
Using Metadata Transformations to Integrate Class
Extensions in an Existing Class Hierarchy

Markus Lumpe

Department of Computer Science
Iowa State University

Ames, IA 50011, USA
lumpe@cs.iastate.edu

Abstract. Class extensions provide a fine-grained mechanism to define incre-
mental modifications to class-based systems when standard subclassing mecha-
nisms are inappropriate. To control the impact of class extensions, the concept of
classboxes has emerged that defines a new module system to restrict the visibility
of class extensions to selected clients. However, the existing implementations of
the classbox concept rely either on a “classbox-aware” virtual machine, an ex-
pensive runtime introspection of the method call stack to build the structure of
a classbox, or both. In this paper we present an implementation technique that
allows for the structure of a classbox to be constructed at compile-time by means
of metadata transformations to rewire the inheritance graph of refined classes.
These metadata transformations are language-neutral and more importantly pre-
serve both the semantics of the classbox concept and the integrity of the under-
lying deployment units. As a result, metadata transformation provides a feasible
approach to incorporate the classbox concept into programming environments
that use a virtual execution system.

1 Introduction

It is generally accepted that the inheritance relationships supported by mainstream ob-
ject-oriented and class-based languages are not powerful enough to express many useful
forms of incremental modifications. To address this problem, several approaches have
emerged (e.g., Smalltalk [10], CLOS [22], MultiJava [6], Scala [21], or AspectJ [13])
that focus on a particular technique: class extensions. A class extension is a method that
is defined in a packaging unit other than the class it is applied to. The most common
kinds1 of class extensions are the addition of a new method and the replacement of an
existing method, respectively.

However, a major obstacle when specifying class extension is that their embodied
changes have global impact [2]. Moreover, even if a system allows for a modular spec-
ification of class extensions (e.g., MultiJava [6] or AspectJ [13]), it may not support
multiple versions of a given class to coexist at the same time. To remedy these short-
comings, Bergel et al. [1, 2] have recently proposed classboxes, a new module system
that defines a packaging and scoping mechanism for controlling the visibility of isolated

1 Bracha and Lindstrom [3] have also presented a hide operator that renders a method of a class
invisible to clients of that class.

N. Kobayashi (Ed.): APLAS 2006, LNCS 4279, pp. 290–306, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Using Metadata Transformations to Integrate Class Extensions 291

extensions to portions of class-based systems. Besides the “traditional” operation of
subclassing, classboxes also support the local refinement of imported classes by adding
or modifying their features without affecting the originating classbox. Consequently,
the classbox concept provides an attractive and powerful framework to develop, main-
tain, and evolve large-scale software systems and can significantly reduce the risk for
introducing design and implementation anomalies in those systems [2].

At present, there exist two implementations of classboxes in Smalltalk [2] and a re-
stricted prototype in Java [1]. The first Smalltalk implementation relies on a modified,
“classbox-aware” virtual machine in which a dedicated graph search algorithm imple-
ments local rebinding of methods. The second implementation uses a combination of
bytecode manipulation and a reified method call stack to build the structure of a class-
box. This technique is also applied in Classbox/J [1], an implementation of classboxes
for the Java environment. In Classbox/J, a preprocessor translates each method redef-
inition into a if statement that uses a ClassboxInfo object to determine, which
definition to call in the current context.

Common to all three implementations is that the integration of class extensions oc-
curs at runtime by means of a specially-designed method lookup mechanism. This im-
plementation scheme adds a significant execution overhead to redefined methods. For
the Smalltalk implementations, for example, this overhead is generally in-between 25%
to 60%, compared to the “normal” method lookup [2]. Similarly, the method lookup of
redefined methods in Classbox/J is on average 22 times slower than the normal method
lookup [1].

In this paper we present an alternative implementation strategy that uses metadata
transformations to integrate class extensions into a given class hierarchy. More pre-
cisely, we present a “classbox-aware” dialect of C# that defines a minimal extension to
the C# language in order to provide support for the classbox concept, and Rewire.NET,
a metadata adapter that implements a compile-time mechansism to incorporate the local
refinements defined in a classbox into their corresponding classes. This approach al-
lows us to treat standard .NET assemblies as classboxes, that is, we can import classes
originating form standard .NET assemblies into a newly defined classbox, apply some
local refinements to those classes, and generate a classbox assembly that is backward-
compatible with the standard .NET framework. As a result, we obtain a mechanism
that supports the coexistence of non-classbox-aware and classbox-aware software arti-
facts in one system and therefore allows for phased and fine-grained software evolution
approach.

Our approach to incorporate the classbox concept into the .NET framework uses code
instrumentation [4, 5, 12, 14, 15] to rewire the inheritance graph of a class hierarchy in
order to build the structure of a classbox. This approach preserves the original seman-
tics of the classbox concept while moving the process of constructing the structure
of a classbox from runtime to compile-time. Furthermore, the application of metadata
transformations allows us to use the standard method lookup mechanism for redefined
methods. No dynamic introspection of the method call stack is required.

A key aspect of our approach is that a growing number of modern programming
systems compile program code into a platform-independent representation that is exe-
cuted in a virtual execution system. The virtual execution system provides an abstract

292 M. Lumpe

machine to execute managed code. The two most known virtual execution systems are
the Java platform [16] and the Common Language Infrastructure (CLI) [20]. Common
to both systems is that the concrete layout of classes is not specified. This decision rests
with the implementation of the virtual execution machine or a corresponding just-in-
time (JIT) compiler. Both, Java and the CLI use a combination of Intermediate Lan-
guage (IL) bytecode and metadata. Metadata provides the means for self-describing
units of deployment in these systems. Besides application-specific resources like im-
ages or custom attributes, metadata contains information to locate and load classes, lay
out instances in memory, resolve method invocations, and enforce security constraints.
In other words, it is metadata and not the IL code that defines the structure of classes
and their underlying class hierarchies. Rewire.NET exploits this special relationship
between IL-bytecode and metadata in order to bind class extensions defined in a given
classbox to their corresponding classes at compile-time.

The rest of this paper is organized as follows: in Section 2, we describe the classbox
programming model for the .NET framework. In Section 3 we present the architectural
elements to map the classbox concept to the CLI. We discuss the implementation of
Rewire.NET in Section 4 and provide a brief overlook of related work in Section 5.
We conclude this paper in Section 6 with a summary of the presented work and outline
future activities in this area.

2 Integration of the Classbox Model in the .NET Framework

2.1 Classbox Characteristics

The main characteristics of classboxes can be summarized as follows [2]:

• A classbox is an explicitly named unit of scoping in which classes (and their asso-
ciated members) are defined. A class belongs to the classbox it is first defined, but
it can be made visible to other classboxes by either importing or extending it.

• Any extension applied to a class is only visible to the classbox in which it occurs
first and any classboxes that either explicitly or implicitly import the extended class.
Hence, redefining a particular method of a class in a given classbox will not have
an effect on the originating classbox.

• Class extensions are only locally visible. However, their embodied refinements ex-
tend to all collaborating classes within a given classbox, in particular to any sub-
classes that are either explicitly imported, extended, or implicitly imported.

There are four additional, yet critical aspects in the definition of the classbox seman-
tics [1, 2] that need to be satisfied also, when adding support for the classbox concept
to a new programming environment:

Implicit import. The import mechanism provided by languages like Java or C# is non-
transitive, that is, a declaration namespace ns cannot export a class C, if Cwas imported
rather than defined in ns. In contrast, the module concept defined by classboxes uses
transitive import. More precisely, if a classbox cb explicitly imports a class C, then
all of C’s superclasses are implicitly imported into cb also. This not only allows for a

Using Metadata Transformations to Integrate Class Extensions 293

local refinement of the explicitly imported class C, but also for a refinement of all other
classes in the inheritance graph of C in cb.

Method extension. The decision, whether a method m is added or acts as replacement
depends on its signature. That is, if a locally refined class C already defines a method
with the same name and signature, then m replaces this method. Otherwise, m is added
to C. Moreover, method replacement takes precedence in a flattened version of class
C [2].

Identity of classes. A key element of the semantics of classboxes is that the identity
of locally refined imported classes is preserved. By preserving the identity of a class C,
existing clients of C can benefit from the extensions applied to C also.

Virtual methods. The classbox concept rest upon virtual methods and dynamic bind-
ing [1, 2]. There are no provisions for non-virtual methods. In addition, the decision,
whether a method m is added or replaced in a given class C that occurs locally refined in
a classbox cb is based on the members defined by C and its superclasses. If a subclass
of C, say class D, is also explicitly imported into cb, then D should benefit from the
extensions applied to C. However, if D defines its own version of m, then this method
may hide C’s method m, effectively rendering parts of the class extensions applied to C
invisible to clients of D. A “classbox-aware” compiler can detect this situation, but the
classbox concept is blind for this behavior.

2.2 Dynamic Graph Search

Common to both the Smalltalk and the Java implementations of classboxes is a spe-
cially-designed method lookup mechanism that performs a dynamic search over a class-
box graph in order to ensure that import takes precedence over inheritance [1, 2]. More
precisely, if a given method cannot be located in the current imported class, then rather
than continuing with the superclass, the modified lookup tries to locate the required
method in the provider classbox. Only if the requested method cannot be located in the
provider classbox, then the search continues in the imported class’ superclass. The ef-
fect of this method lookup mechanism is that local refinements to imported classes are
dynamically linked into the corresponding class hierarchy. In other words, extending
an imported class is an operation that is performed at runtime.

Consider, for example, Figure 1 in which we highlight the search for the method
foo with respect to the class C. The lookup starts at point ’1’ and as class C neither
implements nor has been extended with a corresponding method, the lookup continues
in its superclass B (denoted by ’2’), which occurs as an implicitly imported class in
SampleClassbox. Again, the class B does not implement the foo method. There-
fore, the search has to continue by inspecting its superclass. However, since we have
defined an extension to class A (we use the rounded box as a graphical means to in-
dicate that the class A has been extended with the method foo), the search termi-
nates in the extension that defines the method foo (denoted by ’3’) rather than in
the class A directly, as this is the first point along the search path that implements the
method foo.

The reader should note that this special method lookup mechanism is required, be-
cause the structure of a classbox is not known until runtime in both the Smalltalk and

294 M. Lumpe

Class C

SampleClassbox

Class A

foo
foo

3

2

1

method lookup

Class B

Fig. 1. Method lookup as search over the classbox graph

Java implementations. Moreover, even though extensions are bound dynamically into a
class hierarchy, the classbox concept neither supports virtual classes [11] nor any form
of “chameleon” objects that can change their structure based on the environment in
which they are currently being used. Objects are instantiated with respect to a provider
classbox that determines and finalizes the capabilities of that object. The dynamic graph
search does not supersede the method layout, but amends it to build the structure of a
given object’s provider classbox at runtime.

2.3 Classbox-Aware C#

To ally the classbox concept with the .NET framework, we define a “classbox-aware”
dialect of C#2. In previous work, we already explored a technique to amend the C#
language with the classbox concept [17]. However, even though we were able to define a
conceptual approach for the integration of the classbox concept in the .NET framework,
the resulting language extensions could not be properly type-checked. Furthermore, the
use of the Metadata Unmanaged API [19] turned out to be unsuitable for the purpose
of manipulating .NET assemblies, as this API does not provide access to IL-bytecode,
which is essential for a comprehensive solution. The language model proposed in this
work not only follows closely the one proposed by Bergel et. al [2], but also allows for
a proper type checking of the specified class extensions:

Class Import. To explicitly import a class, we use the alias form of the C# using-
directive [7, §16.4.1]. An alias for a type is a user-defined name that is only available
within the namespace body that introduces it. However, in contrast to standard C#,
the using-alias-directive in classbox-aware C# creates an “empty” subclass with the
same name for each explicitly imported class in the importing classbox. This approach
not only enables the local refinement of the explicitly imported class, but publishes
the explicitly imported class to clients of the importing classbox as it had been de-
fined in the importing classbox itself. The introduction of a new subclass does not

2 We are currently experimenting with the open-source Mono compiler in order to define a fron-
tend for classbox-aware C# [17].

Using Metadata Transformations to Integrate Class Extensions 295

using System ;

namespace TraceAndColorCB
{

using System . Drawing ;

using Poin t = PointHierarchyCB . Poin t include
{

pr ivate Color co l o r ;
public Color Color { get{ return co lo r ; } set{ co lo r = value ; } }
public void MoveBy (i n t dx , i n t dy)
{

Console . Wr i teL ine (”MoveBy : {0} , {1}” , new object [] { dx , dy }) ;
base . MoveBy (dx , dy) ;

}
}

using LinearBPoin t = PointHierarchyCB . L inearBPoin t ;
}

Listing 1. Classbox TraceAndColorCB in classbox-aware C#

preserve the identity of classes as required by the classbox model. To restore it, we apply
Rewire.NET to the assemblies constituting the physical structure of the corresponding
classbox.

Subclassing. Subclassing is represented by the standard class building mechanisms.
The available C# language abstractions suffice to specify this operation. A subclass
introduces a new type name in the defining classbox. This type name must be unique.
However, the classbox concept allows for the coexistence of both the new subclass and
implicitly imported classes with identical names in the same classbox.

Class Extension. We use the modified alias form of the C# using-directive and add
an include-clause to specify the local refinements to an imported class. The mem-
bers of the local refinements are specified in a class-body [7, §17.1.3]. All methods
and properties are implicitly marked virtual. If the extended class already defines a
member with the same name and signature, then this member becomes overridden (i.e.,
replaced). Otherwise, the extension is added to the class. Extending an imported class
results in a new subclass with the same name in the importing classbox. As in the case
of class import, we have to use Rewire.NET to restore the class identity.

A classbox in the .NET framework has a logical and a physical structure. These
concepts do not change the underlying semantics of the classbox model, but provide us
with the means to separate the program interface from the implementation of a classbox.
The logical structure of a classbox defines a namespace to specify the import of classes,
the introduction of subclasses, and the extension of classes. The physical structure of a
classbox, on the other hand, identifies the assemblies that contain the executable code
that is specified by the logical structure of a classbox.

To illustrate the new language abstractions, consider the specification of the classbox
TraceAndColorCB, as shown in Listing 1. The namespace TraceAndColorCB
defines the logical structure of the classbox TraceAndColorCB in which we explic-
itly import the classes Point and LinearBPoint, both originating from classbox
PointHierarchyCB. In TraceAndColorCB, we extend class Point with the

296 M. Lumpe

using System ;

namespace TraceAndColorCB
{

using System . Drawing ;

public class Poin t : PointHierarchyCB . Poin t
{

pr ivate Color co l o r ;
public Poin t (i n t i x , i n t i y) : base (i x , i y) {}
public v i r t u a l Color Color { get{ return co lo r ; } set{ co lo r = value ; } }
public overr ide void MoveBy (i n t dx , i n t dy)
{

Console . Wr i teL ine (”MoveBy : {0} , {1}” , new object [] { dx , dy }) ;
base . MoveBy (dx , dy) ;

}
}

public class LinearBPoin t : PointHierarchyCB . L inearBPoin t
{

public LinearBPoin t (i n t i x , i n t i y , i n t ibound) : base (i x , i y , ibound) {}
}

}

Listing 2. Classbox TraceAndColorCB in standard C#

property Color (utilizing a private instance variable color) and the method MoveBy
that defines a tracing facility to monitor invocations of MoveBy. The method MoveBy
overrides (i.e., replaces) an exiting method in class Point. It defines also an access to
the original behavior through a base-call. The property Color, on the other hand, is
new and therefore added to the refined class Point in classbox TraceAndColorCB.
The class LinearBPoint, which defines a non-constant linear upper bound for point
objects, is an indirect subclass of class Point (i.e., in PointHierarchyCB the class
LinearBPoint is derived from BoundedPoint that is a direct subclass of Point).
Therefore, the local refinements defined for class Point impact class LinearBPoint
also, that is, it possesses now a property Color and a method MoveBy with a tracing
facility in TraceAndColorCB.

The classbox-aware C#-compiler translates the specification of this classbox into an
internal representation that corresponds to the standard C#-code shown in Listing 2.
Each explicitly imported class results in a new class definition in which the imported
class becomes the direct supertype. Moreover, in order to preserve all constructors de-
fined by class Point and LinearBPoint, we add corresponding “empty” construc-
tors to the new class definitions. This approach prevents the automatic insertion of a
default-constructor that would render the original constructors invisible.

The result of compiling the classbox TraceAndColorCB is the assembly Trace-
AndColorCB.dll that together with PointHierarchyCB.dll (i.e., the assem-
bly defining the classbox PointHierarchyCB) constitute a provisional physical
structure of the classbox TraceAndColorCB. In the provisional structure, the iden-
tity of imported classes has not yet been established. To restore the identity of im-
ported classes, we have to rewire the inheritance graph of the classes Point and
LinearBPoint by using Rewire.NET. The result is the final physical structure of
the classbox TraceAndColorCB.

Using Metadata Transformations to Integrate Class Extensions 297

3 Building the Structure of a Classbox at Compile-Time

3.1 Metadata Type Declarations

Each CLI-enabled language has to define a language-appropriate scheme to represent
types and members in metadata. At the core of every CLI-enabled programming lan-
guage is a set of built-in data types compliant with the Common Type System (CTS),
mechanisms to combine them to construct new types, and a facility to assign names to
new types to seamlessly integrate them in the CLI [20]. The CLI uses an implementation-
dependent declarative encoding mechanism to represent metadata information, called
metadata token. A metadata token is a scoped typed identifier of a metadata object and
is represented as a read-only index into a corresponding metadata table.

New types are introduced via metadata type declarations [20]. TYPEDEF tokens en-
code the name of a type, its declaration namespace, the super type (index into TYPEDEF
or TYPEREF table), an index into the FIELD table that marks the first of a continuous
run of field definitions owned by this type, and an index into the METHODDEF table
that marks the first of a continuous run of method definitions owned by this type. In
addition, a given assembly can refer to types defined in another module or assembly.
These references are encoded by TYPEREF, MEMBERREF, and ASSEMBLYREF to-
kens, respectively. A TYPEREF token encodes the resolution scope (e.g., index into
ASSEMBLYREF table), the name of the type, and its declaration namespace. MEMBER-
REF tokens are references used for both fields and methods of a class defined in another
assembly. MEMBERREF tokens encode the type that owns the member, the member’s
name, and its signature. Finally, ASSEMBLYREF is a metadata token, which encodes
the information that uniquely identifies another assembly on which the current assem-
bly is depending. ASSEMBLYREF tokens not only encode the name to the referenced
assembly, but also its version, which enables a deployment mechanism that allows for
multiple versions of assemblies with the same name to coexist on the one system.

Metadata is organized in tables, whose rows start with index 1. Metadata may contain
unreachable rows, but an index into a table must denote a valid row in that table. The
indices into the metadata tables create a static dependency or link graph. The CLI loader
imports the metadata into its own in-memory data structures, which can be browsed
via Reflection services. Both the metadata in an assembly and the corresponding in-
memory runtime structures are immutable. However, they provide fast and direct access
to required type information.

3.2 Changing the Metadata

To move the process of creating the structure of a classbox from runtime to compile-
time, we take advantage of the separation of metadata and IL-bytecode. Both, the import
of a class and extending an imported class trigger the creation of a new subclass with
the same name as outlined in Section 2.3. However, subclassing is an operation that
breaks the connection to former clients [9]. To restore this connection and to enable a
former clients of the extended class to benefit from the local refinements, we have to
redirect the supertype edge of any direct explicitly or implicitly imported subclass of a
refined class to the newly created class in the current classbox.

298 M. Lumpe

(a)
TraceAndColorCB.LinearBPoint

TraceAndColorCB.Point

PointHierarchyCB.LinearBPoint

PointHierarchyCB.BoundedPoint

PointHierarchyCB.Point

(b)TraceAndColorCB.LinearBPoint

TraceAndColorCB.Point

PointHierarchyCB.LinearBPoint

PointHierarchyCB.BoundedPoint

PointHierarchyCB.Point

Fig. 2. Inheritance graph in classbox TraceAndColorCB before and after flattening

Consider again the classbox TraceAndColorCB. This classbox explicitly im-
ports the classes Point and LinearBPoint from PointHierarchyCB. As a
result, we create two new subclasses with the same name in TraceAndColorCB.
The resulting inheritance graph is shown in Figure 2(a) (explicitly imported classes are
marked with a solid rounded box, whereas implicitly imported types are marked with a
dotted rounded box).

A name of a type in CLI consists of two elements: a typename and a namespace.
Therefore, when we introduce the new subclasses for explicitly imported types, we
create a new name in which the namespace component identifies the importing class-
box. The scheme allows for the coexistence of different versions of a class in the
same classbox, since it is always possible to distinguish them by using their names-
pace name. In the provisional structure of classbox TraceAndColorCB, the class
TraceAndColorCB.Point is not in the inheritance graph of class TraceAnd-
ColorCB.LinearBPoint. As a consequence, the classTraceAndColorCB.Li-
nearBPoint does not yet benefit from the local refinements applied to the class
TraceAndColorCB.Point, as required by the classbox model. To change this, we
have to make TraceAndColorCB.Point a direct supertype of class PointHie-
rarchyCB.BoundedPoint. To accomplish this, we change the TYPEDEF
metadata token defining the class PointHierarchyCB.BoundedPoint in the
metadata of the assemblyPointHierarchyCB.dll. More precisely, we need rewire
the Extends column of PointHierarchyCB.BoundedPoint’s TYPEDEF meta-
data token to point to the TYPEDEF metadata token defining class TraceAndColor
CB.Point in assembly TraceAndColorCB.dll. We proceed by performing the
following instructions:

1. Create a new version of PointHierarchyCB.dll and name this assembly
PointHierarchyCB(TraceAndColorCB).dll, where the name Trace-
AndColorCB firmly associates this new assembly with the classbox TraceAnd-
ColorCB to disambiguate multiple rewired versions of thePointHierarchyCB
classbox.

2. Add an ASSEMBLYREF token for TraceAndColorCB to the metadata of Po-
intHierarchyCB(TraceAndColorCB).dll.

Using Metadata Transformations to Integrate Class Extensions 299

TraceAndColorCB

BoundedPoint

PointHierarchyCB(TraceandColorCB).dll

LinearBPoint

TraceAndColorCB.dll

LinearBPoint

Point

+ Color {get; set;}
+ MoveBy

Point

Fig. 3. Structure of classbox TraceAndColorCB

3. Add a TYPEREF token for TraceAndColorCB.Point to the metadata of Po-
intHierarchyCB(TraceAndColorCB).dll.

4. Set the Extends column of the TYPEDEF token for class PointHierarchyCB.-
BoundedPoint to point to the newly addedTYPEREF token inPointHierar-
chyCB(TraceAndColorCB).dll.

The result of this transformation is a flattened classbox that publishes two classes:
Point and LinearBPoint, whose inheritance graph is shown in Figure 2(b). The
metadata manipulations do not affect existing clients of PointHierarchyCB, since
we create a new version for this assembly, before applying the transformations. More-
over, in contrast to Classbox/J, we do not need access to the original source code to cre-
ate to structure of a classbox. The logical structure of classbox TraceAndColorCB
is defined by the static link graph in metadata of its corresponding physical represen-
tation, that is, the assemblies TraceAndColorCB.dll and PointHierarchy-
CB(TraceAndColorCB).dll, as shown in Figure 3.

3.3 Restoring Constructor Integrity

The rewiring process outlined in the previous section manipulates metadata, but not
the IL-bytecode. The process preserves the integrity of metadata, that is, all indices to
tables in metadata denote a valid row. Unfortunately, changing the Extends column of
the TYPEDEF token describing class BoundedPoint does not preserve the integrity
of the IL-bytecode in PointHierarchyCB(TraceAndColorCB).dll.

In order to initialize a new object being created for a given class, the construc-
tor for that class always calls its statically known superclass constructor first. In the
original assembly PointHierarchyCB.dll, this statically known superclass con-
structor is PointHierarchyCB.Point::.ctor. The situation in the assembly
PointHierarchyCB(TraceAndColorCB).dll is different, however, as we
have changed the supertype of the class BoundedPoint to TraceAndColorCB.-
Point. It is, therefore, not correct to call PointHierarchyCB.Point::.ctor.
As a consequence, the IL-bytecode for the constructor of the class BoundedPoint
loses its integrity, since object initialization cannot skip classes.

300 M. Lumpe

We can, however, easily restore the required integrity. The target of a static method
call is indicated by a method descriptor. This method descriptor is a metadata token
(either METHODDEF or MEMBEREF) that describes the method to call and the number,
type, and order of the arguments that have been placed on the stack to be passed to
that method. In other words, it is the method descriptor and not the IL-bytecode that
determines the destination address of a method call. We exploit this fact, to restore the
broken IL-bytecode integrity of constructor for the class BoundedPoint in assembly
PointHierarchyCB(TraceAndColorCB).dll, as follows:

1. Add a MEMBERREF token indicating the constructor for the class TraceAndCo-
lorCB.Point to the metadata of PointHierarchyCB(TraceAndColor-
CB).dll.

2. Construct, using the new MEMBERREF token, a new method descriptor for Trace-
AndColorCB.Point::.ctor.

3. Use the Relative Virtual Address (i.e., the RVA column) of the METHODDEF to-
ken describing the constructor for the class BoundedPoint to locate the method
descriptor for PointHierarchyCB.Point::.ctor and replace it with the
descriptor built in the previous step.

Using these instructions, the integrity of the constructor for the class Bounded-
Point in assemblyPointHierarchyCB(TraceAndColorCB).dll is restored.
As a result, we have obtained the final physical structure of the classbox TraceAnd-
ColorCB. The assembliesPointHierarchyCB(TraceAndColorCB).dlland
TraceAndColorCB.dll are standard .NET assemblies and pass verification. Thus,
we can use them like any other non-classbox-aware assembly. The structure of the class-
box TraceAndColorCB is imprinted in the metadata of the underlying assemblies.
Moreover, by moving the process of building the structure of a classbox from run-
time to compile-time we recover the standard method lookup mechanism for redefined
methods and therefore, eliminate the execution overhead formerly associated with class
extensions.

3.4 Evaluation of the Rewiring Technique

A major benefit of our solution is that we can use the standard method lookup mecha-
nism for redefined methods. As a result, there is no measurable difference in the execu-
tion time of both plain and redefined methods.

While the size of the IL-bytecode remains the same, the size of the metadata grows
due to the rewiring process. The amount of change underlies several varying factors.
First, the metadata is not located at the end of the .text section. In this case, we
cannot recycle the old metadata and therefore create a new image of the metadata at
the end of the .text section, which effectively renders the old metadata into garbage.
The second factor influencing the growth of metadata is associated with the amount of
“reusable” rows. The rewiring process takes a very conservative approach, as it only
adds new rows to the metadata, if no appropriate row exists. All byte-indexed data (i.e.,
strings, blob data, and UTF-16 strings) cannot be reused, as this may break indices from
IL-bytecode into the corresponding heaps. When a new row is needed, then this row is
always added to the end of its corresponding table or heap.

Using Metadata Transformations to Integrate Class Extensions 301

To illustrate the the change in size, consider, for example, the rewiring process
of PointHierarchyCB.dll. The required transformations require 168 additional
bytes of metadata. Unfortunately, the resulting size of the new metadata exceeds the
available free space at the end of the .text section. Therefore, we are required to en-
large it by one unit of size SectionAlignment, which is 4K. However, the numbers for the
two system assembliesSystem.Drawing.dll andSystem.Windows.Forms.-
dll indicate that the overhead for placing the metadata at the end of the .text section
may reach a threshold at which it cannot be ignored anymore. In these two assemblies,
the size of the metadata amounts to almost half of their total size. We plan, therefore, to
explore alternative approaches in future work that will allow us to reorder the .text
section data, so that the space occupied by the old metadata can be reclaimed.

One of the key features of the classbox concept is that multiple versions of a class
can coexist in the same classbox or application. Our rewiring technique preserves this
property of classboxes by adding a target classbox tag to the originating namespace
names of all explicitly imported types3. For example, the namespace namePointHie-
rarchyCB in classbox TraceAndColorCB is changed to TraceAndColorCB:
PointHierarchyCB, an identifier that cannot be defined in C#. The effect of this tag
is twofold. First, in C# the visibility of a superclass cannot be more restrictive than the
one of any of its subclasses. As a consequence, even implicitly imported types possess
public visibility in a provider classbox. The target classbox tag eliminates this problem
completely, as it renders all implicit imported types invisible. Secondly, the target class-
box tag disambiguates multiple versions of the same class. For example, a client can
safely use both classboxes PointHierarchyCB and TraceAndColorCB, even
though all provided classes occur multiple times either explicitly imported, implicitly
imported or both in the client space. Therefore, different versions of a class can coexist
and be unequivocally identified in the same declaration space.

4 Rewire.NET

Rewire.NET is a .NET component, written in C#, that accepts as input a rewiring spec-
ification that lists the target classbox, the referenced assemblies, and all explicitly im-
ported classes. Rewire.NET analyzes the provisional physical structure of the target
classbox and performs the necessary transformations to produce a final physical struc-
ture of the target classbox. The implementation of Rewire.NET has one subsystem for
the representation of assemblies, called CLI. The CLI subsystem is a namespace that
defines a collection of classes that provide an object-oriented interface to read, alter,
and write .NET assemblies (cf., Figure 4).

4.1 The CLI Subsystem

Several methods and tools have been proposed to perform assembly introspection. The
.NET framework already provides theSystem.ReflectionAPI, which can be used

3 We have omitted these tags in the above explanation of the rewiring technique to preserve
readability.

302 M. Lumpe

(a)

Assembly

MSDOSHeader

PEHeader

OptionalPEHeader

SectionHeaders

MetaData

CLIHeader SectionHeader

ProxyWriter (b) (c)

MetaData

MetadataRoot

UserStringHeap

TableHeap

BlobHeap

GuidHeap

StringsHeap

Fig. 4. CLI.Assembly, CLI.SectionHeader, and CLI.MetaData

for this purpose. Using the services provided by this API, we are able to programmat-
ically obtain the metadata contained in an assembly. Unfortunately, this API lacks the
ability to access IL-bytecode. However, as outlined in Section 3.3, we need access to
the IL-bytecode in order to restore the integrity of a constructor, whose class was sub-
ject to a supertype change. We face a similar problem with the Metadata Unmanaged
API [19] that can be used by a compiler to query the metadata of a host assembly and
emit the correspondingly updated information into a new version of the host assembly.

A framework that provides access to both metadata and IL-bytecode is the Runtime
Assembly Instrumentation Library (RAIL) [4]. RAIL closes the gap between the reflec-
tion capabilities in the .NET framework and its support for code emission. RAIL offers
an object-oriented interface for an easy manipulation of assemblies, modules, classes,
and even IL-bytecode. Nevertheless, RAIL cannot be used for the implementation of
Rewire.NET, as this API does not allow for the manipulation of type references. RAIL
treats type references (i.e., TYPEREF metadata tokens) as read-only pointers to mem-
bers defined outside the current assembly being instrumented.

The CLI API addresses these shortcomings. The primary purpose of this API is to
provide an object-oriented view of an assembly with a symmetric support for reading
and writing Portable Executable files. In addition, the CLI API defines mechanisms to
manipulate the metadata of an assembly and to fetch the IL-bytecode. It does, how-
ever, not define any IL-bytecode manipulation capabilities, except for the update of
method descriptors. We can use theReflection.EmitAPI or RAIL for IL-bytecode
instrumentation.

At the center of the CLI API is the class Assembly, which is composed from
the core elements of the extended Portable Executable file format, as shown in Fig-
ure 4(a). The class Assembly represents an in-memory image of a Portable Exe-
cutable file. It provides access to the structure of the runtime file format of an assembly.
The class Assembly defines both a Read and a Write method to load an assembly
into memory and to create a new PE image, respectively. However, rather than retain-
ing the contents of all native PE sections in memory, the Read method constructs a
ProxyWriter object and associates it with its corresponding section data (cf., Fig-
ure 4(b)). The class ProxyWriter defines a method FetchILMethod to acquire
the IL-bytecode associated with a given Relative Virtual Address (RVA), a method

Using Metadata Transformations to Integrate Class Extensions 303

Update that takes a byte array and a RVA to change the byte sequence starting at RVA
in the associated section data, and a method Copy that writes the associated section
data to a new Portable Executable file.

The class MetaData, as shown in Figure 4(c), represents the logical format of meta-
data. It provides access to all metadata stream heaps. These stream heaps are structured
as tables and provide an index-based access to rows. Furthermore, each heap defines
an Add method to append a new row to a table. Stream heaps do not allow for the re-
moval of a row. Deleting a row may destroy the integrity of metadata. However, stream
heaps may contain garbage, that is, rows that are not indexed by either metadata or
IL-bytecode.

4.2 Rewire.NET

Rewire.NET is a Console Application that reads the rewiring specification that is gen-
erated by the classbox-aware C# compiler while compiling a classbox. The format of
the rewiring specification is given below:

Specification ::= { Definition }*
Definition ::= R # ReferencedAssemblyFileName | T # ClassboxAssemblyFileName |

I # ExplicitlyImportedClass | N # ClassboxName

We have added support for the generation of a rewiring specification to the open
source C#-compiler of the Mono project [23, version 1.1.8.3]. At compile-time, the
modified C#-compiler generates a list regarding all explicitly referenced assemblies,
all explicitly imported classes, and all extended imported classes. For example, con-
sider again the classbox TraceAndColorCB. The specification for building the final
physical structure of this classbox is given below:

N # TraceAndColorCB
T # TraceAndColorCB . d l l
R # PointHierarchyCB . d l l
I # PointHierarchyCB . Poin t
I # PointHierarchyCB . L inearBPoin t

After reading the rewiring specification, the rewiring process proceeds in two phases.
In the first phase, we identify (i) all classes, whose super type is in the set of explicitly
imported classes and register these classes for update, (ii) build a list of all assemblies
for which we need to create a new version, and (iii) add the required target classbox
tags. For example, in the case of the classbox TraceAndColorCB, we need to update
the class BoundedPoint originating from PointHierarchyCB, have to create a
new version of the assembly PointHierarchyCB.dll, and add the classbox tag
TraceAndColorCB: to the namespace name PointHierarchyCB. In the second
phase, we perform the actual metadata transformations. First, we create the required
new assembly versions. Next, we add the required new ASSEMBLYREF metadata to-
kens to their respective assemblies. Adding the new ASSEMBLYREF tokens first sim-
plifies the next step, as these new ASSEMBLYREF tokens are required for the update
of the super type information. In the final step in this phase, we update the super type
information and restore the integrity of the constructors of all classes marked for update.

Both phases take place in memory. To create the actual images of the updated as-
semblies, we have to call the their Write method. Metadata must be stored in the text

304 M. Lumpe

section (i.e., the .text section). The Write method places the new metadata at the
end of the text section. If necessary, the text section is enlarged to accommodate the
new metadata. It is in general not possible to reclaim the space occupied by the old
metadata, as there are no requirements to place metadata at the end of the text section.
However, by placing the new metadata at the end of the text section, we can recycle the
space occupied by metadata in future updates.

5 Related Work

Code instrumentation has been a subject of intense research in the last decade. Code in-
strumentation focuses on three primary purposes: introspection, optimization, and secu-
rity. By using code instrumentation we can, for example, detect any places in compiled
code, where this code accesses the local file system and insert an additional authenti-
cation layer. To edit fully-linked executables, Larus and Schnarr [15] have proposed the
Executable Editing Library (EEL). EEL is a framework for building tools to analyze and
modify executable (i.e., compiled) code. EEL provides an object-oriented architecture-
and system-independent set of abstractions (i.e., C++ class hierarchies) to read, ana-
lyze, and modify executable code. These abstractions are very similar to those found in
a compiler, as the purpose of both EEL and a compiler is to manipulate programs.

Code instrumentation frameworks that target the Java platform are Binary Compo-
nent Adaptation (BCA) [12] and Javassist [5], which allow for an on-the-fly code instru-
mentation of binary Java components. Both frameworks use a customizable class loader
to rewrite and/or reflect on binary components before (or while) they are loaded. The
rewriting process does not require source code access and guarantees release-to-release
compatibility.

RAIL [4] is the first general purpose code instrumentation library for the .NET plat-
form. RAIL supports structural [8] as well as behavioral reflection [18]. The abstrac-
tions provided by RAIL allow for both low- and high-level modifications of assemblies.
RAIL enables the modification of assemblies at class level (e.g., substitution of classes,
members, and member access). RAIL does not, however, allow for the manipulation of
references to external types.

Lafferty and Cahill [14] have presented Weave.NET, a load-time weaver for the
.NET framework that allows aspects and components written in different languages
to be freely intermixed. Weave.NET relies on the Common Language Infrastructure
and XML to specify aspect bindings. By using CLI, Weave.NET provides a language-
independent aspect-oriented programming model.

6 Conclusion and Future Work

In this paper, we have presented an approach to seamlessly incorporate the classbox
concept into the .NET framework. Classboxes provide a feasible solution to the prob-
lem of controlling the visibility of change in object-oriented systems without breaking
existing applications, as they allow for strictly limiting both the scope and the impact
of any modifications. Consequently, classboxes can significantly reduce the risk for

Using Metadata Transformations to Integrate Class Extensions 305

introducing design and implementation anomalies due to the need to adapt a software
system to changing requirements [2].

We replaced the dynamic integration of class extensions at runtime by a static,
compile-time-based approach. Our approach not only eliminates the runtime overhead
that is associated with the construction of the classbox structure, but allows us also
to treat standard .NET assemblies as classboxes. The key method underlying the in-
tegration of the classbox concept in the .NET framework is metadata manipulation.
Using this code instrumentation method we can restructure the inheritance graph of a
class hierarchy in order to incorporate local refinements (i.e., class extensions) into the
behavior of explicitly imported classes. Hence, by using the metadata concept of the
underlying Common Language Infrastructure (CLI), classboxes can be seamlessly in-
tegrated into the .NET environment without the need to modify the underlying runtime
infrastructure.

The re-wiring process requires the originating assemblies to be copied. This appears
to be a drawback of our implementation. However, the new versions of these assemblies
play a major role in a compile-time-based approach to integrate extensions into a exist-
ing class hierarchy. The .NET framework uses a strong version control mechanism as
each assembly is assigned a unique version number. In our implementation, we utilize
this mechanism to distinguish between different classboxes. An extension to an im-
ported class triggers the creation of new versions of referenced assemblies that contain
types the imported class is depending upon. These new assemblies are bound to a par-
ticular classbox. The result is a physical and logical structure the captures precisely the
defined classbox and does not affect previously defined classboxes. As a consequence,
this structure can be deployed independently.

In this work, we have used a rather conservative approach to manipulate metadata.
However, metadata transformation allow for a variety of manipulations of the structure
of classes. We plan, therefore, to explore more aggressive class restructuring techniques
in the future in order to enrich the classbox concept. In addition, we plan to apply the
rewiring technique to Classbox/J. However, since Java platform uses a different deploy-
ment mechanism (usually based on JAR-files) that lacks a strong association between
deployment unit, version, and package name, the physical structure of a classbox can-
not span across multiple physical units as in the .NET framework. Future work on the
classbox concept will include, therefore, the exploration of an alternative packaging
mechanism to represent the physical structure of a classbox in which the classes of a
classbox are grouped in one physical deployment unit.

Acknowledgements. We would like Alexandre Bergel, Andre Lokasari, Hua Ming,
Jean-Guy Schneider, and the anonymous reviewers for their valuable discussions.

References

1. Alexandre Bergel, Stéphane Ducasse, and Oscar Nierstrasz. Classbox/J: Controlling the
Scope of Change in Java. In Proceedings OOPSLA ’05, volume 40 of ACM SIGPLAN No-
tices, pages 177–189, San Diego, USA, October 2005.

2. Alexandre Bergel, Stéphane Ducasse, Oscar Nierstrasz, and Roel Wuyts. Classboxes: Con-
trolling Visibility of Class Extensions. Journal of Computer Languages, Systems & Struc-
tures, 31(3–4):107–126, May 2005.

306 M. Lumpe

3. Gilad Bracha and Gary Lindstrom. Modularity Meets Inheritance. In Proceedings of the
International Conference on Computer Languages, pages 282–290. IEEE Computer Society,
April 1992.

4. Bruno Cabral, Paulo Marques, and Luı́s Silva. RAIL: Code Instrumentation for .NET. In Lo-
rie M. Liebrock, editor, Proccedings of Symposium On Applied Computing (SAC’05), pages
1282–1287. ACM Press, March 2005.

5. Shigeru Chiba. Load-Time Structural Reflection in Java. In Elisa Bertino, editor, Proceedings
ECOOP 2000, LNCS 1850, pages 313–336, Cannes, France, June 2000. Springer.

6. Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd Millstein. MultiJava: Modular
Open Classes and Symmetric Multiple Dispatch for Java. In Proceedings OOPSLA 2000,
volume 35 of ACM SIGPLAN Notices, pages 130–146, October 2000.

7. European Computer Machinery Association. Standard ECMA-334: C# Language Specifica-
tion, third edition, June 2005.

8. Jacques Ferber. Computational Reflection in Class based Object-Oriented Languages. In
Proceedings OOPSLA ’89, pages 317–326. ACM Press, October 1989.

9. Robert Bruce Findler and Matthew Flatt. Modular Object-Oriented Programming with Units
and Mixins. In Proceedings of the ACM SIGPLAN International Conference on Functional
Programming (ICFP ’98), volume 34, pages 94–104, 1998.

10. Adele Goldberg and David Robson. Smalltalk-80: The Language. Addison-Wesley, Septem-
ber 1989.

11. Atsushi Igarashi and Benjamin Pierce. Foundations for Virtual Types. In Rachid Guerraoui,
editor, Proceedings ECOOP ’99, LNCS 1628, pages 161–185. Springer, June 1999.

12. Ralph Keller and Urs Hölzle. Binary Component Adaptation. In Eric Jul, editor, Proceedings
ECOOP’98, LNCS 1445, pages 307–329, Brussels, Belgium, July 1998. Springer.

13. Grégor Kiczales, Erik Hilsdale, Jim Hugunin, Mik Kersten, Jeffrey Palm, and William G.
Griswold. An Overview of AspectJ. In Jørgen Lindskov Knudsen, editor, Proceedings
ECOOP 2001, LNCS 2072, pages 327–355, Budapest, Hungary, June 2001. Springer.

14. Donal Lafferty and Vinny Cahill. Language-Independent Aspect-Oriented Programming. In
Proceedings OOPSLA 2003, pages 1–12. ACM Press, October 2003.

15. James R. Larus Larus and Eric Schnarr. EEL: Machine-Independent Executable Editing. In
Proceedings of the ACM SIGPLAN’95 Conference on Programming Language Design and
Implementation (PLDI), pages 291–300, La Jolla, California, June 1995.

16. Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series.
Addison-Wesley, September 1996.

17. Markus Lumpe and Jean-Guy Schneider. On the Integration of Classboxes into C#. In Welf
Löwe and Mario Südholt, editors, Proceedings of the 5th International Symposium on Software
Composition (SC 2006), LNCS 4089, pages 307–322, Vienna, Austria, March 2006. Springer.

18. Jacques Malenfant, Christophe Dony, and Pierre Cointe. Behavioral Reflection in a
Prototype-Based Language. In A. Yonezawa and B. Smith, editors, Proceedings of Interna-
tional Workshop on Reflection and Meta-Level Architectures, pages 143–153, Tokyo, Japan,
November 1992.

19. Microsoft Corporation. Metadata Unmanaged API, 2002.
20. James S. Miller and Susann Ragsdale. The Common Language Infrastructure Annotated

Standard. Microsoft .NET Development Series. Addison-Wesley, 2003.
21. Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth, Stéphane

Micheloud, Nikolay Mihaylov, Michel Scinz, Erik Stenmanm, and Matthias Zenger. An
Overview of the Scala Programming Language. Technical Report IC/2004/64, École Poly-
technique Fédérale de Lausanne, School of Computer and Communication Sciences, 2004.

22. Guy L. Steele. Common Lisp the Language. Digital Press, Thinking Machines, Inc., 2nd
edition, 1990.

23. The Mono Project. http://www.mono-project.com/Main Page.

	Introduction
	Integration of the Classbox Model in the .NET Framework
	Classbox Characteristics
	Dynamic Graph Search
	Classbox-Aware C#

	Building the Structure of a Classbox at Compile-Time
	Metadata Type Declarations
	Changing the Metadata
	Restoring Constructor Integrity
	Evaluation of the Rewiring Technique

	Rewire.NET
	The CLI Subsystem
	Rewire.NET

	Related Work
	Conclusion and Future Work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

