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Abstract. Most game programs have a large number of parameters that
are crucial for their performance. Tuning these parameters by hand is
rather difficult. Therefore automatic optimization algorithms in game
programs are interesting research domains. However, successful applica-
tions are only known for parameters that belong to certain components
(e.g., evaluation-function parameters). The SPSA (Simultaneous Pertur-
bation Stochastic Approximation) algorithm is an attractive choice for
optimizing any kind of parameters of a game program, both for its gen-
erality and its simplicity. Its disadvantage is that it can be very slow.

In this article we propose several methods to speed up SPSA, in par-
ticular, the combination with RPROP, using common random numbers,
antithetic variables, and averaging. We test the resulting algorithm for
tuning various types of parameters in two domains, Poker and LOA.
From the experimental study, we may conclude that using SPSA is a
viable approach for optimization in game programs, in particular if no
good alternative exists for the types of parameters considered.

1 Introduction

Any reasonable game program has several hundreds if not thousands of para-
meters. These parameters belong to various components of the program, such
as the evaluation function or the search algorithm. While it is possible to make
educated guesses about “good” values of certain parameters, hand-tuning the
parameters is a difficult and time-consuming task. An alternative approach is to
find the “right” values by means of an automated procedure.

The use of parameter optimization methods for the performance tuning of
game programs is difficult by the fact that the objective function is rarely avail-
able analytically. Therefore, methods that rely on the availability of an analytic
expression for the gradient cannot be used. However, there exist several ways to
tune parameters despite the lack of an analytic gradient. An important class of
such algorithms is represented by temporal-difference (TD) methods that have
been used successfully in tuning evaluation-function parameters [14]. Obviously,
any general-purpose (gradient-free) global search method can be used for pa-
rameter optimization in games. Just to mention a few examples, in [3] genetic
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algorithms were used to evolve a neural network to play checkers, whilst in [2]
an algorithm similar to the Finite-Difference Stochastic Approximations (FDSA)
algorithm was used successfully for tuning the search-extension parameters of
Crafty. Nevertheless, we believe that automatic tuning of parameters remains
a largely unexplored area of game programming.

In this article we investigate the use of SPSA (Simultaneous Perturbation
Stochastic Approximation), a stochastic hill-climbing search algorithm for tun-
ing the parameters of game programs. Since optimization algorithms typically
exhibit difficulties when the objective function (performance measure) is ob-
served in heavy noise, for one test domain we choose a non-deterministic game,
namely Omaha Hi-Lo Poker, one of the most complex poker variants. For Texas
Hold’em Poker several years of research has led to a series of strong programs:
Poki, PsOpti, and Vexbot [1]. Our program, MCRAISE, borrows several ideas
from the above mentioned programs. The name of the program originates from
the use of Monte-Carlo simulations and the program’s aggressive style. In the
second test domain, LOA, we use MIA, winner of the 8th and 9th Computer
Olympiad.

The article is organized as follows. Section 2 describes the RSPSA algorithm
that combines SPSA and RPROP. In Sect. 3, three ways to enhance the perfor-
mance of RSPSA are proposed together with a discussion of the various trade-
offs involved, supported by analytic arguments. Next, in Sect. 4 the test domains
and the respective programs are described. Experiments with RSPSA in these
domains are given in Sect. 5. Finally, we draw our conclusions in Sect. 6.

2 The RSPSA Algorithm

Below we start describing the basic setup (2.1) of the RSPSA algorithm. Then
we provide details on the supporting algorithms SPSA (2.2) and RPROP (2.3).
Finally in 2.4 we outline the RSPSA algorithm.

2.1 Basic Setup

Consider the task of finding a maximizer θ∗ ∈ R
d of some real-valued function

f , i.e., find θ∗ = argmaxθ f(θ). In our case f may measure the performance of
a player in some environment (e.g., against a fixed set of opponents), or it may
represent an auxiliary performance index of interest that is used internally in the
algorithm in such a way that a higher value of it might ultimately yield better
play. In any case, θ represents some parameters of the game-playing program.

We assume that the algorithm of which the task is to tune the parameters θ
can query the value of f at any point θ, but the value received by the algorithm
will be corrupted by noise. The noise in the evaluation of f can originate from
randomized decisions of the players or from the randomness of the environment.
In a card game for instance the cards represent a substantial source of random-
ness in the outcomes of rounds. We shall assume that the value observed in the
t-th step of the algorithm, when the simulation is run with parameter θt, is given
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by f(θt; Yt) where Yt is some random variable such that the expected value of
f(θt; Yt) conditioned on θt and given all past information equals to f(θt):

f(θt) = E [f(θt; Yt) | θt,Ft ] , (1)

where Ft is the sigma-field generated by Y0, Y1, . . . , Yt−1 and θ0, θ1, . . . , θt−1.
Stochastic gradient ascent algorithms work by changing the parameter θ in a
gradual manner so as to increase the value of f on average:

θt+1 = θt + αtĝt(θt) . (2)

Here θt is the estimate of θ∗ in the t-th iteration (time step), αt ≥ 0 is a
learning rate parameter that governs the size of the changes to the parameters
and ĝt(θt) is some approximation to the gradient of f such that the expected
value of ĝt(θt) given past data is equal to the gradient g(θ) = ∂f(θ)/∂θ of f and
(ĝt(θt) − g(θ)) has finite second moments.

2.2 SPSA

When f is not available analytically then one must resort to some approximation
of the gradient in order to use gradient ascent. One such approximation was
introduced with the SPSA algorithm in [12]:

ĝti(θt) =
f(θt + ctΔt; Y +

t ) − f(θt − ctΔt; Y −
t )

2ctΔti
. (3)

Here ĝti(θt) is the estimate of the i-th component of the gradient, Δti, Y +
t , and

Y −
t are random variables: Y +

t and Y −
t are meant to represent the sources of

randomness of the evaluation of f , whilst Δt· is a perturbation vector to be
chosen by the user. Note that the numerator of this expression does not depend
on the index i and therefore evaluating Eq. 3 requires only two (randomized)
measurements of the function f . Still, SPSA provides a good approximation to
the gradient: Under the conditions that (i) the random perturbations Δt are
independent of the past of the process, (ii) for any fixed t, {Δti}i is an i.i.d.
sequence1, (iii) the distribution of Δti is symmetric around zero, (iv) |Δti| is
bounded with probability one, and (v) E

[
Δ−1

ti

]
is finite, and assuming that f

is sufficiently smooth, it can be shown that the bias of estimating that gradient
g(θt) by ĝt(θt) is of the order O(c2

t ). Further, the associated gradient ascent
procedure can be shown to converge to a local optima of f with probability
one [12].

A simple way to satisfy the conditions on Δt is to choose its components
to be independent ±1-valued Bernoulli distributed random variables with each
outcome occurring with probability 1/2. One particularly appealing property of
SPSA is that it might need d times less measurements than the classical FDSA
procedure and still achieve the same asymptotic statistical accuracy (see, e.g.,
[12]). FDSA works by evaluating f at θt ± ctei and forming the appropriate

1 “i.i.d.” is the shorthand of “independent, identically distributed”.
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differences – thus it requires 2d evaluations. For a more thorough discussion of
SPSA, its variants, and its relation to other methods we refer to [12,13].

SPSA, like other stochastic approximation algorithms has quite a few tun-
able parameters. These are the gain sequences αt, ct and the distribution of the
perturbations Δt. When function evaluation is expensive, as is often the case in
games, small sample behavior of the algorithm becomes important. In that case
the proper tuning of the parameters becomes critical.

In practice, the learning rate αt and the gain sequence ct are often kept at
a fixed value. Further, in all previous works on SPSA known to us it was as-
sumed that the perturbations Δti, i = 1, . . . , d, have the same distribution. When
different dimensions have different scales (which we believe is a very common
phenomenon in practice) then it does not make too much sense to use the same
scales for all the dimensions. The issue is intimately related to the issue of scaling
the gradient addressed also by second and higher-order methods. These meth-
ods work by utilising information about higher order derivatives of the objective
function (see, e.g., [4,13]). In general, these methods achieve a higher asymptotic
rate of convergence, but, as discussed, e.g., in [15], their practical value might
be limited in the small sample size case.

2.3 RPROP

The RPROP (“resilient backpropagation”) algorithm [11] and its variants are
amongst the best performing first-order batch neural network gradient training
methods and as such represent a viable alternative to higher-order methods.2 In
practice RPROP methods were found to be very fast and accurate, robust to
the choices of their parameters, scale well with the number of weights. Further,
RPROP is easy to implement, it is not sensitive to numerical errors and since the
algorithm is dependent only on the sign of the partial derivatives of the objective
function,3 it is thought to be suitable for applications where the gradient is
numerically estimated and/or is noisy.

A particularly successful variant is the iRprop−algorithm [5]. The update
equations of iRprop− for maximising a function f = f(θ) are as follows:

θt+1,i = θt,i + sign(gti)δti, t = 1, 2, . . . ; i = 1, 2, . . . , d . (4)

Here δti ≥ 0 is the step size for the i-th component and gt· is a gradient-like
quantity:

gti = I(gt−1,if
′
i(θt) ≥ 0)f ′

i(θt) , (5)

i.e., gti equals the i-th partial derivative of f at θ except when a sign reversal is
observed between the current and the previous partial derivative, in which case
gti is set to zero.

2 For a recent empirical comparison of RPROP and its variants with alternative,
gradient optimization methods such as BFGS, CG and others see, e.g., [5].

3 RPROP, though it was worked out for the training of neural networks, is applicable
in any optimization problem where the gradient can be computed or approximated.
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The individual step-sizes δti are updated in an iterative manner based on the
sign of the product pt,i = gt−1,if

′
i(θt):

ηti = I(pt,i > 0)η+ + I(pt,i < 0)η− + I(pt,i = 0) , (6)
δti = P[δ−,δ+] (ηtiδt−1,i) , (7)

where 0 < η− < 1 < η+, 0 < δ− < δ+, P[a,b] clamps its argument to the interval
[a, b], and I(·) is a {0, 1}-valued function working on Boolean values and I(L) = 1
if and only if L is true, and I(L) = 0, otherwise.

2.4 RSPSA

Given the success of RPROP, we propose a combination of SPSA and RPROP
(in particular, a combination with iRprop−). We call the resulting combined
algorithm RSPSA (“resilient SPSA”). The algorithm works by replacing f ′

i(θt)
in Eq. 5 with its noisy estimates ĝt,i(θt). Further, the scales of the perturbation
vector Δti are coupled to the scale of the step sizes of δti.

Before motivating the coupling let us make a few observations on the expected
behavior of RSPSA. Since iRprop− depends on the gradient only through the
sign of it, it is expected that if the sign of ĝt,i(θt) coincides with that of f ′

i(θt)
then the performance of RSPSA will be close to that of iRprop−. This can be
backed up by the following simple argument. Assuming that |f ′

i(θ)| > ε, applying
Markov’s inequality, we obtain that

P(sign(ĝt,i(θ)) �= sign(f ′
i(θ))) ≤ P(|ĝt,i(θ)) − f ′

i(θ)| ≥ ε) ≤ Mt,i

ε2
, (8)

where Mt,i = E
[
(ĝt,i(θ) − f ′

i(θ))
2|Ft

]
denotes the mean square error of the ap-

proximation of f ′
i(θ) by ĝt,i(θ), conditioned on past observations. In fact, this

error can be shown to be composed of a bias term dependent only on f , θ and
c, and a variance term dependent on the random quantities in ĝt,i(θ). Hence, it
is important to make the variance of the estimates small.

Now, let us turn to the idea of coupling the scales of the perturbation vectors to
the step sizes of iRprop−. This idea can be motivated as follows. On “flat areas”
of the objective function, where the sign of the partial derivatives of the objective
function is constant and where the absolute value of these partial derivatives is
small, a perturbation’s magnitude along the corresponding axis should be large or
the observation noise will dominate the computed finite differences. In contrast,
in “bumpy areas” where the sign of a partial derivative changes at smaller scales,
smaller perturbations that fit the “scale” of desired changes can be expected
to perform better. Since the step-size parameters of RPROP are larger in flat
areas and are smaller in bumpy areas, it is natural to couple the perturbation
parameters of SPSA to the step-size parameters of RPROP. A simple way to
accomplish this is to let Δti = ρ δti, where ρ is some positive constant, to be
chosen by the user.
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3 Increasing Efficiency

In this section we describe three methods that can be used to increase the effi-
ciency of RSPSA. The first method, known as the “Method of Common Random
Numbers”, was proposed earlier to speed up SPSA [9,6]. The second method,
averaging, was proposed as early as in [12]. However, when averaging is used
together with the method of common random numbers a new trade-off arises.
By means of a formal analysis this trade-off is identified and resolved here for
the first time. To the best of our knowledge, the third method, the use of anti-
thetic variables has not been suggested earlier to be used with SPSA. All these
methods aim at reducing the variance of the estimates of the gradient, which as
noted previously should yield better performance. In this section we will drop
the time index t in order to simplify the notation.

3.1 Common Random Numbers

In SPSA (and therefore also in RSPSA) the estimate of the gradient relies on
differences of the form f(θ + cΔ; Y +) − f(θ − cΔ; Y −). Denoting by F+

i the
first term and by F−

i the second term, elementary probability calculus gives
Var

(
F+

i − F−
i

)
= Var

(
F+

i

)
+ Var

(
F−

i

)− 2Cov
(
F+

i , F−
i

)
. Thus the variance of

the estimate of the gradient can be decreased by introducing some correlation
between F+

i and F−
i , provided that this does not increase the variance of F+

i

and F−
i . The reason is that by our assumptions Y + and Y − are independent

and thus Cov
(
F+

i , F−
i

)
= 0. Now, if F±

i is redefined to depend on the same
random value Y (i.e., F±

i = f(θ ± cΔ; Y )) then the variance of F+
i − F−

i will
decrease when Cov (f(θ + cΔ; Y ), f(θ − cΔ; Y )) > 0. The larger this covariance
is the larger the decrease of the variance of the estimate of the gradient will be.

When f is the performance of a game program obtained by means of a simu-
lation that uses pseudo-random numbers then using the same random series Y
can be accomplished by using identical initial seeds when computing the values
of f at θ + cΔ and θ − cΔ.

3.2 Using Averaging to Improve Efficiency

A second method to reduce the variance of the estimate of the gradient is to
average many independent estimates of it. However, the resulting variance re-
duction is not for free, since evaluating f(θ; Y ) can be extremely CPU-intensive,
as mentioned earlier. To study this trade-off let us define

ĝq,i(θ) =
1
q

q∑

j=1

f(θ + cΔ; Yj) − f(θ − cΔ; Yj)
2c Δi

, (9)

where according to the suggestion of the previous section we use the same set of
random number to evaluate f both at θ+cΔ and θ−cΔ. Further, let ĝr,q,i(θ) be
the average of r independent samples {ĝ(j)

q,i (θ)}j=1,...,r of ĝq,i(θ). By the Strong
Law of Large Numbers ĝr,q,i(θ) converges to f ′

i(θ) + O(c2) as q, r → +∞ (i.e.,
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its ultimate bias is of the order O(c2)). It follows then that increasing min(r, q)
above the value where the bias term becomes dominating does not improve the
finite sample performance. This is because increasing p decreases the frequency
of updates to the parameters.4

In order to gain further insight into how to choose q and r, let us consider
the mean squared error (MSE) of approximating the i-th component of the
gradient by ĝr,q,i: Mr,q,i = E

[
(ĝr,q,i(θ) − f ′

i(θ))
2
]
. By some lengthy calculations,

the following expression can be derived for Mr,q,1:5

Mr,q,1 =
1
r

E
[
Δ2

1

]
E

[
1/Δ2

1

] d∑

j=2

{(
1 − 1

q

)
E

[
f ′

j(θ; Y1)2
]
+

1
q

E
[
f ′

j(θ; Y1)
]2

}

+
1
rq

E
[
(f ′

1(θ; Y1) − f ′
1(θ))

2
]
+ O(c2) . (10)

Here f ′
i(θ; Y ) is the partial derivative of f(θ; Y ) w.r.t. θi: f ′

i(θ; Y ) = ∂f(θ;Y )
∂θi

.
It follows from Eq. 10 that for a fixed budget of p = qr function evaluations

the smallest MSE is achieved by taking q = 1 and r = p (disregarding the O(c2)
bias term which we assume to be “small” as compared to the other terms).

Now the issue of choosing p can be answered as follows. Under mild conditions
on f and Y (ensuring that the expectation and the partial derivative operators
can be exchanged),

∑d
j=2 E

[
f ′

j(θ; Y1)
]2 =

∑d
j=2 f ′

j(θ)
2. Hence, in this case with

the choices q = 1, r = p, Mp,1,1 becomes equal to

1
p

⎧
⎨

⎩
E

[
Δ2

1

]
E

[
1/Δ2

1

] d∑

j=2

f ′
j(θ)

2 + E
[
(f ′

1(θ; Y1) − f ′
1(θ))

2
]
⎫
⎬

⎭
+ O(c2) , (11)

which is composed of two terms in addition to the bias term O(c2): the term∑d
j=2 f ′

j(θ)
2 represents the contribution of the “cross-talk” of the derivatives of f

to the estimation of the gradient, whilst the second term, E
[
(f ′

1(θ; Y1) − f ′
1(θ))

2
]

gives the MSE of approximating f ′
1(θ) with f ′

1(θ; Y1) (which is equal to the
variance of f ′

1(θ; Y1) in this case). The first term can be large when θ is far from
a stationary point of f , whilst the size of the second term depends on the amount
of noise in the evaluations of f . When the magnitude of these two terms is larger
than that of the bias term O(c2) then increasing p will increase the efficiency of
the procedure, at least initially.

4 In [12] it is shown that using decreasing gains αt = a/tα and ct = c/tγ with β =
α − 2γ > 0, 0 < α ≤ 1, 0 < γ, the optimal choice of p is governed by an equation
of the form pβ−1A + pβB, where A, B > 0 are some (unknown) system parameters.
This equation has a unique minimum at p = (1 − β)A/(βB), however, since A, B
are unknown parameters this result has limited practical value besides giving a hint
about the nature of the trade-off in the selection of p.

5 Without the loss of generality we consider the case i = 1.



46 L. Kocsis, C. Szepesvári, and M.H.M. Winands

3.3 Antithetic Variables

In Sect. 3.1 we have advocated the introduction of correlation between the two
terms of a difference to reduce its variance. The same idea can be used to reduce
the variance of averages: Let U1, U2, . . . , Un be i.i.d. random variables with com-
mon expected value I. Then the variance of In = 1/n

∑n
i=1 Ui is 1/nVar (U1).

Now, assume that n is even, say n = 2k and consider estimating I by

IA
n =

1
k

k∑

i=1

U+
i + U−

i

2
, (12)

where now it is assumed that {U+
1 , . . . , U+

k } are i.i.d., just like {U−
1 , . . . , U−

k },
E

[
U+

i

]
= E

[
U−

i

]
= I. Then E

[
IA
n

]
= I and

Var
(
IA
n

)
= (1/k)Var

(
(U+

1 + U−
1 )/2

)
. (13)

Using the elementary identity

Var
(
(U+

1 + U−
1 )/2

)
= 1/4 (Var

(
U+

1

)
+ Var

(
U−

1

)
+ 2Cov

(
U+

1 , U−
1

)
) , (14)

we get that if Var
(
U+

1

)
+ Var

(
U−

1

) ≤ 2Var (Ui) and Cov
(
U+

1 , U−
1

) ≤ 0 then
Var

(
IA
n

) ≤ Var (In). One way to achieve this is to let U+
i , U−

i be antithetic
random variables: U+

i and U−
i are called antithetic if their distributions are the

same but Cov
(
U+

i , U−
i

)
< 0.

How can we introduce antithetic variables in parameter optimization of game
programs? Consider the problem of optimizing the performance of a player in a
non-deterministic game. Let us collect all random choices external to the players
into a random variable Y and let f(Y ; W ) be the performance of the player
in the game. Here W represents the random choices made by the players (f
is a deterministic function of its arguments). For instance, in poker Y can be
chosen to be the cards in the deck at the beginning of the play after shuffling. The
idea is to manipulate the random variables Y in the simulations by introducing a
“mirrored” version, Y ′, of it such that f(Y ; W ) and f(Y ′; W ′) become antithetic.
Here W ′ represents the player’s choices in response to Y ′ (it is assumed that
different random numbers are used when computing W and W ′).

The influence of the random choices Y on the outcome of the game is often
strong. By this we mean that the value of f(Y ; W ) is largely determined by
the value of Y . For instance, it may happen in poker that one player gets a
strong hand, whilst the other gets a weak one. Assuming two players, a natural
way to mitigate the influence of Y is to reverse the hands of the players: the
hand of the first player becomes that of the second and vice versa. Denoting the
cards in this new scenario by Y ′, it is expected that Cov (f(Y ; W ), f(Y ′; W ′)) <
0. Since the distribution of Y and Y ′ are identical (the mapping between Y
and Y ′ is a bijection), the same holds for the distributions of f(Y ; W ) and
f(Y ′; W ′). When the random choices Y influence the outcome of the game
strongly then we often find that f(Y ; W ) ≈ −f(Y ′; W ′). When this is the
case then Cov (f(Y ; W ), f(Y ′; W ′)) ≈ −Var (f(Y ; W )) and thus f(Y ; W ) and
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f(Y ′; W ′) are “perfectly” antithetic and thus Var
(
IA
n

) ≈ 0. Of course, f(Y ; W )
= −f(Y ′; W ′) will never hold and thus the variance of IA

n will not be eliminated
entirely – but the above argument shows that it can be reduced to a large extent.

This method can be used in the estimation of the gradient (and also when the
performance of the players is evaluated). Combined with the previous methods
we obtain

ĝp′,i(θ) =
1

4cp′

p′
∑

j=1

1

Δ
(j)
i

(
(f(θ + cΔ(j); Y ) + f(θ + cΔ(j); Y ′))

− (f(θ − cΔ(j); Y ) + f(θ − cΔ(j); Y ′))
)

, (15)

whereΔ(1), . . . , Δ(p′)are i.i.d. random variables. In our experiments (see Sect. 5.1)
we observed that to achieve the same accuracy in evaluating the performance of
a player we could use up to 4 times less samples when antithetic variables were
used. We expect similar speed-ups in other games where external randomness
influences the outcome of the game strongly.

4 Test Domains

In this section we describe the two test domains, Omaha Hi-Lo Poker and Lines
of Action. Together with the game-playing programs they are used in the exper-
iments.

4.1 Omaha Hi-Lo Poker

The rules. Omaha Hi-Lo Poker is a card game played by two to ten players.
At the start each player is dealt four private cards, and at later stages five
community cards are dealt face up (three after the first betting round, and one
after the second betting round and after the third betting round). In a betting
round, the player on turn has three options: fold, check/call, or bet/raise. After
the last betting round, the pot is split amongst the players depending on the
strength of their cards. The pot is halved into a high side and a low side. For
each side, players must form a hand consisting of two private cards and three
community cards. The high side is won according to the usual poker hand ranking
rules. For the low side, a hand with five cards with different numerical values
from Ace to eight has to be constructed. The winning low hand is the one with
the lowest high card.

Estimating the Expected Proportional Payoff. It is essential for a poker
player is to estimate his winning chances, or more precisely to predict how much
share one will get from the pot. Our program, MCRAISE, uses the following
calculations to derive an estimate of the expected proportional payoff.

N random card configurations, cc, are generated, each consisting of the oppo-
nent hands hopp(cc) and the community cards that still have to be dealt. Then,
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given the betting history history of the current game, the expected payoff as ex-
pressed as a proportion of the actual pot size (we call this quantity the expected
proportional payoff or EPP) is approximated by

pwin =
1
N

∑

cc

win(cc)
∏

opp

p(hopp(cc)|history)
p(hopp(c))

. (16)

where win(cc) is the percentage of the pot won for a given card configuration
cc and p(hopp(cc)|history) is the probability of cc given the observed history of
betting actions. Now, using Bayes’ rule, we obtain

p(hopp(cc)|history)
p(hopp(cc))

∝ p(history|hopp(cc)) , (17)

where the omission of p(history) is compensated by changing the calculation of
pwin by normalising the individual weights of w(cc) = p(history|hopp(cc)) so as
they sum to 1, i.e., pwin is estimated by means of weighted importance sampling.

The probability of a betting sequence given the hole cards, p(history|hopp(cc)),
is computed using the probability of a certain betting action given the game
state, p(a|hopp(cc)), which is the core of the opponent model. If we would assume
independence among the actions of an opponent, then p(history|hopp(cc)) would
come down to a product over the individual actions. This is obviously not the
case. A simple way to include the correlation among the betting actions inside
a round is given by the following equation:

p(history|hopp(cc)) =
∏

rnd

∑
a∈historyopp,rnd

p(a|hopp(cc))
p(a)

naopp,rnd
, (18)

where naopp,rnd is the number of actions of an opponent opp in a round rnd.
Estimating p(a|hopp(cc)) can be done in various ways. Currently, we use a

generic opponent model, fitted to a game database that includes human games
played on IRC, and games generated by self-play.

Action Selection. MCRAISE’s action selection is based on a straightforward
estimate of the expected value of each actions followed by selecting the action
with the highest value. Given the current situation s and the estimate of EPP,
pwin = pwin(s), the expected value of an action a is estimated by

Q(s, a) = pwinΠ(a, s) − B(a, s) , (19)

where Π(a, s) is the estimated pot size provided that action a is executed and
B(a, s) is the contribution to the pot. For estimating Π(a, s) and B(a, s), we
assume that every player checks from this point on.

4.2 Lines of Action

In this subsection we explain first the game of Lines of Action (LOA). Then, the
tournament program MIA and its enhancement RPS are described briefly.
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The rules. LOA is a chess-like game with a connection-based goal. The game
is played on an 8× 8 board by two sides, Black and White. Each side has twelve
pieces at its disposal. The players alternately move a piece, starting with Black.
A move takes place in a straight line, exactly as many squares as there are pieces
of either colour anywhere along the line of movement. A player may jump over its
own pieces. A player may not jump over the opponent’s pieces, but can capture
them by landing on them. The goal of a player is to be the first to create a
configuration on the board in which all own pieces are connected in one unit.
The connections within the unit may be either orthogonal or diagonal.

MIA. MIA 4++ is a world-class LOA program, which has won the LOA tour-
nament at the eighth (2003) and ninth (2004) Computer Olympiad. It is consid-
ered as the best LOA-playing entity of the world [17]. Here we will focus on the
program component optimized in the experiments, the realization-probability
search (RPS) [16]. The RPS algorithm is a new approach to fractional plies. It
performs a selective search similar to forward pruning and selective extensions.
In RPS the search depth of the move under consideration is determined by the
realization probability of its move category. These realization probabilities are
based on the relative frequencies which are noticed in master games. In MIA,
the move categories depend on center-of-mass, board position, and capturing. In
total there are 277 weights eligible to be tuned. Levy [10] argues that it may be
necessary for a computerized search process to have numbers for the categories
that are different from the ones extracted from master games. Therefore, we also
believe that there is still room to improve the algorithm’s performance by tuning
its weights.

5 Experiments

In poker, we tested the RSPSA algorithm by optimizing two components of
MCRAISE, the opponent model and the action selection. For both components, we
compare the performance resulting by using RSPSA with the performance given
by an alternative (state-of-the-art) optimization algorithm. The experiments for
the opponent-model optimization are described in Sect. 5.1 and for the move-
selection optimization in Sect. 5.2. In LOA, the RSPSA algorithm is employed to
tune the realization-probability weights in MIA. According to [7] these weights
belong to a class of parameters (termed class-S search decisions) that can be
evaluated using search trees. In Sect. 5.3 we show how this property is exploited
for improving the efficiency of the learning.

5.1 Tuning the Opponent Model

The opponent model of MCRAISE is embodied in the estimation of p(a|hopp(cc))
(see Sect. 4.1). The model uses in total six parameters.

For problems where the number of parameters is small, FDSA can be a natural
competitor to SPSA. We combined both SPSA and FDSA with RPROP. The
combined FDSA algorithm will be denoted in the following by RFDSA. Some
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preliminary experiments were performed with the standard SPSA, but they did
not produce reasonable results (perhaps due to the anisotropy of the underlying
optimization problem).

A natural performance measure of a player’s strength is the average amount
of money won per hand divided by the value of the small bet (sb/h). Typical
differences between players are in the range of 0.05 to 0.2sb/h. For showing that
a 0.05sb/h difference is statistically significant in a two-player game one has to
play up to 20,000 games. It is possible to speed up the evaluation if antithetic
dealing is used as proposed in Sect. 3.3. In this case, in every second game each
player is given the cards which the opponent had the game before, while the
community cards are kept the same. According to our experience, antithetic
dealing reduces the necessary number of games by at least four. This technique
is used throughout the poker experiments.

In the process of estimating the derivatives we employed the “Common Ran-
dom Numbers” method: the same decks were used for the two opposite perturba-
tions. Since many of the decks produced zero SPSA differences, thus producing
zero contribution to the estimation of the sign of the derivatives, those decks that
resulted in no-zero differences were saved for reuse. In subsequent steps, half of
the decks used for a new perturbation were taken from those previously stored,
whilst the other half was generated randomly. The idea of storing and reusing
decks that ‘make difference’ can be motivated using ideas from importance sam-
pling, a method known to decrease the variance of Monte-Carlo estimates.

The parameters of the algorithms are given in Table 1. Note that the perfor-
mance corresponding to a single perturbation was evaluated by playing games
in parallel on a cluster of sixteen computers. The number of evaluations (games)
for a given perturbation was kept in all cases above 100 to reduce the communi-
cation overhead. The parameters of the opponent model were initialized to the
original parameter settings of MCRAISE.

The evolution of performance for the two algorithms is plotted in Fig. 1(top) as
a function of the number of iterations. The best performance obtained for RSPSA

Table 1. Learning parameters of RSPSA and RFDSA for opponent model (OM),
RSPSA and TD for evaluation function (EF) and RSPSA for policy (POL)learning.
η+, η−, δ0 (the initial value of δti), δ− and δ+ are the RPROP parameters; Δ is the
SPSA (or FDSA) perturbation size, λ is the parameter of TD; batchsize is the number
of performance evaluations (games) in an iteration which, for RSPSA and RFDSA, is
equal to the product of the number of perturbations (q), the number of directions (2)
and the number of evaluations per perturbation (r).

η+ η− δ0 δ− δ+ Δ(λ) batchsize

RSPSA (OM) 1.1 0.85 0.01 1e-3 1.0 δ 40 × 2 × 250
RFDSA (OM) 1.1 0.85 0.01 1e-3 1.0 δ 6 × 2 × 1500
RSPSA (EF) 1.2 0.8 0.05 1e-3 1.0 δ/0.7 100 × 2 × 100
RSPSA (POL) 1.1 0.9 0.01 1e-3 1.0 δ/0.3 100 × 2 × 100
TD (EF) 1.2 0.5 0.1 1e-6 1.0 0.9 10000
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Fig. 1. Learning curves in poker: RSPSA and RFDSA for opponent-model learning
(top) and RSPSA and TD for policy learning and evaluation-function learning (bot-
tom). The graphs are obtained by smoothing the observed performance in windows
of size 15. The error bars were obtained by dropping the smallest and largest values
within the same windows centered around their respective coordinates.

was +0.170sb, whilst that of for RFDSA was +0.095sb. Since the performance
resulting from the use of RSPSA is almost twice as good as that of resulting
from the use of RFDSA, we may conclude that despite the small number of
parameters, RSPSA is the better choice here.

5.2 Learning Policies and Evaluation Functions

The action-selection mechanism of MCRAISE is based on a simple estimation of
the expected payoffs of actions and selecting the best action (see Sect. 4.1). This
can be cast as a 1-ply search w.r.t. the evaluation function V if s′, being the
situation after action a is executed from situation s, and if we define V (s′) =
Q(s, a). In the experiments we represent either V or Q with a neural network. In
the first case the output of the neural network for a given situation s represents
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V (s) that is used in the 1-ply search, whilst in the second case the neural network
has three outputs that are used (after normalization) as the probabilities of
selecting the respective next actions. The input to the neural networks include
EPP, the strength of the player’s hand (as the a-priori chance of winning), the
position of the player, the pot size, the current bet level, and some statistics
about the recent betting actions of the opponent.

Learning evaluation functions is by far the most studied learning task in
games. One of the most successful algorithm for this task is TD-learning and the
best known example of successfully training an evaluation function is TDGam-
mon [14]. By some researchers, the success can mostly be attributed to the
highly stochastic nature of this game. Poker is similarly stochastic, therefore
TD-algorithms might enjoy the same benefit. Temporal-difference learning had
some success in deterministic games as well, e.g. [18]. In our experiment we use
a similar design as the one used in MIA, combining TD(λ) with RRPOP (one
source for the motivation of RSPSA comes from the success of combining TD(λ)
and RPROP).

The parameters of the algorithms are given in Table 1. For RSPSA the
same enhancements were used as in Sect. 5.1. We tested experimentally four
algorithms: (1) RSPSA for tuning the parameters of an evaluation function
(RSPSA(EF)), (2) RSPSA for tuning a policy (RSPSA(POL)), (3) TD for tun-
ing an evaluation function (TD(EF)), and (4) TD for evaluation-function tuning
with a supervised start-up (spvTD(EF)). For the latter a simple supervised al-
gorithm tuned the neural network used as the evaluation function to match
the evaluation function that was described in Sect. 4.1. The learning curves are
given in Fig. 1(bottom). The best performance obtained for RSPSA(EF) was
+0.194sb/h, for RSPSA(POL) it was +0.152sb/h, for TD(EF) it was +0.015sb/h
and for spvTD(EF) it was +0.220sb/h. It is fair to say that TD performed better
than RSPSA, which is a result one would expect given that TD uses more in-
formation about the gradient. However, we observe that for TD it was essential
to start from a good policy and this option might not be always available. We
note that although the two RSPSA algorithms did not reach the performance
obtained by the combination of supervised and TD-learning, they did reach a
considerable performance gain even though they were started from scratch.

5.3 Tuning the Realization-Probability Weights

Generally the parameters of a game program are evaluated by playing a number
of games against a (fixed) set of opponents. In [7], it was noted that for pa-
rameters such as search extensions alternative performance measures exists as
well. One such alternative is to measure the ‘quality’ of the move selected by the
search algorithm (constrained by time, search depth or number of nodes). The
quality of a move was defined in [8] as the negative negamax score returned by
a sufficiently deep search for the position followed by the move. In the following,
we describe two experiments. In the first, the performance is evaluated by game
result. The result is averaged over 500 games played against five different oppo-
nents starting from 50 fixed positions with both colors. Each opponent is using
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Table 2. Learning parameters of RSPSA for realization-probability weights using game
result (GR) and move score (MS) for evaluation

η+ η− δ0 δ− δ+ Δ(λ) batchsize

RSPSA (GR) 1.2 0.8 0.005 1e-3 1.0 δ/0.7 500 × 2 × 1
RSPSA (MS) 1.2 0.8 0.005 1e-3 1.0 δ/0.7 5000 × 2 × 1
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Fig. 2. Learning curves for RSPSA on game result (top) and moves score (bottom) as a
function of the number of iteration. The graphs are obtained by smoothing the observed
performance in windows of size 10. The error bars were obtained by dropping the
smallest and largest values within the same windows centered around their respective
coordinates.

a different evaluation function. Each player is searching a maximum of 250,000
nodes per move. In RSPSA the gradient is estimated with 500 perturbations,
using one game per perturbation. The common random number technique is
implemented in this case by using the same starting position, same opponent
and same color for both the positive and the negative sides. In the second exper-
iment the performance is evaluated by move score. The move score is averaged
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over a fixed set of 10,000 positions. For selecting the move the search is limited
to 250,000 nodes. For evaluating the move a deeper search is used with a max-
imum of 10,000,000 nodes. Since the score of a move does not depend on the
realization-probability weights, they are cached and reused when the same move
is selected again (for the same position). So, the deeper search is performed far
less frequently than the shallower search. The RSPSA gradient is estimated with
5,000 perturbations. Each side of a perturbation is evaluated using one position
selected randomly from the set of 10,000 positions (the same position for both
sides). Considering that the average game length in LOA is at least 40 ply, in
the second experiment the gradient is estimated approximately four times faster
than in the first experiment. Moreover, according to our observation, the esti-
mates with move scores are less noisy as well. The parameters of the RSPSA
algorithm for the two experiments are given in Table 2.

The learning curves for the two experiments are plotted in Fig. 2. Since the
two experiments are using different performance measures, the performance for
the two curves cannot be compared directly. Intuitively, the performance gain
for the experiment using move scores (bottom) seems to be more significant
than the one using game result. A more direct comparison can be performed
by comparing the performance, measured as game result, of the best weight
vector of each curve. The best performance obtained in the first experiment was
0.55, and the average game result corresponding to the best vector of the second
experiment was 0.59. Therefore, we may conclude that using the move scores for
estimating the performance improves the efficiency of the RSPSA algorithm.

6 Conclusions

This article investigated the value of a general purpose optimization algorithm,
SPSA, for the automatic tuning of game parameters. Several theoretical and
practical issues were analysed, and we have introduced a new SPSA variant,
called RSPSA. RSPSA combines the strengths of RPROP and SPSA: SPSA is
a gradient-free stochastic hill-climbing method that requires only function eval-
uations. RPROP is a first-order method that is known to improve the rate of
convergence of gradient ascent. The proposed combination couples the perturba-
tion parameter of SPSA and the step-size parameters of RPROP. It was argued
that this coupling is natural.

Several other methods were considered to improve the performance of SPSA
(and thus that of RSPSA). The effect of performing a larger number of pertur-
bations was analyzed. An expression for the mean-square error of the estimate
of the gradient was derived as the function of the number of (noisy) evaluations
of the objective function per perturbation (q) and the number of perturbations
(r). It was found that to optimize the mean-square error with a fixed budget
p = qr, the number of perturbations should be kept at maximum. We suggested
that besides using the method of “common random numbers”, the method of
antithetic variables should be used for the further reduction of the variance of
the estimates of the gradient. These methods together are estimated to achieve a
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speed-up of factor larger than ten (since a smaller number of function evaluations
is sufficient to achieve the same level of accuracy in estimating the gradient).
The overall effect of these enhancements facilitated the application of SPSA for
tuning parameters in our game programs MCRAISE and MIA, whilst without the
proposed modifications SPSA was not able to yield noticeable improvements.

The performance of RSPSA was tested experimentally in the games of Om-
aha Hi-Lo Poker and LOA. In poker, the optimization of two components of
MCRAISE were attempted: that of the opponent model and the action-selection
policy. The latter optimization task was tried both directly when the policy was
represented explicitly and indirectly via the tuning of the parameters of an evalu-
ation function. In addition to testing RSPSA, for both components an alternative
optimizer was tested (RFDSA and TD(λ), respectively). On the task of tuning
the parameters of the opponent model, RSPSA led to a significantly better
performance as compared with the performance obtained when using RFDSA.
In the case of policy optimization, RSPSA was competitive with TD-learning,
although the combination of supervised learning followed by TD-learning out-
performed RSPSA. Nevertheless, the performance of RSPSA was encouraging on
this second task as well. In LOA, the realization-probability weights of MIA were
tuned by RSPSA. In the experiments, we have shown that using move scores for
performance evaluation instead of game results can speed-up and improve the
performance of RSPSA at the same time. In summary, from the experimental
study we may conclude that the RSPSA algorithm using the suggested enhance-
ments is a viable approach for optimizing parameters in game programs.
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