
Move-Pruning Techniques for Monte-Carlo Go

Bruno Bouzy

UFR de mathematiques et d’informatique,
Université René Descartes, Paris, France

bouzy@math-info.univ-paris5.fr

Abstract. Progressive Pruning (PP) is employed in the Monte-Carlo
Go-playing program Indigo. For each candidate move, PP launches ran-
dom games starting with this move. The goal of PP is: (1) to gather
statistics on moves, and (2) to prune moves statistically inferior to the
best one [7]. This papers yields two new pruning techniques: Miai Prun-
ing (MP) and Set Pruning (SP). In MP the second move of the random
games is selected at random among the set of candidate moves. SP con-
sists in gathering statistics about two sets of moves, good and bad, and
it prunes the latter when statistically inferior to the former. Both en-
hancements clearly speed up the process of selecting a move on 9 × 9
boards, and MP improves slightly the playing level. Scaling up MP to
19×19 boards results in a 30% speed-up enhancement and in a four-point
improvement on average.

1 Introduction

Computer Go remains a difficult task for computer science [14,12] mainly for two
reasons. First, the branching factor of the game tree and the game length prohibit
global tree search. Second, evaluating non-terminal Go positions is hard [13].
Meanwhile, computer Go has been used as an appropriate testbed for AI meth-
ods [6] during the last decade. I started twelve years ago, with the development of
the Go-playing program, Indigo [5]. Since 2002, Indigo includes a Monte-Carlo
approach that enriches the knowledge-based approach developed previously. Our
Monte-Carlo approach is inspired by usual experiments [7] reproducing the origi-
nal approach of Monte-Carlo Go [8]. Subsequently, these experiments introduced
different enhancements to the basic Monte-Carlo algorithm. Currently, Progres-
sive Pruning (PP) is the umbrella enhancement to be used in Indigo. In 2003,
we combined our Monte-Carlo Go approach with a knowledge-based approach
[3] and with a global tree-search approach [4]. The result was successful because
Indigo won the bronze medal at the 2004 Olympiad on 19 × 19 Go [10]. Yet
this successful combination is not the topic of the current paper. The innova-
tive question that motivates the work presented here is: how can we improve
Progressive Pruning (a) in the game of Go, and (b) in general? To this purpose
we assess two pruning techniques intended to improve PP: Miai Pruning (MP)
and Set Pruning (SP). We will introduce these two new pruning techniques, and
provide an experimental assessment.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 104–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Move-Pruning Techniques for Monte-Carlo Go 105

Section 2 discusses related work that deals with Monte-Carlo games, and it
recalls the underlying idea of PP. Section 3 defines the two pruning techniques,
MP and SP. Then, Section 4 yields the results of the experiments assessing these
two techniques in isolation, and in combination. Some remarks are discussed in
Sect. 5. Section 6 provides a conclusion and some prospects.

2 Related Work and Motivations

Below we discuss three topics, viz. Monte Carlo in computer games (2.1), pro-
gressive pruning (2.2), and motivations (2.3).

2.1 Monte Carlo in Computer Games

Monte-Carlo methods were designed in order to simulate physical models. Be-
cause they used random number generation such as games in the casino, the
name Monte Carlo was adopted. Then Monte-Carlo methods were embraced by
computer games, and so, to some extent, a loop has been closed. In games such
as Poker and Scrabble, hidden information is sampled with the help of random
distributions that are plausible according to past actions performed in the game.
In such games, random generation can also be used to perform random simula-
tions of games, which is done by Poki at Poker [2] and by Maven at Scrabble
[15]. In games containing randomness in their rules, such as Backgammon, ran-
dom simulations are used quite naturally [17]. In complete information games
not containing any chance, such as Go, Chess, and Othello, the idea of simulat-
ing games at random is less natural. Nevertheless, this is not the first time that
Monte-Carlo methods have been tried in complete information games.

In 1990, Abramson [1] gave a seminal description of evaluating a position of a
two-person complete information game with statistics. He proposed the expected-
outcome model, in which the evaluation of a game-tree node is the expected
value of the game’s outcome given random play from that node on. The author
showed that the expected outcome is a powerful heuristic. He concluded that
the expected-outcome model of two-player games is “precise, accurate, easily
estimable, efficiently calculable, and domain-independent”. In 1990, he tried the
expected-outcome model on the game of 6 × 6 Othello.

Brügmann [8] was the first to develop a Go program based on random games.
The architecture of the program, Gobble, was remarkably simple. In order to
choose a move in a given position, Gobble played a large number of random
games from this position to the end, and scored them. Then, he evaluated a
move by computing the average of the scores of the random games in which it
had been played.

We believe that Abramson’s approach (or Brügmann’s) are quite appropriate
for the game of Go because they enable the program to reach terminal positions
that are easy to evaluate and particularly representative of the current position.
By computing a mean on terminal positions reached at random, the program
obtains a first-rate evaluation of the current position. We admit that computing

106 B. Bouzy

a Monte-Carlo evaluation costs much more time than computing a conceptual
evaluation using domain-dependent knowledge, but we believe that the cost is
worthwhile. This is why we follow the Monte-Carlo approach in Indigo. The
next subsection recalls how PP is used in Indigo.

2.2 Progressive Pruning

The aim of PP is to be able to choose the best move. The current description is
based on Bouzy and Helmstetter [7]. As contained in the basic idea of Abramson,
each move has a mean value m, a standard deviation σ, a left expected outcome
ml and a right expected outcome mr. For a move, ml = m − σrd and mr =
m + σrd. rd is a ratio fixed by practical experiments. Currently, 1.5 ≤ rd ≤ 2.0
is for us a good tradeoff between playing level and time. A move M1 is said
to be statistically inferior to another move M2 if M1.mr < M2.ml. Two moves
M1 and M2 are statistically equal when M1.σ<σe and M2.σ<σe and no move is
statistically inferior to the other. σe is called the standard deviation for equality,
and its value is determined by experiments.

In PP, after a minimal number Nmin of random games (currently 50 per move),
a move is pruned as soon as it is statistically inferior to another move. Nrg is
the current number of random games performed; the standard deviation of the
mean value computed after Nrg random games is σ/

√
Nrg. Therefore, moves are

pruned as Nrg increases, and the number of candidate moves decreases while
the process is running. The process stops if one of three conditions is fulfilled:
(1) when there is only one move left, (2) when the moves left are statistically
equal, or (3) when a maximal threshold of iterations Ntotal is reached. In all
cases, the move with the highest expected outcome is chosen. This progressive
pruning algorithm is similar to the one described in [2].

Due to the increasing precision of mean evaluations while the process is run-
ning, the mean value of the current best move is decreasing. Consequently, a
move can be statistically inferior to the best one at a given time and not later.
Thus, the pruning process can be either hard (a pruned move cannot be a can-
didate later on) or soft (a move pruned at a given time can be a candidate
later on). Of course, soft PP is more precise than hard PP. Nevertheless, in the
experiments shown here, we use hard PP.

2.3 Motivations

Using PP or any move-pruning scheme is debatable. For example, Sheppard [16]
uses a clever scheme to drive the choice of which simulation to perform on which
move, and this scheme does not prune any move. In contrast, we assume that
PP is used, and attempt to improve it. We do not debate on the use or non-use
of move pruning.

The background of this work is the architecture of Indigo. It is made up of a
pre-selection module and a Monte-Carlo module. Nselect is the number of moves;
it is the output of the pre-selection module, and the input of the Monte-Carlo
module. As long as PP is running, the number of possible moves is decreasing,

Move-Pruning Techniques for Monte-Carlo Go 107

namely from Nselect down to 1 at which point the process stops. Two remarks
can be made. First, PP spends most of its time when two possible moves are
left. Frequently, the evaluations of the two moves left are almost equal, and a
great deal of iterations are necessary to separate them. Thus, the first goal is to
reduce the time spent by PP when two moves are left. Second, Indigo’s playing
level highly depends on Nselect. Indigo’s playing level roughly increases with
Nselect. (Admittedly, this is not completely correct. Actually, Indigo’s playing
level reaches an optimal value with Nselect = 8, 16, or 32, depending on the size
of the board 9 × 9, 13 × 13, or 19 × 19, and then, it decreases.) However, the
optimal value of Nselect can be quite high and therefore the second goal is to
reduce the time spent by PP to eliminate moves at the beginning of the process.
To sum up, we need (1) a pruning technique that lowers the time spent when
two or a few moves are left at the end of the process, and (2) another technique
to eliminate quickly most of the moves at the beginning of the process; both
techniques should operate under the same statistical confidence when pruning.
With this aim, we designed two pruning techniques.

3 Two Pruning Techniques

This section describes the two pruning techniques. Miai Pruning (MP) is the
technique that speed-up the end of PP process when a few moves are left (in
particular two), and Set Pruning (SP) is the technique that speeds up the be-
ginning of the PP process when many moves are involved.

3.1 Miai Pruning

Without any loss of generality, we assume that two moves are left, A and B,
and that Black is to move. PP aims at finding the move with the best mean.
Therefore, PP launches many games (1) starting with Black A and with the
following moves randomly chosen, and (2) starting with Black B, and with the
following moves also randomly chosen. Unfortunately, in the half of the games
starting with move A, move B is also played by Black. In addition, in the half of
the games starting with move B, move A is also played by Black. Thus, in the
half of the random games played out to separate the moves A and B, A and B
are played by the same player. When the order of the moves of a sequence is not
important to reach a position (which is not rare in Go) the half of the random
games does not help much to discriminate A and B. So, the idea of MP is (1)
to launch games starting with Black A and White B, and (2) to launch games
starting with Black B and White A to separate A and B. Now we should make
MP working when the number of possible moves is arbitrary small (say three or
more). MP works as follows. For each possible move A, B being another possible
move different from A chosen at random, MP launches games starting with Black
A in the first move, and White B in the second move. The term “miai” emerged
because it is used by human Go players for the same concept: “miai” means
equivalent. When two moves are miai, then it happens that if a player plays one

108 B. Bouzy

of them, the other player plays the other one. Finally, we remark that MP is
designed to separate moves which are not miai by imitating the actual way of
human playing. When played after move A, B can be an illegal move. In such
case, MP is simply not used.

3.2 Set Pruning

Let us assume that Npossible moves are left. SP applies two stages. First, to be
cautious and avoid rather bad pruning due to bad chance, Nmin is devised by
PP to forbid any pruning before Nmin random games per move are arrived at.
Second, at the beginning of the PP process, the σ of a move is high for each
move. Thus, no move has a good chance to be statistically inferior to the best one
with a given statistical confidence. The idea underlying SP is to associate a mean
value and a σ not only to the possible moves but also to all the possible sets of
moves of size Npossible/2. Nrgpm is the number of random games performed per
candidate move, then the mean value of the random games performed given that
the first move belongs to a given set of size Npossible/2 is known with a σ that is
in 1/

√
Nrgpm × Npossible/2. Consequently, the width of the confidence interval

around the mean value associated to sets of moves is
√

Npossible/2 times smaller
than the width of the confidence interval around the mean value associated to
moves. Thus, it is possible to prune a set of moves at once, with a statistical
confidence which equals the statistical confidence at which PP prunes moves one
by one. This way, the number of possible moves is divided by two, each time a
set of moves is pruned. The idea is quite attractive because in practice we do
not need to consider all of the possible sets of size Npossible/2 (a big effect) but
only two sets. Because the moves are ranked from the best move down to the
worst move, they can be grouped into two sets, the set of the Npossible/2 best
moves, called good, and the set of the Npossible/2 worst moves, called bad. The
mean associated to good is the highest mean associated to any other set of size
Npossible/2, and the mean associated to bad is the lowest mean associated to any
other set of size Npossible/2. Therefore, the first set to be pruned is the pruning of
bad. In practice, SP works as follows. In addition to the mean and σ computed
by PP for each move, SP builds the two sets good and bad, and computes their
means and their σ. When bad is found to be statistically inferior to good, it
is pruned with a statistical confidence identical to the statistical confidence at
which moves are pruned by PP.

4 Experiments

Starting from PP we determine empirically the size of Nselect (4.1). Thereafter,
this section evaluates the relative merits of MP (4.2) and SP (4.3), of their direct
combination (M+SP) (4.4), their strong combination (M+gbSP) (4.5), and of
a special combination of the two (M+gbP) (4.6), all of this regarding time and
playing level. We end up this section with an all-against-all tournament (4.7)
gathering the best programs of the experiments.

Move-Pruning Techniques for Monte-Carlo Go 109

Since we explore move-pruning abilities of a Monte-Carlo Go program, we
wish first to observe the move-pruning effect isolated from deep-tree search ef-
fects. Thus, we have performed experiments with depth-one search only (4.8).
Furthermore, because (1) we need a large amount of game results to obtain a
sufficient statistical significance, and (2) 19 × 19 games are too long, we have
used 9 × 9 boards. When a pruning technique has been demonstrated as per-
forming well on 9× 9 boards at depth-one, it is assessed in a second stage either
at depth-n on 9 × 9 boards (4.9) or at depth-one on 19 × 19 boards (4.10).

For each technique, we set up experiments to assess its effect on the time
level and on the playing level. An experiment consists of a match of 200 games
between the program to be assessed and the experiment reference program, each
program playing 100 games with Black. The result of an experiment is generally
a set of relative scores assuming that the assessed program is the max player.
Given that the standard deviation of 9 × 9 games played by our programs is
roughly 15 points, 200 games enable our experiments to lower σ down to 1 point
and to obtain a 95% confidence interval of which the radius equals 2σ, i.e., 2
points. We have used 2.8 GHz computers. Furthermore, all programs in these
experiments do not use any conservative or aggressive style depending on who is
ahead in a game, they only try to maximize their own score. The score of a game
is more significant than the winning percentage. Nselect is a power of 2 between
2 and 64. rd is set to 2.0.

Prune is the name of the program to assess. In its basic version, Prune uses
PP only. The notation to name a program to be assessed is simple: for example,
Prune(MP = true) is the program that uses additionally the MP technique,
and so on for Prune(SP = true) or Prune(Nselect = N).

4.1 Nselect Versus Nselect/2

We start attempting to obtain the best playing level and the minimal response
time, knowing that the effect of increasing the value of Nselect is worth remem-
bering. Table 1 shows the effects of simply doubling Nselect. Each number corre-
sponds to a confrontation between Prune(Nselect) and Prune(Nselect/2).

Table 1 shows an increase of the playing level in Nselect. However, the returns
diminish as Nselect increases. Although being not statistically significant, Table
1 shows that Prune(Nselect = 32) is slightly superior to Prune(Nselect = 16),
and even that Prune(Nselect = 64) is almost equal to Prune(Nselect = 32).
Regarding the relative time between the two programs, for low values of Nselect,

Table 1. Result of doubling Nselect

Nselect

4 vs. 2 8 vs. 4 16 vs. 8 32 vs. 16 64 vs. 32

Mean score +8.0 +6.0 +4.3 +0.4 −0.2
Winning percentage 72 65 63 54 52
Mean relative time 2.0 1.75 1.58 1.30 1.12

110 B. Bouzy

Prune(Nselect) is about twice slower than Prune(Nselect/2), but for high values
of Nselect, Prune(Nselect) is almost as fast than Prune(Nselect/2).

The results of this introductory experiment show that increasing Nselect from
2 up to 16 is worthwhile considering in terms of playing level on a 9 × 9 board.
The explanation is straightforward for Prune. We assume that the pre-selection
module being based on hand-crafted domain-dependent knowledge still contains
errors, and that the Monte-Carlo module is quite adequate at selecting the right
move. With this assumption, the larger Nselect, the larger the probability of
selecting a good move input of Monte Carlo. However, one thing cannot be
omitted: the pre-selection module gives a penalty to tactically bad moves but it
does not eliminate them. Thus, when Nselect is sufficiently large, the tactically
bad moves are also input of Monte Carlo. Monte Carlo is bad at recognizing
tactically bad moves, which explains that Prune(Nselect = 64) is worse than
Prune(Nselect = 32). Meanwhile, the time for obtaining the overall playing-
level jump is multiplied by a factor 6.

4.2 Miai Pruning Versus Progressive Pruning

This subsection first compares MP with PP. Then it shows the effects of doubling
Nselect while using MP.

Table 2. Result of MP vs. PP

Nselect

2 4 8 16 32 64

Mean score +2.9 +1.3 +2.1 −1.3 −0.6 −0.7
Winning percentage 53 50 51 49 50 47
Mean relative speed 1.50 1.45 1.37 1.33 1.31 1.27

Table 2 shows that MP is worth considering for low values of Nselect. Regard-
ing the motivations of this paper (see 2.3), the result of Prune(MP = true,
Nselect = 2) is crucial to comment upon. First, Prune(MP = true, Nselect = 2)
has a non-negative result against Prune(MP = false, Nselect = 2): +3 points
and 53% wins. The mean score is statistically significant because 3 points is
superior to the radius of the confidence interval which equals 2 points. Second,
the speed is enhanced significantly, multiplied by 1.5. Thus, the first column of
Table 2 experimentally proves the relevance of MP, and it adheres the goals set
in Section 3. The non-negative mean score and the speed enhancement of two
next columns (Nselect = 4, 8) of Table 2 confirm the effectiveness of MP. The
right part of the table then shows slightly negative mean scores. MP appears
to be less adapted to situations in which many moves are candidate than to
situations with a few candidate moves.

As already shown in Table 1, Table 3 shows that with MP the playing level
also increases in Nselect. Between Nselect = 2 and Nselect = 4, the return improves
faster with MP than without MP. However, for high values of Nselect the return
diminishes faster with MP than without MP. Moreover, Prune(Nselect = 64)

Move-Pruning Techniques for Monte-Carlo Go 111

Table 3. Result of doubling Nselect while using MP

Nselect

4 vs. 2 8 vs. 4 16 vs. 8 32 vs. 16 64 vs. 32

Mean score +15.4 +3.7 +1.0 −1.2 −4.3
Winning percentage 67 58 52 49 43
Mean relative speed 0.47 0.52 0.61 0.60 0.62

looks like inferior to Prune(Nselect = 32) with some statistical significance; this
is remarkable. It confirms the experimental fact that MP is less adapted to situa-
tions in which many moves are candidate than to situations with a few candidate
moves. Our current explanation is the following. Without MP, the second move
of a random game is selected pseudo-randomly with domain-dependent knowl-
edge: one-liberty string or 3 × 3 pattern urgencies [3]. With MP, the second
move is selected at random with uniform probability among the set of candi-
date moves. When Nselect is small, the candidate moves are all approximately
good, thus the second move selected by MP has a good chance to be better
than the move generated pseudo-randomly with domain-dependent knowledge:
one-liberty string or 3×3 pattern urgencies. When Nselect is high, the candidate
moves are approximately average, thus the second move selected by MP has a
good chance to be worse than the move selected pseudo-randomly with domain-
dependent knowledge. In conclusion, selecting the second move of the random
game is a question of superiority between MP and the pseudo-random genera-
tor based on domain dependent knowledge. To be effective, MP must be better
than the current pseudo-random move generator. If random games based on uni-
form probability were used, then MP would have no difficulty to be superior. In
the background of the pseudo-random generator using domain-dependent knowl-
edge, employing MP when Nselect is high is consequently a bad idea. Subsection
4.8 will show a remedy to this problem.

4.3 Set Pruning Versus Progressive Pruning

This subsection compares SP with PP. Table 4 shows the results.
For low values of Nselect, Prune(SP = true) plays at the same level as

Prune(SP = false) and the increase in speed is not high. For high val-
ues of Nselect, the relative speed of the two programs is significantly supe-
rior to 1, which was expected, because the SP technique is designed for high

Table 4. Result of SP vs. PP

Nselect

2 4 8 16 32 64

Mean score +0.1 +0.5 +0.2 −1.3 −2.4 −3.5
Winning percentage 50 49 52 48 44 43
Mean relative speed 1.00 1.05 1.08 1.12 1.14 1.17

112 B. Bouzy

values. However, while the relative speed increases, the playing level decreases
significantly, Prune(SP = true, Nselect = 64) being significantly inferior to
Prune(SP = false, Nselect = 64). This result confirms the fact that using SP
is debatable.

4.4 M+SP Versus Progressive Pruning

This subsection directly combines MP and SP, and compares this combination
with PP. The direct combination means that SP is used in addition to MP, and
that no other enhancement is used, as will be shown in the next subsection.

Table 5. Result of M+SP vs. PP

Nselect

2 4 8 16 32 64

Mean score −0.5 +0.4 −3.9 −8.5 −11.4 −12.5
Winning percentage 49 51 42 33 28 29
Mean relative speed 1.5 1.5 1.7 2.2 2.6 2.8

Table 5 shows the results of MP+SP versus PP. The results are bad. Losing
by eleven or twelve points on average on 9 × 9 boards is huge in Go standards.
This result is disappointing. While SP did not give good results, it was risky
to combine them so directly. The next experiment aims at combining MP in a
sophisticated way.

4.5 M+gbSP Versus Progressive Pruning

Since the direct combination M+SP did not work well, we tried a more sophis-
ticated combination of MP and SP, called M+gbSP. In addition to MP and SP,
the two sets, good and bad updated by SP, were used by M+gbSP to launch
the random games: for each possible move A, MP+gbS launches games starting
with Black A and White B, B being picked up at random among bad if A is
in good, and picked up in good otherwise. Thus, when launching the random
games, the idea underlying M+gbSP is to apply the miai principle on the two
sets good and bad instead of applying them on moves.

Table 6 shows the results of M+gbSP versus PP. The results are still bad.
Losing by ten or fifteen points on average on 9×9 boards is huge in Go standards.
Our current explanation is that the strong combination reinforces the pruning

Table 6. Result of M+gbSP vs. PP

Nselect

2 4 8 16 32 64

Mean score +0.3 +1.7 −8.3 −10.2 −11.3 −15.4
Winning percentage 52 52 35 33 32 26
Mean relative speed 1.5 1.6 1.9 2.8 3.5 3.8

Move-Pruning Techniques for Monte-Carlo Go 113

strategy. Here, games are launched in order to enhance move pruning instead of
neutrally finding the mean value of moves. When the first part of a run badly
ranks a move - a “good” move M is put into bad - the next part of the run
tries to reinforce the current finding: when it launches games starting by M, the
second move of the game (played by the opponent) is picked up from good, thus
the mean value of M is penalized. Symmetrically, when a “bad” move M is put
into good in the beginning of the run, the next part of the run launches games
starting by M, then the second move of the game (played by the opponent) is
picked up from bad, thus the mean value of M is optimistic, and M remains in
good.

4.6 M+gbP Versus Progressive Pruning

Since M+gbSP does not work, probably due to its complexity, this subsection
tries a simplification. It combines MP with the sole use of the two sets, good
and bad, but not with SP. We call this combination M+gbP. good and bad
are used in the same way as they are used in the strong combination M+SP: for
each possible move A, M+gbP launches games starting with Black A and White
B, B being picked up at random among bad if A is in good, and picked up in
good otherwise.

Table 7 shows the results obtained by M+gbP versus PP. The relative speed is
higher than it was in Table 2. For Nselect = 2, 4, 8, 16, the playing level of M+gbP
seems identical to the playing level of MP. However, for Nselect = 32 or 64, the
results are still bad. The arguments highlighted by the previous subsection could
still explain them.

4.7 All-Against-All Tournament

In the previous subsections, we have made relative assessments of the pruning
techniques against PP with constant Nselect, and relative assessments of doubling
Nselect with a fixed pruning technique (either MP or PP). In this subsection, we
look for the best programs, in term of time and playing level. Thus, based on
the previous experiments’ results, we have built two tables approximating the
values of the programs against Prune(PP, Nselect = 2). Table 8 yields the
average time used by the programs Prune to play one game, and Table 9 the
relative playing level of Prune estimated with the previous results.

Table 7. Results of M+gbP vs. PP

Nselect

2 4 8 16 32 64

Mean score +0.7 +2.1 +0.0 −1.1 −3.5 −8.1
Winning percentage 51 55 50 44 43 35
Mean relative speed 1.5 1.5 1.5 1.5 1.6 1.7

114 B. Bouzy

Table 8. Average time (in minutes) spent by Prune(Nselect, P) to play out one game

Nselect PP MP SP M+SP M+gbSP M+gbP

2 1.0 0.7 1.0 0.7 0.7 0.7
4 2.0 1.4 2.0 1.3 1.2 1.3
8 3.5 2.7 3.5 2.1 1.8 2.5
16 5.5 4.3 5.5 2.5 1.9 3.7
32 7.0 5.2 6.2 2.7 2.0 4.5
64 7.5 6.0 6.5 2.7 2.0 4.5

Table 9. Relative playing level of Prune(Nselect, P) estimated by the previous sub-
sections

Nselect PP MP SP M+SP M+gbSP M+gbP

2 0 +3 0 0 0 0
4 +8 +11 +8 +8 +8 +10
8 +14 +15 +13 +10 +8 +14
16 +18 +18 +17 +10 +8 +17
32 +18 +16 +16 +9 +7 +15
64 +18 +14 +15 +8 +4 +10

Table 9 clearly shows that Prune(M+SP or M+gbSP) and Prune(Nselect

= 2 or 4), are not worth considering. Table 8 shows that Prune(Nselect =
64) is slower than Prune(Nselect = 8, 16, 32). Meanwhile, it is slightly weaker,
thus eliminated. Thus, we kept nine programs Prune(PP, MP, SP, Nselect =
8, 16, 32) for an all-against-all tournament.

Table 10 gives the final rankings with the average score per game. The σ of
each average result is about 1.2. The radius of the 95% confidence interval is
2.4. Consequently, clear conclusions can hardly be drawn from this tournament.
Concerning the playing level, all the players are on a par. The best value of Nselect

seems to be 32, unfortunately lowering the relevance of the pruning techniques.
SP seems to be a better enhancement than MP regarding both playing level and
time. However this tournament is not fair for MP because of the high values
of Nselect. This leads to the perspective to apply MP only when the number of
candidate moves is inferior to a threshold. Conclusions on the playing level are
hard to draw; the time considerations may break the tie. Table 8 shows that
MP8 is the fastest program among the players of the all-against-all tournament,
enhancing the interest of MP.

Table 10. Final ranking of the all-against-all tournament

Rank
1 2 3 4 5 6 7 8 9

Prune P32 S32 S16 P8 S8 M8 M16 P16 M32
Mean score +3.6 +1.7 +1.2 0.0 −0.3 −1.2 −1.5 −1.7 −2.0

Move-Pruning Techniques for Monte-Carlo Go 115

4.8 Weak Miai Pruning (WMP)

Since the all-against-all tournament has shed the light on a weakness of MP
when Nselect = 16 or 32, this subsection considers a weak version of MP which
consists in using the MP rule only when the number of candidate moves is strictly
inferior to a threshold T .

Conversely to straightforward MP which is effective for low values of Nselect

only, Table 11 shows that WMP (with T = 5) is worth considering for any values
of Nselect. First, Prune(WMP = true, Nselect = 2, 4) keeps the positive result
shown by Table 2. Second, Prune(WMP = true, Nselect = 8, 16) has quite
a positive result against Prune(WMP = false, Nselect = 8, 16): +3 points
and 60% wins. As mentioned in Subsection 4.2, the mean score is statistically
significant. Third, the positive mean score of two next columns (Nselect = 32, 64)
of Table 11 confirms the effectiveness of WMP, and removes the negative mean
scores of Table 2. Finally, the speed is enhanced significantly, multiplied by 1.5
for Nselect = 2, and not lowered for high values of Nselect. To sum up, WMP is
experimentally demonstrated to be superior to PP on 9×9 boards for any value
of Nselect, both in time and in playing level. This experiment is a success.

4.9 Integrating WMP with Global Tree Search on 9 × 9 Boards

The result obtained by WMP within the basic MC framework on 9 × 9 boards,
namely depth-one search, suggests using WMP in the framework combining MC
and Tree Search [4]. Currently, Indigo uses a depth-3 global tree search on
9×9 boards. Consequently, we set up an experiment assessing Prune(WMP =
true, Nselect = 8, Depth = 3) against Prune(WMP = false, Nselect = 8,
Depth = 3) on 9×9 boards. It turns out that, although playing 5% faster, Prune
(WMP = true, Nselect = 8, Depth = 3) is 1.7 point inferior to Prune
(WMP = false, Nselect = 8, Depth = 3) and wins 45% of games only. Thus,
integrating WMP with global tree search on 9 × 9 boards is not a success.

We have the following explanation. First, the MP principle can be discussed
in front of depth-2 search. Actually, since MP launches games beginning by two
given moves, the mean values computed correspond to depth-2 nodes. However,
the background in which WMP is used cannot be forgotten. WMP is used only
when previous random games have pruned moves, and moreover, after move A,
MP develops move B only, and not all the children of move A. Thus depth-2
search dominates MP. MP is a trick used because of time constraints, when

Table 11. Result of Weak MP (WMP) vs. PP for T = 5

Nselect

2 4 8 16 32 64

Mean score +1.5 +1.0 +3.1 +4.5 +2.7 +3.0
Winning percentage 51 50 60 61 53 55
Mean relative speed 1.50 1.48 1.25 1.12 1.05 1.02

116 B. Bouzy

depth-2 search cannot be used. Second, [4] and MP both expand the child nodes
of a parent node when the number of children decreases and reaches a threshold
(W− in [4] and T in MP). Therefore, the two techniques do not live well all
together. Finally, [4] being a kind of iterative deepening algorithm, we have also
tried to use WMP at the maximal depth only, and not at intermediate depths,
but this attempt was not satisfactory.

4.10 Scaling WMP Up to 19 × 19 Boards

As explained in the introduction of Section 4, to speed up the validation process
of our ideas, we have first performed our experiments on 9×9 boards. After such
experiments, SP does not fulfil our initial expectation, but MP, and in particular
WMP, is still worth considering. Therefore, in a second stage, WMP deserves a
19× 19 assessment. To make the programs playing in adequate time on 19× 19
boards, Monte-Carlo parameters are set differently. For example, rd is set to
1.5 and not to 2.0. Moreover, when scaling up to 19 × 19 boards from 9 × 9
boards, the maximal number of random games is reduced in a 40% proportion.
Obviously on 19 × 19 boards, the time constraints bring about a depth-one
search. The value of the parameters being different, it was not certain that WMP
behaves on 19× 19 boards in the same way as it does on 9× 9 boards. After 400
games, Prune(WMP = true, Nselect = 8) turns out to be +4 point superior
to Prune(WMP = false, Nselect = 8) winning 51.6% of the games. The 95%
confidence interval is [-3.4, +11.8] and the 68% confidence interval is [+0.4, +8.0].
Hopefully, this result shows that WMP scales well on 19 × 19 with a depth-one
search. More interesting is the fact that Prune(WMP = true) used 36 minutes
on average to complete one 19 × 19 game. Meanwhile, Prune(WMP = false)
used 46 minutes on average. Thus Prune(WMP = true) is 1.27 faster than
Prune(WMP = false). This positive result on 19 × 19 boards is explained by
the fact that a depth-one search is mandatory. In this context, WMP appears
to be a trick when depth-two search remains forbidden.

5 Discussion

To explain why MP works, we introduce the notion of the incentive of a move as
the difference between the MC evaluation of the position reached by this move
and the MC evaluation of the current position. Let a be the incentive of Black
playing move A, and b the incentive of Black playing move B. PP launches games
to assess a and b. It stops when the difference a− b is statistically different from
zero. Let us assume that the incentive of White playing move A (resp. B1) is −a
(resp. −b), which is plausible in most cases. When A and B are not dependent,
the games launched by MP starting with Black A (resp. B) and White B (resp.
A) contribute to assess a−b (resp. b−a). MP stops when the difference between
the two means, i.e., 2× (a − b), is statistically different from zero. Thus, when A

1 The notation “(resp. B)” is shorthand for “(or B respectively)”.

Move-Pruning Techniques for Monte-Carlo Go 117

and B are not miai, the average number of games launched by MP to separate
A and B is smaller than the average number of games launched by PP.

SP was designed to speed up the beginning of the PP process. The experi-
ments show that SP is a failure. One could say that SP has no more theoretical
foundation than PP itself. One could expect that pruning the set of moves would
exhibit the same move quality versus CPU time tradeoffs obtained by pruning
the individual moves. The experimental results are not inconsistent with this
hypothesis.

Scared by the long lasting experiments on 19× 19 boards, we have chosen to
spend the CPU time to perform experiments on 9 × 9 games first. Considering
that Indigo uses depth-3 on 9×9 boards, and that MP does not work well with
depth-n search, all this work does not result in profitable behavior of Indigo on
the 9×9 board. Hopefully, scaling up to 19×19 boards after assessing the quality
of MP was a good surprise. MP works well with depth-one search and Indigo
uses depth-one on 19×19 boards. Considering Indigo’s development, the speed-
up and move quality improvements are finally effective on 19 × 19 boards, and
not on 9 × 9 boards. In Subsection 4.8, WMP experiments were presented. The
difference between WMP and MP lies in the use of a threshold enabling the
program to use the MP heuristic only when the number of candidate moves is
lower than the threshold.

A more important reason of the success of WMP over MP as been revealed
since the time of the experiments. In fact, as specified in 3.1, MP was designed
to discriminate moves that are tied after several iterations of PP to speed up
the end of the process. Thus, it is quite important not to start MP at the
beginning of the PP process. If the MP technique is applied from the beginning
of PP, then, on tactical positions, the program may select a very bad move. This
kind of blunder occured recently in a game against CrazyStone [9], the new
Monte-Carlo Go program of Rémi Coulom. Indigo overlooked the good move
on a tactical position near the end of the game. This error did not change the
outcome of the game, but it costed the loss of a large group of stones, which
could have been avoided. As against this, we may state that its merit was to
point out the problem. On this position which was quite near the end of the
game, two moves only (and not eight as usual) were selected by the knowledge-
based move selector, let us say A, the good one, and B, a bad one. Consequently,
the PP process started with two moves, i.e., less than the threshold. Thus, the
MP rule was applied from the start of PP. On the mentioned position, playing
random games starting by B and A lead to positions in which Indigo, in its view,
expected to obtain everything (because move A did not work for CrazyStone,
but it still was obliged to be played as second move by the MP rule). Besides,
playing random games starting by A and B led to stable positions in which
half of the points was for Indigo, and the other half for CrazyStone. Thus,
Indigo assessed (wrongly) that B was superior to A. To debug this blunder, we
observed what would have happened without MP. Then, we saw that playing
random games starting by B lead to positions in which CrazyStone obtained
everything (because move A that did not work for CrazyStone, was not forced

118 B. Bouzy

as second move by the MP rule). Furthermore, playing random games starting
by A led to stable positions in which half of the points was for Indigo. Thus,
without MP, PP quickly and correctly found out that A was superior to B.
Consequently, to fix up the bug, we added another threshold forbidding to use
MP before a minimal number of random games. This error underlines the fact
that MP has the big downside of considering that a good move for the opponent
is also a good move for itself, which is a famous Go proverb, but which is wrong
in many tactical situations.

6 Conclusion and Perspectives

We presented two pruning heuristics: Miai Pruning and Set Pruning. They were
intended to improve the existing Progressive Pruning technique. Miai Pruning
actually simulates the miai principle used by human players which consists in
playing the second move when the first is played. Set Pruning manages two
sets of moves, good and bad, and tries to prune bad when possible. These
two pruning techniques have been assessed on 9 × 9 Go boards first. MP is
domain-dependent and experimentally effective both in time and playing level,
when Nselect is low and when combined with a depth-one search. Weak MP has
been shown effective both in time and playing level on 9× 9 boards with depth-
one search. However, MP and WMP are not effective within a depth-n search.
Moreover, the recent history of Indigo showed that MP must be used only after
a minimal number of random games, when PP alone has shown that it cannot
break the tie between the remaining moves. SP seems experimentally effective
in time as well, but it does not offer a satisfactory compromise between time
and move quality. Combinations of MP and SP has also been tested but they
all failed. Finally, we scaled WMP up to 19 × 19 boards, and we obtained a
significant speed-up (about 1.3). Besides, we gained 4 points in terms of playing
level.

Our experiments assessed the effect of MP within the global tree search algo-
rithm proposed in [4]. A further step consists in translating MP into the game-
tree search framework forgetting the statistical framework presented here. Be-
sides, SP is general, and to this extent, it should be tried on other games with a
high branching factor, such as Amazons [11]. Finally, assessing the ideas of [16]
within the Monte-Carlo Go landscape, and performing local statistical search
are still on our to-do list.

References

1. B. Abramson. Expected-outcome: a General Model of Static Evaluation. IEEE
Transactions on PAMI, 12:182–193, 1990.

2. D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The Challenge of Poker.
Artificial Intelligence, 134:201–240, 2002.

3. B. Bouzy. Associating Domain-Dependent Knowledge and Monte-Carlo Ap-
proaches within a Go Program. Information Sciences, 175:247–257, 2005.

Move-Pruning Techniques for Monte-Carlo Go 119

4. B. Bouzy. Associating Shallow and Selective Global Tree Search with Monte-
Carlo for 9×9 Go. In 4th Computers and Games conference (CG 2004) (eds.
H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu), LNCS 3846, pages 67–80,
Springer-Verlag, Berlin, 2006.

5. B. Bouzy. Indigo Home Page.
www.math-info.univ-paris5.fr/ ˜bouzy/INDIGO.html, 2005.

6. B. Bouzy and T. Cazenave. Computer Go: an AI-oriented Survey. Artificial Intel-
ligence, 132:39–103, 2001.

7. B. Bouzy and B. Helmstetter. Monte-Carlo Go Developments. In 10th Advances
in Computer Games (ACG10), Many Games, Many Challenges (eds. H.J. van den
Herik, H. Iida, and E.A. Heinz), pages 159–174, Kluwer Academic Publishers,
Boston, 2004.

8. B. Brügmann. Monte-Carlo Go. www.joy.ne.jp/welcome/igs/Go/computer/-
mcgo.tex.Z, 1993.

9. R. Coulom. CrazyStone Home Page. remi.coulom.free.fr/CrazyStone/, 2005.
10. D. Fotland. Go Intellect Wins 19x19 Go Tournament. ICGA Journal, 27(3):169–

170, 2004.
11. J. Lieberum. An Evaluation Function in the Game of Amazons. In 10th Advances

in Computer Games (ACG10), Many Games, Many Challenges (eds. H.J. van den
Herik, H. Iida, and E.A. Heinz), pages 299–308, Kluwer Academic Publishers,
Boston, 2004.

12. M. Müller. Computer Go. Artificial Intelligence, 134:145–179, 2002.
13. M. Müller. Position Evaluation in Computer Go. ICGA Journal, 25(4):219–228,

2002.
14. J. Schaeffer and H.J. van den Herik. Games, Computers, and Artificial Intelligence.

Artificial Intelligence, 134:1–7, 2002.
15. B. Sheppard. World-Championship-Caliber Scrabble. Artificial Intelligence,

134:241–275, 2002.
16. B. Sheppard. Effective Control of Selective Simulation. ICGA Journal, 27(2):67–

80, 2004.
17. G. Tesauro and G. Galperin. On-line Policy Improvement using Monte-Carlo

Search. In Advances in Neural Information Processing Systems, pages 1068–1074.
MIT Press, 1996.

	Introduction
	Related Work and Motivations
	Monte Carlo in Computer Games
	Progressive Pruning
	Motivations

	Two Pruning Techniques
	Miai Pruning
	Set Pruning

	Experiments
	N_select Versus $N_select/2$
	Miai Pruning Versus Progressive Pruning
	Set Pruning Versus Progressive Pruning
	M+SP Versus Progressive Pruning
	M+gbSP Versus Progressive Pruning
	M+gbP Versus Progressive Pruning
	All-Against-All Tournament
	Weak Miai Pruning (WMP)
	Integrating WMP with Global Tree Search on 99 Boards
	Scaling WMP Up to 1919 Boards

	Discussion
	Conclusion and Perspectives

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Europe ISO Coated FOGRA27)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

