
A Phantom-Go Program

Tristan Cazenave

Labo IA,
Université Paris 8, St-Denis, France

cazenave@ai.univ-paris8.fr

Abstract. This paper discusses the intricacies of a Phantom-Go pro-
gram. It is based on a Monte-Carlo approach. The program called
Illusion plays Phantom Go at an intermediate level. The emphasis is
on strategies, tactical search, and specialized knowledge. The paper pro-
vides a better understanding of the fundamentals of Monte-Carlo search
in Go.

1 Introduction

Phantom Go is a variant of Go in which part of the information is hidden for
the players. Since Phantom Go is therefore to be considered as a game with
imperfect information1, Monte-Carlo methods are expected to work well. This
paper demonstrates that the expectation is true and shows the results of a Monte-
Carlo based program that plays Phantom Go.

In Sect. 2 we present the game of Phantom Go. In Sect. 3 we recall previous
work on Monte-Carlo Go. In Sect. 4 we detail how the Monte-Carlo method is
adapted to Phantom Go. In Sect. 5 we give experimental results of our program
Illusion. Section 6 provides a conclusion and outlines future work.

2 Phantom Go

Phantom Go is a two-player game. There are two players and a referee. It is
played on three boards, one for each player and one for the referee. The board
of the referee is called the reference board. It is usually played on 9× 9 boards.
The referee can see all three boards. Each player can only see his2 own board.
When it is a player’s turn, he chooses a move and asks the referee if it is legal
for him to play on the intersection intended by pointing at the intersection. The
referee answers ’legal move’ or ’illegal move’ according to the reference board. If
the move is illegal, the player chooses another move, and so on until he arrives
at a legal move. When the player has indicated a legal move, it must be played
on the reference board by the referee, and by the player on his own board. If
1 Sometimes the term ‘incomplete information’ is also used for games with hidden

information. In the case of Phantom Go, both players have complete information of
the game rules, possible states, and possible outcomes.

2 For brevity we use ‘he’ (‘his’) if ‘he or she’ (‘his or her’) is meant.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 120–125, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



A Phantom-Go Program 121

there is a capture, the referee announces the number of stones being captured
and communicates to the other player which stones have been captured. After a
move has been played, it is the other player’s turn. The game ends when both
players pass. Phantom Go (as a variant of Go) is the equivalent to Kriegspiel in
Chess [2].

3 Monte-Carlo Go

Monte-Carlo methods compute statistics on a set of random games in order to
find the best move. They have been used in games such as Bridge [7], Poker [1],
Tarok [8], and Scrabble [9]. All these games have hidden information which make
them particularly suited for Monte Carlo. However, Monte-Carlo methods have
also proven to be useful in complete information games, and particularly in Go.
Brügmann [5] was the first researcher to experiment with Monte Carlo in Go.
Recently, other Go programs have started using it, and improved the method
in many directions, among others by (1) simplifying the method and proposing
basic improvements [4], (2) combining it with a knowledge-based program that
selects a few number of moves that are evaluated by the Monte-Carlo method
[3], and (3) by combining it with tactical search [6].

There are several slightly different ways to write a Monte-Carlo Go program
[4]. In this paper, we use for Monte-Carlo Go the following algorithm: the pro-
gram plays a large number (usually 1,000 to 10,000) of random games starting
at the current position. The moves of the random games are chosen almost ran-
domly among the legal moves, except that they must not fill the player’s eyes.
A player passes in a random game when his only legal moves are on his own
eyes. The game ends when both players pass. In the end of each random game,
the score of the game is computed using Chinese rules (in our case, it consists
in counting one point for each stone and each eye of the player’s color, and sub-
tracting the opponent count from the player’s count). The program computes for
each intersection the mean results of (1) the random games in which the player
starts with a move at that intersection, and (2) the random games in which
the opponent starts at that intersection. The value of a move is the difference
between the two means. The program plays the move with the highest value.

4 Monte-Carlo Phantom Go

Monte-Carlo Go is a game of complete information. Monte-Carlo Phantom Go
has to deal with hidden information. In order to cope with this hidden informa-
tion, the program has to guess where the stones of the opponent are, and the
best move on average against different configurations of the opponent stones.

In essence, for Monte-Carlo Phantom Go the basic Monte-Carlo Go method
is reused: the program plays many games randomly with the constraint of not
filling its own eyes. However, all the random games do not start with the same
position, as the program does not know exactly the real position. The program
memorizes all the forbidden moves. It places an opponent stone on each of the



122 T. Cazenave

forbidden moves. The program also knows the number of the opponent stones
that are present on the reference board. Subtracting the number of forbidden
moves from the number of opponent stones gives the number of stones with an
unknown position.

From the beginning of each random game, the program places its own stones
and places opponent stones on the forbidden intersections. Moreover, it ran-
domly places the opponent stones on the empty intersections left. More pre-
cisely, it randomly places as many opponent stones as there are opponent stones
with an unknown position. Once all the stones are placed, it plays a random
game starting with a move of its color, and performs moves randomly on empty
intersections, provided they are not a player’s eye.

A player passes when his only moves left are his own eyes. When both players
pass, the game is ended. At the end of a random game, the score is computed
using Chinese rules. For each move played during the random game, the mean
score of playing this move for all the random games is updated to take into
account the result of the game. When 10,000 random games have been played,
the program subtracts, for all the legal moves, the mean score of the move for
the opponent’s color from the mean score of the move for the player’s color. The
move that has the highest difference is tried.

If the move is announced to be illegal by the referee, the program memorizes
it as a forbidden move, and starts its process again. It plays 10,000 new random
games, taking into account the new information given by the referee on the
forbidden move.

5 Experimental Results

The number of random games played at each move is set to 10,000. The program
plays a move in a few seconds on a Pentium 3.0 GHz. Subsection 5.1 details an
example game by Illusion. Subsection 5.2 gives results against different Go
players.

5.1 An Example Game

The author is an European one-dan Go player. Playing games with the program
Illusion usually results in a small win by the author. An example 9×9 game is
given in Fig. 1. When a player tries an illegal move, it is reported in the game’s
notation, and therefore multiple moves by the same player follow each other. All
but the last move by the same player are illegal, they are mentioned explicitly
because they give information on the knowledge of the game by the player and
are required to analyze and understand the game. The author is White and the
program is Black.

In this game, the author followed the strategy of (1) dividing the board into
two parts, and (2) trying to kill one side of the board after it has been divided.
This strategy is also used by other experienced Phantom-Go players and admit-
tedly it is quite efficient.



A Phantom-Go Program 123

1 B(D4), W(E5); 2 B(E3), W(E6); 3 B(F5), W(E4); 4 B(E6-F6), W(E7);
5 B(F7), W(E3-D4-F4); 6 B(E5-F4-E4-G4), W(F3); 7 B(F3-E7-E8), W(F2);
8 B(G3), W(F1); 9 B(F2-D8), W(E8-D7); 10 B(F8), W(D8-C7); 11 B(G2),
W(C8); 12 B(G5), W(C9); 13 B(D3), W(F7-D3-B7); 14 B(C7-D7-C8-F1-C2),
W(A7); 15 B(B4), W(G4-G3-G2-B6); 16 B(B6-B3), W(B5); 17 B(C9-B5-E2),
W(B4-A5); 18 B(C5), W(A4); 19 B(B8), W(A3); 20 B(B7-H6), W(B3-A2); 21
B(E1), W(B2); 22 B(A8), W(C2-B1); 23 B(G1), W(C1); 24 B(D5), W(D1);
25 B(A5-A7-H7), W(F6-F5-D9); 26 B(C3), W(E9); 27 B(B9), W(F8-F9);
28 B(G8), W(G9); 29 B(A4-A3-A2-C1-D1-B1-B2-D9-E9-F9-G9-H9), W(G8-
H9-H8); 30 B(H8-J8), W(J9-J8-J7); 31 B(J7-H5), W(H8-G1-H7-H6-Pass);
32 B(J6).

Fig. 1. Example game: Illusion (B) – Cazenave (W)

Fig. 2. The reference board after 15
moves of both sides

Fig. 3. The program board after 15
moves of both sides

Fig. 4. The final position



124 T. Cazenave

Figure 2 gives the reference board after the first 15 moves (30 plies) of the
game. Figure 3 gives the program board after the first 15 moves of the game. In
the latter position, we see that Illusion has guessed most of the white stones,
and is ahead of White. It has to close the borders of its right group, and to make
two eyes with its left group. Figure 4 gives the reference board at the end of the
game. The program failed to make its left group live and lost the game.

5.2 Results Against Go Players

In order to test the program Illusion adequately, it played 9× 9 games against
Go players of different levels. The results are in Table 1. For each game we give
the level of the human player, the division of colors, and the result.

Table 1. Results of Illusion against Go players

Level White Black Result

13 kyu Nicolas Illusion W+8.5
13 kyu Illusion Nicolas W+resign
5 dan Bernard Illusion W+13.5
13 kyu Illusion Arpad W+17.5
5 dan Illusion Bernard W+27.5
5 dan Bernard Illusion W+47.5

As the results show, the program can win by 27.5 points against a 5 dan Go
player as well as lose by 8.5 points against a 13 kyu Go player. We may conclude
that the program has the level of experienced Go players who only played a
few number of Phantom-Go games. We do not know experienced (and even less
ranked) Phantom-Go players to whom we could test the program.

6 Conclusion and Future Work

We presented our Phantom-Go program Illusion based on a Monte-Carlo ap-
proach. Illusion plays interesting Phantom-Go games. The peculiarity of the
application of the Monte-Carlo method to Phantom Go is that unknown stones
are placed at random at the beginning of each random game. From the results
so far we may conclude that strategy, tactical search, and specialized knowledge
plays an important role.

Below we suggest three essential improvements of the current program. A
first improvement is to deal more accurately with the well-known Phantom-Go
strategies in the random games. For example, the divide-and-kill strategy used
by the author can be exploited in the random games to bias the move selection.

A second set of improvements are the improvements used in Monte-Carlo Go
programs. For example, it is possible to combine the current search with a tactical
search by computing the results of simple tactical searches at the beginning of



A Phantom-Go Program 125

the random games, so as to compute statistics in the random games on the
goal to be achieved. Once the statistics on the goals are computed they give a
better evaluation of the corresponding move than the basic statistics on arbitrary
moves. Such an approach has worked in Monte-Carlo Go [6], and could well work
too in Phantom Go.

A third improvement is to use patterns to bias the selection of moves in the
random games so as to improve their quality as in [3]. Finally, we remark that
the program also has problems dealing with semeais, and opponent eyes. This
can be improved by specialized knowledge.

References

1. D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The Challenge of Poker.
Artificial Intelligence, 134(1-2):210–240, 2002.

2. A. Bolognesi and P. Ciancarini. Computer Programming of Kriegspiel Endings: The
Case of KR Versus K. In Advances in Computer Games 10 (ACG10) Many Games,
Many Challenges (eds. H.J. van den Herik, H. Iida, and E.A. Heinz), pages 325–342,
Kluwer Academic Publishers, Boston, 2004.

3. B. Bouzy. Associating Domain-Dependent Knowledge and Monte Carlo Approaches
within a Go Program. In Joint Conference on Information Sciences, pages 505–508,
Cary, 2003.

4. B. Bouzy and B. Helmstetter. Monte Carlo Go Developments. In Advances in Com-
puter Games 10 (ACG10) Many Games, Many Challenges (eds. H.J. van den Herik,
H. Iida, and E.A. Heinz), pages 159–174, Kluwer Academic Publishers, Boston, 2004.

5. B. Brügmann. Monte Carlo Go. ftp://ftp-igs.joyjoy.net/go/computer/mcgo.tex.z,
1993.

6. T. Cazenave and B. Helmstetter. Combining Tactical Search and Monte-Carlo in
the Game of Go. In IEEE Symposium on Computational Intelligence and Games
(CIG’05) (eds. G. Kendall and S. Lucas), Colchester, UK, 2005.

7. M.L. Ginsberg. GIB: Steps Toward an Expert-Level Bridge-Playing Program. In
IJCAI-99, pages 584–589, Stockholm, Sweden, 1999.

8. M. Lustrek, M. Gams, and I. Bratko. A Program for Playing Tarok. ICGA Journal,
26(3):190–197, 2003.

9. B. Sheppard. Efficient Control of Selective Simulations. ICGA Journal, 27(2):67–80,
2004.


	Introduction
	Phantom Go
	Monte-Carlo Go
	Monte-Carlo Phantom Go
	Experimental Results
	An Example Game
	Results Against Go Players

	Conclusion and Future Work


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




