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Preface

This book contains the papers of the 11th conference on Advances in Com-
puter Games (ACG11) held in Taipei, Taiwan. The conference took place during
September 6-8, 2005, in conjunction with the 10th Computer Olympiad. It was
the first time that this conference took place in Asia. The Advances in Com-
puter Games conference series is a major international forum for researchers and
developers interested in all aspects of artificial intelligence and computer-game
playing. The Taipei conference was definitively characterized by new games and
new ideas.

The Programme Committee (PC) received 32 submissions. Each paper was
initially sent to two referees. If conflicting views on a paper were reported, it was
sent to a third referee. Out of the 32 submissions, 2 were withdrawn before the
final acceptance decision was made. With the help of many referees (see after
the preface), the PC accepted 20 papers for presentation at the conference and
publication thereafter provided that the authors submitted their contribution to
a post-conference editing process. The second refereeing process was meant (a)
to give authors the opportunity to include in the paper the results of the fruitful
discussion after the lecture and (b) to maintain the high-quality threshold of the
ACG series. The authors enjoyed this procedure.

Moreover, the PC was able to invite three key-note speakers who each opened
one of the three conference days. The first invited speaker was Tony Marsland
(University of Alberta), a former ICCA President. He opened the first day with
the presentation “Trials and Tribulations of a Programmer.” The second day was
opened by Hiroyuki Iida (Japan Advanced Institute of Science and Technology
(JAIST)). His talk was titled “Towards Dynamics of Intelligence in the Field
of Games.” The last day of the conference started with the invited speaker
Feng-hsiung Hsu, who is well-known as the main programmer of the Deep Blue
project. He is currently affiliated to Microsoft and so the title of his lecture was:
“Hardware-Related Research at Microsoft Research Asia.”

The above-mentioned set of 20 papers covers a wide range of computer games.
There are 13 games that are popular among humans too, viz., 13 Western Chess,
Chinese Chess, Japanese Chess, Checkers, Lose Checkers, Amazons, Go, Poker,
LOA, Mastermind, Awari, Ataxx, and Pool. Moreover, there are two theoret-
ical games, viz., Connect and Sumbers. The games also cover a wide range of
research topics, including automatic generation, optimization, opponent model-
ing, search, knowledge representation, and graph history interaction. The ever-
reiterating choices between publication per game domain (e.g., Chess and Go)
or per research topic (e.g., learning) was solved this time in favor of the game
domain with an open eye to the clustering of the research topics. We start the
book with a paper on opening books in Western Chess, followed by a paper
on endgame databases in Checkers. Then two papers follow that present meth-
ods to generate automatically search engines or to learn parameters for search
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engines in multiple domains. After a paper on a search algorithm in opponent
modeling is a paper on Amazons. A group of three papers on Go is followed by
two papers on Shogi. After papers on King Race, Chinese Chess, Connect, and
Mastermind, a paper on multi-player chess is included. Subsequently two papers
from the combinatorial game theory are presented. The sequence ends with two
papers on robotic pool.

We hope that our readers will enjoy reading the efforts of the researchers.
Below we provide a brief characterization of the 20 contributions, in the order
in which they are printed in the book. It is a summary of their abstracts, yet it
provides a fantastic three-page overview of the progress in the field.

“Innovative Opening-Book Handling” by Chrilly Donninger and Ulf Lorenz pre-
sents a heuristic in which the opening-book database is explored during the
game. The main point is to avoid playing the “bad” grandmaster moves that
are incidentally included in this book. The paper combines the chess expertise
of a computer with some (partially dirty) statistical information. The technique
is currently used in the chess program Hydra.

“Partial Information Endgame Databases” is written by Yngvi Björnsson,
Jonathan Schaeffer, and Nathan Sturtevant. The paper describes a method to
build selective portions of end game databases, without fully computing portions
of the database that will almost never be needed. It presents a new win-loss-draw
value algorithm that can build endgame databases when unknown (partial infor-
mation) values are present. The paper shows that significant portions of these
databases can be resolved using these methods.

“Automatic Generation of Search Engines” by Markian Hlynka and Jonathan
Schaeffer introduces Pilot, a system for automatically selecting enhancements
for the αβ search. Pilot generates its own test data and then uses a greedy
search to explore the space of possible enhancements. Experiments in multiple
domains show different enhancement selections. Tournament results further in-
dicate that automatically generated αβ search performs at least on a par with
what is achievable by hand-crafted search engines. Moreover, the automatic gen-
eration involves many orders of magnitude less effort.

“RSPSA: Enhanced Parameter Optimization in Games” is written by Levente
Kocsis, Csaba Szepesvári, and Mark Winands. The authors describe an algo-
rithm for optimization of search parameters, which combines Simultaneous Per-
turbation Stochastic Approximation (SPSA) with Resilient Backpropagation
(RPROP). The algorithm is tested in two domains: Poker and LOA. Experi-
ments indicate that using RSPSA is a viable approach.

“Similarity Pruning in PrOM Search” by Jeroen Donkers, Jaap van den Herik,
and Jos Uiterwijk introduces a new pruning mechanism for Probabilistic Oppo-
nent-Model search. The mechanism imposes a bound on the differences between
the values that the opponent models may return for each position. The authors
prove two properties of PrOM-search game trees: the bound-conservation prop-
erty and the bounded-gain property. These properties lead to Similarity pruning
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in PrOM search. Experiments on random game trees show that Similarity Prun-
ing increases the efficiency of PrOM search considerably.

“Enhancing Search Efficiency by Using Move Categorization Based on Game
Progress in Amazons” is authored by Yoshinori Higashiuchi and Reijer Grim-
bergen. They propose a new method for improving the search in Amazons by
using move categories to order moves. The categories are based on the likelihood
of the move actually being selected as the best move, but also depend on the
progress of the game. Self-play experiments show that using move categories
significantly improves the strength of an Amazons program.

“Recognizing Seki in Computer Go,” by Xiaozhen Niu, Akihiro Kishimoto, and
Martin Müller, presents a new method for deciding whether an enclosed area is
or can become a seki. The method combines local search with global-level static
analysis. Experimental results show that a safety-of-territory solver enhanced by
this method can successfully recognize a large variety of local-scale and global-
scale test positions related to seki.

“Move-Pruning Techniques for Monte-Carlo Go,” written by Bruno Bouzy, yields
two new Monte-Carlo pruning techniques: Miai Pruning (MP) and Set Pruning
(SP). In MP the second move of the random games is selected at random among
a set of candidate moves. SP consists of gathering statistics about “good” and
“bad” moves, pruning the latter when statistically inferior to the former. Both
enhancements speed up the search at 9×9 boards. MP slightly improves the
playing level. At 19×19 boards, MP results in a 30% speed-up enhancement and
in a four-point improvement on average.

“A Phantom-Go Program” contains Tristan Cazenave’s contribution on the rela-
tively new computer game Phantom-Go. The new technique introduced is based
on a Monte-Carlo approach. The program called Illusion plays Phantom Go at
an intermediate level. The emphasis is on strategies, tactical search, and special-
ized knowledge. The paper provides a better understanding of the fundamentals
of Monte-Carlo search in Go.

“Dual Lambda Search and Shogi Endgames” is a joint effort by Shunsuke Soeda,
Tomoyuki Kaneko, and Tetsuro Tanaka. The authors propose a new threat-base
search algorithm which takes into account threats by both players. They applied
λ-search mutually recursively so that it searches the best move by taking into
account threats by both players. The search algorithm, called dual λ-search,
is implemented with Df-pn as the driver. Experiments with difficult Shogi-
endgame problems show the effectiveness of the algorithm. It solves problems
that even one of the strongest Shogi programs could not solve correctly.

“Chunking in Shogi: New Findings” is a contribution by Takeshi Ito, Hitoshi
Matsubara, and Reijer Grimbergen. The paper focuses on cognitive experiments
with expert Shogi players. The authors repeated the chess experiments by Chase
and Simon with a set of next-move problem Shogi positions. The experiments
show that expert Shogi players (1) search more moves, (2) search deeper and
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(3) search faster than non-expert players. The experiments also show that ex-
pert Shogi players memorize the patterns of the positions and recognize move
sequences before and after the position. The results suggest that Shogi play-
ers become stronger when they acquire “temporal chunks” of meaningful move
sequences.

“King Race,” by Alejandro González Romero, presents the results of semi-
automated rule discovery in a small chess game, called King Race. From a
manually devised set of attributes and a set of test positions, a decision tree
is learned. The author then derives some rules from the decision tree and proves
these rules to be correct. The author believes that these techniques could be
used in more complex games as well.

“The Graph-History Interaction Problem in Chinese Chess” by Kuang-che Wu,
Shun-Chin Hsu, and Tsan-sheng Hsu reports an improved implementation of
Chines-chess rules in a computer program. The contribution focuses in particular
on the rules concerning cycles. The authors present an algorithm that deals
with most of the GHI problems encountered in Chinese chess. They allow an
acceptable performance degradation only. On average, 3.5% more search time is
needed, but the accuracy is improved substantially. Experiments show that the
algorithm can solve many of the cases that could not be solved previously.

“A New Family of k-in-a-row Games” is written by I-Chen Wu and Dei-Yen
Huang. The paper introduces the game family Connect(m, n, k, p, q) in which
two players alternately place p stones on an m×n board, except for the first turn
when the first player places q stones on the board. The player who first obtains
k consecutive stones of their own color, wins. The authors analyze the family of
games for fairness. Moreover, the paper proposes a threat-based strategy to play
Connect(∞, ∞, k, p, q). Finally, the authors illustrate a new null-move search
approach by solving Connect(∞, ∞, 6, 2, 3).

“Exact-Bound Analyses and Optimal Strategies for Mastermind with a Lie” is
a contribution by Li-Te Huang, Shan-Tai Chen, and Shun-Shii Lin. This paper
presents novel and systematic algorithms to solve a variant of the Mastermind
game, which is called “Mastermind with a lie.” First, a k-way-branching algo-
rithm is used to get an upper bound of the number of guesses for the problem.
Then a fast backtracking algorithm, based on the pigeonhole principle, is used
to get a lower bound of the number of guesses. The authors show that the lowest
upper bound and the highest lower bound are both 7, which means that the
problem is solved completely.

“Player Modeling, Search Algorithms and Strategies in Multi-Player Games,” by
Ulf Lorenz and Tobias Tscheuschner, investigates a four-person chess variant in
order to understand the peculiarities of multi-player games without chance com-
ponents. In this contribution, player models and search algorithms are presented
that have been tested in the four-player chess world. From the result follows that
the more successful player models can benefit from more efficient algorithms and
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speed, because searching more deeply leads to better results. Moreover, a meta-
strategy is presented that beats a paranoid αβ player, the best known player so
far in multi-player games.

“Solving Probabilistic Combinatorial Games” is a contribution by Ling Zhao and
Martin Müller. It discusses Probabilistic Combinatorial Games (PCG) in which
terminal positions in each subgame are evaluated by a probability distribution.
The distribution expresses the uncertainty in the local evaluation. The paper
focuses on the analysis and solution methods for a special case, 1-level binary
PCG. Monte-Carlo analysis is used for move ordering in an exact solver that
can compute the winning probability of a PCG efficiently. Monte-Carlo interior
evaluation is used in a heuristic player. Experimental results show that both
types of Monte-Carlo methods work well in this special case.

“On Colored Heap Games of Sumbers” by Kuo-Yuan Kao deals with sumbers.
These heap games are a special type of combinatorial games. Sumbers can de-
scribe the positions of many partisan infinitesimal game. In this paper, the author
elaborates further on previously obtained results on sumbers and presents three
variations of colored heap games; each of them can be solved by sumbers.

“An Event-Based Pool Physics Simulator,” written by Will Leckie and Michael
Greenspan, presents a method to simulate the physics of the game of pool. The
method is based on a parametrization of ball motion which allows the time of
occurrence of events, such as collisions and transitions between motion states,
to be solved analytically. It is shown that the occurrences of all possible events
are determined as the roots of polynomials up to the fourth order, for which
closed-form solutions exist. The method is both accurate, i.e., returning con-
tinuous space solutions for both time and space parameters, and efficient, i.e.,
requiring no iterative numerical methods. It is suitable for use within a game-
tree search, which requires a great many potential shots to be modeled efficiently,
and within a robotic pool system, which requires a high accuracy in predicting
shot outcomes.

“Optimization of a Billiard Player – Position Play,” is a paper by Jean-Pierre
Dussault and Jean-François Landry. It describes optimization principles to pro-
duce a computer pool player that is good both technically and in planning. The
authors provide optimization models to compute the shots to sink a given ball
as well as to bring the cue ball at a specified target. Some hints on planning
optimization strategies are given.

This book would not have been produced without the help of many persons. In
particular we would like to mention the authors and the referees. Moreover, the
organizers of the events in Taipei contributed quite substantially by bringing the
researchers together. Then we would like to thank Ms. Tons van den Bosch for her
assistance in making the manuscript fit for publication. Without much emphasis,
a special word of thanks goes to the Program Committee of the ACG 11. At
the same time, the editors gratefully acknowledge the expert assistance of all our
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referees. Finally, we happily recognize the generous sponsors Acer Inc, FunTown,
Taiwan National Science Council, and ChessBase.

August 2006 Jaap van den Herik
Shun-Chin Hsu
Tsan-sheng Hsu
Jeroen Donkers
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Yngvi Björnsson
Bruno Bouzy
Michael Buro
Tristan Cazenave
Keh-Hsun Chen
Paolo Ciancarini
Jeroen Donkers
Aviezri Fraenkel

Michael Greenspan
Reijer Grimbergen
Jaap van den Herik
Shun-Chin Hsu
Tsan-sheng Hsu
Hiroyuki Iida
Akihiro Kishimoto
Yoshiyuki Kotani
Shun-Shii Lin

Tony Marsland
Martin Müller
Jonathan Schaeffer
Pieter Spronck
Jos Uiterwijk
I-Chen Wu
Shi-Jim Yen



XII Organization

Referees

Victor Allis
Ingo Althöfer
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Innovative Opening-Book Handling 

Chrilly Donninger1 and Ulf Lorenz1,2 

1 HydraChess.com 
{chrilly, ulf}@hydrachess.com 

2 Department of Computer Science,  
Universität Paderborn, Germany 

flulo@uni-paderborn.de 

Abstract. The best chess programs have reached the level of top players in the 
human chess world. The so-called opening books, which are databases contain-
ing thousands of Grandmaster games, have been seen as a big advantage of 
programs over humans, because the computers do never forget a variation. In-
terestingly, it is this opening phase which causes most problems for the com-
puters. Not because they do not understand openings in general, but because the 
opening books contain too much rubbish. We introduce a heuristic which ex-
plores the database during a game. Without that, the computer repeats failures 
of weaker players. Our contribution presents best practice. 

1   Introduction 

Game playing is one of the core topics in Artificial Intelligence (AI). Unequivocal 
success stories come along with this topic. In some of the most popular parlor games, 
the computer players have already conquered the crown, such as in Checkers [19] or 
Othello [3]. Some games like Connect-4 have even been completely solved [21] 
which means that there exists an algorithm that for all positions of the game is able to 
play the perfect move. The game of Go is still out of the machine’s reach, but in com-
puter chess we nowadays see the leading programs crossing the borderline to the 
human top players.  For instance, the current human vs. machine team-chess world-
championship is in the hands of the machines [13]. Although our new heuristic is 
certainly powerful in any 2-person zero-sum parlor game, we restrict our description 
for the sake of clarity to the example of Chess, the most famous board game. 

1.1   How a Chess Programs Works 

The key feature, which enables current chess programs to play as strong as, or even 
stronger than the best human beings, is their search algorithm. The programs perform 
a forecast. Given a certain position, the line of reasoning is: what can I do, what can 
my opponent do next, what can I do thereafter? Modern programs use some variants 
of the so-called Alphabeta algorithm [12] in order to examine the resulting game tree. 
This algorithm is efficient in the sense that in most cases it will examine only O(bd/2) 
leaves instead of bt leaves, assuming a game-tree depth d and a uniform branching 
factor b. With the help of upper and lower bounds, the algorithm uses information that 
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it collects during the search process in order to keep the remaining search tree small. 
This results in a sequential procedure which is difficult to parallelize, and naive ap-
proaches waste resources. 

Although the Alphabeta algorithm is efficient, we are not able to compute true val-
ues for all positions in games like Chess, because the game tree is far too large. 
Therefore, computers apply tree search as an approximation procedure. This works as 
follows. First of all, a partial tree rooted near the top of the complete game tree is 
selected for examination. Usually, this selection is based on a maximum depth pa-
rameter. Then they assign heuristic values (e.g., one side having a Queen more means 
that this side will probably win) to the artificial leaves of the pre-selected partial tree 
and propagate these values up to the root of the tree as if they were true ones. When 
Shannon [20] proposed a first architecture for a computer chess program – which is in 
its core the same architecture as still used today [14] – it seemed quite natural that 
deeper searching leads to better results. This, however, is by far not self-evident, as 
theoretical analyses by Nau [16], Althöfer [1], or Beal [2] show. Nevertheless, the key 
observation over the last 40 years in most games like Chess is that a game tree acts as 
an error filter. The larger the tree which we can examine, and the more sophisticated 
its shape, the better is its error-filter property.  New interesting ideas like in [11] have 
not reached practice yet. 

1.2   The Race Between the Top-Four 

Let us briefly summarize the breathtaking modern computer-chess history over the 
last 35 years. Before, between 1940 and 1970, programmers attempted to mimic hu-
man chess style, but the resulting programs were weak. Then in the 1970s, CHESS 4.5 
was the first ‘strong’ program, emphasizing tree search. It was the first one that could 
win a tournament against humans, in the Minnesota Open 1977. In 1983, the chess-
machine BELLE became National Master, with a rating of 2100 Elo1. In 1988, HITECH 
won for a first time against a Grandmaster, and in the same year DEEP THOUGHT al-
ready played on Grandmaster level itself. The world changed in 1992 when the 
CHESSMACHINE, a conventional PC program by Ed Schröder became World Cham-
pion. IBM’s DEEP BLUE [10] beat Kasparov in a 6-game match, five years later [18]. 

Interestingly, since 1992 only PC programs have been World Champions. They 
have dominated the world, increasing their playing strength by about 30 Elo points 
per year. Nowadays, the computer-chess community is highly developed. Everything 
desirable exists, even a Virtual Reality with special machine rooms, closed and open 
tournament rooms etc. Anybody can play against Grandmasters or strong machines 
via Internet. At the moment, programs are at the point that they supersede their human 
counterparts. Four chess programs have a race for the chess crown. (1) SHREDDER, by 
Stefan Meyer-Kahlen, has been the dominating program over the last decade. (2) 
FRITZ, by Frans Morsch is the best-known program, (3) JUNIOR, by Amir Ban and 
Shay Bushinsky, is the current Computer-Chess World Champion, and last but not 
least (4) HYDRA [6], which is certainly the strongest program at the moment. These 

                                                           
1 Elo: statistical measure. 100 Elo points difference correspond to 64% winning chance. 

Beginner ~1000 Elo, Int. Master ~2400, Grandmaster ~2500, World Champion ~2830. 
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four programs (indeed not with HYDRA, but some predecessor) scored more than 95% 
of the points against their opponents on the World Championship 2003. 

1.3   Organization of This Paper 

Besides search the existence of opening books is important in computer chess. We 
start emphasizing the importance. Then we discuss the techniques, which are tradi-
tionally used to generate opening databases. Thereafter, we present our own ideas 
and, last but not least, we show the effectiveness of the new heuristics. Our main idea 
is that the number of how often a move has been played in a certain position gives us 
a good hint of how risky it is to play this move; and that the success, with which a 
move has been played in the past, gives us a good hint on its potential. How these 
hints can be related to a specific position should be computed by the best available 
chess expert: the chess program. 

2   Opening Books 

The opening books of chess programs are large databases which contain thousands or 
millions of early positions together with one or several proposed moves for each of 
the positions. It is called ‘opening book’, because it contains early positions of the 
game, all taken from previously played games. The databases are partially generated 
with the help of known grandmaster games, and partially consist of analyses of chess 
experts. They are of great importance because (1) they can be computed off-line and 
(2) the top Grandmasters make so very few mistakes that they can lead a clear open-
ing advantage to victories (thus a program should prohibit that a Grandmaster has a 
clean advantage after the opening phase). 

2.1   The Situation  

The opening books have always been an important feature in chess programs. For 
instance, in 1995, the program FRITZ beat IBM’s DEEP BLUE, and later won the World 
Championship, because DEEP BLUE’s opening book ended earlier than FRITZ’s, and 
DEEP BLUE played a short castling directly after the book was finished. This mistake 
was so bad in a long term sense that Fritz had no difficulties to win the game.  

Within the last decade, many people tried to generate top-level books for chess 
programs, but only three of them have been successful and have become famous in 
the computer chess community.  

Over the years, these book writers increased their importance any further. Most of 
the games between top programs were decided in the opening. In the World Champi-
onship in Graz, 2003, the situation became nearly absurd. When FRITZ played against 
SHREDDER, SHREDDER left the book with a difficult position. Subsequently, FRITZ 
won. Indeed, the pairing seemed not to be FRITZ vs. SHREDDER, but Mr. Necci vs. Mr. 
Kure (the two most successful book writers) in a remote fight. Later, SHREDDER 
played against BRUTUS and SHREDDER won because of the opening book. A strange 
detail was that Kure made the opening book both for FRITZ and for BRUTUS. In the 
game FRITZ vs. BRUTUS, the programmers of both programs had in use the same 
opening book by Kure, but FRITZ’ programmer made the mistake to add a change. 
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This was the decisive change which brought BRUTUS an advantage. Subsequently, 
BRUTUS won. In another game, JUNIOR played against SHREDDER, and SHREDDER 
stayed in the opening database until the final draw! As a direct consequence, some 
people predicted the death of computer chess. They assumed the influence of the book 
writers so strong that they believed that the books would become the dominating 
factor when two programs would play each other. 

In order to find out what the book writers really do we interviewed most of the in-
volved people. They are definitively not the strongest chess players in the world, but 
range between 2200 and 2550 Elo themselves.  

2.2   State of the Art 

From the interviews we learned that the top book writers used a mixture of different 
heuristics in which the following components seemed to play an important role. 

(1) Personal intuition. This mainly seems to be used (a) to weight the points 
(2), (3), and (4) and (b) to decide on the ‘main systems’ which the program 
should play. (In Chess, the opening phase is divided into so-called ‘systems’ 
which in the course of time have names such as ‘Sicilian Defence’ and oth-
ers.) 

(2) Their own chess expertise. The writers seem to be convinced that they are 
able to improve the decisions of any chess program in some positions, of 
which they say that the machine does ‘not understand’ them. 

(3) Test-games. All computers play in a similar manner. So, if you find a way to 
beat one program, you will have good chances that another program will lose 
in the same way. 

(4) Statistical information.  For each position played in the past, the following 
information is available, (a) which moves have been played in the past, (b) 
how strong the players who played the move are, and (c) how the games after 
the moves ended. For example: after 1. e4 e6 2. d4 d5 Nc3 Bb4 4. e5 c5 5. 
dxc…, one of the commercial FRITZ books presents us the following data: 

 
    Move         #        %     Elo         performance 
5. … Nc6       3        0     2505           1692 
5. … Qc7       2        0     2512           1707 
5. … Ne7       2       25    2548           2301 
 
From a statistical point of view, the move 5. … Ne7 seems to be the strong-
est move, because it has been partially successful with 25% of the points and 
has been played by reasonable strong players with an average of 2548 Elo. 
Nevertheless, the chances for Black seem low, because even the strong  
players could only reach a performance of 2301 Elo with 5. … Ne7 in this 
position. 

 
The fact that even the top book writers look at the statistical data may be astonish-

ing. It is generally believed that Chess is dominated by strategic thoughts and, more-
over, the fundamentals of statistics are severely violated in strategic games. Let us, 
e.g., assume that a program A plays some hundreds test games against another  
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program B. Let B score 75% of the points. Do we now know that B is stronger than 
A? No, we only know that B’s score is not the result of a random process based on 
some normal distribution with a peak at zero. It is still possible that the programmer 
observes that A played only 1. e4 and 1. d4 and that A lost all d4-games and won all 
e4-games. Because A can in principle choose whether it plays 1. e4 or 1. d4, A is the 
stronger program. 

Moreover, there are many examples in Chess in which a certain move in a certain 
position could be proven to be a bad move, whereas it was previously believed that 
the move was a good one. In these examples, the statistical information will look 
favorable for all cases, because the move will never be played again.  

3   The New Way 

We are convinced that strategic information is more valuable in games such as Chess 
than statistical knowledge plus medium-player expertise can be. The best experts for 
strategic information are the top chess programs themselves. Nevertheless, the statis-
tical information seems to possess some value, because our experiments show that 
playing without any opening book is not a good option. Instead, we want to make 
statistical information available to the chess program as a second-order evaluation 
criterion for a move, during its search process. We distinguish between risk informa-
tion that we want to use in order to spare time, and bonus information in order to 
make the program tend to play moves which have been successful in the past.  

Let a big game database be available, and let us be interested in the value of a cer-
tain move in a specific position. From Section 2.2 we know that commercial tools 
may give information such as (a) how often a move has been played, and (b) how 
strong the players who played the move are on the average, (c) how successfully the 
move has been played. However, there is more information in the database. For in-
stance, it makes a difference whether (a) a leading player (a so called Top-GM) 
played the move, and (b) whether the performance of the move is mainly based on 
draw games. Moreover, may we may consider (c) whether the move has been played 
in recent games after 1999, and (d) whether it has been played by especially aggres-
sive players. Because good players tend to play weaker moves against weaker players 
(in order to hide their knowledge), we also distinguish between good and bad games. 
A game is estimated the better, the higher the two protagonists are ranked. So-called 
top games are games with both players having at least BookTopElo Elo. After all, the 
following eight parameters which influence a move’s bonus and its risk are used for a 
weighted sum.   
 

• BookTopFac = 8   Weight of a Top-GM game. 
• BookDrawFac = 4  Weight for draw-game. 
• BookWinFac = 8   Weight for win-game. 
• BookRecentBias = 1  A move’s weight increases, the more

    often it has been played after 1999. 
• BookTopBias = 8 Similar to BookTopFac, but independ-

ent of its results. 
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• BookAggrBias = 6  A move is the better, the more often it  
     has been played by an aggressive player  
     (e.g., by Kasparov, Tal, Larsen, or  
      Vaganian). 

• BookTopElo = 2700 A game is a top-GM game if both players 
of a game have at least BookTopElo 
Elo. 

• BookMinElo = 2500  Only games in that both players have at  
     least BookMinElo Elo are of any interest. 

 
The numbers assigned to the parameters are the values that we have used for ex-

periments in Section 4. 
Moreover, a ‘spam’-filter suppresses games. If the words ‘Blitz’, ‘Rapid’, ‘Blind’, 

‘Interrnet’, or ‘.com’ occur in the Event or Site field of the pgn-game-header, we do 
not consider games with these keywords. 

Let Games
p
[i] describe how often move i has been played in position p. Top-

Games
p
[i] is the number of games in that players with more than BookTopElo Elo 

have played move i in position p.  Wins
p
[i] are defined as the number of games 

which have been won with move i in position p, Draws
p
[i] as the number of games 

which have ended in a draw with move i in position p. It is analogous with Top-
Wins

p
[i], RecentGames

p
[i], and GamesAggr

p
[i]. Let Gamesum be defined as 

follows. 
 

Gamesum
p
[i] := (TopGames

p
[i]*BookTopFac+Games

p
[i]) 

 
For a move i in position p, we define its goodness as: 
 

Goodness
p
[i] := ( 

   Wins
p
[i] * BookWinFac + Draws

p
[i] * BookDrawFac (a) 

   + BookTopFac * (TopWins
p
[i]*BookWinFac +  

               TopDraws
p
[i]*BookDrawFac) (b) 

   + RecentGames
p
[i] * BookRecentBias (c)         

   + TopGames
p
[i] * BookTopBias  (d) 

   + GamesAggr
p
[i] * BookAggrBias  (e) 

 ) / (Gamesum
p
[i]),    (f) 

 
and its risk as: 
 

risk
p
[i] := 10 /  (3*sqrt(Gamesum

p
[i])).   

The goodness is then adjusted by  

Goodness
p
[i] += (Gamesum

p
[i] *3) / totalgames,  

totalgames being the number of how  often position p occurred in the database. 
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The intuition behind terms (a) to (f) is the following. Term (a) weights winning 
games and draw games against each other. Term (b) does the same, but here only the 
games of grandmasters with a high Elo rating count. Term (c) gives a bias to games 
which are played after 1999. Concerning term (d), top-games, i.e., games in that both 
players had at least 2700 Elo, should have higher impact than other games.  In order 
to avoid openings which are preferred by calm players, games of Kasparov, Tal, Lar-
sen and Vaganian are preferred with the help of term (e). Last but not least, the 
weighted sum is normalized in (f). The risk of a move i in a position p says that we 
can trust a move more, it has been played more often, always under the assumption 
that the program acknowledges the move as being ‘good’.  

Let us now assume that our program is in position p, and that the desired time for 
the next move is m minutes. Our program starts its computations as if there was no 
database in the background, but it adds the ‘Goodness’ to the root moves. This is 
achieved by appropriately changing the Alphabeta window at the root. If move i 
becomes the preferred move by the chess program itself, we will additionally adjust 
the computing time by the factor risk

p
[i]. The new desired computing time is 

m*risk
p
[i].  

4   Experiments 

Finding convincing metrics and methods to evaluate a new idea, is quite a challenging 
task. Two important obstacles are: (1) if one runs experiments with a public-domain 
chess program, one will be in the danger that the program will not be sufficiently 
strong to fulfil the expert’s requirements, and (2) practitioners may argue that results 
against weaker programs are irrelevant for top programs. Moreover, the whole idea 
has been developed as an attack against the top-book writers. Top books, however, 
are not publicly available. The first obstacle is not our problem, because we can make 
all experiments with our program HYDRA [6], which is strong enough to fulfill the 
requirements. The second obstacle is more severe. All that we can do is to present the 
data that we have: many test games against the top PC-chess program SHREDDER with 
a commercially available opening book, and some few games of ‘real’ competitions 
from public events. 

4.1   The Program Hydra  

The HYDRA project [6] is internationally driven and financed by PAL Computer Sys-
tems in Abu Dhabi, United Arabian Emirates. The core team consists of programmer 
Chrilly Donninger (Austria), researcher Ulf Lorenz (Germany), Chess Grandmaster 
Christopher Lutz (Germany), and the Pakistani project manager Muhammad Nasir Ali 
(Abu Dhabi). The FPGA chips from XilinX USA are provided on PCI cards from 
AlphaData in the UK. The compute cluster is built by Megware in Germany, sup-
ported by the Paderborn Center for Parallel Computing.  
 
The hardware architecture. HYDRA uses the CHESSBASE/FRITZ graphical user inter-
face (GUI), running on a Windows-XP PC. It connects via the Internet, using the 
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secure shell (ssh) to a Linux cluster, which itself consists of 8 Dual PC server nodes, 
being able to handle two PCI busses simultaneously. Each PCI bus contains one 
FPGA accelerator card. One MPI process is mapped onto each of the processors and 
one of the FPGA cards is associated with it as well. A Myrinet network interconnects 
the server nodes. 
 
The software architecture. The software is partitioned into two parts: (i) the distrib-
uted search algorithm, running on the Pentium nodes of the cluster and (ii) the ‘soft-
coprocessor’ on the Xilinx FPGAs, related to [5]. 
 
The distributed search algorithm: Similar to [7,8,15], the basic idea of the paralleliza-
tion is to decompose the search tree in order to search parts of the search tree in paral-
lel and to balance the load dynamically with the help of the work-stealing concept. 
First, a special processor P0 receives the search problem and starts performing the 
forecast algorithm as if it would act sequentially. At the same time, the other proces-
sors send requests for work to other randomly chosen processors. When a processor Pi 
that is already supplied with work, catches such a request, it checks whether there are 
unexplored parts of its search tree ready for evaluation. These unexplored parts are all 
rooted at the right siblings of the nodes of Pi’s search stack. Pi sends back either that it 
cannot serve with work, or it sends a work packet (a chess position with bounds etc.) 
to the requesting processor Pj. Thus, Pi becomes a master itself, and Pj starts a sequen-
tial search on its own. The processors can be master and worker at the same time. The 
relationship dynamically changes during the computation. When Pj has finished its 
work (possibly with the help of other processors), it sends an answer message to Pi. 
The master/worker relationship between Pi and Pj is released, and Pj becomes idle. It 
again starts sending requests for work into the network. When a processor Pi finds out 
that it has sent a wrong Alphabeta window to one of its workers Pj, it makes a so- 
called window-message follow to Pj. Pj stops its search, corrects the window, and 
starts its old search from the beginning. If the message contained a so-called cutoff 
which indicates superfluous work, Pj just stops its work. HYDRA achieves speed-ups 
of 18 on the 32 cluster entities [17]. 
 
The soft-coprocessors: At a certain level of branching, the remaining subproblems are 
small enough that they can be solved with the help of a ‘configware’ coprocessor 
benefiting from the fine-grain parallelism inside the application. There is a complete 
chess program on-chip, consisting of modules for the search, the evaluation, the gen-
erating of moves and doing or taking back moves. The three main advantages of our 
configware solution are as follows. 

1. Implementation of more knowledge requires additional space, but nearly no 
additional time. 

2. FPGA code can be debugged and changed like software, without the long 
ASIC development cycles. 

3. A large amount of fine-grain parallelism can be used.  
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At present, we use 67 BlockRAMs, 9879 Slices, 5308 TBUFs, 534 Flip-Flops, and 
18403 LUTs. The longest path consists of 51 logic levels, and the design runs at 
50MHz. An upper bound for the number of cycles per search node is 9 cycles.  

4.2   Results  

We played three different matches with HYDRA 1.09 against SHREDDER 8.0, with 72 
games in each match. Before each match, we erased the Hydra.plr and the 
Shredder.plr learning files in order to keep these influences fair over all experi-
ments. In the first match, SHREDDER played with its commercial opening book, with-
out any learning, and HYDRA played without any book at all. In the second match, 
HYDRA used the opening book heuristic, as described above, called ‘autobook’. In the 
third match, HYDRA used the autobook, and SHREDDER used the ‘optimal’ parameters, 
including book-learning. We do not exactly know how SHREDDER’s book learning 
works. One possibility is described in [4]. 

Table 1. Results of the experiments 

Match Outcome Strength 
HYDRA 1.09, no book vs. 
SHREDDER 8.0, commercial book, no book-learning 

+27,–25,=20 +9 Elo 

HYDRA 1.09, autobook vs. 
SHREDDER 8.0, commercial book, no book-learning 

+37,–20,=15 +83 Elo 

HYDRA 1.09, autobook vs. 
SHREDDER 8.0, commercial book, optimal parame-
ters, full book-learning 

+33,–21,=18 +58 Elo 

In Table 1 we see a clear positive influence of our autobook. For instance, the first 
line +27,–25,=20 means that HYDRA won 27 of the 72 games, lost 25, and drawed 20. 
We were impressed sufficiently to test this heuristic in tournament games as well.  

In an 8-game match against SHREDDER in Abu Dhabi, HYDRA scored 5.5 out of 8 
points and won at least the first 2 games because SHREDDER’s opening book was 
outperformed. Moreover, we have never had to experience that we came with a bad 
position out of the opening. The technique was also successful against humans. In 
Abu Dhabi, HYDRA could beat GM Vladimirov (2650 Elo) with 3.5 out of 4, and in 
the Man vs. Machine World Championship in Bilbao  in 2004, HYDRA scored 3.5 out 
of 4 points against Topalov (2757 Elo), Ponomariov (2710 Elo, 2x), and Karjakin 
(2576 Elo) [9]. 

5   Conclusions  

We proposed a new heuristic how to combine the chess expertise of a computer with 
partially dirty statistical information. The technique is so successful that it is now 
used in the leading world chess program HYDRA [6]. 
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Abstract. Endgame databases have previously been built based on
complete analysis of endgame positions. In the domain of Checkers, where
endgame databases consisting of 39 trillion positions have already been
built, it would be beneficial to be able to build select portions of even
larger databases, without fully computing portions of the database that
will almost never be needed. We present a new win-loss-draw value al-
gorithm that can build endgame databases when unknown (partial in-
formation) values are present, showing that significant portions of these
databases can be resolved using these methods.

1 Introduction

Endgame databases were pioneered over 20 years ago [8,9]. The basic idea, com-
puting the value of positions at the end of the game and backing up the values
towards the start of the game, is both simple and powerful. These databases
have provided numerous insights to human analysts (e.g., chess [3]), have been
useful for solving games (e.g., awari [4], nine men’s morris [1]), and have been
instrumental in building super-human programs (e.g., Chinook [5]).

The biggest (and longest) endgame database computation is that from the
Chinook checkers project. The databases currently contain 39 trillion (3.9 ×
1013) positions—all positions with 10 or fewer pieces on the board. These data-
bases have been instrumental in an on-going effort to solve the game of checkers.
In January 2005, the Chinook team achieved their first milestone, announc-
ing a proof of the infamous White Doctor opening (it is a draw) [6]. Endgame
databases introduce perfect knowledge into the proof, replacing the traditional
heuristic evaluations. The attempt to solve checkers would be greatly accelerated
if the 11-piece databases could be computed.

Endgame databases need to be computed in a certain order, to preserve the
dependencies inherent in the calculation. For example, the database for all po-
sitions with two kings need to be computed before the 3-king database can be
computed. Ideally, one would like to extend this computation to include all the
pieces on the board (e.g., the 32-piece database for chess!). However, there are
several limitations to extending the database calculations as far as possible. As
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2 piece

3 piece

10 piece

11 piece

…

previously
computed

DB

}10 versus 1
9 versus 2
8 v. 3
7 v. 4

100% known

unknown

partially known

Database Sizes
6 v. 5

unknown

Fig. 1. Our goal: skip seldom used database and only compute more commonly used
database positions

the number of pieces in the database increase, one encounters limits in data size
(the databases become too large), computation time (there are more positions
and longer winning sequences), memory (databases quickly become too big for
RAM, resulting in costly I/O), and correctness (the computations need to be
replicated to verify correctness).

A completed 11-piece checkers database would encompass 259 trillion posi-
tions, over six times larger than all existing checkers databases, which already
took many years to build. The complete 6-piece vs. 5-piece subset (all combi-
nations of checkers and kings) is a large portion of this, 118 trillion positions.
Unfortunately, most of the computation is practically irrelevant for furthering
the checkers proof. The first 11-piece database that must be computed by stan-
dard retrograde analysis, 6 kings vs. 5 kings, is never reached in tournament
checkers games and never arises in our checkers proof trees. In effect, because of
the computation dependencies, the least useful databases get computed before
the most useful. The 11-piece database that would be most useful is the 6-checker
vs. 5-checker database, but this is the very last calculation that gets done. This
database has only 25 billion positions. Even the 6 vs. 5 endgames with a maxi-
mum of 1 king on the board come to 300 billion positions—easily doable using
current technology. The problem is that we need to compute 118 trillion 6-piece
vs. 5-piece positions before we get to the very small useful portion.

The goal of this research is illustrated in Fig. 1. Checkers databases that have
been fully computed, such as the 2-piece through 10-pieces databases, are shaded
in black. We would like to avoid computing the large and rarely used portions
of the 11-piece database, and concentrate our efforts on a portion of the 6 vs. 5
database. Without calculating the full database this portion cannot be computed
exactly, but even partial bounds on the values will be quite useful.

Instrumentation of the checkers prover used in [6] suggests that roughly 20%
of non-database positions encountered in the search are 11-piece positions. Of
these, over 90% are positions with 6 pieces vs. 5, with the total number of kings
being 0 or 1. In the attempt to solve checkers, we do not need to prove the exact
value of every position. In many cases a lower-bound or upper-bound on the
value of a position will be adequate, for instance, to prove that a line of play
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is at least a draw. Thus, databases that only provide partial information about
a set of positions are still useful. Similar methods to what we present here for
backing up information in end-game databases are explored in [2].

This paper makes the following contributions.

1. A win-loss-draw value ordering when unknown (partial information) values
are present.

2. The implementation of a retrograde analysis algorithm that correctly prop-
agates partial information values.

3. Experimental results and validation for the 10-piece partial information data-
bases.

2 Partial Information Endgame Databases

In this section we provide some background (2.1), introduce database values for
partial information databases (2.2), explain the building of partial information
databases (2.3), and sketch a proof of correctness (2.4).

2.1 Background: Perfection Information Endgame Databases

Endgame databases traditionally contain three possible outcomes, win (W ), loss
(L) or tie/draw (T ). A new database is computed by repeatedly iterating through
all positions in the database, filling in values for positions that are known, and
repeating until all values are known. Note that we do not store the number of
moves needed to resolve each position, which may be needed to successfully play
out some positions.

Initially, all positions in the database are marked with an extra value, un-
known (U), which does not remain in the database past the retrograde analysis.
The only way a position can be assigned a value is if one of its children is a win,
or if all children have been resolved to a loss or a tie.

There is an exception for games like Checkers which have rules for draw-by-
repetition. It is possible that there are cycles of states for which the best move is
a draw-by-repetition. When doing retrograde analysis these positions will never
be resolved exactly because every node within the repeated cycle of moves will
always have one unknown child. But, once no other changes can be propagated
through the database, remaining positions with unknown values are given the
value T , which effectively handles these positions.

This process of retrograde analysis, for which pseudo-code is shown in Table 1,
relies on three operators, completed, decide, and max. In perfect-information
endgame databases a position is completed as long as the value is not U , decide
is the identity function except on input of U which becomes T , and max uses
the following ordering on values: L < T < U < W .

The high-level pseudo-code and definitions above omit many practical con-
siderations (e.g., for reducing I/O). For example, from a practical standpoint,
the database values are always from the perspective of the player that has the
move in the given position. Therefore, we must always negate the value of a child
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Table 1. Pseudo-code for standard retrograde analysis

Retrograde Analysis(database)
Initialize database to unknown, positionsUpdated = 1
while (positionsUpdated != 0)
positionsUpdated = 0
for each position in database
if (!completed(position))
if (value(position) != max(children of position))
positionsUpdated += 1
value(position) = max(children of position)

for each position in database
value(position) = decide(position)

before applying the max operator. In the above example, the negate operator
maps L to W and vice verse, but T and U remain the same. Also, if no move is
available for the player to move (player has no piece or all pieces are blocked) the
position is labeled a loss for the player. However, this high-level view provides
an elegant conceptual model of retrograde analysis, and allows us introduce our
new ideas simply by redefining a few operators.

2.2 Database Values for Partial Information Databases

If we want to build partial information bounds into an endgame database, we
will need more values than just W/L/T in the database. Instead, we need an
upper and lower-bound on the value of a position. So, we write possible values
of each position as two letters, the lower-bound followed by the upper-bound.

First, the standard values of W/L/T will be replaced with WW/LL/TT ,
meaning that the upper-bound and lower-bound for these positions is identical.
Then, we introduce three new values, LT , LW and TW . LT means the posi-
tion’s value has a lower-bound of loss and an upper-bound of tie. Definitions for
LW and TW follow similarly. We will refer to the new three values as partial-
information values, because they do not provide perfect information about the
value of a position, only bounds.

Given partial-information values, the first thing we need is an ordering on
the values which can be used by the max operation. This ordering is defined in
Fig. 2. A directed edge between any two states A and B means that B is strictly
greater than A. This property is transitive, so the max of any two states A and
B is the first common node on all paths between A and WW and B and WW .
For most states this is straightforward. For instance, max(LT, TW ) = TW . But,
this is only a partial ordering, because TT is neither greater than or less than
LW . So max(TT, LW ) = TW . Another way to view this is that the lower-bound
on the max of two values is the max of the lower-bounds on these values, and
the upper-bound on the max of two values is the max of the upper-bounds.
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These six bounded values are the only values that will be found in a completed
partial information database. But, they are not adequate in themselves, because
we need a richer definition for unknown value(s) when we actually build a partial
information database.

2.3 Building Partial Information Databases

When we begin to build a partial information database there are several places
where partial information values will enter the database. As before, we can ini-
tialize positions to a value of unknown before we begin. Positions on the fringe of
the database being built can have children that are found in either a previously
computed database, or a database that we have not computed. For instance,
if we do not compute the 2-king 11-piece databases and we have a move that
makes the second king on the board, we will not find that position in a database.
Such positions are given the value LW , because we have no information about
their values, and we will never attempt to calculate them.

Given the new definition of max and previous definitions of decide and
completed, it may seem that we have enough information to build partial-
information databases. But, there is one additional case that arises, which is
the interaction of draw-by-repetition positions with other unknown values.

Consider the four positions which are part of a draw-by-repetition cycle in
part (a) of Fig. 3. In a regular database, the player to move at the highlighted
node would prefer a draw-by-repetition to the loss available as an alternate move.
So, the final value of this state after retrograde analysis will be T .

Now consider part (b) of Fig. 3, where the alternate value to the draw-by-
repetition is completely unknown, LW . In this situation, the first player is guar-
anteed at least a tie because of the draw-by-repetition, but there is a chance
that the alternate move will lead to a win. Thus, the actual value of the state is
TW . That is, there is one possible move that will lead to a tie by repetition, and
there is another move that might lead to a win. At the parent of this position
(using a nega-max formulation) the bound is then LT , and similarly in the rest
of the cycle.

But this will not actually happen unless we modify the values used by ret-
rograde analysis. If we have a single value for draw-by-repetition which is not

LL LT

TT

LW

TW WW

Fig. 2. The partial ordering of values used for database generation
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resolved until after all passes through the database, none of the positions in
this cycle will resolve. So, when all other positions have stopped updating, the
unknown on the positions in the cycle will incorrectly be converted to TT . This
process ignores the interactions between draw-by-repetition and positions that
have partial information bounds.

Thus, in the same way that we introduced partial information bounds on
the value of a state, we need to introduce new unknown values for use during
retrograde analysis. These values are not bounds on the final value of a state,
but instead represent the value a state would take if the retrograde analysis were
to stop without further updates.

These new values are uLW , uTW , uTT and uLT . uTT is the same as the
previous unknown value, meaning that a state is a draw-by-repetition. The
additional values arise as a result of ways that uTT can combine with partial
bounds in the game. We demonstrate this in Fig. 4.

In this figure we demonstrate how values are propagated through a draw-by-
repetition loop. At the far left of this diagram we have the initial values in the
database, with all values initialized to uTT . The only node that can update its
value is the highlighted node, which is subsequently updated to uTW . In the
next step, the parent of this state, which is highlighted, can now be updated to
uLT . This process continues until no further updates are possible. If retrograde
analysis ends at this point, all the unknown values will be converted to exact
values.

Figure 4 shows how the values uTW and uLT can arise in the database. The
other unknown value, uLW , is introduced when we have a state that has one
child with a value of uLT and another child with the value LW .

We can now define the completed, decide, and max operators for partial
information databases. A position is completed once it has a value of WW ,
TT , LL, LW , TW , or LT . We decide the final value of an unknown state by
converting it to its corresponding known value. So, decide(uLW ) = LW , and
likewise for other unknown values. Finally, the maximization function is defined
for all possible values by Table 2. Utilizing these new definitions, we can use

LW

draw by
repetition

TW

LT

LT

TW

L

draw by
repetition

T

T

T

T

(a) (b)

Fig. 3. Draw-by-repetition interactions
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Table 2. The maximum of each possible combination of states that can be encountered
in the process of building partial-information databases

max WW TT LL TW LT LW uLW uTW uTT uLT

WW WW WW WW WW WW WW WW WW WW WW

TT WW TT TT TW TT TW uTW uTW uTT uTT

LL WW TT LL TW LT LW uLW uTW uTT uLT

TW WW TW TW TW TW TW uTW uTW uTW uTW

LT WW TT LT TW LT LW uLW uTW uTT uLT

LW WW TW LW TW LW LW uLW uTW uTW uLW

uLW WW uTW uLW uTW uLW uLW uLW uTW uTW uLW

uTW WW uTW uTW uTW uTW uTW uTW uTW uTW uTW

uTT WW uTT uTT uTW uTT uTW uTW uTW uTT uTT

uLT WW uTT uLT uTW uLT uLW uLW uTW uTT uLT

the same methodology as shown in pseudo-code in Table 1 to compute partial
information databases, except that the initialized unknown value is now uTT .

2.4 Proof of Correctness

In this section we sketch a proof of correctness; but many details are omitted for
clarity. We first show that any positions which become decided during retrograde
analysis must have correct bounds. Then, we show that draw-by-repetition values
are computed correctly. Finally, we show that draw-by-repetition subsets of the
database cannot improperly effect other parts of the database.

First, consider positions that will become decided during the process of retro-
grade analysis. This means that either all of the children of these positions are
decided, or they have one child that leads to a win. If a position has one child
that leads to a proven win, this will be a proven win no matter whether we are
using partial information databases or perfect information databases. Similarly,
if a position is resolved to exactly TT or LL during retrograde analysis, this
value must have been calculated in the exact same manner as in a standard
endgame database.

LW

draw by
repetition

uTW

uTT

uTT

uTT

LW

draw by
repetition

uTT

uTT

uTT

uTT

LW

draw by
repetition

uTW

uLT

uTT

uTT

LW

draw by
repetition

uTW

uLT

uLT

uTW
…

Fig. 4. The propagation of values combined with uTT
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Now, consider positions that resolved to LW , LT or TW . There are two places
that partial information bounds are introduced into the database. The first is
when a child is found in a database that has not been computed, in which case
it is given the value LW . This is the most general bound possible, so the actual
value of this state must fall within these partial information bounds (loss to win).
The second place we can get partial information bounds is from another partial
information database, which we assume has already been calculated correctly.
From Table 2 we can verify that the combination of LW , LT , and TW with
any other known value correctly preserves upper- and lower-bounds on a par-
ticular state. Thus, any value that becomes decided during retrograde analysis
is calculated correctly.

Next, consider positions involved in draw-by-repetition, which are not resolved
until retrograde analysis completes. If they are part of a closed loop (all positions
outside the loop lead to a loss or a tie) then these positions are handled no
differently by retrograde analysis with partial information values then they would
be handled by standard retrograde analysis.

In the case where a position near a draw-by-repetition loop has a partial
information value that could possibly be a win, it will be incorporated into the
bounds of positions in the draw-by-repetition loop, as in Fig. 4. Again, from
Table 2 one can verify that there is no way to combine values in such a loop to
eliminate the draw-by-repetition.

Finally, is it possible for unknown values from a draw-by-repetition to ad-
versely effect other positions in the database, now that we have expanded the
range of possible values that can occur in a draw-by-repetition loop? It is not
possible because of the following observation: Any values which are not known
besides uTT must trace to at least one position where there is a uTT value for
one child and a partial information value (TW or LW ) at the other child. The
value of such states then will either be a draw-by-repetition or the result of the
partial information value from the other child—but there is not enough infor-
mation in the analysis to resolve which. In either case lower- and upper-bounds
for such states will be correct. Presenting a formal proof of this would be quite
detailed, but simply relies again on the values in Table 2.

While we have not shown in a completely formal manner that our partial
information databases are correct, these description should give the reader a
feel of the general correctness retrograde analysis using both partial information
values and extended values for unknown positions.

3 Results

The partial information database algorithm has been built into the Chinook
database construction program [7]. To validate the algorithm we constructed the
5-checker vs. 5-checker subset of the 10-piece databases. For this computation,
we removed all the previously computed 10-piece databases. In other words,
the database program only had access to the 2-piece through 9-piece databases.
After constructing the partial information 10-piece databases we verified that
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Table 3. Max table for partial databases, 5 vs. 5 checkers. Each entry is the percentage
of resolved positions.

7 6 5 4 3 2

7 16 25 33 37 44 70

6 26 38 49 56 68 84

5 35 48 62 71 81 88

4 35 53 66 80 86 88

3 40 63 79 86 91 95

2 62 81 84 91 97 100

all bounds were consistent with the actual values in the previously computed
10-piece databases.

Table 3 shows some results for the 5-checker vs. 5-checker database. The
database is broken into smaller pieces based on the leading rank of the checker
for each side. For example, the 7/7 table entry has both Black and White having
a checker on the seventh rank. It is not possible to have a checker on the eighth
rank (it already has become a king). The 6/4 entry has all of White’s checkers on
or before the sixth rank with at least one on the sixth rank, while all of Black’s
checkers are on the fourth rank or before (with at least one on the fourth rank).
Note that there is no result for rank 1—since each side has 5 checkers, it is not
possible to have them all on the first rank.

The table shows the fraction of (non-capture) positions that have been re-
solved. A position proven to be a win, loss or tie counts as one point, while a
lower- or upper-bound of a tie counts as a half point. The total database score
divided by the number of positions in the computation gives the score. For ex-
ample, the 7/7 entry shows that when both sides have a leading checker on the
seventh rank, then the database program was able to resolve 16% of the values.
The 7/7 entry is low for two reasons.

1. Most positions in the 5 vs. 5 databases are drawn. This makes it difficult for
the database construction algorithm, since a draw cannot be proven until
the values (or bounds on values) of all children of a position are known.

2. This database computation has both sides “on the boundary”. When the
leading checker advances, it becomes a king—and there are no database
results for that position. Hence many of the 7/7 computation are unresolved
because they lead to unresolved (partial information) positions.

As one would expect, as one moves away from the boundary, a higher percent
of positions are resolved. This is easily explained since when the leading checker
in these databases advances, it moves into a database that has already been
computed and has (partial) results. It is particularly noteworthy that 100% of
the positions with both players leading checkers at the second rank are resolved
correctly and completely. So, from one perspective, this portion of the databases
is no longer a partial information database, as all values are exact.
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Also of interest is that the database construction algorithm took as many
as 36 passes over the data to compute the values in Table 3. This means that
some of the values represent proven wins in 36 ply. If ever one of these positions
comes up in the checkers proof, the perfect value from the partial information
databases will replace 36-ply of search!

The above results point to an obvious way to improve the results. Since the
boundary introduces the unknown values, an effort should be made to resolve
as many boundary positions as possible. For example, one could do a small
(say, 5-ply) search for each boundary position. This would increase the number
of boundary positions that have useful data, either proven or partial values.
These values, of course, get propagated into the database calculation, which
would increase the percentage of overall positions resolved. We have not yet
incorporated this into our program, but it is a point of future work.

So, how will this impact the 11-piece databases? The 11-piece databases are
less likely to have draws—one side is up a checker, so we would expect the side
with more pieces to win most positions. Thus, to provide additional insight into
how the 11-piece database results will look, we also computed partial 4 vs. 5-
checker 9-piece databases.

Table 4. Max table for 9 piece databases, 4 vs. 5 checkers

7 6 5 4 3 2

7 7 10 13 15 25 74

6 46 55 57 61 73 98

5 64 71 78 80 91 97

4 74 81 87 93 96 99

3 82 88 94 97 98 100

2 86 93 97 99 99 100

1 87 94 95 99 100 100

Table 4 shows the 9-piece results when the player to move has four checkers
against an opponent with five checkers. Table 5 shows the similar table when
the player to move has five checkers against an opponent with four.

These numbers are best explained using specific examples from the table.
In the first row, second column (7/6) of Table 4 we find the entry 10. This
means that only 10% of the positions have been resolved when the player with 4
checkers is to move and has his most advanced checker on the seventh rank. But,
in Table 5 in the first row, second column we find the entry 66, meaning 66%
of positions have been resolved when the player with 5 checkers is to move with
his most advanced checker on the seventh rank. So, each entry is the percent
of resolved positions relative to the most advanced checker on the board, which
player is to move next, and the number of checkers that each player has.

The first item of interest is that the ratio of resolved positions is noticeably
higher than in the 10-piece database, which we expected, because of the uneven
material value on the board. We see also that the stronger side can generally
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Table 5. Max table for 9 piece databases, 5 vs. 4 checkers

7 6 5 4 3 2 1

7 44 66 78 85 92 91 90

6 51 73 84 91 95 96 95

5 51 79 90 95 98 99 99

4 52 82 94 98 99 100 100

3 57 90 98 99 100 100 100

2 86 99 100 100 100 100 100

resolve a larger percentage of positions. The only exceptions to this is where the
weaker side is just about to promote a checker to a king, because the databases
containing the result of such a move has not been computed.

Also of interest is the asymmetric nature of the table. The entry in the sixth
row and seventh (6/7) column for the weak player (46%) entry is much stronger
for the weak side than the 7/6 entry (10%). This occurs because from the 6/7
entry the weak player can move his most advanced checker forward into the 7/7
database. Because it will then be the other player’s turn, many of these positions
(44%) will already be resolved.

4 Conclusions

The goal of this research has been to compute the important parts of the 11-piece
checkers endgame databases. At the time of this writing the 6-piece vs. 5-piece
endgames with one or fewer kings are currently being computed, followed by
the 6-checker vs. 6-checker database. When complete, these will be added to the
Chinook databases and used in the checkers prover. Although this computation
may only cause roughly 10% of the positions examined by the prover to be
resolved by the new databases, our experience is that in many cases this will
result in many ply being eliminated from some of the sub-proofs. This will result
in a substantial reduction in the computational effort needed to solve checkers.

We also plan to compute some 7-piece vs. 4-piece and 8-piece vs. 3-piece partial
information endgames. Although these lopsided endgames are almost always
won for the stronger side, having the proven database value will be very useful.
Sadly, any checkers solver must always explore the path of maximum resistance,
since it must prefer an unknown value over a loss or draw. Consequently, the
prover tends to make moves to postpone resolving the value of a position—an
“unknown” position down 5 pieces (it could be a win!) is preferred over a known
draw.

In conclusion, partial information databases are not a complete set of resolved
values, but they still provide useful information. They allow us to probe further
forward in the game search space, allowing us to uncover new secrets of the
game—without having to pay the full price of computational resources and time.
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Abstract. A plethora of enhancements are available to be used together
with the αβ search algorithm. There are so many, that their selection
and implementation is a non-trivial task, even for the expert. Every do-
main has its specifics which affect the search tree Even seemingly minute
changes to an evaluation function can have an impact on the charac-
teristics of a search tree. In turn, different tree characteristics must be
addressed by selecting different enhancements. This paper introduces Pi-
lot, a system for automatically selecting enhancements for αβ search.
Pilot generates its own test data and then uses a greedy search to ex-
plore the space of possible enhancements. Experiments with multiple
domains show differing enhancement selections. Tournament results are
presented for two games to demonstrate that automatically generated
αβ search performs at least on a par with what is achievable by hand-
crafted search engines, but with orders of magnitude less effort in its
creation.

1 Introduction

Programs which play two-player games of perfect information typically rely on
two things to achieve high performance: an evaluation function and a search
algorithm. The evaluation function estimates the desirability of a static board
position. The search algorithm, using the evaluation function as a guide, ac-
quires knowledge dynamically: it looks ahead through the possible lines of play
and selects the one leading to the highest achievable evaluation given the search
constraints. αβ pruning [10] is the mainstay of this sort of game program. How-
ever, designers of high-performance search engines have long observed that while
the pseudo code for αβ is approximately 20 lines, an actual high-performance
implementation of αβ can run upwards of 20 pages of code. The reason for this
disparity is straightforward. Since the development of αβ pruning and the deci-
sion to pursue search as the cornerstone of two-player game research, most work
in two-player games has been in the area of search enhancements [15]. While the
choice of αβ for a two-player perfect information game is trivial, the implemen-
tation for maximum performance on a particular problem is not. In practice,
there is a plethora of enhancements which allow the basic search algorithm to
focus its attention further on the areas of the search space most likely to produce
useful information, while eliminating areas of the search which seem irrelevant.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 23–38, 2006.
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Search enhancements fall roughly into four categories: those that change the
order in which successors are considered at each node in the tree; those that
focus the search by dynamically extending or reducing the search depth; those
that adjust the αβ bounds to reduce the amount of search required; and those
that employ some combination of memory or caching to avoid repeating work
or to access knowledge acquired outside of the current search.

For each of these categories there are numerous enhancements in the literature.
Some seem to work well in most domains. Others seem to be more specific, having
their greatest effect on a class of domains, and less or detrimental impact on other
domains. It is also pertinent to note that the word “domain” in this sense does
not necessarily have a one-to-one correspondence with “game”. That is, games
typically pass through several phases in the course of normal play. These phases
may differ significantly in their distinguishing features, and thus could be said to
correspond to different domains. This is why high performance game programs
often have multiple classes of settings corresponding to this changing nature of
a game. Thus, different enhancements may be applicable in different phases.

When building a high-performance search engine for a particular game do-
main, it is not the choice of the algorithm that the programmer finds costly and
time consuming. Rather, it is in the selection, implementation, testing, debug-
ging, and interaction of the available search enhancements that the real work
lies.

Consider the scenario of a programmer developing a high-performance search
engine to play a new game. Currently, such a programmer is faced with a daunt-
ing task. The programmer must painstakingly sort through all the known search
enhancements for the ones which will most benefit the new domain. The en-
hancements are sensitive to many potential differences between domains. They
usually have parameters which require tuning for good performance. If the do-
main happens to be relatively new and unknown, this further exacerbates the
difficulty of the task. Thus, the work is driven by intuition and experimenta-
tion, resulting in hundreds of hours of programmer and computer processing
time [9,14].

The next problem our imaginary programmer faces is that different enhance-
ments interact in various ways. Sometimes these interactions are well defined.
However, more than enough enhancements exist to make a thorough list of in-
teractions infeasible if not actually impossible. Of course, like the enhancements
themselves, these interactions are also tied up with the domain to which they are
applied. To make the problem interesting, the areas covered by each enhance-
ment are not discrete and self-contained; different enhancements overlap in their
goals as well as their methods.

The final problem is that most enhancements contain parameters that must
be further tuned for maximum performance in the domain. Poor parameter
selection could result in a highly beneficial enhancement being perceived as use-
less. Selecting the correct parameters is frequently at least as difficult as choos-
ing the enhancement in the first place. And, of course, this must be done not
just individually, but also in the context of all the other enhancements present:
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their parameters may interact in increasingly complicated ways. For example,
enhancements A and B may individually produce their best results with para-
meter sets A′ and B′ respectively. However, using A and B simultaneously with
these same parameters may produce unsatisfactory results. Not only might the
combined effect fail to increase performance, it may even decrease it.

Current methods (i.e.,“by hand”), however cumbersome, do work. Experts
painstakingly “hill-climb”, carefully implementing one enhancement at a time,
evaluating it, and only accepting it if it yields better performance. That this
approach works in practice is evidenced by such stunning successes as Chinook,
Deep Blue, Logistello, and others.

Fürnkranz [7] identifies the learning of techniques to control search as an area
which, “surprisingly. . . is more or less still open research in game-playing.” Little
work has been done to automate the task of devising a search algorithm along
with its various enhancements for a particular purpose. Rather, most work has
been focused in the area of search control, which refers to methods that allow a
finer granularity of control over the search algorithm. The main forms of learning
search control are focusing the search with extensions and reductions, modifying
parameters which control the search, and using acquired knowledge to direct the
search. These are exemplified by the work of [2] and [5].

Cook and Varnell [6] present an algorithm in which changing certain parame-
ters modifies the basic behaviour of single agent parallel A* search. They call
these variations search strategies, and their work is probably most similar to that
presented herein. Indeed, Schaeffer et al. [18] posit that single-agent and two-
player search are different sides of the same coin. Other related attempts have
been made, such as that of Zillions of Games [19], which builds an evaluation
function based on a game description. Zillions’s approach might complement
the presented work, Pilot, nicely: we are working on high performance search,
while Zillions seems to focus on the evaluation. Unfortunately, further details
on how Zillions functions is unavailable.

The problem is simply stated: how does one find the right combination of
enhancements, along with their associated parameters, to maximize the search
performance of a game-playing program? Why not devise a system to automate
this difficult task? Such a system could characterize the features of new search
domains. It could then use this acquired knowledge to learn correlations between
various features of the domain and search enhancements. The system would then
test its hypotheses to confirm their accuracy. Upon completion of processing, the
end result of the system would be a search algorithm, complete with enhance-
ments, thoroughly tested, and specifically tailored to the required domain. Most
importantly, all this would be accomplished without human intervention!1

To this lofty goal this paper contributes the following. An implementation
framework for two-player perfect-information games, wherein the search algo-
rithm is separated from the domain-specific knowledge. This gives a game pro-
grammer two immediate advantages: implementing new games takes only one

1 Save for the obvious human work required to define the new domain, determine the
bounds, requirements, and evaluation function.
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or two days, and each game immediately has access to the full set of available
αβ search enhancements.

A prototype program called Pilot is presented. Pilot is able to choose a
set of search enhancements, compile a game program with these enhancements,
automatically generate test sets for a specific domain (game), and perform a
greedy search through the space of search enhancements to determine the best
set for the particular domain in question.

Results are presented for two non-trivial games, Ataxx and Lose Checkers, as
well as reports on some experiments with the (also non-trivial) games of Awari
and Critical Mass.

2 PILOT

Pilot is the name given to a system which oversees the choice of αβ search
enhancements appropriate to a specific domain. Pilot is the control program
responsible for piloting the various components which comprise the system. Pi-
lot’s job is (1) to generate a search engine by selecting search enhancements, (2)
to create and execute tests to determine their effectiveness, and (3) to generate
further search engines based on the data thus acquired. This process iterates
until a user-imposed constraint is met, or until Pilot reaches a steady-state
beyond which it cannot improve search performance.

2.1 Interfacing with PILOT

As stated in the introduction, Pilot includes an implementation framework
which separates the search algorithm from game specific knowledge. This greatly
speeds the process of developing a new game. To this end, a programming inter-
face is provided to the developer of a new game. The programmer must provide
the system with a number of standard functions and data types which are spe-
cific to the application. These fall into three main categories: rules, knowledge,
and performance hooks.

Functions in the rules category implement the rules of the game. They include
functions for making moves, unmaking moves, and move generation. The game
evaluation is the main member of the knowledge category. While building a
good evaluation function is difficult, this is not in the scope of our work. Search
enhancements can be implemented in a generic fashion, but this can severely
impact performance. Performance hooks rectify this by allowing the programmer
to use domain-specific knowledge. Providing an incremental hash function for a
transposition table is an example of this.

2.2 Components

Pilot’s main modules are illustrated in Fig. 1. The modules are code generation,
evaluation, analysis and learning, and enhancement selection.
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Determine
Enhancements

Generate
Code

Test runs

Gather Data

Evaluate

Learn

Analyse Data

Integrate Data

Fig. 1. The Pilot cycle

Code Generation. Pilot depends upon a code generator. Thus, the first task
is to design a system in which the search algorithm and enhancements are writ-
ten in a generic fashion, and can be easily enabled and disabled. It must also be
easy to add new enhancements. Instrumentation must be embedded into this de-
sign to allow for the gathering of various measures of performance. Given such a
framework, the process of designing a high-performance search engine for a specific
application would be akin to fitting together pre-constructed blocks of code. Ob-
viously there is a benefit in the fact that the code is already tested and the pieces
are known to interact correctly. Nevertheless, there remains the problem of how to
fit the provided pieces together in order to best accomplish a specific task.

Pilot currently generates code using the standard C/C++ preprocessor. Dif-
ferent enhancements are enabled and disabled via manipulation of a header file.
The advantage of this approach is the speed of the generated code. While this
approach seems the most straightforward, it is nevertheless challenging to code
various enhancements independently such that any combination will produce cor-
rect code. This is not a simple matter of additive coding, as enhancements can
have issues of dependence, precedence, mutual exclusion, and so forth. The pro-
totype contains up to eight enhancements (with plans to increase this number),
discussed in Subsection 2.3. Additionally, it has been instrumented to acquire a
number of useful tree statistics.

The strength of this method is that it need not be merely a tool for automa-
tion with Pilot. The code generation can be leveraged for other tasks, such
as more efficient evaluation of new enhancements, a starting point for expert
programmers, or a tool for beginners with which to explore search algorithms.

Evaluation. Once the code generator produces a search engine for the task at
hand, Pilot enters the evaluation phase. This phase consists of assessing the
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search engine and gathering data from which intelligent decisions can subse-
quently be made.

Pilot can evaluate the search engine in several ways. Currently, assessment
is based on an evaluation suite. Suites are comprised of a number of move se-
quences. Pilot has the capability to generate these suites for itself as needed,
use test cases supplied by a human, or use a combination of both.

The purpose of the experiments detailed in this paper was to verify the ef-
fectiveness of the entire cycle in the context of tournament performance against
programs written by humans. Thus, the following settings might be seen as mod-
est. Evaluation suites were generated using a plain αβ search engine for the given
game. From the initial position, the search engine played some number of moves
into the game using some consistent search depth. The position thus reached
becomes the starting position for a sequence of related positions.2 Several such
sequences comprise an evaluation suite.

When the evaluation suite is used, each initial position in a sequence is set
up, and the search engine evaluates each position in the sequence. It is possible
that the search engine will generate a different move from the one that leads
to the next position in the sequence. Pilot notes this and continues with the
next predetermined position in the test set.3 The detection of a different move
selection may be used in the evaluation process at a later date. This process
repeats for every sequence in the evaluation suite.

In carrying out the evaluation, two sorts of numbers can result: performance
metrics and search tree statistics. Performance metrics evaluate the effectiveness
of a particular search engine; that is, how well it performs. Search tree statistics
quantify the characteristics of a search tree. The combination of these two types
of data is used to suggest what enhancements to try on the next iteration of
Pilot’s learning cycle. The line between these two aspects is not necessarily
sharp: a search tree statistic might be used as a performance metric. Neverthe-
less, performance metrics compare different search engines with an eye to which
will win more frequently. Search tree statistics are values which may correlate to
the performance.4 Thus, performance metrics indicate which search engine will
win, while the search tree statistics may tell us why.

For the experiments reported in this paper, search tree size was chosen as the
performance metric. This choice was made for its initial simplicity: a smaller
tree indicates a more efficient search.5 Thus, as a baseline, a smaller tree is
better. Clearly there are trade-offs. For example, if generating a smaller tree
takes twice as much time as generating a larger tree, then the larger tree may

2 This is important because some enhancements require a context in which to operate,
and testing them on randomly generated, unrelated positions would be ineffectual.

3 That is, each search engine is tested on the same sequence of related positions. This
keeps testing consistent.

4 Though how they correlate may not be readily apparent.
5 It is significant to note that this depends on the enhancements used. The tree may be-

come smaller due to enhancements which induce more αβ cutoffs; or search-reduction
enhancements may directly reduce the size of the tree. These are not necessarily
equivalent, and this is under investigation.
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arrive at the desired result first! Initial experiments with a generic hash function
for the transposition table showed precisely this disparity, and indicated that a
domain-specific incremental hash function was an essential addition to the code
if transposition tables were to be evaluated fairly. Similarly, adding a search
extension increases the tree size for a search of some nominal depth. In this case,
the size of the search tree does not convey any gain: the tree appears larger!

More interesting performance metrics include move quality and time elapsed.
However, this makes comparisons a non-trivial matter, especially as the quality
of a move is not easy to define. Tournament results or self-play may also prove
a good performance indicator. Thus, while these are beyond the scope of the
current experiments, there is clearly potential for future work.

Analysis and Learning. In Fig. 1, Pilot’s next phase consists of analysis and
learning from the experimental data. This involves making intelligent decisions
from the statistics generated in the evaluation phase and integrating it with the
acquired knowledge of the system. The current prototype of Pilot, however, is
much more simplistic. It executes a straightforward hill-climbing algorithm based
on search tree size, which is exactly what a human would do. While Pilot is
currently able to gather detailed search tree statistics, this ability is not used
in these initial experiments. Thus, this section is provided to indicate some of
the intended directions of future work. Pilot’s current hill-climbing approach
is discussed in more detail in the next section.

Enhancement Selection. In the enhancement selection phase, Pilot deter-
mines what set of search enhancements to try in the next iteration. This phase
is closely related to both the code generation and learning phases. In the initial
stage of the search, Pilot can start either from a plain, unenhanced αβ search
or from a user specified starting point – a ‘suggestion’.

Future incarnations of Pilot, upon arriving at the enhancement selection
phase, will use acquired knowledge to direct the choice of what to try next.
However, for the sake of an initial deterministic and easily understood baseline,
Pilot currently performs a greedy search: from any state S, each unused en-
hancement is tested in turn (currently without the benefit of parameter tuning).
The enhancement, e, which results in the greatest reduction in the size of the
search tree compared to S, is enabled. That is, a new state S′ = S +e is created.
This process is iterated with S′ as the new starting state until no further im-
provement is possible. Thus, Pilot hill-climbs in much the way a human expert
would,6 but without human intervention, and with the potential to run many
more tests than would be feasible for a human.
6 With one difference. A human will sometimes disable an enhancement, even after

it has been shown to be beneficial. Such testing might find a combination of lesser
enhancements which might increase performance when interaction with another en-
hancement is removed. The current version of Pilot will miss these opportunities:
Pilot sees the starting state only as something to which enhancements can be added,
not from which they can be removed. It was felt that this was a reasonable deci-
sion in the context of the current set of enhancements. However, Pilot is rapidly
outgrowing this decision, and this capability will be added.
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Thus, while we hope to see good enhancements selected, we also hope that not
all enhancements are selected, or the benefits will be unclear compared to simply
selecting all enhancements. However, this is partly a function of the evaluation
method used. Since we use search tree sizes, and most enhancements reduce the
size of the tree, a certain amount of correlation must be expected. Nevertheless,
early experiments with the games of Awari and Critical Mass confirmed the effec-
tiveness of this method by demonstrating different enhancements being selected
depending on both the domain and the evaluation technique.7 For example, the
transposition tables in Awari were implemented generically, and were therefore
computationally expensive. Therefore, when Pilot evaluated this domain using
timing data, transposition tables were seen to degrade search performance, and
Pilot decided against using them.

Having determined which (if any) enhancements to use, Pilot generates a
header file to enable the appropriate enhancements. Then, the code generator is
commanded to build a new search engine with the indicated set of enhancements.
It is Pilot’s job to ensure that enhancement dependencies and prerequisites are
met for any set of enhancements it passes to the code generator.

2.3 Enhancements

Pilot currently supports the following set of basic αβ enhancements: transposi-
tion tables (tt), transposition table move ordering (tto), history heuristic (hh),
killer heuristic (kh), iterative deepening by 1 or 2 ply (id1 or id2), extending
the search by 1 ply in positions with only a single move (ext), and Principal
Variation Search (pvs).

Transposition tables are the most commonly used method of information
caching [13]. They are an important enhancement because a transposition table
entry can serve three main purposes: narrowing of αβ bounds, a source of move
ordering, and a source of immediate cutoffs in the search. Parameters that can
be learnt include the size of the table,8 the replacement scheme of the hash ta-
ble, and when to reset the table. These are parameters which future versions of
Pilot will be able to address in more detail.

As just mentioned, transposition table move ordering is one use of a trans-
position table. At its simplest, it involves searching the move retrieved from the
transposition table first. However, enhancements like ETC [17] and Presearch [8]
provide information which might be used to further order moves at a node. Addi-
tionally, there exists the possibility of determining precedence between different
move-ordering enhancements. Presently, Pilot uses a static precedence among
move-ordering techniques, though we intend to alter all these parameters in fu-
ture experiments.

7 For completeness, experiments were also performed on a ‘random’ game where all
positions and moves were uncorrelated. A random position generated a random
number of random moves which led to random successor states. Pilot was unable
to determine any enhancements to be useful in this ‘game’.

8 Larger is not necessarily better [11,17].
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The history heuristic [13] is a mechanism whereby the moves in the search
have an associated global score which is incremented when a move is determined
to be the best in some position. When a new position is encountered, the history
score of each move available at that position is used as an indicator of which
ones are likely to be best. Whereas a transposition table stores the exact context
of a move, the history heuristic is a table of moves with associated scores indi-
cating the frequency of their ‘goodness’. Parameters which might be generated
automatically include the increment factor, the scaling factor, and the frequency
of scaling.

By contrast, the killer heuristic [1] stores some number of refuting moves for
each level of the search tree. The killer heuristic can be viewed as a special case
of the history heuristic. However, the killer heuristic uses less memory and might
be preferred in certain situations. Parameters to tune for the killer heuristic are
the number of killer moves stored per ply, and the replacement scheme.

Iterative deepening’s main purposes are for move ordering at the root of
the search, and for operating under time constraints. While iterative deepening
might be used to assist in move ordering at interior nodes, the main parameter
of interest is the amount of the increment between iterations: should the search
iterate by one ply at a time, two, or possibly more? Changing this value can
help to balance odd-even effects of the evaluation function. Being able to deter-
mine it automatically when providing a new evaluation function would be useful.
Currently, Pilot chooses between iterating either one or two ply at a time.

Search extensions are useful in situations when it is clear that a position is
unresolved, or when the choices available are too minimal to be likely to provide
useful information. In these situations, search is extended an additional ply in
an effort to overcome the horizon effect. A straightforward search extension is
to extend the search in any position where there is only a single available move.
Since it takes no effort to choose this move, further effort can be spent looking
deeper instead. However, two parameters are of utmost importance: the amount
of the extension (i.e., extend the search by how many ply), and the choice of a
maximum bound. That is, if an extended position leads to a position which is
also extendable, at some point this process must be curtailed, lest the current
line be searched to unreasonable depth at the cost of the rest of the search.

Principal Variation Search, also known as minimal-window, null-window, or
zero-window search, is a basic windowing enhancement which improves on alpha-
beta by using the smallest possible bounds to search moves which are not in the
main line. Re-search may be required if the bounds do not hold, but the minimal
bounds allow for small reductions in the tree. The more stable the main line is,
the better PVS fairs.

3 Experiments

To evaluate the feasibility and effectiveness of Pilot’s approach, several games
were written within the Pilot search framework. These include Tictactoe, Hex-
pawn, Awari, Critical Mass, Halma, Lose Checkers, and Ataxx. Additionally, a
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random game was also created, as discussed briefly in Section 2.2. Of these, Tic-
tactoe and Hexpawn are trivial games. The others, however, are non-trivial. It
is also worth mentioning the increasing ease with which games can be added to
this system. Each of the games here was implemented in day or two, and this is
typically all that is now required to have a fully functioning game! The difficult
part, of course, is coming up with a user-supplied evaluation function. For all
games here, a simple evaluation function based on material difference was used.
This allows Pilot to be evaluated solely in terms of the search it generates and
not on the cleverness of the evaluation.

Awari is fairly well known in the games research community. It is played on a
2 × 6 board. Two players sit opposite the long sides of the board. Initially,
each ‘pit’ contains 4 stones. Players take turns sowing their stones around the
board in an effort to capture the most stones. Awari was solved by Romein
and Bal [12].

Critical Mass is played on a 5 × 6 board, though other sizes are possible.
Each square is assigned a ‘critical mass’ (CM) number which is equal to the
number of adjacent horizontal and vertical squares. Starting with an empty
board, players alternate in placing ‘protons’ on any square that is empty or
already occupied by that player’s own protons. When the number of protons
on a square exceeds its CM, the square ‘explodes’: it becomes empty, and
exactly one proton is added to each adjacent horizontal and vertical square.
If any of the adjacent squares belonged to the opponent, they now belong to
the current player. An explosion can lead to other squares exceeding their
CM. Explosions are continued until no square is above critical mass. The
game ends when one player owns all the squares on the board.

Lose Checkers is checkers where you play to lose all of your pieces.
Ataxx is played on an n×n board. Players take turns making either jump moves

or cloning moves. The latter creates a new piece on an adjacent square, while
the former moves a piece to a new location with a distance9 of 2 from the
starting square. The goal is to have the most pieces at the end of the game,
and the game ends when there are no legal moves for either player, a position
has repeated three times, or 50 jump moves have been made in a row [3].

3.1 Experiments Summary

The experiments reported here cover several phases in Pilot’s development.
The initial thrust was to test Pilot’s greedy search strategy on two nontrivial
games, Awari and Critical Mass. As Pilot was developed, more enhancements
were added. After the initial stages of development, it was determined that it
was necessary to evaluate Pilot in comparison to hand-crafted search engines.
Assignments from a graduate course in heuristic search were made available
for the games of Lose Checkers and Ataxx. These programs were hand-crafted
for a course tournament, and thus represent an intensive month’s work on the
part of each student. Previous experience in this environment shows that the
9 In at least one of the x or y components.
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student programs typically range from extremely good (far outstripping any
human players) through moderate to poor. Thus, it was determined that this was
an excellent testbed in which to evaluate Pilot’s automatic search generation.

We have two types of results for Pilot: the results of the enhancement selec-
tion process, and the results of the two tournaments. In the former, we would like
to see different results for different games. In the latter, we would like confirma-
tion that Pilot’s automatic generation of a search algorithm does a comparable
(or better) job than graduate students.

Pilot’s results for the enhancement selection process are illustrated in
Table 1. An interesting side-effect of the enhancement selection process is the
order in which the enhancements are selected by the greedy search. This ranking,
therefore, is an indication of the relative amount of benefit each enhancement
adds to the particular domain. This has been indicated in the table. These ex-
periments were produced by running Pilot through its cycle as discussed in
Section 2. Specifically, Pilot generates and runs evaluation suites, as in Subsec-
tion 2.2. Evaluation suites were generated with fixed depth searches at one depth,
and then used for search-engine assessment with an equal or deeper (but still
fixed) depth. Since different domains can be searched to widely varying depths,
for these experiments the depths were chosen manually for each domain in order
to control the running time. As an example, Awari generated evaluation suites
with a depth-5 search, and used the resulting suites with depth-10 searches.

Table 1. Enhancement selection by Pilot in a number of games and situations

Enhancements
Game tt id1 id2 tto hh kh ext pvs

Awari 1 3 — 2 — —
Critical Mass 1 4 — 3 2 — — —
Critical Mass 2 5 — 4 3 1 — —
LoseCheckers 1 + 3 2 — —
LoseCheckers (PVS) 1 4 2 3 5
Ataxx (shallow) 3 2 4 1 5′ —
Ataxx (deep) 2 3 4 1 5 6′ —

Each row of Table 1 indicates a game. The columns indicate which enhance-
ments are enabled. The enhancements are identified by the abbreviations noted
in the list in Subsection 2.3. Each cell in the table has one of the following
indicators:

1 · · ·n A number indicates the order in which the enhancement was added to
the search.

— Indicates an enhancement that was not yet implemented at the time of this
experiment.
A blank space indicates an enhancement that was not selected for this

experiment.
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+ Indicates an enhancement not selected by Pilot, but turned on for the time-
controlled tourments.

n′ Indicates an enhancement that was chosen not because it caused an improve-
ment, but because it was not detrimental in the tests. This is essentially an
indication that the tests in these cases were not sufficiently broad.

It should be noted that there are multiple experiments reported for Critical Mass,
Ataxx, and Lose Checkers. The difference in the Critical Mass experiments is
that in the first one, the killer heuristic had not been implemented. Adding this
enhancement to Critical Mass caused it to be selected first, which is noteworthy.
Similarly, Lose Checkers (PVS) is the most recent addition, and in addition to
the PVS enhancement it includes a re-written search engine, the combination of
which account for the differences.

Due to Ataxx’s high branching factor, a shallow run was done with Pilot
where test positions were searched to a depth of 3. Later, a deeper test was
done with positions searched to a depth of 6. The table shows two differences: a
different iterative deepening increment, and the killer heuristic becoming useful
in the deeper searches where it had been left out in the shallower tests. This
is significant because it hints at the changing characteristics of the search tree
as the depth increases, and also because the shallower search approximates the
deeper one. (Only one enhancement is different, and the relative orders are the
same.) This phenomenon bears further study, as it may be related to observations
by [16] that for best performance the search depth at the time of learning should
match the intended search depth (e.g., for tournaments).

It is also interesting to note that the transposition table is not always the
first enhancement selected. When the games involved are considered, this may
be explained. In the case of Ataxx, certain moves, or types of moves (jumps ver-
sus non-jumps) are extremely important. If the history heuristic is learning to
favour one over the other, this total move ordering might be more effective than
elimination of cycles, which are less prominent in Ataxx. Similarly in Critical
Mass, transpositions are not as vital, since a single move can change the con-
figuration of the entire board. Certain key moves will initiate a massive chain
reaction across the entire board. Searching these moves first can save significant
search effort.

By contrast, Lose Checkers is a more classical board game involving a dimin-
ishing number of moving pieces. We would expect transpositions to be prevalent,
and indeed they are the first enhancement chosen. Since Pilot is selecting en-
hancements solely on their ability to reduce search-tree size (independent of
time constraints), iterative deepening is at a disadvantage and therefore not se-
lected.10 Similarly, ext could not be chosen by Pilot in “Lose Checkers (PVS)”
because ext typically increases the tree size in an effort to enhance the quality
of the search; Pilot cannot yet understand this distinction.
10 A related issue is that early versions of the search engine may not have ordered

root moves effectively when interacting with id. This would affect id’s perceived
usefulness. However, this favorably reflects on Pilot’s sensitivity to the minutiae of
implementation details. Later experiments bear out this sensitivity.
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Thus, we see how Pilot not only suggests different combinations of enhance-
ments for different games, but might give insights into why these choices are
appropriate.

3.2 Lose Checkers Tournament Results

LoseCheckers hasproved tobeamost interesting game.Pilot’s search-engine con-
figurations are summarized in the previous section. For the reported tournament
the configuration determined in “Lose Checkers (PVS)” in Table 1 was used.

The Lose Checkers tournament was played against sixteen programs. These
programs had already played in a full double-round-robin tournament using 20
seconds per move. The most recent experiment had the following results.

Against 16 programs, Pilot scored 9 wins, 10 losses, and 13 draws, searching
to an average depth of 21.6 (σ = 4.3).11 Scores were assigned using the formula
of one point per win and half a point per loss. Thus, Pilot scores 15.5 points.
These data were then combined with the full-tournament result to determine
Pilot’s relative ranking.

Pilot ranked in seventh place in this combined result. Looking at the spread
of points across the tournament shows that there are distinct groups of programs.
The most exceptional programs scored between 27 and 32 points. The next group
scored between 20 and 23, and a third group from 13.5 to 15.5. The next two
groups scored between 10 and 11, and below 4.

Observations. Subsequent discussions with a few of the students who wrote
the best programs were illuminating. The top programs, for example, used a
random evaluation along with a parity checker which could solve one-on-one
piece endgames. Their experiences indicate that a material evaluation such as
Pilot’s was frequently detrimental. It also appears that in Lose Checkers, deeper
search is not necessarily correlated with success, particularly when using material
evaluation.

Pilot ranks at the top of the third group of programs. Note that the second
and third groups consisted of programs that are moderately strong, as opposed
to the highly tuned programs of group one. Given Pilot’s simple material-only
evaluation, and that the other programs had significant time to come up with a
search and evaluation combination that would be better than simple material, Pi-
lot’s performance is commendable. An examination of the games shows that Pi-
lot generates deeper search than the majority of its opponents, and its limiting
factor appears to be the evaluation. However, for these very reasons, Lose Check-
ers is an ideal testbed for Pilot: a subsequent challenge is to develop improved
analysis and evaluation suites which better reflect tournament conditions.

3.3 Ataxx Tournament Results

For Ataxx, a simple depth extension was available to Pilot. Table 1 shows the
learned result. The second (‘deep’) result indicated in the table was used for
11 Each program plays black once and white once.
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the tournament. It is rare in Ataxx that only a single move is available, and if
it happens, it is usually in the endgame. It is clear from the fact that Pilot
detected no change when using the depth extension that our automatic test
generation is not comprehensive enough.

The Ataxx tournament originally consisted of 21 programs. Unfortunately,
only 8 were available for this experiment. However, these 8 programs were a rep-
resentative sample across the entire gamut. Thus, it is with reasonable confidence
that this result is presented as representative.

The procedure was similar to Lose Checkers. The original Ataxx tournament
was run with 15 seconds per move. The tournament with Pilot also used the
same 15 second move limit. No draws occurred in either the Pilot tournament
or the original Ataxx tournament.

Pilot tied for fourth place among nine programs with 10 wins and 6 losses,
searching to an average depth of 7.9 ply (σ = 0.94). The top program had 16
wins, while the next group of four programs had from 10 to 12 wins. The final
four programs had between 0 and 5 wins. Thus, Pilot again achieved a ranking
in the second grouping: not outstanding, but in with the best. Once again, it
is important to remember that Pilot is competing against programs which
had their search and evaluation functions tuned specifically to Ataxx. Pilot is
purposely handicapped by a simplistic material-difference evaluation in order to
gauge the effectiveness of the search enhancements.

The rankings of the 8 opponents in the original tournament from best to
worst, were: 1, 3, 5, 6, 9, 10, 16, and 20. Thus, the stronger programs were
clearly better represented. It was somewhat surprising, therefore, when Pilot
won and lost one game each against the third and fifth ranked programs; we
were quite pleased.

4 Conclusions and Future Work

It is encouraging that even with some of the restrictive limitations placed on the
prototype of Pilot, it was able to generate a search powerful enough to rank
with the second class of hand-crafted search programs. When this is combined
with the fact that Pilot’s code, of necessity, must sacrifice a certain amount of
speed for flexibility of implementation, and that domain-specific tuning of the
evaluation function was nonexistent, the results seem even more promising.

Additionally, it has been shown that even using a greedy search across the
space of available enhancements, Pilot offers insights into individual domains
both by what it selects, and the manner in which it does it. Some of the results
presented here suggest that Pilot might eventually make it possible to generate
not just a single search engine for a game, but multiple search engines tailored to
different phases of the same game. This is a practise that has remained difficult
for humans.

Thus, there are plenty of areas for future exploration. With the demonstra-
tion of the basic soundness and effectiveness of Pilot’s approach, several av-
enues present themselves. The most pressing requirements follow. While eight
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enhancements are a good start, they are not yet representative of what a human
programmer can use. More enhancements are needed. Also required is a new sys-
tem of evaluation more powerful than search tree size. This new method might
consider time, move quality, and tournament or self-play results. The current
greedy search is effective, but simplistic. It is tempting to see how far it can go,
but a better method of exploration must be found as the number and types of
enhancements grows.

A second important area is parameter tuning. In the course of coding and
experimenting, it has been observed that minor changes in one enhancement
(intentional or otherwise) clearly impact upon the entire process of enhance-
ment selection, and in the selection or discarding of other enhancements. Thus,
even the current version of Pilot is able to effectively perceive these subtle
differences. What currently lacks is a mechanism for explicitly testing such con-
figurations.

Finally, Pilot has the potential to generate a new search engine on a
per-evaluation-function basis. Current results have used minimalist evaluation
functions, and it will be extremely interesting to see what is possible with an
evaluation function that has been tuned for a specific game.

The ultimate goal is to free humans from the drudgery of creating a new
search engine for every new game that comes along. Freed of the requirements
of endless implementation and testing, we will be able to focus on an exciting
new set of problems.
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Abstract. Most game programs have a large number of parameters that
are crucial for their performance. Tuning these parameters by hand is
rather difficult. Therefore automatic optimization algorithms in game
programs are interesting research domains. However, successful applica-
tions are only known for parameters that belong to certain components
(e.g., evaluation-function parameters). The SPSA (Simultaneous Pertur-
bation Stochastic Approximation) algorithm is an attractive choice for
optimizing any kind of parameters of a game program, both for its gen-
erality and its simplicity. Its disadvantage is that it can be very slow.

In this article we propose several methods to speed up SPSA, in par-
ticular, the combination with RPROP, using common random numbers,
antithetic variables, and averaging. We test the resulting algorithm for
tuning various types of parameters in two domains, Poker and LOA.
From the experimental study, we may conclude that using SPSA is a
viable approach for optimization in game programs, in particular if no
good alternative exists for the types of parameters considered.

1 Introduction

Any reasonable game program has several hundreds if not thousands of para-
meters. These parameters belong to various components of the program, such
as the evaluation function or the search algorithm. While it is possible to make
educated guesses about “good” values of certain parameters, hand-tuning the
parameters is a difficult and time-consuming task. An alternative approach is to
find the “right” values by means of an automated procedure.

The use of parameter optimization methods for the performance tuning of
game programs is difficult by the fact that the objective function is rarely avail-
able analytically. Therefore, methods that rely on the availability of an analytic
expression for the gradient cannot be used. However, there exist several ways to
tune parameters despite the lack of an analytic gradient. An important class of
such algorithms is represented by temporal-difference (TD) methods that have
been used successfully in tuning evaluation-function parameters [14]. Obviously,
any general-purpose (gradient-free) global search method can be used for pa-
rameter optimization in games. Just to mention a few examples, in [3] genetic
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algorithms were used to evolve a neural network to play checkers, whilst in [2]
an algorithm similar to the Finite-Difference Stochastic Approximations (FDSA)
algorithm was used successfully for tuning the search-extension parameters of
Crafty. Nevertheless, we believe that automatic tuning of parameters remains
a largely unexplored area of game programming.

In this article we investigate the use of SPSA (Simultaneous Perturbation
Stochastic Approximation), a stochastic hill-climbing search algorithm for tun-
ing the parameters of game programs. Since optimization algorithms typically
exhibit difficulties when the objective function (performance measure) is ob-
served in heavy noise, for one test domain we choose a non-deterministic game,
namely Omaha Hi-Lo Poker, one of the most complex poker variants. For Texas
Hold’em Poker several years of research has led to a series of strong programs:
Poki, PsOpti, and Vexbot [1]. Our program, MCRAISE, borrows several ideas
from the above mentioned programs. The name of the program originates from
the use of Monte-Carlo simulations and the program’s aggressive style. In the
second test domain, LOA, we use MIA, winner of the 8th and 9th Computer
Olympiad.

The article is organized as follows. Section 2 describes the RSPSA algorithm
that combines SPSA and RPROP. In Sect. 3, three ways to enhance the perfor-
mance of RSPSA are proposed together with a discussion of the various trade-
offs involved, supported by analytic arguments. Next, in Sect. 4 the test domains
and the respective programs are described. Experiments with RSPSA in these
domains are given in Sect. 5. Finally, we draw our conclusions in Sect. 6.

2 The RSPSA Algorithm

Below we start describing the basic setup (2.1) of the RSPSA algorithm. Then
we provide details on the supporting algorithms SPSA (2.2) and RPROP (2.3).
Finally in 2.4 we outline the RSPSA algorithm.

2.1 Basic Setup

Consider the task of finding a maximizer θ∗ ∈ R
d of some real-valued function

f , i.e., find θ∗ = argmaxθ f(θ). In our case f may measure the performance of
a player in some environment (e.g., against a fixed set of opponents), or it may
represent an auxiliary performance index of interest that is used internally in the
algorithm in such a way that a higher value of it might ultimately yield better
play. In any case, θ represents some parameters of the game-playing program.

We assume that the algorithm of which the task is to tune the parameters θ
can query the value of f at any point θ, but the value received by the algorithm
will be corrupted by noise. The noise in the evaluation of f can originate from
randomized decisions of the players or from the randomness of the environment.
In a card game for instance the cards represent a substantial source of random-
ness in the outcomes of rounds. We shall assume that the value observed in the
t-th step of the algorithm, when the simulation is run with parameter θt, is given
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by f(θt; Yt) where Yt is some random variable such that the expected value of
f(θt; Yt) conditioned on θt and given all past information equals to f(θt):

f(θt) = E [f(θt; Yt) | θt,Ft ] , (1)

where Ft is the sigma-field generated by Y0, Y1, . . . , Yt−1 and θ0, θ1, . . . , θt−1.
Stochastic gradient ascent algorithms work by changing the parameter θ in a
gradual manner so as to increase the value of f on average:

θt+1 = θt + αtĝt(θt) . (2)

Here θt is the estimate of θ∗ in the t-th iteration (time step), αt ≥ 0 is a
learning rate parameter that governs the size of the changes to the parameters
and ĝt(θt) is some approximation to the gradient of f such that the expected
value of ĝt(θt) given past data is equal to the gradient g(θ) = ∂f(θ)/∂θ of f and
(ĝt(θt) − g(θ)) has finite second moments.

2.2 SPSA

When f is not available analytically then one must resort to some approximation
of the gradient in order to use gradient ascent. One such approximation was
introduced with the SPSA algorithm in [12]:

ĝti(θt) =
f(θt + ct∆t; Y +

t ) − f(θt − ct∆t; Y −
t )

2ct∆ti
. (3)

Here ĝti(θt) is the estimate of the i-th component of the gradient, ∆ti, Y +
t , and

Y −
t are random variables: Y +

t and Y −
t are meant to represent the sources of

randomness of the evaluation of f , whilst ∆t· is a perturbation vector to be
chosen by the user. Note that the numerator of this expression does not depend
on the index i and therefore evaluating Eq. 3 requires only two (randomized)
measurements of the function f . Still, SPSA provides a good approximation to
the gradient: Under the conditions that (i) the random perturbations ∆t are
independent of the past of the process, (ii) for any fixed t, {∆ti}i is an i.i.d.
sequence1, (iii) the distribution of ∆ti is symmetric around zero, (iv) |∆ti| is
bounded with probability one, and (v) E

[
∆−1

ti

]
is finite, and assuming that f

is sufficiently smooth, it can be shown that the bias of estimating that gradient
g(θt) by ĝt(θt) is of the order O(c2

t ). Further, the associated gradient ascent
procedure can be shown to converge to a local optima of f with probability
one [12].

A simple way to satisfy the conditions on ∆t is to choose its components
to be independent ±1-valued Bernoulli distributed random variables with each
outcome occurring with probability 1/2. One particularly appealing property of
SPSA is that it might need d times less measurements than the classical FDSA
procedure and still achieve the same asymptotic statistical accuracy (see, e.g.,
[12]). FDSA works by evaluating f at θt ± ctei and forming the appropriate

1 “i.i.d.” is the shorthand of “independent, identically distributed”.
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differences – thus it requires 2d evaluations. For a more thorough discussion of
SPSA, its variants, and its relation to other methods we refer to [12,13].

SPSA, like other stochastic approximation algorithms has quite a few tun-
able parameters. These are the gain sequences αt, ct and the distribution of the
perturbations ∆t. When function evaluation is expensive, as is often the case in
games, small sample behavior of the algorithm becomes important. In that case
the proper tuning of the parameters becomes critical.

In practice, the learning rate αt and the gain sequence ct are often kept at
a fixed value. Further, in all previous works on SPSA known to us it was as-
sumed that the perturbations ∆ti, i = 1, . . . , d, have the same distribution. When
different dimensions have different scales (which we believe is a very common
phenomenon in practice) then it does not make too much sense to use the same
scales for all the dimensions. The issue is intimately related to the issue of scaling
the gradient addressed also by second and higher-order methods. These meth-
ods work by utilising information about higher order derivatives of the objective
function (see, e.g., [4,13]). In general, these methods achieve a higher asymptotic
rate of convergence, but, as discussed, e.g., in [15], their practical value might
be limited in the small sample size case.

2.3 RPROP

The RPROP (“resilient backpropagation”) algorithm [11] and its variants are
amongst the best performing first-order batch neural network gradient training
methods and as such represent a viable alternative to higher-order methods.2 In
practice RPROP methods were found to be very fast and accurate, robust to
the choices of their parameters, scale well with the number of weights. Further,
RPROP is easy to implement, it is not sensitive to numerical errors and since the
algorithm is dependent only on the sign of the partial derivatives of the objective
function,3 it is thought to be suitable for applications where the gradient is
numerically estimated and/or is noisy.

A particularly successful variant is the iRprop−algorithm [5]. The update
equations of iRprop− for maximising a function f = f(θ) are as follows:

θt+1,i = θt,i + sign(gti)δti, t = 1, 2, . . . ; i = 1, 2, . . . , d . (4)

Here δti ≥ 0 is the step size for the i-th component and gt· is a gradient-like
quantity:

gti = I(gt−1,if
′
i(θt) ≥ 0)f ′

i(θt) , (5)

i.e., gti equals the i-th partial derivative of f at θ except when a sign reversal is
observed between the current and the previous partial derivative, in which case
gti is set to zero.

2 For a recent empirical comparison of RPROP and its variants with alternative,
gradient optimization methods such as BFGS, CG and others see, e.g., [5].

3 RPROP, though it was worked out for the training of neural networks, is applicable
in any optimization problem where the gradient can be computed or approximated.
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The individual step-sizes δti are updated in an iterative manner based on the
sign of the product pt,i = gt−1,if

′
i(θt):

ηti = I(pt,i > 0)η+ + I(pt,i < 0)η− + I(pt,i = 0) , (6)
δti = P[δ−,δ+] (ηtiδt−1,i) , (7)

where 0 < η− < 1 < η+, 0 < δ− < δ+, P[a,b] clamps its argument to the interval
[a, b], and I(·) is a {0, 1}-valued function working on Boolean values and I(L) = 1
if and only if L is true, and I(L) = 0, otherwise.

2.4 RSPSA

Given the success of RPROP, we propose a combination of SPSA and RPROP
(in particular, a combination with iRprop−). We call the resulting combined
algorithm RSPSA (“resilient SPSA”). The algorithm works by replacing f ′

i(θt)
in Eq. 5 with its noisy estimates ĝt,i(θt). Further, the scales of the perturbation
vector ∆ti are coupled to the scale of the step sizes of δti.

Before motivating the coupling let us make a few observations on the expected
behavior of RSPSA. Since iRprop− depends on the gradient only through the
sign of it, it is expected that if the sign of ĝt,i(θt) coincides with that of f ′

i(θt)
then the performance of RSPSA will be close to that of iRprop−. This can be
backed up by the following simple argument. Assuming that |f ′

i(θ)| > ε, applying
Markov’s inequality, we obtain that

P(sign(ĝt,i(θ)) �= sign(f ′
i(θ))) ≤ P(|ĝt,i(θ)) − f ′

i(θ)| ≥ ε) ≤ Mt,i

ε2
, (8)

where Mt,i = E
[
(ĝt,i(θ) − f ′

i(θ))
2|Ft

]
denotes the mean square error of the ap-

proximation of f ′
i(θ) by ĝt,i(θ), conditioned on past observations. In fact, this

error can be shown to be composed of a bias term dependent only on f , θ and
c, and a variance term dependent on the random quantities in ĝt,i(θ). Hence, it
is important to make the variance of the estimates small.

Now, let us turn to the idea of coupling the scales of the perturbation vectors to
the step sizes of iRprop−. This idea can be motivated as follows. On “flat areas”
of the objective function, where the sign of the partial derivatives of the objective
function is constant and where the absolute value of these partial derivatives is
small, a perturbation’s magnitude along the corresponding axis should be large or
the observation noise will dominate the computed finite differences. In contrast,
in “bumpy areas” where the sign of a partial derivative changes at smaller scales,
smaller perturbations that fit the “scale” of desired changes can be expected
to perform better. Since the step-size parameters of RPROP are larger in flat
areas and are smaller in bumpy areas, it is natural to couple the perturbation
parameters of SPSA to the step-size parameters of RPROP. A simple way to
accomplish this is to let ∆ti = ρ δti, where ρ is some positive constant, to be
chosen by the user.
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3 Increasing Efficiency

In this section we describe three methods that can be used to increase the effi-
ciency of RSPSA. The first method, known as the “Method of Common Random
Numbers”, was proposed earlier to speed up SPSA [9,6]. The second method,
averaging, was proposed as early as in [12]. However, when averaging is used
together with the method of common random numbers a new trade-off arises.
By means of a formal analysis this trade-off is identified and resolved here for
the first time. To the best of our knowledge, the third method, the use of anti-
thetic variables has not been suggested earlier to be used with SPSA. All these
methods aim at reducing the variance of the estimates of the gradient, which as
noted previously should yield better performance. In this section we will drop
the time index t in order to simplify the notation.

3.1 Common Random Numbers

In SPSA (and therefore also in RSPSA) the estimate of the gradient relies on
differences of the form f(θ + c∆; Y +) − f(θ − c∆; Y −). Denoting by F+

i the
first term and by F−

i the second term, elementary probability calculus gives
Var

(
F+

i − F−
i

)
= Var

(
F+

i

)
+ Var

(
F−

i

)− 2Cov
(
F+

i , F−
i

)
. Thus the variance of

the estimate of the gradient can be decreased by introducing some correlation
between F+

i and F−
i , provided that this does not increase the variance of F+

i

and F−
i . The reason is that by our assumptions Y + and Y − are independent

and thus Cov
(
F+

i , F−
i

)
= 0. Now, if F±

i is redefined to depend on the same
random value Y (i.e., F±

i = f(θ ± c∆; Y )) then the variance of F+
i − F−

i will
decrease when Cov (f(θ + c∆; Y ), f(θ − c∆; Y )) > 0. The larger this covariance
is the larger the decrease of the variance of the estimate of the gradient will be.

When f is the performance of a game program obtained by means of a simu-
lation that uses pseudo-random numbers then using the same random series Y
can be accomplished by using identical initial seeds when computing the values
of f at θ + c∆ and θ − c∆.

3.2 Using Averaging to Improve Efficiency

A second method to reduce the variance of the estimate of the gradient is to
average many independent estimates of it. However, the resulting variance re-
duction is not for free, since evaluating f(θ; Y ) can be extremely CPU-intensive,
as mentioned earlier. To study this trade-off let us define

ĝq,i(θ) =
1
q

q∑
j=1

f(θ + c∆; Yj) − f(θ − c∆; Yj)
2c ∆i

, (9)

where according to the suggestion of the previous section we use the same set of
random number to evaluate f both at θ+c∆ and θ−c∆. Further, let ĝr,q,i(θ) be
the average of r independent samples {ĝ(j)

q,i (θ)}j=1,...,r of ĝq,i(θ). By the Strong
Law of Large Numbers ĝr,q,i(θ) converges to f ′

i(θ) + O(c2) as q, r → +∞ (i.e.,
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its ultimate bias is of the order O(c2)). It follows then that increasing min(r, q)
above the value where the bias term becomes dominating does not improve the
finite sample performance. This is because increasing p decreases the frequency
of updates to the parameters.4

In order to gain further insight into how to choose q and r, let us consider
the mean squared error (MSE) of approximating the i-th component of the
gradient by ĝr,q,i: Mr,q,i = E

[
(ĝr,q,i(θ) − f ′

i(θ))
2
]
. By some lengthy calculations,

the following expression can be derived for Mr,q,1:5

Mr,q,1 =
1
r

E
[
∆2

1

]
E
[
1/∆2

1

] d∑
j=2

{(
1 − 1

q

)
E
[
f ′

j(θ; Y1)2
]
+

1
q

E
[
f ′

j(θ; Y1)
]2}

+
1
rq

E
[
(f ′

1(θ; Y1) − f ′
1(θ))

2
]
+ O(c2) . (10)

Here f ′
i(θ; Y ) is the partial derivative of f(θ; Y ) w.r.t. θi: f ′

i(θ; Y ) = ∂f(θ;Y )
∂θi

.
It follows from Eq. 10 that for a fixed budget of p = qr function evaluations

the smallest MSE is achieved by taking q = 1 and r = p (disregarding the O(c2)
bias term which we assume to be “small” as compared to the other terms).

Now the issue of choosing p can be answered as follows. Under mild conditions
on f and Y (ensuring that the expectation and the partial derivative operators
can be exchanged),

∑d
j=2 E

[
f ′

j(θ; Y1)
]2 =

∑d
j=2 f ′

j(θ)
2. Hence, in this case with

the choices q = 1, r = p, Mp,1,1 becomes equal to

1
p

⎧⎨
⎩E

[
∆2

1

]
E
[
1/∆2

1

] d∑
j=2

f ′
j(θ)

2 + E
[
(f ′

1(θ; Y1) − f ′
1(θ))

2
]
⎫⎬
⎭+ O(c2) , (11)

which is composed of two terms in addition to the bias term O(c2): the term∑d
j=2 f ′

j(θ)
2 represents the contribution of the “cross-talk” of the derivatives of f

to the estimation of the gradient, whilst the second term, E
[
(f ′

1(θ; Y1) − f ′
1(θ))

2
]

gives the MSE of approximating f ′
1(θ) with f ′

1(θ; Y1) (which is equal to the
variance of f ′

1(θ; Y1) in this case). The first term can be large when θ is far from
a stationary point of f , whilst the size of the second term depends on the amount
of noise in the evaluations of f . When the magnitude of these two terms is larger
than that of the bias term O(c2) then increasing p will increase the efficiency of
the procedure, at least initially.

4 In [12] it is shown that using decreasing gains αt = a/tα and ct = c/tγ with β =
α − 2γ > 0, 0 < α ≤ 1, 0 < γ, the optimal choice of p is governed by an equation
of the form pβ−1A + pβB, where A, B > 0 are some (unknown) system parameters.
This equation has a unique minimum at p = (1 − β)A/(βB), however, since A, B
are unknown parameters this result has limited practical value besides giving a hint
about the nature of the trade-off in the selection of p.

5 Without the loss of generality we consider the case i = 1.
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3.3 Antithetic Variables

In Sect. 3.1 we have advocated the introduction of correlation between the two
terms of a difference to reduce its variance. The same idea can be used to reduce
the variance of averages: Let U1, U2, . . . , Un be i.i.d. random variables with com-
mon expected value I. Then the variance of In = 1/n

∑n
i=1 Ui is 1/nVar (U1).

Now, assume that n is even, say n = 2k and consider estimating I by

IA
n =

1
k

k∑
i=1

U+
i + U−

i

2
, (12)

where now it is assumed that {U+
1 , . . . , U+

k } are i.i.d., just like {U−
1 , . . . , U−

k },
E
[
U+

i

]
= E

[
U−

i

]
= I. Then E

[
IA
n

]
= I and

Var
(
IA
n

)
= (1/k)Var

(
(U+

1 + U−
1 )/2

)
. (13)

Using the elementary identity

Var
(
(U+

1 + U−
1 )/2

)
= 1/4 (Var

(
U+

1

)
+ Var

(
U−

1

)
+ 2Cov

(
U+

1 , U−
1

)
) , (14)

we get that if Var
(
U+

1

)
+ Var

(
U−

1

) ≤ 2Var (Ui) and Cov
(
U+

1 , U−
1

) ≤ 0 then
Var

(
IA
n

) ≤ Var (In). One way to achieve this is to let U+
i , U−

i be antithetic
random variables: U+

i and U−
i are called antithetic if their distributions are the

same but Cov
(
U+

i , U−
i

)
< 0.

How can we introduce antithetic variables in parameter optimization of game
programs? Consider the problem of optimizing the performance of a player in a
non-deterministic game. Let us collect all random choices external to the players
into a random variable Y and let f(Y ; W ) be the performance of the player
in the game. Here W represents the random choices made by the players (f
is a deterministic function of its arguments). For instance, in poker Y can be
chosen to be the cards in the deck at the beginning of the play after shuffling. The
idea is to manipulate the random variables Y in the simulations by introducing a
“mirrored” version, Y ′, of it such that f(Y ; W ) and f(Y ′; W ′) become antithetic.
Here W ′ represents the player’s choices in response to Y ′ (it is assumed that
different random numbers are used when computing W and W ′).

The influence of the random choices Y on the outcome of the game is often
strong. By this we mean that the value of f(Y ; W ) is largely determined by
the value of Y . For instance, it may happen in poker that one player gets a
strong hand, whilst the other gets a weak one. Assuming two players, a natural
way to mitigate the influence of Y is to reverse the hands of the players: the
hand of the first player becomes that of the second and vice versa. Denoting the
cards in this new scenario by Y ′, it is expected that Cov (f(Y ; W ), f(Y ′; W ′)) <
0. Since the distribution of Y and Y ′ are identical (the mapping between Y
and Y ′ is a bijection), the same holds for the distributions of f(Y ; W ) and
f(Y ′; W ′). When the random choices Y influence the outcome of the game
strongly then we often find that f(Y ; W ) ≈ −f(Y ′; W ′). When this is the
case then Cov (f(Y ; W ), f(Y ′; W ′)) ≈ −Var (f(Y ; W )) and thus f(Y ; W ) and
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f(Y ′; W ′) are “perfectly” antithetic and thus Var
(
IA
n

) ≈ 0. Of course, f(Y ; W )
= −f(Y ′; W ′) will never hold and thus the variance of IA

n will not be eliminated
entirely – but the above argument shows that it can be reduced to a large extent.

This method can be used in the estimation of the gradient (and also when the
performance of the players is evaluated). Combined with the previous methods
we obtain

ĝp′,i(θ) =
1

4cp′

p′∑
j=1

1

∆
(j)
i

(
(f(θ + c∆(j); Y ) + f(θ + c∆(j); Y ′))

− (f(θ − c∆(j); Y ) + f(θ − c∆(j); Y ′))
)

, (15)

where∆(1), . . . , ∆(p′)are i.i.d. random variables. In our experiments (see Sect. 5.1)
we observed that to achieve the same accuracy in evaluating the performance of
a player we could use up to 4 times less samples when antithetic variables were
used. We expect similar speed-ups in other games where external randomness
influences the outcome of the game strongly.

4 Test Domains

In this section we describe the two test domains, Omaha Hi-Lo Poker and Lines
of Action. Together with the game-playing programs they are used in the exper-
iments.

4.1 Omaha Hi-Lo Poker

The rules. Omaha Hi-Lo Poker is a card game played by two to ten players.
At the start each player is dealt four private cards, and at later stages five
community cards are dealt face up (three after the first betting round, and one
after the second betting round and after the third betting round). In a betting
round, the player on turn has three options: fold, check/call, or bet/raise. After
the last betting round, the pot is split amongst the players depending on the
strength of their cards. The pot is halved into a high side and a low side. For
each side, players must form a hand consisting of two private cards and three
community cards. The high side is won according to the usual poker hand ranking
rules. For the low side, a hand with five cards with different numerical values
from Ace to eight has to be constructed. The winning low hand is the one with
the lowest high card.

Estimating the Expected Proportional Payoff. It is essential for a poker
player is to estimate his winning chances, or more precisely to predict how much
share one will get from the pot. Our program, MCRAISE, uses the following
calculations to derive an estimate of the expected proportional payoff.

N random card configurations, cc, are generated, each consisting of the oppo-
nent hands hopp(cc) and the community cards that still have to be dealt. Then,
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given the betting history history of the current game, the expected payoff as ex-
pressed as a proportion of the actual pot size (we call this quantity the expected
proportional payoff or EPP) is approximated by

pwin =
1
N

∑
cc

win(cc)
∏
opp

p(hopp(cc)|history)
p(hopp(c))

. (16)

where win(cc) is the percentage of the pot won for a given card configuration
cc and p(hopp(cc)|history) is the probability of cc given the observed history of
betting actions. Now, using Bayes’ rule, we obtain

p(hopp(cc)|history)
p(hopp(cc))

∝ p(history|hopp(cc)) , (17)

where the omission of p(history) is compensated by changing the calculation of
pwin by normalising the individual weights of w(cc) = p(history|hopp(cc)) so as
they sum to 1, i.e., pwin is estimated by means of weighted importance sampling.

The probability of a betting sequence given the hole cards, p(history|hopp(cc)),
is computed using the probability of a certain betting action given the game
state, p(a|hopp(cc)), which is the core of the opponent model. If we would assume
independence among the actions of an opponent, then p(history|hopp(cc)) would
come down to a product over the individual actions. This is obviously not the
case. A simple way to include the correlation among the betting actions inside
a round is given by the following equation:

p(history|hopp(cc)) =
∏
rnd

∑
a∈historyopp,rnd

p(a|hopp(cc))
p(a)

naopp,rnd
, (18)

where naopp,rnd is the number of actions of an opponent opp in a round rnd.
Estimating p(a|hopp(cc)) can be done in various ways. Currently, we use a

generic opponent model, fitted to a game database that includes human games
played on IRC, and games generated by self-play.

Action Selection. MCRAISE’s action selection is based on a straightforward
estimate of the expected value of each actions followed by selecting the action
with the highest value. Given the current situation s and the estimate of EPP,
pwin = pwin(s), the expected value of an action a is estimated by

Q(s, a) = pwinΠ(a, s) − B(a, s) , (19)

where Π(a, s) is the estimated pot size provided that action a is executed and
B(a, s) is the contribution to the pot. For estimating Π(a, s) and B(a, s), we
assume that every player checks from this point on.

4.2 Lines of Action

In this subsection we explain first the game of Lines of Action (LOA). Then, the
tournament program MIA and its enhancement RPS are described briefly.
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The rules. LOA is a chess-like game with a connection-based goal. The game
is played on an 8× 8 board by two sides, Black and White. Each side has twelve
pieces at its disposal. The players alternately move a piece, starting with Black.
A move takes place in a straight line, exactly as many squares as there are pieces
of either colour anywhere along the line of movement. A player may jump over its
own pieces. A player may not jump over the opponent’s pieces, but can capture
them by landing on them. The goal of a player is to be the first to create a
configuration on the board in which all own pieces are connected in one unit.
The connections within the unit may be either orthogonal or diagonal.

MIA. MIA 4++ is a world-class LOA program, which has won the LOA tour-
nament at the eighth (2003) and ninth (2004) Computer Olympiad. It is consid-
ered as the best LOA-playing entity of the world [17]. Here we will focus on the
program component optimized in the experiments, the realization-probability
search (RPS) [16]. The RPS algorithm is a new approach to fractional plies. It
performs a selective search similar to forward pruning and selective extensions.
In RPS the search depth of the move under consideration is determined by the
realization probability of its move category. These realization probabilities are
based on the relative frequencies which are noticed in master games. In MIA,
the move categories depend on center-of-mass, board position, and capturing. In
total there are 277 weights eligible to be tuned. Levy [10] argues that it may be
necessary for a computerized search process to have numbers for the categories
that are different from the ones extracted from master games. Therefore, we also
believe that there is still room to improve the algorithm’s performance by tuning
its weights.

5 Experiments

In poker, we tested the RSPSA algorithm by optimizing two components of
MCRAISE, the opponent model and the action selection. For both components, we
compare the performance resulting by using RSPSA with the performance given
by an alternative (state-of-the-art) optimization algorithm. The experiments for
the opponent-model optimization are described in Sect. 5.1 and for the move-
selection optimization in Sect. 5.2. In LOA, the RSPSA algorithm is employed to
tune the realization-probability weights in MIA. According to [7] these weights
belong to a class of parameters (termed class-S search decisions) that can be
evaluated using search trees. In Sect. 5.3 we show how this property is exploited
for improving the efficiency of the learning.

5.1 Tuning the Opponent Model

The opponent model of MCRAISE is embodied in the estimation of p(a|hopp(cc))
(see Sect. 4.1). The model uses in total six parameters.

For problems where the number of parameters is small, FDSA can be a natural
competitor to SPSA. We combined both SPSA and FDSA with RPROP. The
combined FDSA algorithm will be denoted in the following by RFDSA. Some
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preliminary experiments were performed with the standard SPSA, but they did
not produce reasonable results (perhaps due to the anisotropy of the underlying
optimization problem).

A natural performance measure of a player’s strength is the average amount
of money won per hand divided by the value of the small bet (sb/h). Typical
differences between players are in the range of 0.05 to 0.2sb/h. For showing that
a 0.05sb/h difference is statistically significant in a two-player game one has to
play up to 20,000 games. It is possible to speed up the evaluation if antithetic
dealing is used as proposed in Sect. 3.3. In this case, in every second game each
player is given the cards which the opponent had the game before, while the
community cards are kept the same. According to our experience, antithetic
dealing reduces the necessary number of games by at least four. This technique
is used throughout the poker experiments.

In the process of estimating the derivatives we employed the “Common Ran-
dom Numbers” method: the same decks were used for the two opposite perturba-
tions. Since many of the decks produced zero SPSA differences, thus producing
zero contribution to the estimation of the sign of the derivatives, those decks that
resulted in no-zero differences were saved for reuse. In subsequent steps, half of
the decks used for a new perturbation were taken from those previously stored,
whilst the other half was generated randomly. The idea of storing and reusing
decks that ‘make difference’ can be motivated using ideas from importance sam-
pling, a method known to decrease the variance of Monte-Carlo estimates.

The parameters of the algorithms are given in Table 1. Note that the perfor-
mance corresponding to a single perturbation was evaluated by playing games
in parallel on a cluster of sixteen computers. The number of evaluations (games)
for a given perturbation was kept in all cases above 100 to reduce the communi-
cation overhead. The parameters of the opponent model were initialized to the
original parameter settings of MCRAISE.

The evolution of performance for the two algorithms is plotted in Fig. 1(top) as
a function of the number of iterations. The best performance obtained for RSPSA

Table 1. Learning parameters of RSPSA and RFDSA for opponent model (OM),
RSPSA and TD for evaluation function (EF) and RSPSA for policy (POL)learning.
η+, η−, δ0 (the initial value of δti), δ− and δ+ are the RPROP parameters; ∆ is the
SPSA (or FDSA) perturbation size, λ is the parameter of TD; batchsize is the number
of performance evaluations (games) in an iteration which, for RSPSA and RFDSA, is
equal to the product of the number of perturbations (q), the number of directions (2)
and the number of evaluations per perturbation (r).

η+ η− δ0 δ− δ+ ∆(λ) batchsize

RSPSA (OM) 1.1 0.85 0.01 1e-3 1.0 δ 40 × 2 × 250
RFDSA (OM) 1.1 0.85 0.01 1e-3 1.0 δ 6 × 2 × 1500
RSPSA (EF) 1.2 0.8 0.05 1e-3 1.0 δ/0.7 100 × 2 × 100
RSPSA (POL) 1.1 0.9 0.01 1e-3 1.0 δ/0.3 100 × 2 × 100
TD (EF) 1.2 0.5 0.1 1e-6 1.0 0.9 10000
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Fig. 1. Learning curves in poker: RSPSA and RFDSA for opponent-model learning
(top) and RSPSA and TD for policy learning and evaluation-function learning (bot-
tom). The graphs are obtained by smoothing the observed performance in windows
of size 15. The error bars were obtained by dropping the smallest and largest values
within the same windows centered around their respective coordinates.

was +0.170sb, whilst that of for RFDSA was +0.095sb. Since the performance
resulting from the use of RSPSA is almost twice as good as that of resulting
from the use of RFDSA, we may conclude that despite the small number of
parameters, RSPSA is the better choice here.

5.2 Learning Policies and Evaluation Functions

The action-selection mechanism of MCRAISE is based on a simple estimation of
the expected payoffs of actions and selecting the best action (see Sect. 4.1). This
can be cast as a 1-ply search w.r.t. the evaluation function V if s′, being the
situation after action a is executed from situation s, and if we define V (s′) =
Q(s, a). In the experiments we represent either V or Q with a neural network. In
the first case the output of the neural network for a given situation s represents
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V (s) that is used in the 1-ply search, whilst in the second case the neural network
has three outputs that are used (after normalization) as the probabilities of
selecting the respective next actions. The input to the neural networks include
EPP, the strength of the player’s hand (as the a-priori chance of winning), the
position of the player, the pot size, the current bet level, and some statistics
about the recent betting actions of the opponent.

Learning evaluation functions is by far the most studied learning task in
games. One of the most successful algorithm for this task is TD-learning and the
best known example of successfully training an evaluation function is TDGam-
mon [14]. By some researchers, the success can mostly be attributed to the
highly stochastic nature of this game. Poker is similarly stochastic, therefore
TD-algorithms might enjoy the same benefit. Temporal-difference learning had
some success in deterministic games as well, e.g. [18]. In our experiment we use
a similar design as the one used in MIA, combining TD(λ) with RRPOP (one
source for the motivation of RSPSA comes from the success of combining TD(λ)
and RPROP).

The parameters of the algorithms are given in Table 1. For RSPSA the
same enhancements were used as in Sect. 5.1. We tested experimentally four
algorithms: (1) RSPSA for tuning the parameters of an evaluation function
(RSPSA(EF)), (2) RSPSA for tuning a policy (RSPSA(POL)), (3) TD for tun-
ing an evaluation function (TD(EF)), and (4) TD for evaluation-function tuning
with a supervised start-up (spvTD(EF)). For the latter a simple supervised al-
gorithm tuned the neural network used as the evaluation function to match
the evaluation function that was described in Sect. 4.1. The learning curves are
given in Fig. 1(bottom). The best performance obtained for RSPSA(EF) was
+0.194sb/h, for RSPSA(POL) it was +0.152sb/h, for TD(EF) it was +0.015sb/h
and for spvTD(EF) it was +0.220sb/h. It is fair to say that TD performed better
than RSPSA, which is a result one would expect given that TD uses more in-
formation about the gradient. However, we observe that for TD it was essential
to start from a good policy and this option might not be always available. We
note that although the two RSPSA algorithms did not reach the performance
obtained by the combination of supervised and TD-learning, they did reach a
considerable performance gain even though they were started from scratch.

5.3 Tuning the Realization-Probability Weights

Generally the parameters of a game program are evaluated by playing a number
of games against a (fixed) set of opponents. In [7], it was noted that for pa-
rameters such as search extensions alternative performance measures exists as
well. One such alternative is to measure the ‘quality’ of the move selected by the
search algorithm (constrained by time, search depth or number of nodes). The
quality of a move was defined in [8] as the negative negamax score returned by
a sufficiently deep search for the position followed by the move. In the following,
we describe two experiments. In the first, the performance is evaluated by game
result. The result is averaged over 500 games played against five different oppo-
nents starting from 50 fixed positions with both colors. Each opponent is using
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Table 2. Learning parameters of RSPSA for realization-probability weights using game
result (GR) and move score (MS) for evaluation

η+ η− δ0 δ− δ+ ∆(λ) batchsize

RSPSA (GR) 1.2 0.8 0.005 1e-3 1.0 δ/0.7 500 × 2 × 1
RSPSA (MS) 1.2 0.8 0.005 1e-3 1.0 δ/0.7 5000 × 2 × 1
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Fig. 2. Learning curves for RSPSA on game result (top) and moves score (bottom) as a
function of the number of iteration. The graphs are obtained by smoothing the observed
performance in windows of size 10. The error bars were obtained by dropping the
smallest and largest values within the same windows centered around their respective
coordinates.

a different evaluation function. Each player is searching a maximum of 250,000
nodes per move. In RSPSA the gradient is estimated with 500 perturbations,
using one game per perturbation. The common random number technique is
implemented in this case by using the same starting position, same opponent
and same color for both the positive and the negative sides. In the second exper-
iment the performance is evaluated by move score. The move score is averaged
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over a fixed set of 10,000 positions. For selecting the move the search is limited
to 250,000 nodes. For evaluating the move a deeper search is used with a max-
imum of 10,000,000 nodes. Since the score of a move does not depend on the
realization-probability weights, they are cached and reused when the same move
is selected again (for the same position). So, the deeper search is performed far
less frequently than the shallower search. The RSPSA gradient is estimated with
5,000 perturbations. Each side of a perturbation is evaluated using one position
selected randomly from the set of 10,000 positions (the same position for both
sides). Considering that the average game length in LOA is at least 40 ply, in
the second experiment the gradient is estimated approximately four times faster
than in the first experiment. Moreover, according to our observation, the esti-
mates with move scores are less noisy as well. The parameters of the RSPSA
algorithm for the two experiments are given in Table 2.

The learning curves for the two experiments are plotted in Fig. 2. Since the
two experiments are using different performance measures, the performance for
the two curves cannot be compared directly. Intuitively, the performance gain
for the experiment using move scores (bottom) seems to be more significant
than the one using game result. A more direct comparison can be performed
by comparing the performance, measured as game result, of the best weight
vector of each curve. The best performance obtained in the first experiment was
0.55, and the average game result corresponding to the best vector of the second
experiment was 0.59. Therefore, we may conclude that using the move scores for
estimating the performance improves the efficiency of the RSPSA algorithm.

6 Conclusions

This article investigated the value of a general purpose optimization algorithm,
SPSA, for the automatic tuning of game parameters. Several theoretical and
practical issues were analysed, and we have introduced a new SPSA variant,
called RSPSA. RSPSA combines the strengths of RPROP and SPSA: SPSA is
a gradient-free stochastic hill-climbing method that requires only function eval-
uations. RPROP is a first-order method that is known to improve the rate of
convergence of gradient ascent. The proposed combination couples the perturba-
tion parameter of SPSA and the step-size parameters of RPROP. It was argued
that this coupling is natural.

Several other methods were considered to improve the performance of SPSA
(and thus that of RSPSA). The effect of performing a larger number of pertur-
bations was analyzed. An expression for the mean-square error of the estimate
of the gradient was derived as the function of the number of (noisy) evaluations
of the objective function per perturbation (q) and the number of perturbations
(r). It was found that to optimize the mean-square error with a fixed budget
p = qr, the number of perturbations should be kept at maximum. We suggested
that besides using the method of “common random numbers”, the method of
antithetic variables should be used for the further reduction of the variance of
the estimates of the gradient. These methods together are estimated to achieve a
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speed-up of factor larger than ten (since a smaller number of function evaluations
is sufficient to achieve the same level of accuracy in estimating the gradient).
The overall effect of these enhancements facilitated the application of SPSA for
tuning parameters in our game programs MCRAISE and MIA, whilst without the
proposed modifications SPSA was not able to yield noticeable improvements.

The performance of RSPSA was tested experimentally in the games of Om-
aha Hi-Lo Poker and LOA. In poker, the optimization of two components of
MCRAISE were attempted: that of the opponent model and the action-selection
policy. The latter optimization task was tried both directly when the policy was
represented explicitly and indirectly via the tuning of the parameters of an evalu-
ation function. In addition to testing RSPSA, for both components an alternative
optimizer was tested (RFDSA and TD(λ), respectively). On the task of tuning
the parameters of the opponent model, RSPSA led to a significantly better
performance as compared with the performance obtained when using RFDSA.
In the case of policy optimization, RSPSA was competitive with TD-learning,
although the combination of supervised learning followed by TD-learning out-
performed RSPSA. Nevertheless, the performance of RSPSA was encouraging on
this second task as well. In LOA, the realization-probability weights of MIA were
tuned by RSPSA. In the experiments, we have shown that using move scores for
performance evaluation instead of game results can speed-up and improve the
performance of RSPSA at the same time. In summary, from the experimental
study we may conclude that the RSPSA algorithm using the suggested enhance-
ments is a viable approach for optimizing parameters in game programs.
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Abstract. In this paper we introduce a new pruning mechanism, called
Similarity Pruning for Probabilistic Opponent-Model (PrOM) Search. It
is based on imposing a bound on the differences between two or more
evaluation functions. Assuming such a bound exists, we are able to prove
two theoretical properties, viz., the bound-conservation property and the
bounded-gain property. Using these properties we develop a Similarity-
Pruning algorithm. Subsequently we conduct a series of experiments on
random game trees to measure the efficiency of the new algorithm. The
results show that Similarity Pruning increases the efficiency of PrOM
search considerably.

1 Introduction to PrOM Search

PrOM search [3,4] is an extension of Opponent-Model (OM) search [1,3,6]. In
OM search and in PrOM Search we call the player under consideration simply
the player, and the other one the opponent. The opponent is assumed to use an
evaluation function, known to the player. Moreover, the opponent’s evaluation
function is assumed to be weaker than the player’s own evaluation function. OM
search tries to exploit the opponent’s weaknesses. PrOM search tries to exploit
the weaknesses of the opponent too, but uses a more sophisticated model. In
PrOM search the opponent is modeled by a mixed strategy of N known opponent
types ωi (i = 0, 1, . . . , N − 1) in which (1) each opponent type is represented
separately by an evaluation function Vi(·) and (2) each opponent type has a
probability Pr(ωi). The true opponent is assumed to adopt at every move one
of the opponent types ωi according to probability Pr(ωi), and to act like this
opponent type at the move under discussion.

To determine the best reply against such an opponent, the player has three
tasks: (1) to determine the probability of each move for all opponent types at
all min nodes, (2) to distill for each move the probability that it is played by the
true opponent, and (3) to determine the expected outcome of each move.

The first task is executed as follows. At a min node h, each opponent type ωi

is assumed to play Minimax and therefore to select a move mj ∈ m(h) (m(h)
is the set of moves available at h) with a minimal Minimax value vωi(h + mk)1,
using the evaluation function Vi of opponent type ωi. The values for vωi(·) are
thus computed by:
1 With h+m we indicate the node that is the result of performing move m at node h.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 57–72, 2006.
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vωi(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
mj∈m(h)

vωi(h + mj) h is a max node,

min
mj∈m(h)

vωi(h + mj) h is a min node,

Vi(h) h is a leaf node.

Now the Minimax values vωi(h+mj) of the nodes h+mj are used to determine
the probabilities Pr(mj |ωi, h). Here we have to inspect the moves with the lowest
value. If only one move has a minimal value, then the probability of that move is 1
and all other moves have probability 0. If two or more moves (say K moves) have
the same minimal value for vωi(h+mj), then there are two possible behaviors of
the opponent: (1) the opponent always selects the first one and (2) the opponent
selects one move out of the set of moves with minimal value at random. (This
behavior is also part of the opponent model.) If the opponent always selects
the first minimal move, only that move has probability 1 and all other moves
have probability 0. If the opponent selects randomly between equipotent minimal
moves, the probability of all K minimal moves is 1/K and the probability of all
other moves is 0.

The second task is to distill for each move mj at a min node h the probability
that the move is actually played by the true opponent. These move probabilities
Pr(mj |h) depend on the probabilities Pr(ωi) of the opponent types and the
probability Pr(mj |ωi, h) that the move mj is selected by the opponent type:

Pr(mj |h) =
∑

i

Pr(ωi) Pr(mj |ωi, h) .

The third task is to determine the expected outcome of each move, i.e., to com-
pute the value for the player for all nodes so that the player can pick the best
move to play next. For min nodes h, the PrOM-search value v0(h) is the expected
value of the child nodes’ values v0(h+mj), given the move probabilities. For max
nodes, v0(h) is the maximum of the child nodes’ values. At leaf nodes the player’s
own evaluation function V0 is used directly. So the complete PrOM-search value
is given by:

v0(h) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

max
mj∈m(h)

v0(h + mj) h is a max node,
∑

j Pr(mj |h) v0(h + mj) h is a min node,

V0(h) h is a leaf node.

In [5] we showed that PrOM search as described above, can in some cases
outperform both OM search and Minimax search (or equivalents), provided fixed-
depth search trees are used and there are no time restrictions. A problem is
that it is hard to compute the PrOM-search values efficiently, which makes the
practical application of PrOM search difficult. Although pruning mechanisms
for PrOM search have been described earlier [3,4] (see also Section 3), we feel
that additional pruning mechanisms are needed to further practical application.
Inspired by good results in OM search [2] and multi-player algorithms [12], we
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investigate in this paper whether putting a bound on the differences between the
evaluation functions can increase the efficiency of PrOM search.

The remainder of this paper is organized as follows. In Section 2 we will assume
that such a bound exists and use it to prove the existence of two properties of
PrOM-search game trees, viz. the bound-conservation property and the bounded-
gain property. In Section 3 we briefly explain an existing pruning algorithm for
PrOM search and present the new Similarity-Pruning algorithm. The vehicle for
our experiments, random game trees, is discussed in Section 4. The experimental
set-up is given in Section 5 and the results in Section 6. We complete the paper
with conclusions in Section 7.

2 Similarity

The algorithm proposed in this paper is inspired by the αβ∗ algorithm as sug-
gested by Carmel and Markovitch [2]. In turn, they are inspired by the pruning
algorithms proposed for multi-player games by Korf and Sturtevant [7,12] (see
Subsection 3.2). The basic observation in both algorithms is that when a bound
can be put on the sum of the evaluation functions applied, this bound can be
used to prune the search tree.

In the case of PrOM search it would mean that when the evaluation functions
Vi(·) within the probabilistic opponent model are rather similar to V0(·), then
this similarity can be used to prune the search tree of PrOM search. We define
the similarity of the evaluation functions in PrOM search as follows:

∀h∈E , ∀i>0 |V0(h) − Vi(h)| ≤ B ,

where E is the set of leaf nodes (which is a subset of the set H of all nodes h in
the game tree) and where bound B is a non-negative number. Below we prove
two properties of PrOM-search game trees: the bound-conservation property and
the bounded-gain property, that hold if the similarity condition of the evaluation
functions is met. Both properties are fundamental and as such they form the
basis for Similarity Pruning in PrOM search.

2.1 Bound-Conservation Property

The first property of PrOM-search game trees that is fundamental for Similarity
Pruning is the bound-conservation property.

Property 1 (Bound Conservation). If the absolute difference between two evalu-
ation functions Va(h) and Vb(h) is bounded by some positive limit B for all leaf
nodes h ∈ E of a PrOM-search game tree, then the absolute difference between
the Minimax values va(h) and vb(h) is also bounded by B for all nodes h ∈ H .

Proof. The truth of the property is easily proven by induction. The property is
clearly true for all h ∈ E. Assume that for a given h, |va(h+m)−vb(h+m)| ≤ B
for all m ∈ m(h). Further, assume that va(h) = va(h+mi) and vb(h) = vb(h+mj)
(Player a selects mi and Player b selects mj). If i = j then va(h) and vb(h) were
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propagated from the same node and therefore their difference is bounded by
B. If i �= j at a max node, it must hold that va(h + mi) ≥ va(h + mj) and
vb(h + mi) ≤ vb(h + mj); otherwise moves mi and mj would not have been
selected. There are six different ways in which the four values for player a and
b can be arranged under these constraints (see Fig. 1). It is noted that we do
not treat cases with equal values separately. The pairs A and B, C and D, and
E and F are symmetrical cases (by swapping a with b and i with j), so we only
consider cases A, C, and E. In cases A and E, it is clear that the difference
between va(h + mi) and vb(h + mj) is bounded by B, since vb(h + mj) falls
inside the interval [va(h + mi), vb(h + mi)], which size is bounded by B. In case
C, vb(h + mj) cannot be larger than va(h + mi) + B since va(h + mj) cannot
exceed va(h + mi) and the difference between va(h + mj) and vb(h + mj) is
bounded by B.

B C D E FA

mi mj mi mjmi mj mi mj mi mj mi mj

= va = vb B

Fig. 1. Six possible configurations of va(h + mi), vb(h + mi), va(h + mj), and vb(h +
mj). The heights of the black and white dots indicate the relative value of va and vb,
respectively.

A similar but mirrored reasoning is valid for min nodes. All together, it implies
that the difference between va(h) and vb(h) is bounded by B for all h ∈ H , which
concludes the proof. 
�
The consequence of the bound-conservation property for PrOM-search game
trees is as follows. If the opponent types are constructed in such way that the
differences between Vω0(·) and Vωi(·), (i > 0) are bounded by B for any pair of
opponent types ω0 and ωi, then the differences between values vω0(h) and vωi(h)
are bounded by B too for all h ∈ H . It means that in a pruning procedure, the
value vω0(h) can be used at max nodes to predict the values of vωi(h).

2.2 Bounded-Gain Property

The second property of PrOM-search game trees that is fundamental for Simi-
larity Pruning is the bounded-gain property. Since the evaluation function Vω0(·)
is not only used by opponent type ω0, but also by the player to determine
the values of v0(·), it is possible to derive a bound on the difference between
v0(h) and vω0(h) for all h ∈ H . Since in [3] it is already proven that ∀h ∈ H :
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v0(h) ≥ vω0(h), such a bound on the difference between v0(h) and vω0(h) puts a
bound on the gain of PrOM search.

Property 2 (Bounded Gain). If for all evaluation functions Va(·), the difference
between V0(h) and Va(h) is bounded by some positive limit B for all leaf nodes
h ∈ E of a PrOM-search game tree, then the difference between v0(h) and vω0(h)
is bounded by �d(1 − p)B for all h ∈ H , where d is the search depth at h and
p = Pr(ω0).

Proof. Again, the proof is constructed by induction. First we prove the property
in the case when only 2 opponent types, ω0 and ω1, are present.

Since for all h ∈ E, v0(h) = vω0(h) = V0(h), the induction hypothesis is clearly
valid in set E. Now take h to be a min node. Assume that for all m ∈ m(h)
|vω0(h + m)− v0(h + m)| ≤ xB, for some x ≥ 0. Assume further that ω0 selects
move mi and ω1 selects move mj . We know that the following four pairs of values
are each bounded:

|v0(h + mi) − vω0(h + mi)| ≤ xB (induction assumption),
|vω0(h + mi) − vω1(h + mj)| ≤ B (since vω0(h + mi) = vω0(h)

and vω1(h + mj) = vω1(h)),
|vω1(h + mj) − vω0(h + mj)| ≤ B (bound conservation),
|vω0(h + mj) − v0(h + mj)| ≤ xB (induction assumption).

By the definition of PrOM search, v0(h) = pv0(h+mi)+(1−p)v0(h+mj). Now
assume the worst case for the (positive) difference between v0(h) and vω0(h).
This happens when:

v0(h + mi) = vω0(h + mi) + xB, vω1(h + mj) = vω0(h + mi) + B,
vω0(h + mj) = vω1(h + mj) + B, and v0(h + mj) = vω0(h + mj) + xB.

Since vω0(h) = vω0(h + mi), the value of vo(h) can be expressed in vω0(h):

v0(h) = p(vω0(h)+xB)+(1−p)(vω0(h)+(2+x)B) = vω0(h)+(x+2(1−p))B

This means that the bound on the difference between v0(h) and vω0(h) has grown
with a factor 2(1 − p)B with respect to the difference between v0(h + m) and
vω0(h + m). At max nodes, the difference between v0(h) and vω0(h) does not
increase. The proof of this statement is similar to the proof in Subsection 2.1
and is omitted here. Together it means that the difference between v0(h) and
vω0(h) increases maximally with a factor 2(1− p)B at every second (min) ply of
search. When d is the depth of the subtree at max node h, then the difference
between v0(h) and vω0(h) will thus be bounded by �d(1 − p)B.

When more than two opponent types are involved, the bounded-gain property
still holds. The worst case in this situation appears when all values vωi(h) (i > 0)
are equal and differ B from vω0(h) in the same way as above. However, this means
that all opponent types (except ω0) select the same move (say j) and the formula
for v0(h) remains pv0(h + mi) + (1 − p)v0(h + mj). 
�
The bounded-gain property implies that the value of vω0(h), which actually is
the standard Minimax game value, can be used to predict the PrOM-search value
vω0(h).
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3 Similarity Pruning

The two properties are a direct help when implementing Similarity Pruning.
In Subsection 3.1 we describe the implementation. Related work is reviewed in
Subsection 3.2.

3.1 Implementing Similarity Pruning

Below we describe the components of the Similarity-Pruning algorithm. The
algorithm is an extension of the probing version of β-pruning PrOM search [3].
For convenience, this is reproduced in Fig. 2. In the algorithm, β pruning takes
place in line 10 where α-β search is called with an appropriate upper bound (β̄i)
and evaluation function (Vi(·)). The upper bounds are determined in line 14:
when a node already has been probed, the value found can be used as an upper
bound for the next level of PrOM search in the subtree of the node.

PromSearchBeta(h, β̄, d)
1 if (d = 0) then return (V0(h),null)
2 if h = max node then
3 L ← m(h) ; v∗ ← −∞ ; m∗ ← null
4 for all m ∈ L
5 (v, ·) ← PromSearchBeta(h + m, β̄, d − 1)
6 if (v > v∗) then v∗ ← v ; m∗ ← m
7 if h = min node then
8 L ← ∅

9 for i ∈ {0, . . . , n − 1}
10 (v̄∗

i , m̄∗
i ) ← αβ search(h,−∞, β̄i, Vi(·), d)

11 L ← L ∪ {m̄∗
i }

12 v∗ ← 0; m∗ ← null
13 for all m ∈ L
14 for i ∈ {0, . . . , n − 1} if (m = m̄∗

i ) β̄i ← v̄∗
i + 1 else β̄i ← ∞

15 (v, ·) ← PromSearchBeta(h + m, β̄, d − 1)
16 for i ∈ {0, . . . , n − 1} if (m = m̄∗

i ) v∗ ← v∗ + Pr(ωi) v
17 return (v∗, m∗)

Fig. 2. Probing version of β-pruning PrOM search

Figure 3 lists the implementation of Similarity-Pruning PrOM search. In con-
trast to the algorithm of Fig. 2, this algorithm treats two plies at once: a max
node and all its min child nodes. It means that in the code h always is a max
node and that h + m are the child min nodes.

The algorithm starts using the bounded-gain property to prune all min nodes
h + m that cannot contribute to the root value. Since we know that v0(h) can
not be smaller than vω0(h)− b, where b = �B(1−Pr(ω0))(d− 1), all min nodes
for which vω0(h + m) < vω0(h) − b cannot contribute and can be pruned. So
when determining the vω0(h + m) using α-β search, we can use value v∗ − b for
α when we scan the child nodes, where v∗ is the maximum value of vω0 so far
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PromSearchSim(h, β̄, d)
1 if (d = 0) then return (V0(h),null)
2 b ← �B(1 − Pr(ω0))(d − 1)�
3 L ← m(h) ; m∗ ← null
4 v∗ ← −∞ ; R ← ∅

5 for all m ∈ L
6 (v, mm) ← αβ search(h + m, v∗ − b, β̄0, V0(·), d − 1)
7 R ← R ∪ {(v, m, mm)}
8 if (v > v∗) then v∗ ← v ; m∗ ← m
9 if (d = 1) then return (v∗, m∗)
10 for all (w, m, mm) ∈ R : if (w < w∗ − b) R ← R − {(w, m,mm)}
11 v∗ ← −∞ ; m∗ ← null
12 for all (v̄∗

0 , m, mm) ∈ R
13 w∗ ← −∞ ; mm∗ ← null
14 if (v̄∗

0 + b < v∗) then w∗ ← v̄∗
0

15 else
16 L ← {mm}
17 for i ∈ {1, . . . , n − 1}
18 (v̄∗

i , m̄m∗
i ) ← αβ search(h + m, v̄∗

0 − B, min(β̄i, v̄
∗
0 + B + 1), Vi(·), d − 1)

19 L ← L ∪ {m̄m∗
i }

20 w∗ ← 0
21 for all mm ∈ L
22 for i ∈ {0, . . . , n − 1} if (mm = m̄m∗

i ) β̄i ← v̄∗
i + 1 else β̄i ← ∞

23 (v, ·) ← PromSearchSim(h + m + mm, β̄, d − 2)
24 for i ∈ {0, . . . , n − 1} if (mm = m̄m∗

i ) w∗ ← w∗ + Pr(ωi) v
25 if (w∗ > v∗) then v∗ ← w∗ ; m∗ ← m
26 return (v∗, m∗)

Fig. 3. Similarity-Pruning PrOM search

(see line 6). This provides the first case of Similarity Pruning. In list R we store
the value of vω0(h+m) (called v), the child node m, and its best move mm. The
second case of Similarity Pruning occurs in line 10 where list R is inspected and
all child nodes are removed for which vω0(h + m) < vω0(h) − b.

For all remaining child nodes at list R, the algorithm computes the PrOM-
search value v0(h + m) and the maximum of these values produces v0(h). How-
ever, when the best value of v0(h) so far is larger than vω0(h + m) + b for the
current child node h + m, then that child node can be pruned (line 14), which
is the third case of Similarity Pruning.

The computation of the PrOM search values for the remaining min nodes is
not fundamentally different from the procedure in lines 8 to 16 of Fig. 2. Since
the first opponent type (ω0) has already be handled, list L can start with its
best move mm. The only real difference occurs in line 18. Here, the bound-
conservation property is used to control the window of the α-β search: the value
of α and β are confined to an interval of 2B around vω0(h+m) (in the algorithm
indicated by v̄∗0). This constitutes the final, fourth case of Similarity Pruning.
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Without a formal proof, we claim that this implementation of Similarity Prun-
ing is safe: it produces the same root value of v0 as PrOM search does.

3.2 Related Work

The idea of using restrictions on the values of several evaluation functions at
the same leaf node for pruning a search tree is first described by Korf [7]. He
introduces an α-β-like pruning algorithm for the Maxn approach of multi-player
games [8]. In this approach, every player has an own evaluation function and
every player tries to maximize its own results, independent of the other players
(i.e., there is no co-operation between players). It means that at leaf nodes,
there is a separate node value for every player. Luckhardt and Irani [8] show
that without any restrictions on the evaluation functions, no safe pruning is
possible. The two restrictions that Korf puts on the values to allow pruning are
that (1) at all leaf nodes, the sum of the values must be equal to or less than a
given upper bound, and (2) that all leaf-node values must be larger than a given
lower bound (e.g., zero). We note that these restrictions are not equivalent with
the similarity restriction as proposed above since the latter does not restrict the
absolute values of the leaf nodes.

Korf proofs that two types of pruning are possible in the Maxn algorithm
if the two restrictions hold. First, immediate pruning is possible if the value
for the player to move of one child node is equal to the upper bound: in this
case the other child nodes can be pruned immediately. The second pruning op-
portunity is shallow pruning, where the value of a previously investigated sib-
ling node can be used to prune the children of a node under consideration. In
contrast to alpha-beta pruning in two-player zero-sum games and to similarity-
pruning as described above, deep pruning appears not to be possible in Korf’s
approach.

Additional pruning can be achieved in the Maxn approach when an extra
restriction is put on the separate evaluation functions. Sturtevant and Korf [12]
show that when the functions are monotonic, a branch-and-bound approach can
be combined with the α-β-like pruning in Maxn. Monotonicity means that the
(heuristic) score for a player cannot decrease during the course of a game, a rather
severe restriction. Sturtevant [11] later presented two supplementary pruning
techniques for Maxn that are based on the two first restrictions on evaluation
functions: Last-Branch pruning and, an extension of the same, Speculative Maxn

pruning. These techniques allow extra pruning for the last player based on the
sum of lower bounds of values of all other players.

Carmel and Markovitch [2] present a pruning algorithm for their recursive
(multi-model) version of (two-player) opponent-model search: M∗ search. In this
version, the opponent model that the first player uses of the second player (M i)
contains the second player’s model of the first player (M i−1), which can con-
tain a subsequent model of the second player (M i−2), et cetera. Each model M i

is connected to a separate evaluation function, say Vi(·). Even-numbered mod-
els are connected to the first player, odd models to the second player. Pruning in
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M∗ search is not possible, except for applying α-β search at the M0 level. At
higher model levels, a similar situation arises as in Maxn.

Carmel and Markovitch [2] therefore define the following constraint on the
evaluation functions. For every leaf node h, and for every model M i, i > 0,
bounds Bi must exist such that |Vi(h) + Vi−1(h)| ≤ Bi, where Bi ≥ 0. This
bounded-sum constraint is fundamentally different from the constraints in the
Maxn approach. In Maxn all players are maximizing and therefore, all evalua-
tion functions have the same sign. In M∗ search, the models alternate between
a maximizing and a minimizing player, so V i and V i−1 have opposite signs.
When the bounded-sum property holds, it can be proven that a bound exists
on the sums of values in all internal nodes of the search trees. Namely, if for all
children h′ of h and for all models M i this constraint holds, then it holds that
|Vi(h) + Vi−1(h)| ≤ Bi + 2Bi−1. Using this property, Carmel and Markovitch
constructed an α-β-like pruning version for the multi-pass (αβ∗) and one-pass
(αβ∗

1p) versions of M∗ search.
Although our similarity constraint is defined as a bound on the difference of

two evaluation functions, it is nevertheless equivalent to the bound on the sum
in M∗ search. In PrOM search all opponent types are representing the second
player, and therefore they all have the same sign and, as already mentioned, V i

and V i−1 have opposite signs in M∗ search. However, there are three differences.
First, in PrOM search, the bound must hold for all pairs (V0, Vi), whereas in M∗

search it must hold for pairs (Vi, Vi−1) of subsequent models. The latter means
that the differences between models can grow larger, the farther they are apart,
whereas in PrOM search all opponent types have the same distance to V0. This
is intuitive since M∗ and PrOM search can be seen as two orthogonal approaches
that even can be combined into a single multi-model probabilistic algorithm [3].

The second difference is that in the pruning M∗ approach, separate bounds
are used per model, whereas in Similarity-Pruning PrOM search, we use only a
single bound B. Although it is possible to specify a bound Bi per evaluation
function Vi in line 18 of Fig. 3 to increase pruning efficiency, in line 2, still the
maximum of all bounds Bi is needed. For clarity, we used only a single bound
B in this paper.

The third difference is that in the pruning versions of M*, the bounds increase
in two ways: first, with increasing level of modeling, and second, with increasing
search depth. This leads to less pruning with larger trees and more complex
models. In the case of Similarity Pruning PrOM search, the number of opponent
types does not influence the bound. The bounded-gain property, however, dic-
tates that with increasing search depth, the bound on the differences increases
with a factor (1 − p)B at every ply of search depth.

4 Random Game Trees

In the experiments we applied PrOM search with Similarity Pruning on random
game trees. All leaf nodes in a tree had the same depth and all internal nodes had
the same number of children (branching factor or width). The evaluation function
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in our game trees was generated analogously to the approach by Newborn [10].
In his approach, every node in the tree receives a random number. The value
of a leaf node is the average of all random numbers at the nodes on the path
from the leaf node to the root of the tree. This assured some correlation between
the values of nodes in neighboring parts of the tree, partly simulating real game
trees.

For our experiments with Similarity Pruning, we had to adapt Newborn’s
approach at two points: (1) we needed one evaluation value Vωi(h) for each of
the N opponent types ωi per leaf node h and (2) the difference between Vω0(h)
and Vωi(h) (i > 0) should be bounded by a given B. To achieve this, we as-
signed a series of N random numbers xi(·) to every node in the tree. These
values were drawn uniformly from [0,1]. For each leave node h we first com-
puted the average x̄0(h) of the x0(·) values on the path from the root to h.
For ω0 we used the formula Vω0(h) = Round(Z · x̄0(h)) (Z = 1, 000, result-
ing in a precision of 3 decimals), and for ωi we used the formula Vωi(h) =
Round(Z · x̄0(h) + 2.B.(xi(h)− 0.5)). The xi(·) values in the nodes were of float
precision, the evaluation values were integer values. For generating the pseudo-
random numbers we used the Mersenne Twister [9], also called MT19937. This
pseudorandom-number generator has a period of 219937 which makes it suitable
for the generation of many random game trees with a large number of nodes.
In order to allow paired comparisons of the search methods, we needed to apply
the different methods to exactly the same random game tree. Instead of storing
a complete game tree in memory, we developed a method to (re)construct the
random game tree efficiently during search (see [3]).

The random game trees as produced by this method have a random ordering of
moves with respect to the move quality. It is well understood that α-β pruning is
influenced heavily by the move ordering in the tree and we expect the ordering to
influence our search methods as well. Therefore we developed a new mechanism
to allow for a gradual increase of ordering in the random game tree. To this end,
we added an ordering bias to the value of x0(·), depending on the move number.
For max nodes h: x0(hi) = x0(hi)− F.i, for min nodes h: x0(hi) = x0(hi) + F.i,
where hi are the child nodes of h. The effect of the ordering bias depends on
the size of the ordering factor F . If F = 0, no ordering takes place. When F
increases, its effect will first overcome the variation in x0(·), eventually causing
a perfect ordering of the tree for Vω0 , but not necessarily for other Vωi . When
F increases further, bound B will be overcome too, and the tree will be ordered
perfectly for all evaluation functions Vωi .

5 Experimental Set-Up

In the following experiments, we aimed to measure the efficiency of our imple-
mentation of Similarity Pruning on random game trees as described above. The
base case in all experiments is a game tree of depth 8, branching factor 5, two
opponent types having probabilities 0.3 and 0.7, a bound of 10, and ordering
factor 0. We conducted six experiments. In each one we varied one setting and
kept the other settings as stated in the base case.



Similarity Pruning in PrOM Search 67

– Experiment 1: vary the bound B;
– Experiment 2: vary the probability of opponent type ω0;
– Experiment 3: vary the search depth d;
– Experiment 4: vary the branching factor b;
– Experiment 5: vary the number of opponent types N ; and
– Experiment 6: vary the ordering factor F .

For every setting, we generated 100 random game trees and applied to each of
them α-β search, β-Pruning PrOM search, and Similarity-Pruning PrOM search.
We collected the search value and number of leaf-node evaluations for the three
algorithms on all 100 trees. We present the results as follows: for every tree
we determine the number of evaluations that β pruning and Similarity-Pruning
PrOM search need divided by the number of evaluations that α-β search needs
on the same tree. Since the distribution of these quotients is heavily skewed,
we do not provide the means, but plot the median (solid line), the upper and
lower quartile (dashed lines) and the 5th and 95th percentile (dotted lines) of
the samples.

6 Results

Figure 4 shows the results of experiment 1. We varied the bound B from 0 to
1, 000. At value 1, 000 the similarity bound is the least restrictive; at value 0,
all evaluation functions are equal. Due to the nature of the results, we present
a log-plot. The results for bound 0 are therefore not presented, but they are
similar to the results at 1. The bounded-gain property predicts that the most
pruning can take place at low values of B, which is confirmed by the results.
It appears that also β pruning profits from a smaller bound. This can be ex-
plained by the fact that opponent types will select the same move more often
when their evaluation functions are similar than when they are non-similar. The
results show, however, that Similarity Pruning needs significantly less evalua-
tions than β pruning when the bound drops below 10. When the bound is near
to 1, Similarity-Pruning PrOM search needs only less than 2 times the number
of evaluations that α-β search needs.

The results of experiment 2 are presented in Fig.5. Here we varied the prob-
ability Pr(ω0) of opponent type ω0 from 0.001 to 0.999. We did not include
the border values 0 and 1 since at those values, PrOM search is equivalent to
OM search and α-β search, respectively, and PrOM search is of no use. The
results show that β pruning is insensitive to changes in Pr(ω0). As predicted
by the bounded-gain property, the amount of evaluations needed by Similarity
Pruning decreases when Pr(ω0) increases. At values larger than 0.9, the amount
of pruning drops more sharply from 2.0 times to only 1.2 times the number of
evaluations of α-β search, where β pruning still needs 7 times that amount.

The results of experiment 3 are presented in Fig. 6. In this experiment we
varied the search depth (i.e., the height of the random game trees) from 2 to
14 (both even and odd depths). With increasing search depth, both β pruning
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Fig. 4. Relative number of evaluations needed by β pruning and Similarity Pruning as
a function of the bound B
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Fig. 5. Relative number of evaluations needed by β pruning and Similarity Pruning as
a function of the probability Pr(ω0)

and Similarity Pruning need, as expected, more evaluations in comparison to
α-β search. However, the growth rate of Similarity Pruning is half of that of
β pruning.

Figure 7 shows the results of experiment 4. Here, the branching factor was
varied from 2 to 16. In contrast to experiment 3, the results of experiment 4 are
unexpected. While β pruning needs more evaluations in comparison to α-β search
with increasing numbers of moves per node, the amount of evaluations needed by
Similarity Pruning remains about 3 times that of α-β search. The reason for this



Similarity Pruning in PrOM Search 69

result might be that with increasing branching factor, the effect of the pruning
based on the bounded-gain property might become larger since increasingly more
min child nodes will have a value smaller than the vω0 − B bound.

The results of experiment 5 are presented in Fig. 8. In this experiment, we
varied the number of opponent types from 2 to 10. The probability for oppo-
nent type ω0 remained 0.3, the rest of the probability mass was spread evenly
over the remaining opponent types. As expected, the number of evaluations
needed increased with the number of opponent types, both in β pruning and in
Similarity Pruning. However, in β pruning, each additional opponent type causes
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a function of the search depth
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an increase of about 4 times, while in Similarity Pruning, each additional oppo-
nent type causes only an increase of roughly 1 times the number of evaluations
that α-β search needs. It means that Similarity Pruning in this setting performs
the equivalent of one time α-β search for every opponent type.
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α-β search, β pruning, and Similarity Pruning as
a function of the ordering factor

Experiment 6 concerned vary-
ing the ordering factor from
0 (no ordering) to 10 (per-
fect ordering) for all evalua-
tion functions simultaneously.
The results are presented in
Figs. 9 and 10. To show the
effect of the ordering mech-
anism, in Fig. 9 we plotted
the absolute number of eval-
uations needed on average in
α-β search and in β pruning
and Similarity-Pruning PrOM
search. Fig. 9 shows that with
increasing value of the order-
ing factor, α-β search needs
fewer evaluations, which was ex-
pected.

For ordering factors larger
than 1, the tree is almost perfectly ordered for Vω0 . α-β-search needs the min-
imum amount of 1, 249 evaluations at factor 5 instead of 13, 939 at factor 0
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Fig. 10. Relative number of evaluations needed by β pruning and Similarity Pruning
as a function of the ordering factor

when no ordering is present. (The game tree in the base case has depth 8 and
branching factor 5; the full tree has 85 = 32, 768 leaf nodes.) Also the efficiencies
of β-Pruning and Similarity-Pruning PrOM search increase with larger ordering
factors, but Fig. 9 obfuscates the true relation with α-β search. Therefore, in Fig.
10 we present the relative number of evaluations needed, similar to the results
of the previous five experiments.

The results show that for both β pruning and Similarity Pruning, the relative
number of evaluations needed increases with growing ordering factors. However,
the effect is much larger for β pruning than for Similarity Pruning. In per-
fectly ordered game trees, β pruning needs 23 times the number of evaluations
in α-β search, where Similarity Pruning never needs more than 7 times that
amount.

7 Conclusions

In this paper we introduced a new pruning mechanism for PrOM search, based
on a bound imposed on the differences between two or more evaluation functions.
We derived two theoretical properties of PrOM-search game trees and performed
six experiments. In some cases, in particular with larger branching factors, the
costs of applying PrOM search with Similarity Pruning are less than one addi-
tional ply of search with α-β search. Previous research has revealed that when
PrOM search is provided with sufficient resources, it can outperform α-β search
[3]. From the results of this paper we may conclude that when Similarity Pruning
is applicable, PrOM search might become a feasible alternative for α-β search.
Of course, future research is needed to investigate the effect and usability of a
range of search enhancements on Similarity Pruning. In our future research we
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will investigate the effect of Similarity Pruning when using actual game trees
instead of random game trees.
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Abstract. Amazons is a two-player perfect information game with a
high branching factor, particularly in the opening. Therefore, improv-
ing the efficiency of the search is important for improving the play-
ing strength of an Amazons program. In this paper we propose a new
method for improving search in Amazons by using move categories to
order moves. The move order is decided by the likelihood of the move
actually being selected as the best move. Furthermore, it will be shown
that the likelihood of move selection strongly depends upon the stage
of the game. Therefore, our method is further refined by adjusting the
likelihood of moves according to the progress of the game. Self-play ex-
periments show that using move categories significantly improves the
strength of an Amazons program and that combining move categories
with game progress is better than using only move categories.

1 Introduction

Amazons is a two-player perfect information game with very simple rules [12].
From a computational point of view, its main feature is the large number of legal
moves, particularly in the early stages of the game (in the initial position there
are 2,176 possible moves). Even though the number of legal moves decreases
as the game progresses, the average number of moves in an Amazons’ position
(479) [9] is considerably larger than chess (35), shogi (80) or Go (250) [8]. Because
of the large average number of moves, the well-known search techniques that
have been so successful in other games cannot be easily applied to Amazons.
Therefore, Amazons has recently attracted some attention as a topic of research.
The research efforts have focused on building an evaluation function that can
evaluate positions accurately without deep search [5,7] and on how to do selective
search in Amazons [1]. In this paper, we will present a new search method
for Amazons which is partly a method for selective search but mainly aims
at improving search efficiency.
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Amazons is a relatively new game, so there are no known strategies on how
to play the opening and there is no expert feedback available to decide which
moves are good in the middle game. In other game programs (e.g., chess, Go, or
shogi), years of experience have led to heuristics for moves that are likely to lead
to an advantageous position. These moves can then be given priority during the
search. In chess, for example, moves that capture material or moves that cover
the center are searched early, while sacrifices are searched last. By using these
heuristics, the efficiency of α-β search can be improved, increasing search speed.

The research presented in this paper presents two methods to improve the
search efficiency of an Amazons program. First, we will propose a set of move
categories and use a calculation method from Realization Probability Search [11]
to order moves based on these move categories. Second, we will show that the
importance of move categories changes as the game develops. Therefore, when
deciding the move ordering it is important to take the progress of the game into
account.

In Sect. 2 we will start with an explanation of the properties of Amazons
and how these properties lead to heuristics for good moves. These heuristics
will be used to group moves into different categories. In Sect. 3 each category
is assigned a priority based on statistical data from game records. In Sect. 4 a
simple method to measure progress in Amazons is presented and the relation
between game progress and the move categories is given. In Sect. 5 the results
of a number of experiments comparing the performance of programs without
move categories, with move categories, and with move categories based on game
progress are presented. Finally, in Sect. 6 we provide conclusions and suggestions
for future work.

2 Move Categories in Amazons

Because of the large number of possible moves in Amazons, under tournament
conditions it is impossible to do a deep full-width search (the full-width search
version of our program can only search to a depth of 2 or 3 ply in the opening, and
to 6 or 7 ply near the end of the game). Therefore, using selective search is the
only way to do a reasonable look-ahead. The most common domain-independent
methods for selective search, like the null-move heuristic [2], ProbCut [3] and
Multi-ProbCut [4] use a shallow search to estimate the result of deep searches.
There are two reasons why these methods face problems in Amazons. One rea-
son is that there is no deep search in Amazons until the endgame. Predicting
the results of shallow searches by even shallower searches is risky. The second
problem is that Amazons programs suffer from the even-odd iteration instability.
There are no known methods to do quiescence search in Amazons, so there can
be important changes in the evaluation function value after playing a move. A
great deal of effort into building an evaluation function for Amazons goes into
minimizing this effect, but there are still significant differences between the eval-
uation of even and odd iterations, especially in the opening. This makes it hard
to predict the result of a d ply search with a d − 1 ply search. Also, in the case
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of shallow searches, the differences between a d ply search and a d−2 ply search
are usually too large to be useful for a prediction.

Consequently, domain-dependent methods for selective search are needed in
Amazons. One method, proposed by Avetisyan and Lorentz [1], is to use the
evaluation function to evaluate each move after it has been played and discard
moves for which the evaluation is below a certain threshold. This method was
refined by making a difference between evaluation after the Amazon move and
shooting the arrow.

Rather than eliminating a certain number of possible moves from the search,
we will propose a method to use knowledge about good Amazons moves to
improve the efficiency of α-β search. A common method for improving search
efficiency is to use information that has become available during search. The
best move of the previous iteration, killer moves, and the history heuristic are
examples of such methods. By trying these moves first, the probability of a cut
is increased, and search speed is improved. However, when a new position is
encountered, this information is unavailable but searching good moves first will
still improve search speed. In this case heuristic, game-specific information is
needed to suggest which moves to search first.

In Amazons, with its short history, heuristics for selecting good moves are
unknown. However, as pointed out by Lieberum [7] and confirmed by our own
experience in playing and programming Amazons, confining one or more oppo-
nent Amazons to a small space is an important strategic theme. From this, a
number of straightforward ways to limit the opponent Amazons’ moving ability
and improving the moving ability of one’s own Amazons come to mind. We have
categorized these heuristics into 10 basic categories that are given in Table 1.

As pointed out, in Amazons it is important to confine the opponent Amazons
to a small space, in particular in the opening. Blocking the movement of the
opponent Amazons, either by the move or by the arrow, is therefore a candidate
for a good move. These are categories 1 and 2 in Table 1. An example of a move
that blocks three opponent Amazons with both the Amazon and the arrow is
given in Fig. 1. The white move blocked three black Amazons with the move (A7,

Table 1. Basic move categories in Amazons

No. Category Type #

1 Move blocks opponent Amazons 0, 1, 2, 3 or more 4
2 Arrow blocks opponent Amazons 0, 1, 2, 3 or more 4
3 Move adjacent to opponent Amazon true, false 2
4 Arrow adjacent to opponent Amazon true, false 2
5 Blocking a single Amazon in multiple ways true, false 2
6 Move previously blocked Amazon 0, 1, 2 3
7 Move Amazon to which Amazon moved adjacently true, false 2
8 Move Amazon to which arrow was shot adjacently true, false 2
9 Block Amazon that moved on previous move true, false 2

10 Move Amazon not blocking any opponent Amazon true, false 2
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D10 and G10) and also three black Amazons with the arrow (D10, G10 and J7).
This is a move that is often played as the first move in a game of Amazons. We
make a difference between blocking 0, 1, 2, and 3 or more opponent Amazons,
so the total number of categories is 4. Note that we are also making a difference
between Amazons and arrows blocking the opponent. While an arrow is a simple
block, the Amazon that blocked is not only blocking the opponent Amazon,
but at the same time also blocked by the opponent Amazon. We feel that this
difference between Amazon and arrow should be reflected in the move categories.
This is an important difference with work by Soeda [10], a proposal for move
categories for Amazons that made no difference between Amazon and arrow.

Fig. 1. D1-D7(G7): Amazon and arrow
block 3 opponent Amazons

Fig. 2. D10-I5(I4): Amazon and arrow
adjacent to opponent (J4), also block-
ing J4 twice

Even more aggressive is moving or shooting an arrow to the square adjacent
to an Amazon (category 3 and 4). This is often a threat to trap the Amazon
within the next few moves. In Fig. 2, the move D10-I5(I4) puts an Amazon and
an arrow adjacent to the Amazon on J4. This Amazon on J4 now has very little
space and to avoid being trapped White might have to move it next.

If a single Amazon can be blocked in more than one way, this is also a threat
to trap this Amazon (category 5). If an opponent Amazon can be trapped early,
the game becomes a fight of four Amazons against three, which is often a winning
advantage. In Fig. 1, the black Amazons on D10 and G10 are blocked twice and
so is the white Amazon on J4 in Fig. 2.

Moving the Amazon that is in danger of being trapped is the idea behind
categories 6, 7, and 8. In Fig. 2, moving the Amazon on J4 (which was blocked
twice) leads to the position of Fig. 3. Moving an Amazon that was blocked on the
previous move helps avoiding a trap (category 6). Note that we make a difference
between the number of times the Amazon was blocked on the previous move (0, 1
or 2 times), giving a total of 3 different categories. Moving the Amazon to which
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Fig. 3. J4-H2(C7): moving the threat-
ened Amazon (J4), also blocking twice

Fig. 4. D1-G1(D4): blocking the Ama-
zon that just moved (E5) with a free
Amazon

an Amazon moved adjacently or an arrow was shot adjacently are categories 7
and 8, which mirror categories 3 and 4.

Blocking the Amazon that moved on the previous move (category 9) is based
on the assumption that the previous move had meaning. An opponent Amazon
tried to avoid being trapped or tried to claim or attack some territory. In Fig. 4,
the previous move E7-E5(A1) is an attempt to enter the white territory at the
bottom left. To keep the black Amazon from entering, white blocks this Amazon
with D1-G1(D4).

Finally, category 10 is a move where an Amazon is not blocking any opponent
Amazon. Often, this means that the Amazon is idle and should be moved or can
be moved freely. In Fig. 4, the Amazons on G1 and J8 are Amazons that are not
blocked by any opponent Amazon. J8 is an Amazon that is almost trapped and
moving it to try and escape might be good. The Amazon on G1 is defending the
white territory at the bottom left, so this Amazon will often move inside this
territory to make sure that the opponent cannot enter.

The 10 basic categories are reflecting different aspects of moves, and we al-
ready gave examples of moves belonging to a combination of categories. The
total number of combinations is 42 × 31 × 27 = 6, 144. Of these 6,144 com-
binations there are 4,724 combinations that are theoretically impossible. For
example, when shooting an arrow adjacent to an opponent Amazon, this also
automatically blocks an opponent Amazon at least once, so it never happens
that category 4 is true and category 2 is 0. In our experiments, we have only
used the 1,420 theoretically possible categories.

Using combinations of categories is important, because moves with multiple
meanings are expected to be better than moves that belong to only a single
category. Examples of move categorization for the moves in the figures are given
in Table 2.
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Table 2. Examples of move categories

CatNo. 1 2 3 4 5 6 7 8 9 10 Example move

1 3 3 F F T 0 F F F F Figure 1: D1-D7(G7)
2 1 2 T T T 1 F F F F Figure 2: D10-I5(I4)
3 0 2 F F F 2 T T F F Figure 3: J4-H2(C7)
4 0 1 F T F 1 F F T T Figure 4: D1-G1(D4)

3 Priority Ordering of Moves

To assess the importance of the categories proposed in Sect. 2, we investigated
how often a move from a certain category was actually played. For this we used
11,000 games from our Amazons program The Amazons Saga (Tas). In recent
Computer Olympiads, Tas has shown that it can play on a par with the strongest
Amazons programs.

The method we used is the same as for determining the realization probabili-
ties of move categories in Realization Probability Search (RPS), which has been
a very successful approach in shogi [11]. The realization probability of a category
is calculated with the following formula:

Pi =
Ai

Bi

Pi: The realization probability of category i.
Ai: Number of times a move from category i was played.
Bi: Number of positions where a move from category i was possible.

The realization probability of a category is the ratio of positions where a move
from a certain category was possible and the number of times that this move
was actually played. The calculation has only been done until the stage where
all territory is fixed. By fixed territory is meant that all Amazons have their own
(i.e., non-overlapping) territory and the rest of the game is only about filling the
territory with the maximum number of moves. Because this is a simple counting
problem, usually a game of Amazons is stopped in a position with fixed territory.
Both players then count the number of moves needed and the winner is agreed
upon.

Although in RPS the game records of expert players are used, we believe it
is important to use the game records of the same program to calculate the re-
alization probability values. These values strongly depend upon the evaluation
function, so improvement of search speed can only be expected if the moves are
ordered in the way the program ‘likes them’, i.e. that have a high probability of
leading to a good evaluation. Ideally, realization probabilities should be recal-
culated with every change in the evaluation function. However, we feel that the
evaluation function of Tas is sufficiently stable to give reliable results.

A similar method for calculating realization probabilities in the absence of
expert moves was proposed by Hashimoto et al. [6]. Their method calculates
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the probabilities by having a Lines of Action program play itself, recording the
categories of the moves that were possible in each position and the category of
the move that was selected after searching the position. If these positions and the
selected moves are stored for future recalculation of the realization probabilities,
the method is identical to ours. If not, our method has the advantage that if
categories are changed, the recalculation of the realization probabilities can be
done without search, using the standard set of games. If the evaluation function
is changed (i.e., the program might select different moves), a new set of games
is necessary for both methods.

The realization probabilities played by Tas (see above) of the 10 basic cate-
gories of Table 1 are given in Table 3.

Table 3. The realization probabilities of the basic categories

Category RP (%)

Move blocked 0 Amazons 33.1
Move blocked 1 Amazon 56.9
Move blocked 2 Amazons 13.1
Move blocked 3 or more Amazons 6.6
Arrow blocked 0 Amazons 14.9
Arrow blocked 1 Amazon 71.4
Arrow blocked 2 Amazons 17.2
Arrow blocked 3 or more Amazons 5.3
Move adjacent to opponent Amazon 52.3
Arrow adjacent to opponent Amazon 72.3
Multiple opponent block 36.2
Blocking the previously moved Amazon 50.6
Moving the Amazon that was blocked once by the previous move 49.0
Moving the Amazon that was blocked twice by the previous move 33.9
Moving Amazon to which Amazon moved adjacently 32.8
Moving Amazon to which arrow was shot adjacently 34.5
Moving a non-blocking Amazon 45.6

The realization probabilities of Table 3 show that our basic categories in gen-
eral have a high probability of being played and are therefore valid candidates
for good moves. There are two notable exceptions: the categories “Move blocked
3 or more Amazons” and “Arrow blocked 3 or more Amazons” have a low real-
ization probability which seems counter-intuitive. However, our experience with
Amazons shows that the high mobility of Amazons makes it very rare to trap
more than one Amazon. Rather than trying to confine multiple Amazons, it is
better to try and trap a single Amazon and then use the advantage of having
four Amazons fighting three.

In general RPS, the next step is to use the realization probabilities of move
categories to decide the depth of the search. Moves with a high realization prob-
ability are searched more deeply than moves with a low realization probability.
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Unfortunately, this method can currently not be used in Amazons programs
because of the aforementioned even-odd iteration effect. Searching moves with
a high probability one ply deeper makes the search unstable. General RPS is
therefore not feasible until there is a solution to the even-odd iteration effect in
Amazons.

Instead of using realization probabilities to decide the depth of the search,
we propose to use the realization probabilities of Table 3 to order moves of new
positions. Moves with a high realization probability have a higher probability of
being played, so a correlation between realization probability and good moves
can be expected.

As pointed out earlier, in our program the 10 basic categories are not used
directly. Instead, the 1,420 theoretically possible combinations of basic categories
are used. The calculation method for these categories is the same as those for the
basic categories. Examples of the categories used in Tas and their realization
probability are given in Table 4.

In Table 4, the realization probability of the moves in Table 2 are given. The
table shows that D1-D7(G7) is a move belonging to a category with an extremely
high probability (second highest among the 1,420 categories). The reason for this
is that such moves are only possible in the opening. Actually, the category with
the largest realization probability was only possible in 10 positions. In contrast,
the probability of J4-H2(C7) is very low, even though this can be considered a
good move. One way of improving the move ordering is to adjust the category
priorities according to game progress, which we will explain next.

Table 4. Realization probabilities of move categories

CatNo. Example move RP (%) Order

1 Figure 1: D1-D7(G7) 32.615 2
2 Figure 2: D10-I5(I4) 0.902 371
3 Figure 3: J4-H2(C7) 0.158 876
4 Figure 4: D1-G1(D4) 7.250 25

4 Adjusting Category Priorities Using Game Progress

The strategic features of Amazons shift as the game progresses. In the opening,
the mobility and balance of the Amazons are most important. As the game
progresses, it becomes more important to secure territory. Large territories in
which Amazons can move freely will lead to more available moves at the end of
the game, so the opponent will run out of moves first.

Because of this, the realization probabilities of Table 3 are likely to change as
the game progresses. To reflect this shift in realization probabilities, the progress
of the game has to be used to adjust the realization probabilities of the proposed
move categories. There are a number of ways to measure progress in the game of
Amazons, for example move number or using territory measurements. Here we
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will restrict ourselves to the most basic progress measurement: move number. In
Amazons, the number of arrows on the board grows with each move. Therefore,
the game is over after a maximum of 92 moves. Using the number of arrows
(i.e., the number of moves) is therefore a natural choice for measuring progress
in Amazons.

For this analysis the same 11,000 games as for calculating the realization
probability were used. Despite this large number of games, near the end of the
game the moves in certain categories are almost never played. For example,
positions where it is possible to block three Amazons or more become very rare
near the end of the game. Although this might be a problem of our method, the
number of possible moves near the end of the game is relatively small, so deep
search can be conducted even without using move categories. Therefore, we do
not expect that this problem will influence playing strength much.

Because a sudden change in realization probability is undesirable, we grouped
data for the change in realization probability into groups of 8 moves: 0-7 (note

��

���

���

���

���

���

���

���

	��


��

����

��� 	��� ����� ����� ����
 ����� �	��� ����� ����� ����
 	��	� 		�
�

����������	

�
�
�
��
�
�
�
��
�
	

�
�
�
�
�
��
��


��

��

��

�����	
����

Fig. 5. Changes in realization probability
for blocking by an Amazon
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Fig. 6. Changes in realization probability
for blocking by an arrow

Table 5. Game progress related realization probabilities (%) for the moves in Table 4

Mvno Category number
1 2 3 4

1 - 7 32.65 0.51 0 0.52
8 - 15 0.01 0.99 0.18 1.20

16 - 23 0.01 0.88 0.21 4.20
24 - 31 0.01 2.22 0.20 8.32
32 - 39 0.01 2.41 0.80 18.39
40 - 47 0.01 1.76 2.53 17.75
48 - 55 0.01 17.65 0.01 30.86
56 - 63 0.01 0.01 0.01 50.44
64 - 71 0.01 0.01 0.01 37.50
72 - 79 0.01 0.01 0.01 75.00
80 - 87 0.01 0.01 0.01 0.01
88 - 92 0.01 0.01 0.01 0.01
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that there is no data for move 0), 8-15, 16-23, etc. The results of this analysis
for blocking by an Amazon and blocking by an arrow (categories 1 and 2) are
given in Fig. 5 and Fig. 6 respectively.

From these graphs it is clear that the realization probability of categories
can change drastically as the game progresses, so rather than taking the average
realization probability over the whole game, it seems more promising to use real-
ization probabilities based on game progress. Examples of the actual realization
probabilities used in Tas for the four moves in Table 4 are given in Table 5.

5 Experimental Results

To investigate the significance of using game progress combined with move or-
dering based on our move category proposal, we have used our program Tas.
Tas has the following properties.

General features:
- Iterative deepening α-β search.
- Best move of previous iteration is searched first.
- The evaluation function is a linear function of Queen Move Distance,

King Move Distance (both explained by Lieberum [7]), and mobility of
Amazons.

Move generation:
- Each Amazon is assigned a number in Tas. Moves for each Amazon are

generated in the order of these numbers, i.e., first all moves for Amazon
1, then all moves for Amazon 2, etc.

- The moves of each Amazon and arrow are generated in clockwise order:
moving up, moving right up, moving right, etc.

Priority ordering:
- Moves are ordered based on realization probability adjusted by game

progress.
- Moves that are not in any category (i.e., their realization probability is

0%) are pruned.

Our experiments have been conducted with three versions of the same pro-
gram. The first version is searching without the use of move categories (called
NMC), generating moves in the order explained above. The second version uses
the realization probabilities, but no game progress (called NGP). The third ver-
sion uses realization probabilities adjusted by game progress (called GP).

There are 263 move categories that have a realization probability of 0% (i.e.,
possible but not played) when game progress is not taken into account. When
using realization probabilities based on progress, the number of categories with
a probability of 0% changes from 590 categories in move 1-7 to 2 categories
or less after move 48. These numbers should be seen relative to the number of
possible categories. In move 1-7 there are 1324 categories that are possible, while
in move 88-92 only 6 categories are possible. Details are given in Table 6 (NP
means number of categories not played).



Enhancing Search Efficiency 83

Table 6. Number of categories with a realization probability of 0%

Mvno NP (Pos) MoveNo NP (Pos) MoveNo NP (Pos)

1 - 7 590 (1324) 32 - 39 45 (1218) 64 - 71 2 (127)
8 - 15 214 (1404) 40 - 47 9 (944) 72 - 79 1 (90)

16 - 23 140 (1395) 48 - 55 1 (615) 80 - 87 0 (45)
24 - 31 100 (1335) 56 - 63 1 (276) 88 - 92 0 (6)

We have conducted two experiments. First, we selected a number of positions
and let each of the test programs search to depth 3, comparing the search time.
The results of this experiment give an indication of the speed-ups that can be
expected. The second experiment is a self-play experiment between the different
versions. By using categories, certain moves will be discarded without any search
(the moves that do not fit into a category), so there is a risk of missing good
moves that are not in our categories. The self-play experiments will show how
playing strength is influenced by using move categories.

5.1 Comparing Search Times to Depth 3

To investigate the savings in search effort, we compared the search times of
searching to depth 3 for the three program versions in a number of example
positions. Because the number of legal moves in an average Amazons position
is high, searching to depth 3 for a large number of positions is infeasible. We
limited ourselves to a set of 1,521 positions from 30 Amazons games. The data
for 30 games was quite similar to the data for 25 games, so we do not believe
that using more positions will lead to many new insights.

In Fig. 7 the search times of searching to depth 3 in the positions of 30 games
are given for NMC, NGP and GP. From this figure it is clear that without using
move categories, there are many positions that require a long time to finish the
search to depth 3. Also, without move categories there seems to be no strong
relation between the number of legal moves and the search time. Using move
categories improves the search times considerably and there is a much stronger
relation between search times and the number of legal moves. Finally, using move
categories and game progress further improves the search speed. Also, there is a
very strong relation between search times and the number of legal moves when
game progress is taken into account.

From the graph showing the average search times against the number of legal
moves, it is clear that in case of a high number of legal moves searching with-
out move categories becomes quickly infeasible. Using move categories is more
promising; using move categories based on game progress is even more promising
than using only move categories.

There were a number of positions where NMC returned a move different from
the ones returned by NGP or GP. NGP played a different move in 95 positions,
while GP played a different move in 98 positions. The reason for this differ-
ence was that a move in the principal variation of NMC was deleted because it
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Fig. 7. Search times to depth 3 against number of legal moves for NMC (upper left),
NGP (upper right), GP (lower left) and the average search times for each program
version (lower right)

had a realization probability of 0%. This seems to indicate that there is a risk
that good moves are being discarded, but investigating the positions in question
showed that none of the discarded moves were particularly good or necessary.
From these results, we concluded that the current categories are good enough to
lead to an improvement in search speed without losing playing strength. To con-
firm this, we conducted a number of self-play experiments that we will explain
next.

5.2 Results of Self-play Experiments

In Amazons, there is the problem of generating positions where the chances
of winning can be considered equal, because there are no experts and there
is almost no opening theory. We generated the initial positions of our self-play
experiments by using 50 different positions that were randomly selected from the
opening book (after the fourth move from the starting position of the game).
These positions were then played twice by each program version, once as White
and once as Black. It is possible that the initial positions are better for one side,
so we also collected data of the number of squares that the winning side could
freely move to at the end of the game. Even if both versions win a game from
the same starting position, the difference in free squares at the end of the game
gives an indication of difference in playing strength.



Enhancing Search Efficiency 85

We played a total of 9 matches with 100 games each, giving each program
10 seconds, 30 seconds, and 60 seconds per move. The results are given in
Table 7. The results of the matches show that our concerns about ending up
in uneven positions were unfounded. Even without considering the differences in
free squares at the end of the game, each match result except one gives a sta-
tistical probability of more than 95% that the winning version is stronger than
the losing version (the 58-42 result between NGP and NMC gives a probability
of 94.5% that NGP is stronger than NMC). Furthermore, the results are not
influenced by the amount of time given per move. The results of the matches for
10 seconds and 60 seconds are very close and it seems that the only difference is
that more time can reduce the margin of defeat, as can be seen in the drop of
the total number of free squares.

Table 7. Self-play results for 100 games with 10, 30, and 60 seconds per move

Match 10 seconds 30 seconds 60 seconds
Result SqDif Result SqDif Result SqDif

NGP - NMC 58 - 42 +146 60 - 40 +92 59 - 41 +87
GP - NMC 79 - 21 +428 72 - 28 +439 75 - 25 +388
GP - NGP 62 - 38 +214 70 - 30 +259 63 - 37 +165

In Table 8 the results for each program version are summarized. The self-play
experiments show that using move categories for move ordering significantly im-
proves the playing strength of an Amazons program and that playing strength
can be further improved significantly by using game progress to adjust the real-
ization probabilities of the move categories.

Table 8. Total self-play results

No Version 10 seconds 30 seconds 60 seconds

1 GP 141 - 59 142 - 58 138 - 62
2 NGP 96 - 104 90 - 110 96 - 104
3 NMC 63 - 137 68 - 132 66 - 134

6 Conclusions and Future Work

In this paper, we have presented a method for improving the search efficiency of
an Amazons program by ordering moves based on move categories. We have also
investigated the influence of game progress on the move ordering. Experiments
showed that a program using move categories is stronger than a program with-
out move categories and that a program using move categories based on game
progress is stronger than a program not taking game progress into account.

One area of future work concerns the realization probabilities of the categories.
As explained, there are a number of categories that are so special that they occur
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in only a small fraction of the positions. As a result, these categories often get
a very high or very low probability. To address this problem, different ways to
decide realization probabilities need to be investigated.

A second, different problem is that the different program versions all have the
same evaluation function, leading to mutual oversights. Improvement of general
playing strength needs to be further assessed by playing other strong Amazons
programs like Amazong or Invader.

A third focus of future work concerns the representation of game progress.
The game progress we have used in our experiments is based upon the number of
moves played. This is not a perfect solution, because the moment when territory
gets fixed differs from game to game and is only loosely related to the number
of moves. The number of moves seems to be a good way of measuring progress
when games develop in a normal way, but in case of abnormal development (very
early or very late fixed territory) the proposed category probabilities can lead
the program astray. As a future work, we intend to investigate different methods
for measuring progress and compare these with our current findings.

Finally, using game progress to change realization probabilities is a fourth idea
for future research. It can be applied to other games than Amazons as well. RPS
in shogi might also benefit from dynamically updating realization probabilities
using game progress. We are planning to investigate the feasibility of our method
in other games than Amazons.
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Abstract. Seki is a situation of coexistence in the game of Go, where
neither player can profitably capture the opponent’s stones. This paper
presents a new method for deciding whether an enclosed area is or can
become a seki. The method combines local search with global-level static
analysis. Local search is used to identify possible seki, and reasoning on
the global level is applied to determine which stones are safe with ter-
ritory, which coexist in a seki and which are dead. Experimental results
show that a safety-of-territory solver enhanced by this method can suc-
cessfully recognize a large variety of local and global scale test positions
related to seki. In contrast, the well-known program GNU Go can only
solve easier problems from a test collection.

1 Introduction

In the game of Go, the player who has the larger territory wins the game. It
is therefore a fundamental requirement for programs to assess continuously the
safety of territories correctly. Current computer Go programs use a combination
of exact and heuristic techniques, including eye-space analysis [4], search, and
heuristic rules based on influence. Heuristic approaches do not guarantee cor-
rectness. In order to improve the accuracy of the territory evaluation, they need
to be replaced by exact techniques, using search.

An exact, state of the art search-based safety-of-territory solver is described
in [12]. However, this solver could not recognize safe stones in seki. The new
solver described in this paper extends the previous one and is able to recognize
many, even complex seki situations.

Seki is a position where neither player can capture the opponent’s stones, so
coexistence is the best result. There are two major issues about how to recognize
seki. First, a pass is often the only good move for both players. Consecutive
passes can cause the Graph History Interaction (GHI) problem [13], which leads
to incorrect search results. As a second issue, even if a seki position is recognized
locally, the recognition is done in a specific context. The most pessimistic context
for one player assumes that the outside is completely filled by safe opponent
stones. The result of a local search depends on such assumptions and might need

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 88–103, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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to be updated once its surrounding information has been changed by searches
in other regions.

This paper presents search-based methods that correctly deal with enclosed
areas involving seki. The contributions of the paper are summarized as follows.
(1) The status of local seki is correctly determined by using the Df-pn(r) algo-
rithm [5]. (2) An efficient re-search method distinguishes a seki from a win for
one player by capturing the opponent. (3) An algorithm for solving global seki
problems combines the outcome of local seki searches.

The paper is organized as follows. Section 2 describes the terminology. Sec-
tion 3 briefly reviews related work. Section 4 explains recognizing seki and its
importance to territory evaluation. Section 5 introduces the safety solver and
the search algorithms for solving the local and global seki problems. Section 6
presents and describes experimental results and Section 7 provides conclusions
and discusses future work.

2 Terminology

Terminology follows [12]. A block is a maximal connected set of stones with the
same color on the Go board. The adjacent empty points of a block are called
liberties. A block that loses all its liberties is captured and removed from the
board. Stones of one color divide the rest of the board into basic regions. A
merged region is the union of two or more basic regions of the same color. The
term region refers to either a basic or a merged region. If a block is adjacent to
only one region of its color, it is called an interior block, otherwise it is called a
boundary block of the region.

A liberty of a boundary block of a region r is called internal liberty if it is
in r, and external liberty otherwise. The color of boundary blocks is called the
defender, the opponent is called the attacker. A shared liberty is an empty point
that is adjacent to blocks of attacker and defender. A defender’s region is called
safe if all its boundary blocks can be proved safe and the attacker cannot live
inside the region.

In a region, simple seki are positions that falls into either of following two
types.

1. The defender cannot capture the attacker’s stones, neither can the attacker.
They both do not have two clear eyes. The best result for both players is to
pass.

2. The defender and the attacker are allowed to capture each other’s stones.
However it will lead to repetitions of the board.

In simple cases, a region can be recognized as a seki by using static rules.1

However, verifying complicated seki may require deep search. A seki is often
related to a semeai, a race to capture between two adjacent groups that cannot

1 For a discussion of complex, strange cases, see http://senseis.xmp.

net/?StrangeSekis.
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both live. For a detailed discussion of semeai, and static methods for evaluation
of semeai classes including many seki, see [10].

Figure 1 shows two seki examples. The left black region is a static seki. Both
the defender and the attacker must pass locally, to ensure that their blocks
and are not captured. They share two liberties in A and B. In the right black
region, after 3 moves, with White as the attacker playing first, the black region
becomes a seki. Even though the region is not safe, the boundary block is
safe by seki. This kind of seki that must be discovered by search will be called
dynamic seki.

7
6
5
4 A
3 B
2
1

a b c d e f g h j k l m n o p q r s t

Fig. 1. Left: a static seki. Right: a dynamic seki

3 Related Work

Many approaches have been proposed for recognizing safe stones and territories,
including both static and search-based methods.

Unconditionally alive blocks [2] are safe even when the attacker can play an
unlimited number of moves and the defender always passes. Related work on seki
analysis also includes Müller’s static analysis and search-based semeai algorithms
[10], and Vilà and Cazenave’s static classification rules to recognize safe blocks
containing regions up to a size of 7 points [16], including some seki. Among these
static methods, only [10,16] can detect seki.

Search-based methods are used in life and death (tsume Go) and safety-of-
territory solvers. Müller introduces local search methods for identifying the safety
of regions by alternating play, where the defender is allowed to reply to each
attacker move [9]. Van der Werf et al. extend Müller’s static rules and use them
in the program CSA∗ (Cascaded Scoring Architecture) to score Go positions [15].
The methods in [9,12] prove territories safe by using static rules and search.

Although some of the static approaches above can handle seki, they do not
provide a general solution for recognizing seki in enclosed areas. A practically
successful heuristic way of dealing with seki is based on tactical search. Most
strong Go programs contain tactical search engines, typically with a threshold of
5 liberties, to recognize blocks that seem safe from capture. This approach does
not work for complicated seki cases. In addition, most programs fail to detect
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vulnerable territories which do not contain any attacker stones yet, where a seki
can be reached after an invasion sequence. Even in the tiny example in Fig. 1
on the right, most current programs will pass as both Black and White in the
starting position.

4 Recognizing Seki

Recognizing seki is strongly related to both the safety of territory and life and
death problems. When evaluating the safety of a territory, seki can be viewed as
a win for the attacker, since the defender’s territory is destroyed. However when
viewed as a life and death problem, the roles are switched since the defender can
survive by achieving coexistence in seki.

The search methods to recognize seki in this paper use the most pessimistic
assumptions about unproven outside properties for recognizing local seki. The
worst-case assumption is that for a given region, all its boundary blocks are
completely surrounded by safe attacker stones and have no external liberties.
However, the algorithm can take external eyes that have been detected before
into account. Any seki recognized under worst-case assumptions will be called
as a local seki.

The result of local seki can be modified when information about the surround-
ings changes. For example, external liberties of boundary blocks of a region might
affect the result of a local seki. An example is shown in Fig. 2. The Black region
is a local seki. However, since the boundary block of Black has one external lib-
erty at A, the status of this black region is unsettled. If White plays first at A,
then the black region is a seki. Black playing first can capture four white stones
inside the region and the black region becomes territory.

A

Fig. 2. External liberties can change seki status

Recognizing a global seki is much more complicated because the result of a
local seki might be affected when its surrounding conditions are changed. For
example in Fig. 1, if the surrounding white blocks , which were assumed safe,
are proved to be dead later by a search on the outside, then in both examples
the black region changes from seki to safe, since the local seki collapses.

This paper describes a more general region-based approach to recognize local
and global seki positions efficiently and correctly. A detailed discussion of the
algorithms is provided in the following section.
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5 Safety Solver and Algorithms

5.1 Safety Solver

The safety solver described in this paper is based on the ones in [8,12]. It has
been integrated into the Go program Explorer [8]. The search-based solver
in [12] sequentially processes single regions and tries to prove their safety. To
prove a region safe, all boundary blocks must remain safe - none of them can
be captured by the attacker, and the attacker may not live inside the region
surrounded by safe blocks. The solver uses Alpha-Beta search with enhancements
including iterative deepening, a transposition table, move ordering, and heuristic
evaluation functions.

The safety solver used in this paper utilizes a more powerful Df-pn(r) search
algorithm [6,5]. It includes the techniques of [12], such as the solution of strongly
and weakly dependent regions, as well as static and heuristic region evaluation
functions [12]. The following new features will be described in detail in later
sections.

– Solutions to local and global seki.
– Solutions to basic ko situations and the GHI problem.
– The ability to switch goals between attacker and defender. The solver can be

used both to find successful invasions, and to defend against them. For seki
detection, the solver is used to prove that stones are safe while territories
are not.

5.2 The DF-PN(r) Search Algorithm

Df-pn(r) [6,5] is an extension of Nagai’s depth-first proof-number (Df-pn)
search algorithm [11]. Df-pn modifies Allis et al.’s best-first proof-number search
(PNS) [1] algorithm to use depth-first search. It can expand fewer interior nodes
and use a smaller amount of memory than PNS. Df-pn utilizes local thresholds
for both proof and disproof numbers, selects the most promising node, and per-
forms iterative deepening until exceeding either one of the thresholds. Because
Df-pn is an iterative deepening method that expands interior nodes again and
again, the heart of the algorithm is its use of the transposition table. Whenever
a node is explored, the transposition table is used to cache previous search ef-
forts (i.e., proof and disproof numbers). Df-pn(r) solves a problem of Df-pn
on computing proof and disproof numbers in the presence of repetitions, while
inheriting the good properties of Df-pn. Df-pn(r) contributed to the strength
of a one-eye solver and the currently best tsume-Go solver [5].

5.3 The Local Search Algorithm

The local search algorithm is region-based. It takes a region r as an input and
generates all legal moves in r as well as a pass move. It searches the region
until either the result is decided as safe/safe by seki, or unsafe, or a time limit
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is exceeded. r is evaluated as safe if and only if all boundary blocks of r are
proved to be safe, and no attacker’s stones can live inside. For details, see [12].
r is evaluated as unsafe if and only if any boundary block b of r is captured, or
b has only one liberty left and it is the attacker’s turn to make a move, or the
attacker lives inside the region.

Since the outcome of the search sometimes depends on ko, the local search al-
gorithm needs to model ko threats. The current model assumes that the attacker
has the unlimited number of ko threats to win the ko. Therefore, the attacker
is always allowed to recapture ko immediately. To deal with a more complicated
ko such as double or triple ko, the algorithm uses the situational super-ko (SSK)
rule. Under the SSK rule, any move that repeats a previous board position, with
the same color to play, is illegal. However, assuming an unlimited number of ko
threats is often unrealistic, and in some special cases the safety solver fails in
proving the safety. See Subsection 6.1 for an example and further discussion.

5.4 Seki and the Graph History Interaction Problem

Let P be a position where player p1 is to play and Q be the position after p1

passes in P . If p1 passes in P and the opponent p2 passes in Q, the second pass
leads back to P . In the local search algorithm, this repetition is allowed, and p2’s
pass leads to a local seki. The two passes mean that neither player can win this
position. Because of the unlimited ko threat model, ko is not affected by this.

Since Df-pn(r) uses a transposition table, in the presence of repetitions the
Graph History Interaction (GHI) problem must be addressed [13,3]. GHI is a no-
torious problem that may cause search algorithms to solve positions incorrectly.
A typical transposition table implementation ignores paths that Df-pn(r) takes
to cache search results. However, if a search result that depends on a path is
saved in the transposition table, an incorrect cached result may be retrieved
from the transposition table.

Figure 3, adapted from [7], shows an example of the GHI problem. Assume
that G is a win for the attacker. Let E → H and H → E be pass moves. If H
is searched via A → B → E → H , seki is saved in the transposition table entry
for H . Two consecutive passes lead back to E. However, this is incorrect if H is
reached via A → C → F → H , since A → C → F → H → E → G leads to an
attacker win at H .

The GHI problem related to seki is solved by the techniques in [7]. This
approach uses an additional field in each transposition table entry to hash the
path leading to a position.

5.5 Algorithm for Recognizing Local Seki

Since Df-pn(r) can only answer binary questions, the algorithm for recognizing
local seki may have to perform two searches to determine the outcome as win,
seki, or loss. Assume that the attacker plays first, and the first search evaluates
terminal seki positions as a win for the defender. If the root position r is a loss
for the defender, the result is established. However if the result of this search is a
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Fig. 3. The GHI problem related to seki

win, it could be either a defender win or a seki. In this case, for the second search
all seki terminal positions are considered attacker wins. If the second search is
still a defender win, then r is a defender win. However, if the second result is
an attacker win, then r is a seki since neither player can win without using seki
terminal positions.

The two searches with different seki winners are often quite similar. A method
similar to speeding up re-search for ko in [6] decreases the overhead of the second
search as follows: each transposition table entry contains a seki flag f . In the
first search, f is set if and only if a position’s disproof tree contains seki.

Consider the second search, when Df-pn(r) looks up the transposition table
entry for a position n. If n’s table entry contains either a proof, or the proof
and disproof numbers of an unproven node, the information can be used safely.
However, if n’s table entry contains a disproof from the first search, Df-pn(r)
checks n’s seki flag. If the flag is not set, the position is an unconditional win
for the defender and this result can be reused. However, if the seki flag is set,
the position is unsolved for this search. The proof and disproof numbers are
initialized to 1 to perform a re-search.

The second search often has a low overhead because of the reuse of previous
search results in the transposition table. If n’s disproof tree does not involve
seki, no search is performed. In the extreme case, the second search consists
only of a single table lookup, if disproving the root did not involve seki in the
first search. Even if a transposition table entry does not contain a disproof, using
the proof and disproof numbers in the transposition table results in better move
ordering. However, if the solution changes drastically by seki, it might need a
high overhead. One example is test position 15 from Test Set 1 (see Sect. 6). The
first search returns a loss for the attacker in 0.02 seconds, and the second search
returns a seki win for the attacker in 0.93 seconds. In this example, the loss
in the first search is obtained quickly by static rules. There is not much useful
information in the transposition table that the second search could utilize.
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5.6 Algorithm for Recognizing Global Seki

The local result of seki for a region can be proved by using the algorithm dis-
cussed in Subsection 5.5. However, this result might need to be updated once
the assumptions about surrounding conditions are modified. Figure 4 provides
an example. In the beginning, white region A is considered to be unsafe due to
the following two reasons: (1) the external liberties for block are not used
during a local search, and (2) the block also has no internal liberties. White
region B is a local seki because 1. the white block

⊗
is already proved to be

safe with two eyes elsewhere, and 2. White’s boundary block and Black’s
block share two liberties. The White block can be marked as “at least
seki”, because the worst result for this block is safe-by-seki. It might be proved
to be unconditionally safe in the future. The best result for the black block
is safe-by-seki, therefore it is marked as “at most seki”. The information about
safe “at least seki” blocks is used in a re-search for white region A, which will
become safe. The black block is now dead. The white boundary block
changes from “at least seki” to safe. Finally, by using this updated information
region B is proved to be not a seki, but safe for White, and the status of the
Black block changes from “at most seki” to dead.

B
A

Fig. 4. A local seki that collapses on the global level

In Fig. 4, the observation that region A affects region B is trivial because
they are adjacent. However, in a real board position the situation can be much
more complex. For example, there might be multiple regions that are local seki
and form a chain of seki. If the regions in one end of the chain are proved to
be not a seki later, then most likely the local result of every region in the chain
has to be updated. In addition, care should be taken for using the information
about “at least seki” blocks. Clearly any “at least seki” block can only be used
to prove one of its adjacent regions that has the same color with the block. A
quite important question is: given an “at least seki” block, when it is safe to use
it to prove its adjacent regions and when is it not? As described in the previous
example, region B can be proved to be a local seki by search in the first round.
If the “at least seki” block is used to perform the second search to B itself
right away, then B will be proved to be safe instantly. However, this result is not
correct. Region B can only be confirmed as safe once region A is confirmed as
safe (so block becomes safe indeed). The solution used in this implementation
uses the following condition. For an “at least seki” boundary block b and a region
r are to be proved the following.
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– If b has no liberties inside r, then it is safe to be used as “safe” to prove
r because it will not affect the liberties of any opponent’s blocks that are
inside r.

– If b does have internal liberties in r, then it should not be used as “safe” to
prove r because it will affect the liberties of opponent’s blocks that are in r.

By using this condition, it is obvious that in the previous example in Fig. 4
the “at least seki” block should never be used to prove white region B directly
because does has two internal liberties in B.

The algorithm for global recognition first statically recognizes safe regions
using the static rules in [2,9]. Then it calls the local search algorithm for proving
the safety of the remaining unsolved regions. When processing regions globally,
the information about “at least seki” blocks achieved by local searches is stored
and possibly used for updating the status of other regions. Eventually, if no
further updates can be made, because the status of every region becomes stable,
either safe/safe by seki, unsafe, or unknown due to time out, then the global
search terminates. At this moment all “at least seki” and “at most seki” blocks
are marked to safe, and the results for all local regions are guaranteed to be
correct. The pseudo code in Fig. 5 gives the global region processing algorithm
for recognizing seki.

The two full-board positions from Test Set 2 shown in Fig. 6 and Fig. 7 are
used to illustrate details of the global processing algorithm. In Fig. 6, the solver
processes unsafe regions one at a time for both colors in several rounds. At the
beginning, the three White regions in the left side of the board have already
been proven safe by static rules. When processing a region, the attacker is the
opponent and plays first. Assume that all unsafe black regions are processed
first, followed by all unsafe white regions in the order A, B, C, and D. The
order of regions and colors does not affect the final result, but it may influence
the efficiency. In the example, A, B, C, and D are used to refer to different
regions for Black and for White. For example, the white region A contains the
black block to the left, while the black region A contains the white block to the
right but not the black block.

1. Following the worst-case assumption for the outside, black Region A is unsafe
because one of its boundary blocks does not have any internal liberties.
Similarly black regions B and C are proved to be unsafe. Blocks j8 and
g1 both have an outside eye, but it only provides one liberty. Region D is
proved to be a local seki. Therefore its two boundary blocks at b1 and g1
are added to the“at least seki” list L. For White, region A is proved a local
seki, and block e9 is added to L. Using this information, white region B is
also a local seki and block h9 is added to L. Similarly, white region C is
a local seki and block h1 is added to L, and then the merged region at b1
and e1 is also a local seki and blocks c2 and d1 are added to L. Techniques
for merging strongly related regions from [12] are used here. After the first
round of processing for both colors, L contains 2 black blocks at b1, g1 and
5 white blocks at d9, h9, h1, c2, d1.
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List at-least-seki = Ø;
List at-most-seki = Ø;
R = all remaining unsafe regions of both colors;

bool updated = true;
while ( updated ) // The main loop terminates when there is no update can be made

updated = false;
for each region r in R perform a first local search

if ( the first search result is proved safe )
updated = true;
mark all points in region r and its boundary blocks as safe;

else if ( the first result is a local seki )
Add attacker’s blocks inside r to at-most-seki;
Add unsafe defender’s boundary blocks of r to at-least-seki;
if ( any new boundary block was added to at-least-seki )

updated = true;
else if ( the first result is proved loss )

Perform a re-search in region r by using information in at-least-seki;
if (the second search result is proved safe )

updated = true;
Mark all points in region r and its boundary blocks as safe;

if (the second search result is a local seki )
Add attacker’s blocks inside r to at-most-seki;
Add unsafe defender’s boundary blocks of r to at-least-seki;
if ( any new boundary block was added to at-least-seki )

updated = true;

Mark all blocks in both at-least-seki and at-most-seki as safe;

Fig. 5. Global region processing algorithm for determining seki

2. Re-process unsolved regions in the same order. Black regions A and B are
still unsafe. Using the “at least seki” black block at g1, now black region C
can be proved to be a local seki, and block j8 is added to L. For White, no
progress is made.

3. Black region B is proved to be seki by using the “at least seki” block at j8,
and block at f9 is added to L. Again, no progress for White can be made.

4. Black region A is proven seki by using the “at least seki” block at f9 and
block c9 is added to L.

5. No update can be made in the fifth round. The main loop terminates and
the remaining “at least seki” and “at most seki” blocks are marked as safe.

In this example, 10 “at least seki” blocks are marked as safe, and no “at most
seki” blocks. In the end, all blocks are proved to be safe. A total of 70 points
are marked as safe. The remaining empty points are neutral points in seki in
Japanese rules. In Chinese rules, the points surrounded by a single player such
as a1 are counted for that player.
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Fig. 6. Global search confirms local regions to be seki

9
8 A B
7
6
5
4
3 C
2
1 D

a b c d e f g h j

Fig. 7. Local seki collapse in global search

Figure 7 illustrates how local seki can collapse globally. The computation
proceeds as follows.

1. In the first round, as in the previous example, assume black regions are
processed first in the order A, B, C and D. Region D is proved a local seki
and blocks b1, g1 are added to L. For White, region A is not a local seki
because Black can capture White by playing at d8. Therefore white d9 is
not added to L. Regions B, C and the merged region at b1, e1 are also not
local seki. After the first round, L contains only the two black blocks b1 and
e1.

2. Using the “at least seki” block at g1 black region C is a local seki, and j8 is
added to L. There is no progress for White.

3. Similarly, using the “at least seki” block j8, black region B becomes a local
seki, f9 is added to L, and there is no progress for White.

4. Using the “at least seki” block at f9, black region A is proved to be safe!
Region A and block f9 are updated to safe and f9 is removed from L.
Similarly, using safe block f9 and “at least seki” block at j8 region B is
proven safe, and block j8 becomes safe and is removed from L. In the same
way, black regions C and D are proved to be safe, blocks e1 and b1 are safe,
and they are removed from L. All black regions A, B, C, D are safe and L is
empty. Since no further progress can be made for either Black or White, the
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main loop terminates. All 81 points on this board are proved to be safe for
one of the players.

6 Experimental Results

Two seki test sets were created by combining examples from several resources,
including [14,17], and positions from professional games. Test Set 1 is used for
local seki testing and Test Set 2 for global seki testing. Both sets contain a mix
of easy, moderate, and hard problems. Their difficulty levels are estimated by
the CPU time used.2 All experiments were performed on a Pentium IV/1.6GHz
machine with 512 Mb memory.

6.1 Experiment 1: Local Seki Tests

Test Set 1 contains 45 positions, some of them seki and some not when external
liberties are considered. Among them, 23 positions are classified as easy, 16
positions as moderate, and 6 positions as hard. The seki-enhanced safety solver
solves 42 positions within a time limit of 120 seconds per position.

Table 1 summarizes the cost of seki re-search on all 45 positions. The total
execution time for phase two search is 14.5% of phase one, and the total number
of nodes expanded in phase two is 17.7% of phase one. The cost is relatively
small compared to the version that does not detect seki.

Table 1. Overhead of seki re-search

Phase One Search Phase Two Search

Total nodes expanded Total time (sec) Total nodes expanded Total time (sec)

1,101,733 403.12 195,039 58.47

Figure 1 showed two easy positions from Test Set 1. Figure 8 provides another
four positions with different difficulty levels. The black regions in the top corners
are two moderate cases, solved in 16 seconds (left) and 31 seconds (right) total
execution time for the two phases. The bottom right corner is a hard case, solved
in 116 seconds. In these examples, seki is reached dynamically through a sequence
of moves from the starting position. The black region in the bottom left corner
is safe with best defense. The attacker cannot achieve a seki. This hard case is
solved in 44 seconds. Strongest move sequences for both players are shown in
Fig. 8.

Sometimes seki depends on ko. It is important to model ko in the search of seki.
The main technical limitation of the current solver is a class of ko positions called
Moonshine Life.3 The current solver defines the ko winner to be the attacker, and
allows the ko winner get unlimited ko-threats to win the ko. In these situations,
2 The test sets are available at: http://games.cs.ualberta.ca/go/seki.
3 Described at http://senseis.xmp.net/?MoonshineLife.
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Fig. 8. Four examples from Test Set 1. White to play.

Table 2. Comparison with GNU Go in Test Set 1

Program Easy (total 23) Moderate (total 16) Hard (total 6) Solved / Total

Explorer 20 16 6 93.3%

GNU Go 19 7 0 57.8%

of which there are three in the test set, the solver produces a doubtful result.
Figure 9 shows an example. Since White is considered to have infinite ko threats,
there is no way for Black to capture White. So block is identified as “at least
seki” and is identified as “at most seki” in the local search. If no update can
be made after the global search, both of them will be identified as safe by seki.
This result is dubious because in a real game ko threats are only unlimited when
there is a multiple ko elsewhere on the board. In this example, static rules can
be added to solve the problem. However, a more general solution that takes a
finite number of available ko threats into account remains as future work.

The correctness of global search is based on the correctness of local searches.
Still, even if Moonshine Life occurs in a local search, it will not invalidate the
result of the global search. The reason is that only “at least seki” blocks are used
to update other regions in the global search. In the example, only block is
marked as “at least seki” and it can safely be used when searching other regions.

A comparison is made between the safety solver in the program Explorer
and one of the strongest programs, GNU Go 3.6.4 Table 2 shows the number of
test positions that are solved correctly by each program.

4 Available at http://www.gnu.org/software/gnugo/ .
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Fig. 9. An unsolved position

The seki-enhanced safety solver solved 42 positions with correct results while
GNU Go solved 26. Both Explorer and GNU Go can solve most easy posi-
tions. The safety solver in Explorer does not use any static rules to recognize
seki, while it seems that GNU Go use mainly static rules. GNU Go solves less
than half of the moderate positions and none of the hard positions.

6.2 Experiment 2: Global Seki Tests

Test Set 2 contains 20 global seki problems. In each of these problems, the result
of local seki search needs to be resolved on the global level. 19 of them are solved
within a time limit of 200 seconds. GNU Go was not tested on these global
positions because the correctness of global search is based on the correctness of
local search. Two full-board positions shown in Fig. 6 and Fig. 7 have been used
in Subsection 5.6 to illustrate the global processing steps. The total execution
time for these examples was 192 and 121 seconds respectively.

Figure 10 shows the only unsolved global position in Test Set 2. Currently
there is no semeai search used to compute how many liberties the white blocks
can get from the big eyes in regions A and C, and how many liberties the black
block can get from region B. By using the most pessimistic assumption for the
defender (White), the solver believes that the blocks e5 and m5 have only 2
internal liberties and one external liberty each (one liberty per eye). Therefore
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Fig. 10. Unsolved seki example
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it cannot solve this problem. In this example, seki can be confirmed only if the
semeai status of several related regions is resolved first.

7 Conclusions and Future Work

This paper presents two methods for recognizing seki positions locally and glob-
ally. Although we may conclude that the results are quite encouraging, there are
still numerous ideas to improve the performance. The limitations of the current
solver and other possible topics for future work include the following.

– Handling of ko situations. Instead of allowing the ko winner unlimited ko
threats, handling a finite number of threats must be implemented.

– The current solver is purely search-based. Static rules could improve the
efficiency in many simple cases.

– The solver is region-based, and does not work for more open-ended areas
that occur in games.

– Integrate the functionality of tactical solvers and semeai search into a safety
solver.

– In the current global method, there is no priority for selecting which region to
process in the main loop of the global search. Ordering regions by considering
their adjacency should increase the efficiency of the global search.

– Seki spanning multiple regions such as in Fig. 10 need a different approach.
– When to call the safety solver to recognize seki during a game?
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Abstract. Progressive Pruning (PP) is employed in the Monte-Carlo
Go-playing program Indigo. For each candidate move, PP launches ran-
dom games starting with this move. The goal of PP is: (1) to gather
statistics on moves, and (2) to prune moves statistically inferior to the
best one [7]. This papers yields two new pruning techniques: Miai Prun-
ing (MP) and Set Pruning (SP). In MP the second move of the random
games is selected at random among the set of candidate moves. SP con-
sists in gathering statistics about two sets of moves, good and bad, and
it prunes the latter when statistically inferior to the former. Both en-
hancements clearly speed up the process of selecting a move on 9 × 9
boards, and MP improves slightly the playing level. Scaling up MP to
19×19 boards results in a 30% speed-up enhancement and in a four-point
improvement on average.

1 Introduction

Computer Go remains a difficult task for computer science [14,12] mainly for two
reasons. First, the branching factor of the game tree and the game length prohibit
global tree search. Second, evaluating non-terminal Go positions is hard [13].
Meanwhile, computer Go has been used as an appropriate testbed for AI meth-
ods [6] during the last decade. I started twelve years ago, with the development of
the Go-playing program, Indigo [5]. Since 2002, Indigo includes a Monte-Carlo
approach that enriches the knowledge-based approach developed previously. Our
Monte-Carlo approach is inspired by usual experiments [7] reproducing the origi-
nal approach of Monte-Carlo Go [8]. Subsequently, these experiments introduced
different enhancements to the basic Monte-Carlo algorithm. Currently, Progres-
sive Pruning (PP) is the umbrella enhancement to be used in Indigo. In 2003,
we combined our Monte-Carlo Go approach with a knowledge-based approach
[3] and with a global tree-search approach [4]. The result was successful because
Indigo won the bronze medal at the 2004 Olympiad on 19 × 19 Go [10]. Yet
this successful combination is not the topic of the current paper. The innova-
tive question that motivates the work presented here is: how can we improve
Progressive Pruning (a) in the game of Go, and (b) in general? To this purpose
we assess two pruning techniques intended to improve PP: Miai Pruning (MP)
and Set Pruning (SP). We will introduce these two new pruning techniques, and
provide an experimental assessment.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 104–119, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Section 2 discusses related work that deals with Monte-Carlo games, and it
recalls the underlying idea of PP. Section 3 defines the two pruning techniques,
MP and SP. Then, Section 4 yields the results of the experiments assessing these
two techniques in isolation, and in combination. Some remarks are discussed in
Sect. 5. Section 6 provides a conclusion and some prospects.

2 Related Work and Motivations

Below we discuss three topics, viz. Monte Carlo in computer games (2.1), pro-
gressive pruning (2.2), and motivations (2.3).

2.1 Monte Carlo in Computer Games

Monte-Carlo methods were designed in order to simulate physical models. Be-
cause they used random number generation such as games in the casino, the
name Monte Carlo was adopted. Then Monte-Carlo methods were embraced by
computer games, and so, to some extent, a loop has been closed. In games such
as Poker and Scrabble, hidden information is sampled with the help of random
distributions that are plausible according to past actions performed in the game.
In such games, random generation can also be used to perform random simula-
tions of games, which is done by Poki at Poker [2] and by Maven at Scrabble
[15]. In games containing randomness in their rules, such as Backgammon, ran-
dom simulations are used quite naturally [17]. In complete information games
not containing any chance, such as Go, Chess, and Othello, the idea of simulat-
ing games at random is less natural. Nevertheless, this is not the first time that
Monte-Carlo methods have been tried in complete information games.

In 1990, Abramson [1] gave a seminal description of evaluating a position of a
two-person complete information game with statistics. He proposed the expected-
outcome model, in which the evaluation of a game-tree node is the expected
value of the game’s outcome given random play from that node on. The author
showed that the expected outcome is a powerful heuristic. He concluded that
the expected-outcome model of two-player games is “precise, accurate, easily
estimable, efficiently calculable, and domain-independent”. In 1990, he tried the
expected-outcome model on the game of 6 × 6 Othello.

Brügmann [8] was the first to develop a Go program based on random games.
The architecture of the program, Gobble, was remarkably simple. In order to
choose a move in a given position, Gobble played a large number of random
games from this position to the end, and scored them. Then, he evaluated a
move by computing the average of the scores of the random games in which it
had been played.

We believe that Abramson’s approach (or Brügmann’s) are quite appropriate
for the game of Go because they enable the program to reach terminal positions
that are easy to evaluate and particularly representative of the current position.
By computing a mean on terminal positions reached at random, the program
obtains a first-rate evaluation of the current position. We admit that computing
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a Monte-Carlo evaluation costs much more time than computing a conceptual
evaluation using domain-dependent knowledge, but we believe that the cost is
worthwhile. This is why we follow the Monte-Carlo approach in Indigo. The
next subsection recalls how PP is used in Indigo.

2.2 Progressive Pruning

The aim of PP is to be able to choose the best move. The current description is
based on Bouzy and Helmstetter [7]. As contained in the basic idea of Abramson,
each move has a mean value m, a standard deviation σ, a left expected outcome
ml and a right expected outcome mr. For a move, ml = m − σrd and mr =
m + σrd. rd is a ratio fixed by practical experiments. Currently, 1.5 ≤ rd ≤ 2.0
is for us a good tradeoff between playing level and time. A move M1 is said
to be statistically inferior to another move M2 if M1.mr < M2.ml. Two moves
M1 and M2 are statistically equal when M1.σ<σe and M2.σ<σe and no move is
statistically inferior to the other. σe is called the standard deviation for equality,
and its value is determined by experiments.

In PP, after a minimal number Nmin of random games (currently 50 per move),
a move is pruned as soon as it is statistically inferior to another move. Nrg is
the current number of random games performed; the standard deviation of the
mean value computed after Nrg random games is σ/

√
Nrg. Therefore, moves are

pruned as Nrg increases, and the number of candidate moves decreases while
the process is running. The process stops if one of three conditions is fulfilled:
(1) when there is only one move left, (2) when the moves left are statistically
equal, or (3) when a maximal threshold of iterations Ntotal is reached. In all
cases, the move with the highest expected outcome is chosen. This progressive
pruning algorithm is similar to the one described in [2].

Due to the increasing precision of mean evaluations while the process is run-
ning, the mean value of the current best move is decreasing. Consequently, a
move can be statistically inferior to the best one at a given time and not later.
Thus, the pruning process can be either hard (a pruned move cannot be a can-
didate later on) or soft (a move pruned at a given time can be a candidate
later on). Of course, soft PP is more precise than hard PP. Nevertheless, in the
experiments shown here, we use hard PP.

2.3 Motivations

Using PP or any move-pruning scheme is debatable. For example, Sheppard [16]
uses a clever scheme to drive the choice of which simulation to perform on which
move, and this scheme does not prune any move. In contrast, we assume that
PP is used, and attempt to improve it. We do not debate on the use or non-use
of move pruning.

The background of this work is the architecture of Indigo. It is made up of a
pre-selection module and a Monte-Carlo module. Nselect is the number of moves;
it is the output of the pre-selection module, and the input of the Monte-Carlo
module. As long as PP is running, the number of possible moves is decreasing,
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namely from Nselect down to 1 at which point the process stops. Two remarks
can be made. First, PP spends most of its time when two possible moves are
left. Frequently, the evaluations of the two moves left are almost equal, and a
great deal of iterations are necessary to separate them. Thus, the first goal is to
reduce the time spent by PP when two moves are left. Second, Indigo’s playing
level highly depends on Nselect. Indigo’s playing level roughly increases with
Nselect. (Admittedly, this is not completely correct. Actually, Indigo’s playing
level reaches an optimal value with Nselect = 8, 16, or 32, depending on the size
of the board 9 × 9, 13 × 13, or 19 × 19, and then, it decreases.) However, the
optimal value of Nselect can be quite high and therefore the second goal is to
reduce the time spent by PP to eliminate moves at the beginning of the process.
To sum up, we need (1) a pruning technique that lowers the time spent when
two or a few moves are left at the end of the process, and (2) another technique
to eliminate quickly most of the moves at the beginning of the process; both
techniques should operate under the same statistical confidence when pruning.
With this aim, we designed two pruning techniques.

3 Two Pruning Techniques

This section describes the two pruning techniques. Miai Pruning (MP) is the
technique that speed-up the end of PP process when a few moves are left (in
particular two), and Set Pruning (SP) is the technique that speeds up the be-
ginning of the PP process when many moves are involved.

3.1 Miai Pruning

Without any loss of generality, we assume that two moves are left, A and B,
and that Black is to move. PP aims at finding the move with the best mean.
Therefore, PP launches many games (1) starting with Black A and with the
following moves randomly chosen, and (2) starting with Black B, and with the
following moves also randomly chosen. Unfortunately, in the half of the games
starting with move A, move B is also played by Black. In addition, in the half of
the games starting with move B, move A is also played by Black. Thus, in the
half of the random games played out to separate the moves A and B, A and B
are played by the same player. When the order of the moves of a sequence is not
important to reach a position (which is not rare in Go) the half of the random
games does not help much to discriminate A and B. So, the idea of MP is (1)
to launch games starting with Black A and White B, and (2) to launch games
starting with Black B and White A to separate A and B. Now we should make
MP working when the number of possible moves is arbitrary small (say three or
more). MP works as follows. For each possible move A, B being another possible
move different from A chosen at random, MP launches games starting with Black
A in the first move, and White B in the second move. The term “miai” emerged
because it is used by human Go players for the same concept: “miai” means
equivalent. When two moves are miai, then it happens that if a player plays one



108 B. Bouzy

of them, the other player plays the other one. Finally, we remark that MP is
designed to separate moves which are not miai by imitating the actual way of
human playing. When played after move A, B can be an illegal move. In such
case, MP is simply not used.

3.2 Set Pruning

Let us assume that Npossible moves are left. SP applies two stages. First, to be
cautious and avoid rather bad pruning due to bad chance, Nmin is devised by
PP to forbid any pruning before Nmin random games per move are arrived at.
Second, at the beginning of the PP process, the σ of a move is high for each
move. Thus, no move has a good chance to be statistically inferior to the best one
with a given statistical confidence. The idea underlying SP is to associate a mean
value and a σ not only to the possible moves but also to all the possible sets of
moves of size Npossible/2. Nrgpm is the number of random games performed per
candidate move, then the mean value of the random games performed given that
the first move belongs to a given set of size Npossible/2 is known with a σ that is
in 1/

√
Nrgpm × Npossible/2. Consequently, the width of the confidence interval

around the mean value associated to sets of moves is
√

Npossible/2 times smaller
than the width of the confidence interval around the mean value associated to
moves. Thus, it is possible to prune a set of moves at once, with a statistical
confidence which equals the statistical confidence at which PP prunes moves one
by one. This way, the number of possible moves is divided by two, each time a
set of moves is pruned. The idea is quite attractive because in practice we do
not need to consider all of the possible sets of size Npossible/2 (a big effect) but
only two sets. Because the moves are ranked from the best move down to the
worst move, they can be grouped into two sets, the set of the Npossible/2 best
moves, called good, and the set of the Npossible/2 worst moves, called bad. The
mean associated to good is the highest mean associated to any other set of size
Npossible/2, and the mean associated to bad is the lowest mean associated to any
other set of size Npossible/2. Therefore, the first set to be pruned is the pruning of
bad. In practice, SP works as follows. In addition to the mean and σ computed
by PP for each move, SP builds the two sets good and bad, and computes their
means and their σ. When bad is found to be statistically inferior to good, it
is pruned with a statistical confidence identical to the statistical confidence at
which moves are pruned by PP.

4 Experiments

Starting from PP we determine empirically the size of Nselect (4.1). Thereafter,
this section evaluates the relative merits of MP (4.2) and SP (4.3), of their direct
combination (M+SP) (4.4), their strong combination (M+gbSP) (4.5), and of
a special combination of the two (M+gbP) (4.6), all of this regarding time and
playing level. We end up this section with an all-against-all tournament (4.7)
gathering the best programs of the experiments.
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Since we explore move-pruning abilities of a Monte-Carlo Go program, we
wish first to observe the move-pruning effect isolated from deep-tree search ef-
fects. Thus, we have performed experiments with depth-one search only (4.8).
Furthermore, because (1) we need a large amount of game results to obtain a
sufficient statistical significance, and (2) 19 × 19 games are too long, we have
used 9 × 9 boards. When a pruning technique has been demonstrated as per-
forming well on 9× 9 boards at depth-one, it is assessed in a second stage either
at depth-n on 9 × 9 boards (4.9) or at depth-one on 19 × 19 boards (4.10).

For each technique, we set up experiments to assess its effect on the time
level and on the playing level. An experiment consists of a match of 200 games
between the program to be assessed and the experiment reference program, each
program playing 100 games with Black. The result of an experiment is generally
a set of relative scores assuming that the assessed program is the max player.
Given that the standard deviation of 9 × 9 games played by our programs is
roughly 15 points, 200 games enable our experiments to lower σ down to 1 point
and to obtain a 95% confidence interval of which the radius equals 2σ, i.e., 2
points. We have used 2.8 GHz computers. Furthermore, all programs in these
experiments do not use any conservative or aggressive style depending on who is
ahead in a game, they only try to maximize their own score. The score of a game
is more significant than the winning percentage. Nselect is a power of 2 between
2 and 64. rd is set to 2.0.

Prune is the name of the program to assess. In its basic version, Prune uses
PP only. The notation to name a program to be assessed is simple: for example,
Prune(MP = true) is the program that uses additionally the MP technique,
and so on for Prune(SP = true) or Prune(Nselect = N).

4.1 Nselect Versus Nselect/2

We start attempting to obtain the best playing level and the minimal response
time, knowing that the effect of increasing the value of Nselect is worth remem-
bering. Table 1 shows the effects of simply doubling Nselect. Each number corre-
sponds to a confrontation between Prune(Nselect) and Prune(Nselect/2).

Table 1 shows an increase of the playing level in Nselect. However, the returns
diminish as Nselect increases. Although being not statistically significant, Table
1 shows that Prune(Nselect = 32) is slightly superior to Prune(Nselect = 16),
and even that Prune(Nselect = 64) is almost equal to Prune(Nselect = 32).
Regarding the relative time between the two programs, for low values of Nselect,

Table 1. Result of doubling Nselect

Nselect

4 vs. 2 8 vs. 4 16 vs. 8 32 vs. 16 64 vs. 32

Mean score +8.0 +6.0 +4.3 +0.4 −0.2
Winning percentage 72 65 63 54 52
Mean relative time 2.0 1.75 1.58 1.30 1.12
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Prune(Nselect) is about twice slower than Prune(Nselect/2), but for high values
of Nselect, Prune(Nselect) is almost as fast than Prune(Nselect/2).

The results of this introductory experiment show that increasing Nselect from
2 up to 16 is worthwhile considering in terms of playing level on a 9 × 9 board.
The explanation is straightforward for Prune. We assume that the pre-selection
module being based on hand-crafted domain-dependent knowledge still contains
errors, and that the Monte-Carlo module is quite adequate at selecting the right
move. With this assumption, the larger Nselect, the larger the probability of
selecting a good move input of Monte Carlo. However, one thing cannot be
omitted: the pre-selection module gives a penalty to tactically bad moves but it
does not eliminate them. Thus, when Nselect is sufficiently large, the tactically
bad moves are also input of Monte Carlo. Monte Carlo is bad at recognizing
tactically bad moves, which explains that Prune(Nselect = 64) is worse than
Prune(Nselect = 32). Meanwhile, the time for obtaining the overall playing-
level jump is multiplied by a factor 6.

4.2 Miai Pruning Versus Progressive Pruning

This subsection first compares MP with PP. Then it shows the effects of doubling
Nselect while using MP.

Table 2. Result of MP vs. PP

Nselect

2 4 8 16 32 64

Mean score +2.9 +1.3 +2.1 −1.3 −0.6 −0.7
Winning percentage 53 50 51 49 50 47
Mean relative speed 1.50 1.45 1.37 1.33 1.31 1.27

Table 2 shows that MP is worth considering for low values of Nselect. Regard-
ing the motivations of this paper (see 2.3), the result of Prune(MP = true,
Nselect = 2) is crucial to comment upon. First, Prune(MP = true, Nselect = 2)
has a non-negative result against Prune(MP = false, Nselect = 2): +3 points
and 53% wins. The mean score is statistically significant because 3 points is
superior to the radius of the confidence interval which equals 2 points. Second,
the speed is enhanced significantly, multiplied by 1.5. Thus, the first column of
Table 2 experimentally proves the relevance of MP, and it adheres the goals set
in Section 3. The non-negative mean score and the speed enhancement of two
next columns (Nselect = 4, 8) of Table 2 confirm the effectiveness of MP. The
right part of the table then shows slightly negative mean scores. MP appears
to be less adapted to situations in which many moves are candidate than to
situations with a few candidate moves.

As already shown in Table 1, Table 3 shows that with MP the playing level
also increases in Nselect. Between Nselect = 2 and Nselect = 4, the return improves
faster with MP than without MP. However, for high values of Nselect the return
diminishes faster with MP than without MP. Moreover, Prune(Nselect = 64)
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Table 3. Result of doubling Nselect while using MP

Nselect

4 vs. 2 8 vs. 4 16 vs. 8 32 vs. 16 64 vs. 32

Mean score +15.4 +3.7 +1.0 −1.2 −4.3
Winning percentage 67 58 52 49 43
Mean relative speed 0.47 0.52 0.61 0.60 0.62

looks like inferior to Prune(Nselect = 32) with some statistical significance; this
is remarkable. It confirms the experimental fact that MP is less adapted to situa-
tions in which many moves are candidate than to situations with a few candidate
moves. Our current explanation is the following. Without MP, the second move
of a random game is selected pseudo-randomly with domain-dependent knowl-
edge: one-liberty string or 3 × 3 pattern urgencies [3]. With MP, the second
move is selected at random with uniform probability among the set of candi-
date moves. When Nselect is small, the candidate moves are all approximately
good, thus the second move selected by MP has a good chance to be better
than the move generated pseudo-randomly with domain-dependent knowledge:
one-liberty string or 3×3 pattern urgencies. When Nselect is high, the candidate
moves are approximately average, thus the second move selected by MP has a
good chance to be worse than the move selected pseudo-randomly with domain-
dependent knowledge. In conclusion, selecting the second move of the random
game is a question of superiority between MP and the pseudo-random genera-
tor based on domain dependent knowledge. To be effective, MP must be better
than the current pseudo-random move generator. If random games based on uni-
form probability were used, then MP would have no difficulty to be superior. In
the background of the pseudo-random generator using domain-dependent knowl-
edge, employing MP when Nselect is high is consequently a bad idea. Subsection
4.8 will show a remedy to this problem.

4.3 Set Pruning Versus Progressive Pruning

This subsection compares SP with PP. Table 4 shows the results.
For low values of Nselect, Prune(SP = true) plays at the same level as

Prune(SP = false) and the increase in speed is not high. For high val-
ues of Nselect, the relative speed of the two programs is significantly supe-
rior to 1, which was expected, because the SP technique is designed for high

Table 4. Result of SP vs. PP

Nselect

2 4 8 16 32 64

Mean score +0.1 +0.5 +0.2 −1.3 −2.4 −3.5
Winning percentage 50 49 52 48 44 43
Mean relative speed 1.00 1.05 1.08 1.12 1.14 1.17
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values. However, while the relative speed increases, the playing level decreases
significantly, Prune(SP = true, Nselect = 64) being significantly inferior to
Prune(SP = false, Nselect = 64). This result confirms the fact that using SP
is debatable.

4.4 M+SP Versus Progressive Pruning

This subsection directly combines MP and SP, and compares this combination
with PP. The direct combination means that SP is used in addition to MP, and
that no other enhancement is used, as will be shown in the next subsection.

Table 5. Result of M+SP vs. PP

Nselect

2 4 8 16 32 64

Mean score −0.5 +0.4 −3.9 −8.5 −11.4 −12.5
Winning percentage 49 51 42 33 28 29
Mean relative speed 1.5 1.5 1.7 2.2 2.6 2.8

Table 5 shows the results of MP+SP versus PP. The results are bad. Losing
by eleven or twelve points on average on 9 × 9 boards is huge in Go standards.
This result is disappointing. While SP did not give good results, it was risky
to combine them so directly. The next experiment aims at combining MP in a
sophisticated way.

4.5 M+gbSP Versus Progressive Pruning

Since the direct combination M+SP did not work well, we tried a more sophis-
ticated combination of MP and SP, called M+gbSP. In addition to MP and SP,
the two sets, good and bad updated by SP, were used by M+gbSP to launch
the random games: for each possible move A, MP+gbS launches games starting
with Black A and White B, B being picked up at random among bad if A is
in good, and picked up in good otherwise. Thus, when launching the random
games, the idea underlying M+gbSP is to apply the miai principle on the two
sets good and bad instead of applying them on moves.

Table 6 shows the results of M+gbSP versus PP. The results are still bad.
Losing by ten or fifteen points on average on 9×9 boards is huge in Go standards.
Our current explanation is that the strong combination reinforces the pruning

Table 6. Result of M+gbSP vs. PP

Nselect

2 4 8 16 32 64

Mean score +0.3 +1.7 −8.3 −10.2 −11.3 −15.4
Winning percentage 52 52 35 33 32 26
Mean relative speed 1.5 1.6 1.9 2.8 3.5 3.8
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strategy. Here, games are launched in order to enhance move pruning instead of
neutrally finding the mean value of moves. When the first part of a run badly
ranks a move - a “good” move M is put into bad - the next part of the run
tries to reinforce the current finding: when it launches games starting by M, the
second move of the game (played by the opponent) is picked up from good, thus
the mean value of M is penalized. Symmetrically, when a “bad” move M is put
into good in the beginning of the run, the next part of the run launches games
starting by M, then the second move of the game (played by the opponent) is
picked up from bad, thus the mean value of M is optimistic, and M remains in
good.

4.6 M+gbP Versus Progressive Pruning

Since M+gbSP does not work, probably due to its complexity, this subsection
tries a simplification. It combines MP with the sole use of the two sets, good
and bad, but not with SP. We call this combination M+gbP. good and bad
are used in the same way as they are used in the strong combination M+SP: for
each possible move A, M+gbP launches games starting with Black A and White
B, B being picked up at random among bad if A is in good, and picked up in
good otherwise.

Table 7 shows the results obtained by M+gbP versus PP. The relative speed is
higher than it was in Table 2. For Nselect = 2, 4, 8, 16, the playing level of M+gbP
seems identical to the playing level of MP. However, for Nselect = 32 or 64, the
results are still bad. The arguments highlighted by the previous subsection could
still explain them.

4.7 All-Against-All Tournament

In the previous subsections, we have made relative assessments of the pruning
techniques against PP with constant Nselect, and relative assessments of doubling
Nselect with a fixed pruning technique (either MP or PP). In this subsection, we
look for the best programs, in term of time and playing level. Thus, based on
the previous experiments’ results, we have built two tables approximating the
values of the programs against Prune(PP, Nselect = 2). Table 8 yields the
average time used by the programs Prune to play one game, and Table 9 the
relative playing level of Prune estimated with the previous results.

Table 7. Results of M+gbP vs. PP

Nselect

2 4 8 16 32 64

Mean score +0.7 +2.1 +0.0 −1.1 −3.5 −8.1
Winning percentage 51 55 50 44 43 35
Mean relative speed 1.5 1.5 1.5 1.5 1.6 1.7
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Table 8. Average time (in minutes) spent by Prune(Nselect, P ) to play out one game

Nselect PP MP SP M+SP M+gbSP M+gbP

2 1.0 0.7 1.0 0.7 0.7 0.7
4 2.0 1.4 2.0 1.3 1.2 1.3
8 3.5 2.7 3.5 2.1 1.8 2.5
16 5.5 4.3 5.5 2.5 1.9 3.7
32 7.0 5.2 6.2 2.7 2.0 4.5
64 7.5 6.0 6.5 2.7 2.0 4.5

Table 9. Relative playing level of Prune(Nselect, P ) estimated by the previous sub-
sections

Nselect PP MP SP M+SP M+gbSP M+gbP

2 0 +3 0 0 0 0
4 +8 +11 +8 +8 +8 +10
8 +14 +15 +13 +10 +8 +14
16 +18 +18 +17 +10 +8 +17
32 +18 +16 +16 +9 +7 +15
64 +18 +14 +15 +8 +4 +10

Table 9 clearly shows that Prune(M+SP or M+gbSP) and Prune(Nselect

= 2 or 4), are not worth considering. Table 8 shows that Prune(Nselect =
64) is slower than Prune(Nselect = 8, 16, 32). Meanwhile, it is slightly weaker,
thus eliminated. Thus, we kept nine programs Prune(PP, MP, SP, Nselect =
8, 16, 32) for an all-against-all tournament.

Table 10 gives the final rankings with the average score per game. The σ of
each average result is about 1.2. The radius of the 95% confidence interval is
2.4. Consequently, clear conclusions can hardly be drawn from this tournament.
Concerning the playing level, all the players are on a par. The best value of Nselect

seems to be 32, unfortunately lowering the relevance of the pruning techniques.
SP seems to be a better enhancement than MP regarding both playing level and
time. However this tournament is not fair for MP because of the high values
of Nselect. This leads to the perspective to apply MP only when the number of
candidate moves is inferior to a threshold. Conclusions on the playing level are
hard to draw; the time considerations may break the tie. Table 8 shows that
MP8 is the fastest program among the players of the all-against-all tournament,
enhancing the interest of MP.

Table 10. Final ranking of the all-against-all tournament

Rank
1 2 3 4 5 6 7 8 9

Prune P32 S32 S16 P8 S8 M8 M16 P16 M32
Mean score +3.6 +1.7 +1.2 0.0 −0.3 −1.2 −1.5 −1.7 −2.0
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4.8 Weak Miai Pruning (WMP)

Since the all-against-all tournament has shed the light on a weakness of MP
when Nselect = 16 or 32, this subsection considers a weak version of MP which
consists in using the MP rule only when the number of candidate moves is strictly
inferior to a threshold T .

Conversely to straightforward MP which is effective for low values of Nselect

only, Table 11 shows that WMP (with T = 5) is worth considering for any values
of Nselect. First, Prune(WMP = true, Nselect = 2, 4) keeps the positive result
shown by Table 2. Second, Prune(WMP = true, Nselect = 8, 16) has quite
a positive result against Prune(WMP = false, Nselect = 8, 16): +3 points
and 60% wins. As mentioned in Subsection 4.2, the mean score is statistically
significant. Third, the positive mean score of two next columns (Nselect = 32, 64)
of Table 11 confirms the effectiveness of WMP, and removes the negative mean
scores of Table 2. Finally, the speed is enhanced significantly, multiplied by 1.5
for Nselect = 2, and not lowered for high values of Nselect. To sum up, WMP is
experimentally demonstrated to be superior to PP on 9×9 boards for any value
of Nselect, both in time and in playing level. This experiment is a success.

4.9 Integrating WMP with Global Tree Search on 9 × 9 Boards

The result obtained by WMP within the basic MC framework on 9 × 9 boards,
namely depth-one search, suggests using WMP in the framework combining MC
and Tree Search [4]. Currently, Indigo uses a depth-3 global tree search on
9×9 boards. Consequently, we set up an experiment assessing Prune(WMP =
true, Nselect = 8, Depth = 3) against Prune(WMP = false, Nselect = 8,
Depth = 3) on 9×9 boards. It turns out that, although playing 5% faster, Prune
(WMP = true, Nselect = 8, Depth = 3) is 1.7 point inferior to Prune
(WMP = false, Nselect = 8, Depth = 3) and wins 45% of games only. Thus,
integrating WMP with global tree search on 9 × 9 boards is not a success.

We have the following explanation. First, the MP principle can be discussed
in front of depth-2 search. Actually, since MP launches games beginning by two
given moves, the mean values computed correspond to depth-2 nodes. However,
the background in which WMP is used cannot be forgotten. WMP is used only
when previous random games have pruned moves, and moreover, after move A,
MP develops move B only, and not all the children of move A. Thus depth-2
search dominates MP. MP is a trick used because of time constraints, when

Table 11. Result of Weak MP (WMP) vs. PP for T = 5

Nselect

2 4 8 16 32 64

Mean score +1.5 +1.0 +3.1 +4.5 +2.7 +3.0
Winning percentage 51 50 60 61 53 55
Mean relative speed 1.50 1.48 1.25 1.12 1.05 1.02
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depth-2 search cannot be used. Second, [4] and MP both expand the child nodes
of a parent node when the number of children decreases and reaches a threshold
(W− in [4] and T in MP). Therefore, the two techniques do not live well all
together. Finally, [4] being a kind of iterative deepening algorithm, we have also
tried to use WMP at the maximal depth only, and not at intermediate depths,
but this attempt was not satisfactory.

4.10 Scaling WMP Up to 19 × 19 Boards

As explained in the introduction of Section 4, to speed up the validation process
of our ideas, we have first performed our experiments on 9×9 boards. After such
experiments, SP does not fulfil our initial expectation, but MP, and in particular
WMP, is still worth considering. Therefore, in a second stage, WMP deserves a
19× 19 assessment. To make the programs playing in adequate time on 19× 19
boards, Monte-Carlo parameters are set differently. For example, rd is set to
1.5 and not to 2.0. Moreover, when scaling up to 19 × 19 boards from 9 × 9
boards, the maximal number of random games is reduced in a 40% proportion.
Obviously on 19 × 19 boards, the time constraints bring about a depth-one
search. The value of the parameters being different, it was not certain that WMP
behaves on 19× 19 boards in the same way as it does on 9× 9 boards. After 400
games, Prune(WMP = true, Nselect = 8) turns out to be +4 point superior
to Prune(WMP = false, Nselect = 8) winning 51.6% of the games. The 95%
confidence interval is [-3.4, +11.8] and the 68% confidence interval is [+0.4, +8.0].
Hopefully, this result shows that WMP scales well on 19 × 19 with a depth-one
search. More interesting is the fact that Prune(WMP = true) used 36 minutes
on average to complete one 19 × 19 game. Meanwhile, Prune(WMP = false)
used 46 minutes on average. Thus Prune(WMP = true) is 1.27 faster than
Prune(WMP = false). This positive result on 19× 19 boards is explained by
the fact that a depth-one search is mandatory. In this context, WMP appears
to be a trick when depth-two search remains forbidden.

5 Discussion

To explain why MP works, we introduce the notion of the incentive of a move as
the difference between the MC evaluation of the position reached by this move
and the MC evaluation of the current position. Let a be the incentive of Black
playing move A, and b the incentive of Black playing move B. PP launches games
to assess a and b. It stops when the difference a− b is statistically different from
zero. Let us assume that the incentive of White playing move A (resp. B1) is −a
(resp. −b), which is plausible in most cases. When A and B are not dependent,
the games launched by MP starting with Black A (resp. B) and White B (resp.
A) contribute to assess a−b (resp. b−a). MP stops when the difference between
the two means, i.e., 2× (a − b), is statistically different from zero. Thus, when A

1 The notation “(resp. B)” is shorthand for “(or B respectively)”.
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and B are not miai, the average number of games launched by MP to separate
A and B is smaller than the average number of games launched by PP.

SP was designed to speed up the beginning of the PP process. The experi-
ments show that SP is a failure. One could say that SP has no more theoretical
foundation than PP itself. One could expect that pruning the set of moves would
exhibit the same move quality versus CPU time tradeoffs obtained by pruning
the individual moves. The experimental results are not inconsistent with this
hypothesis.

Scared by the long lasting experiments on 19× 19 boards, we have chosen to
spend the CPU time to perform experiments on 9 × 9 games first. Considering
that Indigo uses depth-3 on 9×9 boards, and that MP does not work well with
depth-n search, all this work does not result in profitable behavior of Indigo on
the 9×9 board. Hopefully, scaling up to 19×19 boards after assessing the quality
of MP was a good surprise. MP works well with depth-one search and Indigo
uses depth-one on 19×19 boards. Considering Indigo’s development, the speed-
up and move quality improvements are finally effective on 19 × 19 boards, and
not on 9 × 9 boards. In Subsection 4.8, WMP experiments were presented. The
difference between WMP and MP lies in the use of a threshold enabling the
program to use the MP heuristic only when the number of candidate moves is
lower than the threshold.

A more important reason of the success of WMP over MP as been revealed
since the time of the experiments. In fact, as specified in 3.1, MP was designed
to discriminate moves that are tied after several iterations of PP to speed up
the end of the process. Thus, it is quite important not to start MP at the
beginning of the PP process. If the MP technique is applied from the beginning
of PP, then, on tactical positions, the program may select a very bad move. This
kind of blunder occured recently in a game against CrazyStone [9], the new
Monte-Carlo Go program of Rémi Coulom. Indigo overlooked the good move
on a tactical position near the end of the game. This error did not change the
outcome of the game, but it costed the loss of a large group of stones, which
could have been avoided. As against this, we may state that its merit was to
point out the problem. On this position which was quite near the end of the
game, two moves only (and not eight as usual) were selected by the knowledge-
based move selector, let us say A, the good one, and B, a bad one. Consequently,
the PP process started with two moves, i.e., less than the threshold. Thus, the
MP rule was applied from the start of PP. On the mentioned position, playing
random games starting by B and A lead to positions in which Indigo, in its view,
expected to obtain everything (because move A did not work for CrazyStone,
but it still was obliged to be played as second move by the MP rule). Besides,
playing random games starting by A and B led to stable positions in which
half of the points was for Indigo, and the other half for CrazyStone. Thus,
Indigo assessed (wrongly) that B was superior to A. To debug this blunder, we
observed what would have happened without MP. Then, we saw that playing
random games starting by B lead to positions in which CrazyStone obtained
everything (because move A that did not work for CrazyStone, was not forced
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as second move by the MP rule). Furthermore, playing random games starting
by A led to stable positions in which half of the points was for Indigo. Thus,
without MP, PP quickly and correctly found out that A was superior to B.
Consequently, to fix up the bug, we added another threshold forbidding to use
MP before a minimal number of random games. This error underlines the fact
that MP has the big downside of considering that a good move for the opponent
is also a good move for itself, which is a famous Go proverb, but which is wrong
in many tactical situations.

6 Conclusion and Perspectives

We presented two pruning heuristics: Miai Pruning and Set Pruning. They were
intended to improve the existing Progressive Pruning technique. Miai Pruning
actually simulates the miai principle used by human players which consists in
playing the second move when the first is played. Set Pruning manages two
sets of moves, good and bad, and tries to prune bad when possible. These
two pruning techniques have been assessed on 9 × 9 Go boards first. MP is
domain-dependent and experimentally effective both in time and playing level,
when Nselect is low and when combined with a depth-one search. Weak MP has
been shown effective both in time and playing level on 9× 9 boards with depth-
one search. However, MP and WMP are not effective within a depth-n search.
Moreover, the recent history of Indigo showed that MP must be used only after
a minimal number of random games, when PP alone has shown that it cannot
break the tie between the remaining moves. SP seems experimentally effective
in time as well, but it does not offer a satisfactory compromise between time
and move quality. Combinations of MP and SP has also been tested but they
all failed. Finally, we scaled WMP up to 19 × 19 boards, and we obtained a
significant speed-up (about 1.3). Besides, we gained 4 points in terms of playing
level.

Our experiments assessed the effect of MP within the global tree search algo-
rithm proposed in [4]. A further step consists in translating MP into the game-
tree search framework forgetting the statistical framework presented here. Be-
sides, SP is general, and to this extent, it should be tried on other games with a
high branching factor, such as Amazons [11]. Finally, assessing the ideas of [16]
within the Monte-Carlo Go landscape, and performing local statistical search
are still on our to-do list.

References

1. B. Abramson. Expected-outcome: a General Model of Static Evaluation. IEEE
Transactions on PAMI, 12:182–193, 1990.

2. D. Billings, A. Davidson, J. Schaeffer, and D. Szafron. The Challenge of Poker.
Artificial Intelligence, 134:201–240, 2002.

3. B. Bouzy. Associating Domain-Dependent Knowledge and Monte-Carlo Ap-
proaches within a Go Program. Information Sciences, 175:247–257, 2005.



Move-Pruning Techniques for Monte-Carlo Go 119

4. B. Bouzy. Associating Shallow and Selective Global Tree Search with Monte-
Carlo for 9×9 Go. In 4th Computers and Games conference (CG 2004) (eds.
H.J. van den Herik, Y. Björnsson, and N.S. Netanyahu), LNCS 3846, pages 67–80,
Springer-Verlag, Berlin, 2006.

5. B. Bouzy. Indigo Home Page.
www.math-info.univ-paris5.fr/ ˜bouzy/INDIGO.html, 2005.

6. B. Bouzy and T. Cazenave. Computer Go: an AI-oriented Survey. Artificial Intel-
ligence, 132:39–103, 2001.

7. B. Bouzy and B. Helmstetter. Monte-Carlo Go Developments. In 10th Advances
in Computer Games (ACG10), Many Games, Many Challenges (eds. H.J. van den
Herik, H. Iida, and E.A. Heinz), pages 159–174, Kluwer Academic Publishers,
Boston, 2004.
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Abstract. This paper discusses the intricacies of a Phantom-Go pro-
gram. It is based on a Monte-Carlo approach. The program called
Illusion plays Phantom Go at an intermediate level. The emphasis is
on strategies, tactical search, and specialized knowledge. The paper pro-
vides a better understanding of the fundamentals of Monte-Carlo search
in Go.

1 Introduction

Phantom Go is a variant of Go in which part of the information is hidden for
the players. Since Phantom Go is therefore to be considered as a game with
imperfect information1, Monte-Carlo methods are expected to work well. This
paper demonstrates that the expectation is true and shows the results of a Monte-
Carlo based program that plays Phantom Go.

In Sect. 2 we present the game of Phantom Go. In Sect. 3 we recall previous
work on Monte-Carlo Go. In Sect. 4 we detail how the Monte-Carlo method is
adapted to Phantom Go. In Sect. 5 we give experimental results of our program
Illusion. Section 6 provides a conclusion and outlines future work.

2 Phantom Go

Phantom Go is a two-player game. There are two players and a referee. It is
played on three boards, one for each player and one for the referee. The board
of the referee is called the reference board. It is usually played on 9× 9 boards.
The referee can see all three boards. Each player can only see his2 own board.
When it is a player’s turn, he chooses a move and asks the referee if it is legal
for him to play on the intersection intended by pointing at the intersection. The
referee answers ’legal move’ or ’illegal move’ according to the reference board. If
the move is illegal, the player chooses another move, and so on until he arrives
at a legal move. When the player has indicated a legal move, it must be played
on the reference board by the referee, and by the player on his own board. If
1 Sometimes the term ‘incomplete information’ is also used for games with hidden

information. In the case of Phantom Go, both players have complete information of
the game rules, possible states, and possible outcomes.

2 For brevity we use ‘he’ (‘his’) if ‘he or she’ (‘his or her’) is meant.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 120–125, 2006.
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there is a capture, the referee announces the number of stones being captured
and communicates to the other player which stones have been captured. After a
move has been played, it is the other player’s turn. The game ends when both
players pass. Phantom Go (as a variant of Go) is the equivalent to Kriegspiel in
Chess [2].

3 Monte-Carlo Go

Monte-Carlo methods compute statistics on a set of random games in order to
find the best move. They have been used in games such as Bridge [7], Poker [1],
Tarok [8], and Scrabble [9]. All these games have hidden information which make
them particularly suited for Monte Carlo. However, Monte-Carlo methods have
also proven to be useful in complete information games, and particularly in Go.
Brügmann [5] was the first researcher to experiment with Monte Carlo in Go.
Recently, other Go programs have started using it, and improved the method
in many directions, among others by (1) simplifying the method and proposing
basic improvements [4], (2) combining it with a knowledge-based program that
selects a few number of moves that are evaluated by the Monte-Carlo method
[3], and (3) by combining it with tactical search [6].

There are several slightly different ways to write a Monte-Carlo Go program
[4]. In this paper, we use for Monte-Carlo Go the following algorithm: the pro-
gram plays a large number (usually 1,000 to 10,000) of random games starting
at the current position. The moves of the random games are chosen almost ran-
domly among the legal moves, except that they must not fill the player’s eyes.
A player passes in a random game when his only legal moves are on his own
eyes. The game ends when both players pass. In the end of each random game,
the score of the game is computed using Chinese rules (in our case, it consists
in counting one point for each stone and each eye of the player’s color, and sub-
tracting the opponent count from the player’s count). The program computes for
each intersection the mean results of (1) the random games in which the player
starts with a move at that intersection, and (2) the random games in which
the opponent starts at that intersection. The value of a move is the difference
between the two means. The program plays the move with the highest value.

4 Monte-Carlo Phantom Go

Monte-Carlo Go is a game of complete information. Monte-Carlo Phantom Go
has to deal with hidden information. In order to cope with this hidden informa-
tion, the program has to guess where the stones of the opponent are, and the
best move on average against different configurations of the opponent stones.

In essence, for Monte-Carlo Phantom Go the basic Monte-Carlo Go method
is reused: the program plays many games randomly with the constraint of not
filling its own eyes. However, all the random games do not start with the same
position, as the program does not know exactly the real position. The program
memorizes all the forbidden moves. It places an opponent stone on each of the
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forbidden moves. The program also knows the number of the opponent stones
that are present on the reference board. Subtracting the number of forbidden
moves from the number of opponent stones gives the number of stones with an
unknown position.

From the beginning of each random game, the program places its own stones
and places opponent stones on the forbidden intersections. Moreover, it ran-
domly places the opponent stones on the empty intersections left. More pre-
cisely, it randomly places as many opponent stones as there are opponent stones
with an unknown position. Once all the stones are placed, it plays a random
game starting with a move of its color, and performs moves randomly on empty
intersections, provided they are not a player’s eye.

A player passes when his only moves left are his own eyes. When both players
pass, the game is ended. At the end of a random game, the score is computed
using Chinese rules. For each move played during the random game, the mean
score of playing this move for all the random games is updated to take into
account the result of the game. When 10,000 random games have been played,
the program subtracts, for all the legal moves, the mean score of the move for
the opponent’s color from the mean score of the move for the player’s color. The
move that has the highest difference is tried.

If the move is announced to be illegal by the referee, the program memorizes
it as a forbidden move, and starts its process again. It plays 10,000 new random
games, taking into account the new information given by the referee on the
forbidden move.

5 Experimental Results

The number of random games played at each move is set to 10,000. The program
plays a move in a few seconds on a Pentium 3.0 GHz. Subsection 5.1 details an
example game by Illusion. Subsection 5.2 gives results against different Go
players.

5.1 An Example Game

The author is an European one-dan Go player. Playing games with the program
Illusion usually results in a small win by the author. An example 9×9 game is
given in Fig. 1. When a player tries an illegal move, it is reported in the game’s
notation, and therefore multiple moves by the same player follow each other. All
but the last move by the same player are illegal, they are mentioned explicitly
because they give information on the knowledge of the game by the player and
are required to analyze and understand the game. The author is White and the
program is Black.

In this game, the author followed the strategy of (1) dividing the board into
two parts, and (2) trying to kill one side of the board after it has been divided.
This strategy is also used by other experienced Phantom-Go players and admit-
tedly it is quite efficient.
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1 B(D4), W(E5); 2 B(E3), W(E6); 3 B(F5), W(E4); 4 B(E6-F6), W(E7);
5 B(F7), W(E3-D4-F4); 6 B(E5-F4-E4-G4), W(F3); 7 B(F3-E7-E8), W(F2);
8 B(G3), W(F1); 9 B(F2-D8), W(E8-D7); 10 B(F8), W(D8-C7); 11 B(G2),
W(C8); 12 B(G5), W(C9); 13 B(D3), W(F7-D3-B7); 14 B(C7-D7-C8-F1-C2),
W(A7); 15 B(B4), W(G4-G3-G2-B6); 16 B(B6-B3), W(B5); 17 B(C9-B5-E2),
W(B4-A5); 18 B(C5), W(A4); 19 B(B8), W(A3); 20 B(B7-H6), W(B3-A2); 21
B(E1), W(B2); 22 B(A8), W(C2-B1); 23 B(G1), W(C1); 24 B(D5), W(D1);
25 B(A5-A7-H7), W(F6-F5-D9); 26 B(C3), W(E9); 27 B(B9), W(F8-F9);
28 B(G8), W(G9); 29 B(A4-A3-A2-C1-D1-B1-B2-D9-E9-F9-G9-H9), W(G8-
H9-H8); 30 B(H8-J8), W(J9-J8-J7); 31 B(J7-H5), W(H8-G1-H7-H6-Pass);
32 B(J6).

Fig. 1. Example game: Illusion (B) – Cazenave (W)

Fig. 2. The reference board after 15
moves of both sides

Fig. 3. The program board after 15
moves of both sides

Fig. 4. The final position
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Figure 2 gives the reference board after the first 15 moves (30 plies) of the
game. Figure 3 gives the program board after the first 15 moves of the game. In
the latter position, we see that Illusion has guessed most of the white stones,
and is ahead of White. It has to close the borders of its right group, and to make
two eyes with its left group. Figure 4 gives the reference board at the end of the
game. The program failed to make its left group live and lost the game.

5.2 Results Against Go Players

In order to test the program Illusion adequately, it played 9× 9 games against
Go players of different levels. The results are in Table 1. For each game we give
the level of the human player, the division of colors, and the result.

Table 1. Results of Illusion against Go players

Level White Black Result

13 kyu Nicolas Illusion W+8.5
13 kyu Illusion Nicolas W+resign
5 dan Bernard Illusion W+13.5
13 kyu Illusion Arpad W+17.5
5 dan Illusion Bernard W+27.5
5 dan Bernard Illusion W+47.5

As the results show, the program can win by 27.5 points against a 5 dan Go
player as well as lose by 8.5 points against a 13 kyu Go player. We may conclude
that the program has the level of experienced Go players who only played a
few number of Phantom-Go games. We do not know experienced (and even less
ranked) Phantom-Go players to whom we could test the program.

6 Conclusion and Future Work

We presented our Phantom-Go program Illusion based on a Monte-Carlo ap-
proach. Illusion plays interesting Phantom-Go games. The peculiarity of the
application of the Monte-Carlo method to Phantom Go is that unknown stones
are placed at random at the beginning of each random game. From the results
so far we may conclude that strategy, tactical search, and specialized knowledge
plays an important role.

Below we suggest three essential improvements of the current program. A
first improvement is to deal more accurately with the well-known Phantom-Go
strategies in the random games. For example, the divide-and-kill strategy used
by the author can be exploited in the random games to bias the move selection.

A second set of improvements are the improvements used in Monte-Carlo Go
programs. For example, it is possible to combine the current search with a tactical
search by computing the results of simple tactical searches at the beginning of



A Phantom-Go Program 125

the random games, so as to compute statistics in the random games on the
goal to be achieved. Once the statistics on the goals are computed they give a
better evaluation of the corresponding move than the basic statistics on arbitrary
moves. Such an approach has worked in Monte-Carlo Go [6], and could well work
too in Phantom Go.

A third improvement is to use patterns to bias the selection of moves in the
random games so as to improve their quality as in [3]. Finally, we remark that
the program also has problems dealing with semeais, and opponent eyes. This
can be improved by specialized knowledge.
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Abstract. We propose a new threat-base search algorithm which takes
into account threats by both players. In full-board Semeais in Go or Shogi
endgames, making naive attack moves often result in losing the game.
The reason is that a player must first make a defense move if the opponent
has a better attack move than his1 own. Some attack moves weaken the
defense of the player who made the move. Thus, players must be aware of
the threats by both players to avoid such naive attack moves. However,
existing threat-based search algorithms are only aware of threats by one
player, and cannot detect such naive attacks efficiently. We propose a
solution to this problem, by applying λ-search mutually recursively so
that it searches the best move by taking into account threats by both
players. We call this search algorithm dual λ-search. Dual λ-search can
handle inversions efficiently compared to previous algorithms by making
passes for both players. We implemented dual λ-search with Df-pn as
the driver, and made experiments with difficult Shogi-endgame problems.
We showed the effectiveness of our algorithm by solving 32 problems out
of 97. It includes solving problems that even one of the strongest Shogi
program had not yet been able to solve correctly.

1 Introduction

In many games, a variety of strong game programs have been built using game-
tree search algorithms with heuristic evaluation functions. The Shogi endgame is
a particular research domain that has successfully employed this approach over
many years. However, even top-level programs still make fatal mistakes that turn
winning positions into losing ones [7]. One reason is that Shogi is a complex game.
It has huge branching factors due to the great number of legal moves, even in
endgames. Another reason is that, although threats and threat sequences play
a large role in Shogi endgames, it is difficult to construct evaluation functions
that take threats into account.

In such domains, tactical search algorithms have been effective. For example,
λ-search [14] and Generalized Threats Search [2] have solved capture games in

1 For brevity, we use ‘he’ (‘his’) if ‘her or she’ (‘his or her’) is meant.
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Go, and Df-pn can solve checkmate problems in Shogi [11]. These algorithms
focus on a part of the game. Thus they are not sufficient to find a winning move
in the full game. In a Shogi endgame, a move to attack an opponent King often
threatens the King of the player who made the move. This is partly because the
player must first counter his opponent’s attack move provided that the move
could be achieved faster than his own attack move. Moreover, an attack move
itself can weaken the attacker’s King. From combinatorial game theory [4] we
know the theory on how to combine the results of searches in independent sub-
games to yield the globally best move. However, this theory does not work well
for games that cannot be divided into independent sub-games.

In order to solve this problem, we propose a new search algorithm based on
the analysis of threats by both players. Therefore, we extended λ-search to be
mutually recursive. As a consequence, our algorithm measures the threat of one
player while also taking into account the threat of the other player in the form
of inversions. By handling the attack and defense moves of one King, we can
use heuristics for searching efficiently, while still achieving the global goal by
taking into account the threats of both players. With our search algorithm, we
solved difficult Shogi problems, including some which require tricky moves that
influence threats by both players.

In Sect. 2, we give an explanation of Shogi and the Shogi endgame. In Sect. 3,
we place our work in the framework of related works. In Sect. 4, we apply λ-
search to Shogi. In Sect. 5, we propose our method, dual λ-search. In Sect. 6, we
show our experimental results, and in Sect. 7 we make some concluding remarks.

2 The Game of Shogi

Shogi is a Japanese board game played by two players. It is believed to have
the same origin as “Western” chess and Chinese chess. Compared with other
Chess-like games, Shogi has a unique “drop rule” [7]. In brief, when a piece is
captured it is not totally removed from the game, but the player who took the
piece can play it back on the board later on. This means that the number of
pieces involved in the game does not decrease towards the end of game.

Due to this rule, Shogi has a significantly complex endgame. For example,
endgame databases [13] which work well for (western) Chess are not practical in
Shogi endgames. Together with the larger search space, Shogi is considered to
be a much harder game for computers than Chess.

2.1 Checkmate in Endgame

We start defining checkmate, which plays an important role in the Shogi
endgame.

Definition 1. Checkmate (narrow sense). A position is in checkmate (nar-
row sense), if any legal move2 by the player is followed by a position where the
player’s King could be captured by the opponent.
2 Strictly speaking, a move that does not resolve a check is an illegal move in Shogi.
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Definition 2. Checkmate Tree. A checkmate tree is a game tree, where one
player (the attacker) only plays check moves, and the other player (the defender)
plays all possible moves, and all leaf nodes are positions in checkmate.

Definition 3. Checkmate (wide sense). A position is said to have a check-
mate, if it is in a checkmate tree.

A search to verify if a position is in a checkmate tree is more efficient than
searching for a win in normal positions, as only check moves and moves to escape
from checks need to be considered. The introduction of Df-pn [11] has enabled
Shogi programs to solve complicated checkmate problems, and the ability of
computers to prove a checkmate has surpassed that of human grand masters.

2.2 Threats of Higher Order

Although computers are able to solve complicated checkmate problems, it is still
difficult for computers to find checkmates hidden two or three moves away from
the root position in a normal search tree. Most Shogi programs use forward
pruning based on heuristics, together with a hand-tuned evaluation function,
but it is not rare for even the top-level programs to miss the correct move which
is evident even for an intermediate human Shogi player.

Threatmate moves and brinkmates are concepts similar to check moves and
checkmate, which also play an important role in the Shogi endgame [6]. A threat-
mate move is a move by the attacker, which if neglected by the defender, allows
the attacker to establish a checkmate within next move. The defender loses un-
less either the defender can checkmate the attacker’s King, or the defender can
make a defense move that can prevent the checkmate by the attacker.

Definition 4. Threatmate move. A threatmate move is a non-check move
by a player (attacker), that is followed by a position in which, if the opponent
(defender) passes, the player (attacker) has a checkmate.

If the player has no move to resolve an checkmate by the opponent, the position
is said to be in a brinkmate.

Definition 5. Brinkmate (narrow sense). A position is in brinkmate, if any
legal move by the player (defender) is followed by a position where the opponent
(attacker) has a checkmate.

Definition 6. Brinkmate Tree. A brinkmate tree is a game tree, where one
player (the attacker) only plays check moves or threatmate moves, and the other
player (the defender) plays all possible moves, and all leaf nodes are positions in
brinkmate.

Definition 7. Brinkmate (wide sense). A position is said to have a brink-
mate, if it is in a brinkmate tree.

Although some algorithms have been proposed to search brinkmates [6,1], their
effectiveness is limited because of the large search costs caused by the difficulties
in the identification of attack and defense moves.



Dual Lambda Search and Shogi Endgames 129

3 Related Work

Game-tree search algorithms and their enhancements have been intensively stud-
ied for a long time now, including mini-max search, alpha-beta search, MTD(f),
null-move pruning, and transposition tables. Although they have made great
successes possible in many kinds of games, they do not work well in some games
with huge branching factors such as Go [10], in spite of all efforts. Our algorithm
searches more selectively by focusing on the threats, so that it can still work in
such games.

Tactical search algorithms are specialized in solving a part of the game, or a
partial goal. For example, trying to take a specific stone in the game of Go is a
partial goal. Trying to checkmate one player’s King in Chess or Shogi is another
example of a partial goal. Tactical searches are efficient because they limit their
moves related to the specific goal they handle and only search a part of the game
tree. Thus, they are still effective in games where global search does not work well.

λ-search [14], Generalized Threats Search [2], and iterative widening [3] were
applied to solve capture games or life-or-death problems in Go. Proof number
search and Df-pn were applied to solve checkmate problems in Shogi [11].

3.1 Simulation

Simulation [8] was first proposed to solve effectively Shogi positions with useless
interposing piece drops in checkmate search. It is also shown to be effective in
a solver for the game of Go [9]. The idea is as follows. Assume that position P
is proven, and position Q is a position similar to P . Then simulation borrows
moves from the proof tree of P and tries to find a quick proof for Q.

3.2 Generalized Threats Search

Generalized Threats Search [2] is a search algorithm that could model existing
algorithms based on threat analysis. Generalized Threats Search is based on the
idea of generalized threats, which defines the depth of search and where players
could make consecutive moves. Generalized threats can represent a search tree
with a multiple level of threats at various depths. However, only passes by one
player are allowed in a given generalized threat. In contrast, dual λ-search uses
passes by both players.

An enhancement to Generalized Threats Search, called ‘forced move for left’,
is also explained in [2]. The idea is quite similar to dual λ-search in the sense that
it looks at the threats introduced not only by the attacker, but also the defender.
A similar idea was also proposed by Thomsen [14]. In dual λ-search, threats by
the defender are used to cut inversions by the defender, while in Generalized
Threats Search, it is used to cut moves by the attacker that could not block the
inversion.

3.3 Shogi Endgame

If we ignore inversions and consider only attack moves, it would be much eas-
ier to find a winning move sequences made up of threatmate moves. However,
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Yamashita reported that it is dangerous to ignore inversions, as a check move
by the defender to the attacker’s King often prevents such naive winning se-
quences [15].

Although checkmate searchers are efficient, they are still too heavy to be called
at every leaf node of the normal search. So most Shogi programs call checkmate
searchers only at shallow depth of the search tree.

IS-Shogi, one of the strongest Shogi program, uses simulation in two ways to
to find checkmates deep in the search tree [12]. The first idea is to use simulation
to verify if a possible checkmate by the opponent was prevented properly by
IS-Shogi. In the root node, IS-Shogi first passes and sees if the opponent
has a checkmate. If so, IS-Shogi checks by simulation if the checkmate by the
opponent still holds after IS-Shogi has made a move. The second idea is to
record a successful checkmate made by IS-Shogi found in normal search, and
use this to verify if the same checkmate holds in the descendant nodes.

4 λ-Search for Shogi

In this section, we start with a brief explanation of λ- search [14], then show how
it could be applied to Shogi. We call the player to move at the begin position
of the search Black, and the other player White. The aim of the search is (1) to
prove that there is a win for Black, and (2) to obtain its proof tree.

We assume that either pass is allowed, or zugzwang is not a motive. Although
this does not strictly hold in Shogi, it should cause no problem as there is
practically always a harmless move to play which could substitute a pass.

4.1 λ-Search

λ-search is an algorithm for searching a binary-valued game tree. It uses passes
together with different orders of threat sequences. A more direct threat has a
lower threat level and a more indirect threat has a higher threat level. We denote
with n the level of threat. The basic idea of λ-search is to reduce the number
of positions searched, by reading along the positions where there is a threat.
Formally, λ-search could be defined by λn-trees and λn-moves.

Definition 8. λn-tree. A λn-tree is a search tree which consists solely of λn-
moves; a λn

attack-tree is a λn-tree where Black moves first.

The value of a λn-tree is the result of evaluating the tree as an AND-OR tree.
For the leaf positions, with no λn-moves, it is disproven if it is Black to play,
and it is proven if it is White to play.

Definition 9. λn-move. A λn-move is a move with the following characteris-
tics. If Black is to move, it is a move that implies – if White passes – that there
exists at least one subsequent λi

attack-tree that is proven, where 0 ≤ i ≤ n − 1.
If White is to move, it is a move that implies that there does not exist any
subsequent λi

attack-tree that is proven, where 0 ≤ i ≤ n − 1.
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Fig. 1. Part of a Shogi endgame po-
sition, where Black has a λ2 move
(drop Silver at 7b)

A check move is an example of a λ1-move,
as if neglected, the player who made the
check move can capture the opponent King.
A threatmate move is a λ2-move. An example
of a λ2-move is shown in Fig. 1. In this posi-
tion, the first player can drop the Silver at 7b.
If the second player neglects this move and
plays elsewhere, the first player can make an-
other move to checkmate the second player.

The only move that prevents an immediate
checkmate by the second player is to move his
Silver to 7a, which would be responded by
the first player by capturing it, either with
Silver or promoted Rook. This move by the
first player is another λ2-move.

4.2 Lambda Search with One King

We introduce the notation φ, which represents a λ-search regarding only one
King. In Shogi, the game ends if either King is captured. But for the search to
determine the value of φ, we allow the search to continue beyond the capture of
the attacker’s King. When the attacker’s King is captured, we simply remove it
from the game. So, when we search for the value of φ with the goal of Black cap-
turing the white King, we allow Black to leave its King under check, and White
capturing the black King. In other words, White concentrates on defending its
own King, and forgets about attacking the black King.

For a given position P , player p and threat level n, we define φn
p (P ) as follows.

Definition 10. φn
p (P ) is the value of a λ-search with the goal p capturing the

opponent King, starting from the position P . If p is to play in P , φn
p (P ) is

true if there is at least one move from P , which is followed by a position which
φi

p(0 ≤ i ≤ n) is true. If the opponent of p is to play in P , φn
p (P ) is true if the

opponent of p passes, φi
p(0 ≤ i ≤ n − 1) is true in the subsequent position, and

all move from P is followed by a position for which φi
p(0 ≤ i ≤ n) is true.

4.3 Lambda Search with Two Kings

Next, we represent a composite goal, in which one player can capture its oppo-
nent King without its own King being captured. This means that the player has
a successful φ starting from that position, for every position in the sequence it is
not in a successful φ sequence with a lower threat level for its opponent. We in-
troduce a notation similar to the previous notation φ to represent the composite
goals.

To represent that in position P , player p can safely capture the King of its
opponent o with a sequence made up of moves with a threat level less than n,
we use the following notation: (φn

p ∧ ¬φn−1
o )(P ) .
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Definition 11. (φn
p ∧¬φn−1

o )(P ) is the value of a λ-search with the goal p cap-
turing the opponent King, without its own King being captured, starting from
the position P . If p is to play in P , (φn

p ∧ ¬φn−1
o )(P ) is true if there is at least

one move from P , which is followed by a position which (φi
p ∧ ¬φj

o)(P )(0 ≤ i ≤
n, 0 ≤ j ≤ i − 1) is true. If the opponent of p is to play in P , (φn

p ∧ ¬φn−1
o )(P )

is true if the opponent of p passes, (φi
p ∧¬φj

o)(P )(0 ≤ i ≤ n−1, 0 ≤ j ≤ i−1) is
true in the subsequent position, and all moves from P are followed by a position
for which (φi

p ∧ ¬φj
o)(P )(0 ≤ i ≤ n, 0 ≤ j ≤ i − 1) is true.

Note that this composite goal is not the same as the conjunction of simple goals
φn

p (P )∧¬φn−1
o (P ), as the latter notation allows the move to support φn

p (P ) and
the move to support ¬φn

o (P ) to be different. For example, take a position P , in
which p is to play and which has two children, Q and R (Fig. 2). Let Q and R
have the following values (see table in Fig. 2).

P Q R

φ0
p false false false

φ0
o false true false

φ1
p true true false

φ1
o true true true

φ1
p(X) ∧ ¬φ0

o(X) true false false

(φ1
p ∧ ¬φ0

o)(X) false false false

Fig. 2. A position P , p to move, with two child nodes Q and R

From φ0
p(Q) = false and φ0

p(R) = false follows φ1
p(P ) = false. The compos-

ite goal (φ1
p ∧ ¬φ0

o)(P ) is false, as neither Q nor R can support it. However,
φ1

p(P )∧¬φ0
o(P ) is true, as φ1

p(Q) supports φ1
p(P ) and ¬φ0

o(R) supports ¬φ0
o(P ).

Moreover, the result by the non-composite goal is incorrect, for this position is
a o to win position, with φ1

o = true and φ0
p = false for both moves.

5 Dual Lambda Search

In this section, we show how to expand λ- search [14] into dual λ-search. λ-search
is a rather efficient way of searching when threats and threat breaking moves are
important. However, λ-search with a single goal can only be applied to search
in local games, and does not always yield correct results for global searches of
the game. λ-search with a composite goal could handle global games properly,
but lacks the efficiency of the original λ-search, as passes of only one player are
concerned. Below, we propose the dual λ-search algorithm where threats of both
players are taken both into account.
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5.1 Formalization

We formalize dual λ-search with µn
j -moves and µn

j -trees, where p denotes a player
and n denotes the threat level of the search. We denote by o the opponent of
player p.

Definition 12. µn-tree. A µn
p -tree is a search tree which consists solely of µn

p -
moves.

Definition 13. µn-move. A µn
p -move is a move with the following character-

istics.
If p is to move, it is a move that implies it is followed by a position where, if o
passes, there exists at least one subsequent µi

p-tree that is proven, and there does
not exist any subsequent µi

o-tree that is proven, where 0 ≤ i ≤ n − 1.
If o is to move, it is a move that implies that there does not exist any subsequent
µi

p-tree that is proven, where 0 ≤ i ≤ n − 1.

Fig. 3. Part of a Shogi endgame po-
sition. If the first player uses Sil-
ver to attack, the second player
can move the promoted Rook to 6i,
which the first player cannot de-
fend.

Unlike previous algorithms, where attack by
only one player is concerned, our algorithm
takes account of the threats by both players.
This could be well illustrated by the example
shown in Fig. 3. This position is almost iden-
tical with Fig. 1, except that the black King
and the surrounding pieces have been added.

In this position, Black dropping Silver to
7b is a naive attack move, and if played
back by White moving promoted Rook to 6i.
The only move by Black to avoid immediate
checkmate is to move Silver to 7i. However,
White can still checkmate Black by capturing
the Silver with moving promoted Rook to 7i.
Moreover, not making any attack move is bet-
ter than dropping Silver to 7b, as even when
Black passes, there is no immediate check-
mate of the black King by White. This is an
example where a λ-search with a single goal
fails to yield a correct result.

This problem could be also handled by λ-
search with composite goals, but it lacks effi-
ciency. After Black chose to drop a Silver at
7b, the question is: which move should White make? This is a easy question
for dual λ-search, as 6a promoted Rook is a µ1

W move, and should be tried to
see if this position is a win for White, before µ2

B moves should be considered.
However, as λ-search with composite goals does not consider threats by White,
it thus cannot limit candidates to be searched first.
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5.2 Dual Lambda Search with Df-pn

Df-pn is an algorithm for searching AND-OR trees, that searches the thinner
part of the search tree first [11]. For AND-nodes (attacker’s positions), it starts
searching from the node with the least number of leaves required to be expanded
to prove the node. For OR-nodes (defender’s positions), it starts searching from
the node with the least number of leaves required to be expanded to disprove the
node. Df-pn is efficient in searching non-uniform trees, and is the best known
algorithm to solve Shogi checkmate problems. Below, we show how Df-pn could
be used as the driver for dual λ-search.

We denote the player to move at the initial position as p, and his opponent
o. We start from a lower threat level, and for each level we start from trying to
prove a win for p. That is, we start from λ0

p, then go on to λ0
o, λ1

p, λ1
o, λ2

p... until
a win is proven for one player.

For each position in the search, we do a similar iteration. If we are searching
to prove λn

p , we start from proving λ0
p, up to λn

p . The position is proven if λi
p

is proven and λi−1
o is disproven for i(i ≤ n). The position is disproven if λi

p is
disproven for all i(0 ≤ i ≤ n) or λi−1

o is proven.
The proof number and disproof number of each position is defined for each

threat level and player. For position P , λi
p.p(P ) denotes the proof number for

player p at threat level i, and λi
p.d(P ) denotes the disproof number for player p

at threat level i.
If P is a position without any moves to play, it is a terminal position. If p is

to play in P , λi
p.p(P ) = ∞ and λi

p.d(P ) = 0. If o is to play in P , λi
p.p(P ) = 0

and λi
p.d(P ) = ∞.

If P is a position with moves to play, it is an internal position. The proof num-
ber and disproof number are calculated from the children of P . If the threat level
is lower than 0, both the proof number and the disproof number of the position
is 0. The proof number and disproof number of an unexpanded position is 1.

If p is to play in P ,

λi
p.p(P ) = min

s∈childs(P )
(λi

p.p(s) + λi−1
o .d(s))

λi
p.d(P ) = min(

∑
s∈childs(P )

(λi
p.d(s)),

∑
s∈childs(P )

(λi−1
o .p(s))) .

Let t denote the position after a pass from P . If o is to play in P ,

λi
p.p(P ) = λi−1

p .p(t) +
∑

s∈childs(P )

(λi
p.p(s)) +

∑
s∈childs(P )

(λi−1
o .d(s))

λi
p.d(P ) = min(λi−1

p .d(t), min
s∈childs(P )

(λi
p.d(s)), min

s∈childs(P )
(λi−1

o .p(s))) .

Positions are expanded until there are no more positions to expand. The
position to be expanded is chosen as follows. For a position p to play, the child
position with the least proof number is chosen, and for a position o to play, the
child position with the least disproof number is chosen, until an unexpanded
position is found.
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6 Experimental Results

To show the effectiveness of our algorithm, we solved some Shogi endgame posi-
tions with our search algorithm. In our experiments, we used full-board endgame
positions where the first player can find a win by brinkmate if he played properly.
We chose the problems from a test set provided by Grimbergen [5]. None of the
problems in the test set was solved by the top Shogi programs on the market at
the time when [5] was written. Thus, the test set represents the weakness of the
current Shogi programs. The test set had 97 problems with endgame positions,
none of them with an immediate checkmate.

6.1 Move Generator

We heuristically limited our move generation. In general, if we generate more
moves, we obtain more accurate results under the sacrifice of the search space
and the speed. However additional moves sometimes do reduce the search cost
by rejecting naive attacks and defenses. So what we want is the smallest set of
moves that contains “the right” moves. To decide what moves to generate, we
started with the minimal set of moves and gradually added moves that were
needed to solve some problems.

For the attack moves, we decided to generate three categories of moves: (1)
moves that the pieces to be moved could move into the 25 squares surrounding
the defender’s King on its next move, (2) moves to open way for the big pieces,
and (3) moves that captures any opponent piece.

For the defense moves, we came up with six categories of moves: (1) moves
that moves the King, (2) moves that capture the piece that has been just played
by the attacker, (3) moves that increases the liberty of the King by moving a
piece occupying a square where the King can move, (4) drop moves to the 8
squares surrounding the King, (5) moves that capture the attacker’s pieces that
could move into the 8 squares surrounding the King on its next move, and (6)
moves of the piece to be moved that can move into the 8 squares surrounding
the King on its next move.

Note that whenever the player to move is under check, instead of generating
the moves introduced above, all check escaping moves are generated.

6.2 Solving Shogi-Endgame Problems

Dual λ-search depends on other search techniques for searching the µ-trees. In
our preliminary experiments, dual λ-search driven by iterative-deepening depth-
first search was only able to solve quite simple problems. So we chose Df-pn as
the driver for the dual λ-search in our experiments.

Implementing Dual λ-Search. We have incorporated an enhancement pro-
posed by Kishimoto to handle loops efficiently with Df-pn [9]. However, we have
not incorporated enhancements to handle GHI problems correctly. We used an
estimator for the proof numbers and disproof numbers of the pre-expanded po-
sitions, based on the liberty of the defender’s King.
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We implemented both λ-search and dual λ-search with Df-pn as its driver.
We used a dual Opteron 250 PC, with 12GB of memory. We did not give a
explicit time limit or table size limit to the program, so the program stopped
either when it found a winning move or when it exhausted the memory.

Table 1. Comparison with λ-search

Correct Unknown Incorrect
dual λ-search 32 63 2
λ-search 20 46 31

Comparison with λ-Search
with One King. The results
of the comparison with λ-search
are shown in Table 1. If the
program gave the correct first
move, we counted it as “cor-
rect”, and if it gave a wrong
move, we counted it as “incor-
rect”. For most problems, the program ran out of memory which we counted
“unknown”. Dual λ-search gave only 2 incorrect answers, while λ-search with
one King gave as much as 31 incorrect answers. This shows the importance of
taking into account the threats by both players.

Dual λ-search was able to give a correct solution of some problems that even
could not be correctly answered by the development version of the strongest
Shogi program YSS.3

Comparison with General Search. We had our Shogi playing program GPS-
Shogi solve some of the problems, to compare dual λ-search with a general Shogi
playing program.

GPS-Shogi searches with MTD(f) for normal positions, and with Df-pn for
a checkmate position. We had GPS-Shogi solve the problems for which dual
λ-search was able to give the correct answers. Let us see how many nodes GPS-
Shogi required to explore, to find the correct answer. We started with a small
search limit, and increased the limit until either GPS-Shogi was able to find
the correct move, or the limit was surpassing a large threshold.

For most problems, GPS-Shogi was not able to find the correct move al-
though the program searched considerably more nodes compared to dual λ-
search. This clearly shows the strength of dual λ-search in the Shogi endgame.

Incorrect Answers. As we limited the defense moves, our solver gave incorrect
answers for two problems. The problems were 44 and 85.

Problem 44 is shown in Fig. 5. The correct sequence for this problem starts
with 2a Gold. However, our program gives 2a Bishop (promote) as the answer.
The sequence goes on 2a King (capture Promote Bishop) by the defender, 4b
Rook (promote) by the attacker. The best move for the defender is 7i Bishop
(drop) which is a check to the attacker’s King. Although this move does not
establish a checkmate, it is a brinkmate-breaking brinkmate move, which brings
a win to the second player.

Problem 85 is shown in Fig. 6. The correct sequence for this problem starts
with 2c Silver, but our program generates 2c Gold. The reason for this is that the
3 A message from the Computer Shogi Association mailing list.
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Table 2. Search space and search time of dual λ-search for the problems solved

Problem Table Positions Problem Table Positions
ID size explored ID size explored

1 5,077,274 13,625,141 40 2,687,773 5,341,140
3 23,127,440 51,547,045 47 6,322,382 16,688,986
5 3,324,052 9,071,688 53 653,649 1,694,982
6 12,693,730 28,224,664 55 985,227 2,333,563

13 332,886 927,355 56 41,194 119,889
14 2,779,596 7,424,350 67 1,777,506 4,121,735
18 819,600 1,837,131 69 128,301 283,346
19 3,096,938 7,930,800 70 410,784 1,176,575
25 21,068 66,176 74 2,552,585 4,914,454
28 9,847,634 26,819,205 76 158,928 325,432
29 9,544,140 22,514,140 79 1,561,958 2,538,576
31 2,789,624 7,958,037 80 2,958,425 6,172,481
32 4,035,965 10,369,349 81 3,359,032 8,814,780
34 5,256,028 14,586,670 89 10,327,673 15,145,559
36 3,386,594 8,628,844 94 1,019,703 2,586,687
38 14,709,681 35,263,407 99 13,041,836 32,832,194
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Fig. 4. Comparison of dual λ-search and GPS-Shogi search

program does not generate the next move 3e Promoted Bishop by the defender
with the current sets of move generating rules.

Both problems could be solved by generating more moves for the defender.
Problem 85 could be solved by adding more defense moves, such as 3e Pro-
moted Bishop. However, when we generate more defense moves, we had to give
away many correct answers. That is why we are reluctant in adding the moves.
Problem 44 could be also solved if more defense moves were generated. If check
moves by the defender were generated, problem 44 could be answered correctly,
but some other problems would then not be solved.
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Fig. 5. Problem 44 Fig. 6. Problem 85

7 Conclusion

We proposed a new search algorithm called dual λ-search. It is based on a search
algorithm called λ-search. Although λ-search is an efficient algorithm, it is only
aware of attacks by one player. Dual λ-search takes into account of attacks by
both players and could be used for searching for the whole game, while the
original λ-search could only be used in searches for a part of a game.

The new algorithm is quite effective in the endgame positions of many games,
including Shogi. Shogi is a Japanese board game played by two players, which
has a the unique “drop rule”. For this rule, Shogi has a significantly complex
endgame, and together with the larger search space, Shogi is considered to be a
much harder game for computers than Chess.

We have conducted some experiments to show the strength of this algorithm,
by solving some positions taken from a test set of complicated Shogi problems.
We were able to solve complex problems with our search algorithm, some were
solved for the first time by a computer program. We compared our algorithm
with λ-search as well as with a general Shogi-playing program. We have achieved
both high level of accuracy as well as competitive speed.

Based on these results, we may conclude that our algorithm has been success-
ful in the Shogi endgame, and is expected to be also useful in other games that
require a global search, provided that it is possible to decompose the game into
reasonably independent sub-games.
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Abstract. In the past, there have been numerous studies into the cognitive 
processes involved in human problem solving. From the start, games and game 
theory have played an important role in the study of human problem solving 
behavior. In Chess, several cognitive experiments have been performed and 
those experiments have shown that expert chess players can memorize positions 
very quickly and accurately. Chase and Simon introduced the concept of 
chunking to explain why expert chess players perform so well in memory tasks. 
Chunking is the process of dividing a chess position into smaller parts that have 
meaning. We performed similar experiments in Shogi with a set of next-move 
problem positions, collecting verbal protocol data and eye-movement data. 
Even though experiments in Chess indicated that expert chess players searched 
as wide and deep as non-expert players, our experiments show that expert Shogi 
players search more moves, search deeper and search faster than non-expert 
players. Our experiments also show that expert Shogi players cannot only 
memorize the patterns of the positions but also recognize move sequences 
before and after the position. The results suggest that other than the perceptual 
spatial chunks introduced in chess research, there are also chunks of meaningful 
move sequences. We call such chunks “temporal chunk”. Our research indicates 
that Shogi players become stronger by acquiring these temporal chunks. 

1   Introduction 

Many studies of expertise derived from games have been conducted in the field of 
cognitive science. The study of Chess by De Groot [1] is a particularly famous 
example. He conducted experiments on the memory of expert chess players. His 
experiments revealed that an expert chess player can memorize the arrangement of 
pieces in a chess position accurately in a short time (time limit of 5 seconds). It also 
became clear that a top-class chess expert (Grandmaster) does not always look at 
more moves or searches deeper than a lower-class expert player [2].  

Simon and Chase built on this work and explained the recognition ability of an 
expert by using the concept of “chunk”. The important idea is that chess knowledge is 
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the ability to recognize a typical spatial arrangement of pieces on the chess board as a 
pattern [6]. They called this a chunk, and reported that the size and volume of the 
stored chunks becomes larger as the player becomes stronger. Their assumption was 
that a chunk is an arrangement of pieces, stored as a perceptual and spatial unit. We 
will call these “spatial chunks” to distinguish this type of chunking from a different 
type that we will discuss in this paper. 

To confirm the presence of chunks in Shogi, we have repeated the memory 
experiments for Chess in Shogi [4,5]. When the results of the experiments were 
examined in detail, a difference was observed between the memory ability of 
intermediate Shogi players (amateur Dan players) and those of advanced Shogi 
players (professional Shogi players). In the opening phase of the game, the 
intermediate Shogi players showed memory ability that was little different from those 
of the advanced Shogi players. However, this memory ability went down significantly 
in the middle game and the endgame. In contrast, the memory ability of the advanced 
Shogi players did not decline as the game progressed. If parts of the position are 
memorized as a spatial chunk like a still image, it is understandable that the opening 
is easier to memorize, because similar positions are encountered often. However, it is 
difficult to explain that middle-game and endgame positions can be remembered in 
this way by using only spatial chunks.  

Our observation of advanced Shogi players was that they (1) recognized a (partial) 
position, (2) recognized how this position occurred and (3) how play would likely 
develop next. It seemed that they do not recognize positions as a separate entity, but 
the current position is part of the flow of the game. 

To study this phenomenon further, we have used so called “next-move problems”, 
where subjects need to find a good way to continue play in a certain position. These 
types of positions have not been used in past comparative studies, but we feel that 
they can be an important tool for examining both the thought processes and the 
memory processes of players of different playing strengths. As a tool for examination, 
we collected eye-movement data with an eye camera and simultaneously had the 
subjects think aloud. We used the same set of problems to collect data from players 
with different playing strength.  

2   Experiments with Next-Move Problems 

Below we will provide a full description of our experiments. In Section 2.1 the 
objective of our experiments will be given, followed by a description of the 
experiments in Section 2.2. The experiments resulted in three types of data: numerical 
data (discussed in Section 2.3), verbal data (discussed in Section 2.4), and eye-camera 
data (discussed in Section 2.5). In Section 2.6 a summary of the results is given. 

2.1   Objective 

As pointed out by Ito [3], the decision process of a move in Shogi is composed of 
“recognition of the position”, “formation of candidate moves”, “look-ahead”, 
“evaluation”, and “decision”. This process is called a player script, and it was shown 
that a Shogi player obtains this player script as a beginner and that improvement in 
playing strength is a gradual refinement of this general script. 
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The experiment described below is aimed at the problem solving process of 
deciding a move in a certain Shogi position. In particular, we wish to examine the 
differences between players of different playing strength (from beginning Kyu players 
to professionals) in the “recognition of the position” and “formation of candidate 
moves” phases.  

2.2   Method 

In the experiment, the thought processes of the subjects were examined by using both 
verbal data from think-aloud protocols and the data from an eye camera 1  when 
solving next-move problems. For our next-move problems, we did not use problem 
positions that can be found in Shogi magazines. These positions usually require the 
discovery of a hidden tactical move, which only rarely happens in actual game play. 
Instead, we asked a strong player to create a number of positions satisfying the 
following two conditions: (1) a position that could appear in an actual game, and (2) a 
position that has multiple reasonable candidate moves. The problem positions that we 
used in our experiments can be found in the Appendix. 

The problem positions were given to 10 subjects: two beginners (amateur 5-kyu 
and lower), three intermediate players (around 1-dan), two advanced players (amateur 
4-dan or higher) and three top professional players (8-dan or higher). They were each 
asked to think aloud about the next move in the current position, which was recorded. 
Also, the movement of the eyes of each subject was recorded with an eye camera. We 
did not impose a time limit for solving the problem and gave the subjects instructions 
to take as much time for deciding on their move as they thought necessary. The 
problems were given in the same order as presented in the Appendix. Because the 
experiment as a whole could take several hours, we allowed a break after finishing a 
problem position. However, except for one intermediate player and one advanced 
player, all subjects did the full set of problem positions without taking a break. 

In the analysis, numerical data such as thinking time and the width and depth of the 
look-ahead are given first. Then, the results of analyzing the thought processes of 
players of different strength using the think-aloud protocols are given. Finally, the 
thought processes of players of different strength during the position-recognition 
phase are analyzed using the combination of eye-camera data and think-aloud 
protocols. 

2.3   Numerical Data 

In Table 1 the answers of all subjects to the problem positions are given. N1 and N2 
are the two beginners, M1 to M3 are the intermediate players, E1 and E2 the 
advanced players, and P1 to P3 are the three professional players. As can be seen 
from the table, in some problems (such as problem 1 or 4) even the professional 
players did not agree about the best move, so the problem positions are not easy. 

In Table 2 the time for answering each problem position is given for all subjects. 
This is the time from the moment the problem was shown until the subject chose a 
move. As can be seen from the table, there are substantial differences between the 
subjects. 
                                                           
1 The Eyemark Recorder EMR-8 of NAC Image Technology Inc. 
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Table 1. Answers of each subject 

 
 

Table 2. Answer time of each subject in seconds 

 
 

 

In Fig. 1 the average time for deciding on the move in each position is given for the 
four different levels of playing strength. When looking at this data, we see that 
position 4 has a low average decision time for all players despite the number of 
different answers that are given. The reason for this is that this position resembles a 
standard opening position, which is known to all players, thus shortening the decision 

 

 

Fig. 1. Average answer time for each problem 
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time. Position 7 is a variation of a more advanced type of standard position; advanced 
and professional players agree upon the best move here. Furthermore, for those who 
are more familiar with this type of position, the decision time is very short. 

Despite these individual and position differences, it seemed that the intermediate 
players were thinking quite long before deciding upon their move. To confirm this, we 
averaged the decision time for the four levels of playing strength over all problems. 
The results are given in Fig. 2. We see that intermediate players indeed seem to take 
longer than the players of other playing strengths. 

 

 

Fig. 2. Average answer time by playing level 

Furthermore, we analyzed the think-aloud protocols to determine the look-ahead in 
the thought process, in particular the number of candidate moves that were considered 
and how deeply these moves were searched. Figure 3 shows the width and depth of 
the look-ahead of each subject, where the width is the number of candidate moves 
considered in the problem position and the depth the length of the longest variation 
that was considered. Moreover, Fig. 3 shows that intermediate players search slightly 
wider than the other players, and that the depth of the look-ahead increases with 
playing strength. 

 

 

Fig. 3. Width and depth of look-ahead for different playing levels 
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We also compared the volume of the look-ahead between different levels of 
playing strength. To measure this volume, we used the number and the speed of the 
look-ahead. The “number” of the look-ahead is the total number of moves that was 
mentioned in the think-aloud protocol. The “speed” is acquired by dividing this 
number by the decision time in minutes. The results are given in Fig. 4. This figure 
shows that both number of moves and speed of the look-ahead increase with playing 
strength. 

 

 

Fig. 4. Move number and speed in the look-ahead for different playing levels 

2.4   Verbal Data 

Below we provide some examples of think-aloud protocols and the thought patterns 
of subjects with different levels of playing strength. In the protocols, the comment in 
< > is an explanation that is not part of the verbal data and “…” indicates omitted 
data. 
 

Problem position 1, think-aloud protocol example of a beginner (N2)  
After rook+4d.  
Hmm, what kind of position is this?   
Well, there is a Rook, the opponent's Rook is on 4d,  
The opponent has a Bishop, ...,  
<For around 55 seconds there are attempts to understand the position> 
Rook 4h? Rook 4h, …, 
The Pawn will not be taken if the Rook goes to 4h, but if so, here, Rook 2d will attack. ...,  
Pawn 4e,  Eh, where to escape. ...  
<Some candidate moves to reply to the opponent’s previous move are given.>  
Rook 7d, oh, it is good, too. ..., hmm, well, um?   
Pawn 4e might be better.  
Well, I will play Pawn 4e.  
<A move which is not obviously bad is selected by short look-ahead and elimination.>  
 

The first thing that stands out in this read-aloud protocol of the beginner is that it 
takes quite a long time to understand the position. In total, it takes the subject around 
55 seconds to get a clear idea about the positional features. On average, beginners 
took between 40 and 70 seconds for this stage. When combining this with the data in 
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Figs. 1 and 2, understanding the position takes around 50 seconds on average, while 
the average time to decide upon a move is about 150 seconds. Beginners therefore 
spend one third of their decision time to understand the position.  

Also clear from the protocol is that understanding the position is characterized by 
the individual pieces in the position (such as “the opponent’s Rook is on 4d” and “the 
opponent has a Bishop”). Understanding the position comes from examining each 
piece individually. 

As far as look-ahead is concerned, the protocol seems to indicate that beginners 
focus on single moves that are possible in the current position (such as “Rook 4h” and 
“Pawn 4e”). There are of course many of these moves, so deep look-ahead is 
impossible. A quick check that the move does not lead to immediate disaster is made 
and the move is decided upon quickly. 
  

Problem position 1, think-aloud protocol example of an intermediate player 
(M3)  
Well, it seems the game is a little rough.  
I let go the Bishop on 5f,  
Yes, Hmm. It seems to be hard. ...  
<Attempts to understand the position continue for about 30 seconds.>  
From Pawn 9e, well,  
If it continues like Pawn-9e, Pawn(9e, Pawn*9b, it’ll be good. �
Will this happen?  
Well,…Will it go like “Pawn-9e, Pawn(9e”? 
Is it really alright if the reply is Pawn-3f, Pawn(3f, Rook(4f,  
... what will happen if I drop a Pawn on 4g? ...  
<Several candidate moves are mentioned in short succession and look-ahead is performed.>  
Let me see.  
Rook 2e seems to be a problem, so I will first play Pawn 9e.  
<Selecting a move is done by elimination just as the beginner did.>  
�

In the case of intermediate players, the time taken for position recognition is 
considerably shorter than for beginners. In this case, position understanding took 
about 30 seconds. In general, position understanding takes between 20 and 40 seconds 
after which candidate moves are beginning to appear. 

For intermediate players, candidate moves seem to pop up one after another. 
However, these candidates are based on the knowledge of local tactics, not based on 
an understanding of the complete position. In the read-aloud protocol example, 
“Pawn-9e, Pawn(9e, Pawn*9b” is a standard sequence of moves to play an edge 
attack. Also, the sequence “Pawn-3f, Pawn(3f, Rook(4f” is a well-known sacrifice to 
activate the Rook. However, there is a clear difference in the use of knowledge here 
when comparing this with the crude disaster check that beginners do before deciding 
upon their move. 
 

Problem position 1, think-aloud protocol example of an advanced player (E1)  
Hmm, It looks like an “Aigakari-formation”.  
Black doesn't lose a Pawn, or?   
There is a Pawn here.  
Oh, Black and White are reversed.  
After Rook 4d, …, 
< There is established knowledge for understanding the position.>  
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Gold 4g is activating the most inactive piece. ...  
Rook 2f seems not that solid. ...  
Well, it is Gold 4g. ...  
I would like to do opposing Pawn 7g somewhere.  
<The candidate moves with evaluation are given to conduct look-ahead.>  
Both Pawn 4e and Rook 2f need to be considered, I don't want to drop there.  
Or play Gold 4g.  
It can’t be helped, so Gold 4g?   
<The move is determined by evaluation of the piece activity based on look-ahead.>  
 

The position recognition of advanced players is quite quick, generally taking about 
10 seconds. There is no verbal data indicating that the position recognition is also 
done after this initial position-recognition phase. Also, the protocol has a reference to 
the strategic features of the whole position (the “Aigakari-formation” is one of the 
general opening strategies in Shogi). Also, the comment “Black and White are 
reversed” shows that previous knowledge about the full position is being used. 

In the phase of forming candidate moves, the influence of a candidate move upon 
the whole position is given (“Gold 4g is activating the most inactive piece”) and there 
is also verbalization of how the candidate move fits into the flow of the position 
(“Rook 2f seems not that solid”). These references show that the position is 
recognized considering subsequent developments. 
 

Problem position 1, think-aloud protocol example of a professional player (P1)  
I think I played this pattern before.  
Uh, well ...  
<The understanding of the position is immediate, and it is checked with existing knowledge 
instantly.>  
Hmm, my first impression is to sacrifice a Pawn on 9e.  
But, yes, this move is good.  
Retreating Silver 6d against Pawn 9e can be used.  
Pawn 3f, Pawn×3f, Rook×4f against Pawn 9e can also be used.  
Well, if I push the Pawn to 4e, the Rook moves sideways to 3d.  
Although I think this Rook is less active. ...  
There is Pawn-3f, Pawn×3f, Bishop 4f,  
So Pawn 4e is a little difficult to play. ...  
<Subsequent moves are mentioned as well as the candidate moves.>  
 

Problem position 1, think-aloud protocol example of a professional player (P2)  
Well. I think I have seen this pattern before.  
It is a position with experience.  
<The understanding of the position is immediate, and it is checked with existing knowledge 
instantly.>  
Uh, well, Black's front side is a little defensive, 
so Pawn 4f seems to be taken, �
But it is impossible to defend with Gold 4g or Rook 4h, 
and moving the Pawn to 4e might be a little unpleasant.  
<The move that might be bad is not read from the beginning.>  
Well, Silver 8h forms a wall-silver, so how about the opposing pawn 7g, is it possible?   
Uh, this, Do I have to read ahead only after Pawn 7g and Rook 4f?   
If then Pawn 7g and Rook×4f, take Pawn 7f and Pawn 7g, 
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Pawn×7g+, Silver×7g and Rook×4f,  
hum, such a development is possible.  
<Candidate moves come up immediately, and look-ahead is conducted with a clear objective.>  
 

When analyzing the verbal data connected to the position recognition phase of 
professional players, there are a high number of references to past experience. This 
not only concerns the current position, but also about how this position came about 
and how this position is likely to develop. In this position, comments such as “I think 
I have seen this pattern before” and “I think I played this pattern before” are examples 
of this use of past experience. Adding comments about how the position came about 
seems to indicate that positions are not recognized separately, but are embedded in a 
context of related knowledge. 

As for look-ahead, the characteristic feature of the look-ahead protocols of 
professional players is that moves are evaluated as having good or bad prospects 
without any look-ahead. Look-ahead in most cases is only used to confirm that the 
initial judgment was correct. Adding evaluation to candidate moves during the move 
generation phase requires knowledge about the context of the position and knowledge 
about the prospects from the current position.  

2.5   Eye-Camera Data 

The results given in the previous section show that thought processes concerning 
position recognition and candidate-move generation are present in the think-aloud 
protocols and that this whole process takes at most 60 seconds after the initial 
presentation of the problem position. Here, we will look at how position recognition 
leads to candidate-move generation more closely by combining data from an eye 
camera with the verbal data given in the previous section. 

In Fig. 5, the combination of eye-camera data and verbal data of a beginner is 
presented for problem position 1. The eye camera traces how long the eyes focus on a 
certain point. Whenever the eye stops moving for more than 0.2 seconds, this is 
recorded and represented with a . The size of the  is relative to the time of fixation. 

The eye-camera data shows that beginners recognize the position by looking at a 
wide area of the board. The destination square of the previous move (Rook to 4d) is 
focused on for a long time. That this is important for the beginner is also clear from 
the verbal data. To understand the position, looking at many pieces on the board and 
understanding the move that lead to this position is important for the beginner. 

Figure 6 shows eye-camera data and verbal data of intermediate player M3 for 
problem position 1.  When compared to beginning players, the findings are that the 
area of examining the position becomes smaller, and the time for position recognition 
shortens. Although it is not clear from the data from this position, some references on 
tactics and castle formation can also be observed during position recognition, 
indicating that recognition of a chunk of pieces becomes possible. Also, moves based 
on tactical sequences appear during candidate-move formation. The sequence of 
“Pawn-9e, Pawn×9e, Pawn*9b” in this position is the tactical move sequence of an 
edge attack starting with the sacrifice of the edge pawn, and it can also be observed 
from the eye-movement data (within 40 seconds) that the three move tactical 
combination is remembered from the combination of the edge file and the diagonal 
controlled by the Bishop on 5f in this position.   
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Figure 7 shows the eye-camera data and verbal data of an advanced player (E3) for 

problem position 1. As explained, the position recognition of advanced players uses an 
understanding of how this position came about and about the strategic features of the 
position. Also, this is not a direct recognition of the piece arrangement as the comment 
“Black and White are reversed” shows. The eye-camera data shows that during the 
position-recognition phase the area where the eyes focus on becomes narrower and that 
the number of fixations becomes smaller than those observed for beginners. 

When generating candidate moves, not only the direct meaning of the move for the 
current position, but also different meanings for future positions become important. In 
this problem position, the pawn push is not only considered because it can be taken on 
the next move, but also because it has a potential of pushing the Pawn up further in a 
later stage of the game. The positional drawbacks of this move (weakening the square 
that the Pawn left) are also taken into account. 

An interesting observation when combining verbal data with eye-camera data is 
that advanced players do not always focus on the area that is important in their verbal 
comments. For example, at the 40 second mark the advanced player watches the 
opponent’s King while the verbal data shows a comment about moving the Pawn to 
4e and then to 4d. Although not present in the verbal data, this indicates that the 
player was thinking of advancing this Pawn in relation to an attack on the opponent 
King. This discrepancy between point of focus and verbalization is only found for 
advanced players. 

 

Fig. 6. Eye-tracking diagrams and verbal data 
of an intermediate player (M3) 

Fig. 5. Eye-tracking diagrams and verbal data
of a beginning player (N2) 
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Figure 8 shows the eye-camera data and the verbal data of a professional player 
(P2) for problem position 1. A characteristic of professional players is that they 
recognize the position instantly and immediately add remarks about past experience 
and knowledge concerning the current position. There are comments like “I have seen 
this pattern before”, but also more specific remarks about how the position came 
about such as “It is a very sharp position due to the early rook exchange” (problem 
position 5) or “This is a standard ‘Yokofu-dori’ opening” (problem position 6). 
Positions are not understood by focusing on every piece, but based on castle 
formation and strategy and on the flow of the game. Eye-camera data shows only a 
few points of fixation and only the central part of the board is scanned quickly. 

The verbal data indicates that future developments are vital for candidate-move 
generation. Comments like “it is impossible to defend with Gold 4g or Rook 4h” and 
“moving the Pawn to 4e might be a little unpleasant” take into account the future 
developments, leading to quick discarding of the mentioned moves. In the end, the 
attention focuses on a move (Pawn 7g) that will solve a potential endgame problem. 

2.6   Summary of the Results 

Summarizing the results of the previous subsections, we obtain the following: 
 

Fig. 7. Eye tracking diagrams and verbal data
of an advanced player (E1) 

 
Fig. 8. Eye tracking diagrams and verbal data 
of a professional player (P2) 
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Result 1: The Numerical Data 
- Intermediate players think longer before a move decision than beginners.  
- Intermediate players look at more candidate moves than beginners, but look-

ahead is shallow. 
- Advanced players look more deeply and are better at narrowing the search. 

Result 2: The Verbal Data  
- A large part of the verbal data of beginners is concerned with position 

recognition. 
- Beginners only look at single, unconnected moves that are possible in the 

current position. 
- Intermediate players can do look-ahead based upon tactical and strategic 

combinations of moves. 
- Advanced players take knowledge about how a position came about into 

account. 
- Advanced players immediately evaluate the merits and drawbacks of the 

candidate moves. 
Result 3:  The Eye-Camera Data 
- Beginners move their eyes over the whole board during position recognition. 
- From intermediate to advanced player, the area of the board that is focused on 

gradually becomes smaller. 
- Advanced players also sometimes focus on a part of the position unrelated to 

their comments.  

3   Discussion 

The results indicate that intermediate players have the longest thinking time (Fig. 2). 
This seems related to our observation that intermediate players search a wide range of 
candidate moves (Fig. 3). In Shogi, improvement in strength is accompanied by 
learning more tactical and strategic moves. Without the proper knowledge of when 
and how to apply these tactics, there are many positions in which these moves are 
possible. More possible moves and a better ability to do look-ahead is the reason for 
longer thinking times. However, when the skills improve, knowledge about how the 
position came about and how it is likely to develop is taken into account. This leads to 
a better understanding of the merits and disadvantages of moves, narrowing the 
number of possible candidate moves for which look-ahead is performed. Advanced 
players therefore do look-ahead more narrowly and more deeply. 

Figure 4 shows that when the player’s skill improves, the number and the depth of 
look-ahead increases. This is based upon verbal data, so it is possible that because 
translating thoughts in words is slow, the actual number of moves and look-ahead is 
considerably larger than the numbers given in the figures. However, the difference 
between the speed of thought and thought verbalization seems especially present in 
the case of advanced players. Therefore, the increase in total move number and speed 
seems a significant first result. 

A second result is that there are clear differences in position recognition between 
players with different Shogi skills. This may be concluded from both the verbal data 
and the eye-camera data. It was observed that beginners focus on individual pieces or 
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small groups of pieces during position recognition. Intermediate players are able to 
understand the position by adding “spatial chunks” about larger piece formations such 
as castles. Because of this ability to recognize piece configurations, they are also able 
to use combinations of moves rather than single moves. Professional players have a 
strong ability to connect to the flow of the game, i.e., how the current position came 
about and what the likely development is. This seems to be a different type of 
knowledge from “spatial chunks” and could be called “temporal chunk”. The results 
indicated that temporal chunks are acquired by intermediate players in the form of 
tactical moves and standard move sequences. The sense of the flow of the game is 
then improved by learning how these move combinations influence a position. 
Therefore, intermediate players can only generate a limited number of candidate 
moves and advanced players are able to search more narrowly and deeply. 

4   Conclusion and Future Work 

The various results in our study seem to suggest that in Shogi the important issues are 
(1) spatial chunks and (2) time-related knowledge (temporal chunking). A different 
phenomenon are the comments by advanced players concerning the immediate 
assessment of candidate moves, which does not seem to be a result of look-ahead.  It 
is hard to prove the existence of temporal chunks, but we believe that our results are a 
strong indication of the existence of time-related knowledge. Further experiments are 
needed to investigate the exact nature of this temporal knowledge.  

We would also like to know (1) whether this way of thinking is specific to Shogi, 
(2) can be found in other games or (3) even can be considered a general feature of 
expertise. Similar experiments in other chess-like games or Go could answer this 
question. 

Moreover, a different way of obtaining or analyzing eye-camera data might be 
needed. In the current setting, eye fixation is represented by a point, but humans are 
known to process data outside of where the eye focuses. As a future work, we would 
like to investigate how peripheral vision influences the information processing in 
Shogi and if there is a relation with Shogi skill. 

There are also reasons to reconsider the set of problem positions. From Table 1 it 
may be concluded that for most positions the subjects chose a wide variety of moves 
(except for position 2 and 10). This met our requirement that the positions needed to 
have multiple reasonable candidate moves, but it might also be interesting to see by 
which thought processes players of different skill might end up with the same 
solution. 

Furthermore, the number of problem positions and subjects might be considered 
too small to support our conclusions. Time constraints (especially for professional 
players) make it difficult to conduct larger experiments, but it might be possible to 
increase the data of all but the top players. The current set of positions is not well-
balanced as far as difficulty is concerned and we also found some tactical problems in 
the positions that might influence the data. Increasing the problem set and having a 
better balance in the degree of difficulty is also a future work. 

Finally, our experiments show that even professional players disagree on many 
occasions. Other than general Shogi skill, there are individual differences influencing 
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the move choice. The amount of freedom for individual differences might be an 
important factor for how interesting a game is. This, together with the notions of 
width and depth in the thought process might be an indication of how profound and 
interesting a game is. In future work, we would like to investigate this connection 
further. 
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Abstract. In the last decade many games have been successfully approached 
by what is commonly known as brute force, i.e., searching as much as possi-
ble. This tendency of computer play has been criticized since it differs much 
from emulating human thoughts which once was one of the primary goals of 
computer game playing. An alternative way which is much closer to human 
game playing, is to discover rules automatically for a given game with the 
aid of Artificial-Intelligence techniques and human thought. Obtaining such 
rules can be done by building computer game programs. This research line 
may have a much broader scope (1) to understand better the ideas of a cer-
tain game, (2) to investigate how to build automatically learnt policies for a 
planning problem, and perhaps even (3) to understand a bit better human 
thinking. To illustrate these three points, we use a small game, that could be 
called King Race, and we aim at discovering rules to solve it. To discover 
these rules we use some human thought and a decision tree program. Then 
we prove mathematically that these automatically obtained rules indeed 
solve the game. The rules can aid in building computer-chess endgame pro-
grams that do not use brute force.  

1   Introduction 

In some chess endgames the outcome depends on whether a King will be able to oc-
cupy a certain square at the end of a king race. For example, in a rook-against-pawn 
endgame, with the white Rook at b8, the white King on the interval [a4,a6] (that is, on 
a4, a5, or a6), the black Pawn at a2 and the black King at e6 (see Diagram 1), with 
White to move, the game should continue as follows: 

 
1. Re8 check (a lateral check at b6 would be a bad move). 
1.  Kd5 2. Re1 (or using a figurine notation: 1. e8+ d5 2. e1 ).  

 
Now, after a move of the black King to c4, the rook is unable to capture the Pawn 

safely so the outcome of the game depends on a king race: if the black King is able to 
occupy the square b3 Black draws; if not Black loses. If the white King is at a6 the 
black King will reach b3 and it is a draw; if the white King is at a5 or a4 the black 
King will not reach b3 and Black will lose. 
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More generally, consider an 
endgame with the same pieces, 
the white Rook WR on the 
interval [e1,h1], the white 
King not on the interval 
[a1,WR], the black Pawn at a2 
and the black King at a dis-
tance less than 4 from a2 and 
at a distance more than 1 from 
row 1 ( there are 2,324 such 
positions). Black to move. 
Black draws if the black King 
is able to reach b3; otherwise 
Black loses. 

This suggests the general 
problem of deciding, if one has 
two opposing kings K1 and K2 
on a rectangular board (not 
necessarily 8 × 8) and a square 
S has been determined, 
whether or not K1 will be able 
to occupy S. 

2 King Race 

Let us now define our little game which will be called king race. Assume we have a 
rectangular board (infinite boards are also allowed) where two opposing chess Kings 
K1 and K2 are placed and d(K1,K2)>1. An unoccupied square S on the board is also 
specified. The problem is: 

 
Assuming K1 moves first, decide whether K1 will be able to occupy the 
square S. 

 

Call the horizontal lines rows and the vertical lines columns. The horizontal dis-
tance between two squares S1, S2, is the distance between the column L1 containing 
S1 and the column  L2 containing S2, that is, the number of king moves needed to go 
from a square in L1 to a square in L2; we denote it by dh(S1,S2). For the vertical 
distance we analogously arrive at dv(S1,S2)). 

The distance d(S1,S2) between S1 and S2, that is, the number of king moves 
needed to go from S1 to S2, is max{dh(S1,S2),dv(S1,S2)}. An example is given in 
Diagram 2. 
 

Diagram 1. Example of a chess ending where the game 
of king race is useful (the black dots indicate other 
positions of the white King) 
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One suspects that, in the 
search for a criterion to 
decide whether or not a 
square is reachable, not 
only distances between 
squares are important but 
also horizontal and vertical 
distances between them. 
Below we list five attributes 
which seem important. 
 

  A1 : d(K1,S) < d(K2,S)    
  A2 : dh (K1,S) < dh(K2,S) 
  A3 : dv (K1,S) < dv(K2,S) 
  A4 : dh (K1,K2)  1  
  A5 : dv (K1,K2)  1  

 

We now put a coordinate 
system and take S as the 
origin (0,0). In Table 1 we 
list 18 positions and, for 
each of them we indicate if 
S can be reached by K1 (the 
king which moves first) and 
if Ai is satisfied (+) or not 
 

Table 1. Reachability of 18 Positions 

 
Positions 

 

Is (0,0) 
reach-
able? 

 A1 A2 A3 A4 A5 

P1: K1=(3,–3),K2=(4,3) Yes   +    + – + – 
P2: K1=(2,–3),K2=(4,3) Yes   +    + – – – 
P3: K1=(3,–2),K2=(4,3) Yes   +    + + + – 
P4: K1=(2,2),K2=(4,3) Yes   +    + + – – 
P5: K1=(–3,3),K2=(4,3) Yes   +    + – – + 
P6: K1=(–3,2),K2=(4,3) Yes   +    + + – + 
P7: K1=(4,–3),K2=(4,3) No   –    – – + – 
P8: K1=(4,–2),K2=(4,3) Yes   –    – + + – 
P9: K1=(–3,4),K2=(4,3) Yes   –    + – – + 
P10: K1=(–4,3),K2=(4,3) No   –    – – – + 
P11: K1=(–4,2),K2=(4,3) No   –    – + – + 
P12: K1=(–4,0),K2=(4,3) No   –    – + – – 
P13:K1=(–4,–3),K2=(4,3) No   –    – – – – 
P14: K1=(2,–4),K2=(4,3) No   –    + – – – 
P15: K1=(3,–4),K2=(4,3) No   –    + – + – 
P16: K1=(–3,3),K2=(3,4) Yes   +    – + – + 
P17: K1=(–3,2),K2=(3,4) Yes   +    – + – – 
P18: K1=(4,–3),K2=(3,4) Yes   –    – + + – 

Diagram 2. Example of a position in the game of king 
race. The white King moves first and reaches square S 

(denoted by a black dot) in 6 moves, e.g.: 1. g2 f7
2. f3 e6 3. e4 d6 4. d4 c6 5. c4

b4b6 6
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  KR 

   A1 

 KNR 

   A5 

   KR  KNR 

   A2 

   KR  KNR 

   A3 

   A4 

        
 
 
 
 
 
 
 
 
 
 
 
 
 
           KR = King reaches square S 

KNR = King does not reach square S 
 

Fig. 1. Decision tree derived from Table 1 

 
(–) (i = 1,2,3,4,5). (The examples could be modified so that they fit into an 8 x 8 
board if so desired.) Using these examples and a decision tree program the tree in Fig. 
1 is obtained. Here a terminal node labeled KR (or KNR) indicates that the square S is 
reached (or not reached) by the first King. 

The examples and the tree suggest the following rule: 
 

A1 or (A2 and A5) or (A3 and A4)  S can be reached  
not (A1 or (A2 and A5) or (A3 and A4))  S cannot be reached 

 
It turns out that, assuming S is not on the edge of the board, this is a valid result, as 
we will prove in the next section. 

3   Proving the Obtained Rules  

Theorem 1. Assume S is not on the edge of the board. The square S can be reached 
from K1 with the second king at K2 if and only if 

(C1.i) d(K1,S) < d(K2,S), or 
(C1.ii) dv(K1,S) < dv(K2,S) and dh(K1,K2)  1, or 
(C1.iii) dh(K1,S) < dh(K2,S) and dv(K1,K2)  1. 

Remarks. For the sufficiency part (the "if" part) the assumption that S is not on the 
edge of the board is not needed. At the end of the article we indicate the (slight) modi-
fications needed if S is on the edge of the board. We will often omit the phrase "with 
the second King on K2" or even also "from K1" when the position of the second 
King, or of both Kings, is clear. 
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Lemma 1. If n = d(K1,S) < d(K2,S) then S can be reached from K1 in n moves. 
 
Proof by induction on n.  
n = 1: Since d(K2,S) > n=1, K2 is not protecting S so K1 can occupy S in one move.   
n > 1: Move K1 to a square K1' such that d(K1',S) = n–1. This is possible because K1' 
is not protected by K2, since if we had d(K2,K1')  1, we would have n < d(K2,S)  
d(K2,K1') + d(K1',S)  1+n–1 = n which is impossible. 

Now K2 will move to a square K2' and d(K2',S) > n–1. Since d(K1',S) = n–1 < 
d(K2',S), by induction we see that S can be reached from K1' in n–1 moves with the 
second King on K2'. Hence S can be reached from K1 in n moves with the second 
King at K2.                                                                                                             

 
Lemma 2. If, with respect to some coordinate system, S = (0,0), K1 = (p,0) and K2 = 
(m,n) with p > 0 and m  p–1, then S can be reached. 

This lemma says that if K1 is to the right of S and on the same row, S will be reached, 
provided K2 is on a column contiguous to that of K1 or more to the right. Proof by 
induction on p. 
p = 1: The squares at distance 1 from S and not protected by K1 have abscissa –1. 
However, m > –1 so d(K2,S) > 1. Hence K1 can occupy S. 
p > 1: Move K1 to K1' = (p',0) where p' = p–1 . Then K2 will move to a square K2' = 
(m',n') where m'  m–1  p'–1. 

By induction S can be reached from K1' with the second King on K2'. Hence S can 
be reached from K1 with the second King on K2.                                                     

We now prove the sufficiency part of Theorem 1. If (C1.i) holds then S can be 
reached, by Lemma 1. We now assume (C1.ii). (The argument is similar if we assume 
(C1.iii)). Choose the coordinate system so that S = (0,0) and K1 = (p,q) with 0  q  
p. We have q = dv(K1,S) = |n| and |p–m| = dh(K1,K2)  1. Let K1' = (p',0) where p' = 
p–q and notice that d(K1,K1') = q < |n|  d(K2,K1'). 

By Lemma 1, K1' can be reached from K1 in q moves with the second King at K2 
= (m,n). After q moves the second King will arrive at a square K2' whose abscissa m' 
is greater than or equal to m–q. Since p–m  |p–m|  1, we have m  p–1 and therefore 
m'  m–q  p–1–q = p'–1. By Lemma 2, it follows that S can be reached from K1' 
with the second King on K2'. Hence S can be reached. This concludes the proof of the 
sufficiency part. 

Now we start the necessity part. We collect some lemmas for the "only if" part. 
(The inequality d((p,q),(m,n)) > 1 indicates that the distance between Kings should be 
greater than 1.)  

Lemma 3. Assume that m  n > 1, d((p,q),(m,n)) > 1, and that the following three 
conditions are satisfied: 

(C2.i) max{|p|,|q|}  m 
(C2.ii) |q|  n or |p–m| > 1 
(C2.iii) |p|  m or |q–n| > 1. 

 
Then d((p,q),(m–1,n–1)) > 2. 
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Because of  this lemma the second King will be able to move diagonally towards S, 
from (m,n) to (m–1,n–1), if n > 1 and none of (C1.i), (C1.ii), and (C1.iii) is satisfied.  

Proof. Assume d((p,q),(m–1,n–1))  2. Then, since d((p,q),(m,n)) > 1 and (C2.i) 
holds, (p,q) must be one of the following eight squares: (m–3,n), (m–3,n+1), (m–2,n), 
(m–2,n+1), (m,n–3), (m,n–2), (m+1,n–3), or (m+1,n–2). If it is one of the first four 
squares (C2.ii) is not satisfied (remember that m>1); if it is one of the last four squares 
then (C2.iii) is not satisfied. Hence, we must have d((p,q),(m–1,n–1)) > 2.                  

Now we deal with the case n = 1; in Lemma 4 for m > 2, and in Lemma 5 for m = 2. 

Lemma 4. Assume n = 1, m > 2, d((p,q),(m,n)) > 1 and max{|p|,|q|}  m. If 
d((p,q),(m,n))  2 then (p,q) ∈  {(m,–2), (m,–1), (m+1,–2), (m+1,–1)}.  

Proof. One looks at the 25 squares at distance  2 from (m–1,n–1) and sees that only 

if (p,q) is (m,–2), (m,–1), (m+1,–2), or (m+1,–1) the hypotheses of the lemma are 

satisfied.                                                                                                                          

In a similar way one verifies the following lemma. 

Lemma 5. Assume (m,n) = (2,1) and d((p,q),(m,n) > 1. Assume also that (C2.i) and 
(C2.ii) of Lemma 3 hold. If d((p,q),(m–1,n–1))  2 then (p,q) ∈  {(2,–2), (2,–1), (3,–
2), (3,–1), (1,–2), (0,–2), (–1,–2)}.  

Lemma 6. If max{|p|,|q|}  m > 1, |q| < m, |p–m| > 1, |p'–p|  1, and m' = m–1 then |p'–
m'| > 1. 

Proof. Since |q| < m, the inequality max{|p|,|q|}  m implies |p|  m. Then p ∉  {m–
3,m–2} because any of the two inequalities |m–3|  m, |m–2|  m implies that m  1. 

Since |p–m| > 1 we have p ∉  [m–1,m+1] and, in fact, p ∉  [m–3,m+1] because p ∉  
{m–3,m–2}. Hence |p–m'| = |p–(m–1)| > 2 and therefore |p'–m'| > 1.                             

Lemma 7. If max{|p|,|q|}  m  n  1, |p| < m, |q–n| > 1, |q'–q|  1, and n' = n–1 then  
|q'–n'| > 1 or (m,n) ∈  {(2,1),(1,1)}.  

Proof. Since |p| < m, the inequality max{|p|,|q|}  m implies |q|  m. If q = n–3 we 
have |n–3|  m  n  1 which implies (m,n) is (2,1) or (1,1). If q = n–2 we have |n–2|  
m  n  1 which implies (m,n) is (1,1). If q ∉  {n–3,n–2} then q ∉  [n–3,n+1] because 
q ∉  {n–1,n+1} due to the inequality |q–n| >1; hence |q–n'| = |q–(n–1)| > 2 and, there-
fore, |q'–n'| > 1.                                                                                                                

We now prove the "only if" part of Theorem 1, that is, the following proposition. 

Proposition. Assume S is not on the edge of the board and the following three condi-
tions are satisfied: 
 
  (C3.i) d(K1,S)  d(K2,S) 

(C3.ii)  dv(K1,S)  dv(K2,S) or dh(K1,K2) > 1 
(C3.iii)  dh(K1,S)  dh(K2,S) or dv(K1,K2) > 1. 

 
Then S cannot be reached. (C3.i) is the negative of (C1.i), (C3.ii) is the negative of 
(C1.ii), and (C3.iii) is the negative of (C1.iii). 
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Proof. Choose a coordinate system such that S = (0,0), K2 = (m,n) with 0  n  m and 
K2 = (p,q). Thus dh(K2,S) = m, dv(K2,S) = n, d(K2,S) = m and the conditions (C3.i), 
(C3.ii), and (C3.iii) of the proposition become: 

(C4.i) max{|p|,|q|}  m 
(C4.ii) |q|  n or |p–m| > 1 
(C4.iii) |p|  m or |q–n| > 1. 

The proof will be by induction on d(K2,S), that is, on m.  
m = 1: Clearly S cannot be reached by the first King since S is protected by K2. 

Notice that once the second King is at distance 1 from S, it cannot be forced to move 
to a square at distance 2 from S. 

m > 1 : The rest of the proof will be divided into three cases: Case I: n > 1, Case II: 
n = 1, and Case III: n = 0. In all three cases the second King will be able to move to 
(m',n') with m' = m–1, decreasing its distance to S. Hence, by induction, it is suffi-
cient, in order to complete the proof of the proposition, to show that, after a move of 
K1 to K1' = (p',q') ( with |p'–p|  1 and |q'–q|  1) and a move of K2 to K2' = (m',n') = 
(m–1,n'), the conditions (C4.i), (C4.ii), and (C4.iii) are satisfied with p, q, m, and n 
replaced respectively by p', q', m', and n'. Accordingly, it is sufficient to prove the 
following three conditions: 

(C5.i)  max{|p'|,|q'|}  m' 
(C5.ii)  |q'|  n' or |p'–m'| > 1 
(C5.iii)  |p'|  m' or |q'–n'| > 1. 

knowing that (C4.i), (C4.ii) and (C4.iii) hold. Notice that when we change p into p' 
and q into q', |p| decreases by 1, stays the same, or increases by 1. The same holds for 
for |q| and max{|p|,|q|}. In particular, we have max{|p'|,|q'|}  max{|p|,|q|}–1  m–1 = 
m' and so (C5.i) holds. Thus we only have to prove (C5.ii) and (C5.iii) in all the cases. 
 
Case I. n > 1. After a move from K1 to K1' = (p',q'), with |p'–p|  1 and |q'–q|  1, K2 
moves to K2' = (m',n') where m' = m–1 and n' = n–1. This is possible by Lemma 3. If 
|q|  n then |q'|  |q–1  n–1 = n' so (C5.ii) holds. If |q| < n then we must have |p–m| > 
1 and, by Lemma 6, |p'–m'| > 1 so, again (C5.ii) holds. 

Similarly, if |p|  m then |p'|  |p|–1  m–1 = m' so (C5.iii) holds; if |p| < m then we 
must have |q–n| > 1 and, by Lemma 7, |q'–n'| > 1 so, again (C5.iii) holds. Conse-
quently, if n > 1, both (C5.ii) and (C5.iii) are valid. 
 
Case II. n = 1. If m > 2 (respectively m = 2) then, by Lemma 4 (respectively Lemma 
5) either d((p,q), (m–1,n–1)) > 2 or (p,q) ∈  {(m,–2), (m,–1), (m+1,–2), (m+1,–1)} 
(respectively (p,q) ∈  {((2,–2), (2,–1), (3,–2), (3,–1), (1,–2), (0,–2), (–1,–2)}).  

If d((p,q),(m–1,n–1)) > 2 or if the first King moves from (p,q) to a square (p',q') 
different from (m,–1),(m–1,–1), and (m–2,–1) then the second King can move to K2' = 
(m',n') = (m–1,0) and, by the same reasoning of Case I, (C5.ii) and (C5.iii) are valid.  

If d((p,q),(m–1,n–1))  2 and the first King moves to (p',q') = (m,–1) or to (p',q') = 
(m–1,–1) then move K2 to K2' = (m',n') = (m–1,1) and one has |q'| = 1 = n' and |p' |  
m–1 = m' so (C5.ii) and (C5.iii) hold. Now, if m>2, K1 cannot move to (m–2,–1) 
because p is m or m+1. If m = 2 and K1 moves to K1' = (p',q') = (m–2,–1) then, again, 
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move K2 to K2' = (m'.n') = (m–1,1) and one has |q'| = 1 = n' and |q'–n'| = 2 > 1 so 
(C5.ii) and (C5.iii) hold. 
  
Case III. n = 0. If m = 2, then max{|p|,|q|}  m = 2 so the first King will move to a 
square K1' = (p',q') with d(K1',S)  1. Then the second King can move to a square K2' 
= (1,n') with |n'|  1 because S is not on the edge of the board (this is the only place in 
the proof where we use this hypothesis) and one can see that (C5.ii) and (C5.iii) hold. 
Assume finally, m > 2, then max{|p|,|q|}  m  3 so |q|  m  3 or |p|  m  3. If |q|  
m then d(K1,(m–1,0)) = |q|  m > 2; if |p|  m then K1 will not be able to move to a 
square at distance 1 from (m–1,0). Hence, no matter to which square K1' = (p',q') the 
first King moves, the second King will be able to move to K2' = (m',n') = (m|–1,0). 
We have |q'|  0 = n' so (C5.ii) holds. Also, if |p|  m we have |p'|  |p|–1  m–1 = m', 
and if |q|  m we have |q' |  |q|–1  m–1 > 1 so (C5.ii) holds. This completes the proof 
of the proposition and of Theorem 1.                                                      
 
Remark. The proof shows not only necessary and sufficient conditions ((C1.i), 
(C1.ii), and (C1.iii)) for S to be reachable but it also indicates how to reach S if they 
are satisfied and, for the second king, how to prevent K1 from reaching S when the 
three conditions (C1.i), (C1.ii), and (C1.iii) fail. 

If (C1.i), (C1.ii), or (C1.iii) is satisfied then K1 should move diagonally towards S, 
reducing its horizontal and vertical distance from S until it arrives at the row or col-
umn of S, and then proceed towards S in that row or column. It will always be possi-
ble (under any of the conditions i, ii, iii) to make the corresponding moves. If (C3.i) 
(the negative of (C1.i)), (C3.ii) (the negative of (C1.ii)), and (C3.iii) (the negative of 
(C3.iii)) hold then K2 should also move diagonally towards S reducing its horizontal 
and vertical distance from S (this is possible, for example, if the horizontal and verti-
cal distances from the second King to S are greater than 1). If such a move is not 
possible then reduce the horizontal (respectively vertical) distance from S keeping the 
same vertical (respectively horizontal) distance from S, if dh(K2,S) > dv(K2,S) ( re-
spectively dv(K2,S) > dh(K2,S)). This will always be possible, except in the situation 
K2 = (2,0), K1 = (0,1), S = (0,0) (with respect to some coordinate system); in this 
situation move K2 to (1,–1) : this is possible if S is not on the edge of the board. 

What happens if S is on the edge of the board? Assume S=(0,0), row –1 does not 
exist but column –1 exists (that is, S is on the edge of the board but not at a corner). 
Let S1 = (0,1). Then S is reachable if and only if: 

(C6.i) d(K1,S1) < d(K2,S1), or 
(C6.ii) dv(K1,S) < dv(K2,S) and dh(K1,K2)  1, or 
(C6.iii) dh(K1,S) < dh(K2,S) and dv(K1,K2)  1. 

Assume row –1 and column –1 do not exist and S = (0,0) (that is, S is at a corner). Let 
S1 = (0,1) and S2 = (1,0).Then S is reachable if and only if: 

(C7.i1) d(K1,S1) < d(K2,S1), or 
(C7.i2) d(K1,S2) < d(K2,S2), or 
(C7.ii) dv(K1,S) < dv(K2,S) and dh(K1,K2)  1, or 
(C7.iii) dh(K1,S) < dh(K2,S) and dv(K1,K2)  1. 
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4   Discussion and Conclusions 

Racing situations occur in Chess and other games. A very simple one is the pawn-vs.-
king race: the board has only two pieces, the white Pawn at P heading towards its 
promotion square S and the black King K trying to capture the Pawn; White promotes 
its Pawn safely, that is, without being captured if and only if d(P,S) < d(K,S) (d(P,S)–
1 < d(K,S) if P is on the second rank). This is equivalent to the “square” rule which, 
of course, is discussed in many books on endings. 

Less simple is the king-vs.-king race considered in the present article: the board 
has only two pieces, the white King at K1 and the black King at K2; an unoccupied 
square S is also specified. The problem is to characterize those triples (S,K1,K2) such 
that the white King, which moves first, can reach S. So far, I have not seen this prob-
lem discussed in the literature in a complete way. 

One of my motivations for studying this problem is that many positions in the 
KRKa2 ending [3] reduce to king-vs.-king races (for example the 2,324 positions 
mentioned in the Section 1). This must be true for many more endgame positions. 

Comparing the pawn-vs.-king race, in an instance (S,K1,K2) of the king-vs.-king 
race, the condition d(K1,S) < d(K2,S) is sufficient for S to be reached by the white 
King (this is the content of Lemma 1) but not necessary, as Diagram 2 shows. 

One might try to replace “king” distance by a different distance D such that S can 
be reached if and only if D(K1,S) < D(K2,S). However, it is impossible to find such D 
because considering (S,K1,K2) = ((0,0),(3,0),(2,2)) one obtains D((3,0),(0,0)) < 
D((2,2),(0,0)) and considering (S,K1,K2) = ((0,0),(2,2),(3,0)) gives D((2,2),(0,0)) < 
D((3,0),(0,0)). Nevertheless there might be two distances D1 and D2 such that S can be 
reached if and only if D1(K1,S) < D2(K2,S).  

What is done in the present paper is to consider the horizontal and vertical dis-
tances dh(K1,S), dv(K1,S), dh(K2,S), dv(K2,S), dh(K1,K2), dv(K1,K2), and, because of 
Theorem 1 and the discussion at the end of the previous section for the cases where S 
is on the edge, these six numbers determine whether or not S can be reached (recall 
d(X,Y) = max{dh(X,Y),dv(X,Y)}). Thus a concise characterization is obtained of all 
the triples (S,K1,K2) such that S can be reached. In addition, following the last re-
mark in the previous section, an algorithm is described to play optimally (both sides). 

In conclusion, we hope that, besides being relevant in the KRKa2 ending, Theorem 
1 would be useful in the problem of characterizing (rather than building a database) 
the endings king-and-pawn vs. king and the endings king-and-pawn vs. king-and-
pawn which are won by White. Here, of course, besides the racing ingredient appears 
the theme of opposition. 
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Abstract. Chinese-chess rules for cyclic moves differ from Western-
chess rules in two respects. First the outcome of a cyclic game can be a
win, a loss, or a draw. Second, depending on the plies made inside a loop,
there are up to 16 rules a player can violate when a loop occurs. However,
the same rule has to be violated three times in a row, i.e., in three consec-
utive loops, in order to lose a game. Therefore, a player can violate dif-
ferent rules in three cycles and still achieve a draw. In contrast, Western-
chess rules always define a game as a draw after three consecutive loops.
This paper reports on an adequate implementation of the Chinese-chess
rules used to decide the outcome of a game when it falls into loops. The
rules are proposed by the Asia Chinese-Chess Association.

1 Introduction

It is important that strong Chinese-chess computer programs also have a good
knowledge of the game’s rules. Sometimes a player can win a game by forcing
an opponent to violate the existing rules, instead of using chess tactics or strate-
gies to capture the opponent King. However, it is not easy to apply the full
set of Chinese-chess rules correctly without substantial performance degrada-
tion. There are two problems with regard to incorporating the rules into a game
tree search algorithm. First, how to apply Chinese-chess rules accurately? Sec-
ond, how to apply the complicated rules with a small (reasonable) performance
degradation?

1.1 Chinese-Chess Rules

In addition to the basic rules of Chinese Chess, such as how to move a piece and
how to capture an opponent’s piece, and the main goal of the game, there are
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some rules for judging games that fall into cyclic positions. Since the additional
rules are hard to deal with, many players avoid playing cyclic positions. This
situation also applies to computer programs. They have often implemented only
a very restricted subset of the rules. Obviously, knowledge of the full set of rules
is essential for players who want to play perfectly.

The rule on repetition of positions in Western Chess and Chinese Chess is
completely different. After three consecutive repeated sequences of a board po-
sition have occurred in Chinese Chess, the game can end in a draw, a loss, or a
win, depending on whether the participants’ moves repeatedly violate the rules
in the three consecutive sequences. Many Western game researchers have dis-
covered that cyclic positions may affect the normal search program and refer to
it as a kind of graph-history interaction (GHI) problem [3]. We note that there
are other kinds of GHI problems in Western Chess, for example the right of
castling. The prevailing research question is: how to solve the GHI problem in
cyclic games without sacrificing too much performance? [2,10,11].

In Chinese Chess, the only GHI problem is the cyclic game. Henceforth, unless
otherwise stated, we refer to the GHI problem of cyclic games in Chinese Chess
as the GHI problem. The problem is more difficult in Chinese Chess than in
Western Chess for two reasons. The first reason is that there are complicated
rules to decide the outcome of a game, which may be a win, a draw, or a loss
depending on who has the advantage when the repeated pattern occurs. The
intuition is that a player at a disadvantage will try to avoid losing the game by
forcing an opponent to play repeated moves, so that the game results in a draw.
The main strategy of such a player is to check the opponent, or threaten to
capture the opponent’s King in the next move. Because the King can only move
inside a 3 by 3 square in Chinese Chess, it is easy to check this. Second, strategy
is to threaten to capture a major unprotected piece belonging to the opponent on
the next move. For brevity of notation, when a player threatens such a move, we
say the player chases the opponent’s piece. When a player threatens to capture
the opponent’s King, we say the player checks the opponent.

There are many versions of Chinese-chess rules, of which the most influential
ones are the one used in the Mainland China [4] and the one published by the
Asia Chinese-Chess Association [8]. The China version is complicated and tries
to decide who has the advantage in many possible situations, which causes a
number of inconsistencies [16]. The current version, published in 1999, is ex-
pected to be revised in the near future. Although the Asia version is also very
complicated, it is much simpler than the China version and is considered more
stable. The Asia version, which has not been changed substantially since 1989,
is more straightforward because it is easier to tell if a game is a win or a loss.

In this paper, we use the implementation of the Asia rule set as described in
[9]. According to this set, when a sequence of repeated board positions occurs,
two flags are output, one for each player. Each flag indicates the rule violations
made by the player in every ply he made in the repeated sequence. In general,
there are two levels of rule violation. The more serious level of violation is to
check the opponent’s King at every ply. The other level, which contains 15 rules,
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B D E G I
Type−1 Type−2

A

C F H

Fig. 1. Two cycles in which Red violates different rules

is to chase the opponent’s non-King piece at every ply. If both players violate
the same level of rules, or neither one of them violates any rules, the game ends
in a draw. If only one player violates the more serious rule, he loses.

The second reason that Chinese-chess rules are more difficult is that the out-
come of a cyclic game can only be decided when the same rule violation is made
after (i) a sequence is repeated three times consecutively and (ii) both players
want to play further; that is, plus two additional plies. Thus, we need to look
at a sequence of plies consisting of at most three repeated sequences and an ad-
ditional two plies. The Asia version allows a player to repeat the same position
three times and change his mind without any penalty. Thus, if one player vio-
lates different rules in three consecutive sequences of a board position, it is not
considered a violation of the rules. In contrast, in Western Chess both players
need to engage in a cyclic sequence of moves three times in a row to call the
game a draw; the outcome of a cyclic game is always a draw. Hence, it can be
decided after only one occurrence of a repeated sequence. It is known that a
repeated sequence consists of a minimum of 4 plies. In general, we can predict
the outcome of a game by searching at least 14 plies for rule violations.

For example, in Fig. 1, it is assumed that: (1) the square nodes are positions
played by Red, and the round nodes are positions played by Black; (2) A-B-C-
D-A is a cycle in which Red threatens to capture one black piece in the plies
A-B and C-D; (3) A-E-F-G-A is a cycle where Red threatens to capture another
black piece in the plies A-E and F-G; and (4) Black does not threaten to capture
any red piece in either cycles. In this scenario, both cycles violate a normal rule,
but the rules are different. We note that a player needs to violate the same rule
three times in order to lose. Hence, the sequence of board positions A-B-C-D-
A-E-F-G-A-B-C-D-A-B-C is judged to be a draw. The game ends when Black
plays the last ply B-C.

1.2 Motivating Examples

Knowing Chinese-chess rules is vital when playing against grand masters, as
shown by the following examples.
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Names King Guard, Minister, Knight, Rook, Cannon, Pawn
Assistant Elephant Horse Car Gunner

Red � � � � � � �

Black � � 	 
 � � 

Fig. 2. Legend of Chinese-chess pieces used in this paper

Example 1. In Fig. 3, in the repeated sequence, neither player violates the
rules. Hence, the game ends in a draw if neither player wants to make other
moves. In this game, a Chinese-chess master [6] comments that all other plies
end in bad positions for both players, so both players want to play repeated se-
quences. The legend of pieces used in this paper is shown in Fig. 2.
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1. i5–i1 h1–h5

2. i1–i5 h5–h1

3. i5–i1 h1–h5

4. i1–i5 h5–h1

5. · · ·

Fig. 3. Neither side violates the rules

Example 2. In Fig. 4, in the repeated sequence, Red violates a normal rule by
threatening an unprotected black Cannon in b9. Black, however, does not violate
any rules, since it threatens the unprotected red Rook in f9 and the red Knight
in g7 alternately. The game ends in a loss for Red, unless both sides play other
moves. However, even if Red makes other plies, all other moves eventually lead
to a loss of materials.

Using non-basic rules to decide the outcome of a game happens in real games be-
tween computer-chess programs. Fig. 5 shows a game played between the bronze
medal winner Contemplation (Red) and the Champion XieXie (Black) at
the first World Computer Chinese-Chess Championship [17]. In the repeated se-
quence, Black threatens the red Knight on g3. However, since the red Knight is
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1. c7–c9 b9–b7

2. c9–c7 b7–b9

3. c7–c9 b9–b7

4. c9–c7 b7–b9

5. · · ·

Fig. 4. Red violates a normal rule, but Black does not violate any rules

protected on g3 and unprotected on f5, Black does not violate any rules. Mean-
while, Red does not violate any rules, because it does not chase Black’s unpro-
tected piece. Thus, the game ends in a draw. A grand master has commented
that all other moves for both sides would lead to bad positions [5]. Hence, both
sides want to stay in the loop.

1.3 Previous Work

Although most human experts believe that mastery of the rules is essential to the
playing skills of grand masters, there are very few publications on the subject.

The Chinese-chess computer program in [13] proposed some heuristics for
dealing with repetition in general. Some partial treatments of Chinese rules
are also proposed in the ELP program [18]. However, several problems remain
unsolved, including the blocking of a Rook and a Cannon. We are not aware of
any efficient full implementations of professional versions of Chinese-chess rules.

1.4 Structure of This Paper

We first give a detailed description of our Chinese-chess computer program Con-
templation [15] and its current partial treatment of Chinese-chess rules in
Sect. 2. We describe our approach in Sect. 3. We then describe our implemen-
tation, and the experimental results in Sect. 4. Finally, we provide concluding
remarks in Sect. 5.

2 The Chinese-Chess Program CONTEMPLATION

In this section, we describe our Chinese-chess program Contemplation [15]
on which we base our discussion. Many game-tree search algorithms are based
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1. g3–f4 g6–f6

2. f4–g3 f6–g6

3. g4–f3 g6–f6

4. f4–g3 f6–g6

5. · · ·

Fig. 5. Contemplation (Red) vs. XieXie (Black), at the first World Computer
Chinese-Chess Championship, 2004

on the well-known α − β search algorithm. It performs a window search, like
DFS, with two bounds, α and β, which are the lower and upper bounds of a
minimax game tree respectively. The bounds are used to prune the search tree.
Many researchers have enhanced the α − β search algorithm to further prune
the search tree. (See [7,12] for some of these improvements.) However, using
different window sizes and ranges on the root or on each node visited, move-
ordering heuristics, iterative deepening, and caching calculated results into a
transposition table are some of the improved search techniques not incorporated
in modern Chinese-chess programs.

For reasons of rendability, we straightforward a simplified version of the search
algorithm (see Algorithm 1)we currently use in our program [15]. In the next
section, we present a revised version that deals with the GHI problem correctly.

Our search algorithm is performed recursively. The search score is relative to
a player’s turn — every player chooses the best move to maximize his1 score.
The terminal condition for searching occurs if one of the following is true.

1. The game’s theoretical values, i.e., stalemate, checkmate, or game rule vio-
lations, have been reached.

2. There is a hit in the transposition table. Note that the transposition table
is a look-up hash table in which the tree node is used as the hash key to
retrieve searched results [19]. The results stored in the table are the search
value; the trust level, i.e., the depth; and one flag indicating that the real
node score is above, below, or equal to the stored value. Thus, we can reuse
the search results stored in the table.

3. The depth limit is reached, in which case, we apply the evaluation function
to this node.

1 Whenever ‘he or she’ and ‘his or her’ are meant, we use ‘he’ and ‘his’.
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In the non-terminal condition, the search program enumerates all possible
child nodes and performs the search recursively on each branch. It then picks
the move that maximizes the score of the player using the node. After searching
this sub-tree, the program stores the best score in the transposition table for
later use.

Algorithm 1. Simplified search algorithm
ValidResult(entry e, depth d, search bound (α, β))

1: {verify it is safe to use transposition table entry e}
2: if d > depth(e) then
3: return false
4: else if flag(e) = EXACT then
5: return true
6: else if flag(e) = BELOW and value(e) ≤ α then
7: return true
8: else if flag(e) = ABOVE and value(e) ≥ β then
9: return true

BasicSearch(position p, depth d, search bound (α, β))
1: if isEndInGameRuleApprox(p) then
2: return GameRuleValue(p)
3: else if d = 0 then
4: return EvaluationFunction(p)
5: else if validResult(probeTT(p), d, (α, β)) then
6: return value(ProbeTT(p))
7: r ← −∞
8: ttflag ← BELOW
9: for all m ∈ movegen(p) do

10: p′ ← domove(p, m)
11: r′ ← −BasicSearch(p′, d − 1, (−β,−α))
12: r ← max(r, r′)
13: ttflag ← EXACT
14: if r ≥ β then
15: ttflag ← ABOVE
16: break
17: storeTT(p, d, ttflag , r)
18: return r

In our version of Contemplation, the game rules are dealt with heuristically
by the function isEndInGameRuleApprox in Algorithm 1. When a cycle is en-
countered, we first examine whether we have checked the opponent continiously.
We then examine whether the cycle matches a frequently encountered chasing
pattern, e.g., our Rook threatens one of opponent’s pieces. If we detect any of the
above, we report the correct score that complies with the Chinese-chess rules.
Otherwise, we return a very low value of −700, which, in our program, is slightly
better than losing a Rook. Hence, our program prefers to stay in a cycle when all
other plies lead to very bad scores, e.g., losing a Rook or worse, even if staying in
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the cycle is a disadvantage to us according to Chinese-chess rules. The heuristic
value −700 may sometimes cause our program to act abnormally, in which case
it may be better to repeat the cycle and end in a draw, or force the opponent to
change his move.

3 Approach

Although some search results are stored in the transposition table, it is not
always feasible to reuse those scores when the same position is encountered at a
later stage. We only use the values in the transposition table if one of following
two conditions holds.

(1) The paths are equal. Using the same concept as [11], we store the encoded
path in the transposition table. If the path stored and the current path are
the same, we can reuse the value in the transposition table.

(2) The value obtained by our program is not affected by the GHI problem.

First we define the notion affected. A subtree is affected by GHI if and only if
there is a search path in the subtree that repeats the sequence of positions, but
leads to a different search score. In Fig. 6 for instance, there are different paths
p, p′, and p′′ that could lead to node n. Since there is a path p of subtree n in
Figure 6a leading to a position in the history path p, the search score may differ
depending on the repetition rules. We define this situation as GHI affected if the
search result depends on the repetition score. Conversely, it is not affected if the
search result is independent of the repetition score. There are no paths in Figure
6b leading to a position in the history p′, so it is not affected. Though there is
a path in Figure 6c leading to a position in the history p′′, the score from the
loop does not propagate; thus, it is not affected.

Since many subtrees are pruned using the α-β algorithm, some repetitions do
not affect the search result. In such cases, we could still reuse the search results
in another subtree.

Fig. 6. Illustrating how GHI affects the final evaluation scores
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3.1 GHI Bounds

To determine whether a value returned by our search algorithm is affected by
the GHI problem, i.e., cycles, we modify the algorithm as follows. Besides the
original game-tree score, we add a GHI-score bound to the search score. This
means that the low/high bound (bl, bh) of the score ranges indicates that the
scores may be GHI affected.

In this way, the GHI-score bound is propagated along with the original search
score. Because we always act from the maximizer aspect, we negate search scores
v from children and exchange α and β. Similarly, the GHI-score bound is also
exchanged and negated when propagated from children as follows.

(v, (bl, bh)) ← (−v′, (−b′h,−b′l)) .

Depending on how the search score is obtained, the GHI-score bound is op-
erated and maintained as follows. We distinguish five cases.

– Case 1: the search score is a horizon score. So, the value is returned
from the terminal nodes by our evaluation function. We assume the horizon
node does not have the GHI problem. But if it does, it will be considered in
a next (deeper) search. For the moment, both bounds of the horizon score
are the same as search score v.

GHI bound = (v, v) .

– Case 2: the search score is obtained by Chinese-chess rules for
cycles. The score may be any value if the node is visited by different paths.

GHI bound = (−∞,∞) .

– Case 3: the score is obtained from the transposition table. If the
stored path and the current path are equal, the bound can be fetched from
the table directly and reused. Otherwise, the bound of the node is the same
as the node’s value, even if the GHI problem affected this node in advance.
Since the GHI-bound heuristic does not help in the latter case, both the
transposition score and bound may be incorrect.

GHI bound =
{

T [p].bound if paths equal,
(−∞,∞) otherwise.

– Case 4: the score is obtained by merging the bounds of the child
nodes. In a negamax algorithm, we always choose the child with the highest
score. The merged bound is thus the maximum value of the child nodes.

(bl, bh) ← (max(bl, b
′
l), max(bh, b′h)) .

– Case 5: the score is obtained by a beta-cut. The bound is merged with
(−∞,∞), because we do not know the bounds of the child nodes that are
yet to be explored.

(bl, bh) ← (max(bl,−∞), max(bh,∞)) .
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Algorithm 2. Simplified search algorithm for dealing with GHI
ValidResult(entry e, depth d, search bound (α, β), hash path)

1: if d > depth(e) or (path(e) �= hash and GHIrelated(e)) then
2: return false
3: else if flag(e) = EXACT then
4: return true
5: else if flag(e) = BELOW and value(e) ≤ α then
6: return true
7: else if flag(e) = ABOVE and value(e) ≥ β then
8: return true

GHISearch(position p, depth d, search bound (α, β))
1: if isEndInRule(p) then
2: return (RuleV alue(p), (−∞,∞)) {case 2}
3: else if d = 0 then
4: v ← EvaluationFunction(p)
5: return (v, (v, v)) {case 1}
6: else
7: e ← probeTT(p) {case 3}
8: if ValidResult(e, d, (α, β), encodepath()) then
9: if not GHIrelated(e) then

10: return (value(e), (value(e), value(e)))
11: else
12: return (value(e), (lbound(e), rbound(e))
13: (r, bl, bh) ← (−∞,−∞,−∞)
14: ttflag ← BELOW
15: for all m ∈ movegen(p) do
16: p′ ← domove(p, m)
17: (r′, (b′l, b

′
h)) ← negate(GHISearch(p′, d − 1, (−β,−α)))

18: r ← max(r, r′);
19: bl ← max(bl, b

′
l); bh ← max(bh, b′h) {case 4}

20: ttflag ← EXACT
21: if r ≥ β then
22: ttflag ← ABOVE
23: bl ← max(bl,−∞); bh ← max(bh,∞) {case 5}
24: break
25: storeTT(p, d, ttflag , r, encodepath(), bl, bh)
26: return (r, bl, bh)

Algorithm 2 is the revised algorithm.
It is only safe to use the value from the transposition table if the path recorded

and the current path are equal, or the value satisfies one of the following two
cases: (1) If the search result a is equal to the upper bound, there is a child with
a value equal to the search result a; thus, we can always use this value. (2) If the
value is either above beta or below alpha, then the bound is outside the (α, β)
range. In such a case, the value is not GHI-related and can be reused.
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3.2 Discussion

Using this heuristic reduces the probability that the search result will be affected
by GHI, but it does not eliminate the problem totally. Because repetition may
be judged as win/draw/loss in Chinese Chess, we classify the GHI problem as
cycle-first and cycle-last, instead of draw-first and draw-last as is done in [3].
Assume there are two lines leading to the current position; one forms a cycle,
the other does not.

– Case 1: cycle-first. The line that forms a cycle is searched first. It is
terminated according to the rules, and the search result is stored in the
transposition table. The other line that does not repeat a previous sequence
of positions will be searched later. In this case, our heuristic will detect that
the transposition node may be GHI affected. Thus, the stored value will not
be used, and the GHI problem is successfully handled.

– Case 2: cycle-last. In contrast to the previous case, the line with repetition
will be searched later. The transposition node is not affected by the GHI
problem, and we do not know whether this line will form a cycle when it
encounters the transposition node. We will only know when we complete
the search of this subtree. In this case, we will reuse the value from the
transposition table, even though it may be incorrect.

4 Experiments

First, we describe the major components in our experiments. The test platform
is our Chinese-chess program, Contemplation, which is a negascout search
program with state-of-the-art Chinese-chess expert knowledge embedded. Ig-
noreGhi is the original program with forward pruning disabled for comparison.
WithoutTT is an implementation that does not use the transposition table.
SamePath is an implementation that only uses the transposition table when the
current search path is identical to the path stored in the table. GhiBound is
the algorithm that implements the GHI bounds described in this paper. With-
outTT, SamePath, and GhiBound return the same ply if the depth of the
search is fixed. IgnoreGhi may pick some different plies, since it does not com-
pute correctly on cycles during searching.

The experiments were run on AMD64 2.4G with a transposition table com-
prised of 224 entries. In the first test suite, Asiarule, 107 positions were chosen
from examples illustrating the Asia Chinese-chess rules [8]. In order to make the
right move in these examples, one needs to deal with the GHI problem correctly.
In the second test suite, Netgame, 150 positions were randomly chosen from
50 real games played by Contemplation on the Internet with 3 positions per
game. The positions in the opening phase or with a material value difference
larger than one Rook were ignored. For both tests, we searched 7 to 10 plies
deep, and then compared the node count and time used. In the tables, entries
with “-” took too much time to finish.
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4.1 Performance on Positions in ASIARULE

Table 1 shows the experimental results of the positions in the test suite
Asiarule. All four programs selected the same move in each of the 107 test
positions, except for 18 positions in which IgnoreGhi and GhiBound selected
a different move. We note that each position was tested 4 times using four differ-
ent search depths ranging from 7 to 10 plies. WithoutTT obviously searched
many more nodes and spent up to 300% more time than IgnoreGhi on a 9-ply
search, which is unacceptable. SamePath spent up to 188% more time than Ig-
noreGhi, which is also unacceptable. GhiBound searched slightly more nodes
than IgnoreGhi, given a fixed search depth. However, the average time spent
on a node was larger for GhiBound than for IgnoreGhi. At the same search
depth, GhiBound spent 7% more time than IgnoreGhi for a 10-ply search.

Table 1. Comparison of the node count (in millions) and time spent (in seconds)
searching in the test suite Asiarule for various fixed search depths. “61 ; 14” means
61 million nodes were searched in 14 seconds for all the positions in Asiarule.

Method Depth
used 7 8 9 10

IgnoreGhi 61 ; 14 256 ; 65 961 ; 227 3,476 ; 904
WithoutTT 276 ; 67 1,424 ; 371 7,636 ; 1,934 –
SamePath 125 ; 26 628 ; 146 3,187 ; 655 –
GhiBound 62 ; 15 259 ; 69 1,004 ; 249 3,576 ; 968

4.2 Performance on Positions in NETGAME

In Table 2, we report the performance results of testing Netgame, i.e., 150
chosen positions in a real-world game previously played by our program. All
four programs selected the same move in each position, except for 19 positions
in which IgnoreGhi and GhiBound selected a different move. We note that
each position was tested 4 times using 4 different search depths ranging from
7 to 10 plies. As in the Asiarule test, WithoutTT and SamePath searched
more nodes and spent much more time than IgnoreGhi; this is unacceptable.
GhiBound searched almost the same number of nodes in both methods given a

Table 2. Comparison of the node count (in millions) and time spent (in seconds)
during the search of the test suite Netgame at various fixed search depths. “254 ; 59”
means 254 million nodes were searched in 59 seconds for all the positions in Netgame.

Method Depth
used 7 8 9 10

IgnoreGhi 254 ; 59 1,097 ; 280 4,514 ; 1,095 20,368 ; 5,299
WithoutTT 1,038 ; 261 5,817 ; 1,525 32,076 ; 8,072 –
SamePath 430 ; 93 2,255 ; 524 11,830 ; 2,491 –
GhiBound 255 ; 61 1,099 ; 289 4,542 ; 1,142 20,410 ; 5,486
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fixed search depth. At the same search depth, GhiBound spent only 3.5% more
time than IgnoreGhi. In comparison, GhiBound spent 7% more time than
IgnoreGhi on Asiarule. Since Asiarule contains more positions in which
loops may be encountered, GhiBound spent more time on loops.

5 Concluding Remarks

In this paper, we presented an algorithm that deals with most of the GHI prob-
lems encountered in Chinese Chess with acceptable performance degradation.
On average, we used 3.5% more search time than our original version, but we
improved the accuracy substantially. We believe that the extra time was well
worth using it. We could only solve some positions correctly after incorporating
GHI. One such an example is shown in Fig. 7, where Red moves next. In this
game, if the red Cannon can move out of Black’s palace, then it is well-known
that Red can win the game. Hence, Black uses his King to block the red Can-
non, which does not violate the rules. Our original program, IgnoreGhi, did
not want to play cyclic positions and therefore lost the game. In our future work,
we will use the revised program to determine if it improves the playing skills of
our program significantly by testing it against top programs and by self-playing.

We note that our revised program can determine correctly whether a certain
type of rule is violated by a player in a loop. However, the GHI bound used
in our implementation is a heuristic that deals with the GHI problem. The
GHI bound may be too restrictive in that it disallows the use of entries in the
transposition table that could actually be used. The GHI bound may also cause
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Game played by IgnoreGhi

1. d10–e10 d9–e9

2. e10–d10 e9–d8

· · · loops and the position on the left
occurs three times

3. d10–e10 a7–a6

4. e10–e7 red wins within 30 plies

Game played by GhiBound

1. d10–e10 d9–e9

2. e10–d10 e9–d8

· · · loops and the position on the left
occurs three times
3. draw after two extra plies

Fig. 7. Example game (our program plays Black)
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other problems in very rare cases. However, GhiBound makes better selections
than IgnoreGhi.

We discussed some of the problems in Subsect. 3.2; further details are given
in [14]. Due to space limitations, we cannot cover all of them here. From the
experiments given in this article, we may state that we have solved many of
the cases that could not be solved previously. In further investigations we hope
to assess whether these rare cases affect the strength of our program, and, if
they do, whether we can find efficient implementations to handle these cases
adequately.

One other possible avenue of future work would be to compare our results with
other approaches. Our method introduces a so-called GHI bound into minimax
search to determine whether the current best value could be affected by the GHI
problem. The idea of using some kind of bound to guide searching is not new,
see [1].
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Abstract. This paper contains three contributions. First, it introduces a
new family of k-in-a-row games, Connect(m,n,k,p,q). In Connect(m,n,k,
p,q), two players alternately place p stones on an m × n board in each
turn, except for the start when the first player places q stones at her1

first move. The player who first obtains k consecutive stones of her own
first wins. The traditional game five-in-a-row, also called Go-Moku, in
the free style is Connect(15,15,5,1,1). For brevity, Connect(k,p,q) denotes
the game Connect(∞,∞,k,p,q), played on infinite boards.

Second, this paper analyzes the characteristics of these games, espe-
cially for the fairness. In the analysis of fairness, we first exclude the
ones which are apparently unfair or solved. Then, for the rest of games,
we argue that p = 2q is a necessary condition for fairness in the sense
that one player always has q more stones than the other after making
a move. Among these games, Connect(6,2,1) is most interesting to this
paper and is named Connect6.

Third, this paper proposes a threat-based strategy to play Connect(k,
p,q) games and implements a computer program for Connect6, based on
the strategy. In addition, this paper also illustrates a new null-move
search approach by solving Connect(6, 2, 3) where the first player wins.
The result also hints that for Connect6 the second player usually should
not place the initial two stones far away from the first stone played by
the first player.

1 Introduction

Traditionally, the game k-in-a-row is defined as follows. Two players, say Black
and White, alternately place one stone, black and white respectively, on one
empty intersection, henceforth called a square, of an m × n board; and Black
plays first. The one who first obtains k consecutive stones (horizontally, vertically
or diagonally) of her own wins. Such games are also called mnk-games in [11]. A
well-known and popular game is five-in-a-row, also called Go-Moku. Go-Moku in
the free style [1,11] is a (15,15,5)-game. For combinatorial analysis, researchers
[7,15] investigated the games allowing each player to place p stones for one move.

This paper introduces a new family of k-in-a-row games, Connect(m, n, k, p, q).
In Connect(m, n, k, p, q), two players alternately place p stones on an m×n board
1 In this contribution we use ‘she’ and ‘her’ whenever ‘she or he’ and ‘her or his’ are

meant.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 180–194, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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at each move except for the start when the first player places q stones as her
first move. Again, the player who first obtains k consecutive stones of her own
wins. Games in the family are called Connect games. Obviously, Go-Moku in the
free style is Connect(15,15,5,1,1). For brevity, Connect(k, p, q) denotes the game
Connect(∞,∞, k, p, q), played on infinite boards.

For Connect games, the major difference from traditional k-in-a-row games is
to have an extra parameter q, a key that significantly affects the fairness. The
higher q, the higher chances Black has to win. In [11], Herik, Uiterwijk, and Van
Rijswijck gave the following definition of fairness. “A game is considered a fair
game if it is a draw and both players have a roughly equal probability on making
a mistake.” From this, we argue that p = 2q is a necessary condition for fairness,
in the sense that one player always has q more stones than the other after making
a move. Among these games, Connect(6,2,1) is most interesting to this paper
and is named Connect6. More about fairness are discussed in Section 2.

This paper is organized as follows. Section 2 discusses the issue of fairness.
Section 3 describes other characteristics of these games. Section 4 proposes a
threat-based strategy to play Connect(k, p, q) games and implements a com-
puter program for Connect6, based on the strategy. Section 5 illustrates a new
null-move method by solving Connect(6,2,3) where Black wins. This result also
indicates that White usually should not place the initial two stones far away
from Black’s first stone. Section 6 concludes our work.

2 Fairness

This section is organized as follows. Subsection 2.1 reviews the fairness problem
of Go-Moku. Subsection 2.2 reviews the Connect games solved so far. It is based
on combinatorial analysis, and also solves some more Connect games. Subsec-
tion 2.3 points out some unfair Connect games based on empirical experiments.
Subsection 2.4 discusses the fairness of Connect6.

2.1 Fairness of Go-Moku

Fairness has been a major issue for Go-Moku, even though it is a popular game.
In the free style of rules (without any restriction on Black), it has been well
known that the game favors Black. To reduce the unfairness, the Japanese Pro-
fessional Renju Association [13] added some rules to restrict the play of Black
for professional players. For example, Black is prohibited to play double three
and double four (see the definitions in [1,3]). The game with these restrictions is
called Renju. In fact, Renju still favors B, from the experiences of professionals.
Theoretically, it was proved that Black wins in the free style [1,3], and that Black
wins even under these restrictions [21].

The Renju International Federation (RIF) changed the rules [16] to make
the game more fair by imposing some opening rules for the first five moves.
Furthermore, RIF requested for a proposal [17] for better opening rules again in
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2003. These facts indicate that it is still hard to define a fair rule for the game.
We note that adding more rules also makes it harder to learn the game.

The fairness problem for Go-Moku or Renju also causes an important side
effect, viz. that of reducing the board size. It was argued in [18] that a larger
board increases Black’s advantage which resulted in the standard board size
of 15 × 15. However, as described in Section 3, a smaller board reduces the
complexity of the game. Consequently, it then becomes easier to solve the game.

2.2 Solved Games

In addition to [1,3,21] mentioned above, many researchers were engaged in study-
ing the fairness of k-in-a-row. White ties [23] when k ≥ 8. Many solved mnk-
games are listed in [11,20].

For simplicity of combinatorial analysis, many researchers [6,7,14,15] followed
an asymmetric version of the rules, called Maker-Breaker, where White is not
allowed to win. This is because either Black wins or White ties in Connect(k,
p,p) as proved in [7,14]. In contrast to Maker-Breaker, the version of normal
rules is called Maker-Maker. Let δ denote k−p. In the Maker-Breaker version, it
was proved in [15] that White ties under a condition, roughly like δ = Ω(log2 p)
(cf. Theorem 1 of [15]), and Black wins under a condition, roughly like δ =
O(log2 p/ log2 log2 p) (cf. Theorem 2 of [15]). The above result implies that in
the Maker-Maker version White still ties under the condition of δ = Ω(log2 p),
but it does not imply that in the Maker-Maker version Black still wins in the
case of δ = O(log2 p/ log2 log2 p). We can easily extend Pluhar’s result [15] to
the following Corollary.

Corollary 1. For Connect(k, p, q), let k and p satisfy the condition defined in
Theorem 1 of [15]. For all q, where 1 ≤ q ≤ p, White ties.

Fig. 1. Required defensive white stones when q =
24 and δ = 4

Now, we want to investigate
those Connect games that ei-
ther Black or White wins.
First, Black wins when p <
�q/δ2(4δ + 4). For example, if
Black places δ2 stones on δ ×
δ squares as a group, White
needs 4δ + 4 stones to defend
the group. Thus, the above re-
sult is obtained when Black lets
�q/δ2 groups be far away from
one another.

If q is not a multiple of δ2,
we can possibly obtain tighter
results. For example, for 4 × 4

squares, Black can add 8 additional stones as shown in Fig. 1 such that White
needs one more white stone to defend for each additional black stone. Thus, if
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(q mod δ2) ≤ 8�q/δ2, then Black wins when p < �q/δ2(4δ + 4) + (q mod δ2).
Otherwise, Black wins when p < �q/δ2(4δ + 4) + 8�q/δ2. Thus, we obtain the
following Corollary.

Corollary 2. Let δ = k − p. For Connect(k, p, q) game, Black wins when p <
�q/δ2(4δ + 4) + min (q mod δ2, 8�q/δ2).
For some cases, we can obtain some even tighter results, based on the above
method. For example, for Connect(19,17,7), it does not satisfy the condition of
Corollary 2, but Black still wins. In addition, it is also possible that White wins.
For example, Connect(12,10,3). More results can be obtained based on the above
principle and are not elaborated in this paper.

Since Connect games will become even more unfair when q > p, we usually
assume q ≤ p. Then, when p < �q/δ2(4δ +4), we obtain δ < 2+

√
2 or δ < 4.82.

Thus, Corollary 2 becomes useless when δ ≥ 5 and q ≤ p. For example, when
δ = 5 and q = 25, but White only needs p=24 to defend. An open problem is
whether it can be proved that either Black or White wins when δ ≥ 5 and q ≤ p.

2.3 Empirically Unfair Connect Games

This subsection makes some empirical experiments to investigate the fairness of
some Connect games in the following two ways. First, we try to prove informally
that either Black or White wins. Second, if we cannot prove, we try to see
whether one player keeps obtaining initiatives leading to a win. If so, we call
that the game favors that player.

Table 1. The empirical results for Connect games with k ≤ 9 and δ = 3

q(≤ p) k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
p = 1 p = 2 p = 3 p = 4 p = 5 p = 6

1 B B W W W W
2 B W W W W
3 B FB FB FW
4 B B FW
5 B B
6 B

Our empirical experiments for k ≤ 9 show that most games with δ ≤ 3 are
unfair, as shown in Table 1 for δ = 3. In this table, B (W) indicates that it
is informally proved that Black (White) wins; and FB (FW) indicates that the
game favors Black (White).

The game histories of these experiments are recorded in [12]. Among these
game histories, the one for Connect(9,6,4) illustrated in Fig. 2 shows an inter-
esting result. Even though Black has four stones initially, White still wins by
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Fig. 2. Favoring White for Connect(9,6,4)

placing five of its six stones far away from Black and then keeping obtaining
the initiative subsequently. The phenomenon of playing away from the major
battle field is called breakaway in this paper. In Fig. 2, White makes an initial
breakaway. If initial breakaways do not incur a penalty, the game may become
unfair. For example, in Fig. 2, if Black plays in the lower left part subsequently,
the game is like Connect(9,6,5) with White playing first.

2.4 Fairness of Connect6

In practice, based on our empirical experiments on Connect6 so far, we have
not been able to identify which player the game favors. Following are two more
arguments about its fairness.

(1) As described in Section 1, we argue that p = 2q is a necessary condition
for fairness, in the sense that one player always has q more stones than the
other after making a move. Connect6 satisfies the condition.

(2) We argue that the following is a necessary condition for fairness: the initial
breakaway does not apparently favor White. In Section 5, we prove that Black
wins at Connect(6,2,3). This hints that the initial breakaway does not favor
White for Connect6. We note that if Black does not win at Connect(6,2,3),
White can place the initial two stones far away from the first black stone.
Thus, if Black goes to defend White’s two stones, the game is analogous to
Connect(6,2,2) with White playing first, which favors White.

Surely, we expect to see more evidences, either fair or unfair, or more practical
experiences in the near future.
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3 Game Characterics

In this section, we investigate the characteristics of Connect6 and some other
Connect games by following the definitions given in [11]. We list the character-
istics of Connect6 below.

(1) The rules of Connect6 are simple to learn. Renju includes some prohibited
moves and International Renju even includes some opening rules.

(2) Connect6 is potentially fair based on the arguments in Subsection 2.4.
(3) Connect6 is symmetric, if the first move by Black is not considered.
(4) Both state-space and game-tree complexities for Connect6 are very high as

described below.

Connect6 has an infinite board, so both state-space and game-tree complex-
ities are infinite too. In order to make it countable, we use a Go board for
Connect6, instead, that is, Connect(19,19,6,2,1). Both state-space and game-
tree complexities for it are still much higher than those in Go-Moku and Renju,
in the sense that two stones per move make the branch factor increase by a fac-
tor of half of the board size. Based on the standard used in [11], the state-space
complexity of Connect(19,19,6,2,1) is 10172, the same as that of Go. If a larger
board is used, the complexity is much higher.

Now, let us investigate the game-tree complexity. For Connect(19,19,6,2,1),
assume that the averaged game length is still 30, the same as the estimation for
Go-Moku [1]. The number of squares is about 300, and the number of choices
for one move is about (300 × 300/2). Thus, the game-tree complexity is about
(300 × 300/2)30 ∼ 10140, much higher than that for Go-Moku. Also, if a larger
board is used, this complexity is much higher.

The game-tree complexity grows much larger, as the value p increases. For
example, consider Connect(8,4,2) assuming that it is a fair game. Based on the
above calculation with a 19 × 19 Go board in use, the game-tree complexity
grows up to 10260. In fact, in our empirical experiments, a higher value p usually
requires a larger board size, that makes the state-space complexity even higher.

4 Threat-Based Strategy

For Connect games, the threat-based strategy is a common strategy used to
play. Subsection 4.1 describes the threats for Connect6, while Subsection 4.2
generalizes the threats for all Connect games. Subsection 4.3 briefly describes
our Connect6 program.

4.1 Threats for Connect6

Definition 1. For Connect6, assume that one player, say White, cannot con-
nect six. Black is said to have t threats, if and only if White needs to place t
stones to prevent Black from winning in Black’s next move.
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Fig. 3. Threat patterns for Connect6: (a) one threat, (b) two threats, and (c) three
threats

For Connect6, we define threats in Definition 1. In Figs. 3(a), 3(b), and 3(c),
Black has one, two, and three threats, respectively. In the case of three threats,
Black wins since White needs three stones to defend but only has two stones for
a move. Thus, the winning strategy of a player is to have at least three threats.

Now, let us investigate how to count the number of threats in one single line
for simplicity. For example, at the right side of Fig. 3(a), Black has one threat
(not two), because White only needs to place one stone at the square above “�”.
The algorithm to count the number of threats in one line is as follows.

1. For a line, slide a window of size six from the left to right.
2. Repeat the following step for each sliding window.
3. If the sliding window contains neither white stones nor marked squares and at

least four black stones, add one more threat and mark all the empty squares
in the window. Note that in fact we only need to mark the rightmost empty
square. The window satisfying the condition is called a threat window.

In Fig. 3, the squares above “�” indicate the marked squares, if we only mark
the rightmost empty one. Lemma 1 (below) shows that the algorithm is correct.

Lemma 1. For Connect6, the above algorithm counts the number of threats cor-
rectly.

Proof. First, any two threat windows found by the above algorithm do not cover
the same empty squares, since one empty square will be marked at most once.
Thus, for each threat window, White needs to place at least one stone to prevent
Black from connecting six. That is, if the above algorithm finds t threat windows,
then there are at least t threats.
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Second, we want to prove that if the above algorithm finds t threat windows
for B, then it suffices to defend by placing one stone at the rightmost empty
square for each threat window, as illustrated in Fig. 3. Assume by contradiction
that Black still wins after the t stones, that is, there still exists at least one
sliding window that contains at least four black stones and no white stones.
Then, according to the above algorithm, one of these sliding windows must be
a threat window. Thus, the rightmost empty square of this window must be
marked and be one of the t squares, contradictory to the assumption. 
�
Lemma 2. In Connect6, consider one single line only. Placing one stone on
that line increases threats by at most two.

Proof. Let Black place a stone S on a line. It suffices to prove that the stone
is covered by at most two threat windows from the above algorithm. Let T1 be
the first threat window covering S. If the threat window T2 next to T1 exists
and covers S, the empty squares covered by T2 must be to the right of S and
the empty squares covered by T1 must be to the left of S, since any two threat
windows do not cover the same empty squares (as describe above). Thus, appar-
ently, the next threat window T3, if it exists, must not cover S, since the empty
squares of T2 is not to the left of S for the same reason. So, S is covered by at
most two threat windows. 
�

Fig. 4. Live-l and dead-l threats for Connect6: (a) live-3, (b) live-2, (c) dead-3, and
(d) dead-2 threats

Lemma 2 shows that placing one stone on a line increases threats by at most
two. From this lemma, we can evaluate the value of one line by counting how
many stones one player must place subsequently in order to cause one threat
or two threats. For example, in Go-Moku or Renju, a three is called live-three
if it has two open ends and can create two threats by adding one stone, and
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dead-three, if it has only one open end and can create one threat only by adding
one stone. Following the similar concept, we define dead-l and live-l threats in
Definition 2 (below). For example, Fig. 4 illustrates the cases of live-3, live-2,
dead-3, dead-2 threats.

Definition 2. In Connect6, a line includes a dead-l threat for one player, say B,
if Black only needs to add (4−l) additional stones to create one threat. Similarly,
a line includes a live-l threat for B, if Black only needs to add (4− l) additional
stones to create two threats.

In Connect6, live-3, live-2, dead-3, and dead-2 threats are also important, since
a move including two stones can make them become real threats. In particular,
when players attack with real threats, it is better to associate these threats with
more live and dead threats. This is a rather profitable strategy, also used in our
Connect6 program in Subsection 4.3.

4.2 Threats for Connect Games

This subsection generalizes the work of Subsection 4.1 to Connect(k, p, q).

Definition 3. In a line pattern of Connect(k, p, q), assume that one player, say
White, cannot connect up to k. Black is said to have t threats, if and only if
White needs to place t stones to prevent Black from winning in the next move.

Fig. 5. Threats for Connect(9,6,3): (a) one threat and (b) two threats

Definition 3 defines the number of threats for general Connect games. For exam-
ple, for Connect(9,6,3), Black has one threat in Fig. 5(a) and two in Fig. 5(b).
In general, the winning strategy of a player is to have at least (p + 1) threats,
since the opponent only has p stones to defend. For example, for Connect(9,6,3),
one player needs to have 7 threats to win the game.

The algorithm in the previous subsection can be slightly modified to count
the number of threats for Connect games, as follows.

1. For a line pattern, slide a window of size k from the left to right.
2. Repeat the following step for each sliding window.
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3. If the sliding window contains neither white stones nor marked squares and
at least δ(= k−p) black stones, add one more threat and mark all the empty
squares (or the rightmost one only) in the window.

The above algorithm counts the number of threats correctly for Connect(k,
p,q), as in Lemma 3 (below), of which the proof is similar to that of Lemma 1
and therefore omitted. Similarly, placing one stone on a line increases threats by
at most two, as in Lemma 4 (below), whose proof is also omitted. Similarly, for
Connect(k,p,q), dead-l and live-l threats are defined in Definition 4 (below).

Lemma 3. For Connect games, the above algorithm counts the number of
threats correctly.

Lemma 4. In Connect(k,p,q), consider one single line only. Putting one stone
on that line increases threats by at most two.

Definition 4. In Connect(k, p, q), a line includes a dead-l threat for one player,
say B, if Black only needs to add (δ − l) additional stones to have one threat.
Similarly, a line includes a live-l threat for B, if Black only needs to add (δ − l)
additional stones to have two threats.

Now, let us go back to review Go-Moku, Connect(5,1,1). In Go-Moku, since
players can place one stone (p = 1) only for each move, players cannot defend
live-4 threats. Furthermore, in the case of not winning, players must defend a
live-3 threat. Otherwise, the opponents can place one stone to make it a live-4 to
win the game. Since players must defend live-3 threats in this case, live-3 threats
can be viewed as delayed threats.

4.3 Programs for Connect Games

In this subsection, we will first describe the algorithm to generate moves for
Connect games, and then describe the search techniques used.

Generating Moves. For Go-Moku or Connect games with p = 1, players
usually order all the empty squares based on some criteria, e.g., the threats
mentioned in Subsections 4.1 or 4.2, and then choose the best one to place a
stone. However, for Connect games with p ≥ 2, players cannot simply choose the
best p squares to play. A common example for Connect6 is that the two squares
may form two live-3 threats from two live-2 threats respectively. But, in most
cases, it is better to use two stones to have one live-2 threat becomes two threats.
That is, players need to consider the value of placing two stones together. For
this problem, we use the following algorithm to generate moves for Connect6.

1. Order all the empty squares into a list L in a descending order according to
the evaluated values.

2. Choose the first (best) w ones from L, (s1, s2, ..., sw).
3. For each square si, repeatedly do the following two steps.
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4. Place a stone at si and then order all the empty squares into a new list Li

according to the re-evaluated values.
5. Choose the first wi ones from Li, and then, for each square s in the wi

squares, put a pair of squares (si, s) into the candidate list LC . Note that if
(s, si) is already in LC , skip it.

6. Order the squares in LC according to the re-evaluated values and choose the
first w′ pairs.

Fig. 6. Tree search for generating moves for Connect6

We suggest a monotonically-decreasing function for wi, e.g., wi = w− i+1, as
illustrated in Fig. 6. Note that in Fig. 6 the smaller circles are called subnodes to
be distinguished from the bigger rounded rectangle, representing a move node.
Now, we can see that the time complexity of a move node is quite high since
one move node may include many subnodes. For example, if w = 10 and wi =
w − i + 1, the number of subnodes is 55; and if w = 30, it is about 500.

Amazons games [11] are the games that also require one player to do two
operations for one move. So, programs for Amazons games may also require
search trees with height two to generate moves for each move node. However,
for Connect(k, p, q) with larger p, we need a search tree with higher height for
each move node. This results in a much higher time complexity for larger p.
Avetisyan and Lorentz [4] proposed a null-move technique for the first operation
to generate moves. For Connect games, it is still an open issue to reduce the
number of subnodes inside one node.

Search. Like Go-Moku, threat-based search is also important in Connect games.
The search techniques, developed in the past, such as threat-space search and
proof-number search [1], are also useful for Connect games. For Connect6, we
use a two-level search technique, one level for normal alpha-beta search and the
other for threat-space search as shown in Fig. 7. In our program, the depth of
the alpha-beta search tree is about 3.
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Fig. 7. A two-level tree search for Connect6

5 Null-Move Heuristic

The null-move heuristic [1,5,8,9,10,19] is usually used with threat-space search
and proof-number search to determine implicit threats, such as in Go-Moku and
Go. The basic idea is to let one player, say White, make a null-move and then
apply the threat-space search to finding winning sequences of threat moves for
Black. If the sequences are found, we need to determine the relevant zone for
White to defend. The relevant zone is called R-Zone in [19]. However, for Connect
games with p ≥ 2, it is necessary to modify the above null-move heuristic.

Fig. 8. A winning sequence of Black’s threat moves after a null-move by White
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For Connect games, this section illustrates a new null-move approach ([22]
will describe it in greater detail), by solving the game Connect(6,2,3) in which
Black wins. Figure 8 shows a winning sequence of Black’s threat moves after
a null-move by White. We note that in this figure White has four stones for
each move, such as four 2’s, because all the three kinds of defenses by White
include the four squares, and such a defense will greatly reduce the search tree
as mentioned in [1].

In Fig. 8, the shadowed zone, calledR1-Zone, indicates that White must place at
least one of two stones in the zone in order to defend Black’s threat sequence possi-
bly. Namely, for all moves (s1, s2) that White may defend Black’s threat sequence,
either s1 or s2 must be in the zone. For safety, the zone should be sufficiently large
to cover all possibilities. However, simultaneously, we want to minimize the zone
to reduce the cost of search. Following are our rules to make R1-Zone.

1. All black and white stones except for the initial three black stones are in
R1-Zone, since it is possible for White to defend by placing a stone on any
of these squares.

2. All defensive squares for the final threats are in the R1-Zone. For example,
all As and Bs in Fig. 8. We note that for the single threat between the two
Bs in Fig. 8, R1-Zone includes both Bs, but not both Cs for the following
reasons. Since both Bs can be used to block the threat, both Bs are included.
But, since the Cs cannot block the threat without the middle A, the Cs do
not have to be in the zone (we note that the middle A is already in the zone).

3. For each pair of two empty squares, if two white stones placed on them can
build a threat, the two squares are in the zone. For example, the Ds in Fig.
8. However, those Es are not in the zone, because for the upper left two 2’s
we actually place one stone only and thus two additional white stones at the
Es cannot build a threat.

After determining the R1-Zone, for each square in the R1-Zone we run a
semi-null-move process, illustrated by the square 1a in the R1-Zone in Fig. 8.
First, White places one stone at 1a, but, makes a “null-move”, called semi-null-
move in this paper, for the second stone. Fig. 9 shows the winning sequence of
Black’s threat moves after the semi-null-move, and a new relevant zone, called
R2(1a)-Zone. The R2(1a)-Zone can be obtained based on the rules for the R1-
Zone, except for Rules 2 and 3 with slight changes as follows. For Rule 2, for a
single threat, we only consider the squares that can block one threat. For Rule
3, for one empty square, if one white stone placed on it can build a threat, the
square is in the zone. For all s in the R2(1a)-Zone, the pairs (1a, s) are added
into a defense list L6,2,3, unless the redundant one (s, 1a) exists already. After
all semi-null-move processes are done, L6,2,3 includes all the moves that White
may defend Black’s attack. Then, if all the moves in the list cannot be played
to defend Black’s attack, Black wins. In our experiments for Connect(6,2,3),
there are 61 squares in the R1-Zone, and there are 1514 pairs in L6,2,3. By
going through each pair, we finally prove Corollary 3 (below). An important
implication of Corollary 3 is to hint that for Connect6 an initial breakaway does
not favor White as described in Subsection 2.4.
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Fig. 9. A winning sequence of Black’s threat moves after a semi-null-move

Corollary 3. For Connect(6,2,3), Black wins.

6 Conclusion

The contribution of this paper is summarized as follows.

1. This paper introduces a new family of k-in-a-row games, Connect(m, n, k,
p, q). Among these games, Connect(6,2,1) or Connect6 is potentially fair,
based on some arguments in Subsection 2.4. Thus, Connect6 has the poten-
tial to become popular.

2. This paper proposes a threat-based strategy to play Connect(k, p, q) games
and implements a computer program for Connect6, based on the strategy.

3. This paper illustrates a new null-move search approach to solve Connect
(6,2,3) with Black winning. This result hints that for Connect6 an initial
breakaway does not favor White.

In addition, this paper also leaves several open problems, such as fairness,
null-move heuristic, and reducing the time complexity for Connect games. We
expect to see fruitful research related to these games in the future.
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Abstract. This paper presents novel and systematic algorithms to solve
a variant of the Mastermind game, which is called “Mastermind with a
Lie”. Firstly, we use the k-way-branching(KWB) algorithm to get an up-
per bound of the number of guesses for the problem. With the help of
clustering technique, the KWB algorithm is able to obtain near-optimal
results effectively and efficiently. Secondly, we propose a fast backtrack-
ing(PPBFB) algorithm based on the pigeonhole principle to get the lower
bounds of the number of guesses. That is a computer-aided approach,
which is able to estimate the depth of the game tree and to backtrack
when the depth is larger than a predefined value. Moreover, we also
develop two novel methods, named “volume-renewing” and “preprocess-
ing”. They can improve the precision in the estimation of the lower bound
and speed up the game tree search. As a result of applying the KWB
algorithm and the PPBFB algorithm, we are able to show that the up-
per bound is 7 and that is also the lower bound. Thus, the problem is
solved completely and the exact bound of the number of guesses for the
problem is 7.

1 Introduction

The deductive game called Mastermind, produced by Invicta Plastics Ltd., is
quite popular all over the world since its appearance in 1972. It is a game for
two players: a code-maker and a code-breaker. The code-maker chooses a secret
code, e.g., (s1, s2, s3, s4), consisting of 4 digits with 6 possible symbols. Repeated
symbols are allowed and thus, the number of possible codes is 64 = 1296. The
code-breaker does not know the choice the code-maker made, so he1 has to
guess some code, e.g., (g1, g2, g3, g4), and gets a hint [B, W ] from the code-
maker repeatedly until the secret code is obtained exactly, where B means the
number of “direct hits”, i.e., the number of positions i such that si = gi and
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W is the number of “indirect hits”, i.e., the number of positions i such that
si �= gi but si = gj for some position j �= i. For instance, if the secret code is
(1, 1, 2, 4) and the guess made by the code-breaker is (2, 1, 4, 5), the hint given
by the code-maker is then [1, 2]. The goal of the code-breaker is, based on the
responses, to minimize the number of guesses needed. Note that there are 14
possible responses in Mastermind.

In 1976, Knuth [4] introduced a strategy for minimizing the number of guesses
for Mastermind. His strategy requires at most five guesses in the worst case and
4.478 in the expected case. At the follow-up study, Irving [3] and Neuwirth
[7] improved the bounds to 4.369 and 4.364, respectively, in the expected case.
Finally, Koyama and Lai [5] demonstrated an optimal strategy for Mastermind,
where the expected number of guesses is 4.34.

As a sequel to Mastermind, Renyi [8] and Ulam [9] proposed a two-person
game with lies, which is called “Renyi-Ulam game”. The nature of the game is
similar to a fault-tolerant communication problem. In other words, the problem
is how the receiver gets a message passed by the sender correctly through a
noisy channel. A great deal of researchers therefore have paid much attention
to this problem over the past decades. In this paper, we introduce a variant of
the Mastermind game, which is called “Mastermind with a Lie”. The concept of
fault tolerance is added to the variant compared to the original version. In other
words, it is the same as the original one but there is an additional rule: the code-
maker is allowed to lie at most once. For example, it is a lie if the code-maker
answers [1, 0] instead of [1, 2] in the above-mentioned example. Furthermore, the
termination criteria of the Renyi-Ulam game substitutes for that of Mastermind
in order to fit in with the area of fault tolerance. That is to say that the game
will terminate when only one possible codeword remains.

Merelo et al. [6] showed that some combinatorial optimization problems –
such as circuit testing, differential cryptanalysis, on-line models with equivalent
queries and additive search problems – are related to solutions of the Mastermind
game. Any results obtained in this problem may be applied to those optimization
problems.

This paper is organized as follows. In Sect. 2, we describe some properties
and definitions of the deductive games with lies. Section 3 introduces the k-way-
branching algorithm for the “Mastermind with a Lie”. In Sect. 4, we demonstrate
the fast backtracking algorithm based on the pigeonhole principle to determine
the minimal number of guesses required for “Mastermind with a Lie”. Section 5
exhibits our conclusions.

2 Definitions of Deductive Games with a Lie

In this section, we show some definitions of deductive games with a lie by a
simple number-guessing game, denoted 1 × n games with a lie.

In the 1 × n games with a lie, the code-maker chooses a secret code s, s ∈
{0, 1, 2, . . . , n − 1}. After each guess g made by the code-breaker, the code-maker
gives him a response r, r ∈ {<, =, >}, i.e., they stand for g < s, g = s, and g > s.
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The code-maker is allowed to lie at most once in this game. The goal of the game
is to obtain the secret code by using as few guesses as possible. The game can
be viewed as a search problem intuitively. In other words, we can represent the
process as game-tree search. For instance, a game tree for the 1 × 3 game with
a lie consisting of terminal nodes and non-terminal nodes is shown in Fig. 1.

< =

>< = > < = > < =

< = > = > <= > >=

>

Fig. 1. A game tree for the 1 × 3 game with a lie

Definition 1. While the code-breaker makes a guess, the ordered pair of can-
didates

〈
C(0), C(1)

〉
consists of two sets, of which the elements are the remaining

possible candidates at present. C(0) is the set of candidates which satisfy all pre-
vious responses and C(1) represents the set of candidates which satisfy all but
one previous responses. For example, the root in Fig. 1 is 〈{0, 1, 2} , {}〉, which
indicates that the elements in C(0) are 0, 1, and 2 while C(1) is an empty set.

Definition 2. An ordered-pair of candidates,
〈
C(0), C(1)

〉
, may be referred to a

state
(∣∣C(0)

∣∣ , ∣∣C(1)
∣∣) which is a couple of natural numbers. The first number is

the size of the set C(0), and the second number is the size of the set C(1). For
instance, the state of the root in Fig. 1 is (3, 0).

Definition 3. The guess gi made by the code-breaker means that (i − 1) guesses
have been made previously. In Fig. 1, “g3 = 1” means that it is the third guess
and the guess number is 1.

Definition 4. A final state is a state s, where s = (1, 0) or (0, 1). In other
words, only one possible codeword remains in the final state and the game is
over.

Definition 5. The number of guesses required in the worst case for “deductive
games with a lie” is H, where H is the height of the game tree, i.e., the length
of its longest path from the root to a leaf. For example, H is equal to 3 in Fig. 1.
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3 k-Way-Branching Algorithm

For our problem, the code-breaker has 1296 possible guesses in each turn while
the code-maker has 14 possible responses (it is called “classes” in the game tree).
The height of the game tree is H and the search space for “Mastermind with a
Lie” is (14 ∗ 1296)H consequently. Traditional approaches are not able to search
this game tree efficiently because of the exponential search space. Here, we adopt
the k-way-branching algorithm (KWB) proposed by Chen and Lin [1] to solve
the problem. It is an approximate algorithm and its main goal is to reduce the
branching factor from 1296 to k. So the search space is reduced to (14 ∗ k)H .

For reducing the search space, the notion of equivalence, which was used by
Neuwirth [7], offers us an idea to combine with the KWB algorithm. The KWB
algorithm is able to be implemented by a modified depth-first search on the
game tree. By using the clustering technique, the hash collision groups (HCG),
the most likely equivalent guesses are put into the same group while perform-
ing the search. The next step is to expand k guesses by choosing k “best”
HCGs and selecting arbitrarily a representative for each HCG. Figure 2 is a
sketch of the KWB algorithm. Initially, the main program calls the function,
KWB

(
C(0), C(1)

)
, where C(0) is the set of all the possible secret codes, i.e.,

1296 secret codes, and C(1) is an empty set. Lines 2–6 in Fig. 2 mean that the
KWB algorithm generates HCGs by using the hashing function and chooses k
best HCGs. Lines 8–18 show that a representative guess for each HCG is selected
arbitrarily and is applied to expand the game tree recursively. Finally, the best
one among the k results is returned. Even a small k, the KWB algorithm can
obtain near-optimal results and save much time provided that the hashing func-
tion is designed appropriately. Therefore, we make use of the KWB algorithm
with fine characters to investigate our problem, “deductive games with a lie”.

With regard to Mastermind, the hashing function can classify the most likely
equivalent guesses among 1296 possible secret codes into the identical groups
and a representative guess is chosen from each of the k “best” groups. Some
significant properties are described in [1,2].

We have to define a proper hashing function before using HCG. Thus, we
should take the characters of our problem into account. Assume that for an
ordered pair of candidates, the guess, g, made by the code-breaker partitions all
possible secret codes in C(0) and C(1) into 14 classes, i.e., 28 sets.

〈
C(0), C(1)

〉
g

stands for that the code-breaker makes the guess, g, when he encounters the
ordered pair of candidates.

〈
C

(0)
g

〉
and

〈
C

(1)
g

〉
represent the ordered tuples

of the size of the 14 sets produced by the partitions of C(0) and C(1) with g
respectively. So we define the hashing function as

Hash

(〈
C(0), C(1)

〉
g

)
= Str

(〈
Sort

〈
C(0)

g

〉
, Sort

〈
C(1)

g

〉〉)
= Str

(〈
C′

g

〉)
,

where Sort
〈
C

(0)
g

〉
and Sort

〈
C

(1)
g

〉
are the new sorted tuples after sorting 14

elements in
〈
C

(0)
g

〉
and Sort

〈
C

(0)
g

〉
, respectively, in non-increasing order.

〈
C′

g

〉
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is the new tuple with 28 entries, which is formed by merging Sort
〈
C

(0)
g

〉
and

Sort
〈
C

(1)
g

〉
. The ability of the function, Str, is to convert the 28 integers in

〈
C′

g

〉
into 28 strings and concatenate them into a single string in order. This means,
if
〈
C′

g

〉
= 〈ng,1, ng,2, . . . , ng,28〉, Str

(〈
C′

g

〉)
= Str (ng,1)Str (ng,2) . . . Str (ng,28).

This hashing function is a kind of string hashing function and its output is a
string which means the index(id). The meanings of the hashing function is that,
for any two guesses, g and g′, they are most likely equivalent and are classified
into the same HCG if Hash

(〈
C(0), C(1)

〉
g

)
= Hash

(〈
C(0), C(1)

〉
g′

)
.

best

best best

best

Fig. 2. The sketch of the KWB algorithm

Now the problem is how to choose k “best” HCGs and select a representative
for each group to explore the game tree. Our method is based on the heuristic
procedure introduced by Chen and Lin [1]. We made some modifications for this
problem. We have to take the sizes of the 28 sets into account at the same time
while choosing a guess. In other words, we should consider the distribution of
the sizes, i.e., we have to choose the guess which can partition C(0) and C(1) as
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evenly as possible in order to minimize the height of the game tree. But there are
different significances between the two distributions of C(0) and C(1) partitioned
by g. Therefore, we make use of the idea, weighting, to determine which guess is
better. We let

〈
C′

g

〉
= Sort

〈
d0 ∗

〈
C

(0)
g

〉
, d1 ∗

〈
C

(1)
g

〉〉
= 〈ng,1, ng,2, . . . , ng,28〉,

where
〈
C′

g

〉
is a sorted tuple which is formed by sorting the 28 integers in d0 ∗〈

C
(0)
g

〉
and d1 ∗

〈
C

(1)
g

〉
, i.e., ng,1 ≥ ng,2 ≥ . . . ≥ ng,28. In practice, we set the

parameters, d0 = 3 and d1 = 1. Thus, we define an evaluation function as follows.

f (g, g′) =

⎧⎨
⎩

1, if ng,j = ng′,j and ng,i < ng′,i, 1 ≤ j < i for some i ≤ 28
0, if ng,j = ng′,j, ∀j
−1, if ng,j = ng′,j and ng,i > ng′,i, 1 ≤ j < i for some i ≤ 28

Clearly, g partitions
〈
C(0), C(1)

〉
more evenly than g′ if f (g, g′) = 1. We believe

that g is better than g′ for this reason. In contrast, if “f (g, g′) = 0”, then it
indicates that g and g′ are in the same HCG. We take the function f to choose
k “best” HCGs from all the HCG groups.

Figure 3 shows the game tree by applying the KWB algorithm to this problem.
Among them,

〈
C

(0)
i,j , C

(1)
i,j

〉
is the j-th ordered pair of candidates, i.e., the j-th

class, after the i-th guess. And gi,j is the j-th among the k best codes chosen
by the KWB algorithm at the i-th guess. In the beginning, the state of the root
in Fig. 3 is (1296, 0) which means that there are total 1296 guesses satisfying all
previous responses. Note that while the code-breaker makes the first guess, there
are 5 non-equivalent guesses in 1296 possible codes according to the analyzes
in [7]. They are “1111”, “1112”, “1122”, “1123”, and “1234”. And “1123” is
favorable for the first guess to get a promising upper bound of the number of
guesses. We thus set the first guess, g1,1, to “1123” in our algorithm. After that,
there are 14 classes which have to be expanded since the code-maker has 14
possible responses. Then the code-breaker selects k best guesses to expand the
game tree. The two steps take turn until the final state is met. At the final
state, the program backtracks to its parent node and expands other branches
continuously.

3.1 Experimental Results of the KWB Algorithm

When the program based on the KWB algorithm was well-written and tested,
we ran it on an AMD Opteron 1.6GHz PC. The results are shown in Table
1. The larger the value of k is, i.e., the larger the search space is, the fewer
the number of guesses required for the game is. But the time for running the
program is relatively longer. Note that the strategy for “H = 7” is obtained by
our algorithm when k = 3. This reveals that the KWB algorithm can obtain
optimal (or near-optimal) results with a very small k. From Table 1, we are able
to obtain a strategy for the game, “Mastermind with a Lie”, by using the KWB
algorithm and its number of guesses required in the worst case is 7. Hence, we
have the following Lemma 1 evidently.
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Fig. 3. The game tree expanded by the KWB algorithm

Table 1. The upper bound derived by the KWB algorithm

k H : The number of guesses needed Run time (minutes)

1 8 1.75
2 8 15.10
3 7 65.11
4 7 241.13
5 7 629.82

Lemma 1. For the game, “Mastermind with a Lie”, there exists a strategy
such that the number of guesses required for the code-breaker to obtain the secret
code is at most 7.

We can regard Lemma 1 as an upper bound of this problem. In the following
section we demonstrate that the pigeonhole-principle-based fast backtracking
algorithm to prove that the lower bound of the game is also 7.

4 The Fast Backtracking Algorithm Based on Pigeonhole
Principle

In this section, we will apply the pigeonhole principle to develop a fast backtrack-
ing algorithm for “Mastermind with a Lie”. We call it the pigeonhole-principle-
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based fast backtracking algorithm (PPBFB). We intend to prove that the number
of guesses required for the code-breaker to guess the secret code in the worst case
is at least 7, i.e., the lower bound of the game.

The idea of PPBFB is to do a worst-first search. It estimates the lower bound
by making use of the extended pigeonhole principle and then backtracks as early
as possible to save the search time. PPBFB is illustrated in Fig. 4. The concept
of PPBFB is to consider the size of the two sets in the ordered pair of candidates
when the search proceeds, so the squares in Fig. 4 represent the states. gp,i is
the i-th candidate taken by the code-breaker at the p-th guess. rp,max means the
class which results in the largest number of guesses among 14 classes after the
p-th guess. qmax is the theoretical lower bound which means a lowest number of
guesses required to approach the final state (i.e., (1, 0) or (0, 1)) from the current
state and h is the lower bound we intend to verify.

5 guesses

1296 guesses

If

Fig. 4. The sketch of the PPBFB algorithm

We notice that the code-breaker has to explore all possible 1296 guesses at
each guess except the first one. For the first guess, we only need to explore 5
representative guesses due to the equivalence property. For the code-maker, we
only have to expand the worst case among the 14 classes. The so-called “worst
case” denotes the class which will result in the most guesses needed by the
code-breaker. We employ the extended pigeonhole principle presented by [1] to
estimate the lower bounds of the guesses needed among 14 classes. The idea
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of the estimation of lower bounds is similar to that of the heuristic function in
the A* algorithms. In other words, the actual number of guesses needed is more
than or equal to the largest number, qmax, of lower bounds among 14 classes.
Therefore, our verifying program is not necessary to search all the game tree.
It can backtrack to the parent node to expand other branches if the condition
holds: p + qmax ≥ h, where we set h = 7.

The main idea of the estimation of lower bounds by using the extended pi-
geonhole principle is that the guess made by the code-breaker in each turn may
divide the elements of the two sets in the ordered pair of candidates evenly.
Hence, this strategy can minimize the height of sub-tree rooted in the current
node. That is to say that there exists a “theoretical optimal” strategy for the
code-breaker in the following guesses such that all the elements of the two sets
in each node may be divided evenly. The actual number of guesses is thus more
than or equal to the value of estimation.

The extended pigeonhole principle shows that we should have a set of the
volumes, V . We know that different guesses result in distinct distributions of
the remaining candidates in 14 classes. So we adopt the following approach to
obtain a set of the volumes, V , in order to make the estimation of lower bounds
for all nodes of the sub-tree rooted in the current node.

In Fig. 5, the set C represents one of the two sets, C(0) and C(1), in some
ordered pair of candidates. gp,i is the i-th candidates at the p-th guess and∣∣Cgp,i,j

∣∣ is the size of the j-th class in the distribution of the remaining candidates
after gp,i partitions C. We make all 1296 possible guesses to get the distributions
of remaining candidates. And then we select the maximal value of the sizes of
the corresponding classes in 1296 distributions to acquire the set of volumes,
V = {v1, v2, . . . , v14} =

{∣∣Cgp,max,1

∣∣ , ∣∣Cgp,max,2

∣∣ , . . . , ∣∣Cgp,max,14

∣∣}, where vj =∣∣Cgp,max,j

∣∣ = max1≤i≤1296

(∣∣Cgp,i,j

∣∣).

Fig. 5. The algorithm Get volume(C) for obtaining the set of volumes, and its output
is V = {v1, . . . , v14} , vj = max1≤i≤1296

���Cgp,i,j

�
��
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The meaning of the set of volumes obtained by the approach is that every∣∣Cgp,i,j

∣∣ formed by each guesses is certainly less than or equal to vj . Afterwards,
the lower bound estimated with V is sure to be less than or equal to the actual
guesses needed. This fits in with the requirements of PPBFB.

We discover some phenomena when using V to calculate the lower bound
in practice. First, different C’s will result in different V ’s. So the two sets of
volumes corresponding to C(0) and C(1) in some ordered pair of candidates need
to be calculated separately because they are disjoint sets. Second, the differences
between the lower bounds calculated by V and the actual guesses needed become
larger when searching the deeper part of the game tree if the V computed from
some ordered pair of candidates are used by all the ordered pairs of candidates in
its sub-tree. Thus, the estimated lower bound will be closer to the actual guesses
required if the program updates V dynamically while visiting some ordered pair
of candidates.

Figure 6 shows the sketch of the algorithm for calculating the lower bound
in PPBFB. The parameters used in this algorithm are as following: s is the
current state. V0 and V1 are the sets of volumes which are obtained from the
two sets, C(0) and C(1) ∪ C(0), in the ordered pair of candidates corresponding
to s. We ought to take C(1) ∪ C(0) into account in order to calculate V1 since
the elements in C(0) moves to C(1) continuously in the game. Lines 6–11 get
the maximal number of remaining candidates in all classes of s0 by employing
V0 and the extended pigeonhole principle. Lines 12–16 get the maximal number
of remaining candidates in all classes of s1 by employing V1 and the extended
pigeonhole principle. Note that if s0 is not equal to 0, the function, floor, is
applied to compute the variables avg 0 and avg 1 because the result we intend
to calculate is a lower bound. Otherwise, the function, ceiling, is applied to
avg 0 as a result of the consideration of the worst case if s0 equals 0.

We illustrate Get lower bound with an example shown in Fig. 7. Assume that
V0 and V1 are available and the state of some class is

(∣∣C(0)
∣∣ , ∣∣C(1)

∣∣) = (625, 671)
in case the first guess is “1111”. The lower bound calculated by Get lower bound
is 5 and the details are depicted in Fig. 7.

An intuitive idea is that the result would be more accurate if we dynamically
update the sets of volumes in each state and estimate the lower bound by using
the new sets of volumes. Unfortunately, we found this approach will slow down
the speed much more in our experiment. We thus propose two techniques to
speed up the game tree search.

– The “volume-renewing” technique: It takes much time to update dynamically
the sets of volumes. So we only update the sets of volumes before the second
guess. The state in the sub-tree after the third guess uses the sets of volumes
calculated by the root of this sub-tree.

– The “preprocessing” technique: We can calculate and store the lower bound
corresponding to a state in advance and then we are able to look up the result
directly when the same state is met again. In practice, when we update the
sets of volumes at the second level of the game tree, we also produce all
the possible states, calculate their lower bounds, and store the results into
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Fig. 6. The algorithm Get lower bound for estimating the lower bound

hashing table, lb table. For example, all the possible states, (x, y), 0 ≤ x ≤
625, 0 ≤ y ≤ 1296, are produced if the current state is (625, 671). The
hashing function, Hash lb, is therefore defined as follows.

Hash lb (x, y) = Str (x) Str (y) ,

where x and y are two integers and the output of this hashing function is
a string. We can look up the lower bound by using the string as an index.
Figure 8 gives an algorithm, Create lb table, for creating the hashing table,
lb table, where the parameters are the current state, s, and the current sets of
volumes, V0 and V1. Lines 2–6 produce all the possible states in the sub-tree,
estimate the lower bound, store the results to lb table by using the hashing
function Hash lb, and return lb table finally.

After some experiments, we found that the two techniques not only made the
estimation accurate but also accelerated the speed of search. The speed of the
new program using the above two techniques is more than ten times faster than
that of the old one.

Figure 9 illustrates the details of the PPBFB which integrates all the concepts
and techniques discussed in this section. At the beginning, the main program
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Fig. 7. An example for calculating the lower bound (the lower bound is 5 here)

Fig. 8. The algorithm Create lb table for creating lb table

makes the function call, PPBFB
(〈

C(0), C(1)
〉
, 1, ∅

)
, where C(0) is the set of all

the 1296 possible guesses and C(1) is an empty set. Lines 9–27 calculate qmax

and rmax after each guess by using the methods mentioned in the section. Lines
28–39 determine which one of the following cases is satisfied: the verification pro-
gram fails, the program has to backtrack, or the program has to expand recur-
sively. Line 40 returns “success!” if every g1,i successfully passes the verification
program.
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Fig. 9. The details of the PPBFB algorithm
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Theorem 1. Seven guesses are necessary and sufficient for the “Mastermind
with a Lie” in the worst case

Proof. The verification program based on the PPBFB algorithm was imple-
mented and run on an AMD Opteron 1.6GHz PC to verify “Mastermind with
a Lie” game. If we set the value of h, which is the lower bound we would like
to verify, to 7, our program executed for about 2 days and outputted “success!”
finally. In other words, the minimal number of guesses is at least 7 without re-
spect to any strategies used by the code-breaker in the worst case. Thus we get
that the upper bound is 7 and so is the lower bound. According to Lemma 1,
the required optimal number of guesses for the problem is 7 in the worst case.
This completes the proof. 
�

5 Concluding Remarks

In this paper, we demonstrate novel and systematic algorithms to solve a variant
of the Mastermind game, which is called “Mastermind with a Lie”. Firstly, we use
the k-way-branching algorithm to get the upper bound of the number of guesses
for the problem. With the help of clustering technique, the KWB algorithm is
able to obtain near-optimal results effectively and efficiently.

Secondly, we propose a fast backtracking algorithm to get the lower bound of
the number of guesses. That is a computer-aided algorithm, which can explore
all the possible strategies elegantly by using the estimating-and-backtracking ap-
proach. Moreover, we also develop two novel techniques, named volume-renewing
and preprocessing. They can improve the precision in the estimation of the lower
bound and substantially speed up the game tree search.

As a result of applying the KWB algorithm and the PPBFB algorithm, we
obtain that the upper bound is 7 and so is the lower bound. Thus, the problem is
solved completely and the exact bound of the number of guesses for the problem
is 7.

The games, “deductive games with multiple lies”, are worth studied further
in the future. Furthermore, we hope that the proposed algorithms and tech-
niques can be applied to related problems and provide some directions to other
researchers.
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Abstract. For a long period of time, two person zero-sum games have
been in the focus of researchers of various communities. The efforts were
mainly driven by the fascination of special competitions such as Deep
Blue vs. Kasparov, and of the beauty of parlor games such as Checkers,
Backgammon, Othello, and Go.

Multi-player games, however, have been investigated considerably less,
and although literature of game theory fills books about equilibrium
strategies in such games, practical experiences are rare. Recently, Korf,
Sturtevant and a few others started highly interesting research activi-
ties. We focused on investigating a four-person chess variant, in order
to understand the peculiarities of multi-player games without chance
components. In this contribution, we present player models and search
algorithms that we tested in the four-player chess world. As a result,
we may state that the more successful player models can benefit from
more efficient algorithms and speed, because searching more deeply leads
to better results. Moreover, we present a meta-strategy, which beats a
paranoid α-β player, the best known player in multi-player games.

1 Introduction

We start with a short overview about two-person games (1.1), and about recent
developments in the area of multi-player games (1.2).

1.1 Two-Person Games

In two-person zero-sum games, game-tree search is the core of most attempts to
make computers play games. Typically, a game-playing program consists of three
parts: a move generator, which computes all possible moves in a given position;
an evaluation procedure which implements a human expert’s knowledge about
the value of a given position or an automatically generated heuristic evaluation
function (in both cases, the values are quite heuristic, fuzzy, and limited), and
a search algorithm which organizes a forecast.

For most of the interesting board games, we do not know the correct evalua-
tions of all positions. Therefore, we are forced to base our decisions on heuristic
or vague knowledge. At some level of branching, the complete game tree (as
defined by the rules of the game) is therefore cut, the artificial leaves of the
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resulting subtree are evaluated with the heuristic evaluations, and these values
are propagated to the root [5,11,1] of the game tree as if they were real ones.
For two-person zero-sum games, computing this heuristic minimax value is by
far the most successful approach in computer-games history, and when Shan-
non [13] proposed a design for a chess program in 1949 — which is in its core
still used by all modern game- playing programs — it seemed quite reasonable
that deeper searches lead to better results. Indeed, the important observation
over the last 40 years in the chess game and some other games is: the game
tree acts as an error filter. Therefore, the faster and the more sophisticated the
search algorithm, the better the search results! This is not self-evident, as some
theoretical analyses show [2,10,4,6], but is the most crucial point in the success
story of the forecast-based game- playing programs.

1.2 Multi-player Games

Most of the material concerning general strategic games comes from mathe-
matical game theory. For an excellent introduction, we refer to [8]. In order to
describe a strategic game, you need

1. the players (Who is involved?),
2. the rules (Who moves when? What do players know, when they move? What

can they do?),
3. the outcomes (for each possible set of actions by the players, what is the

outcome?), and
4. the payoffs (What are the players’ utilities over the outcomes?).

In contrast to two-person zero-sum games, we cannot determine an optimal
strategy in n-person zero-sum games independently from our opponent. In gen-
eral, no so-called dominating strategy exists. Instead, we must be satisfied with
some kind of equilibrium, mostly the so-called Nash- or User-equilibrium [9]:
A set of n strategies S1, . . . , Sn (one for each player) will be called in Nash-
equilibrium, if none of the n players can improve his profit by changing his
strategy Si to S′

i under the assumption that all other n − 1 players keep their
strategies as they are. Such an equilibrium is called a pure Nash equilibrium. If
we assume that the players do not select just one strategy, but that they select a
random distribution over all their possible strategies, such a set of distributions
will be called to be in equilibrium if none of the players can rise his expected
profit by changing his probability distribution under the assumption that all
the others keep their distributions. This kind of equilibrium is called a mixed
Nash-equilibrium. For every finite game, at least one mixed equilibrium does
exist.

The game that we inspect within this paper is an n-person game with complete
information and alternating right to move. This means, at each point of time
exactly one player has the opportunity to move, and all players can observe all
other players’ actions. Therefore, also a pure equilibrium does always exist [8].
For the special case that all outcomes at the leaves of the game tree are different
from each other, the maxn-algorithm finds such an equilibrium [3]. Otherwise, it
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Fig. 1. Tree example with non-unique profit for player 1 at node v1

cannot be predicted what is most rational for a player, respectively, the outcome
is unstable. You can see this in Fig. 1.

Let us assume that we have three players, A,B, and C. A, to move at node
v1, can achieve 0.5, when he moves to the left to node v2. He can also achieve
either 1 or 0 when he goes to the right, but in the given example, B at node v3

can decide whether it will be 0 or 1. It is not possible to assign unique numbers
to positions in order to evaluate them. Instead, we need either sets of numbers
in order to describe the value of a position, or we need a function that combines
the numbers to one value.

Therefore, opponent models become an important factor. Sturtevant and Korf
[16] examined the α-β algorithm in the paranoid model in that each player
assumes that all the others play against him, as well as the maxn-algorithm in
the model in that each player believes that all players try to maximize their own
profit.

2 Organization of the Paper

We are going to describe the application of our interest in Section 2. In Section
3, we present the four player types which we used for our experiments: (1)
the paranoid player, (2) the maxn player, (3) the careful maxn player, (4) the
coalition player, and in particular (5) the coalition-mixer player. We were mainly
interested in the following questions.

– Which opponent model is strong in multi-player games without dice? Can
we acknowledge Sturtevant’s and Korf’s observations?

– Most importantly: can the error-filter effect of game trees (as we described
above) be observed in n-person games? We are convinced that only player
models which can benefit from Moore’s law have a chance to survive in the
long run. Are there differences between the known player models concerning
this issue?

– How can we use our knowledge about error filtering forecasts and our ob-
servations about the previously mentioned players, in order to construct
stronger players? Are there efficient algorithms for the strong player mod-
els?

– One important step in the progress of two-person chess was the introduction
of quiescence searches. Are quiescence searches useful in four-person chess?

In Section 4 we discuss the results of our experiments and we also report about
some attempts which failed. Section 5 ends the paper with some conclusions.
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2.1 The Four-Person Chess Game

A four-person chess game is the game of interest in this paper. It has the following
four interesting properties.

(1) The fact that four players fight against each other instead only two, changes
the character of the game completely, and offers a wide research field. Is
α-β search still useful? Is forecasting still useful? What is a good playing
strategy?

(2) The board and the pieces of the game are similar to the traditional chess
ones. Therefore, we may assume that the heuristic board evaluation can be
kept similar to the chess evaluation: piece values, mobility, king safety... We
see good chances that we can carry over our expertise from two-person chess.

(3) For players already familiar with chess, it is not difficult to understand the
extra rules for four-player chess.

(4) Four player chess has no dice and contains all the problems of market models
usually inspected in game theory. Therefore, we are optimistic that results
that we achieve in this little game will have impact on the wide field of
economics.

Fig. 2. The four-person chess board

All participants — usually called White, Black, Blue, and Yellow, respectively
South, West, North and East — play against all others, fighting for one full point.
A draw between four players brings a quarter point, between three players a third
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of a point etc. The chessboard is a Chessapeak Challenge(R)1 design, but we
tried to keep the rules as near to normal chess as possible.

As you see in Fig. 2, the board consists of an 8 × 8 chess board with 4 ad-
ditional 3 × 8 partial boards connected to the four sides of the middle chess
board. In the initial position, the Kings are always placed on the right of their
Queens. All pieces move like in traditional Chess, only the Pawns have some
extra opportunities. The squares on the main diagonals of the 8 × 8-mid-board
are marked. There, Pawns can change their direction such that their distance
from their original square to a promotion square remains 12 steps. Each Pawn
can do that only once per game.

The game is artificially made finite with the help of the draw-by-repetition
rule and the 50-moves rule, which are defined analogously to the classic chess
rules. A move consists of 2, 3, or 4 partial moves, depending on how many players
are on the board. If a player is mated or his king can be taken, his pieces are
taken from the board.2

3 The Player Types

The evaluation procedure is for all player-types the same. It is measured by
a relative game portion S(i), which means that the piece values M(i), the
static and dynamic piece-square-values SPT (i), and DPT (i), plus the king
safety KS(i) of player i is divided through the sum of the values of all play-
ers:

S(i) =
M(i) + SPT (i) + DPT (i) + KS(i)∑n

j=1 M(j) + SPT (j) + DPT (j) + KS(j)
. (1)

3.1 The Paranoid Player Type

Let G = (V, E, H) be a game tree with the set of nodes V and edges E. The
nodes shall correspond to game positions and the edges to moves from one po-
sition to the next. The α-β algorithm is a depth-first search algorithm, which
runs into the search tree down to a predetermined level d. The leaves of the
tree are evaluated by some (heuristic) evaluation function H : V → [0, 1], that
assigns values (here for the sake of simplicity [0, 1]) to positions of the game. An
appropriate game tree for the α-β algorithm consists of two disjoint subsets of
nodes, so called min-nodes and max-nodes. At max-nodes, the max-player must
move and he3 builds values of inner nodes by computing the maximum over
its successor values. The analog is valid for the min-player who minimizes over
successor values. Values of inner nodes of the tree are called minimax values.
The α-β standard algorithm can easily be extended to n-person games if the
paranoid model is used.
1 http://chessapeak.com/chess.html
2 The detailed rules can be found at http://wwwcs.uni-paderborn.de/fachbereich/

AG/monien/PERSONAL/FLULO/4PChess.html
3 In this paper we use ‘he’ and ‘his’ whenever ‘he or she’ and ‘his or her’ are meant.
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value alphabeta (Position v, value α, value β, remaining depth d, player i)
// Let player 1 be the max-player, let the others be min-players.
compute the feasible successor positions v1, . . . , vb of v.
// Let H(v) be the evaluation function for leaves.
if (d == 0 or b == 0) return H(v);
for j := 1 to b

if (max-player has to move) {
α := maximum(α, alphabeta(vj , α, β, d − 1, (i + 1) mod n));
if α ≥ β return α;
if j == b return α;

} else {
β := minimum(alphabeta(vj , α, β, d − 1, (i + 1) mod n), β);
if α ≥ β return β;
if j == b return β;

}

At the best, the algorithm finds out the minimax value of the root position and
needs to examine only O(bt·(n−1)/n) leaves [16], n being the number of players,
b a uniform branching factor, and t the search depth.

Hash tables, history heuristic, killer moves, null moves, zero-window search,
and iterative deepening are important additional techniques that may enhance
an α-β algorithm [12], such that the best case can be nearly achieved in practice.

3.2 The maxn-Player Type [7]

Again, let (V, E, H) be a game tree, but V being partitioned into n disjoint
subsets for n different players. Let H be the heuristic evaluation function. In
contrast to what we saw before, let it return a vector of profits. H : V → [0, 1]n,
with

∑b
i=1 Hi(v) = 1. Let Fi(v), the ith component of a current maxn-vector of

a node v, describe the profit of player i in position v.

profit-vector maxn (position v, lower bound on predecessor’s profit
m = Fi−1(predecessor(v)), remaining depth d, player i)

compute the feasible successor positions v1, . . . , vb of v.
// Let H(v) be the evaluation function for leaves.
if (d == 0 or b == 0) return H(v);
profit-vector a := (−1, . . . ,−1);
for j := 1 to b

F (vj) := maxn (vj , ai, d − 1, (i + 1) mod n));
if (Fi(vj) > ai) a := F (vj) ;
if ai > 1 − m return a; // shallow pruning
if j == b return a;

The algorithm performs a so-called shallow pruning, i.e., pruning which is
caused by the predecessor of a cutoff node. Without speculation, this is the only
possible pruning [15]. The following example shows that so-called deep pruning
is not possible.

In Fig. 3, the third component of the profit vector of node (e) has the value
0.5. This is larger than 1 − (F1(a)) = 1 − 0.6 = 0.4, and therefore, player 1 will
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Fig. 3. Example for dangerous deep pruning

avoid that node (e) occurs on the board. Therefore, we might be willing to cutoff
the node (f). This procedure is called ’deep pruning’, because the grandfather
node (b) of the node (d) causes the cutoff.

However, although the profit vector of the node (f) cannot reach the root (b)
when the maxn-algorithm is used, (f) can change the root profit vector. First, let
us assume that (f) has the vector (0.2, 0.2, 0.6). In this case, player 3 will prop-
agate the vector to node (d). As a consequence, player 2 will choose the vector
(0.7, 0.3, 0.0) for node (c). After all, player 1 assigns this vector (0.7, 0.3, 0.0) to
the root.

Now, let the value of node (f) be (0.0, 0.4, 0.6). Player 3 will choose this for
node (d) as well, but player 2 will propagate (0.0, 0.4, 0.6) instead of (0.7, 0.3, 0.0).
Player 1 will see that node (a) is better for him than node (c), and the value
vector of the root becomes (0.6, 0.3, 0.1).

The paranoid player can also be interpreted as a special case of the maxn-
player with an appropriate evaluation function. In this sense, our distinction
between paranoid and maxn-player may look a bit artificial. We believe, however,
that the strength of the ’special case’ is severe enough that we feel encouraged
to deal with it as a separate case.

3.3 The Careful maxn (cmaxn) Player Type

As we will see in the experimental section, the paranoid player does quite a good
job. We tried to find out, what goes wrong with the maxn player, and we tried
to find other updating rules for inner node values in order to beat the paranoid
player.

The intuition behind the careful maxn (cmaxn) player type is the conjecture
that the weakness of the maxn player comes from the fact that the players do not
exactly know, what a real value vector of a position is, and that they do not know,
how the other players estimate a position. Therefore, we assume that a player
p, who has to move at node v, examines all successors, takes the observed profit
vectors of the successors, and computes a weighted average over the successor
profit vectors. We assumed it to be reasonable that a successor’s weight becomes
higher, the better it looks for player p. We assumed two advantages over the
maxn updating rule. First, every position gets a unique value vector. Second, it
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is modeled that all players want to maximize their own profit, but that they are
not sure about the opponents incentives. One possibility to realize this concept
is as follows.

Let v be a node and v1, . . . , vb its successors, n the number of players. Let
p1, . . . , pb = (p1

1, . . . p
n
1 ), . . . , (p1

b , . . . , p
n
b ) be the profit vectors of the nodes v1, . . . ,

vb. Let us furthermore assume that player P has to move. Then we define weights
wP

1 , . . . , wP
b for the b successors with

wP
i :=

(pP
i )2∑b

j=1(p
P
j )2

. (2)

The new profit vector for node v is then (p1, . . . , pb) with pi :=
∑b

k=1 wP
i · pk

i .
As the experimental section will show, this player type is a misconception.

3.4 Coalition Players

The idea of the coalition player is as follows. During the game, either all players
are more or less equally strong, or one gets the best position, one player the
worst, and two are somewhere in between. The three non-leading players have
a certain interest to stop the strongest player, but the weakest cannot sacrifice
anything. He has the least interest to attack the leading player. The strongest
player knows that the others want to bring him back, and must therefore play
against all three. He should especially play against the weakest player, in order
to mate him, before his strength is reduced to an average level. The strongest
player plays against all others. The weakest player plays against the strongest
in order to defend himself. The other two players can start coordinated attacks
against the strongest player, they can even sacrifice some game portion. We
created a player, who assumes this coalition scheme and who tries to benefit
from the coalition by examining fewer moves than the normal paranoid player.
The player with the lowest game portion ignored moves of the coaliting players
and the coaliting players ignored the moves of the player with the lowest game
portion. This attempt is too restrictive and neither successful.

3.5 Coalition-Mixer Player Type

The basic idea of the comixer player and the resulting comixer algorithm is to
improve the behavior of the paranoid α-β player. The paranoid player is a good
defender of a position, but shows some lacks in the offense.

In order to add the idea of cooperative attacks to the paranoid player, we
provide the comixer player with minimax values of various coalitions. All the
help searches for minimax values were made with the help of the α-β algorithm,
of course. Although the many small help searches can only be performed with
a relative small search depth, this player type beats an efficient paranoid player
type.

The Algorithm. For a rough description of the algorithm, we present the
following pseudo code.
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(value of position v, move (v, w) ) comixer (position v, player M , depth parameter d)
generate moves from v to the successors of v, named v1, . . . , vb

// Let b be the number of moves.
// Let a paranoid value pi(v) be the minimax value that arises when player i
// plays against all the others, preserving the move rights.

1 compute the paranoid values pi(v) for all players, using α-β searches with depth d
2 Let T be the player with best pT (v) with M �= T .

Select a set C of plausible coalitions. (Coalitions against T only.)
3 For all coalitions c ∈ C
4 For all moves (v, wi) from v to successor wi, i ∈ {1 . . . b}
5 compute minimax value ec(v, wi) := alphabeta(wi, 0, 1, d)

// Needs modification of p.4 algorithm.
// This leads to an total search depth of d + 1.

6 For all moves (v, wi) from v to successor wi, i ∈ {1 . . . b}
7 compute the benefit value of the move (v, wi): comix(v, wi).

//Comix is a piecewise linear function which combines the move values of the
//various coalitions to one move value.

8 return the best move with its value.

Explanation of the Algorithm. In the case of three remaining players, there
are three possible coalitions, in which two players can cooperate with each other.
In the case of four players we have four coalitions in which one single player fights
against the remaining players and three two-by-two coalitions. For our four-
person Chess game this is sufficient, but you can easily generalize the approach
for a n-player game by calculating the corresponding possible coalitions.

In order to reduce the number of coalitions to be examined, the comixer
algorithm does not compute the values of all possible coalitions. Instead, we
concentrate on coalitions against the player with the best position. Let M be
the player, who has the right to move. The comixer selects that player T �= M
as a target, who possesses the greatest portion of the game (see line 2 of the
algorithm) except M itself. This decision is made by performing the paranoid α-
β procedure with a low searching depth (see line 1 of the algorithm). After this,
the comixer calculates all coalitions with M and T not simultaneously being a
member (see line 3 of the algorithm). For example, in the four-player game it
calculates the paranoid coalition against himself (all against M), the coalition
against player T (all against T ) and the two remaining two-by-two coalitions,
in which T is not in the team of M . Note, that these coalitions can also be
computed by the α-β algorithm, because the game is reduced to a two-player
game.

For getting minimax values for the moves of player M at the present node v,
the α-β algorithm is not started at the root, but at its successors (see line 4-5
in the algorithm).

The Mixing Functions. The goal is to make the paranoid player cooperate
with other players when it seems necessary. For instance, in the situation that
one player gets a relatively high game value, he may be able to dominate all
other players and win the game. To prevent this, the cooperating coalitions get
higher weights, the more player T’s game value reaches the 50% border.
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When we reach line 6 of the comixer algorithm, we know how good the moves,
starting from v, are in the specific coalitions. In order to make the benefits of
the moves comparable to each other, we divide the value of a move by the value
of the best move in the specific coalition. Note, that player M minimizes in the
paranoid coalition against T . Thus, the best move has a value, that is not greater
than the value of the considered move. So here you have to divide the value of
the best move by the value of the given move. Altogether you get the following
definition.

Let c ∈ C be the observed coalition and h ∈ {1, . . . , b} be the index, for which
ec(v, wh) ≥ ec(v, wj) ∀j ∈ {1, . . . , b}. Then the relative strength of a move (v, wi)
in a coalition c is defined as

rc(v, wi) := min{ ec(v, wi)
ec(v, wh)

,
ec(v, wh)
ec(v, wi)

} . (3)

Now we can mix the values of the different coalitions (this is where the name of
the algorithm comes from). The total value comix(v, w) of a given move (v, w) is
calculated with the help of a set of k weight functions f1, . . . , fk, which depend
on the game portion of the player S with the highest game portion (S = T or
S = M), computed in line 1 of the comixer algorithm, whereas k is the number
of the observed coalitions. A property of the fi is, that

k∑
c=1

fc(x) = 1, ∀x ∈ [
1
n

, 1] . (4)

Then the comix function for a move with index i is defined as

comix(v, wi) :=
k∑

c=1

fc(pS(v)) · rc(v, wi) . (5)

We split the description of the functions in two important parts.
(1) M is determined to be the player with the highest value in line 1 of the

algorithm. In this case, the mixing functions are very easy. The paranoid coalition
gets a continously very high weight of between 80% and 90% depending on
the number of the remaining players. The more players there are, the less is the
importance of the paranoid coalition, because more coalitions participate. The
residual 10-20% are shared by the other coalitions.

(2) The more interesting case will occur, when M is determined to be not the
player with the highest value. Here we use piecewise linear functions to combine
the weights of the coalitions. If there are three remaining players (see Fig. 4) we
only need to combine two coalitions, as mentioned above.

When player T has a value of 33% of the game, the paranoid coalition against
M has 90% weight and the paranoid coalition against T has 10% weight. This
ratio switches linearly until player T has 50% of the game. From this rate on up
to 100%, the weights are constant.

If there are four players in the game, the ratios between the paranoid coalitions
are similar (see Fig. 5).
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Fig. 4. Comix weight function for 3 players

Fig. 5. Comix weight function for 4 players

Only the two two-by-two coalitions are added. Both begin with a value of 5%,
when T ’s game value is 25% and reach their peak of 15% weight at 37.5% of
T ’s game value. After that they fall down to 2% each at 50% of T ’s value. After
this 50% line the functions again keep their values constant. Reasoned by the
addition of the values of the two-by-two coalitions the values of the two paranoid
functions (in particular the one against T) are decreased.

4 Experiments

Our generic four-person chess program consists of a move generator, a heuristic
evaluation function which assigns a profit-vector to each position, and a search
procedure. The evaluation function uses piece values for all pieces, similar as used
in classic computer chess. A Knight, however, is not as much worth as a Bishop
or three Pawns. Its value is only two Pawns. Moreover, we use mobility as a
feature, and piece square tables in order to provide the players with a long-term
idea where to place the pieces. The king cover consists of the existence/non-
existence of the pawn shield, as well as of the distance between the pawn-shield
and the King. The values are in relation to a player’s portion of the game, i.e.,
the sum over all components of a profit vector is 1.



Multi-Player Games 221

The search procedure depends on the player model used. In the case of the
paranoid player, we use the α-β algorithm, enhanced with the killer heuristic,
hash tables and iterative deepening. In all other cases, we use plain versions of
the algorithms. Typical search data are the following. On a 2.4 GHz Pentium
processor, the α-β algorithm searches about 1.1 million nodes per second without
quiescence search and about 0.6 million nodes per second with quiescence search.
Within 3 minutes computing time, it traverses search trees with depths between
7 and 8 without quiescence search, about 6 partial moves with quiescence search.

In order to play games, we set up 16 starting positions by hand. Six games
were played with each of these 16 opening positions. Four players of two different
types (i.e., two groups of two are identical players each) lead to six different
orders, how the players can sit at the table. The two players of one group can sit
at NE (North and East), SE, NW, SW, EW, or NS. The South-player starts the
game. Thus, each contest consists of 96 games. In order to shorten the games,
we adjudicate a game as soon as one player reaches more than 65% of the game
portion. The semantic change of the players’ actions can certainly be negotiated,
and with this modification, a typical game takes between 200 and 300 quarter-
moves. Mostly, at the end two players remain on board with one of them having
more than 65% of the game portion.

4.1 Results

Table 1 presents some pairings with the paranoid player type and the maxn-
player type involved, and the results. ’+Qs’ means quiescence search was used,
’−Qs’ means that it was not used. ’m/M’ means minutes per move and tells
us how many minutes time each side had for each move. We played 96 games
per pairing, starting on a collection of 16 start positions. When a player type A
scores more than 64 percent of the points against player type B, we may assume
that this is not the effect of randomness.

Quiescence Search. Quiescence search is an important feature in traditional
computer chess. The idea is that you should evaluate only so called quiet posi-
tions with the help of the static evaluation function. A position will be quiet if
the player to move has no further taking moves. Quiescence search seems to be

Table 1. Results of pairings between the paranoid and the maxn-player type

Player 1 Player 2 Result

α-β +Qs , 3m/M α-β −Qs , 3m/M 46 1
6

: 46 5
6

maxn +Qs maxn −Qs 27 5
6

: 62 1
6

α-β +Qs , 3m/M maxn −Qs , 3m/M 86 : 10

α-β +Qs, 3m/M maxn −Qs, 2m/M 84 1
2

: 11 1
2

α-β +Qs, 2m/M maxn −Qs, 3m/M 81 5
6

: 14 1
6

α-β +Qs, 3m/M α-β +Qs, 30s/M 64 1
2

: 31 1
2

maxn −Qs, 3m/M maxn −Qs, 30s/M 54 : 42
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less important in the 4-player chess game, because the α-β with quiescence search
(+Qs) lost against the α-β without quiescence search (−Qs) with 46 1

6 : 46 5
6 , and

more distinct, the maxn +Qs lost against the maxn −Qs 27 5
6 : 62 1

6 . For further
experiments we use the quiescence search paranoid players, but not for the maxn

players.

Paranoid α-β vs. maxn-Player. Although Sturtevant [14,15] already stated
that the paranoid player was strong in several other games, the result of 86 : 10 is
astonishingly clear. The following example is shown in order to show the different
behavior of the different player types.

In the position of Fig. 6, only three quarters of a move are played, but Yellow
(East) is in danger already. If East continues with a careless move (e.g. if he
moves his queen-bishop pawn one step forward), White (South) can play Bg3
(South’s bishop on the file of the South’s queen) and Blue (North) can already
mate East. Only the maxn player moves South’s bishop to g3, because the para-
noid player assumes that North will not take East out of the game as from the
paranoia’s point of view North and East are in a coalition against South. If a
paranoid player leads East’s pieces, he will interestingly handle East’s position
correctly. If he leads North’s pieces, he will also correctly eliminate East. In sim-
ple words, the paranoid player participates in cooperative attacks only in the
terminator role, but he never initiates such attacks as we will see below.

We repeated the games with a predetermined search depth instead of restrict-
ing the time per move, in order to find out whether structural reasons or the

Fig. 6. Early elimination of a careless player
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superior efficiency of the α-β algorithm are responsible for the maxn disaster.
The result was 88 : 8 for the paranoid player, and therefore, we may conclude
that the real reason for the weaknesses of the maxn player lies in the fact that
he relies on the other players’ actions to be performed as he does expect them.
Let us again inspect the position of Fig. 2. Assume in Fig. 2 the maxn player has
South’s pieces and is to move, he may initiate a cooperative attack by playing
Qxl8+ (South’s Queen takes East’s Pawn). Assume now that (1) West helps
South and plays Qxm9+ (West’s Queen takes East’s Pawn) and that (2) North
would not help East by playing Bxl8 (North’s Bishop takes South’s Queen), but
helps South and West, East is mated and may leave the board.

If West is a maxn player he will indeed help South to mate East. Although
West’s Queen will vanish (because North will not (neither if it is a maxn nor
if it is a paranoid player) help East with Bxl8, and South will thereafter take
West’s Queen), West has a certain advantage, because East is completely out of
the game. If, however, West is a paranoid player, he will never participate in this
attack, because he believes North prevents the elimination of East after Qxm9+
by moving Bxl8, whereafter he would simply lose his Queen, because the only
move East has, is taking West’s Queen with his Knight Nxm9. But if West does
not participate in the attack, South will just lose his Queen, because East will
take it in the next move. In other words: it is the existence of the paranoid player
which makes the game of the maxn player wrong.

Differences in Thinking Times. In the way as we expected it, the α-β player
type with 3 minutes per move wins against the α-β player type with 30 seconds
per move clearly with 64 1

2 : 31 1
2 . Again, the maxn player faces problems. The

player who has more time per move available wins only by 54 : 42.

The Careful maxn (cmaxn) Players and the Coalition Player. Both
player types could not gain any benefit from their models. The careful maxn

player lost 81 5
6 to 14 1

6 , and the coalition player 87 5
6 to 8 1

6 against the paranoid
players.

The Comixer Algorithm. The comixer played 96 games against the paranoid
α-β as well. The depth parameter of the comixer was fixed at 4, and the time
that the paranoid player had available depended on the time which the comixer
needed for its calculation. The α-β player then received the arithmetic middle of
the last two times the comixer needed. With the help of this rule, the paranoid
players reached searching depths between 7 and 9. The result of the match was
58 1

3 to 37 2
3 for the comixer. The main disadvantage with this approach is that

we do not yet know how its performance scales with increasing machine power.

5 Conclusion

We made experiments with various player models in the area of the four-person
chess game. We created a couple of candidate player models, and examined their
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relative strengths. Moreover, we investigated in how far computing power plays
a role for the playing strength of the player models, and we investigated the
effect of quiescence searches.

The paranoid player is quite strong and for a long time, we did not find any
competitive other player model. After all, however, we were able to present the
so-called comixer player type which performs better than the paranoid standard
player. This proves that a simple worst-case analysis of the position is not the
best choice, although being astonishingly effective. Moreover, some player models
can better benefit from increasing computing power than others.
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Abstract. Probabilistic combinatorial games (PCGs) are a model for
Go-like games recently introduced by Ken Chen. They differ from nor-
mal combinatorial games since terminal positions in each subgame are
evaluated by a probability distribution. The distribution expresses the
uncertainty in the local evaluation. This paper focuses on the analysis
and solution methods for a special case, 1-level binary PCGs. Monte-
Carlo analysis is used for move ordering in an exact solver that can
compute the winning probability of a PCG efficiently. Monte-Carlo inte-
rior evaluation is used in a heuristic player. Experimental results show
that both types of Monte-Carlo methods work very well in this problem.

1 Introduction

Heuristic position evaluation in game-playing programs should be a measure
of the probability of winning. However, in point-scoring games such as Go or
Amazons, evaluation functions usually approximate the score of the game instead
of the winning probability. This can lead to serious blunders when programs
make a risky move to gain even more territory, instead of playing conservatively
to preserve a comfortable lead [8,7].

One approach to dealing with uncertainty of evaluation is to replace scalar
evaluation by partially ordered values, such as probability distributions. For the
case of minimax search such approaches were developed in [2,9]. Chen [7] extends
this approach to the case of combinatorial sums of independent games [3], and
defines the framework of probabilistic combinatorial games (PCGs). Figure 1
shows an idealized example of how PCGs might be applied to Go. A board is
split into three independent areas, and the result of local search in each area is
represented by a PCG. Terminal nodes in the local search are evaluated by a
probability distribution.

Chen [7] defined the PCG model and gave a high-level solution algorithm.
This paper presents first computational results. The main contributions are as
follows.

– Efficient exact and heuristic solvers for the special case of sums of 1-level
binary PCGs, called SPCGs.

– An analysis of the search space of SPCGs.
– A Monte-Carlo move-ordering technique used in alpha-beta search for the

exact SPCG solver.

H.J. van den Herik et al. (Eds.): ACG11, LNCS 4250, pp. 225–238, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



226 L. Zhao and M. Müller

– A Monte-Carlo based heuristic evaluation technique for SPCGs with perfor-
mance close to that of the optimal player.

– An extensive experimental evaluation of the two solvers.

Area 1 Area 2

Area 3

Black plays first:

20 points ( ,98%) 2 points (2%)

White plays first:

-8 points (50%), 12 points (50%)

Black plays first:

10 points (99%), 9 points (1%)

White plays first:

-12 points (90%), 3 points (10%)

Black plays first:

10 points (100%)

White plays first:

-25 points (30%), -7 points (70%)

Fig. 1. PCG example: sum of three subgames

The remaining part of the paper is organized as follows. Section 2 gives defin-
itions and notation for SPCGs, and introduces the main problems addressed in
this paper. Section 3 analyzes game trees in SPCGs and describes methods to
evaluate terminal and interior nodes. Section 4 develops the design of an exact
solver and a strong heuristic player. Section 5 presents detailed experimental
results and analysis. Future work is discussed in Section 6.

2 Definitions and Problem Identification

The following definition of a probabilistic combinatorial game (PCG) is adapted
from [7].

1. A terminal position, represented by a probability distribution d = [(p1, v1),
(p2, v2), · · · , (pn, vn)], is a PCG. In d, the outcome is vi with a probability
of pi, with 1 ≤ i ≤ n, 0 ≤ pi ≤ 1 and

∑n
i=1 pi = 1.

2. If A1, A2, · · · , An and B1, B2, · · · , Bn are all PCGs, then {A1, A2, · · · ,
An | B1, B2, · · · , Bn} is a PCG. As in combinatorial games, the players are
called Left and Right. A1, A2, · · · , An are the Left options and B1, B2, · · · ,
Bn are the Right options.

3. A sum of PCGs is a PCG. Summation is understood in the sense of com-
binatorial game theory [3]: a move in a sum game consists of a move to an
option in exactly one subgame and leaves all other subgames unchanged.
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PCGs are played as follows.

(1) A move can be played in any non-terminal subgame.
(2) If all subgames are terminal, the game itself is terminal, and its probability

distribution is the sum of the distributions of all subgames.
(3) A game is won for Left if the value is greater than 0, and won for Right

otherwise. From a terminal game, the probability of winning is computed by
adding the probabilities of all values greater than 0.

The PCG model contains combinatorial games as the special case where all
probability distributions in terminal positions have a single point distribution of
the form d = [(1, v)].

This paper focuses on a different special case of PCGs which models uncer-
tainty but keeps the combinatorial games as simple as possible. A Simple PCG
(SPCG) is a PCG which obeys the following constraints.

1. An SPCG consists of n ≥ 1 subgames.
2. Each subgame has exactly one option for Left and one option for Right.
3. Each option immediately leads to a terminal position represented by a prob-

ability distribution.
4. Each distribution d in a terminal position has only two values with associated

probabilities: d = [(p1, v1), (p2, v2)].

An SPCG of n subgames is of the form
∑n

i=1{dL
i | dR

i }, where both dL
i and

dR
i are 2-valued probability distributions.
In SPCGs, a move can be simply indicated by the number of the subgame.

In the experiments and analysis in this paper, without loss of generality, Left
always moves first. This paper focuses on two basic problems concerning SPCGs.

1. Efficient exact solution: What is the winning probability of Left in a given
SPCG?

2. Approximate solution: When solving an SPCG is too slow, how to play as
well as possible under time constraints?

3 Game Tree Analysis of SPCGs

Game trees in SPCGs contain many regularities that can be exploited in an
efficient solver. Assume a game G has n subgames. There are n choices of a
subgames for the first move, n−1 choices for the next move, and the kth move has
n−k choices. If the root of a game tree is defined as a node at depth 0, then any
node at depth k has exactly n−k children, and there are n!/(n−k)! nodes in total
at depth k. The total number of nodes in the game tree is

∑n
k=0 n!/(n − k)! =∑n

k=0 n!/k!, and there are n! terminal nodes.
Since all subgames are independent, the order of play of the subgames chosen

by the same players does not change the evaluation. Each position can be repre-
sented by three sets: the Left set (Right set) contains the indices of all subgames
played by Left (Right), and the open set contains the indices of all subgames
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Table 1. Statistics for SPCGs with 12 to 15 subgames

Terminal All distinct Distinct
Subgames All nodes nodes nodes terminal nodes

12 1,302,061,345 479,001,600 143,365 924
13 16,926,797,486 6,227,020,800 414,584 1,716
14 236,975,164,805 87,178,291,200 1,201,917 3,432
15 3,554,627,472,076 1,307,674,368,000 3,492,117 6,435

that have not been played yet. For example, the sequence of subgames chosen
(1, 2, 3) is equivalent to the sequence of (3, 2, 1). If n = 5, then the Left set after
both these sequences would be {1, 3}, the Right set {2}, and the open set {4, 5}.

For a position after k moves (a node at depth k in the game tree), k subgames
have been played by the two players, �k/2� by Left and �k/2 by Right. The
number of distinct nodes at depth k is equal to the number of possible combi-
nations of left and right sets, There are

(
n

�n/2�
)

distinct terminal nodes, and the

total number of distinct nodes in the game tree is
∑n

k=0

(
n
k

)(
k

�k/2�
)
.

As an example, Table 1 lists the number of nodes for SPCGs with 12 to 15
subgames. The total number of distinct nodes in a game increases roughly by a
factor of 3 per subgame. The number of distinct terminal nodes increases by a
factor close to 2 (exactly 2 if n is odd, 2− 2

n+2 if n is even). There is a very large
number of transpositions in the game tree, and there are many more distinct
interior nodes than terminal nodes.

3.1 Terminal Node Evaluation

In an SPCG with n subgames, the value of each terminal node T in its game
tree is a sum of n probability distributions:

T =
n∑

i=1

[(p1,i, v1,i), (p2,i, v2,i)] . (1)

T itself can be expressed as a single, complex probability distribution over
sums of values v1,i and v2,i. The winning probability of T for Left is the sum of
all probabilities of values greater than 0 in T . The following formula expresses
the winning probability Pw of T . Let q(i) ∈ {1, 2} (1 ≤ i ≤ n) be such that the
result value vq(i),i is chosen at subgame i. Then

Pw =
∑

{pq(1),1pq(2),2 · · · pq(n),n|
n∑

i=1

vq(i),i > 0},

∀2n choices of q(1), q(2), · · · , q(n) . (2)

There are at least three methods to evaluate Pw.

1. Direct evaluation of all 2n combinations above.
2. A dynamic programming algorithm, representing the distribution as a list

of bins and adding one distribution at a time. This is effective when the
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values v are all integers within a small range. However, in the worst case
(real numbers or large integers), the final distribution can contain up to 2n

distinct non-zero entries, and this algorithm does not improve on the direct
one.

3. Using the fact that the probability density of a sum is the convolution of
the probability density functions of summands. Again, in the worst case the
result will contain up to 2n non-zero components.

In the experiments reported in this paper, for the range of n tested, methods
1 and 2 perform similarly well. Method 3 was not implemented. Method 2 can
be further improved by noting that the final result required is only the value
Pw, not the exact distribution. All intermediate results that are far enough from
0 to ensure a win or loss can be bagged and removed from further processing.
This improves the efficiency. In experiments with n = 14 subgames, optimized
dynamic programming was about twice as fast as the direct approach for a
range of values v ∈ [−1000, 1000] but twice as slow for a larger range v ∈
[−5000, 5000]. Since the dynamic programming version is efficient only when the
range is limited, method 1 was used for all further experiments and discussion
in this paper.

It is costly or even infeasible to compute the exact winning probability of a
terminal node when n is large. In such a situation, it is desirable to have a good
approximation method with controllable statistical error. In cases when a quick
estimate is sufficient, approximation can improve the performance of an SPCG
solver or player.

Monte-Carlo sampling is used to approximate winning probabilities. For each
distribution d, a value is generated. For example, if d = [(p1, v1), (p2, v2)], then
v1 is generated with probability p1 and v2 with probability p2 = 1 − p1. In
an SPCG terminal node T , n values are generated from the n distributions of
subgame outcomes, and the sum of these n values is the result of the sample.
Left wins if and only if the sum is greater than 0. The fraction of wins P k

w from
k independent samples is used to approximate the winning probability in T .

For each sample, the winning probability is Pw , and 1 − Pw is the probability
of a loss. The mean of the distribution is Pw, and the standard deviation is√

Pw(1 − Pw). According to the Central Limit Theorem, the mean of random
samples drawn from a distribution tends to have a normal distribution. When k
is sufficiently large, P k

w has a normal distribution with mean Pw and standard

deviation
√

Pw(1−Pw)
k ≤ 1

2
√

k
. This inequality can be used to select the minimum

value of k for a given required accuracy. For example, according to the normal
distribution, almost for sure (99.7%) the difference between Pw and P k

w is no
more than 3

2
√

k
. With 10, 000 samples, the difference is 99.7% likely to be within

0.015.
Experiments shown in Table 2 list the difference between Pw and P k

w in ran-
dom terminal nodes, and compare it with the theoretical bounds. For games
consisting of n subgames, 100 terminal nodes are randomly chosen as test cases.
For each terminal node, probabilities were uniformly generated from between 0%
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and 100% with granularities of 1% and 0.001%. Values were uniformly generated
between -1000 to 1000 with a granularity of 1.

For each terminal node, the error estimate, which is computed by Pw − P k
w,

is recorded for k from 3 to 33333. The standard deviation of the estimated error
from the 100 terminal nodes is compared with its theoretical bound ( 1

2
√

k
) in

Table 2 for n is 14, 17, and 20, respectively.

Table 2. Standard deviation with probability granularity of 1% and 0.001%

Granularity # Samples
1% 3 10 33 100 333 1,000 3,333 10,000 33,333

1/2
√

k 0.2887 0.1581 0.0870 0.0500 l0.0274 0.0158 0.0087 0.0050 0.0027
14 subgames 0.1768 0.1118 0.0488 0.0320 0.0189 0.0118 0.0070 0.0050 0.0042
17 subgames 0.2294 0.1176 0.0717 0.0348 0.0203 0.0121 0.0074 0.0059 0.0052
20 subgames 0.2427 0.1020 0.0580 0.0314 0.0246 0.0121 0.0077 0.0059 0.0045

Granularity # Samples
0.001% 3 10 33 100 333 1,000 3,333 10,000 33,333

1/2
√

k 0.2887 0.1581 0.0870 0.0500 0.0274 0.0158 0.0087 0.0050 0.0027
14 subgames 0.1893 0.0977 0.0655 0.0322 0.0190 0.0107 0.0053 0.0034 0.0019
17 subgames 0.1923 0.1093 0.0619 0.0419 0.0206 0.0125 0.0064 0.0038 0.0019
20 subgames 0.2091 0.1154 0.0634 0.0329 0.0199 0.0130 0.0064 0.0034 0.0019

The experimental results match the prediction very well when there is a fine
granularity for randomly generated probability, but the model is not appropriate
for coarse granularity when large sample sizes are used.

The term Monte-Carlo terminal evaluation (MCTE) is used to refer to the
Monte-Carlo method discussed in this subsection. MCTE estimates the winning
probability of a terminal node.

3.2 Monte-Carlo Sampling for Heuristic Interior Node Evaluation

Left’s winning probability at an interior node, which is represented by its Left,
Right and open sets, can be computed by a complete minimax search, using
the exact evaluation of Subsection 3.1 in all terminal nodes of the search. How-
ever, when full search is too slow, Monte-Carlo sampling is useful for improving
heuristic evaluation as well. Such methods are popular in games with incomplete
information such as Poker [4], and also in games with complete information such
as Go [6]. Abramson’s expected-outcome evaluation [1] evaluates a node in a
search tree by averaging the values of terminal nodes reached from it through
random play. This method is adapted here. Similar ideas are developed in [10,2].

From an interior node, the sequence of alternate moves by both players to
reach a terminal node is simulated by randomly choosing each move of the
sequence among all its legal choices with equal probability. Such a simulation is
iterated k times, and the average winning probability of the k sampled terminal
nodes is an approximation of the winning probability of the interior node. The
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winning probability at terminal nodes can be either accurately computed by
using Formula (1) in Subsection 3.1, or approximated by methods such as MCTE.

In SPCGs, the order of moves chosen by the same player is irrelevant. For
efficiency, a move sequence simulation can be replaced by uniformly randomly
selecting k nodes out of all descendant terminal nodes below this interior node.
Such sampling is only meaningful if k is (much) smaller than the total number
of descendant terminal nodes of an interior node.

Experiments measure the difference between Pw and P ′
w. For an interior node,

its exact game value Pw and the approximate value P ′
w estimated by the average

winning probability of all its descendant terminal nodes are computed. The
test set consists of starting positions from 100 randomly generated games with
n = 14 subgames. The mean of |Pw −P ′

w| is 0.148 in the experiments. Since the
difference is large, Pw can not be approximated well using P ′

w. However, for a
set of interior nodes at the same depth, their errors are highly correlated, and
the relative order of their P ′

w values is a very good approximation of the order
of their Pw values. Subsection 5.4 gives detailed results. P ′

w is an excellent move
ordering heuristic.

In contrast to MCTE, the term Monte-Carlo interior evaluation (MCIE) is
used to refer to the Monte-Carlo sampling discussed in this subsection. MCIE es-
timates the winning probability at an interior node. Monte-Carlo move ordering
uses MCIE for move ordering at interior nodes in a search.

Monte-Carlo sampling is used in both the Monte-Carlo terminal evaluation
and the interior evaluation, but they serve different purposes, and have different
control parameters. These two types of evaluation are used in an exact SPCG
solver and a heuristic SPCG player, which will be discussed in the next two
sections.

4 Exact Solver and Heuristic Player for SPCGs

In order to compute the exact winning probability of a game, a complete solver
was implemented based on alpha-beta search. Standard enhancements including
transposition tables and move ordering using the history heuristic [11] are used.

The optimized solver spends more than 90% of its time on the accurate eval-
uation of terminal nodes. Since an SPCG game tree has far more interior than
terminal nodes, most terminal nodes must be evaluated in order to solve the
game. Unless a more efficient method can be found to evaluate terminal nodes,
it is difficult to further improve the overall performance of the solver.

For cases when it is infeasible to solve an SPCG, or when it is desirable to
play the game fast with reasonable strength, a heuristic player was designed
as follows. A fixed depth alpha-beta search is performed. Non-terminal frontier
nodes of the search are evaluated using MCIE. Within MCIE, terminal nodes
are evaluated by MCTE for efficiency.

A heuristic Monte-Carlo player with search depth of 1 is the same as the
expected-outcome player in [1]. It performed well in experiments. This player
chooses its move as follows: it finds all legal moves from the starting position,
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generates a depth-1 interior node for each move, and compares these nodes us-
ing MCIE. The move that leads to the highest-valued depth-1 node is chosen.
This simple technique performs very well in SPCGs. An advantage of this 1-ply
Monte-Carlo sampling method is that it is friendly to time control. Each sam-
pling process costs almost the same amount of time, and it can be performed
continuously until time runs out. Experimental results for the solver and heuris-
tic player are given in the next section.

5 Experimental Results and Analysis

This section summarizes experimental results for different configurations of the
SPCG solver and the Monte-Carlo SPCG player, and measures how Monte-Carlo
move ordering performs in games.

5.1 Experimental Setup

All experiments were run on Linux workstations with AMD 2400MHz CPUs.
The compiler was gcc 3.4.2. The transposition table has 220 entries, using about
34MB memory. Since the evaluation of terminal nodes is expensive, they can
never be overwritten by interior nodes in the transposition table.

A set of 100 randomly generated games with n = 14 subgames are used for
testing. Probabilities were uniformly generated between 0% and 100% with a
granularity of 1% and values between -1000 to 1000 with a granularity of 1.
Table 3 contains statistics for solving these instances. Each cell is of the form:
mean value ± standard deviation. The first player has a big advantage in SPCG,
so the average winning probability is much larger than 50%.

Table 3. Statistics of solving the 100 random games

Time: 8.2 ± 0.8 sec
Total nodes visited: (2.2 ± 1.2) × 105

Terminal nodes visited: (2.5 ± 0.2) × 103

Cache hits: (1.3 ± 0.8) × 104

Winning probability: 70.0% ± 25.8%

5.2 Performance of the Exact Solver

Monte-Carlo move ordering has two important parameters: the percentage of the
total number of descendant terminal nodes to be sampled, nt (see Subsection
3.2), and the number of value combinations to be sampled for approximate eval-
uation of each terminal node, nc (see Subsection 3.1). The Monte-Carlo move
ordering uses MCIE, which contains two levels of Monte-Carlo sampling: on the
top level, a number of an interior node’s descendant terminal nodes are randomly
chosen. On the bottom level, each of these terminal nodes is evaluated by the
average result of a number of value combinations sampled from the value distri-
butions of the node. Finally, the evaluation of the interior node is the average
evaluation of those terminal nodes sampled.



Solving Probabilistic Combinatorial Games 233

The solver has a depth limit for Monte-Carlo move ordering (dm). Nodes
at depth up to dm use MCIE for move ordering, and others use the history
heuristic. The total time for solving the 100 test games for different parameter
combinations is given in Fig. 2.

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 1  10  100  1000

T
ot

al
 s

ol
vi

ng
 ti

m
e 

(s
ec

on
d)

Number of combinations sampled (nc)

nt=1     dm=1
nt=1/10  dm=1
nt=1/100 dm=1

nt=1     dm=2
nt=1/10  dm=2
nt=1/100 dm=2

Monte-Carlo disabled

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 1900

 2000

 2100

 2200

 1  10  100  1000

T
ot

al
 s

ol
vi

ng
 ti

m
e 

(s
ec

on
d)

Number of combinations sampled (nc)

nt=1     dm=3
nt=1/10  dm=3
nt=1/100 dm=3

nt=1     dm=4
nt=1/10  dm=4
nt=1/100 dm=4

Monte-Carlo disabled

Fig. 2. Solving time with respect to parameters in Monte-Carlo move ordering

In the figure, the straight lines parallel to the x-axis denote the solving time
when Monte-Carlo move ordering is disabled, and the solver uses only the history
heuristic for move ordering. The large difference between these lines and the best
solving time demonstrates that Monte-Carlo move ordering is superior to the
history heuristic.

Even when only a small number of value combinations are sampled (nc =
1, 10, 100), the terminal node evaluation seems to provide a reasonably good
estimate of the approximate value of interior nodes. nc = 1000 is too slow to be
practical.

In the range of nc from 1 to 100, for each depth limit dm the solving time
almost always increases when nt decreases. This indicates that the more descen-
dant terminal nodes sampled, the better the performance will be. Thus it is best
to sample all those terminal nodes whenever possible.

The depth limit for Monte-Carlo move ordering is an intricate parameter that
needs a trade-off between search efficiency and overhead computation. Figure 3
shows the solver’s performance for dm from 0 to 14 for fixed nt = 1 and nc = 10.
With dm = 0 only the history heuristic is used for move ordering, and with
dm = 14 only Monte-Carlo move ordering is used.

Figure 3 clearly shows that for dm ≥ 4, the solver’s performance is relatively
stable in terms of solving time and number of nodes visited. This fact suggests
that the Monte-Carlo move ordering is more powerful for nodes close to the
root of the game tree. It is also evident in the bottom graph of Fig. 3 that the
number of terminal nodes gradually decreases as dm increases, which proves that
the Monte-Carlo interior evaluation is more accurate than the history heuristic
for move ordering in this game.



234 L. Zhao and M. Müller

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

 1600

 1700

 1800

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

T
ot

al
 s

ol
vi

ng
 ti

m
e 

(s
ec

on
d)

Depth limit for monte-carlo move ordering (dm)

 10000

 100000

 1e+06

 1e+07

 1e+08

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

A
ve

ra
ge

 n
um

be
r 

of
 n

od
es

 v
is

ite
d

Depth limit for monte-carlo move ordering (dm)

 2000

 2200

 2400

 2600

 2800

 3000

 3200

 3400

 0  1  2  3  4  5  6  7  8  9  10  11  12  13  14

A
ve

ra
ge

 n
um

be
r 

of
 te

rm
in

al
 n

od
es

 v
is

ite
d

Depth limit for monte-carlo move ordering (dm)

Fig. 3. Statistics of the solver for different values of dm (nt=1, nc=10)

5.3 Performance of the Monte-Carlo Player

The relative strength of two players is tested by playing 100 random games twice,
switching colors for the second game. A player’s winning probability of a game
is the average of its winning probabilities in the two rounds. The perfect player
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Fig. 4. The perfect player against the Monte-Carlo player: winning probability and
time ratio

always achieves 50% winning probability against itself, and at least 50% against
any player.

The Monte-Carlo player has two parameters: the search depth (at least 1),
and nc for the approximate evaluation of terminal nodes. It was tested with
different configurations of these two parameters, and against the perfect player.
Figure 4 illustrates the winning probability of the perfect player as well as the
ratio of the time the perfect player spent to that of its Monte-Carlo counterpart.
The parameter dm is set to the search depth (meaning only MCIE is used),
and nt = 1. In the figure, nc = all means that all terminal nodes are evaluated
exactly.

The left graph in Fig. 4 reveals an interesting property of the Monte-Carlo
player: increased search depth does not necessarily lead to better winning prob-
ability, and sometimes even weakens the player. The Monte-Carlo player with
accurate terminal node evaluation is best against the perfect player, but it uses
almost the same amount of time, so it is not practical.

When the number of value combinations sampled, nc, is from 100 to 1000
while the search depth is very shallow (1 or 2), the Monte-Carlo player performs
very well. Especially when nc = 1000 and the search depth is 1, the perfect
player only achieves a winning probability of 50.56%. The Monte-Carlo player
is just about 1% weaker.

The Monte-Carlo player with nc = 1000 needs time comparable to the perfect
player (about 25% to 30%), and is much slower than the player with nc = 100.
The latter player seems to offer a good compromise between time and accuracy:
it plays games quickly, using 4% of the perfect player’s time, and is only about
3% weaker.

It is not surprising that players with small nc do not perform well. Insufficient
sampling leads to large errors. The graph on the right side in Fig. 4 suggests
that a deeper search can make up for insufficient sampling to some extent.
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5.4 Monte-Carlo Move Ordering

Since MCIE provides good estimates, it is important to provide a quantitative
measurement to show how good it is with regard to move ordering.

As an experiment, one interior node at each depth is randomly selected from
each of the 100 test games. For each node, all pairs of legal moves are compared
to test if the order of their exact values is the same as the order suggested by
MCIE. If it is different, then Monte-Carlo evaluation makes a mistake, and the
winning probability difference of the two moves is recorded. This value denotes
the winning probability lost due to the mistake. The average probability error,
defined as the average of this value over all move pairs, measures the quality
of move ordering for this node. The influence of move ordering on choosing the
best move is measured by the worst probability error, the winning probability
difference between the best move and the move suggested by MCIE.

Figure 5 illustrates the influence of nc on the quality of Monte-Carlo move
ordering. Data points with probability error of 0 are not shown due to the loga-
rithmic scale used. Again, nc = all means that accurate terminal node evaluation
is performed. The two graphs in Fig. 5 clearly show that Monte-Carlo evaluation
provides nearly perfect move ordering with marginal error if there are a substan-
tial number of value combinations sampled. Even when nc is small, 10 or 100,
the worst probability error is still less than 2%. The error becomes larger when
the node is closer to terminal nodes.
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Fig. 5. Probability error due to incorrect move ordering

6 Conclusions and Future Work

This paper investigates SPCGs, sums of 1-level probabilistic combinatorial
games, and discusses methods to solve them, as well as strong heuristic players.
Properties of this game are analyzed, and experimental results clearly show that
Monte-Carlo methods are useful for evaluation of both terminal and interior
nodes.
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Quite interestingly, comparing the average winning probability of all descen-
dant terminal nodes of an interior node is a good indicator of the relative value as
measured by winning probability. Experimental results show convincingly that
this heuristic performs well in move ordering for this game, and that is why it
could bring a big performance increase to the complete solver and also why the
Monte-Carlo player based on it performs well against the perfect player. It is
interesting to investigate when and why Abramson’s simple expected-outcome
evaluation provides a good heuristic in games, and the SPCG seems to be a good
abstract model to study.

The SPCG solver and the Monte-Carlo player still have room for improvement.
The bottleneck of the solver lies in the accurate evaluation of terminal nodes.
An improvement on sampling strategy would be to incorporate progress pruning
and selective search [4,6,5]. In the current Monte-Carlo player, each legal move
is sampled at the same frequency. However, it is more efficient to use an adaptive
strategy such that most of the effort is spent on those moves that have a high
chance of being selected.

An SPCG solver could be incorporated in a Go program. The solver would
be used on the high level to instruct the program to maximize its winning prob-
ability. As proposed in [7], such an approach might help to improve the playing
strength of current Go programs. It would present a significant new application
of Monte-Carlo methods.
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Abstract. A sumber is a sum of ups, downs and star. Sumbers can
describe the positions of many partisan infinitesimal games. Earlier, we
provided a simplification rule [6] that can determine whether a game G
is a sumber or not, and if it is, determine the exact sumber of G from
its left and right options, GL and GR. This article extends the previous
result and presents three variations of colored heap games; each of them
can be solved by sumbers.

1 Introduction

We are concerned with combinatorial games and follow the notations and con-
ventions of Winning Ways [1]. We also assume the readers are familiar with
numbers [3] and nimbers [2,4]. Numbers and nimbers are well-known game sub-
groups with the following two properties.

1. There exists a simple rule to determine the outcome of any game in the
subgroup.

2. There exists a simplification rule that can simplify games in the subgroup.

In March 2005, we presented another subgroup, sumbers [6], having the above
properties. This section briefly reviews the definitions and major results about
sumbers.

Definition 1. For any number d, define

↑(d) = {↑(dL), ∗|∗, ↑(dR)} , (1)

where ∗ = {0|0} (pronounced star). ↑ followed by the empty set is the empty set.

Each ↑(d), d > 0, is called an up. The negation of an up is called a down. We use
the notation n·↑(d) to denote the sum of n copies of ↑(d).

Definition 2. A sum of ups, downs, and star is called a sumber. A sumber S
can be written in the standard form:

S = s0 ·∗ +
∑

k=1,n

sk·↑(dk) , (2)

where s0 = 0 or 1, sk �= 0, 0 < k ≤ n, and 0 < dk < dk+1, 0 < k < n.
∑

k=1,n sk

is called the net weight of S.
� This paper is sponsored by National Science Council, Taiwan. [93-2213-E-346-006].
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The outcome of a sumber can be determined by theorem 1 [6].

Theorem 1. Let S be a sumber in the above standard form. Then,

– S > 0 if and only if (
∑

k=1,n sk > s0) or (
∑

k=1,n sk = s0 and s1 < 0);
– S < 0 if and only if −S > 0;
– S = 0 if and only if n = 0 and s0 = 0;
– S | 0 , otherwise. 
�

Definition 3. Let S be a sumber in the above standard form. For each m ∈
{0, dk : 1 ≤ k ≤ n}, define

Sm =
∑

k=1,n; dk≥m

sk·↑(dk) −
∑

k=1,n; dk≥m

sk·↑(m) . (3)

We say S has a cut at m if Sm ≤ 0.

Each sumber has at least one cut. We are only concerned with the minimum cut:
the smallest number in {0, dk : 1 ≤ k ≤ n} which is a cut. When S is a sumber,
and m is the minimum cut of S, we call Sm the upper section and

Sm = S − Sm (4)

the lower section of S.
Sums of ups and downs (excluding ∗) are totally ordered. If GL and GR are

sets of sumbers, then G has at most two non-dominated options, one contains
∗ and the other does not, in each of GL and GR. In other words, G can be
simplified as

G = {A, B|C, D} , (5)

where A, B are the non-dominated options in GL and C, D are the non-
dominated options in GR.

Definition 4. Let G = {A, B|C, D}, where A, B, C, D are sumbers and the
net weight of C is less than or equal to the net weight of D. The critical section
X(G) of G = {A, B|C, D} is defined as the set of numbers x ≥ m satisfying all
the following inequalities:

↑(x) |> A − Cm + ∗ ,

↑(x) |> B − Cm + ∗ ,

↑(x) < | C − Cm + ∗ ,

↑(x) < | D − Cm + ∗ ,

where m is the minimum cut of C.

Theorem 2 [6] can simplify games with sumber options.

Theorem 2. Let G = {A, B|C, D}, where A, B, C, D are sumbers and the net
weight of C is less than or equal to the net weight of D.
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– If A< | 0, B < | 0 and C |> 0, D |> 0 then G = 0.
– If A || ∗, B || ∗, and C || ∗, D || ∗ then G = ∗.
– Otherwise (without loss of generality, we may assume either G > 0 or G >

∗), G is a sumber if and only if X(G) is not empty. Moreover, when G is a
sumber,

G = Cm + ∗ + ↑(p) (6)

where m is the minimum cut of C and p is the simplest number in
X(G). 
�

Sumbers can describe the positions of many partisan infinitesimal games. In each
of the next three sections, we study one variation of a colored heap game.

2 Up-Down Game

The Up-Down game was first proposed by K. Y. Kao [5]. It is played on a number
of heaps of counters. Each counter is colored either black or white. Left and Right
move alternatively and their legal moves are different.

– When it is L’s turn to move, he1 can choose any one of the heaps and
repeatedly removes the top counter until either he removed a white counter
or the heap has become empty.

– When it is R’s turn to move, he can choose any one of the heaps and repeat-
edly removes the top counter until either he removed a black counter or the
heap has become empty.

The player who removes the last counter is the winner.
Let S be a heap, we use the notation S : B (or S : W ) to denote the heap by

adding a black (or white) counter on top of S.

Proposition 1. Each colored heap in Up-Down game is a sumber (or the nega-
tion of a sumber) of the form:

S = s0. ∗ +
∑

k=1,n

sk·↑(dk) , (7)

where s0 = 0 or 1, sk > 0, 0 < k ≤ n and 0 < dk < dk+1, 0 < k < n.
Moreover, a heap with one single counter has the value ∗ (in this case, we can
assume n = 0 and d0 = 0.)

When S has at least two counters, and the color of the counter next to the
bottom counter is black,

S : B = {SL|S} = S + ↑(dn) + ∗ , (8)
S : W = {S|SR} = S − ↑(dn) + ↑(dn + 1) . (9)

1 In this paper, we use ‘he’ and ‘him’ wherever ‘he or she’ and ‘his or her’ are meant.
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When S has at least two counters, and the color of the counter next to the bottom
counter is white,

S : B = {SL|S} = S + ↑(dn) − ↑(dn + 1) , (10)
S : W = {S|SR} = S − ↑(dn) + ∗ . (11)

Proof. The proof is by induction. We assume S is a sumber in the standard
form. Consider the case where S has at least two counters, and the color of the
counter next to the bottom counter is black. According to the rule of the game,
we have S : B = {SL|S}. Since dn is the minimum cut of S, the critical section
of S : B is

X(S : B) = {x ≥ dn : SL − S + ∗< | ↑(x)}
= {x ≥ dn : ↑(dn − 1) − ↑(dn) + ∗< | ↑(x)} = {x ≥ dn} . (12)

The simplest number in X(S : B) is dn. Thus, according to theorem 2,

S : B = S + ↑(dn) + ∗ . (13)

According to the rule, S : W = {S|SR}. The critical section of S : W is

X(S : W ) = {x : S − SR + ∗< | ↑(x)}
= {↑(dn)< | ↑(x)} = {x > dn} . (14)

The simplest number in X(S : W ) is dn + 1. Thus,

S : W = SR+ ↑(dn + 1) + ∗ = S− ↑(dn)+ ↑(dn + 1) . (15)

The case where the color of the counter next to the bottom counter is white can
be proven in a similar way. 
�
Proposition 1 can help us figuring out the exact sumber of any Up-Down heap.
The color of the counter next to the bottom counter determines whether the
sumber is positive or not. If it is black then the sumber is positive, otherwise
(white) the sumber is negative. When the sumber of a heap is positive, the
number of black counters (other than the bottom counter) equals the net weight
of the sumber; the number of white counters plus 1 equals the highest order of
the up terms in the sumber.

Example 1. Consider the heap BBBWWB (from bottom up).
The color of the counter next to the bottom counter is black. By repeatedly
applying proposition 1, we have

B : B = ∗ : B = ↑(1) ,

BB : B = BB + ↑(1) + ∗ = 2·↑(1) + ∗ ,

BBB : W = BBB − ↑(1) + ↑(2) = ↑(1) + ↑(2) + ∗ ,

BBBW : W = BBBW − ↑(2) + ↑(3) = ↑(1) + ↑(3) + ∗ ,

BBBWW : B = BBBWW + ↑(3) + ∗ = ↑(1) + 2·↑(3) . (16)

Thus,

BBBWWB = ↑(1) + 2·↑(3) . 
�
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3 Up-Down Game II

The setup of Up-Down II is the same as the Up-Down game, but the legal moves
are different.

– When it is L’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a white counter is removed, or
2. removes all the counters from the heap.

– When it is R’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a black counter is removed, or
2. removes all the counters from the heap.

The player who removes the last counter is the winner.
Each colored heap in Up-Down II corresponds to a Hackenbush number [1].

1. First, translate the heap into a binary string. From bottom up and ignoring
the bottom counter, each black counter is translated into digit 0; each white
counter is translated into digit 1. If the string starts with digit 1, add digit
1 to the end of the above string; if the string starts with digit 0, add digit 0
to the end of the above string.

2. Next, translate the binary string into a Hackenbush number. A string starting
with digit 1 is translated into a positive Hackenbush number; a string starting
with digit 0 is translated into a negative Hackenbush number. Without loss
of generality, we may assume the string starting with digit 1. From left to
right, the first place where the digits changes from 1 to 0 is translated into a
decimal point. Let n the number of 1s to the left of the decimal point. Then
n− 1 is the integer part of the Hackenbush number. The digits to the left of
the decimal point is the dyadic rational part of the Hackenbush number.

The next proposition gives the solution of Up-Down II.

Proposition 2. Each colored heap in Up-Down II is a sumber of the form:

Sd = ↑(d) + ∗ , (17)

where d equals the Hackenbush number of the heap.

Proof. We prove by induction. Assume the claim is true for numbers simpler
than d. By induction hypothesis,

SdL = ↑(dL) + ∗ and SdR = ↑(dR) + ∗ . (18)

According to the rule,

Sd = {SdL , 0|0, SdR}
= {↑(dL) + ∗, 0|0, ↑(dR) + ∗}
= {↑(dL), ∗|∗, ↑(dR)} + ∗
= ↑(d) + ∗ . (19)


�
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Example 2. Consider the heap WWWBBWW (from bottom up). The corre-
sponding binary string of the heap is 1100111. The number of 1’s to the left of
the first 0 is 2. Thus, the integer part of the number is 1 (=2-1). The rational
part is .0111 (in binary notation) which equals 0.4375. This string represents the
Hackenbush number 1.4375. According to proposition 2, the heap has the value
↑(1.4375) + ∗. 
�

4 Up-Down Game III

The setup of Up-Down III is the same as Up-Down and Up-Down II, but the
legal moves are different.

– When it is L’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a white counter is removed, or
2. removes all the counters from the heap, or
3. splits the heap into two none-empty heaps.

– When it is R’s turn to move, he can choose any one of the heaps and
1. repeatedly removes the top counter until a black counter is removed, or
2. removes all the counters from the heap, or
3. splits the heap into two none-empty heaps.

The player who removes the last counter is the winner.
Let Sd denotes the heap whose Hackenbush number is d. With simple induc-

tion, one can show that Sd > ∗ iff d > 0, and Sd2 > Sd1 iff d2 > d1. At the first
glance, it may be seen that both players have many splitting options. But, after
a detailed analysis, we know that each player has at most one dominant split
option.

1. L will never split Sd when d > 0; R will never split Sd when d < 0.
2. When L splits Sd(d < 0) into two heaps −Sb + Su, u must be a number

greater than b and b must be the minimum among all the possible split
options.

3. When R splits Sd(d > 0) into two heaps Sb−Su, u must be a number greater
than b and b must be the minimum among all the possible split options.

The next proposition gives the solution of Up-Down III.

Proposition 3. Each colored heap in Up-Down III is a sumber (or the negation
of a sumber) of the form:

Sd = {SdL , 0|0, SdR} = ↑(d) + ∗ , (20)

(when R has no dominant split option)

or the form:

Sd = {SdL , 0|Sb − Su, SdR} = Sb − Su+ ↑(m) + ∗ , (21)

(when R has a dominant split option)

where d > 0 is the Hackenbush number of the heap, Sb − Su is the dominant
split, and m is the simplest number greater than u.
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Proof. The proof is by induction. Assume the claim is true for games simpler
than Sd. When R has no dominant split option, Sd has the same value as in
Up-Down II. When R has a dominant split option, there are two possible cases.

– case dL = b:

X(Sd) = {x : SdL − Sb + Su + ∗< | ↑(x)}
= {x : Su + ∗< | ↑(x)}
= {x > u} (22)

– case dL > b: In this case, R has a dominant split option on dL. Moreover,
by induction hypothesis,

SdL = Sb − SuR+ ↑(m′) + ∗ , (23)

where Sb −SuR is the dominant split, and m′ is the simplest number greater
than uR.

X(Sd) = {x : SdL − Sb + Su + ∗< | ↑(x)}
= {x : −SuR + Su+ ↑(m′)< | ↑(x)}
= {x > u} (24)

In both cases, we have X(Sd) = {x > u}. By theorem 2,

Sd = {SdL , 0|Sb − Su, SdR} = Sb − Su+ ↑(m) + ∗ , (25)

(when R has no dominant split option)

where m is the simplest number in X(Sd). 
�
Example 3. Consider the heap WWWBBWW (from bottom up).
The corresponding Hackenbush number is 1.4375. R can split WWWBBWW
into WW + WBBWW whose corresponding Hackenbush numbers are 1 and
-1.25 respectively. The simplest number greater than 1.25 is 2. Thus,

WWWBBWW = S1.4375 = S1 − S1.25 + ↑(2) + ∗ . (26)

Next, consider the heap WBBWW = −S1.25. L can split WBBWW into
WB + BWWW of which the corresponding Hackenbush numbers are -1 and
3, respectively. The simplest number greater than 3 is 4. Thus,

WBBWW = −S1.25 = −S1 + S3 − ↑(4) + ∗ . (27)

Since R has no dominant split option at WW and BWWW , we have

WW = S1 = ↑(1) + ∗ , (28)
BWWW = S3 = ↑(3) + ∗ . (29)

Finally, putting all together,we have

WWWBBWW = S1.4375 = ↑(2) + ↑(3) − ↑(4) + ∗ . (30)


�
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5 Conclusion

We presented three variations of colored heap games. The sumber simplification
rule is a powerful tool to analyze these games. In the Up-Down game, the sumbers
contain only positive (or negative) ups with integer orders. In the Up-Down II
game, the sumbers may contain ups with rational orders. In the Up-Down III
game, we find sumbers that contains both positive and negative terms. It is
interesting to see how a small change of the rule may produce different game
values. The most interesting thing is that all these games can be solved by
sumbers.
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Abstract. The paper presents a method to simulate the physics of the
game of pool. The method is based upon a parametrization of ball motion
which allows the time of occurrence of events, such as collisions and
transitions between motion states, to be solved analytically. It is shown
that the occurrences of all possible events are determined as the roots of
polynomials up to fourth order, for which closed-form solutions exist. The
method is both accurate, returning continuous space solutions for both
time and space parameters, and efficient, requiring no iterative numerical
methods. It is suitable for use within a game tree search, which requires a
great many potential shots to be modeled efficiently, and within a robotic
pool system, which requires a high accuracy in predicting shot outcomes.

1 Introduction

Pool and its variations and close relatives billiards, carom, and snooker, are col-
lectively classified as cue sports. While the precise origins of pool are unknown,
it is an ancient game believed to have evolved from a common ancestor of golf
and croquet. Shakespeare made reference to the game, and Marie Antoinette
was known to be an enthusiast. There has recently been a resurgence of interest
in pool world-wide: pool was recognized as a demonstration sport by the Inter-
national Olympic Committee at the 1998 Nagano Olympics, and it is estimated
that in 2003 over 40.7 million people picked up a cue in the U.S. alone.

The first effort to develop a robotic system to play a cue sport was the
Snooker Machine of Khodabandehloo et al. [17], which was developed in the
early 1990s. There are currently a number of such systems under development,
including Deep Green [12], the Pool Sharc [2], and others [10,6,7,11,5]. To
play pool robotically is a challenging objective; a greater challenge is to achieve
a level of play strong enough to compete against a proficient human player. In
addition to the purely robotic aspects of the problem such as computer vision
and mechatronics, which involve accurate sensing and actuation, there is a sig-
nificant amount of strategy involved in playing pool. Placement of the cue ball
following a shot is considered one of the key elements to successful play, and
even moderately accomplished players tend to plan at least 3 shots ahead. In
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this way pool bears a similarity to other games of strategy, such as chess and
checkers. One significant difference is that chess and checkers are played on a
board with discrete positions so that the number of possible board states is fi-
nite, although huge. In contrast, a pool table is a continuous domain, with a
truly infinite number of possible table states.

To predict the outcome of a shot accurately (i.e., the final rest locations of all
balls) requires a knowledge of physics. Game strategy and physics are therefore
intertwined, which is one of the intriguing aspects of the game. Most players have
an intuitive understanding of the physics involved, a result of heuristics and many
hours of observation. Computational pool, however, requires an explicit physical
model of the balls, cue, and table, and their interactions. An early investigation
of pool physics was explored by Coriolis [8], and the most thorough treatment
to date is that of Marlow [13]. Recent work includes Bayes and Scott [3],Walker
[18], Wallace and Schroeder [19], Witters and Duymelinck [20], and Onada [14];
books such as Koehler [9], Petit [15], Alciatore [1]; and a monograph by Shepard
[16], who extended aspects of Marlow’s work and also explored the statistical
basis of certain strategies. Billiards has also been used as a model problem in
the field of quantum chaos, although this field is not related to the macroscopic
problem of predicting ball motion examined herein.

This paper describes the development of a pool physics simulator that is
both numerically accurate and computationally efficient. The simulator has been
developed for use within the gaming component of the Deep Green system
and was also distributed as the physics model behind the Computational Pool
Tournament of the 10th and 11th Computer Olympiads. There currently exist a
number of commercial and online pool simulators, each of which have attractive
graphics, automatic strategies, and an underlying physics model. While many
of these games are based upon seemingly realistic physics models, pool players
have varied opinions about the level of realism and usefulness of these simulators,
and there are some situations where anomalies occur. All of these simulators are
closed systems, with the notable exception of foobilliard [4].

Our objective is to develop a pool physics simulator that is both highly accu-
rate and efficient, which can be used by both the gaming and robotics communi-
ties to further the development of computational and robotic pool. For robotic
pool it is necessary to have a highly accurate physics simulator due to the con-
tinuous nature of the game, so that the outcome of each shot can be predicted
accurately. For computational pool, it is important that the physics simulator be
efficient, as it may be called repeatedly to evaluate potential shots within a game
tree. To satisfy both of these criteria, we have foregone the standard integration
method of simulation, which discretizes time, in favor of an event-based method
that solves each shot analytically and exactly over a continuous time domain.
A further benefit is that the order of events, which may be obscured by the
integration method when the time between events is small, will be preserved.

This paper continues in Sect. 2 with a description of the physics model. Section
3 describes the various motion states and events that can occur, and describes a
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method to predict analytically the time of each event. The method is discussed
in Sect. 4 and the paper concludes in Sect. 5 with a description of future work.

2 Pool Physics

In this section we model the physics of the impact of the cue and the ball (2.1),
the resulting ball motion (2.2), and the collision of the ball with the rails or
other balls (2.3).

2.1 Cue-Ball Impact

Each shot commences with the cue striking the cue ball. Let (̂i, ĵ, k̂) be the ball-
centric coordinate reference frame illustrated in Fig. 1. The central axis of the
cue is denoted by a vector �q, which by definition is parallel to the vertical ĵ-k̂
plane. Vector �q is oriented at an angle θ to the horizontal î-ĵ plane, and we make
the simplifying assumption that the cue contacts the ball at a single point Q∈�q,
thereby ignoring the geometry of the cue tip. If R is the radius of the ball, a and
b are the respective horizontal and vertical displacements of Q from the ball’s
center, and c = |√R2 − a2 − b2|, then Q = (a, c, b). For Q to lie on the ball’s
surface we must have a2 + b2 ≤ R2, so the ĵ component of Q must always be
real and non-negative.

To model the trajectory of the cue ball, its initial velocity �v immediately after
being struck by the cue must be written in terms of the impact parameters a, b,
θ and V0, the magnitude of the velocity of the cue immediately before striking

 

Fig. 1. Cue Impact
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the ball. Newton’s Second Law �F = m�a is integrated to give the velocity of the
ball in terms of the force �F exerted on the ball by the cue impact (cf. [16]).
Assuming that the time duration of the collision is very small1, the force �F can
be treated as a perfectly elastic impulse and integrating Newton’s Second Law
with respect to time over the small duration tf − ti of the collision gives:

∫ tf

ti

�F (t)dt = �F

∫ tf

ti

δ(t = ti)dt = �F = m

∫ tf

ti

�a(t)dt = m�v(t = tf ) , (1)

or simply:
�F = m�v . (2)

The post-impact velocity of the ball is therefore expressed in the ball-centric
coordinate reference frame as:

�v =
(

0,
−F

m
cos θ,

−F

m
sin θ

)
. (3)

The magnitude of the force F in terms of the impact parameters is derived by
simultaneously solving the equations for conservation of linear momentum and
conservation of energy before and after the cue impact to obtain:

F =
2mV0

1 + m
M + 5

2R2

(
a2 + b2 cos2 θ + c2 sin2 θ − 2bc cos θ sin θ

) , (4)

where m is the ball mass and M is the cue mass.
The non-zero k̂ component of �v indicates that the ball has a component of

initial linear velocity in the vertical direction when the cue is not horizontal,
which is the basis of the jump shot. The event-based solution method we develop
later in this paper could be easily extended to deal with three-dimensional ball
motion, but in our model we ignore this k̂-component of the cue ball’s initial
velocity and assume that all balls are confined to movement on the surface of
the table, which is true for the majority of shots encountered in actual play.

In addition to linear velocity, the collision with the cue also imparts an angular
velocity to the ball whenever a, b, or θ are nonzero. The ability to control the
angular velocity (i.e., spin) of the ball is an essential skill in mastering the game.
Players conceptualize the following 3 types of spin:

– Follow: i.e., top spin. Follow is achieved by striking the ball above center
(b > 0), so that there is a component of spin around the ball’s positive î-axis.
The usual desired effect of follow is to have the cue ball continue its forward
motion after colliding with an object ball.

– Draw: i.e., back spin. Draw is the opposite of Follow, and is achieved by
striking the ball below center (b < 0). After an object ball collision, the cue
ball reverses direction.

1 Marlow [13, p.45] empirically determined the collision duration to be ∼ 200µsec at
a speed of 1 m/s.
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– English: i.e., side spin. Left or right English is achieved by striking the ball
slightly left (a > 0) or right (a < 0) of the center respectively, resulting in a
rotation around the ball’s k̂-axis. There are a number of possible effects of
English, including altering the angle of incidence of the cue and/or object
balls following a collision. English can also be communicated to object balls.

Given the moment of inertia of a solid sphere as I = 2
5mR2, the post impact

instantaneous angular velocity of the ball within the ball frame is:

�ω =
1
I

(−cF sin θ + bF cos θ, aF sin θ, −aF cos θ) . (5)

It is interesting to note that instances of the above itemized spins can all be
achieved with a horizontal cue (i.e., θ = 0), in which case the ĵ-component �ωy

of �ω vanishes. When �ωy = 0, the ball travels with straight rectilinear motion2.
There is a fourth type of spin, usually attempted only by more advanced players,
wherein the cue is elevated at an extreme angle nearly perpendicular to the
table (θ ∼ 90o). This causes a large �wy component resulting in a curvilinear ball
motion; it is the basis of curve and massé shots.

2.2 Ball Motion

As the ball moves across the table, the only unbalanced external force acting on
it is friction with the table. This friction acts at the point of contact between
the ball and the table surface, in a direction opposite to the ball’s motion. We
approximate this as a single point of contact, although in reality the ball com-
presses the fibers of the table cloth and sinks slightly into the cloth so that the
point of contact is actually a small portion of the ball’s spherical surface.

When a ball is struck by the cue, it begins its motion by sliding across the
surface of the table. After some time, the interplay between the table friction
and the ball’s linear and angular velocities causes the ball to start rolling. It
takes a very specific combination of the ball’s linear and angular velocities to
cause it to transition from the sliding to the rolling state. Assume the ball is
moving in the î direction. Intuitively, the ball will be rolling only when it makes
one full revolution about the ĵ axis for every distance 2πR that it travels along
the table, equal to the circumference of the ball.

Marlow [13] classified the ball motion as either sliding or rolling by considering
the relationship between the linear velocity of the ball and the angular velocity
of the ball at the point of contact with the table surface. The relative velocity
�u(t) of the point P at the bottom of the ball that is in contact with the table
surface is [13]:

�u (t) = �v (t) + Rk̂ × �w (t) . (6)

The ball slides across the table surface when �u (t) �= 0 and rolls across the table
surface when �u (t) = 0. Note that the relative velocity �u(t) has no k̂-component
2 Many people believe that the use of English necessarily causes the cue ball to travel

with curvilinear motion, which is incorrect. The ball travels in a straight trajectory
unless struck with an elevated cue stick.
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since k̂×k̂ = 0. As a result, the angular velocity about the vertical k̂ axis does not
couple into the translational motion of the ball and must be treated separately
as we shall see below.

From Newton’s Laws of motion and Eq. 6, the following equations govern the
sliding ball’s state variables for position �r (t), velocity �v (t), and angular velocity
�ω (t) as a function of time t, expressed in a frame of reference attached to the
center of the ball such that the î axis of this frame is along the ball’s direction
of motion:

�rB (t) =
[
xB (t)
yB (t)

]
=
[

v0t − 1
2µsgt2û0x

− 1
2µsgt2û0y

]
; (7)

�vB (t) = �v0 − µsgtû0 ; (8)

�ωB (t) = �ω‖ (t) = �ω0 − 5µsg

2R
t
(
k̂ × û0

)
. (9)

The “B”-subscripts in the above equations indicate that the equations are ex-
pressed in the ball frame. The subtractive terms represent the effect of the table
friction slowly bleeding off the ball’s speed and spin as time progresses. The
“0”-subscripts denote the initial values, and “x” represents the î-component of
a vector, for example. The gravitational constant is represented by g and µ is
the dimensionless coefficient of friction, which takes on values between 0.0 and
1.0 and results from the material properties of the ball and table cloth surfaces.
Larger values of µ correspond to larger frictional forces which reduce the ball’s
speed and spin more quickly.

The k̂ components of �r (t) and �v (t) are assumed to be zero at all times as a
result of the earlier assumption that the ball is constrained to movement on the
surface of the table. Eq. 9 is a three-dimensional vector equation for the angular
velocity, but since the k̂-component of k̂ × û0 is zero, the k̂ component of the
angular velocity given by Eq. 9 does not evolve with time. This is a result of the
assumption of a single point of contact between the ball and the table cloth. We
denote �ωB (t) as �ω‖ (t) since the ball always lies in the plane of the table, the
î-ĵ plane. To calculate the vertical component of the ball’s angular velocity as a
function of time, denoted by ω⊥, we use the simple model suggested by Marlow:

ω⊥ (t) = ω⊥0 − 5µspg

2R
t . (10)

In practice the coefficients of friction governing the sliding and the spinning
motion of the ball are denoted by µs and µsp, respectively.

To find the position of the ball in the table frame as a function of time, �r (t),
we first express �rB (t) in the table frame using a simple rotation:

�rT (t) =
[
cosφ − sinφ
sin φ cosφ

]
�rB (t) , (11)

where φ is the angle between the initial velocity vector of the ball and the î-
axis of the table frame (i.e., the ball’s heading relative to the table frame). The
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position of the ball in the table frame is then �r (t) = �r0 + �rT (t). By combining
Eqs. 6, 8 and 9, the relative velocity evolves with time according to:

�u (t) = �u0 − 7
2
µsgtû0 . (12)

The sliding state lasts until �u (t) = 0, so from Eq. 12 the duration τS of the
sliding state is:

τS =
2 |�u0|
7µsg

. (13)

The rolling state is defined by the condition �u (t) = 0, whence |�v (t)| =
R
∣∣�w‖ (t)

∣∣. When �u (t)=0 the ball travels one circumference in the î direction for
every rotation about the ĵ-axis as shown in Fig. 2. During the sliding state the
angular velocity �ω is arbitrary and the relative velocity �u is non-zero. During the
rolling state the relative velocity is zero and the angular velocity lies in the î-k̂
plane with |�ω‖| = |�v|/R. The force of friction acting on the ball is denoted by �F
and the point of contact between the ball and table is denoted by P in Fig. 2.

Fig. 2. Ball Dynamics During the Sliding State (left) and Rolling State (right)

Once the relative velocity has vanished and the ball has started rolling, it
continues rolling in a straight trajectory because there is no angular velocity
around the axis along which the ball is moving. During this natural roll state
the ball’s state variables evolve according to Newton’s Law of Motion under the
constraint on the angular velocity �ω‖ imposed by the natural roll condition:

�r (t) = �r0 + �v0t − 1
2
µrgt2v̂0 ; (14)

�v (t) = �v0 − µrgtv̂0 ; (15)
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∣∣�ω‖ (t)
∣∣ =

|�v (t)|
R

. (16)

Once again, the subtractive terms in Eqs. 14 and 15 represent the effect of ta-
ble friction, where µr is the coefficient of rolling friction, in general different from
µs

3. By definition, during the rolling state the direction of �ω‖ is perpendicular to
the direction of the ball’s motion as shown in Fig. 2. During the rolling state the
vertical component of the angular velocity, �ω⊥, continues to evolve according to
Eq. 10.

The natural roll state lasts until the table friction reduces the ball’s velocity
to zero, so from Eq. 15 the duration of the rolling state is:

τR =
|�v0|
µrg

. (17)

Since µs �= µr, the motion of a moving billiard ball is quantitatively different
during the sliding and rolling states. During the natural roll state, the ball al-
ways travels in a straight trajectory because the component of spin about the
ball’s axis of motion is zero by definition. During the sliding state, however, any
component of spin about the axis of motion, resulting from θ>0, causes the ball
to move in a curved path, as evident in the non-zero ĵ-component of the ball po-
sition as expressed in the ball frame from Eq. 7. A computer model attempting
to predict the dynamics of the game accurately, including the curvilinear motion
during the sliding state, must therefore treat the sliding and rolling motions
separately.

2.3 Collisions

Once a ball is in motion, there are two types of collisions that can occur: a
collision with another ball, and a collision with a rail (cushion). A simple model
of the dynamics of a collision between two balls begins by assuming that there is
no friction between the balls and therefore no transfer of spin/English between
them. The transfer of linear momentum between the balls is straightforward to
calculate and then the post-collision velocities of the balls are easily obtained.

Experienced pool players know that in reality a small amount of friction exists
between the two balls when in contact with one another, adding a key dimension
to the game. This friction is the source of the important effect known as throw,
in which the spin of the cue ball is communicated to the object ball during
the short time of the collision, causing a deflection of the object ball from the
intended post-impact trajectory. The effect of throw is small but must be taken
into account for any measure of success on long shots down the table.

Marlow [13] treats the most general case of the collision by including ball-
ball friction using linear and angular momentum conservation laws as a starting
principle. This results in a system of 16 equations in 16 unknowns which is solved
to obtain four equations for the post-impact velocities and angular velocities for
3 Marlow experimentally measured µsp=0.044, µr=0.016 and thereby calculated

µs=0.2 [13, p. 237].
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the two balls. Our model uses Marlow’s equations in order to solve the dynamics
of the ball-ball collision.

Models of the ball-cushion interaction often involve some model of a damped-
spring system. Some of the ball’s kinetic energy is absorbed by the cushion, and
the angular velocity of the ball is altered by the collision. We use Marlow’s [13]
damped-spring model to calculate the post-impact linear and angular velocities
for the ball-rail collision.

3 Event-Based Simulation

We now consider the problem of simulating the physics of the game. The chosen
simulation method must be computationally efficient because it will be used in
a game strategy algorithm to expand a search tree, which necessitates invoking
the method for a large number of potential shots. We also strive for physical
accuracy in the simulation, both to make a simulated game more realistic and
to allow its use within a robotic system, wherein slight inaccuracies can result
in missed shots.

3.1 Discrete Numerical Integration

The obvious first option for a simulation method is numerical integration. With
full knowledge of the state variables for a ball’s position �r (t), velocity �v (t) and
angular velocity �ω (t) at a given time t, these state variables are advanced forward
in time by a small discrete amount ∆t, using some discrete numerical integration
technique. The simplest approach equates the acceleration of the ball to the time-
derivative of its velocity, and integrates the acceleration equation assuming that
the acceleration is constant over ∆t. This gives the velocity after ∆t in terms of
the previous time step’s velocity and the (constant) acceleration: �v (t + ∆t) =
�v (t)+�a∆t. Similarly, integrating the velocity and assuming it is constant over the
tiny ∆t yields the position �r (t + ∆t) = �r (t)+�v∆t. This method is the standard
approach for modeling physics in human-interactive computer games of all kinds,
where the emphasis is more on apparent realism than on physical accuracy.
Computational efficiency is increased as a result of the linear approximations to
the actual equations for the state variables �r (t), �v (t), and �ω (t) as a function
of time t. However, this increased efficiency is obtained at the expense of the
accuracy of the solution.

In pool, use of the integration method boils down to the problem of the
discovery of events after they have occurred, and then handling them using
the appropriate physics. After each time step, the simulator must consider all
ball positions, velocities, and angular velocities to determine whether any events
such as ball collisions or rail collisions have occurred during the previous ∆t. Due
to the continuous measurement domain, it is highly improbable that an event
occurs exactly at the beginning or end of a time step; it is much more likely that
an event occurs sometime within the time step, i.e., at a fractional ∆t.

For example, assume that two moving balls collide at time tc within time step
si, where the duration of si is [ti0, tif ]; tif−ti0 = ∆t. The separation distance D
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of the centers of the balls at tc is exactly equal to 2R. Prior to tc, their separation
D > 2R, and provided ∆t is sufficiently small relative to the linear velocities of
the balls, then D < 2R within the period [tc, tif ]. Upon inspection at time tif ,
the simulator would realize that a collision must have occurred sometime during
si, because D < 2R. The simulator would then have to back up in time to tc
in order to apply the appropriate equations governing the collision. Backing the
model up by a fraction of ∆t to calculate the exact values of the state variables
at tc adds complexity and the possibility of lost accuracy. Calculating the exact
value of tc without making any simplifying assumptions that may limit accuracy
is itself a challenging problem. Another option is to return iteratively to ti0 and
simulate forward with a smaller time step, iterating until the time step has been
reduced such that ∆t ≈ tc − ti0, in order to advance forward from ti0 to tc with
no approximations. This option adds complexity and decreases efficiency.

In addition, a common situation in pool is that of frozen balls, where two or
more balls are stationary and in contact before being struck by another moving
ball. The discrete integration method would have difficulty simply recognizing
and handling the events in the correct order, because the time between events is
so small. Modeling a break shot this way is difficult, and computer-pool games
often use either a heavily-approximated solution, or some randomized selection
from an encyclopedia of pre-computed break shots, instead of attempting to
generate a new break shot each time.

Therefore, there are several intertwined challenges associated with the inte-
gration method applied to modeling pool physics. Choosing a reasonable time
step ∆t is a difficult trade-off between speed and accuracy, and dealing with
the fact that events usually occur within a time step necessitates complexity
and approximations. A smaller time step results in a more accurate model for
two reasons: (1) the assumption that the speed of the ball is constant over the
time step is more valid as ∆t is reduced, and (2) with a smaller time step any
approximations needed to back the model up by a portion of a time step will be
more accurate. However, with a larger time step the model can predict the even-
tual outcome much faster since fewer computations are necessary. Given these
challenges and drawbacks, we looked to another approach to model the outcome
of a shot.

3.2 Continuous Event-Based Simulation

Since the equations developed in Subsect. 2.2 provide the value of the ball-state
variables at any time t, we chose to take an event-oriented approach that allows
us to solve the ball-dynamics problem exactly, in the continuous domain in both
time and space.

Motion States and Events. The approach is based upon the observation that
a ball can be in one of four possible motion states at any time t:

– Sliding, defined by �v (t) �=0 and �u (t) �=0, during which the ball slides across
the table;
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– Rolling, defined by �v (t) �=0, and �u (t)=0, during which the ball rolls across
the table;

– Spinning, defined by �v (t)=�u (t)=0 and �ω (t)=±|�ω (t) |k̂, during which the
ball spins in place about the vertical axis;

– and Stationary, defined by �v (t) = �u (t) = �ω (t) = 0, when the ball is com-
pletely stationary.

An event is defined as the transition of a ball from one motion state to another.
A motion transition event occurs simply through the passage of time as a ball’s
speed and spin evolve under the influence of the table friction. In addition, there
are a number of collision events that occur when two objects impact, resulting in
a change of the ball’s linear and angular velocities and therefore a transition to
a different motion state. Events are classified into the following five categories:

– Cue-strike, in which the cue ball is struck by the cue stick;
– Ball-collision, in which two balls collide with each other;
– Rail-collision, in which a given ball collides with a cushion on the table;
– Pocket-collision, in which a given ball is pocketed;
– and Motion-transition, in which a given ball transitions from one motion

state to another through the passage of time.

Event Time Prediction. Using this framework, the simulation problem boils
down to one of prediction of when the next event occurs. When modeling a
shot, we calculate the time τE at which the next event E occurs and advance
each ball’s state variables �r (t), �v (t) and �ω (t) forward in time to t = τE using
the appropriate equations from Subsect. 2.2. We then apply the appropriate
physics for the event, for example calculating the post-collision instantaneous
linear and angular velocities of two balls following a Ball-collision event.
This is an attractive solution method because the dynamics of the moving balls
are calculated completely analytically, with no approximations, and are subject
only to floating point (double precision) round off error. A summary of the
event-based algorithm is presented in Fig. 3.

The problem of predicting τE for the collision of two balls with one or both
of them moving is one of the more interesting problems that the event-based
method must handle. The event will occur at the time τE at which the pair of
balls have a distance of separation D between their centers equal to 2R. The
separation of the two balls, denoted by subscripts 1 and 2, respectively, is a
time-dependent vector �d (t) given by:

�d (t) = �r2 (t) − �r1 (t) =
[
axt2 + bxt + cx

ayt2 + byt + cy

]
, (18)

where the coefficients a, b, and c are obtained by collecting terms appropriately
from the expansion of �r2 (t) − �r1 (t) using the parametrization for �r (t) given by
Eq. 7 or 14. In the expansion, the value of µ used is either µs if the ball is in the
Sliding state, µr if it is in the Rolling state, or 0 otherwise. The expansion is
written in component form in Eq. 18 with ax denoting the î-component of the
t2 coefficient of �d (t), for example.
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Cue-Strike event

begins shot model

Any balls

in motion?

No
DONE

Yes

Calculate the times τ at which all possible future events occur:

Motion-transition events for all moving balls using Eq. 13 or 17;

Ball-collision events for all pairs of balls using Eq. 19;

Rail-collision events and Pocket-collision events

for all moving balls using Eq. 20.

Advance all moving balls forward in time to

t = τE using Eqs. 7–11, 14–16

Apply appropriate physics for the

event to the ball(s) involved

Fig. 3. Event-based Algorithm for Modeling Pool Physics

The time of collision τE that we are interested in finding corresponds to the
solution of D2 = |�d (t) |2 =4R2. Expanding Eq. 18 we obtain:

(a2
x + a2

y)t4 + (2axbx + 2ayby)t3 + (b2
x + 2axcx + 2aycy + b2

y)t2

+ (2bxcx + 2bycy)t + c2
x + c2

y − 4R2 = 0 . (19)

This quartic polynomial is solved in closed form using standard analytical
methods. The four unique and possibly complex roots of Eq. 19 represent pos-
sible values of τE and must be carefully interpreted to determine which among
them is physically possible. If the balls do indeed collide, then the correct root
corresponding to τE is the smallest positive real root of Eq. 19 that results
in both ball centers lying somewhere on the table surface (i.e., within the rail
bounds) within the lifetime of both balls’ present motion states. If no roots are
found that meet these criteria, then it is concluded that this pair of balls do not
collide on the table surface within their current motion states and that some
other event (such as a Motion-transition or Rail-collision) must precede
the collision.
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At this point it is worth noting that relaxing the earlier assumption that
all balls are constrained to movement on the surface of the table by including
k̂-components of position �r (t) and velocity �v (t) would result in a different func-
tional form of the coefficients a, b, and c in Eqs. 18 and 19 but that, importantly,
these coefficients would still be time-independent. As a result, Eq. 19 would still
be fourth-order and a solution for the time of collision could still be obtained
using analytical methods.

A similar approach is used to determine the time at which a given ball collides
with a rail or a pocket. The ball trajectory is parameterized as a function of t
and the straight line representing the rail or pocket mouth as a function of s.
Since the ball’s position vector �r (t) refers to its center, when predicting rail
collisions we look for the intersection of the ball’s center and a horizontal line
parallel to the rail but one ball radius toward the table center. For example, for
a horizontal rail and a ball in the natural roll state, we would solve:

[
s + R

0

]
=
[

x0 + v0xt − 1
2µgt2 ˆv0x

y0 + v0yt − 1
2µgt2 ˆv0y

]
, (20)

where the left hand side is the parameterization of the rail and the right hand
side is the parameterization of the ball’s trajectory �r (t) in the rolling state, as
given by Eq. 14. The right hand side is written in component form and the
variables are expressed in the table frame. Again, the appropriate value of µ is
used, depending on the ball’s motion state. Other rails and the six pockets are
parameterized in a similar way.

Eq. 20 is easily solved using simple algebra and the quadratic formula, which
returns two possibly complex roots corresponding to the time of collision τE .
Again, the two roots must be carefully interpreted to determine whether either
correspond to a physically meaningful solution.

4 Discussion

Since the event-based algorithm we have presented is completely analytical and
uses no approximations in determining the time of the next event and in advanc-
ing the state of the table forward in time to the next event, it has the potential
to be more accurate than the numerical integration method. There is no need to
choose the time step ∆t carefully and there is no loss of accuracy arising from
approximations to back the model up by a fraction of a time step in order to
handle an event. In addition, there is no loss of accuracy due to the approxi-
mation that the velocity is constant during the time step. The only limitations
on the accuracy of our method are (1) floating-point (double) precision, (2) the
values of physical constants such as µ used, and (3) any approximations used to
model the physics of a collision event. All of these limitations are also present in
the integration method.

The efficiency of the event-based method is another interesting topic. During
many billiards shots relatively long time periods can pass in which no events
occur at all. For example, on a long cue ball-object ball shot down the table,
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one or two seconds can pass while the cue ball rolls down the table before it
strikes the object ball, during which time no events occur whatsoever. Assume
that there are n balls in motion at some time t = τ (where nmax = 16 since there
are at most 16 balls on the pool table), and assume that time ∆τ passes during
which none of the moving balls transition to another motion state or collide with
another ball or rail. Let the integration-style method use a time step ∆t such
that there are N = ∆τ/∆t time steps in [τ, τ + ∆τ ]. To simulate the event-free
ball dynamics for this time period ∆τ , the integration-style model must perform:

– 3nN operations to step the moving balls’ state variables ahead, since there
are N time steps, n moving balls, and 3 state equations for each moving ball;

– 12nN operations to test for ball-rail/pocket collisions, since there are 6 rails,
6 pockets, N time steps, and n moving balls;

– and N (n (n − 1) /2 + n (nmax − n)) = N
(
31n− n2

)
/2 operations to test

for ball-ball collisions, since there are n (n − 1) /2 tests for pairs of moving
balls, n (nmax − n) tests for moving-stationary ball collisions, and N time
steps.

The total number of operations required is N
(
61n− n2

)
/2, with the number of

operations increasing linearly with decreasing time step ∆t.
Contrast this result with the requirements for the event-based method:

– n operations to predict the next motion state transition for all of the moving
balls;

– 24n operations to predict the next ball-rail/pocket collision, since there are
6 rails, 6 pockets, and 2 operations are required for each quadratic solution;

– 19(n (n − 1) /2 + n (nmax − n)) = 19
(
31n− n2

)
/2 operations to predict the

next ball-ball collision, since there are n (n − 1) /2 tests for pairs of moving
balls, n (nmax − n) tests for moving-stationary collisions, and 19 operations
needed to solve each quartic equation;

– and 3n operations to advance all of the moving balls’ state variables ahead
to the time of the next event.

The total number of operations required is
(
645n− 19n2

)
/2, independent of the

amount of time ∆τ until the next event.
With three moving balls and ∆τ = 1 second, for example, the integration

method with a rather coarse time step of ∆t = 1 millisecond needs 87,000 opera-
tions to solve this one second of the dynamics, while the event-based method needs
just 882. A typical shot sees perhaps five to ten events occur, while a perfectly ex-
ecuted shot involving only the cue ball, one object ball and a pocket may see even
fewer than five events occur. It is clear that the workload of the event-based ap-
proach is not very heavy, even when modeling more complicated dynamics.

There are several other advantages to using the event-based approach. The dy-
namics and end result of a given shot can be completely and precisely stored by
recording only the initial table state (i.e., ball locations) just before the shot as
well as a time-stamped list of the events that occur during a shot. A shot can then
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be played back/animated after the fact using only the recorded initial table state
and the list of events, with no need to re-model all of the physics of the shot.

Since the event-based approach needs to solve polynomial equations up to or-
der four, its accuracy depends heavily on the numerical accuracy of the polyno-
mial solver and the interpretation of the results. Closed form analytical formulae
exist for the solutions of polynomials up to fourth-order, but care must be taken
when implementing these formulae. For example, a fourth-order equation often
has at least one pair of complex-conjugate roots. One challenge lies in determin-
ing how “real” or how “complex” a given root is, since floating-point numbers
are never exactly equal to zero. We search the set of roots returned by our quar-
tic solver to eliminate complex-conjugate pairs, then use a simple thresholding
on the imaginary part to determine if any remaining roots are really “real”.

5 Conclusion

We described a predictive event-based method to simulate the physics of pool.
The method is based upon a parametrization of the separation of balls, which
allows event times to be obtained analytically. The solution requires no granular
time step and is accurate to floating point precision in both time and space. It
is also efficient, requiring no iterative numerical methods.

In future work, we will develop a game strategy program that uses the sim-
ulation to model shot outcomes and automatically select shots in order to play
a game of 8 Ball. Following that, the physical parameters of the Deep Green
system will be measured and calibrated, and the physics simulation and game
strategy will be integrated into the Deep Green system to compete against a
human opponent.
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Abstract. The paper describes optimization principles to produce a
computer pool player. A good player has technical and planning abilities.
Technically, he1 sinks balls with precision, and controls the position of
the cue ball after the shot. He uses his technical abilities to devise a game
plan, sinking the balls in a winning order.

We propose to use the optimization techniques in such a way that it
simulates an excellent player. In this paper, we focus on the technical
abilities. We provide optimization models to compute the shots to not
only sink a given ball, but bring the cue ball at a specified target. Some
hints on planning optimization strategies are given.

1 Introduction

The paper presents a key computation to develop an optimal billiard player,
namely the skill to sink a ball while achieving a good position for the next
one. It is a rather basic skill. Actually, in the game sometimes named carambol
(Billard Français, three cushions), the only aim is to hit the two balls with the
cue ball, thus positioning the cue ball is most important in this game. For a start,
we limit ourselves to optimizing one shot to (1) sink an object ball by hitting it
with the cue ball, (2) to reach a given target point on the table, and (3) to stay
on a given target point on the table. Although the problem has to be addressed
to make an artificial player, to our knowledge, no reference has described any
solution to this problem.

In order to develop our optimization model, we need to understand deeply
(1) the behavior of balls rolling on a cloth stretched on a table, (2) the effect
of the collision between two balls, and (3) the effect of hitting the cue ball with
the leather tip of the cue stick. The optimization model to be developed will
benefit from any improvement on the physical model. As a physical model, we
use a sufficiently complete model to illustrate the potential of our optimization
modeling approach. We base our physical model on many sources (see below).

We construct a quite general model by first exposing simplified situations that
are made progressively more realistic. We start addressing the simple situation
� This research was partially supported by NSERC grant OGP0005491.
1 For brevity, we use ‘he’ (‘his’) where ‘he or she’ (‘his or her’) is meant.
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of prescribing the initial speed and spin to the cue ball so that it reaches a
given target, given a shoot direction. This allows to introduce a model of ball
movement largely inspired by [1]. However, the ideas are common, and are well
explained for example in [2,3,4,5].

Next, we consider the situation in which (1) the cue ball is targeted to a col-
lision point, (2) hit an object ball in a prescribed direction, and (3) rebounds
toward a target. This introduces simple elastic collisions without ball-ball fric-
tion, whose treatment comes from [5].

In a third step, we consider adding the ball-ball friction. Since the ball-ball
friction modifies the trajectory of the object ball, now the collision target is no
longer known in advance, but must be optimized. Our treatment of the ball-ball
friction comes from [2], but similar developments are to be found in [4].

Finally (for this paper!), we address the problem of optimizing an actual shot,
identifying (a) the speed, (b) the direction of the cue stick and (c) the contact
point on the cue ball. This is simply a change of variables since angular speed
of the cue ball is expressed in terms of the shot parameters. For this part, we
assume that the ball is struck with a level cue stick (i.e. no massé) which imposes
a natural limit on the magnitude of the spin with respect to the speed.

Below, we will discuss aspects of the solution of our models, and point out
many stimulating perspectives.

2 Cue-Ball Positioning

Two aspects of accuracy are important for the pool player: accurately sink the
object ball, and accurately position the cue ball. Computing the target ensuring
to sink the object ball is trivial (but nevertheless difficult to perform for an
amateur player), so we will concentrate on the computation of the shot in order
to position the cue ball on a specified target, or at least as close as possible to
the target.

After hitting the object ball, the cue ball is left with some linear (v0) and
angular (ω0) velocity. Throughout the paper, vectors will be denoted by boldface
letters (like v0)), their norm by italic letters (v0 = ‖v0‖) or regular symbols
(ω0 = ‖ω0‖) and finally the normalized vectors will inherit a hat (v̂0 = v0

v0
).

We will first present an optimization formulation to compute suitable veloci-
ties in order for the cue ball to reach, and stop on a given target. Since the cue
ball was shot by the player, we will then present another optimization problem
to compute the angular and linear velocities required to have the cue ball hit the
object ball suitably to sink it, and to reach and stop at the target. Finally, we
will translate the initial angular and linear velocities required to a specification
of the cue tip contact point on the cue ball, and the speed of the cue tip.

2.1 Aiming the Cue Ball at a Target

In this sub section, we simply compute the initial velocities required to bring
the cue ball from some point (the origin) to a specified target. The motion of a
ball is known to be first of a sliding nature, and after some point, become of a
pure rolling nature.
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Let the table be in the plane xy, and the vector e3 = (0 0 1)t point upward the
table. The sliding movement is characterized by a non vanishing relative velocity
of the contact point of the ball with the cloth, i.e., 0 �= vr(t) = v(t)+Re3×ω(t).
Then, we may assume that the frictional force is constant and given by the
relation f = −mgµsv̂r(0). We denote by I the inertia tensor for the sphere,
I = 2mR2

5 , m is the ball’s mass, R its radius, and g is the gravitational constant.
Also, µs is the sliding friction coefficient, ∼ 0.2. We may now deduce the equation
for the linear and angular velocities:

v(t) = v(0) − gµsv̂r(0)t and (1)

ω(t) = ω(0) − Re3 × f
I

t . (2)

Similarly, the linear and angular positions are given by:

p(t) = p(0) + v(0)t − gµsv̂r

2
t2 and (3)

a(t) = a(0) + ω(0)t − Re3 × f
I

t2 . (4)

Using those developments, we may deduce that the relative speed will become
null at a time:

τr =
2

7gµs
vr(0), (5)

after which the ball will be in a rolling motion. In rolling motion, the force is
f = −mgµrv̂ and the friction coefficient µr ∼ 0.01. Since the side spin does not
influence trajectories, we may consider the two first components of ω, so that
the angular quantities depend on the linear ones:

ω(t) =
1
R

e3 × v(t) , (6)

v(t) = v(τr) − gµrv̂r(t − τr) , (7)

p(t) = p(τr) + v(τr)(t − τr) − gµrv̂r

2
(t − τr)2 , and (8)

a(t) = a(τr) +
1
R

e3 × (v(τr)(t − τr) − gµrv̂r

2
(t − τr)2 . (9)

Moreover, we deduce that the ball will stop at a time τf = v(τr)
gµr

.
Now we have all the ingredients to set up an optimization problem to compute

v(0) and ω(0) in order for the cue ball to reach and stop at the target s. We
assume that v(0) = αd0 where d0 is an imposed initial direction of movement.
The decision variables for our optimization problem are then α and ω1, ω2, and
ω3. Let x = (α ω1 ω2 ω3)t. The developments above allow to define a function
F (x) which computes p(τf ), and we simply solve

min
x

1
2
‖F (x) − s‖ . (10)
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As defined, the solution always yields exactly the target. Of course, the initial
velocities (particularly angular) are not realistic, but adding lower (l) and upper
(u) bound constraints of the form l ≤ x ≤ u helps ruling out unrealistic solutions;
then, the target is not always reachable, for instance if situated backward (with
respect to d0) and far, but then, the solution brings the cue ball as close as
possible given the bounds on x.

Figures 1 and 2 show two cases where the target is attained. In Fig. 1 strong
spin is used. The curve represents the trajectory while the straight lines are a
sampling of the spin velocity ω. Back spin is showed by the lines on the right
of the curve while natural roll is on the left. Figures 3 and 4 show two cases in
which the target is not reachable because of spin restrictions.

2.2 Aiming the Cue Ball After a Collision

In this section, we set up an optimization problem to take into account that the
cue ball must reach a target collision point c (collision target), then obey the
collision laws, and finally try to reach and stop at s (stop target).

The collision calculations are simplified by the fact that the object ball is at
rest when the player executes his shot. We will first develop the model assuming
no friction between the balls, and then generalize the model to the realistic case.

Frictionless and Elastic Ball–Ball Collisions. For frictionless ball-ball col-
lisions, the target point c is easy to compute. Assume the object ball is at o, and
the target in the pocket at b. Then, the desired direction for the object ball is
δ = b − o, and the target c = o − 2Rδ̂. Since the angular speed may affect the
trajectory, we now leave the vector d0 (previously imposed) free to the optimiza-
tion process; we choose to use the vector v0 as the optimization variable. From
the developments above, there must be a time value t̄ (depending on v0 and ω0)
for which p(t̄) = c. From this point, we define a second trajectory denoted with
barred quantities: we set v̄0 = Φ(v(t̄)), the resulting direction for the cue ball
after the collision, p̄0 = p(t̄), ω̄0 = ω(t̄), ā0 = a(t̄). We then compute, as in
Subsection 2.1, p̄(τ̄f ). Our decision variables are now v0, ω0, and the unknown
time t̄ to reach the impact point. Since αd0 = v0, we thus solve

min
v0,ω0,t̄

1
2
(‖p(t̄) − c‖2 + ‖p̄(τ̄f ) − s‖2) . (11)

In the above formulation, one should be aware that the first term, ‖p(t̄) − c‖2

is actually a constraint, i.e. must vanish for the computation to make any sense.
If the solution is such that p(t̄) is not sufficiently close to c, its weight in the
objective function should be increased.

To compute the velocity of the cue ball after the impact, we may define the
function Φ as follows:

v̄0x =
v(t̄)xδy − v(t̄)yδx

δ2
x + δ2

y

δy and v̄0y = −v(t̄)xδy − v(t̄)yδx

δ2
x + δ2

y

δx . (12)
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Fig. 1. Example case where the target
is attained, using strong spin
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Fig. 3. Example cases where the target
is not reachable because of spin restric-
tions
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Fig. 4. Example cases where the target
is not reachable because of spin restric-
tions

Linear Shots. In most shots, the cue stick is held horizontally, and thus does not
impart curvilinear motion to the cue ball. In such cases, ω0 ⊥ d0 and we know in
advance the direction d0; the decision variable then reduces to the scalar α. This
simplified setting allows to compute the value t̄ actually, so that the optimization
problem is reduced in dimension, as well as in difficulty.

Since we have p(t) as our target, we can transform the position equations (3
and 8) to get a quadratic equation of the form ax2 + bx + c. In sliding friction:

0 = −p(t) + p(0) + v(0)t − gµsv̂r

2
t2 , (13)

where c = −p(t) + p(0) , b = v(0) , a = −gµsv̂r

2
. (14)

In rolling friction:

0 = −p(t) + p(τr) + v(τr)(t − τr) − gµrv̂r

2
(t − τr)2 , (15)

where c = −p(t) + p(τr) , b = v(τr) , a = −gµrv̂r

2
, (16)
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which are then solved with:
−b±√

b2 − 4ac
2a .

(17)

We then select the smallest of the two results for our time (or the positive
one if a value is < 0). Of course, the sliding/rolling state has to be determined
first by calculating τr and applying the corresponding equation.

Figures 5 and 6 illustrate the attainable region (sampled by pluses), the target
reached (the black diamond) by the cue ball (curved line) using the optimization,
and the path of the object ball (straight line): in Fig. 5 close to a 45◦ cut aimed
at the top left pocket and in Fig. 6, an almost direct shot to the side. The
rectangle represents the table. Figures 7 and 8 show two unreachable targets:
the optimization does its best, and get as close as possible to the target.

Ball-Ball Collision with Friction. As it happens, there exists a small friction
coefficient between two balls, imparting to the velocities of the balls after the
collision an effect named collision-induced throw. As explained in [2], this effect
is slight, changing the trajectories of 2 to 4 degrees, but there must be taken
care of, in particular for long shots since a 4 degree angle over 8 feet results in
a deviation of 6.7 inches, more than enough to miss the shot.

In order to take this effect into account, we must add a new component in
the objective function. Let p̃ be the trajectory of the object ball, and b the
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Fig. 5. A close to a 45◦ cut aimed at
the top left pocket
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Fig. 6. An almost direct shot to the
side
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target position in the pocket. At some still unspecified time t̃, one must have
p̃(t̃) ≈ b. Moreover, the cue ball is no longer aimed at a specific target, but must
impact the object ball in such a way that it reaches the pocket. c now represents
the center of the object ball and p(t̄) − c is no more constant, but subject to
optimization. The objective function becomes

min
v0,ω0,c,t̄,t̃

1
2
(‖‖p(t̄) − c‖2 − 4 ∗ R2‖2 + ‖p̄(τ̄f ) − s‖2 + ‖p̃(t̃) − b‖2) (18)

Here again, the first term, slightly more complicated than before, is a constraint.
It expresses the fact that the cue ball will actually touch (hit) the object ball
at time t̄. Since the so called 90◦ rule is not exactly obeyed to under realistic
friction and elasticity assumptions, the exact contact point is no longer known in
advance, but depends on the actual speed and spin of the cue ball at the impact.
In practice, the contact point will be close to the contact point as used before,
and should be used as an initial guess to the optimization algorithm.

The last term ‖p̃(t̃)−b‖2 also represents a constraint, and could be modeled
differently. As a term to minimize, one seeks to reach as close as possible the
center of the pocket. One could also specify bounds, required to be satisfied in
order to sink the object ball.

The trajectory p̃ may be computed as above, using the fact that its initial
velocity is given by the formulæ

ṽ0x = v(t̄)x − v̄0x and ṽ0y = v(t̄)y − v̄0y . (19)

As mentioned above, we must now take into account the collision-induced throw.
As it happens, all we have to do is to add a (small) correction to the velocity
vectors ṽ0 and v̄0. The correction is a component in the direction v̄0 and obeys
the law vby = cos(γ)µbbṽ0, where µbb is the ball-ball friction, α is the cut angle
and

cos(γ) =

(
sin(α) + Rωz(t̄)

v(t̄)

)
((

sin(α) + Rωz(t̄)
v(t̄)

)2

+
(
cos(α)Rωxy(t̄)

v(t̄)

)2
)1/2

. (20)

We then correct the after collision velocities by adding vby ˆ̄v to ṽ0 and subtracting
it from v̄0.

Figures 9 and 10 show the effect of collision induced throw. In Fig. 9 we see the
throw trajectory (dark line) of the object ball without correction of the target.
In Fig. 10 we see the modified attainable region when correcting the target. The
effect of the throw is slight and has a negligible effect on the repositioning of the
cue ball (sampled by crosses), but is important for the sinking of the object ball
in the pocket.

Side Spin. The side spin of the cue ball affects the throw. The simple rolling-
sliding model presented in Subsection 2.1 does not propagate side spin in its form
since its equations only depend on the force components in the z = 0 plane. In
contrast, the ωz component may well persist after the cue ball is stopped in
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Fig. 9. No correction of the target
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Fig. 10. the modified attainable region
when correcting the target

extreme situations, as one observes on real tables. We must add a damping to
simulate the attenuation of the side spin.

3 Shot Parameters

We consider a parameter transformation from v0, the velocity of the cue stick,
and h0, the hit point on the cue ball, to v0, ω0. We assume that the cue stick
is horizontal. In this context, there is only a combination of back—top spin and
side spin.

Following [2], let h0 = (0 hy hz) represent the point hit on the cue ball. After
a suitable change of variables so that x̂ = v0, ŷ = e3× x̂ and ẑ = e3, the angular
velocity vector will be orthogonal to hyŷ + hzẑ and its magnitude will be 5v0

2R2 .
Moreover, in order to avoid miscue, we must impose a constraint ‖h0‖ ≤ R

2 .

4 Solving the Optimization Models

We observe that the developed optimization models are mostly unconstrained
problems. We simply include bounds on the parameters, which reflect reality:
there is an actual limit on the speed a pool ball can reach! Similarly, we just
saw that the cue stick has to hit the ball within half of its radius in order to
safely avoid miscue. We model the point hit by the cue using an angle (the spin
direction) and a scalar (the amount of spin), the amount being bounded by R

2 .
In order to solve the optimization efficiently, we will benefit from some knowl-

edge of the game to provide a good initial approximation, and from bounds on
the parameters to be satisfied. It is possible to compute in advance a minimum
speed required by the cue ball in order to reach the object ball, and so that the
object ball actually reaches the pocket.

Also, we will solve the simpler model neglecting the ball-ball friction, and
only thereafter the general model, taking as initial guess the simpler solution,
we will refine the solution by taking into account the collision-induced throw,
and eventually the corrections due to an inelastic ball-ball collision.
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In all the cases where the cue stick is horizontal, we know that the cue ball
trajectory is linear, so we may express v0 = αd0 with a value of d0 being either
constant (no ball-ball friction), or expressed in a function of other parameters
(c if the cue ball is at the origin). Moreover, since in the case of no ball-ball
friction, the side spin has no effect at all, we may reduce the number of decision
variables to only 3, namely α, t̄, and hy (the amount of back–top spin). When
adding the ball-ball friction, the collision target c, the side spin hz, and the time
t̃ are added to the decision variables.

4.1 Optimization Algorithms

The resulting optimization models may be solved using many optimization meth-
ods. The objective functions are smooth, but their derivatives are difficult to
express. We produced the graphics using Scilab [6], which provides a function
optim to optimize a function subject to bound constraints. The method used
is a limited memory quasi-Newton iterative algorithm, and we employed finite
differences to compute the gradient values.

As mentioned above, some terms in the objective function are actually penal-
ization of constraints. It could be preferable to use some constrained optimiza-
tion method, but the simple penalty approach we described seems to work fine
in practice. Our assumption is as follows.

We will incorporate those computations within a player. We then use the
open source OPT++ [7] optimization software. Again, we chose a quasi-Newton
iterative method to treat the minimization subject to bound constraints.

5 Extensions

We presented the basics of an optimization methodology to achieve good posi-
tion play. Below we discuss three extensions that make the methodology really
powerful.

5.1 Breaking Clusters

Often in actual play, the position play consists in breaking clusters of balls. Our
optimization models adapt easily by specifying a target position (the cluster)
together with a speed range; above, the speed range was null, i.e., we required
the cue ball to stop on the target.

5.2 Using the Rail for Positioning

As it was apparent in the figures, the reachable region extends largely outside the
table. In such cases, a simplified model assuming perfect collisions between the
ball and the rail would allow to aim the cue ball at the mirror target. However,
the energy loss in the collision with the cushion is as large as 70%, so that
accurate position play must take into account the friction and inelasticity of the
collision.
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Building on the above model, the cue ball’s trajectory after the collision with
the object ball will be separated into n + 1 parts; the first part reaches a first
cushion, the second part a second cushion, and so on. The presented model treats
the special case n = 0.

5.3 Using Other Balls for Positioning

Instead of considering the other balls on the table as added difficulties, we may
well use them to achieve positioning by having the cue ball bouncing on them.
Again, it consists in adding pieces to the path of the cue ball.

6 Conclusion

In this paper we presented the fundamentals of an optimization methodology to
give a virtual pool player good sinking and positioning abilities. This constitutes
the basic skill on which a good player builds his game.

Still discussing technical skills, we will have to add to our models the presence
of other objects (other balls, cushions) which may influence the optimization and
the possibility to break a cluster of balls.

We anticipate to building a function estimating the difficulty of a shot. This
difficulty coefficient should take into account the difficulty to sink the object
ball, but also to reach a point close to the stop target. Moreover, even if the stop
target is not well approached, maybe the next ball remains “easy”, and thus the
shot should not be discarded. A planner should consider all the remaining balls
on the table. Probably a dynamic programming model can prove useful for this
planning.

Of course, we would like to add spectacular shots, such as massés. Our opti-
mization model can already deal with various angular velocities, it remains to
have a model to convert the actual shot ((1) cue stick angle and force, (2) point
to hit on the cue ball) into the appropriate v0, ω0 initial conditions of the cue
ball.
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Niu, Xiaozhen 88
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Tanaka, Tetsuro 126
Tscheuschner, Tobias 210
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Wu, I-Chen 180
Wu, Kuang-che 165

Zhao, Ling 225
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