
A Bytecode Logic for JML and Types

Lennart Beringer and Martin Hofmann

Institut für Informatik, Universität München
Oettingenstrasse 67, 80538 München, Germany

{beringer, mhofmann}@tcs.ifi.lmu.de

Abstract. We present a program logic for virtual machine code that may serve
as a suitable target for different proof-transforming compilers. Compilation from
JML-specified source code is supported by the inclusion of annotations whose
interpretation extends to non-terminating computations. Compilation from func-
tional languages, and the communication of results from intermediate level pro-
gram analysis phases are facilitated by a new judgement format that admits the
compositionality of type systems to be reflected in derivations. This makes the
logic well suited to serve as a language in which proofs of a PCC architecture are
expressed. We substantiate this claim by presenting the compositional encoding
of a type system for bounded heap consumption. Both the soundness proof of
the logic and the derivation of the type system have been formally verified by an
implementation in Isabelle/HOL.

1 Introduction

Modeling languages such as JML [25] allow the software architect to specify functional
and non-functional behaviour of code modules. Typically, these languages comprise a
variety of specification idioms such as partial-correctness specifications using pre- and
post-conditions, termination measures, specification of exceptional behaviour, model
fields, ghost variables and fields, invariants at object or class level, lightweight specifi-
cations, or the inclusion of pure (i.e. non-side-effecting) code in specification clauses.
Although the precise interpretation of some of these features is still a matter of ongoing
debate, a number of verification tools have been presented that validate code w.r.t. JML
specifications [14]. Although the proposed formalisms mainly target Java source code,
they can relatively easily be adapted to bytecode.

The adaptation of specification constructs to low-level code admits a smooth transla-
tion of high-level specifications into specifications of mobile code units. However, we
do not expect that a similarly direct transfer of validation strategies such as verifica-
tion condition generators would suffice for their verification, for two reasons. Firstly,
bytecode that was obtained by compilation from languages other than Java may not be
amenable to the same proof strategies, or may lead to different verification conditions if
it has undergone an obfuscation routine. Secondly, a recipient may require transmitted
code to be complemented by a proof certifying that the code is safe to execute [28].
Typically, the production of certificates exploits results of program analyses such as
type systems. In this case, the validation of certificates by the code consumer is sup-
ported if the type system’s structuring principles (invariants) are communicated as part

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 389–405, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

390 L. Beringer and M. Hofmann

of the certificate [4,13]. Again, it is not guaranteed that these abstraction barriers are
respected by a verification strategy for source code verification.

In this paper, we therefore propose a program logic for a bytecode language that sat-
isfies requirements motivated by JML specifications and admits different verification
strategies to be implemented, including strategies that are suitable for validating high-
level type systems. More specifically, we present a formalism where partial-correctness
method specifications can be complemented by method invariants and local annota-
tions at intermediate program points whose interpretation applies to terminating as well
as non-terminating program executions. Non-terminating executions are not covered
by traditional (partial or total) Hoare logics, but are required for a faithful interpreta-
tion of JML code annotations. They are also desirable for proof-carrying code (PCC)
frameworks: the significance of a certificate regarding the safety or the consumption of
resources is increased if its validity does not derive from a partial-correctness interpre-
tation - for example, consider a certificate purporting to guarantee an upper bound on
the runtime. On the other hand, non-terminating program executions are often implic-
itly covered by program analysis formalisms such as type systems, but this fact is often
not stated (or proven) explicitly, for example if the soundness proof is formulated as
a syntactic subject-reduction proof w.r.t. a big-step operational semantics. In order to
demonstrate the suitability of our logic for the interpretation of such type systems, we
present the syntax-directed encoding of a type system for bounded heap consumption
which covers terminating and non-terminating executions.

For presentational reasons, the program logic described in the present paper cov-
ers only a small fragment of the JVML. However, in collaboration with partners from
the Mobius project [8], a variation of the logic has been produced that covers a more
substantial subset of JVML, including virtual method invocations, static fields, arrays,
exceptions, and various datatypes. At the same time, work is under way to translate JML
specification constructs that are not considered in the present paper into the extended
logic, in particular the constructs of JML specification level 0 [25].

Motivation and overview of assertion format. The format of judgements in a program
logic is strongly influenced by semantic considerations, i.e. by the conclusions one may
draw from a derivable judgement regarding the operational behaviour. Our logic aims
to fulfill two sets of requirements. The first requirement concerns JML annotations at
intermediate program points. Their common understanding mandates that an assertion
A associated to a program point � should be satisfied whenever the control flow reaches
�. At first sight, this interpretation motivates a notion of validity like

∀ s. �0, s0 →∗ �, s ⇒ A(s) (1)

where s0 denotes the entry state of the program fragment (e.g. method) and �0 the label
of the first instruction. Indeed, this interpretation extends partial-correctness program
logics by also applying to non-terminating program executions. Furthermore, the gen-
eralisation to binary predicates A, with validity defined by

∀ s. �0, s0 →∗ �, s ⇒ A(s0, s), (2)

admits assertions to refer to the initial state, as is required for the translation of idioms
such as JML’s old keyword [22].

A Bytecode Logic for JML and Types 391

Although program logics motivated by such an interpretation have been proposed
[32,7,1], the resulting proof systems appear unsatisfactory, since they mandate the con-
current satisfaction of local conditions at all program labels, for a fully annotated pro-
gram. For example, the proof rule for program points in Rinard’s logic [32] involves
a universal quantification over all predecessor labels. This, in our opinion, precludes
local reasoning, by which we mean that the validity of an assertion at a program point
� should refer to the phrase represented by �. Local behaviour is the source from which
type systems for high-level languages draw their compositionality. In order to achieve
our second goal, the interpretation of type systems, it appears necessary that this behav-
iour be reflected in the logic. Thus, an assertion at � should constrain executions from �
onwards, irrespective of the path used to reach �. While this demand contradicts a for-
mulation following (1), it would enable us to exploit the syntax-directedness of typing
rules in the proofs of derived proof rules, i.e. of lemmas for a syntactically determined
subclass of assertions.

In Bannwart and Müller’s logic [7], program points are decorated with (unary) asser-
tions E that are interpreted w.r.t. a partial-correctness specification of the surrounding
method. Assuming a fully specified program, each local judgement � {E�} � is valid if
the satisfaction of E� in the state prior to executing the instruction at � guarantees the
satisfaction of the assertions of all successor labels of �:

∀ s. �0, s0 →∗ �, s ⇒ E�(s) ⇒ ∀ �′ s′. �, s → �′, s′ ⇒ E�′(s′). (3)

Thus, E� denotes a pre-condition for E�′ and consequently (by transitivity) for the
method specification (which is identical to the specification of the return instruction).
However, this format does not admit a rule of consequence, as E� in (3) suggests that
assertions could be strengthened, while E�′ suggests that they can be weakened, which
is also what one would expect from JML annotations. Furthermore, the fact that the
final state is only mentioned indirectly, via the implicit reference to the method specifi-
cation, is an obstacle to local reasoning: the method specification relates a final state of
a (terminating) execution only to the initial state, but not the state at label �.

Our proposed solution consists of introducing several assertion forms, with specific
roles. Judgements explicitly relate a program point � to a (binary) pre-condition A, a
(ternary) post-condition B, and a (ternary) invariant I , and implicitly refer to a global
table Q that assigns (binary) annotations Q to some program points (not all program
points are required to be annotated). Informally, the interpretation of such a judgement
asserts that whenever � is reached from s0 with current state s, and A(s0, s) holds, then

– B(s0, s, t) holds, provided that the method terminates with final state t
– I(s0, s, H) holds, provided that H is the heap component of any state aris-

ing during the continuation of the method invocation surrounding s, in-
cluding invocations of further methods, i.e. subframes

– Q(s0, s
′) holds, provided that s′ is reached at some label �′ during the

continuation of the method invocation surrounding s, but not including
subframes, where Q(�′) = Q

In order to support the descent into subframes in the interpretation of invariants, partial-
correctness method specifications are complemented by method invariants which relate

392 L. Beringer and M. Hofmann

the frame-initial state to the heap component of any state arising during the execution
of the method (including subframes), irrespective of its termination behaviour. Both
kinds of invariants are thus strong invariants in the sense of Hähnle and Mostowski
[19]: they mandate that the property holds throughout the execution of a program frag-
ment, instead of merely stipulating that the property holds upon termination whenever
it was satisfied in the initial state. The decision to consider only a state’s heap compo-
nent in invariants is motivated by the fact that the operand stack and the (naming of)
local variables should be considered implementation details of a method. For example,
the substitution of a method by an improved implementation that uses different local
variables should not affect invariants of surrounding methods.

The proposed format admits the expected rule of consequence where pre-conditions
can be strengthened, while post-conditions and invariants may be weakened. Further-
more, JML annotations are directly supported as these may be collected in Q and will
be satisfied whenever the annotated label is visited, irrespective of the termination be-
haviour. References to the frame-initial state are also supported, thus enabling the direct
translation of specification idiom old. Finally, the format enables syntax-directed inter-
pretations of type systems as all items involved in the execution of the code fragment
starting at � are available in the judgement for �. Conceptually, the emphasis on syntac-
tic structure that distinguishes our logic from the above-mentioned work appears similar
to the difference between Hoare logic and Floyd’s reasoning techniques for flowcharts.

Synopsis. The remainder of this paper is structured as follows: in Section 2, we present
syntax and operational semantics of a small bytecode language which serves as our
vehicle for presenting the logic. This allows us (Section 3) to formally define our no-
tion of validity. We then present the proof system and outline its soundness proof. We
demonstrate the suitability of the logic for giving interpretations of type systems that
affect terminating and non-terminating program executions by outlining the encoding
of a type system for bounded heap consumption in Section 4. Finally, we conclude and
discuss related work. The material presented in Sections 2 to 4 is based on a develop-
ment of the logic in the theorem prover Isabelle/HOL, including a formalised soundness
proof and a formal derivation of the encoded typing rules. Following the approach advo-
cated by Kleymann [24], the formalisation uses a deep embedding of the programming
language syntax, while assertions are embedded shallowly in the meta-logic of the the-
orem prover. The corresponding Isabelle sources are available from [12].

2 Syntax and Dynamic Semantics

For the purpose of this paper, we consider instructions

ins ::= Load x | Store x | Const z | Unop u | Binop o | New c | Getfield c f |
Putfield c f | Goto l | If0 l | Invokestatic M | Return

where x ranges over a set X of (local) variables (also called registers), z over integer
constants and Null, u and o over unary and binary operations (like isNull, add, mul,. . .),
respectively, c over a set C of class names, f over a set F of field names, l over a set L
of program labels, and m over a set M of method names. All these sets are assumed to

A Bytecode Logic for JML and Types 393

be mutually distinct. Method identifiers M = (c, m) combine class and method names,
and program points � are of the form � = M, l.

A method definition (par , l, body, suc) consists of a list par = [x1, . . . , xn] of (dis-
tinct) formal parameters, the label l of the first instruction, a method body body , rep-
resented as a finite map from program labels l to instructions, and a partial function
suc : L ⇀fin L that maps labels to their control flow successors.

A program consists of a finite map from method identifiers to method definitions.
All notions in the remainder of this paper are formulated with respect to an arbitrary
but fixed program, which we denote by P . For P (M) = (par , l, body , suc) we also
write initM for l, M(l) for body(l), and sucM for suc .

The dynamic semantics is defined over a set V of values that is ranged over by v and
comprises constants z and addresses a ∈ A. JVM states s ∈ Σ are built from operand
stacks, stores, and heaps

O ∈ O = V list s ∈ Σ = O × S ×H
S ∈ S = X ⇀fin V s0 ∈ Σ0 = S × H

H ∈ H = A ⇀fin C × (F ⇀fin V) t ∈ T = H× V .

The categories Σ0 and T represent initial and terminal states which occur at the begin-
ning (end) of a frame’s execution. For s0 = (S, H) we write state(s0) = ([], S, H) for
the local state that extends s0 with an empty operand stack. For par = [x1, . . . , xn] and
O = [v1, . . . , vn] we write par �→ O for [xi �→ vi]i=1,...,n. Finally, we write heap(s)
to access the heap component of a state s, and similarly for initial and terminal states.

As in [7], the operational semantics is given by two judgements, a small-step relation
⇒ ⊆ (L × Σ) × (L × Σ), and its closure up to the end of the current frame, ⇓ ⊆
(L×Σ)×T . Both relations are indexed by the current method. The (mutually recursive)
relationship between these relations, and the rules for New, Goto, and Invokestatic are
shown in Figure 1. The rules for the other instruction forms are similar.

NEW
M(l) = New c a /∈ dom H

�M l, (O, S, H) ⇒ sucM (l), (a :: O, S, H [a �→ (c, [])])
GOTO

M(l) = Goto l′

�M l, s ⇒ l′, s

INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P
�M′ initM′ , state(parM′ �→ O′, H) ⇓ H ′, v

�M l, (O′@O, S, H) ⇒ sucM (l), (v :: O, S, H ′)

COMP
�M l, s ⇒ l′, s′ �M l′, s′ ⇓ t

�M l, s ⇓ t
RETURN

M(l) = Return

�M l, (v :: O, S, H) ⇓ H,v

Fig. 1. Operational semantics: relations ⇒ and ⇓ (excerpt)

3 Program Logic

3.1 Format of Assertions and Judgements

Judgements associated with program points involve formulae of the following three
forms, where B denotes the set of booleans.

394 L. Beringer and M. Hofmann

Assertions. A ∈ Assn = (Σ0 × Σ) → B occur as preconditions A and annotations
Q, and relate the current state to the initial state of the current frame.

Postconditions. B ∈ Post = (Σ0 × Σ × T) → B relate the current state to the initial
and final state of a (terminating) execution of the current frame.

Invariants. I ∈ Inv = (Σ0 × Σ ×H) → B relate the initial state of the current
method, the current state, and the heap component of a state of the current frame or
a subframe of the current frame.

The behaviour of methods is described using two assertion forms.

Method specifications. Φ ∈ MethSpec = (Σ0 × T) → B constrain the behaviour of
terminating method executions and thus relate only their initial and final states.

Method invariants. ϕ ∈ MethInv = (Σ0 ×H) → B constrain the behaviour of
terminating and non-terminating method executions by relating the initial state of a
method frame to all heaps that occur during the execution of the method.

A program specification consists of two parts. The method specification table M : (C ×
M) → (MethSpec × MethInv) defines the externally visible behaviour. In addition,
local annotations Q which constrain the behaviour at intermediate program points are
collected in a partial map Q : ((C × M) × L) ⇀fin Assn . For the remainder of this
section, let M and Q denote some arbitrary but fixed specification and annotation tables.

3.2 Interpretation of Assertions and Judgements

In addition to the operational judgements defined in Figure 1, the interpretation of the
program logic refers to two auxiliary relations. The first one, denoted by �M l, s ⇒∗

l′, s′, is the reflexive and transitive closure of ⇒ and is defined in the standard way. The
second relation, denoted by �M l, s ⇑ s′ and defined in Figure 2, extends ⇒∗ by also
relating l, s to s′ if s′ is a state that occurs later than s either in the same frame as s or in
a subframe of that frame. This is achieved by the rule R-INVS that relates the call-state
of a method invocation to the initial state of the subframe.

R-REFL �M l, s ⇑ s
R-TRANS

�M l, s ⇒ l′, s′ �M l′, s′ ⇑ s′′

�M l, s ⇑ s′′

R-INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P
�M′ initM′ , state(parM′ �→ O′, H) ⇑ s

�M l, (O′@O, S, H) ⇑ s

Fig. 2. Auxiliary operational relation ⇑

Definition 1. A triple (A, B, I) is valid at � = M, l, notation |= {A} � {B} (I), if for
all s0 and s with �M initM , s0 ⇒∗ l, s and A(s0, s),

– if �M l, s ⇓ t then B(s0, s, t),
– if �M l, s ⇑ s′ then I(s0, s, heap(s′)), and
– if �M l, s ⇒∗ l′, s′ and Q(M, l′) = Q then Q(s0, s

′).

A Bytecode Logic for JML and Types 395

Note that the third clause applies to annotations Q associated with future labels l′ in the
same method M , and that these are interpreted without direct recourse to the current
state s, although the proof of Q(s0, s

′) may exploit the precondition A(s0, s).
In order to store recursive proof assumptions during the verification of loops, proof

contexts G may be used. These are finite maps which associate triples (A, B, I) to
program points �.

Definition 2. Context G is called valid, notation |= G, if |= {A} � {B} (I) holds for
all G(�) = (A, B, I). Similarly, specification table M is valid, notation |= M, if all M ,
Φ and ϕ with M(M) = (Φ, ϕ) satisfy |= {A}M, initM {BΦ} (Iϕ), where

A = λ (s0, s). s = state(s0)
BΦ = λ (s0, s, t). s = state(s0) → Φ(s0, t), and

Iϕ = λ (s0, s, H). s = state(s0) → ϕ(s0, H).

Finally, program P is valid, notation |= P , if there is a G such that |= G and |= M.

3.3 Assertion Transformers

In order to notationally simplify the presentation of the proof rules, we define operators
that relate assertions occurring in judgements of adjacent instructions. The operators
for simple instructions,

PRE (M, l, A)(s0, r) = ∃ s l′. �M l, s ⇒ l′, r ∧ A(s0, s)
POST (M, l, B)(s0, r, t) = ∀ s l′. �M l, s ⇒ l′, r → B(s0, s, t)
INV (M, l, I)(s0, r, H) = ∀ s l′. �M l, s ⇒ l′, r → I(s0, s, H)

resemble WP-operators, but are separately defined for pre-conditions, post-conditions,
and invariants. In the case of method invocations, we replace the reference to the oper-
ational judgement by a reference to the method specification, and include the construc-
tion and destruction of a frame

PRE sinv (Φ, A, par) = λ (s0, s). ∃ O S H ′ H O′ v. s = (v :: O, S, H ′) ∧
Φ((par �→ O′, H), (H ′, v)) ∧ A(s0, (O′@O, S, H))

POST sinv (Φ, B, par) = λ (s0, s, t). ∀ O S H ′ H O′ v. s = (v :: O, S, H ′) →
Φ((par �→ O′, H), (H ′, v)) → B(s0, (O′@O, S, H), t)

INV sinv (Φ, I, par) = λ (s0, s, H). ∀ O S H ′ H ′′ O′ v. s = (v :: O, S, H ′) →
Φ((par �→ O′, H ′′), (H ′, v)) → I(s0, (O′@O, S, H ′′), H)

Finally, the rule for the conditional jump instruction involves operators that take the
dependence on the outcome of the branch condition into account:

A+ = λ (s0, s). ∀ O S H. s = (0 :: O, S, H) → A s0 s

A− = λ (s0, s). ∀ O S H z. s = (z :: O, S, H) → z = 0 → A s0 s

B+ = λ (s0, s, t). ∀ O S H. s = (0 :: O, S, H) → B(s0, s, t)

396 L. Beringer and M. Hofmann

B− = λ (s0, s, t). ∀ O S H z. s = (z :: O, S, H) → z = 0 → B(s0, s, t)
I+ = λ (s0, s, H). ∀ O S H ′. s = (0 :: O, S, H ′) → I(s0, s, H)
I− = λ (s0, s, H). ∀ O S H ′ z. s = (z :: O, S, H ′) → z = 0 → I(s0, s, H),

3.4 Proof Rules

The proof system is presented in Figures 3 and 4, and has two judgement forms, G �
{A} � {B} (I) and G � 〈A〉 � 〈B〉 (I). Both forms associate a program point to a pre-
condition, a postcondition, and an invariant, relative to a proof context G. The motiva-
tion for using two judgement forms stems from the interaction between the rules that
alter the flow of control inside a method frame (for the language considered in this
paper only conditional and unconditional jumps, but in general also instructions that
may throw an exception) and the rule AX that extracts such assumptions from G. Our
approach separates the usage of an assumption from its justification. The axiom rule
can only be used to derive judgements of the form that is required in the hypothesis
of the syntax-directed rules, G � 〈A〉 � 〈B〉 (I). In contrast, the definition of verified
programs requires us to discharge an assumption G(�) = (A, B, I) by exhibiting a
proof of G � {A} � {B} (I). Such a proof cannot simply consist of an application
of the rule AX, but will necessarily end (modulo applications of the rule CONSEQ-F)
in a syntax-directed rule. Consequently, the justification of an assumption is forced to
inspect the corresponding code block, eliminating the possibility to insert arbitrary (in-
correct) assumptions. In order to chain together a sequence of syntax-directed rules,
we introduce a further rule, INJ, that turns a derivation of G � {A} � {B} (I) into one
of G � 〈A〉 � 〈B〉 (I) – but no rule is given for converting in the opposite direction.
The separation into two judgement forms thus represents an alternative to global well-
definedness conditions on derivation trees, as it enforces that assumptions in G can not
be justified vacuously by reference to G but only by inspecting the corresponding code
block. Semantically, the judgement forms differ in bounds the number of operational
steps for which a judgement is required to be valid.

The proof rules are oriented such that the conclusion is an unconstrained judgement
and proof hypotheses refer to successor instructions. Hence, a verification condition
generator may be defined as a proof strategy that traverses the program in the direction
of the flow of control.

Syntax-directed rules. The syntax-directed rules are shown in Figure 3, and are moti-
vated as follows.

Rule INSTR describes the behaviour of basic instructions.

basic(M, l) ≡ M(l) ∈
{

Load x, Store x, Const z, Unop u, Binop o,
New c, Getfield c f, Putfield c f

}

The hypothetical judgement for the successor instruction involves assertions that are
related to the assertions in the conclusion by the basic transformers presented in the
previous section. In addition, the side conditions SC 1 and SC 2 ensure that the invariant
I and the local annotation Q (if existing) are satisfied in any state reaching label l.

SC 1 = ∀ s0 s. A(s0, s) → I(s0, s, heap(s))
SC 2 = ∀Q. Q(M, l) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

A Bytecode Logic for JML and Types 397

INSTR

basic(M, l) SC 1 SC 2

G � 〈PRE(M, l, A)〉M, sucM (l) 〈POST (M, l, B)〉 (INV (M, l, I))

G � {A}M, l {B} (I)

GOTO

M(l) = Goto l′ SC 1 SC 2

G � 〈PRE (M, l, A)〉M, l′ 〈POST (M, l, B)〉 (INV (M, l, I))

G � {A}M, l {B} (I)

IF0

M(l) = If0 l′ SC 1 SC 2

G � 〈PRE (M, l, A+)〉M, l′ 〈POST (M, l, B+)〉 (INV (M, l, I+))
G � 〈PRE (M, l, A−)〉M, sucM (l) 〈POST (M, l, B−)〉 (INV (M, l, I−))

G � {A}M, l {B} (I)

INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P M(M ′) = (Φ, ϕ) SC 1 SC 2

∀ s0 O S H O′ H ′. A(s0, (O
′@O, S, H ′)) → ϕ (parM′ �→ O′, H ′) H

→ I(s0, (O
′@O, S, H ′), H)

G � 〈PRE sinv (Φ, A, parM′)〉 M, sucM (l) 〈POST sinv (Φ, B, parM′)〉
(INV sinv (Φ, I,parM′))

G � {A}M, l {B} (I)

RET

M(l) = Return SC 1 SC 2

∀ s0 v O S H. A(s0, (v :: O, S, H)) → B(s0, (v :: O, S, H), (H,v))

G � {A}M, l {B} (I)

Fig. 3. Program logic: syntax-directed rules

In particular, SC 2 requires us to prove any annotation that is associated with the current
label l, in contrast to the clause in the interpretation of judgements in Definition 1.
Satisfaction of I in later states, and satisfaction of local annotations Q′ of later program
points are guaranteed by the judgement for sucM (l). Similarly, the rules for conditional
and unconditional jumps include a hypothesis on the jump target, and side conditions
for annotations and invariants. In the rule for conditional jumps, a further hypothesis
models the fall-though case, and the dependency on the outcome of the branch condition
is taken into account by the operators A+ etc..

In rule INVS, the method invariant ϕ and the precondition A may be exploited to
establish the invariant I . This ensures that I will be satisfied by all heaps that arise
during the execution of M ′, as these heaps will always conform to ϕ. In contrast, the
specification Φ is used to construct the assertions that occur in the judgement for the
successor instruction. Both conditions reflect the transfer of the method arguments to
the formal parameters of the invoked method corresponding to the constructions of a
new frame in the operational semantics. Similarly, the return value and the final heap
are (in a terminating execution) handed back to the invoking method, where they are
used to construct the assertions for the successor instruction.

398 L. Beringer and M. Hofmann

Finally, rule RET ties the precondition A to the post-condition B w.r.t. the terminal
state that is constructed using the topmost value of the operand stack.

Logical rules. The logical rules are shown in Figure 4. We have rules of consequence

CONSEQ-T

G � 〈A′〉 � 〈B′〉 (I ′) ∀ s0 s. A(s0, s) → A′(s0, s)
∀ s0 s t. B′(s0, s, t) → B(s0, s, t) ∀ s H. I ′(s0, s, H) → I(s0, s, H)

G � 〈A〉 � 〈B〉 (I)

CONSEQ-F

G � {A′} � {B′} (I ′) ∀ s0 s. A(s0, s) → A′(s0, s)
∀ s0 s t. B′(s0, s, t) → B(s0, s, t) ∀ s H. I ′(s0, s, H) → I(s0, s, H)

G � {A} � {B} (I)

INJ
G � {A} � {B} (I)

G � 〈A〉 � 〈B〉 (I)
AX

G(�) = (A, B, I) ∀ s0 s. A(s0, s) → I(s0, s, heap(s))
∀Q. Q(�) = Q → (∀ s0 s. A(s0, s) → Q(s0, s))

G � 〈A〉 � 〈B〉 (I)

Fig. 4. Program logic: logical rules

for both judgement forms, the above-mentioned rule for mediating between the two
judgement forms, and the axiom rule. As is the case in traditional program logics, the
rules of consequence allow pre-conditions to be strengthened, while post-conditions
and invariants may be weakened.

Definition 3. P is verified, notation � P , if there is a G such that G � {A} � {B} (I)
holds whenever G(�) = (A, B, I), and for all M , Φ, and ϕ, M(M) = (Φ, ϕ) implies

G � {λ (s0, s). s = state(s0)} M, initM {λ (s0, s, t). s = state(s0) → Φ(s0, t)}
(λ (s0, s, H). s = state(s0) → ϕ(s0, H))

Note the correspondence of the latter condition with Definition 2.

3.5 Soundness

The proof of soundness establishes that verified programs are valid, and consists of two
steps. We first prove that G � {A} � {B} (I) implies |= {A} � {B} (I) under the hy-
pothesis that all assumptions in G are valid, and likewise all method specifications in
M. Following [29,5], this proof proceeds by introducing relativised notions of valid-
ity that restrict the interpretation of judgements to operational judgements of bounded
height. The second step discharges the validity assumptions on G and M by proving
that verified programs guarantee the validity of G and M for arbitrary bounds.

Theorem 1. If � P then |= P .

In particular, this theorem implies that for � P all method specifications in M are hon-
oured by their respective method implementations. As the proof has been formalised in
Isabelle/HOL [12] we omit the details.

A Bytecode Logic for JML and Types 399

4 Interpretation of Type Systems

In addition to supporting the verification of programs w.r.t. JML specifications, a pro-
gram logic for bytecode should also support the compositional formulation of program
analysis results. In this section, we demonstrate how this can be achieved for analyses
phrased as type systems. As property of interest we consider static constant bounds on
heap consumption, with allocation-free loops. For this task, Cachera et al. presented an
abstract-interpretation-based analysis at the bytecode level which involves the formal-
isation of various program analysis tasks (identification of mutually recursive program
structures, identification of method calls in loops,. . .) in the theorem prover [15]. The
correctness proof of their analysis thus includes a verification of the inference mech-
anism. During the verification of concrete programs, the fixed-point iteration and the
calculation of solutions to the resulting constraints are carried out in the theorem prover.

In contrast, our type-based approach proceeds as follows. We first define an assertion
format that expresses when a code block whose initial instruction is located at � is guar-
anteed not to allocate more than n memory cells. This results in a derived proof system
for bytecode in which all judgements are of the restricted form. Then, we consider a
simple (first-order) functional language and prove that code resulting from compiling
this language into bytecode satisfies the boundary asserted by a high-level type system:
derivability in the type system guarantees derivability in the specialised program logic
for the assertion interpreting the type. Thus, we avoid the formalisation of any inference
mechanism (type inference). Only the outcome of the inference, a digest of the typing
derivation, needs to be communicated from proof producer to proof consumer.

As a further difference to Cachera et al., our analysis is phrased at an intermedi-
ate language level. This is motivated by the fact that modern compilers perform many
analysis and optimisation tasks using intermediate code representations where addi-
tional program structure can be exploited. Given that our analysis as phrased as a type
system, we chose to employ a low-level functional language similar to A-normal form
[18]. The similarity between such languages and the imperative program representation
Static Single Assignment (SSA, [16]) has been observed by Appel and Kelsey [3,23].

Specialised program logic for bytecode. For each number n, we define a triple �n� =
(A, B, I) consisting of a precondition, a post-condition, and an invariant.

�n� ≡
�
�

λ (s0, s). True,
λ (s0, s, t). |heap(t)| ≤ |heap(s)| + n,
λ (s0, s, H). |H | ≤ |heap(s)| + n

�
�

Here, |H | denotes the size of heap H . We specialise the two judgement forms to

G � � {n} ≡ let (A, B, I) = �n� in G � {A} � {B} (I)
G � � 〈n〉 ≡ let (A, B, I) = �n� in G � 〈A〉 � 〈B〉 (I).

Thus, the derivability of a judgement G � � {n} guarantees that the code located
at � allocates at most n items, in terminating (postcondition B) and non-terminating
(invariant I) executions. For (A, B, I) = �n� we also define the method specification

Spec n ≡ (λ (s0, t). B(s0, state(s0), t), λ (s0, H). I(s0, state(s0), H)).

400 L. Beringer and M. Hofmann

Specialising the logic to these judgement forms yields the following rules, with empty Q.

C-NEW

M(l) = New c
G � M, sucM (l) 〈n〉
G � M, l {n + 1} C-INSTR

basic(M, l) ¬M(l) = New c
G � M, sucM (l) 〈n〉

G � M, l {n}

C-RET
M(l) = Return

G � M, l {0} C-GOTO
M(l) = Goto l′ G � M, l′ 〈n〉

G � M, l {n}

C-IF
M(l) = If0 l′ G � M, l′ 〈n〉 G � M, sucM (l) 〈n〉

G � M, l {n}

C-INVS

M(l) = Invokestatic M ′ M ′ ∈ dom P
G � M, sucM (l) 〈n〉 M(M ′) = Spec k

G � M, l {n + k} C-INJ
G � � {n}
G � � 〈n〉

C-SUBF
G � � {n} n ≤ m

G � � {m} C-SUBT
G � � 〈n〉 n ≤ m

G � � 〈m〉 C-AX
G(�) = n

G � � 〈n〉

C-VP

∀ M. M ∈ dom P → (∃ n. M(M) = Spec n ∧ G � M, initM {n})
∀ � A B I. G(�) = (A, B, I) → (∃ n. (A, B, I) = �n� ∧ G � � {n})

� P

Intermediate-level type system. The syntax of the intermediate language is stratified
into primitive expressions and general expressions [18]. We include primitives for con-
structing empty and non-empty lists, and a corresponding pattern match expression. In
order to simplify the translation into bytecode, we use method identifiers M as function
names.

P � p ::= i | uop u x | bop o x y | Nil | Cons(x, y) | M(x1, . . . , xn)
E � e ::= prim p | let x = p in e | if x then e else e |

(case x of Nil ⇒ e | Cons(x, y) ⇒ e)

A program F : (C×M) ⇀fin (X list ×E) consists of a collection of function declara-
tions in the standard way. Figure 5 presents the rules for a type system with judgements
of the form Σ � p : n and Σ � e : n. Signatures Σ map function identifiers to types n.
Apart from the construction of a non-empty list and function calls, all primitive expres-
sions have the trivial type 0. This includes Nil which is compiled to a null reference.
Program F is well-typed w.r.t. signature Σ, notation Σ � F , if dom Σ = dom F and
for all M , F (M) = (par , e) implies Σ � e : Σ(M).

Figure 6 defines a compilation �e�C
l into the bytecode language. The result (C′, l′)

extends the code fragment C by a code block starting at l such that l′ is the next free
label. Primitive expressions leave an item on the operand stack while proper expressions
translate into method suffixes.

Semantic type soundness for primitive expressions now shows that an execution
commencing at l satisfies the bound that is obtained by adding the costs for the sub-
ject expression to the costs for the program continuation.

A Bytecode Logic for JML and Types 401

T-NIL
p /∈ {Cons(x, y), M(x1, . . . , xn)}

Σ � p : 0
T-CONS

Σ � Cons(x, y) : 1

T-CALL
Σ(M) = n

Σ � M(x1, . . . , xn) : n
T-LET

Σ � p : n Σ � e : m

Σ � let x = p in e : n + m

T-COND
Σ � e1 : n Σ � e2 : n

Σ � if x then e1 else e2 : n
T-SUB

Σ � e : m m ≤ n

Σ � e : n

T-PRIM
Σ � p : n

Σ � prim p : n
T-CASE

Σ � e1 : n Σ � e2 : n

Σ � case x of Nil ⇒ e1 | Cons(x, y) ⇒ e2 : n

Fig. 5. Typing rules

�i�C
l = (C[l �→ const i], l + 1)

�uop u x�C
l = (C[l �→ load x, l + 1 �→ unop u], l + 2)

�bop o x y�C
l = (C[l �→ load x, l + 1 �→ load y, l + 2 �→ binop o], l + 3)

�Nil�C
l = (C[l �→ const Null], l + 1)

�Cons(x, y)�C
l = (C

�
���

l �→ load y, l + 1 �→ load x, l + 2 �→ new LIST,
l + 3 �→ store t, l + 4 �→ load t,
l + 5 �→ putfield LIST HD, l + 6 �→ load t,
l + 7 �→ putfield LIST TL, l + 8 �→ load t

�
		
 , l + 9)

�M()�C
l = (C[l �→ Invokestatic M], l + 1)

�M(x1, . . . , xn)�C
l = �M(x1, . . . , xn−1)�

C[l�→load xn]
l+1

�prim p�C
l = let (C1, l1) = �p�C

l in (C1[l1 �→ Return], l1 + 1)

�let x = p in e�C
l = let (C1, l1) = �p�C

l , (C2, l2) = (C1[l1 �→ store x], l1 + 1)

in �e�C2
l2

�if x then e1 else e2�
C
l = let (CE, l2) = �e2�

C
l+2, (CT , l1) = �e1�

CE
l2

in (CT [l �→ load x, l + 1 �→ If0 l2], l1)
�

�
case x of

Nil ⇒ e1

| Cons(x, y) ⇒ e2

�

�

C

l

= let (CC , lN) = �e2�
C
l+9, (CN , l1) = �e1�

CC
lN

in

(CN

�
�����

l �→ load x, l + 1 �→ unop (λ v. v = Nullref),
l + 2 �→ If0 lN , l + 3 �→ Load x,
l + 4 �→ Getfield LIST HD, l + 5 �→ Store h,
l + 6 �→ Load x, l + 7 �→ Getfield LIST TL,
l + 8 �→ Store t

�
				

, l1)

Fig. 6. Translation into bytecode

Proposition 1. If Σ � p : n, �p�C
l = (C1, l1), and G � M, l1 〈m〉, then G �

M, l {n + m}.

For proper expressions, the soundness result does not mention program continuations,
since expressions compile to code blocks that terminate with a method return.

402 L. Beringer and M. Hofmann

Proposition 2. If Σ � e : n and �e�C
l = (C1, l1) then G � M, l {n}.

Both results are easily proven by induction on the typing judgement. For presentational
reasons we have omitted technical side conditions that ensure that the table M contains
precisely the interpretations of Σ, and that the global program P contains precisely the
translations of F , where for each entry, we reverse the list of formal parameters due to
the order in which the translation pushes arguments onto the operand stack. Denoting
these conditions by �Σ� and �F �, respectively, we obtain overall type soundness, i.e. the
verifiability of well-typed programs:

Theorem 2. If Σ � F then � �F �.

Again, the proof has been formalised in Isabelle/HOL [12].

5 Discussion

We presented a program logic for bytecode suitable for translating features found in
modern specification formalisms and for interpreting type systems in a compositional
way. Using a judgement format which separates postconditions, invariants, and annota-
tions, the logic supports reasoning about terminating and non-terminating executions.

The necessity of complementing partial-correctness assertions by guarantees that ap-
ply to intermediate states and non-terminating computations has also been observed by
Hähnle and Mostowski [19]. Based on an extension of first-order dynamic logic with
trace modalities [9], they discuss the verification of transaction properties in the context
of JAVACARD. Similar requirements arise from object invariants [26] and idioms like
ESC-Java’s validity of objects [17]. The logics developed in connection with the LOOP
tool (e.g. [21]) apply at the source code level, or a representation of source code and
(JML) specifications in a theorem prover. Various termination modes are considered in
[21], but some rules, such as the rule for while, can only be applied in special circum-
stances. The logic is formulated as a set of derived proof rules, so proof search may
always fall back on the underlying operational semantics. In contrast, our formulation
as a syntactic proof system admits a study of (relative) completeness, following the
approach of Kleymann, Nipkow, and ourselves [24,29,5].

The usage of expressive program logics as a mediating formalism between the op-
erational semantics of a low-level language and type systems was already explored in
our previous work [13]. Here, we presented an interpretation in a partial-correctness
program logic of a type system for bounded heap consumption where the amount
of memory used may depend on the structural size of input data [20]. The encoding
involved formulae that express the structured use of a freelist and enforce various dis-
jointness conditions. Heap-represented data structures are required to obey a linear typ-
ing regime. The interpretations of the typing rules are formally derived in the theorem
prover in such a way that the partitioning of the heap into regions holding particular
data structures is performed once, during the derivation of the proof rules. Compared
to the verification of application programs using separation logic [31], the verification
using the derived proof rules proceeds at a higher-level, for the price of being lim-
ited to programs originating from high-level code that obeys a particular typing disci-
pline. Compared to the FPCC approach of formalising type systems [4], the explicit
use of a program logic introduces a useful abstraction barrier. Proof patterns arising

A Bytecode Logic for JML and Types 403

repeatedly in the verification of program analyses (e.g. the verification of recursive pro-
gram structures) can be dealt with once-and-for-all. Thus, the program logic may serve
as a formalism in which different program analyses may be compared and integrated.

In contrast to our approach of interpreting typing calculi, Benton’s logic [11]
includes (basic) type information in judgements, extending bytecode verification con-
ditions. Consequently, methods can be given more modular specifications that, for ex-
ample, constrain the heap to the segment relevant for the verification of the method
body, similar to separation logic [31]. In our approach, such local-reasoning principles
would be formulated in the interpretation of type judgements, i.e. in derived proof rules
[13]. As a further difference, Benton’s logic is interpreted extensionally, by reference to
program contexts. This enables Benton to prove that certain program transformations
are semantics-preserving (see also [10]), while we primarily aim to certify intensional
properties such as the consumption of resources [6].

A further approach to integrating types and program logics is proposed by Nanevski
and Morrisett [27]. Following a two-level approach that separates effectful from pure
computations, Hoare-triples describing side-effecting computations are injected into the
type system using a monadic type constructor. The result is a rich, dependently typed
reasoning framework whose operational soundness has been established using progress-
and preservations lemmas. An extension that treats polymorphism and supports local
reasoning using constructs from separation logic appears in [2].

As was mentioned in the introduction, our logic has already been extended to a sub-
stantial fragment of the JVML. The basis of this extension is the Bicolano formalisation
of the JVML [30]. In connection with this effort, Benjamin Gregoire recently proposed
a variation of our soundness proof that eliminates the auxiliary notion of step-indexed
validity. Based on his observation, a new formalisation has been produced using the Coq
theorem prover. In addition, work is currently under way to include further specifica-
tion idioms, in particular ghost items and modifies-clauses, by translating them into the
format proposed in this paper. It is planned to extend the logic towards multi-threaded
programs. For this, we expect the form of invariants presented in the present paper to be
particularly useful. Over time, we thus expect that the presented formalism will yield a
solid foundation for the certification of functional and non-functional code properties.

Acknowledgements. This work was funded in part by the Information Society Tech-
nologies programme of the European Commission, Future and Emerging Technolo-
gies under the IST-2005-015905 MOBIUS project. This paper reflects only the author’s
views and the Community is not liable for any use that may be made of the information
contained therein. We are grateful to all members of the MOBIUS Working Group 3.1
for the numerous discussions on JML and program logics, and on formalising these in
theorem provers, and to the referees for the valuable feedback they provided.

References

1. E. Ábrahám, F. S. de Boer, W. P. de Roever, and M. Steffen. An assertion-based proof system
for multithreaded Java. Theoretical Computer Science, 331(2-3):251–290, 2005.

2. L. B. Aleksandar Nanevski, Greg Morrisett. Polymorphism and Separation in Hoare Type
Theory. In Proceedings of the 11th ACM International Conference on Functional Program-
ming (ICFP 2006). ACM Press, Sept. 2006. To appear.

404 L. Beringer and M. Hofmann

3. A. W. Appel. SSA is functional programming. ACM SIGPLAN Notices, 33(4):17–20, 1998.
4. A. W. Appel. Foundational proof-carrying code. In 16th Annual IEEE Symposium on Logic

in Computer Science (LICS), Proceedings. IEEE Computer Society, 2001.
5. D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic

for resource verification. In K. Slind, A. Bunker, and G. Gopalakrishnan, editors, Theorem
Proving in Higher Order Logics, 17th International Conference, TPHOLs’04. Proceedings,
volume 3223 of LNCS, pages 34–49. Springer, 2004.

6. D. Aspinall, L. Beringer, and A. Momigliano. Optimisation validation. In J. Knoop, G. C.
Necula, and W. Zimmermann, editors, Proceedings of the 5th International Workshop on
Compiler Optimization Meets Compiler Verification (COCV’06), ENTCS. Elsevier, 2006.
To appear.

7. F. Y. Bannwart and P. Müller. A logic for bytecode. In F. Spoto, editor, Bytecode Semantics,
Verification, Analysis and Transformation (BYTECODE), volume 141(1) of ENTCS, pages
255–273. Elsevier, 2005.

8. G. Barthe. Mobius – Mobility, Ubiquity and Security. http://mobius.inria.fr.
9. B. Beckert and S. Schlager. A sequent calculus for first-order dynamic logic with trace

modalities. In R. Gorè, A. Leitsch, and T. Nipkow, editors, Proceedings, International Joint
Conference on Automated Reasoning (IJCAR’01), volume 2083 of LNCS, pages 626–641.
Springer, 2001.

10. N. Benton. Simple relational correctness proofs for static analyses and program transforma-
tions. In N. D. Jones and X. Leroy, editors, Proceedings of the 31st ACM Symposium on
Principles of Programming Languages, POPL’04, Venice, Italy, pages 14–25. ACM, 2004.

11. N. Benton. A typed, compositional logic for a stack-based abstract machine. In K. Yi, editor,
Programming Languages and Systems, Third Asian Symposium, APLAS’05. Proceedings,
volume 3780 of LNCS, pages 364–380. Springer, 2005.

12. L. Beringer and M. Hofmann. A bytecode logic for JML and types – Isabelle/HOL sources.
http://www.tcs.ifi.lmu.de/˜beringer/BytecodeLogic.tar.gz, 2006.

13. L. Beringer, M. Hofmann, A. Momigliano, and O. Shkaravska. Automatic certification of
heap consumption. In F. Baader and A. Voronkov, editors, Logic for Programming, Ar-
tificial Intelligence, and Reasoning, 11th International Conference, LPAR’04, Montevideo,
Uruguay. Proceedings, volume 3452 of LNCS, pages 347–362. Springer, 2004.

14. L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll.
An overview of JML tools and applications. International Journal on Software Tools for
Technology Transfer, 7(3):212–232, June 2005.

15. D. Cachera, T. P. Jensen, D. Pichardie, and G. Schneider. Certified memory usage analysis. In
J. Fitzgerald, I. J. Hayes, and A. Tarlecki, editors, FM 2005: Formal Methods, International
Symposium of Formal Methods Europe. Proceedings, volume 3582 of LNCS, pages 91–106.
Springer, 2005.

16. R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Efficiently comput-
ing static single assignment form and the control dependence graph. ACM Transactions on
Programming Languages and Systems (TOPLAS), 13(4), Oct. 1991.

17. C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata. Extended
static checking for java. In PLDI ’02: Proceedings of the ACM Conference on Programming
language design and implementation, pages 234–245. ACM Press, 2002.

18. C. Flanagan, A. Sabry, B. F. Duba, and M. Felleisen. The essence of compiling with continu-
ations. In PLDI ’93: Proceedings of the ACM Conference on Programming language design
and implementation, pages 237–247. ACM Press, 1993.

19. R. Hähnle and W. Mostowski. Verification of safety properties in the presence of transactions.
In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean, editors, Proceedings,
Construction and Analysis of Safe, Secure and Interoperable Smart devices (CASSIS’04)
Workshop, volume 3362 of LNCS, pages 151–171. Springer, 2005.

A Bytecode Logic for JML and Types 405

20. M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional
programs. In POPL ’03: Proceedings of the 30th ACM Symposium on Principles of pro-
gramming languages, pages 185–197. ACM Press, 2003.

21. B. Jacobs and E. Poll. A logic for the Java Modeling Language JML. In H. Hußmann, editor,
Fundamental Approaches to Software Engineering, 4th International Conference, FASE’01.
Proceedings, volume 2029 of LNCS, pages 284–299. Springer, 2001.

22. C. B. Jones. Systematic Software Development Using VDM. Prentice-Hall International,
Englewood Cliffs, New Jersey, second edition, 1990.

23. R. A. Kelsey. A correspondence between continuation passing style and static single assign-
ment form. ACM SIGPLAN Notices, 30(3):13–22, 1995.

24. T. Kleymann. Hoare Logic and VDM: Machine-Checked Soundness and Completeness
Proofs. PhD thesis, LFCS, University of Edinburgh, 1998.

25. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, and J. Kiniry. JML
Reference Manual (draft). http://www.cs.iastate.edu/ leavens/JML, May 2006.

26. K. R. M. Leino and R. Stata. Checking object invariants. Technical Report #1997-007,
Digital Equipment Corporation Systems Research Center, Palo Alto, USA, 1997.

27. A. Nanevski and G. Morrisett. Dependent type theory of stateful higher-order functions.
Technical Report TR-24-05, Harvard University, 2005.

28. G. C. Necula. Proof-carrying code. In POPL ’97: Proceedings of the 24th ACM Symposium
on Principles of programming languages, pages 106–119. ACM Press, 1997.

29. T. Nipkow. Hoare logics for recursive procedures and unbounded nondeterminism. In J. C.
Bradfield, editor, Computer Science Logic, 16th International Workshop, CSL 2002, 11th
Annual Conference of the EACSL. Proceedings, volume 2471 of LNCS, pages 103–119.
Springer, 2002.

30. D. Pichardie. Bicolano – Byte Code Language in Coq. http://www-sop.inria.fr/everest/
personnel/David.Pichardie/bicolano/main.html, 2006.

31. J. C. Reynolds. Separation logic: A logic for shared mutable data structures. In 17th IEEE
Symposium on Logic in Computer Science (LICS’02). Proceedings, pages 55–74. IEEE Com-
puter Society, 2002.

32. M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings of the FLoC
Workshop on Run-Time Result Verification, July 1999.

	Introduction
	Syntax and Dynamic Semantics
	Program Logic
	Format of Assertions and Judgements
	Interpretation of Assertions and Judgements
	Assertion Transformers
	Proof Rules
	Soundness

	Interpretation of Type Systems
	Discussion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

