
Player Modeling, Search Algorithms and

Strategies in Multi-player Games

Ulf Lorenz and Tobias Tscheuschner

Department of Computer Science,
Paderborn, Germany

{flulo, chessy}@upb.de

Abstract. For a long period of time, two person zero-sum games have
been in the focus of researchers of various communities. The efforts were
mainly driven by the fascination of special competitions such as Deep
Blue vs. Kasparov, and of the beauty of parlor games such as Checkers,
Backgammon, Othello, and Go.

Multi-player games, however, have been investigated considerably less,
and although literature of game theory fills books about equilibrium
strategies in such games, practical experiences are rare. Recently, Korf,
Sturtevant and a few others started highly interesting research activi-
ties. We focused on investigating a four-person chess variant, in order
to understand the peculiarities of multi-player games without chance
components. In this contribution, we present player models and search
algorithms that we tested in the four-player chess world. As a result,
we may state that the more successful player models can benefit from
more efficient algorithms and speed, because searching more deeply leads
to better results. Moreover, we present a meta-strategy, which beats a
paranoid α-β player, the best known player in multi-player games.

1 Introduction

We start with a short overview about two-person games (1.1), and about recent
developments in the area of multi-player games (1.2).

1.1 Two-Person Games

In two-person zero-sum games, game-tree search is the core of most attempts to
make computers play games. Typically, a game-playing program consists of three
parts: a move generator, which computes all possible moves in a given position;
an evaluation procedure which implements a human expert’s knowledge about
the value of a given position or an automatically generated heuristic evaluation
function (in both cases, the values are quite heuristic, fuzzy, and limited), and
a search algorithm which organizes a forecast.

For most of the interesting board games, we do not know the correct evalua-
tions of all positions. Therefore, we are forced to base our decisions on heuristic
or vague knowledge. At some level of branching, the complete game tree (as
defined by the rules of the game) is therefore cut, the artificial leaves of the
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resulting subtree are evaluated with the heuristic evaluations, and these values
are propagated to the root [5,11,1] of the game tree as if they were real ones.
For two-person zero-sum games, computing this heuristic minimax value is by
far the most successful approach in computer-games history, and when Shan-
non [13] proposed a design for a chess program in 1949 — which is in its core
still used by all modern game- playing programs — it seemed quite reasonable
that deeper searches lead to better results. Indeed, the important observation
over the last 40 years in the chess game and some other games is: the game
tree acts as an error filter. Therefore, the faster and the more sophisticated the
search algorithm, the better the search results! This is not self-evident, as some
theoretical analyses show [2,10,4,6], but is the most crucial point in the success
story of the forecast-based game- playing programs.

1.2 Multi-player Games

Most of the material concerning general strategic games comes from mathe-
matical game theory. For an excellent introduction, we refer to [8]. In order to
describe a strategic game, you need

1. the players (Who is involved?),
2. the rules (Who moves when? What do players know, when they move? What

can they do?),
3. the outcomes (for each possible set of actions by the players, what is the

outcome?), and
4. the payoffs (What are the players’ utilities over the outcomes?).

In contrast to two-person zero-sum games, we cannot determine an optimal
strategy in n-person zero-sum games independently from our opponent. In gen-
eral, no so-called dominating strategy exists. Instead, we must be satisfied with
some kind of equilibrium, mostly the so-called Nash- or User-equilibrium [9]:
A set of n strategies S1, . . . , Sn (one for each player) will be called in Nash-
equilibrium, if none of the n players can improve his profit by changing his
strategy Si to S′

i under the assumption that all other n − 1 players keep their
strategies as they are. Such an equilibrium is called a pure Nash equilibrium. If
we assume that the players do not select just one strategy, but that they select a
random distribution over all their possible strategies, such a set of distributions
will be called to be in equilibrium if none of the players can rise his expected
profit by changing his probability distribution under the assumption that all
the others keep their distributions. This kind of equilibrium is called a mixed
Nash-equilibrium. For every finite game, at least one mixed equilibrium does
exist.

The game that we inspect within this paper is an n-person game with complete
information and alternating right to move. This means, at each point of time
exactly one player has the opportunity to move, and all players can observe all
other players’ actions. Therefore, also a pure equilibrium does always exist [8].
For the special case that all outcomes at the leaves of the game tree are different
from each other, the maxn-algorithm finds such an equilibrium [3]. Otherwise, it
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Fig. 1. Tree example with non-unique profit for player 1 at node v1

cannot be predicted what is most rational for a player, respectively, the outcome
is unstable. You can see this in Fig. 1.

Let us assume that we have three players, A,B, and C. A, to move at node
v1, can achieve 0.5, when he moves to the left to node v2. He can also achieve
either 1 or 0 when he goes to the right, but in the given example, B at node v3

can decide whether it will be 0 or 1. It is not possible to assign unique numbers
to positions in order to evaluate them. Instead, we need either sets of numbers
in order to describe the value of a position, or we need a function that combines
the numbers to one value.

Therefore, opponent models become an important factor. Sturtevant and Korf
[16] examined the α-β algorithm in the paranoid model in that each player
assumes that all the others play against him, as well as the maxn-algorithm in
the model in that each player believes that all players try to maximize their own
profit.

2 Organization of the Paper

We are going to describe the application of our interest in Section 2. In Section
3, we present the four player types which we used for our experiments: (1)
the paranoid player, (2) the maxn player, (3) the careful maxn player, (4) the
coalition player, and in particular (5) the coalition-mixer player. We were mainly
interested in the following questions.

– Which opponent model is strong in multi-player games without dice? Can
we acknowledge Sturtevant’s and Korf’s observations?

– Most importantly: can the error-filter effect of game trees (as we described
above) be observed in n-person games? We are convinced that only player
models which can benefit from Moore’s law have a chance to survive in the
long run. Are there differences between the known player models concerning
this issue?

– How can we use our knowledge about error filtering forecasts and our ob-
servations about the previously mentioned players, in order to construct
stronger players? Are there efficient algorithms for the strong player mod-
els?

– One important step in the progress of two-person chess was the introduction
of quiescence searches. Are quiescence searches useful in four-person chess?

In Section 4 we discuss the results of our experiments and we also report about
some attempts which failed. Section 5 ends the paper with some conclusions.
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2.1 The Four-Person Chess Game

A four-person chess game is the game of interest in this paper. It has the following
four interesting properties.

(1) The fact that four players fight against each other instead only two, changes
the character of the game completely, and offers a wide research field. Is
α-β search still useful? Is forecasting still useful? What is a good playing
strategy?

(2) The board and the pieces of the game are similar to the traditional chess
ones. Therefore, we may assume that the heuristic board evaluation can be
kept similar to the chess evaluation: piece values, mobility, king safety... We
see good chances that we can carry over our expertise from two-person chess.

(3) For players already familiar with chess, it is not difficult to understand the
extra rules for four-player chess.

(4) Four player chess has no dice and contains all the problems of market models
usually inspected in game theory. Therefore, we are optimistic that results
that we achieve in this little game will have impact on the wide field of
economics.

Fig. 2. The four-person chess board

All participants — usually called White, Black, Blue, and Yellow, respectively
South, West, North and East — play against all others, fighting for one full point.
A draw between four players brings a quarter point, between three players a third
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of a point etc. The chessboard is a Chessapeak Challenge(R)1 design, but we
tried to keep the rules as near to normal chess as possible.

As you see in Fig. 2, the board consists of an 8 × 8 chess board with 4 ad-
ditional 3 × 8 partial boards connected to the four sides of the middle chess
board. In the initial position, the Kings are always placed on the right of their
Queens. All pieces move like in traditional Chess, only the Pawns have some
extra opportunities. The squares on the main diagonals of the 8 × 8-mid-board
are marked. There, Pawns can change their direction such that their distance
from their original square to a promotion square remains 12 steps. Each Pawn
can do that only once per game.

The game is artificially made finite with the help of the draw-by-repetition
rule and the 50-moves rule, which are defined analogously to the classic chess
rules. A move consists of 2, 3, or 4 partial moves, depending on how many players
are on the board. If a player is mated or his king can be taken, his pieces are
taken from the board.2

3 The Player Types

The evaluation procedure is for all player-types the same. It is measured by
a relative game portion S(i), which means that the piece values M(i), the
static and dynamic piece-square-values SPT (i), and DPT (i), plus the king
safety KS(i) of player i is divided through the sum of the values of all play-
ers:

S(i) =
M(i) + SPT (i) + DPT (i) + KS(i)

∑n
j=1 M(j) + SPT (j) + DPT (j) + KS(j)

. (1)

3.1 The Paranoid Player Type

Let G = (V, E, H) be a game tree with the set of nodes V and edges E. The
nodes shall correspond to game positions and the edges to moves from one po-
sition to the next. The α-β algorithm is a depth-first search algorithm, which
runs into the search tree down to a predetermined level d. The leaves of the
tree are evaluated by some (heuristic) evaluation function H : V → [0, 1], that
assigns values (here for the sake of simplicity [0, 1]) to positions of the game. An
appropriate game tree for the α-β algorithm consists of two disjoint subsets of
nodes, so called min-nodes and max-nodes. At max-nodes, the max-player must
move and he3 builds values of inner nodes by computing the maximum over
its successor values. The analog is valid for the min-player who minimizes over
successor values. Values of inner nodes of the tree are called minimax values.
The α-β standard algorithm can easily be extended to n-person games if the
paranoid model is used.
1 http://chessapeak.com/chess.html
2 The detailed rules can be found at http://wwwcs.uni-paderborn.de/fachbereich/

AG/monien/PERSONAL/FLULO/4PChess.html
3 In this paper we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.

http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/PERSONAL/FLULO/4PChess.html
http://wwwcs.uni-paderborn.de/fachbereich/AG/monien/PERSONAL/FLULO/4PChess.html
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value alphabeta (Position v, value α, value β, remaining depth d, player i)
// Let player 1 be the max-player, let the others be min-players.
compute the feasible successor positions v1, . . . , vb of v.
// Let H(v) be the evaluation function for leaves.
if (d == 0 or b == 0) return H(v);
for j := 1 to b

if (max-player has to move) {
α := maximum(α, alphabeta(vj , α, β, d − 1, (i + 1) mod n));
if α ≥ β return α;
if j == b return α;

} else {
β := minimum(alphabeta(vj , α, β, d − 1, (i + 1) mod n), β);
if α ≥ β return β;
if j == b return β;

}

At the best, the algorithm finds out the minimax value of the root position and
needs to examine only O(bt·(n−1)/n) leaves [16], n being the number of players,
b a uniform branching factor, and t the search depth.

Hash tables, history heuristic, killer moves, null moves, zero-window search,
and iterative deepening are important additional techniques that may enhance
an α-β algorithm [12], such that the best case can be nearly achieved in practice.

3.2 The maxn-Player Type [7]

Again, let (V, E, H) be a game tree, but V being partitioned into n disjoint
subsets for n different players. Let H be the heuristic evaluation function. In
contrast to what we saw before, let it return a vector of profits. H : V → [0, 1]n,
with

∑b
i=1 Hi(v) = 1. Let Fi(v), the ith component of a current maxn-vector of

a node v, describe the profit of player i in position v.

profit-vector maxn (position v, lower bound on predecessor’s profit
m = Fi−1(predecessor(v)), remaining depth d, player i)

compute the feasible successor positions v1, . . . , vb of v.
// Let H(v) be the evaluation function for leaves.
if (d == 0 or b == 0) return H(v);
profit-vector a := (−1, . . . ,−1);
for j := 1 to b

F (vj) := maxn (vj , ai, d − 1, (i + 1) mod n));
if (Fi(vj) > ai) a := F (vj) ;
if ai > 1 − m return a; // shallow pruning
if j == b return a;

The algorithm performs a so-called shallow pruning, i.e., pruning which is
caused by the predecessor of a cutoff node. Without speculation, this is the only
possible pruning [15]. The following example shows that so-called deep pruning
is not possible.

In Fig. 3, the third component of the profit vector of node (e) has the value
0.5. This is larger than 1 − (F1(a)) = 1 − 0.6 = 0.4, and therefore, player 1 will



216 U. Lorenz and T. Tscheuschner

Fig. 3. Example for dangerous deep pruning

avoid that node (e) occurs on the board. Therefore, we might be willing to cutoff
the node (f). This procedure is called ’deep pruning’, because the grandfather
node (b) of the node (d) causes the cutoff.

However, although the profit vector of the node (f) cannot reach the root (b)
when the maxn-algorithm is used, (f) can change the root profit vector. First, let
us assume that (f) has the vector (0.2, 0.2, 0.6). In this case, player 3 will prop-
agate the vector to node (d). As a consequence, player 2 will choose the vector
(0.7, 0.3, 0.0) for node (c). After all, player 1 assigns this vector (0.7, 0.3, 0.0) to
the root.

Now, let the value of node (f) be (0.0, 0.4, 0.6). Player 3 will choose this for
node (d) as well, but player 2 will propagate (0.0, 0.4, 0.6) instead of (0.7, 0.3, 0.0).
Player 1 will see that node (a) is better for him than node (c), and the value
vector of the root becomes (0.6, 0.3, 0.1).

The paranoid player can also be interpreted as a special case of the maxn-
player with an appropriate evaluation function. In this sense, our distinction
between paranoid and maxn-player may look a bit artificial. We believe, however,
that the strength of the ’special case’ is severe enough that we feel encouraged
to deal with it as a separate case.

3.3 The Careful maxn (cmaxn) Player Type

As we will see in the experimental section, the paranoid player does quite a good
job. We tried to find out, what goes wrong with the maxn player, and we tried
to find other updating rules for inner node values in order to beat the paranoid
player.

The intuition behind the careful maxn (cmaxn) player type is the conjecture
that the weakness of the maxn player comes from the fact that the players do not
exactly know, what a real value vector of a position is, and that they do not know,
how the other players estimate a position. Therefore, we assume that a player
p, who has to move at node v, examines all successors, takes the observed profit
vectors of the successors, and computes a weighted average over the successor
profit vectors. We assumed it to be reasonable that a successor’s weight becomes
higher, the better it looks for player p. We assumed two advantages over the
maxn updating rule. First, every position gets a unique value vector. Second, it
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is modeled that all players want to maximize their own profit, but that they are
not sure about the opponents incentives. One possibility to realize this concept
is as follows.

Let v be a node and v1, . . . , vb its successors, n the number of players. Let
p1, . . . , pb = (p1

1, . . . p
n
1 ), . . . , (p1

b , . . . , p
n
b ) be the profit vectors of the nodes v1, . . . ,

vb. Let us furthermore assume that player P has to move. Then we define weights
wP

1 , . . . , wP
b for the b successors with

wP
i :=

(pP
i )2

∑b
j=1(p

P
j )2

. (2)

The new profit vector for node v is then (p1, . . . , pb) with pi :=
∑b

k=1 wP
i · pk

i .
As the experimental section will show, this player type is a misconception.

3.4 Coalition Players

The idea of the coalition player is as follows. During the game, either all players
are more or less equally strong, or one gets the best position, one player the
worst, and two are somewhere in between. The three non-leading players have
a certain interest to stop the strongest player, but the weakest cannot sacrifice
anything. He has the least interest to attack the leading player. The strongest
player knows that the others want to bring him back, and must therefore play
against all three. He should especially play against the weakest player, in order
to mate him, before his strength is reduced to an average level. The strongest
player plays against all others. The weakest player plays against the strongest
in order to defend himself. The other two players can start coordinated attacks
against the strongest player, they can even sacrifice some game portion. We
created a player, who assumes this coalition scheme and who tries to benefit
from the coalition by examining fewer moves than the normal paranoid player.
The player with the lowest game portion ignored moves of the coaliting players
and the coaliting players ignored the moves of the player with the lowest game
portion. This attempt is too restrictive and neither successful.

3.5 Coalition-Mixer Player Type

The basic idea of the comixer player and the resulting comixer algorithm is to
improve the behavior of the paranoid α-β player. The paranoid player is a good
defender of a position, but shows some lacks in the offense.

In order to add the idea of cooperative attacks to the paranoid player, we
provide the comixer player with minimax values of various coalitions. All the
help searches for minimax values were made with the help of the α-β algorithm,
of course. Although the many small help searches can only be performed with
a relative small search depth, this player type beats an efficient paranoid player
type.

The Algorithm. For a rough description of the algorithm, we present the
following pseudo code.
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(value of position v, move (v, w) ) comixer (position v, player M , depth parameter d)
generate moves from v to the successors of v, named v1, . . . , vb

// Let b be the number of moves.
// Let a paranoid value pi(v) be the minimax value that arises when player i
// plays against all the others, preserving the move rights.

1 compute the paranoid values pi(v) for all players, using α-β searches with depth d
2 Let T be the player with best pT (v) with M �= T .

Select a set C of plausible coalitions. (Coalitions against T only.)
3 For all coalitions c ∈ C
4 For all moves (v, wi) from v to successor wi, i ∈ {1 . . . b}
5 compute minimax value ec(v, wi) := alphabeta(wi, 0, 1, d)

// Needs modification of p.4 algorithm.
// This leads to an total search depth of d + 1.

6 For all moves (v, wi) from v to successor wi, i ∈ {1 . . . b}
7 compute the benefit value of the move (v, wi): comix(v, wi).

//Comix is a piecewise linear function which combines the move values of the
//various coalitions to one move value.

8 return the best move with its value.

Explanation of the Algorithm. In the case of three remaining players, there
are three possible coalitions, in which two players can cooperate with each other.
In the case of four players we have four coalitions in which one single player fights
against the remaining players and three two-by-two coalitions. For our four-
person Chess game this is sufficient, but you can easily generalize the approach
for a n-player game by calculating the corresponding possible coalitions.

In order to reduce the number of coalitions to be examined, the comixer
algorithm does not compute the values of all possible coalitions. Instead, we
concentrate on coalitions against the player with the best position. Let M be
the player, who has the right to move. The comixer selects that player T �= M
as a target, who possesses the greatest portion of the game (see line 2 of the
algorithm) except M itself. This decision is made by performing the paranoid α-
β procedure with a low searching depth (see line 1 of the algorithm). After this,
the comixer calculates all coalitions with M and T not simultaneously being a
member (see line 3 of the algorithm). For example, in the four-player game it
calculates the paranoid coalition against himself (all against M), the coalition
against player T (all against T ) and the two remaining two-by-two coalitions,
in which T is not in the team of M . Note, that these coalitions can also be
computed by the α-β algorithm, because the game is reduced to a two-player
game.

For getting minimax values for the moves of player M at the present node v,
the α-β algorithm is not started at the root, but at its successors (see line 4-5
in the algorithm).

The Mixing Functions. The goal is to make the paranoid player cooperate
with other players when it seems necessary. For instance, in the situation that
one player gets a relatively high game value, he may be able to dominate all
other players and win the game. To prevent this, the cooperating coalitions get
higher weights, the more player T’s game value reaches the 50% border.
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When we reach line 6 of the comixer algorithm, we know how good the moves,
starting from v, are in the specific coalitions. In order to make the benefits of
the moves comparable to each other, we divide the value of a move by the value
of the best move in the specific coalition. Note, that player M minimizes in the
paranoid coalition against T . Thus, the best move has a value, that is not greater
than the value of the considered move. So here you have to divide the value of
the best move by the value of the given move. Altogether you get the following
definition.

Let c ∈ C be the observed coalition and h ∈ {1, . . . , b} be the index, for which
ec(v, wh) ≥ ec(v, wj) ∀j ∈ {1, . . . , b}. Then the relative strength of a move (v, wi)
in a coalition c is defined as

rc(v, wi) := min{ ec(v, wi)
ec(v, wh)

,
ec(v, wh)
ec(v, wi)

} . (3)

Now we can mix the values of the different coalitions (this is where the name of
the algorithm comes from). The total value comix(v, w) of a given move (v, w) is
calculated with the help of a set of k weight functions f1, . . . , fk, which depend
on the game portion of the player S with the highest game portion (S = T or
S = M), computed in line 1 of the comixer algorithm, whereas k is the number
of the observed coalitions. A property of the fi is, that

k∑

c=1

fc(x) = 1, ∀x ∈ [
1
n

, 1] . (4)

Then the comix function for a move with index i is defined as

comix(v, wi) :=
k∑

c=1

fc(pS(v)) · rc(v, wi) . (5)

We split the description of the functions in two important parts.
(1) M is determined to be the player with the highest value in line 1 of the

algorithm. In this case, the mixing functions are very easy. The paranoid coalition
gets a continously very high weight of between 80% and 90% depending on
the number of the remaining players. The more players there are, the less is the
importance of the paranoid coalition, because more coalitions participate. The
residual 10-20% are shared by the other coalitions.

(2) The more interesting case will occur, when M is determined to be not the
player with the highest value. Here we use piecewise linear functions to combine
the weights of the coalitions. If there are three remaining players (see Fig. 4) we
only need to combine two coalitions, as mentioned above.

When player T has a value of 33% of the game, the paranoid coalition against
M has 90% weight and the paranoid coalition against T has 10% weight. This
ratio switches linearly until player T has 50% of the game. From this rate on up
to 100%, the weights are constant.

If there are four players in the game, the ratios between the paranoid coalitions
are similar (see Fig. 5).
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Fig. 4. Comix weight function for 3 players

Fig. 5. Comix weight function for 4 players

Only the two two-by-two coalitions are added. Both begin with a value of 5%,
when T ’s game value is 25% and reach their peak of 15% weight at 37.5% of
T ’s game value. After that they fall down to 2% each at 50% of T ’s value. After
this 50% line the functions again keep their values constant. Reasoned by the
addition of the values of the two-by-two coalitions the values of the two paranoid
functions (in particular the one against T) are decreased.

4 Experiments

Our generic four-person chess program consists of a move generator, a heuristic
evaluation function which assigns a profit-vector to each position, and a search
procedure. The evaluation function uses piece values for all pieces, similar as used
in classic computer chess. A Knight, however, is not as much worth as a Bishop
or three Pawns. Its value is only two Pawns. Moreover, we use mobility as a
feature, and piece square tables in order to provide the players with a long-term
idea where to place the pieces. The king cover consists of the existence/non-
existence of the pawn shield, as well as of the distance between the pawn-shield
and the King. The values are in relation to a player’s portion of the game, i.e.,
the sum over all components of a profit vector is 1.



Multi-Player Games 221

The search procedure depends on the player model used. In the case of the
paranoid player, we use the α-β algorithm, enhanced with the killer heuristic,
hash tables and iterative deepening. In all other cases, we use plain versions of
the algorithms. Typical search data are the following. On a 2.4 GHz Pentium
processor, the α-β algorithm searches about 1.1 million nodes per second without
quiescence search and about 0.6 million nodes per second with quiescence search.
Within 3 minutes computing time, it traverses search trees with depths between
7 and 8 without quiescence search, about 6 partial moves with quiescence search.

In order to play games, we set up 16 starting positions by hand. Six games
were played with each of these 16 opening positions. Four players of two different
types (i.e., two groups of two are identical players each) lead to six different
orders, how the players can sit at the table. The two players of one group can sit
at NE (North and East), SE, NW, SW, EW, or NS. The South-player starts the
game. Thus, each contest consists of 96 games. In order to shorten the games,
we adjudicate a game as soon as one player reaches more than 65% of the game
portion. The semantic change of the players’ actions can certainly be negotiated,
and with this modification, a typical game takes between 200 and 300 quarter-
moves. Mostly, at the end two players remain on board with one of them having
more than 65% of the game portion.

4.1 Results

Table 1 presents some pairings with the paranoid player type and the maxn-
player type involved, and the results. ’+Qs’ means quiescence search was used,
’−Qs’ means that it was not used. ’m/M’ means minutes per move and tells
us how many minutes time each side had for each move. We played 96 games
per pairing, starting on a collection of 16 start positions. When a player type A
scores more than 64 percent of the points against player type B, we may assume
that this is not the effect of randomness.

Quiescence Search. Quiescence search is an important feature in traditional
computer chess. The idea is that you should evaluate only so called quiet posi-
tions with the help of the static evaluation function. A position will be quiet if
the player to move has no further taking moves. Quiescence search seems to be

Table 1. Results of pairings between the paranoid and the maxn-player type

Player 1 Player 2 Result

α-β +Qs , 3m/M α-β −Qs , 3m/M 46 1
6

: 46 5
6

maxn +Qs maxn −Qs 27 5
6

: 62 1
6

α-β +Qs , 3m/M maxn −Qs , 3m/M 86 : 10

α-β +Qs, 3m/M maxn −Qs, 2m/M 84 1
2

: 11 1
2

α-β +Qs, 2m/M maxn −Qs, 3m/M 81 5
6

: 14 1
6

α-β +Qs, 3m/M α-β +Qs, 30s/M 64 1
2

: 31 1
2

maxn −Qs, 3m/M maxn −Qs, 30s/M 54 : 42



222 U. Lorenz and T. Tscheuschner

less important in the 4-player chess game, because the α-β with quiescence search
(+Qs) lost against the α-β without quiescence search (−Qs) with 46 1

6 : 46 5
6 , and

more distinct, the maxn +Qs lost against the maxn −Qs 27 5
6 : 62 1

6 . For further
experiments we use the quiescence search paranoid players, but not for the maxn

players.

Paranoid α-β vs. maxn-Player. Although Sturtevant [14,15] already stated
that the paranoid player was strong in several other games, the result of 86 : 10 is
astonishingly clear. The following example is shown in order to show the different
behavior of the different player types.

In the position of Fig. 6, only three quarters of a move are played, but Yellow
(East) is in danger already. If East continues with a careless move (e.g. if he
moves his queen-bishop pawn one step forward), White (South) can play Bg3
(South’s bishop on the file of the South’s queen) and Blue (North) can already
mate East. Only the maxn player moves South’s bishop to g3, because the para-
noid player assumes that North will not take East out of the game as from the
paranoia’s point of view North and East are in a coalition against South. If a
paranoid player leads East’s pieces, he will interestingly handle East’s position
correctly. If he leads North’s pieces, he will also correctly eliminate East. In sim-
ple words, the paranoid player participates in cooperative attacks only in the
terminator role, but he never initiates such attacks as we will see below.

We repeated the games with a predetermined search depth instead of restrict-
ing the time per move, in order to find out whether structural reasons or the

Fig. 6. Early elimination of a careless player
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superior efficiency of the α-β algorithm are responsible for the maxn disaster.
The result was 88 : 8 for the paranoid player, and therefore, we may conclude
that the real reason for the weaknesses of the maxn player lies in the fact that
he relies on the other players’ actions to be performed as he does expect them.
Let us again inspect the position of Fig. 2. Assume in Fig. 2 the maxn player has
South’s pieces and is to move, he may initiate a cooperative attack by playing
Qxl8+ (South’s Queen takes East’s Pawn). Assume now that (1) West helps
South and plays Qxm9+ (West’s Queen takes East’s Pawn) and that (2) North
would not help East by playing Bxl8 (North’s Bishop takes South’s Queen), but
helps South and West, East is mated and may leave the board.

If West is a maxn player he will indeed help South to mate East. Although
West’s Queen will vanish (because North will not (neither if it is a maxn nor
if it is a paranoid player) help East with Bxl8, and South will thereafter take
West’s Queen), West has a certain advantage, because East is completely out of
the game. If, however, West is a paranoid player, he will never participate in this
attack, because he believes North prevents the elimination of East after Qxm9+
by moving Bxl8, whereafter he would simply lose his Queen, because the only
move East has, is taking West’s Queen with his Knight Nxm9. But if West does
not participate in the attack, South will just lose his Queen, because East will
take it in the next move. In other words: it is the existence of the paranoid player
which makes the game of the maxn player wrong.

Differences in Thinking Times. In the way as we expected it, the α-β player
type with 3 minutes per move wins against the α-β player type with 30 seconds
per move clearly with 64 1

2 : 31 1
2 . Again, the maxn player faces problems. The

player who has more time per move available wins only by 54 : 42.

The Careful maxn (cmaxn) Players and the Coalition Player. Both
player types could not gain any benefit from their models. The careful maxn

player lost 81 5
6 to 14 1

6 , and the coalition player 87 5
6 to 8 1

6 against the paranoid
players.

The Comixer Algorithm. The comixer played 96 games against the paranoid
α-β as well. The depth parameter of the comixer was fixed at 4, and the time
that the paranoid player had available depended on the time which the comixer
needed for its calculation. The α-β player then received the arithmetic middle of
the last two times the comixer needed. With the help of this rule, the paranoid
players reached searching depths between 7 and 9. The result of the match was
58 1

3 to 37 2
3 for the comixer. The main disadvantage with this approach is that

we do not yet know how its performance scales with increasing machine power.

5 Conclusion

We made experiments with various player models in the area of the four-person
chess game. We created a couple of candidate player models, and examined their
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relative strengths. Moreover, we investigated in how far computing power plays
a role for the playing strength of the player models, and we investigated the
effect of quiescence searches.

The paranoid player is quite strong and for a long time, we did not find any
competitive other player model. After all, however, we were able to present the
so-called comixer player type which performs better than the paranoid standard
player. This proves that a simple worst-case analysis of the position is not the
best choice, although being astonishingly effective. Moreover, some player models
can better benefit from increasing computing power than others.
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