part-whole pairs w.r.t.
transitivity;

3. Transitivity fails if the chain contains uncomparable relation instances (w.r.t. ≥).

Contrary to [12] we assume that there is some weakest mereological relation, i.e., the
poset P has a minimum element. (2) can then be generalized as follows:

2’ Any element of P which is compatible with (i.e., as least as weak as) every relation
used to form a chain of part-whole pairs determines a transitive interpretation of that
chain.

This means that for every chain of part-whole pairs there is a meaningful, albeit some-
times rather weak, transitive interpretation available. It depends solely on the intended
utilization whether the information obtained in this way is specific enough to be useful.
What has its merits in a task with a strong element of exploration and novelty detection
like our use case, may well be a show stopper for tasks such as diagnosis in a process
control environment. Refinements, especially concerning the classification of relation
types and the properties of the poset of relations are necessary to extend the general
applicability of this approach.

This is especially true when our work is placed in the more general context of vocab-
ulary and ontology alignment. Most ontology-alignment systems aim at finding equiv-
alence relations. Yet, many real-world alignment cases have to deal with vocabularies
that have a different level of aggregation. (cf., [11]) In such cases equivalent concepts
are quite rare, while aggregation relations, such as broader/narrower term, subclass
and part-whole, are common. The carcinogen-source discovery case can be seen as an
ontology-alignment problem where the alignment relation is the part-whole relation and
the vocabularies are the controlled vocabulary of IARC group 1 carcinogens, and the
AGROVOC and NALT thesauri. Under this perspective our work describes a first step



A Method for Learning Part-Whole Relations 735

towards a novel approach to ontology alignment. The influence part-whole alignment
relations have on the consistency of the resulting aligned ontologies is unknown.

Acknowledgements

Margherita Sini and Johannes Keizer (FAO), Lori Finch (NAL), Fred van de Brug
(TNO), Dean Allemang (BU), Alistair Miles (CCLRC) and Dan Brickley (W3C), the
IARC, EPA, IFIC, and FDA, Vera Hollink (UvA), Sophia Katrenko (UvA), Mark van
Assem (VUA), Laura Hollink (VUA), Véronique Malaisé (VUA). This work is part of
the Virtual Lab e-Science project12.

References

1. Alessandro Artale, Enrico Franconi, Nicola Guarino, and Luca Pazzi. Part-whole relations
in object-centered systems: an overview. Data & Knowledge Engineering, 20(3):347–383,
1996.

2. Matthew Berland and Eugene Charniak. Finding parts in very large corpora. In Proc. of the
37th Annual Meeting of the Association for Computational Linguistics, 1999.

3. Davide Buscaldi, Paolo Rosso, and Emilio Sanchis Arnal. A wordnet-based query expan-
sion method for geographical information retrieval. In Working Notes for the CLEF 2005
Workshop, 2005.

4. Oren Etzioni, Michael Cafarella, Doug Downey, Ana-Maria Popescu Tal Shaked, Stephen
Soderland, Daniel S. Weld, and Alexander Yates. Methods for domain-independent informa-
tion extraction from the web: An experimental comparison. In Proc. of the AAAI Conference,
2004.

5. Michal Finkelstein-Landau and Emmanuel Morin. Extracting semantic relationships be-
tween terms: Supervised vs. unsupervised methods. In International Workshop on Ontolog-
ical Engineering on the Global Information Infrastructure, pages 71–80, 1999.

6. Roxana Girju, Adriana Badulescu, and Dan Moldovan. Learning semantic constraints for the
automatic discovery of part-whole relations. In Proc. of the HLT-NAACL, 2003.

7. Nicola Guarino and Christopher Welty. An overview of ontoclean. In Steffen Staab and Rudi
Studer, editors, Handbook on Ontologies, pages 151–171. Springer Verlag, 2004.

8. Laura Hollink. Semantic Annotation for Retrieval of Visual Resources. PhD thesis, Free Uni-
versity Amsterdam, 2006. Submitted. URI: http://www.cs.vu.nl/∼laurah/thesis/thesis.pdf.

9. George A. Miller. Wordnet: a lexical database for english. Communications of the ACM
(CACM), 38(11):39–41, 1995.

10. Stefan Schulz and Udo Hahn. Part-whole representation and reasoning in formal biomedical
ontologies. Artificial Intelligence in Medicine, 34(3):179–200, 2005.

11. Willem Robert van Hage, Sophia Katrenko, and Guus Schreiber. A method to combine
linguistic ontology-mapping techniques. In International Semantic Web Conference, pages
732–744, 2005.

12. Morton E. Winston, Roger Chaffin, and Douglas Herrmann. A taxonomy of part-whole
relations. Cognitive Science, 11:417–444, 1987.

12 http://www.vl-e.org



OntoWiki – A Tool for Social, Semantic
Collaboration

Sören Auer1,2, Sebastian Dietzold2, and Thomas Riechert2

1 University of Pennsylvania, Department of Computer and Information Science
Philadelphia, PA 19104, USA

auer@seas.upenn.edu
2 Universität Leipzig, Institut für Informatik, Augustusplatz 10-11,

D-04109 Leipzig, Germany
{lastname}@informatik.uni-leipzig.de

Abstract. We present OntoWiki, a tool providing support for agile, dis-
tributed knowledge engineering scenarios. OntoWiki facilitates the visual
presentation of a knowledge base as an information map, with different
views on instance data. It enables intuitive authoring of semantic con-
tent, with an inline editing mode for editing RDF content, similar to
WYSIWYG for text documents. It fosters social collaboration aspects by
keeping track of changes, allowing to comment and discuss every single
part of a knowledge base, enabling to rate and measure the popularity
of content and honoring the activity of users. Ontowiki enhances the
browsing and retrieval by offering semantic enhanced search strategies.
All these techniques are applied with the ultimate goal of decreasing the
entrance barrier for projects and domain experts to collaborate using se-
mantic technologies. In the spirit of the Web 2.0 OntoWiki implements
an ”architecture of participation” that allows users to add value to the
application as they use it. It is available as open-source software and a
demonstration platform can be accessed at http://3ba.se.

We present a tool supporting agile Knowledge Engineering in a pure Web en-
vironment. It is called OntoWiki since it is close in the spirit to existing Wiki
systems. Technologically however, the OntoWiki design is independent and com-
plementary to conventional Wiki technologies. As such, the OntoWiki approach
differs from recently emerged strategies to integrate Wiki systems and the Se-
mantic Web (cf. [6,5,8,11,12]). In these works it is proposed to integrate RDF
triples into Wiki texts in a special syntax. It is a straightforward combination
of existing Wiki systems and the Semantic Web knowledge representation para-
digms. However, we see the following obstacles:

– Usability: The main advantage of Wiki systems is their unbeatable usability.
Adding more and more syntactic possibilities counteracts ease of use for
editors.

– Redundancy: To allow the answering of real-time queries to the knowledge
base statements have to be stored additionally in a triple store. This intro-
duces a redundancy complicating the implementation.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 736–749, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



OntoWiki – A Tool for Social, Semantic Collaboration 737

– Scalability: Knowledge base changes which involve statements with different
subjects will scale very bad since all corresponding Wiki texts have to be
parsed and changed.

The OntoWiki strategy presented in this paper, on the contrary, does not
try to mix text editing with knowledge engineering, instead it applies the Wiki
paradigm of “making it easy to correct mistakes, rather than making it hard
to make them”[9] to collaborative knowledge engineering. The main goal of the
OntoWiki approach thus is to rapidly simplify the presentation and acquisition
of instance data from and for end users. This is achieved by regarding knowledge
bases as ”information maps”. Each node at the information map is represented
visually and intuitively for end users in a generic but configurable way and
interlinked to related digital resources. Users are further enabled to enhance the
knowledge schema incrementally as well as to contribute instance data agreeing
on it as easy as possible to provide more detailed descriptions and modelings.
Consequently, the following requirements have been determined for OntoWiki:

– Intuitive display and editing of instance data should be provided in generic
ways, yet enabling means for domains specific views.

– Semantic views allow the generation of different views and aggregations of
the knowledge base.

– Versioning and Evolution provides the opportunity to track, review and se-
lectively roll-back changes.

– Semantic search facilitates easy-to-use full-text searches on all literal data,
search results can be filtered and sorted (using semantic relations).

– Community support enables discussions about small information chunks.
Users are encouraged to vote about distinct facts or prospective changes.

– Online statistics interactively measures the popularity of content and activity
of users.

– Semantic syndication supports the distribution of information and their in-
tegration into desktop applications.

In the remainder of the paper we propose strategies on how to put these re-
quirements into effect in a real-life system and report about implementation in a
prototypical OntoWiki on the basis of Powl [1], a framework for Semantic Web
application development. To stress the generic character of OntoWiki, the fig-
ures in this paper show screenshots of the OntoWiki prototype with a knowledge
base collaboratively developed1 and containing information about scientific con-
ferences, as well as another publicly available knowledge base2 containing infor-
mation about research projects, people and publications at a research institute.

1 Visual Representation of Semantic Content

The compromise of, on the one hand, providing a generic user interface for
arbitrary RDF knowledge bases and, on the other hand, aiming at being as
1 at http://3ba.se
2 http://www.aifb.uni-karlsruhe.de/viewAIFB OWL.owl



738 S. Auer, S. Dietzold, and T. Riechert

intuitive as possible is tackled by regarding knowledge bases as ”information
maps”. Each node at the information map, i.e. RDF resource, is represented as
a Web accessible page and interlinked to related digital resources. These Web
pages representing nodes in the information map are divided into three parts: a
left sidebar, a main content section and a right sidebar. The left sidebar offers
the selection of content to display in the main content section. Selection oppor-
tunities include the set of available knowledge bases, a class hierarchy browser
and a full-text search. Once a selection is made, the main content section will
arrange matching content in a list view linking to individual views for individual
instances (cf. 1). The right sidebar offers tools and complementary information
specific to the selected content.

Fig. 1. List view (left) and view of an individual instance with expanded inline reference
view (right)

List views allow to view a selection of several instances in a combined view. The
selection of instances to display can be either based on class membership or on
the result of a selection by facet or full-text search. OntoWiki identifies those
properties used in conjunction with the instances of the selection. The display
of the corresponding property values for each instance can be switched on, thus
resulting in a tabular view. Furthermore, each individual instance displayed is
linked to an individual view of that instance.

Individual views combine all the properties attached to an particular instance.
Property values pointing to other individuals are rendered as HTML links to the
corresponding individual view. Alternatively, to get information about the refer-
enced individual without having to load the complete individual view it is possible
to expand a short summary (loaded per AJAX) right where the reference is shown.
The right sidebar provides additionally information about similar instances (of the
same type) and incoming links (i.e. references from other instances).



OntoWiki – A Tool for Social, Semantic Collaboration 739

Different Views on Instance Data. The OntoWiki prototype facilitates dif-
ferent views on instance data. Such views can be either domain specific or generic.
Domain specific views have to be implemented as plug-ins. Generic views provide
visual representations of instance data according to certain property values. The
following views are currently implemented:

Fig. 2. Map view (left) and calendar view (right) of instance data

Map View. If the selected data (either a single instance or a list of instances)
contains property values representing geographical information (i.e. longitude
and latitude coordinates) a map view provides information about the geograph-
ical location of the selected data (cf. Figure 2). Technically, this view is realized
by integrating the Google Maps API3. However, the integration is bi-directional,
since objects displayed in the map can be expanded and instance details are dy-
namically fetched from the knowledge base and displayed directly within the
map view. The selection of instances to be displayed can be furthermore the
result of a facet-based filtering (cf. Section 4).

Calendar View. Instances having property values with the associated datatype
xsd:date can be displayed in a calendar view (cf. Figure 2). As for the map
view the selection of instances displayed in the calendar view can be the result
of a facet-based filtering. Each item displayed is linked to the individual view of
the corresponding instance. The sidebar offers a link to export calendar items in
iCal format, which enables to import the selected calendar items into a desktop
calender application.

2 Collaborative Authoring

To enable users to edit information presented by the OntoWiki system as in-
tuitively as possible, the OntoWiki approach supports two complementary edit
strategies for the knowledge base:
3 http://www.google.com/apis/maps/



740 S. Auer, S. Dietzold, and T. Riechert

– Inline editing, the smallest possible information chunks (i.e. statements) pre-
sented in the OntoWiki user interface are editable for users.

– View editing, common combinations of information (such as an instance of
a distinct class) are editable in one single step.

Both editing strategies are supported by a mixed client and server side concept
identification and reuse technology and a library of generic editing widgets. In the
remainder of this section the editing strategies and their supporting technologies
are presented in more detail.

2.1 Inline Editing

For human users it is important that the statements of a knowledge base are
presented on the user interface in a way facilitating the efficient reception of this
information. To achieve this goal information should be ordered and grouped
and as a result of this information appearing redundant should be omitted. If
the context clarifies, for example, that some information describes a distinct
concept (e.g. since the OntoWiki page for a person was accessed) the concept
will be displayed only once on the OntoWiki user interface, even though all
the statements describing the concept contain the concepts URI reference as
subject. If furthermore a property (e.g. referencing publications) occurs multiple
times (e.g. since the person described is author of multiple publications) those
statements should be grouped together and the label of the property should be
displayed only once (cf. Figure 3).

Fig. 3. OntoWiki instance display with statement edit buttons (left). Statement editor
with interactive search for predefined individuals based on AJAX technology (right).

Even though such a human friendly representation of the statements contained
in the knowledge bases conceals the original statement structure the OntoWiki
system is aware which information displayed on the user interface originated from



OntoWiki – A Tool for Social, Semantic Collaboration 741

what statements. To enable users to rapidly edit or add statements as soon as
they notice mistakes or missing information OntoWiki features an inline editing
mode. This means that all information originating from statements presented on
the OntoWiki user interface is equipped with a small edit button as well as an
add button (cf. Figure 3). After clicking one of those buttons a resource editor
(cf. Figure 4) is loaded and the corresponding statement can be easily edited
or a similar content (i.e. a statement with same subject and predicate) can be
added.

This strategy can be seen analogous to the WYSIWYG (What You See Is
What You Get) editing strategy for text editing, since information can be edited
in the same environment as it is presented to users.

2.2 Concept Identification and Reuse

Knowledge bases become increasingly advantageous, if once defined concepts
(e.g. classes, properties, or instances) are as much reused and interlinked as
possible. This especially eases the task of rearranging, extracting and aggregating
knowledge. To become part of the daily routine for even inexperienced and rare
users of the OntoWiki system already defined concepts should be suggested to
the user, whenever he is requested to contribute new information. In a Web
based environment and for highly scalable knowledge bases conventional Web
technologies were the major obstacles for this.

Conventional Web technologies do not support large data sets to be handled
at the client (browser) side. But this is usually needed when working with large
knowledge bases. To overcome this limitation, reloading of web pages becomes
necessary. This approach is time consuming and requires multiple user interac-
tions. Recently, with the deployment of more sophisticated Web browsers, sup-
porting modern JavaScript and XML technologies, mixed server and client side
web applications became possible. These were recently named AJAX (Asynchro-
nous JavaScript and XML) and early adopters such as Google-Maps4 or Flickr5

make extensive use of them.
The OntoWiki uses the AJAX technology to interactively propose already

defined concepts while the user types in new information to be added to the
knowledge base (cf. Figure 3). To realize this interactive search, all URI refer-
ences and literals are indexed for full-text searches in the statement repository.

2.3 Editing Widgets

For convenient editing of differently typed literal data the OntoWiki system
provides a library of reusable user interface components for data editing, called
widgets. Such widgets are implemented in a server side programming language
(e.g. PHP), they generate HTML fragments together with appropriate Cascading
Style Sheet definitions and optionally JavaScript code. They may be customized
for usage in specific contexts by widget configurations. The following widgets
are currently provided by the prototypical OntoWiki implementation:
4 http://maps.google.com
5 http://www.flickr.com



742 S. Auer, S. Dietzold, and T. Riechert

– Statements: allows editing of subject, predicate, and object.
– Nodes: edit literals or resources.
– Resources: select and search from/for existing resources
– Literals: literal data in conjunction with a data type or a language identifier.
– Widgets for specific literal data types: e.g. dates, HTML fragments.
– File widget: allows uploading of files to the OntoWiki system.

All widgets can be configured. The OntoWiki system allows to define and
attach certain sets of configurations to a specific widget. In addition to widget
specific configurations, generic widget configuration which should be applicable
to all widgets includes HTML attributes such as class, height and width of the
widget, or arbitrary CSS styles.

A widget selection connects a widget configuration with a context. Contexts
are the data type of the literal to be edited, the property of the statement which’s
object is edited, the property in conjunction with a specific class, the knowledge
base the node to be edited belongs to, as well as the editing user and her group.

2.4 View Editing

Editable views are combinations of widgets to edit a specific view on the knowl-
edge base in one single step. The OntoWiki system provides the following types
of editable views:

– Metadata: comments, labels, and annotations (such as versioning and com-
patibility information) which can be attached to arbitrary resources are com-
bined in a metadata view.

– Instances: An instance view combines all properties attached to the in-
stance’s class or one of the super-classes. For large knowledge bases this

Fig. 4. Editing of a property’s values at many instances at once (left). Dynamically
generated form combining different widgets based on an OWL class definition (right).



OntoWiki – A Tool for Social, Semantic Collaboration 743

might include a large amount of properties. The OntoWiki system thus al-
lows to restrict the view to such properties which are really used in conjunc-
tion with other instances of the same class. On the basis of range definitions
for the property, OntoWiki selects appropriate editing widgets. Additional
properties can be added on-the-fly, the system will ask the user in a next
step to specify the property’s characteristics (e.g. domain, range, cardinality
restrictions).

– Views: The earlier described inline-editing technique allows to edit arbi-
trary views. The columns of list views arranging many instances in a tabular
way for example can be easily edited at once, thus allowing to rapidly add
”horizontal” knowledge (across several instances) to the knowledge base (cf.
Figure 4).

3 Enabling Social Collaboration

A major aim of OntoWiki is to foster and employ social interactions for the
development of knowledge bases. This eases the structured exchange of meta-
information about the knowledge base drastically and promotes collaboration
scenarios where face-to-face communication is hard. Making means of social
interactions as easy as possible furthermore contributes in creating an ”architec-
ture of participation” that allows users to add value to the system as they use
it. Social collaboration within OntoWiki is in particular supported by:

Change tracking. All changes applied to a knowledge base are tracked. OntoWiki
enables the review of changes on different levels of detail (see also [3]) and op-
tionally restricted to a specific context, such as changes on a specific instance,
changes on instances of a class, or changes made by a distinct user. In addition
to present such change sets on the Web, users can subscribe to get information
about the most recent changes on objects of their interest by email or RSS/Atom
feeds.

Commenting. All statements presented to the user by the OntoWiki system may
be annotated, commented, and their usefulness can be rated. This enables com-
munity driven discussions, for example about the validity of certain statements.
Technically, this is implemented on the basis of RDF reifications, which allow to
make statements about statements. Small icons attached to an object of a state-
ment within the OntoWiki user interface indicate that such reifications exist (cf.
Figure 5). Positioning the mouse pointer on such an icon will immediately show
up a tool tip with the most recent annotations; clicking on the icon will display
them all.

Rating. OntoWiki allows to rate instances. Users have to be registered and
logged into the system to participate in order to avoid duplicate ratings by
the same user. However, a user may change his rating for a certain instance.
Special annotation properties allow the creation of rating categories with respect



744 S. Auer, S. Dietzold, and T. Riechert

Fig. 5. Comments attached to statements

to a certain class. Instances of the class can then be rated according to these
categories, thus allowing for example the rating of instances of a class publication
according to categories originality, quality and presentation.

Popularity. All accesses to the knowledge base are logged thus allowing to
arrange views on the content based on popularity. As with ratings or user activity,
the popularity of content can be measured with respect to a certain knowledge
base or fragment of it (e.g. popularity with respect to class membership). This
enables users to add value to the system as they use it.

Activity/Provenance. The system keeps record of what was contributed by
whom. This includes contributions to the ontology schema, additions of instance
data or commenting. This information can be used to honor active users in the
context of the overall system, a specific knowledge base or a fragment of it (e.g.
instance additions to some class). This way it contributes to instantly gratify
users for their efforts and helps building a community related to certain seman-
tic content.

4 Semantic Search

To realize the full potential of a semantic browsing experience the semantic
structuring and representation of content should be employed to enhance the
retrieval of information for human users. OntoWiki implements two complemen-
tary strategies to achieve this goal.

4.1 Facet-Based Browsing

Taxonomic structures give users exactly one way to access the information. Fur-
thermore, the development of appropriate taxonomic structures (whether e.g.
class or SKOS keyword hierarchies) requires significant initial efforts. As a pay-
as-you-go strategy, facet-based browsing allows to reduce the efforts for a priori
knowledge structuring, while still offering efficient means to retrieve informa-
tion. Facet-based browsing was also implemented by the Longwell Browser6 for
RDF data and it is widely deployed in the shape of tagging systems of the Web
2.0 folksonomies. To enable users to select objects according to certain facets,

6 http://simile.mit.edu/longwell/



OntoWiki – A Tool for Social, Semantic Collaboration 745

all property values (facets) of a set of selected instances are analyzed. If for a
certain property the instances have only a limited set of values, those values are
offered to restrict the instance selection further. Hence, this way of navigation
through data will never lead to empty results. The analyzing of property values
though can be very resource demanding. To still enable fast response times the
OntoWiki system caches the results of of a property value analysis for later reuse
and invalidates those cache objects selectively if values of the respective property
are updated (see [2, Chapter 5] for details).

4.2 Semantically Enhanced Full-Text Search

OntoWiki provides a full-text search for one or multiple keywords occurring in
literal property values. Since there can be several property values of a single
individual containing the search string the results are grouped by instances.
They are ordered by frequency of occurrence of the search string. Search results
may be filtered to contain only individuals which are instances of a distinct class
or which are described by the literal only in conjunction with a distinct property
(cf. Figure 6).

A semantic search has significant advantages compared to conventional full-
text searches. By detecting classes and properties, contain matching instances,
the semantic search delivers important feedback to the user how the search may
be successfully refined.

The semantic search is currently implemented as a search in the local RDF
store. In conjunction with a crawler, which searches, downloads, and stores ar-
bitrary RDF documents from the web, OntoWiki can be easily transformed in
a Semantic Web search engine.

Fig. 6. User interface for the semantic search in the OntoWiki system. After a search
for ”York” it suggested to refine his search to instances with one of the properties
swrc:address, swrc:booktitle or swrc:name.



746 S. Auer, S. Dietzold, and T. Riechert

5 Implementation and Status

OntoWiki is implemented as an alternative user interface to the schema editor
integrated in Powl. Powl is a platform for Semantic Web application development
realized in a 3-tier architecture consisting of storage tier, object-oriented API
and user interfaces (cf. Figure 7). Many of the requirements for OntoWiki were
gathered from use cases of Powl.

UI Layer

API Layer

Storage Layer

RDF API

RAP Powl Protégé

Sesame Redland …SQL Store

…

RDFS/OWL API WidgetsPowl API

Powl UI Ontowiki …

S
ys

te
m

 O
nt

ol
og

y

Fig. 7. Architecture of Powl and OntoWiki

OntoWiki was implemented in the scripting language PHP, thus allowing to
be easily deployed on most Web hosting environments. The application is avail-
able as open-source software from SourceForge7. A publicly available knowledge
repository on the basis of OntoWiki is available at http://3ba.se.

The system is designed to work with knowledge bases of arbitrary size (only
limited by disk space). This is achieved by loading only those parts of the knowl-
edge base into main memory which are required to display the information re-
quested by the user on the screen (i.e. to render a Web page containing this
information).

Currently, OntoWiki is extended and adopted within a variety of R&D projects.
The project SoftWiki8 for example is developing a prototype based on OntoWiki,
which aims to employ OntoWiki’s social collaboration functionality for end-user
driven Requirements Engineering of massively distributed software development
projects. For the project Orchestra [7] OntoWiki’s storage, browsing and retrieval
functionality is envisioned to be used as a shared repository for ontologies and
queries in the bio-informatics domain. In the project ”Vernetzte Kirche” [4] Powl
and parts of OntoWiki were applied to foster a meta-data initiative for social, cul-
tural and religious content.
7 http://powl.sf.net
8 http://softwiki.de



OntoWiki – A Tool for Social, Semantic Collaboration 747

6 Conclusion

In this paper we presented the OntoWiki approach, exemplary exhibiting how
tool support for agile, collaborative knowledge engineering scenarios can be pro-
vided. Since the OntoWiki system is based technologically on Powl, we stressed
in this paper especially aspects facilitating the usage of the OntoWiki system.
These include the visual presentation of a knowledge base as an information
map, social collaboration aspects as well as a semantic search strategy. Such
efforts, which decrease the entrance barrier for domain experts to collaborate
using semantic technologies, are in particular crucial to gain a maximized im-
pact on collaborative knowledge engineering. Examples from other domains, such
as Community Content Management and Software Development, showed that
such efforts can have an enormous impact on distributed collaboration, thus en-
abling completely new products and services. Conventional Wiki technologies
for example radically simplified the editing process and enabled the Wikipedia
project9 to attract a multitude of editors finally succeeding in the creation of the
worlds largest encyclopedia. Technologies for distributed collaborative software
development as CVS and Subversion10 or the SourceForge11 platform made it
possible to develop almost any standard software for private or business needs
largely in absence of strong, centralized, commercial corporations. The aim of
OntoWiki is to contribute giving the Semantic Web a much broader basis.

Application domain. The OntoWiki system is technologically independent of and
complementary to conventional text Wiki systems. It enables the easy creation
of highly structured content by distributed communities. The following points
summarize some limitations and weaknesses of OntoWiki and thus characterize
the application domain:

– Environment: OntoWiki is a Web application and presumes all collaborators
working in a Web environment, possibly spatially distributed.

– Usage Scenario: OntoWiki focuses on knowledge engineering projects where
a single, precise usage scenario is either initially not (yet) known or not
(easily) definable.

– Reasoning: Application of reasoning services is (initially) not mission critical.
– Budget: Only a small amount of financial and personnel resources are avail-

able.

Open issues and potential future work.

– Implement a privilege system and access control for and on the basis of the
RDF data model with support for rights management on higher conceptual
levels than that of statements.

– Obtain more case studies, in particular independent comparisons, are needed
to provide further evidence to see whether OntoWiki lives up to its promises.

9 http://wikipedia.org
10 http://subversion.tigris.org
11 http://sf.net



748 S. Auer, S. Dietzold, and T. Riechert

– Examine possibilities to tighter integrate the Description Logic reasoning
services into OntoWiki.

– Establish better methods of interaction with existing content and knowledge
management systems.

Further related work. In addition to the affinity with Wiki systems and Web por-
tals in general the OntoWiki approach can be seen as a representative of a new
class of semantic portals (cf. [13]). The SEAL SEmantic portAL [10] for example
exploits semantics for providing and accessing information at a portal as well
as constructing and maintaining the portal. Due being based on a rather static
methodology [14] it focuses less on spontaneous, incremental enhancements of
the knowledge base than OntoWiki. Another approach to develop a semantic
portal is the website of the Mindswap project12. Semantic Web knowledge rep-
resentation standards are used as primary data source and for interoperability,
the editing and publishing process as well as collaboration aspects however seem
to be either not tackled or publicised.

Acknowledgments

This research was supported in part by the following grants: BMBF (SE2006
#01ISF02B), NSF (CAREER #IIS-0477972 and SEIII #IIS-0513778).

References

1. Sören Auer. Powl: A Web Based Platform for Collaborative Semantic Web De-
velopment. In Sören Auer, Chris Bizer, and Libby Miller, editors, Proceedings of
the Workshop Scripting for the Semantic Web, number 135 in CEUR Workshop
Proceedings, Heraklion, Greece, 05 2005.

2. Sören Auer. Towards Agile Knowledge Engineering: Methodology, Concepts and
Applications. PhD thesis, Universität Leipzig, 2006.

3. Sören Auer and Heinrich Herre. A Versioning and Evolution Framework for RDF
Knowledge Bases. In Proceedings of Ershov Memorial Conference, 2006.

4. Sören Auer and Bart Pieterse. ”Vernetzte Kirche”: Building a Semantic Web. In
Proceedings of ISWC Workshop Semantic Web Case Studies and Best Practices
for eBusiness (SWCASE05), 2005.

5. David Aumüller. Semantic Authoring and Retrieval within a Wiki (WikSAR). In
Demo Session at the Second European Semantic Web Conference (ESWC2005),
May 2005. Available at http://wiksar.sf.net, 2005.

6. David Aumüller. SHAWN: Structure Helps a Wiki Navigate. In Proceedings of the
BTW-Workshop ”WebDB Meets IR”, 2005.

7. Zachary G. Ives, Nitin Khandelwal, Aneesh Kapur, and Murat Cakir. ORCHES-
TRA: Rapid, collaborative sharing of dynamic data. In CIDR, pages 107–118,
2005.

8. Markus Krötzsch, Denny Vrandecic, and Max Völkel. Wikipedia and the Semantic
Web - The Missing Links. In Jakob Voss and Andrew Lih, editors, Proceedings of
Wikimania 2005, Frankfurt, Germany, 2005.

12 http://www.mindswap.org/first.shtml



OntoWiki – A Tool for Social, Semantic Collaboration 749

9. Bo Leuf and Ward Cunningham. The Wiki Way: Collaboration and Sharing on
the Internet. Addison-Wesley Professional, 2001.

10. Alexander Maedche, Steffen Staab, Nenad Stojanovic, Rudi Studer, and York Sure.
SEmantic portAL: The SEAL approach. In Dieter Fensel, James A. Hendler, Henry
Lieberman, and Wolfgang Wahlster, editors, Spinning the Semantic Web, pages
317–359. MIT Press, 2003.

11. Eyal Oren. SemperWiki: A Semantic Personal Wiki. In Stefan Decker, Jack Park,
Dennis Quan, and Leo Sauermann, editors, Proc. of Semantic Desktop Workshop
at the ISWC, Galway, Ireland, November 6, volume 175, November 2005.

12. Adam Souzis. Building a Semantic Wiki. IEEE Intelligent Systems, 20(5):87–91,
2005.

13. Steffen Staab, Jürgen Angele, Stefan Decker, Michael Erdmann, Andreas Hotho,
Alexander Maedche, Rudi Studer, and York Sure. Semantic Community Web
Portals. In Proc. of the 9th World Wide Web Conference (WWW-9), Amsterdam,
Netherlands, 2000.

14. Steffen Staab, Rudi Studer, Hans-Peter Schnurr, and York Sure. Knowledge
processes and ontologies. IEEE Intelligent Systems, 16(1):26–34, 2001.



Towards a Semantic Web of Relational Databases:
A Practical Semantic Toolkit and an In-Use Case from

Traditional Chinese Medicine

Huajun Chen1, Yimin Wang2, Heng Wang1, Yuxin Mao1,
Jinmin Tang1, Cunyin Zhou1, Ainin Yin3, and Zhaohui Wu1

1 College of Computer Science, Zhejiang University, Hangzhou, 310027, China
{huajunsir, paulwang, maoyx, jmtang981, 02rjgczcy,

wzh}@zju.edu.cn
2 Institute AIFB, University of Karlsruhe, D-76128, Germany

ywa@aifb.uni-karlsruhe.de
3 China Academy of Traditional Chinese Medicine, Beijing, 100700, China

yinan@mail.cintcm.ac.cn
http://ccnt.zju.edu.cn/projects/dartgrid

Abstract. Integrating relational databases is recently acknowledged as an im-
portant vision of the Semantic Web research, however there are not many well-
implemented tools and not many applications that are in large-scale real use
either. This paper introduces the Dartgrid which is an application development
framework together with a set of semantic tools to facilitate the integration of
heterogenous relational databases using semantic web technologies. For exam-
ples, DartMapping is a visualized mapping tool to help DBA in defining semantic
mappings from heterogeneous relational schemas to ontologies. DartQuery is an
ontology-based query interface helping user to construct semantic queries, and
capable of rewriting SPARQL semantic queries to a set of SQL queries. Dart-
Search is an ontology-based search engine enabling user to make full-text search
over all databases and to navigate across the search results semantically. It is also
enriched with a concept ranking mechanism to enable user to find more accurate
and reliable results. This toolkit has been used to develop an currently in-use ap-
plication for China Academy of Traditional Chinese Medicine (CATCM). In this
application, over 70 legacy relational databases are semantically interconnected
by an ontology with over 70 classes and 800 properties, providing integrated
semantic-enriched query, search and navigation services to TCM communities.

1 Introduction

Up to date, many killer applications reported by the Semantic Web community often
focus on processing the unstructured document data, using semantic annotation or vari-
ous of learning, mining, and natural language processing techniques [1]. However, data
in big organizations is normally stored in relational databases or other appropriately
formatted documents. Over emphasizing on those applications, which handles unstruc-
tured document, may obscure the community from the fact that the essence of the Se-
mantic Web comes from its similarity to a huge distributed database. To back up this

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 750–763, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Towards a Semantic Web of Relational Databases 751

idea, consider the following statements made by Tim Berners-Lee in 2005 about his
vision of the future Semantic Web1.

...The Semantic Web is not about the meaning of documents. It’s not about
marking up existing HTML documents to let a computer understand what they
say. It’s not about the artificial intelligence areas of machine learning or nat-
ural language understanding... It is about the data which currently is in rela-
tional databases, XML documents, spreadsheets, and proprietary format
data files, and all of which would be useful to have access to as one huge
database...

From this point of view, one of the way to realize the vision of Semantic Web is
(i) to interconnect distributed located legacy databases using richer semantics, (ii) to
provide ontology-based query, search and navigation as one huge distributed database,
and (iii) to add additional deductive capabilities on the top to increase the usability and
reusability of data.

Fig. 1. Towards a semantic web of relational databases

Besides, since most of the data is currently stored in relational databases, for seman-
tic web to be really useful and successful, great efforts are required to offer methods
and tools to support integration of heterogeneous relational databases. Dartgrid is an
application development framework together with a set of practical semantic tools to
facilitate the integration of heterogenous relational databases using semantic web tech-
nologies. In specific, DartMapping is a visualized mapping tool to help DBA in defining
semantic mappings from heterogeneous relational schemas to ontologies. DartQuery is
an ontology-based query interface helping user to construct semantic queries, and ca-
pable of rewriting SPARQL semantic queries to a set of SQL queries. DartSearch is an

1 http://www.consortiuminfo.org/bulletins/semanticweb.php



752 H. Chen et al.

ontology-based search engine enabling user to make full-text search over all databases
and to navigate across the search results semantically. It is also enriched with a concept
ranking mechanism to enable user to find more accurate and reliable results.

Building upon Dartgrid, we have developed and deployed a semantic web applica-
tion for China Academy of Traditional Chinese Medicine (CATCM)23. It semantically
interconnects over 70 legacy TCM databases by a formal TCM ontology with over 70
classes and 800 properties. The TCM ontology acts as a separate semantic layer to fill
up the gaps among legacy databases with heterogeneous structures, which might be se-
mantically interconnected. Users and machines only need to interact with the semantic
layer, and the semantic interconnections allow them to start in one database, and then
move around an extendable set of databases. The semantic layer also enables the system
to answer semantic queries across several databases such as “What diseases does this
drug treat? ” or “What kind of drugs can treat this disease?”, not like the keyword-based
searching mechanism provide by conventional search engines.

The paper is organized as follows. Section 2 talks about the system architecture and
technical features. Section 3 elaborates on the implementation of the semantic media-
tor and the visualized semantic mapping tool. Section 4 introduces the TCM semantic
portals which provides semantic query and search services. Section 5 reports the user
evaluation and lessons learned from this developing life-cycle. Section 6 mentions some
related works. Section 7 gives the summary and our future directions.

Please also note due to the special character of TCM research, in which the Chinese
terminologies and definitions are not always interpretable, some figures in this paper
contain Chinese search results and web interface. We have annotated all the necessary
parts of the figures in English, and we would expect it would be sufficient to understand
the functionalities of this application.

2 System Architecture and Technical Features

2.1 System Architecture

As Fig. 2 depicted, there are four key components in the core of DartGrid.

1. Ontology Service is used to expose the shared ontologies that are defined using
web ontology languages. Typically, the ontology is specified by a domain expert
who is also in charge of the publishing, revision, extension of the ontology.

2. Semantic Registration Service maintains the semantic mapping information. Typ-
ically, database providers define the mappings from relational schema to domain
ontology, and submit the registration entry to this service.

3. Semantic Query Service is used to process SPARQL semantic queries. Firstly, it
gets mapping information from semantic registration service. Afterward, it trans-
lates the semantic queries into a set of SQL queries and dispatch them into specific
databases. Finally, the results of SQL queries will be merged and transformed back
to semantically-enriched format.

2 http://ccnt.zju.edu.cn/projects/dartgrid/tcmgrid.html.
3 Demo videos http://ccnt.zju.edu.cn/projects/dartgrid/demo



Towards a Semantic Web of Relational Databases 753

Fig. 2. System Architecture and Usage Senario

4. Search Service supports full-text search in all databases. The search results will
be statistically calculated to yield a concepts ranking, which help user to get more
appropriate and accurate results.

2.2 Technical Features

The following four features that distinguish this application from other similar semantic
data integration tools, which will be introduced in detail in Section 6.

Semantic View and Visualized Semantic Mapping Tool. In our system, an ontology
acts as the semantic mediator for heterogenous databases. Relational database
schemas are mapped into corresponding classes or properties, and related by se-
mantic relationship defined in this ontology. To be specific, the mappings are de-
fined as semantic views, that is, each relational table is defined as a view over this
shared ontology. Defining mappings is a labor-intensive and error-prone task. In
our system, new database could be added into the system by using a visualized
mapping tool. It provides many easy-of-use functionalities such as drag-and-drop
mapping, mapping visualization, data source annotation and so on.

SPARQL Query Rewriting with Additional Inference Capabilities. A view-based
query rewriting algorithm is implemented to rewrite the SPARQL queries into a
set of SQL queries. This algorithm extends earlier relational and XML techniques
for rewriting queries using views, with consideration of the features of web ontol-
ogy languages. Otherwise, this algorithm is also enriched by additional inference
capabilities on predicates such as subClassOf and subPropertyOf.

Ontology-based Semantic Query User Interface. A form-based query interface is
offered to construct semantic queries over shared ontologies. It is automatically



754 H. Chen et al.

generated at runtime according to property definitions of classes, and will finally
generate a SPARQL query.

Intuitive Search Interface with Concepts Ranking and Semantic Navigation. This
Google-like search interface accepts one or more keywords and makes a complete
full-text search in all databases. Users could semantically navigate in the search
results, and move around an extendable set of databases based on the semantic
relationships defined in the semantic layer. Meanwhile, the search system could
generate a suggested list of concepts which are ranked based on their relevance to
the keywords. Thereafter, users could explore into the semantic query interface of
those concepts, and specify a semantic query on them to get more accurate and
appropriate information.

3 Semantic Mediation

3.1 Semantic View and View-Based Mapping

In our system, databases are mediated and related by a shared ontology, and each re-
lational table is mapped into one or more classes. For example, the mapping scenario
in Fig. 3 illustrates relational schemas from two sources(W3C and ZJU), and a shared
ontology (a part of the foaf ontology).

Mappings are typically defined as views in conventional data integration systems in
the form of GAV (global-as-view), LAV (local-as-view) [2]. Considering the case in
this paper, GAV is to define each class or property as a view over relational tables, and
LAV is to define each relational table as a view (or query) over the shared ontology.
The experiences from conventional data integration systems tell us that LAV provides
greater extensibility than GAV: the addition of new sources is less likely to require a
change to the mediated schema [2]. In our TCM case, new databases are regularly added
so total number of databases is increasing gradually. Therefore, the LAV approach is
employed in our system, that is, each relational table is defined as a view over the
ontologies. We call such kind of views as Semantic View.

The lower part of Fig. 3 showcases how to represent the mappings as semantic views
in a Datalog-like syntax. Like in conventional data integration, a typical semantic view
consists of two parts. The left part is called the view head, and is a relational predicate.
The right part is called the view body, and is a set of RDF triples. There are two kinds
of variables in the view definitions. Those variables such as “?en,?em,?eh,?pn,?ph” are
called distinguished variables, which will be assigned by an data or instance values
from the database. Those variables such as “?y1, ?y2” are called existential variables.

In general, the body can be viewed as a query over the ontology, and it defines the
semantics of the relational predicate from the perspective of the ontology. The meaning
of semantic view would be more clear if we construct a Target Instance based on the
semantic mapping specified by these views. For example, given a relational tuple as
below, applying the View-4 in Fig. 3 on this tuple will yield a set of RDF triples.

Relational Tuple:
w3c:emp("DanBrickley","danbri@w3.org",

"SWAD","http://swad.org","EU");



Towards a Semantic Web of Relational Databases 755

Fig. 3. Mappings from two relational databases with different structures to an ontology.
“?en,?em,?eh,?pn,?ph” are variables and represent “employee name”, “employee email”, “em-
ployee homepage”, “project name”, “project homepage”, respectively.

Yielded RDF triples by Applying View-4:
_:bn1 rdf:type foaf:Person;

foaf:name "Dan Brickley";
foaf:mbox "danbri@w3.org";
foaf:currentProject _:bn2.

_:bn2 rdf:type foaf:Project;
foaf:name "SWAD";
foaf:homepage "http://swad.org".

One of the key notion is the newly generated blank node ID. As illustrated, corre-
sponding to each existential variable ?y in the view, a new blank node ID is generated.
For examples, :bn1, :bn2 are both newly generated blank node IDs corresponding to
the variables ?y1, ?y2 in View-4 respectively. This treatment of existential variable is
in accordance with the RDF semantics, since blank nodes can be viewed as existential
variables. We give the formal definition of the semantic view as below. More detailed
Foudermental aspects about semantic view could be found in another paper [3].

Definition 1. Semantic View. Let V ar be a set of variable names . A typical
semantic view is like the form :R(X̄) : −G(X̄, Ȳ ), where :
1. R(X̄)is called the head of the view, and R is a relational predicate ;
2. G(X̄, Ȳ ) is called the body of the view, and G is a RDF graph with some
nodes replaced by variables in V ar;
3. The X̄, Ȳ contain either variables or constants.The variables in X̄ are called
distinguished variables , and the variables in Ȳ are called existential variables.



756 H. Chen et al.

3.2 Visualized Semantic Mapping Tool

The task of defining semantic mappings from relational schema to ontologies is burden-
some and erroneous. Although we could develop tools to automate this process, it still
can not be fully automated and requires humans involvement, especially for integration
of databases with different schema structures.

Fig. 4. Visualized Semantic Mapping Tool

Fig. 4 displays the visualized mapping tool we developed to facilitate the task of
defining semantic views. It has five panels. The DBRes panel displays the relational
schemas, and the OntoSchem panel displays the shared ontology. The Mapping Panel
visually displays the mappings from relational schemas to ontologies. Typically, user
drag tables or columns from DBRes panel, and drag classes or properties from On-
toSchem panel, then drop them into the mapping panel to establish the mappings. By
simple drag-and-drop operations, users could easily specify which classes should be
mapped into a table and which property should be mapped into a table column. After
these operations, the tool automatically generates a registration entry, which is submit
to the semantic registration service. Besides, user could use the Outline panel to browse
and query previously defined mapping information, and use the Properties panel to
specify some global information, such as namespace, or view the meta-information
about the table.



Towards a Semantic Web of Relational Databases 757

Fig. 5. Dynamic Semantic Query Portal. Please note: because many Chinese medical terminolo-
gies are only available in Chinese language and they are not always interpretable, we have anno-
tated all the necessary parts of the figures in English.

Fig. 6. Semantic navigation through the query results



758 H. Chen et al.

4 TCM Semantic Portals

The semantic mediator is designed to separate data providers and data consumers so
that they only need to interact with the semantic layer. For example, developers could
write applications using the shared ontology without the need of any knowledge about
databases. Besides that, our system also offer two different kinds of user interfaces to
support query and search services.

4.1 Dynamic Semantic Query Interface

This form-like query interface is intended to facilitate users in constructing semantic
queries. The query form is automatically generated according to class definitions. This
design provides the extensibility of the whole system – when ontology is updated with
the changes of database schema, the interface could dynamically adapt to the updated
shared ontology.

Fig. 5 shows the situation how a TCM user constructs a semantic query. Starting
from the ontology view panel on the left, user can browse the ontology tree and select
the classes of interest. A query form corresponding to the property definitions of the
selected class will be automatically generated and displayed in the middle. Then user
can check and select the properties of interests or input query constraints into the text
boxes. Accordingly, a SPARQL query is constructed and could be submit to the seman-
tic query service, where the query will be rewritten into a set of SQL queries using
mapping views contained in the semantic registration service. The query rewriting is a
somewhat complicated process, and [3] gives the detailed introduction on the rewriting
algorithm. In addition, user could define more complex queries. For example, depicted
in the lower-middle part of Fig. 5, user could follow the links leading to related classes
of the current class, and select more properties or input new query constraints.

Fig. 6 shows the situation in which a TCM user is navigating the query results. Start-
ing from selecting one result highlighted, the user can find out all of the related data
entries by following the semantic links. Please note that in this example, the relations
between the search results and those “discovered” by following the semantic links, are
derived from the semantic layer.

4.2 Intuitive Search Interface with Concepts Ranking and Semantic Navigation

Unlike the semantic query interface, this Google-like search interface just accepts one or
more keywords and makes a complete full-text search in all databases. Fig. 7 shows the
situation where a TCM user performs some search operations. Starting from inputting a
keyword, the user can retrieve all of those data entries containing one or more hits of that
keyword. Being similar to the case of the query interface, user could also semantically
navigate the search results by following the semantic links listed with each entries.

Meanwhile, the search system generates a list of suggested concepts which are dis-
played on the right part of the portal. They are ranked based on their relevance to the
keywords. These concept links will lead the users to the dynamic query interface intro-
duced in previous section. Thereafter, users could specify a semantic query on them to
get more accurate and appropriate information. We call it as intuitive search because it
could generate a list of concept suggestions to help user improve the search results.



Towards a Semantic Web of Relational Databases 759

Fig. 7. Intuitive Search Portal with Concept Ranking and Semantic Navigation

5 User Evaluation and Lesson Learned

5.1 Feedbacks from CATCM

The first proof-of-concepts prototype was deployed during fall 2004. By using that pro-
totype, we convinced CATCM partner to take the semantic web technologies to help
them in managing their fast increasing TCM databases. After a thorough requirements
analysis and with a careful redesign and re-engineering of the entire system, a more sta-
ble and user-friendly version was released in September 2005, and deployed at CATCM
for open evaluation and real use.

Currently, the system deployed at CATCM provides access to over 70 databases in-
cluding TCM herbal medicine databases, TCM compound formula databases, clinical
symptom databases, traditional Chinese drug database, traditional Tibetan drug data-
base, TCM product and enterprise databases, and so on. The TCM shared ontology
includes over 70 classes, 800 data or object properties.

In general, users from CATCM reacted positively to the entire semantic web ap-
proach and our system. They indicated that the system provided an amazing solution
for the semantic heterogeneity problem which had been troubling them for a long time.
In particular, they gave high praise to the visualized semantic registration tool, and indi-
cated that the features of semantic registration of new database considerably save them
a lot of time when new database were developed and needed to be integrated.



760 H. Chen et al.

They also gave positive comments to the semantic portals as well, especially the se-
mantic navigation functionality. They indicated that semantic interconnections among
different databases was indeed what they wanted. Nevertheless, we found most of the
users prefer Google-like search to semantic query interface. Some of them complained
that the learning cycle of using the semantic query interface was too long, although it
could return more accurate results. They also said they would very like to use the con-
cepts ranking functionality to get more accurate result by constructing further queries
when the entries returned from search was overwhelming.

5.2 A Survey on the Usage of RDF/OWL Predicates

RDF/OWL has offered us a range of predicates, but not all of them are useful for re-
lational data integration. We made a survey on the usage of RDF/OWL predicates for
relational database integration, and the results are indicated in table 1.

In this survey, we invited ten developers who are familiar with both semantic web
technologies and our system. They are asked with the same questions: “From a prac-
tical view, what are those most important constructs do you think for relational data
integration in semantic web”, and are requested to write down some explanation for the
reason of their choice. We summarize their comments and the score result as follows.

Table 1. The results for the survey of predicates usage

Predicate E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 AVG
rdf:datatype 9 10 8 9 10 10 9 7 10 9 9.1

rdfs:subClassOf 8 8 7 9 9 8 8 9 10 7 8.3
rdfs:subPropertyOf 8 8 8 7 8 8 9 9 9 8 8.2

owl:inverseOf 8 8 7 8 7 9 8 9 7 9 8.0
owl:cardinality 7 8 7 7 6 7 9 7 7 9 7.4

Data type support was considered to be important, because most commer-
cial RDBMS has well-defined and unique data type system. RDFS predicates
rdfs:subClassOf and rdfs:subPropertyOf have higher scores because they could en-
hance the query processing with additional inference capabilities. OWL predicate
owl:inverseOf is useful when defining relations in both directions which is a usual
case in relation database integration. One of the developer indicated that predicate
owl:inverseOf could help to find more efficient rewritings in some cases. Predicate
owl:cardinality is useful in adding more constraints to ensure the data integrity.

Some other predicates are considered as useful include: owl:TransitiveProperty,
owl:SymmetricProperty, owl:DatatypeProperty, owl:ObjectProperty. Some of them
thought both owl:TransitiveProperty and owl:SymmetricProperty could add additional
deductive capabilities on top to yield more query results. owl:DatatypeProperty and
owl:Object Property could be used to distinguish simple data value column and foreign
key column.



Towards a Semantic Web of Relational Databases 761

6 Related Works

6.1 Semantic Web Context

In the Semantic Web community, semantic data integration has been always a notice-
able research topic. In particular, there have been a number of works dealing with how
to make contents of existing or legacy database available for semantic web applica-
tions. A typical one is D2RQ4. D2RQ is a declarative language to describe mappings
between relational database schemata and OWL/RDFS ontologies, and is implemented
as a Jena plugin that rewrites RDQL queries into SQL queries. The result sets of these
SQL queries are transformed into RDF triples that are passed up to the higher layers of
the Jena framework. RDF Gateway5 is a commercial software having similar function-
alities. It connects legacy database resources to the Semantic Web via its SQL Data Ser-
vice Interface. The SQL Data Service translates a RDF based query to a SQL query and
returns the results as RDF data. Our system is different from D2RQ and RDF Gateway.
We take the view-based mapping approach which has sound theoretical foundation, and
we have visualized mapping tool and ontology-based query and search tool which are
not offered by these two systems.

Some other works propose direct manipulation of relational data to RDF/OWL for-
mat, and then the data could be processed by OWL reasoners or be integrated by onto-
logical mapping tool. D2RMap, KAON REVERSE6 and many other toolkits offer such
kind of reverse engineering functionality. Cristian Perez de Laborda and colleagues [4]
propose an ontology called “Relation OWL” to describe the relational schema as OWL,
and then use this OWL-representation to transform relational data items into RDF/OWL
and provide query service by RDQL. The shortcoming of this kind of approaches is that
they have to dump all the relational data into RDF/OWL format before querying, which
would be impractical if the RDBMS contains huge volume of data. Moreover, they did
not consider the issue of integrating heterogeneous databases using formal ontologies,
which is one of the focuses of our solution.

Yuan An and colleagues [5] present an interesting paper concerning about defining
semantic mappings between relational tables and ontologies within semantic web con-
text. They introduce a tool which could automatically infer the LAV mapping formulas
from simple predicate correspondences between relational schema and formal ontolo-
gies. Although completely automatic approach to define semantic mapping is difficult,
it would be great enhancement to our visualized tool if some candidate mapping sug-
gestions could be provided beforehand. That will be one of our future work.

The DOPE project (Drug Ontology Project for Elsevier) [6] explores ways to provide
access to multiple life science information sources through a single semantic interface
called DOPE browser. However, it is still a document management system, mainly con-
cerning on thesaurus-based search, RDF-based querying, and concept-based visualiza-
tion of large online document repositories. It can not answer semantic queries such as
“What diseases does this drug treat?” or ”What kind of drugs can treat this disease?”.
We’ve seen the authors of DOPE are considering it as one of their future work.

4 http://www.wiwiss.fu-berlin.de/suhl/bizer/D2RQ/
5 http://www.intellidimension.com
6 http://kaon.semanticweb.org/alphaworld/reverse/view



762 H. Chen et al.

Piazza [7] is an interesting P2P-based data integration system with consideration of
semantic web vision. But the current system has been implemented with the XML data
model for its mapping language and query answering. However, we think P2P archi-
tecture would be a promising direction, and we are considering to extend our system to
support P2P working mode and test its scalability and usability.

For other related works, Dejing Dou and colleagues [8] propose an ontology-based
framework called OntoGrate. It can automatically transform relational schema into on-
tological representation, and users can define the mappings at the ontological level using
bridge-axioms. Francois [9] considers theoretic aspect of answering query using views
for semantic web and Peter Haase and Boris Motik introduces a mapping system for
OWL-DL ontology integration [10].

6.2 Conventional Data Integration Context

Without considering the semantic web technologies, our solution can be categorized to
the topic ”answering query using view”, which has been extensively studied in database
community [2] [11]. Most previous works has been focused on the relational case [2],
and XML case [12].

On the one hand, we believe it would be valuable for the semantic web community
to take more consideration of the techniques that have been well studied in the data-
base community such as answering query using view. On the other hand, we think that
the semantic web research does raise a lot of new issues and challenges for database
researchers. From our experiences, the challenges include: From our experiences, the
challenges include: how to rank the data object just like the page rank of google? how
to maintain highly evolvable and changeable schema mappings among an great number
of and open-ended set of databases with no centralized control?

Moreover, a lot of works have been done in the area of ontology-based data inte-
gration [13]. Many of them took some ontological formalism such as DL to mediate
heterogenous databases, and used the view-based mapping approach. In comparison
with them, our implementation is the case of RDF/OWL-based relational data integra-
tion with a semantic web vision in mind.

7 Summary and Future Work

In this paper, we presented an in-use application of Traditional Chinese Medicine en-
hanced by a range of semantic web technologies, including RDF/OWL semantics and
reasoning tools. The ultimate goal of this system is to realize the ”web of structured
data” vision by semantically interconnecting legacy databases, that allows a person, or
a machine, to start in one database, and then move around an unending set of data-
bases which are connected by rich semantics. To achieve this demanding goal, a set of
convenient tools were developed, such as visualized semantic mapping tool, dynamic
semantic query tool, and intuitive search tool with concepts ranking. Domain users
from CATCM indicated that the system provided an amazing solution for the semantic
heterogeneity problem troubling them for a long time.

Currently, although this project is complete, several updated functionalities are still
in our consideration. To be specific, we are going to enhance the mapping tools with



Towards a Semantic Web of Relational Databases 763

some heuristic rules to automate the mapping task as far as possible, just like the ap-
proach proposed by Yuan An and colleagues [5]. Otherwise, we will develop a more
sophisticated mechanism to rank the data objects just like the page rank technology
provided by popular search engines.

Acknowledgements

The authors’ research is supported by China 973 subprogram ”Semantic Grid for
Traditional Chinese Medicine” (NO.2003CB316906), China NSF program (NO.
NSFC60503018) and the EU-IST-027595 NeOn project. We would thank the fruitful
discussion and first hand evaluation from our colleagues and partners.

References

1. Buitelaar, P., Olejnik, D., Sintek, M.: OntoLT: A protégé plug-in for ontology extraction
from text. In: Proceedings of the International Semantic Web Conference (ISWC). (2003)

2. Halevy, A.Y.: Answering queries using views: A survey. The VLDB Journal. 10 (2001)
270–294

3. Chen, H., Wu, Z., Wang, H., Mao, Y.: Rdf/rdfs-based relational database integration. In:
ICDE. (2006) 94

4. de Laborda, C.P., Conrad, S.: Bringing relational data into the semantic web using sparql and
relational owl. In: International Workshop on Semantic Web and Database at ICDE 2006.
(2006) 55–60

5. An, Y., Borgida, A., Mylopoulos, J.: Inferring complex semantic mappings between rela-
tional tables and ontologies from simple correspondences. In: International Semantic Web
Conference. (2005) 6–20

6. Stuckenschmidt, H., van Harmelen, F., de Waard et al, A.: Exploring large document repos-
itories with rdf technology: The dope project. IEEE Intelligent Systems. 19 (2004) 34–40

7. Halevy, A.Y., Ives, Z.G., Madhavan, J., Mork, P., Suciu, D., Tatarinov, I.: The piazza peer
data management system. IEEE Trans. Knowl. Data Eng. 16-7 (2004) 787–798

8. Dou, D., LePendu, P., Kim, S., Qi, P.: Integrating databases into the semantic web through
an ontology-based framework. In: International Workshop on Semantic Web and Database
at ICDE 2006. (2006) 33–50

9. Goasdoue, F.: Answering queries using views: a krdb perspective for the semantic web. ACM
Transaction on Internet Technology. (2003) 1–22

10. Haase, P., Motik, B.: A mapping system for the integration of owl-dl ontologies. In: IHIS
’05: Proceedings of the first international workshop on Interoperability of heterogeneous
information systems. (2005) 9–16

11. Abiteboul, S., Duschka, O.M.: Complexity of answering queries using materialized views,.
In: The Seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of data-
base systems,. (1998) 254–263

12. Yu, C., Popa, L.: Constraint-based xml query rewriting for data integration. In: 2004 ACM
SIGMOD international conference on Management of data. (2004) 371–382

13. Wache, H., Vögele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H., Hubner,
S.: Ontology-based integration of information - a survey of existing approaches. In Stucken-
schmidt, H., ed.: IJCAI01 Workshop: Ontologies and Information Sharing. (2001) 108–117



Information Integration Via an End-to-End
Distributed Semantic Web System

Dimitre A. Dimitrov1, Jeff Heflin2, Abir Qasem2, and Nanbor Wang1

1 Tech-X Corporation, 5621 Arapahoe Avenue, Suite A, Boulder, CO 80303
{dad, nanbor}@txcorp.com

2 Lehigh University, 19 Memorial Drive West, Bethlehem, PA 18015
{heflin, abir.qasem}@cse.lehigh.edu

Abstract. A distributed, end-to-end information integration system
that is based on the Semantic Web architecture is of considerable interest
to both commercial and government organizations. However, there are
a number of challenges that have to be resolved to build such a system
given the currently available Semantic Web technologies. We describe
here the ISENS prototype system we designed, implemented, and tested
(on a small scale) to address this problem. We discuss certain system
limitations (some coming from underlying technologies used) and future
ISENS development to resolve them and to enable an extended set of
capabilities.

1 Introduction

Different groups or subdivisions of a large organization often develop data man-
agement solutions semi-independently from each other with their own data
schemas. Moreover, the data is often semi-structured, contains large binary (e.g.
images) entities, dynamically evolves, grows, and is distributed over a number
of data servers on a network. The efficient extraction of relevant information
from all available and diverse data sources require the solution of a number of
problems related to data representation and information integration in a distrib-
uted environment [1]. We describe here our initial implementation of the ISENS
system that we designed as a test case to address these problems. We integrated
and extended emerging Semantic Web [2,3] technologies to handle information
integration (based on logical views [4]) and querying of distributed metadata.
We have developed the ISENS system prototype during a Phase I Small Business
Inovation Research (SBIR) project.

At the user (top) level, the service that ISENS is to provide consists of an-
swering queries over distributed metadata repositories that describe underlying
semi-structured data. Moreover, ISENS is designed to address a number of chal-
lenges in information representation that cannot be solved with markup lan-
guages such as HTML and XML. ISENS is built on top of specific Semantic
Web technologies that support relations over different concepts expressed in the
metadata. This allows the use of logical reasoners to derive semantic information
from the metadata and its representation (markup). Furthermore, a language is

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 764–777, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Information Integration Via an End-to-End Semantic Web System 765

needed to represent queries for computer programs to be able to parse, process,
and extract relevant answers from the available metadata.

In a distributed environment of data centers that generate metadata on the
same domain of knowledge, the syntax of the markup that each data center
uses will generally be different from the syntax that each of the other centers
are using to encode their data. The modeling of the data may be different too.
For example, one data center modeler may see manufacturer as a property of
a device, i.e. a device has a manufacturer, another modeler may see it as a
property related to order, i.e. an order from a manufacturer. Then, the problem
is how to provide information integration over metadata that each data center
provides. Specifically, how can a user query the metadata from the distributed
data centers using a uniform syntax even though the different data centers might
be using their own syntax to markup the data they provide and how can the
syntactic/semantic differences be resolved?

To encode metadata and address its representation we used the Resource De-
scription Framework (RDF) and the OWL Web Ontology Language. This also in-
cludes the technologies that RDF and OWL extend and their associated schemas
(XML, XMLS, and RDFS). For query representation, parsing, and processing,
we selected and implemented a solution based on the SPARQL [5] query lan-
guage for RDF. SPARQL is specifically designed to represent information for
the Semantic Web. It provides to users and developers an extensible and flexible
framework to construct queries over the extended set of RDF/RDFS capabil-
ities. Finally, to address the third problem (uniform query over heterogeneous
metadata from different and distributed data centers) we adopted the MiniCon
algorithm [6]. This is a scalable algorithm for answering queries using views over
different databases. We have enhanced it to work with a Semantic Web data
model (as opposed to a relational data model in databases).

For testing of the implementation in a distributed, heterogeneous environ-
ment, and to simulate a plausible real-world scenario, we developed indepen-
dently two different ontologies, one by the group at Tech-X Corp. and one by
the Lehigh University group, on the same domain of knowledge. The two ontolo-
gies, while describing the same knowledge base, have different markup syntax.
And furthermore, they model concepts differently from one another. To resolve
syntactic and semantic heterogeneity we have used OWL axioms to describe a
map between them. The axioms relate concepts from one ontology to the other.
ISENS consults this map to retrieve information from sources that may have
otherwise appeared to be providing differing information. In our framework, a
map is an ontology that imports these ontologies whose terms it will align.

In the rest of the paper, we discuss first the architecture of the ISENS proto-
type we designed and implemented. Then, we describe the approach we devel-
oped for information integration with mapping ontologies and illustrate it with
a number of example test queries. Finally, we summarize our experience from
the implementation and testing of ISENS, discuss current limitations (some in-
herited from underlying technologies we used) and future development to extend
the system.



766 D.A. Dimitrov et al.

2 Prototype System Architecture

The ISENS system prototype consists of three main components: the Web In-
terface Component (WIC), the Distributed Querying System (DQS), and the
Distributed Enabling Component (DEC). For the purpose of driving the de-
velopment of the prototype system, we developed two ontologies on a specific
domain of knowledge. However, the issues addressed by the ontologies are repre-
sentative of the general case about managing business related information faced
by commercial organizations, e.g. for tracking on-going performance and/or fore-
casting future developments. Additionally, we created data individuals based on
the two ontologies, configured two remotely located Sesame [7,8] RDF/OWL
metadata repositories, and stored in them the ontology individuals. The overall
architecture of ISENS is represented in Fig. 1.

The WIC provides a basic user interface to ISENS that is accessible via a Web
browser. This user interface allows submission of SPARQL queries and displays
the returned results. The WIC takes the user input in the form of a SPARQL
query and passes it to the DQS for processing. The DQS returns the answers
it finds in response to the query. The answers are encoded in XML and passed
back to the WIC. The WIC then parses the returned XML and presents it to
the user in a certain format.

The DQS component processes each SPARQL query and enables data inte-
gration over different, distributedly located, ontologies. The DQS contains a set
of source descriptions. A source description specifies the attributes that can be
found in the data source and the constraints on the contents of the source. One
of the approaches for specifying source descriptions is to represent the contents
of a data source as a view over a mediated schema [4]. This approach is known
as Local as a View (LAV) in the database literature.

A mediated schema is a set of virtual relations that provide a uniform interface
to the user. The LAV approach facilitates the addition of new data sources since
existing views do not have to change when a source is added to the system.
Although we use LAV as a foundation, in the DQS system the ontology of the
query plays the role of the mediated schema. Thus, either of our two ontologies
can serve as the mediated schema. In this sense, we are more general than LAV-
based information integration (there is no need to construct a mediated schema
in our system). The DQS relies on KAON2 [9] for its description logic reasoning
functionality. The mapping ontologies that the DQS needs to do its information
integration tasks are written in a subset of OWL DL.

In order to answer a query, a data integration system needs to translate a query
in terms of the mediated schema into one that refers directly to the schemas in
the data sources. Since the contents of the data sources in LAV are described
as views, the translation problem amounts to finding a way to answer a query
using a set of views. MiniCon [6] is one of the more scalable LAV algorithms.

The basic idea of the MiniCon algorithm is to examine each query sub goal
against each view and check if the view can be used to "answer" the query sub
goal and if so, in what "form"? It also treats "shared" variables carefully for
certain optimizations. Finally, it combines views to answer all query sub goals.



Information Integration Via an End-to-End Semantic Web System 767

Fig. 1. The architecture of the ISENS prototype system is currently configured for
querying of distributed RDF/OWL metadata at two data centers: one at Tech-X Cor-
poration and the other at Lehigh University. The OWL individuals data is stored in
multiple PostgreSQL databases that are managed by Sesame RDF servers. The Sesame
servers provide remote access to the OWL individuals data. This set up allows testing
of ISENS in a distributed and heterogeneous environment.

The DQS uses network services that are provided by the DEC to retrieve
RDF/OWL graphs from distributedly located Sesame RDF servers. In the cur-
rent configuration, the DEC can remotely query Sesame RDF servers. The DEC



768 D.A. Dimitrov et al.

is also being designed to provide authentication and security services in ISENS
per user/customer requirements.

For the ISENS prototype testing, we separated the OWL data individuals
into seven different parts. These were then loaded into two Sesame RDF servers
configured to use PostgreSQL databases. The Sesame RDF server at Tech-X
Corporation stores the data individuals encoded in the Tech-X group ontology
into three PostgreSQL databases. The data individuals encoded in the Lehigh
University group ontology syntax are stored on a Sesame server at Lehigh Uni-
versity into four PostgreSQL databases.

3 Information Integration with Mapping Ontologies

In this Section, we use a top-down approach to describe an information integra-
tion solution that incorporates Semantic Web technologies. First, we consider a
general way to address the problem. Then, we report on our current implemen-
tation in the ISENS system.

3.1 General Approach

In the general case, an operational environment consists of a set of ontologies
and a set of data sources.

Each data source commits to one or more ontologies. The ontologies may
include axioms which augment the data sources that commit to them with addi-
tional semantic information. Each ontology may extend other ontologies in order
to refine the semantic definitions of the concepts in them. This model can be ap-
plied to legacy data sources if we assume that each data source has an ontology
associated with it. Minimally, the ontology can just be a database schema. In-
tegration is enabled by special ontologies called mapping ontologies. This model
is represented in Fig. 2.

Fig. 2. Information integration using Semantic Web ontologies. Here, O1-O5 represent
ontologies, S1-S5 represent data sources, and M12 and M23 are mapping ontologies.



Information Integration Via an End-to-End Semantic Web System 769

The key problem here is that a query may be formulated using the language
of one ontology but the relevant data may be in a data source that commits
to a different ontology. The DQS will solve this problem by using the mapping
ontologies to decompose the query into a set of queries that can be directly sent
to some subset of the data sources. If there is no direct mapping, it will traverse
through a semantic connection of maps to determine relevant ontologies and
data sources. Consider our example described above. There is a direct map M12
between the O1 and O2 ontologies. Therefore, a query q using terms from O1
can access data in the S2 and S3 data sources using the map. There is, however,
no direct map between O1 and O3 but by combining M12 and M23 we can now
retrieve answers from S1, S2, S3, S4 and S5.

3.2 Implementation in the DQS

The basic structure of the implemented DQS architecture is shown in Figure 3.
It involves two separate processes. The Map Processor reads the source descrip-
tions and the mapping ontologies in order to load a meta-information knowledge
base. Source descriptions identify sources that have relevant information with
respect to classes and/or properties. If a source can express that it has rele-
vant information we can choose to query it as opposed to other sources that
do not express this information. In this way we can locate the desired informa-
tion without querying every possible source. Having relevant information for a
query, however, does not mean that the source is capable of answering the query
completely. It only indicates that the source has some useful information on the
query.

To implement source descriptions in OWL, we introduce a isRelevantFor
predicate in our framework. We use a new namespace meta for this predicate.
For example, a data source may have the following OWL statement to assert
that it has relevant information on individuals of the class Aircraft.

<meta:isRelevantFor>
<owl:Class rdf:ID="Aircraft"/>

</meta:isRelevantFor>

The load is done asynchronously from the query process. It can check for updates
periodically or receive updates directly at a users request. The meta-information
is augmented with ontological information in order to ease the reformulation
process.

When the DQS receives a query, it will be processed by the Reformulator. Us-
ing the meta-information knowledge base, the Reformulator determines which
data sources should be queried and what queries should be sent to them. This
is currently based on the MiniCon algorithm for relational data sources. In a
future development, we will extend the DQS with a peer data management algo-
rithm [10] that generalizes the two common mapping schemes from information
integration: local-as-view (LAV), where the local source schemas are defined
as views over a global mediated schema, and global-as-view where the global



770 D.A. Dimitrov et al.

Fig. 3. Architecture of the DQS

mediated schema is defined as a view over the local source schemas. Note, this
will reuse much of the MiniCon algorithm we already implemented.

The Reformulator produces a set of 〈source id, query〉 pairs that are given to
the DEC. Using this information, the DEC queries the data sources using their
native interfaces and returns the results in a standard format.

The answers returned by the DEC are processed by the Answering Engine.
The answering engine loads these answers into the KAON2 knowledge base sys-
tem. It also loads all relevant ontologies, so that the KAON2 knowledge base
represents the subset of data that is relevant to the query. The Answering Engine
issues the original query to the knowledge base and outputs the answers in XML
format. Note, by using a knowledge base system here, we are able to benefit from
the inferences that KAON2 can derive. For example, KAON2 can determine the
sub classes of a given class. If some of the data is described in terms of a sub
class (as opposed to the class mentioned in the query), we will still obtain them
in our results. We implemented the DQS (the code for the MiniCon algorithm
is part of it) in Java.

3.3 Aircraft Ontologies and Data Individuals

The two ontologies were created independently (one by the Tech-X group and the
other by the Lehigh University group) to drive the development and testing of the
ISENS system. They consist of about 30/35 classes each, four levels deep, and of
about 30/35 object and data properties each. We developed the two ontologies



Information Integration Via an End-to-End Semantic Web System 771

on aircraft and related manufacturers. The rationale for this decision is that
information for this domain of knowledge is very easy to obtain off the Internet.
Moreover, issues for integrating information relevant to the aircraft industry will,
in general, be similar to other enterprise-related domains of knowledge. We show
a graph structure for one of the ontologies in Fig. 4.

Fig. 4. The asserted model for the Tech-X group ontology and its hierarchy shows
how we have modeled the domain of knowledge on aircraft manufacturers and related
conceptual entities

We developed the ontologies independently to simulate a real-world scenario
where different data centers will generally provide different encoding syntax to
the metadata they provide. The integrated access to the data from such het-
erogeneous sources will then require a system to enable translation among the
different encodings. The translation will have to be smart enough to support not
only the equivalent object/data types, but also the relations among them.

For the current ISENS set up, the Tech-X ontology1 (without its related data
individuals) and the corresponding Lehigh University group ontology2 are avail-
able on-line.

After a model for the concepts in the ontology has been developed, one can
start creating data individuals of the different types supported. Moreover, once
1 http://fusion.txcorp.com/~dad/isens/onto/txcorp/aircraft.owl (the URLs

cited here were last accessed in May 2006).
2 http://swat.cse.lehigh.edu/onto/airdata.owl



772 D.A. Dimitrov et al.

we have developed the ontologies to model the domains of knowledge that are
of interest, we can design and implement computer programs to automate the
generation of RDF/OWL data individuals that describe existing and/or dynam-
ically evolving raw data. We created seven data sets and stored them in seven
different PostgreSQL databases that were accessible via our two Sesame RDF
servers (see Fig. 1). For each data set, we created one source description file that
summarizes the kind of data that can be found in it.

3.4 ISENS Map Ontologies

Since the two ontologies were developed separately, many similar concepts have
been modeled using different terms. For example, the Tech-X group defined
the concept of commercial aircraft as the class CommercialAircraft, whereas
the Lehigh University group defined it as Airliner. To integrate data sources
that commit to these ontologies one needs to formally specify the fact that
CommercialAircraft is equivalent to Airliner. We achieve this in our solution
as follows:

<owl:Class rdf:about="&txcorp;CommercialAircraft">
<owl:equivalentClass rdf:resource="&swat;Airliner"/>

</owl:Class>

Object and datatype property equivalence is expressed with similar syntax in
the map ontology, e.g.:

<owl:ObjectProperty rdf:about="&txcorp;wasOrderedBy">
<owl:equivalentProperty rdf:resource="&swat;soldTo"/>

</owl:ObjectProperty>
<owl:DatatypeProperty rdf:about="&txcorp;wasOrderedOn">
<owl:equivalentProperty rdf:resource="&swat;sellDate"/>

</owl:DatatypeProperty>

An ontology that is a collection of this type of axioms is herein after called a
map ontology and each of these axioms is referred to as a map. The complete
source code of our map ontology is available3 on-line.

Mapping ontologies are published using the same OWL syntax that is used
to define ontologies that are being mapped. The maps are then available for use
by anyone authorized to use the system. As such, the mapping work performed
by one organization can be easily shared with others. This is in stark contrast to
many contemporary integration efforts in which custom code is written for each
integration effort.

The use of OWL as a mapping language combined with a suitable description
logic reasoner KAON2, allowed us to express more complex maps than mere
equivalences. In addition to constructing taxonomical correspondences where we
map classes and properties to their sub classes and sub properties, we could also
use OWL restrictions to map a defined class with an inferred class. For example:
3 Map ontology URL: http://swat.cse.lehigh.edu/onto/txcorp-swat-map.owl



Information Integration Via an End-to-End Semantic Web System 773

<owl:Class rdf:about="&swat;IDS">
<owl:intersectionOf rdf:parseType="Collection">
<owl:Class rdf:about="&txcorp;Aircraft"/>
<owl:Restriction>
<owl:onProperty rdf:resource="txcorp;hasApplication"/>
<owl:someValueFrom rdf:resource="txcorp;Military"/>

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

While OWL allowed us to achieve an acceptable amount of integration, it should
be noted that there were some concepts in the two ontologies that, although
similar, were impossible to map using OWL. Consider the property “maximum
thrust” of an engine. In the Lehigh group (swat) ontology it has been defined
as a property of the class Engine. However, in the txcorp ontology, an Engine
is related to its maximum thrust via the TechnicalSpecifications class (it
models a technical specification document). In First Order Logic, the relationship
can be specified as:

txcorp : Engine(X) ∧ txcorp : hasEngineTechSpec(X, S)∧
txcorp : hasEngineMaxThrustTechSpec(S, Z) ⇔

swat : Engine(X) ∧ swat : maxThrust(X, S)

However, this axiom cannot be expressed in OWL (and most description log-
ics, for that matter) because it requires role composition. Note, this kind of
mapping can be supported in certain OWL-compatible rule-based Semantic Web
languages such as SWRL, and is likely to be supported in the Rule Interchange
Format (RIF) currently being developed by a W3C working group.

3.5 Information Integration Query Test Cases

Here, we consider how information integration over two separately developed
ontologies on the same domain of knowledge and data individuals that are dis-
tributedly located over multiple databases is handled by the ISENS system pro-
totype. Specifically, we can compare SPARQL queries that can be executed only
on one of the separate ontologies to extract the relevant answers from each of
them to queries executed by the ISENS system to obtain the answers from both
sources at the same time. We used such comparisons to test the data integration
achieved by the ISENS system to retrieve data encoded with different ontologies
from remotely located data servers.

Moreover, users can query (using specific syntax) distributed RDF/OWL
metadata repositories that are encoded with different syntax (from each of the
two different ontologies in this case). The ISENS system uses its map ontology
in the process of integrating information from the different ontologies. We start
with a “simple” mapping example to show this capability. Consider, querying
ISENS to find the commercial aircraft it has information about.



774 D.A. Dimitrov et al.

The SPARQL query4:

SELECT ?Aircraft
WHERE { ?Aircraft rdf:type tx:CommercialAircraft .}

is in the Tech-X ontology syntax. The DQS uses its ontology maps to deter-
mine which data repositories contain relevant data to solve the query from both
the Tech-X and the Lehigh University data individuals, thus achieving the de-
sired information integration. The results from executing this query5 contain the
commercial aircraft from both ontologies.

The DQS does the needed logical reasoning to decide to which of the two
Sesame RDF servers (and their specific PostgreSQL databases) to issue network
calls in order to obtain relevant data for a query from all available RDF/OWL
data repositories. The commercial aircraft encoded in the Tech-X ontology syn-
tax are extracted from the Sesame RDF server at Tech-X that stores such data
in its “Aircraft” data individuals PostgreSQL database. The commercial aircraft
encoded in the Lehigh University group ontology are extracted from their Sesame
RDF server and its “Airliner” PostgreSQL database.

Since the DQS has ontology maps to translate concepts between the two
ontologies, we can also use the syntax from the Lehigh University group ontology
to search for the same information with the following SPARQL query:

SELECT ?Aircraft
WHERE { ?Aircraft rdf:type ac:Airliner .}

Running this query6 returns the same results (only in different order) as the
ones from the query that used the Tech-X group ontology syntax. These two
queries demonstrate that one can publish the ontologies separately from their
RDF/OWL data individuals.

The two SPARQL queries above demonstrated the ability of the ISENS system
prototype to handle information integration over an OWL object type. In the
next example, we show that ISENS provides integration over RDF/OWL object
predicates (properties) as well. If one executes7 the SPARQL query:
4 We present the example SPARQL queries here in a concise form. For each query, we

have omitted the appropriate explicit prefix definitions from the set:
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX ac: <http://swat.cse.lehigh.edu/onto/airdata.owl#>
PREFIX tx:

<http://fusion.txcorp.com/~dad/isens/onto/txcorp/aircraft.owl#>
5 We have set up a test version of the ISENS system prototype that is available on-

line. We provide here URLs to PHP scirpts that can directly execute some of the
queries here and display the results ISENS found together with the submitted query
(to enable further interaction with the system if necessary). The URL for the above
query is:
http://fusion.txcorp.com/~dad/isens/wic/run-dqs-q6.php

6 http://fusion.txcorp.com/~dad/isens/wic/run-dqs-q6-reversed.php
7 http://fusion.txcorp.com/~dad/isens/wic/run-dqs-q5.php



Information Integration Via an End-to-End Semantic Web System 775

SELECT ?Aircraft ?Manufacturer
WHERE {
?Aircraft rdf:type ac:Airliner .
?Aircraft ac:manufacturedBy ?Manufacturer .

}

using the Lehigh group ontology syntax, then the data individuals that correspond
to aircraft and their manufacturers are properly extracted from the data reposi-
tory encoded with the Tech-X group ontology syntax (there are currently no such
RDF/OWL data individuals in the Lehigh University group ontology). Again, the
DQS reasons using its map ontologies to do the data integration/translation and
decides from which RDF/OWL data repositories to obtain the relevant answers.
For this case, ISENS supports data integration over the tx:isMadeBy predicate.

The next SPARQL query:

SELECT ?sellOrder ?soldProduct
WHERE {
?sellOrder rdf:type ac:Sell .
?sellOrder ac:soldProduct ?soldProduct .
?sellOrder ac:soldTo
<http://.../isens/onto/txcorp/aircraft.owl#DeltaAirlines>.

}

also uses the Lehigh University group ontology syntax to search for all sell orders
to the DeltaAirlines data individual. Notice that this individual is in the Tech-
X ontology namespace. Only one of the Tech-X RDF/OWL repositories has
relevant data for this query. The ISENS prototype again relies on the information
integration algorithm in the DQS to find8 the proper answer.

We have also used KAON2’s reasoning capability over numerical datatypes
(e.g. ordering) to implement filtering in our queries. When a query has a filtering
request, we remove the filtering part of the query and decompose the rest. After
we generate the reformulation and load the KAON2 knowledge base, we reinsert
the filtering part and issue the whole query. In the future, we plan to implement
a variation of MiniCon that supports comparison predicates, which should allow
the system to scale to larger datasets.

The final query we consider here:

SELECT ?sellOrderID ?sellPriceInUSDollars
WHERE {
?sellOrderID rdf:type ac:Sell .
?sellOrderID ac:sellAmount ?sellPriceInUSDollars .
FILTER (?sellPriceInUSDollars > 10 &&
?sellPriceInUSDollars < 40)

}

8 http://fusion.txcorp.com/~dad/isens/wic/run-dqs-q1-4m.php



776 D.A. Dimitrov et al.

shows support for filters over XMLS integer type data properties together with
information integration in ISENS. Running9 this query shows the data individu-
als that match the imposed constraints. There are, however, current limitations
with the support for XMLS data types that we discuss in Section 4.

All of the above queries completed in under two seconds, including network
latency. Although this was only a prototype and extensive evaluation is yet to
be conducted, we consider these results to be promising.

4 Summary and Future Development

We developed a prototype application, ISENS, based on Semantic Web (in-
cluding RDF/OWL/SPARQL/SWRL) technologies. The system demonstrates
how information integration can be accomplished over two remotely located
RDF/OWL data repositories that are encoded with syntax from different on-
tologies. This was implemented in the DQS component of the ISENS system.
It is important to note that for its reasoning tasks the DQS uses the KAON2
logical reasoner [9]. We used the LUBM [11] to evaluate three candidate reason-
ers (Sesame, OWLIM and KAON2) for use in the DQS. Of these, KAON2 is
the only reasoner that is complete. Moreover, KAON2’s ability to handle both
description logic and rules was one of the key factors that led us to select it.
In addition KAON2 is light weight and is available for free if used for research
purposes.

The current limitations of the ISENS system prototype are:

1. KAON2 is unable to handle XML schema date data type correctly. As a
consequence, the DQS fails to use FILTER queries on the date data type.
We have been informed by KAON2’s developers that a future release will be
able to handle such cases.

2. The system relies on a compilation of the map ontologies and the source
descriptions into an intermediate form. In order, to get the prototype work-
ing with limited resources, this compilation was performed manually. A full
system will need an algorithm to perform this translation automatically.

3. The prototype is designed to work with a two-ontology architecture. How-
ever, in the general setting there may be many ontologies, and sometimes
multiple maps will need to be composed in order to achieve complete inte-
gration.

In future development, we will generalize the DQS to address the current two-
ontology architecture limitation. We will use the schema mediation in peer data
management systems (PDMS) idea by Halevy et al. [10] to design and implement
such a system. This is a natural extension to our system because a key component
of the PDMS rewriting algorithm is the MiniCon algorithm. However, the PDMS
algorithms will have to be extended to be used in a Semantic Web context.

9 http://fusion.txcorp.com/~dad/isens/wic/run-dqs-q2.php



Information Integration Via an End-to-End Semantic Web System 777

Our experience in implementing the ISENS system prototype and the results
from its testing show that this is a feasible approach to build a system for
information integration, managing, and sharing of RDF/OWL data that could
provide important, new, Semantic Web capabilities.

Acknowledgements

We are grateful to the Department of Energy for supporting this work under a
Phase I SBIR grant.

References

1. Halevy, A.Y., Ashish, N., Bitton, D., Carey, M., Draper, D., Pollock, J., Rosen-
thal, A., Sikka, V.: Enterprise information integration: successes, challenges and
controversies. In: SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD interna-
tional conference on Management of data, New York, NY, USA, ACM Press (2005)
778–787

2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. (2001)
3. Heflin, J.: Towards the Semantic Web: Knowledge Representation in a Dynamic,

Distributed Environment. PhD thesis, University of Maryland (2001)
4. Ullman, J.D.: Information integration using logical views. In: Proc. of ICDT,

Delphi, Greece (1997) 19–40
5. SPARQL: Query Language for RDF, W3C Working Draft. ("http://www.w3.org/

TR/rdf-sparql-query/")
6. Pottinger, R., Halevy, A.: MiniCon: A scalable algorithm for answering queries

using views. VLDB Journal: Very Large Data Bases 10(2–3) (2001) 182–198
7. Broekstra, J., Kampman, A.: Sesame: A generic architecture for storing and query-

ing rdf and rdf schema. In: Proceedings of the 2nd International Semantic Web
Conference (IAWC2003), Sanibel Island, Florida. (2002)

8. Aduna: Sesame RDF Framework. ("http://www.openrdf.org")
9. Motik, B.: KAON2: infrastructure for managing OWL-DL and SWRL ontologies.

("http://kaon2.semanticweb.org/")
10. Halevy, A., Ives, Z., Suciu, D., Tatarinov, I.: Schema mediation in peer data

management systems. In: Proc. of ICDE. (2003)
11. Guo, Y., Pan, Z., Heflin, J.: An evaluation of knowledge base systems for large

owl datasets. In: Proceedings of the 3rd International Semantic Web Conference
(IAWC2004), Hiroshima, Japan. (2004) 274–288



NEWS: Bringing Semantic Web Technologies
into News Agencies

Norberto Fernández, José M. Blázquez, Jesús A. Fisteus, Luis Sánchez,
Michael Sintek, Ansgar Bernardi, Manuel Fuentes,

Angelo Marrara, and Zohar Ben-Asher

The NEWS Consortium�

info@news-project.com

Abstract. In the current Information Society, being informed is a ba-
sic necessity. As one of the main news bussiness actors, news agencies
are required to provide fresh, relevant, high-quality information to their
customers. Dealing with this requirement is not an easy task, but, as
partners of the NEWS (News Engine Web Services) project, we believe
that the usage of Semantic Web technologies could help news agencies
in achieving that objective. In this paper we will describe the aims and
main achievements of the NEWS project, that was just completed.

1 Introduction

The news business is based on producing news items about current events and de-
livering them to customers. Customers want to receive information about events
as soon as they occur. Customers do not want to be bothered with useless infor-
mation, that is, they want to get information only about events of interest.

Dealing with both requirements, information freshness and relevance, is not
easy to do. For instance, state of the art workflows at the news agencies try
to address the relevance requirement by adding metadata to news items. These
metadata are used to filter the news items according to the interests of each
customer. But currently the metadata are added manually by the journalists
and this is a time consuming task. Of course the negative effect of this meta-
data addition overhead can be reduced by restricting the metadata to be added
to a few, easy to add, items: news item priority, keywords, editing location,
category (economy, sports, ...), etc. This is the approach currently followed by
the agencies. For instance, the categorisation is currently done based on small
(, 10 categories), in-house, category systems, easy to learn and use by the jour-
nalists. Finer grained annotations of the news items’ contents (like basic entities
occurrence) are not currently added. The effect of these restrictions on the set

� The NEWS Consortium is composed of news agencies Agencia EFE S.A. and Agen-
zia ANSA S.C.R.A.L., the Deutsches Forschungszentrum für Künstliche Intelligenz
GmbH Research Institute, Ontology Ltd. and Universidad Carlos III de Madrid
university.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 778–791, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



NEWS: Bringing Semantic Web Technologies into News Agencies 779

of annotations to be added, is that high quality information filtering services are
difficult to implement, which is opposite to the relevance requirement.

So, the current situation at news agencies as the Spanish EFE or the Italian
ANSA is that customers access the news content either as a streaming according
to their profiles (categories and other basic metadata), push distribution mode,
or making free text queries over a news item repository, pull distribution mode.
This of course results in receiving a lot of non-relevant content that the customer
should manually filter. Additionally due to the fact that queries over news agen-
cies’ repositories are keyword-based, multilingual information retrieval is not
feasible: the customer gets news items in the language of the terms (s)he has
introduced in the free text query.

The NEWS [1] EU IST project aims at providing solutions which help news
agencies to overcome limitations in their current workflows and increase their
productiveness and revenues. In order to reach this aim, the NEWS project
makes use of state-of-the-art Semantic Web technologies. In that sense, the work
developed in this project covers mainly three topics:

Annotation: Implementing a semantic annotation component which automat-
ically produces metadata annotations for news items. In the context of
NEWS, the core of this semantic annotation component is the natural lan-
guage processing (NLP) engine of Ontology Ltd.

Intelligent Information Retrieval: Developing intelligent components for the
news domain, with multilingual and multimedia capabilities, which use se-
mantic annotations and ontologies to allow the development of intelligent
services for the news domain. In the context of NEWS we have developed
a Heuristic and Deductive Database (HDDB) component and the NEWS
Ontology [2], which covers the main concepts required in the news domain.

User Interface: We have developed a Web based interface that allows the jour-
nalists to access to all the system functionalities.

The components of the NEWS system interact by means of Web Services. The
combination of Semantic Web technologies with Web Services results in a quite
flexible and open architecture easy to extend, to integrate into the legacy agen-
cies’ workflows and with good interoperability properties with other systems. In
this paper, we will describe all the NEWS components. A first version of them
is currently being tested in real conditions in EFE news agency. The rest of this
paper is organized as follows: section 2 describes the annotation component, sec-
tion 3 describes the HDDB component and section 4 describes the NEWS GUI.
Finally, sections 5, with references on some related work, and 6, with concluding
remarks, close this paper.

2 Annotation Engine

NEWS realized the automated annotation of news items using NLP engines for
several languages. While originally focussed on text this can also support multi-
media news item processing. The next two subsections provide a brief technical



780 N. Fernández et al.

introduction to the annotation engines and to some experiments that we have
performed in the context of NEWS with multimedia news item processing.

2.1 Natural Language Processing Engine

In the context of the NEWS project we are using the natural language processing
engine of Ontology Ltd., which provides news item categorization, abstract gen-
eration and named entity recognition (persons, organizations, locations). This
engine categorizes into the International Press Telecommunication Council [3]
(IPTC) categorization system known as Subject Code NewsCodes, (a.k.a. Sub-
ject Reference System or SRS) which contains more than 1300 categories.

The engine is based on a hybrid approach to natural language processing,
which combines linguistic techniques, based on patterns and linguistic rules, with
statistical techniques, used to automatically identify and evolve the linguistic
rules. There are a diversity of features that the statistical model of Ontology
Ltd. learns and later uses to process texts:

Word stems: The Ontology Ltd. annotation engine performs the linguistic
tasks of stemming and part-of-speech tagging (a.k.a morphological normal-
ization).

Complex features: These are pairs, triples and higher-order tuples of related
words, e.g. the verb buy with the noun company serving as its object. Such
pair of words conveys a more specific notion than the isolated terms buy and
company and should be treated as one complex feature. The detection of this
and other syntatic role dependencies in a large variety of phrase structures
is performed using linguistic processing.

Concept classes: Words and expressions that in a specific context play similar
roles are grouped into one class and are analyzed statistically as a collective
feature (in addition to their treatment as individual features). In the context
of Mergers & Acquisitions, for example, one may want to consider the shared
meaning of the verbs buy, sell, and purchase and the noun acquisition. Con-
cept classes can be organized in a hierarchy, either as a tree or as a more
general graph, allowing a class to have more than one conceptual parent.

All types of features coexist in the categorization and extraction engines of
Ontology Ltd. and interact with each other. In the NEWS project, Ontology’s
engines process news in Spanish, English and Italian languages.

2.2 Dealing with Multimedia News Items

News agencies not only produce textual news items, but also multimedia items
such as photographs, audio and video. In the context of the NEWS project,
we have analyzed how these multimedia items can be processed by the natural
language processing engine in order to generate automatic annotations about
them.



NEWS: Bringing Semantic Web Technologies into News Agencies 781

Photographs in a news agency have normally attached a textual description,
and some management metadata, such as the date, categories, location or author.
The NEWS system can analyze the textual description and annotate persons,
locations and organizations related to the photograph. We are evaluating the
integration of the NEWS system with the photograph archive of the Spanish
news agency EFE, called Fototeca. The archive contains now over 2 million pho-
tographs and about 1500 new ones are added daily into it.

Regarding audio and video news items, our approach consists in using a
speech–to–text tool to transcribe the content of the audio track. The resulting
text can be processed by the natural language processing engine. The state–
of–the–art speech–to–text tools provide high–quality transcriptions and support
many languages. In the environment of NEWS, however, there are some draw-
backs: major speech–to–text tools require the system to be previously trained
by the speaker, but training for every journalist is not possible; audio tracks of
news items are normally recorded in noisy environments with portable equip-
ment, and transferred to the agencies by low–quality channels (e.g. conventional
or cellular telephone lines); punctuation marks and capital letters normally need
to be dictated in the speech, which is impossible in recorded news items.

We have performed two experiments in order to evaluate the impact of the
above–mentioned drawbacks in the quality of the annotations, using a commer-
cial speech–to–text tool: Dragon Naturally Speaking. In the first experiment, we
trained Dragon for one male user and one female user. We applied it to five
different audio news items provided by the EFE news agency. When the gender
of training and the one of the analysed speaker match we obtained a rate of
70%–80% of correctly transcribed words. Gender mismatch however lead to very
poor results.

In a second experiment, we evaluated the impact of the loss of punctuation
marks. Our experiment was run over a collection of 171 news items. Each news
item was processed twice: once the original version and once without punctua-
tion marks. Comparing annotations of the two versions of each news item, we
found that the average error rate is about 20%, considering that an error is an
annotation in the original item nor present in the modified one, or vice versa.

Although not perfect, experiments show that our approach produces medium–
quality annotations without human intervention, and is a feasible alternative to
a high–cost manual annotation system.

3 Heuristic and Deductive Database

The Heuristic and Deductive Database component has three main functions in
the NEWS system architecture:

– It acts as a Deductive Database (DDB) which stores the news items and their
metadata. This repository can be queried by users (pull distribution mode),
or used to implement subscription-based push services. It consist basically
of three elements:



782 N. Fernández et al.

• A relational database, which stores the information in the NEWS On-
tology and the metadata of the news items.

• A text indexing engine, Lucene [4], used to allow keyword-based queries
over the textual contents of news items.

• An inference engine which allows basic reasoning (transitive closure com-
putation) with the NEWS Ontology.

– It uses some heuristics in order to perform context-aware instance identifi-
cation (so the H in HDDB), mapping entities found by the natural language
processing tool to instances in the NEWS Ontology.

– It uses the information inside the NEWS Ontology and the Lucene index in
providing basic event recognition features.

The next three subsections will describe in more detail some of the key compo-
nents of the HDDB: the NEWS Ontology, the instance identification algorithm
and the event recognition feature.

3.1 The NEWS Ontology

As stated in section 1, the main objective of the NEWS project is to apply
Semantic Web technologies in the journalism domain. Applying Semantic Web
technologies to a certain domain of interest requires the definition of ontologies
to model such domain. In the context of the NEWS project, we have developed
the NEWS Ontology. It is a lightweight RDFS [5] ontology which is composed
of three modules:

Categorization Module: Provides the vocabulary for automatic news catego-
rization. It is based on IPTC’s Subject Code NewsCodes. The Subject Codes
set is a three level hierarchy that consists of Subjects, Subject Matters and
Subject Details. The top level contains 17 different Subjects. The full set
has about 1300 categories. In the categorization taxonomy module, concrete
categories from NewsCodes are defined as RDFS classes.

Management Metadata Module: Taking as basis DC [6], PRISM [7], the
management metadata included in news representation standards as NITF
[8] or NewsML [9] and the management metadata currently used by news
agencies, we have developed a vocabulary to be used in annotating news
items with management metadata. It covers, among others, topics like au-
thorship information, news item priority and news item media type.

Content Annotation Module: Provides the basic vocabulary for news con-
tent annotation. As in principle almost anything in the world can appear
in a piece of news, we have decided to rely on a generic top-level ontology.
It is inspired in SUMO/MILO [10] and consist of more than 200 classes
and about 100 properties. The module was also populated with instances
taken from different information sources like ISO country codes standard
ISO 3166:1997-1, CIA WorldFact Book [11], NASDAQ companies codes,
SUMO/MILO instances, Web sources as Wikipedia [12], etc. As a result the
current version contains more than 11,000 instances of different classes: coun-
tries, cities, companies, persons, etc. In order to deal with multilingualism,



NEWS: Bringing Semantic Web Technologies into News Agencies 783

we have added to the different components in the ontology labels in Ital-
ian, Spanish and English. To relate the labels with the ontology elements,
we are using Simple Knowledge Organization System, SKOS [13] properties
(preferred label, alternative label, description).

3.2 Context-Aware Instance Identification

As we have seen, the NLP engines are able to extract basic entities from text.
But in order to achieve fine-grained retrieval results it is not enough to figure out,
that the extracted text string Bush represents a person, we need to know who
is that person by mapping the entity with an instance in the NEWS Ontology.

In order to deal with this problem, the NEWS consortium has developed the
IdentityRank algorithm based on PageRank [14]. Basically this algorithm ex-
ploits all the information provided by the natural language processing engine
(categories, entities) and the news item timestamp as context for entity disam-
biguation. It is based on two principles:

Semantic coherence: Instances typically occur in news items of certain SRS
categories, e.g. president Bush in news items of politics category. Also the
occurrence of a certain instance gives information about the occurrence of
other instances. For example, the spanish F1 driver Fernando Alonso usually
appears in news items where the F1 Team Renault is also mentioned.

News trends: Important events typically are described with several news items
covering a certain period of time. For instance when the former Pope died,
news items describing such event where composed during several days, most
of them including instances as Vatican or John Paul II.

The process to run the algorithm starts by defining a set of candidate instances
for each entity detected in the news item by the natural language processing
engine. This can be done by matching the entity text with the labels (in the
appropriate language) of the NEWS Ontology’s instances. The entity type should
also be matched with the instance class to define a candidate instance, so for
example we do not considered an instance of class Region to be a candidate for
an entity of type person.

Once we have all candidate instances of all the entities, we define a seman-
tic network with all these instances. In such semantic network nodes represent
candidate instances for the entities in a news item and arcs between two nodes
appear when the two instances have cooccured in the past in at least one news
item. The category and the timestamp information are taken into account in
giving initial weight to the nodes in the semantic network, so if an instance has
recently appeared in news items, its node is given more weight. If the instance
usually appears in news items of the same SRS category/ies as the news item
being considered, its node is also given more weight.

Once the semantic network is defined, we apply the IdentityRank to it. In
contrast to classical PageRank, the weight of a node or instance is not divided
uniformly between all adjacent nodes, but we give weights to arcs. If two in-
stances typically cooccur, a bigger weight is given to the arc which connects



784 N. Fernández et al.

these instances. In any case, both algorithms deliver a ranking of the nodes
in the network. By looking at such ranking, we can find in our case the most
relevant instances which can be mapped to the entities in the news item.

We have carried out a basic experiment with 30 news items from EFE news
agency where the entity Georgia of type location appears with an ambiguous
meaning, representing either the US state or the Asian country. The results of
the experiment indicate that the algorithm produces a correct mapping entity-
instance in about the 80% of the situations, but of course more extensive tests
need to be performed.

3.3 Event Recognition

News agencies produce news items that describe events, so automatic event
recognition is an attractive feature for them. In order to deal with this require-
ment, in NEWS we had to deal with two complementary aspects: defining what
an event type is at the NEWS Ontology and implementing an event type recog-
nition facility.

In NEWS, an event type definition includes a set of SRS categories, which
are expected to be associated with the event, and a set of language dependant
patterns manually defined by the ontology maintainer. These patterns have an
SPO (Subject-Predicate-Object) structure, where subject and object are defined
as one of the following three entity types: person, organization or location, and
the predicate can include a verb and/or some free text. The P part of the SPO
pattern is compulsory, but S and O are optional. Examples of valid patterns
could be the following:

S-P-O ORG - (buy|bought|has bought) - ORG
S-P PER - (say|said|has said)
P-O (visit|visited|has visited) - LOC

The event recognition software is based on the Lucene span query facility,
so uses the information in the Lucene index at the HDDB. Basically a span
provides information about where a match of a certain token (piece of text,
usually a word) has taken place in a document. That position information can
be used later in queries. For the purposes of this paper we are mainly interested
in the following kinds of Lucene span queries1:

SpanTermQuery: Matches spans containing a term. Basically allows to find a
certain term or token in a document and its position/s.

SpanNearQuery: Matches spans which are near one another. Developers could
specify the slop, the maximum number of intervening unmatched positions,
as well as whether matches are required to be in-order. For instance, a span
near query could be built by combining two span term queries and providing
the slop, the maximum number of positions between the results of such
queries.

1 See the Lucene 1.9.1 package org.apache.lucene.search.spans.



NEWS: Bringing Semantic Web Technologies into News Agencies 785

SpanOrQuery: Matches the union of its clauses. It is used to combine (with
OR logical operator) other span queries.

So, the patterns that we have introduced previously are converted inside the
HDDB to rules, each of which consists of a set of span queries to Lucene of the
types described above. For instance given the pattern:

ORG buys|bought|has bought|will buy ORG

and assuming that the natural language processing engine has found the fol-
lowing entities of type organization: Intel Corporation and Microsoft inside a
news item, the following query would be generated to check the news item for
occurrences of the pattern and the corresponding event type:

SpanNear(
SpanNear(SpanTerm(Intel), SpanTerm(Corporation), SLOP=1),
SpanOr(

SpanTerm(buy),
SpanTerm(bought),
SpanNear(SpanTerm(has), SpanTerm(bought), SLOP=1),
SpanNear(SpanTerm(will), SpanTerm(buy), SLOP=1)

),
SpanTerm(Microsoft),
SLOP=15

)

If the news item matches the query and is an instance of one of the SRS
categories associated to the event (or of one of their subcategories) then an
association between the event type and the news item is stored in the relational
database of the HDDB.

Note that the mechanism that we have described is based on text queries,
so it is language dependent. We make it compatible with our requirement of
multilinguality by providing versions in spanish, english and italian for each
pattern. In order to make the process of pattern definition simpler to the ontol-
ogy maintainer, we have implemented a Web Service which receives as input a
pattern with a verb in infinitive form and generates variants for the pattern and
translations to the different languages. For instance, given the pattern in italian:
bambini vb:giocare calcio (note that the infinitive in the initial pattern is marked
with vb:) the suggestion service provides the following alternatives:

en: children (play|played|has played) soccer
es: niños (juega|jugó|ha jugado) fútbol

it: bambini (gioca|ha giocato) calcio

As automatic translation is used in pattern generation, the ontology main-
tainer should carefully check the results of the process.

4 Graphical User Interface

In order to allow the journalists to access all the NEWS system functionalities, we
have developed a Web based graphical user interface accessible via conventional



786 N. Fernández et al.

browser. This interface is implemented using Java Server Pages which are served
by an Apache Tomcat [15] engine.

The first step that the journalist should perform in order to access the system
is authentication. After that, (s)he will have some tabs organized according to
the functionalities offered by the system. These tabs are:

Latest News: Push news item retrieval based on user profile.
Browse Knowledge Base: Pull news item retrieval by browsing the NEWS

knowledge base.
Query: Pull news item retrieval by querying.
Create NewsItem: News item creation.
Edit Profile: Personalization and user profile definition.

4.1 Latest News

This is the tab being shown by default when the user logs in into the system.
Basically its role is to show the latest news items stored in the HDDB filtered
according to the information on the user profile (categories, languages, date
ranges). These news items are sorted by timestamp, so the first being shown
to the user is the most recent one. The information in this tab is refreshed
periodically with a period defined by the user in his/her profile.

4.2 Browse Knowledge Base

The NEWS GUI allows different possibilities for browsing the knowledge stored
into the HDDB. These are:

Browse by Categories: Allows the user to find the news items that belong to
a set of categories of the IPTC categorization system and that have occurred
in a specific date range. The user can select one or more categories from any
of the levels and (s)he will get the news items that belong to any of those
levels or to one of their sublevels, and that occurred in the specified date
range.

Browse by Instances: Allows the user to get news items that contain a con-
crete instance. The tree with the classes of the NEWS Ontology content
module is displayed. The user can browse this tree to select the class that
contains the instance (s)he looks for. After clicking on the name of the class,
(s)he has to click on a ”Find Instances” button. This will retrieve all the in-
stances that appear in any news item stored in the database in the selected
date range. Finally, the user has to select one of the instances in order to
get the news items that contain this instance in the selected date range.

Browse by Properties: Performs a function similar to that of the previous
one: find news items that contain instances. However, in this case, these in-
stances are not selected directly, but through the use of properties. First of
all the user selects the class of the instance (s)he looks for (for example the
class Human). When clicking on that class a list of the properties which have



NEWS: Bringing Semantic Web Technologies into News Agencies 787

the class as domain or range (for instance Human works at Organization)
appears. By selecting a certain property (like works at) a set of instances are
shown to the user. If the initially selected class is the domain of the property,
the instances are those in the range (Organizations in our example) and vice
versa. By clicking on an instance (for example Ferrari) the user is looking
for news items which mention the instance/s of the initially selected class
which are related with the selected instance by the selected property (that
is, news items talking about Humans that work at Ferrari in our example).

Browse by Events: This tab (see figure 1) allows users to get news items
related to a concrete event. Events (see 3.3) are related to the IPTC cate-
gorization system so the tree with these categories is shown in order to ease
the task of finding them. Once the category is selected, a query is sent to
the HDDB to get the events that are related to the category. Finally, the
user has to choose one of the available events before sending the query and
retrieving news items.

Fig. 1. NEWS Browse by Events Window

4.3 Query

This tab allows the user to introduce queries in order to retrieve news items that
satisfy certain criteria. Two kinds of queries can be performed: keyword-based
basic queries and advanced queries, where additional restrictions on metadata
information can also be specified. The process of performing a basic query is the
following:

1. The user enters the terms of the query in the text field.
2. The system tries to match the terms of the query with known instances or

entities in the knowledge base in order to perform a semantic search. If there
are several possibilities, the user is requested to disambiguate the query.



788 N. Fernández et al.

3. The system looks in the knowledge base for news items that match the enti-
ties/instances selected in the previous step. If there are not selected entities
nor instances, a full text search is performed.

4. The user can click on a result in order to retrieve the full text of the news
item and its metadata, including the entities and instances it is related to.

The advanced query interface permits restricting these results by filtering
them by SRS category, news agency, etc.

4.4 Create NewsItem

This tab guides the journalist through the news item creation process, which
includes:

1. Manual typing of the content of the news item and some management meta-
data like priority or edition location.

2. Automatic categorization and annotation of the news item. The results are
shown to the user who can validate both the categories and the entities
recognized by the annotation engine. During this step the instance identifi-
cation process takes also place using the information provided by the NLP
engine and a Web service at the HDDB to run the IdentityRank algorithm.
The results of this process can also be validated by the journalist. The GUI
also allows the manual addition of new categories, entities and instances to
the news item.

3. Automatic recognition of event types using a Web service at the HDDB and
event type validation (and/or addition) by the journalist.

Finally, the news item is sent to the HDDB where it is stored.

4.5 Edit Profile

One of the functionalities required by the news agencies was the possibility of
adapting the system to the user. In order to achieve this task the GUI provides
the Edit Profile tab. In this tab the user can modify, among others, the following
properties:

– Language of the user interface.
– Refresh time of the Latest News tab.
– Preferred categories, language/s and date range for news item filtering in

Latest News tab.

5 State of the Art

The news domain has a number of features that make it interesting for running
experiences using Semantic Web technologies in real business: data heterogeneity,
huge amounts of information to manage, multilinguality, etc. Taking this into
account it is not strange to find in the state of the art several projects related
with the topic of applying Semantic Web technologies to the journalism domain,
like for instance:



NEWS: Bringing Semantic Web Technologies into News Agencies 789

NAMIC. The News Agencies Multilingual Information Categorisation project
[16] had as main objective to develop and bring to marketable stage ad-
vanced NLP technologies for multilingual news customisation and broadcast-
ing throughout distributed services. Though dealing with multilingual and
categorization issues in the context of professional journalism, as NEWS,
the application of technologies as ontology-based reasoning or a Web Service
based architecture were not considered.

KIM. The KIM Platform [17] provides a Knowledge and Information Man-
agement (KIM) infrastructure for automatic semantic annotation, indexing,
and retrieval of unstructured and semi-structured content. Though the KIM
platform can be integrated in different contexts, it has not been designed
taking news agencies’ specific requirements, as compatibility with journal-
ism standards like SRS, into account.

PENG. The Personalized News Content Programming project [18,?] aims at
defining a news content composition and programming environment that
provides news professionals with a flexible tool for a user customizable fil-
tering, retrieval and composition of news. Though dealing with the news
domain, this is done from a general perspective so again some specific re-
quirements of the news agencies like multilinguism are not directly covered.

MESH. The Multimedia Semantic Syndication for Enhanced News Services
project [20] will create multimedia content brokers acting on behalf of users
to acquire, process, create and present multimedia information personalized
(to user) and adapted (to usage environment). It is an EU funded project
that has just started (march 2006) so at the moment there are not available
results that can be compared with NEWS achievements.

6 Conclusions and Lessons Learned

In this paper we have described the main achievements of the NEWS project,
which has as main objective to bring the Semantic Web technologies into the
news domain. Among these achievements we can cite:

1. The development of an ontology for the domain of interest.
2. The design and implementation of annotation mechanisms (categorization,

entity extraction and event recognition) in the languages of interest (English,
Spanish and Italian).

3. The development of algorithms which allow to match entities detected by
the annotation engine to instances in an ontology.

4. The development of intelligent components which exploit the annotations
and the information in the NEWS Ontology to perform semantic information
retrieval dealing with the multilingualism requirement.

5. The design and implementation of proper user interfaces that allow the jour-
nalists to access all the system functionalities in a personalized manner.

A first prototype of the NEWS system has been recently deployed at EFE.
We refer the interested reader to [21] for more information on that. Another



790 N. Fernández et al.

prototype is available for public access at [22]. As main lessons learned during
the project lifecicle we can cite the following:

Integration into existent workflow: NEWS components were required to be
easily integrable and interoperable with legacy tools and workflows. In order
to do so, we have developed our components as Web services, which provide
a modular and flexible solution. For instance, in principle it is possible that
the agencies use only some components, or replace in the future ours with
others performing similar operations.

Response time: It is crucial in the news domain, where freshness information
is a very important concern. In the context of NEWS this requirement of
news agencies had one important consequence: reduce reasoning process,
which is complex and time consuming. In our case, we have reduced reasoning
to query expansion over the NEWS Ontology.

Scalability: Our applications should be able to handle thousands of new news
items each day, and to manage repositories containing millions of items. The
consequences in NEWS were clear:
– Use as much as possible well-known scalable technologies as relational

databases and classical text indexing engines.
– Avoid reasoning to do things which can be easily implemented and per-

formed by classical procedural mechanisms.
– Use offline mechanisms to perform complex operations if possible. For

instance, the training process of Ontology Ltd. engine is performed pre-
viously to deployment in news agency.

Human Interface: If, as it is the case of NEWS tools, a non technician human
user is going to interact with our systems, the design of the human interface
is a crucial issue. Multilingual issues, usability, reliability and completeness
(it has sufficient options to access all the available functionalities) are all
factors to be taken into account. In that sense our experience when deploying
the system in news agencies was that classical tree-based ontology browsing
mechanisms (that for instance we provide at the GUI to browse the SRS
tree and the NEWS Ontology content module tree) were not well accepted
by journalists because for them it is sometimes difficult to know where to
find the class that they need. As a possible workaround to this problem we
provided keyword based navigation to allow to the journalists to look for a
specific class by name, but using personalized views of the ontologies is a
possibility to be explored in the future.

Acknowledgements

This work has been partially funded by the European Comission under contract
FP6-001906 in the framework of the Information Society Technologies (IST)
programme.



NEWS: Bringing Semantic Web Technologies into News Agencies 791

References

1. NEWS Home: http://www.news-project.com
2. Fernández-Garćıa, N.; Sánchez-Fernández, L.; Building an Ontology for NEWS

Applications. Poster in the 3rd International Semantic Web Conference, ISWC04.
3. IPTC Home: http://www.iptc.org/
4. Apache Lucene Home: http://lucene.apache.org/
5. RDF Vocabulary Description Language 1.0: RDF Schema.

http://www.w3.org/TR/rdf-schema/
6. Dublin Core Metadata Initiative (DCMI). http://dublincore.org/
7. PRISM: Publishing Requirements for Industry Standard Metadata.

http://www.prismstandard.org/
8. NITF: News Industry Text Format. http://www.nitf.org/
9. IPTC NewsML Web. http://www.newsml.org/

10. Niles, I. and Pease, A.; Towards a Standard Upper Ontology. In Proceedings of the
2nd International Conference on Formal Ontology in Information Systems (FOIS-
2001), Ogunquit, Maine, October 17-19, 2001.

11. CIA WorldFact Book. http://www.cia.gov/cia/publications/factbook/
12. Wikipedia Home: http://wikipedia.org/
13. Simple Knowledge Organisation System, SKOS.

http://www.w3.org/2004/02/skos/
14. Page, L.; Brin, S.; Motwani, R and Winograd, T.; The PageRank Citation Ranking:

Bringing Order to the Web. http://dbpubs.stanford.edu/pub/1999-66.
15. Apache Tomcat Home: http://tomcat.apache.org/
16. NAMIC: News Agencies Multilingual Information Categorisation.

http://www.dcs.shef.ac.uk/nlp/namic/
17. Kiryakov, A.; Popov, B.; Ognyanoff, D.; Manov, D.; Kirilov, A. and Goranov, M.;

Semantic Annotation, Indexing and Retrieval. In Proceedings of the 2nd Interna-
tional Semantic Web Conference, ISWC 2003, LNCS 2870, pp 485-499.

18. PENG: Personalized News Content Programming. http://www.peng-project.org/
19. Pasi, G. and Villa, R.; Personalized News Content Programming (PENG): A Sys-

tem Architecture. In proceedings of the 16th International Workshop on Database
and Expert Systems Applications (DEXA’05).

20. MESH: Multimedia Semantic Syndication for Enhanced News Services.
http://cordis.europa.eu/ist/kct/fp6 mesh.htm

21. Sánchez-Fernández, L.; Fernández-Garćıa, N.; Bernardi, A.; Zapf, L.; Peñas, A. and
Fuentes, M.; An experience with Semantic Web technologies in the news domain.
In Proceedings of the ISWC 2005 Workshop on Semantic Web Case Studies and
Best Practices for eBusiness, SWCASE05, CEUR-WS, Vol. 155.

22. NEWS Web Demo. http://corelli.gast.it.uc3m.es:8081/NEWS/ (login: guest, pass-
word: guest)



Semantically-Enabled Large-Scale Science Data
Repositories

Peter Fox1, Deborah McGuinness2,3, Don Middleton4, Luca Cinquini4,
J. Anthony Darnell1, Jose Garcia1, Patrick West1,

James Benedict3, and Stan Solomon1

1 High Altitude Observatory, ESSL/NCAR
PO Box 3000, Boulder CO 80307-3000

pfox@ucar.edu
2 Knowledge Systems, Artificial Intelligence Lab

353 Serra Mall, Stanford University, Stanford, CA 94305
3 McGuinness Associates

20 Peter Coutts Circle, Stanford, CA 94305
dlm@cs.stanford.edu

4 Scientific Computing Division, CISL/NCAR
PO Box 3000, Boulder CO 80307-3000

Abstract. Large heterogeneous online repositories of scientific informa-
tion have the potential to change the way science is done today. In order
for this potential to be realized, numerous challenges must be addressed
concerning access to and interoperability of the online scientific data. In
our work, we are using semantic web technologies to improve access and
interoperability by providing a framework for collaboration and a basis
for building and distributing advanced data simulation tools. Our initial
scientific focus area is the solar terrestrial physics community. In this pa-
per, we will present our work on the Virtual Solar Terrestrial Observatory
(VSTO). We will present the emerging trend of the virtual observatory
- a virtual integrated evolving scientific data repository - and describe
the general use case and our semantically-enabled architecture. We will
also present our specific implementation and describe the benefits of the
semantic web in this setting. Further, we speculate on the future of the
growing adoption of semantic technologies in this important application
area of scientific cyberinfrastructure and semantically enabled scientific
data repositories.

1 Introduction

Semantic Web technology has the potential to enable new work paradigms and
make vast changes to existing and/or emerging paradigms. One emerging area of
scientific work practice where semantic technologies are starting to be used is the
area of Virtual Observatories (VOs). VOs [3] are distributed resources that may
contain vast amounts of scientific observational data, theoretical models, and
analysis programs and results from a broad range of disciplines. Semantics in VOs
resemble efforts in the Semantic Grid efforts [5] and science more generally[2].

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 792–805, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Semantically-Enabled Large-Scale Science Data Repositories 793

Currently semantics are mostly usable with the aid of an experienced researcher
and only in a narrow domain. One goal of Virtual Observatories is to enable not
just expert researchers working in narrow domains to make progress but also
to make young researchers and interdisciplinary researchers much more efficient
and enable new, global problems to be solved as researchers may now access vast
amounts of data that they or others have created. The key to the new efficiency
is that users (humans and agents) must now be able to understand what the
data is describing, how the data (and topic area) relates to other data (and
other topic areas), how the data was collected, and what assumptions are being
used. These problems are a perfect match for semantic technologies.

We are using semantic technologies to create an interdisciplinary Virtual Solar
Terrestrial Observatory (VSTO) [15]. The work to create a scalable environment
for searching, integrating, and analyzing databases distributed over the Internet
requires a higher level of semantic interoperability than was previously required
by most (if not all) distributed data systems or discipline specific virtual observa-
tories. We leveraged existing background domain ontologies (SWEET) [13] and
generated our own ontologies in OWL [10] covering the required subject areas.
We leverage the precise formal definitions of the terms in supporting semantic
search and interoperability.

Our science domain area - solar and solar-terrestrial physics - utilizes a balance
of observational data, theoretical models and analysis/interpretation to make
effective progress. Since many of the data collections are increasingly growing in
volume and complexity, the task of truly making them a research resource that
is easy to find, access, compare and utilize is still a very significant challenge
to discipline researchers. The datasets can be highly interdisciplinary as well
as complex and provide a good initial focus for virtual observatory work since
the datasets are of significant scientific value to a set of researchers and capture
many, if not all, of the challenges inherent complex, diverse scientific data.

VSTO addresses the next logical and intellectual challenge for scientific cy-
berinfrastructure work: that of an interdisciplinary virtual observatory which
requires advances both in computer science areas such as knowledge representa-
tion and ontology development as well as depth in the science areas of concern
to provide an appropriate scientific infrastructure that is usable and extensible.

In this article we describe our Virtual Observatory project, including the
vision, our design and implementation. We will describe where we are using
Semantic Web technologies and discuss our motivation for using them and some
benefits we are realizing. We will also briefly describe our deployment setting
which started production late summmer of 2006.

2 Virtual Observatories

The virtual observatory (VO) vision includes a distributed, virtual, ubiquitous,
semantically integrated scientific repostory where scientists (and possibly lay peo-
ple) can access data. The VO data repository appears to be local and integrated. In
the VO vision, tools exist that make it easy for users to access the data they want.



794 P. Fox et al.

Additionally, support exists for helping them understand the data, its embedded
assumptions, and any inherent uncertainties in a discpline-specific context.

3 The Virtual Solar Terrestrial Observatory

Our VSTO project inherits all of the goals of a general virtual observatory
project [8,14] while focusing on the domains of solar and space physics. Our goal
is to provide virtual access to specific data, model, tool and material archives
containing items from a variety of space- and ground-based instruments ex-
periments, as well as individual and community modeling and software efforts
bridging research and educational use.

We have developed a series of use cases sampling the solar-terrestrial problem
domain, drawing on existing experience and either fully or partially developed
capabilities in existing domain-relevant scientific services. Prior to beginning this
project, the National Center for Atmospheric Research already had the CEDAR-
WEB [4] (CEDAR - Coupled Energetics and Dynamics of Atmospheric Regions;
an NSF focused program covering aeronomy and terrestrial upper-atmosphere
studies), Center for Integrated Space-Weather Modeling at Boston and funded
by an NSF Science and Technology Center grant, and the Advanced Coronal Ob-
serving System (ACOS) at the Mauna Loa Solar Observatory (MLSO) operated
by the National Center for Atmospheric Research’s High Altitude Observatory.
Our team includes members who are key contributors to those existing efforts,
some of whom started and/or maintain those systems. This team makeup helps
with our efforts involved both in gathering requirements as well as in providing
a transition plan for deployment and acceptance in the communities.

3.1 Solar-Terrestrial Use Cases

We have developed a number of use cases for VSTO and in this section we will
present the first of these which addresses the state of the neutral terrestrial upper
atmosphere. We will describe how this use case (and how some aspects of the
other use cases) have contributed to our ontology and semantic web architecture
requirements.

Our general use case is of the form “Plot values of a particular parameter as
recorded by a particular instrument subject to certain constraints in a particu-
lar time period, in a manner that makes sense for the data.” An instantiation
of this pattern that may be asked of our implemented system is: “Plot the ob-
served/measured Neutral Temperature as recorded by the Millstone Hill Fabry-
Perot interferometer while looking in the vertical direction during January 2000
in a way that makes sense for the data.”

This use case serves as a prototypical example for our target scientific com-
munity, that if answered will help the scientists do their research more efficiently
and in a more collaborative manner. Our goal from a semantic web perspective is
to demonstrate the development of the semantic framework for a virtual obser-
vatory while leveraging existing data sources and (catalog and plotting) services.



Semantically-Enabled Large-Scale Science Data Repositories 795

The anticipated result is a successful return of a graphical representation of the
specified data.

The second use case is in the field of solar physics, specifically assisting a user
in finding images of the solar atmosphere from the advanced coronal observing
system during a particular time period. This process involves a series of selections
similar to the first use case but includes an additional stage of finding preview
images prior to the actual data selection. Our goal is the successful identification
and selection of solar image data with the successful outcome that the user finds
preview images and downloads image data.

In the analysis of the second use case, a substantial similarity with the first
use case - observatory, instrument, parameter, dataset, etc. was identified and
we added only a few properties and sub-classes to the instrument ontology. As
a result of this conceptual similiarity in the workflow we were able to generalize
the workflow interface. Figure 1 displays the general workflow within the context
of the semantic web framework, including connections to information sources.

Fig. 1. Generalized workflow for VSTO production release - integrating two use cases
from two different disciplines

1. User accesses the portal application (or otherwise accesses application with
or without authenticating)

2. User may select from three generic workflows (combination of instrument
selection, date-time selection and parameter selection) which are first class



796 P. Fox et al.

objects in the ontology. At each step, the user selection determines the range
of available options in the subsequent steps. The remainder of the informa-
tion to proceed to a catalog query and thus a data selection request is inferred
(using Pellet) from the ontology. At the final stage of the request, we inferred
the return data types and possible ways of plotting the data, which includes
whether they are time-series, height and time, images, etc.

3. The framework validates the user request: first it verifies that the user is
authorized to access the specific kind of data, then it verifies the logical
correctness of the request, i.e. that Millstone Hill is an observatory that
operates a type of instrument that measures neutral temperature (i.e. check
that Millstone Hill is an observatory and check that the range of the measures
property on the Millstone Hill Fabry Perot Interferometer subsumes neutral
temperature).

4. The application processes the user request to locate the physical storage of
the data, returning for example a URL-like expression: find Millstone Hill
Fabry-Perot Interferometer data of the correct type (operating mode; defined
by a specific operating model since the instrument has two operating modes)
in the given time range.

5. The application plots the data in the specified plot type (inferred to be a
time series). This step involves extracting the data from records of one or
more files, creating an aggregate array of data with independent variable
time (of day or day+time depending on time range selected) and passing
this to a procedure to create the resulting image.

3.2 Architecture

One of the overriding principles to virtual observatories is to be able to find
and retrieve a wide variety of data sources. As a result, the ability to rapidly
develop the semantic framework, deploy and test it is essential. Fortunately,
the availability of the OWL language, and software tools and plug-ins such as
Protégé supported rapid ontology building and additional tools, such as Pellet
[11] also supported reasoning and queries for testing.

In Figure 2 the current VSTO architecture is represented graphically. It uti-
lizes the Jena [7] and Eclipse [6] plug-ins for Protégé to generate the Java stub
code for the ontology classes and allows the incorporation of existing calls to the
CEDAR catalog service for the date and time coverage for the data from the
instruments (the remainder of the previous calls to the catalog, implemented in
mySQL, are encoded as individuals in the ontology).

The user interface is built on the Spring [12] framework, which enocdes the
workflow and navigation features. The examples of the prototype implementa-
tion are displayed in later figures. The initial implementation includes the need
for reasoning which is implemented via the Pellet reasoning engine which will
operate on over 10,000 triples and typically returns results in a few seconds on
our deployment platform.

As a part of the implemenation, we utilize an existing set of services for
returning selections over a large number (over 60 million records) of date/time



Semantically-Enabled Large-Scale Science Data Repositories 797

vsto_core.owl

cedar.owl
import

OWL ONTOLOGIES

Java interfaces Java classes
implement

my Java interfaces my Java classes
implement

extend extend

automatic generation

objects representing OWL classes
+ stub extensions for inserting

custom functionalityVSTOfactory

create

packages ncar.vsto.auto, ncar.vsto.auto.impl

Java Protege-OWL API
+ supporting jars

VSTOservice

MLSOservice

extend

high level OO API for managing/
querying the VSTO ontology

MLSO specific service extensions

use

use

JAVA
OBJECT
MODEL

SPRING controllers and data beans

JSPUSER INTERFACE VIEWS

USER INTERFACE
 CONTROL COMPONENTS

VSTO SOFTWARE DESIGN

mlso.owl

import

cedar_instances.owl

mlso_instances.owl

import

import

vsto.owl

import

import

CEDARservice

extend

CEDAR specific service extensions

MLSO
DB

CEDAR
DB

VSTO WEB PORTAL

JUNIT tests

USE CASES WORKFLOW
SIMULATION PROGRAMS

PELLET
Reasoning Engine

use

JAVA
SERVICES

Fig. 2. Overall VSTO software architecture



798 P. Fox et al.

information in the CEDAR database. We also utilize a set of existing serivces
for plotting the returned data which are currently operating in the production
CEDARWEB. These services utilize the Interactive Date Language as well as
the Open Source Project for Network Data Access Protocol [9] to access the
relevant data elements from the data archive. The ability to rapidly re-use these
services is an essential and effective tool in our effort to deploy a production
data-driven virtual observatory environment.

3.3 Ontology Focus Areas

We began our ontology development process after carefully analyzing our use
cases to look for important classes, instances, and relationships between terms.
We also looked at critical controlled vocabulary starting points that were ei-
ther already included in our base implementations of the existing CEDAR and
Mauna Loa Solar Observatory services. One such starting point was the con-
trolled vocabulary associated with the CEDAR database which has a long
history in the upper atmospheric and aeronomy communities. For a history
of the CEDAR program and the CEDAR database, visit the current website
- http://cedarweb.hao.ucar.edu. Data in the CEDAR database was arranged
around date of observation and a combined observatory/instrument classifica-
tion. Within each dataset, a series of tables is encoded in a so-called CEDAR
binary format which holds the parameters. Each observatory/instrument and
parameter has a long name, a mneumonic name and a numeric code.

In developing the ontology, we drew upon the vocabulary of the use case, the
existing vocabulary of CEDAR and wherever possible the terms and concepts in
the semantic web for earth and environmental terminology (SWEET) ontology.
In the case of SWEET, to date there has been limited application to the earth’s
upper atmosphere (i.e. realms in SWEET terminology) so we adopted parts
of SWEET that applied to our needs and for the time being, developed our
ontology separately from SWEET but keeping in mind that our aim is to merge
much of what we develop back into SWEET for broad use. Our goal was to keep
our ontology development separate until we believed it was stable and vetted
at two different workshops which brought together domain scientists to discuss
foundational earth and space science ontologies and related issues.

One of the first classes to be discussed in the use case was the concept of an
instrument, in this case a Fabry-Perot Interferometer (see description below).
One of our contributions both to our domain specific work on VSTO and to
general work on virtual observatories is our work on the instrument ontology. We
constructed a class hierarchy of Instrument (see Figure 3), OpticalInstrument,
Interferometer and then Fabry-Perot Interferometer (as known as FPI, for which
the Millstone Hill FPI is an individual of the last class). With each class for the
initial prototype we added the minimal set of properties at each level in the class
hierarchy. The production release features a more complete but still evolving set
of properties. across all classes. In the next few paragraphs, we elaborate on a
few of the ontology classes in order to give enough background for the impact
discussion later.



Semantically-Enabled Large-Scale Science Data Repositories 799

Fig. 3. Schematic of VSTO Ontology 1.0 indicating a variety of classes: for data, ser-
vice, service implementation and value restrictions. We also indicate a few proper-
ties/associations, inheritance and inference.

Instrument: description - A device that measures a physical phenomenon or
parameter. At a minimum, it possesses a detector which produces a signal from
which the desired quantity is calculated or inferred.

OpticalInstrument: description - Instrument that utilizes optical elements, i.e.
passing photons (light) through the system elements which may be reflective and
transmissive and may include filters.



800 P. Fox et al.

Interferometer: description - An instrument that uses the principle of interfer-
ence of electromagnetic waves for purposes of measurement. Note: Interferome-
ters may be used to measure a variety of physical variables, such as displacement
(distance), temperature, pressure, and strain.

Fabry-PerotInterferometer: description - A multiple-beam interferometer. Due
to their optical and mechanical configuration, Fabry-Perot interferometers can
also be used as spectrometers with high resolution. This description highlights
one important attribute of this instrument sub-class which we highlight in a later
section: that a “Fabry-Perot interferometer scan be used as a spectrometer with
high resolution”.

We also have built an initial Instrument class hierarchy as a result of all the
instruments utilized in generating the CEDAR and MLSO data holdings. This
hierarchy is encoded in OWL and is part of the VSTO framework. Below is
an excerpt from the list of the OpticalInstrument class with some subclasses
abbreviated in parentheses.

– OpticalInstrument
• Heliograph {SpectroHeliograph, ... }
• Interferometer

∗ Fabry-PerotInterferometer
∗ MichelsonInterferometer {InfraredMichelsonInterferometer,

DopplerMichelsonInterferometer, ...}
• Imager {AirGlowImager, AllSkyImager ...}
• Lidar {AerosolLidar, CalciumLidar, DifferentialAbsorptionLidar,

DopplerLidar, IonLidar, OzoneLidar, RamanLidar, RayleighLidar,
SodiumLidar, StrontiumLidar, ...}

• Photometer {SingleChannelPhotometer, MultiChannelPhotometer,
SpectroPhotometer, ...}

• Polarimeter {SpectroPolarimeter, ... }
• Spectrometer {SpectroPhotometer, SpectroHeliograph, SpectroPo-

larimeter, ...}

In all cases, the class properties are associated with value restrictions, but
these are not discussed here.

The next important class is the InstrumentOperatingMode with depends on
the Instrument and leads to a particular type of physical quantity (parameter)
being measured and an indication of its domain of applicability and how it should
be interpreted. Its description is: A configuration which allows the instrument
to produce the required signal.

In practice for terrestrial atmosphere use case the instrument operating mode
indicates which direction the FPI is pointing, i.e. vertical, or “horizontal” - actu-
ally 30◦ or 45◦. Knowing these modes is critical for understanding and using the
data as different quantities are measured in each mode and geometric projection,
i.e. north component of neutral wind has to be calculated correctly depending
on the mode.

Also shown in Figure 3 is the Observatory class, whose description for the
sub-class GroundBasedObservatory is: A facility which houses and operates one



Semantically-Enabled Large-Scale Science Data Repositories 801

or more instruments either synoptically or periodically. It has a physical location
and operating hours. It can be either manned or remote.

An important part of the use case is the actual quantity that a user (scientist)
is seeking. This entity is captured in the class Parameter (also known as Phys-
icalQuantity in SWEET). Its description is: A measured physical property in
signal units. It has units and possibly a timestamp. The signal units are not the
physical ones, like Gauss or Kelvin, but are something inherent in the detector,
like volts. The physical units are either calculated or inferred from the signal
units.

In developing a production implementation of the VSTO it has been essential
to make the connection between the high-level concepts of the ontology classes
all the way to the data itself. This entails the data files, the data constraints,
and the underlying catalogs, and data and plotting services - all of which have
been in existence for some time and are made available from distributed network
sites and accessed via common internet protocols (ftp, http, web services, etc.).
Thus we fill out the ontology with data-related classes (see Figure 3).

Dataset: description - A collection of observations of the physical quantity of
interest. They usually have a location, observatory, instrument, and parameter
(or set of parameters) associated with them. They also have a format along with
an epoch over which they were taken.

Perhaps the most important property of the Dataset class is: hasContained-
Parameter, which is the asserted association with the Parameter class which in
turn connects to the instrument, etc.

For a user of the VSTO, the creation of a data product based on the series of
user choices and available data constraints. We represent this at the DataProduct
(and associated Request, Service and Metadata) classes which we will not give
details on in this paper.

Additional, data-related classes are as follows:
DataRequest: description - Generic class representing a request for data. The

class contains both the information necessary to define the data to be extracted
(input), and the form of the resulting data product (output).

Dataservice: description - Generic class representing the outcome of a data
request to a service. It acts as a wrapper for a collection of DataProduct objects.

MetadataService: description - Generic class that defines the functionality for
querying metadata information from a data archive. The results of the query
may be constrained by an associated DataConstraint object. Instances of Meta-
dataService and DataConstraint are created on demand to support a transient
query session.

As a final integrating theme, the parameters and instruments of interest have
a physical domain of influence which needs to represented. In use case for the
terrestrial atmosphere, the SWEET-equivalent class AtmosphereLayer: contains
layers known as: Thermosphere which ranges from 80-85 km (i.e. the upper
boundary of the Mesosphere) to greater than ≈ 640 km.

A final note for the ontology development is that for the classes included in
the current implementation, we encode all the individuals within the ontology



802 P. Fox et al.

except for the date and time (class: DateTime). The latter is a practical choice
due to the large number of specific instances of date and time records associated
with the diverse set of instrument datasets associated with both use cases. Thus,
we implement a set of service classes to execute queries and retrieve results from
the underlying (SQL) catalogs for each set of data holdings.

3.4 Discussion

Ontologies are used throughout the workflow to guide the user through the
consecutive selection steps leading to the final service request. By representing
physical instruments and their output streams as concrete instances of classes
the application is able to follow the relationships between classes so to always
present to the user a range of sensible valid options that greatly reduces the
amount of specific knowledge the user needs to already posses about the data.

Our application includes an ontology covering important domain concepts
(observatories, instruments, operating modes and parameters). We have found
that the ontology can be easily reused in related efforts and additionally found
it to be more flexible and extensible than a traditional database-like system.

Our ontologies include annotations at the class, instance, and property level
and these annotations contain formal as well as informal descriptions. These
descriptions may be used by domain experts (scientists and researchers) as well
as by other application users (other scientists from the same or different domain
as well as teachers, students, etc.).

We are not simply using ontologies for straightforward class subsumption and
instance recognition. With the help of a reasoning engine we are also using
them to infer the possible plot type based on the selected parameter. Plot type
possibility deduction reduces the level of knowledge required from users and is
possible because of the combination of reasoning and declarative background
knowledge encoding.

In addition to this simple inference, there are many related and valuable
inferential requirements for our application areas. One example inference is the
selection of instruments that measure the ‘same’ parameter. Previously, users
needed to know a significant amount of domain-specific information to be able
to guess or choose which other classes of instruments or specific instruments
were relevant. The semantic framework can not only infer this information but
also explain how the inference was made.

A second example of inference is highlighted by our first use case (see the
description of FPI above) where the FPI is able to operate as a spectrometer,
i.e. an interferometer operates as something else in the OpticalInstrument class
hierarchy. As a result, we can infer this in such a way that the framework uses
inheritance but does not give up or need to override any properties on the spec-
trometer. Thus, a user seeking a particular type of spectral intensity (parameter)
measurement, e.g. over a certain wavelength with high spectral resolution would
be able to find not only data from spectrometers but also from Fabry-Perot
Interferometers, the latter being an unknown source of data.



Semantically-Enabled Large-Scale Science Data Repositories 803

Our work in ontology-supported virtual observatories in two fairly distinct
discipline-specific use cases has come together to allow us to produce an inte-
grated ontology for semantic integration of solar terrestrial scientific integration.
The resulting overall ontology which is used to generate the semantic framework
is thus based on the core set of ontologies and then includes discipline-specific
classes and instances for each of the solar and terrestrial upper atmospheres.

Prior to the production release we made the new portal available for internal
testing to a group of science and data literate users who were very familiar with
the existing services and had specific functional requirements. We also solicited
input and evaluations from domain experts on our ontology developments both
at small workshop and large national and international conferences where we
presented, talks, posters and demonstrations. Now that the portal is released we
will perform an evaluation study in about six months.

3.5 Status

The generalized workflow for our use cases (see Figure 1) implement data service
capabilities for two significant scientific overlapping but distinct communities.
The CEDAR community has over 1200 participants, ≈ 600 of which are reg-
istered and active users of the CEDAR data holdings which comprise ∼ 1370
datasets, and over 320 distinct instruments/data sources. The ACOS instrument
suite has an active user community base (ranging from individuals to agencies)
of ≈ 120 and features ∼ 300, 000 datasets with a total archive size of ≈ 10
TBytes.

The VSTO portal supercedes the existing operation of both the CEDAR in-
struments and ACOS web-based data search and retrieval. As such, the semantic
framework described above and implemented within the initial VSTO immedi-
ately has a large user base and delivers a wider range of functionality over the
existing datasets.

After initial work on designing use cases and our architecture, and identify-
ing existing data services that could be leveraged (such as the CEDARWEB
data retrieval services), we implemented a prototype interface. After testing and
demoing that prototype, we implemented a second use case and continued to
populate the ontology and add the required additional services to support the
production implementation.

The production interface features a full population of the ontology classes in
Figure3, including all individuals (except date and time). As a result of encod-
ing these parts of the ontology the performance of the interface to progression
through the workflow is much faster than the existing CEDARWEB interface
which queries the SQL catalog as required for all steps in the workflow.

The production VSTO portal also accommodates the security and audit mech-
anisms in place for the existing CEDARWEB site. At present, we utilize existing
data and plotting services for the production VSTO portal and document these
services in OWL-S.



804 P. Fox et al.

Fig. 4. VSTO 1.0 production portal for instrument selection, with possible domain and
semantic filter operations

3.6 Conclusion

We have prototyped and deployed a production quality semantically-enabled
data framework to support two large, heterogeneous, online repositories in the
area of solar, and solar-terrestrial physics. We have utilized numerous semantic
web technologies in the process of searching and accessing the data and created
an interoperable and dynamically configurable framework. We see this as a major
step toward a virtual integrated evolving scientific data repository.

We have found significant benefit in encoding the formal descriptions of terms
in OWL and using inference to provide completion. The primary benefits are
(i) reducing input specification requirements thus decreasing input burden and
more importantly (ii) allowing users to be able to create correct (and non-over
constrained) queries without needing to have expert-level knowledge. Previously,
we noticed non-experts having dificulty generating error data requests.

In this implementation we also made practical choices as to what level of detail
of the science and processing concepts we encoded in OWL and what aspects of
the search, access and services we defer to, and thus re-use, existing services.

We are presently implementing the next series of use cases which are enabling
us to further populate the ontologies and validate them. For example, on in-
stantiation of the next use case is: “Find data which represents the state of the
neutral atmosphere anywhere above 100km and toward the arctic circle (above
45N) at any time of high geomagnetic activity.” The vocabularly of this use case
has much less direct mapping to the classes in the first use case and thus addi-
tional terms and additional reasoning based on properties of the existing classes
is required.



Semantically-Enabled Large-Scale Science Data Repositories 805

Finally, in the medium term we are exploring options for using our semantic
framework and rapid prototyping environment to develop a configurator within
specific disciplines to enable the assembly of a virtual observatory within that
discipline, or specific to a project/task based using a subset of our ontology.

Acknowledgements

VSTO is an NSF Shared Cyberinfrastructure project under award 0431153 and
SESDI is a semantic science data integration project sponsored by NASA Ad-
vancing Collaborative Connections for Earth-Sun System Science (ACCESS) and
NASA Earth-Sun System Technology Office (ESTO) under award AIST-QRS-
06-0016.

References

1. Advanced Coronal Observing System (ACOS), http://mlso.hao.ucar.edu
2. Tim Berners-Lee, Wendy Hall, James Hendler, Nigel Shadbolt, and Daniel J.

Weitzner 2006, Enhanced: Creating a Science of the Web, Science, 313 #5788,
pp. 769-771, DOI: 10.1126/science.1126902

3. The US NVO White Paper: Toward a National Virtual Observatory: Science Goals,
Technical Challenges, and Implementation Plan, 2001, Virtual Observatories of
the Future, ASP Conference Proceedings, 225, Ed.; Robert J. Brunner, S. George
Djorgovski, and Alex S. Szalay, San Francisco: Astronomical Society of the Pacific,
p.353

4. http://cedarweb.hao.ucar.edu
5. De Roure, D. Jennings, N.R. Shadbolt, N.R. 2005, The semantic grid: past,

present, and future, Proceedings of the IEEE, 93, Issue: 3, pp. 669-681, DOI:
10.1109/JPROC.2004.842781

6. http://www.eclipse.org/
7. http://jena.sourceforge.net/
8. http://www.us-vo.org
9. Open source Project for Network Data Access Protocol (OPeNDAP), http://www.

opendap.org
10. Deborah L. McGuinness and Frank van Harmelen. OWL Web Ontology Language

Overview. World Wide Web Consortium (W3C) Recommendation. February 10,
2004. Available from http://www.w3.org/TR/owl-features/

11. http://www.mindswap.org/2003/pellet/
12. http://www.springframework.org/
13. http://sweet.jpl.nasa.gov
14. http://virtualsolar.org
15. http://www.vsto.org, http://vsto.hao.ucar.edu



Construction and Use of Role-Ontology for
Task-Based Service Navigation System

Yusuke Fukazawa, Takefumi Naganuma, Kunihiro Fujii, and Shoji Kurakake

Service & Solution Development Department, NTT DoCoMo, Inc.
NTT DoCoMo R&D Center, 3-5 Hikari-no-oka, Yokosuka, Kanagawa, 239-8536 Japan

{fukazawayuu, naganuma, fujiiku, kurakake}@nttdocomo.co.jp

Abstract. We have been developing a task-based service navigation sys-
tem that offers to the user for his selected services relevant to the task
the user wants to perform. We observed that the tasks likely to be per-
formed in a given situation depend on the user’s role such as businessman
or father. To further our research, we constructed a role-ontology and
utilized it to improve the usability of task-based service navigation. We
have enhanced a basic task-model by associating tasks with role-concepts
defined in the new role-ontology. We can generate a task-list that is pre-
cisely tuned to the user’s current role. In addition, we can generate a
personalized task-list from the task-model based on the user’s task se-
lection history. Because services are associated with tasks, our approach
makes it much easier to navigate a user to the most appropriate services.
In this paper, we describe the construction of our role-ontology and the
task-based service navigation system based on the role-ontology.

1 Introduction

The mobile Internet is expanding dramatically from various viewpoints, such
as the number of subscribers and the volume of mobile contents[2]. As the mo-
bile Internet gains in popularity, information retrieval must be made easier and
more efficient. Towards this goal, we proposed a task-based service navigation
system[1][3] that supports the user in finding appropriate services. Naganuma
et al. proposed a method for constructing a rich task-model that represents a
wide variety of user activities in the real world. Part of the task-model is shown
in Fig.1. The connection between tasks is expressed by the is-achieved-by re-
lation. The upper nodes of the task-model have generic tasks, while the lower
nodes have more concrete tasks; the end nodes provide associations to services
or contents via their URI. To use the task-model for service navigation, the user
enters a task-oriented query such as “Go to theme park” and a list of tasks that
match the query is sent to the mobile device. The user selects the most appro-
priate task and, in turn, the corresponding detailed sub-tasks are shown to the
user. By repeatedly selecting a task and its sub-tasks, the user can clarify the
demand or problem, and when the user reaches an end-node task, appropriate
services associated with the selected task in the service DB are shown; a service
is invoked by clicking its URI link.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 806–819, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Construction and Use of Role-Ontology 807

Enjoy after seeing movie

Look for CD/DVD store

Legend
Task node

“is-achieved-by” Join fan club
URI Service URI

Association to
Service DB

Decide movie title

Decide movie theater

Move to movie theater

Go to watch movie

Check movie schedule

Look for nearby theater

URI

Check movie story

Check movie evaluation

URI

URI

Check academy awards URI

Check movie ranking

Move by bus

Move by train

URI

URI

URI

Check fares

…..

Wait movie show

Go to book store

Have a meal …..

URI

URI

URI

URIURI

Fig. 1. View of a part of task-model[1]

The above task-model aims at modeling general real world activities that could
be performed by the average mobile user. In order for an individual user to access
the task-model more effectively, we need to generate a task-list appropriate for
the individual user, which would make the user’s task-selection process easier.
Achieving this goal is particularly important when the user uses a mobile phone
since mobile phones have small displays and poor input devices.

Our proposal for generating the task-list appropriate for the individual user is
to use the role-concept as the most important factor in selecting tasks or services
from the task-model and service DB. In order to use role-concept appropriately,
we must categorize the many different roles user can play in the real world and
make their relations clear. For this purpose, we have constructed a role-ontology.
We have also designed an enhanced service navigation system that uses the role-
ontology.

We briefly explain the idea of role-concept in the following. As per Masolo’s
definition[4], humans can play several roles simultaneously, “FamilyRole” and
“ShoppingCustomerRole”, and a role can change dynamically in the real world
such as “ShoppingCustomerRole” to “TrainPassengerRole” when the user leaves
the shop and takes a train. We use this idea of roles in the real world to realize
task-based service navigation. That is, we assume that the user can play several
roles simultaneously when selecting a task. We define two types of roles; task-
roles depend on the task selected by the user (i.e. “ShoppingCustomerRole”)
while social-roles depend on the relationship to the surrounding people (i.e.
“FamilyRole”). By storing the user’s history of tasks selected under both social-
roles and task-roles, we can generate a personalized task list and services that
match the user’s current social-role and task-role.



808 Y. Fukazawa et al.

The remainder of this paper is organized as follows. Section 2 describes our
constructed role-ontology and shows how the task-model can be enhanced by the
roles defined in the role-ontology. Section 3 describes our task-based service nav-
igation system that can generate a personalized task-list and services according
to the current user’s role. Section 4 concludes this paper.

2 Role-Ontology for Task-Based Service Navigation
System

In this chapter, we describe our role-ontology, which is used together with the
task-model to guide the user to most appropriate services. Prior work is described
in the next section. How we represent the role-concept is described in Section
2.2. The constructed role-ontology is described in Section 2.3 and the enhanced
task-model is shown in Section 2.4.

2.1 Prior Work

In the knowledge representation field, role-ontology has been studied in order to
construct an accurate domain-ontology (conceptualization of knowledge domain)
by strictly separating the role concept from the objective domain.

Sowa distinguished between natural types “that relate to the essence of the
entities” and role types “that depend on an accidental relationship to some
other entity”[5]. In his subsequent work, he asserts that role types are subtypes
of natural types[6]. For example, the role types Child, Pet and Quotient are
subtypes of the natural types Person, Animal and Number, respectively.

In developing Sowa’s ideas further, Guarino makes an ontological distinction
between role and natural types, and this has been adopted as the basic notion
by other researchers in handling the role-concept in ontology[7]. In his notion,
a role is a concept that is supported by other concepts while, on the other
hand, a natural type is characterized by being free to stand independent from
any relationship with others. For example, Person is a natural type since to be a
person is independent of any relationships with other concepts and an individual
person will always remain a person. On the other hand, Student is a role since to
be a student requires entrance to university and a student stops being a student
when he/she drops out or graduates.

Fan et al. noticed that role is heavily dependent on events, and stated that “the
representation of role-concept is an extensional features of an entity that are due
to its participation in some event”[8]. Sunagawa et al. noted that the relationship
between context and role was decided by the context and proposed two relations,
the part-of relation and the participant-in relation, and developed the ontology
construction tool named Hozo, which can represent these relations[9].

Work to date has discussed how the role-concept and its relation to other
concepts (such as natural type, instance, and other role concepts) must be rep-
resented in a knowledge-base or ontology. However, no approaches utilizing the
role-ontology to generate a UI that can reduce the user’s effort in reaching the



Construction and Use of Role-Ontology 809

Role

TaxiPassengerRole

TrainPassengerRole

FlightPassengerRole

DiningCustomerRole

AudienceRole

Shopping
CustomerRole

FriendRole

ColleagueRole

FamilyRole

DrugStoreCustomerRole

DepartmentStoreCustomerRole

MovieAudienceRole

ConcertAudienceRole

FastFoodCustomerRole

RestaurantCustomerRole

TaskRole

PassengerRole

BusPassengerRole

SocialRole

……..
……..

……..
……..

……..
……..

……..……..
MemberRole

BossRole

is-a

MotherRole

FatherRole

……..
……..

Fig. 2. Role-ontology for task-based service navigation system

objective resource have been published so far. In this paper, we construct a
role-ontology appropriate for the task-based service navigation systems explored
in our previous work[1]. We then propose a new task-based service navigation
system that can generate a task-list according to the current user’s role and
personalize it appropriately.

2.2 Representation of Role-Concept

The role-concept continues to attract researchers from different areas such as
linguistics[10], knowledge representation[5], relational database[11], and access
control[12]; a significant amount of research has been done to date.

Despite the many different ways in which the role-concept has been used,
the number of ways roles have been represented is rather small. Steimann[13]
examined more than 50 papers and identified three common ways of represent-
ing roles. In the following, we explain two role representations. First, the role
can be represented by the relationships between roles. In the examples above,
the relation is-a can represent the relationship between “PassengerRole” and
“TrainPassengerRole”. Second, the role can be expressed by the relationship be-
tween role-concept and another concept. For example, the relation is-played-by
can represent the relationship between task-concept “Go to watch movie” and
the role “MovieAudienceRole”.

One aim of this paper is to construct a role-ontology and then enhance the
task-model through the addition of the role-concept. We use the first way of
representing role-concept to represent the relationship between role-concepts in
role-ontology. We use the second way of representing role-concept to represent
the relationship between task (defined in task-model) and role-concept.



810 Y. Fukazawa et al.

2.3 Discussion of Role-Concept and Constructed Role-Ontology

In this section, we discuss how the user can play several roles in the task-selection
process, and then the constructed role-ontology is explained. We start by adapt-
ing the definition of roles given in[4]; 1) role is a property assigned to humans,
roles can change dynamically, and 2) humans can have multiple roles simultane-
ously. We adapt the 1st property by supposing that the user changes a role when
selecting a task, which we call the task-selection process. For example, the user
plays “MovieAudienceRole” when the user selects “Go to watch movie”, and if
the user selects “Move to movie theater” from the child nodes of the previously
selected task, the user’s role changes to “PassengerRole”. We define these roles
that can change during the task-selection process as task-roles.

We adapt the 2nd property by supposing that user can play multiple roles
during the task-selection process. In the task-selection process, the user can se-
lect just one task from the task-list; therefore the user has only one task-role as
per the above definition. Other than the task-role, we define the social-role; it
is decided by the people the user wants to do the task with, such as family or
friends. The user can play both a task-role and a social-role simultaneously. For
example, if the user selects the task for planning to go to watch movie at the
weekend with Family, the user plays both “FamilyRole” and “MovieAudience-
Role” simultaneously in the task-selection process.

We have constructed the role-ontology by using both of these defined role-
concepts; task-role and social-role, and the relationships introduced in the previ-
ous section. The constructed role-ontology is shown in Fig.2. The concept “role”
has two top-level role concepts: “social-role” and “task-role”. As mentioned in the
previous section, the relationships between role-concepts are expressed using is-a
relation. For example, task-role has role-concepts such as “PassengerRole”, “Au-
dienceRole”, “ShoppingCustomerRole” and “DiningCustomerRole” as its child
nodes. On the other hand, social-role has role-concepts such as “FamilyRole”,
“FriendRole” and “ColleagueRole” as its child nodes.

2.4 Enhancing Task-Model with Roles

In this section, we explain the enhancement of the task-model through applica-
tion of the constructed role-ontology. As we described in the previous section,
the task-role can change according to the task selected by the user. Therefore,
in order to catch the change in task-roles and recommend the services appro-
priate for the current task-role, we need to express the relationship between the
task and the task-role. For this we use the relation is-played-by introduced in
Section 2.2.

Fig.3 shows a part of the task-model in which task-roles are related to task
nodes. The node “Go to watch movie” has five children nodes, one of which
is “Move to movie theater”. The node “Go to watch movie” is associated with
the task-role “MovieAudienceRole” by the is-played-by relation. This relation
indicates that the task is performed by the user who plays the designated task-
role. The node “Move to movie theater”, on the other hand, is associated with



Construction and Use of Role-Ontology 811

Enjoy after seeing movie

Go to CD/DVD store

Legend

Task node

“is-achieved-by”
Join fan club

Role Task-role

“is-played-by”

Decide movie title

Decide movie theater

Move to movie theater

Go to watch movie

Move by bus

Move by train

…..

…..

Wait movie show

Go to book store

Have a meal

PassengerRole

BusPassengerRole

DiningCustomerRole

MusicStore
CustomerRole

BookStore
CustomerRole

MovieAudienceRole TrainPassengerRole
…..

…..

Fig. 3. Enhancement of task-model using role-concept defined in role-ontology

the task-role “PassengerRole”. By associating the task with the task-role, we
can recognize that the user plays “MovieAudienceRole” when the user selects
“Go to watch movie”. In addition, we can capture the change in user’s role
to “PassengerRole” if the user selects “Move to movie theater” from the child
nodes of the previously selected task. Note that some nodes in Fig.3 have no
corresponding task-roles; these nodes take the task-role of their parent.

2.5 Reasoning Functionality of Role-Ontology

Our proposed role-ontology is not only used for clearly distinguishing between
the various kinds of roles, but also for supporting determining task candidates,
their order, and recommended services appropriate for current user’s social-
role/task-role by using the is-a relation defined in role-ontology. Basically, these
determinations can be done based on the relationship between task and current
user’s social-role/task-role, which can be found in enhanced task model shown
in Fig.3 and user’s task selection log, see Table 1. However, there is a possibility
that we cannot find the task that has relationships to the current task-role or
current social-role, and as a result, we cannot make the above determinations.
We deal with this problem by using the is-a relation defined in role-ontology and
make the above determination by reasoning from the relationship between the
task and the child/parent role of current task-role or social-role. Details of these
determination of the task candidates, their order, and recommended services for
each task candidate are described in Sections 3.2, 3.3 and 3.4, respectively.

3 Enhanced Task-Based Service Navigation

In this chapter, we propose task-based service navigation as realized by the
enhanced task-model and the role-ontology. The overall process of enhanced
task-based service navigation is shown in Fig.4.



812 Y. Fukazawa et al.

Role-ontology

User log 
DB

Create Role
Selection menu Role list

Select
task-role and 

social-role

Acquire task
candidates

Order task
candidates

Acquire
recommended  

services 

Update user 
log DB

Task and 
service list

Task-
model

User log 
DB

Select service

Click ”sub-task”
link on task-list

Legend

System process

User process

Database

Menu list

User log 
DB

Service 
knowledge base

Fig. 4. Overall processes of enhanced task-based service navigation

In the following section, we explain the system processes in the figure, acqui-
sition of user’s current social-role and task-role in Section 3.1, acquisition of task
candidates in Section 3.2, acquisition of recommended services for each task can-
didates in Section 3.3, and personalization of task-list including updating user
log DB and ordering task candidates in Section 3.4.

3.1 Acquisition of User’s Current Social-Role and Task-Role

The role-selection menu is generated in order to acquire the user’s current social-
role and task-role. A screenshot of a generated social-role selection menu is shown
in the upper part of Fig.5(a). The social-role selection menu consists of the child
nodes of the social-role as defined in the role-ontology such as “FamilyRole”,
“FriendRole” and “ColleagueRole”. “None” is not a role-concept but means that
the user is considering to do the task by himself. A screenshot of a generated
task-role selection menu is shown in the lower part of Fig.5(a). This role-selection
menu is customizable. By selecting “edit this menu” link on the role selection
menu, social-roles and task-roles can be added to the role-selection menu by
selecting additional roles from the role list.

3.2 Acquisition of Task Candidates

This section describes the generation of task-candidates. The “Determine task
candidates” step in Fig.4 has two inputs from other processes; 1)“select task-role
and social-role”, and 2)“click sub-tasks”, as explained below.

After the user selects task-role, tasks associated with either the selected task-
role or child node role-concept of the selected task-role, are acquired from the
enhanced task-model. For example, if the user selects “Audience” from the



Construction and Use of Role-Ontology 813

Fig. 5. Screenshots of service navigation;(a)role-selection menu, (b) task-list and rec-
ommended services when user selected “Audience Role” from the role-selection menu
shown in (a), (c)task-list and recommended services when user clicks “sub-tasks” link
of “Go to watch movie” from the task-list shown in (b)

task-role menu, the user’s current task-role is judged as “AudienceRole”. We
acquire the task candidates; “Go to watch movie”, “Go to see a play”, “Go
to a concert” and “Go to see a game”, which are associated with the child
roles of “AudienceRole” such as “MovieAudienceRole”, “PlayAudienceRole”,
“ConcertAudienceRole”, and “GameAudienceRole”, respectively.

We create the task selection menu list (task-list) as shown in Fig.5(b). Each
task candidate in the task-list has two kinds of links to the other task-list; the
links named “sub-tasks”, and the links to recommended services for each task
candidate. The links to the recommended services take the user to the mobile
contents, which user can use to accomplish the user’s task. The links named
“sub-tasks” can refine the user’s demand by showing a list of the sub-tasks
of the task candidate and their services. If user clicks “sub-tasks”, sub-tasks
associated with the task of clicked “sub-task” are extracted from the enhanced
task-model as new task candidates. For example, if the user selects “Go to watch
movie” from the task-list shown in Fig.5(b), the new task candidates; “Decide
movie title”, “Decide movie theater”, “Move to movie theater” and “Enjoy after
seeing movie”, which are associated with the task “Go to watch movie”, are
acquired. We create the task-list using the acquired task candidates, and their
recommended services as shown in Fig.5(c).



814 Y. Fukazawa et al.

3.3 Determining Services for Each Task Candidate

This section presents the process of determining the recommended services for
each task candidate. In the system proposed by Naganuma et al., the user first
selects the generic task, which is an upper node of the task-model such as “Go
to watch movie”, and gradually refines the demand by repeatedly selecting the
specific task associated with the generic task in a tree structure. When user
reaches the end-node task, user can find the services to accomplish the task. In
our method, we recommend the typical services together with generic tasks (task
candidates shown at the beginning) which can reduce the number of operations
the user must perform in finding and selecting the desired task.

While refining the task candidates, the user can play not only the task-role
associated with the task-candidates but also other task-roles associated with
the sub-tasks of the task-candidate. For example, the user can play not only
“MovieAudienceRole” but also task-roles such as “PassengerRole”, “MusicStore-
CustomerRole”, “DiningCustomerRole” while refining the task candidate “Go
to watch movie” as shown in Fig.3.

It is clear that the task-role played most frequently while refining the task
candidates will depend on the individual. Therefore, we realize the personaliza-
tion of recommended services by determining services according to the task-role
history, which is different among individual users. Our method of using the user’s
history of task-selection to acquire this task-role is described in the next section.
After determining the task-role, we acquire the services associated with the end-
node task, which is associated with the determined task-role, from the end-node
sub-tasks of the task candidate. If there are no such end-node tasks, we use is-a
relations defined in the role-ontology to determine the recommended services.
Concretely, we search for end-node tasks whose associated task-role is a child
task-role of the determined task-role.

We show here an example of acquiring the recommended services for the
task candidate “Go to watch movie” assuming that the determined task-role
played most frequently while refining the task candidate is “MovieAudience-
Role”. At first, the end-node sub-tasks of the task candidate “Go to watch
movie”, are acquired such as “Check movie evaluation”, “Check movie sched-
ule”, “Check fares”, “Look for CD/ DVD store” etc. from the enhanced task-
model shown in Fig.3. Next, we acquire the tasks associated with the determined
task-role “MovieAudienceRole” from the acquired end-node tasks. In this case,
both “Check movie evaluation” and “Check movie schedule”, which inherit the
task-role of “MovieAudienceRole” from their parent task node, are acquired.
Next, we acquire the services associated with these acquired end-node sub-tasks
and present the services as recommended services for the task candidate “Go to
watch movie” such as “Movie.com” and “Cinemark”. We show the recommended
services below the links of each task candidate as shown in Fig.5(b).

We show here another example of acquiring the recommended services “Move
to movie theater” whose task-role is “PassengerRole” in Fig.5(c), we must find
the end-node tasks whose task-role is “PassengerRole” and acquire the services



Construction and Use of Role-Ontology 815

Personalization of
Task candidates

Personalization of
Services for each task candidates

Social-Role

Task
Task

Task
Task Service 

Service 

Service 

Task-role

Service 
Service Task 

determinesdetermines
is-played-by
relation

Fig. 6. Personalization of task and services in terms of role-concept

associated with the tasks. However, there are no such end-node tasks whose
task-role is “PassengerRole” as shown in Fig.3. Instead, we search for end-node
tasks whose task-role is a child task-role of “PassengerRole” such as “TaxiPas-
sengerRole” and “TrainPassengerRole”, and acquire the services associated with
these end-node tasks.

3.4 Personalization Based on User’s Task-Selection Log

We observe that the social-role the user plays determines the user’s task, which
is socially limited, and the task-role, on the other hand, determines the services
or lower level tasks that the user needs to accomplish the task determined by the
social-role (Fig.6). For example, when the user is with family, the user sometimes
go to see a movie, and always uses the services “Tokyo metro” to check train
timetable and “Cinemasunshine” to check movie schedule. In this case, the user
is prone to executing the task “Go to see a movie” while playing “FamilyRole”
and is prone to use the services of the lower level task “Check train timetable”
and “Check movie schedule” while playing “MovieAudienceRole”, which is the
task-role of “Go to see a movie”. We use this observation to personalize the task-
list and services. We use social-role to determine priority order between multiple
task candidates, and use task-role to determine the recommended services. In
the following, we first describe the method of storing user’s log of task-selection,
and then propose the personalization of the task-list and recommended services;
examples are provided.

Storing User’s Log of Task-Selection. This section describes how the task-
selection actions are stored and updated. The ”Update user log DB” step in Fig.4
has two kinds of input from other processes; 1)“Click sub-tasks”, and 2)“Select
services”, as explained below. In the following, we call the task candidate of the
links and services user has clicked or selected the target-task.

If the user clicks a “sub-tasks” entry, the target-task is stored in the user log
DB together with the user’s social-role. On the other hand, if user selects service,



816 Y. Fukazawa et al.

Table 1. An example of user log DB

Social-role Selected task Frequency
FriendRole Go to watch movie 4

Enjoy after seeing movie 4
Look for CD/DVD store 4

FamilyRole Go to a concert 2
Move to a concert hall 2

Task-role Selected task Frequency
MovieAudienceRole Look for CD/DVD store 4
ConcertAudienceRole Move to a concert hall 2

the target-task is stored in the user log DB together with both user’s social-role
and task-role since selection of the service includes both selection of target-task
from task candidates and selection of service of target-task simultaneously. This
process is a reflection of the facts that social-role determines the task and task-
role determines services to accomplish the task (Fig.6). We show an example
below. The stored log for the following explanation is shown in Table 1.

The user selects “AudienceRole” as task-role and “FriendRole” as social-role
from the role selection menu yielding Fig.5(a). If the user then clicks the link
“sub-tasks” of “Go to watch movie”, see Fig.5(b), the target-task “Go to watch
movie” is stored together with current user’s social-role “FriendRole”. The user’s
current task-role changes to “MovieAudienceRole”. Next, if the user selects “sub-
tasks” of “Enjoy after seeing movie” from the task-list shown in Fig.5(c), “Enjoy
after seeing movie” is stored together with user’s social role “FriendRole”. Next,
if user selects service “HMV.com” of the task “Look for CD/DVD store” from
the newly shown task-list, “Look for CD/DVD store” is stored together with
both user’s task-role “MovieAudienceRole” and social-role “FriendRole”.

As another example, the user selects “AudienceRole” as task-role and “Fam-
ilyRole” as social-role from the role selection menu. If the user then clicks “sub-
tasks” of “Go to a concert” from the task-list, the task “Go to a concert” is stored
together with “FamilyRole”. The user’s current task-role changes to “Concer-
tAudienceRole”. Next, if the user clicks the link of the service of “Move to
a concert hall” from the task-list, the target-task “Move to a concert hall” is
stored together with both user’s task-role “ConcertAudienceRole” and social-
role “FamilyRole”.

Personalization of Task-List and Their Services. We realize personaliza-
tion of the task-list by ordering the task candidates according to the frequency
with which the user selected the tasks under the current user’s social-role. We
first acquire task candidates according to the flow described in Section 3.2. Next,
the user log DB is checked and if a task candidate is stored under the user’s
current social-role, we acquire the number of times the user selected the task.
If no such prior information is held in the DB, we use is-a relations defined in the
role-ontology to order task candidates. Concretely, task candidates are ordered



Construction and Use of Role-Ontology 817

by referring to the task selection log of parent or child social-role of the current
social-role. If no task selection log of both parent or child social-role is held in the
DB, we treat the number of times that the task candidate was selected as 0. We
acquire this data for all task candidates and use it to order the task candidates
in descending order of the number of times selected.

Next, the recommended services for each task candidate are determined. As
per Section 3.3, we determine the recommended services by acquiring the task-
role the user has played most frequently while refining the objective task, which
we call target task-role in the below. We determine the target task-role by ac-
quiring the task-role of the task user has selected most frequently while playing
the task-role of each task candidates from the user log DB. If there is no
task selection log stored together with the task-role of the task candidate, we
determine the target task-role as the task-role of the task candidate. Next, the
services associated with all end-node sub-tasks whose associated task-role is the
same as the target task-role or the child role-concept of the acquired task-role is
determined. Detail of the acquisition of recommended services after target task-
role is determined is given in Section 3.3. Finally the ordered task candidates
and their recommended services are shown to the user.

Example of Generating Personalized Task-List. We show an example of
generating a personalized task-list. If the user selects “FriendRole” as social-
role and “AudienceRole” as task-role from the role selection menu, the task
candidates; “Go to watch movie”, “Go to see a play”, “Go to a concert” and
“Go to see a game”, all associated with the child nodes of “AudienceRole”, are
selected from the task-model. After acquiring the task candidates, the system
refers to the user log DB shown in Table 1, and finds that the most frequent task
candidate associated with “FriendRole” is “Go to watch movie”. Accordingly,
“Go to watch movie” is given highest priority when ordering the task candidates.

Next, the recommended services for each task candidate are determined. We
explain here the determination of services for “Go to watch movie”. The system
refers to the user log DB shown in Table 1, and finds that “Look for CD/DVD
store” is the most frequently selected task under “MovieAudienceRole”, which
is the task-role associated with “Go to watch movie”. Therefore, the task-role
user played most frequently while refining the task candidate “Go to watch
movie” is judged to be “MusicStoreCustomerRole”, which is associated to “Look
for CD/DVD store”. Next, the services associated with all end-node sub-tasks
whose task-role is “MusicStoreCustomerRole” are acquired such as “HMV.com”
and “iTunes music store”. Finally the ordered task candidates and their recom-
mended services are shown to the user as shown in Fig.7(left).

As another example, if the user selects “FamilyRole” as social-role and “Audi-
enceRole” as task-role from the role selection menu, the same task candidates as
described in above are acquired. After acquiring the task candidates, the system
refers to the user log DB shown in Table 1, and finds that the most frequent task
candidate associated with “FamilyRole” is “Go to a concert”. Accordingly, “Go
to a concert” is given the highest priority when ordering the task candidates.



818 Y. Fukazawa et al.

Fig. 7. Screenshots of personalized task-list and services; left: task-list and services
tuned for a user with friend, right: task-list and services tuned for a user with family

Next, the recommended services for each task candidate are determined. We
explain the determination of services for “Go to a concert” below. The system
refers to the user log DB shown in Table 1, and finds that “Move to a concert
hall” is the most frequently selected task under “ConcertAudienceRole”, which
is the task-role of “Go to a concert”. Therefore, the task-role the user played
most frequently while refining the task candidate “Go to a concert” is “Passen-
gerRole”, which is the task-role associated with “Move to a concert hall”. Next,
the services associated with all end-node sub-tasks whose task-role is child role
of “PassengerRole” are acquired, since there are no end-node sub-tasks whose
task-role is “PassengerRole”, such as “Tokyo metro” and “Toei bus”. Finally the
ordered task candidates and their recommended services are shown to the user
as shown in Fig.7(right).

We show an example when the social-role is first designated and there is no
associated task selection log entry. Here, we consider that the user customizes
his role selection menu using the “edit this menu” link on the role selection menu
shown in Fig.5(a) and designates the social-role as “Brother”. In this case, we
cannot order task candidates using the task-selection log since there are no such
log entries (See Table 1). Instead of using the task selection log associated with
“Brother”, we use the task selection log associated with “Family”, which is the
parent node of “Brother”. As a result, even if the user manually designates the
“Brother” role, the user is presented with the same order of task candidates as
for “Family” as shown in Fig.7(right). Here, if user clicks a “sub-task” link on the
task-list, the new user task selection log entry shows “Brother”, not “Family”.



Construction and Use of Role-Ontology 819

4 Conclusion

In this paper, we constructed a role-ontology and applied it to realize improved
task-based service navigation. For this application, we enhanced the basic task-
model by associating tasks with role-concepts defined in a role-ontology. By
acquiring the user’s current role and watching the role changes, we can generate
a personalized task-list that allows the user to perform the task-selection process
more efficiently. The system can also recommend services for each task candidate
appropriate for the task-role associated with each task candidate, which provides
the user with more chances of reaching the desired service as soon as possible. In
future work, we will construct a rich role-ontology that can express the relation
to other concepts; such as situation and context (place, time, etc.) so as to reason
the user’s current social-role and task-role from the user’s situation.

References

1. T. Naganuma and S. Kurakake. Task knowledge based retrieval for service relevant
to mobile user’s activity. In Y. Gil et al., editor, 4th International Semantic Web
Conference: ISWC 2005, LNCS 3729, pages 959–973, 2005.

2. A. Serenko and N. Bontis. A model of user adoption of mobile portals. Quarterly
Journal of Electronic Commerce, 4(1):69–98, 2004.

3. Y. Fukazawa, T. Naganuma, K. Fujii, and S. Kurakake. A framework for task
retrieval in task-oriented service navigation system. In R. Meersman et al., editor,
Int. Workshop on Web Semantics, LNCS 3762, pages 876–885, 2005.

4. C. Masolo, L. Vieu, E. Bottazzi, C. Catenacci, R. Ferrario, A. Gangemi, and
N. Guarino. Social roles and their descriptions. In Proc. of the 9th Int. Conf. on
the Principles of Knowledge Representation and Reasoning, pages 267–277, 2004.

5. J.F. Sowa. Conceptual Structures: Information Processing in Mind and Machine.
Addison-Wesley, New York, 1984.

6. J.F. Sowa. Using a lexicon of canonical graphs in a semantic interpreter. In
M.W. Evens, editor, Relational Models of the Lexicon: Representing Knowledge in
Semantic Networks, pages 113–137. Cambridge University Press, 1988.

7. N. Guarino. Concepts, attributes and arbitrary relations. Data & Knowledge
Engineering, 8:249–261, 1992.

8. J. Fan, K. Barker, B. Porter, and P. Clark. Representing roles and purpose. In
Proc. of the Int. Conf. on Knowledge Capture, pages 38–43, 2001.

9. E. Sunagawa, K. Kozaki, Y. Kitamura, and R. Mizoguchi. Organizing role-concepts
in ontology development environment: Hozo. In AI Technical Report, volume 4 of 1,
pages 453–468. Artificial Intelligence Research Group, I.S.I.R., Osaka Univ., 2004.

10. C.J. Fillmore. Types of lexical information, ausztige abgedruckt. In R. Dirven and
G. Radden, editors, Fillmore’s Case Grammar: A Reader. Julius Groos Verlag,
1987.

11. E.F. Codd. A relational model of data for large shared data banks. Communications
of the ACM, 13(6):377–387, 1970.

12. R. S. Sandhu, E.J. Coyne, H.L. Feinstein, and C.E. Youman. Role-based access
control models. IEEE Computer, 29(2):38–47, 1996.

13. F. Steimann. On the representation of roles in object-oriented and conceptual
modelling. Data and Knowledge Engineering, 35:83–106, 2000.



Enabling an Online Community
for Sharing Oral Medicine Cases

Using Semantic Web Technologies�

Marie Gustafsson1,2, Göran Falkman1, Fredrik Lindahl2, and Olof Torgersson2

1 School of Humanities and Informatics, University of Skövde,
PO Box 408, SE–541 28 Skövde, Sweden

{marie.gustafsson, goran.falkman}@his.se
2 Computer Science and Engineering, Chalmers University of Technology

SE-412 96 Göteborg, Sweden
{lindahlf, oloft}@cs.chalmers.se

Abstract. This paper describes how Semantic Web technologies have
been used in an online community for knowledge sharing between clini-
cians in oral medicine in Sweden. The main purpose of this community is
to serve as repository of interesting and difficult cases, and as a support
for monthly teleconferences. All information regarding users, meetings,
news, and cases is stored in RDF. The community was built using the
Struts framework and Jena was used for interacting with RDF.

1 Introduction

For a community to learn, ongoing learning by its members is vital. One means
of supporting the transfer of individual knowledge into community knowledge is
using computer supported tools, which can aid in making the knowledge com-
municable, consensual, and integrated into the community [1,2]. Further, tools
supporting remote collaboration and consultation are important to all specialties
of medicine [3,4], but especially for smaller fields, such as oral medicine, where
specialists may be geographically dispersed.

The members of the Swedish Oral Medicine Network (SOMNet) are clinicians
located at about ten different care-giving facilities throughout Sweden. They hold
monthly teleconferences to discuss difficult and interesting cases. These remote
meetings are currently supported by PowerPoint presentations. The clinicians
have identified a need for a more structured online bank of cases covered at
meetings, to serve as a collective memory for the group, and to provide better
support for follow-ups of the discussed cases. It is believed that in creating,
maintaining, and using this bank of cases, community learning will be enhanced.

The building of an online community for SOMNet is part of the SOMWeb
(Swedish Oral Medicine Web) project. The project aims to obtain further knowl-
edge about how interactive, user-centred knowledge-based systems supporting
� The work presented in this paper was supported by the Swedish Agency for Innova-

tion Systems.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 820–832, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Enabling an Online Community for Sharing Oral Medicine Cases 821

evidence-based oral medicine should be designed, implemented and introduced
in the daily clinical work [5]. Work on achieving the above aim is divided into
three partially overlapping objectives: (1) The formalization of clinical processes
and knowledge, (2) the development of web services for oral medicine, and (3)
the construction of an intelligent web community.

To further frame the work of this online community, SOMWeb is in turn
based on a medical information system called MedView, which contains the
basis of SOMWeb in the form of elaborated content when it comes to services
for knowledge management, together with an established user community [6]. To
provide rapid prototyping and deployment of applications in daily clinical work,
and to support the harmonization of clinical processes and knowledge within
oral medicine, MedView has been developed in collaboration between experts
within SOMNet and experts in computer science.

This paper describes an online community supporting processes of sharing
and discussing cases in oral medicine. Previous work on objective one above,
the formalization of clinical processes and knowledge in oral medicine [7], has
described how Semantic Web technologies can be used to describe and encode
medical examinations in oral medicine. This representation of cases will be un-
derlying to the examinations stored in the online community. Semantic Web
languages will also be used to describe other parts of the community, such as
users, meetings, and news. A general description of the SOMWeb community,
with no focus on the use of Semantic Web technology, has been shown as a
software demonstration [8].

We begin by giving some backgroundon use of Semantic Web technologies in the
life sciences and in online communities. After a description of the current forms of
collaboration in SOMNet and a survey of the clinicians desires of a more advanced
system, we will present design choices we have made in constructing the SOMWeb
community. The implementation of the community is described and some initial
results reported. This is followed a short discussion, conclusions, and future work.

2 Semantic Web Technologies

This section will cover arguments for using Semantic Web technologies in medical
informatics and in online communities. By Semantic Web technologies we refer
foremost to using ontologies and the Web Ontology Language1 (OWL), describ-
ing data using Resource Description Framework2 (RDF), and using SPARQL3

as a query language and data access protocol for RDF data. Connected with
these are other Semantic Web technologies, such as use of inference and rules.

2.1 Semantic Web and the Life Sciences

The life sciences are often mentioned as an area where Semantic Web technologies
could give great improvements. Indeed, the W3C has an interest group devoted
1 http://www.w3.org/2004/OWL
2 http://www.w3.org/RDF
3 http://www.w3.org/TR/rdf-sparql-query/



822 M. Gustafsson et al.

to the subject4. Areas where Semantic Web technologies can be applied include
integration of heterogeneous data, locating relevant data sources and tools, re-
trieving relevant information, using inference to gather new insights, sharing
formal annotations, creating rich and well-defined models of biological systems,
and embedding models and semantics within online publications [9,10].

2.2 Semantic Web and Online Communities

A web portal “collects information for a group of users that have common in-
terests” [11], and using Semantic Web technologies can help portals increase the
consistency of information and quality of information processing [12]. In relation
to online communities and web portals it is also relevant to mention Content
Management System (CMS), which is software for facilitating collaborative cre-
ation and organization of documents and other content.

When describing people using Semantic Web technologies, the Friend of a
Friend (FOAF) vocabulary5 is often used. FOAF as a project aims to create a
Web of machine-readable homepages “describing people, the links between them
and the things they create and do.” Indeed, several initiatives for online Semantic
Web communities use FOAF in one way or another.

Semantic Web Advanced Development for Europe (SWAD-Europe) presents
how Semantic Web tools and standards can be used to build a decentralized
information portal [13], as used in the Semantic Web Environmental Directory
(SWED) demonstrator. Each of the environmental organizations that want to
be in the directory provides RDF descriptions of their organizations, constructed
using a web-based data entry tool. The data is then hosted on the organization’s
own web site (similar to FOAF).

Another approach to adding Semantic Web technology support for commu-
nities has been to enable the sharing of forum posts and such between different
communities, by defining a common format for these posts, as is done in the
Semantically Interlinked Online Communities (SIOC) [14]. Its goal is to inter-
connect online communities in helping to locate relevant and related information.
The ontology and interface will let users searching in one forum find information
on forums from other sites using a SIOC-based system architecture. The SIOC
ontology outlines main classes, such as Site, Forum, Post, Event, Group, and
User and properties of these. Mappings to e.g., FOAF are also provided.

SEmantic portAL (SEAL) [15] uses ontologies for dealing with the require-
ments of typical community web sites. Such requirements are information inte-
gration and web site management. The system architecture of SEAL includes
a knowledge warehouse and the Ontobroker [16] system for inferencing. Com-
munity users and software agents access the Ontobroker through modules for
navigation, query, templates for adding data, and an RDF generator.

The Semantic Web Research Community (SWRC) ontology [17] is an on-
tology for representing knowledge about researchers and research communities.

4 http://www.w3.org/2001/sw/hcls/
5 http://www.foaf-project.org/



Enabling an Online Community for Sharing Oral Medicine Cases 823

Main concepts of this ontology are, among others, Organization, Project, Per-
son, Topic, Publication, and Event. The SWRC ontology is used and extended
by several portals based on the SEAL approach.

3 An Analysis of Current Forms of Collaboration in
SOMNet

SOMNet aims to act as a hub and filter for knowledge in oral medicine, by pro-
viding a forum where cases in oral medicine can be presented and discussed in
distributed meetings. SOMNet meetings are organized around monthly telecon-
ferences, where about ten clinics participate. The majority of the attendants are
experts in oral medicine and the individual clinician has the opportunity to get
feedback from colleagues from all over Sweden. Mainly two kinds of cases are
presented: cases considered interesting for a wider audience and cases where the
submitting clinician wants advice regarding diagnosis and treatment.

The forms of cooperation and opinions of SOMNet have been investigated
by observing their meetings and through informal interviews with selected par-
ticipants and the secretary who coordinates the meetings. Before the SOMWeb
initiative, submission of cases was handled by e-mailing PowerPoint presenta-
tions to the meeting coordinator, who then e-mailed submitted cases to clinics
intending to participate. During the teleconference meeting, each clinic opened
their local copy of the file presenting the case. The clinician who had submitted
the case presented the details of the case, after which the community discussed
it. When a case had been presented and discussed, the file was closed and atten-
dants opened their local copy of the next case. They repeated this process until
all submitted cases had been discussed or the time allotted to the meeting was
up. At the meetings, no collective written notes were taken, and there was no
central repository of handled cases.

The described procedure had several major problems: (1) The opportunities
for collective and individual learning were limited by the lack of shared written
notes from the meetings. (2) It was difficult to go back and check previously
discussed cases as there was no shared record of treated cases. (3) Relevant
information may be lacking in the case presentation, as there was no agreed upon
template of what had to be included. It was left entirely up to the submitting
individual what text and image information to include. (4) There were recurring
problems of cases that could not be opened by all attendees, due to differences
in versions of the software and platform used to produce the presentations.

Learning from earlier meetings is thus hindered by the lack of access to and
reminders of previous cases, and by difficulties in structured comparison of dif-
ferent cases. Even with these problems, the participating clinicians value the
opportunity to share experiences with other experts in the field enough to keep
participating in the meetings, both by sending in cases and joining for discussion.

The introduction of a common web-based repository was a first step towards im-
proving the IT-maturity of the SOMNet meetings. In this repository, the presen-
tations are stored as HTML documents rather than as PowerPoint presentations.



824 M. Gustafsson et al.

The new practice makes administration simpler and provides a bank of difficult and
interesting cases. Since December 2003, when the clinicians first started using the
repository, eighty-four cases from seventeen SOMNet meetings have been added.

A web-based questionnaire was distributed to all SOMNet participants to fur-
ther examine the needs a wishes of the users. The results indicated that the partic-
ipants considered SOMNet valuable and wanted it to continue in a similar way: as
a forum for the most part dedicated to the discussion of submitted cases. Around
seventy-five percent of the respondents also said that they wanted to be able to
have access to the collection of treated cases. Ability to share cases and treatment
methods and papers directly with other clinicians was of interest to a majority of
the respondents. When the questionnaire was discussed at a later meeting, partic-
ipants agreed that it was important to introduce a system that would allow the
community to in a more organized manner follow up previously discussed cases.
They also emphasized the importance of means to search the database of cases.

4 System Design

This section begins with the requirements we have previously identified for an
ontology in oral medicine. We then present design choices for the oral medicine
community which have lead us to use Semantic Web technologies and to build
our own system, rather than using an existing Content Management System.

In [7], we presented the following requirements for an ontology for oral medi-
cine, based on experience with the MedView system and interviews with domain
experts and developers:

– We need the possibility and ability to utilize external sources of knowledge.
– The relation between the conceptual models of fundamental clinical concepts

in use, e.g., examination templates, lists of approved values for terms and
groups of related terms and their corresponding concrete entities must be
formally examined.

– Relations and interactions between different entities of the ontology must
be captured, e.g., that a certain answer to a specific question in a given
examination template triggers another question.

– A stronger typing of elements is needed.
– We need to be able to capture different kinds of meta-data, e.g., who is the

creator of a specific examination template and what the purpose (scientific
or clinical) is of the introduction of a specific examination template.

– The localization of data has to be addressed rigorously: How to provide
different language-based versions of the defined concepts, definitions and
terms?

– We need to differentiate between different ‘views’ of the underlying data, to
be utilized for, e.g., information visualization and intelligent user interfaces.

Based on these requirements an ontology for examinations in oral medicine
was designed in OWL. Individual examination instances are encoded in RDF.
Given that the examinations are an important part of the oral medicine commu-
nity, and that these have Semantic Web representations, using such technologies



Enabling an Online Community for Sharing Oral Medicine Cases 825

for other relevant community concepts seems natural. Based on this, along with
the analysis given in Sec. 3 we have made the following design choices:

– The community should be constructed in cooperation with its users, foremost
to adapt it to the users needs, but also as the development of the online
community can be seen as part of a learning process in the SOMNet users.

– The examinations should have a central role in the community and be rep-
resented in RDF, motivations for which are given above.

– The examinations to be presented at meetings should be entered online,
using forms created from user-defined examinations, represented in OWL.

– Community data should be stored in RDF, to allow interaction with e.g.,
examination data and hopefully other related online communities in medi-
cine.

– Community data will be stored centrally, rather than distributed as in e.g.,
[13], as the member clinicians and clinics cannot be expected to have access
to local hosting.

– Where possible, existing ontologies for representing community data should
be reused.

– To allow integration with the existing tools of the project, Java technologies
should be used in realizing the community.

– The constructed community should allow for browsing and visualizing cases,
as well as query support and search.

– To adapt to the needs of the users, the community should have basic user
modeling support, with the long term goal of providing a more intelligent
user interface.

– Our plans to use intelligent user interfaces and to keep a high degree of user
customizability of the web interface in order to increase the clinicians trust in
the system [18], point away from using a CMS in favor of using a lower-level
framework with greater flexibility and end-user control.

While using a CMS would have given us a framework enabling rapid development
of some aspects of our system, other aspects, e.g., generating web-based case
entry forms from user-defined specifications, would still have to be custom-made
from scratch.

5 Implementation

This section describes how the community data is represented using Semantic
Web technologies and how Java web technologies are used to create the commu-
nity framework.

5.1 Semantic Web Technologies

One part of the SOMWeb project is the formalization of clinical concepts and
processes in oral medicine. Taking the knowledge model of MedView as a
starting point, initial ontologies for examinations in oral medicine has been
constructed [7] using OWL. There is one ontology for describing examination



826 M. Gustafsson et al.

templates and one for classes of values that the examination templates use. The
examination instances constructed using the ontology are stored as separate
RDF-files.

The description of examination templates is further divided so that one ‘cen-
tral’ OWL-file describes aspects common to all MedView examinations. This
describes general things: classes such as Examination, ExaminationCategory,
and a property hasExaminationCategory for connecting an Examination in-
stance to ExaminationCategory instances. We also have properties correspond-
ing to the different input-types, such as MultipleExaminationProperty, and
VASExaminationProperty. The reason for explicitly representing things that
could be handled using cardinality constraints in OWL is to be able to use older
MedView datahandling classes to handle examinations. Until those modules can
be rewritten, we are using both cardinality constraints and the explicit properties
such as SingleExaminationProperty.

All individual examination templates refer to this ‘central’ OWL-file. In
SOMWeb the main templates used right now describes what to enter when first
entering the case into the system, as well as templates for consultations from the
teleconference meeting and for consultations held after the initial examination
data was entered. Such an examination template OWL-file contains definitions
of the categories that can or need to be included in an examination constructed
from that template. Examples of subclasses of ExaminationCategory in current
use are PatientData, GeneralAnamnesis, and MucosChangeAnamnesis. In each
examination template we also describe properties associated with the template,
such as hasAllergy, as subproperties of the properties described in the general
examination description OWL-file, such as MultipleExaminationProperty. For
each property, there are also properties pertaining to description and instruc-
tions, to be shown to the user. Any relevant cardinality constraints are described,
as well as the ordering of the categories and the properties within the categories,
using rdf:list. Properties are connected to an ExaminationCategory subclass
and a value class using owl:allValuesFrom restrictions.

The value list ontology is very simple, right now it only contains classes, with
no subhierarchies, and their instances. Thus, we have classes such as Allergy and
Diagnosis,with instances suchaspeanutAllergyandhairyTongue, respectively.
It can be argued that this means that two patients who have examinations that
assert that hasDiagnosis hairyTongue have the same hairy tongue, and that it
would be more correct to have a class HairyTonguewith separate instances for all
patients with a diagnosis of hairy tongue. However, it was decided that the added
complexity of this approach was not compensated by its benefits.

There is currently no use of inference, and the ontologies are not very complex.
The examination templates are constructed by a Java program that takes a
template in the old XML format and outputs one in OWL. The value list ontology
is created by reading the old text file of values and constructing corresponding
classes and instances. At first there were attempts to structure this value list so
that there were more subclasses, for example for different kinds of diagnoses and
allergies. However, this process meant dealing with large amounts of instances



Enabling an Online Community for Sharing Oral Medicine Cases 827

cases.rdf news.rdfmeetings.rdfusers.rdf examination 
rdf-files

somwebCommunityOntology
somwebExamination

Ontology

FOAF
Semantic Web 

Research Community 
Ontology

described by described by

imports classes and properties from

Fig. 1. The figure shows how the different RDF-files and OWL ontologies are related.
The RDF-files for persons, meetings, cases (examination metadata), and news are de-
scribed in the somwebCommunityOntology. The examinations are stored in separate
RDF-files, and are described in the somwebExaminationOntology. The examination
ontology consists of one OWL-file describing general concepts and then one for each
kind of examination used in the community.

and needed much end-user input. Our end-users have not yet had the time to
look at this, and we have no good interface for them to do it in. Therefore we
decided to go ahead with the unstructured value classes, with the argument that
we can add more subclasses later.

In addition to storing the examinations in RDF, other community data, re-
garding users, meetings, news, and case metadata, is also represented in RDF.
What should be included in descriptions of users, meetings, and case metadata is
described in OWL. Some of the user-descriptions are related to relevant FOAF-
classes and properties. Meeting-descriptions make use of classes and properties
of the Semantic Web Research Community ontology [17]. For interacting with
the Java parts of the community, Jena6 is used. Figure 1 shows how these com-
ponents are related.

5.2 Java Web Technologies

SOMWeb is built on Java Enterprise technology, using Apache Tomcat7 as the
core web container. The system is an extension of the Apache Struts Model-2 web
application framework8. Model-2 frameworks (a variation of the classic Model-
View-Controller (MVC) design paradigm) are based on the idea that Java Servlets
execute business logic while presentation resides mainly in server pages. As stated
6 http://jena.sourceforge.net/
7 http://tomcat.apache.org
8 http://struts.apache.org/



828 M. Gustafsson et al.

Fig. 2. Overview of the SOMWeb system architecture. The model layer contains per-
sistence classes that read RDF-files for users, meetings, cases, and news and constructs
objects of the corresponding Java classes used by the system. These classes are also
used for making changes to the RDF model and writing to file.

in [12], reusing mature technology gives a Semantic Web portal improved usability,
reliability, and scalability.

The SOMWeb system is a layered architecture, conceptually divided into four
main layers – the view layer, the session layer, the model layer, and the foun-
dation layer as depicted in Fig. 2. The view layer is comprised of Java Server
Pages (JSP) using Expression Language (EL) constructs, with custom tags and
functions in addition to tags from the Java Standards Tag Library (JSTL) and
the various Apache Struts tag libraries. Styling and layout of content is done
using Cascading Style Sheets (CSS). The session layer has components dealing
with the current user session, and is responsible for transforming the applica-
tion’s internal state into the presentation JavaBeans used by the server pages.
The model layer has components making up the application’s internal state, and
is roughly divided into the major functional areas provided by the system. Here
we also have persistence classes, which read the RDF-files for users, meetings,
cases, and news and creates objects of the corresponding Java-classes used by the
system. These persistence classes are manually constructed, but in the future we
are considering using Jastor9 to simplify their updating. While the generation
of user input forms from OWL is handled by the SOMWeb system, for han-
dling examination data we use the previously developed MedView system and
its datahandling functions, which have been adapted to using OWL and RDF.

9 http://jastor.sourceforge.net/



Enabling an Online Community for Sharing Oral Medicine Cases 829

6 Results

The initial SOMWeb community supports case data entry according to user-
defined templates, managing online meetings and assigning cases to these, view-
ing upcoming and archived meetings and their corresponding cases, and adding
comments to cases. Users can use free text search over examination data. Ad-
ministrators are provided basic user handling, create an manage meetings, and
post news.

Fig. 3. The figure shows screenshots of some key parts of SOMWeb: overview of cases
at a meeting (top), case presentation with pictures and text description generated from
examination data (left), and part of an examination data entry form (right). All text
is in Swedish.

Figure 3 shows screenshots of core system aspects, such as structured case entry
– the user is presented with a blank form based on a user-defined OWL description
of the examination, inwhich the user enters case data.The examinationdescription
is created in a separate editor for specifying the content of the examination, and the
user never interacts with the OWL representation. The types of questions posed
and the allowed values are determined by the underlying OWL description. After



830 M. Gustafsson et al.

submission, the case data is stored as RDF and a summary of the case information
can be presented (also shown in Fig. 3).

Shown in the case presentation is administrative information along with a
system-generated medical record. The record is constructed from the submit-
ted case data and generated by the mGen document generator, using natural
language processing technology, as described in [19]. If more information about
a case becomes available, the owner can use forms specifically tailored for this
purpose to add new data. Each such data occasion is reflected in the case sum-
mary and a record is generated for each occasion. The owner of a case can also
schedule the case for initial discussion at a SOMNet meeting, as well as selecting
a meeting at which the case should be considered again, for possible follow-up
and re-evaluation.

7 Discussion

While the ontologies used in the SOMWeb community are fairly simple, we be-
lieve that it is still motivated to use OWL and RDF in our application, both
because it, among other things, gives us access to tools for interacting with the
RDF content and because we can return in the future and refine our ontology. In
the old MedView representation there was no support for refining the knowledge
model by subclassing the value classes, and a separate ‘aggregration’ representa-
tion was used for this. When instead using OWL, this can be achieved using one
representation. Indeed, Knublauch et al. [20] argue that “the breadth of the OWL
language offers a migration route from entry level, hand-crafted taxonomies of
terms, to well defined, normalized ontologies capable of supporting reasoning.”
Thus, at first a semantically simple ontologies such as these is enough to make a
Web application able to generate user interface forms from class definitions and
describe schema useful for integration. Then, later in the ontology’s life cycle,
additional expressivity can be added as developers find they need it.

However, OWL and RDF are still fairly young technologies, with the effect
that developers are not as familiar with it as with for example regular XML,
which means that initially more time is spent getting familiar with new nomen-
clature and new API’s. In designing the larger examination template ontologies,
the initial barriers were larger than for the community data ontology. We were
faced with confusion in the usage of domain and range, as well as a lack of
support for representing for example numeric ranges. Also, for the examination
template ontology there was more of a feeling that the ‘right’ choices had to be
made, which sometimes lead to stalled progress.

SOMWeb has been designed to support the collaborative work in SOMNet (and
similar organisations), especially the tasks of setting upandholdingmeetings, from
the perspectives of the different types of users. Focusing on behavioural aspects of
clinical research – modelling and implementing the ‘workflows’ of SOMNet, makes
SOMWeb more of a workflow management system [21] than a traditional CMS.

While this project has the goal of constructing an online community, it was
found that what the clinicians wanted was not so much to discuss the cases



Enabling an Online Community for Sharing Oral Medicine Cases 831

online, but to have a common memory there, where they could contribute and
find cases. The informal communication was less sought after, and was taken care
of in teleconferences and in person or by phone. A drawback of this is that no trail
is left after these conversations, which might have benefited those not present.

8 Conclusions and Future Work

We have shown how Semantic Web technologies can be used to support online
collaborative work in a small medical speciality. The SOMWeb online community
uses RDF for representing central components such as medical examinations and
case metadata, community users, scheduled teleconference meetings, and news
messages. Where relevant, classes and properties from the FOAF and SWRC
ontologies have been reused. These RDF representations interact with the larger
Apache Struts framework through the Jena API.

By using RDF for representing the underlying information of SOMWeb we
hope to gain increased interoperability, and the ability to use SPARQL. Future
work includes allowing users to pose structured queries on the collected data,
rather than using free text search, allowing precise answers rather than pieces of
documents that match the keyword. However, the users of SOMWeb have little
knowledge that the underlying representation of their online community is RDF,
and there should not be a need for them knowing this. Therefore, the structured
queries need to be characterized in a manner graspable without understanding
a more complex underlying design.

There is currently no support in the community for informal communication,
through for example online forums, but such features will soon be provided
and eventually be compatible with SIOC. While the information of SOMWeb
is only available by password identification, we believe that using RDF is still
very useful, since we get the possiblity of reusing concepts from larger community
ontologies such SIOC. An enticing possibility is to connect several related medical
online communities of practice through SPARQL web services.

References

1. Jim Q. Chen, J.H., Ted E. Lee, J.H., Zhang, R.: Systems requirements for organi-
zational learning. Communications of the ACM 46(12) (2003) 73–79

2. Bose, R.: Knowledge management-enabled health care management systems: ca-
pabilities, infrastructure, and decision-support. Expert Systems with Applications
24(1) (2003) 59–71

3. Dawes, M., Sampson, U.: Knowledge management in clinical practice: a systematic
review of information seeking behavior in physicians. International Journal of
Medical Informatics 71(1) (2003) 9–15

4. Ryu, S., Ho, S., Han, I.: Knowledge sharing behavior of physicians in hospitals.
Expert Systems with Applications 25(1) (2003) 113–122

5. Falkman, G., Torgersson, O., Jontell, M., Gustafsson, M.: SOMWeb – Towards an
infrastructure for knowledge sharing. In: Proc. Medical Informatics Europe, IOS
Press (2005) 527–32



832 M. Gustafsson et al.

6. Jontell, M., Mattsson, U., Torgersson, O.: MedView: An instrument for clinical
research and education in oral medicine. Oral Surg. Oral Med. Oral Pathol. Oral
Radiol. Endod. 99 (2005) 55–63

7. Gustafsson, M., Falkman, G.: Representing clinical knowledge in oral medicine
using ontologies. In: Proc. Medical Informatics Europe, IOS Press (2005) 743–8

8. Gustafsson, M., Lindahl, F., Falkman, G., Torgersson, O.: An online community
for oral medicine supporting structured case entry. In: Poster and Demonstration
Proc. MIE 2006. (2006) 469–474

9. Neumann, E.K., Miller, E., Wilbanks, J.: What the semantic web could do for the
life sciences. Drug Discovery Today BioSilico 2(6) (2004) 228–236

10. Lambrix, P.: Towards a semanticweb for bioinformatics using ontology-based an-
notation. In: WETICE ’05: Proceedings of the 14th IEEE International Workshops
on Enabling Technologies: Infrastructure for Collaborative Enterprise, Washington,
DC, USA, IEEE Computer Society (2005) 3–7

11. Heflin, J.: Web Ontology Language (OWL): use cases and requirements. W3C
Recommendation 10 February 2004 (2004)

12. Lausen, H., Ding, Y., Stollberg, M., Fensel, D., Hernandez, R.L., Han, S.K.: Se-
mantic web portals: state-of-the-art survey. Journal of Knowledge Management
9(5) (2005) 40–49

13. Reynolds, D., Shabajee, P., Cayzer, S., Steer, D.: SWAD-Europe deliverable 12.1.7:
Semantic portals demonstrator – lessons learnt (2004)

14. Breslin, J.G., Harth, A., Bojars, U., Decker, S.: Towards semantically-interlinked
online communities. In Gómez-Pérez, A., Euzenat, J., eds.: The Semantic Web:
Research and Applications, Second European Semantic Web Conference, ESWC
2005, Heraklion, Crete, Greece, May 29 - June 1, 2005, Proceedings. (2005) 500–514

15. Stojanovic, N., Maedche, A., Staab, S., Studer, R., Sure, Y.: SEAL – A framework
for developing SEmantic portALs. In: K-CAP 2001 - First Intenational Conference
on Knowledge Capture, Victoria, Canada, Oct. 21-23, 2001, ACM (2001)

16. Decker, S., Erdmann, M., Fensel, D., Studer, R.: Ontobroker: Ontology based ac-
cess to distributed and semi-structured information. In Meersman, R., ed.: Data-
base Semantics: Semantic Issues in Multimedia Systems, Proceedings TC2/WG 2.6
8th Working Conference on Database Semantics (DS-8), Rotorua, New Zealand,
Kluwer Academic Publishers, Boston (1999)

17. Sure, Y., Bloehdorn, S., Haase, P., Hartmann, J., Oberle, D.: The SWRC ontology
- Semantic Web for research communities. In Bento, C., Cardoso, A., Dias, G.,
eds.: Proceedings of the 12th Portuguese Conference on Artificial Intelligence –
Progress in Artificial Intelligence (EPIA 2005). Volume 3803 of LNCS., Covilha,
Portugal, Springer (2005) 218–231

18. Wetter, T.: Lessons learnt from bringing knowledge-based systems into routine
use. Artif. Intell. Med. 24(3) (2002) 195–203

19. Lindahl, F., Torgersson, O.: mGen – An open source framework for generating clin-
ical documents. In: Proc. Medical Informatics Europe, IOS Press (2005) 107–12

20. Knublauch, H., Horridge, M., Musen, M., Rector, A., Stevens, R., Drummond, N.,
Lord, P., Noy, N.F., Seidenberg, J., Wang, H.: The Protǵé OWL Experience. In:
Proc. of the Workshop on OWL Experiences and Directions 2005, Galway, Ireland
(2005)

21. Pratt, W., Reddy, M., McDonald, D., Tarczy-Hornoch, P., Gennari, J.: Incorpo-
rating ideas from computer-supported cooperative work. Journal of Biomedical
Informatics 37(2) (2004) 128–137



EKOSS: A Knowledge-User Centered Approach
to Knowledge Sharing, Discovery, and

Integration on the Semantic Web

Steven Kraines1, Weisen Guo2,1, Brian Kemper1, and Yutaka Nakamura1

1 Division of Project Coordination of the University of Tokyo, Tokyo 277-8568, Japan
{sk, gws, bkemper, yutaka}@cb.k.u-tokyo.ac.jp

2 Inst. of Systems Eng. of Dalian University of Technology, Dalian 116024, China
guows@dlut.edu.cn

Abstract. The scientific enterprise depends on the effective transfer of
knowledge from creator to user. Recently the rate of scientific knowl-
edge production is overwhelming the ability for researchers to process
it. Semantic web technologies may help to handle this vast amount of
scientific knowledge. However, automatic computerized techniques that
extract semantics from natural language text for use in matching with
the requests of knowledge seekers achieve only mediocre results. Clearly,
semantic descriptions of expert knowledge that are constructed by the
knowledge creators themselves will be more accurate. We report an ap-
proach and software implementation of a knowledge sharing platform
based on semantic web technologies, called EKOSS for expert knowledge
ontology-based semantic search, that helps knowledge creators construct
semantic descriptions of their knowledge. The EKOSS system enables
knowledge creators to construct computer-interpretable semantically rich
statements describing their knowledge with minimal effort and without
any knowledge of semantic web technologies.

Keywords: semantic search, knowledge sharing, inference, ontology.

1 Introduction

The scientific enterprise has brought enormous wealth to society in the form
of expert scientific knowledge. However, recently concern has been raised that
knowledge is being produced in scientific research much faster than we can
process it. Some writers have called this a “knowledge explosion”, pointing to
indicators such as an exponential increase in papers written in specific fields of
scientific research [1], [2]. Semantic web technologies are being looked to as a
potential approach for better handling this vast amount of scientific knowledge
[3]. We report an approach and software implementation, called EKOSS for ex-
pert knowledge ontology-based semantic search, to support knowledge sharing
by using semantic web technologies. EKOSS takes the approach of enabling the
knowledge creators to construct semantic descriptions of their knowledge that
are better suited for computer-based processing and matching. In this paper, we

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 833–846, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



834 S. Kraines et al.

describe the basic approach and architecture of the EKOSS system. An accom-
panying paper gives details on the EKOSS system implementation [28].

We have described the scientific enterprise as a knowledge cycle where knowl-
edge generated by research scientists is continually returned to a global repos-
itory of scientific knowledge that forms the basis for further scientific research
[5]. The cycle proceeds through stages of problem identification, experimental
design, data analysis, and knowledge synthesis. At each stage of the process, the
research scientist looks to the existing repository of scientific knowledge in the
form of media such as papers and conference proceedings in order to discover
previous research findings or hints that could help to achieve the goal of syn-
thesizing useful new knowledge. Finally, the research scientist must input this
new knowledge into the repository of scientific knowledge so that it is available
to other research scientists for their research activities as well as to members of
society for addressing various societal needs.

In the past, a diligent researcher could have read all of the papers in a par-
ticular field of scientific knowledge or at least scan abstracts of all potentially
interesting papers. However, as the quantity of published results continues its
exponential growth, researchers face the difficult problem of deciding which of
the current research to invest time reading. Various techniques such as Google
Scholar and the Web of Science can help researchers identify which scientific
papers are most likely to be useful. However, despite remarkable progress in
establishing computer-searchable electronic repositories of scientific papers and
algorithms for extracting keywords automatically from those papers, the effec-
tiveness of these techniques remains limited.

The fundamental problem is that scientific papers, in the way that they are
published today, do not lend themselves well to computer-based techniques for
matching papers with searches for knowledge. While scientific papers a century
ago could be seen as a form of correspondence between people, writing a paper
today can be compared to putting a message in a bottle and hoping that some-
one will find it on the Internet sea. Researchers cast a wide net using search
engines such as Web of Science, but invariably they end up with many unrelated
bottles, false positives, and they end up missing many important messages, false
negatives. For example, we conducted a search on Google Scholar for a paper
titled “a flexible model integration approach for evaluating tradeoffs between
CO2 emissions and cost in solid oxide fuel cell-based building energy systems”
that was published by one of us in the International Journal of Energy Research
using the keywords “building” “distributed”, “energy systems”, “fuel cell”, “gas
turbine”, and “electricity demand” that were contained in the paper’s abstract.
Only four papers in the top thirty hits had any reference to distributed energy
systems in buildings that combine a fuel-cell with a gas turbine. The paper that
we had wanted to find was the only paper that was actually about distributed
energy systems contained in buildings that combine a fuel-cell with a gas turbine
to supply electricity demand of buildings, and it ranked twenty-seventh out of
thirty.



EKOSS: A Knowledge-User Centered Approach 835

2 Using Semantics for More Accurate Searching

By using tools and protocols developed for the realization of the Semantic
Web, such as ontologies implemented in OWL-DL, statements with computer-
interpretable semantics can be constructed. Logical inference and rule-based rea-
soning can be used to evaluate matches between such semantic statements, po-
tentially resulting in a far more accurate mechanism for identifying what knowl-
edge is most likely to be useful to a person who is seeking knowledge related
to a particular condition, object, or design. For example, we could specify that
the knowledge contained in the paper referred to above describes a study of a
“building” containing a “distributed energy system” having as a part a “fuel
cell” and as another part a “gas turbine” that is used to supply “electricity de-
mand” of the “building”. Using the predefined T-box structure of the ontology,
a logical reasoning engine could reduce false negatives by knowing, for example,
that “office building” is a type of “building” and that a “fuel cell” is a type of
“energy device”. Furthermore, by using an A-box to specify that both the “fuel
cell” and the “gas turbine” are parts of the “energy system”, which in turn is
a part of the “building”, we can reduce false positives. The role of semantics in
reducing false positives and false negatives is illustrated in Fig. 1.

The effectiveness of this kind of semantic search is dependent on the accuracy
and richness of the semantic statements. In particular, while natural language

Fig. 1. Semantic matching versus keyword search. A researcher is looking for knowledge
related to a “building” that has a part “energy system” with type “distributed”, which
in turn has parts “fuel cell” and “gas turbine”. A simple keyword list matches with the
wrong knowledge contents (broken lines). Only the semantic description with declared
relationships between the instances of the keywords matches with the correct knowledge
contents (solid line).



836 S. Kraines et al.

processing (NLP) techniques can help to extract useful semantics from scientific
papers [6], [7], [8], even the best NLP methods still do not perform well in terms
of precision and recall of scientific papers [9], [10].

Semantic statements made by the researchers who created the knowledge
could be expected to be more accurate. We argue that researchers would be
willing to make at least a small effort to publish their knowledge in a particular
format if that format could be guaranteed to be significantly more effective at
reaching the people who can most benefit from the knowledge. This is analogous
to attaching a transmitter that sends out a signal “advertising” the content of
the bottle. Authors of papers and conference abstracts do this when they choose
keywords to attach to their manuscript that they feel most accurately repre-
sent the knowledge contained, and using a controlled vocabulary for keywords
helps make the transmission more clear. We believe that, with only a small ad-
ditional effort, researchers could attach far more effective transmissions to their
papers through the use of semantic statements based on formal ontologies. Al-
ternatively, reviewers or editors could attach semantic descriptions of the papers
based on their objective understanding of the main messages in the paper. The
key requirements in our approach are that the process of authoring the seman-
tic descriptions be decentralized and that the authoring process not require any
special expertise on knowledge engineering or semantic technologies.

We have developed a prototype web-based system, called EKOSS for Expert
Knowledge Ontology-based Semantic Search, to support this kind of semantic
markup of both scientific papers and other knowledge resources that describe
some expert knowledge and search requests for scientific knowledge related to
specific conditions and/or problems. We use ontologies based on description
logics to provide simplified languages in specific domains of knowledge that can
be reasoned against using DL reasoning software. The EKOSS system lets users
make both semantic descriptions of knowledge and semantic queries to express
search requests for that domain. We also support the reverse: that is semantic
queries to express conditions that must be filled for particular knowledge to
be applicable and semantic descriptions of the particular conditions for which
knowledge is being sought. We use the RacerPro reasoner to evaluate the matches
between knowledge descriptions and search requests as well as to evaluate the
consistency of semantic descriptions and queries for both knowledge and searches
[11]. The EKOSS system supports the use of multiple distinct ontologies. A set
of administrator tools are provided for loading new ontologies and modifying
existing ones, and we are developing user interfaces for modifying the existing
ontologies as described in the last section of this paper.

3 The Role of EKOSS in Scientific Knowledge Sharing

The EKOSS system is being developed as a part of a four level architecture for
scientific knowledge sharing, discovery, and integration that we have described
in previous publications [5], [13], [12]. Briefly, the four levels of the architec-
ture framework, shown in Fig. 2, are as follows. Knowledge resources, including



EKOSS: A Knowledge-User Centered Approach 837

scientific papers, databases and simulation models, created by knowledge experts
around the world form the base level of the framework. Tools are provided at the
second level to each knowledge expert in order to publish semantic descriptions
of that person’s expert knowledge. At the third level, software agents represent-
ing each of the knowledge experts communicate to identify potentially useful
knowledge sharing opportunities based on the semantic descriptions constructed
at the second level [13], [14]. The fourth level holds knowledge integration tech-
nologies, such as the semantic distance matrix generation tools that we describe
at the end of this paper and the distributed object-based modeling environment
DOME being developed at the CAD laboratory of the Massachusetts Institute
of Technology. DOME can be used to integrate the knowledge discovered at
the third level over the Internet in order to rapidly synthesize new integrated
knowledge through scenario analyses and optimization [15].

Fig. 2. The four level architecture for knowledge sharing, discovery and integration
proposed by the authors

The EKOSS system is intended to implement the second level of this frame-
work. Specifically, the EKOSS system provides a web-accessible knowledge shar-
ing platform with the following features:

– an ontology browser for examining the available ontologies and supporting
dialogue concerning ontology development,

– a personal repository of Knowledge Projects that contain semantic descrip-
tions and queries for representing specific expert knowledge of a user,



838 S. Kraines et al.

– a personal repository of Search Projects that contain semantic descriptions
and queries that represent knowledge interests or requirements of a user,

– a semantic search engine based on the RacerPro DL reasoner with extensions
for rule-based reasoning and datatype reasoning.

EKOSS Knowledge Projects and Search Projects have essentially the same
structure. Each project can contain one or more semantic descriptions that rep-
resent the details of that project, i.e. the knowledge contained or the condi-
tions behind the search. Projects also can contain several generalized semantic
queries to represent the conditions that should be filled in order to establish a
match. Often, the Search Projects will contain semantic queries, such as “find me
all knowledge projects that mention buildings that contain fuel cells”, and the
Knowledge Projects will contain semantic descriptions, such as “this is knowl-
edge about a office building that contains an energy system that in turn contains
a polymer electrolyte fuel cell”. However, the reverse is also useful. For example,
a semantic query can be used to specify a particular condition that must hold
for the knowledge represented by a Knowledge Project to be applicable: “this
knowledge is applicable to situations where there exists a building whose energy
demand is supplied by a local energy device”. Search Projects can then make use
of semantic descriptions to describe the particular conditions for which knowl-
edge is being sought: “we are designing an office building with a microturbine
as an energy supply device”.

We give a simple example here of creating a semantic description for the
matching knowledge shown in Fig. 1. A researcher seeking to share her knowledge
regarding buildings with energy systems that have fuel cells and gas turbines
logs in to her local EKOSS server and creates a new knowledge project. After
entering a name and other information for the project, she clicks a button to add
a semantic description to the project and selects one of the ontologies available
on the EKOSS server to create an A-box describing the object of her knowledge.
The EKOSS ontology browser is displayed, and the researcher navigates the
subsumption taxonomy of the selected ontology to find the concept for building.
After navigating the subsumption tree to the class in the ontology that best
represents the concept that she wants, she presses the “Add” button to create
an instance of the selected class, “building”, in her A-box and optionally adds a
text label to the instance.

The researcher can repeat the process above to add another instance or use
the “Add Property” interface to add an object or datatype property to an ex-
isting instance. Selecting “Add Property” displays a tree of properties that can
take “building” as a domain class (Fig. 3). The researcher wants to indicate
that the building has as a part an energy system with a fuel cell and a gas
turbine, so she finds the property “has part”, which is a subproperty of “compo-
sition of individual”. The “Add Property” interface shows a subsumption tree
of the classes that can be ranges of “has part”. The researcher finds the class
“energy system” and sets it to be the range of “has part”. The EKOSS system
creates an instance of “energy system” and again lets the user label the instance



EKOSS: A Knowledge-User Centered Approach 839

if desired. The user continues to create instances and properties until the A-box
for the knowledge description is completed. An interactive directed graph of the
A-box can be displayed by selecting “graph view” (Fig. 4).

Fig. 3. The “add property” page for adding properties to an instance of the class
“fuel cell”

Semantic descriptions and semantic queries are completely interchangeable,
that is a semantic description of one particular project can be declared to be a
semantic query or description of another Knowledge or Search Project. Moreover,
a Knowledge Project can function as a Search Project and vice versa. This feature
of EKOSS both enhances its effectiveness and reduces the learning curve. Each
Knowledge and Search Project serves as a node on a directed graph of knowledge,
with links between project nodes directed from the queries of the origin project
to the descriptions of the destination project (Fig. 5). For example, a directed
link from project A to project B means that the abstraction of the knowledge
(or request for knowledge) represented by queries in project A is matched, at
least in part, by the detailed semantic representation of the knowledge (or search
conditions) in project B.

Multiplicity of semantic queries has a special meaning – by creating multiple
versions, that is subsets, of a template query, it is possible to evaluate partial
matches and special conditions for a match between that project and the seman-
tic description of another project (see [4] for more details). For each semantic
query in a Knowledge or Search Project, the project creator can set a matching
weight value and a “match type” flag. The “match type” flag specifies whether



840 S. Kraines et al.

Fig. 4. Graph view of the completed semantic knowledge query. Boxes indicate in-
stances, and arrows show the property connections. The actual instance class is shown
to the right of the colon; the user defined instance label is shown to the left of the
colon.

Fig. 5. Example of a match between two semantic knowledge description A-boxes. The
instances in A-box used as the search condition are shown with black labels, and the
instances in the A-box used as the matching knowledge description are shown with
blue labels. The color of the instances indicates the type of instance. Arrows show the
properties in the A-boxes connecting the different instances. The matching instances
are shown with thick red borders.

(a) all of the instances in the query must bind with instances in the description
in order to score a successful match and contribute the weight of the query to
the overall match score (the default behavior) or (b) at least one of the instances
must not bind with any instances in the description in order to score the success-
ful match. For example, we can represent the following search condition: “I am



EKOSS: A Knowledge-User Centered Approach 841

looking for a building that should contain an energy system, preferably contains
a fuel cell, must not contain a diesel engine, and should not contain any kind of
engine” using the four queries and settings shown in Table 1.

Table 1. Search queries, match types, and weights for the example given in the text

Search Query Match Type Weight

building physically contains energy system Must Match 1
building physically contains fuel cell Must Match -2
building physically contains diesel engine Must Not Match 5
building physically contains engine Must Not Match 1

4 Approaches for Constructing Semantic Descriptions
Based on the EKOSS Experience

We are currently employing over 30 students from both undergraduate and grad-
uate courses in fields of environmental technologies and life sciences at the Uni-
versity of Tokyo to create semantic descriptions for the EKOSS server that we
have deployed at http://www.ekoss.org. From our own experiences in creating
semantic descriptions of knowledge and search conditions for the EKOSS system
together with student feedback, we have found that three approaches are partic-
ularly effective. The first approach to constructing a semantic description is to
begin by making a list of about 10 to 20 keywords that describe the knowledge
or search conditions you are considering. Then, for each of the keywords, use
the ontology browser function of the “Add Instance” tool to find the class in the
ontology that best expresses that keyword. After you have created instances of
the ontology classes for each of the keywords, use the “Add Connection” tool to
determine the ontology properties that best express the binary relationships be-
tween the instances you have created. Finally, you can add additional instances
and properties to describe particular attributes of the keywords. A typical ex-
ample is a keyword that is really best expressed by two classes in the ontology,
such as “building energy system”. This keyword could be expressed by the A-box
(“energy systemA” “is part of” “buildingB”).

The second approach that we have found to be effective for constructing se-
mantic descriptions is to begin with a single instance of an ontology class that
best describes the object of the knowledge or search. Properties can then be
added to connect to other classes in the ontology in order to indicate the at-
tributes that make the object special. For example, knowledge about an office
building located in Tokyo that contains a fuel cell used for energy supply could
be described by first creating an instance of the class “office bldg” and then
adding the property “physically contains” pointing to an instance of “fuel cell”,
“has location” pointing to an instance of “city” labeled “Tokyo”, and so on.

The third approach that we have used is to start with a relatively clear image
of what the graph of instances and properties should look like and then build



842 S. Kraines et al.

Fig. 6. The biology interface wizard for constructing descriptions of biomolecular
processes

that graph. We have found that several common patterns appear in semantic
descriptions from particular knowledge domains. For example, in the field of
metabolic pathways, much of the knowledge centers on a particular biomolecu-
lar process, such as phosphorylation, that has one or more substrates and one
or more products. Furthermore, most processes in cellular biology have one or
more “actors” that either activate or inhibit the process. This simple model of
metabolic pathway knowledge can be expressed by a basic template for semantic
descriptions of that knowledge, as shown in Fig. 6. We are developing a number
of such templates for commonly occurring patterns in knowledge from different
domains that are supported by our system, as described in the section “Future
Directions”.

5 Comparison of EKOSS with Existing Systems

There are a number of web platforms that have been developed to make use of
semantic web technologies for supporting knowledge sharing. Each platform uses
different degrees of structure in the computer-interpretable semantics, provides
different types of services to its users, and offers different features for assisting



EKOSS: A Knowledge-User Centered Approach 843

users in the process of adding semantics to their knowledge resources. Here, we
compare some of these semantic knowledge sharing systems with EKOSS.

Mangrove, developed at the University of Washington, aims to provide a
semantic-enabled knowledge sharing platform for communities of “non-technical”
people. The philosophy of the Mangrove Project is that non-technical users could
be enticed to semantically annotate their web pages if they were provided with
useful services that gave them a sense of “instant gratification” [16]. The seman-
tics used by the Mangrove system are therefore necessarily simplistic, and there is
no underlying knowledge model or ontology for supporting logical reasoning. Al-
though a proprietary reasoning engine is mentioned, it is unclear what reasoning
capabilities are supported.

Dspace has been developed through the collaboration of the W3C, the MIT
libraries, and the MIT CSAIL (Computer Science and Artificial Intelligence Lab-
oratory) as a digital library that uses semantic tags to help with cataloging and
retrieval [17]. DSpace is being augmented by the SIMILE (Semantic Interoper-
ability of Metadata and Information in unLike Environments) project to support
arbitrary metadata schemata in the form of RDF markup [18]. However, while
EKOSS provides tools for using DL ontologies to create semantic A-boxes that
describe knowledge resources in a way that can be reasoned against with DL
reasoners for more accurate matching and retrieval, the semantics supported by
Dspace with SIMILE is limited to RDFS so that only reasoning based on class
subsumption is possible.

Magpie is a product of the Advanced Knowledge Technologies project that
takes the form of a browser plugin providing users with tools for displaying terms
in web pages that are found to match with terms from the ontology loaded in
the system [22]. As the goal is to provide semantic web services with near-zero
overhead costs, speed and minimization of user input requirements are empha-
sized. The EKOSS system, on the other hand, aims to empower knowledge cre-
ators interested in sharing their knowledge with the capacity to create semantic
descriptions of that knowledge themselves with only a small amount of effort,
trading off a small increase in overhead costs for the potential benefits from the
greatly increased semantic richness.

SMORE (Semantic Markup, Ontology, and RDF Editor) is a set of tools cre-
ated by MINDSWAP and integrated with the SWOOP ontology browser and the
pellet OWL-DL reasoner that are intended to help users annotate their own web
documents in OWL using ontologies on the web, without requiring the users to
know OWL terms and syntax [24]. SMORE also provides limited capabilities for
creating new ontologies and modifying existing ontologies to incorporate terms
from the user’s web documents. In this sense, the SMORE tools are designed
for ontology building and annotation of web documents rather than actually
describing knowledge resources with computer interpretable semantics.

CONFOTO supports the semantic annotation and browsing of conference
photographs with RDF tags that are based on keyword-based classifications or
folksonomies [19]. Folksonomies have been hypothesized to be easier for users
to use in creating metadata than formal ontologies. However, we believe that



844 S. Kraines et al.

through the tools and interfaces provided by the EKOSS system, a significant
number of users particularly in the sciences would be willing to make the invest-
ment in time and effort to create semantic descriptions that would be far more
useful for semantic analysis due to their solid foundation in formal ontologies.

Other related technologies include Cyc and other ontologies that are intended
to function as centralized knowledge bases [21], the SEKT (Semantically-Enabled
Knowledge Technologies) EU initiative that aims to realize a European Knowl-
edge Society through development of core semantic technologies for knowledge
management based on the KAON reasoner [20], the Tucana Knowledge Dis-
covery Platform and its open source versions Kowari and Mulgara that target
semantic databases and knowledge discovery platforms for enterprises [23], the
SWOOGLE web search engine for searching and analyzing web documents hav-
ing semantic markup [25], the Ont-O-Mat implementation of the CREAM frame-
work for helping web page authors create semantic annotations in the form of
relational metadata [27], and the web-based Annotea system for supporting the
creating and sharing of RDF annotations [26].

6 Future Directions

In future research work, we plan to continue the development of the EKOSS sys-
tem along three paths. First, we will develop domain specific wizards for creating
semantic descriptions. These wizards will include 1) pictorial visualizations of
ontology for helping users to identify the class in the ontology that best describes
a concept that they want to include in an A-box and 2) template wizards for
supporting construction of A-boxes for common semantic patterns in particular
domains. An example of the second type of wizard was shown in Fig. 6.

We will also extend the functionality of the ontology browser in order to
support user dialogue about the classes and structures of the ontologies available
in the system, including examples of uses, suggestions for modifications to the
ontologies, and addition of new classes. In doing so, we intend to offer expert
users the opportunity to “bootstrap” the process of development and refinement
of the ontologies on a particular EKOSS server. Furthermore, we will investigate
the effectiveness of techniques for ontology translation and alignment based on
the A-boxes that are created using the different domain ontologies supported by
the EKOSS system.

Finally, on the semantic matching side, as we begin to accumulate a sufficient
number of Knowledge Projects in the EKOSS system, we will develop methods
for determining the semantic distance between pairs of semantic descriptions
representing the Knowledge Projects. One approach that we are using is to cre-
ate tools for automatically generating interesting subsets of the relatively large
semantic description A-boxes and using those subsets as queries for matching
with the semantic descriptions of other Knowledge Projects. The result is an in-
dication of the degree of overlap between the two semantic descriptions (Fig. 5).
We can use these measured distances between sets of Knowledge Projects to
construct different semantic distance matrices depending on the conditions used



EKOSS: A Knowledge-User Centered Approach 845

for generating the queries from the semantic description of the first Knowledge
Project. These semantic distance matrices can be used for a variety of knowl-
edge integration applications. For example, we are developing graphic interface
tools for visualizing the overall knowledge network that is represented by these
semantic distance matrices as two dimensional knowledge maps or as three di-
mensional visualizations of Knowledge Project distributions around a particular
project.

Acknowledgement. We gratefully acknowledge contributions and advice from
Rafael Batres, Hiroshi Komiyama, Toshihisa Takagi, and David Wallace. Fund-
ing support was provided by the Knowledge Failure Database project at the
Japan Science and Technology Agency.

References

1. Beasley, S.W.: The value of medical publications: ’To read them would ... burden
the memory to no useful purpose’. Australian and New Zealand Journal of Surgery
70 (2000) 870–874

2. Ziman, J. M.: The proliferation of scientific literature: a natural process. Science
208 (2004) 369–371

3. Berners-Lee, T., Hendler, J.: Publishing on the Semantic Web. Nature 410 (2001),
1023–1024

4. Guo, W., Kraines, S.B.: Achieving Scalability of Semantic Searching and Match-
ing based on OWL-DL, Rules and Datatype Property Reasoning. Submitted to
SSWS2006

5. Kraines, S.B., Kemper, B.E., Wallace, D.R., Komiyama, H.: Scientific knowledge
sharing through ontologies and computational models. Submitted to Communica-
tions of the ACM

6. Craven, M., Kumlien, J.: Constructing biological knowledge bases by extracting
information from text sources. Proceedings of the 7th Intl Conf. on Intelligent
Systems for Molecular Biology (ISMB-99) (1999)

7. Huang, M., Zhu, X., Hao, Y., Payan, D.G., Qu, K., Li, M.: Discovering patterns
to extract protein-protein interactions from full texts. Bioinformatics 20 (2004)
3604–3612

8. Rzhetsky, A., Koike, T., Kalachikov, S., Gomez, S.M., Krauthammer, M., Kaplan,
S.H., Kra, P., Russo, J.J., Friedman, C.: A knowledge model for analysis and
simulation of regulatory networks. Bioinformatics Ontology 16 (2000) 1120–1128

9. Abbott, R.: Subjectivity as a concern for information science: a Popperian per-
spective. Journal of Information Science 30 (2004) 95–l06

10. Swanson, D.R.: Medical literature as a potential source of new knowledge. Bull.
Med. Libr. Assoc. 78 (1990) 29–37

11. Racer Systems GmbH & Co. KG.: World Wide Web site http://www.racer-
systems.com

12. Kraines S.B., Batres, R., Koyama, M., Wallace, D.R., Komiyama, H.: Internet-
Based Integrated Environmental Assessment: Using Ontologies to Share Compu-
tational Models. J. Industrial Ecology 9 (2005) 31–50

13. Kraines S.B., Wolowski, V., Koyama, M., Kemper, B.E., Muraki, R., Batres, R.:
A semantic search engine for discovering engineering models using ontologies and
agents. J. Industrial Ecology. In press



846 S. Kraines et al.

14. Guo, W., Kraines, S.B.: Knowledge sharing on a multi-agent reputation-based trust
network. In preparation

15. Wallace, D.R., Abrahamson, S., Senin, N., Sferro, P.: Integrated design in a service
marketplace. Computer-aided Design 32 (2000), 97–107

16. McDowell, L., Etzioni, O., Gribble, S., Halevy, A., Levy, H., Pentney, W., Verma,
D., Vlasseva, S.: Mangrove: enticing ordinary people onto the semantic web via
instant gratification. In Second International Semantic Web Conference (ISWC
2003), October 2003

17. Dspace website: http://www.dspace.org/
18. Mazzocchi, S., Garland, S., Lee, R.: SIMILE: Practical Metadata for

the Semantic Web. XML.com, O’Reilly Media, Inc. January 26, 2005,
http://www.xml.com/pub/a/2005/01/26/simile.html

19. Nowack, B.: CONFOTO: A semantic browsing and annotation service for confer-
ence photos. In Fourth International Semantic Web Conference (ISWC 2005) Y.
Gil et al. (Eds.), LNCS 3729, pp. 1067–1070, 2005

20. SEKT website: http://www.sekt-project.org/
21. cyc website: http://www.opencyc.org/
22. Dzbor, M., Motta, E., Domingue, J.: Opening up magpie via semantic services.

In Third International Semantic Web Conference (ISWC 2004), LNCS 3298, pp.
635–649, 2004

23. tucana website: http://tucana.es.northropgrumman.com/
24. Kalyanpur, A., Parsia, B., Hendler, J., Golbeck, J.: SMORE – semantic markup,

ontology, and RDF editor. http://www.mindswap.org/papers/SMORE.pdf
25. swoogle website: http://swoogle.umbc.edu
26. Kahan, J., Koivunen, M.: Annotea: an open RDF infrastructure for shared web

annotations. WWW2001, Proceedings of the Tenth International World Wide Web
Conference. Hong Kong, May 2001.

27. Handschuh, S., Staab, S.: Authoring and annotation of web pages in CREAM.
WWW2002, Proceedings of the Eleventh International World Wide Web Confer-
ence. Honolulu, Hawaii, USA, May 2002.

28. Kraines, S.B., Guo, W., Kemper, B., Nakamura, Y.: A semantic web application
for expert knowledge sharing, discovery, and integration. ISWC2006. In press



Ontogator — A Semantic View-Based Search
Engine Service for Web Applications

Eetu Mäkelä1, Eero Hyvönen1, and Samppa Saarela1,2

1 Semantic Computing Research Group (SeCo),
Helsinki University of Technology (TKK), Laboratory of Media Technology

University of Helsinki, Department of Computer Science
firstname.lastname@tkk.fi
http://www.seco.tkk.fi/

2 Mysema Ltd
samppa.saarela@mysema.com

Abstract. View-based search provides a promising paradigm for formu-
lating complex semantic queries and representing results on the Semantic
Web. A challenge for the application of the paradigm is the complexity of
providing view-based search services through application programming
interfaces (API) and web services. This paper presents a solution on
how semantic view-based search can be provided efficiently through an
API or as web service to external applications. The approach has been
implemented as the open source tool Ontogator, that has been applied
successfully in several practical semantic portals on the web.

Keywords: semantic view-based search, view projection, Semantic Web
middleware.

1 Interfacing Search Services

The Semantic Web enables querying data based on various combinations of se-
mantic relationships. Because of the RDF data model, these queries are usu-
ally drafted as possibly complex sets of semantic relation patterns. An example
would be “Find all toys manufactured in Europe in the 19th century, used by
someone born in the 20th century”. Here “toys”, “Europe”, “the 18th century”,
“someone” and “the 19th century” are ontological class restrictions on nodes
and “manufactured in”, “used by” and “time of birth” are the required con-
necting arcs in the pattern. While such queries are easy to formalize and query
as graph patterns, they remain problematic because they are not easy for users
to formulate. Therefore, much of the research in complex semantic queries has
been on user interfaces [1,2] for creating complex query patterns as intuitively
as possible.

View-based search [3,4] is a search interface paradigm based on a long-running
library tradition of faceted classification [5]. Usability studies done on view-
based search systems, such as Flamenco [6,4] and Relation Browser++ [7] have
proved the paradigm both powerful and intuitive for end-users, particularly in
drafting complex queries. Thus, view-based search presents a promising direction

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 847–860, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



848 E. Mäkelä, E. Hyvönen, and S. Saarela

for semantic search interface design, if it can be successfully combined with
Semantic Web technologies.

The core idea of view-based search is to provide multiple, simultaneous views
to an information collection, each showing the collection categorized according
to some distinct, orthogonal aspect. A search in the system then proceeds by
selecting subsets of values from the views, constraining the search based on the
aspects selected. As an example, figure 1 shows the view-based search interface
of the Veturi [8] yellow pages service discovery portal. Here, the user is looking
for sweets, and has specified “marmalade”, “buy” and “Helsinki” as the Patient
(Mitä), Process (Prosessi) and Place (Paikka) aspects of the service, respectively.

Fig. 1. Locating shops that sell marmalade in Helsinki

A key feature that differentiates view-based search from traditional keyword
and Boolean search is the use of a preselected group of categorizing views in both
formulating queries and in representing the results. The views give the user the
query vocabulary and content classification scheme in an intuitive format. In
addition, at each step, the number of hits belonging to each category is shown.
Because the search proceeds by selecting these categories as further constraints,
the user always knows beforehand exactly how many items will be in the result
set after her next move. This prevents the user from making selections that lead
to empty or very large result sets, and guides her effectively in constraining the
search.

View-based search has been integrated with the Semantic Web in [9,10,11]. In
this semantic view-based search, the facets are constructed algorithmically from
a set of underlying ontologies that are used as the basis for annotating search
items. Furthermore, the mapping of search items onto search facets is defined
using logic rules. This facilitates more intelligent search of indirectly related



Ontogator — A Semantic View-Based Search Engine Service 849

items. Another benefit is that the logic layer of rules make it possible to use the
same search engine for content of different kinds and annotated using different
annotation schemes.

As part of the work, five view-based semantic portals were created. Previous
research on the interfaces of the portals [10,11,12] have proved that regarding
interface flexibility and extensibility with other semantic techniques, the view-
based paradigm provides a versatile base for search on the Semantic Web. The
functionalities of the interfaces developed span the whole range of search tasks
identified in recent search behavior research[13,14].

Underlying all these portals is the semantic portal tool OntoViews [15], avail-
able open source under the MIT license1. The tool is based on the Service Ori-
ented Architecture (SOA) approach, combining independent Semantic Web Ser-
vices into a working whole. This article presents the most important of these
services: the general semantic view-based search service Ontogator.

Ontogator presents a solution to the following problem: what kind of search
engine service and Application Programming Interface (API) are needed for
supporting a variety of semantic view-based search interfaces? For a traditional
Boolean logic or keyword based search engine such as Google, the API is fairly
simple2. The functionalities needed of a general view-based search API are much
more complex. It should support facet visualization, including hit counting, facet
selection, and result visualization in different ways in addition to the search logic.

Ontogator is a service with an XML/RDF-based API that provides an exter-
nal software agent with all the services needed for performing view-based search.
The system with its query language and implementation is described in detail in
[16]. In the following, we focus in more detail on the design principles underlying
the system, and the issues faced in general while designing and implementing
semantic view-based search as an independent, general service.

2 Requirements for a View-Based Search API

Below are listed some services needed from the engine in a view-based semantic
portal, such as MuseumFinland [11], for providing the user with a useful view-
based user interface (UI).

1. Facets are exposed to the end-user in the UI for making category selections.
Therefore, querying facets with hit counts projected on categories is needed.

2. On the view-based UI, clicking on a category link in a facet activates view-
based search. The API therefore supports querying by Boolean category
search with term expansion along facets, i.e., basic view-based search.

3. Depending on the situation, some metadata of the RDF repository, such as
confidential information, should be filtered and consequently not be shown
on the UI. Therefore, a mechanism for specifying the form and content of
the results is useful.

1 http://www.seco.tkk.fi/projects/semweb/dist.php
2 see e.g. http://www.google.com/apis/reference.html#searchrequest



850 E. Mäkelä, E. Hyvönen, and S. Saarela

4. Reclassifying the result set along different facets and depths is needed when
inspecting the hit list. In MuseumFinland, for example, the UI provides the
user a link button for each view facet. By clicking it the museum collection
artifacts in the hit result set are reclassified along the selected facet, such as
Artifact type, Material type, Place of Manufacture, etc. A query mechanism
for this is needed.

5. Combining traditional keyword search with view-based search. Research has
shown [6,4] that keyword search and view-based search complement each
other. In practice, both search paradigms have to be supported simultane-
ously, and a method for combining the paradigms is needed.

6. Support for knowledge-based semantic search. The search should be intel-
ligent in the sense that the engine can find, using domain knowledge, also
content that is only implicitly related with search categories. For example,
the underlying knowledge base of MuseumFinland has some 300 rules of
common knowledge that tell how artifacts are related to other concepts. If a
rule tells that doctor’s hats are used in academic ceremonial events, then a
search with the category ”Ceremonies” in the ”Events” facet should retrieve
all doctor’s hats even when the actual metadata of the hats in the underlying
databases does not directly mention ceremonies.

Generalizing these requirements and adding architectural constraints, in the
end the following design goals for the system were set:

1. Adaptability and domain independence. Ontogator should easily adapt to
variant domains and make use of the semantics of any data.

2. Standards. The query and response interfaces of Ontogator should conform
to established Semantic Web standards as independent semantic compo-
nents.

3. Extensibility. The system architecture should be extensible, especially with
regard to querying functionality.

4. Scalability. The system should scale to handle large amounts of semantic
metadata (millions of search items).

The challenge in designing the Ontogator search service was to find out how to
support these various needs of semantic view-based search in a computationally
scalable way. During design, it also became apparent that on the Semantic Web,
view category identification poses certain questions in itself. In the following,
these points will be discussed in their own sections.

3 Adaptability to Different Domains

A major issue in applying the view-based search paradigm is in how to create
the views used in the application as flexibly as possible. On the Semantic Web,
domains are described richly using ontologies. However, as in traditional clas-
sification systems, hierarchical hyponymy and meronymy relationships are still
important for structuring a domain. Therefore, these ontologies typically contain



Ontogator — A Semantic View-Based Search Engine Service 851

a rich variety of such elements, most often defined with explicit relations, such
as “part-of” and “subclass-of”. This naturally leads to the idea of using these
hierarchical structures as bases for views in view-based searching. To carry this
out, Ontogator introduces a preprocessing phase termed view projection.

The transformation consists of two important parts: projecting a view tree
from the RDF graph, and linking items to the categories projected. Originally,
these tasks were performed by the Ontodella logic server [17], but recently have
been incorporated into Ontogator itself. For both tasks, Ontogator relies on tra-
versing the RDF graph guided by specified rules, picking up relevant concepts
and linking them into a view tree based on the relations they have in the under-
lying knowledge base. The result of this phase is a set of indexed facet structures
linked with the actual content items to be searched for. The domain dependent
reasoning part of search is performed at this phase and means in practice map-
ping search items to the search categories.

For describing the view projections, Ontogator uses an RDF-based configura-
tion format. The projection interface was designed to be modular and extensible,
so that new projection rule styles and constructs could be created and used in-
terchangeably in the system. Currently, the interface supports rules defined in
a simple RDF path language, as well as the Prova3 language, a Java version of
Prolog. This makes it possible to keep simple rule definitions simple, but also, if
needed, take advantage of the expression power of Prolog.

As an example of the configuration format, a snippet from the Veturi portal,
slightly adapted for demonstration purposes, is provided:

<ogt:HierarchyDefinition rdf:nodeID="patient">
<ogt:root rdf:resource="&object;Object"/>
<ogt:incProperty rdf:resource="&rdfs;label"/>
<ogt:subCategoryLink>

<ogt:ProvaLink rdf:nodeID="coicopSubClasses">
<ogt:isLeaf>false</ogt:isLeaf>
<ogt:linkRule>
rdf(Target,’coicop:hasParent’,Source).

</ogt:linkRule>
</ogt:ProvaLink>

</ogt:subCategoryLink>
<ogt:subCategoryLink rdf:nodeID="sumoSubClasses"/>
<ogt:itemLink rdf:nodeID="sumoItems"/>

</ogt:HierarchyDefinition>

In the example, in the tree projection phase a “Patient” hierarchy is projected,
using two “subCategoryLink” rules for recursively adding subcategories to the
view. The first is a simple Prova rule for the COICOP [18] product hierarchy. The
second subcategory rule for projecting the Suggested Upper Merged Ontology
(SUMO) [19] -based process hierarchy is not actually defined here, but refers
to a Prova definition elsewhere in the RDF document. This possibility for rule
reuse is a nice property of the RDF model. As an example of a more complex
rule, consider the actual definition of the linked rule:

% base case, handle categories where we’re not told to stop, nor to skip
sumo_sub_category(Source,Target) :-

3 http://www.prova.ws/



852 E. Mäkelä, E. Hyvönen, and S. Saarela

Skip = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#skip’,
rdf(Target,’rdfs:subClassOf’, Source),
not(rdf(Target,’sumo_ui:display’,Skip)),
not(sumo_subcategory_not_acceptable(Target)).

% if we’re told to skip a category, then do it.
sumo_sub_category(Source,Target) :-
Skip = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#skip’,
rdf(SubClass,’rdfs:subClassOf’, Source),
rdf(SubClass,’sumo_ui:display’, Skip ),
sumo_sub_category(SubClass,Target).

% don’t process MILO categories
sumo_subcategory_not_acceptable(SubClass) :-
Milo = ’http://reliant.teknowledge.com/DAML/MILO.owl#’,
not(rdf_split_url(Milo,Prop,SubClass)).

% don’t process if we’re told to stop
sumo_subcategory_not_acceptable(SubClass) :-
Stop = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#stop’,
rdf( SubClass, ’sumo_ui:display’, Stop).

% don’t process if someone above us told us to stop
sumo_subcategory_not_acceptable(SubClass) :-
Stop = ’http://www.cs.helsinki.fi/group/iwebs/ns/process.owl#stop’,
rdf( Y, ’sumo_ui:display’, Stop ),
not( rdf_transitive(SubClass,’rdfs:subClassOf’,Y)).

Here, while the basis for hierarchy formulation is still the “rdfs:subClassOf”
relationship, complexity arises because it is not used as-is. The class hierarchy
of the SUMO ontology is designed mainly to support computerized inference,
and is not necessarily intuitive to a human end user. To make the hierarchy
less off-putting for a user, two additional rules are used, based on configuration
information encoded directly into the RDF data model. First, categories in the
middle of the tree that make sense ontologically but not to the user should be
skipped, bumping subcategories up one level. Second, sometimes whole subtrees
should be eliminated. In addition, in the data model there are also classes of
the Mid Level Ontology (MILO) [20] extending the SUMO tree. These are used
elsewhere to add textual material to the categories for text-based matching, but
are not to be directly processed into the tree.

From an algorithmical perspective, in projecting a tree from a directed graph,
there are always two things that must be considered. First, possible loops in the
source data must be dealt with to produce a Directed Acyclic Graph (DAG).
This usually means just dismissing arcs that would form cycles in the projection
process. Second, classes with multiple superclasses must be dealt with to project
the DAG into a tree. Usually such classes are either assigned to a single superclass
or cloned, which results in cloning also the whole subtree below.

The second phase of view projection is associating the actual information
items searched for with the categories. Most often, this is just a simple case of
selecting a property that links the items to the categories, but it can get more
complex than that here, too. Back in the first listing, the third link rule is an
“itemLink”, referring to the following rule:

<ogt:RDFPathLink rdf:nodeID="sumoItems">
<ogt:isLeaf>true</ogt:isLeaf>
<ogt:linkRule>



Ontogator — A Semantic View-Based Search Engine Service 853

^sumo:patient^process:subProcess
</ogt:linkRule>

</ogt:RDFPathLink>

This rule is again defined using the simple RDF path format. The backwards
path in the example specifies that to locate the service processes associated with
a category of objects, one should first locate all processes where the category
is specified as the patient type. From there, one can then find the services that
contain those subprocesses.

The reason for introducing the projection preprocessing phase is two-fold.
First, in this way the Ontogator search engine can be made completely indepen-
dent of the domain knowledge and of the annotation schema used. It does not
know anything about the domain semantics of the original knowledge base or
the annotation schema used, but only about semantics of view-based search. Sec-
ond, during knowledge compilation, efficient indices facilitating computationally
scalable semantic view-based search to millions of search items can be created.
A problem of the preprocessing approach is that the contents cannot, at least in
the current implementation, be updated gradually.

The extensibility of the Ontogator projection architecture is based on combin-
ing only a few well defined component roles to create more complex structures.
There are in essence only two types of components in the architecture: those
linking individual resources to each other, and those producing resource trees.
Based on these roles it is easy to reuse components, for example using the same
linkers both for item and subcategory links, or creating a compound hierarchy by
including individual hierarchies. Using the RDF data model for configuring the
projection further supports this, giving a clear format for expressing these com-
binatory structures, and even making it possible to refer to and reuse common
component instances.

4 Category Identification

Because of the projection, categories in semantic view-based search cannot be
identified by the URIs of the original resources. First, the same resources may
feature in multiple views, such as when a place is used in both a “Place of Use”
and a “Place of Manufacture” view. Second, even inside one view, breaking
multiple inheritance may result in cloning resources. Therefore, some method
for generating category identifiers is needed.

An important consideration in this is how persistent the created identifiers
need to be. In a web application for example, it is often useful for identifiers
to stay the same as long as possible, to allow the user to long-term bookmark
their search state in their browser. A simple approach for generating persistent
category identifiers would start by just concatenating the URIs of categories in
the full path from the tree root to the current category to account for multiple
inheritance. Then an additional URI would have to be added, for differenti-
ating between the semantic sense by which the actual information items are
related to the categories, e.g. “Place of Use” and “Place of Manufacture” again.



854 E. Mäkelä, E. Hyvönen, and S. Saarela

This will create identifiers resilient to all changes in the underlying ontology
knowledge base other than adding or moving categories in the middle of an
existing hierarchy. And even in that case, good heuristics would be available
for relocating lost categories. This will, however, result in very long category
identifiers.

If persistence is not critical, many schemes can be applied to generate shorter
category identifiers. In Ontogator, a prefix labeling scheme [21] based on sub-
category relationships is used: the subcategories of a will be identified as aa, ab
and so on. This scheme was selected because it makes finding out the subcate-
gories of a given category very easy, a useful property in result set calculation,
described later. The potential problem here is that even if the order in which
subcategories are projected is preserved, adding resources to, or removing them
from the ontology may result in categories with different identifiers. That is, a
category with the identifier aba that used to represent e.g. “Finland” could turn
out to represent “Norway”, with no means for the system to know about the
change. As the original portals created on top of OntoViews were fairly static,
this was not judged to be a problem outweighing the benefits.

5 Standards: Interfacing with Other Semantic
Components

On the Semantic Web, it is important that the interfaces of programs conform
to established standards, particularly for semantic services intended to be of
general use. To this end, both the queries and results of Ontogator are expressed
in RDF. The query interface is defined as an OWL ontology4, and is therefore
immediately usable by any application capable of producing either RDF, or XML
conforming to the RDF/XML serialization.

As for conforming to different functional needs, the interface itself then con-
tains plenty of options to filter, group, cut, annotate and otherwise modify the
results returned. These options allow the basic interface to efficiently meet dif-
ferent demands, as evidenced by the wide variety of interfaces[11,8,12] created
using the system. For example, when constructing a view-based query for an UI
page depicting the facets, one can specify that only the facet structure with hit
counts but without the actual hits is returned. On a hit list page the attributes
can be selected so that the actual hits are returned classified along the direct
subcategories of an arbitrary facet category.

Because Ontogator mainly works with tree hierarchies inherent in ontologies,
it is only natural that also the result of the search engine is expressed as an RDF
tree. This tree structure also conforms to a fixed XML-structure. This is done to
allow the use of XML tools such as XSLT to process the results. This provides
both a fall-back to well established technologies, and allows for the use of tools
especially designed to process hierarchical document structures. In OntoViews,
for example, the XML/RDF results of Ontogator are transformed into XHTML
UI pages by using XSLT.
4 http://www.cs.helsinki.fi/group/seco/ns/2004/03/ontogator#



Ontogator — A Semantic View-Based Search Engine Service 855

The need for defining a new kind of tree-based query language, and not using
existing query schemes for relational databases, XML, or RDF is due to the
nature of the view-based search and to reasons of computational efficiency. In
view-based search, the UI is heavily based of tree structures exposing to the end-
user versatile information about the search categories and results. Supporting
the creation of such structures by a search engine makes application development
easier. The search and result construction is also more efficient this way. Firstly,
the needed structures can be constructed at the time of the search where the
information needed is easily available. Secondly, in this way the indices and
search algorithms can be optimized for view-based search in particular. In our
first implementation tests, some generic Semantic Web tools such as Jena were
used for implementing the search operations, but in the end, special purpose
Java programs were developed leading to a much more efficient implementation.

6 Extensibility

The RDF-based query language created for Ontogator was designed to be as
flexible and extensible as possible also with regard to querying functionality.
The basic query format is based on two components: an items clause for selecting
items for the result set, and a categories clause for selecting a subtree of categories
to be used in grouping the results for presentation. This format enables flexibly
grouping the results using any category clause, for example organizing items
based on a keyword query according to geolocations near the user.

The way both clauses work is based on an extensible set of selectors, compo-
nents that produce a list of matching resource identifiers based on some criteria
particular to them. The current implementation allows searching for view cate-
gories using 1) the category identifier, 2) the resource URI of which the category
is projected and 3) a keyword, possibly targeted at a specific property value of
the category. These category selectors can also be used also to select items. In
this case the selector selects all items that relate to the found categories. Items
can additionally directly be queried using their own keyword and URI selectors.
Different selectors can be combined to form more complex queries using special
union and intersection selectors.

Ontogator can be extended by defining and implementing new selectors. This
provides a lot of freedom, as the only requirement for a selector is that it produce
a list of matching items. The selector itself can implement its functionality in
any way desired. For example, a selector selecting items based on location could
act as a mere proxy, relaying the request to a GIS server using the user’s current
location as a parameter and returning results directly for further processing.

7 Scalability

The full vision of the Semantic Web requires search engines to be able to process
large amounts of data. Therefore, the scalability of the system was an important
consideration in the design of Ontogator. With testing on fabricated data, it was



856 E. Mäkelä, E. Hyvönen, and S. Saarela

deduced that in general, Ontogator performance degrades linearly with respect to
both increasing the average number of items related to a category and increasing
the amount of categories as a whole, with the amount of items in isolation not hav-
ing much effect. As for real-world performance, table 1 lists the results of search
performance tests done on the major portals developed. Because the queries used
in the different portals differ in complexity, the results do not scale directly with
regard to size, but still approximately conform to the results of the earlier tests.

Table 1. Ontogator performance comparison

Portal Views Categories Items Avg. items Avg. response
/ category time

dmoz.org test 21 275,707 2,300,000 8.91 3.50 seconds
Veturi 5 2,637 196,166 128.80 2.70 seconds
MuseumFinland 9 7,637 4,132 5.10 0.22 seconds
SW-Suomi.fi 6 229 152 3.55 0.10 seconds
Orava 5 139 2,142 84.00 0.06 seconds

Of the performance test results, the ones done on the dmoz.org Open Di-
rectory Project website catalog data provide an obvious comparison point with
current web portals, and confirm that this implementation of view-based search
is sufficiently scalable for even large amounts of real life data. This scalability
in Ontogator has been achieved using a fast memory-resident prefix label index-
ing scheme [21], as well as query options restricting result size and necessary
processing complexity. These considerations taken are detailed below:

7.1 Indexing

The tree hierarchy -based search as presented here requires that related to a
category, direct subcategories, directly linked items, the transitive closure of
linked items and the path to the tree root can be computed efficiently. The
reverse relation of mapping an item to all categories it belongs to also needs to
be efficiently calculated.

Ontogator uses custom Java objects (in memory) to model the direct relations
of categories and items. All other data related to the categories and items, such
as labels or descriptions are retrieved from an associated Jena5 RDF model.

Both direct subcategories and directly linked items are recorded in memory
for each category to allow for speedy retrieval. A full closure of linked items is
not recorded, but calculated at runtime. To do this, Ontogator makes use of a
subcategory closure, gathering together all items in all the found subcategories.
The subcategory closure itself is acquired efficiently by making use of the prefix
labeling scheme used for the categories. After generation, the labels are stored
in a lexically sorted index, so that the subcategories of any given category are

5 http://jena.sourceforge.net/, the leading Java RDF toolkit, developed under an open
source licence at HP labs



Ontogator — A Semantic View-Based Search Engine Service 857

placed immediately after it in the index. This way, any subcategory closure can
be listed in O(log(n) + n) time, by enumerating all categories in the index after
the queried resource, until a prefix not matching the current resource is found.
The use of prefix labeling also means that the whole path from view root to a
given category is directly recorded in its label. Another advantage is that the
identifiers are short, and easy to handle using standard Java utility classes.

7.2 Result Complexity Management

To decrease result file size as well as result computation complexity, Ontogator
provides many options to turn off various result components. If grouping is not
wanted, inclusion of categories can be turned off and respectively if items are
not desired, their inclusion can be turned off. Turning both off can be used to
gain metadata of the query’s results, such as number of item or category hits.

The most important of these options, with regards to query efficiency, deals
with the hit counts. Turning item hit counting off for categories speeds up the
search by a fair amount. Used generally, however, this deprives the tree-views
of their important function as categorizations of the data. Therefore, the option
makes most sense in pre-queries and background queries, as well as a last effort
to increase throughput when dealing with massive amounts of data.

7.3 Result Breadth Management

Result breadth options in Ontogator deal with limiting the maximum number
of items or categories returned in a single query. They can either be defined
globally, or to apply only to specified categories. With options to skip categories
or items, this functionality can also be used for (sub)paging.

In MuseumFinland, a metadata-generating pre-query is used before the actual
search query, to optimize the result breadth options used. The query results are
used to specify the maximum number of items returned for each shown category
— if the result contains only a few categories, more items can be fitted in each
category in the user interface.

7.4 Result Depth Management

Depending on the nature of the view-based user interface, hierarchies of different
depths are needed. Currently Ontogator supports three subhierarchy inclusion
options. These are

none. No subcategories of found categories are included in the result. This
option is used in category keyword queries: only categories directly matching
the given keyword will be returned.

direct. Direct subcategories of found categories will be included in the result.
This option is used to build the basic views in MuseumFinland.

all. The whole subhierarchy of found categories will be included in the result.
This option is used to show the whole classification page in MuseumFinland,
as well as the main view in Veturi, which give the user an overview of how
the items are distributed in the hierarchy.



858 E. Mäkelä, E. Hyvönen, and S. Saarela

Similar options are available for controlling if and how paths to the selected
category from the view root are to be returned.

With result breadth limits, these options can be used to limit the maximum
size of the result set. This is especially important in limited bandwidth environ-
ments.

8 Discussion

Several lessons were learned in designing and implementing Ontogator. First, the
projection formalism, particularly coupled with the expressive power of Prolog
rules provide a flexible base on which to build view projection. However, Prolog
is unfamiliar to many programmers. To counter this, projection configuration in
Ontogator also allows defining and using simpler formalisms for cases where not
so much expressive power is needed.

Second, to increase adaptability and component reuse, the old UNIX motto
for creating distinct components that do one thing well, but can be connected to
perform complex operations continues to apply. On the Semantic Web, it makes
sense for the components to both consume and produce, as well as define their
API in RDF and/or OWL.

Third, for scalable tree hierarchy-based search, an efficient index for calculat-
ing a transitive closure of items is needed, and it should be possible to curtail
result calculation complexity with options. Also, problems of category identifi-
cation need to be sorted out.

A limitation of the approach was also noted. Ontogator was designed as a
stateless SOA service with the expectation that queries would be largely in-
dependent of each other. However, for some applications, such as the Veturi
interface presented, this expectation does not hold. When navigating the tree
hierarchies in Veturi, most queries are just opening further branches in a result
tree that is already partially calculated. Currently, the whole visible tree needs
to be recalculated and returned. A possible solution using the current architec-
ture would be to maintain in Ontogator a cache of recently calculated result sets
for reuse. This would not be a large task, as the API already uses such a cache
in calculating category hit counts for the various views inside a single query.

9 Related Implementations

During the timeframe of this research, other implementations of view-based
search for the Semantic Web have also surfaced. The Longwell RDF browser6

provides a general view-based search interface for any data. However, it supports
only flat, RDF-property-based views. The SWED directory portal [22] is a se-
mantic view hierarchy-based search portal for environmental organisations and
projects. However, the view hierarchies used in the portal are not projections
from full-fledged ontologies, but are manually crafted using the W3C SKOS [23]

6 http://simile.mit.edu/longwell/



Ontogator — A Semantic View-Based Search Engine Service 859

schema for simple thesauri. The portal does, however, support distributed main-
tenance of the portal data. The Seamark Navigator7 by Siderean Software, Inc.
is a commercial implementation of view-based semantic search. It also, however,
only supports simple flat categorizations.

Acknowledgements

This research was mostly funded by the Finnish Funding Agency for Technology
and Innovation Tekes.

References

1. Athanasis, N., Christophides, V., Kotzinos, D.: Generating on the fly queries for the
semantic web: The ICS-FORTH graphical RQL interface (GRQL). In: Proceedings
of the Third International Semantic Web Conference. (2004) 486–501

2. Catarci, T., Dongilli, P., Mascio, T.D., Franconi, E., Santucci, G., Tessaris, S.: An
ontology based visual tool for query formulation support. In: Proceedings of the
16th Eureopean Conference on Artificial Intelligence, IOS Press (2004) 308–312

3. Pollitt, A.S.: The key role of classification and indexing in view-based searching.
Technical report, University of Huddersfield, UK (1998)

4. Hearst, M., Elliott, A., English, J., Sinha, R., Swearingen, K., Lee, K.P.: Finding
the flow in web site search. CACM 45(9) (2002) 42–49

5. Maple, A.: Faceted access: A review of the literature. Technical report, Working
Group on Faceted Access to Music, Music Library Association (1995)

6. Lee, K.P., Swearingen, K., Li, K., Hearst, M.: Faceted metadata for image search
and browsing. In: Proceedings of CHI 2003, April 5-10, Fort Lauderdale, USA,
Association for Computing Machinery (ACM), USA (2003)

7. Zhang, J., Marchionini, G.: Evaluation and evolution of a browse and search
interface: Relation Browser++. In: dg.o2005: Proceedings of the 2005 national
conference on Digital government research, Digital Government Research Center
(2005) 179–188

8. Mäkelä, E., Viljanen, K., Lindgren, P., Laukkanen, M., Hyvönen, E.: Semantic
yellow page service discovery: The Veturi portal. In: Poster paper, 4th International
Semantic Web Conference. (2005)

9. Hyvönen, E., Saarela, S., Viljanen, K.: Application of ontology techniques to view-
based semantic search and browsing. In: The Semantic Web: Research and Ap-
plications. Proceedings of the First European Semantic Web Symposium (ESWS
2004). (2004)

10. Mäkelä, E., Hyvönen, E., Sidoroff, T.: View-based user interfaces for information
retrieval on the semantic web. In: Proceedings of the ISWC-2005 Workshop End
User Semantic Web Interaction. (2005)

11. Hyvönen, E., Mäkelä, E., Salminen, M., Valo, A., Viljanen, K., Saarela, S., Junnila,
M., Kettula, S.: MuseumFinland – Finnish museums on the semantic web. Journal
of Web Semantics 3(2) (2005) 25

12. Sidoroff, T., Hyvönen, E.: Semantic e-goverment portals - a case study. In: Proceed-
ings of the ISWC-2005 Workshop Semantic Web Case Studies and Best Practices
for eBusiness SWCASE05. (2005)

7 http://siderean.com/products.html



860 E. Mäkelä, E. Hyvönen, and S. Saarela

13. Sellen, A., Murphy, R., Shaw, K.L.: How Knowledge Workers Use the Web. In:
Proceedings of the SIGCHI conference on Human factors in computing systems,
CHI Letters 4(1), ACM (2002)

14. Teevan, J., Alvarado, C., Ackerman, M.S., Karger, D.R.: The perfect search engine
is not enough: a study of orienteering behavior in directed search. In: Proceedings
of the Conference on Human Factors in Computing Systems, CHI. (2004) 415–422

15. Mäkelä, E., Hyvönen, E., Saarela, S., Viljanen, K.: OntoViews - A Tool for Creating
Semantic Web Portals. In: Proceedings of the Third Internation Semantic Web
Conference, Springer Verlag (2004)

16. Saarela, S.: Näkymäpohjainen rdf-haku. Master’s thesis, University of Helsinki
(2004)

17. Viljanen, K., Känsälä, T., Hyvönen, E., Mäkelä, E.: Ontodella - a projection
and linking service for semantic web applications. In: Proceedings of the 17th
International Conference on Database and Expert Systems Applications (DEXA
2006), Krakow, Poland, IEEE (2006) To be published.

18. United Nations, Statistics Division: Classification of Individual Consumption by
Purpose (COICOP). United Nations, New York, USA (1999)

19. Pease, A., Niles, I., Li, J.: The suggested upper merged ontology: A large ontology
for the semantic web and its applications. In: Working Notes of the AAAI-2002
Workshop on Ontologies and the Semantic Web. (2002)

20. Niles, I., Terry, A.: The MILO: A general-purpose, mid-level ontology. In Arabnia,
H.R., ed.: IKE, CSREA Press (2004) 15–19

21. Christophides, V., Karvounarakis, G., Plexousakis, D., Scholl, M., Tourtounis, S.:
Optimizing taxonomic semantic web queries using labeling schemes. Journal of
Web Semantics 1(2) (2004) 207–228

22. Reynolds, D., Shabajee, P., Cayzer, S.: Semantic Information Portals. In: Pro-
ceedings of the 13th International World Wide Web Conference on Alternate track
papers & posters, ACM Press (2004)

23. Miles, A., Brickley, D., eds.: SKOS Core Guide. World Wide Web Consortium
(2005) W3C Recommendation Working Draft.



 

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 861 – 872, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Explaining Conclusions from Diverse Knowledge Sources 

J. William Murdock1, Deborah L. McGuinness2, Paulo Pinheiro da Silva3,*,  
Chris Welty1, and David Ferrucci1 

1 IBM Watson Research Center 
19 Skyline Drive 

Hawthorn, NY 10532 
2 Knowledge Systems, Artificial Intelligence Laboratory 

Stanford University 
Stanford, CA 94305 

3 Department of Computer Science 
The University of Texas at El Paso 

500 W University Ave 
El Paso TX 79968-0518 

Abstract. The ubiquitous non-semantic web includes a vast array of unstructured 
information such as HTML documents.  The semantic web provides more 
structured knowledge such as hand-built ontologies and semantically aware 
databases.  To leverage the full power of both the semantic and non-semantic 
portions of the web, software systems need to be able to reason over both kinds 
of information.  Systems that use both structured and unstructured information 
face a significant challenge when trying to convince a user to believe their 
results: the sources and the kinds of reasoning that are applied to the sources are 
radically different in their nature and their reliability. Our work aims at 
explaining conclusions derived from a combination of structured and 
unstructured sources. We present our solution that provides an infrastructure 
capable of encoding justifications for conclusions in a single format. This 
integration provides an end-to-end description of the knowledge derivation 
process including access to text or HTML documents, descriptions of the 
analytic processes used for extraction, as well as descriptions of the ontologies 
and many kinds of information manipulation processes, including standard 
deduction.  We produce unified traces of extraction and deduction processes in 
the Proof Markup Language (PML), an OWL-based formalism for encoding 
provenance for inferred information.  We provide a browser for exploring PML 
and thus enabling a user to understand how some conclusion was reached. 

1   Introduction 

It has been recognized since at least the early days of expert systems research that 
systems should be able to provide information about how answers were obtained if 
users are expected to understand, trust, and use conclusions.  In these early systems, 
conclusions may have been obtained by using sound inference procedures applied to 
                                                           
* This work was done while at the Knowledge Systems, Artificial Intelligence Laboratory at 

Stanford University. 



862 J.W. Murdock et al. 

 

knowledge bases of logical statements that were hand coded by experts.  Under these 
conditions, the knowledge bases may have contained correct and trustworthy 
information and the reasoners may have been correct.  The information about the 
answer generation process typically focused on the derivation path, and it was 
typically referred to as an explanation. Sometimes the explanations included some 
limited information about facts from the knowledge bases.  Sometimes there was 
additional focus on taking the information concerning the derivation path and making 
it more understandable to the end user. 

Modern semantic web systems also require this kind of support, however now they 
also have additional needs.   There are two characteristics that our work addresses: 

1. Semantic web systems can have different kinds of information that form the 
basis of their reasoning, e.g., unstructured HTML, manually generated OWL 
ontologies, RDF stores, etc.  

2. Semantic web systems that use different kinds of information will need to use 
different kinds of processing to manipulate that information. 

In other words, semantic web systems may use distributed knowledge bases 
constructed by different organizations from many sources using multiple reasoning 
components.   

Systems that process input information in the form of HTML and text typically 
operate in two phases.  First, they extract logical statements from the text 
automatically or semi-automatically.  Next those logical statements are combined 
with existing structured knowledge (if any) to form a knowledge-base used for 
additional reasoning. 

Information extraction techniques are known to produce conclusions that are not 
sound.  In an integrated system in which such statements are input directly into a 
knowledge base, from which reasoning may derive further incorrect information, 
there is an increased need to provide thorough and integrated explanations; they need 
to have access to the raw sources of information and its meta information (recency, 
authoritativeness, etc.) and they need to provide insight into how the knowledge base 
statements were obtained.    

In this paper, we describe a solution infrastructure that provides meta-information 
for integrated Natural Language Processing / Knowledge Base systems that includes 
the sources of information (including documents, passages, linguistic markup, semi-
structured and structured data- and knowledge-bases), the nature of the information 
(documents, annotations, facts), the epistemological status (extracted, derived, 
asserted), and the sources (people, articles, automated reasoning components, text 
extraction components).  This meta-information, or knowledge provenance, is 
integrated with our explanation infrastructure so that conclusions can be traced to 
their sources along a derivation path.   

This paper is not addressing the issue of presentation techniques for knowledge 
provenance that may include abstractions and dialogues, and thus is not about 
explanation in the traditional sense. The primary contributions of the paper are the 
uniform framework that provides the basis for explanations over a much broader 
range of systems than any known previous work, and a view of extraction as 
inference [Ferrucci, 2004] that allows the integration of proof-based explanations with 
the field of text analytics. 



 Explaining Conclusions from Diverse Knowledge Sources 863 

 

2   Solution Architecture 

Our solution relies on integration work between research on unstructured and 
structured information.  The primary integration work is between two foundational 
components: The Unstructured Information Management Architecture (UIMA) and 
the Inference Web (IW).  UIMA is a framework for integrating software components 
that analyze unstructured information such as text [Ferrucci and Lally, 2004].  IW is a 
framework for explaining systems that manipulate structured information and now 
unstructured information [McGuinness and Pinheiro da Silva, 2004].  We have 
developed new capabilities supporting the combination of IW and UIMA, enabling 
the former to present explanations of analysis performed within the latter. 

2.1   UIMA 

UIMA provides an infrastructure for integrating analysis components.  The components 
use a declarative formalism. The specifications are hierarchical, i.e., aggregate compo-
nents may be constructed out of a combination of primitive components and/or other 
aggregate components.  At each level of the component hierarchy, the specification 
describes input requirements and output capabilities using a simple ontology.  By 
describing analysis systems in terms of inputs and outputs at multiple levels of 
abstraction, UIMA provides an effective and convenient starting point for explaining 
analysis. 

To support explanation, UIMA now provides a scalable repository for storing the 
final results of the knowledge extraction processes.  This repository is known as the 
EKDB (Extracted Knowledge Database).  The EKDB stores not only the content of 
the extracted knowledge (i.e., the set of entities and relations that the analysis 
system concluded from the corpus) but also some intermediate analysis results 
(such as assigning types to spans of text) and links among the intermediate and final 
results. 

2.2   Inference Web  

Inference Web provides an infrastructure for providing explanations from distributed 
hybrid reasoning systems.  It utilizes a proof Interlingua – the Proof Markup 
Language (PML) [Pinheiro da Silva, McGuinness, Fikes, 2004] to encode 
justifications of information manipulations.  It also provides numerous services for 
manipulating PML documents.  It includes a browser for viewing information 
manipulation traces, an abstractor for rewriting PML documents so that the low level 
machine-oriented proofs can be transformed into higher level human-oriented 
explanations, an explainer to interact with users by presenting explanations and 
corresponding follow-up questions, a registrar[McGuinness, et al., 2005] for storing 
and maintaining proof related meta-information, and new search and trust 
[McGuinness, et al, 2006, Zaihrayeu, et al, 2005] components.  It also includes 
services for helping systems to generate PML, check PML documents for valid 
applications of inferences[Pinheiro da Silva, et al., 2005], and services for automatic 
registration of sources and meta-information. 



864 J.W. Murdock et al. 

 

2.3   Text Analytic Information Manipulations  

Our explanation solution framework uses a proof interlingua to encode justifications 
of answers.  We can view all information manipulation steps as a kind of inference.  
One contribution of our work is the design and specification of a taxonomy of text 
analytic processes and tasks that can be viewed as inferences. 

We generated a taxonomy motivated by the need to describe and explain the 
dominant extraction tasks in UIMA, without overloading the system with more 
information than would be useful.  One key was to generate a taxonomy that is 
adequate to accurately describe extraction task functionalities and simultaneously 
abstract enough to be able to hide details of the tasks from end users.  Another key 
was to support explanations to end users of the integrated system, not authors of 
software components debugging their products. 

First we will describe the taxonomy and later we will discuss issues related to its 
granularity, size, reusability, and extensibility.   

We divided text extraction into three primitive areas:  annotation, coreference, and 
integration.  We will describe each briefly and provide examples of a few tasks used 
in a later example.  Annotation tasks make assertions about spans of text that 
recognize a type or argument. Annotation inferences include: 

1) Entity Recognition: determines that some span of text refers to an entity of a 
specified type.  For example, a component could take the sentence “Joseph Gradgrind 
is the owner of Gradgrind Foods” and conclude that characters 0 to 16 of that 
sentence refer to some entity of type Person. 

2) Relation Recognition: assigns a relation type to a span (e.g., a sentence 
describes a relation of type Owner).   

3) Relation Annotation Argument Identification:  determines and assigns values 
to the roles of a relation (e.g., a particular person is a participant in a given ownership 
relation instance). 

Coreference inferences utilize annotation inferences and further identify that 
multiple text spans actually refer to the same entity or relation. 

4) Entity Identification: determines that a set of entity annotations refer to a 
particular instance. 

5) Relation Identification: determines that a set of relation annotations refer to a 
particular relation instance. 

6) Extracted Entity Classification: determines that a particular coreferenced entity 
has a particular type.  (e.g., the type of the entity referred to by “Gradgrind” is 
Person). 

Knowledge integration inferences include mapping inferences providing access to 
provenance. 

7) Entity Mapping: determines that an entity instance in the KB is derived from a 
set of entities and relation instances.   

8) Relation Mapping: determines that a relationship in the target KB is derived 
from a set of entity and relation instances. 

9) Target Entity Classification: determines that an entity instance is an instance of 
an entity type in the target ontology. 



 Explaining Conclusions from Diverse Knowledge Sources 865 

 

We have registered these inferences in the IW registry and we use these 
information manipulation steps to explain all of the UIMA components used in our 
prototype system, which provides intelligence analyst support for analyzing 
documents and evaluating results of text statements.   

2.4   Text Analytic Manipulation Descriptions 

We use our taxonomy of text analytic manipulations in declarative descriptions 
encoding what was done to generate the extracted knowledge bases. UIMA generates 
a large extracted knowledge database containing its conclusions.  We needed to take 
that as input (potentially augmented) and generate interoperable proof descriptions (a 
PML document) as an output.   

The software component that produces PML documents for UIMA-based analysis 
processes begins with a specified result from a specified EKDB (e.g., JosephGradgrind 
is the Owner of GradgrindFoods).  It follows the links in the EKDB from that 
conclusion back to the intermediate results and raw input that led to it.  From these 
intermediate results, it is able to produce inference steps encoded in PML that refer to 
the corresponding tasks in the taxonomy.  For example, if the EKDB records that 
characters 0 to 16 of some sentence were labeled as a Person and that this labeling was 
identified as specifying an occurrence of JosephGradgrind then the component would 
create an Entity Recognition inference step in PML for that labeling as well as 
coreference step for the result that the labeling is an occurrence of JosephGradgrind. 

3   Example in Action  

Figure 1 provides an example showing how our new end-to-end explanation 
infrastructure can provide explanations annotated with meta-information using 
knowledge bases that may contain facts extracted by UIMA analytics from raw text.  
This example is similar to, but simpler than the examples produced by our system. In 
the example, the system is attempting to determine who manages some aspect of 
Mississippi law enforcement and safety data infrastructure.  The answer is derived by 
a combination of the JTP theorem prover and a set of extraction components.  The 
original sources for the proof include a press release (http://www.ibm.com/industries/ 
government/doc/content/news/pressrelease/1107628109.html) and a knowledge base 
containing some direct assertions.  The format shown in Figure 1 is approximately the 
same format that the Inference Web Browser uses to present proofs. 

The initial data (i.e., the nodes in Figure 1 that have no parents) include assertions 
from a knowledge base, KB1.owl and a sentence from the press release. A fact 
asserted in the KB is that the Mississippi Automated System Project (MASProject1) 
manages some Mississippi data infrastructure (MissDataInfrastructure1), as stated in 
node (C).  An axiom asserted from the KB and encoded in node (B) says that 
management is transitive.   

Node (D) in the figure concludes that MJAllen1 is the manager of MASProject1.  
This result was derived by a knowledge extraction process that began with a passage 
in a press release.  The process involved the consecutive use of three UIMA-
compliant components. IBM EAnnotator [Ando, 2004] assigns entity types to text 
spans in the document, i.e., it produces entity annotations. An IBM relation recognizer 
determines relates those spans via a managerOf relation.  Finally, IBM Coreference 



866 J.W. Murdock et al. 

 

concludes that those annotations correspond to particular entities (MJAllen1 and 
MASProject1) and a relationship between them (managerOf).  From (B), (C), and (D), 
the reasoner can deduce (A), that MJAllen1 is the manager of 
MissDataInfrastructure1.  Some end-users may only be interested in that result, but 
others may wish to see the full derivation of the result from the KB and the raw text. 

Figure 2 shows a partial/ablated screen capture of Inference Web’s WWW-based 
browser displaying a portion of the automatically-generated extraction proof for the 
assertion that Major Julian Allen is the director of the Mississippi Automated System 
Project.  As you can see, the proof is a slightly more complicated version of the one 
described above.  The Inference Web browser interface allows users to show and hide 
individual steps in the proof in order to see the proof at varying levels of detail.  The 
conclusion can also be explored in detail to determine for example that uid184 refers 
to Major Julian Allen and uid199 refers to the Mississippi Automated System Project.  
Additional summary views and follow-up options are available in the implemented 
system.  Interested users can explore this proof at: 

 

http://iw4.stanford.edu/iwbrowser/NodeSetBrowser?url=http%3A%2F%2Fiw4.stanford.edu%2F
proofs%2FMississippiAutomatedSystem%2Fns36.owl%23ns36 

 

The raw OWL for the final conclusion of that proof (which links to its antecedents, 
etc.) is at: 

 

http://iw4.stanford.edu/proofs/MississippiAutomatedSystem/ns36.owl 
 

Fig. 1. Example of an integrated proof of extraction and reasoning 

(managerOf MASProject1
MissDataInfrastructure1)

(managerOf MJAllen1
MissDataInfrastructure1)

(transitiveProperty managerOf)

C

A

B

JTP Java Theorem Prover
Transitive Property Inference

Direct assertion from KB1.owl

Direct assertion from KB1.owl

IBM Coreference  

Major Julian Allen [Person] [refers to 
MJAllen1], Ph.D.,  director of the 

Automated System Project 
[Organization] [refers to MASProject1]

Entity Identification
IBM Coreference  

Major Julian Allen [Person] [refers to 
MJAllen1], Ph.D.,  director of the 

Automated System Project 
[Organization] [refers to MASProject1]

Entity Identification

IBM EAnnotator

Major Julian Allen [Person], Ph.D.,  
director of the Automated System 

Project [Organization]

Entity Recognition
IBM EAnnotator

Major Julian Allen [Person], Ph.D.,  
director of the Automated System 

Project [Organization]

Entity Recognition

direct assertion from 
pressrelease/1107628109.html

“...,” said Major Julian Allen, 
Ph.D.,  director of the Automated 

System Project

direct assertion from 
pressrelease/1107628109.html

“...,” said Major Julian Allen, 
Ph.D.,  director of the Automated 

System Project

D

IBM Relation Detector

Major Julian Allen, Ph.D.,  director 
of the Automated System Project

[managerOf]

Relation Recognition
IBM Relation Detector

Major Julian Allen, Ph.D.,  director 
of the Automated System Project

[managerOf]

Relation Recognition

IBM Relation Detector

Major Julian Allen [subject], Ph.D.,  
director of the Automated System 

Project [object]

Relation Argument Identification
IBM Relation Detector

Major Julian Allen [subject], Ph.D.,  
director of the Automated System 

Project [object]

Relation Argument Identification

IBM Coreference

(managerOf MJAllen1 MASProject1)

Relation identification
IBM Coreference

(managerOf MJAllen1 MASProject1)

Relation identification



 Explaining Conclusions from Diverse Knowledge Sources 867 

 

F
ig

. 2
. P

ar
ti

al
 I

nf
er

en
ce

 W
eb

 s
cr

ee
n 

ca
pt

ur
e 

sh
ow

in
g 

an
 e

xt
ra

ct
io

n 
pr

oo
f 

 



868 J.W. Murdock et al. 

 

4   Discussion 

We are using a proof-oriented approach to provide the foundation for supporting 
explanation in a broad range of systems.  Our work provides an encoding and 
infrastructure that allows explanations to include information beyond typical 
knowledge bases, for example, including unstructured portions of raw text used to 
generate knowledge base statements. Explanations can also point to knowledge bases 
that were used along with inference rules to generate conclusions.  Utilizing Inference 
Web, we can also provide multiple views of the explanations, including source 
document summaries (what documents were used), KB summaries (what knowledge 
bases were used and what statements in those knowledge bases were used), 
summaries of trusted sources, assumption summaries, as well as information 
manipulation (deductive) summaries (what inference rules were used).  The fact that 
the justification foundation is based on declarative specifications of information 
manipulation rules enables our work to be precise and extensible. 

One contribution of our integration work is a more complete exposition of an 
integrated extraction and deduction process. The exposition of the appropriate 
portion(s) of original sources instead of or in addition to derived sources allows users 
to better evaluate the trustworthiness of answers. In our example, the answer was 
derived from KB1.owl in combination with a portion of the press release. The 
exposition of extraction rules helps focus the user’s attention on the fact that the 
process may not be entirely based on sound rules. Our example proof uses the Entity 
Recognition, Relation Recognition, and Relation Identification rules (from extraction 
engines that may be unsound) in addition to Transitive Property Inference (from a 
theorem prover expected to be sound). 

Another contribution of our work is the design and integrated use of a taxonomy of 
text analytic tasks along with rules describing tasks performed by other kinds of 
systems.  The new work connecting to text analytic components provides the 
foundation for transparent integration of knowledge-based question answering 
systems with information retrieval and text analysis.  Within the Inference Web 
framework, that now enables text analytic components to be integrated with theorem 
provers (such as Stanford’s JTP, SRI’s SNARK, etc.), expert systems (such as 
UFPE’s JEOPS), information integrators (such as ISI’s Prometheus), web service 
composition discovery services (such as Stanford’s SDS), and task processing (such 
as SRI’s SPARK).  

The work provides the possibility to interact more with applications that use 
automatic and semi-automatic methods to generate knowledge bases.  In the past, 
most explanation systems have focused on knowledge bases that were carefully 
constructed by hand with authoritative data.  As more reasoning systems rely on semi-
automatic and automatic generation of knowledge support for understanding the 
question answering process becomes more critical.  With our explainable text analytic 
platform, we can now expose imprecision in the knowledge base building process and 
help users understand and probe the system to make appropriate decisions.  When 
imprecise methods are used, it becomes more critical to provide access to meta-
information such as source, author, recency, etc.  If users (humans and agents) can 
request this information along with the answer or filter answers based on this 
information, they can make more informed decisions about what information to rely 
on.  Tools such as ours may be a key differentiator in situations such as those cited in 



 Explaining Conclusions from Diverse Knowledge Sources 869 

 

the Select Senate Committee Report on Iraq1, where recommendations were made to 
provide judgments that are not overstated, that are supported by underlying 
intelligence, expose assumptions, and expose uncertainties in the judgments.  We 
claim that our infrastructure provides the key to explanations that may be used with 
applications that use knowledge bases built manually, semi-automatically, or 
automatically by providing ways to filter, understand, and evaluate answers.   

We have a prototype implementation of the integration between twelve UIMA text 
analytic components, the explanation system, and a theorem prover.  We are 
exploring issues including granularity of inference and coverage.  Our work is being 
used to explain answers in intelligence tasks in DTO’s NIMD program.  The 
explanations are available through the Inference Web interface and are also being 
exposed through a customized interface designed for analysts.  We believe the work is 
reusable and extensible.  The taxonomy of text analytic tasks has provided coverage 
adequate to explain the text analytic needs that arise from the intelligence tasks 
addressed to date in the program.  Additionally, the taxonomy provides a level of 
abstraction that has been useful to date in explanations.  This paper’s contribution is 
the taxonomy and architecture.  A preliminary evaluation of the explanation 
representation and reasoning infrastructure along with its services for intelligence 
analysts is described in [Cowell, et. al, 2006]. 

We provide access to meta-information associated with nodes in PML documents.  
Thus, if meta-information concerning confidence level, authoritativeness, recency, 
etc. is encoded, users will have an option of displaying it in explanation presentations 
and summaries.  We have recently begun integration with algorithms for composing 
answer confidence levels from confidence levels associated with other sentences, such 
as in [Zaihrayeu et al., 2005, McGuinness et al., 2006]. We are integrating this work 
with social networks to provide a more complete solution to explaining and 
propagating trust information. 

Finally, an interesting practical use of this work is the ability to use the inference 
web as a repository for information that is hidden from some resource-limited 
component, but may be needed later.  One example of this is a general undo facility.  
In many of our components that need to process large amounts of data in memory, we 
do not have the resources to handle all the information leading to a particular 
conclusion, however on occasion we need that information, e.g. when conclusions are 
found to be incorrect and should be undone.  Rather than keep that information in 
memory in all cases, we can load it back in from the inference web when needed. 

5   Related Work   

The idea that information extraction can be used to provide valuable information to 
supplement the structured sources available on the semantic web is relatively well-
established (e.g., [Dill, Eiron, et al. 2003; Maynard, Yankova, et al. 2005; Cimiano & 
Völker, 2005; Welty and Murdock, 2006]).  However, relatively little work exists on 
explaining information extraction. 

There is significant work concerning building causal and/or explanatory 
representations of text analysis results (e.g., [Ram, 1994; Mahesh, et al., 1994; 
Moldovan and Russ, 2001]).  However, representing analysis processes is less 
                                                           
1 intelligence.senate.gov/conclusions.pdf (conclusions 1&2). 



870 J.W. Murdock et al. 

 

common.  One system that does reason about text analysis processes is Meta-AQUA 
[Cox and Ram 1999], which generates explanations of reasoning failures in the 
domain of story understanding in order to facilitate automated learning.  However, the 
tasks of interest in Meta-AQUA are ones such as retrieving scripts and predicting 
outcomes that are relevant to extracting implicit information from text.  These tasks 
are complementary to the tasks we have modeled, which involve extracting 
information that is explicitly stated in text. 

Significant work also exists concerning support for answer provenance. Work 
exists on Knowledge provenance including source meta-information, which is a 
description of the origin of a piece of knowledge, and knowledge process information, 
which is a description of the information manipulation process used to generate the 
answer [Pinheiro da Silva et al., 2003]. Data provenance and data lineage, the 
database community analog to knowledge provenance, typically includes both a 
description of the origin of the information and the process by which it arrived in the 
database [Buneman et al., 2001; Cui et al. 2000]. Our work focusing on including 
extracted knowledge includes enhanced provenance information and thus provides a 
more complete solution to problems for which users need provenance information.  

Finally, there has been a long history of work on explanation, from communities 
such as expert systems [Davis, 1979; Buchanan and Shortliffe, 1984; Swartout et al, 
1991] and case-based reasoning [Leake, 1992; Aleven and Ashley, 1996; Goel and 
Murdock, 1996].  Inference Web continues that tradition and provides a standards-
based method for declaratively specifying the types of inference and information 
manipulation steps one is interested in explaining.  The existing Inference Web 
registry contains a specification of many of the inference types needed for traditional 
theorem proving and expert system style deduction.  Our work integrating Inference 
Web with UIMA extends the reach of the potential explanations since we provide an 
infrastructure that supports inclusion of knowledge bases built with extraction 
techniques. 

6   Conclusion   

It is generally not acceptable for semantic web systems to present conclusions without 
additionally being able to provide details about how those conclusions were produced 
and ultimately why they should be believed.  As systems rely more on facts that may 
have been built with semi-automatic or automatic methods potentially using web 
sources that are unknown to users, techniques must be included for exposing 
information concerning sources and a broad range of information manipulation 
methods.  Our work provides a solution to the problem where answers may rely on 
facts extracted from source text using text extraction techniques.  The answers may 
also rely on information manipulation steps executed by reasoning engines.  A set of 
information sources supporting answers can include raw text in addition to typical 
ontologies and knowledge bases. A set of information manipulators may include 
extractors in addition to theorem provers, information integrators, service composition 
discovery engines, or any other kind of manipulator able to encode justifications in 
the Proof Markup Language. A set of information manipulation rules may include 
extraction rules providing an infrastructure capable of explaining text analytic 
processes as well as standard deduction processes.  Our solution bridges a gap 
between traditional reasoning engine-based solutions and text-analytic-based 



 Explaining Conclusions from Diverse Knowledge Sources 871 

 

solutions.  Our infrastructure is available for use and individual components such as 
the taxonomy of inferences, text analytic components, registry, browsers, etc. may be 
used individually.  We have implemented our approach and are using it in several 
sponsored projects and are interested in additional users. 

Acknowledgements 

This work was substantially supported by DTO contract number 2003*H278000*000.  
The authors also gratefully acknowledge collaborators on the KANI project, 
particularly Cynthia Chang, Alan Chappell, Richard Fikes, and Dave Thurman.  This 
paper is an updated version of a technical report [McGuinness, et al, 2005]. 

References 

Ando, R. 2004. Exploiting Unannotated Corpora for Tagging and Chunking.  Proc. of ACL.  
B.G. Buchanan and E. H. Shortliffe, editors, 1984.  Rule-Based Expert Systems:  The MYCIN 

Experiments of the Stanford Heuristic Programming Project.  Addison-Wesley Publishing 
Company, Reading, Mass. 

Buneman, P, Khanna, S., and Tan, W. 2001. Why and Where: A Characterization of Data 
Provenance. Proc. of 8th International Conference on Database Theory.   

Philipp Cimiano, Johanna Völker. 2005. Text2Onto - A Framework for Ontology Learning and 
Data-driven Change Discovery. 10th International Conference on Applications of Natural 
Language to Information Systems (NLDB). Alicante, Spain. 

Cowell, A., McGuinness, D., Varley, C. and Thurman, D. 2006. Knowledge-Worker 
Requirements for Next Generation Query Answering and Explanation Systems. Proc. of the 
Workshop on Intelligent User Interfaces for Intelligence Analysis, International Conference 
on Intelligent User Interfaces (IUI 2006), Sydney, Australia. 

Cui, Y., Widom, J. and Wiener, J. 2000. Tracing the Lineage of View Data in a Warehousing 
Environment. ACM Trans. on Database Systems, 25(2), 179-227. 

Davis, R. 1979. Interactive Transfer of Expertise: Acquisition of New Inference Rules. 
Artificial Intelligence 12(2):121-157. 

Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha, Anant Jhingran, Tapas 
Kanungo, Sridhar Rajagopalan, Andrew Tomkins, John A. Tomlin, & Jason Y. Zien. 2003. 
SemTag and Seeker: Bootstrapping the semantic web via automated semantic annotation.  
12th International World Wide Web Conference (WWW), Budapest, Hungary. 

Ferrucci, D. 2004.  Text Analysis as Formal Inference for the Purposes of Uniform Tracing and 
Explanation Generation. IBM Research Report RC23372. 

Ferrucci, D. and Lally, A. 2004. UIMA by Example. IBM Systems Journal 43, No. 3, 455-475. 
Goel, A. and Murdock, J. W. 1996. Meta-Cases: Explaining Case-Based Reasoning. Ashok K. 

Goel and J. William Murdock. 3rd European Workshop on Case-Based Reasoning, 
Lausanne, Switzerland 

Leake, D. 1992. Evaluating Explanations: A Content Theory.  Lawrence Earlbaum. 
McGuinness,D.1996. Explaining Reasoning in Description Logics. Ph.D. Thesis, Rutgers 

University. Tech Report LCSR-TR-277. 
McGuinness, D. and Pinheiro da Silva, P.2004.  Explaining Answers from the Semantic Web: 

The Inference Web Approach. Journal of Web Semantics 1(4):397-413. 



872 J.W. Murdock et al. 

 

Deborah L. McGuinness, Paulo Pinheiro da Silva, Cynthia Chang. IWBase: Provenance 
Metadata Infrastructure for Explaining and Trusting Answers from the Web. Technical 
Report KSL-04-07, Knowledge Systems Laboratory, Stanford University, USA, 2004. 

McGuinness, D. Pinheiro da Silva, P., Murdock, J. W., Ferrucci, D., 2005.  Exposing Extracted 
Knowledge Supporting Answers.  Stanford Knowledge Systems Laboratory Technical 
Report KSL-05-03, Knowledge Systems Laboratory, Stanford University, USA, 2005.  
http://www.ksl.stanford.edu/KSL_Abstracts/KSL-05-03.html. 

McGuinness, D. L., Zeng, H., Pinheiro da Silva, P., Ding, L., Narayanan, D., and Bhaowal, M. 
Investigations into Trust for Collaborative Information Repositories: A Wikipedia Case 
Study. WWW2006 Workshop on the Models of Trust for the Web (MTW'06), Edinburgh, 
Scotland, May 22, 2006. 

Diana Maynard, Milena Yankova, Alexandros Kourakis, and Antonis Kokossis.  2005. 
Ontology-based information extraction for market monitoring and technology watch.  
ESWC Workshop “End User Apects of the Semantic Web,” Heraklion, Crete, May, 2005. 

Moldovan, D. I., Rus, V.  2001.  Transformation of WordNet Glosses into Logic Forms. 14th 
International Florida Artificial Intelligence Research Society Conference, Key West, 
Florida, 459-463. 

Pinheiro da Silva, P, McGuinness, D. and Fikes, R. 2006. A Proof Markup Language for 
Semantic Web Services. Information Systems 31(4-5): 381-395. 

Pinheiro da Silva, P., Hayes, P., McGuinness, D. L., Fikes, R. E., and Deshwal. P. 2005 
Towards Checking Hybrid Proofs. Technical Report KSL-05-01, Knowledge Systems 
Laboratory, Stanford University, USA. 

Pinheiro da Silva, P., McGuinness, D., and McCool, R. 2003. Knowledge Provenance 
Infrastructure. IEEE Data Engineering Bulletin 26(4), 26-32.  

Swartout, W., Paris, C. and Moore, J. 1991.  Explanations in Knowledge Systems: Design for 
Explainable Expert Systems. IEEE Expert Systems, 6:3, 58-64. 

Welty, C. and Murdock, J. W. 2006.  Towards Knowledge Acquisition from Information 
Extraction.  5th International Semantic Web Conference. 

Zaihrayeu, I., Pinheiro da Silva, P., and McGuinness, D. 2005.  IWTrust: Improving User Trust 
in Answers from the Web.  3rd Intl. Conference on Trust Management. 



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 873 – 886, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Mixed Initiative Semantic Web Framework for Process 
Composition 

Jinghai Rao1, Dimitar Dimitrov2, Paul Hofmann2, and Norman Sadeh1  

1 School of Computer Science, Carnegie Mellon University 
5000 Forbes Avenue, Pittsburgh, PA, 15213, USA 

{sadeh, jinghai}@cs.cmu.edu 
2 SAP AG 

Dietmar-Hopp-Allee 16, D-69190, Walldorf, Germany 
{paul.hofmann, dimitar.dimitrov}@sap.com 

Abstract. Semantic Web technologies offer the prospect of significantly reduc-
ing the amount of effort required to integrate existing enterprise functionality in 
support of new composite processes.– whether within a given organization or 
across multiple ones. A significant body of work in this area has aimed to fully 
automate this process, while assuming that all functionality has already been 
encapsulated in the form of semantic web services with rich and accurate anno-
tations. In this article, we argue that this assumption is often unrealistic. Instead, 
we describe a mixed initiative framework for semantic web service discovery 
and composition that aims at flexibly interleaving human decision making and 
automated functionality in environments where annotations may be incomplete 
and even inconsistent. An initial version of this framework has been imple-
mented in SAP’s Guided Procedures, a key element of SAP’s Enterperise Ser-
vice Architecture (ESA). 

1   Introduction 

Service Oriented Architectures (SOAs) provide a framework within which enterprises 
expose functionality in the form of loosely coupled services that can be integrated and 
consolidated in response to demand for new applications (or services). Over the past 
several years, languages and frameworks have been proposed to develop and leverage 
rich semantic service annotations in support of both service discovery and composi-
tion functionality - e.g. [5, 7, 8]. A significant portion of this work has been devoted 
to scenarios aimed at automating service discovery and composition functionality (see 
surveys in [12, 13]) – notable exceptions include the semi-automated web services 
composition approaches reported in [14, 15, 16]. While valuable, this work does not 
address the challenges involved in training personnel to efficiently and accurately 
develop the necessary service annotations and ontologies.  Nor does it fully recognize 
the amount of effort involved in annotating legacy applications in use in both small 
and large organizations. What is needed for enterprises to be able to exploit the power 
of semantic web service technologies are tools that can effectively support their  
personnel from day one with significantly incomplete and possibly inconsistent anno-
tations. These tools therefore need to be highly interactive in nature. They need to 



874 J. Rao et al. 

support users through suggestion, completion and verification functionality, while 
always allowing them to override their recommendations. In other words, situations 
where recommendations are ignored by the user are potential indicators of inconsis-
tencies in the underlying model. 

In this article, we present a mixed initiative framework for semantic web service 
discovery and composition intended for that purpose. Research in mixed initiative 
planning and scheduling has a rich history of its own, starting with the work of Allen 
and others [27, 28]. This also includes our own work on integrating process planning 
and production scheduling and on supporting coordinated supply chain planning and 
scheduling across supply chains [3, 4]. In contrast to this prior work, the tools pre-
sented in this paper do not assume complete or even consistent ontologies and annota-
tions. Instead they are based on the premise that users should retain close control over 
many decisions while having the ability to selectively delegate tedious aspects of their 
tasks. Automated service discovery and composition functionality is merely used to 
selectively intervene and assist users in some of their tasks by providing suggestions, 
verification, and completing some of the user’s decisions. This enables the user to 
dynamically choose how much of the discovery and composition process to delegate 
and how much of it to retain control over. 

The framework we present has been validated in the context of SAP’s Guided Pro-
cedures, a key element of SAP’s Enterprise Service Architecture (ESA) [17] and its 
Composite Application Framework (CAF) [18]. Specifically, CAF is built into SAP’s 
NetWeaver [19] to support the development of cross-functional applications and busi-
ness processes. Guided Procedures (GP) [20] is the tool developed as part of CAF to 
enable lay users (i.e. users without software development skills) to set up and execute 
new collaborative business processes out of existing functionality and applications.  
Target users include SAP personnel as well as SAP consultants and “analyst” users 
responsible for the customization, refinement and composition of applications and 
services at client organizations.  It should be pointed out that the mixed initiative 
framework presented in this paper is not specific to GP and that it could be applied 
across a broad range of other service discovery and composition scenarios. 

The remainder of this paper is organized as follows. Section 2 introduces Guided 
Procedures and our mixed initiative framework for semantic service discovery and 
composition. Section 3 details our modeling framework, Section 4 discusses the un-
derlying semantic web reasoning and service discovery and composition functionality 
used in our framework. This includes the way in which some of this functionality has 
been broken down in support of our mixed initiative framework. Section 5 revisits the 
Guided Procedures scenario introduced earlier. Section 6 discusses the framework’s 
current implementation and presents an initial set of empirical results. Concluding 
remarks are provided in Section 7. 

2   A Mixed Initiative Framework for Service Discovery and 
Composition 

SAP’s Guided Procedures (GP) allow users to define new composite applications 
and processes by re-using, integrating and orchestrating existing functionality encap-
sulated in the form of composable elements. In GP, composable elements comprise 



 A Mixed Initiative Semantic Web Framework for Process Composition 875 

primitive functionality (“callable objects” and “actions” in the GP jargon) as well as 
composite functionality (or “blocks” in the GP jargon), including complex processes 
and services.  

Usage scenarios range from assisting SAP consultants as they tailor and combine 
existing SAP modules and functionality to capture the processes and policies of a 
particular company, to scenarios where analyst users build new composite applica-
tions that leverage functionality exposed by third party partners in the form of web 
services.  

The mixed initiative framework for semantic web service discovery and composi-
tion described in this paper has been implemented as a recent addition to SAP’s 
Guided Procedures, though its applicability extends beyond this particular environ-
ment.  It enables users to annotate composable elements with semantic profiles that 
refer to concepts in an open collection of ontologies.  These annotations are used by 
mixed initiative functionality to support users at design time as they specify abstract 
requests for composite applications, search for, select among, and compose available 
services to satisfy these requests. This functionality is presented to users in the form 
of simple services that can selectively intervene at different points in this often highly 
iterative process (Fig. 1).  They provide suggestions, offer to complete tedious steps 
and verify decisions made by users, while always allowing them to manually override 
their recommendations and regain control.  

 

Fig. 1. Simplified Workflow – Mixed initiative design-time functionality supports users as they 
refine the specification of composite services, identify and select relevant services and compose 
them. Actual workflows often involve multiple iterations.  

The development of composite services tends to be an iterative process, where  
users successively specify and relax requirements while tailoring and combining ex-
isting functionality to satisfy these requirements. The GP framework is intended to 



876 J. Rao et al. 

accommodate different work styles ranging from “top down” approaches, where a 
user specifies an abstract description of a desired composite service to more seren-
dipitous or “bottom-up” approaches where users directly edit and compose existing 
services – and anything in between.  Abstract descriptions of composite services will 
be in the form of constraints on desired input and output parameters as well as on the 
state of affairs both prior to and after invoking the composite service. A simple exam-
ple of such an abstract description could read “I want a service that takes a RFQ as 
input and generates a Quote as output”. A more complex description could be of the 
form “I want a service that takes care of all RFQs that have not yet been processed”. 

While relying on semantic annotations to guide mixed initiative service discovery 
and composition, our framework recognizes that GP users cannot be expected to be 
experts in annotating composable functionality. Instead, it is understood that typi-
cal users will often fail to initially identify (or specify) relevant annotations. Accord-
ingly our framework is designed to operate with partial annotations and help users 
become better at annotating composable functionality over time. As annotations be-
come richer and more accurate, the quality of the guidance provided by our frame-
work also improves and users gradually learn to take advantage of it. Because mixed 
initiative functionality is provided in an unobtrusive way, it never hinders users.  

Broadly speaking, our framework’s mixed initiative functionality consists of sim-
ple, often customizable, services capable of providing suggestions and feedback to 
users as they deal with each of the following three sets of key decisions: 

 

1. Semantic Discovery: This functionality enables users to search repositories of 
composable functionality, based on both functional and non-functional attributes 
(e.g. [9]) – e.g. searching for one or more services that could help build a com-
posite application. Functional attributes include input, output parameters as well 
as preconditions and effects. Non-functional attributes refer to other relevant 
characteristics such as accuracy, quality of service, price, owner, access control 
restrictions, etc.  

2. Semantic Dataflow Consolidation: This functionality assists users by automati-
cally suggesting ways of mapping input and output parameters of composable 
functionality elements as they are being composed. This includes functionality to 
automatically complete an existing step – this is similar to “code completion” 
functionality except that it is based on semantic reasoning. It also includes verifi-
cation functionality that flags seemingly erroneous or inconsistent assignments. 

3. Semantic Control Flow Consolidation: This is similar, except that here were are 
concerned with the order in which services will be executed. This includes reasoning 
about the availability of necessary input variables and, more generally, about the pre-
conditions and effects associated with the execution of different services. Again this 
functionality can be provided in the form of suggestions or to help verify the correct-
ness of decisions made by users. It can be invoked for an entire process or just for two 
or more steps in a process currently under construction. Suggestions can include the 
introduction or removal of particular sequencing constraints. It may also involve iden-
tifying and adding one or more additional steps to a partial process. In general, users 
should be able to specify how much they want to delegate at any point in time, e.g. 
whether to request help with a small subproblem or with a more extensive portion of 
an existing solution. 



 A Mixed Initiative Semantic Web Framework for Process Composition 877 

As users interact with the above functionality, they should always have the flexibility to 
selectively revise and complete existing annotations. Over time, we also envision adding 
global analysis functionality. This would go beyond just verifying the correctness of com-
posite applications to include identifying redundancies and inefficiencies in processes.  

3   Underlying Representation Model  

Below, we briefly review the way in which ontologies and semantic web technologies 
are organized and provide an overview of the underlying service model and annota-
tions used in our framework. 

3.1   Ontologies 

An ontology is simply a description of concepts relevant to a given domain along with 
attributes/properties characterizing these concepts. By relying on shared ontologies, 
namely by agreeing on the definition of common concepts, developers within a given 
organization can define composable functionality elements that refer to the concepts 
in these ontologies. So can enterprises as they selectively expose composable func-
tionality elements to business partners in the form of (semantic) web services. It is 
notable that we use OWL language to annotate the concepts in describing the compo-
nents in the GP. Although the upper model for the components is very similar to 
OWL-S, our framework is not restricted to OWL-S language. This services can also 
be described by other semantic web service description languages, like METEOR-S 
[23], WSDL-S [24] or WSMO[21].  

A composable (functionality) element can be either an atomic service (e.g. a GP 
Callable Object, Action, including external services wrapped as such) or a composite 
service (e.g. a GP Block or Process). It is described (or “annotated”) by its Input pa-
rameters, Output parameters, Preconditions, Effects and Non-functional attributes. 

Both preconditions and effects are currently represented using “status” objects. The 
preconditions are currently interpreted as being part of a conjunction, namely all pre-
conditions need to hold before activating the composable element. A composable ele-
ment can have multiple conditional effects, each representing different mutually exclu-
sive possible outcomes. In other words, the particular conditional effects that will hold 
following the execution of a composable element will depend on the actual execution of 
that component (e.g. whether a request is approved or rejected or whether execution of a 
service is successful or not).  A conditional effect is itself a collection of actions, each 
either asserting or deleting status objects. Status objects are defined in relation to OWL 
classes. A status class can have several properties. For example, in describing a pur-
chase order processing, service a “submitted” class can be used to indicate that a pur-
chase order has been submitted. These properties are instantiated at runtime based on 
bindings (defined at design time) to relevant input and output parameters.  

A composite process is described in terms of a process model. The model details 
both its control structure and data flow structure. A process is recursively defined as 
either a “Composable Element” or a “Composite Process”. A “Composite Process” 
contains one or more sub-processes.  Sub-processes are to be executed according to 
control constructs. Examples of control constructs include “sequence”, “choice” and 



878 J. Rao et al. 

“parallel”. Each process has a set of parameters, including “inputs”, “outputs”, “pre-
conditions” and “effects”. A “Composite Process” is also described in terms of “Per-
form” constructs that specify how data flows across the process. This is done using a 
“Consolidation” construct that maps input and output parameters of composable ele-
ments onto one another (“dataflow consolidation”).   

3.2   Annotations: Cost-Benefit Tradeoffs 

Legacy GP elements already include input and output parameter descriptions that are 
defined in relation to a small set of possible types (e.g. string, integer, business ob-
ject). Minimally these types can automatically be converted into corresponding ontol-
ogy elements. At the same time our framework allows users to optionally refine these 
descriptions and to map service parameters onto more specific classes. For instance, 
rather than specifying an input parameter as a string, one might define it as an em-
ployee_name, which itself may be defined as a subclass of string in a domain specific 
ontology. While optional, more detailed descriptions enable more sophisticated rea-
soning functionality thereby leading to more and better support for the user.   

There are however cost-benefit tradeoffs associated with the development of rich 
ontologies and annotations and it would be unrealistic to assume their existence from 
day one. Instead our expectation is that over time users will learn to appreciate the 
better support provided by these annotations and will be more willing and able to 
invest the necessary effort to develop them. Our mixed initiative framework does not 
assume the existence of rich and accurate ontologies and annotations. Clearly in the 
absence of such annotations, the support provided by our framework is not as power-
ful and may occasionally be itself inaccurate.  It is therefore critical for this support to 
never hinder the user but rather to let the user choose when to invoke it and whether 
or not to follow its recommendations.  As users invoke mixed initiative functionality 
and identify what appear to be inaccurate or incomplete annotations, it is critical to 
enable them to easily examine and, if necessary, modify these annotations (subject to 
proper approval procedures). As annotations become more complete and accurate, we 
expect GP users to increasingly rely on our mixed initiative support and to make 
fewer errors as they build composite applications and services (e.g. fewer mismatches 
between input and output parameters, fewer step omissions in the construction of 
composite processes, etc.). This in turn should translate into higher quality processes 
and an overall increase in productivity.  

4   Overall Architecture and Underlying Reasoning 

4.1   Overall Architecture 

The implementation of our mixed initiative semantic web service discovery and com-
position framework in the context of SAP’s Guided Procedures comprises (Fig. 2): 

1. Enhancements of the GP graphical user interface with access not just to core GP 
functionality (e.g. editing callable objects, actions and blocks) but also to a grow-
ing collection of mixed initiative service discovery and composition functional-
ity. Invoking this mixed initiative functionality results in requests being sent to a 
mixed initiative semantic web service discovery and composition reasoner. 



 A Mixed Initiative Semantic Web Framework for Process Composition 879 

2. Services to (de)register both services and ontologies 
3. The mixed initiative semantic web service and discovery reasoner itself, which is 

implemented as an independent module. As already indicated, while an initial 
version of this module has been integrated in GP, the module itself has been de-
signed so that it could play a similar role in other service composition/process 
development environments 

 

Fig. 2. Overall architecture 

This latter module is implemented in the form of a rule-based engine (currently us-
ing JESS, a high-performance Java-based rule engine [7]). Rules in the engine im-
plement a growing collection of mixed initiative service discovery and composition 
functionality, which itself combines two forms of reasoning: 

1. semantic reasoning  (e.g. reasoning about classes and subclasses as well as 
about more complex constructs supported by the OWL language) 

2. service composition planning functionality implementing extensions of the highly 
efficient GraphPlan algorithm [10,11] – itself reimplemented using JESS rules. 

This underlying reasoning functionality is further discussed in Subsections 4.2 and 
4.3. Facts in the rule-based reasoner are organized in a working context (Fig. 2). 
They include: 

− An abstract description of the desired composite service  
− A description of partial or complete service(s) generated to satisfy the user’s re-

quest – these composite services may also include inconsistencies 



880 J. Rao et al. 

− Profiles describing registered composable elements (or “services”)  
− Facts contained in or inferred from registered ontologies  
− Partial domain results, produced while processing mixed initiative requests. This 

information, while dynamic, is maintained as it tends to change only slightly from 
one user request to the next (during the composition of a given service). Housek-
peeing rules, not depicted in Fig. 2, help remove facts that have been invalidated.  
Examples of partial results include nodes, edges, levels and “mutex” information 
derived as part of the Graphplan algorithm (see 4.3) or candidate matches for data-
flow consolidation between two consecutive services. 

− Meta-control data is also maintained in the working context in the form of predi-
cates corresponding to different mixed initiative requests. These facts in turn trigger 
rules associated with the corresponding mixed initiative functionality, e.g rules im-
plementing service discovery, parameter consolidation, dataflow verification, etc.  

4.2   Semantic Reasoning 

This functionality enables our module to load OWL ontologies and annotations and 
reason about them. This is done using an OWL-Lite Meta-Model, expressed in 
CLIPS, the modeling language used by JESS. An example of such a meta-model can 
be found in [22]. A translator is used to convert OWL-Lite ontologies into JESS tri-
ples. Our current implementation is based on Jena's RDF/XML Parser, ARP [25].  

4.3   Service Composition Planning 

This functionality is implemented using extensions of the GraphPlan algorithm. This 
is an algorithm that combines: 

− reachability analysis to determine whether a given state (e.g. a combination of 
effects) can be reached from another state (e.g. the state reached after invoking an 
initial set of services), and 

− disjunctive refinement, namely the addition of constraints between steps to re-
solve possible inconsistencies 

In this algorithm, services and propositions (i.e. input, output, preconditions and 
effects in our model) are organized in layers in a “graphplan” that is iteratively ana-
lyzed and refined to obtain one or more service composition plans – if such plans 
exist. The graphplan consists of nodes, edges and layers (or levels). Possible inconsis-
tencies are represented in the form of “mutex” information. This information in turn 
can be used to support mixed initiative functionality such as recommending possible 
ways in which to sequence services (“control flow”). Clearly, when used in one step, 
the GraphPlan algorithm can help identify all possible composite services satisfying 
an abstract description. Instead, we use a variation of this algorithm that enables us to 
find one or more plans at a time. This approach allows users to specify how many 
composite services they want to evaluate at a time and is also more practical, given 
the potentially large computational effort involved in identifying all possible compos-
ite services compatible with a given request. Other examples of mixed initiative func-
tionality supported by this planning algorithm include: 



 A Mixed Initiative Semantic Web Framework for Process Composition 881 

− Identifying some or all services capable of producing a given effect or a given 
output 

− Identifying all services that could be invoked following the execution of a given 
service 

− Detecting conflicts between a selected service and other services already selected 
as part of a partial solution and suggesting ways of resolving these conflicts (using 
mutex information) 

− Suggesting modifications to the abstract description of a desired composite service 
if no plan can be can be found for the current description – Note that our approach 
does not require that an abstract description be provided: some users may provide 
such a description and others may not. 

 

Graphplan expansion and the mutex generation are implemented as Jess rules, while 
plan extraction is implemented as a combination of Jess queries and Java functions.   

The following scenarios further illustrate ways in which mixed initiative function-
ality can assist users as they work on developing new composite applications. 

 

Scenario 1: Examples of user-oriented services based on dataflow consolidation 
functionality 

A user has added a new service (or step) to a partial process and now attempts to 
map the new service’s input parameters onto the outputs of services already pre-
sent in the partial process. The following are examples of user-oriented services 
based on dataflow consolidation functionality 

o One such service can be provided to suggest possible mappings 
o A similar service can also help identify input parameters that cannot be 

mapped, which in turn can help the user identify missing steps in the current 
process (e.g. a request for approval has to be submitted in order to generate a 
particular input value such as the employee ID of the person required to au-
thorize the new step). 

o Alternatively, the user might decide to manually map the new service’s input 
parameters onto the output parameters of other steps in the partial process. 
She can then invoke dataflow consolidation functionality to verify her 
choices. An indication that one of the mappings is inconsistent means either 
of two things: (a) she made a mistake; (b) an annotation is incorrect. In the 
latter case, the user can decide to override the system’s recommendation and, 
optionally, submit a request for the conflicting annotation to be corrected – 
or a more general record can be created for future inspection by an annota-
tion specialist. 

 

Scenario 2: Examples of user-oriented services based on service discovery func-
tionality 

The partial process created by a user does not yet satisfy some of the desired ef-
fects (or produce some of the desired outputs) specified in the abstract process de-
scription she has specified. The following are examples of user-oriented services 
based on service discovery functionality that can assist the user: 

o The user can select one or more of the not-yet-satisfied desired effects and 
request a list of services capable of producing them 



882 J. Rao et al. 

o Alternatively, she can select a particular step in the current partial process 
(e.g. the last step) and request a list of all services that can potentially be in-
voked at that point 

o More complex versions of the above services could eventually be provided. 
An example would be a service that allows users to request a list of services 
that satisfy additional constraints (e.g. find me a service  that does X from 
one of the company’s  preferred service providers) 

 

Scenario 3: Examples of user-oriented services based on mutex information 
The user has just added a new step to the current working process Examples of 
user-oriented services based on mutex information: 

o Mutex information can be used to help the user identify valid places where to 
insert the new step/service into the existing process 

o It can also be used to verify sequencing decisions made by the user 
 

By now, it should be obvious that, by breaking down service discovery and composi-
tion functionality into finer, user-oriented services, it becomes possible to effectively 
support a vast number of possible scenarios, each corresponding to somewhat different 
situations and work styles. It should also be clear that the same functionality (e.g. com-
puting mutex information, or supporting data consolidation) can be repackaged in a 
number of different ways. Often the underlying functionality does not even have to be 
complex. The key is in presenting it to the user at the right time and in a usable, non-
obtrusive way.  Our approach is to incrementally add more such services, evaluate their 
usefulness and, if necessary, refine the ways in which they are presented to users.  

5   Guided Procedure Scenario Revisited 
 

In a typical interaction with the semantically enhanced version of GP, a user will 
provide a high level description of a desired composite service. This description can 
be entered using a wizard that allows users to specify desired service profile attributes 
(e.g. input/output parameters, preconditions and effects) in relation to loaded ontolo-
gies (e.g. see screen shot in Fig. 3). This specification is loaded into the semantic 
service discovery and composition reasoner’s working context, where it will help 
constrain future mixed initiative requests from the user. A simple (and admittedly 
naive) request might be to automatically search for one or more composite services 
that match the user’s composite service description. Other more typical requests are in 
the form of incremental steps, where users iteratively look for composable elements 
that help satisfy part of the service description, refine the control flow and data flow 
of selected composable elements, and possibly revise the original composite service 
until a satisfactory solution is obtained. 

Fig. 4 displays a typical screen shot, where a user invokes mixed initiative func-
tionality to obtain suggestions on how to consolidate the input and output of two con-
secutive services intended to be part of a composite process referred to as “Purchase 
Order Scenario”. Here, based on sub-class relationships in a domain ontology, the 
system recommends consolidating an output parameter called “warehouse address” 
with the “ship to location” input parameter of a subsequent service. 



 A Mixed Initiative Semantic Web Framework for Process Composition 883 

 

Fig. 3. Specifying an abstract composite service profile in relation to concepts in an ontology 

 

Fig. 4. Suggestions on consolidating input and output parameters of two consecutive services 

6   Implementation Details and Evaluation  

Our mixed initiative semantic service discovery and composition reasoner has been 
implemented using Jess. Ontologies are expressed in OWL, while the services are  
described using a slightly modified fragment of OWL-S. An OWL metamodel [22] is 



884 J. Rao et al. 

loaded into Jess as facts. We use Jena to translate OWL documents into triples – also 
represented in Jess facts. Mixed initiative rules based on the GraphPlan algorithm have 
been implemented to support an initial set of mixed initiative functionality, including 
service discovery, dataflow consolidation, control flow and verification functionality.  

The resulting system has been integrated with SAP’s Guided Procedure frame-
work and evaluated on an IBM laptop with a 1.80GHz Pentium M CPU and 1.50GB 
of RAM. The laptop was running Windows XP Professional OS, Java SDK 1.4.1 and 
Jess 6.1.  Below, we report results obtained using ontologies from the Lehigh Univer-
sity Benchmark (LUBM) [26]. The results are based on the university example with 
around 50000 triples. Results are reported for repositories of 100, 500 and 1000 ran-
domly generated semantic web services. Each randomly generated service had up to 5 
inputs and 5 outputs. Input and output parameter types were randomly selected from 
the classes in the domain ontology. Performance, measured in the term of CPU times 
(in milliseconds), has been broken down as follows: 

• Service and ontology loading time – this is typically done once when launching 
the system. Registering a single new service is an incremental process that only 
requires a tiny fraction of this time. 

• Semantic reasoning time, which mainly involves completing domain ontologies 
once they have been loaded, is also typically performed just when launching the 
system 

• Request processing: This is the time required to automatically generate compos-
ite services that match a randomly generated abstract composite service descrip-
tion. This time depends on the number of valid composite services one wishes to 
generate. For each service repository size, performance for two such values 
(number between parentheses) is reported. 

As can be seen, the time it takes to produce multiple composite services ranges be-
tween 0.5 and 4 seconds. This seems quite acceptable, especially given that most of 
the time users will submit more incremental, and hence less time consuming, requests.  
The time it takes to load the system is higher than we would like, though we believe 
that, with some code optimization and possibly more powerful hardware, it will prove 
to be quite acceptable as well. 

 
 CPU time (in milliseconds) 

Nb. Services 
(Nb. Sol.) 

Ontology and 
service loading 

Semantic 
Reasoning 

Request 
Processing 

100 (12) 54468 86475 1041 
100 (211) 52445 89035 3141 
500 (2) 52465 206687 511 
500 (40) 53166 220227 1702 
1000 (3) 54689 477467 1235 
1000(78) 57944 457207 4116 

 
While encouraging, these are only preliminary results and further testing is needed 

to fully evaluate the scalability of our approach. In addition, detailed experimentation 
with actual users will be needed to fine tune the way in which mixed initiative func-
tionality is presented and to eventually evaluate the full benefits of our approach from 
a productivity and solution quality standpoint. 



 A Mixed Initiative Semantic Web Framework for Process Composition 885 

7   Summary and Concluding Remarks 

In this article, we have summarized ongoing work on the development of a mixed 
initiative semantic web service discovery and composition framework. In contrast to 
most work on semantic web service discovery and composition, our approach does 
not assume the existence of rich and accurate annotations from day one. Instead, it is 
intended to selectively intervene and assist users in some of their tasks by providing 
suggestions, identifying inconsistencies, and completing some of the user's decisions. 
Users are always in control and decide when and how much to delegate to supporting 
functionality. The quality and accuracy of the support provided by our framework is 
intended to improve over time, as users learn to develop richer and more accurate 
annotations.  

An initial version of this framework has been integrated and evaluated in the con-
text of SAP's Guided Procedures, a central element of the company's Enterprise Ser-
vice Architecture. Initial empirical results have confirmed the viability of our underly-
ing reasoning framework, which leverages a combination of semantic reasoning func-
tionality and of service composition planning functionality based on the GraphPlan 
algorithm Rather than being implemented in a monolithic manner, this functionality 
has been broken down and extended to support an initial collection of user-oriented, 
mixed initiative services. Over time, we plan to further extend and refine this collec-
tion of services.  While our initial results are promising, we recognize that additional 
testing (and fine tuning) will be needed to fully realize and evaluate the potential of 
our approach and to measure actual improvements in both user productivity and solu-
tion quality. 

Acknowledgements 

The "Smart Service Discovery and Composition" work reported herein has been con-
ducted in collaboration by Sadeh Consulting and SAP Inspire The authors would like 
to thank Lutz Heuser and Claudia Alsdorf for supporting this project. Special thanks 
to Shuyuan Chen, Horst Werner, Kiril Bratanov and Daniel Hutzel for their contribu-
tions to the project and to Heinz Wuerth, Frank Schertel and Stamen Kotchkov for 
many helpful interactions and for their help integrating this technology into SAP's GP 
framework. 

References  

[1] W3C: OWL Web Ontology Language Overview, W3C Recommendation, Feb. 2004, 
http://www.w3.org/TR/owl-features/ 

[2] Martin et al., OWL-S: Semantic Markup for Web Services, W3C member submission, 
Nov. 2004. http://www.w3.org/Submission/OWL-S/ 

[3] D. Hildum, N. Sadeh, T.J. Laliberty, S. Smith, J. McA'Nulty, and D. Kjenstad, Mixed-
initiative Management of Integrated Process-Planning and Production-Scheduling Solu-
tions, Proceedings of NSF Research Planning Workshop on Artificial Intelligence and 
Manufacturing, June, 1996. 



886 J. Rao et al. 

[4] N. M. Sadeh, D. W. Hildum, T. J. Laliberty, J. McA'Nulty, D. Kjenstad, and A. Tseng. 
"A Blackboard Architecture for Integrating Process Planning and Production Schedul-
ing". Concurrent Engineering: Research and Applications, Vol. 6, No. 2, June 1998. 

[5] J. Rao. Semantic Web Service Composition via Logic-based Program Synthesis. PhD 
Thesis. December  2004..  

[6] E. Friedman-Hill. Jess in Action: Java Rule-based Systems, Manning Publications Com-
pany, June 2003, http://herzberg.ca.sandia.gov/jess/. 

[7] F. Gandon and N. Sadeh, “Semantic Web Technologies to Reconcile Privacy and Con-
text Awareness”, Web Semantics Journal. 1(3), 2004. 

[8] K. Sycara, S.Widoff, M. Klusch, and J. Lu. Larks: Dynamic matchmaking among het-
erogeneous software agents in cyberspace. Autonomous Agents and Multi-Agent Sys-
tems, 5(3), September 2002. 

[9] J. O'Sullivan, D. Edmond, and A. T. Hofstede. What's in a service? Towards accurate de-
scription of non-functional service properties. Distributed and Parallel Databases, 
12:117.133, 2002. 

[10] A. Blum and M. Furst, "Fast Planning Through Planning Graph Analysis", Artificial In-
telligence, 90:281—300, 1997. 

[11] C. Anderson, D. Smith and D. Weld. Conditional Effects in Graphplan, The 4th Intl. 
Conference on AI Planning Systems (AIPS-98), Pittsburgh, PA, 1998.  

[12] J. Rao and X. Su. "A Survey of Automated Web Service Composition Methods". Pro-
ceedings of the 1st Intl. Workshop on Semantic Web Services and Web Process Compo-
sition, San Diego, 2004.  

[13] J. Peer, Web Service Composition as AI Planning - a Survey, Technical Report Univ. of 
St. Gallen, 2005 http://elektra.mcm.unisg.ch/pbwsc/docs/pfwsc.pdf 

[14] F. Casati, S. Ilnicki, and L. Jin. Adaptive and dynamic service composition in EFlow. In 
Proceedings of 12th International Conference on Advanced Information Systems Engi-
neering(CAiSE), Stockholm, Sweden, June 2000. Springer Verlag. 

[15] E. Sirin, J. Hendler, and B. Parsia. Semi-automatic composition of Web services using 
semantic descriptions. In Proceedings of Web Services: Modeling, Architecture and In-
frastructure,  2002. 

[16] Rainer Anzboeck and Schahram Dustdar, Semi-automatic generation of Web services 
and BPEL processes - A Model-Driven approach, Third International Conference on 
Business Process Management, Nancy, September 2005 

[17] SAP ESA http://www.sap.com/solutions/esa/index.epx 
[18] SAP NetWeaver http://www.sap.com/solutions/netweaver/index.epx 
[19] SAP Composite Application Framework  

http://www.sap.com/solutions/netweaver/components/caf/index.epx 
[20] SAP Guided Procedures http://www.sap.com/solutions/netweaver/cafindex.epx  
[21] Web Service Modeling Ontology, http://www.wsmo.org/  
[22] Gandon, F and Sadeh, N. “OWL Inference Engine Using XSLT and JESS”, 2003. Avail-

able at: http://www.cs.cmu.edu/~sadeh/MyCampusMirror/OWLEngine.html  
[23] METEOR-S. http://lsdis.cs.uga.edu/Projects/METEOR-S/  
[24] WSDL-S http://lsdis.cs.uga.edu/library/download/WSDL-S-V1.html 
[25] The Jena RDF/XML Parser, http://www.hpl.hp.com/personal/jjc/arp/  
[26] The Lehigh Univeristy Benchmark, http://swat.cse.lehigh.edu/projects/lubm/  
[27] J.F. Allen, Mixed initiative planning: Position paper. ARPA/Rome Labs Planning Initia-

tive Workshop, 1994. 
[28] M.H. Burstein and D.V. McDermott. Issues in the development of human-computer 

mixed-initiative planning. In Cognitive Technology: In Search of a Humane Interface, 
285–303. Elsevier, 1996. 

 



Semantic Desktop 2.0: The Gnowsis Experience

Leo Sauermann1, Gunnar Aastrand Grimnes1, Malte Kiesel1,
Christiaan Fluit3, Heiko Maus1, Dominik Heim2, Danish Nadeem4,

Benjamin Horak2, and Andreas Dengel12

1 Knowledge Management Department
German Research Center for Artificial Intelligence DFKI GmbH,

Kaiserslautern, Germany
{firstname.surname}@dfki.de

2 Knowledge-Based Systems Group, Department of Computer Science,
University of Kaiserslautern, Germany

3 Aduna BV, Amersfoort, The Netherlands
christiaan.fluit@aduna.biz

4 University of Osnabrueck, Germany
danzinde@gmail.com

Abstract. In this paper we present lessons learned from building a Se-
mantic Desktop system, the gnowsis beta. On desktop computers, se-
mantic software has to provide stable services and has to reflect the
personal view of the user. Our approach to ontologies, the Personal In-
formation Model PIMO allows to create tagging services like del.icio.us
on the desktop. A semantic wiki allows further annotations. Continuous
evaluations of the system helped to improve it. These results were cre-
ated in the EPOS research project and are available in the open source
projects Aperture, kaukoluwiki, and gnowsis and will be continued in
the Nepomuk project. By using these components, other developers can
create new desktop applications the web 2.0 way.

1 Introduction

A characteristic of human nature is to collect. In the information age we have
moved from the basic collection of food, books and paintings to collecting web-
sites, documents, e-mails, ideas, tasks and sometimes arguments and facts. We
gather information and store them on our desktop computers, but once stored
the satisfaction of possessing something is soon distorted by the task of finding
information in our personal data swamp [9]. In this paper we present parts of the
gnowsis semantic desktop framework, a tool for personal information manage-
ment (PIM). In addition to providing an interface for managing your personal
data it also provides interfaces for other applications to access this, acting as
a central hub for semantic information on the desktop. The described gnowsis
system is a prototype of a Semantic Desktop [17], aiming to integrate desktop ap-
plications and the data managed on desktop computers using semantic web tech-
nology. Previous work published about Semantic Desktop applications [5,12,15]
did show that this approach is promising to support users in finding and remind-
ing information, and to work with information in new ways. The architecture

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 887–900, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



888 L. Sauermann et al.

was improved during the last years, taking inspiration from the current advanced
and popularity of the web 2.0 (See Section 3). The new architecture and new
ontology policies for gnowsis version 0.9 is described in Section 2. In Section 3
we will discuss what semantic desktop applications can learn from the web 2.0,
in particular we discuss how semantic wikis provide an ideal lightweight solu-
tion for ad-hoc creating of meta-data, and how such semantic wikis and tagging
were integrated into gnowsis. In section 4, a short description of the information
integration framework Aperture is given. A summary on our evaluation efforts
and lessons learned is given in Section 5, indicating best practices and other
remarks on practical semantic web engineering. The system has been deployed
in several evaluation settings, gathering user feedback to further improve it, and
an active community is now building around the gnowsis semantic desktop. As
the system is now part of the EU-funded Integrated Project Nepomuk1, which
develops a comprehensive solution for a Social Semantic Desktop, we expect that
the service oriented approach to the semantic desktop will have more impact in
the future, which is the conclusion of this paper.

2 The Gnowsis Approach

Gnowsis is a semantic desktop with a strong focus on extensibility and inte-
gration. The goal of gnowsis is to enhance existing desktop applications and the
desktop operating system with Semantic Web features. The primary use for such
a system is Personal Information Management (PIM), technically realized by
representing the user’s data in RDF.Although the technology used is the same,
communication, collaboration, and the integration with the global semantic web
is not addressed by the gnowsis system. The gnowsis project was created 2003 in
Leo Sauermann’s diploma thesis [14] and continued in the DFKI research project
EPOS2 [7].

Gnowsis can be coarsely split into two parts, the gnowsis-server which does
all the data processing, storage and interaction with native applications; and
the graphical user interface (GUI) part, currently implemented as Swing GUI
and some web-interfaces (See the gnowsis web-page for illustrative screenshots3).
The interface between the server and GUI is clearly specified, making it easy to
develop alternative interfaces. It is also possible to run gnowsis-server standalone,
without a GUI. Gnowsis uses a Service Oriented Architecture (SOA), where each
component defines a certain interface, after the server started the component the
interface is available as XML/RPC service4, to be used by other applications,
for more detail refer to Section 3.

External applications like Microsoft Outlook or Mozilla Thunderbird are in-
tegrated via Aperture data-source (See Section 4), their data is imported and
mirrored in gnowsis. Some new features were also added to these applications
1 http://nepomuk.semanticdesktop.org
2 http://www.dfki.uni-kl.de/epos
3 http://www.gnowsis.opendfki.de/
4 http://www.xmlrpc.com/



Semantic Desktop 2.0: The Gnowsis Experience 889

Fig. 1. The Gnowsis Architecture

using plugins, for example, in Thunderbird users can relate e-mails to concepts
within their personal ontology (See Section 3.1).

The whole gnowsis framework is free software, published under a BSD com-
patible license. It is implemented in Java to be platform-independent and reuses
well-known tools like Jena, Sesame, Servlets, Swing, and XML-RPC. Gnowsis
can be downloaded from http://www.gnowsis.org/.

The Gnowsis Server. The architecture of the gnowsis-server service is shown
in Figure 1. Its central component is naturally an RDF storage repository. Gnow-
sis uses four different stores for this purpose. The PIMO store handles the in-
formation in the user’s Personal Information Model (See Section 2.1), the re-
source store handles the data crawled from Aperture data-sources (See Section
4), the configuration store handles the data about available data-sources, log-
levels, crawl-intervals, etc., and finally, the service store handles data created by
various gnowsis modules, such as user profiling data or metadata for the crawling
of data-sources.

Separating the PIMO store from the resource store was an important decision
for the gnowsis architecture, and it was made for several reasons: The resource
store is inherently chaotic, since it mirrors the structure of the user’s applications
(consider your email inbox), whereas the thoughts (eg, concepts and relations)
can be structured separately in the PIMO. Another reason was efficiency, while
a user’s PIMO may contain a few thousand instances for a very frequent user, it
is not uncommon for people to have an archive of 100,000 emails. By separating
the two we can save time and resources by only performing inference on the



890 L. Sauermann et al.

PIMO store. We also note that a similar approach was taken in many other
projects, for instance the topic maps community, where topics and occurrences
are separated [13]. A discussion of cognitive justification for such a split can be
found in Section 2.1.

The storage modules in gnowsis are currently based on Sesame 2 [2] and are
using Sesame’s native Storage And Inference Layer (SAIL) to store the data
on disk. In the previous gnowsis versions we used MySQL in combination with
Jena as triple store, but this enforced users to install the database server on their
desktops and also the performance of fulltext-searching in MySQL/Jena was not
satisfying. By using Sesame2 with the embedded native SAIL we simplified the
installation significantly. In addition to the raw RDF the PIMO and resource
stores use an additional SAIL layer which utilizes Lucene5 to index the text of
RDF literals, providing extremely fast full-text search capabilities on our RDF
stores. Lucene indexing operates on the level of documents. Our LuceneSail has
two modes for mapping RDF to logical documents: one is used with Aperture
and will index each Aperture data-object (for example files, webpages, emails,
etc.) as a document. The other mode does not require Aperture. Instead one
Lucene document is created for each named RDF resource in the store. The
resulting Lucene Index can be accessed either explicitly through java-code, or
by using special predicates when querying the RDF store. Figure 2 shows an
example SPARQL query for PIMO documents containing the word “rome”. The
LuceneSail will rewrite this query to access the Lucene index and remove the
special predicates from the triple patterns. This method for full-text querying
of RDF stores is equivalent to the method used in Aduna MetaData server and
Aduna AutoFocus [6].

SELECT ?X WHERE {
?X rdf:type pimo:Document ;

lucene:matches ?Q.
?Q lucene:query “rome”.

}
Fig. 2. A Query using special predicates for full-text searching

2.1 Open Source, Open Standards, Open Minds

A key to success for a future semantic desktop is making it extendable. Parti-
tioning the framework into services and making it possibile to add new services
is one way to support this. Another contributor is exposing all programming
interfaces based on the XML-RPC standard, allowing new applications can use
the data and services of gnowsis.

Open standards are important to help create interoperable and affordable
solutions for everybody. They also promote competition by setting up a
technical playing field that is level to all market players. This means lower
costs for enterprises and, ultimately, the consumer. EU Commissioner
Erkki Liikanen, World Standards Day, 14 October 2003

5 http://lucene.apache.org/



Semantic Desktop 2.0: The Gnowsis Experience 891

To create an open standard, others have to be able to provide a competing
implementation of the standardized interfaces. The basis for this process is al-
ready laid in the commitment to HTTP interfaces and open source. The gnowsis
project will be changed to a subsidiary of the bigger Nepomuk project, and all in-
terfaces and services will be subject to a standardization and re-implementation
process in the next years. By opening the project to this community, it is possi-
ble to define open standards that can be implemented by competitors, drawing
new players to this market. We want to attract open minds to the semantic
desktop, that combine existing tools creatively and can both rely on a stable
platform and stable interfaces. The web 2.0 has attracted many users. Devel-
opers recognize that by opening the data of applications and reusing existing
services, new systems can be built and value can be added. We aim to transfer
some of this experience to the semantic desktop creating a semantic desktop 2.0
environment.

2.2 PIMO Ontology Approach

An interesting challenge that semantic web technologies created on desktop com-
puters is the integration of the stored data into a coherent view. In the Personal
Information Model (PIMO) [16] approach we focus on the fact that all informa-
tion is related to the user’s personal view of the world. Whenever a user writes
a document, reads his e-mails, or browses the web, a terminology addressing the
same people, projects, places, and organizations is involved. It is connected by
the interests and the tasks of the user: if the person “Paul” is working to open a
new office in Rome, Italy, many documents, e-mails and files will relate to Rome
and the new office. The example user Paul and parts of his PIMO are described
in [16], they will be used throughout this document.

The PIMO ontology framework was initially developed in the EPOS project
and consists of six components (Figure 3). The first half of these components rep-
resent mental models on a conceptual layer using formalized domain ontologies.
It consists of three layers: upper-level, mid-level and domain ontologies.

PIMO-Basic, PIMO-Upper, PIMO-Mid and Domain Ontologies. Apart
from the native resources, the mental models are represented using a multi-layer
approach. Here we transferred the 3 layer approach taken in the KnowMore-
project for organizational memories (application layer, knowledge description
layer, information object layer; [3]) to the individual desktop. A similar approach
was used by Huiyong Xiao and Isabel F. Cruz, they differentiate between Appli-
cation Layer, Domain Layer and Resource Layer [23].

In the PIMO, the ontology layers consist of the following parts:

– PIMO-Basic: defines the basic language constructs. The class pimo-basic:
Thing represents a super-class of other classes.

– PIMO-Upper: A domain-independent ontology defining abstract sub-classes
of Thing. Such abstract classes are PersonConcept, OrganizationalConcept,
LocationConcept, Document, etc.



892 L. Sauermann et al.

Fig. 3. PIMO ontology components

– PIMO-Mid: More concrete sub-classes of upper-classes. The PIMO mid-level
ontology serves to integrate various domain ontologies and provides classes
for Person, Project, Company, etc.

– Domain ontologies: A set of domain ontologies where each describes a con-
crete domain of interest of the user. The user’s company and its organi-
zational structure may be such a domain, or it might be a shared public
ontology. Domain ontologies should sub-class from PIMO-Mid and PIMO-
Upper to allow integration.

– PIMO-User: the extensions of above models created by an individual for
personal use.

The first three layers were created once by members of the EPOS team and
are well suited for knowledge work scenarios, the domain ontologies are created
for real domains and change frequently. For example, a domain ontology was
created to represent the organizational structures at the DFKI KM lab, named
“Organizational Repository”.

The PIMO of an individual user. The personal mental model of the user is
represented in the user’s own model, called PIMO-User. Personal concepts, ideas,
projects, contacts etc. are put there by the user creating classes and instances
extending from the higher level PIMO classes and relations. The complete PIMO
of a user is now defined as the sum of imported upper and mid-level ontologies,
domain ontologies, PIMO-User, and relations to native resources found on the
desktop.

Native resources and data. Native resources are desktop data like existing
files, e-mails, the calendar, and address book. They reflect the worker’s personal



Semantic Desktop 2.0: The Gnowsis Experience 893

view of his or her information space. A framework was created to transform
several native structures to the RDF format, for example, data from Microsoft
Outlook, IMAP e-mail servers, and many file formats which can be converted
to RDF (See Section 4). The data extracted from these native sources is then
described using a set of data-oriented RDF/S vocabularies, represented in the
layer of Native Data Vocabularies. This data is then stored in the resource store
of gnowsis.

3 Web 2.0 on the Semantic Desktop

The Web 2.0 [11] is seen as a new generation of web applications and services.
Although, dismissed by many as a marketing hype and criticised for being an
empty buzzword, there are several features that are generally considered to be
central to the idea:

– Open data – when using some particular web-site the user should be in
control of his own data, and should be able to export it and move it to an
alternative service.

– Open APIs – access to site services should be possible for machine as well
as for the user.

– Participatory web-sites – Known as the “architecture of participation”, the
idea that users create the real value of a web-site is crucial to the web 2.0.
Many sites also put heavy emphasise on the social aspect of their services.

– Common features – Wikis, tagging, tag-clouds, blogs, etc. are some features
are wide spread among sites considering themselves web 2.0.

– Common technology – web services (SOAP6, XML-RPC) provide a good
basis for exposing a web-site’s API, AJAX (Asynchronous Javascript and
XML) provides means to build fluid and elegant interfaces using HTML
and RSS provides the means to stay up-to-date with a huge number of
information sources without having to manually check them all.

With gnowsis we are trying to take these web 2.0 features one step further
and bring them “home” to the user’s desktop. By having gnowsis data-sources
for popular tagging web-sites, such as del.icio.us7, Flickr8 and BibSonomy9, a
user can import their existing tags from these sites, and integrate their personal
“folksonomy” into their PIMO Ontology. This allows the user to reuse their
existing classification schemes for tagging their resource, and has the added
advantage of converting what used to be a flat tag list into a first-class ontology.

3.1 Tagging

Modern Tagging Systems are designed to support users in collecting new re-
sources. Nowadays we are able to tag and manage our private pictures in Flickr,
6 http://www.w3.org/TR/soap/
7 http://del.icio.us
8 http://www.flickr.com
9 http://bibsonomy.org



894 L. Sauermann et al.

our browser bookmarks in Delicious and our scientific bibliography in BibSon-
omy. For these three web 2.0 services, we have developed Aperture crawlers and
can integrate tag information to the resource store.

The “Ontology matcher” described in Section 4.1 allows morphing these
crawled tags into personalized tags in the user’s PIMO. To simplify the access
to the information stored in the PIMO, we developed a tagging API which can
be accessed via XML-RPC and a tagging extension for the Mozilla Thunderbird
email client to use it. This enabled the user to connect incoming mails with
existing tags in the user’s PIMO. A similar approach in the web domain was
developed by technorati10. The gnowsis tagging API can be seen as technorati
for an individual.

Further development of the tagging approach in gnowsis is being done by
Benjamin Horak in his diploma thesis [8]. The project, called “Contag”, con-
tains several new features for a tagging environment: It should be possible to
automatically propose new instances and classes as tags for a given resource. By
invoking different web 2.0 services such as those developed by Yahoo, TagTh-
eNet11 and Wikipedia, we can get more information about the resource at hand,
and statistical analysis of these sources should allow us to propose correct tags,
even if the tag is not explicitly mentioned in the resource itself.

3.2 Open Data, Open APIs

All services and APIs available in gnowsis are also exposed as XML-RPC ser-
vices, meaning all the gnowsis functionality can be accessed from outside the
core Java part of gnowsis. The is extremely beneficial because it opens up gnow-
sis to a big section of other programming languages and developers. Internally
we have used these interfaces to quickly develop testing interfaces for various
gnowsis components using HTML, Javascript and AJAX. Using the “JavaScript
O Lait” library12 calling gnowsis function from javascript is trivial. For example,
consider this code-snippet from our debug interface, which uses XML-RPC to
perform full-text searches on the user’s PIMO:

<h2 class="header">query pimo</h2>
<div class="container">
q:<input type="text" id="queryFulltext" size="20">
<button onclick="gnowsis callXmlMethod(’gnowsis-server’,’dataaccess’,’querySelect’,

document.getElementById(’queryFulltext’).value,’fulltext’);">query!</button>
</div>

3.3 Semantic Wiki

Traditional wikis enable people to collaboratively author a set of interlinked
texts (wiki pages). The idea of semantic wikis is not only to edit texts but
author information that can be processed by automatic means. In practice, this
means that semantic wikis aim to support advanced queries (“What semantic

10 http://www.technorati.com
11 http://www.tagthe.net
12 http://jsolait.net/



Semantic Desktop 2.0: The Gnowsis Experience 895

web researchers wrote more than 60 papers?”) and advanced search (“Search for
ant as in software.”).

Gnowsis integrates with the semantic wiki Kaukolu13 [10]. The main idea is
that a wiki page can be created for every instance in the PIMO-User ontology.
In Paul’s PIMO, there would be wiki pages for Rome, Italy and Paul. Note that
each wiki-page is automatically a tag. This means that every gnowsis resource
can be browsed in Kaukolu and vice versa. The same is true for relations between
resources which can be created either gnowsis or Kaukolu. In gnowsis, relations
are created using the standard GUI, while in Kaukolu, relations are written in a
plain text syntax that is similar to N3. The user gets supported interactively with
an autocompletion feature when entering data. This relieves him from having
to know every relation’s name or URI. The autocompletion feature bases its
suggestions on ontologies stored in the PIMO-storage.The integration of Kaukolu
with gnowsis opened up for several interesting features:

– Browser integration: With the wiki, it is possible to use the browser as
a simple frontend to the gnowsis system. We even plan to move some of
gnowsis’ more advanced features to the wiki by way of using wiki plugins.

– Collaborative authoring: You can set up public spaces in the wiki to
which other people are allowed to contribute. Since Kaukolu pages may also
contain ontologies, this allows (simple) collaborative ontology authoring.

– Simple data input: Wikis are a well-known tool for authoring texts with-
out the need to adhere to rigid templates. This can be used in the semantic
desktop context, too, as with the wiki it is possible to add unstructured infor-
mation (for which either no schemas exist, which are too costly to formalize,
or no benefit in formalization can be thought of) to any desktop resource
present in the gnowsis system.

4 Aperture to Extract Resources

To interface with applications that are not semantically enabled gnowsis uses a
framework called Aperture [4]. Harvesting as much existing semantic information
as possible from legacy applications benefits the user as it lowers the entry barrier
to use semantic applications, e.g., when compared to approaches that rely on
manual annotations. For example, information such as folder names, document
authors, and creation dates can be used to provide a semantic information space
with little effort required from the user, even though this information may often
be shallow or imprecise.

Obtaining this information is a complex engineering task. The information
is spread among a variety of source types and file formats and can often not
be queried fast enough in their native format to realize the responsiveness and
metadata-richness we needed for gnowsis. Crawling and indexing this informa-
tion does give us these capabilities at the cost of having to keep the extracted

13 http://kaukoluwiki.opendfki.de



896 L. Sauermann et al.

metadata in sync with the original sources. Recently we see a tendency to in-
corporate such functionality in the file system [20,22], but these approaches are
still limited and operating system-specific.

The Aperture project provides various open source components for building
semantic applications that harvest and index semantically rich information from
various sources. Even though Aperture is still in its early stages, a growing
number of applications are already making use of it. To enable this extraction
Aperture offers a number of services that can be used independently or com-
bined: Crawlers access an information source such as a file system, website or
mail-boxes and locate all uniquely identifiable objects such as files or e-mails,
identifying them by URL. Scheme-specific DataAccessors access these URLs and
create a data structure for each of them, holding the binary data as well as any
metadata provided by that scheme, e.g. file names and last modification dates.
MIME type-specific Extractors are capable of interpreting the binary data and
extracting any information supported by that file type, such as the full-text
and metadata contained in a document. Finally, Aperture provides a number of
utility classes for MIME type identification of binary resources, hyperlink extrac-
tion and handling of secure connections. Interfaces for crawling the contents of
archives, viewing resources in their native application and storage and querying
of metadata are still under development.

We have designed Aperture with the intention to provide a light-weight, ex-
pandable and adaptable framework for handling information sources. Aperture
is initiated by DFKI and Aduna as a collaborative opensource project. One of
the core decisions that has provided this flexibility is the use of RDF to ex-
change metadata between Aperture components and between Aperture and the
surrounding application.

The use of RDF may have its price as programmers may find it relatively
hard to handle RDF models, compared to simple Java Maps with key-value
pairs. To alleviate this problem we have designed a simple Java interface called
RDFContainer for handling small RDF models. RDFContainer instances are
typically used to move metadata from the extractors to other components. In
gnowsis, the extracted data is stored directly (without further inference) in the
resource storage RDF database. The Aperture project is independent from the
semantic desktop and published at sourceforge. And it’s use is encourage for
anyone wishing to generate RDF datasets from external applications and sources.
At the moment, Aperture supports various file types (PDF, Powerpoint, MS-
Word, ...) and complex data sources like IMAP e-mail servers, Microsoft Outlook,
crawling websites, flickr, del.icio.us, etc.

4.1 Ontology Matcher

Once the data is represented as RDF by Aperture, it has to be aligned with the
user’s PIMO. As an example, the user already has an instance of class “City”
which is labeled “Rome”. Aperture crawled the flickr photos of the user and
found a photo of an office building, tagged with “Office and Rome”. The ontology
matcher will now create a relation between the existing city “Rome” and this



Semantic Desktop 2.0: The Gnowsis Experience 897

photo. It can also create new instances in the user’s PIMO, if necessary. For
example, the tag “Office” may be unknown, then a new instance in the ontology
will be created for this tag, guessing the right class for it. When Aperture crawls
larger structures, like a file system, the ontology matcher can synchronize parts of
the user’s PIMO with the file system. For example, when the users has created a
list of folders for each of his projects, instances of class “Project” can be created.

In previous work published on this topic [21], term-based matching, structure-
based matching, and instance-based matching algorithms were used in combina-
tion to implement such services for peer-to-peer ontology alignment and organi-
zational memory (OM) wide ontology management. We are working to port this
previous work to the current gnowsis system. In the current software package,
only simple algorithms are bundled to realize the basic functionality. We want
to encourage others to find more algorithms that work on this existing data.

5 Evaluation

Evaluation of Semantic Desktop that supports user with information finding and
reminding with high-level PIM tasks, such as organising resources according to
their mental model, needs a naturalistic flexible approach and valid and reliable
methods for evaluation [1].

Gnowsis development maps closely to the spiral model of software devel-
opment: our approach has been to define initial use-cases, write a prototype,
and evaluate it with domain experts. A user evaluation of gnowsis based on
a structured questionnaire has been made on power users to elicit their expe-
riences, efforts have been made to enhance usability features which could be
compared between different versions. We evaluated gnowsis version 0.8 in the
EPOS project with domain experts [18], and this provided an important input
to modify several features for the new gnowsis 0.9 architecture described in this
paper.

– The possibility to add multiple tags to a document was used, in the mean
2.5 tags were attached to a file, which is significantly more than the single
category a hierarchical file system provides.

– The gnowsis desktop search was used very frequently. Users answered in the
questionnaire that they found unexpected information and that the cate-
gories provided by the PIMO helped during retrieval.

– The participants agreed that the PIMO reflects their personal mental models

The gnowsis 0.8 prototype had a Firefox-plugin to support link and browse
from within the browser. Gnowsis version 0.9 will come include with a tagging
plugin that can be seen as a replacement for today’s bookmarks. The possibility
to move and classify files (which we call “DropBox”) as well as a semantic search
are provided in both prototypes because it turned out to be a feature frequently
used by the users. Only the Peer-to-Peer search was abandoned for version 0.9
(Although this will be reintroduced in the Nepomuk project). Completely new
features in version 0.9 are the installation wizard that is indispensable in todays



898 L. Sauermann et al.

software and the PIMO. The possibility of relating resources has been completely
reconsiderd. The previous linker reflected the technical nature of RDF directly
in user interface, thus has been replaced by the annotator, a process-support
approach on how to support linking items. Drag and drop support has also been
enhanced, as it is an intuitive mechanism for invoking certain operations and its
pervasive support adds flexibility in information manipulation.

5.1 Lessons Learned

Building the first gnowsis prototypes has helped us to understand typical prob-
lems that arise in semantic web projects, and in this section we will enumerate
our main problems. The first problem was that we had no clear strategy re-
garding ontologies. During the version 0.8 prototypes, we did allow both OWL
and RDF/S semantics. Through this mixture, the inference engine of Jena had
scalability problems and we disabled it. In the 0.9 version, we separated re-
source store from PIMO store and inference support is now only enabled for
the PIMO store and there is a clear policy for the use of ontologies. The PIMO
ontology approach is well documented [16] and developers can check the data
model for validity, using a convenient web interface. We provided an example
ontology (Paul’s Pimo) which models the example user Paul, and because we
created it before the software developments started, all developers could use it
to create JUnit tests and user interface Java-Beans. Paul’s Pimo accelerated de-
velopment speed and improved code quality, as we had test data right from the
start.

The second problem was the approach to data extraction. Two different ap-
proaches were evaluated [19], the first based on virtual graphs and live access
to data sources. Using virtual graphs, a RDQL query to the system was trans-
lated to calls to the datasource, for example a query to list persons with certain
properties was forwarded to be handled by Microsoft Outlook. This approach
was complicated to implement, and the response times were unacceptable for
complex queries. The second alternative was to crawl all data into a RDF data-
base and do the queries on that database. Clearly, the second alternative had
lower programming effort and better response times. In version 0.9 the data-
base backend was also changed from Jena with MySQL storage to Sesame2 with
storage to binary files, removing the dependency of MySQL. For an end-user
application, it was not acceptable to install and configure MySQL together with
gnowsis.

The third problem was the attempt to create a generic RDF interface that
allows both editing and browsing of information. Inspired by Haystack, several
prototypes were build for gnowsis to edit RDF in a generic way, and the results
were not accepted by end-users and abandoned. The current decision is to use
special purpose applications; for each task a separate, specialized user interface,
like the Drop-Box, linker and desktop search tools mentioned above.

Many problems were solved with approaches that resemble web 2.0 ideas —
open data, open apis and a service oriented architecture.



Semantic Desktop 2.0: The Gnowsis Experience 899

6 Conclusion

Existing semantic desktop implementations like gnowsis version 0.8, Haystack,
DBIN, or Mindraider lack the ability to integrate external applications. In theory,
they are extensible but in practice programming barriers and monolithic archi-
tecture limit the extensibility. The approach taken in gnowsis 0.9 and the future
Nepomuk Semantic Desktop framework aims at a service-oriented architecture.
Based on interfaces to the core parts and a clear separation of components, we
could improve the extensibility of the system. The use of the common database
Sesame2 and its web interface allowed developers to understand the system faster
and access the data through known interfaces. Also a clear guideline on man-
aging ontologies is needed, and the PIMO approach provided this. It combines
findings published by several other authors: a layered ontology, separation of
native resources from ontology concepts and a personal model that can be freely
edited by the user. Using web 2.0 philosophy in combination with semantic web
technology, we propose the semantic desktop framework gnowsis as useful basis
for future semantic desktops. An evaluation with knowledge workers and our
own experience with the system has shown that the service-oriented approach
supports knowledge workers.

Gnowsis will continue as part of the Integrated Project Nepomuk, where we
will see more innovation on the Semantic Desktop in the next years.

Acknowledgements. The PIMO ontology system was designed, and created
by Ludger van Elst. We want to thank Man Luo from TU Berlin for her in-
put in her meeting management diploma thesis. This work was supported by
the German Federal Ministry of Education, Science, Research and Technology
(bmb+f), (Grant 01 IW C01, Project EPOS: Evolving Personal to Organiza-
tional Memories) and by the European Union IST fund (Grant FP6-027705,
project Nepomuk).

References

1. Evaluating Personal Information Management Behaviors and Tools.
Vol.49.No.1,Communications of ACM, 2006.

2. Seseame 2. http://www.openrdf.org/, 2006.
3. Andreas Abecker, Ansgar Bernardi, Knut Hinkelmann, Otto Kühn, and Michael

Sintek. Toward a Technology for Organizational Memories. IEEE Intelligent Sys-
tems, June 1998.

4. Aperture. http://aperture.sourceforge.net, 2005.
5. Adam Cheyer, Jack Park, and Richard Giuli. Iris: Integrate. relate. infer. share.

In Proc. of Semantic Desktop Workshop at the ISWC, Galway, Ireland, 2005.
6. Christiaan Fluit. Autofocus: Semantic search for the desktop. In 9th Int. Conf. on

Information Visualisation, London, UK, pages 480–487, 2005.
7. H. Holz, H. Maus, A. Bernardi, and O. Rostanin. From Lightweight, Proactive In-

formation Delivery to Business Process-Oriented Knowledge Management. Journal
of Universal Knowledge Management, 0(2):101–127, 2005.



900 L. Sauermann et al.

8. Benajmin Horak. Contag : Atagging system linking the semantic desktop with web
2.0. Master’s thesis, University of Kaiserslautern, 2006.

9. Aura Lippincott Jason Frand. Personal knowledge management: A strategy for
controlling information overload. 2002. draft.

10. Malte Kiesel. Kaukolu – hub of the semantic corporate intranet. In Proc. of
Semantic Wiki Workshop at the ESWC 2006, 2006.

11. Tim O’Reilly. What is web 2.0, design patterns and business models for the next
generation of software.

12. Dennis Quan, David Huynh, and David R. Karger. Haystack: A platform for
authoring end user semantic web applications. In International Semantic Web
Conference, pages 738–753, 2003.

13. Holger Rath. The Topic Maps Handbook. empolis white paper, empolis GmbH,
2003.

14. Leo Sauermann. The gnowsis-using semantic web technologies to build a semantic
desktop. Diploma thesis, Technical University of Vienna, 2003.

15. Leo Sauermann. The semantic desktop - a basis for personal knowledge manage-
ment. In Proceedings of the I-KNOW 2005., pages 294 – 301, 2005.

16. Leo Sauermann. Pimo-a pim ontology for the semantic desktop (draft). Draft,
DFKI, 2006.

17. Leo Sauermann, Ansgar Bernardi, and Andreas Dengel. Overview and outlook
on the semantic desktop. In Proc. of Semantic Desktop Workshop at the ISWC,
Galway, Ireland, November 6.

18. Leo Sauermann, Andreas Dengel, Ludger van Elst, Andreas Lauer, Heiko Maus,
and Sven Schwarz. Personalization in the EPOS project. In Proc. of the Semantic
Web Personalization Workshop at the ESWC Conference, 2006.

19. Leo Sauermann and Sven Schwarz. Gnowsis adapter framework: Treating struc-
tured data sources as virtual rdf graphs. In Proceedings of the ISWC 2005, 2005.

20. Apple Spotlight. http://www.apple.com/macosx/features/spotlight/, 2004.
21. Ludger van Elst and Malte Kiesel. Generating and integrating evidence for ontol-

ogy mappings. In Proc. of the 14th EKAW, volume 3257 of LNAI, pages 15–29,
Heidelberg, 2004. Springer.

22. Microsoft WinFS. http://msdn.microsoft.com/data/winfs/default.aspx, 2006.
23. Huiyong Xiao and Isabel F. Cruz. A multi-ontology approach for personal informa-

tion management. In Proc. of Semantic Desktop Workshop at the ISWC, Galway,
Ireland, 2005.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 901 – 912, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Towards Semantic Interoperability in a Clinical Trials 
Management System 

Ravi D. Shankar1, Susana B. Martins1, Martin J. O’Connor1, David B. Parrish2,  
and Amar K. Das1 

1 Stanford Medical Informatics, Stanford University School of Medicine, 
Stanford, CA 94305  

ravi.shankar@stanford.edu  
2 The Immune Tolerance Network, Pittsburgh, PA 

Abstract. Clinical trials are studies in human patients to evaluate the safety and 
effectiveness of new therapies. Managing a clinical trial from its inception to 
completion typically involves multiple disparate applications facilitating 
activities such as trial design specification, clinical sites management, 
participants tracking, and trial data analysis. There remains however a strong 
impetus to integrate these diverse applications – each supporting different but 
related functions of clinical trial management – at syntactic and semantic levels 
so as to improve clarity, consistency and correctness in specifying clinical trials, 
and in acquiring and analyzing clinical data. The situation becomes especially 
critical with the need to manage multiple clinical trials at various sites, and to 
facilitate meta-analyses on trials. This paper introduces a knowledge-based 
framework that we are building to support a suite of clinical trial management 
applications. Our initiative uses semantic technologies to provide a consistent 
basis for the applications to interoperate. We are adapting this approach to the 
Immune Tolerance Network (ITN), an international research consortium 
developing new therapeutics in immune-mediated disorders. 

1   Introduction 

Clinical trials are carefully-controlled research studies in human patients to 
systematically evaluate the safety and efficacy of new or unproven approaches in the 
prevention and treatment of medical conditions. The lifecycle management of a 
complex clinical trial typically involves multiple applications facilitating activities 
such as trial design specification, clinical sites management, laboratory management, 
and participants tracking. These disparate applications are banded together as a 
clinical trial management system. The information generated by these applications 
along with data from loosely controlled sources such as spreadsheets, documents and 
email messages are then assembled to determine the operational state of the clinical 
trial. The lack of common nomenclature among the different sources of the tracking 
information and the unreliable nature of the data generation can lead to significant 
operational and maintenance challenges. The applications support different but related 
aspects of a clinical trial, and require clinical trial data flow and knowledge exchange 
between the applications. Thus, there is a strong impetus to integrate these diverse 
applications at syntactic, structural and semantic levels so as to improve clarity, 



902 R.D. Shankar et al. 

consistency and correctness in specifying clinical trials, and in acquiring and 
analyzing clinical data. The situation becomes especially critical with the need to 
manage complex clinical trials at various sites, and to facilitate meta-analyses on 
across the different trials. 

We present, Epoch, a knowledge-based approach to support a suite of clinical trial 
management applications. Our initiative uses semantic technologies to provide a 
consistent basis for the applications to interoperate. We are adapting this approach to 
the Immune Tolerance Network1,2 (ITN), an international consortium that aims to 
accelerate the development of immune tolerance therapies through clinical trials and 
integrated mechanistic (biological) studies. The ITN is involved in planning, 
developing and conducting clinical trials in autoimmune diseases, islet, kidney and 
liver transplantation, allergy and asthma, and operates more than a dozen core 
facilities that conduct bioassay services. Many groups, internal and external to ITN, 
collaborate in facilitating the specification and implementation of the trials and related 
biological assay studies. Therefore, the successful conduct of a clinical trial depends 
upon the interaction of professionals working for various entities, including the ITN, 
contract research organizations, clinical study sites, and core laboratories. Studies 
need to be tracked for the purposes of general planning, gauging progression, 
monitoring patient safety, and managing personnel and clinical resources. The 
management effort is especially compounded by the fact that an ITN trial often is 
carried out at multiple sites, geographically distributed, sometimes across the world.   

The Epoch framework is being collaboratively developed by the Stanford Medical 
Informatics (SMI) and the ITN in addressing the informatics needs of collecting, 
managing, integrating and analyzing clinical trial and immunoassay —a special 
laboratory procedure— data. Figure 1 illustrates a set of clinical trial management 
applications that we have identified to manage ITN’s clinical trials. At the core of our 
framework is a suite of ontologies that conceptualizes the clinical trial domain. The 
ontologies along with semantic inferences and rules provide a common protocol 
definition for the applications to use to interoperate semantically. In this paper, we  
 

Study Plan 

Specimen 
Collection Plan  

Assay 
Definitions

Site Plan 

Specimen 
Workflow

Site Inventory 

Participant Tracking 

Specimen Tracking 

Site Management 

Study Management 
Clinical 
Activities

Applications for  
Knowledge
Specification 

Applications for  
Data
Collection 

Applications for  
Trial Tracking and 
Analysis

Results Analysis 

Participant 
Visits Flow

 

Fig. 1. A set of clinical trial management applications. The arrows indicate knowledge exchange 
and data flow. 

 



 Towards Semantic Interoperability in a Clinical Trials Management System 903 

present the strong ontological foundation of our approach, and describe the Epoch 
components. We illustrate the use of our framework in supporting the semantic 
interoperability of a subset of the clinical trial management applications to support 
specimen tracking.   

2   The Epoch Core Ontologies 

A clinical trial protocol (the plan for a trial) lays out specification, implementation 
and data analysis details. For example, it includes the reason for undertaking the 
study, the number of participants that will be in the study and the recruitment process, 
the sites (clinical and laboratory) where the study will be conducted, the study drug 
that the participants will take, the medical tests that the participants will undergo, the 
data that will be collected, and the statistical analyses that will be performed on the 
data. We highlight four pieces of protocol definitions that are required to support 
these activities. The protocol schema divides the temporal span of the study into 
phases such as the treatment phase and follow-up phase, and specifies the temporal 
sequence of the phases. It also includes information on the arms of the protocol. The 
schedule of events enumerates a sequence of protocol visits that are planned at each 
phase, and, for each visit, specifies the time window when the visit should happen and 
a list of protocol events (assessments, procedures and tests) that are planned at that 
visit. The specimen table lists the clinical specimens that will be collected from the 
participant, the visits at which they will be collected, the processing and storage 
conditions, and the assays —special tests— that will be performed on them. The 
specimen flow describes the workflow associated with the processing of the 
specimens. The specimens are typically shipped from the collection sites to bio-
repository sites and, from there to the core laboratories where they are assayed. 

We recognize that a structured and standardized knowledge representation that 
conceptualizes the protocol entities relevant to our management applications is crucial 
to the interoperability of these applications. We created a suite of ontologies that 
provide a common nomenclature and semantics of protocol elements and that spans 
the entire clinical trials process: 

• The clinical ontology includes terms that specify clinical and biological 
knowledge on immune tolerance disorders and other concepts relevant to ITN 
clinical trials.  

• The protocol ontology is a knowledge model of the clinical trial protocol. It 
simplifies the complexity inherent in the full structure of the protocol by focusing 
only on concepts required to support clinical trial management. Other concepts 
are either ignored or partially represented. The main concepts represented in the 
protocol ontology are the protocol schema and the schedule of events. 

• The assay ontology models characteristics of mechanistic studies relevant to 
immune disorders. An assay specification includes the clinical specimen that can 
be analyzed using that assay, and the processing instructions at the core 
laboratories.  

• The specimen ontology models the workflow of specimens – collection, shipping 
and processing workflow of specimens at the clinical, laboratory, and bio-
repository sites.  



904 R.D. Shankar et al. 

• The specimen container ontology catalogs the different specimen containers such 
as tubes and slides, and the attributes of each container such as material, size, 
manufacturer, specimen types, additives, etc. Ancillary ontologies define 
different specimen types and additives.   

• The site ontology provides a structure to store site-related data such as protocols 
implemented at the site, participants on each protocol, relevant clinical resources 
and personnel. 

• The virtual data ontology encapsulates the study data that is being collected, such 
as participant clinical record, specimen workflow logs, and site related data. A 
mapping component can then map clinical trial data (found in a relational 
database) to these virtual data records using a mapping ontology. The data model 
concept is similar to the Virtual Medical Record3 (VMR) specification promoted 
in the clinical guideline modeling efforts. 

• The temporal ontology4 provides a uniform representation of all temporal 
information in our models.  

We have developed these ontologies in OWL5 —the Web Ontology Language 
proposed by W3C— by building hierarchies of classes describing concepts in the 
ontologies and relating the classes to each other using properties. OWL can also 
represent data as instances of OWL classes —referred to as individuals— and also 
provides mechanisms for reasoning with the data and manipulating it. OWL also 
provides a powerful constraint language for precisely defining how concepts in 
ontology should be interpreted. The Semantic Web Rule Language6 (SWRL) allows  
 

 

Fig. 2. The Protégé-OWL editor displaying part of the Protocol ontology 
 



 Towards Semantic Interoperability in a Clinical Trials Management System 905 

users to write Horn-like rules that can be expressed in terms of OWL concepts and 
that can reason about OWL individuals. SWRL provides deductive reasoning 
capabilities that can infer new knowledge from an existing OWL knowledge base. We 
use SWRL to specify temporal constraints and rules found in our ontologies in terms 
of the temporal model. Using SWRL’s built-in extension facility, we have 
implemented a rich library of temporal operators to write rules to express complex 
temporal constraints. Protégé7,8 is a software tool that supports the specification and 
maintenance of terminologies, ontologies and knowledge-bases in OWL. It has a 
plug-in called SWRL Tab9, an editor for SWRL rules. We used Protégé to create the 
ontologies in OWL and SWRL (Figure 2). We, then, entered specific protocols and 
assays using Protégé’s knowledge-acquisition facilities.  

3   Components of the Epoch Framework 

The Epoch framework broadly supports three types of methods that applications can 
use to support clinical trial management activities. The knowledge acquisition 
methods allow users to encode specific protocols and related operational elements, 
and thus, to create the protocol knowledge base. Ontology-database mapping methods 
integrate the protocol and biomedical knowledge with clinical trial data including 
clinical results and operational data stored in the ITN data repository. Concept-driven 
querying methods support integrated data management, and can be used to create 
high-level abstractions of clinical data during analysis of clinical results. At the center 
of all these methods and the applications that use these methods is the suite of Epoch 
ontologies that we have described in Section 2. 

The Epoch Knowledge Base contains the ontologies enumerated in Section 2. It 
also stores specific instantiations of the ontologies for different clinical trials. The 
repository uses a file backend to store the OWL ontologies in XML format. The 
SWRL rules are stored as part of the knowledge base. Here is an example of a SWRL 
rule that is used to set a participant’s time of transplant: 

 

Observation(?o)  ^ 
associatedVisitRecord(?o, ?vrecord)  ^ 
hasParticipantId(?vrecord, ?pid)  ^ 
hasCode(?o, ?code)  ^ 
swrlb:equal(?code, "transplant")  ^ 
temporal:hasValidTime(?o, ?vtO)  ^ 
TemporalAnchorPoint(?a)  ^ 
hasName(?a, "Transplant")   

      temporal:hasValidTime(?a, ?vtO) 
 

Significant events in a protocol such as the transplant time are annotated as temporal 
anchor points. By definition, other events are temporally constrained by anchor 
points. For e.g., a visit time window (when the visit should happen) can be specified 
as a temporal constraint based on the anchor point ‘transplant’. The example SWRL 
rule associates data model concepts such as Observation and VisitRecord to protocol 
model concepts such as TemporalAnchorPoint. The execution of the rule will set the 
value of the temporal anchor point ‘transplant’ with the transplant time for the 
participant found in the clinical trial database. 



906 R.D. Shankar et al. 

A Knowledge Base Server provides a programmatic interface (API) that other 
components can use to access the contents of the ontology repository. We are 
developing a protocol domain specific API on top of the generic Protégé-OWL API. 
We have developed a tool to generate XML renditions of the OWL knowledge base 
based on custom XML Schema. In Section 4, we show how we employed this tool to 
configure a data collection application with information in the knowledge base. We 
are building other utility tools to support querying and rule execution. These tools will 
eventually be integrated with the knowledge base server. 

The Clinical Trial Database is a relational database system that stores data related 
to the implementation and execution of clinical trials. The types of data include 
participant enrollment data, specimen shipping and receiving logs, participant visits 
and activities, and clinical results. 

The Model-Data Mapper facilitates runtime access to relational data in the clinical 
trial database as instances of the Epoch data model. It uses a mapping ontology to 
connect data model concepts to database entities i.e. properties of an OWL class are 
mapped to columns of a relational table. 

The Inference / Rule Engine executes temporal and non-temporal constraints – that 
have been expressed as SWRL rules – in Epoch ontologies. We have developed a 
SWRL built-in deployment module9 that provides a general mechanism to define Java 
implementations of SWRL built-ins, dynamically load them, and invoke them from a 
rule engine. We used this mechanism to define a set of temporal predicates to operate 
on temporal values. These predicates support the standard Allen10 temporal operators 
such as before during, starts, ends, inside, overlaps, before and after. The interface 
with the Model-Data Mapper allows SWRL rules to be executed on data stored in the 
clinical trial database. Here is an example of a SWRL rule to check if a participant’s 
visit time fell within that visit’s time window: 

 

VisitRecord(?vrecord)  ^ 
hasVisitId(?vrecord, ?vid1)  ^ 
hasParticipantId(?vrecord, ?pid)  ^ 
temporal:hasValidTime(?vrecord, ?vtO)  ^ 
Visit(?v)  ^ 
hasVisitId(?v, ?vid2)  ^ 
swrlb:equal(?vid1, ?vid2)  ^ 
hasStartCondition(?v, ?vsc)  ^ 
temporal:inside(?vtO, ?vsc)   

       
 

The empty head of the rule indicates that this rule is formulated as a query. This rule 
uses  a built-in temporal:inside that takes in as arguments a time and a relative 
variable interval, and returns true if the time point is within the interval, and returns 
false otherwise. The relative variable interval concept is expressed in terms of a 
temporal anchor point. It is defined as  

temporal anchor point + offset (+ high variance/- low variance) 

Using the relative variable interval, we can specify visit time windows like  

 transplant time + 28 days with a variance of plus or minus 3 days 



 Towards Semantic Interoperability in a Clinical Trials Management System 907 

We are currently using JESS11, a production rule-engine, to selectively execute the 
rules based on the context. For example, the rule that specifies the constraint on a visit 
time window will alone need to be executed when checking if a specific participant’s 
visit satisfied the constraint. 

The Clinical Trial Management Applications are a suite of applications as shown 
in Figure 1. These applications interoperate via the Epoch components at syntactic, 
structural and semantic levels to support the management of clinical trials.  

4   An Example Usage Scenario – Specimen Collection and 
Tracking  

Clinical specimens are collected from participants at different visits based on clinical 
assessments and clinical studies (biological assays) planned in the protocol. These 
specimens are then processed and stored in pre-determined containers and shipped to 
bio-repositories. The specimens (or portions of them) are shipped to the core 
laboratories that can perform specific assays on the specimens. The assay results are 
then sent to a data warehouse for storage and subsequent analysis. The bio-
repositories may also archive portions of the specimens for future interrogation. The 
trials managed by ITN generate enormous amount of specimen traffic across different 
sites. Tracking the specimen from the point of collection to the point of processing 
and archival becomes paramount to maintain the integrity of the operation. 
Appropriate type and number of specimen containers should be stocked at the clinical  
 

Knowledge Base
Server 

ImmunoTrak, a 
Specimen Workflow 
Application

Specimen Tracking 
Application

Clinical Trial 
Database

Model-Data Mapper 

Specimen Containers 
Application

Specimen
Container report 

Configuration file Protocol 
knowledge base 

 

Fig. 3. A high-level view of semantic interoperation among Epoch architectural components and 
applications 

 



908 R.D. Shankar et al. 

sites in preparation for the anticipated participant visits. At the time of a participant’s 
visit, appropriate specimens should be collected and stored in matching containers. 
The containers are shipped to the bio-repositories, and then to the core laboratories 
based on the shipping instructions in the specimen table and the specimen flow of the 
protocol. Specimens have to be accounted for at all times using shipping and 
receiving logs. 

The ITN has contracted with Cimarron Software, Inc. 12 to build a specimen 
workflow system called ImmunoTrak based on Cimarron’s Laboratory Workflow 
Systems product. Clinical trial personnel at the sites will use the system to log 
participant’s visit, specimen collection, shipping and receiving of bar-coded specimen 
containers, etc. ImmunoTrak can be configured using a graphical user interface or via 
an XML specification. The configuration parameters include, the participant visit 
flow, the specimen container specification, list of participants, list of clinical and 
laboratory sites, and specimen workflow. The system should also be configured with 
the container manufacturer’s report on the empty specimen containers shipped to the 
collection sites.  The specimen tracking data that is collected by the system during the 
course of the trial is stored in a relational database. A Specimen Tracking application 
can then access the database to monitor the status of the specimen collection and 
processing. 

Figure 3 shows the usage scenario employing the Epoch framework to specimen 
tracking. The first step is to specify the specimen workflow in the Protégé-OWL 
editor using relevant Epoch ontologies. Next, the Knowledge Base Server uses an 
XML Schema file to generate the configuration file for ImmunoTrak, the Specimen 
Workflow System. The Specimen Container application generates container 
specifications that form the basis of the manufacturer’s report. During the course of 
the clinical trial, research coordinators at different clinical sites access ImmunoTrak 
to enter specimen collection data which is stored in the Clinical Trial Database. The 
Specimen Tracking Application employs the Model-Data Mapper to access the data 
via the Epoch data models. It can then satisfy user queries for specific specimen 
processing status, specimen collection inventory. It can also execute any validation 
rules or temporal constraints as specified in the ontologies on the tracking data using 
the production rule engine. 

All the applications in this example work on the same set of semantic descriptions 
of specimen workflow concepts found in the Epoch knowledge base. The applications 
are built by different vendors, and are pressed into service at different stages – 
specification, execution and monitoring – of the clinical trial. The Epoch ontologies 
are the foundation that scans across these disparate applications. The semantic 
chaining of the applications, from protocol specification, to data collection, to data 
analysis can improve standardization, data integrity, data integration and data 
analysis. 

5   Related Work 

In the past few years, we have seen considerable interest in building knowledge-based 
systems that automate clinical trial protocols and clinical practice guidelines. The 
Epoch framework employs a task-based paradigm that combines an explicit 
representation of the clinical trial domain with rules that capture the logical conditions 



 Towards Semantic Interoperability in a Clinical Trials Management System 909 

found in the trial management process. There have been a number of proposals on 
task-based clinical guideline representation formats – EON13, PROforma14, GLIF15, 
etc. In our laboratory, at Stanford Medical Informatics, we have developed the EON 
guideline models that are used to build guideline-based decision support systems. 
These advisory systems provide patient care that is informed by the guidelines. The 
Epoch models have adapted some of the representational formalisms – workflow, 
expressions, and coded concepts – found in the EON models. In the area of clinical 
trials, several modeling efforts have addressed different requirements of trial 
management activities. The Trial Bank Project16 is a trial registry that captures 
information on randomized clinical trials such as intervention, outcomes, and 
eligibility criteria. The underlying knowledge base can support systematic reviewing 
and evidence-based practice. Design-A-Trial17 (DAT) enables the design and 
specification of protocols that can be exported to software tools for management of 
clinical trials. DAT presents users with forms in which to enter data describing a trial. 
It critiques the data entry using a trial domain knowledge base and guides the user to 
design a clean protocol devoid of inconsistencies. Currently, the Epoch users interact 
with the generic knowledge-acquisition forms that Protégé provides to specify a 
protocol. We plan to create rich graphical user interfaces coupled with DAT-like 
guidance mechanism that will lead our users on custom design pathways based on the 
restrictions and rules defined in the Epoch knowledge base. The PROforma language, 
just like the EON models, can capture the structure and content of a clinical guideline, 
and has been embedded in a commercially available clinical trial management system. 
The intent of the PROforma knowledge base is mainly to drive patient therapy during 
clinical trials, in contrast to the Epoch knowledge base that supports trial management 
activities. 

There is an ongoing effort by CDISC18, an industry-lead, multidisciplinary 
organization, to develop and support the electronic acquisition, exchange, submission 
and archiving of clinical trials data. As part of this effort, CDISC is developing the 
Trial Design Model (TDM) that identifies standard elements of a clinical trial 
protocol that can be codified to facilitate the data interchange among systems and 
stakeholders including regulatory authorities, biopharmaceutical industry, 
statisticians, project managers, etc. A parallel effort is the BRIDG19 project, a 
partnership of several organizations including CDISC, the HL720 standards body, the 
National Cancer Institute and the Federal Drug Administration, that consumes the 
Trial Design Model work to build a comprehensive domain analysis model 
representing protocol-driven biomedical/clinical research. The BRIDG model is a 
work in progress to elaborately define functions and behaviors throughout clinical 
trials, and uses the Unified Modeling Language (UML) for representation. The model, 
in its current state, cannot fully support the requirements of ITN’s trial management. 
However, we are closely following the development of the BRIDG model, and 
incorporating the model’s semantic descriptions of clinical trials – concepts relevant 
to our trial management activities – within Epoch.  

6   Discussion 

The increasing complexity of clinical trials has generated an enormous requirement 
for knowledge and information management at all stages of the trials – planning, 



910 R.D. Shankar et al. 

specification, implementation, and analysis. Our focus is currently on two application 
areas: (1) tracking participants of the trial as they advance through the studies, and (2) 
tracking clinical specimens as they are processed at the trial laboratories. The core of 
the Epoch framework is a suite of ontologies that encodes knowledge about the 
clinical trial domain that is relevant to trial management activities. We used OWL to 
specify the ontologies, and SWRL rules written in terms of concepts in these 
ontologies to express any constraints. The Epoch ontologies, especially the Protocol 
ontology, have been influenced by past and ongoing modeling work. Our laboratory 
has demonstrated in previous projects, the viability of frame-based languages to build 
knowledge based systems. So, it begs the question: How does our current approach of 
using OWL/SWRL to build knowledge based systems compare to our experience with 
frame-based languages? A recent work21 compares the two knowledge-representation 
languages at the syntactic and semantic levels, and suggests appropriate usage 
situations. The EON guideline decision support architecture uses a frame-based 
language to specify guidelines, and an interpreter to execute the guidelines on specific 
patient data. We spent significant effort in developing custom interpreters to execute 
domain-specific logic. We do not know if the combination of OWL, SWRL, Jena, and 
JESS will obviate the need to build custom interpreters for our clinical trial 
management applications. However, we view the growing interest in the OWL 
standards, and the plethora of tools and software packages as a significant practical 
advantage of using OWL and SWRL over frame-based languages.  

Native RDF Store (storing data as RDF triples) has advanced recently in 
performance and scalability. It would have been a natural solution for us to use RDF 
store for storing clinical trial data, and then seamlessly operate on the data using our 
OWL ontologies and SWRL rules. ITN uses a legacy relational database system to 
store clinical trial data, and therefore, prevents us from using native RDF Stores as 
our backend. We have to devise ways to map the database tables to our data model 
OWL classes. In a previous project, the BioSTORM disease-surveillance framework22 
employs techniques to map disparate data sources to a data model. These techniques 
were developed using a frame-based language and we are translating these 
methodologies to use OWL and SWRL. We are also actively investigating the 
possibility of using the D2RQ23, a language to describe mappings between relational 
database schema and OWL/RDFS ontologies. With these solutions, our virtual data 
model remains flexible and independent of the structure of the data sources. 

Currently, we use the Protégé-OWL editor to build the Epoch models. Based on 
the class and property definitions, Protégé automatically generates graphical user 
interface (GUI) forms that can be used to create instances of these classes (OWL 
individuals). Thus, domain specialists can use to enter a specification of a protocol, 
say for a transplant clinical trial, using these Protégé-generated forms. Unfortunately, 
domain specialists find it cumbersome and non-intuitive to use the generic user 
interfaces as they are exposed to the complexities of the Epoch models, the OWL 
expressions and SWRL rules. We are building custom graphical user interfaces that 
hide the complexities of the knowledge models, and that facilitate guided knowledge-
acquisition. Providing a friendly user interface to enter SWRL rules can be 
challenging. 

A major concern in building and maintaining a knowledge repository of several 
clinical trial protocols over long periods of time is the versioning of ontologies. 
Specifications can change even after the trial has started. Protégé-OWL provides 
some limited versioning capability. It also provides some tool support for comparing 



 Towards Semantic Interoperability in a Clinical Trials Management System 911 

and merging different versions of ontology. With continued interest in building and 
maintaining large OWL-based biomedical ontologies24, we can expect improved tool 
and methodology support. It is not clear if the existing and proposed tools can fully 
address the issues of ontology changes during the execution of a clinical trial and the 
resulting complexities in collating and analyzing trial data. 

The knowledge representation and reasoning requirements borne out of the need 
for semantic interoperability in our clinical trial management system align well with 
the touted strengths of semantic technologies – uniform domain-specific semantics, 
flexible information models, and inference technology.  Using semantic approaches, 
we will be able to integrate existing software applications and databases with our 
knowledge based framework with greater transparency and dynamic communication. 

Acknowledgements. This work was supported in part by the Immune Tolerance 
Network, which is funded by the National Institutes of Health under Grant NO1-AI-
15416.  

References 

1. Rotrosen, D., Matthews, J.B., Bluestone, J.A. The Immune Tolerance Network: a New 
Paradigm for Developing Tolerance-Inducing Therapies. J Allergy Clinical Immunology, 
Jul;110(1):17-23 (2002) 

2. ITN: http://www.immunetolerance.org/ 
3. Johnson, P.D., Tu, S. W., Musen, M. A., Purves, I. A Virtual Medical Record for 

Guideline-Based Decision Support. AMIA Annual Symposium, Washington, DC, 294-298 
(2001). 

4. O'Connor, M.J., Shankar, R.D. Das, A.K. An Ontology-Driven Mediator for Querying 
Time-Oriented Biomedical Data. 19th IEEE International Symposium on Computer-Based 
Medical Systems, Salt Lake City, Utah, 264-269 (2006) 

5. OWL Specification: http://www.w3.org/2004/OWL/ 
6. SWRL Specification: http://www.w3.org/Submission/SWRL/ 
7. Protégé: http://protege.stanford.edu/ 
8. Knublauch, H. Fergerson, R.W., Noy, N.F. and Musen, M.A. The Protégé OWL Plugin: 

An Open Development Environment for Semantic Web applications Proc Third ISWC 
(ISWC 2004), Hiroshima, Japan, 229-243 (2004) 

9. O'Connor, M.J., Knublauch, H., Tu, S.W., Grossof, B., Dean, M., Grosso, W.E., Musen, 
M.A. Supporting Rule System Interoperability on the Semantic Web with SWRL. Fourth 
International Semantic Web Conference (ISWC2005), Galway, Ireland,  974-986 (2005) 

10. Allen, J.F. Maintaining knowledge about temporal intervals. Communications of the 
ACM, 26(11): 832-843 (1993) 

11. JESS: http://www.jessrules.com/ 
12. Cimarron: http://www.cimsoft.com/ 
13. Musen, M.A., Tu, S.W., Das, A.K., Shahar, Y. EON: A component-based approach to 

automation of protocol-directed therapy. Journal of the American Medical Informatics 
Association, 3(6), 367–388 (1996) 

14. Fox, J., Johns, N., Rahmanzadeh, A., Thomson, R. PROfarma: A method and language for 
specifying clinical guidelines and protocols. Proceedings of Medical Informatics Europe, 
Amsterdam (1996) 



912 R.D. Shankar et al. 

15. Boxwala, A.A., Peleg, M., Tu, S. W., Ogunyemi, O., Zeng, Q. T., Wang, D., Patel, V. L., 
Greenes, R. A., Shortliffe, E. H. GLIF3: A Representation Format for Sharable Computer-
Interpretable Clinical Practice. Journal of Biomedical Informatics, 37(3):147-161 (2004) 

16. Sim, I., Olasov, B., and Carini, S. The Trial Bank system: capturing randomized trials for 
evidence-based medicine. Proceedings of the AMIA Annual Symposium, 1076 (2003) 

17. Modgil, S., Hammond, P. Decision support tools for clinical trial design. Artificial 
Intelligence in Medicine, 27(2):181-200. (2003) 

18. CDISC: http://www.cdisc.org/standards/ 
19. BRIDG: http://www.bridgproject.org/ 
20. HL7: http://www.hl7.org/ 
21. Wang, H., Rector, A., Drummond, N., et al. Frames and OWL Side by Side. 9th 

International Protégé Conference, Stanford, CA (2006) 
22. Crubezy, M., O'Connor, M.J., Buckeridge, D.L., Pincus, Z.S., Musen, M.A. Ontology-

Centered Syndromic Surveillance for Bioterrorism. IEEE Intelligent Systems,20(5):26-35 
(2005) 

23. D2RQ: http://www.wiwiss.fu-berlin.de/suhl/bizer/d2rq/ 
24. CBIO: http://www.bioontology.org/ 
 



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 913 – 926, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Active Semantic Electronic Medical Record 

A. Sheth1, S. Agrawal2, J. Lathem1, N. Oldham2, H. Wingate2, P. Yadav2,  
and K. Gallagher2 

1 LSDIS Lab, University of Georgia 
Athens, Georgia 30602 

{amit, lathem}@cs.uga.edu 
2 Athens Heart Center 

Athens, Georgia 30606 
{subodh, noldham, ppyadav, kgallagher}@athensheartcenter.com 

Abstract. The healthcare industry is rapidly advancing towards the widespread 
use of electronic medical records systems to manage the increasingly large 
amount of patient data and reduce medical errors.  In addition to patient data there 
is a large amount of data describing procedures, treatments, diagnoses, drugs, 
insurance plans, coverage, formularies and the relationships between these data 
sets.  While practices have benefited from the use of EMRs, infusing these 
essential programs with rich domain knowledge and rules can greatly enhance 
their performance and ability to support clinical decisions.   Active Semantic 
Electronic Medical Record (ASEMR) application discussed here uses Semantic 
Web technologies to reduce medical errors, improve physician efficiency with 
accurate completion of patient charts, improve patient safety and satisfaction in 
medical practice, and improve billing due to more accurate coding.  This results in 
practice efficiency and growth by enabling physicians to see more patients with 
improved care. ASEMR has been deployed and in daily use for managing all 
patient records at the Athens Heart Center since December 2005. This showcases 
an application of Semantic Web in health care, especially small clinics. 

Keywords: Ontology, Rules, Electronic Medical Record (EMR), Electronic 
Health Record, Clinical Decision Support, RDQL, Web Services, Semantic 
Annotation, Active Semantic Document. 

1   Introduction 

The most cumbersome aspect of health care is the extensive documentation which is 
legally required for each patient.  For these reasons, physicians and their assistants 
spend about 30% of their time documenting encounters.  Paper charts are slowly 
being phased out due to inconvenience, inability to mine data, costs and safety 
concerns.  Many practices are now investing in electronic medical records (EMR) 
systems which allow them to have all patient data at their fingertips.  Although 
current adoption by medical groups (based on a 2005 survey [1]) is still below 15% 
with even less adoption rate for smaller practices, the trend is clearly towards 
increasing adoption. This trend will accelerate as regulatory pressures such as “Pay-4-
Performance” become mandatory thus enhancing the ROI sophisticated systems can 



914 A. Sheth et al. 

achieve. This paper focuses on the first known development and deployment1 of a 
comprehensive EMR system that utilizes semantic Web and Web service/process 
technologies.  It is based on substantial collaboration between practicing physicians 
(Dr. Agrawal is a cardiologists and a fellow of the American Cardiology Association, 
Dr. Wingate is an emergency room physician) at the Athens Heart Center and the 
LSDIS lab at UGA.  More specifically, we leverage the concept and technology of 
Active Semantic Documents (ASDs) developed at the LSDIS lab. ASDs get their 
semantic feature by automatic semantic annotation of documents with respect to one 
or more ontologies. These documents are termed active since they support automatic 
and dynamic validation and decision making on the content of the document by 
applying contextually relevant rules to components of the documents.  This is 
accomplished by executing rules on semantic annotations and relationships that span 
across ontologies.   

Specifically, Active Semantic Electronic Medical Record (ASEMR) is an 
application of ASDs in health care which aims to reduce medical errors, improve 
physician efficiency, improve patient safety and satisfaction in medical practice, 
improve quality of billing records leading be better payment, and make it easier to 
capture and analyze health outcome measures.  In ASMER, rules specified in 
conjunction with ontologies play a key role. Examples of the rules include prevention 
of drug interaction (i.e., not allowing a patient to be prescribed two severely 
interacting drugs, or alerting the doctor and requiring his/her to make specific 
exceptions when low or moderate degree of interactions are acceptable) or ensuring 
the procedure performed has supporting diagnoses. ASDs display the semantic (for 
entities defined in the ontologies) and lexical (for terms and phrases that are part of 
specialist lexicon , specific items related to the clinics, and other relevant parts of 
speech) annotations in document displaced in a browser, show results of rule 
execution, and provide the ability to modify semantic and lexical components of its 
content in an ontology-supported and otherwise constrained manner such as through 
lists, bags of terms, specialized reference sources, or a thesaurus or lexical reference 
system such as WordNet [11].  This feature allows for better and more efficient 
patient care and because of the ability of ASDs to offer suggestions when rules are 
broken or exceptions made.   

ASEMR is currently in daily and routine use by the Athens Heart Center (AHC) 
and eight other sites in Georgia.  ASEMRs have been implemented as an 
enhancement of AHC's Panacea electronic medical management system. Panacea is a 
web-based, end-to-end medical records and management system, and hence it is used 
with respect to each patent seen at AHC. This has enhanced the collaborative 
environment and has provided insights into the components of electronic medical 
records and the kinds of data available in these systems.  The preliminary version was 
implemented during Summer 2005 and tested in early fall. The current version was 
deployed and has been fully functional since January 2006.  Parts of ASMER we will 
focus on in this paper are:  

• the development of populated ontologies in the healthcare (specifically 
cardiology) domain  

                                                           
1 Preliminary deployment in September 2005, full deployment in January 2006. 



 Active Semantic Electronic Medical Record 915 

• the development of an annotation tool that utilizes the developed ontologies 
for annotation of patient records  

• the development of decision support algorithms that support rule and 
ontology based checking/validation and evaluation.  

The remainder of this paper is organized as follows.  Section 2 makes a case for 
semantics through a motivating scenario (for brevity, only one example is given).  
Section 3 describes the knowledge and rules representation.  The application is detailed 
in Sections 4 and the implementation details are given in Section 5.  Section 6 
evaluates the approach and provides statistics which support the growth of the practice 
since the use of the EMR.  Section 7 lists related work and Section 8 concludes with 
future work. 

2   Motivating Scenario and Benefits 

In addition to the complexity of today’s healthcare, medical practitioners face a 
number of challenges in managing their practices.  One of the challenges is the need 
to improve the quality of care, adhere to evolving clinical care pathways, reduce 
waste and reduce errors (with associated need to develop and report quality of care 
measures). Another challenge is that of medical billing. Let’s investigate the latter 
further.  Each insurance company follows Local Medical Review Policy (LMRP) 
which are policies specifying which diagnosis justify the medical necessity of a 
procedure.  If the appropriate codes are not given in accordance with these LMRPs, 
the insurance will not pay for the charge.  Because of these rigid requirements many 
claims are rejected and the amount of time for receiving a payment is prolonged and 
in many cases the physicians are not reimbursed for their services.  If correct coding 
compliance is enforced by the system at the point of charge entry on the superbill (the 
bill of all charges and diagnoses for a visit) the problem of procedures without 
supporting diagnosis codes is eliminated.  Table 1 contains a partial list of ICD9CM 
codes that support medical necessity for CPT 93000 EKG which were taken from the 
Centers for Medicare and Medicaid Services [3]2. 

The primary diagnosis code selected for the EKG must be one of the supporting 
diagnosis codes listed above.  There are additional complex rules such as certain 
ICD9CM codes should not be selected together and certain procedures should not be 
billed for in the same claim.  In section 4.2, we will present our approach which uses 
a combination of OWL ontologies and rules to validate data in a superbill to ensure 
coding compliance by presenting the appropriate subset of linking diagnosis codes 
when a procedure is selected.  Due to the creation of more accurate and compliant 
claims, this approach has the potential to eliminate coding errors which would result 
in improved financials. 
 
                                                           
2 ICD9-CM stands for “The International Classification of Diseases, 9th Revision, Clinical 

Modification”; these codes are used to denote the diagnosis. CPT (Current Procedural 
Terminology) codes are used to denote treatments. Payment is done based on the treatment, 
but the bill must contain acceptable diagnosis for that treatment.  



916 A. Sheth et al. 

Table 1. Medical Necessity for EKG 

ICD9CM Diagnosis Name 
244.9 HYPOTHYROIDISM 
250.00 DIABETES MELLITUS TYPE II 
250.01 DIABETES MELLITUS TYPE I 
242.9 HYPERTHYROIDISM 
272.2 MIXED HYPERLIPIDEMIA 
414.01 CAD-NATIVE 

780.2-780.4 SYNCOPE AND COLLAPSE - DIZZINESS AND 
GIDDINESS 

780.79 OTHER MALAISE AND FATIGUE 
785.0-785.3 TACHYCARDIA UNSPECIFIED - OTHER ABNORMAL 

HEART SOUNDS 
786.50-786.51 UNSPECIFIED CHEST PAIN - PRECORDIAL PAIN 

786.59 OTHER CHEST PAIN 

In addition to greater facilitation of billing process, physicians benefit from the 
clinical decision support that can be provided by a system which has rich domain 
understanding through the use of ontologies and rules.  Patients benefit as well as this 
ability allows better patient care, increased safety and satisfaction.  Checks such as 
preferred drug recommendations lead to prescription drug savings for patients leading 
to improved satisfaction.  The most important benefit we seek from ASEMR with its 
proactive semantic annotations and rule-based evaluation is the reduction of medical 
errors that could occur as an oversight. Ultimately the proof of these support features 
will be manifest by improved outcome data for example better Medpar scores 
(medicare beneficiary morbidity and mortality data) for Physicians.    

3   Knowledge and Rules Representation 

We employ a combination of OWL [6] ontologies with RDQL[9] rules in order to 
supply the document with rich domain knowledge.  The rules provide additional 
domain knowledge and compensate for the limitations of the OWL language.2.1   
Ontologies.  A more complex rule specification (and corresponding rule processing) 
capabilities may be needed in future, but for our current purpose this was more than 
adequate and this choice also provided efficient implementation alternative. 

We utilize three ontologies to represent aspects of the domain.  The practice 
ontology contains concepts which represent the medical practice such as facility, 
physician, physician assistant, and nurse.  The infrastructure of the medical practice is 
given by the concepts and relationships.  The practice ontology was created in 
conjunction with experts in the medical field. Parts of our own databases were the 
source for populating this ontology. 

The Drug ontology contains all of the drugs and classes of drugs, drug 
interactions, drug allergies, and formularies. Capturing such information reduces 
medical errors and increases patient safety. Furthermore, prescribing drugs from the  
 



 Active Semantic Electronic Medical Record 917 

formularies of the patient’s insurance plans improves patient satisfaction.  License 
content (Gold Standard Media) equivalent to physican's drug reference was the 
primary source for populating this ontology which is shown, in part, in figure 1.       

Drug

Generic

Interaction

Formulary

Physical Condition

BrandName

Indication

Pregnancy

has_interaction

Non-Drug Reactant

has_indication
has_formulary

Dosage Form Intake Route

MonographClassType

CPNUMGrp

Allergy

has_type has_class reacts_with

 

Fig. 1. Partial View of Drug Ontology 

The Diagnosis/Procedure ontology includes concepts such as medical conditions, 
treatments, diagnoses (ICD-9), and procedures (CPT).  Licensed SNOMED 
(Systematized Nomenclature of Medicine--Clinical Terms) [8] content is used for 
populating this ontology.  A key enhancement involved linking this ontology to the 
drug ontology. This allows powerful decision support by giving the system 
specialized domain knowledge.  We will use this representation to enable the system 
to suggest treatments and drugs based on the patient’s condition or diagnosis.  User or 
user group specific frequently used codes lists are supported by this ontology.  This 
allows customizability such that each area of the practice will be given procedures 
and diagnosis codes which frequently apply to their area.   

For example, procedures such as Dipiridamol injections and Muga scans are 
generally administered in the area of Nuclear medicine and should therefore the 
remainder of the clinical staff should not be bothered with those procedures cluttering 
their view.  Each area has customizable frequent lists such as Nuclear, Pacemaker 
Evaluation, Echocardiograph, etc.  

Medical records of patients are automatically annotated using the ontologies listed 
above and are displayed in a browser. Drugs, allergies, physicians and facilities (e.g., 
physicians or facilities the patient is referred to), treatments, diagnosis, etc. are 
automatically annotated. The physician has the ability to pull up a contextual list or 
even a visual subset of the relevant ontology and pick alternative choices. In some 



918 A. Sheth et al. 

cases, alternatives are provided in ranked order list (e.g., other physicians with the 
same specialty in the same area and accepting the same insurance as the patient). 

3.1   Rules 

ASEMRs support active features by executing relevant rules over semantic 
annotations to support the following initial sets of capabilities:  

• drug-drug interaction check,  
• drug formulary check (e.g., whether the drug is covered by the insurance 

company of the patient, and if not what the alternative drugs in the same 
class of drug are),  

• drug dosage range check,  
• drug-allergy interaction check,  
• ICD-9 annotations choice for the physician to validate and choose the best 

possible code for the treatment type, and  
• preferred drug recommendation based on drug and patient insurance 

information  

The benefits of combining the use of ontologies and rules are two-fold. First, the 
rules allow the system to make decisions.  Second, using rules the system can become 
declarative to the extent that additional relationships and facts can be added at any 
time without changing the code.  For example, if the relationship “cancels_the_effect” 
is added to the ontology coupled with a rule indicating which drug or combinations of 
drugs cancel the effect of drugX, then the capability of the system is enhanced 
without any code modifications.  This allows for a great deal of extensibility and 
flexibility such that one could even define classes of drugs, such as blood thinners, 
which cancels the effects of other classes of drugs. Rules allow for more flexibility, 
enhanced reasoning power and extensibility. 

4   Application 

The following section details two components which utilize semantic web 
technologies and are currently deployed and in use by at least eight beta sites.  The 
evaluation section contains an analysis of the effect of this semantic health record 
application on one practice.   

4.1   Active Semantic Documents 

Physicians are required to thoroughly document each patient encounter.   Reports 
usually contain a problem list, family history, history of present illness, review of 
symptoms, impressions and plans.   Data acquisition and data entry is a painstaking 
process which usually results in late hours for the physician.  One alternative   is 
dictation. While dictation maybe faster for the physician, it has many negative 
drawbacks including lack of structured data for analysis and mistakes in transcription 
that have to be corrected.  It is clear from our experience that a better solution is an 
application which “understands the domain”   thus facilitates the structured entry of 



 Active Semantic Electronic Medical Record 919 

data by offering relevant suggestions in a customizable point and click interface l 
generating complete and coherent reports.  The Active Semantic Documents (ASD) 
EMR both expedites and enhances the patient documentation process.  The support 
and speed provided by them enables physicians and physician assistants to complete 
all of their patient documentation while the patient is still in the room allowing the 
physician to provide better care with a greater volume of patients. 

The annotation view pictured in figure 2 is an Active Semantic Document.  The 
annotations facilitate the creation of the document by performing annotations of 
ICD9s, words and sentences within the report, and drugs.  Three drug related 
annotations can be seen in figure 2 under the “Current Medications” section.  The 
drug Coumadin has a level three interaction warning.  Holding the cursor over this 
warning displays the name of the drug with which it interacts.   The yellow F 
annotation warns that the drug is not covered under the patient’s insurance formulary.  
The annotations can also be extended to also semantically enhance the monograph.  
The green A annotation warns that the patient is allergic to this drug. Clicking on the 
Explore button allows the user to write a prescription for this drug, change quantities, 
or view the monograph for this drug.  Exploring the drug allows for semantic 
browsing, querying for such details as how many patients are using this class of drug, 
and for performing decision support.  Figure 3 shows the exploration of the drug 
Tasmar. 

 

Fig. 2. An application of Active Semantic Documents 

4.2   Coding of Impressions 

Section 2 described a scenario in which the complexity of medical billing is remedied 
by enforcing correct coding at the point of data entry by the nurse, physician, or 
assistant.  As a patient is seen, orders and diagnoses are marked by the healthcare  
 



920 A. Sheth et al. 

provider on an ‘encounter sheet’ or ‘superbill’.  It is imperative at this time that a 
diagnosis which supports medical necessity for a procedure be given in order to 
facilitate the billing process.  This application employs a novel semantic approach for 
entering charges into the encounter sheet based on domain knowledge taken from the 
procedure and diagnosis ontology.  This application allows for diagnoses to be taken 
directly from the documentation described in the previous section.  Furthermore, 
when orders are placed the subset of diagnoses codes which are defined to support 
medical necessity for that order are shown.  This method ensures that the charges will 
be entered correctly at the very beginning of the process.  The semantic encounter 
sheet is shown in figure 4.  As users select orders from the right column, the left 
column automatically populates with the linking diagnosis codes which support 
medical necessity. The doctor is required to validate this choice, and ontology enables 
him/her to easily consider alternatives. 

y

Tasmar Telcapone

Formulary_1498

generic/brandname

CPNUMGroup_2119

belongsTobelongsTo

interacts_with

CPNUMGroup_2118

interacts_with

CPNUMGroup_206

classification

Neurological Agents COMT Inhibitors

 

Fig. 3. Exploration of the neighborhood of the drug Tasmar 

 

Fig. 4. Semantic Encounter Sheet 



 Active Semantic Electronic Medical Record 921 

5   Implementation Details 

The Panacea database holds all information about a patient and the patient’s visits 
including the patient demographics, medications before the visit, medications added 
during the visit, past and present problems, diagnoses, treatment, doctors seen, 
insurance information, and a text description of the visit.  The method of data entry 
and data storage ensures that it is well structured and can trivially be converted into a 
single large XML.  It is important to note that the text description is not simply stored 
as one large string but as a tree structure which can be lexically annotated far faster 
and with better accuracy compared with using natural language processing. A detailed 
discussion of this is out of the scope of this paper. 

After the XML is created annotations must be applied in order to assert the rules.  
Since the structure and schema of the XML is known a priori, annotation is simply 
performed by adding metadata to the correct tags.  The correct tags are identified 
using XPath.  This approach has a much higher accuracy them most types of semantic 
annotation techniques.  This is a result of knowing the structure of the XML prior to 
the annotation. 

The module that creates the XML and the module that annotates the XML are 
separate entities on different servers and implemented in different languages.  This 
was necessary as the legacy code is in ASP and most wide spread tools for XML and 
ontology querying are written in Java.  The two modules communicate by passing the 
XML from the ASP to the Java server via a REST based web service.  The addition of 
Web 2.0 technologies such as REST services allows much of the requests to generate 
from the client instead of the server.  This gives the application the ability to mask 
latency and allow easy integration in to client side scripting.  This solution offers 
much more than fixing the heterogeneity created by the two languages.  This solution 
also offers scalability and extensibility.  Allowing the memory and IO intensive 
ontology querying to be done independently of the application server frees up 
resources which may be used elsewhere. 

After annotation a third module applies rules to the annotations.  The rules used are 
written in RDQL.  A rule either checks for the existence of an edge or its absence.  
For example, an 'interaction' relationship should not exist between two drugs or there 
should be a relationship, 'covered', between a drug and patient’s insurance.  When 
these rules are broken metadata is added to the previously added annotations in the 
form of properties.  Once all of the annotations have been applied and the rules are 
asserted, the annotated XML makes its way back to the client where an XSLT is 
applied.  The XSLT turns the XML into HTML which can be made interactive and 
presented to the user for review and edits.   

Currently Panacea annotates doctors, problems, diagnosis, drugs, and patient 
demographics semantically.  The rest of the document is annotated lexically.  Queries 
that could be ran against these annotation include but are not limited to: 

• drug-drug interaction check,  
• drug formulary check (e.g., whether the drug is covered by the insurance 

company of the patient, and if not what the alternative drugs in the same 
class of drug are),  

• drug dosage range check,  



922 A. Sheth et al. 

• drug-allergy interaction check,  
• ICD-9 annotations choice for the physician to validate and choose the best 

possible code for the treatment type, and  
• preferred drug recommendation based on drug and patient insurance 

information  

Figure 5 depicts the architecture of the Active Semantic Document component of 
Panacea. 

 
 

Fig. 5. ASEMR Architecture 

6   Deployment and Evaluation 

At AHC, the main site of deployment, the application accommodates between 78 and 
80 patient encounters per day, most of which are seen within a four hour time frame.  
The AHC, with two physicians, two to four mid-level providers, eight nurses, and 
four nuclear and echo technicians, relies on Panacea/ASEMR for fully Web-based 
paperless operations for all functions except for billing (which is currently under 
development).   The semantically annotated document creation in conjunction with 
workflow solutions such as patient tracking has allowed the AHC to operate in ‘real 
time’ mode such that the physicians and their assistants are able to complete all 
documentation for the patient’s visit during the encounter.   Prior to deploying 
ASEMR, majority of charts were completed in Panacea after patient hours, often 
requiring mid-level providers to complete them over the weekend. 

As a result of Panacea deployment first, followed by its ASEMR extension, the 
AHC has greatly increased the volume of patients which they are able to care for, and 



 Active Semantic Electronic Medical Record 923 

importantly, without increasing its clinical staff.  Figure 6 shows the growth of the 
AHC since March of 2004.  This data was obtained by querying the database for the 
number of appointments scheduled.  The development of Panacea began in the year 
2002 and the ASEMR was deployed in December 2005; it became fully operational in 
January 2006.  In other words, data prior to December 2005 reflects pre-semantic 
situation (as Panacea did not have any semantic/ontological/rule support, and the data 
after January 2006 reflect situation after deploying the semantic technology.  The 
number of clinical staff members and facility remained relatively consistent 
throughout the entire sample period.  The AHC saw growth in 2005 as they scheduled 
around 1000-1200 patients per month.  The patient volume for the year 2006 has 
started at a consistent growth rate of 25-30%, with March peaking around 1400 
appointments scheduled per month.  Even with this increase in patient volume, the 
physician assistants are able to accompany the physicians to the hospital immediately 
after clinic hours instead of charting until late evening hours.  Before the deployment 
of the new annotation view supported in ASEMR the mid-level providers remained in 
the office an additional 4-5 hours charting after the clinic closed.  Main reason for the 
work remaining after clinical hours related to the need to insure consistency, 
completeness and correctness of the patient record (e.g., the CPT and ICD9 codes that 
form parts of billing information captured as part of coding of impressions).  Since 
ASEMR addressed these issues through semantics and rules.  Since the time we 
completed the training of clinical staff, all charts are completed before the clinic 
closes, and in most cases a chart is completed while the patient is still in the office.   

400

500

600

700

800

900

1000

1100

1200

1300

1400

jan fe
b

m
ar ap

r
m

ay jun jul au
g

se
p

oc
t

no
v

de
c

Month

A
p

p
o

in
tm

en
ts

2003

2004

2005

2006

 

Fig. 6. Athens Heart Center Practice Growth 



924 A. Sheth et al. 

Even with this increase in patient volume, the physician assistants are able to 
accompany the physicians to the hospital immediately after clinic hours instead of 
charting until late evening hours.  Before the deployment of the new annotation view 
supported in ASEMR the mid-level providers remained in the office an additional 4-5 
hours charting after the clinic closed.  Figures 7 and 8 show the dramatic change in the 
number of charts completed on the same day versus the number of charts backlogged at 
the end of the day for pre-deployment and post-deployment months respectively. 

0

100

200

300

400

500

600

Ja
n 
04

M
ar

 0
4

M
ay

 0
4

Ju
l 0

4

Se
pt

 0
4

Nov
 0
4

Ja
n 
05

M
ar

 0
5

M
ay

 0
5

Ju
l 0

5

Month/Year

C
h
ar

ts Same Day

Back Log

 

Fig. 7. Chart Completion before the preliminary deployment of the ASMER 

0

100

200

300

400

500

600

700

Sept

05

Nov 05 Jan 06 Mar 06

Month/Year

C
h
a
r
ts Same Day

Back Log

 

Fig. 8. Chart Completion after the preliminary deployment of the ASMER 

We have observed improvement in the patient satisfaction such as through the use 
formulary check as this could reduce patient costs through the check for medication 
with lower co-payments and insurance coverage, and the benefits associated with the 
use coding impression on improved billing as the basis of improved medical records 
and billing. Our next challenge is to measure these improvements and benefits 
quantitatively as part of an effort to develop and share return on investment (ROI) 
measures. As an aside, this work has in part enabled us to be an active member of 



 Active Semantic Electronic Medical Record 925 

W3C’s interest Group on Semantic Web for Heath Care and Life Sciences, and 
provide the perspective of semantic Web applications and deployments in health care 
arena with a focus on smaller practices [10]. 

Given that this work was done in a live, operational environment, it is nearly 
impossible to evaluate this system in a “clean room” fashion, with completely 
controlled environment – no doctors’ office has resources or inclination to subject to 
such an intrusive, controlled and multistage trial. Evaluation of an operational system 
also presents many complexities, such as perturbations due to change in medical 
personnel and associated training.  In this context, we believe we have been able to 
present convincing evaluation of the benefits of a semantic technology.   

7   Related Work 

Some other healthcare applications have benefited from the use of ontologies.  Chen 
et al. have experimented with step-wise automation of clinical pathways for each 
patient, in particular, according to the patient’s personal health condition at the time 
of consultation in [4]. Their approach uses ontologies and web services; however, this 
approach does not propose the use of rules to supplement domain knowledge to 
compensate for the limitations of OWL. BioDASH [2] is a Semantic Web prototype 
of a Drug Development Dashboard that associates disease, compounds, drug 
progression stages, molecular biology, and pathway knowledge for a team of users. 
This work mentions use of rule-based processing using off-the-shelf RDF inference 
engines, and the use of rules to filter and merge data.   Kashyap et al present a 
semantics-based approach to automate structured clinical documentation based on a 
description logics (DL) system for ontology management in [5].  This paper describes 
the use of document and domain ontologies. Onto-Med Research Group has designed 
Onto-Builder [7], a tool designed to support the construction and administration of 
Data Dictionaries in the field of clinical trials.  This standard Data Dictionary is then 
used in the collection and analysis of clinical trials data. Quality assurance in carrying 
out clinical trials and uniformity are some benefits to such ontology.   

We also note that as a “SW in Use” track paper, we focus on discussing a deployed 
system demonstrating the use of semantic web, rather than attempt to distinguish 
research contributions with respect to years of research in AI and decision support in 
healthcare, some of which took much longer to mature and find operational use than 
the new newer technologies.  The newer technologies encompassing Semantic Web, 
SOA and Web 2.0 offer many practical advantages, including ease of use, deployment 
and maintenance, which we have not discussed in detail due to space limitations. 
Resources such as OpenClinical (http://www.openclinical.org/), where this system is 
also listed, provide extensive complementary material covering research, applications 
and demonstrations.  

8   Conclusion and Future Work 

The approach proposed in this paper combines three ontologies with rules in order to 
enhancing the accuracy of EMRs both by providing clinical decision support and 
improving the correctness of medical coding therefore reducing the number of 
rejected claims.  We have presented a semantic approach which improves patient care 



926 A. Sheth et al. 

and satisfaction, and enables healthcare providers to complete all charge entry and 
documentation before the patient has left the office. At this time, we are unaware of 
any application similar to ASEMR that is in daily use, especially at small practices in 
any field of health care. During ISWC 2006, we have planned to organize group visits 
to AHC (which is 5 minutes from the conference venue) to enable all interested 
persons to observe the use of ASEMR in person (a canned demo is at 
http://lsdis.cs.uga.edu/projects/asdoc/). This work also demonstrate successful 
collaboration between academic research and small medical clinics.  For business and 
legal reasons, we are unable to present some details such as error detection and 
reduction in this paper. 

The ASEMR approach can be extended to provide decision support on a deeper 
level.  For example, semantic associations [12] can be discovered to find even obscure 
relationships between symptoms, patient details, and treatments.  Semantic alerts will 
also be explored in future versions such as when a physician scrolls down on the list of 
drugs and clicks on the desired drug, any study, clinical trial, or news item about the 
drug and other related drugs in the same category can be displayed.  In addition 
ontologies can be utilized to find contradictions and mistakes in the medical report. 
Another key area of extension that we are also working on include coupling this system 
with a billing system with higher degree of automation (e.g., with better workflow and 
better validation of billing data) than current state of the art in medical billing. 

Acknowledgements. We thank M. Eavenson, C. Henson, and D. Palaniswami at 
LSDIS for their effort in ontology design and population.  

References 

1. Agency for Healthcare Research & Quality   
http://ahrq.gov/news/press/pr2005/lowehrpr.htm 

2. E. Neumann and D. Quan, BioDASH: A Semantic Web Dashboard for Drug 
Development, Pacific Symposium on Biocomputing 11:176-187(2006) Also,  
http://www.w3.org/2005/04/swls/BioDash/Demo/ 

3. Centers for Medicare and Medicaid Services http://www.cms.hhs.gov/ 
4. H. Chen, D. Colaert, J. De Roo, Towards Adaptable Clinical Pathway Using Semantic 

Web Technology, W3C Workshop Semantic Web for Life Science, 2004.  
5. V. Kashyap, A. Morales, T. Hongsermeier and Q. Li Definitions Management: A 

semantics-based approach for Clinical Documentation in Healthcare DeliveryIndustrial 
Track, Proceedings of the 4th International Semantic Web Conference, November 2005  

6. D. McGuinness, and F. Harmelen, eds. OWL Web Ontology Language Overview 
http://www.w3.org/TR/owl-features/ 

7. Open Clinical http://www.openclinical.org/dm_ontobuilder.html 
8. SNOMED http://www.snomed.org/ 
9. A. Seaborne, RDQL - A Query Language for RDFW3C Member Submission 9 January 

2004, http://www.w3.org/Submission/RDQL/ 
10. W3, Semantic Web in Health-care and Life Sciences, www.w3.org/2005/04/swls/ 
11. Wordnet http://wordnet.princeton.edu/ 
12. K. Anyanwu and A. Sheth, “The ρ Operator: Discovering and Ranking Associations on 

the Semantic Web,” The Twelfth International World Wide Web Conference, Budapest, 
Hungary, May 2003, pp. 690-699. 



Foafing the Music: Bridging the Semantic Gap
in Music Recommendation

Òscar Celma

Music Technology Group, Universitat Pompeu Fabra, Barcelona, Spain
http://mtg.upf.edu

Abstract. In this paper we give an overview of the Foafing the Mu-
sic system. The system uses the Friend of a Friend (FOAF) and RDF
Site Summary (RSS) vocabularies for recommending music to a user,
depending on the user’s musical tastes and listening habits. Music in-
formation (new album releases, podcast sessions, audio from MP3 blogs,
related artists’ news and upcoming gigs) is gathered from thousands of
RSS feeds.

The presented system provides music discovery by means of: user pro-
filing (defined in the user’s FOAF description), context based information
(extracted from music related RSS feeds) and content based descriptions
(extracted from the audio itself), based on a common ontology (OWL
DL) that describes the music domain.

The system is available at: http://foafing-the-music.iua.upf.edu

1 Introduction

The World Wide Web has become the host and distribution channel of a broad
variety of digital multimedia assets. Although the Internet infrastructure allows
simple straightforward acquisition, the value of these resources lacks of powerful
content management, retrieval and visualization tools. Music content is no excep-
tion: although there is a sizeable amount of text–based information about music
(album reviews, artist biographies, etc.) this information is hardly associated to
the objects they refer to, that is music music files (MIDI and/or audio). More-
over, music is an important vehicle for communicating other people something
relevant about our personality, history, etc.

In the context of the Semantic Web, there is a clear interest to create a Web
of machine-readable homepages describing people, the links among them, and
the things they create and do. The FOAF (Friend Of A Friend) project1 pro-
vides conventions and a language to describe homepage–like content and social
networks. FOAF is based on the RDF/XML2 vocabulary. We can foresee that
with the user’s FOAF profile, a system would get a better representation of the
user’s musical needs. On the other hand, the RSS vocabulary3 allows to syndi-
cate Web content on Internet. Syndicated content includes data such as news,
1 http://www.foaf-project.org
2 http://www.w3.org/RDF
3 http://web.resource.org/rss/1.0/

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 927–934, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



928 Ò. Celma

events listings, headlines, project updates, as well as music related information,
such as new music releases, album reviews, podcast sessions, upcoming gigs, etc.

2 Background

The main goal of a music recommendation system is to propose, to the end-user,
interesting and unknown music artists (and their available tracks, if possible),
based on user’s musical taste. But musical taste and music preferences are af-
fected by several factors, even demographic and personality traits. Then, the
combination of music preferences and personal aspects —such as: age, gender,
origin, occupation, musical education, etc.— could improve music recommenda-
tions [7]. Some of this information can be denoted using FOAF descriptions.

Moreover, a desirable property of a music recommendation system should be
the ability of dynamically getting new music related information, as it should
recommend new items to the user once in a while. In this sense, there is a
lot of freely available (in terms of licensing) music on Internet, performed by
“unknown” artists that can suit perfectly for new recommendations. Nowadays,
music websites are noticing the user about new releases or artist’s related news,
mostly in the form of RSS feeds. For instance, iTunes Music Store4 provides
an RSS (version 2.0) feed generator5, updated once a week, that publishes new
releases of artists’ albums. A music recommendation system should take advan-
tage of these publishing services, as well as integrating them into the system, in
order to filter and recommend new music to the user.

2.1 Collaborative Filtering Versus Content Based Filtering

Collaborative filtering method consists of making use of feedback from users
to improve the quality of recommended material presented to users. Obtaining
feedback can be explicit or implicit. Explicit feedback comes in the form of
user ratings or annotations, whereas implicit feedback can be extracted from
user’s habits. The main caveats of this approach are the following: the cold-
start problem, the novelty detection problem, the item popularity bias, and the
enormous amount of data (i.e users and items) needed to get some reasonable
results [3]. Thus, this approach to recommend music can generate some “silly” (or
obvious) answers. Anyway, there are some examples that succeed based on this
approach. For instance, Last.fm6 or Amazon [4] are good illustration systems.

On the other hand, content based filtering tries to extract useful information
from the items data collection, that could be useful to represent user’s musical
taste. This approach solves the limitation of collaborative filtering as it can rec-
ommend new items (even before the system does not know anything about that
item), by comparing the actual set of user’s items and calculating a distance with
some sort of similarity measure. In the music field, extracting musical semantics
4 http://www.apple.com/itunes
5 http://phobos.apple.com/WebObjects/MZSearch.woa/wo/0.1
6 http://www.last.fm



Foafing the Music: Bridging the Semantic Gap in Music Recommendation 929

from the raw audio and computing similarities between music pieces is a chal-
lenging problem. In [5], Pachet proposes a classification of musical metadata,
and how this classification affects music content management, as well as the
problems to face when elaborating a ground truth reference for music similarity
(both in collaborative and content based filtering).

2.2 Related Systems

Most of the current music recommenders are based on collaborative filtering
approach. Examples of such systems are: Last.fm, MyStrands7, MusicMobs8,
Goombah Emergent Music9, iRate10, and inDiscover11. The basic idea of a music
recommender system based on collaborative filtering is:

1. To keep track of which artists (and songs) a user listens to —through iTunes,
WinAmp, Amarok, XMMS, etc. plugins,

2. To search for other users with similar tastes, and
3. To recommend artists (or songs) to the user, according to these similar lis-

teners’ taste.

On the other hand, the most noticeable system using (manual) content based
descriptions to recommend music is Pandora12. The main problem of the system
is the scalability, because all the music annotation process is done manually.

Contrastingly, the main goal of the Foafing the Music system is to recom-
mend, to discover and to explore music content; based on user profiling (via
FOAF descriptions), context based information (extracted from music related
RSS feeds), and content based descriptions (automatically extracted from the
audio itself [1]). All of that being based on a common ontology that describes
the musical domain. To our knowledge, nowadays it does not exist any system
that recommends items to a user, based on FOAF profiles. Yet, there is the
FilmTrust system13. It is a part of a research study aimed to understanding how
social preferences might help web sites to present information in a more useful
way. The system collects user reviews and ratings about movies, and holds them
into the user’s FOAF profile.

3 System Overview

The overview of the system is depicted in Fig. 1. The next two sections explain
the main components of the system, that is how to gather data from third
party sources, and how to recommend music to the user based on crawled data,
semantic description of music titles, and audio similarity.
7 http://www.mystrands.com
8 http://www.musicmobs.com
9 http://goombah.emergentmusic.com/

10 http://irate.sourceforge.net
11 http://www.indiscover.net/
12 http://www.pandora.com/
13 http://trust.mindswap.org/FilmTrust



930 Ò. Celma

Fig. 1. Architecture of the Foafing the Music system

3.1 Gathering Music Related Information

Personalized services can raise privacy concerns, due to the acquisition, storage
and application of sensitive personal information [6]. A novelty approach is used
in our system: information about the users is not stored into the system in any
way. Users’ profiles are based on the FOAF initiative, and the system has only a
link pointing to the user’s FOAF URL. Thus, the sensitivity of this data is up to
the user, not to the system. Users’ profiles in Foafing the Music are distributed
over the net.

Regarding music related information, our system exploits the mashup ap-
proach. The system uses a set of public available APIs and web services sourced
from third party websites. This information can come in any of the different
RSS family (v2.0, v1.0, v0.92 and mRSS), as well as in the Atom format. Thus,
the system has to deal with syntactically and structurally heterogeneous data.
Moreover, the system keeps track of all the new items that are published in the
feeds, and stores the new incoming data into a historic relational database. Input
data of the system is based on the following information sources:

– User listeninghabits.To keep track of the user’s listening habits, the system
uses the services provided by Last.fm. This system offers a web–based API —
as well as a list of RSS feeds— that provide the most recent tracks a user has
played. Each item feed includes, then, the artist name, the song title, and a
timestamp —indicating when the user has listened to the track.

– New music releases. The system uses a set of RSS that notifies new music
releases. Next table shows the contribution of each RSS feed into the historic
database of the system:



Foafing the Music: Bridging the Semantic Gap in Music Recommendation 931

RSS Source Percent

iTunes 45.67%
Amazon 42.33%

Oldies.com 2.92%
Yahoo Shopping 0.29%

Others 8.79%

– Upcoming concerts. The system uses a set of RSS feeds that syndicates
music related events. The websites are: Eventful.com, Upcoming.org, San
Diego Reader14 and Sub Pop record label15. Once the system has gathered
all the new items, it queries to the Google Maps API to get the geographic
location of the venues.

– Podcast sessions. The system gathers information from a list of RSS feeds
that publish podcasts sessions.

– MP3 Blogs. The system gathers information from a list of MP3 blogs that
talk about artists and songs. Each item feed contains a list of links to the
audio files.

– Album reviews. Information about album reviews are crawled from the RSS
published by Rateyourmusic.com, Pitchforkmedia.com, 75 or less records16,
and Rolling Stone online magazine17.

Table 1. Information gathered from RSS feeds is stored into a historic relational
database

RSS Source # Seed feeds # Items crawled per week # Items stored
New releases 44 980 58,850

Concerts 14 470 28,112
Podcasts 830 575 34,535

MP3 blogs 86 2486 (avg. of 19 audios per item) 149,161
Reviews 8 458 23,374

Table 1 shows some basic statistics of the data that has been gathered since
mid April, 2005 until the first week of July, 2006 (except for the album reviews
that started in mid June, 2005). These numbers show that the system has to
deal with a daily fresh incoming data.

On the other hand, we have defined a music ontology18 (OWL DL) that
describes basic properties of the artists and the music titles, as well as some
descriptors extracted from the audio (e.g. tonality —key and mode—, ryhthm
—tempo and measure —, intensity, danceability, etc.). In [2] we propose a way to

14 http://www.sdreader.com/
15 http://www.subpop.com/
16 http://www.75orless.com/
17 http://www.rollingstone.com/
18 The OWL DL music ontology is available at: http://foafing-the-music.iua.upf.edu/

music-ontology#



932 Ò. Celma

map our ontology and the MusicBrainz ontology, within the MPEG-7 standard,
that acts as an upper-ontology for multimedia description.

A focused web crawler has been implemented in order to add instances to
the music ontology. The crawler extracts metadata of artists and songs, and the
relationships between artists (such as: “related with”, “influenced by”, “follow-
ers of”, etc.). The seed sites to start the crawling process are music metadata
providers19, and independent music labels20. Thus, the music repository does
not consist only of mainstream artists.

Based on the music ontology, the example 1.1 shows the RDF/XML descrip-
tion of an artist from Garageband.com.

<rdf:Description rdf:about ="http://www.garageband .com/artist/
randycoleman ">

<rdf:type rdf:resource ="&music;Artist"/>
<music:name >Randy Coleman </music:name >
<music:decade >1990 </ music:decade >
<music:decade >2000 </ music:decade >
<music:genre >Pop</music:genre >
<music:city >Los Angeles </music:city >
<music:nationality >US</music:nationality >
<geo:Point >

<geo:lat >34.052</geo:lat >
<geo:long > -118.243 </ geo:long >

</geo:Point >
<music:influencedBy

rdf:resource ="http://www.coldplay .com"/>
<music:influencedBy

rdf:resource ="http://www.jeffbuckley .com"/>
<music:influencedBy

rdf:resource ="http://www.radiohead .com"/>
</rdf:Description >

Listing 1.1. Example of an artist individual

Example 1.2 shows the description of a track individual of the above artist:
<rdf:Description rdf:about ="http://www.garageband .com/song ?|

pe1|S8LTM0LdsaSkaFeyYG0 ">
<rdf:type rdf:resource ="&music;Track"/>
<music:title >Last Salutation </music:title >
<music:playedBy rdf:resource ="http://www.garageband .com/

artist/randycoleman " />
<music:duration >247</music:duration >
<music:key >D</music:key >
<music:keyMode >Major</music:keyMode >
<music:tonalness >0.84 </ music:tonalness >
<music:tempo >72</music:tempo >

</rdf:Description >

Listing 1.2. Example of a track individual

19 Such as http://www.mp3.com, http://music.yahoo.com,
http://www.rockdetector.com, etc.

20 E.g. http://www.magnatune.com, http://www.cdbaby.com and
http://www.garageband.com



Foafing the Music: Bridging the Semantic Gap in Music Recommendation 933

These individuals are used in the recommendation process, to retrieve artists
and songs related with user’s musical taste.

3.2 Music Recomendation Process

This section explains the music recommendation process, based on all the in-
formation that is continuously been gathered. Music recommendations, in the
Foafing the Music system, are generated according to the following steps:

1. Get music related information from user’s FOAF interests, and user’s listen-
ing habits

2. Detect artists and bands
3. Compute similar artists, and
4. Rate results by relevance.

In order to gather music related information from a FOAF profile, the system
extracts the information from the FOAF interest property (if dc:title is given
then it gets the text, otherwise it gathers the text from the title tag of the
resource).

Based on the music related information gathered from the user’s profile and
listening habits, the system detects the artists and bands that the user is inter-
ested in (by doing a SPARQL query to the artists’ individuals repository). Once
the user’s artists have been detected, artist similarity is computed. This process
is achieved by exploiting the RDF graph of artists’ relationships.

The system offers two ways of recommending music information. Static rec-
ommendations are based on the favourite artists encountered in the FOAF pro-
file. We assume that a FOAF profile would be barely updated or modified. On
the other hand, dynamic recommendations are based on user’s listening habits,
which is updated much more often that the user’s profile. With this approach
the user can discover a wide range of new music and artists.

Once the recommended artists have been computed, Foafing the Music filters
music related information coming from the gathered information (see section
3.1) in order to:

– Get new music releases from iTunes, Amazon, Yahoo Shopping, etc.
– Download (or stream) audio from MP3–blogs and Podcast sessions,
– Create, automatically, XSPF21 playlists based on audio similarity,
– Read Artists’ related news, via the PubSub.com server22

– View upcoming gigs happening near to the user’s location, and
– Read album reviews.

Syndication of the website content is done via an RSS 1.0 feed. For most of
the above mentioned functionalities, there is a feed subscription option to get
the results in the RSS format.
21 http://www.xspf.org/. XSPF is playlist format based on XML syntax
22 http://www.pubsub.com



934 Ò. Celma

4 Conclusions

We have proposed a system that filters music related information, based on a
given user’s profile and user’s listening habits. A system based on FOAF profiles
and user’s listening habits allows to “understand” a user in two complemen-
tary ways; psychological factors —personality, demographic preferences, socio-
economics, situation, social relationships— and explicit musical preferences. In
the music field context, we expect that filtering information about new music
releases, artists’ interviews, album reviews, etc. can improve a recommendation
system in a dynamic way.

Foafing the Music is accessible through http://foafing-the-music.iua.upf.edu

Acknowledgements

This work is partially funded by the SIMAC IST-FP6-507142, and the SALERO
IST-FP6-027122 European projects.

References

1. O. Celma, P. Cano, and P. Herrera. Search sounds: An audio crawler focused on
weblogs. In Proceedings of 7th International Conference on Music Information Re-
trieval, Victoria, Canada, 2006.

2. R. Garcia and O. Celma. Semantic integration and retrieval of multimedia metadata.
In Proceedings of 4rd International Semantic Web Conference. Knowledge Markup
and Semantic Annotation Workshop, Galway, Ireland, 2005.

3. J. L. Herlocker, J. A. Konstan, L. G. Terveen, and J. T. Riedl. Evaluating collabo-
rative filtering recommender systems. ACM Trans. Inf. Syst., 22(1):5–53, 2004.

4. G. Linden, B. Smith, and J. York. Amazon.com recommendations: Item-to-item
collaborative filtering. IEEE Internet Computing, 4(1), 2003.

5. F. Pachet. Knowledge Management and Musical Metadata. Idea Group, 2005.
6. E. Perik, B. de Ruyter, P. Markopoulos, and B. Eggen. The sensitivities of user pro-

file information in music recommender systems. In Proceedings of Private, Security,
Trust, 2004.

7. A. Uitdenbogerd and R. van Schnydel. A review of factors affecting music recom-
mender success. In Proceedings of 3rd International Conference on Music Informa-
tion Retrieval, Paris, France, 2002.



Semantic MediaWiki

Markus Krötzsch1, Denny Vrandečić1, and Max Völkel2

1 AIFB, Universität Karlsruhe, Germany
2 FZI Karlsruhe, Germany

Abstract. Semantic MediaWiki is an extension of MediaWiki – a widely used
wiki-engine that also powers Wikipedia. Its aim is to make semantic technologies
available to a broad community by smoothly integrating them with the estab-
lished usage of MediaWiki. The software is already used on a number of produc-
tive installations world-wide, but the main target remains to establish “Semantic
Wikipedia” as an early adopter of semantic technologies on the web. Thus usabil-
ity and scalability are as important as powerful semantic features.

1 Introduction

Wikis have become popular tools for collaboration on the web, and many vibrant online
communities employ wikis to exchange knowledge. For a majority of wikis – public or
not – primary goals are to organise the collected knowledge and to share this informa-
tion. We present the novel wiki-engine Semantic MediaWiki [1] that leverages semantic
technologies to address those challenges.

Wikis are usually viewed as tools to manage online content in a quick and easy way,
by editing some simple syntax known as wiki-text. This is mainly plain text with some
occasional markup elements. For example, a link to another page is created by enclosing
the page’s name in brackets, e.g. by writing [[Danny Ayers]]. To enhance usability, we
introduce new features by gently extending such known syntactical elements.

2 System Overview

Semantic MediaWiki (SMW)1 is a semantically enhanced wiki engine that enables
users to annotate the wiki’s contents with explicit, machine-readable information. Using
this semantic data, SMW addresses core problems of today’s wikis:

– Consistency of content: The same information often occurs on many pages. How
can one ensure that information in different parts of the system is consistent, espe-
cially as it can be changed in a distributed way?

– Accessing knowledge: Large wikis have thousands of pages. Finding and compar-
ing information from different pages is a challenging and time-consuming task.

– Reusing knowledge: Many wikis are driven by the wish to make information acces-
sible to many people. But the rigid, text-based content of classical wikis can only
be used by reading pages in a browser or similar application.

1 SMW is free software, and can be downloaded at http://sourceforge.net/projects/
semediawiki/ (current version 0.5). Sites on which SMW is already running are given below.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 935–942, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



936 M. Krötzsch, D. Vrandečić, and M. Völkel

But for a wiki it does not suffice to provide some technologies to solve these prob-
lems – the key is to make those technologies accessible to a broad community of non-
expert users. The primary objective for SMW therefore is the seamless integration of
semantic technologies into the established usage patterns of the existing MediaWiki
system. For this reason, SMW also is available in multiple languages and was designed
to easily support further localisation.

Semantic wikis are technologically interesting due to their similarity with certain
characteristics of the Web in general. Most importantly, information is dynamic and
changes in a decentralised way, and there is no central control of the wiki’s content.
In our case, this even extends to the available annotations: there is no central control
for the annotation schema. Decentralisation leads to heterogeneity, but wikis still have
had tremendous success in integrating heterogeneous views. SMW ensures that existing
processes of consensus finding can also be applied to the novel semantic parts. While
usually not its primary use, wikis contain not only text but also uploaded files, espe-
cially pictures and similar multimedia content. All functions described below are also
available for such extended content.

Details of practical usage are discussed in the next Sect. 3. SMW is based on a simple
and unobtrusive mechanism for semantic annotation (Sect. 3.1). Users provide special
markup within a page’s wiki-text, and SMW unambiguously maps those annotations
into a formal description using the OWL DL ontology language. To make immediate use
of the semantic data, the wiki supports a simple yet powerful query language (Sect. 3.2).
By embedding queries into wiki-text, users can create dynamic pages that incorporate
current query results (Sect. 3.3).

As we will see Sect. 4, SMW also provides various interfaces to data and tools
on the Semantic Web. To enable external reuse, formal descriptions for one or more
articles can be obtained via a web interface in OWL/RDF format (Sect. 4.1). As re-
viewed in Sect. 4.2, it is also possible to import data from OWL ontologies and to map
wiki-annotations to existing vocabularies such as FOAF. Since SMW strictly adheres
to the OWL DL standard, the exported information can be reused in a variety of tools
(Sect. 4.3). As a demonstration, we provide an external SPARQL query service that is
synchronised with the wiki’s semantic content.

Semantic wikis have many possible applications, but the main goal of SMW is to
provide the basis for creating a Semantic Wikipedia. Consequently, the software has a
particular focus on scalability and performance. Basic operations such as saving and
displaying of articles require only little resources. Even evaluation of queries can usu-
ally be achieved in linear time wrt. the number of annotations [2]. In Sect. 5, we give
examples that illustrate the high practical relevance of the problems we claimed above,
and we sketch the fascinating opportunities that semantic information in Wikipedia
would bring. Finally, we present some further current practical uses of SMW in Sect. 6,
and give a brief summary and outlook on upcoming developments in Sect. 7.

3 Practical Usage: Ontoworld.org

We illustrate the practical use of SMW via the example of http://ontoworld.org,
which is a community wiki for the Semantic Web and related research areas. It contains



Semantic MediaWiki 937

information about community members, upcoming events, tools and developments. Re-
cently, SMW was also used as a social wiki for various conferences2, and the evaluation
and user feedback made it clear that a single long-term wiki like ontoworld.org would
be more advantageous than many short-living conference wikis.

In the following, we introduce the main novelties that a user encounters when using
SMW instead of a simple MediaWiki.

3.1 Annotating Pages

The necessary collection of semantic data in SMW is achieved by letting users add an-
notations to the wiki-text of articles via a special markup. Every article corresponds to
exactly one ontological element (including classes and properties), and every annota-
tion in an article makes statements about this single element. This locality is crucial for
maintenance: if knowledge is reused in many places, users must still be able to under-
stand where the information originally came from. Furthermore, all annotations refer
to the (abstract) concept represented by a page, not to the HTML document. Formally,
this is implemented by choosing appropriate URIs for articles.

Most of the annotations that occur in SMW correspond to simple ABox statements in
OWL DL, i.e. they describe certain individuals by asserting relations between them, an-
notating them with data values, or classifying them. The schematic information (TBox)
representable in SMW is intentionally shallow. The wiki is not intended as a general
purpose ontology editor, since distributed ontology engineering and large-scale reason-
ing are currently problematic.3

Categories are a simple form of annotation that allows users to classify pages. Cate-
gories are already available in MediaWiki, and SMW merely endows them with a
formal interpretation as OWL classes. To state that the article ESWC2006 belongs
to the category Conference, one just writes [[Category:Conference]]within
the article ESWC2006.

Relations describe relationships between two articles by assigning annotations to ex-
isting links. For example, there is a relation program chair between ESWC2006
and York Sure. To express this, users just edit the page ESWC2006 to change the
normal link [[York Sure]] into [[program chair::York Sure]].

Attributes allow users to specify relationships of articles to things that are not arti-
cles. For example, one can state that ESWC2006 started at June 11 2006 by writing
[[start date:=June 11 2006]]. In most cases, a relation to a new page June
11 2006would not be desired. Also, the system should understand the meaning of
the given date, and recognise equivalent values such as 2006-06-11.

Annotations are usually not shown at the place where they are inserted. Category
links appear only at the bottom of a page, relations are displayed like normal links, and
attributes just show the given value. A factbox at the bottom of each page enables users
to view all extracted annotations, but the main text remains undisturbed.

2 WWW 2006, Edinburgh, Scotland and ESWC 2006, Budva, Montenegro.
3 However, SMW has been used in conjunction with more expressive background ontologies,

which are then evaluated by external OWL inference engines [3].



938 M. Krötzsch, D. Vrandečić, and M. Völkel

It is obvious that the processing of Attributes requires some further information about
the Type of the annotations. Integer numbers, strings, and dates all require different
handling, and one needs to state that an attribute has a certain type. As explained above,
every ontological element is represented as an article, and the same is true for categories,
relations, and attributes. This also has the advantage that a user documentation can be
written for each element of the vocabulary, which is crucial to enable consistent use of
annotations.

The types that are available for attributes also have dedicated articles. In order to
assign a type in the above example, we just need to state a relationship between
Attribute:start date and Type:Date. This relation is called has type (in Eng-
lish SMW) and has a special built-in meaning.4 SMW has a number of similar special
properties that are used to specify certain technical aspects of the system, but most users
can reuse existing annotations and do not have to worry about underlying definitions.

3.2 Querying and Searching

Nobody will spend time on annotating a wiki if there is no immediate benefit for us-
age. We already mentioned that a factbox is displayed in each article, and this factbox
also features quicklinks for browsing and searching. For example, attributes that denote
geographic coordinates will produce links to online map services. However, the main
advantage for users within the wiki is SMW’s querying capability.

Users can search for articles using a simple query language that was developed based
on the known syntax of the wiki. Indeed, the query for retrieving all articles that have
York Sure as a program chair, one simply writes [[program chair::York Sure]].
In other words, the syntax for specifying an annotation is identical with the syntax for
searching it. Multiple such query statements are interpreted conjunctively.

The query language becomes more powerful by allowing searches that include wild-
cards, ranges, and subqueries. For example, the query

[[Category:Conference]] [[start date:=>May 14 2006]]
[[program chair::<q>[[member of::AIFB]]</q>]]

displays all conferences that started after May 14 2006 and which had a program chair
from AIFB. We also remark that queries for category membership do a limited (sound
but not complete) form of reasoning to take subclass relationships into account. Further
information on the query language is found in the online documentation.5

3.3 Dynamic Pages

The query functionality of SMW can be used to embed dynamic content into pages,
which is a major advantage over traditional wikis. To do so, an inline query is written
in wiki-text and enclosed in <ask> and </ask>. The article then shows the results of
the given query at this position. Moreover, the query syntax involves statements for
displaying further properties of the retrieved results, and for modifying the appearance
within the page.

4 Also, it is treated as an owl:AnnotationProperty in order to stay in OWL DL.
5 http://ontoworld.org/wiki/Help:Inline_queries



Semantic MediaWiki 939

Fig. 1. Dynamic content on the main page of ontoworld.org

For example, the Main Page of ontoworld.org displays upcoming events, their dates
and locations (see Fig. 1). Those results are generated dynamically by looking for con-
ferences starting after the current date, ordering them according to their dates, and
printing the first five results.

Many other forms of inline queries can be found in the online documentation.

4 Reuse in the Semantic Web

4.1 Mapping to OWL DL

In this section, we describe how annotations in SMW are formally grounded in OWL.
As explained above, every article represents an ontological element, i.e. an element of
one of the RDF classes Thing, Class, ObjectProperty, DatatypeProperty, and
AnnotationProperty. Moreover, every article needs a URI which is different from
its URL in order to prevent confusion of concepts and HTML pages. We map each
URL injectively to a URI which, when requested in a browser, will still be redirected to
the original URL.6

The type of the elements is fixed for most kind of annotations. Normal articles are
just OWL individuals, categories become classes, and relations become object prop-
erties between articles. Attributes might be datatype, annotation, or object properties,
depending on their type within the wiki.

Based on this mapping, SMW generates OWL/RDF for any page on request. The
simplest way to access this RDF is to use the link “View as RDF” at the bottom of each
annotated page. More elaborate export settings, which also allow bulk export, backlink
inclusion, and recursive export, are found on a dedicated special page.7 This page also
serves as an endpoint for external services that want to access the wiki’s semantic data.

4.2 Reusing Existing Ontologies

Since SMW is compatible with the OWL DL knowledge model, it is also feasible to use
existing ontologies within the wiki. This is possible in two ways: ontology import is a
feature that allows to create and modify pages in the wiki to represent the relationships

6 This does not work in all cases, since OWL/RDF requires the use of URIs as XML ids, which
in turn cannot use all characters allowed in URLs.

7 See http://ontoworld.org/wiki/Special:ExportRDF .



940 M. Krötzsch, D. Vrandečić, and M. Völkel

that are given in some existing OWL DL document; vocabulary reuse allows users to
map wiki pages to elements of existing ontologies.

The ontology import feature employs the RAP8 toolkit for reading RDF documents,
and extracts statements that can be represented in the wiki. Article names for imported
elements are derived from their labels, or, if no labels are available, from the sec-
tion identifier of their URI. The main purpose of the import is to bootstrap a skele-
ton for filling the wiki. Also, ontology import inserts special annotations that generate
equivalence statements in the OWL export (i.e. owl:sameAs, owl:equivalentClass, or
owl:equivalentProperty). Importing ontologies is only allowed for site administrators,
since it could otherwise be used to spam the wiki with thousands of new articles.

Importing vocabulary allows users to identify elements of the wiki with elements of
existing ontologies. For example, the Category:Person in our online example is di-
rectly exported as the class foaf:Person of the Friend-Of-A-Friend vocabulary. Wiki
users can decide which pages of the wiki should have an external semantics, but the set
of available external elements is explicitly provided by administrator users. By making
some vocabulary element known to the wiki, they ensure that vocabulary reuse respects
the type constraints of OWL DL. For example external classes such as foaf:Person
cannot be imported as Relations.

4.3 External Reuse in Practice

OWL/RDF export is a means of allowing external reuse of wiki data, but only practi-
cal application of this feature can show the quality of the generated RDF. To this end,
we have employed a number of Semantic Web tools to the RDF output. SMW cooper-
ates nicely with most tested applications, such as FOAF Explorer, the Tabulator RDF
browser, or the Piggy Bank RDF browser extension. Details on the tested tools, includ-
ing their basic functionality and URL, are given at ontoworld.org.9

Moreover, we provide an externally hosted SPARQL querying service.10 The system
is based on the stand-alone RDF server Joseki11 that is synchronised with the semantic
content of the wiki. Synchronisation employs the wiki’s RSS feed for reporting recent
changes to reload changed articles quickly. The SPARQL endpoint thus demonstrates
that it is feasible to mirror the wiki’s RDF content via small incremental updates, and
offers another access point for semantic technologies to reuse the data.

5 Wikipedia

The most important usage scenario for SMW are the various project sites of the Wiki-
media foundation, especially the different language versions of Wikipedia. We already
mentioned that ease of use and scalability are central for this application, and SMW
has been built to fulfil these requirements. On the other hand, Wikipedia has no reason
to use a novel extension at all if it does not bring immediate advantages. However, the

8 RDF API for PHP, http://www.wiwiss.fu-berlin.de/suhl/bizer/rdfapi/
9 See http://ontoworld.org/wiki/SMW_reuse

10 See http://ontoworld.org/wiki/SPARQL_endpoint
11 See http://www.joseki.org/



Semantic MediaWiki 941

Fig. 2. Excerpt of an automatically generated list on ontoworld.org

core wiki problems presented in Sect. 2 all have very concrete consequences for today’s
Wikipedia.

Consistency of content is a major aspect of the overall quality of Wikipedia. Cur-
rently, articles like the “List of cities in Russia by population” are edited manually.
If any of the given population numbers changes, a number of articles have to be up-
dated. The dynamic creation of pages described in Sect. 3.3 solves many instances
of this problem, e.g. by generating tables as in Fig. 2.

Accessing knowledge in Wikipedia can be extremely difficult due to its sheer size.
For example, the reader may want to try to find a list of all female physicists in
Wikipedia. Keyword searches fail miserably at this task: Marie Curie does not ap-
pear at all when the term “female” is used, but the majority of the returned articles
do not even describe people at all. A simple query as described in Sect. 3.2 would
immediately solve the problem.

Reusing knowledge contained in Wikipedia is very desirable as it is the largest human-
edited source of information. Currently, tools such as the media player Amarok
(amarok.kde.org) embed whole articles into their GUI to allow users to access
the information. While those implementations show the need for external reuse,
they are currently limited to the mere reproduction of Wikipedia’s page content.

We thus believe that we address core problems of Wikipedia as a whole, and hope
that the extension can be introduced to Wikipedia soon. SMW was discussed among
Wikipedians and developers at the recent 2nd International Wikimedia Conference in
Boston (Wikimania2006), and large-scale evaluations with a copy of Wikipedia are now
being made.

The opportunities of a semantic Wikipedia are huge. Wikipedia covers a large num-
ber of knowledge areas, and even the use of Wikipedia as a resource for thoroughly
documented URIs would be helpful. With the added semantic information, Wikipedia’s
knowledge could be exploited in numerous applications. The scientific relevance of
large annotated text corpora, and of real-life knowledge models that really represent
“shared conceptualisations” would be enormous. Formalised knowledge in different
language Wikipedias can be a basis for investigating cultural differences, but indepen-
dent semantic wikis also provide intersting sources of data for ontology alignment.

While SMW currently uses only simple annotations, users start to articulate the need
for more expressive features. However, integration is not trivial at all, and tractability,



942 M. Krötzsch, D. Vrandečić, and M. Völkel

explanation components, local closed world assumption, paraconsistent reasoning, and
other issues might play an important role in extending the expressive power of the wiki.

Beyond such scientific challenges, Wikipedia can also enable a new range of tools
based on semantic technologies. As mentioned in Sect. 4.3 we employed a number
of tools, but we were also disappointed by the immature state of many of them. We
assume that this is due to the lack of interesting semantic data on the web, and believe
that Wikipedia can stimulate much more intensive development of semantic tools.

6 Further Use Cases

SMW is currently used in a number of real-life applications and has an active user
community. This can also be seen from the many requests to our public mailing lists
and the more than 200 registered users of ontoworld.org (not counting the spammers).
Moreover, a number of external sites have already introduced SMW into their wikis.
Examples are provided online [4], but not all SMW installations are open to public ac-
cess (e.g. AIFB and FZI use SMW for internal knowledge management). Finally, SMW
has been used as a local tool for personal information management on the desktop.

7 Outlook

In this short note, we could only sketch the core features and uses of the Semantic
MediaWiki system. Other features, such as the use of semantic templates or the support
for units of measurement, could not be introduced at all. We therefore suggest the reader
to refer to the more detailed online documentation [4]. Semantic MediaWiki currently
is developed very actively. At the time of this writing, improved browsing capabilities,
easy generation of RDF dumps, and support for Timeline12 output are planned for the
next version. Yet, the overall focus remains on producing a stable, scalable, and usable
implementation of the core features that will be employed in Wikipedia.

Acknowledgements. We wish to thank all past and present contributors and users of
SMW, in particular the volunteer developers S Page and Kai Hüner, and doccheck
GmbH, Germany. Research reported in this work has been partially supported by the
European Union in projects SEKT (IST-2003-506826) and NEPOMUK (IST 027705).

References

1. Völkel, M., Krötzsch, M., Vrandečić, D., Haller, H., Studer, R.: Semantic Wikipedia. In: Proc.
of the 15th International WWW Conference, Edinburgh, Scotland. (2006)

2. Krötzsch, M., Vrandečić, D., Völkel, M.: Wikipedia and the Semantic Web, Part II. In: Proc.
of the 2nd International Wikimedia Conference, Wikimania, Cambridge, MA, USA. (2006)

3. Vrandečić, D., Krötzsch, M.: Reusing ontological background knowledge in semantic wikis.
In Völkel, M., Schaffert, S., Decker, S., eds.: Proc. of the 1st Workshop on Semantic Wikis –
From Wikis to Semantics, Budva, Montenegro. (2006)

4. Semantic MediaWiki: Online documentation (August 21 2006) http://ontoworld.org/
wiki/Semantic_MediaWiki .

12 See http://simile.mit.edu/timeline/



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 943 – 950, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Enabling Semantic Web Communities with DBin: 
An Overview 

Giovanni Tummarello, Christian Morbidoni, and Michele Nucci 

Dipartimento di Elettronica, Intelligenza Artificiale e Telecomunicazioni 
 Università Politecnica delle Marche, Via Brecce Bianche – 60131 Ancona (Italy)  

{g.tummarello, c.morbidoni}@deit.univpm.it, mik.nucci@gmail.com  

Abstract. In this paper we give an overview of the DBin Semantic Web infor-
mation manager. Then we describe how it enables users to create and experience 
the Semantic Web by exchanging RDF knowledge in P2P "topic" channels. 
Once sufficient information has been collected locally, rich and fast browsing of 
the Semantic Web becomes possible without generating external traffic or com-
putational load. In this way each client builds and populates a 'personal semantic 
space' on which user defined rules, trust metrics and filtering can be freely ap-
plied. We also discuss issues such as end user interaction and the social aggrega-
tion model induced by this novel application. 

1   Introduction 

In this paper we present a novel kind of Semantic Web scenario which we call “Se-
mantic Web Communities”. The idea is to enable end users to create and experience 
the Semantic Web by exchanging knowledge in P2P "topic" channels.  

Such an application model can in a sense be though of as a file-sharing for meta-
data with on-top "community configurable" user interfaces (Brainlets). Similar to a 
file-sharing client, in fact, such application connects directly to other peers; instead  
of files, however, it downloads and shares RDF metadata about resources which  
the group has defined “of interest”. This creates a flow of RDF information which 
ultimately allows the participants to build rich personal Semantic Web databases 
therefore supporting high speed local browsing, searching, personalized filtering and 
processing of information.  

In implementing this idea in our prototype of Rich Semantic Web Client (RSWC), 
DBin ([1]), it became immediately clear that a number of issues had to be resolved, 
relating to a great number of independent yet interconnected aspects.  

For example, once data has been collected, the real issue becomes how to allow the 
user to interact with it in a natural way, e.g. in a way much more attractive and meaning-
ful than a list of "properties" and "resources". While this "visualization problem" seems a 
separately treatable problem, we claim that in this scenario it is not. We propose, for ex-
ample, to leverage the existence of "groups" by providing a way for a "group leader" to 
suggest "interaction profiles" with the data that is exchanged within that context.  

Upon joining a group, the user is then advised to download what we call a Brainlet, 
that is a package of configuration settings and a priori knowledge providing editing 
and browsing facilities to best interact with the information shared in the group. 



944 G. Tummarello, C. Morbidoni, and M. Nucci 

2   Use Scenario 

A typical use of DBin might be similar to that of popular file sharing programs, the 
purpose however being completely different. While usual P2P applications “grow” 
the local availability of data, DBin grows RDF knowledge. 

Once a user has selected the topic of interest and has connected to a semantic web 
P2P group, RDF annotations just start flowing in and out “piece by piece” in a scalable 
fashion. Such operations are clearly topic-agnostic, but for the sake of the demonstra-
tion let us take an example of possible use of DBin by a Semantic Web researcher.  

For example, a user, let us call him Bob, who expresses interest in a particular 
topic and related papers (say “Semantic Web P2P”), will keep a DBin open (possibly 
minimized) connected with a related P2P knowledge exchange group. Bob will then 
be able to review, from time to time, new pieces of relevant “information” that DBin 
collects from other participants. Such information might be pure metadata annotations 
(e.g. “the deadline for on-topic conference X has been set to Y”), but also advanced 
annotations pointing at rich data posted on the web (e.g. pictures, documents, long 
texts, etc.). He could then reply or further annotate each of this incoming pieces of 
information either for his personal use or for public knowledge. If such replies include 
attachment data, DBin automatically takes care of the needed web publishing. At da-
tabase level all this information is coherently stored as RDF. At the user level, how-
ever, the common operations and views are grouped in domain specific user inter-
faces, which are called “Brainlets”.  

3   Brainlets  

Brainlets can be though of as “configuration packages” preparing DBin to operate on 
a specific domain (e.g. Wine lovers, Italian Opera fans etc.. ). Given that Brainlet in-
clude customized user interface, the user might perceive them as full “domain appli-
cations run inside DBin” which can be installed as plug-ins. In short Brainlets define 
settings for:  

• The ontologies to be used for annotations in the domain  
• A general GUI layout;. which components to visualize and how they are cascaded 

in terms of selection/reaction 
• Templates for domain specific “annotations”, e.g.,  a “Movie” Brainlet might have 

a “review” template that users fill.  
• Templates for readily available “pre cooked” domain queries. 
• Templates for wizards which guide the user when inserting new domain elements 

(to avoid duplicated URIs etc) 
• A suggested trust model and information filtering rules for the domain. e.g. Public 

keys of well known “founding members” or authorities,  
• Basic RDF knowledge package for the domain 

Creating Brainlets doesn't require programming skills, as it is just a matter of 
knowledge engineering (e.g. selecting the appropriate Ontologies) and editing of 
XML configuration files. 

To create a new Brainlet, one copies from a given empty template which config-
ures an eclipse plug-in to append a new "Brainlet" to the list of those known by DBin. 
 



 Enabling Semantic Web Communities with DBin: An Overview 945 

 

Fig. 1. A screen shot of the ESWC 2006 Brainlet, dialing with presented papers, delegates and 
so on 

This is done by means of an Eclipse RCP [2] extension point, which enables to install 
a plug-in with specified APIs and properties. Then, each Brainlet has its own XML 
configuration file, which, in addition to purely layout configuration (e.g. the position-
ing of the GUI blocks), allows one to define the Brainlet's core properties and facili-
ties. The basic properties are the Brainlet name, version and URI, which usually indi-
cates the web site from which to download the package. An overview of the other 
configurations and features follows.  

3.1   Ontologies and Default RDF Knowledge 

Probably the most important step in creating a new Brainlet is the choice of appropri-
ate ontologies to represent the domain of interest. Once they have been identified, the 
corresponding OWL files are usually included and shipped in the Brainlet itself al-
though they could be placed on the Web. Each of them will be declared in the XML 
file, specifying the location of the OWL file, a unique name for the ontology and it's 
base namespace. In the same way basic knowledge of the domain can be included. 

3.2   Navigation of Resources 

The way concepts and instances are presented and browsed is crucial to the usability 
of the interface and the effectiveness in finding relevant information. Graph based 
visualizers are notably problematic when dealing with a relevant number of resources.  
For this reason, the solution provided by the main DBin Navigator is based on flexible 
and dynamic tree structures. Such approach can be seen to scale very well with  
respect to the number of resources, e.g. in Brainlets such as the SW Research one. 
The peculiarity of the approach is that the Brainlet creator can specify which is the 



946 G. Tummarello, C. Morbidoni, and M. Nucci 

'relation' between each tree item and its children by associating them a semantic 
query. The results of such queries, which in DBin are expressed in SeRQL syntax [3], 
will be the item's children.   

There can be multiple topic branches configured in the Navigator, specifying dif-
ferent kinds of relation between parent and child items. This enables the user to ex-
plore the resources of the domain under different points of view.  

 

Fig. 2. The navigator view can show different branches which organize concepts in different 
ways 

Figure 2 shows the Navigator view configured to display two branches, one (beers 
by type) gives an ontology driven  hierarchical view on the domain, the other (beers 
by brewery) is a custom classification of the beers according the specific brewery 
producing them.  

3.3   Selection Flows 

At user interface level, a Brainlet is composed by a set of 'view parts', as defined in 
the Eclipse platform terminology (Figure 1). Usually, each part takes a resource as a 
main "focus" and shows a 'something about' it (e.g. it's properties, images associated, 
etc...). Selection flows among these parts are also scripted at this point; it is possible 
to establish the precise cause effect chain by which selecting an icon on a view will 
cause other views to change. This is done specifying, for each view part, which other 
ones will be notified when a resource has been selected.  

3.4   “Precooked Queries” 

Within a specific domain there are often some queries that are frequently used to ful-
fill relevant use cases. Continuing our "Beer" example, such a query could be “find 
beers [stronger|lighter] than X degrees”. The "Precooked queries" facility gives the 
Brainlet creators the ability to provide such "fill in the blanks" queries to end users.  

3.5   URI Wizards 

It is very important to avoid different users to choose different URIs to indicate the 
very same concept. This can cause problems, for example, when two users have  
inserted the same beer while being off-line and later on they share their knowledge in 
the same P2P group. For this purpose we introduce the concept of URI Wizard, which 



 Enabling Semantic Web Communities with DBin: An Overview 947 

defies procedures for assisting the user in the process of assigning identifiers to in-
stances. Different procedures can be associated to different type of objects of the do-
main. For example, an intuitive procedure for choosing an identifier for Peroni beer 
might be to visit an authoritative web site (e.g. RateBeer.com), full-text search for 
'Peroni' and then use the URL of the resulting web page.  

Brainlets creators can choose among different preset procedures by XML configu-
ration of various kinds of  URI Wizards. Some of them, for example, creates a URI 
given a string that can represent the user nick, the time of creation, a well known 
name and so on, depending on the nature of the concepts (e.g. an MD5 for a file, the 
name a person, etc.). 

This is a very simple methodology for choosing URI, and of course gives not abso-
lute grantees, but we believe it to be very powerful and somehow sound, as it lever-
ages the work of existing and established web communities.  

3.6   Custom Domain Dependent Annotation Templates 

Brainlets use the ontologies to assist the users in creating simple annotations (e.g sug-
gesting which properties can be associated to a resource based on its type). A Brainlet 
creator can however also choose to create "complex annotation types" using an ad hoc 
OWL ontology. An example of such complex annotations is the "Beer Comparison", 
which directly compares beers, saying which one is better or worse and why. Upon 
selecting "Add advanced annotation" in DBin the system determines which advanced 
annotations can be applied to the specified resource and provides a wizard. 

 

Fig. 3. Advanced annotations are defined in OWL and auto generate property visualization and 
editing interfaces 

3.7   Ontology Issue and Social Model 

Brainlets are therefore preloaded by power users with domain specific user interaction 
facilities, as well as with domain ontologies suggested by the Brainlet creator. This 
seems to induce an interesting social model, mostly based on consensus upon Brainlets 
choice, which can help some of the well known issues in distributed metadata envi-
ronments, a central one being the ontology mismatch problem. Brainlets, by providing 
an aggregation medium for ontologies, users and data representation structures, are 
therefore good catalyst of the overall semantic interoperability process. As users gather 
around popular Brainlets for their topic of choice, the respective suggested ontologies 



948 G. Tummarello, C. Morbidoni, and M. Nucci 

and data representation practice will form an increasingly important reality. If someone 
decided to create a new Brainlet or Semantic Web application in general which could 
target the same user group as the said popular Brainlet, there would be an evident in-
centive in using compatible data structures and ontologies. 

4   The RDFGrowth P2P Engine: Basic Concepts  

The RDFGrowth P2P algorithm, an early version of which is described in [4], consti-
tutes the main channel by which a DBin client collects RDF data coming from other 
DBin users.  

Previous P2P Semantic Web applications, such as [5] and [6], have explored inter-
actions among groups of trusted and committed peers. In such systems peers rely on 
each other to forward query requests, collect and return results. In contrast, we con-
sider the real world scenario of peers where cooperation is relatively frail. By this we 
mean that peers are certainly expected to provide some external service, but commit-
ment should be minimal and in a “best effort” fashion.  

The RDFGrowth algorithm has been designed to address this requirement of scal-
ability and minimum commitment among peers, and is based on the peculiar philoso-
phy of minimum external burden. Therefore peers are not required to perform any 
complex or time consuming operation such as query routing, replication, collecting 
and merging. As it is not in the scope of this paper to discuss in detail RDFGrowth, in 
this section we just give an overview of it. 

As a design principle, given that a complex graph query could hog any machine's 
resources, we assumed that individual peers would not, in general, be willing to an-
swer arbitrary external queries. In RDFGrowth any single peer would, if at all, answer 
just very basic ones, which are defined by the “RDF Neighbours” operator(RDFN). 

The RDFN of a resource a within a graph G, is the closure on blank nodes of the 
triples of G surrounding a, and represents what is known about a at a given peer. This 
type of query is not only very fast to execute but can also be cached very effectively. 

RDFGrowth uses the group metaphor to enable users to aggregate around topics of 
interest. When a user joins a particular group, DBin begins to collect and share only 
that kind of information which is of interest within the group. Such a topic's definition 
is given by the GUED(Group URI Exposing Definition), which is an operator capable 
of selecting from a triplestore a set of resources with common characteristics. A 
GUEDs can be implemented as simple sets of schema queries (e.g. all resources of 
type ex:Paper where ex:topic property value is “Semantic Web”) and each group re-
lays on one of them for advertising what can be shared within the community. 

Once a group has been joined, the algorithm cycles over the set of 'on topic' re-
sources locally known (the result of the GUED operator applied to the local DB) and, 
for each resource, searches other peers having new knowledge 'about' it. This is done 
by looking into a sort of Distributed Hash Table(DHT), in which each peer publishes 
the hashes of its RDFN (say simple MD5). When a certain condition on the RDFN 
hash is verified an actual metadata exchange is initiated with the other pee. In a simple 
version one can simply choose the first hash which is different from the local one, but 
more advanced methods can be used to try to guess the most profitable peer to ask to. 

No “active information hunt” such as query routing, replication, collecting and 
merging is done. Such operations would require peers to do work on behalf of others 
that is again allowing peers to cause a potentially large external burden.  



 Enabling Semantic Web Communities with DBin: An Overview 949 

So, instead of querying around, in DBin a user browses only on a local and poten-
tially very large metadata database, while the RDFGrowth algorithm “keeps it alive” 
by updating it in a sustainable, “best effort” fashion. A complete discussion is outside 
the scope of this introduction to the Demo, those interested can refer to [4] and other 
papers available from the DBin web site. As a result, keeping DBin open and con-
nected to P2P groups with moderate traffic requires absolutely minimal network and 
computational resources. 

5   URI Bridge Component 

As we said before, the RDFGrowth algorithm enables the exchange of pure RDF 
metadata, so it is clear that some facility is needed in DBin to provide the user with 
the digital content referred by this metadata. Also an 'upload' mechanism is needed to 
allow users to be able to share his/her digital data (e.g. Images, text etc). 

While the download mechanism is straightforward once a URL is available for a spe-
cific resource, as it can be retrieved, for example, over standard HTTP protocol, the 
uploading part requires some further considerations. The URIBridge is based on upload 
servers where users can store files they want to share (e.g. pictures, text, mp3s). After 
having uploaded a resource, the user is provided with a URL which can be used to cre-
ate annotations about the data as well as to retrieve that data in order to visualize it.  

DBin clients can be configured to work with one or more upload servers, much like 
an E-Mail client requires a SMTP server. While the default installation of DBin 
comes with a simple upload server, this limits the users to small files. For power us-
ers, installing a personal upload server is trivial, just deploying a simple PHP script. 

6   Identities and Authorship of Annotations 

In such a system, which deals with potentially large and unregulated communities, it 
is important to have information about who said what, in particular which user is the 
author of a particular annotation received from the network. To do this we use a 
methodology based on the notion of MSG (Minimum Self Contained Graph), defined 
in [7] and enabling the decomposition of a graph in atomic units, and on the canonical 
serialization of RDF graphs suggested in [8]. 

This methodology enables RDF data to be signed at a fine granularity level and in 
an efficient way (MSGs are composed by more triples but it can be signed just by rei-
fying a single one of them). It also assures that the context (in this case the authorship) 
will remain within the metadata when they will be exchanged over the network, as well 
as enable multiple signature to be attached to the same MSG, also at different times. As 
it is impossible to discuss in detail the digital signature process due to space limitation,  
please refer to [7]. 

When started up for the first time, DBin clients require the users to provide a valid 
URI which will act as an identifier for the user itself (for example a mailto URL or a 
web page). Then a public and a private keys are generated; the private key is stored 
locally, while the public one is uploaded by means of the URIBridge, just as it hap-
pens for files. Every time a user will add an annotation to the system it will contain 
the user's identifier as well as the URL of the public key, and will be signed using the 



950 G. Tummarello, C. Morbidoni, and M. Nucci 

user's private key. In this way, after having received a piece of metadata from the P2P 
group, clients are able to retrieve the public key and to identify the author of the anno-
tation, without caring about the provenance of the metadata itself.  

Once the authorship of a MSG can be verified, a variety of filtering rules can be 
applied at will. These, in our system, are always non-destructive; information that 
does not match certain trust criteria can be hidden away but does not get deleted. It is 
straightforward, for example, to implement a local 'black list' policy, allowing users to 
add authors to that list and to filter the local knowledge in order to hide all the infor-
mation signed by the same user's identity.   

7   Conclusions and Related Works 

Aspects of DBin can be compared with [9], [10] and [11]. Details of this comparison 
are not possible due to lack of space, but DBin stands out as a end user centered appli-
cation which provides an all round and integrated Semantic Web experience. By this 
we mean that, albeit in perfectible forms, DBin provides a single interface that entirely 
cover the needs of complex use cases. Users can browse, query, publish and coopera-
tively create Semantic Web databases. Media inserts can be seen together with the rela-
tive metadata, incoming knowledge can be filtered based on local policies and informa-
tion locally produced is digitally signed. More than this, users are given the ability to 
create “Semantic Web Communities” by creating both application environments, 
Brainlets, and exchange and meeting places, RDFGrowth channels.  DBin is an Open 
Source project (GPL). Further documentation and compiled executables can be 
downloaded at http://dbin.org, where a few minutes screen demo is also available. 

References 

[1] "The DBin project"  http://www.dbin.org 
[2] "Eclipse Rich Client Platform", http://www.eclipse.org/rcp 
[3] J. Broekstra, A. Kampman , "SeRQL: An RDF Query and Transformation Language", 

ISWC, 2004 
[4] G. Tummarello, C. Morbidoni, J. Petersson, P. Puliti, F. Piazza, "RDFGrowth, a P2P an-

notation exchange algorithm for scalable Semantic Web applications", P2PKM Work-
shop, 2004  

[5] W. Nejdl, B. Wolf , "EDUTELLA: A P2P Networking Infrastructure Based on RDF", 
WWW, 2002 

[6] P.A. Chirita, S. Idreos, M. Koubarakis, W. Nejdl, "Publish/Subscribe for RDF-based P2P 
Networks", ESWS, 2004 

[7] G. Tummarello, C. Morbidoni, P. Puliti, F. Piazza , "Signing individual fragments of an 
RDF graph", WWW, 2005 

[8] J. Carroll, "Signing RDF Graphs", ISWC, 2003  
[9] D. Huynh, S. Mazzocchi, D. Karger , "Piggy Bank: Experience the Semantic Web Inside 

Your Web Browser",ISWC, 2005 
[10] J. Broekstra, M. Ehrig, P. Haase, F. van Harmelen, M. Menken, P. Mika, B. Schnizler, R 

Siebes , "Bibster - A Semantics-Based Bibliographic  Peer-to-Peer System." SemPGrid 
Workshop,  2004 

[11] D. Quan, D. Karger, "How to Make a Semantic Web Browser", WWW , 2004 



MultimediaN E-Culture Demonstrator

Guus Schreiber1, Alia Amin2, Mark van Assem1, Victor de Boer3,
Lynda Hardman25, Michiel Hildebrand2, Laura Hollink1, Zhisheng Huang2,

Janneke van Kersen4, Marco de Niet4, Borys Omelayenko1,
Jacco van Ossenbruggen2, Ronny Siebes1, Jos Taekema4,

Jan Wielemaker3, and Bob Wielinga3

1 Vrije Universiteit Amsterdam (VU), Computer Science
http://www.cs.vu.nl

2 Center for Math. and Computer Science CWI, Amsterdam
http://www.cwi.nl/ins2

3 Universiteit van Amsterdam (UvA), HCS Lab
http://hcs.science.uva.nl/

4 Digital Heritage Netherlands (DEN), The Hague
http://www.den.nl

5 Technical University Eindhoven (TU/e)
http://w3.win.tue.nl/en/

1 Introduction

The main objective of the MultimediaN E-Culture project is to demonstrate how
novel semantic-web and presentation technologies can be deployed to provide
better indexing and search support within large virtual collections of cultural-
heritage resources. The architecture is fully based on open web standards, in
particular XML, SVG, RDF/OWL and SPARQL. One basic hypothesis under-
lying this work is that the use of explicit background knowledge in the form of
ontologies/vocabularies/thesauri is in particular useful in information retrieval
in knowledge-rich domains.

This paper gives some details about the internals of the demonstrator. The
online version of the demonstrator can be found at:

http://e-culture.multimedian.nl/demo/search

Readers are encouraged to first take a look at the demonstrator before reading
on. As a teaser we have included a short description of basic search facilities in
the next section. We suggest you consult the tutorial (linked from the online
demo page) which provides a sample walk-through of the search functionality.
Make sure your browser has adequate SVG support.1

1 The current version of the demonstrator runs under Firefox version 1.5.0.4 with
the Adobe SVG plugin (v 6.0 38363, see the demonstrator FAQ for installation
instructions) and has been tested on Windows, Macintosh and Linux. Support for
Internet Explorer is planned for future versions of the demo. Firefox 2 is expected
to make the plugin installtions unneccessary (you can try the beta-release). As a
project we are committed to web standards (such as SVG) and are not willing to
digress to (and spend time on) special-purpose solutions.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 951–958, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



952 G. Schreiber et al.

Please note that this is a product of an ongoing project. Visitors should expect
the demonstrator to change2. We are incorporating more collections and vocabu-
laries and are also extending the annotation, search andpresentation functionality.

2 A Peek at the Demonstrator

Figure 1 shows a query for Art Nouveau. This query will retrieve images that
are related to Art Nouveau in some way. The results shown in the figure are
‘created by an artist with a matching style”. So, these images are paintings by
artists who have painted in the Art-Nouveau style, but the style is not part of
the metadata of the image itself. This may retrieve some paintings which are not
really Art Nouveau, but it is a reasonable strategy if there are no (or only few)
images directly annotated with Art Nouveau. We view the use of such indirect
semantic links as a potential for semantic search (for more details on path search
in the demonstrator see Section 8).

Fig. 1. Results of query for Art Nouveau

The lower part of the figure shows a listing of painters who are known to have
worked in the Art-Nouveau style. The time line indicates years in which they
have created art works (you can click on them to get information).
2 The project has a duration of 4 years and is at the time of writing 18 months underway.



MultimediaN E-Culture Demonstrator 953

Fig. 2. Information about the indexing term Gold, showing also images that are related
to Gold

Images have annotations in which terms from various thesauri are used.
Figure 2 shows the information a user gets when selecting such an indexing
term, here Gold material from the Art & Architecture Thesaurus. We also show
images that have been annotated with this indexing term (or semantically related
terms).

These are some basic search- and presentation functions. See the online demo
for information about more search options, such as time-based search and faceted
search. We also have an experimental search function for finding the semantic
relations between two URIs, e.g. for posing the question “How are Van Gogh and
Gauguin related?”. In fact, this leads to a whole avenue of new search possibilities
and related issues with respect to which semantic paths are most relevant, which
we hope to explore in more detail in the coming years.

3 Technical Architecture

The foundation of the demo is formed by SWI-Prolog and its (Semantic) Web
libraries (for detailed information, see [1,2]). SPARQL-based access is a recent
feature. The Application Logic module defines searching and clustering algo-
rithms using Prolog as query language, returning the results as Prolog Herbrand
terms. The Presentation Generation module generates web documents from the
raw answers represented as Herbrand terms.

From the user perspective, the architecture provides (i) annotation facilities for
web resources representing images, and (ii) search and presentation/visualization
facilities for finding images.



954 G. Schreiber et al.

4 Vocabularies

Currently, the demonstrator hosts four thesauri, namely the three Getty vocab-
ularies3, i.e., the Art & Architecture Thesaurus (AAT), Union List of Artists
Names (ULAN) and the Thesaurus of Geographical Names (TGN), as well as
the lexical resource WordNet, version 2.0. The Getty thesauri were converted
from their original XML format into an RDF/OWL representation using the
conversion methods principles as formulated in [3]. The RDF/OWL version of
the data models is available online4. The Getty thesauri are licensed5.

Prolog C

RDF-DB

OWLRDFS

Application Logic

Presentation Generation

HTTP Server

SeRQL/SPARQL

Browser
(HTML+CSS, SVG, AJAX, JavaScript, Java Applets)

HTTP

Client

Application

SWI-Prolog
&

(Semantic) Web
libraries

Fig. 3. Technical architecture of the demonstrator

The RDF/OWL conversion of WordNet is documented in a publication of the
W3C Semantic Web Best Practices and Deployment Working Group [4]. It is an
instructive example of the issues involved in this conversion process, in particular
the recipes for publishing RDF vocabularies [5].

The architecture is independent of the particular thesauri being used. We are
currently in the process of adding the Dutch version of AAT, amongst others to
support a multi-lingual interface. Integration of other (multi-lingual) thesauri is
planned.

3 http://www.getty.edu/research/conducting research/vocabularies/
4 http://e-culture.multimedian.nl/resources/
5 The partners in the project have acquired licenses for the thesauri. People using the

demonstrator do not have access to the full thesauri sources, but can use them to
annotate and/or search the collections.



MultimediaN E-Culture Demonstrator 955

Using multiple vocabularies is a baseline principle of our approach. It also raises
the issue of alignment between the vocabularies. Basically, semantic interoperabil-
ity will increase when semantic links between vocabularies are added. Within the
Getty vocabularies one set of links is systematically maintained: places in ULAN
(e.g., place of birth of an artist) refer to terms in TGN. Within the project we are
adding additional sets of links. One example is links between art styles in AAT (e.g.
“Impressionism”) and artists in ULAN (e.g., “Monet”). De Boer [6] has worked on
deriving these semi-automatically from texts on art history.

5 Annotation Template

For annotation and search purposes the tool provides the user with a description
template derived from the VRA 3.0 Core Categories [7]. The VRA template is de-
fined as a specialization of the Dublin Core set ofmetadata elements, tailored to the
needs of art images. The VRA Core Categories follow the “dumb-down” principle,
i.e., a tool can interpret the VRA data elements as Dublin Core data elements.6.

6 Collection Data and Metadata

In principle, every web resource with a URI can be included and annotated in
the virtual collection of our demonstrator. As a test set of data we have included
three web collections:

– The Artchive collection7 contains around 4,000 images of paintings, mainly
from the 19th and 20th century.

– The ARIA collection8 of the Rijksmuseum in Amsterdam contains images
of some 750 master pieces.

– The RMV collection9 of the Rijksmuseum voor Volkenkunde in Leiden de-
scribes about 80,000 images of ethnographic objects that belong to various
cultures woldwide.

For the Artchive items we have used a parsing technique to transform the
existing textual annotation in a semantic annotation, i.e. matching strings from
the text to concepts from the various thesauri.

The metadata that accompagnies the Artchive collection consists of a short file
holding textual values for title, creator, dimensions, material, year of creation,
location and comments. Unfortunately the descriptor name is not specified with
the value and not all descriptions have the same values in the same order. We
used a grammar to parse and canonise the date of creation and dimension fields.
Author and material are matched to ULAN and AAT using a syntactic distance
measure and selecting the best match.
6 An unofficial OWL specification of the VRA elements, including links to Dublin Core,

can be found at http://e-culture.multimedian.nl/resources/
7 http://www.artchive.com/
8 http://rijksmuseum.nl/aria/
9 http://www.rmv.nl



956 G. Schreiber et al.

For the other collections we used similar strategies for enriching the origi-
nal metadata with semantic categories. Adding a collection thus involves some
information-extraction work on the metadata. In addition, the demonstartor sup-
plies an manual-annotation interface which can be used to annotate any image
on the Web.

7 Distributed vs. Centralized Collection Data

The architecture is constructed to support multiple distributed image collections.
Data (i.e. images) must have an external URI (we keep local copies, but that’s
only for caching). Ideally, we would like to get the original metadata also from
external sources using standard protocols such as OAI10. In practice however, we
encountered several problems with the quality of metadata retrieved via OAI,
so for the moment we still depend on the local copy of the original metadata.
Metadata extensions are also stored locally. In the future we hope to feed these
back to the collection owners.

Vocabularies form a separate problem. The Getty vocabularies are licensed, so
we cannot publish the full vocabulary as is. However, the information in the Getty
vocabularies is freely accessible through the Getty online facilities11. We hope that
these vocabularieswill becomepublicly available. In themeantime, our demonstra-
tor allows you to browse the vocabularies as a semantic structure and search for
images semantically related to a vocabulary item (e.g. see Figure 2 for an example
for the concept Gold from AAT). An RDF/OWL version of WordNet has recently
been published (see above). We will move within the next months to this version
(the same version as we are now using but with a different base URI).

8 Keyword Search with Semantic Clustering

One of the goals of the demonstrator is to provide users with a familiar and
simple keyword search, but still allow the user to benefit from all background
knowledge from the underlying thesauri and taxonomies. The underlying search
algorithm consists of several steps, that can be summarized as follows. First,
it checks all RDF literals in the repository for matches on the given keyword.
Second, from each match, it traverses the RDF graph until a resource of interest
is found, we refer to this as a target resource. Finally, based on the paths from
the matching literals to their target resources, the results are clustered.

To improve performance in finding the RDF literals that form the starting
points, the RDF database maintains a btree index of words appearing in literals
to the full literal, as well as a Porter-stem and metaphone (sounds-like) index to
words. Based on these indexes, the set of literals can be searched efficiently on
any logical combination of word, prefix, by-stem and by-sound matches12.
10 http://www.openarchives.org/
11 See e.g. http://www.getty.edu/research/conducting research/vocabularies/aat/ for

access to the AAT.
12 See http://www.swi-prolog.org/packages/semweb.html#sec:3.8



MultimediaN E-Culture Demonstrator 957

In the second step, whichresources are considered of interest is currently deter-
mined by their type. The default settings return only resources of type artwork
(vra:Work), but this can be overridden by the user. To avoid a combinatorial
explosion of the search space, a number of measures had to be taken. Graph
traversal is done in one direction only: always from the object in the triple to
the corresponding subject. Only for properties with an explicit owl:inverseOf
relation is the graph also traversed in the other direction. While this theoreti-
cally allows the algorithm to miss out many relevant results, in practice we found
that this is hardly an issue. In addition to the direction, the search space is kept
under control by setting a threshold. Starting with the score of the literal match,
this score is multiplied by the weight assigned to the property being traversed
(all properties have been assigned a (default) weight between 0 and 1), and the
search stops when the score falls under the given threshold. This approach not
only improves the efficiency of the search, it also allows filtering out results with
paths that are too long (which tend to be semantically so far apart, that users
do not consider them relevant anymore). By setting the weights to non-default
values, the search can also be fine tuned to a particular application domain.

In the final step, all results are clustered based on the path between the
matching literal and the target result. When the paths are considered on the
instance level, this leads to many different clusters with similar content. We
found that clustering the paths on the schema level provides more meaningful
results. For example, searching on keyword “fauve” matches works from Fauve
painters Matisse and Derain. On the instance level, this results in different paths:

dc:creator -> ulan:Derain -> glink:hasStyle -> aat:fauve -> rdfs:label -> "Fauve"
dc:creator -> ulan:Matisse -> glink:hasStyle -> aat:fauve -> rdfs:label -> "Fauve"

while on the schema level, this becomes a single path:

dc:creator -> ulan:Person -> glink:hasStyle -> aat:Concept -> rdfs:label -> "Fauve"

The paths are translated to English headers that mark the start of each clus-
ter, and this already gives users an indication why the results match their key-
word. The path given above results in the cluster title “Works created by an artist
with matching AAT style”. To explain the exact semantic relation between the
result and the keyword searched on, the instance level path is displayed when
hovering over a resulting image.

9 Vocabulary and Metadata Statistics

Table 1 shows the number of triples that are part of the vocabularies and meta-
data currently being used by the demonstrator. The table has three parts: (i)
the schemas (e.g. the RDF/OWL schema for WordNet defining notions such as
SynSet), (ii) the vocabulary entries and their relationships, and (iii) the collec-
tion metadata. In total, these constitute a triple set of roughly 9,000,000 triples.
We plan to extend this continuously as more collections (and corresponding
vocabularies) are being added.



958 G. Schreiber et al.

Table 1. Number of triples for the different sources of vocabularies and collection
metadata

Document # Sources # Triples
Schemas

RDFS/OWL 2 358
Annotation 6 769
Vocabularies 9 1,225
Collections 1 29,889

Vocabularies
TGN 4 425,517
ULAN 16 1,896,936
AAT 1 249,162
WordNet 18 2,579,206

Collections
Artchive 4 74,414
Rijkmuseum 1 27,933
RVM 1 3,662,257

Acknowledgements. The E-Culture project is an application subproject within
the context of the MultimediaN (“Multimedia Netherlands”13) project funded
by the Dutch BSIK Programme.

References

1. Wielemaker, J., Schreiber, A.T., Wielinga, B.J.: Prolog-based infrastructure for
rdf: performance and scalability. In Fensel, D., Sycara, K., Mylopoulos, J., eds.:
The Semantic Web - Proceedings ISWC’03, Sanibel Island, Florida. Volume 2870
of Lecture Notes in Computer Science., Berlin/Heidelberg, Sringer Verlag (2003)
644–658 ISSN 0302-9743.

2. Wielemaker, J., Schreiber, G., Wielinga, B.: Using triples for implementation: the
Triple20 ontology-manipulation tool. In Gil, Y., Motta, E., Benjamins, R., Musen,
M., eds.: The Semantic Web – ISWC 2005: 4th International Semantic Web Confer-
ence, Galway, Ireland, November 6-10, 2005. Proceedings. Volume 3729 of Lecture
Notes in Computer Science., Springer-Verlag (2005) 773–785

3. vanAssem,M., Menken,M., Schreiber,G.,Wielemaker, J., Wielinga, B.: Amethod for
converting thesauri toRDF/OWL. InMcLlraith, S.A.,Plexousakis,D., vanHarmelen,
F., eds.: Proc. Third Inte. Semantic Web Conference ISWC 2004, Hiroshima, Japan.
Volume 3298 of LNCS., Berlin/Heidelberg, Springer Verlag (2004) 17–31

4. van Assem, M., Gamgemi, A., Schreiber, G.: Conversion of wordnet to a standard
rdf/owl representation. In: Proc. LREC 2006. (2006) Accepted for publication.
http://www.cs.vu.nl/ guus/papers/Assem06a.pdf.

5. Miles, A., Baker, T., Swick, R.: Best practice recipes for publishing RDF vocabu-
laries. Working draft, W3C (2006) http://www.w3.org/TR/2006/WD-swbp-vocab-
pub-20060314/.

6. de Boer, V., van Someren, M., Wielinga, B.: Extracting instances of relations
from web documents using redundancy. In: Proc. Third European Semantic Web
Conference (ESWC’06), Budvar, Montenegro. (2006) Accepted for publication.
http://staff.science.uva.nl/ vdeboer/publications/eswc06paper.pdf.

7. Visual Resources Association Standards Committee: VRA Core Categories, Ver-
sion 3.0. Technical report, Visual Resources Association (2000) URL: http://www.
vraweb.org/vracore3.htm.

13 http://www.multimedian.nl



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 959 – 966, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

A Semantic Web Services GIS Based  
Emergency Management Application 

Vlad Tanasescu1, Alessio Gugliotta1, John Domingue1, Rob Davies2,  
Leticia Gutiérrez-Villarías2, Mary Rowlatt2, Marc Richardson3, and Sandra Stin i 3 

1 Knowledge Media Institute, The Open University, 
Walton Hall, Milton Keynes, MK7 6AA, UK 

{v.tanasescu, a.gugliotta, j.b.domingue}@open.ac.uk 
2 Essex County Council, County Hall,  

Chelmsford, CM1 1LX, UK 
{Leticia.gutierrez, maryr}@essexcc.gov.uk, 

rob.davies@mdrpartners.com 
3 BT Group  

Adastral Park Martlesham, Ipswich IP5 3RE, UK 
{marc.richardson, sandra.stincic}@bt.com 

1   Introduction 

In an emergency situation, relevant information about involved elements is required. 
This information ranges from demographic data, weather forecasts and sensor data, 
available transportation means, presence of helpful agents, land use and cover 
statistics or values, etc. Moreover, the emergency management process is dynamic as 
it involves several definite steps, described in standard procedures from which the 
Emergency Officer (EO) should not depart without good reason. Multiple agencies 
own the relevant data and possess parts of emergency related knowledge.  

Exchanging this information by interacting on a personal/phone/fax basis is slow 
and may even be error prone. Using traditional Geographical Information Systems 
(GIS) to handle specifically Spatial-Related Data (SRD) is not always satisfactory, 
since data sources are not always suitable exposed and often present various 
semantics. In an emergency situation, such barriers are unacceptable and the whish of 
a more complete interoperability through the network is often expressed1.  

The proposed Emergency Management Application (EMA) is a decision support 
system based on Semantic Web Services (SWS) technology, which assists the EO in 
the tasks of retrieving, processing, displaying, and interacting with only emergency 
relevant information, more quickly and accurately. As a result, the involved agencies 
become able to extend their knowledge about the emergency situation by making use 
of different functionalities based on date held by other agencies which otherwise 
might not be accessible to them or slow to obtain manually.  

Our work represents a practical e-Government application, where the stakeholders 
are the governmental agencies, and the end-users are governmental employees. The 
application has been designed for the Emergency Planning Department of the Essex 
County Council (ECC) – a large local authority in UK, but can be adopted by other 
public authorities and rescue corps dealing with emergency response situations. 
                                                           
1 e.g. http://www.technewsworld.com/story/33927.html 



960 V. Tanasescu et al. 

2   Design Choices and Development Methodology 

Any information system can gain advantage from the use of semantics [4]. In GIS, the 
use of semantic layers, although not yet firmly established, is being investigated in a 
number of research studies [1], [2], [3]. Having ontologies describing a SRD repository 
and its functionalities is believed to make cooperation with other systems easier and to 
better match user needs. In particular, SWS technology may provide an infrastructure 
in which new services can be added, discovered and composed continually, by 
combining the flexibility, reusability, and universal access that typically characterize a 
Web Service, with the expressivity of semantic markup and reasoning. This will allow 
the automatic invocation, composition, mediation, and execution of complex services 
with multiple paths of execution, and levels of process nesting. In order to provide 
semantic and step toward the creation of added value services, we adopt WSMO2 – a 
promising SWS framework – and IRS-III [5] – a tested implementation of this 
standard. The reference language for creating ontologies is OCML [6].  

Our development process firstly enables the data and functionalities provided by 
existing legacy systems to be exposed as Web Services (WS). Then, the latter are 
semantically annotated and published using IRS-III SWS infrastructure. The following 
layered architecture of the application reflects and explains this double stage process: 

• Legacy System layer: consists of existing data sources and IT systems provided 
by each of the involved governmental parties.   

• Service Abstraction layer: exposes the functionalities of the legacy systems as 
WS, abstracting from the hardware and software platforms of the legacy systems. 
Whenever a new service is available at this layer, it will be semantically 
described and properly linked to existing semantic descriptions. 

• Semantic Web Service layer: given a goal request this layer, implemented in IRS-
III, will (i) discover a candidate set of Web services, (ii) select the most 
appropriate, (iii) mediate any mismatches at the data, ontological or business 
process level, and (iv) invoke the selected Web services whilst adhering to any 
data, control flow and Web service invocation requirements. To achieve this, 
IRS-III utilises the set of WSMO descriptions, which are composed of goals, 
mediators, and Web services, supported by relevant domain ontologies. This 
layer provides the flexibility and scalability of our application. Managing the 
semantic description, the semantic developer can introduce new functionalities of 
the application (e.g. new EO goals that can be invoked by the user interface) or 
updating existing ones. 

• Presentation layer: is a Web application accessible through a standard Web 
browser. The goals defined within the previous layer are reflected in the structure 
of the interface and can be invoked either through the IRS-III API or as an HTTP 
request. The goal requests are filled with data provided by the user and sent to the 
Semantic Web Service layer.  

In our approach, we aimed to obtain a development process that might be 
pragmatic - in order to quickly lead to a working outcome – as well as flexible - in 
order to easily respond to eventually changes/improvements and meet the multiple 
                                                           
2 http://www.wsmo.org/2004/d2/v1.0/  



 A Semantic Web Services GIS Based Emergency Management Application 961 

actors’ viewpoints. For these reasons, we followed a prototyping approach composed 
of the following three straightforward phases: Requirements capture, SWS 
description, and Evaluation. The last phase triggers the prototyping iterations of the 
SWS description phase on the basis of involved actors’ feedback. At this stage, the 
application has been shown to the Planning Department Officers and other people 
dealing with emergency situations in the ECC area (e.g. officers of the London 
Stansted Airport). Future improvements and changes have been mainly planned on 
the basis of their feedback, such as accessing to traffic cameras in the affected area.  

3   The Emergency Management Application 

Following several interviews with SRD holders in ECC, it was decided to focus the 
application on a real past emergency situation: a snowstorm which affected the M11 
motorway on 31st January 20033. To present the application, we follow the layered 
architecture introduced in the previous section. 

Legacy System Layer. The EMA aggregates data and functionalities from three 
structurally independent and heterogeneous, real world sources:  

• Meteorological Office: a national UK organization which provides environmental 
resources and in particular weather forecast data.  

• ViewEssex: a collaboration between ECC and British Telecommunications (BT) 
which has created a single corporate spatial data warehouse. As can be expected 
ViewEssex contains a wide range of data including data for roads, administrative 
boundaries, buildings, and Ordnance survey maps, as well as environmental and 
social care data. Within the application we used building related data to support 
searches for suitable rest centres. 

• BuddySpace is an Instant Messaging client facilitating lightweight 
communication, collaboration, and presence management [7] built on top of the 
instant messaging protocol Jabber4. The BuddySpace client can be accessed on 
standard PCs, as well as on PDAs and on mobile phones which in an emergency 
situation may be the only hardware device available. 

Service Abstraction Layer. We distinguish between two classes of services: data 
and smart. The former refers to the three data sources introduced above, and are 
exposed by means of WS: 

• Meteorological service: this service provides weather information (e.g. snowfall) 
over a specific rectangular spatial area.   

• ECC Emergency Planning services: using the ViewEssex data each service in 
this set returns detailed information on a specific type of rest centre within a 
given circular area. For example, the ‘getHospitals’ Web service returns a list of 
relevant hospitals. 

• BuddySpace services: these services allow presence information on online users 
to be accessed.  

                                                           
3 BBC news web site: http://news.bbc.co.uk/2/hi/talking_point/2711291.stm 
4 Jabber. http://www.jabber.org/ 



962 V. Tanasescu et al. 

Smart services represent specific emergency planning reasoning and operations on 
the data provided by the data services. They are implemented in a mixture of 
Common Lisp and OCML and make use of the EMA ontologies. In particular, we 
created a number of filter services that manipulate GIS data according to emergency-
specific requirements semantically described (e.g. rest centres with heating system, 
hotels with at least 40 beds, easier accessible hospital, etc.). The criteria used were 
gained from our discussions with the EOs. 

Domain Ontologies for the Semantic Web Service Layer. The following ontologies 
reflecting the client and provider domains were developed to support WSMO 
descriptions: 

• Meteorology, Emergency Planning and Jabber Domain Ontology: representing 
the concepts used to describe the services attached to the data sources, such as 
snow and rain for Met Office, hospitals and supermarkets for ECC Emergency 
Planning, session and presences for Jabber. If a new source and the Web services 
exposing its data and functionalities are integrated, a new domain ontology has to 
be introduced5. The services, composed of the data types involved as well as its 
interface, have to be described in such a ontology usually at a level low enough to 
remain close from the data.  

To get the information provided by web services up to the semantic level, we 
introduce lifting operations that allows the passage of data types instances from a 
syntactic level (xml) to an ontological one (OCML) specified in the domain ontology 
definitions. We found that this process can be automated every time the domain 
ontology one can be. 

• HCI Ontology: part of the user layer, this ontology is composed of HCI and user-
oriented concepts. It allows to lower from the semantic level results for the 
particular interface which is used (e.g. stating that Google Maps API is used, 
defining “pretty names” for ontology elements, etc.). Note that although the 
choice of the resulting syntactic format depends of the chosen lowering process, 
concepts from the HCI ontology are used in order to achieve this transformation 
in a suitable way. 

• Archetypes Ontology: part of the user layer, this is a minimal ontological 
commitment ontology aiming to provide a cognitively meaningful insight into the 
nature of a specialized object; for example, by conveying the cognitive (“naïve”) 
feeling that for example an hospital, as a “container” of people and provider of 
“shelter” can be assimilated to the more universal concept of “house”, which we 
consider to be as an archetypal concept, i.e. based on image schemata and 
therefore supposed to convey meaning immediately. It is moreover assumed that 
any client, whilst maybe lacking the specific representation for a specific basic 
level concept, knows its archetypal representation.  

• Spatial Ontology: a part of the mediation layer, it describes GIS concepts of 
location, such as coordinates, points, polygonal areas, and fields. It also allows 
describing spatial objects as entities with a set of attributes, and a location. 

                                                           
5 Here existing ontologies can be reused.  



 A Semantic Web Services GIS Based Emergency Management Application 963 

The purpose of the HCI, Archetypes and Spatial ontologies is the aggregation of 
different data sources on, respectively, a representation, a cognitive and a spatial 
level. Therefore we can group them under the appellation aggregation ontologies. 
They allow the different data sources to be handled and presented in a similar way. 
Inversely to the lifting operations, lowering operations transform instances of 
aggregation ontologies into syntactic documents to be used by the server and client 
applications. This step is usually fully automated since aggregation ontologies are, by 
definition, quite stable and unique.  

• Context Ontology: the context ontology allows describing context n-uples which 
represent a particular situation. In the emergency planning application, context n-
uples have up to four components, the use case, the user role, the location, and the 
type of object. Contexts are linked with goals, i.e. if this type of user accesses this 
type of object around this particular location, these particular goals will be 
presented. Contexts also help to inform goals, e.g. if a goal provides information 
about petrol stations in an area, the location part of the context is used to define 
this area, and input from the user is therefore not needed. Each time an object is 
displayed by a user at a particular location, a function of the context ontology 
provides the goals which need to be displayed and what inputs are implicit. 

WSMO descriptions for the Semantic Web Service Layer. As introduced in the 
previous section, the goals, mediators, and Web services descriptions of our 
application link the Met Office, ECC Emergency Planning, and BuddySpace Web 
services to the user interface. Correspondingly, the Web service goal descriptions use 
the SGIS spatial, meteorology, ECC Emergency Planning and Jabber domain 
ontologies whilst the goal encodings rely on the HCI and archetypes ontologies. 
Mismatches are resolved by the defined mediators.  

A small portion of emergency management process (workflow) represented in 
terms of SWS descriptions is shown in Figure 1. Get-Polygon-GIS-data-with-Filter-
Goal represents a request for available shelters within a delimited area. The user 
specifies the requirements as a target area, a sequence of at least three points (a 
polygon), and a shelter type (e.g. hospitals, inns, hotels). As mentioned above the set 
of ECC Emergency Planning Web services each return potential shelters of a specific 
type with a circular query area. The obtained results need to be filtered in order to 
return only shelters correlated to emergency-specific requirements (for example a 
snowstorm). From a SWS point of view the problems to be solved by this particular 
portion of the SWS layer included: (i) discovering the appropriate ECC Emergency 
Planning Web service; (ii) meditating the difference in area representations (polygon 
vs. circular) between the goal and Web services; (iii) composing the retrieve and filter 
data operations. Below we outline how the WSMO representations in Figure 1 
address these problems. 

• Web service discovery: each SWS description of a ECC Emergency Planning 
service defines, in its capability, the specific class of shelter that the service 
provides. Each definition is linked to the Get-Circle-GIS-Data-Goal by means of 
a unique WG-mediator (shown as wgM). The inputs of the goal specify the class 
of shelter, and the circular query area. At invocation IRS-III discovers through 
the WG-mediator all associated Web services, and selects one on the basis of the 
specific class of shelter described in the Web service capability. 



964 V. Tanasescu et al. 

• Area mediation and orchestration: the Get-Polygon-GIS-data-with-Filter-Goal is 
associated with a unique Web service that orchestrates, by simply invoking three 
sub-goals in sequence. The first gets the list of polygon points from the input; the 
second is Get-Circle-GIS-Data-Goal described above; finally, the third invokes 
the smart service that filters the list of GIS data. The first two sub-goals are 
linked by means of three GG-mediators (depicted as ggM) that return the centre, 
as a latitude and longitude, and radius of the smallest circle which circumscribes 
the given polygon. To accomplish this, we created three mediation services 
invoked through: Polygon-to-Circle-Lat-Goal, Polygon-to-Circle-Lon-Goal, and 
Polygon-to-Circle-Rad-Goal (the related WG-mediator and Web service ovals 
were omitted to avoid cluttering the diagram). The results of the mediation 
services and the class of shelter required are provided as inputs to the second sub-
goal. A unique GG-mediator connects the output of the second to the input of the 
third sub-goal. In this instance no mediation service is necessary. 

 

Fig. 1. A portion of the WSMO descriptions for the EMS application 

It is important to note that if new WS – for instance providing further SRD from 
other GIS are available, new Web Service descriptions will be simply introduced, and 
linked to the Get-Circle-GIS-Goal by the proper mediators (even reusing the existing 
ones, if semantic mismatches do not exist), without affecting the existing structure. In 
the same way, new GIS filter services (e.g. more efficient ones) may be introduced. 
The effective workflow – i.e. which services are invoked – is known at run-time only. 

Presentation Layer. The application user interface is based on Web standards. 
XHTML and CSS are used for presentation and JavaScript is used to handle user 
interaction together with AJAX techniques to communicate with IRS-III. One of the 
main components of the interface is a map, which uses the Google Maps API to 
display polygons and objects (custom images) at specific coordinates and zoom level. 
Goals and attributes are attached to such objects; they are displayed in a pop up 
window or in a hovering transparent region above the main interface.  

Although easy to extend, the actual prototype handles only snow storms and 
hazards emergency types in the context of the Essex County, according to our real 
past reference scenario. When the application is launched, a goal is invoked for the 



 A Semantic Web Services GIS Based Emergency Management Application 965 

Essex region, and snow hazard or storm polygons are drawn according to data from 
the meteorological office. The value from which snow values can constitute a hazard 
or a storm are heuristic and as emergency knowledge is gathered it can easily 
improved, by modifying the smart services which are composed with weather 
information, while the goal visible to the user remains the same.  

As an example of practical usage, we describe how an EO describes and 
emergency situation, before trying to contact relevant agents. The procedure is as 
follows: 

1. The EO clicks within the displayed hazard region to bring up a menu of available 
goals. In this case (Figure 2a) three goals are available: show available shelters, 
login to BuddySpace and get the presence information for related staff.  

2. The EO asks for the available Rest Centres inside the region, and then inspects 
the detailed attributes for the Rest Centre returned (Figure 2b). 

3. The EO requests to see the presence status for all staff within the region and then 
initiates an online discussion the closest online agency worker (Figure 2c). 

 

Fig. 2. Showing three screenshots of our application in use 

To a comprehensive description of the operations provided to the user, please refer 
to our on-line screencast tutorial and live demo6 . 

4   Lesson Learned 

In our approach, the integration of new data sources results relatively simple; the 
steps involved in the process of adding new data sources can be summarized as 
follow: ontological description of the service; lifting operations definition; mapping to 
aggregation ontologies; goal description; mediation description; lowering definition; 

                                                           
6 http://irs-test.open.ac.uk/sgis-dev/ 



966 V. Tanasescu et al. 

and context linking. Although this procedure may seem tedious, and can actually only 
be performed by a knowledge expert, it presents many advantages compared to 
standard based approaches as the one demonstrated in the OWS-3 Initiative7: 

• Framework openness: standards are helpful but not necessary. For example, if 
querying sensor data, the use of standards – e.g. SensorML8 – helps the reuse of 
service ontologies and lifting procedures since they can be applied to any service 
using a similar schema. However any other schema can be integrated with the 
same results. 

• High level services support: since services are described as SWS, they inherit all 
benefits of the underlying SWS execution platform, such as discovery and 
composition, and are updated as more features are added to the platform (e.g. 
trust based invocation). In other solutions support for composition and discovery 
is imbedded in syntactic standards themselves, which implies specific parsing 
features and adding ad hoc reasoning capabilities to standard software 
applications, which is time consuming and error prone. Moreover, SWS introduce 
a minimalist approach in the description of a domain, by modeling the concepts 
used by Web Services only, and allowing on-the-fly creation of instances when 
Web Services are invoked (lifting). 

• Support of the Emergency Handling Process: also, the constant use of context to 
link goals and situations greatly enhances the decision process. Indeed, actions 
are oriented depending on the use case, the object, user role and location. With 
the help of explanations of the utility of each goal in each context, the Emergency 
Officer’s task is greatly simplified. A future development of the context ontology 
will include feedback from goal invocation history, and allow workflow 
definitions, i.e. this goal only appears after these two have been invoked. Note 
that all goals are also accessible independently of any context which allows non 
directed queries to occur, if needed.  

References 

1. Casati, R., Smith, B., Varzi, A. C.: Ontological tools for geographic representation. (1998) 
77–85. 

2. Peuquet, D., Smith, B., Brogaard B.: The ontology of fields. (1999). 
3. Fonseca, F. T., Egenhofer, M. J.: Ontology-Driven Geographic Information Systems. ACM-

GIS (1999) 14-19. 
4. Semantic Interoperability Community of Practice (SICoP). Introducing Semantic 

Technologies and the Vision of the Semantic Web. (2005). 
5. Cabral, L., Domingue, J., Galizia, S., Gugliotta, A., Norton, B., Tanasescu, V., Pedrinaci, 

C.: IRS-III: A Broker for Semantic Web Services based Applications. In proceedings of the 
5th International Semantic Web Conference (ISWC 2006), Athens, USA (2006).  

6. Motta, E.: An Overview of the OCML Modelling Language. (1998). 
7. Eisenstadt, M., Komzak, J., Dzbor, M.: Instant messaging+maps = powerful collaboration 

tools for distance learning. In proceedings of TelEduc03, Havana, Cuba (2003). 

                                                           
7 http://www.opengeospatial.org/initiatives/?iid=162 
8 http://vast.nsstc.uah.edu/SensorML/ 



Package-Based Description Logics - Preliminary
Results

Jie Bao1, Doina Caragea2, and Vasant G. Honavar1

1 Artificial Intelligence Research Laboratory, Department of Computer Science,
Iowa State University, Ames, IA 50011-1040, USA

{baojie, honavar}@cs.iastate.edu
2 Department of Computing and Information Sciences
Kansas State University, Manhattan, KS 66506, USA

dcaragea@ksu.edu

Many representative applications on the semantic web, including collaborative
ontology building, partial ontology reuse, selective knowledge hiding and distrib-
uted data management, call for modular ontologies,. However, although OWL
allows using owl:imports to connect multiple ontologies, its current semantics
requires all involved ontologies to have a single global semantics, thus providing
only a syntactical solution to modularity. As a result, there is a growing interest
in modular ontology languages such as Distributed Description Logics (DDL) [7]
and E-connections [8]. However, these proposals are also limited in expressivity
and reasoning soundness [2,3].

Package-based Description Logics (P-DL) [4] is aimed at solving several prob-
lems presented in existing approaches, by offering a tradeoff between the strong
module disjointness assumption of DDL and E-connections, and the complete
overlapping of models required by the OWL importing mechanics. P-DL lan-
guage features are aimed at providing fine-grained modular organization and
controllable selective knowledge sharing of an ontology.

P-DL syntax adopts a selective “importing” approach that allows a subset of
terms defined in one ontology module to be directly used in another module. In
a P-DL ontology, an ontology is composed of a set of packages. A package can
use terms defined other packages i.e., an existing package or some of the terms
defined in an existing package can be imported into another package. Foreign
terms can be used to construct local concepts.

P-DL also allows selective knowledge hiding in ontology modules to address
the needs of privacy, copyright, security concerns in ontologies. P-DL supports
scope limitation modifiers (SLM) that can be associated with terms and axioms
defined in a package [4]. A SLM (such as public and private) controls the visibility
of the corresponding term or axiom to entities (e.g. a user, a reasoner) on the
web, in particular, to other packages. Different from the encryption of ontology
which is aimed at safe access of ontologies on a syntactic level, SLM in P-DL
aims at knowledge hiding on a semantic level, where the hiding is partial, i.e.,
hidden parts of an ontology can be used in safe indirect inferences [5].

The semantic importing approach adopted by P-DL is different from the “link-
ing” approach adopted by DDL and E-Connections in that it partially relaxes

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 967–969, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



968 J. Bao, D. Caragea, and V.G. Honavar

the local model disjointness assumption of the other two formalisms. Such a
relaxation enables P-DL to obtain stronger expressivity power. Concept bridge
rules in DDL and E-Connection links can be easily reduced to P-DL axioms [3].
P-DL also offers the possibility of avoiding semantic difficulties of DDL and E-
Connections. For example, knowledge in one P-DL package can be transitively
reused by other packages. The answer to a P-DL reasoning problem is the same
as that obtained by reasoning over the integrated ontology [3].

The reasoning procedure for P-DL can be extended from existing DL tableau
algorithms [1]. We adopt a tableau-based federated reasoning approach to strictly
avoid reasoning with an integrated ontology, thus ensure the autonomy of consti-
tuting modules. The whole reasoning process is preformed by a federation of local
reasoners, each for a specific package, to construct a collection of local tableaux
instead of a single global tableau. The connection between local tableaux is en-
abled by a set of messages and a local tableau may share nodes with other local
tableaux. It is shown that this approach can solve many reasoning difficulties
presented in existing approaches [1].

P-DL provides language features needed for efficient collaborative construction
of large, modular ontologies. We have developed COB-Editor [6] that provides
‘proof of concept’ of this approach. COB-Editor is a modular ontology editor
that enables building biological ontologies such as Gene Ontology. The editor al-
lows ontology developers to create a community-shared ontology server, with the
support for concurrent browsing and editing of the ontology. Multiple users can
work on the same ontology on different packages (through locking mechanisms),
without inadvertent overwriting the work of others.

Work in progress includes reasoning for more expressive P-DL languages and
with knowledge hiding, and improved collaborative ontology building tools.

Acknowledgement.This research is supportedby grants fromUSNSF (0219699,
0639230) and NIH (GM066387).

References

1. J. Bao, D. Caragea, and V. Honavar. A distributed tableau algorithm for package-
based description logics. In the 2nd International Workshop On Context Represen-
tation And Reasoning (CRR 2006), co-located with ECAI 2006. 2006.

2. J. Bao, D. Caragea, and V. Honavar. Modular ontologies - a formal investigation
of semantics and expressivity. In R. Mizoguchi, Z. Shi, and F. Giunchiglia (Eds.):
Asian Semantic Web Conference 2006, LNCS 4185, pages 616–631, 2006.

3. J. Bao, D. Caragea, and V. Honavar. On the semantics of linking and importing in
modular ontologies. In accepted by ISWC 2006 (In Press). 2006.

4. J. Bao, D. Caragea, and V. Honavar. Towards collaborative environments for ontol-
ogy construction and sharing. In International Symposium on Collaborative Tech-
nologies and Systems (CTS 2006), pages 99–108. IEEE Press, 2006.

5. J. Bao and V. Honavar. Representing and reasoning with modular ontologies. In
AAAI Fall Symposium on Semantic Web for Collaborative Knowledge Acquisition
(SWeCKa 2006), Arlington, VA, USA, October 2006, 2006.



Package-Based Description Logics - Preliminary Results 969

6. J. Bao, Z. Hu, D. Caragea, J. Reecy, and V. Honavar. Developing frameworks and
tools for collaborative building of large biological ontologies. In the 4th International
Workshop on Biological Data Management (BIDM’06), @ DEXA’06. 2006.

7. A. Borgida and L. Serafini. Distributed description logics: Directed domain corre-
spondences in federated information sources. In CoopIS, pages 36–53, 2002.

8. B. C. Grau. Combination and Integration of Ontologies on the Semantic Web. PhD
thesis, Dpto. de Informatica, Universitat de Valencia, Spain, 2005.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 970 – 971, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Distributed Policy Management in Semantic Web 

Özgü Can and Murat Osman Ünalır 

Department of Computer Engineering, Ege University, 
35100 Bornova, zmir, Turkey 

{ozgu.can, murat.osman.unalir}@ege.edu.tr 

Abstract. With the growth of Internet and the fast development of semantic 
web technologies, the access and usage of information will become much more 
easier. However, the security of information gathering for both information 
suppliers and demanders is a critical issue. Policies determine the ideal 
behaviors for web concepts. The concepts of policy, policy languages and 
policy ontologies must be determined, effective tools for policy definition and 
management must be developed.  

1   Introduction 

In the web environment some concepts are very important: which resources can users 
or the services access (security), how will the user information going to be used 
(privacy) and if these users are trusted or not (trust). Policies specify who can use a 
service and under which conditions, how information should be provided to the 
service, and how the provided information will be used [1]. Two main components 
exist to secure the semantic web: a policy language which defines security 
requirements and distributed policy management approach [2]. A security framework 
based on distributed policy management can be developed with using a semantic 
policy language. 

In the literature, there are various policy ontology and policy language projects. 
The most popular ones are KAoS1, Rei2 and Ponder3 policy languages, and a 
framework, Rein4, which uses the Rei policy language concepts for policies. 

2   Research Approach 

In our work, we are going to examine existing policy ontologies, KAoS, Rei and 
Ponder, then we will determine the requirements of policy ontologies and the missing 
points of the existing policy ontologies. Through these requirements we will 
constitute a new policy ontology. Our aim is to create an effective new policy 
ontology which overcomes the missing points of the existing policies and answers the 
                                                           
1 http://ontology.ihmc.us/kaos.html 
2 http://rei.umbc.edu/ 
3 http://www-dse.doc.ic.ac.uk/Research/policies/ponder.shtml 
4 http://groups.csail.mit.edu/dig/2005/05/rein/ 



 Distributed Policy Management in Semantic Web 971 

user’s requests in a better manner. Authorizations and obligations are the policy 
concepts in KAoS; rights, prohibitions, obligations and dispensations are Rei policy 
language concepts and Ponder has authorizations, obligations, refrains and 
delegations. In the policy ontology we will have rights, prohibitions, obligations, 
dispensations and speech acts: delegate, revoke, cancel and request . 

One of the existing works is a plug-in application, POLICYTAB [3], which is 
compatible with Protégé. In this thesis, we want to develop an OWL based plug-in for 
Protégé Ontology Editor to define policy specifications. Policy rules will be expressed 
by using Semantic Web Rule Language (SWRL). We will also develop a policy 
engine to interpret and reason over policies.  

There are three policy approaches: rule-based, ontology-based and hybrid [4]. We 
are going to use hybrid approach in our work. Hybrid approach is based on both rule-
based and ontology-based approaches. We will also focus on policy conflicts and 
policy validation.  

Our ontology will be developed with OWL ontology language on Protégé ontology 
editor. We will use SWRL for rules, RACER reasoning engine, OWL-QL for queries 
and Java. 

3   Conclusions and Future Work 

Our prerequisite work is to create our policy ontology and to work on a resource 
sharing scenario where policies can be applied. Our scenario is based on our 
university’s academic rules and regulations. Now we are constituting our ontology 
concepts. After that we are going to create our ontology by using Rei.  We also want 
to develop our policy engine and effective mechanisms to solve policy conflicts. 
Finally we will work on policy validation methods. 

References 

1. L. Kagal, T. Finin, M. Paolucci, N. Srinivasen, K. Sycara, G. Denker: Authorization and 
Privacy for Semantic Web Services. IEEE Intelligent Systems, Vol. 19 (2004) 50-56 

2. L. Kagal, T. Finin, A. Joshi: A Policy Based Approach to Security for the Semantic Web. 
2nd International Semantic Web Conference (ISWC 2003), Sanibal Island, Florida, USA 
(2003) 402-418 

3. W. Nejdl, D. Olmedilla, M. Winslett, C. C. Zhang; Ontology-based Policy Specification and 
Management. European Semantic Web Conference (ESWC 2005), Heraklion, Greece 
(2005) 

4. A. Toninelli, J. M. Bradshaw, L. Kagal, R. Montanari; Rule-based and Ontology-based 
Policies: Toward a Hybrid Approach to Control Agents in Pervasive Environments. 4th  
International Semantic Web Conference, Proceedings of the Semantic Web and Policy 
Workshop, Galway, Ireland (2005) 



Evaluation of SPARQL Queries Using Relational
Databases �

Jǐŕı Dokulil

Department of Software Engineering,
Faculty of Mathematics and Physics,

Charles University in Prague, Czech Republic
Jiri.Dokulil@mff.cuni.cz

Abstract. Basic storage and querying of RDF data using a relational
database can be done in a very simple manner. Such approach can run
into trouble when used on large and complex data. This paper presents
such data and several sample queries together with analysis of their per-
formance. It also describes two possible ways of improving the perfor-
mance based on this analysis.

1 Introduction

The RDF [2] is a key part of the Semantic Web. It defines the format and
semantics of such data but does not provide query capabilities. Several query
languages have been created or modified to support RDF querying. One of the
languages is SPARQL [5]. We have created an experimental implementation of
SPARQL.

We used a straightforward way of storing RDF data in a relational database.
This allowed us to evaluate SPARQL queries by translating them to SQL queries.
Although it worked nicely for small or simple RDF data, we suspected that
evaluation times may turn bad with large and complex data. We have been able
to obtain such data [4].

2 Experiments, RDF Indexes and Statistics

The data is complex. The RDFS schema consists of 226 classes and 1898 prop-
erties and contains 26 million tripes.

Simple test queries showed that no SPARQL feature creates a bottleneck of
the system. But when the features were combined in complex queries the per-
formance decreased greatly. After examining the execution plans of the queries,
we came up with a possible explanation for this undesirable behavior. The SQL
optimizer makes wrong assumptions about the size of the intermediate data
produced during the evaluation of the query.
� This research was supported in part by the National programme of research (Infor-

mation society project 1ET100300419).

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 972–973, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Evaluation of SPARQL Queries Using Relational Databases 973

Major weakness of our system is the fact that for every triple used in the
query one table join is added to the result SQL query. This means that a more
complex SPARQL query is evaluated using many joins that are usually expensive
because large sets are being joined.

We designed a so called RDF indexes to overcome this problem. An RDF index
is a pre-evaluated SPARQL query and the result of the evaluation is stored inside
the database to speed up evaluation of similar queries. Experiments have shown
that the RDF indexes improve the performance of the query evaluation.

The Oracle database contains a general way of collecting statistics about the
data they contain. But the RDF data have several characteristics that can be
used to gather more precise statistics. For instance the system can store precise
number of triples for each predicate. This information could be used to help
the optimizer build better execution plans via Oracle SQL hints. We plan to
implement this function in the future.

3 Conclusion

Large and complex RDF data are not yet widely available. Although large data
such as WordNet or DBLP libraries are available [6], their structure is simple.
WordNet is commonly used to test performance of RDF databases, for instance
in [3]. We feel that the real data of the Semantic Web will be more complex.

The complex data we used in out tests helped us develop two methods of
improving the query performance. The methods are in very early stage of de-
velopment and should be compared to other systems like Sesame [1]. We used
much more complex data and encountered problems that would not show up
if tests were run on simple data even if the data was very large. This led us
to development of two methods of fighting the problems. We implemented one
of the methods and measurements confirmed that it has the desired impact on
query evaluation performance.

References

1. Broekstra J., Kampman A., Harmelen F. (2002): Sesame: A Generic Architecture
for Storing and Querying RDF and RDF Schema, in Proceedings of the First Inter-
national Semantic Web Conference, Italy, 2002, 54-68

2. Carroll J. J., Klyne G. (2004): Resource Description Framework: Concepts and Ab-
stract Syntax, W3C Recommendation, 10 February 2004

3. Chong E. I., Das S., Eadon G., Srinivasan J. (2005): An Efficient SQL-based RDF
Querying Scheme, in Proc. of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, August 30 - September 2, 2005, 1216-1227

4. Dokulil J. (2006): Transforming Data from DataPile Structure into RDF, in
Proceedings of the Dateso 2006 Workshop, Desna, Czech Republic, 2006, 54-62
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS//Vol-
176/paper8.pdf

5. Prud’hommeaux E., Seaborne A. (2005): SPARQL Query Language for RDF, W3C
Working Draft, 23 November 2005

6. http://www.semanticweb.org/library/



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 974 – 975, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Dynamic Contextual Regulations in Open Multi-agent 
Systems 

Carolina Howard Felicíssimo 

DI – PUC-RIO, Rua Marquês de São Vicente 225, Gávea, RJ, Brazil 
cfelicissimo@inf.puc-rio.br 

1   Introduction 

Following software engineering approaches for the Semantic Web (SW) and also 
Hendler’s vision [3], I believe that the SW will not be a unique large complex Web, 
but it will be composed, mainly, of several small contextualized domain applications. 
These domain applications will be, in my opinion, Multi-Agent Systems (MAS) [5]. 
MAS have emerged as a promising approach for the development of information 
systems, which are constituted of cooperative goal-oriented problem-solving entities 
(named agents) [6]. Agent-based computing is rapidly emerging as a powerful 
technology for the development of distributed and complex information systems.  

Information systems for a very dynamic, open and distributed domain (like the SW 
one) are always subject to unanticipated events [4] caused by their members that may 
not be compliant with to recommendations of correct behaviors. This risk imposes the 
necessity for regulatory mechanisms to prevent undesirable actions to happen and to 
inspire trust to its members. However, in open domains, no centralized control is 
feasible. Key characteristics of such domains are: agent heterogeneity, conflicting 
individual goals and limited trust [1]. Heterogeneity and autonomy rule out any 
assumption concerning the way agents are constructed and behave. So, an external 
control, dynamically created or modified, and not hard coded into agent 
implementations, may be the only viable solution for regulations in open systems [2]. 

2   Contextual Regulations in Open MAS with DynaCROM 

My Ph.D. proposal is a novel regulatory approach for dynamic contextual regulations 
in open multi-agent systems, called DynaCROM. Toward dynamic compositions of 
contextual laws, from four levels of abstractions (Environment, Organization, Role 
and Interaction), I propose to easily oversee agent actions. Thus, cooperation among 
agents, playing the same or different roles, from the same or different organizations 
and environments, is enhanced with a confidence layer of laws.  

DynaCROM is based on top-down modeling of contextual laws, on a normative 
meta-ontology for law semantics and on a rule support for composing and inferring 
contextual laws. Developers aiming to use DynaCROM, should perform the following 
steps: classify and organize user defined laws according to its top-down modeling; 
explicitly represent these laws into an instance of the DynaCROM meta-ontology; and 
define compositions of contextual laws by activating and deactivating rules. In 
DynaCROM, an ontology instance represents the regulatory contexts (expressed by 



 Dynamic Contextual Regulations in Open Multi-Agent Systems 975 

related concepts in the ontology structure) and also represents the user defined 
environment, organization, role and interaction laws (expressed by instances in the 
ontology data). Contextual laws are automatically composed and deduced by a rule-
based inference engine, according to the ontology instance and active rules.  

The main asset of organizing laws into regulatory contexts, from different levels of 
abstractions, and use rules and a rule-based inference engine is to permit flexibility 
while enforcing laws. Doing so, system regulations can be dynamically relaxed or 
restricted by simply changing sets of rules for new compositions of contextual laws. 
DynaCROM rules are ontology-based, i.e. they are created according to the ontology 
structure by only linking related concepts. Consequently, the numbers of rules and 
possible customized compositions of contextual law, for each regulatory context, are 
finite. For instance, 349 customized compositions of environment, organization, role 
and interaction laws are achieved with 19 rules (1 rule for the environment context, 5 
for the organization context, 6 for the role context and 7 for the interaction context). 
All these rules are provided by the DynaCROM implementation, which is 
summarized as a JADE behavior [7]. Agents enhanced with the DynaCROM behavior 
are aware of the system regulation and, so, can take more precise decisions. 

3   Conclusion 

In this paper, I present DynaCROM – a straightforward method to, smoothly, apply 
and manage regulatory dynamics in open applications (like the SW ones). For future 
work, I am currently studying four main research lines: context-aware systems; action 
ontologies; simulations of regulated open MAS; and libraries of agent behaviors. The 
idea is to explore, independently, each of these research lines and to enhance 
DynaCROM, if good results appear. My Ph.D. research aims to contribute to the 
fields of regulation and cooperation in open MAS, enabling their agent societies. 
Thus, I believe that the SW represents a perfect scenario. 

References 

1. Artikis, A.; Pitt, J. and Sergot, M. Animated specifications of computational societies. In 
Proc. of AAMAS-2002, Part III, p. 1053-1061, Italy. 

2. Grizard, A.; Vercouter, L.; Stratulat, T. and Muller, G.; A peer-to-peer normative system to 
achieve social order. In Proc. of COIN@AAMAS-2006, Japan. 

3. Hendler, J.; Agents and the Semantic Web. In IEEE Intelligent Systems & their applications. 
2001.16(2)30-37.  

4. Hewitt, C.; Open Information Systems Semantics for Distributed Artificial Intelligence. AI. 
V.47, I.1-3, p.79-106. 1991. ISSN: 0004-3702. 

5. Huhns, M. and Stephens, L.; Multi-Agent Systems and Societies of Agents. G. Weiss (ed.), 
Multi-Agent Systems, ISBN 0-262-23203-0, MIT Press. 1999. 

6. Jennings, N.; Sycara, K. and Wooldridge, M.; A Roadmap of Agent Research and 
Development. Journal of Agents and Multi-Agent Systems, 1:p.7-38, 1998. 

7. Tilab Company. (2006) JADE. In: <http://jade.tilab.com/>. 



From Typed-Functional Semantic Web Services
to Proofs

Harry Halpin

School of Informatics
University of Edinburgh

2 Buccleuch Place
EH8 9LW Edinburgh

Scotland, UK
H.Halpin@ed.ac.uk

Keywords: Semantic Web Services, Proofs, Type Theory, Functional
Programming, Curry-Howard Isomorphism.

1 Ontologies, Types, and Functions

Web standards are currently seen as increasingly fragmented between colloquial
XML, the Semantic Web, and Web Services. Semantic Web Services, while an
immensely productive area of research, has yet to reach in-roads and a large
user-base. We propose a minimalist, yet powerful, unifying framework built upon
solid computational and philosophical foundations: Web Services are functions,
ontologies are types, and therefore Semantic Web Services are typed functions.

Unlike OWL-S and WSMO that focus on automatic omposition, we focus on
users will want to manually create their service compositions using an actual
programming language, like WS-BPEL provides (Business Process Execution
Language, formerly BPEL4WS). However, WS-BPEL is a vast, sprawling im-
perative language that is difficult to analyze, much less prove anything about.
The W3C appears increasingly ready to endorse an approach (SAWSDL) based
on annotating input and outputs with RDF. What is needed is a minimal pro-
gramming language, with a straightforward formal semantics, that builds upon
SAWSDL and goes beyond workflows. Workflow tools are notoriously limited to
finite state automata so that while termination on the workflow level is guaran-
teed, they lack common constructs like iteration and recursion. In previous work,
we suggest that XML pipeline processing can be thought of as being “inside” an
XML document itself. The processing can be contained in a special namespace
that can then be mixed in arbitrary XML content. Using this syntax, an example
is given below in Figure 1.

2 The Curry Howard Isomorphism

While there has been extensive work using XML types, it makes sense to use
RDF as a typing regime since it allows both subtyping and propositions to be
stated about types. The Curry-Howard Isomorphism states that there is a tight

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 976–977, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



From Typed-Functional Semantic Web Services to Proofs 977

<fx:let xmlns:fx="http://www.ltg.ed.ac.uk/~ht/functionalXML">
<fx:bind name="myvariable">
<fx:include href="document.xml"/>

</fx:bind>
<fx:cond>
<fx:case test="$myvariable/document[@version = 1.0]">
<fx:transform stylesheet="http://www.example.com/xhtmlout.xsl">

<fx:decrypt>
<fx:include href="$myvariable"/>

</fx:decrypt>
</fx:transform>

</fx:case>
</fx:cond>

</fx:let>

Fig. 1. FunctionalXML

coupling between logics and type systems, and can be given the slogan “Proofs
are Programs.” It was originally formulated as a correspondence between the
typed lambda calculus and intuitionistic logic by the logician Curry and the
computer scientist Howard. They called it “Propositions are Types” since the
types of programs can be seen as formulae. So ‘p is a proof of proposition P ’ is
equivalent to ‘p is of type P ’ and both can be written as p : P .

For our example we use natural deduction-style proofs to determine proofs
about a Semantic Web Service composition. For example, if we have a service
that decrypts an XML document (E ⇒ U) and then we have another service
that taken a decrypted XML document transforms it into HTML (U ⇒ H),
we can then prove that if we have these two services we can take an encrypted
document and produce the HTML version (E ⇒ H), i.e. transitivity of impli-
cation. Assuming we have an encrypted document x (of type E), we can create
the proof that we can transform it into HTML as given in Figure 2.

h : (U ⇒ H)
[x : E]1 u : (E ⇒ U)

(ax) : U
(⇒E)

(h(ax)) : H
(⇒E)

λxE.(h(ax)) : (U ⇒ H)
(⇒I)1

Fig. 2. Example Proof using Curry Howard Isomorphism

While the proof assumes the existence of a particular XML document (x),
it discharges the assumption by abstracting over the XML document x using λ-
abstraction, proving the proof for any XML document of type E (any encrypted
document). The functional approach offers a principled way to compose Web
Services that takes full advantage of semantics and allows your ordinary XML
hacker in the street to get real value from Web Services and the Semantic Web.



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 978 – 979, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Towards a Usable Group Editor for Ontologies 

Jan Henke 

Digital Enterprise Research Institute (DERI) 
Technikerstraße 21a 

6020 Innsbruck 
jan.henke@deri.org 

Abstract. Ontologies represent a shared understanding of some domain of 
interest. Therefore, tools to develop ontologies have to support this sharing in 
some way. However, current tools lack support of this important aspect, if they 
tackle it at all. Beyond this, each interactive system cannot be limited to its 
utility but must also make sure that this is provided in a usable way. However, 
current ontology editors mostly make the impression of research prototypes, 
thus not caring too much about this aspect. These two problems are crucial: If 
we don’t support collaborative ontology development, produced ontologies will 
always lack being product of a social process. Also if the tool support lacks 
usability, the ontology engineering community cannot expect to spread their 
ideas to a wider non-expert audience. Therefore the PhD thesis in process tries 
to tackle these problems and to advance the state of the art. It combines these 
two aspects as they intervene with each other thus making an integrated 
approach more promising. The improvements will be thoroughly evaluated with 
regard to both utility and usability. 

Ontology development is a collaborative effort [1]. Although a number of tools like 
e.g. [2] support this idea, these approaches never really reached maturity. 
Ontology development is also an interactive task, thus tool support can’t be limited to 
utility but has to be sufficiently usable as well. Unfortunately current tools have a 
clear lack in this respect. 

The combined existence of these two problems makes ontology development at 
present-day a cumbersome task. This is a major issue as it makes hardly sense to talk 
about the potential and the exploitation of ontologies as long as the basic step of their 
creation is so poorly supported. 

The focus of the PhD thesis in progress is to advance the state of the art by tackling 
both the collaborative and the usability aspects. Respectively, the evaluation of the 
approach will concentrate on both usability and collaboration support. User tests as 
well as heuristic evaluations will be performed. 

Integrating high usability and sufficient collaboration support into a single 
ontology editing environment has driven this research in the direction of ontological, 
groupware, and usability engineering. The overlap between these areas shapes the 
domain of this thesis. 

The three foci of the thesis are applied to each other. In the respective sections, 
requirements are identified and matched against the current state of the art. Among 



 Towards a Usable Group Editor for Ontologies 979 

others, OilEd [3], Protégé [4], OntoEdit [5], Ontolingua [1] CES [6] and Quilt [7] 
are considered. 

Design principles to be followed are elaborated. Successively, the architecture 
components are addressed. 

As proof of concept, a reference implementation will be provided. The tools are 
selected before the actual realization is addressed. 

It shall be evaluated if the state of the art could really be advanced. Both 
collaboration support and usability of the developed tool have to be considered for 
this purpose. 

The here described PhD thesis will show how the current state of the art of 
ontology editors can be improved by allowing for collaboration and increasing overall 
usability. The approach will be prototypically implemented. This prototype again will 
be evaluated thoroughly. 

The prototype implementation is a currently ongoing endeavor. Main future work 
is to realize the collaboration support and to setup and run the user tests. 

References 

1. Farquhar, A.F., Richard; Rice, : The Ontolingua Server: a Tool for Collaborative Ontology 
Construction. (1996)  

2. Domingue, J.: Tadzebao and WebOnto: Discussing, Browsing, and Editing Ontologies on 
the Web. 11th Knowledge Acquisition for Knowledge-Based Systems Workshop, Banff, 
Canada (1998) 1-20 

3. Bechhofer, S.e.a.: OilEd: a Reason-able Ontology Editor for the Semantic Web. KI2001 
(2001) 

4. Noy, N.F.e.a.: Creating Semantic Web Contents with Protégé-2000. IEEE Intelligent 
Systems (2001)  

5. Sure, Y.E., Michael; Angele, Juergen; Staab, Steffen; Studer; Rudi; Wenke, Dirk OntoEdit: 
Collaborative Ontology Development for the SemanticWeb. In: I. Horrocks, J.H. (ed.): 
International Semantic Web Conference, Vol. 2342 / 2002. Springer-Verlag GmbH, 
Sardinia, Italy (2002) 

6. Greif, I., Seliger, R., Weihl, W.E.: Atomic data abstractions in a distributed collaborative 
editing system. 13th ACM SIGACT-SIGPLAN symposium on Principles of programming 
languages. ACM Press, St. Petersburg Beach, Florida (1986) 

7. Fish, R.S., Kraut, R.E., Leland, M.D.P.: Quilt: a collaborative tool for cooperative writing. 
ACM SIGOIS and IEEECS TC-OA 1988 conference on Office information systems. ACM 
Press, Palo Alto, California, United States (1988) 



Talking to the Semantic Web - Query Interfaces
to Ontologies for the Casual User

Esther Kaufmann

University of Zurich, Dynamic and Distributed Information Systems, Switzerland
kaufmann@ifi.unizh.ch

1 Introduction

The Semantic Web presents the vision of a dynamically growing knowledge base
that should allow users to draw on and combine distributed information sources
specified in languages based on formal logic. Common users, however, were shown
to have problems even with the simplest Boolean expressions [4]; the use of the
logic formalism underlying the Semantic Web is beyond their understanding. So
how can we bridge the gap between the logic-based Semantic Web and real-world
users, who are ill at ease and, oftentimes, unable to use formal logic concepts?

An often proposed solution to address this problem is the use of natural lan-
guage interfaces (NLIs). Most NLIs, however, only understand some subset of
natural language (NL), but often suggest full understanding, which leads to con-
fusing interaction with users [1]. This mismatch between the users’ expectations
and the capabilities of a NLI is called the habitability problem [5]. Furthermore,
the development of NL tools requires computationally intensive algorithms rely-
ing on large amounts of background knowledge making the tools highly domain-
dependent and inapplicable to new domains or applications [1].

This project proposes to break the dichotomy between full NLIs and formal
query approaches regarding them as ends of a Formality Continuum. It argues
that query interfaces should impose some structure on the user’s input to guide
the entry but not overly restrict the user with an excessively formalistic lan-
guage. In this way, we hypothesize that the best solutions for the casual and
occasional user lie between the freedom of a full NLI and the structuredness of
a formal query language. Furthermore, the use of controlled NLs facilitates to
overcome both the habitability problem and the adaptivity barrier of full NLIs.
The overarching goal is to turn the vision of the Semantic Web into realiza-
tion, which can only happen if we bridge the gap between the end-users and the
logic-based scaffolding of the Semantic Web.

2 Current State of the Project and Future Research

To support our proposition we have developed two different controlled language
interfaces to the Semantic Web that lie in the middle of the Formality Con-
tinuum: Ginseng [2] and SWAT [3]. Both allow users to formulate queries in a
language akin to English. To preliminarily evaluate our interfaces, we confronted

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 980–981, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Talking to the Semantic Web - Query Interfaces 981

users with the Ginseng prototype, with the SWAT prototype, and with a SQL
interface as well as a keyword-based text search engine as competitors. Using
a standardized usability test, we found that both Ginseng and SWAT signifi-
cantly outperformed the SQL interface. Both interfaces also yielded much better
retrieval performances than the competitors.

While the results of our preliminary usability evaluation are promising, many
challenges remain. At the current state, the project provides a good basis for a
deeper exploration and evaluation of NLIs to Semantic Web knowledge bases.
More specifically, we would like to investigate our hypotheses regarding the For-
mality Continuum to the fullest extent. We, therefore, intend to (1) develop and
implement a total of four different NLIs (two of which are extensions of Ginseng
and SWAT) for the casual users to query ontologies, (2) thoroughly evaluate the
usability and performance of these NLIs by conducting a comprehensive user
study allowing us to generate conclusive evidence regarding our hypotheses.

As a first step, we will design and implement two more NLIs. The new inter-
faces are intended to ”veer” towards both ends of the continuum. Consequently,
one new interface will allow full NL input, whereas the other one tends to follow
the ideas of the formal approaches. The interfaces will be as domain-independent
and easily customizable for different ontologies as possible by extracting the
necessary underlying frameworks from the knowledge bases. We pursue to avoid
complex and tedious full NLP scaffolds on the one hand as well as a formal query
interface that shifts all ”intellectual” work to the user on the other hand.

As the second step, we plan to perform a thorough evaluation of the interfaces
according to well-established methodologies. The evaluation will comprise three
elements: (1) a test set evaluation showing the retrieval performance of our inter-
faces as well a other NLIs, (2) a heuristic usability evaluation to systematically
inspect our interfaces to detect their usability problems, and (3) a comprehensive
usability study (benchmarking the tools against each other as well as to other
existing NLIs). These evaluation elements should provide us with sufficient evi-
dence to answer the question where on the Formality Continuum the best query
interface solutions for the casual and occasional user lie.

References

1. I. Androutsopoulos, G. D. Ritchie, and P. Thanisch. Natural language interfaces to
databases - an introduction. Natural Language Engineering, 1(1):29–81, 1995.

2. A. Bernstein and E. Kaufmann. Making the semantic web accessible to the casual
user: Empirical evidence on the usefulness of semiformal query languages. IEEE
Transactions on Knowlwdge and Data Engineering, under review.

3. A. Bernstein, E. Kaufmann, A. Göhring, and C. Kiefer. Querying ontologies: A
controlled english interface for end-users. In 4th Intl. Semantic Web Conf. (ISWC
2005), pages 112–126, 2005.

4. A. Spink, W. Dietmar, B. J. Jansen, and T. Saracevic. Searching the web: The
public and their queries. Journal of the American Society for Information Science
and Technology, 52(3):226–234, 2001.

5. C. W. Thompson, P. Pazandak, and H. R. Tennant. Talk to your semantic web.
IEEE Internet Computing, 9(6):75–78, 2005.



Changing Ontology Breaks Queries

Yaozhong Liang, Harith Alani, and Nigel Shadbolt

Intelligence, Agents and Multimedia Group
School of Electronics and Computer Science

University of Southampton
Highfield, Southampton

England, United Kingdom
yl504r@ecs.soton.ac.uk

ha@ecs.soton.ac.uk
nrs@ecs.soton.ac.uk

Abstract. Updating an ontology that is in use may result in inconsis-
tencies between the ontology and the knowledge base, dependent on-
tologies and applications/services. Current research concentrates on the
creation of ontologies and how to manage ontology changes in terms of
mapping ontology versions and keeping consistent with the instances.
Very little work investigated controlling the impact on dependent appli-
cations/services; which is the aim of the system presented in this paper.
The approach we propose is to make use of ontology change logs to
analyse incoming RDQL queries and amend them as necessary. Revised
queries can then be used to query the ontology and knowledge base as
requested by the applications and services. We describe our prototype
system and discuss related problems and future directions.

General Terms. Ontology Management.

Keywords.OntologyChangeManagement,OntologyVersioning,Knowl-
edge Management, Semantic Web.

1 Introduction and Related Work

Ontologies are quickly becoming indispensable parts of the Semantic Web. The
number of ontologies that are being developed and used by various applications
is continuously increasing. One of the major problems with ontologies is change.
Ontology changes may cause serious problems to its data instantiations (the
knowledge base), the applications and services that might be dependent on the
ontology, as well as any ontologies that import that changed ontology [3].

Most work so far has focused on ways to handle ontology change, such as
change characterisation [3], ontology evolution [4], ontology versioning [2], and
consistency maintenance [5, 6, 7]. However, not much has been done with respect
to using change-tracks to eliminate or reduce any impact that ontology change
can have on any dependent applications and services. It would be very costly
and perhaps even unrealistic to expect all parties that could be affected by

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 982–985, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Changing Ontology Breaks Queries 983

a change to coordinate any such changes [1]. Therefore, we believe that it would
be very beneficial to have a system that could track such changes, relate changes
to incoming queries, amend such queries accordingly, and inform the query source
of those changes and actions taken.

In this paper we describe a prototype system that targets these problems. The
system uses a semantic log of ontology change to amend RDQL queries sent to
the ontology as necessary. Such a system could save many hours of application
re-development by not only updating queries automatically and maintaining the
flow of knowledge to the applications as much as possible, but also to inform the
developers of such changes in the ontology that relates to their queries.

2 System Description

The solution shown in Figure 1 to tackle the identified problems is described as
a series of steps as follows:

Fig. 1. An overview of the Approach

1. Capture: The changes made between two versions of the same ontology
is captured at this stage. Currently, we identify changes by comparing two
versions using PromptDiff in Protégé [4].

2. Instantiate: The Log Ontology is populated with cha- nge information iden-
tified in step 1.

3. Analyse: Queries submitted by the applications are analysed to find out
whether any of the entities within the queries could be affected by the
changes stored in the Log Ontology.

4. Update: If entities within the queries are found to have been changed,
they are replaced with their changes to form the new queries with updated
entities, and then resubmitted to the queried ontology.



984 Y. Liang, H. Alani, and N. Shadbolt

Fig. 2. The working process of the Middle Layer System

5. Respond: After the new-formed queries are submitted to the ontology for
processing, the results are returned back to the application. At the same
time, a summary of change/update information will also be returned back
to the end-users with the query results so as to inform users of the updates.

Analyse, Update and Respond are implemented in the Middle Layer System
in Figure 1. Its working process is presented in Figure 2.

3 Conclusions and Future Work

We proposed an approach for handling ontology changes by means of using
change-tracks to eliminate or reduce any impact that ontology change can have
on the application queries. We developed a prototype system that analyses the
incoming queries, amends the entities within the queries according to the change
information stored in the Log Ontology built to store and manage change infor-
mation between ontology versions, and informs the end-user of any changes and
actions taken. We showed that with the extra support of the middle layer, some
of the queries that are targeting parts of the ontology that have changed can be
updated and processed properly.

In our next stage work, Enabling Log Ontology to capture a series of changes
between multiple versions of the same ontology would be a necessity to assist our
system to cope with more complex changes. In addition, (semi-)automatic collect-
ing ontology change informationbetween ontology versionswouldmake our system
usable in a large scale. Providing themechanism to inform the end-user of the corre-
lated changes appropriately besides those directly related to the entities explicitly
mentioned in the query, and the ability to decide the order of changes happened
on the ontology are our next stage work. This would enhance the system to handle
more complex changes as well as help us understand deeply the ontology change.



Changing Ontology Breaks Queries 985

Acknowledgments

This work has been supported under the Advanced Knowledge Technologies
Interdisciplinary Research Collaboration (AKT IRC), which is sponsored by the
UK Engineering and Physical Science Research Council under grant number
GR/N15764/01. Special thanks for the excellent technical supports from my
colleague David Dupplaw (dpd@ecs.soton.ac.uk).

References

[1] Heflin, J. and Hendler, J. Dynamic ontologies on the web. In Proceeding of the
17th American Association for Artificial Intelligence Conference (AAAI), pages
443–449, Menlo Park, CA, US, 2000. AAAI/MIT Press.

[2] Huang, Z. and Stuckenschmidt, H. Reasoning with multi-version ontologies: A
temporal logic approach. In Proceeding of the 4th International Semantic Web
Conference (ISWC), Galway, Ireland, 2005.

[3] Klein, M. and Fensel, D. Ontology versioning on the semantic web. In Proceeding of
International Semantic Web Working Symposium (SWWS), Stanford University,
California, U.S.A, 2001.

[4] N. K. Klein, M., and Musen, M.A. Tracking changes during ontology evolution.
In Proceeding of the 3rd International Semantic Web Conference (ISWC2004), Hi-
roshima, Japan, November 2004.

[5] Noy, N.F., and Musen, M.A. Promptdiff: A fixed-point algorithm for comparing
ontology versions. In Proceeding of the 18th National Conference of Artificial In-
telligence (AAAI), pages 744–750, Edmonton, Alberta, Canada, 2002.

[6] K. K. Ognyanov, D., and Fensel, D. Ontology versioning and change detection on
the web. In Proceeding of 13th International Conference on Knowledge Engineering
and Management, Siguenza, Spain, 2002.

[7] H. H. H. Stuckenschmidt, H., and Sure, Y. A framework for handling inconsis-
tency in changing ontologies. In Proceeding of the 4th International Semantic Web
Conference (ISWC), Galway, Ireland, 2005.



Towards a Global Scale Semantic Web

Zhengxiang Pan

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

zhp2@lehigh.edu

1 Introduction

By transforming the Web from a collection of documents to a collection of semantically
rich data sources, the Semantic Web promises an unprecedented benefit of a global
knowledge infrastructure. My PhD research will try to help make that happen at a global
scale by doing the following proposed work:

1. Design and implement a highly scalable Semantic Web knowledge base system by
exploiting modern relational database technologies combined with the state-of-the-
art description logics reasoners.

2. Build and empirically verify a framework that handles ontology evolution and the
reuse of data on top of the perspective theory [1]. This framework should be able
to relieve inconsistency and heterogeneity in a global scale Semantic Web.

3. Systematically evaluate the resulting system’s capability and scalability in process-
ing, integrating and querying data under the real world environment.

2 Problem Statement

Traditionally Semantic Web knowledge bases are based on description logic reasoners.
These reasoners usually employ tableaux algorithms to do reasoning. Since most of the
inferences are performed in main memory, their scalability are limited by the size of
available physical memory. There has been a growing interest in the development of
systems that will store and process large amount of Semantic Web data. However, most
of these systems are geared towards RDF and RDF(S) data and therefore focus less on
OWL reasoning. The above two types of systems represent two conflicting requirements
on knowledge bases: completeness and scalability. The trade-off between these must be
decided by each application. Nevertheless, an approach that could scale well and keep
essential reasoning powers is highly desired in the Semantic Web at global scale.

The Semantic Web at global scale is also dynamic, inconsistent and heterogeneous.
A framework that can handle ontology evolution, including ontology extension and the
reuse of data, should be able to relieve these issues by integrating various ontologies
and data sources.

3 Methodology

My proposed research will combine relational database techniques and description logic
reasoning services to archive high scalability with essential inference capabilities. Gen-
erally, TBox reasonings will be handled by the DL reasoners and some ABox reasonings

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 986–987, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Towards a Global Scale Semantic Web 987

will be implemented using database techniques. The relational database management
systems (RDBMS) will be used to persistently store processed Semantic Web data and
its high availability and scalability will also be employed to support queries at large
volumes.

Typical ABox reasoning includes “realization”, which is to infer the implicit class
memberships for individuals. I believe some of the cases can be handled in the form
of database queries. The feasibility of this method has been initially investigated in [2],
except that they focused on loading the data in the opposite direction.

I will also construct a framework to support ontology evolution and data reuse. The
framework will be built on top of ontology perspectives [1]. This framework could re-
duce the occurrence of inconsistency since only a relevant subset of the Semantic Web
is involved in processing a query. It can also facilitate the integration of information re-
sources by creating new perspectives that include different ontologies and data sources.

Unbiased Semantic Web benchmarks such as LUBM [3] will be employed to make
and validate design decisions when building the system. Real Semantic Web data will be
used to evaluate the performance of the system comparing to similar existing systems,
including those use deductive databases.

My prior work includes DLDB, a knowledge base system that extends a RDBMS
with additional capabilities for partial OWL reasoning. The queries supported by cur-
rent DLDB fall under extensional conjunctive queries. Our experiments with DLDB
have demonstrated encouraging scalability [3]. In a recent work of our lab [4], we have
used Swoogle’s 2005 index as our dataset (45 million triples). We also showed that by
adding the mapping ontologies and using them as query perspectives, we retrieve more
results with a slight increase in query time.

4 Conclusion

I have proposed a PhD research in building a Semantic Web knowledge base system at
global scale. This work faces a couple of challenges. First, the sheer size of Semantic
Web poses a critical requirement on scalability. Existing techniques found in artificial
intelligence area do not seem to be capable of handling that large scale; whereas existing
techniques in database area do not seem to capable of reasoning on that rich semantics.
Second, the inherently inconsistent and heterogeneous Semantic Web makes it very
difficult to answer queries in a complete and sound fashion.

References

1. Heflin, J., Pan, Z.: A model theoretic semantics for ontology versioning. In: Proc. of the 3rd
International Semantic Web Conference. (2004) 62–76

2. Borgida, A., Brachman, R.J.: Loading data into description reasoners. In: SIGMOD Confer-
ence. (1993) 217–226

3. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for owl knowledge base systems. Journal
of Web Semantics 3(2) (2005) 158–182

4. Pan, Z., Qasem, A., Heflin, J.: An investigation into the feasibility of the semantic web. In:
Proc. of the Twenty First National Conference on Artificial Intelligence (AAAI-06). (2006)
1394–1399



Schema Mappings for the Web

François Scharffe

Digital Enterprise Research Institute
University of Innsbruck

francois.scharffe@deri.org

Abstract. Current solutions to data integration present many incon-
venients. The bottleneck seems to be the impossible automation of the
whole process. Human intervention will always be needed at some point,
and the problem is to find where and how this intervention can be per-
formed the most efficiently. In traditional mediator approaches the global
schema and mappings between the global and local schemas are designed
by hand. This is not the way to go if we want to see emerging a ”semantic
web”. The collaborative development of one-to-one mappings driven by
application needs has much more chance to rapidly create a network of
schemas. We propose to build on top on this view, shifting the human
intervention from the global schema elaboration to the one-to-one map-
ping between local schemas. This repartition of efforts associated with
publication of the local mappings is the only solution if we want to see
the deep web rising up and the semantic web vision becoming true. I
propose to contribute to this paradigm at two levels. First, mappings
between heterogeneous schemas must be universally understandable, as
schema descriptions may be of various natures (XML, relational, On-
tologies, Semi structured, . . . ). An independant language able to model
correspondences between two schemas is then needed. This language also
serves as an exchange format for matching algorithms as well as graphi-
cal mapping tools. A global schema is still necessary in order to provide
a unified view over resources. We propose in the following to study how
from a network of related schemas can we extract a global schema to-
gether with the associated mapping rules.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, p. 988, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 989 – 991, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Triple Space Computing for Semantic Web  
Services – A PhD Roadmap 

M. Omair Shafiq  

Digital Enterprise Research Institute (DERI),  
University of Innsbruck (UIBK) 

6020 Innsbruck, Austria. 
omair.shafiq@deri.org 

Abstract. This thesis will address how to enable Triple Space Computing as a 
communication paradigm for Semantic Web Services. Currently, Semantic Web 
Services are following a message based communication paradigm. Triple Space 
Computing is envisioned as communication and coordination paradigm for 
Semantic Web Services which is an extension of tuple space computing to support 
RDF and then use it for communication based on the principle of persistent 
publication and read of data. Web Service Modeling Ontology (WSMO) is our 
conceptual model for Semantic Web Services. Web Service Execution 
Environment (WSMX) is one of the reference implementations of the WSMO 
conceptual model. The paper presents an overview of technical insights about 
integration of WSMX with Triple Space Computing and proposes that how 
WSMX can use Triple Space computing for its communication and coordination 
in terms of dynamic components management, external communication 
management, resource management and coordination of different interconnected 
WSMXs. 

1   A Roadmap to Enable Triple Space Computing in Semantic 
Web Services 

The communication paradigm in Semantic Web Services (SWS) is synchronous, i.e. 
users communicate with SWS and SWS communicate with real world Web Services 
synchronously by sending direct messages. The synchronous communication requires 
quick response as its makes sender halt until response is received, which is not 
possible in case of execution process in SWS as it involves a heavy processing of 
semantic descriptions in terms of discovery, selection, composition, mediation, 
execution. This problem is to be overcome by introducing asynchronous 
communication and Triple Space Computing is perfect solution as being semantic 
based asynchronous communication paradigm. In this thesis we take Web Service 
Execution Environment (WSMX) [2] as reference implementation of Web Service 
Modeling Ontology (WSMO) to concretely solve the concerned issues. Using Triple 
Space Computing for asynchronous communication between different WSMXs 
enables and brings them a step closer to their architectural goal, i.e. to support greater 
modularization, flexibility and decoupling in communication of different WSMX 
nodes. Similarly, it enables WSMX to be highly distributed and easily accessible. 



990 M.O. Shafiq 

This thesis will address the integration of Triple Space Computing [1] with 
WSMX by analyzing that how and where exactly the two technologies fit together. 
The integration has been proposed as three major entry points which are (1) enabling 
components management in WSMX using Triple Space Computing, (2) External 
communication grounding in WSMX using Triple Space Computing, (3) Resource 
Management in WSMX using Triple Space Computing and (4) enabling 
communication of different inter-connected WSMX. After achieving these integration 
aspects, the goal will be then to build an application scenario to show its viability. 
Each of the integration aspect has been described in details below: 

WSMX has a management component [6] that manages the over all execution by 
enabling coordination of different components based on some execution scenario [4] 
specified by user in Goal. In this way there is a clear separation between business and 
management logic in WSMX. The individual components have clearly defined 
interfaces and have component implementation well separated with communication 
issues. Each component in WSMX have wrapper to handle the communication. 
WSMX manager and the individual components wrappers are needed to be interfaced 
with Triple Space in order to enable the WSMX manager manage the coordination of 
the components over Triple Space. The communication between manager and 
wrappers of the components will be carried out by publishing and subscribing the data 
as a set of RDF triples over Triple Space. The wrappers of components that handle 
communication will be interfaced with Triple Space middleware. 

WSMX acts as a semantic middleware between users and real world web services. 
Currently, due to existence of message oriented communication paradigm, users 
communicate with WSMX and WSMX communicate with Web Services 
synchronously. The external communication manager of WSMX is needed to provide 
a support to communicate over Triple Space. The interfaces for sending and receiving 
external messages by WSMX are needed provide a grounding support to alternatively 
communicate over Triple Space. This needs to be resolved by addressing several 
issues, i.e. invoker component in WSMX is needed to support Web Services 
Description Language (WSDL) and Simple Object Access Protocol (SOAP) 
communication binding over Triple Space. The Entry point interfaces will be 
interfaced with Triple Space middleware in order to provide the glue between existing 
Web Services standards and Triple Space Computing. 

WSMX contains different repositories to store ontologies, goals, mediators and 
web services descriptions as WSML based files. The internal repositories of WSMX 
are needed to be made optional and enable to store the WSML based data as set of 
RDF named graphs in Triple Space Storage. This is mainly concerned with 
transforming the existing representation of data in form of WSML into RDF 
representation. The repository interfaces are needed to be interfaced with Triple Space 
middleware. 

After enabling WSMX with Triple Space Computing, the next step will be to 
enable the communication and coordination of different WSMXs over Triple Space, 
i.e. forming a cluster of different interconnected WSMX nodes to support distributed 
service discovery, selection, composition, mediation, invocation etc. The management 
component in WSMX is will be enhanced to coordinate with WSMX managers in 
other WSMXs over Triple Space to form a cluster. After the implementation of 
integration of Triple Space Computing in WSMX, an application scenario will be 



 Triple Space Computing for Semantic Web Services – A PhD Roadmap 991 

analyzed, designed and developed over WSMX to show the usefulness of the new 
communication paradigm in WSMX. It will be a travel agent based application that 
will use semantic descriptions of several real life Web Services, like Amazon, 
Google, currency converter, money transfer etc. and would require extensive and 
distributed discovery, selection, composition, mediation and invocation of Semantic 
Web Services to fulfill the user’s requirements. 

Acknowledgements. Author acknowledges the guidance support from Michal 
Zaremba being the chief architect of Web Services Execution Environment (WSMX), 
Dieter Fensel being the initiator of WSMX and Triple Space Computing and Ying 
Ding for reviews, suggestions and further guidelines. 

References 

1. D. Fensel, Triple-space computing: Semantic Web Services based on persistent publication 
of informatio: In Proceedings of the IFIP International Conference on Intelligence in 
Communication Systems, INTELLCOMM 2004, Bangkok, Thailand, November 23-26, 
2004. 

2. C. Bussler et al, Web Service Execution Environment (WSMX), W3C Member Submis-
sion, June 2005. Available at http://www.w3.org/Submission/WSMX 

3. Michal Zaremba, Matthew Moran, Thomas Haselwanter, WSMX Architecture, D13.4v0.2 
WSMX Working Draft. 

4. M. Zaremba, C. Bussler: Towards Dynamic Execution Semantics in Semantic Web 
Services, In Proceedings of the Workshop on Web Service Semantics: Towards Dynamic 
Business Integration, International Conference on the World Wide Web (WWW2005). 
Chiba, Japan, 2005. 

5. R. Krummenacher, M. Hepp, A. Polleres, C. Bussler, and D. Fensel: WWW or What Is 
Wrong with Web Services. In Proc. of the 2005 IEEE European Conf on Web Services 
(ECOWS 2005), Växjö, Sweden, November 14-16, 2005. 

6. T. Haselwanter, Maciej Zaremba and Michal Zaremba. Enabling Components Management 
and Dynamic Execution Semantic in WSMX. WSMO Implementation Workshop 2005 
(WIW 2005), 6-7 June, Innsbruck, Austria. 



Toward Making Online Biological Data Machine
Understandable

Cui Tao

Brigham Young University, Provo, Utah 84602, U.S.A.
ctao@cs.byu.edu

Abstract. Huge amounts of biological data are available online. To ob-
tain needed information, biologists sometimes have to traverse different
Web sources and combine their data manually. We introduce a system
that can automatically interpret the structures of heterogeneous Web
pages, extract useful information from them, and also transform them to
machine-understandable pages for the Semantic Web, so that a Semantic
Web agent can automatically find the information of interest.

Huge and growing amounts of biological data reside in various online repositories.
Most of them only focus on some specific areas or only allow limited types of
user queries. Sometimes the information a user needs spans multiple sources. A
system that traverses only one source may not answer user queries completely. A
system that can automatically retrieve, understand, and extract online biological
data independent of the source is needed. In this research, I propose a system that
can automatically interpret, extract, and annotate biological data with respect
to an ontology and make it machine understandable as Semantic Web data.
This research interweaves many different areas in information technology and
bioinformatics. In [3], I surveyed different approaches in Information Extraction,
Schema Matching, the Semantic Web, Data Integration, and Bioinformatics, in
order to prepare for my own research.

The first step is to understand heterogeneous source pages automatically, which
means to recognize attribute-value pairs and to map these attribute-value pairs to
the concepts in the domain extraction ontology1. We proposed two techniques to
resolve this problem, sibling-page comparison and Sample-Ontology-Object recog-
nition. The sibling page comparison technique compares sibling pages, which are
the pages commonly generated by underlying web databases, and identifies and
connects non-varying components as category labels and varying components as

1 The system works based on a data extraction ontology, which is a conceptual-model
instance that serves as a wrapper for a domain of interest [2]. When an extraction
ontology is applied to a Web page, the ontology identifies objects and relationships
and associates them with named object sets and relationship sets in the ontology’s
conceptual-model instance and thus wraps the recognized strings on a page and makes
them “understandable” in terms of the schema specified in the conceptual-model in-
stance.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 992–993, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Toward Making Online Biological Data Machine Understandable 993

data values. Experimental results show that it can successfully identify sibling ta-
bles, generate structure patterns, and interpret different tables using the gener-
ated patterns. An alternate way to discover attribute-value pairs and map them
to concepts in the ontology is through the use of a sample ontology object. A sam-
ple ontology object contains as much information as we can collect for one object in
a specified application domain with respect to the extraction ontology. For a sam-
ple ontology object to be useful, it must commonly appear in many sites. Instead
of attributes, our sample-ontology-object recognition technique depends on values
to detect structural patterns and tries to infer the structure pattern of a page by
observing the layout of the page with respect to the sample ontology object.

If we can interpret a source page and have already matched attribute value
pairs in the source page to target concept(s) in the ontology, it is not hard to
semantically annotate values for each page in the site using the ontology as the
annotation ontology since the machine has already “understood” it [1]. This
means that we can transform a source page to a Semantic Web page, which is
machine-understandable.

The system is partially implemented. I have implemented tools to interpret
source tables and finished a few papers related to this topic [4]. I am cur-
rently working on generating a set of sample ontology objects, implementing
the sample-ontology-object recognition technique, and building a tool that can
semi-automatically generate ontologies in the molecular biology domain from
source tables and a few sample ontology objects. To build an ontology in such a
broad domain is not easy, not to mention that it should to be automatic. I am
currently facing many challenges such as how to better resolve the scalability
issues and inter-sources conflicts; and what kind of information we should cover.

The prototype system is to be built for research purposes. It will not do any
integration beyond synchronization with the target extraction ontology. The ex-
traction ontology will not cover all the concepts, relationships, and values in the
molecular biology domain. Although I will implement and test the system in the
molecular biology domain, this approach will likely be general to all application
domains that have similar characteristics.

References

1. Y. Ding, D. W. Embley, and S. W. Liddle. Automatic creation and simplified
querying of semantic Web content: An approach based on information-extraction
ontologies. In Proceedings of the 1st Asian Semantic Web Conference (ASWC’06),
2006. to Appear.

2. D.W. Embley, D.M. Campbell, Y.S. Jiang, S.W. Liddle, D.W. Lonsdale, Y.-K. Ng,
and R.D. Smith. Conceptual-model-based data extraction from multiple-record Web
pages. Data & Knowledge Engineering, 31(3):227–251, November 1999.

3. C. Tao. Biological data extraction and integration — a research area background
study. Technical report, Brigham Young University, UT, USA, May 2005.

4. C. Tao and D. W. Embley. Table intepretation by sibling page comparison. 2006.
submitted.



Where the Social Web Meets the Semantic Web

Tom Gruber

tomgruber.org
RealTravel.com

Abstract. The Semantic Web is an ecosystem of interaction among
computer systems. The social web is an ecosystem of conversation among
people. Both are enabled by conventions for layered services and data ex-
change. Both are driven by human-generated content and made scalable
by machine-readable data. Yet there is a popular misconception that the
two worlds are alternative, opposing ideologies about how the web ought
to be. Folksonomy vs. ontology. Practical vs. formalistic. Humans vs.
machines. This is nonsense, and it is time to embrace a unified view. I
subscribe to the vision of the Semantic Web as a substrate for collective
intelligence. The best shot we have of collective intelligence in our life-
times is large, distributed human-computer systems. The best way to get
there is to harness the ”people power” of the Web with the techniques
of the Semantic Web. In this presentation I will show several ways that
this can be, and is, happening.

1 About the Speaker

Tom Gruber is a researcher, inventor, and entrepreneur with a focus on systems
for knowledge sharing and collective intelligence. He did foundational work in
ontology engineering and is well-known for his definition of ontologies in the con-
text of Artificial Intelligence. The approaches and technologies from this work are
precursors to the infrastructure for today’s Semantic Web. At Stanford Univer-
sity in the early 1990’s, Tom was a pioneer in the use of the Web for collaboration
and knowledge sharing. He invented HyperMail, a widely-used open source appli-
cation that turns email conversations into collective memories, which chronicled
many of the early discussions that helped define the Web. He built ontology
engineering tools and established the first web-based public exchange for ontolo-
gies, software, and knowledge bases. During the rise of the Web, Dr. Gruber
founded Intraspect, an enterprise software company that pioneered the space of
collaborative knowledge management. Intraspect applications help professional
people collaborate in large distributed communities, continuously contributing
to a collective body of knowledge. His current project is RealTravel.com, which
aspires to be the best place on the web to share knowledge and experiences about
travel. RealTravel provides an environment for a community of travel enthusiasts
to create beautiful travel journals of their adventures, share them with friends
and family, and learn from other like-minded travelers.

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, p. 994, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



The Semantic Web: Suppliers and Customers

Rudi Studer

Institute AIFB, Universität Karlsruhe (TH)
D-76128 Karlsruhe, Germany

studer@aifb.uni-karlsruhe.de

Abstract. The notion of the Semantic Web can be coined as a Web of
data when bringing database content to the Web or as a Web of enriched
human-readable content when encoding the semantics of web-resources
in a machine-interpretable form.

It has been clear from the beginning that realizing the Semantic Web
vision will require interdisciplinary research. At this the fifth ISWC, it
is time to re-examine the extent to which interdisciplinary work has
played and can play a role in Semantic Web research, and even how Se-
mantic Web research can contribute to other disciplines. Core Semantic
Web research has drawn from various disciplines, such as knowledge rep-
resentation and formal ontologies, reusing and further developing their
techniques in a new context.

However, there are several other disciplines that explore research is-
sues very relevant to the Semantic Web in different guises and to differing
extents. As a community, we can benefit by also recognizing and draw-
ing from the research in these different disciplines. On the other hand,
Semantic Web research also has much to contribute to these disciplines
and communities. For example, the Semantic Web offers scenario that of-
ten ask for unprecedented scalability of techniques from other disciplines.
Throughout the talk, I will illustrate these points through examples from
disciplines such as natural language processing, databases, software en-
gineering and automated reasoning.

The industry also has a major role to play in the realization of the Se-
mantic Web vision. I will therefore additionally examine the added value
of Semantic Web technologies for commercial applications and discuss
issues that should be addressed for broadening the market for Semantic
Web technologies.

1 About the Speaker

Rudi Studer is Full Professor in Applied Informatics at the University ofKarlsruhe,
Institute AIFB (www.aifb.uni-karlsruhe.de/WBS). His research interests include
knowledge management, Semantic Web technologies and applications, ontology
management, data and text mining, service-oriented architectures, peer-to-peer
systems, and Semantic Grid.

Rudi Studer is also director in the research department Information Process
Engineering at the FZI Research Center for Information Technologies at the

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 995–996, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



996 R. Studer

University of Karlsruhe (www.fzi.de/ipe) and one of the presidents of the FZI
Research Center, as well as co-founder of the spin-off company ontoprise GmbH
(www.ontoprise.de) that develops semantic applications. He is the current pres-
ident of the Semantic Web Science Association (www.iswsa.org) and Editor-in-
chief of the journal Web Semantics: Science, Services, and Agents on the World
Wide Web (www.websemanticsjournal.org ).

He is also engaged in various national and international cooperationprojects be-
ing funded by various agencies such as Deutsche Forschungsgemeinschaft (DFG),
the European Commission, the German Ministry of Education and Research, and
by industry.



The Semantic Web and Networked Governance:
Promise and Challenges

Jane E. Fountain

National Center for Digital Government
University of Massachusetts at Amherst

fountain@polsci.umass.edu

Abstract. The virtual state is a metaphor meant to draw attention to
the structures and processes of the state that are becoming increasingly
aligned with the structures and processes of the semantic web. Seman-
tic Web researchers understand the potential for information sharing,
enhanced search, improved collaboration, innovation, and other direct
implications of contemporary informatics. Yet many of the broader de-
mocratic and governmental implications of increasingly networked gov-
ernance remain elusive, even in the world of public policy and politics.

Governments, not businesses, remain the major information process-
ing entities in the world. But where do they stand as knowledge man-
agers, bridge builders and creators? As they strive to become not sim-
ply information-based but also knowledge-creating organizations, public
agencies and institutions face a set of striking challenges. These include
threats to privacy, to intellectual property, to identity, and to traditional
processes of review and accountability. From the perspective of the or-
ganization of government, what are some of the key challenges faced by
governments as they seek to become networked? What best practices are
emerging globally? And in the networked world that is rapidly emerging
and becoming institutionalized, how can public, private and nonprofit
sectors learn from one another?

1 About the Speaker

Jane E. Fountain is Professor of Political Science and Public Policy and the
Director of the Center for Public Policy and Administration at the University
of Massachusetts Amherst. She is also the founder and director of the National
Center for Digital Government which was established with support from the
National Science Foundation to build research and infrastructure in the field of
research on technology and governance.

Fountain is the author of Building the Virtual State: Information Technol-
ogy and Institutional Change (Brookings Institution Press, 2001) which was
awarded an Outstanding Academic Title in 2002 by Choice. The book has be-
come a classic text in the field and has been translated into and published in
Chinese, Japanese and Portuguese. Fountain is currently researching the succes-
sor volume to Building the Virtual State, which will examine technology-based

I. Cruz et al. (Eds.): ISWC 2006, LNCS 4273, pp. 997–998, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



998 J.E. Fountain

cross-agency innovations in the U.S. federal government and their implications
for governance and democratic processes, and Women in the Information Age
(to be published by Cambridge University Press), which focuses on gender, in-
formation technology, and institutional behavior.

Professor Fountain also directs the Science, Technology, and Society Initia-
tive (STS) and the Women in the Information Age Project (WITIA). The STS
Initiative serves as a catalyst for collaborative, multi-disciplinary research part-
nerships among social, natural and physical scientists. WITIA examines the
participation of women in computing and information-technology related fields
and, with its partner institutions, seeks to increase the number of women experts
and designers in information and communication technology fields.

She has served on several governing bodies and advisory groups in the public,
private and nonprofit sectors in the U.S. and abroad. Her executive teaching
and invited lectures have taken her to several developing countries and govern-
ments in transition including those of Saudi Arabia, the United Arab Emirates,
Nicaragua, Chile, Estonia, Hungary, and Slovenia as well as to countries includ-
ing Japan, Canada, New Zealand, Australia and the countries of the European
Union.



Author Index

Agrawal, S. 913
Alani, Harith 1, 982
Aleman-Meza, Boanerges 44
Amin, Alia 951
Arenas, Marcelo 30
Arpinar, I. Budak 44
Aswani, Niraj 329
Auer, Sören 736
Aurnhammer, Melanie 58

Bao, Jie 72, 967
Basters, Ulrich 87
Bechhofer, Sean 101
Belhajjame, Khalid 116
Ben Hassine, Ahlem 130
Ben-Asher, Zohar 778
Bench-Capon, Trevor 371
Benedict, James 792
Bernardi, Ansgar 778
Bernstein, Abraham 144
Bizer, Christian 158
Blázquez, José M. 778
Bontcheva, Kalina 329
Brambilla, Marco 172
Brewster, Christopher 1
Brockmans, Saartje 187

Cabral, Liliana 201
Cafarella, Michael 428
Can, Özgü 970
Caragea, Doina 72, 967
Celino, Irene 172
Celma, Òscar 927
Ceri, Stefano 172
Cerizza, Dario 172
Chen, Huajun 750
Cheung, Kwok 215
Chugh, Abhita 544
Cimpian, Emilia 459
Cinquini, Luca 792
Colomb, Robert M. 187
Cunningham, Hamish 329

Darnell, J. Anthony 792
Das, Amar K. 901

Davies, Rob 959
de Boer, Victor 951
de Niet, Marco 951
Decker, Stefan 258, 559
Delbru, Renaud 559
Della Valle, Emanuele 172
Dellschaft, Klaas 228
Dengel, Andreas 887
Dietzold, Sebastian 736
Dimitrov, Dimitar 873
Dimitrov, Dimitre A. 764
Ding, Li 242
Dokulil, Jǐŕı 972
Domingue, John 201, 959

Embury, Suzanne M. 116
Euzenat, Jérôme 16, 371

Facca, Federico Michele 172
Falkman, Göran 820
Felićıssimo, Carolina Howard 974
Fernández, Norberto 778
Ferrucci, David 861
Finin, Tim 242
Fisteus, Jesús A. 778
Fluit, Christiaan 887
Fokoue, Achille 343
Fountain, Jane E. 997
Fox, Peter 792
Fuentes, Manuel 778
Fujii, Kunihiro 806
Fukazawa, Yusuke 806

Galizia, Stefania 201
Gallagher, K. 913
Garcia, Jose 792
Gardiner, Tom 654
Gil, Yolanda 357
Goble, Carole A. 116
Grimnes, Gunnar Aastrand 887
Gruber, Tom 994
Gugliotta, Alessio 201, 959
Guo, Weisen 833
Gustafsson, Marie 820



1000 Author Index

Gutierrez, Claudio 30
Gutiérrez-Villaŕıas, Leticia 959

Haase, Peter 187
Halpin, Harry 976
Hanappe, Peter 58
Hardman, Lynda 272, 951
Harper, Simon 101
Harth, Andreas 258
Hassell, Joseph 44
Heflin, Jeff 764
Heim, Dominik 887
Hendler, James 682
Henke, Jan 978
Herzog, Marcus 286
Hildebrand, Michiel 272, 951
Hofmann, Paul 873
Hollink, Laura 951
Holzinger, Wolfgang 286
Honavar, Vasant G. 72, 967
Hong, Mingcai 640
Horak, Benjamin 887
Horrocks, Ian 501, 654
Hu, Wei 300
Huang, Zhisheng 951
Hunter, Jane 215
Hurtado, Carlos A. 314
Hyvönen, Eero 847

Idreos, Stratos 399
Ishida, Toru 130
Ishizuka, Mitsuru 487

Kagal, Lalana 473
Karger, David 158
Kaufmann, Esther 144, 980
Kemper, Brian 833
Kendall, Elisa F. 187
Kerrigan, Mick 459
Kershenbaum, Aaron 343
Kiesel, Malte 887
Kim, Jihie 357
Klusch, Matthias 87
Kochut, Krys J. 583
Kolb, Hap 723
Koubarakis, Manolis 399
Kraines, Steven 833
Krötzsch, Markus 935
Krüpl, Bernhard 286
Kurakake, Shoji 806

Laera, Loredana 371
Lassila, Ora 473
Lathem, J. 913
Lécué, Freddy 385
Lee, Ryan 158
Léger, Alain 385
Li, Juanzi 640
Liang, Bangyong 640
Liang, Yaozhong 982
Liarou, Erietta 399
Lindahl, Fredrik 820
Liu, William 544
Lopez, Vanessa 414
Lunn, Darren 101

Ma, Li 343, 445
Mäkelä, Eetu 847
Mao, Yuxin 750
Marrara, Angelo 778
Martins, Susana B. 901
Matsubara, Shigeo 130
Matsuo, Yutaka 487
Maus, Heiko 887
McDowell, Luke K. 428
McGuinness, Deborah L. 792, 861
McIlraith, Sheila A. 597
Mei, Jing 445
Middleton, Don 792
Miyoshi, Yu 515
Mocan, Adrian 459
Montanari, Rebecca 473
Morbidoni, Christian 943
Mori, Junichiro 487
Motik, Boris 501
Motta, Enrico 414
Murdock, J. William 709, 861
Musen, Mark A. 544

Nadeem, Danish 887
Naganuma, Takefumi 806
Nakamura, Yutaka 833
Nakatsuji, Makoto 515
Nickles, Matthias 529
Norton, Barry 201
Noy, Natalya F. 544
Nucci, Michele 943

O’Connor, Martin J. 901
Oldham, N. 913
Omelayenko, Borys 951



Author Index 1001

Oren, Eyal 559
Otsuka, Yoshihiro 515
Özacar, Tuğba 573
Öztürk, Övünç 573

Pan, Jeff Z. 612, 668
Pan, Yue 445
Pan, Zhengxiang 986
Parrish, David B. 901
Parsia, Bijan 682, 695
Paslaru Bontas Simperl, Elena 625
Paton, Norman W. 116
Payne, Terry 371
Pedrinaci, Carlos 201
Pérez, Jorge A. 30
Pietriga, Emmanuel 158
Pinheiro da Silva, Paulo 861
Poulovassilis, Alexandra 314
Prokoshyna, Nataliya 597

Qasem, Abir 764
Qu, Yuzhong 300

Ramakrishnan, Cartic 583
Rao, Jinghai 873
Ratnakar, Varun 357
Richardson, Marc 959
Riechert, Thomas 736
Rosati, Riccardo 501
Rowlatt, Mary 959

Saarela, Samppa 847
Sabou, Marta 414
Sadeh, Norman 873
Sánchez, Luis 778
Sattler, Ulrike 501
Sauermann, Leo 887
Scharffe, François 988
Schonberg, Edith 343
Schreiber, Guus 723, 951
Shadbolt, Nigel 1, 982
Shafiq, M. Omair 989
Shankar, Ravi D. 901
Sheth, Amit P. 583, 913
Siberski, Wolf 612
Siebes, Ronny 951
Sintek, Michael 778
Sohrabi, Shirin 597
Solomon, Stan 792
Srinivas, Kavitha 343
Staab, Steffen 228

Steels, Luc 58
Stevens, Robert 116
Stinčić, Sandra 959
Studer, Rudi 995
Sure, York 625

Taekema, Jos 951
Tamma, Valentina 371
Tanasescu, Vlad 201, 959
Tang, Jie 640
Tang, Jinmin 750
Tao, Cui 992
Tempich, Christoph 625
Thaden, Uwe 612
Toninelli, Alessandra 473
Torgersson, Olof 820
Tsarkov, Dmitry 654
Tsujishita, Takumi 487
Tummarello, Giovanni 943

Umbrich, Jürgen 258
Ünalır, Murat Osman 573, 970

van Assem, Mark 951
van Hage, Willem Robert 723
van Kersen, Janneke 951
van Ossenbruggen, Jacco 272, 951
Völkel, Max 935
Vrandečić, Denny 935

Wallace, Evan K. 187
Wang, Heng 750
Wang, Nanbor 764
Wang, Shenghui 668
Wang, Taowei David 682, 695
Wang, Yimin 750
Welty, Chris 187, 709, 861
West, Patrick 792
Wielemaker, Jan 951
Wielinga, Bob 951
Wingate, H. 913
Wood, Peter T. 314
Wu, Zhaohui 750

Xie, Guo Tong 187

Yadav, P. 913
Yin, Ainin 750

Zhou, Cunyin 750
Zimmermann, Antoine 16


	Frontmatter
	Research Track
	Ranking Ontologies with AKTiveRank
	Three Semantics for Distributed Systems and Their Relations with Alignment Composition
	Semantics and Complexity of SPARQL
	Ontology-Driven Automatic Entity Disambiguation in Unstructured Text
	Augmenting Navigation for Collaborative Tagging with Emergent Semantics
	On the Semantics of Linking and Importing in Modular Ontologies
	RS2D: Fast Adaptive Search for Semantic Web Services in Unstructured P2P Networks
	{\sf SADIe}: Semantic Annotation for Accessibility
	Automatic Annotation of Web Services Based on Workflow Definitions
	A Constraint-Based Approach to Horizontal Web Service Composition
	GINO -- A Guided Input Natural Language Ontology Editor
	Fresnel: A Browser-Independent Presentation Vocabulary for RDF
	A Software Engineering Approach to Design and Development of Semantic Web Service Applications
	A Model Driven Approach for Building OWL DL and OWL Full Ontologies
	IRS-III: A Broker for Semantic Web Services Based Applications
	Provenance Explorer -- Customized Provenance Views Using Semantic Inferencing
	On How to Perform a Gold Standard Based Evaluation of Ontology Learning
	Characterizing the Semantic Web on the Web
	MultiCrawler: A Pipelined Architecture for Crawling and Indexing Semantic Web Data
	/facet: A Browser for Heterogeneous Semantic Web Repositories
	Using Ontologies for Extracting Product Features from Web Pages
	Block Matching for Ontologies
	A Relaxed Approach to RDF Querying
	Mining Information for Instance Unification
	The Summary Abox: Cutting Ontologies Down to Size
	Semantic Metadata Generation for Large Scientific Workflows
	Reaching Agreement over Ontology Alignments
	A Formal Model for Semantic Web Service Composition
	Evaluating Conjunctive Triple Pattern Queries over Large Structured Overlay Networks
	PowerMap: Mapping the Real Semantic Web on the Fly
	Ontology-Driven Information Extraction with OntoSyphon
	Ontology Query Answering on Databases
	Formal Model for Ontology Mapping Creation
	A Semantic Context-Aware Access Control Framework for Secure Collaborations in Pervasive Computing Environments
	Extracting Relations in Social Networks from the Web Using Similarity Between Collective Contexts
	Can OWL and Logic Programming Live Together Happily Ever After?
	Innovation Detection Based on User-Interest Ontology of Blog Community
	Modeling Social Attitudes on the Web
	A Framework for Ontology Evolution in Collaborative Environments
	Extending Faceted Navigation for RDF Data
	Reducing the Inferred Type Statements with Individual Grouping Constructs
	A Framework for Schema-Driven Relationship Discovery from Unstructured Text
	Web Service Composition Via Generic Procedures and Customizing User Preferences
	Querying the Semantic Web with Preferences
	{\sf ONTOCOM}: A Cost Estimation Model for Ontology Engineering
	Tree-Structured Conditional Random Fields for Semantic Annotation
	Framework for an Automated Comparison of Description Logic Reasoners
	Integrating and Querying Parallel Leaf Shape Descriptions
	A Survey of the Web Ontology Landscape
	CropCircles: Topology Sensitive Visualization of OWL Class Hierarchies
	Towards Knowledge Acquisition from Information Extraction
	A Method for Learning Part-Whole Relations

	Semantic Web in Use
	OntoWiki -- A Tool for Social, Semantic Collaboration
	Towards a Semantic Web of Relational Databases: A Practical Semantic Toolkit and an In-Use Case from Traditional Chinese Medicine
	Information Integration Via an End-to-End Distributed Semantic Web System
	NEWS: Bringing Semantic Web Technologies into News Agencies
	Semantically-Enabled Large-Scale Science Data Repositories
	Construction and Use of Role-Ontology for Task-Based Service Navigation System
	Enabling an Online Community for Sharing Oral Medicine Cases Using Semantic Web Technologies
	EKOSS: A Knowledge-User Centered Approach to Knowledge Sharing, Discovery, and Integration on the Semantic Web
	Ontogator --- A Semantic View-Based Search Engine Service for Web Applications
	Explaining Conclusions from Diverse Knowledge Sources
	A Mixed Initiative Semantic Web Framework for Process Composition
	Semantic Desktop 2.0: The Gnowsis Experience
	Towards Semantic Interoperability in a Clinical Trials Management System
	Active Semantic Electronic Medical Record

	Semantic Web Challenge
	Foafing the Music: Bridging the Semantic Gap in Music Recommendation
	Semantic MediaWiki
	Enabling Semantic Web Communities with DBin: An Overview
	MultimediaN E-Culture Demonstrator
	A Semantic Web Services GIS Based Emergency Management Application

	Doctoral Consortium
	Package-Based Description Logics -- Preliminary Results
	Distributed Policy Management in Semantic Web
	Evaluation of SPARQL Queries Using Relational Databases
	Dynamic Contextual Regulations in Open Multi-agent Systems
	From Typed-Functional Semantic Web Services to Proofs
	Towards a Usable Group Editor for Ontologies
	Talking to the Semantic Web -- Query Interfaces to Ontologies for the Casual User
	Changing Ontology Breaks Queries
	Towards a Global Scale Semantic Web
	Schema Mappings for the Web
	Triple Space Computing for Semantic Web Services -- A PhD Roadmap
	Toward Making Online Biological Data Machine Understandable

	KeynoteAbstracts
	Where the Social Web Meets the Semantic Web
	The Semantic Web: Suppliers and Customers
	The Semantic Web and Networked Governance: Promise and Challenges

	Backmatter


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice




