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Abstract. Modularity in programming language semantics derives from
abstracting over the structure of underlying denotations, yielding seman-
tic descriptions that are more abstract and reusable. One such semantic
framework is Liang’s modular monadic semantics in which the underlying
semantic structure is encapsulated with a monad. Such abstraction can
be at odds with program verification, however, because program specifi-
cations require access to the (deliberately) hidden semantic representa-
tion. The techniques for reasoning about modular monadic definitions of
imperative programs introduced here overcome this barrier. And, just like
program definitions in modular monadic semantics, our program specifica-
tions and proofs are representation-independent and hold for whole classes
of monads, thereby yielding proofs of great generality.
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1 Introduction

Modular monadic semantics (MMS) provides a powerful abstraction principle for
denotational definitions via the use of monads and monad transformers [13,2,21]
and MMS supports a modular, “mix and match” approach to semantic definition.
MMS has been successfully applied to a wide variety of programming languages
as well as to language compilers [8,6].

What is not well-recognized is the impact that the semantic factorization
by monad transformers in MMS has on program specification and verification.
Modularity comes with a price! The monad parameter to an MMS definition
is a “black box” (i.e., its precise type structure is unknown) and must remain
so if program abstraction is to be preserved. Yet, this makes reasoning with
MMS language definitions using standard techniques frequently impossible. How
does one reason about MMS specifications without sacrificing modularity and
reusability? Furthermore, is there a notion of proof abstraction for MMS akin to
its notion of program abstraction? This paper provides answers in the affirmative
to these questions for imperative languages.
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This paper presents a novel form of specification for reasoning about MMS
definitions called observational program specification (OPS), as well as related
proof techniques useful for proving such specifications. To reason about MMS
definitions (which are parameterized by monads), it is necessary to parameter-
ize the specifications themselves by monads as well. This is precisely what OPS
does by lifting predicates to the computational level, and we refer to such lifted
predicates as observations. Both MMS definitions and OPS specifications are pa-
rameterized by a monad that hides underlying denotational structure, thereby
allowing greater generality in both programs and proofs alike. And just as MMS
provides a notion of program abstraction, OPS provides a notion of proof ab-
straction. Observational program specifications and proofs are representation-
independent, holding for whole classes of monads, thereby yielding proofs of
great generality.

The methodology pursued here is as follows. Axioms characterizing alge-
braically the behavior of state monads are defined, and it is demonstrated that
these axioms are preserved under monad transformer application. Then, a de-
notational semantics for the simple imperative language with loops is given in
terms of state monads. Using OPS and “observation” computations, Hoare’s
classic programming logic [9] for this language is embedded into its own state-
monadic semantics. Furthermore, it is demonstrated that the inference rules of
this logic are derivable from the embedding, relying only on the state monad
axioms and facts about observations. This provides a notion of proof abstrac-
tion for the simple imperative language because proofs in Hoare logic can now
be lifted to any monad with state regardless of other effects it encapsulates!

This paper has the following structure. Section 2 motivates OPS, and
Section 3 outlines background material necessary to understand this paper, in-
cluding overviews of monads and monad transformers. In Section 4, the axioma-
tization of state monads and their preservation properties with respect to monad
transformer application are stated and proved. In Section 5, the notion of obser-
vations is made precise. Section 6 presents the embedding of Hoare logic, and also
the proof of soundness of this embedding. Section 7 compares the present work
with related research. Conclusions and future work are outlined in Section 8.

2 Introducing Observational Specifications

As an example, consider the correctness of an imperative construct p! defined in
a monad with a state Sto. Generally [26,15], a partial correctness specification
of an imperative feature like this would take the form of a relation � between
input and output states σ0 and σ1, so that σ0 �σ1 means that the state σ1 may
result from the execution of p! in σ0. If p! were defined in the single state monad
St a = Sto → a × Sto, then the correctness of p! would be written:

∀σ0 : Sto. σ0 � (π2(p! σ0)) (1)

where π2 is the second projection function λ(−, x).x. However, if p! were rein-
terpreted in the “Environment+State” monad EnvSt a = Env → Sto → a×Sto,
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then the above correctness specification would be rewritten as:

∀ρ0 : Env. ∀σ0 : Sto. σ0 � (π2(p! ρ0 σ0)) (2)

One can see from these two examples that every monad in which p! is inter-
preted requires a new correctness specification! Because specifications (1) and
(2) rely on the fixed structure of St and EnvSt, respectively, there is no way
of reusing them when p! is reinterpreted in another monad; or in other words,
they are representation-dependent specifications. Consequently, each new specifi-
cation will require a new proof as well. Because state monads may be arbitrarily
complex—consider those in Figure 1—this makes proof abstraction attractive.

How does one develop a notion of proof abstraction akin to MMS program
abstraction? The key insight here is that, because the language definitions we
use are parameterized by a monad, it is necessary to develop a specification
style that is also parameterized by a monad. The first step is to add a new,
distinguished value type prop, denoted by the discrete CPO {tt, ff}. The type
prop must be distinguished from the Bool type in languages which have recursive
Bool -valued functions because the denotation of Bool in such cases is a pointed
CPO. In the present work, it is sufficient to identify prop with Bool because the
language considered here does not allow recursion over booleans.

Assume that g is a monadic operator which reads the current Sto state. For
example in St, it would simply be λσ.(σ, σ), and it would have a similar defini-
tion in EnvSt. Then, the correctness condition (σ0 �σ1) ∈ prop may then be a
computed value for appropriate stores σ0 and σ1:

g � λσ0.
p! � λ .
g � λσ1.

η(σ0 �σ1)

=
p! � λ .

η(tt) (3)

What does this equation mean? Examining the left-hand side of Equation 3, the
execution of p! is couched between two calls to g, of which the first call returns
the input store σ0 and the second call returns the output store σ1 resulting
from executing p!. Note that σ1 will reflect any updates to the store made by
p!. Finally, the truth-value of the prop expression (σ0 �σ1) is returned. The
right-hand side of Equation 3 executes p! and then always returns tt. Observe
also that it was necessary to execute p! on the right-hand side so that identical
effects (e.g., store updates and non-termination) would occur on both sides of
the equation. Equation 3 requires that (σ0 �σ1) be tt for all input and output
stores σ0 and σ1, respectively, which is precisely what we want.

Equation 3 is a representation-independent specification of p!. In the single
store monad St, it means precisely the same thing as (1), while in the monad
EnvSt, (3) means exactly the same thing as (2). In fact, Equation 3 makes sense
in any monad where p! makes sense—consider the state monads in Figure 1.
Such monads are called state monads—a notion made precise in Section 4. It
is called an observational specification because the left-hand side of (3) gathers
certain data from different stages in the computation (i.e., stores σ0 and σ1) and
“observes” whether or not (σ0 �σ1) holds.
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M0α = Sto → α × Sto

M1α = e1 → (s1 → (s2 → (Sto → ((((α × s1) × s2) × Sto) + err1)))))

M2α = e1 → ((α → (Sto → ((ans1 × Sto) + err1))) → (Sto → ((ans1 × Sto) + err1)))

M3α = e1 → (e2 →
((α → ((ans1 → (Sto → (((ans2 × Sto) + err1) + err2)))

→ (Sto → (((ans2 × Sto) + err1) + err2))))
→ ((ans1 → (Sto → (((ans2 × Sto) + err1) + err2)))

→ (Sto → (((ans2 × Sto) + err1) + err2)))))

...

Fig. 1. State Monads on store Sto may be arbitrarily complex, complicating “brute
force” induction on their types. Each of these monads may be created through appli-
cations of the state, environment, CPS, and error monad transformers (see Figure 2).

3 Background

This section outlines the background material necessary to understand the present
work. Due to space constraints, we must assume of necessity that the reader is
familiar with monads. Below we present a brief overview of monad transform-
ers and modular monadic semantics and discuss how program modularity and
abstraction arise within MMS language specifications.

Monads, Monad Transformers and Liftings. This section provides a brief
overview and readers requiring more background should consult the related work
(especially, Liang et al. [14]).

A structure (M, η, �) is a monad if, and only if, M is a type constructor (func-
tor) with associated operations bind (� : Mα → (α → Mβ) → Mβ) and unit
(η : α → Mα) obeying the well-known “monad laws” [14]:

(η a) � k = k a (left unit)
x � η = x (right unit)

x � (λa.(k a � h) = (x � k) � h (assoc)

Given two monads, M and M′, it is natural to ask if their composition, M◦M′, is
also a monad, but it is well-known that monads generally do not compose in this
simple manner [2]. However, monad transformers do provide a form of monad
composition [2,14,21]. When applied to a monad M, a monad transformer T cre-
ates a new monad M′. For example, the state monad transformer, (StateT s),
is shown in Figure 2. (Here, the s is a type argument, which can be replaced
by any type which is to be “threaded” through the computation.) Note that
(StateT s Id) is identical to the state monad (St a = s → a×s). The state monad
transformer also provides update u and get g operations to update and read,
respectively, the new state in the “larger” monad. Figure 2 also presents (the
endofunction parts of) three other commonly-used monad transformers: envi-
ronments EnvT, continuation-passing ContT, and exceptions ErrorT. The monad
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State Monad Transformer (StateT s)

Sα = StateT s M α = s → M(α × s)

ηS : α → Sα
ηS x = λσ. ηM(x, σ)

(�S) : (Sα) → (α → Sβ) → (Sβ)
x �S f = λσ0. (x σ0) �M (λ(a, σ1).f a σ1)

liftS : Mα → Sα
liftS x = λσ. x �M λy. ηM(y, σ)

u : (s → s) → S()
u(Δ : s → s) = λσ. ηM((), Δ σ)

g : Ss
g = λσ. ηM(σ, σ)

Environment Transformer (EnvTe)

Eα = EnvT e M α = e → M α
liftE x = λ (ρ : e). x
rdEnv : Ee
rdEnv = λ (ρ : e). ηM ρ
inEnv : e → Eα → Eα

inEnv ρ ϕ = λ ( : e). ϕ ρ

CPS Transformer (ContTans)

Cα = ContT ans M α
= (α → M ans)→ M ans

liftC x = (x �M)

Error Transformer (ErrorTerr)

Err α = ErrorT err M α = Mα + err
liftErr x = x �M λ v . ηM(injlv)

Fig. 2. Examples of Monad Transformers: state (left); environment, cps and error
(right) monad transformers

laws are preserved by monad transformers [13,2]. Please see Liang et al. [14] for
further details.

Observe that, if M has operators defined by earlier monad transformer appli-
cations, then those operators must be redefined for the “larger” monad (T M).
This is known as lifting the operators through T. Lifting is the main technical
issue in [2,14]; it is related to, but should not be confused with, the lift operators
in Figure 2). For each monad transformer T presented in Figure 2, the liftings
of the update and get operators from M to (T M) are (liftT ◦ u) and (liftT g).

The Lifting Laws capture the behavior of the lift function [14] associated with
a monad transformer. Liang’s definition of monad transformer requires that a lift
function obeying the Lifting Laws be defined and, in his thesis[13], he defines lift
operators for a wide range of monad transformers (including those in Figure 2)
and verifies the Lifting Laws for them.

Definition 1 (Lifting Laws). For monad transformer t, and monad m: lift ◦
ηm = ηtm and lift(x �m f) = (lift x) �tm (lift ◦ f).

Modular Monadic Semantics & Program Abstraction. The principal ad-
vantage of the MMS approach to language definition is that the underlying deno-
tational model can be arbitrarily complex without complicating the denotational
description unnecessarily—what we have referred to earlier as separability. The
beauty of MMS is that the equations defining [[t]] can be reinterpreted in a variety
of monads M. To borrow a term from the language of abstract data types, the
monadic semantics of programming languages yields representation-independent
definitions. This is what prompts some authors (notably Espinosa [2]) to refer
to MMS as the “ADT approach to language definition.”
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Functional

F [[t]] : Int
F [[i]] = i
F [[−e]] = −F [[e]]

F [[t]] : Sto → Int × Sto
F [[i]]σ = (i, σ)
F [[−e]]σ = let (v, σ′)=F [[e]]σ

in (−v, σ′)

Modular Monadic

M[[t]] : Id Int
M[[i]] = η(i)
M[[−e]] = M[[e]] � λv.η(−v)

M[[t]] : St Int
M[[i]] = η(i)
M[[−e]] = M[[e]] � λv.η(−v)

Fig. 3. Program Abstraction via Modular Monadic Semantics. When the functional
definition (left column, top row) is re-interpreted in a different type (left column,
bottom row), the text of its definition changes radically. In the MMS setting (right
column), no such change is required.

Let us consider standard functional-style language definitions and why they
are representation-dependent. Consider the left column in Figure 3; it gives
functional-style definitions for a simple expression language Exp with constants
and negation. Note that the two functional semantics, F [[−]], are defined in two
settings corresponding to the identity and state monads. Both definitions of
F [[−]] are very representation-dependent—the very text of the definitions must
be completely rewritten when the semantic setting changes. In contrast, MMS
semantic equations (M[[−]] in the right column of Figure 3) are free from the
details of the underlying denotation because the monadic unit and bind oper-
ations handle any extra computational “stuff” (stores, environments, continua-
tions, etc.). Since negation does not use any of this data, the same equations for
M[[−]] define Exp for all monads!

4 State Monads and Their Axiomatization

State monads are monads that capture the notion of computation associated
with imperative programs. This section introduces the axiomatization for state
monads. First, the appropriate signature is defined (state monad structures), and
then the state monad axioms are given as equations on this signature. Theorem 1
shows how state monads may be created, and Theorem 2 demonstrates that any
monad transformer (according to Liang’s definition [14,13]) preserves imperative
behavior. Lemma 1 provides a convenient generalization of the state monad
axioms.

State Monad Structure. The quintuple (M, η, �, u, g, τ) is a state monad
structure when: (M, η, �) is a monad with operations unit η : α → Mα and
bind � : Mα → (α → Mβ) → Mβ, and additional operations on τ update
u : (τ → τ) → M() and get g : Mτ . We will refer to a state monad structure
(M, η, �, u, g, τ) simply as M if the associated operations and state type τ are
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clear from context. Please note that a single monad (M, η, �) may have multiple
state effects, each corresponding to multiple state monad structures.

State Monad Axiomatization. Let M = (M, η, �, u, g, τ) be a state monad
structure. M is a state monad if the following equations hold for any f, g : τ → τ ,

u f � λ .u g = u (g ◦ f) (sequencing)
g � λσ0.g � λσ1.η(σ0, σ1) = g � λσ.η(σ, σ) (get-get)

g � λσ0.u f � λ .g � λσ1.η(σ0, σ1) = g � λσ.u f � λ .η(σ, fσ) (get-update-get)

Axiom (sequencing) shows how updating by f and then updating by g is
the same as just updating by their composition (g ◦ f). Axiom (get-get) requires
that performing two g operations in succession retrieves precisely the same value.
Axiom (get-update-get) states that retrieving the state before and after updating
with f is the same as retrieving the state before and applying f directly.

Theorem 1 shows that a state monad may be created from any monad through
the application of the state monad transformer. Theorem 2 shows that the monad
resulting from a monad transformer application to a state monad (i.e., one obey-
ing the state monad axioms) will also obey the state monad axioms. Proofs of
both theorems appear in [7].

Theorem 1 (StateT creates a state monad). For any monad M, let monad
M′ = StateT stoM and also u : (sto → sto) → M′() and g : M′sto be the non-
proper morphisms added by (StateT sto). Then (M′, ηM′ , �M′ , u, g, sto) is a state
monad.

Theorem 2 (Monad transformers preserve stateful behavior). For any
state monad M = (M, η, �, u, g, sto) and monad transformer T (see Figure 2),
the following state monad structure is a state monad:

(T M, η′, �′, (lift ◦ u), lift(g))

where η′, �′, and lift are the monadic unit, bind, and lifting operations, respec-
tively, defined by T.

Lemma 1 states a number of properties of the g and u morphisms which will be
useful later in the case study of Section 6.

Lemma 1. Let (M, �, η, u, g, τ) be a state monad and getloc(x) = g � λσ.η(σ x)
(getloc(x) reads location x). For any F : τ × τ → Ma and Δ : τ → τ :

g � λσ.g � λσ′.F(σ, σ′) = g � λσ.g � λσ′.F(σ, σ) (a)

g � λσ.uΔ � λ .g � λσ′.F(σ, σ′) = g � λσ.uΔ � λ .F(σ, Δσ) (b)

u[x �→ v] � λ .getloc(x) = u[x �→ v] � λ .η(v) (c)

5 Formalizing Observations

An observation is a computation which reads (and only reads!) data such as states
and environments, and then observes the truth or falsity of a relation. With OPS,
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one inserts observations within a computation to capture information about its
state or progress. In this way, they are rather reminiscent of the pre- and post-
conditions of Hoare semantics, and we formalize this intuition below in Section 6.
This section investigates the properties that must hold of a computation for it
to be considered an observation.

Obviously, observations must manifest no observable effects (e.g., changing
states, throwing exceptions, or calling continuations) or else they will affect the
computation being specified. This property—called innocence—requires that the
outcome of the computation being specified must be the same with or without in-
terspersed observations and is defined below. Secondly, observing a relation twice
in succession must yield the same truth value as observing a relation just once;
this property is called idempotence below. Finally, the order in which two succes-
sive observations should be irrelevant. This property is called non-interference
below.

An M-computation ϕ is innocent, if, and only if, for all M-computations γ,

ϕ � λ . γ = γ � λv. ϕ � λ . η v = γ

This says that the effects manifested by ϕ are irrelevant to γ and may be dis-
carded. Computations ϕ and γ are non-interfering (written ϕ # γ) means:

ϕ � λv.γ � λw.η(v, w) = γ � λw.ϕ � λv.η(v, w)

If ϕ#γ, then their order is of no consequence. The relation # is clearly symmet-
ric. Lastly, a computation ϕ is idempotent if, and only if,

ϕ � λv.ϕ � λw.η(v, w) = ϕ � λw.η(w, w)

That is, successive ϕ are identical to a single ϕ. The following lemma shows
that idempotence may be used in a more general setting. A similar result for
non-interference (not shown) holds by similar reasoning.

Lemma 2. If ϕ : Mα is idempotent and f : α × α → Mβ, then

ϕ � λv.ϕ � λw.f(v, w) = ϕ � λw.f(w, w)

Proof. Applying the function “�f” to both sides of the idempotence definition
and using the associative and left-unit monad laws yields:

(ϕ � λv.ϕ � λw.η(v, w)) � f = ϕ � λv.ϕ � λw.(η(v, w) � f)
= ϕ � λv.ϕ � λw.f(v, w)

(ϕ � λw.η(w, w)) � f = ϕ � λw.(η(w, w) � f)
= ϕ � λw.f(w, w)

��
Notice that stateful computation can easily lose innocence:

g 	= u[λl.l + 1] � λ .g, and g 	= g � λσ.u[λl.l + 1] � λ .η(σ)
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Continuation-manipulating computations like callcc (“call with current con-
tinuation”) can also lose innocence, because they can jump to an arbitrary con-
tinuation κ0:

η(5) 	= η(5) � λv.(callcc λκ.κ07) � λ .η(v)

If Ω produces an error or is non-terminating, then it is not innocent:

η(5) 	= η(5) � λv.Ω � λ .η(v) = Ω,

Examples of innocent computations. Some computations are always inno-
cent. For example, any computation constructed from an environment monad’s
“read” operators (e.g., rdEnv), an environment monad’s “in” operators (e.g.,
inEnv, assuming its argument are innocent), or from the “get” operators of a
state monad (e.g., g) are always innocent. Unit computations (such as η(x), for
any x) are also always innocent. Knowing that a computation is innocent is use-
ful in the proofs developed below, not only because an innocent computation
commutes with any other computation, but because it can be also be added to
any computation without effect. That is, for any arbitrary computations ϕ1, ϕ2

and innocent computation Υ ,

ϕ1 � λv.ϕ2 = Υ � λx.ϕ1 � λv.(Υ � λy.ϕ2)

The values x and y computed by Υ can be used as snapshots to characterize the
“before” and “after” behavior of ϕ1 just as the states σ0 and σ1 computed by g
were used in Equation 3.

Are innocent computations “pure”? A similar, but less general, notion to
innocence is purity (attributed sometimes, apparently erroneously [18], to Moggi
although the origins of the term are unclear). An M-computation ϕ is pure if,
and only if, ∃v.ϕ = ηM(v). An innocent computation may be seen as “pure in
any context.” Consider the (innocent, but not pure) computation g. It is not the
case that ∃v.g = ηM(v), because g will return a different state depending on the
context in which it occurs.

Three operations are used with observations. The first of these, ITE : M prop×
M(τ )×M(τ ) → M(τ ), defines an observational version of if-then-else, while the last
two, AND,⇒: M(prop)×M(prop)→M(prop), are computational liftings of proposi-
tional connectives. These functions are defined as:

ITE(θ, u, v) = θ � λtest.if test then u else v

θ1 AND θ2 = θ1 � λp1.θ2 � λp2.η(p1 ∧ p2)
θ1 ⇒ θ2 = θ1 � λp1.θ2 � λp2.η(p1 ⊃ p2)

Here, ∧, ¬, and ⊃ are the ordinary propositional connectives on prop with the
usual truth table definitions. The AND connective could be written using “short-
circuit” evaluation so that it would not evaluate its second argument when the
first produces ff. However, AND is intended to be applied only to innocent com-
putations and its “termination behavior” on that restricted domain is identical
to a short-circuiting definition. Lemma 3 is a property of ITE used in Section 6.
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Lemma 3. ITE(θ, x, y) � f = ITE(θ, x � f, y � f) for θ : M prop.

Proof of Lemma 3.

ITE(θ, x, y) � f = (θ � λβ. if β then x else y) � f

= θ � (λβ.(if β then x else y) � f)

= θ � (λβ. if β then x � f else y � f)

= ITE(θ, x � f, y � f)

��

6 A Case Study in OPS: Hoare Logic Embedding

In this section, we show how OPS may be used to derive a programming logic for
the simple imperative language with loops from its state-monadic denotational
semantics. The programming logic developed here is the familiar axiomatic se-
mantics of Hoare [9]. The soundness of the derived logic relies entirely on proper-
ties of monads and the state monad transformer; specifically, these are the state
monad creation and preservation theorems (Theorems 1 and 2). These proper-
ties are key to the proof abstraction technique presented in this paper because
they allow the logic to be interpreted soundly in any layered monad constructed
with the state monad transformer.

First, we provide an overview of the syntax, semantics, and programming logic
for simple imperative language with loops. Then, we develop the embedding
of Hoare logic within OPS, and here is the first use of observations to model
assertions (e.g., {x = 0}). The main result, Theorem 3, states that the rules of
Hoare logic may be derived from the observational embedding of Hoare triples
within any state-monadic semantics [[−]].

Syntax, Semantics, & Logic of the While Language. Figure 4 presents
the syntax of the while language L and its programming logic. In most respects,
it is entirely conventional, and it is expected that the reader has seen such
definitions many times. Hoare’s original logic [9], which is considered here, has a
simple assertion logic, amounting to a quantifier-free logic with a single predicate
≤. For the sake of simplicity, we identify boolean expressions with assertions,
and place them in the same syntactic class B.

Figure 5 presents an MMS definition for L defined for any state monad. It is
entirely conventional, except that the meaning of booleans is defined in terms of
the observational embedding of assertions. The assertion embedding �−� is the
usual definition of boolean expressions.

Innocence, Non-interference, & Idempotence of [[e]] and �P �. It is nec-
essary to demonstrate that the derivation of Hoare logic (presented below) is
sound and the proof of this (in Theorem 3) relies on the interaction properties
from Section 5 (namely, innocence, non-interference, and idempotence) hold for
the assertion embedding and expression semantics of Figure 5; Lemma 4 shows
just that.
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(Values) V = () + Int + prop
(Language) L ::= C | E | B
(Assertions) B ::= true | false | E leq E | B andB | notB
(Expressions) e ∈ E ::= Var | Int | −E | E+E
(Commands) c ∈ C ::= skip | Var:=E | C ; C | if B then C else C | while B do C
(Triples) T ::= {B} C {B}

{P} skip {P}
(Skip)

{P [x/e]} x:=e {P}
(Assign)

{P} c1 {Q} {Q} c2 {R}
{P} c1 ; c2 {R}

(Seq)

{P and b} c1 {Q} {P and (not b)} c2 {Q}
{P} if b then c1 else c2 {Q}

(Cond)

{P and b} c {P}
{P} while b do c {P and (not b)}

(Iter)

P ′ ⊃ P {P} c {Q} Q ⊃ Q′

{P ′} c {Q′}
(Weaken)

Fig. 4. Abstract Syntax & Inference rules for Simple Imperative Language. Lower case
latin letters e and c typically refer to expressions and commands, respectively.

Lemma 4. Let e, e′ ∈ E and P, P ′ ∈ B. Then, [[e]] and �P � are innocent and
idempotent, and [[e]]#[[e′]], [[e]]#�P �, and �P �#�P ′�.
Lemma 4 follows directly from Axiom (get-get) by straightforward structural
induction on the structure of terms.

Embedding Hoare Logic within Monadic Semantics. This section de-
scribes how Hoare logic may be interpreted within the state-monadic semantics
of Figure 5. First, triples (i.e., “{P} c {Q}”) are interpreted as particular com-
putations, and then their satisfaction is defined as particular equations between
computations. We extend the assertion embedding to triples so that:

�{P} c {Q}� = �P � � λpre.[[c]] � λ .�Q� � λpost.η(pre ⊃ post)

Triple satisfaction, written “|= {P} c {Q},” is defined when:

�{P} c {Q}� = [[c]] � λ .η(tt)

We also define the satisfaction of an implication “|= P ⊃ Q” as the following
equation:

(�P � ⇒ �Q�) = η(tt)

We now have the tools to derive the inference rules from Figure 4 from the
semantics in Figure 5. Each hypothesis and conclusion gives rise to an inter-
pretation in the semantics via the satisfaction predicate |= {P} c {Q} and the
observational implication ⇒ from Section 5. Soundness for the Hoare logic em-
bedding is what one would expect: an inference rule from Figure 4 with hypothe-
ses {hyp0, . . . , hypn} and conclusion c is observationally sound with respect to a
state monad semantics, if, whenever each |= hypi holds, so does |= c.
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Assertion Embedding:

�−	 : B → M(prop)
�true	 = η(tt)
�false	 = η(ff)

�e1 leq e2	 = [[e1]] � λv1.[[e2]] � λv2.η(v1 ≤ v2)
�not b	 = �b	 � λβ.η(¬β)
�b1 and b2	 = �b1	 AND �b2	

State-monadic Semantics:

[[−]] : L → MV
[[i]] = ηi
[[x]] = getloc(x)
[[b]] = �b	

[[−e]] = [[e]] � λv.η(−v)
[[e0 + e1]] = [[e0]] � λv0.[[e1]] � λv1.η(v0 + v1)
[[skip]] = η ()
[[c1 ; c2]] = [[c1]] � λ .[[c2]]
[[x:=e]] = [[e]] � λv.u[x �→ v]

[[if b then c1 else c2]] = [[b]] � λβ.if β then [[c1]] else [[c2]]
[[while b do c]] = fix(unwind [[b]] [[c]])

unwind : Mprop → M() → M() → M()
unwind γb γc ϕ = γb � λβ.if β then (γc � λ .ϕ) else η()

Fig. 5. Assertion Embedding �−	 and State-monadic Semantics [[−]] of L. Both the
embedding and semantics are defined for any state monad (M, η, �, u, g,Var→Int).

Lemma 5 is a substitution lemma for assertions. Below in the statement of
Lemma 5, we distinguish numbers from numerals with an underscore “ ”; that
is, v ∈ E is the numeral corresponding to the number v. Lemma 5 follows by
straightforward structural induction.

Lemma 5 (Substitution Lemma for Assertions). For expression e ∈ E,
assertion P ∈ B, and function f : Int → prop → Mα,

[[e]] � λv.�P [x/e]� � (f v) = [[e]] � λv.�P [x/v]� � (f v) (a)
u[x �→ v] � λ .�P � = �P [x/v]� � λcond.u[x �→ v] � λ .η(cond) (b)

Derivation of Inference Rules. This section states the observational sound-
ness of the Hoare logic embedding presented above in Theorem 3 and presents
part of its proof.

Theorem 3 (�−� is observationally sound). The inference rules of Hoare
logic are observationally sound with respect to any state-monadic semantics [[−]] :

L → MV .

The proof of Theorem 3 proceeds by structural induction on the inference rules
using straightforward equational reasoning. Each case in the proof depends on
properties of effects developed above; namely, these are innocence, idempotence
and non-interference. The cases for the Skip, Assign and Weaken rules are pre-
sented below. The cases for Seq and Cond are similar to those below while the
Iter rule follows by fixed-point induction; lack of space prohibits presentation of
their proofs here.
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Case: Skip Rule.

�{P} skip {P}�
= �P � � λpre. [[skip]] � λ .�P � � λpost. η(pre ⊃ post)

{ defn. [[skip]] }
= �P � � λpre. η() � λ .�P � � λpost. η(pre ⊃ post)

{ innocence of η() }
= �P � � λpre. �P � � λpost. η(pre ⊃ post)

{ �P� is idempotent, Lemma 4 }
= �P � � λp. η(p ⊃ p)

{ logically valid }
= �P � � λp. η tt

{ innocence of �P� & η() }
= η() � λ . η tt = [[skip]] � λ .ηtt

Case: Assign Rule.

�{P [x/e]} x:=e {P}�
= �P [x/e]� � λpre.[[x:=e]] � λ .�P � � λpost.η(pre ⊃ post)

{defn. [[x:=e]]}
= �P [x/e]� � λpre.[[e]] � λv.u[x �→ v] � λ .�P � � λpost.η(pre ⊃ post)

{[[e]]#�P�, Lemma 4}
= [[e]] � λv.�P [x/e]� � λpre.u[x �→ v] � λ .�P � � λpost.η(pre ⊃ post)

{Lemma 5(a)}
= [[e]] � λv.�P [x/v]� � λpre.u[x �→ v] � λ .�P � � λpost.η(pre ⊃ post)

{Lemma 5(b)}
= [[e]] � λv.�P [x/v]� � λpre.�P [x/v]� � λpost.u[x �→ v] � λ .η(pre ⊃ post)

{ idempotence of �P [x/v]�, Lemma 4}
= [[e]] � λv.�P [x/v]� � λpost.u[x �→ v] � λ .η(post ⊃ post)

{ logical validity }
= [[e]] � λv.�P [x/v]� � λpost.u[x �→ v] � λ .η(tt)

{ innocence of �P [x/v]�, Lemma 4 }
= [[e]] � λv.u[x �→ v] � λ .η(tt)
= [[x:=e]] � λ .η(tt)

Case: Weakening Rule. Assume S ⇒ P and |= {P} c {Q}.
To show: |= {S} c {Q}. Rewriting the hypotheses of the inference rule in obser-
vational form:

�S� � λs.�P � � λp.η(s ⊃ p) = η(tt)
�P � � λp.[[c]] � λ .�Q� � λq.η(p ⊃ q) = [[c]] � λ .η(tt)

From the innocence of S and because (tt ∧ x) ≡ x:

�S� � λs.�P � � λp.[[c]] � λ .�Q� � λq.η(s ⊃ p ∧ p ⊃ q) = [[c]] � λ .η(tt)

Since (s ⊃ p ∧ p ⊃ q) = tt and (s ⊃ p ∧ p ⊃ q) ⊃ (s ⊃ q):

�S� � λs.�P � � λp.[[c]] � λ .�Q� � λq.η(s ⊃ q) = [[c]] � λ .η(tt)
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By the innocence of �P � (and because “p” is a dummy variable like “ ”):

�S� � λs.[[c]] � λ .�Q� � λq.η(s ⊃ q) = [[c]] � λ .η(tt)

∴ |= {S} c {Q} ��

7 Related Work

Structuring denotational semantics with monads and monad transformers was
originally proposed by Moggi [21]. There are two complementary applications of
monads in denotational semantics. The first is to use monads to provide a precise
typing for effects in a language, while the second uses monads for modularity
via monadic encapsulation of the underlying denotational structure. MMS fits
squarely in this second category. Hudak, Liang, and Jones [14] and Espinosa [2]
use monads and monad transformers to create modular, extensible interpreters.
Recent promising work in categorical semantics [25,4] investigates more general
approaches to combining monads than with monad transformers, although the
cases for certain computational monads (chiefly, the continuation monad) are
apparently still open problems as of this writing.

Modularity in programming language semantics is provided by a number of se-
mantic frameworks including action semantics [22], high-level semantics [12], and
modular monadic semantics [14,13]. Modularity in these frameworks stems from
their organization according to a notion of program abstraction called separabil-
ity [12]: they all provide a mechanism for separating the denotational description
of a language (e.g., semantic equations) from its underlying denotational repre-
sentation. Modularity—or rather the separability principle underlying it—can be
at odds with program verification, however, because program specifications (i.e.,
predicates) are typically written with respect to a fixed denotational structure.

Liang [13] addresses the question of reasoning about MMS definitions for mon-
ads involving a single environment. He axiomatizes the environment operators
rdEnv and inEnv, and shows that these axioms hold in any monad constructed
with standard monad transformers (with a weak restriction on the order of trans-
former application—cf. Section 3). Liang’s work provided an early inspiration for
this one, but OPS is more powerful in a number of respects. Firstly, observa-
tions allow specifications to make finer-grained distinctions based on predicates
applied to semantic data internal to the underlying monad. The work developed
in [13] only allows equations between terms in the signature � (bind), η, rdEnv,
and inEnv—no statements about the computed environments are possible. Sec-
ondly, observations may characterize relationships between any data internal to
the underlying monad as well.

OPS was developed to verify a particular form of MMS definition, namely,
modular compilers [8,6]. Modular compilation is a compiler construction tech-
nique allowing the assembly of compilers for high-level programming languages
from reusable compiler building blocks (RCBBs). Each RCBB is, in fact, a de-
notational language definition factored by a monad transformer. Modular com-
piler verification involves specifying the behavior and interaction of multiple,
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“layered” effects, instead of just a single state as is presented here. The
non-interference property for observations has also been used to characterize
“non-interference” information security [5] by controlling “inter-layer” interac-
tion between security levels [7].

OPS is reminiscent of programming logics such as specification and Floyd-
Hoare logics [26,23,15] with observations playing a similar role to assertions (e.g.,
“{x = 0}”). Evaluation logic [24] is a typed, modal logic extending the computa-
tional lambda calculus [17]. It is equipped with “evaluation” modalities signifying
such properties as “if E evaluates to x, then φ(x) holds”. Moggi sketches how
a number of programming logics, including Hoare logic, may be embedded into
evaluation logic [19] and provides a similar, but less general, axiomatization of
state. Führmann [3] introduces classifications for monadic effects called “effec-
toids”. Among these are “discardable,” “copyable” and “disjoint” effectoids that
correspond closely to innocent, idempotent, and non-interfering computations,
respectively. Schröder and Mossakowski [27] define a similar notion to discard-
able/innocent as well called “side-effect free”. Instead of using observations to
access intermediate data from a computation, their work incorporates a modality
rather like the aforementioned evaluation logic modality to interpret Hoare logic
monadically. The present work differs from theirs also in that here all monads are
layered (i.e., produced by applications of monad transformers). Here, the mon-
ads in which the Hoare logic embedding is valid are determined by construction
alone; this is valuable considering their potential complexity (see Figure 1).

Launchbury and Sabry [11] produced an axiomatization of monadic state,
later used by Ariola and Sabry [1] to prove the correctness of an implementation
of monadic state. Their axioms fulfill a similar role to the state monad axioms
described in Section 4. They introduce an observation-like construct for describ-
ing the shape of the store, sto σ c, where σ is a store and c is a computation to
be executed in σ. Observations may be seen as generalizing this sto by relating
any data (states, environments, etc.) internal to the monad.

Kleene algebras with tests (KAT) are two-sorted algebraic structures which
form an equational system for reasoning about programs [10]. A KAT has one
sort for “programs” and another sort for “tests.” These tests play a similar
role to observations in OPS. Non-interference and idempotence properties of
observations correspond to multiplicative commutation and idempotence of tests,
while innocence corresponds to the commutation of non-test elements. OPS and
KAT are both equational systems, although OPS, being embedded in the host
language semantics, is less abstract in some sense. An interesting open question
is whether OPS may form a general class of computational models of KATs,
thereby providing a more compact algebraic way of reasoning with observations.

8 Concluding Remarks

OPS is a powerful and expressive specification technique for reasoning about
modular definitions without sacrificing modularity. Semantic frameworks which
promote modularity (like the MMS framework considered here) do so at a cost:
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reasoning about such definitions is complicated by the separability principle used
to gain modularity in the first place. In the case of MMS, the source of this diffi-
culty lies in the disparity between the incompatible settings (i.e., computational
and value, respectively) of programs and specifications. The solution presented
here resolves this disparity by making specifications compatible with programs
through the lifting of predicates to the computational level.

Monad transformers are well known as a structure for program abstraction and
this article demonstrates how they give rise to a corresponding notion of proof
abstraction as well. With OPS, program proofs hold in any monad in which
the program itself makes sense. If an MMS program is written for a particular
signature (i.e., those operators added by monad transformers) and behavior-
preserving liftings exist for that signature, then the program makes sense—that
is, after all, what “liftings exist” means. It is not surprising that if a monadic in-
terface adequately captures the behavior of that same signature, then a program
proof relying on that interface should hold as well.

OPS was originally developed for verifying modular compilers [6], and its
application within formal methods and high-assurance software development re-
mains an active area of research. To that end, establishing connections
between OPS and other verification formalisms—programming logics such as
evaluation logic [20] and semantics-based reasoning techniques such as logical
relations [16]—is expected to yield useful results.
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