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Abstract. A sumber is a sum of ups, downs and star. Sumbers can
describe the positions of many partisan infinitesimal games. Earlier, we
provided a simplification rule [6] that can determine whether a game G
is a sumber or not, and if it is, determine the exact sumber of G from
its left and right options, GL and GR. This article extends the previous
result and presents three variations of colored heap games; each of them
can be solved by sumbers.

1 Introduction

We are concerned with combinatorial games and follow the notations and con-
ventions of Winning Ways [1]. We also assume the readers are familiar with
numbers [3] and nimbers [2,4]. Numbers and nimbers are well-known game sub-
groups with the following two properties.

1. There exists a simple rule to determine the outcome of any game in the
subgroup.

2. There exists a simplification rule that can simplify games in the subgroup.

In March 2005, we presented another subgroup, sumbers [6], having the above
properties. This section briefly reviews the definitions and major results about
sumbers.

Definition 1. For any number d, define

↑(d) = {↑(dL), ∗|∗, ↑(dR)} , (1)

where ∗ = {0|0} (pronounced star). ↑ followed by the empty set is the empty set.

Each ↑(d), d > 0, is called an up. The negation of an up is called a down. We use
the notation n·↑(d) to denote the sum of n copies of ↑(d).

Definition 2. A sum of ups, downs, and star is called a sumber. A sumber S
can be written in the standard form:

S = s0 ·∗ +
∑

k=1,n

sk·↑(dk) , (2)

where s0 = 0 or 1, sk �= 0, 0 < k ≤ n, and 0 < dk < dk+1, 0 < k < n.
∑

k=1,n sk

is called the net weight of S.
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The outcome of a sumber can be determined by theorem 1 [6].

Theorem 1. Let S be a sumber in the above standard form. Then,

– S > 0 if and only if (
∑

k=1,n sk > s0) or (
∑

k=1,n sk = s0 and s1 < 0);
– S < 0 if and only if −S > 0;
– S = 0 if and only if n = 0 and s0 = 0;
– S | 0 , otherwise. ��

Definition 3. Let S be a sumber in the above standard form. For each m ∈
{0, dk : 1 ≤ k ≤ n}, define

Sm =
∑

k=1,n; dk≥m

sk·↑(dk) −
∑

k=1,n; dk≥m

sk·↑(m) . (3)

We say S has a cut at m if Sm ≤ 0.

Each sumber has at least one cut. We are only concerned with the minimum cut:
the smallest number in {0, dk : 1 ≤ k ≤ n} which is a cut. When S is a sumber,
and m is the minimum cut of S, we call Sm the upper section and

Sm = S − Sm (4)

the lower section of S.
Sums of ups and downs (excluding ∗) are totally ordered. If GL and GR are

sets of sumbers, then G has at most two non-dominated options, one contains
∗ and the other does not, in each of GL and GR. In other words, G can be
simplified as

G = {A, B|C, D} , (5)

where A, B are the non-dominated options in GL and C, D are the non-
dominated options in GR.

Definition 4. Let G = {A, B|C, D}, where A, B, C, D are sumbers and the
net weight of C is less than or equal to the net weight of D. The critical section
X(G) of G = {A, B|C, D} is defined as the set of numbers x ≥ m satisfying all
the following inequalities:

↑(x) |> A − Cm + ∗ ,

↑(x) |> B − Cm + ∗ ,

↑(x) < | C − Cm + ∗ ,

↑(x) < | D − Cm + ∗ ,

where m is the minimum cut of C.

Theorem 2 [6] can simplify games with sumber options.

Theorem 2. Let G = {A, B|C, D}, where A, B, C, D are sumbers and the net
weight of C is less than or equal to the net weight of D.
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– If A< | 0, B < | 0 and C |> 0, D |> 0 then G = 0.
– If A || ∗, B || ∗, and C || ∗, D || ∗ then G = ∗.
– Otherwise (without loss of generality, we may assume either G > 0 or G >

∗), G is a sumber if and only if X(G) is not empty. Moreover, when G is a
sumber,

G = Cm + ∗ + ↑(p) (6)

where m is the minimum cut of C and p is the simplest number in
X(G). ��

Sumbers can describe the positions of many partisan infinitesimal games. In each
of the next three sections, we study one variation of a colored heap game.

2 Up-Down Game

The Up-Down game was first proposed by K. Y. Kao [5]. It is played on a number
of heaps of counters. Each counter is colored either black or white. Left and Right
move alternatively and their legal moves are different.

– When it is L’s turn to move, he1 can choose any one of the heaps and
repeatedly removes the top counter until either he removed a white counter
or the heap has become empty.

– When it is R’s turn to move, he can choose any one of the heaps and repeat-
edly removes the top counter until either he removed a black counter or the
heap has become empty.

The player who removes the last counter is the winner.
Let S be a heap, we use the notation S : B (or S : W ) to denote the heap by

adding a black (or white) counter on top of S.

Proposition 1. Each colored heap in Up-Down game is a sumber (or the nega-
tion of a sumber) of the form:

S = s0. ∗ +
∑

k=1,n

sk·↑(dk) , (7)

where s0 = 0 or 1, sk > 0, 0 < k ≤ n and 0 < dk < dk+1, 0 < k < n.
Moreover, a heap with one single counter has the value ∗ (in this case, we can
assume n = 0 and d0 = 0.)

When S has at least two counters, and the color of the counter next to the
bottom counter is black,

S : B = {SL|S} = S + ↑(dn) + ∗ , (8)
S : W = {S|SR} = S − ↑(dn) + ↑(dn + 1) . (9)

1 In this paper, we use ‘he’ and ‘him’ wherever ‘he or she’ and ‘his or her’ are meant.
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When S has at least two counters, and the color of the counter next to the bottom
counter is white,

S : B = {SL|S} = S + ↑(dn) − ↑(dn + 1) , (10)
S : W = {S|SR} = S − ↑(dn) + ∗ . (11)

Proof. The proof is by induction. We assume S is a sumber in the standard
form. Consider the case where S has at least two counters, and the color of the
counter next to the bottom counter is black. According to the rule of the game,
we have S : B = {SL|S}. Since dn is the minimum cut of S, the critical section
of S : B is

X(S : B) = {x ≥ dn : SL − S + ∗< | ↑(x)}
= {x ≥ dn : ↑(dn − 1) − ↑(dn) + ∗< | ↑(x)} = {x ≥ dn} . (12)

The simplest number in X(S : B) is dn. Thus, according to theorem 2,

S : B = S + ↑(dn) + ∗ . (13)

According to the rule, S : W = {S|SR}. The critical section of S : W is

X(S : W ) = {x : S − SR + ∗< | ↑(x)}
= {↑(dn)< | ↑(x)} = {x > dn} . (14)

The simplest number in X(S : W ) is dn + 1. Thus,

S : W = SR+ ↑(dn + 1) + ∗ = S− ↑(dn)+ ↑(dn + 1) . (15)

The case where the color of the counter next to the bottom counter is white can
be proven in a similar way. ��
Proposition 1 can help us figuring out the exact sumber of any Up-Down heap.
The color of the counter next to the bottom counter determines whether the
sumber is positive or not. If it is black then the sumber is positive, otherwise
(white) the sumber is negative. When the sumber of a heap is positive, the
number of black counters (other than the bottom counter) equals the net weight
of the sumber; the number of white counters plus 1 equals the highest order of
the up terms in the sumber.

Example 1. Consider the heap BBBWWB (from bottom up).
The color of the counter next to the bottom counter is black. By repeatedly
applying proposition 1, we have

B : B = ∗ : B = ↑(1) ,

BB : B = BB + ↑(1) + ∗ = 2·↑(1) + ∗ ,

BBB : W = BBB − ↑(1) + ↑(2) = ↑(1) + ↑(2) + ∗ ,

BBBW : W = BBBW − ↑(2) + ↑(3) = ↑(1) + ↑(3) + ∗ ,

BBBWW : B = BBBWW + ↑(3) + ∗ = ↑(1) + 2·↑(3) . (16)

Thus,

BBBWWB = ↑(1) + 2·↑(3) . ��
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3 Up-Down Game II

The setup of Up-Down II is the same as the Up-Down game, but the legal moves
are different.

– When it is L’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a white counter is removed, or
2. removes all the counters from the heap.

– When it is R’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a black counter is removed, or
2. removes all the counters from the heap.

The player who removes the last counter is the winner.
Each colored heap in Up-Down II corresponds to a Hackenbush number [1].

1. First, translate the heap into a binary string. From bottom up and ignoring
the bottom counter, each black counter is translated into digit 0; each white
counter is translated into digit 1. If the string starts with digit 1, add digit
1 to the end of the above string; if the string starts with digit 0, add digit 0
to the end of the above string.

2. Next, translate the binary string into a Hackenbush number. A string starting
with digit 1 is translated into a positive Hackenbush number; a string starting
with digit 0 is translated into a negative Hackenbush number. Without loss
of generality, we may assume the string starting with digit 1. From left to
right, the first place where the digits changes from 1 to 0 is translated into a
decimal point. Let n the number of 1s to the left of the decimal point. Then
n− 1 is the integer part of the Hackenbush number. The digits to the left of
the decimal point is the dyadic rational part of the Hackenbush number.

The next proposition gives the solution of Up-Down II.

Proposition 2. Each colored heap in Up-Down II is a sumber of the form:

Sd = ↑(d) + ∗ , (17)

where d equals the Hackenbush number of the heap.

Proof. We prove by induction. Assume the claim is true for numbers simpler
than d. By induction hypothesis,

SdL = ↑(dL) + ∗ and SdR = ↑(dR) + ∗ . (18)

According to the rule,

Sd = {SdL , 0|0, SdR}
= {↑(dL) + ∗, 0|0, ↑(dR) + ∗}
= {↑(dL), ∗|∗, ↑(dR)} + ∗
= ↑(d) + ∗ . (19)

��
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Example 2. Consider the heap WWWBBWW (from bottom up). The corre-
sponding binary string of the heap is 1100111. The number of 1’s to the left of
the first 0 is 2. Thus, the integer part of the number is 1 (=2-1). The rational
part is .0111 (in binary notation) which equals 0.4375. This string represents the
Hackenbush number 1.4375. According to proposition 2, the heap has the value
↑(1.4375) + ∗. ��

4 Up-Down Game III

The setup of Up-Down III is the same as Up-Down and Up-Down II, but the
legal moves are different.

– When it is L’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a white counter is removed, or
2. removes all the counters from the heap, or
3. splits the heap into two none-empty heaps.

– When it is R’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a black counter is removed, or
2. removes all the counters from the heap, or
3. splits the heap into two none-empty heaps.

The player who removes the last counter is the winner.
Let Sd denotes the heap whose Hackenbush number is d. With simple induc-

tion, one can show that Sd > ∗ iff d > 0, and Sd2 > Sd1 iff d2 > d1. At the first
glance, it may be seen that both players have many splitting options. But, after
a detailed analysis, we know that each player has at most one dominant split
option.

1. L will never split Sd when d > 0; R will never split Sd when d < 0.
2. When L splits Sd(d < 0) into two heaps −Sb + Su, u must be a number

greater than b and b must be the minimum among all the possible split
options.

3. When R splits Sd(d > 0) into two heaps Sb−Su, u must be a number greater
than b and b must be the minimum among all the possible split options.

The next proposition gives the solution of Up-Down III.

Proposition 3. Each colored heap in Up-Down III is a sumber (or the negation
of a sumber) of the form:

Sd = {SdL , 0|0, SdR} = ↑(d) + ∗ , (20)

(when R has no dominant split option)

or the form:

Sd = {SdL , 0|Sb − Su, SdR} = Sb − Su+ ↑(m) + ∗ , (21)

(when R has a dominant split option)

where d > 0 is the Hackenbush number of the heap, Sb − Su is the dominant
split, and m is the simplest number greater than u.
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Proof. The proof is by induction. Assume the claim is true for games simpler
than Sd. When R has no dominant split option, Sd has the same value as in
Up-Down II. When R has a dominant split option, there are two possible cases.

– case dL = b:

X(Sd) = {x : SdL − Sb + Su + ∗< | ↑(x)}
= {x : Su + ∗< | ↑(x)}
= {x > u} (22)

– case dL > b: In this case, R has a dominant split option on dL. Moreover,
by induction hypothesis,

SdL = Sb − SuR+ ↑(m′) + ∗ , (23)

where Sb −SuR is the dominant split, and m′ is the simplest number greater
than uR.

X(Sd) = {x : SdL − Sb + Su + ∗< | ↑(x)}
= {x : −SuR + Su+ ↑(m′)< | ↑(x)}
= {x > u} (24)

In both cases, we have X(Sd) = {x > u}. By theorem 2,

Sd = {SdL , 0|Sb − Su, SdR} = Sb − Su+ ↑(m) + ∗ , (25)

(when R has no dominant split option)

where m is the simplest number in X(Sd). ��
Example 3. Consider the heap WWWBBWW (from bottom up).
The corresponding Hackenbush number is 1.4375. R can split WWWBBWW
into WW + WBBWW whose corresponding Hackenbush numbers are 1 and
-1.25 respectively. The simplest number greater than 1.25 is 2. Thus,

WWWBBWW = S1.4375 = S1 − S1.25 + ↑(2) + ∗ . (26)

Next, consider the heap WBBWW = −S1.25. L can split WBBWW into
WB + BWWW of which the corresponding Hackenbush numbers are -1 and
3, respectively. The simplest number greater than 3 is 4. Thus,

WBBWW = −S1.25 = −S1 + S3 − ↑(4) + ∗ . (27)

Since R has no dominant split option at WW and BWWW , we have

WW = S1 = ↑(1) + ∗ , (28)
BWWW = S3 = ↑(3) + ∗ . (29)

Finally, putting all together,we have

WWWBBWW = S1.4375 = ↑(2) + ↑(3) − ↑(4) + ∗ . (30)

��
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5 Conclusion

We presented three variations of colored heap games. The sumber simplification
rule is a powerful tool to analyze these games. In the Up-Down game, the sumbers
contain only positive (or negative) ups with integer orders. In the Up-Down II
game, the sumbers may contain ups with rational orders. In the Up-Down III
game, we find sumbers that contains both positive and negative terms. It is
interesting to see how a small change of the rule may produce different game
values. The most interesting thing is that all these games can be solved by
sumbers.
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