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Abstract. Model checking of real-time systems with respect to Dura-
tion Calculus (DC) specifications requires the translation of DC formulae
into automata-based semantics. This task is difficult to automate. The
existing algorithms provide a limited DC coverage and do not support
compositional verification. We propose a translation algorithm that ad-
vances the applicability of model checking tools to real world applica-
tions. Our algorithm significantly extends the subset of DC that can be
handled. It decomposes DC specifications into sub-properties that can be
verified independently. The decomposition bases on a novel distributive
law for DC. We implemented the algorithm as part of our tool chain for
the automated verification of systems comprising data, communication,
and real-time aspects. Our translation facilitated a successful application
of the tool chain on an industrial case study from the European Train
Control System (ETCS).

1 Introduction

Verification of embedded hardware and software systems requires reasoning
about data, communication, and real-time aspects. Duration Calculus (DC) rep-
resents these dimensions in one formalism. As a fundamental concept, it offers
the use of data variables with possibly infinite data domains that are interpreted
over dense real-time intervals.

To apply the automata theoretic approach of Vardi and Wolper [VW86] for
model checking DC, we need to translate DC formulae into automata. This is
a difficult task and it has been shown in [ZHS93] that it cannot be solved in
general. Translation algorithms into automata-based semantics are known for
restricted classes of DC only [Rav94, BLR95, Pan02, Frä04]. But they are not
compositional and consider neither infinite data domains nor communication.

We identify a new class of DC formulae, called test formulae, that can be
translated into automata, also referred to as test automata in this paper. Test
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formulae (1) significantly extend the previously known classes and (2) take com-
munication aspects and infinite data domains into account. Our expressiveness
results suggest that the new class is among the richest for which satisfiability
with respect to an automaton is decidable under a dense time interpretation.

Translations of DC suffer from an exponential blow up of the resulting au-
tomata in the number of operators. To overcome this problem, we provide an
algorithm that decomposes a formula into sub-formulae that are translated in-
dependently. It allows for an efficient verification as it reduces the size of the
automata. The decomposition is realised using a new operator for the DC that
permits a distributive law of linear complexity.

We implemented our translation algorithm as part of a tool chain and provide
evidence that it can handle industrial problems. We verify the emergency treat-
ment of the European Train Control System (ETCS) [ERT02]. Our approach
is the first that permits model checking of a comprehensive ETCS fragment
considering communication, data, and real-time. Therefore, we bridge the gap
between theoretical results and their practical applications. Due to our model’s
parameters and infinite data types, we apply the abstraction refinement model
checker ARMC [Ryb06].

To summarise our contributions, we identify a novel class of DC formulae
and give a translation algorithm into enhanced timed automata [AD94]. Since
a direct translation leads to an exponential blow up of the automata, we give
a normal form for our novel class to decompose given properties. The normal
form is realised using a new distributive law of linear complexity based on a new
operator for the DC. We implemented the algorithm and applied our tool chain
to verify real-time properties of the ETCS case study.

The paper is organised as follows. After a short introduction to our case
study, we recall the DC and the applied automaton model, phase event automata
(PEA), in Sect. 2. The class of test formulae, the new operator, and the normal
form are presented in Sect. 3. Based upon these results, Sect. 4 gives the test
automata semantics and states its correctness. The case study and our model
checking results are sketched in Sect. 5. Section 6, reviewing related work and
suggesting future investigations, concludes the paper.

1.1 Motivating Example

The emerging European Train Control

Fig. 1. Consecutive trains

System (ETCS) is an international stan-
dard [ERT02] that shall replace national
train control systems to ensure cross-
border interoperability and to improve
railway safety as well as track utilisation.
In the final ETCS implementation level,
the existing national trackside systems

for detection of train speed, location, and integrity will not be used anymore.
Instead, data values required for a moving train are ascertained in coopera-
tion of the train’s on-board ETCS unit with a radio block centre (RBC) that
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controls the traffic in a well-defined area and grants movement authorities to
trains. RBCs and trains communicate over a GSM-R radio connection. To in-
crease the possible traffic density, the ETCS employs the moving block principle,
by which the movement authorities are always given up to a position closely be-
hind the preceding train (cf. Fig. 1). In our case study, we analyse the emergency
handling. In case of an accident, the train control system has to stop all trains
safely. The main desired property in our case study is that the trains will never
collide.

Verification approaches for safety requirements of industrial systems like the
ETCS have to consider the identified dimensions: data, communication, and real-
time. It is the first time, a fragment of the ETCS is verified considering all of
these aspects.

2 Preliminaries

Since we translate DC formulae into phase event automata (PEA), we review
the DC and PEA in this section.

2.1 Duration Calculus

Duration Calculus [ZH04] is an interval-based logic for the specification of real-
time systems. We use dense real-time, Time := R≥0. To represent a system state
at a point in time, DC uses state expressions. State expressions, denoted by ϕ,
are quantifier-free first-order formulae over time-dependent variables, so-called
observables (X ∈) SV ar. For every observable X there is a data domain D(X ).
The semantics of an observable X is given by an interpretation I assigning
a mapping I(X ) : Time → D(X ) to the observable. Additionally, there are
predicates p/n of arity n ∈ N with interpretations p̂ : D(X1)× . . .×D(Xn) → B.

The semantics of a state expression ϕ depends on the semantics of the ob-
servables. Given an interpretation I of the observables in ϕ, the semantics of ϕ
is given by the mapping I[[ϕ]] : Time → {0, 1} as follows.

I[[p(X1, . . . ,Xn)]](t) := 1 iff p̂(I(X1)(t), . . . , I(Xn)(t)) = tt (1)
I[[¬ϕ1]](t) := 1 − I[[ϕ1]](t)

I[[ϕ1 ∧ ϕ2]](t) := 1 iff I[[ϕ1]](t) = 1 and I[[ϕ2]](t) = 1.

We require finite variability, i.e., for every predicate and every choice of observ-
ables the function in (1) has finitely many discontinuities on every finite interval.
Consider ∼ ∈ {≤, <, =, >, ≥}, k ∈ R≥0. The class of DC formulae (F ∈) Form
is defined by

Form ::=�ϕ	 | � ∼ k | ¬Form | Form1 ∧ Form2 | Form1 ; Form2 | ∃X : Form.

Given an interpretation I of the observables in state expressions, the semantics
of a DC formula F is a mapping evaluating the formula on a given finite interval.
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I[[�ϕ	]][b, e] := tt iff
∫ e
b I[[ϕ]](t) dt = e − b and e > b

I[[� ∼ k ]][b, e] := tt iff (e − b) ∼ k
I[[¬F ]][b, e] := tt iff I[[F ]][b, e] = ff

I[[F1 ∧ F2]][b, e] := tt iff I[[F1]][b, e] = tt and I[[F2]][b, e] = tt
I[[F1 ; F2]][b, e] := tt iff there is m ∈ [b, e] such that

I[[F1]][b,m] = tt and I[[F2]][m, e] = tt
I[[∃ X : F ]][b, e] := tt iff there is I ′ =\X I such that I ′[[F ]][b, e] = tt .

Two interpretations are equal up to X , I ′ =\X I, if they coincide on all observ-
ables except X . The finite variability ensures that I[[ϕ]] is integrable.

Two formulae F1,F2 are satisfiability equivalent iff for any interpretation I
holds:

∃ t ∈ R≥0 : I, [0, t ] |= F1 ⇔ ∃ t ′ ∈ R≥0 : I, [0, t ′] |= F2.

The definition of test formulae in Section 3 depends on the notion of events
specifying changes in the values of Boolean observables (cf. transition formulae
defined in [ZH04]). Let E be a Boolean observable. An event � E is valid at time
t iff the value of E changes at t . A forbidden event  � E holds at time t iff the
value of E does not change at t . For an interval the no event formula � E holds
iff the value of E is constant in the given interval.

2.2 Phase Event Automata

PEA [HM05] are a class of timed automata [AD94] that synchronise on both
events and data variables. Let L(V ) be the set of first-order formulae over vari-
ables in V .

Definition 1 (Phase Event Automaton). A phase event automaton is a
tuple A = (P ,V ,A,C ,E , s , I ,P0), where

– P is a finite set of phases with initial phases P0 ⊆ P,
– V ,A,C are finite sets of real-valued state variables, events, and real-valued

clocks, respectively,
– E ⊆ P × L(V ∪ V ′ ∪ A ∪ C ) × P(C ) × P is a set of transitions,
– s : P → L(V ) associates with each phase a predicate that holds during the

phase, and
– I : P → L(C ) associates with each phase a clock invariant.

An edge (p1, g,X , p2) represents a transition from p1 to p2 with a guard g over
(possibly primed) variables, clocks, and events, and a set X of clocks that are
to be reset. Primed variables v ′ denote the post-state of v whereas v always
refers to the pre-state. In addition, we postulate the presence of a stuttering
edge (p,

∧
e∈A ¬e ∧

∧
v∈V v ′ = v , ∅, p) for every phase p.

The operational semantics of PEA is given by infinite sequences of configurations
and events, called runs.
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Definition 2 (Run of a PEA). A run of a PEA A is a sequence

〈(p0, β0, η0), t0,Y0, (p1, β1, η1), t1,Y1, . . . 〉,

with phases pi ∈ P, entry event sets Yi ⊆ A, valuations of variables βi and
primed variables β′

i , where βi(v) = β′
i(v

′), clock valuations ηi , and points in
time ti > 0. Furthermore, we demand p0 ∈ P0, η0(c) = 0 for all clocks c ∈ C,
βi |= s(pi), and ηi + ti |= I (pi ). For all transitions (pi , g,X , pi+1) we require
βi , β

′
i+1, ηi + ti ,Yi |= g and ηi+1 = (ηi + ti)[X := 0]. We denote the set of all

runs of A by Run(A).

PEA composed in parallel synchronise over common events and additionally over
common variables. That is, a variable that occurs in both automata may only
be changed if both automata agree.

Definition 3 (Parallel Composition). The parallel composition of PEA A1
and A2 with Ai = (Pi ,Vi ,Ai ,Ci ,Ei , si , Ii ,P0

i ) is given by

A1 || A2 := (P1 × P2,V1 ∪ V2,A1 ∪ A2,C1 ∪ C2,E , s1 ∧ s2, I1 ∧ I2,P0
1 × P0

2 ),

where ((p1, p2), g1 ∧g2,X1 ∪X2, (p′
1, p

′
2)) ∈ E iff (pi , gi ,Xi , p′

i) ∈ Ei with i = 1, 2.

This parallel product allows for compositional verification, because once a safety
property is proven for an arbitrary subset of parallel components, it is also true
for the entire system.

3 Test Formulae

In this section, we introduce the DC subclass of test formulae, denoted by Test-
form. For test formulae we construct test automata in Sect. 4. Applying the
automata theoretic approach [VW86, ABBL03], we can automatically decide
whether a system satisfies a negated test formula. Thus, test formulae may be
interpreted as undesired system behaviour.

We use so-called trace formulae to specify system executions. The class Test-
form is built up from trace formulae and admits a restricted use of negation.

Definition 4 (Testform). The formula class Testform is defined inductively:

Phase ::= � > 0 ∧ � ∼ k | Phase ∧ �ϕ	 | Phase ∧ � E
Trace ::= Phase | � E | � E | Trace1 ; Trace2

Form ::= Trace | ¬Form | Form1 ∧ Form2

Testform ::= Form | Testform1 ; Testform2 | Testform1 ∧ Testform2 |
Testform1 ∨ Testform2,

where k ∈ R>0, ϕ is a state expression, E is a Boolean observable, and ∼ ∈
{∅, ≤, <, >, ≥}. We use ∼ = ∅ to indicate � > 0 is the only time bound. We
impose the condition that the first element of a trace always is a phase.
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In our running example, undesired behaviour is that the leading train sends an
alert message, indicated by formula (2), but for longer than five time units neither
the leading nor the following train applies the brakes, stated in formula (3), with
i = 1, 2. Test formula (4) reflects the critical behaviour:

Warn :=�true	 ; �Train1ToRBC Alert ; �true	;
�RBCToTrain1 Warn1 ; �true	 ; �RBCToTrain2 Warn2 (2)

NoBrakei :=�ApplyEmergencyBrakei ∧ � > 5 (3)
TF :=Warn ; (NoBrake1 ∧ NoBrake2) ; �true	. (4)

A different approach would express the undesired behaviour directly in terms
of test automata. The benefit of DC is its conciseness. A negated DC trace
comprising n phases requires in the worst case a test automaton of size 4n . Thus,
even for simple behaviour the modelling of test automata by hand is error-prone,
a disadvantage the automated compilation overcomes.

3.1 Sync Events

For arbitrary DC formulae F ,G,H there is no distributive law between the chop
operator and the conjunction, i.e., F ; (G ∧ H ) ⇔ (F ; G) ∧ (F ; H ). To recover
some form of distributive law, we introduce sync events �

S
, i.e., distinguished

events occurring only once. They can be used to uniquely identify a chop point.
For sync events the following distributivity holds:

F �
S
(G ∧ H ) ⇔

(

F �
S
G

)

∧
(

F �
S
H

)

. (5)

Definition 5 (Sync Events). Let F , G be DC formulae, S a Boolean observ-
able not contained in F nor G. Let I be an interpretation, b, e ∈ R≥0, b ≤ e.
The sync event F �

S
G is defined as follows:

I, [b, e] |= F �
S
G :⇔ ∃ t ∈ [b, e] :(I, [b, t ] |= F) ∧ (I, [t , e] |= G)∧

(I, [t , t ] |= �S) ∧ (∀ t ′ ∈ [0, t) ∪ (t , ∞) : I, [t ′, t ′] |=  � S ).

To introduce sync events to the class of test formulae, equivalence (6) in the
following lemma allows the replacement of a chop operator with a fresh sync
event not used in one of the formulae. Furthermore, an efficient distributivity
between sync events and conjunctions is stated.

Lemma 1 (Sync Event Introduction and Linear Distributivity). Let S
be a Boolean observable not contained in F, Fi , G, Gj , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
m,n ∈ N. The following equivalences hold:

(F ∧ � > 0) ; G ⇔ ∃ S :
(

F �
S
G

)

(6)
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(
m∧

i=1
Fi

)

�
S

(
n∧

j=1
Gj

)

⇔
m∧

i=1

(

Fi �
S
true

)

∧
n∧

j=1

(

�true	�
S
Gj

)

. (7)

We know that the true phase before a sync event has a duration greater zero,
i.e., �true	 holds, because events cannot happen at time zero. The distributivity
in equivalence (7) results in m + n + 1 conjuncted formulae compared to the
distributivity in (5) resulting in m ∗ n formulae:

m∧

i=1

n∧

j=1

(

Fi �
S
Gj

)

⇔
m∧

i=1

(

Fi �
S
true

)

∧
n∧

j=1

(

�true	�
S
Gj

)

.

The introduction of sync events transforms a time-triggered real-time system
specification using chopped formulae into an event-triggered specification with
sync events replacing chops. Event-triggered system specifications allow for
canonical operational semantics using labelled transitions whereas time-triggered
specifications need some elaborate clock construction to represent the timing
issues.

3.2 A Normal Form Theorem for Test Formulae

Our normal form is a disjunctive normal form (DNF) over traces.

Theorem 1 (Normal Form Theorem). Every test formula is satisfiability
equivalent with a formula of the form

∃ Sijk :
∨

i
∧

jTij , (8)

with Tij ::= Trij �
Sij

�true	 | �true	 �
Sij1

Trij �
Sij2

�true	, (9)

where Trij are (negated) traces, k = 1, 2, and Sijk are fresh Boolean observables.

For the construction of the normal form, we assume the given test formula
TF to end with a �true	 phase (cf. satisfiability equivalence, Sect. 2.1). We
then replace every Form formula inside TF with its DNF. To obtain the outer-
most disjunctions in (8), we apply the known distributivities for disjunction and
chop/conjunction to the resulting formula. We end with chop separated conjunc-
tions of (negated) traces. For all these chops, we introduce sync events (6) and
use distributivity (7).

The computation of the DNFs and the known distributivities may lead to
an exponential blow up of TF . We tackle this problem by model checking all
disjuncts separately. Distributivity (7) neither increases the number of (negated)
traces nor the size of the product automata (cf. restriction, Sect. 4).

For example, we gain the normal form of formula (4) by introducing two sync
events (6) and using the distributivity of sync events and conjunctions (7):

Warn ; (NoBrake1 ∧ NoBrake2) ; �true	
⇔ ∃ S0 : ∃ S1 : Warn �

S0

�true	 ∧
∧

i=1,2�true	 �
S0

NoBrakei �
S1

�true	.
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4 Model Checking with Test Automata

To define whether a PEA model of a system satisfies a test formula, we need
to clarify the meaning of satisfiability of a DC formula with respect to a PEA
(cf. Definitions 1 and 2). Given Boolean observables E1 . . . , En and observables
X1, . . . ,Xm , an interpretation I is said to fit to a run r iff

– the set of events A in the PEA can be identified with the set of interpreted
Boolean observables, A = {E1 . . . , En}, the set of variables in the PEA is
identical with the set of interpreted observables, V = {X1 . . . ,Xm},

– the observables used in the PEA are interpreted as imposed by the valuations
in the run,

– a change in the interpretation of a Boolean observable Ei occurs at time t
iff the PEA changes its state at time t and the variable is contained in the
set of events, Ei ∈ Y .

Every run of a PEA induces a fitting interpretation. Satisfiability of a formula by
a PEA is defined over the interpretations fitting to the runs of the automaton.

Definition 6. A PEA A satisfies a DC formula F , denoted by A |=0 F, iff all
interpretations I fitting to a run r satisfy the formula from time zero:

A |=0 F :⇔ ∀ I : ∀ r ∈ Run(A) : (I fits to r ⇒ I |=0 F ) .

4.1 Test Automata

Test automata (TA) are PEA with a distinguished state, called the bad state.
The runs of a TA are the runs of the underlying PEA. A run is said to be
a test run iff it reaches the bad state. Reaching the bad state in the parallel
composition of the system with a TA means that the system can exhibit the
undesired behaviour specified in the test formula the TA is constructed for.

We define the TA semantics for the normal form of test formulae. Therefore,
we require three operations on TA: parallel composition to express the con-
junction, sequential composition to represent the formula structure in (9), and
restriction to model sync events.

The parallel composition of test automata, TA1 ‖ TA2, takes the parallel
composition of the underlying PEA and defines the bad state of the composed
automaton as the pair of the bad states of the original automata.

The sequential composition of two test automata, denoted by TA1•S,γ
TA2, means

the second TA is started when the first one has accepted its formula. Since the
acceptance of trace formulae depends on clock valuations, we cannot use bad
states to check the acceptance in the TA for traces. Instead, we use a guard
function γ yielding a first-order formula for every state. We define the sequential
composition as follows. A transition between every state in the first automaton
and every initial state in the second automaton is inserted. The new transitions
demand an event S representing the sync events in (9). Furthermore, they require
a guard that holds iff the test formula represented by the first TA is satisfied.
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The guard is given by the function γ. All clocks in both automata are reset when
the first TA is left.

As an example, consider the formula tr�
S
�true	 for a trace tr . Figure 2 repre-

sents the structure of the TA for the sequential composition P(tr) •
S,γtr

P(�true	)
connecting the trace automaton P(tr) with the automaton P(�true	).

Given a test automaton TA,

true

S ∧ γtr(p0),C

S ∧ γtr(p1),C

p0

p1

pi

pj

P(tr)

S ∧ γtr(pi),C

S ∧ γtr(pj ),C

Fig. 2. Sequential composition (illustration)

the restriction of TA to the event
S, denoted by TA \ {S}, is de-
fined by TA with the guards of
the transitions changed: if the
guard does not contain S in TA,
the requirement ¬S is added in
TA \ {S}, otherwise, the tran-
sition remains unchanged. The
restriction operator is used to
make the occurrences of sync
events unique.

4.2 A Test Automata Semantics for Test Formulae

We now define a test automata semantics for test formulae, i.e., a mapping
that assigns to each test formula (in normal form, cf. Theorem 1) TF a test
automaton P(TF ). To begin with, we sketch the following non-compositional
TA construction for traces. A trace tr consists of several subsequent phases. A
state in the TA P(tr) represents a subset of these phases combined with a set of
flags. For each phase p in this set all runs leading to the state accept the prefix of
the trace up to p. The flags indicate the bound types (∅, ≤, <, >, ≥) that need
to be used for every phase in this state. Given a state in the TA, a successor
state is computed for every possible event set, clock and variable valuation.
This results in a deterministic automaton, that may grow exponentially in the
number of phases inside the trace. The phase p is accepted, if the given valuation
and event set satisfy the guard function γtr ,p of this phase. The successor state
contains the next phase in the trace. In Definition 7, the function γtr is the guard
function of the last phase in the trace. Details of the construction and the guard
function can be found in [Hoe06].

The disjunction in the normal form is not lifted to automata level but model
checking is done stepwise for all disjuncts until a satisfied disjunct is found.

Definition 7 (Test Automata Semantics). Let tr be a trace and S, S1, S2 be
Boolean observables. The test automata semantics for a test formula in normal
form TF yields a PEA P(TF ) defined as follows:

P(tr�
S
�true	) :=(P(tr) •

S,γtr

P(�true	)) \ {S}

P(¬tr�
S
�true	) :=(P(tr) •

S,¬γtr

P(�true	)) \ {S}
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P(�true	 �
S1

Tr �
S2

�true	) :=[(P(�true	) •
S1,true

P(Tr �
S2

�true	)) \ {S2}] \ {S1}

P(TF1 ∧ TF2) :=P(TF1) ‖ P(TF2),

where Tr is a (negated) trace, TF1 and TF2 are in the form of (9). The function
γtr guarantees that the trace tr is accepted.

Figure 3 shows the TA semantics for the formula �true	 �
S0

NoBrake1 �
S1

�true	,

simplified by removing a transition with guard false from state 2 to state 4.
State 2 and state 3 represent the states of the trace automaton P(NoBrake1).

A test formula is satisfied by an interpretation on an interval iff the bad state
in the TA is reachable in a run the interpretation fits to.

Lemma 2 (Characterisation of Satisfiability with Test Automata).
Consider the normal form

∨
i
∧

j Tij of a test formula. Given an interpretation
I and t ∈ R≥0, the following equivalence holds for every disjunct:

I, [0, t ] |=
∧

jTij ⇔ ∃ test run r ∈ Run(P(
∧

jTij )) :

I fits to r and r reaches the bad state at time t .

With Lemma 2 we can reduce the problem whether a PEA satisfies a negated
test formula to a reachability question. The correctness of our semantics with
respect to model checking is stated in the following theorem.

Theorem 2 (Model Checking Theorem). Let TF be a test formula with
the normal form

∨
i
∧

j Tij . The question whether the negated test formula is
satisfied by a PEA A can be decided as follows:

¬ (A |=0 ¬TF ) ⇔ ∃ i : ∃ r ∈ Run(A ‖ P(
∧

jTij )) : r reaches a state (p, pBad ),

where p is a state of A and pBad is the bad state of P(
∧

j Tij ).

The decidability of the reachability problem depends on the constraints over the
state variables of the PEA.

Model checking can be done separately for all disjuncts and terminates as soon
as the bad state is reachable in one of the disjuncts. The parallel composition
A ‖ P(

∧
j Tij ) only needs to be computed for the evaluated disjuncts.

A disjunct may consist of several conjuncted formulae. For model checking,
a subset of these formulae may be chosen. If the bad state is reachable in the
TA for the subset, further formulae may be added. Model checking is repeated
for the new set of formulae gained by this iterative procedure. If the bad state
is not reachable for the subset, we know that it is not reachable for the whole
disjunct. This incremental approximation can significantly reduce the TA size.

5 Case Study: Real-Time Aspects of the ETCS

In this section we take up the case study of Sect. 1.1 for the experimental eval-
uation of our verification method.
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¬S0 ∧ ¬S1

¬ApplyEmergencyBrake1∧¬ApplyEmergencyBrake1∧
¬S0 ∧ ¬S1¬S0 ∧ ¬S1c < 5 ∧ ¬S0 ∧ ¬S1

true c ≤ 5
S0 ∧ ¬S1, {c}

21

¬ApplyEmergencyBrake1∧
c ≥ 5 ∧ ¬S0 ∧ ¬S1

¬S0 ∧ S1, {c}

3 4
truetrue

Fig. 3. Test automaton for �true� �
S0

NoBrake1 �
S1

�true�

Complex systems like the ETCS consist of several components running in
parallel, by the communications between these components, by internal data and
state changes, and by real-time aspects. We use the declarative formal language
CSP-OZ-DC [HO02] to model our case study. CSP-OZ-DC integrates the well-
investigated languages CSP [Hoa85], Object-Z [Smi00], and DC [ZH04] into a
unified formalism. CSP-OZ-DC is given an operational semantics [Hoe06] in
terms of PEA.

Our case study incorporates five different components that can be modelled
with CSP-OZ-DC in an object-oriented way using classes: Train, RBC, Track,
Driver, and a communication layer ComNetwork, which is necessary to model
the transfer times of messages between trains and RBC. Every CSP-OZ-DC class
comprises an interface part (Fig. 4) defining channels that can be used for the
inter-class communication.
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Train
chan send : [id : TrainID ]
...

main
c= Running ‖|HandleEM ‖| ...

HandleEM c= receive.EmergencyWarning?id → ...

position : R . . .

com applyBrakes
...

Init
brakingMode = None . . .

com updatePosition
...

¬(�true	 ; � indicationToDriver ; � driverAck ∧ 5 < �)
...

Fig. 4. Exemplary train class

The external and in-
ternal communications of
parallel components are
described with Commu-
nicating Sequential Pro-
cesses (CSP) [Hoa85].
These processes commu-
nicate over channels (or
events) that facilitate the
transfer of data values,
e.g., the main process of a
train comprises the inter-
leaving of three subpro-
cesses. When the RBC
sends an emergency warning, the train receives this message on the channel
receive with the process HandleEM (Fig. 4).

Data aspects are specified with the object-oriented specification language
Object-Z (OZ) [Smi00]. The OZ part consists of schemas describing data changes
of a class. For instance, the OZ part of Train (Fig. 4) includes the state schema
defining attributes of the class, e.g., position, the Init-schema defining that
initially the train is not braking, and operation schemas, e.g., com applyBrakes
defining data changes that are performed at the same time when—in agreement
with the CSP part of the class—the event applyBrakes occurs. In particular, our
case study comprises, besides the real-time aspects, infinite data types, e.g., the
positions, that are modelled as reals. Furthermore, the values of such infinite
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data types are also transferred via channels to other classes. Another important
property of the data handling in CSP-OZ-DC is the use of parameters, i.e., we
do not need to interpret all constants. Instead, it suffices to specify conditions
that restrict the values adequately. In our case study, we have a parameter for
the length of trains and the only condition we need is length > 0.

Real-time constraints are described using the logic DC [ZH04]. Since the full
DC is too expressive for automatic verification, we only use counterexample-trace
formulae, i.e., negated trace formulae according to Sect. 3.

The operational semantics of CSP-OZ-DC is given in terms of PEA, which
can handle infinite data types and parameters. It is compositional in the sense
that every part (CSP, OZ, and DC) of every component is translated into a
single PEA, and the whole specification is translated into the parallel product
of all these automata. For details we refer to [HM05, Hoe06].

The desired safety property in our case study is that the trains will never
collide. For a setting with two trains, this can be expressed in the DC formula

¬(�true	 ; �position1 > position0 − length0	), (10)

where position0 is the position of the first train with length length0. The variable
position1 represents the position of the subsequent train.

5.1 Tool Support

TA

PEA

Testform

CSP-OZ-DC

Normalform
PEA

ARMC

Fig. 5. Flow of the verification process

In order to verify
whether a CSP-OZ-
DC model satisfies a
test formula, we ex-
ecute the following
steps (cf. Fig. 5). We translate the model into PEA according to its seman-
tics. The translation of the DC part is automated. To develop PEA for the CSP
and the OZ part the graphical design tool Moby/PEA [HMF06] is available. The
DC test formula is transformed into a set of test automata (TA), applying the
algorithm introduced in Sect. 3 and 4. To this end, we implemented a compiler
(available on [HMF06]) that automatically computes the normal form and the
corresponding test automata semantics. In a next step, we compute the parallel
composition of the test automata and the PEA of the model. Our tool generates
outputs in the Uppaal [UUP05] and ARMC [Ryb06] supported formats. Finally,
we apply a model checker on the product automaton. For our case study, Up-
paal is of limited use, because it can neither cope with infinite data domains nor
parameters.

We use the abstraction refinement model checker ARMC [Ryb06] for infinite
state systems to prove the unreachability of bad states in PEA. We implemented
a new abstraction refinement method in ARMC that allows us to handle large in-
put PEA from the case study. ARMC automatically constructs a safe abstraction
of the input PEA. The abstraction is defined by predicates over PEA variables,
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Table 1. Experimental results (Athlon XP 2200+, 512 MB RAM)

Task (1) (2) (3) (4) (5) (6) (7) (8)
Running 178 6.1T 31 46 347 22 25s 26m
Running (decomp. 1) 8 150 20 11 11 8 2.5s 7.5s
Running (decomp. 2) 20 899 22 8 32 8 4.0s 21.5
Running (decomp. 3) 48 1.2T 27 13 93 10 5.9s 45s
Running (decomp. 4) 48 1.7T 27 11 70 7 6.3s 47.5s
Delivery 122 18T 20 41 2.2T 32 50s 86m
Delivery (decomp. 1) 14 366 14 9 29 8 2.7s 13.9s
Delivery (decomp. 2) 17 173 10 25 17 17 2.2s 1.9s
Delivery (decomp. 3) 12 71 9 12 9 9 1.9s 0.7s
Delivery (decomp. 4) 17 156 12 25 19 17 2.2s 2.6s
Delivery (decomp. 5) 7 28 4 3 5 3 1.6s 0.1s
Braking 1 44 240 17 45 44 3 3s 5.1s
Braking 2 172 1.6T 33 63 88 59 9s 35.3s

(1) program locations
(2) transitions
(3) variables
(4) predicates generated by

ARMC
(5) abstract states
(6) refinements loops performed

by ARMC
(7) runtime for generating

test automata and
parallel product

(8) runtime for model checking

T : thousand units
m : minutes s : seconds

events, and clocks, and computed in the standard way [GS97]. The process of
choosing the right abstraction is guided by spurious counterexamples that are
found if the abstraction is not precise enough to verify the property [CGJ+00].
We apply the recent methodology for the extraction of new predicates from spu-
rious counterexamples that is based on interpolation [HJMM04, McM03]. We
designed and implemented an efficient algorithm for the computation of inter-
polants for linear arithmetic over rationals/reals based on linear programming,
which are particularly needed for the verification of real-time systems.

5.2 Results

The model of the case study is too large to verify the global safety property (10)
in a single step. Therefore, we decompose the model manually into smaller parts
and verify local properties for the parallel components. The semantics of CSP-
OZ-DC ensures that local properties hold for the entire system (cf. Sect. 2.2).

Table 1 shows our experimental results for a range of verification tasks. For
instance, we consider the running behaviour of the train in isolation and verify
(10) on the assumption that the first train does not apply the emergency brakes.
To this end, we take only those PEA into account that influence the running
behaviour, i.e., the automata for the subprocess Running (Fig. 4) together with
the automata for the OZ and the DC part. The performance results of applying
our model checking approach to this verification task are listed as “Running”
in Tab. 1. The other entries (decomp. 1 – decomp. 4) contain our results for a
further (manual) decomposition of “Running” into smaller tasks that allows for
a more efficient verification. For the “Delivery” task (and also the decomposed
variants) we verify that messages like an emergency message between train and
RBC are not delivered too late. Bringing together the verification tasks and
showing that they imply (10) for the entire model is subject of ongoing work.

The table illustrates that we can handle up to 18000 program transitions and
up to 33 variables (with potentially infinite data types) in an order of 86 min.
Hence, these results demonstrate that our new algorithm implemented in our
tool chain can deal with problems in real world applications.
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6 Related and Future Work

Our class of test formulae is a proper generalisation of previously known classes.
It is based on the class of counterexample-trace formulae [Hoe06], that corre-
spond to negated traces. Counterexample-traces cover the class of DC imple-
mentables [Rav94, Hoe06]. Non-negated traces with phases of exact length, i.e.,
� = k bound, are covered by Testform. With this observation our class forms
a proper superset of {�ϕ	, � < k , � = k , � > k}-formulae that have exactly one
outermost negation [Frä04]. We conjecture that the classes of constraint dia-
grams used for model checking timed automata in [DL02] form proper subsets
of Testform. We have not yet compared the expressiveness of our class with the
results in [ABBL03].

For positive Duration Interval Logic formulae (DIL+ formulae) a translation
into Integration Automata (IA) is given in [BLR95]. DIL+ formulae are cov-
ered by Testform, because they correspond to traces that contain phases of
exact length. To give IA semantics to negated formulae, the authors of [BLR95]
show that the negation of a strongly overlap free DIL+ formula has a congruent
DIL+ formula. Since our translation for negated traces does not require over-
lap freeness, it covers a strictly larger class of negated formulae. Pandya proves
the decidability of Interval Duration Logic with located constraints (LIDL–) by
translation into event recording timed automata [Pan02]. Located constraints re-
quire disjoint phases, a condition our construction does not impose. In contrast,
LIDL– is closed under negation even for phases with exact length.

The idea of sync events is closely related to the theory of nominals. In a
DC extended with nominals [Han06], intervals can be identified uniquely using
their names. Similarly, sync events identify chop points. In [KP05] phases in the
QDDC are equipped with fresh observables to identify chop points. This yields
decomposition results similar to ours. The benefit of our work is the integration
of sync events with the operators of the full DC.

Related work on ETCS case studies like [ZH05, HJU05] focuses on the stochas-
tic examination of the communication reliability and models components like the
train and the RBC in an abstract way without considering data aspects.

We currently work on model checking DC liveness properties with the au-
tomata theoretic approach. In addition, enhancing our decomposition techniques
is ongoing work. They allow for compositional verification of inherently parallel
systems like the ETCS.
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