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Abstract. Local First Search (LFS) is a partial order technique for
reducing the number of states to be explored when trying to decide
reachability of a local (component) property in a parallel system; it is
based on an analysis of the structure of the partial orders of executions
in such systems. Intuitively, LFS is based on a criterion that allows to
guide the search for such local properties by limiting the “concurrent
progress” of components.

In this paper, we elaborate the analysis of the partial orders in ques-
tion and obtain related but significantly stronger criteria for reductions,
show their relation to the previously established criterion, and discuss
the algorithmics of the proposed improvement. Our contribution is both
fundamental in providing better insights into LFS and practical in pro-
viding an improvement of high potential, as is illustrated by experimental
results.

1 Introduction

Partial order methods [16,5,8,7,13,17,9,10,14,4,6] exploit the structural property
of independence that occurs naturally in asynchronous parallel systems. The ba-
sic observation exploited by partial order methods is the commutation of pairs
of independent transitions which, by definition, lead to the same state indepen-
dently of the order of execution. This structural information can be applied in
order to remove redundant transitions or, if the property in question permits,
even states, without changing the validity of the property. Independence is typ-
ically derived from distribution, i.e. transitions of distinct processes in a system
may commute (unless they access shared variables or synchronize). This commu-
tation of independent transitions gives rise to a notion of equivalent executions,
and the equivalence classes are called Mazurkiewicz traces.

Among these methods, Local First Search (LFS) [11,1] is specialized for the
complete search for local properties, i.e. properties that can only be modified by

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 108–122, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Stronger Reduction Criteria for Local First Search 109

dependent transitions. The definition and justification of LFS highly depend on
the characterization of equivalent executions as labelled partial orders. In [11],
it is shown that prime traces, i.e. partial orders with a single maximal element,
suffice to search for local properties; in turn, to approximate all prime traces,
it suffices to consider only traces (partial orders) with a logarithmic number
of maximal elements (compared to the overall parallelism in the system); this
number is called LFS -bound.

In [11], a first method for exploiting this criterion was given, which however
did not guarantee that the number of states actually explored would be inferior
to the global number of states. In [1] in contrast, the LFS-bound is combined
with ideas from McMillan unfoldings [4] to obtain a breadth first search based
algorithm that is complete and never explores the same state twice. For a number
of benchmarks, it was observed that (asymptotically) LFS with the unfolding
approach gives decent reductions where the stubborn set method [17], the ample
set [13] and related methods give only very weak reductions.

In the current work, we revisit the LFS correctness theorem and derive a
hierarchy of criteria, peak rest compliance (pr-compliance), peak width sequence
compliance (pws-compliance), a recursive LFS-bound and finally the previously
published logarithmic LFS-bound. These criteria characterize subsets of traces,
ordered by inclusion: pr-compliance defines the smallest set of traces and the log-
arithmic LFS-bound the biggest. We prove that any prime trace can be reached
through a sequence of prefixes such that each one is pr-compliant, and for that
matter pws-compliant, and satisfies the LFS-bounds. On the whole, we thus
obtain a modular proof of the original theorem and stronger reduction crite-
ria. Efficient exploration algorithms have been implemented using the technique
from [1].

The paper is structured as follows. Section 2 presents the necessary back-
ground on Marzurkiewicz trace theory. Section 3 explains the basic concepts
of the LFS technique. Section 4 introduces pr-compliance based on a tree like
recursive decomposition of traces, and a proof of the preservation of local prop-
erties is given. In Section 5, we derive a simplified version of pr-compliance,
pws-compliance, which is computationally less expensive. In Section 6 in turn,
we derive a recursive LFS-bound from pws-compliance and the previously pub-
lished logarithmic bound from the recursive bound. In Section 7, we explain
the complexity and steps needed to implement a pws-compliance procedure. In
Section 8, we report experimental results obtained with our prototype imple-
mentation and conclude in Section 9.

2 Basic Concepts

The theory of Marzurkiewicz traces is built on the concept of a concurrent al-
phabet, which is a tuple (Σ, I) with Σ a finite set of actions and I an irreflexive
symmetric binary relation on Σ. I is called the independence relation of the al-
phabet, and we will refer to D = (Σ × Σ)\I as the dependence relation of such
an alphabet. We will assume that (Σ, I) is fixed for this paper.
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A transition system over Σ is a triple T = (S, →, s0) with S a set of states,
s0 ∈ S the initial state, and →⊆ S×Σ×S a transition relation. For (s, a, s′) ∈→
we also write s

a→ s′. We only consider deterministic transition systems, i.e.
systems such that s

a→ s1 and s
a→ s2 implies s1 = s2. Moreover, we only

consider systems that respect the independence relation in the following way: If
s

a→ s1
b→ s2 and a I b then there exists s′1 with s

b→ s′1
a→ s2.

A word over Σ is a – possibly empty – finite sequence of symbols from Σ;
the set of words is Σ∗, ranged over by u, v, w, etc.; the empty sequence will be
denoted by ε. When used on words, � will denote the usual prefix ordering on
words.

Let ≡I be the least congruence on the monoid generated by Σ∗ and concate-
nation such that ∀a, b ∈ Σ : (a, b) ∈ I ⇒ ab ≡I ba. The equivalence classes of
≡I will be called traces, the equivalence class of u will be denoted by [u] and the
set of all traces by [Σ∗]. Since ≡I is a congruence, concatenation carries over to
traces: [u][v] = [uv] is well-defined. Similarly, the prefix relation � carries over,
i.e. [u] � [v] iff there exists [w] with [u][w] = [v].

For a transition system T , let L(T ) ⊆ Σ∗ denote the words u = a1 . . . an such
that there exists a path s0

a1→ s1 . . . sn−1
an→ sn and let σ(u) = sn denote the

state reached by the word. Obviously, if u ∈ L(T ) and u ≡I u′ then u′ ∈ L(T )
and σ(u) = σ(u′). We therefore also write σ([u]) := σ(u).

A property of a transition system T is a subset P ⊆ S. An action a is visible
for P iff there exist s1 ∈ P and s2 ∈ S \ P such that s1

a→ s2 or s2
a→ s1 (i.e. a

may “change” the validity of P ). A property P is a local property iff, for all pairs
of actions a and b both visible for P , we have a D b. Typically, a local property
is a property of a single variable or a single process in a parallel product.

Local properties have an interesting link with traces, as has been observed in
[11]: if some state satisfies local property P , then such a state can be reached
by a trace which seen as a partial order has exactly one maximal element; cf.
Section 3.

3 Local First Search

The aim of “Local First Search” is to optimize the search for local properties
in transition systems. It is based on the following parameters of a concurrent
alphabet.

Definition 1. We say that (Σ, I) has parallel degree m if m is the maximal
number of pairwise independent actions in Σ, i.e.

m = max{|A| | A ⊆ Σ and a, b ∈ A, a 	= b ⇒ aIb}.

We say that (Σ, I) has communication degree cd if cd is the maximal num-
ber of pairwise independent actions such that all of them depend on a common
action, i.e.

cd=max{|B| | B⊆Σ, ∃c ∈Σ : (∀b ∈B : ¬cIb) and (∀b, b′∈B : b 	= b′ ⇒ bIb′)}.
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Intuitively, the parallel degree might correspond to the number of processes of a
concurrent system, whereas the communication degree is related to synchronisa-
tion, e.g. systems based on binary channels have a communication degree 2.

The main idea of Local First Search (LFS) is better understood by viewing
traces as partial orders. This is based on the well known one-to-one correspon-
dence [3, Chapter 2] between traces and the class of finite Σ-labeled partial
orders (E, ≤, λ) such that

(1) For any e, f ∈ E with λ(e) D λ(f) we have e ≤ f or f ≤ e.
(2) ≤ is equal to the transitive closure of ≤ ∩{(e, f) | λ(e) D λ(f)}.

We will refer to such partial orders as a (Σ, I)-lpo or lpo for short. Any of them
can be seen as an abstract representation of an execution. In this representation,
two elements are unordered if and only if the actions labelling them could have
occurred in any relative order (or in parallel). Correspondingly, any two such
elements are labeled with independent actions.

By a linearisation we mean a word over E which contains each element of
E once and where an element e occurs before f whenever e < f . We obtain a
labeled linearisation from such a word, if we replace each element by its label.
The relation between traces and lpo’s is simply that the set of all labelled lin-
earisations of an lpo is a trace and each trace, as described above, induces such
a lpo.

If we have an lpo (E, ≤, λ), we call subset F of E an interval iff for all e, f ∈ F
and g ∈ E with e ≤ g ≤ f also g ∈ F . We identify an interval F with the labeled
partial order it induces by restricting ≤ and λ appropriately. Note that F is a
(Σ, I)-lpo again. For a linearisation v of F we define set(v) by set(v) = F .

The downward closure of F ⊆ E is ↓ F = {e ∈ E | ∃f ∈ F : e ≤ f}, and we
write ↓ f if F = {f}.

Element e of an lpo is an immediate predecessor of f and f an immediate
successor of e iff e < f and ∀g : e ≤ g ≤ f =⇒ g = e or g = f . We now
define notions for (E, ≤, λ) some of which correspond to the parallel and the
communication degree of a concurrent alphabet.

Definition 2. Let (E, ≤, λ) be an lpo. An element e ∈ E is maximal if there is
no f ∈ E such that e < f . We define max(E) as the set of maximal elements of
E and call E prime, if max(E) has just one element.

The width of E (denoted by width(E)) is the maximal number of pairwise
incomparable elements, i.e. max{|A| | A ⊆ E ∧ ∀e, f ∈ A : e ≤ f ⇒ e = f}.

The communication degree of E is the maximal number of immediate prede-
cessors of an element of E.

The following proposition first relates these notions to the concurrent alphabet;
the proof of this relation can be found in [11]. The last claim is easy to see.

Proposition 3. Let (E, ≤, λ) be an lpo.
Then |max(E)| ≤ width(E) and width(E) is at most the parallel degree of (Σ, I)
and the communication degree of E is at most cd.

For an interval F ⊆ E we have width(F ) ≤ width(E).
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From the definition of local properties, one gets immediately the following: If a
system can reach a state satisfying such a property, then a satisfying state can be
reached with a prime trace corresponding to a prime lpo (the proof can be seen
in [1]). The following fundamental result of LFS shows that one can construct all
prime lpo’s by restricting attention to lpo’s with a bounded number of maximal
elements; this implies that checking for satisfaction of a local property can be
performed on a restricted state space.

Theorem 4 (LFS theorem [11]). Let (E, ≤, λ) be an lpo of width m with at
most cd maximal elements. Then there exists a linearisation w of E such that,
for every prefix v of w, set(v) has at most 1 maximal element if cd = 1, and at
most �(cd − 1)logcd(m) + 1� maximal elements if cd > 1.

This theorem provides a filter for excluding traces in the search of states satis-
fying local properties. The best known way of exploiting this filter in a search
procedure is given in [1]. For guidance purposes, it is also outlined below. Let us
first consider a kind of “unfolding” of transition system T that respects traces,
the trace system of T :

Definition 5 (Trace system). Let T = (S, →, s0) be a transition system re-
specting (Σ, I). Then the trace system of T is the transition system T S(T ) whose
states are the traces associated to words in L(T ), with the empty trace [ε] as ini-
tial state and such that the transition relation is →= {([u], a, [ua]) | ua ∈ L(T )}.

Based on σ([u]) we can lift properties of T to properties of T S(T ), and we can
restrict the test for a local property to the search for a suitable prime trace.

The next notion, originating from McMillan prefixes [10], is needed to avoid
the exploration of an infinite number of traces.

Definition 6 (Adequate order). A partial order � on the whole set of traces
is called adequate if

(Ad1) it is well-founded;
(Ad2) it refines the prefix order, i.e. [u] � [v] implies [u] � [v];
(Ad3) it is a right congruence, i.e. [u] � [v] implies [u.z] � [v.z] for any z ∈ Σ∗.

In practice, only adequate orders that refine the length order, i.e. |u| < |v| implies
[u] � [v], are used. Together with the filter of Theorem 4, adequate orders are
used to cut the search in the state space, as is shown in the following algorithm
that refines breadth first search.

Algorithm 1 guarantees that each state of the system is explored at most once
(i.e. for at most one Mazurkiewicz trace leading to it), while preserving reach-
ability of local properties. In practice, it considerably reduces the set of states
explored. The correctness proof of the algorithm and a detailed explanation was
presented in [1], and this proof relies on Theorem 4 as a module. What is impor-
tant here is the consequence that the LFS-criterion in the algorithm, which is
“bounding the set of maximal elements of trace [ua] by �(cd − 1)logcd(m)+1�”,
can be replaced by other criteria similar to Theorem 4 without changing the
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correct functioning. The aim of this paper is to provide more restrictive criteria
or tighter filters for lpo’s that suffice to guarantee reachability of all prime lpo’s
but exclude a lot of traces or lpo’s violating the criterion.

Algorithm 1. Computation of a finite locally complete subsystem
Table ← {(s0, [ε])}, Next Level ← {(s0, [ε])}
while Next Level �= ∅ do

Current Level ← Next Level; Next Level ← ∅
for all (s, [u]) ∈ Current Level, a ∈ Σ, s′ ∈ S such that s

a→ s′ do
if s′ ∈ P then

Return(ua)
else

if [ua] respects LFS-criterion then
if (s′, [v]) ∈ Table then

if |ua| = |v| and (s′, [v]) ∈ Next Level and [ua] � [v] then
Table ← (Table \ {(s′, [v])}) ∪ {(s′, [ua])}
Next Level ← (Next Level \ {(s′, [v])}) ∪ {(s′, [ua])}

end if
else

Table ← Table ∪ {(s′, [ua])}
Next Level ← Next Level ∪ {(s′, [ua])}

end if
end if

end if
end for

end while
Return unreachable

4 A New Approach for Tighter Constraints

We will show in this section that, for building up prime lpo’s, it is sufficient to
consider peak-rest-compliant lpo’s, which we define below. We will discuss in
the succeeding sections in some detail how one can check this condition, and
how one can weaken it to make the check more efficient; in the course of this
discussion we will also prove that each peak-rest-compliant lpo obeys the bound
on the number of maximal elements given in Theorem 4.

Definition 7. Let (E, ≤, λ) be an lpo. Let e1, . . . , ek ∈ max(E) be different,
k ≥ 0, and F = max(E) \ {e1, . . . , ek} with F 	= ∅. Define Ei = (↓ ei) \

⋃
{↓ f |

ei 	= f ∈ max(E)} for i = 1, . . . , k and Ek+1 = (↓ F ) \
⋃

{↓ ei | i = 1, . . . , k}.
Then (E1, . . . , Ek+1) is a peak-rest-decomposition of E, and in case that F

is a singleton a peak-decomposition. We call E1, . . . , Ek, and also Ek+1 in the
latter case, peaks of E.

A peak is defined by a maximal element e; it consists of all elements that are
below e, but not below any other maximal element. From this, it is clear that
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there exists a peak-decomposition, which is unique up to the ordering of its
components; further, peaks are disjoint, elements of different peaks are unordered
and a label appearing in one peak is independent of any label appearing in
another peak – and this even holds for E1, . . . , Ek+1 in the general case. From
this, we see that the sum over the width(Ei) is at most width(E).

Note that, in the general case, Ek+1 could contain more elements than just
the union of the peaks of the maximal elements in F , namely some elements
that are below more than one maximal element of F .

Definition 8. An lpo (E, ≤, λ) is called peak-rest-compliant or pr-compliant for
short if it has at most cd maximal elements or it has a peak-rest-decomposition
(E1, . . . , Ek+1) with 1 ≤ k < cd such that width(Ek+1) ≤ width(Ei) for i =
1, . . . , k and Ek+1 is pr-compliant as well.

Intuitively, a pr-compliant lpo has at most cd maximal elements or it is an initial
part of an lpo with at most cd maximal elements and needed to build up the
latter lpo; in the latter case, the idea is that k of the peaks of the latter lpo have
already been built and that Ek+1 will lead to the next peak. This idea will be
formalized in the proof of our first main theorem, which we present now.

Theorem 9. Let (E, ≤, λ) be an lpo with at most cd maximal elements. Then
there exists a linearisation w of E such that for each prefix v of w, set(v) is
pr-compliant.

Proof. The proof will be by induction on the size of E, the case of E = ∅ being
trivial. We assume that the claim has been shown for all smaller lpo’s and make
the following distinction of cases.

i) E has just one maximal element e. Then by Proposition 3, E\{e} has at most
cd maximal elements, namely the immediate predecessors of e. Choose a suitable
linearisation u of E \ {e} by induction, and then we are done by setting w = ue.

ii) Let max(E) = {e1, . . . , ek+1} with 1 ≤ k < cd . Let (E1, . . . , Ek+1) be
the peak-decomposition of E ordered according to decreasing width. Choose
linearisations u for ↓ (E1 ∪ . . . ∪ Ek) and u′ for Ek+1 by induction. Since these
sets are a partition of E with no element of the latter below any element of the
first, w = uu′ is a linearisation of E; we have to check all prefixes of w.

Let v be a prefix of w; if v is a prefix of u, we are done by induction, oth-
erwise v = uv′ with v′ a prefix of u′. Let F = set(uv′). Clearly, e1, . . . , ek ∈ F
are still maximal; so let max(F ) = {e1, . . . , ek, f1, . . . , fl}, where l ≥ 1 and
max(set(v′)) = {f1, . . . , fl}. Let (F1, . . . , Fk+1) be the peak-rest-decomposition
of F induced by the maximal elements e1, . . . , ek and the set {f1, . . . , fl}.

Since each e ≤ ei for some i ∈ {1, . . . , k} occurs in u, we have Fk+1 ⊆ set(v′) ⊆
Ek+1, which implies width(Fk+1) ≤ width(Ek+1) by Proposition 3. Vice versa,
for each f ∈ set(v′) ⊆ Ek+1, we cannot have f ≤ ei for any i ∈ {1, . . . , k}, hence
we must have Fk+1 = set(v′), which implies that Fk+1 is pr-compliant by choice
of u′.

For i = 1, . . . , k, we have Ei ⊆ Fi: any e ∈ Ei occurs in u, hence e ∈ F ; we do
not have e ≤ ej for j 	= i and we cannot have e ≤ fj for some j = 1, . . . , l since
fj ≤ ek+1. Thus, we have width(Ei) ≤ width(Fi) by Proposition 3.
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Hence, due to the chosen ordering of the Ei, we have width(Fk+1) ≤
width(Ek+1) ≤ width(Ei) ≤ width(Fi) for all i = 1, . . . , k, and we are done.

�

5 The Peak-Width-Sequence Criterion

In this section, we present a criterion that is slightly weaker than pr-conformance
but avoids the recursive checks of the rest in a peak-rest-decomposition for pr-
conformance. For this, we need the following notion for sequences of numbers,
which is rather technical but easy to check.

Definition 10 (n-cumulative sequence). For n ≥ 2, a decreasing sequence
of natural numbers m1 ≥ m2 ≥ . . . ≥ ml with mi ≥ 1 is called n-cumulative,
if l < n or there exists a j with 1 < j ≤ n such that mj−1 ≥

∑l
k=j mk and

mj , . . . , ml is n-cumulative.

Definition 11. Let m1 ≥ m2 ≥ . . . ≥ ml be the widths of the peaks of an lpo
(E, ≤, λ); then the lpo is called peak-width-sequence-compliant or pws-compliant
for short if this sequence is cd-cumulative.

Together with Theorem 9, the following theorem demonstrates that we can re-
strict ourselves to pws-compliant lpo’s if we want to build up all lpo’s with at
most cd maximal elements incrementally.

Theorem 12. Each pr-compliant lpo is pws-compliant.

Proof. Let (E, ≤, λ) be a pr-compliant lpo and (E1, . . . , Ek+1) the respective
peak-rest-decomposition with the peaks ordered by decreasing size. The proof
is by induction on the size of E. Let (Fk+1, . . . , Fl) be the peak-decomposition
of Ek+1, again with the peaks ordered by decreasing size. Since no element of
Ek+1 is below any element outside of Ek+1, (E1 , . . ., Ek, Fk+1, . . ., Fl) is the
peak-decomposition of E. Since (Fk+1, . . . , Fl) is cd -cumulative by induction and
k < cd , it remains to check that width(Ek) ≥

∑l
j=k+1 width(Fj). This follows

from
∑l

j=k+1 width(Fj) ≤ width(Ek+1), which is satisfied since the Fj are the
peaks of Ek+1, and width(Ek+1) ≤ width(Ek) according to Definition 8. �

The difference between pws-compliance and pr-compliance is that the width of
the rest in a peak-rest-decomposition might be larger than the sum of the peak
widths for the peaks in this rest; in such case, the lpo could be pws-compliant
without being pr-compliant. Hence, pr-conformance may give a stronger restric-
tion of the visited part of the state space. But algorithmically, checking for pr-
conformance requires to identify the rest of a suitable peak-rest-decomposition,
and this would presumably involve to determine all peaks and their widths first.
Then one has additionally to compute the width of the rest, where the lat-
ter might be even larger than the union of the respective peaks. For the re-
cursive checks for pr-conformance, the peaks of the rest and their widths are
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already given, but the problems with finding and checking a suitable peak-rest-
decomposition of the rest occur repeatedly.

To test pws-compliance, we have to construct the peaks of the given lpo and to
determine their widths m1 ≥ m2 ≥ . . . ≥ ml; this sequence is cd -cumulative if –
viewed from the end – there are never cd−1 indices in a row where the cumulative
sum is larger than the next (smaller) number. It is easy to check this in linear time
by one scan from right to left, building the cumulative sums on the way.

6 Deriving the LFS Bounds

In this section, we derive the classical LFS-bound as presented in [11], as well
as some slight improvements, from the pws-criterion. Moreover, this is the first
published proof of the LFS-bound for the general case (communication degree
not limited to 2).

We begin by introducing a recursive formula for the bound that gives a relation
of length and sum of n-cumulative sequences. Then, we derive the previously
published logarithmic bound for the recursive formula.

Definition 13 (recursive bound). For n ≥ 2 and m ≥ 1 let L(n, m) be
inductively defined by

L(n, m) = m for m ≤ n

L(n, m) = n − 1 + L(n, �m
n �) for m > n

Lemma 14.
For 1 ≤ k ≤ n and m ≥ 1 we have k + L(n, �m

k �) ≤ n + L(n, �m
n �).

Proof. By induction on m. We assume that the statement is already proven for
all m′ < m with m′ ≥ 1. For an easier case analysis observe that L(n, m) =
n − 1 + L(n, �m

n �) also for m = n. This allows us to distinguish the following
three cases: (a) �m

n � ≤ �m
k � < n, (b) �m

n � < n ≤ �m
k � and (c) n ≤ �m

n � ≤ �m
k �.

For (a), we have to show that k + �m
k � ≤ n + �m

n �. Due to properties of
�.� this follows from k + m

k ≤ n + m
n or equivalently nk + nm

k ≤ n2 + k m
k or

m
k (n − k) ≤ n(n − k). This follows, since k ≤ n and m

k ≤ n by �m
k � < n.

For (b), we have that � �m
k �
n � = � m

kn� < n ≤ �m
k �. Therefore, we have to show

that k + n − 1 + � m
kn� ≤ n + �m

n � which follows from k − 1 + m
kn ≤ m

n . This is
equivalent to n(k − 1) + m

k ≤ k m
k or n(k − 1) ≤ m

k (k − 1). The latter follows
since k ≥ 1 and n ≤ m

k by the assumption n ≤ �m
k �.

For (c), we have to show that k+n−1+L(n, � �m
k �
n �) ≤ n+n−1+L(n, � �m

n �
n �).

Since � �m
k �
n � = � m

kn� = � �m
n �
k �, this follows immediately from induction for m′ =

�m
n � < m. �

Proposition 15. Let m1 ≥ m2 ≥ . . . ≥ ml be n-cumulative (n ≥ 2) and m =
∑l

i=1 mi. Then for the length l of the sequence we have l ≤ L(n, m).

Proof. The proof is by induction on l.
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For the case m ≤ n (in accordance with the first defining equation of L), we
use l ≤ m (since mi ≥ 1 for each of the l summands mi) and m = L(m, n).

Now, for m > n, let j be the first position in the sequence, such that mj−1 ≥
∑l

k=j mk =: m′. Then j ≤ n. Since mj ≥ . . . ≥ ml (as a suffix of an n-cumulative
sequence) is itself n-cumulative of length l′ = l−(j−1), it holds by induction that
l′ ≤ L(n, m′) and consequently l ≤ j−1+L(n, m′). Since m′ ≤ mj−1 ≤ . . . ≤ m1,
we have that m′ ≤ �m

j �. By Lemma 14 and the monotonicity of L in the second
argument, we finally obtain l ≤ n − 1 + L(n, �m

n �) = L(n, m) as desired. �

Corollary 16. Let (E, ≤, λ) be an lpo of width m with at most cd ≥ 2 maximal
elements. Then there exists an linearisation w of E such that, for every prefix v
of w, set(v) has at most L(cd , m) maximal elements.

Proof. We choose w as linearisation according to Theorem 9. Let v be a prefix
of w; then set(v) is by choice pr-compliant and according to Theorem 12 also
pws-compliant, and width(set(v)) ≤ width(E) = m (Proposition 3). The peaks
of set(v) are mutually independent and hence the sum of their widths is bounded
by m (antichains of the peaks freely combine to antichains of set(v)). Hence, the
number of peaks of set(v) is bounded by L(cd , m) according to Proposition 15
and monotonicity of L(n, m) in m. �

The recursive formula L is an improvement over the originally published bound
of Theorem 4, as shown by the following statement.

Proposition 17.
For 2 ≤ n and 1 ≤ m we have L(n, m) ≤ �(n − 1) logn m� + 1.

Proof. By induction on m. For m ≤ n by definition L(n, m) = m. Observe that
logn m is concave in m and has for m = 1 and m = n the same value as m−1

n−1 ,
thus m−1

n−1 ≤ logn m for 1 ≤ m ≤ n. Hence, m ≤ (n − 1) logn m + 1 which implies
m ≤ �(n − 1) logn m� + 1 and we are done.

Now for m > n we get L(n, m) = n − 1 + L(n, �m
n �). By induction, we obtain

that L(n, m) ≤ (n− 1)+ �(n− 1)(logn�m
n �)�+1 = �(n− 1)(1+ logn�m

n �)�+1 =
�(n − 1)(lognn�m

n �)� + 1 ≤ �(n − 1)(lognm)� + 1, as desired. �

Now, we can see how the original Theorem 4 is the end of a chain of reasoning
in our present paper: We simply have to combine Corollary 16 with Proposition
17.

Concluding, we have seen how pr-compliance implies pws-compliance and pws-
compliance induces a new recursive bound, which itself implies the original log-
arithmic bound.

7 Complexity and Algorithmics of Pws-Compliance

Pws-compliance may filter out significantly more traces than the LFS-bound,
which means less states need to be stored. But its overhead, i.e. the cost of
testing pws-compliance of each explored trace, has an impact on execution time.
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The test for pws-compliance of a trace can be decomposed as follows:

– At first, the peaks need to be extracted as subtraces of the trace. Due to the
characterization of dependency graphs at the beginning of Section 3, this
task can be carried out in time at most O(m2), where m is the length of
the trace. In the case of dependency based on reading and writing of shared
variables, this can be improved to O(m · n) where n is the number of shared
variables. The computation of the partial order for a peak, the transitive
closure of the dependency relation of (ordered) occurrences of actions, can
be performed in O(m3), but again this can be improved to O(m2n) where n
is the number of shared variables.

– Then, for the partial order of each peak, its width has to be computed.
Computing the width of a partial order is a problem that is known to be
equivalent to that of finding a maximal matching in a bipartite graph [15].
The matching problem can then be solved with Hopcroft and Karp’s algo-
rithm [2] in O(n

5
2 ), where n is the size of the bipartite graph. This is in turn,

twice the size of the peak.
– At last, the resulting widths have to be ordered and the test for an n-

decreasing sequence has to be done. This is largely subsumed in the com-
plexity of the previous task.

On the whole, the worst-case complexity of the pws-compliance test is thus
subsumed by the O(n

5
2 ) of the matching algorithm in case of shared variable

dependency. Profiling has shown that in practice the matching algorithm dom-
inates in the computation time. We therefore opted for reuse of computed peak
widths as much as possible which greatly improved the performance: Very of-
ten, only few peaks need to be recomputed under extension of a trace [u] by an
action a.

– Suppose that the subtrace [vb] corresponding to a peak of [u] is completely
independent of a, then this peak is also a peak of [ua].

– If a is dependent only of one peak with subtrace [vb] and in addition a D b,
then all peak widths are preserved.

– Otherwise, the peaks with subtrace [vb] such that a depends on v are not
preserved and must be “recomputed”, whereas the peak of a is necessarily a
singleton peak of with.

The optimization indicated by these observations allowed us to speed up our
prototype significantly (for the examples in the next sections 4 to 15 times faster).

Still, exploring a transition system that has very long paths to some state is
costly, the time complexity can only be limited by O(n

7
2 ) where n is the number

of actually visited states (after reduction). On the other hand, our filtering may
lead to an exponential reduction of the size of the state space; in such cases, this
at first sight high complexity pays well off with a significant speed up and even
with dramatic space savings, as the experiments of the next section suggest.
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8 First Experimental Results

We have conducted first experiments with a new prototype using Algorithm 1.
In one version, we use the bound of Proposition 15, which is slightly tighter than
the previously published bound of Theorem 4. In another version, we use pws-
compliance according to Theorem 12. We also did less systematic experiments
with an implementation of pr-compliance (cf. Section 5). Without figures, we
report qualitatively that pr-compliance offered little extra reduction compared
to pws-compliance and our prototype implementation obviously took much more
computation time.

In each parametric experiment, we compare the number of states, the memory
consumption and the running time for exhaustive exploration on a machine with
2GB memory. We only give data for cases not running out of memory, which
sometimes means that we can treat bigger problem instances with one or the
other reduction method.

pic
k l

eft

pic
k l

eft

pick right

pick right

drop left

drop right

Fig. 1. An instance of the philosophers / the “comb” process as Petri net

The first experiment concerns a version of Dijkstra’s dining philosophers with
5 states, which each choose nondeterministically, which fork they pick up first
(Figure 1 at left). This is an example, where typical partial order techniques
like stubborn sets [17] or ample sets [13] fail to achieve significant reduction; in
fact, experimentally, Spin’s partial order reduction does not remove any state.
Moreover, we ran the experiment on a partial order package (PO-PACAKGE)
based on Spin 1.6.5, which was developed in the University of Liege. This pack-
age supports stubborn-set-like techniques and does better reduction than Spin.
Indeed, it works very well, i.e. generates very small state spaces, on lefthanded
dining philosophers, which always try to first pick up forks on their left, and
Sieve of Erastosthenes, the third example in this section. The data in parenthe-
ses, numbers of states visited by the package, are the evidence that supports
our claim. Finally, it turns out that already the bound-based algorithm obtains
a decent reduction, while the pws-compliant based reduction has an advantage
in states, time and memory on this series. Observe the sub-exponential growth
with reduction, whereas growth is cleanly exponential without reduction.

The second example “comb” (indicated as a Petri net in Figure 1 at right) is
an artificial series of “best-case reductions” for the pws-criterion. While expo-
nential without reduction, and while Spin’s partial order reduction does fail to
eliminate any state, it is clearly sub-exponential using the LFS-bound and it is
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N No reduction LFS bound PWS compliant SPIN PO red
states time memory states time memory states time memory states time memory

(s) (m) (s) (m) (s) (m) (s) (m)
2 13 0.01 4.1 13 0.01 4.6 13 0.01 4.8 13(13) 0.00 2.6
3 51 0.01 4.1 49 0.01 4.7 49 0.01 4.8 51(50) 0.00 2.6
4 193 0.01 4.1 191 0.01 4.7 147 0.01 4.9 193(183) 0.01 2.6
5 723 0.01 4.1 651 0.01 4.7 441 0.01 4.9 723(631) 0.02 2.6
6 2701 0.02 4.4 1937 0.02 4.8 1552 0.02 5.0 2701(2207) 0.02 2.7
7 10083 0.05 5.4 5041 0.05 5.4 4694 0.05 5.4 10083(7564) 0.09 3.1
8 37633 0.22 9.3 25939 0.25 8.8 11825 0.12 5.5 37633(26369) 0.35 7.9
9 140451 1.02 25.6 70225 0.76 17.3 26269 0.32 9.3 140451(91202) 1.59 43.8
10 524173 4.52 91.6 173031 2.13 38.1 63561 0.84 16.5 524173(322163) 7.03 74.1
11 1956243 21.06 357.5 392701 5.28 84.9 139788 1.96 32.6 1956243(1128208) 31.03 325.1
12 7300801 106.49 1422.5 830415 12.33 183.5 340179 5.06 79.5 7300801(3950372) 127.40 1030.1
13 — — — 1652587 26.99 378.3 808390 12.56 191.8 — — —
14 — — — 3121147 56.44 743.9 1817375 29.39 441.5 — — —
15 — — — 5633381 111.55 1399.0 3815044 67.35 948.4 — — —
16 — — — — — — 7492734 240.85 1911.7 — — —

Fig. 2. Results of the philosophers example
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Fig. 3. Results of the comb example

not difficult to understand that it has cubic growth under pws-compliant reduc-
tion. Observe the jumps in state memory and time for the LFS-bound reduction:
They occur when the LFS-bound increases.

The third example is a series of instances of an asynchronous version1 of the
Sieve of Erastosthenes, where N is the number of iterations of the sieve. This
is an example where the partial order methods like the ample set method are
good at. Indeed, PO-PACKAGE visited quite few states (see the numbers in
parentheses), which are far less than those by pws-compliance. However, pws-
compliance gives a significantly better reduction with respect to both memory
and time than LFS-bound and Spin.

A natural question to ask is the performance of the LFS reduction com-
pared to McMillan unfoldings [4]. Without going into all details, by nature,
the latter only consider traces with a single maximal element (the events of
the event structure) and thus produce significantly smaller structures than LFS
(which generates also states from certain interleavings). The academic exam-
ples presented are naturally modeled as Petri nets and decend unfolders easily
outperform LFS. However, unfoldings use the operation of combining traces for
“possible extensions”, an operation that may not always be feasible, where LFS
just computes successors.

1 Our prototype does not allow rendezvous yet, so to compare, we had to modify this
example for Promela/Spin.



Stronger Reduction Criteria for Local First Search 121

N No reduction LFS bound PWS compliant SPIN PO red
states time memory states time memory states time memory states time memory

(s) (m) (s) (m) (s) (m) (s) (m)
1 340 0.01 4.1 198 0.01 4.7 198 0.01 4.8 188(41) 0.00 2.3
2 1912 0.01 4.3 1456 0.01 4.8 910 0.02 4.9 630(77) 0.00 2.3
3 8632 0.04 5.4 4560 0.05 5.5 2874 0.04 5.2 2134(121) 0.00 2.5
4 63984 0.39 15.5 18252 0.19 8.5 14392 0.27 7.5 10599(203) 0.04 3.6
5 178432 1.30 40.7 35072 0.46 12.9 26644 0.67 10.5 25048(263) 0.13 6.2
6 1097296 10.31 259.2 361736 9.10 99.8 63212 3.64 20.3 109880(361) 0.70 21.7
7 2978208 34.12 772.2 707120 19.75 206.7 112964 10.23 35.2 1076639(437) 9.32 243.5
8 — — — 2072162 75.71 650.1 304386 37.85 95.0 4311167(551) 86.52 1801.0
9 — — — — — — 1158208 166.24 395.1 —(711) — —
10 — — — — — — 1858340 308.54 654.2 —(811) — —

Fig. 4. Results of the sieve example

9 Conclusions and Future Work

In this paper, we report on an improvement concerning both the theoretical basis
and practice of Local First Search, a recent partial order reduction technique.
The theory not only gives a better insight into previously published results, but in
particular yields a stronger reduction method than previously known, using peak-
width-sequence compliance. Concerning the previously published “LFS-bound”,
pws-compliance can be used in a chain of reasoning that derives it.

We have also built an ambitious prototype implementation of the algorithm
that starts to yield results. The prototype uses an implementation of traces and
a new adequate order described in [12]. Already for a version of Local First
Search according to [1], the results reported here are more conclusive and show
that the latter method scales and is a serious partial order reduction method,
and although simple often superiour to the one implemented in Spin.

However, the new pws-compliance test resulting in stronger reductions gives
reductions of a new quality to a point which surprised the authors. The latter
reduction is more complicated to implement efficiently and we gave a few hints
on how this can be done. The first observations reported here show that the pws-
compliance provides a model checking algorithm that is competitive with state
of the art partial order reduction techniques, and can give significantly stronger
reductions depending on the model. In the future, we will experiment on realistic
applications rather than benchmarks. We believe that in particular applications
in the field of AI planning should be an interesting domain of application due
to the goal oriented nature of LFS.

An open theoretical question of practical interest remains whether the ap-
proach of using adequate orders as in [1] is avoidable while maintaining exhaus-
tive exploration using the LFS reduction criteria. The importance of this question
lies in the fact that the adequate orders known (and the one we use) implicitely
force a breadth first search order, which is not optimal for all applications.
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