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Abstract. Efficient bitrate reduction of video content is necessary in or-
der to satisfy the different constraints imposed by decoding devices and
transmission networks. Requantization is a fast technique for bitrate re-
duction, and has been successfully applied for MPEG-2 bitstreams. Be-
cause of the newly introduced intra prediction in H.264/AVC, the existing
techniques are rendered useless. In this paper we examine requantization
transcoding of H.264/AVC bitstreams, focusing on the intra 4×4 predic-
tion modes. Two architectures are proposed, one in the pixel domain and
the other in the frequency domain, that compensate the drift introduced
by the requantization of intra 4×4 predicted blocks. Experimental results
show that these architectures perform approximately equally well as the
full decode and recode architecture for low to medium bitrates. Because
of the reduced computational complexity of these architectures, in par-
ticular the frequency-domain compensation architecture, they are highly
suitable for real-time adaptation of video content.
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1 Introduction

More and more video content is coded using the state-of-the-art H.264/AVC
video coding standard. This content has to be made available to a large number of
devices with varying network characteristics and network connectivity. In order
to meet the different constraints, elegant solutions are needed for fast adaptation
of the video content to a lower bitrate. Architectures for bitrate adaptation have
been discussed in the past, more specifically for MPEG-2 coded video content
[1,2]. Requantization transcoding is a fast technique for bitrate reduction, and
is able to approximate the quality of a full decoder-recoder with large reduction
in computational complexity [3]. The problem of requantization of intra-coded
frames in MPEG-2 has been examined in [4].

Due to the increased complexity of the encoding process and the newly in-
troduced intra prediction in H.264/AVC, these results no longer apply as such.
The augmented number of dependencies in the coded pictures no longer allow
straightforward open-loop requantization.
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Since intra prediction in H.264/AVC is performed on 4×4 and 16×16 , a clear
distinction has to be made between both. We have described requantization
techniques for intra 16×16 prediction in [5], hence this discussion is omitted
here. In this paper, we tackle the problem of requantization for the intra 4×4
prediction modes of H.264/AVC, and propose two architectures that compensate
the errors due to drift propagation, resulting in highly improved visual quality
of the transcoded stream.

The remainder of this paper is organized as follows. An overview of the rel-
evant H.264/AVC coding tools is given in Sect. 2. In Sect. 3, we revisit the
open-loop requantization architecture, applying it to H.264/AVC, and introduce
two drift-compensating architectures. The results of the implementation of the
transcoders are given in Sect. 4. Finally, conclusions are given in Sect. 5.

2 H.264/AVC Tools

2.1 Intra Prediction

Intra prediction is used to exploit the spatial redundancy between neighbouring
pixels. A block is predicted using previously encoded and reconstructed pixels
of surrounding blocks. In H.264/AVC, a macroblock can be predicted using a
combination of nine 4×4 or one of four 16×16 intra prediction modes. The
intra prediction, which was not present in, for example, MPEG-2 Video, results
in an improved compression efficiency. However, it also introduces a number of
dependencies. As we will see, this has an important impact on the perceptual
quality of the transcoded video sequences. In this paper, we focus on the intra
4×4 prediction.

2.2 H.264/AVC Transform and Quantization

The integer transform in the H.264/AVC specification [6,7] is based on the Dis-
crete Cosine Transform, and is applied on 4×4 blocks. The forward transform of
a 4×4 block X is represented by

Y = (CF XCT
F ) ⊗ EF ,

where CF represents the kernel transformation matrix. EF is the post-scaling
matrix. For efficiency reasons, the post-scaling operation of the transformation is
postponed and integrated in the quantization process. After the core transforma-
tion Wij = (CF XCT

F )ij , with i, j = 0, . . . , 3, the coefficients Wij are quantized.
H.264/AVC provides 52 values for the Quantization Parameter (QP), which can
vary on a macroblock basis. The values of QP were defined in such a way that,
if QP is increased with a value of 6, the quantization step is doubled and the
bitrate is approximately halved. This non-linear behaviour results in the pos-
sibility to target a broad range of bitrates. The forward quantization can be
implemented as

|Zij | = (|Wij | · Mij + f) � qbits
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where qbits = 15 + �QP/6�, and f represents the dead zone control parameter
[6]. The multiplication factor Mij is determined by QP mod 6 and the position
in the 4×4 block. At the decoder side, the process is defined as follows. The
inverse quantization process is defined as

W ′
ij = Zij · Vij · 2�QP/6� .

The values of Mij and Vij result in the coefficients W ′
ij that exceed the pre-

quantized values Wij by a factor 64 ·EFij ·EIij , hence including the post-scaling
of the forward transform along with the pre-scaling of the inverse transform:

X ′ = CT
I (Y ⊗ EI)CI .

The factor 64 is introduced to avoid rounding errors in the inverse transforma-
tion that follows. We refer to [6,7] for more information about the intertwined
transformation and quantization.

3 Requantization Transcoder Architectures

3.1 Open-Loop Transcoder

The most straightforward method for requantization is the open-loop requan-
tization transcoder, as shown in Fig. 1. This type of transcoder consists of a
dequantization step Q−1

1 , followed by a requantization step Q′
2 with a coarser

quantization parameter (QP).

Q1
-1 Q’2

Entropy
encoder

Entropy
decoder

Fig. 1. Open-loop requantization transcoder

The implementation of this type of requantization transcoder was rather
straightforward in MPEG-2 [4]. However, in H.264/AVC, special attention has to
be paid to the requantization Q′

2. The multiplication factors have to be adapted
in order to bring into account the scaling factors EFij and EIij of the H.264/AVC
integer transform [5,8]. Since these scaling factors are already applied in the orig-
inal quantization, they may not be repeated in the requantization. As a result,
the multiplication factors for the integer transformation have to be downscaled
by the factors 4, 2.56 and 3.2, depending on their position (i, j) in the 4×4 block
of coefficients. The downscaling factors arise from:

(Mij · Vij) � 15 = 64 · EFij · EIij =

⎧
⎨

⎩

4, r = 0
2.56, r = 1
3.2, r = 2
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where the factor 64 is introduced to avoid rounding errors during the inverse
transform1, and

r =

⎧
⎨

⎩

0, (i, j) ∈ {(0, 0), (0, 2), (2, 0), (2, 2)}
1, (i, j) ∈ {(1, 1), (1, 3), (3, 1), (3, 3)}
2, otherwise

The quality loss due to open-loop requantization in MPEG-2 intra frames
remains limited, and is caused only by requantization noise [3]. In H.264/AVC,
due to the introduction of intra prediction, drift arises and accumulates the
requantization differences throughout the pictures. As will be seen in Sect. 4,
this results in unacceptable quality of the transcoded video.

3.2 Requantization Transcoder with Pixel-Domain Compensation
(PDC)

In order to avoid drift, a full decoder-recoder (FDR) might be used. The resulting
sequence will have the highest achievable quality, but clearly, this concatenation
will be too time-consuming to be used in real-time adaptation engines. An im-
portant bottleneck consists in searching the optimal prediction mode. This is
especially true for rate-distortion optimized mode search, which includes en-
tropy coding of every examined prediction mode. An alternative is to re-use the
coding mode decisions from the incoming bitstream. This eliminates the mode
search, and gives a good approximation of the quality of the FDR architecture.
For MPEG-2, this was described in [1]. The architecture for a requantization
transcoder with mode re-use (MR) in H.264/AVC is shown in Fig. 2, where
�p(.) denotes the pixel-domain intra prediction operator.

Q1
-1 T-1

+
T Q2+

T-1 Q2
-1Buffer

p

+

Entropy 
decoder

Entropy
encoder

+

Buffer

p

-

+

Fig. 2. Requantization transcoder with mode re-use

For low-delay applications, it is useful to further reduce the computational
complexity of the transcoder. In this context, we here introduce a requantiza-
tion transcoder with pixel-domain compensation. This architecture is shown in
Fig. 3. When compared to the open-loop requantization transcoder, the PDC
architecture restrains the drift of accumulated errors by compensating the de-
quantized 4×4 block of pixels in the pixel domain by a mode-dependent matrix
φ. The computational advantage of this architecture over the MR transcoder is
that intra prediction has to be performed only once. Additionally, in the MR
1 After the inverse transform, the residual values are downscaled by 64.
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transcoder, one buffer has to be maintained at the decoder side, and one at
the encoder side. The PDC architecture halves the required memory, and the
corresponding memory allocation and load and store operations.

Fig. 3. Requantization transcoder with pixel-domain compensation

In order to obtain the compensation matrix φ, we first define the error values eij

as the difference between the incoming residual information after inverse quanti-
zation, inverse transformation and drift compensation, and the corresponding re-
quantized residual values after inverse quantization and inverse transformation,
i.e., eij = cij − rij , for i, j = 0, . . . , 3 (see Fig. 3). These quantization errors are
stored in memory, and are used to compensate drift in the 4×4 blocks that depend
on the current block.

The compensation matrix φ for a given 4×4 block is then constructed as
follows. We select from the buffer the error values eB,i,j, eC,i,j, eD,i,j , and eE,i,j .
By these, we denote the stored quantization errors eij of the 4×4 blocks B (top),
C (upper-right), D (left), and E (upper-left), that surround the current 4×4
block A. For clarity, we only mention the error values that are required for the
construction of the compensation, namely the error values eB,3,j and eC,3,j for
j = 0, . . . , 3, eD,i,3 for i = 0, . . . , 3, and eE,3,3. These correspond to the positions
that are normally used for intra 4×4 prediction. From these 13 values, the pixel-
domain compensation matrix φ is constructed using the formulas for the intra
4×4 prediction, just as they are used in the encoder and decoder, but here applied
on the smaller error values. For example, for horizontal prediction (mode 1), φ
becomes:

φ =

⎡

⎢
⎢
⎣

eD,0,3 eD,0,3 eD,0,3 eD,0,3
eD,1,3 eD,1,3 eD,1,3 eD,1,3
eD,2,3 eD,2,3 eD,2,3 eD,2,3
eD,3,3 eD,3,3 eD,3,3 eD,3,3

⎤

⎥
⎥
⎦ .

In fact, φ is the difference of the intra prediction matrix of the original (un-
quantized) values, P , and the intra prediction matrix of the requantized values,
P ′, i.e.,

φ = �p(e) = �p(c − r) = �p(c) − �p(r) = P − P ′ ,

where c and r denote the compensated and requantized vectors of 13 prediction
pixels used for prediction of the current 4×4 block. This equality holds exactly
for prediction modes 0 and 1 (horizontal and vertical prediction). For modes
2 through 8, the right shift used for calculating the prediction may result in
rounding errors.
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3.3 Requantization Transcoder with Transform-Domain
Compensation (TDC)

The transcoder with pixel-domain compensation as described in the previous
section tries to overcome the quality-related problems of the open-loop requan-
tization transcoder or the computational disadvantages of the MR transcoder.
The question remains if it possible to further reduce the computational complex-
ity of the PDC architecture. This reduction is possible by eliminating forward
and inverse transforms, hence working as much as possible in the transform do-
main. This requantization transcoder with transform-domain compensation is
visualized in Fig. 4.

Fig. 4. Requantization transcoder with transform-domain compensation

This architecture is obtained, starting from the PDC architecture, through the
following two steps. In the first step, forward and inverse transforms are moved
to the feedback loop. This results in the elimination of one inverse transform. In
the second step, we propose to combine the pixel-domain intra prediction �p and
the forward transform T as indicated by the dashed line in Fig. 4. This results in
transform-domain intra prediction �f , which is for most of the prediction modes
more efficient than the combination of the pixel-domain intra prediction �p and
the forward transform T .

In order to achieve this, we need to obtain the transform-domain compensation
matrix Φ, which can be obtained through the forward transform of the pixel-
domain compensation matrix φ, i.e., Φ = CfφCT

f . Because of the linear nature
of the H.264/AVC integer transform, this matrix can also be written as the
difference between the intra prediction matrices P and P ′ after transformation,
i.e.,

Φ = CfφCT
f = Cf (P − P ′)CT

f = CfPCT
f − CfP ′CT

f .

Depending on the used prediction mode, the transformed coefficients will be
compensated in a number of frequency-dependent positions. Using the above
equation, in the case of the horizontal prediction (mode 1), we obtain:

Φ = 4

⎡

⎢
⎢
⎣

eD,0,3 + eD,1,3 + eD,2,3 + eD,3,3 0 0 0
2eD,0,3 + eD,1,3 − eD,2,3 − 2eD,3,3 0 0 0
eD,0,3 − eD,1,3 − eD,2,3 + eD,3,3 0 0 0

eD,0,3 − 2eD,1,3 + 2eD,2,3 − eD,3,3 0 0 0

⎤

⎥
⎥
⎦ .
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For the vertical prediction (mode 0), Φ is constructed in a similar way. In the
case of the DC prediction (mode 2), only the DC frequency position has to be
compensated:

Φ = 2

⎡

⎢
⎢
⎣

∑3
j=0 eB,3,j +

∑3
i=0 eD,i,3 0 0 0

0 0 0 0
0 0 0 0
0 0 0 0

⎤

⎥
⎥
⎦ .

For the diagonal predictions (modes 3 and 4), Φ is a symmetric matrix, and thus
can be calculated very efficiently. For the other predictions (modes 5 through
8), a larger number of multiplications is required. Depending on the cost of the
multiplication on the target implementation platform, a trade-off between the
transform-domain intra prediction �f and the combination of the pixel-domain
intra prediction �p and the forward transform T can be made for these modes.

In order to calculate the prediction errors eij , one inverse integer transform
for every 4×4 block is still performed. This is illustrated in Fig. 4. The inverse
transform is kept to take full advantage of the properties of the H.264/AVC intra
4×4 prediction. We could, as in [9], have opted to perform the intra prediction on
transformed pixels. This, however, would require storage of all 16 transformed
coefficients Eij . Because of the inverse transform, we only have to store 7 pixels
for every 4×4 block. Apart for the lower memory requirements, it also has posi-
tive implications on the inverse transform, which now requires only 46 addition
and 19 shift operations, instead of the complete inverse transform, which uses 80
addition and 32 shift operations. Another drawback of [9] is that the complete
transform-domain intra prediction involves extensive floating-point multiplica-
tion, whereas the calculation in our architecture can be performed with integer
arithmetic only.

The calculation of the compensation in the frequency domain should have no
impact on the quality when compared to the PDC architecture. However, the
frequency-domain operations are performed on inverse quantized values, which
are upscaled by a factor 64 [6]. The non-linearity of the downscaling operation,
which is performed after the inverse transform, introduces rounding errors, which
could result in small quality differences between both architectures.

4 Experimental Results

In this section, we describe the results for the software implementation of our
transcoding architectures for H.264/AVC bitstreams. The different transcoding
architectures are tested using the video sequences Container and Stefan, both
in CIF resolution. The objective quality and the bitrate of the transcoded bit-
streams, using the PDC and TDC transcoding architectures, are compared with
the results obtained through the FDR transcoder, the MR transcoder and the
open-loop requantization transcoder.

The initial bitstreams were encoded using the JVT reference software (Joint
Model 9.8), restricted to the intra 4×4 modes only. The bitstreams were then
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transcoded from the initial QP1 to a higher QP2 (ΔQP = QP2−QP1), using the
five architectures. The rate-distortion performance for the transcoded Container
video sequences is depicted in Fig. 5.
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TDC
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Fig. 5. Rate-distortion performance (ΔQP = 12, Container sequence)

For completeness, the PSNR values (dB) and the bitrates (Mbps) for the
different transcoding architectures using the video sequence Container are shown
in Table 1 (ΔQP = 12). The results obtained for the video sequence Stefan are
similar, and are omitted here due to place constraints.

Table 1. PSNR [dB] and bitrate [Mbps] results (Container, ΔQP = 12)

Original FDR MR PDC TDC Open-loop
QP1 bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate PSNR Bitrate
11 10.1 40.3 5.01 39.6 5.36 35.9 5.36 36.2 5.35 26.3 5.26
17 6.61 36.0 2.90 35.3 3.18 34.4 3.18 33.6 3.17 22.0 3.06
23 4.04 32.0 1.62 31.3 1.84 31.2 1.84 30.4 1.84 18.3 1.72
29 2.33 27.9 0.88 27.4 1.04 27.4 1.04 27.2 1.04 15.3 0.94
35 1.35 23.7 0.54 23.1 0.64 23.2 0.64 22.9 0.64 14.1 0.57

The FDR architecture generates qualitatively the best transcoded sequences
over the full range of QPs. This architecture defines an upper bound for the
objective quality of transcoded video sequences and will serve as reference in this
section. For practical use, this type of transcoder is not feasible due to its high
computational complexity, mainly originating from the exhaustive comparison
of the prediction modes.
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Although open-loop requantization transcoding of MPEG-2 bitstreams results
in acceptable quality [1], the intra prediction in the H.264/AVC standard makes
an open-loop architecture not suitable. The objective quality of the transcoded
video sequences drops more than 10 dB in comparison with the objective quality
obtained from the FDR transcoder. Hence, open-loop requantization transcoding
of H.264/AVC intra coded pictures is no longer an option.

The positive effect of the drift compensation techniques used in the PDC
and TDC requantization transcoders is clearly visible, when compared to the
open-loop requantization architecture. For medium to high QPs (medium to low
bitrates), the objective quality of the transcoded video sequences approximates
the quality obtained through the FDR transcoder. The PSNR values vary little
(less than 2 dB) from the quality obtained from the FDR transcoder. For lower
QPs (high bitrates), the PSNR gap between the optimal FDR transcoder and the
PDC and TDC architectures increases. This is caused by the non-linearity of the
intra prediction formulas for modes 2 through 8, which become more dominant
at higher bitrates.

In the case that complexity and memory requirements are not an issue, the
MR transcoder can be used for high bitrate transcoding. The PSNR values of
the MR transcoder differ approximately 1 dB from the PSNR values from the
FDR architecture.

Table 1 also presents the bitrates originating from the different transcoders.
The difference between the rate-distortion optimal FDR architecture and the
four transcoder architectures is mainly caused by the suboptimal prediction
modes for the target bitrate. The open-loop transcoder generates bitstreams
with a bitrate which is approximately 5% larger than the bitstreams generated
by the FDR architecture. The other three transcoding architectures, the MR
transcoder and both the PDC and TDC transcoders generate bitrates which are
between 5% and 10% larger than the optimal bitrates from the FDR architecture,
due to the addition of new coefficients in the feedback-loop.

5 Conclusions

In this paper, requantization techniques for H.264/AVC bitstreams were dis-
cussed, focusing on the intra 4×4 prediction. Two architectures were presented
that solve the problem of drift propagation, as encountered for the more tra-
ditional open-loop requantization transcoder. Results show that both architec-
tures perform approximately equally well, and are able to approach the visual
quality of a full decode and recode within 2 dB for medium to high QPs. Be-
cause of the reduced computational complexity of the proposed architectures
over the FDR and MR architectures, they are highly suitable for on-the-fly rate
reduction operations. As mentioned before, the TDC architecture is less com-
plex than the PDC architecture, and therefore we suggest to use the former
architecture.
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