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Abstract. Alternating temporal logic (atl*) was introduced to prove
properties of multi-agent systems in which the agents have different ob-
jectives and may collaborate to achieve them. Examples include (distrib-
uted) controlled systems, security protocols, and contract-signing pro-
tocols. Proving atl* properties over finite-state systems was shown de-
cidable by Alur et al., and a model checker for the sublanguage atl

implemented in mocha.
In this paper we present a sound and complete proof system for prov-

ing atl* properties over infinite-state systems. The proof system reduces
proofs of atl* properties over systems to first-order verification condi-
tions in the underlying assertion language. The verification conditions
make use of predicate transformers that depend on the system structure,
so that proofs over systems with a simpler structure, e.g., turn-based sys-
tems, directly result in simpler verification conditions. We illustrate the
use of the proof system on a small example.

1 Introduction

atl* [1] is a logic used to specify properties of computing systems in which dif-
ferent agents have different goals. It allows reasoning about temporal properties
that players can achieve in cooperation or competition with each other.

Alur et al. [1] showed that the verification of atl* properties over finite-
state systems is decidable, and they proposed several model-checking algorithms.
Model checking of atl (a restricted form of atl*) properties over finite-state
alternating systems was implemented in mocha [2]. Mocha has since been
applied to the analysis of a wide variety of systems, extending to such diverse
realms as security and contract-signing protocols [3,4,5], or mechanism design
[6]. Although in some of these analyses the restriction to finite-state systems
was not a problem, in general this is not the case. For example, the analysis
of the multi-party contract-signing protocol of [4,5], which is parameterized by
the number of participating parties, was limited to small instances with three or
four parties. Thus there is a need for methods for verifying atl properties over
infinite-state systems.
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In this paper we present a sound and complete proof system for proving atl*

properties over infinite-state alternating systems.
Proof systems for program logics come in two flavors. The first approach [7]

reduces proofs of system properties to proofs of validities in the program logic.
To prove a property ϕ over a system S, the system is encoded in a formula ΦS
in the program logic, and ΦS → ϕ is proved valid. A complete proof system of
this kind for propositional atl was developed by Goranko & al. [8]. The second
approach [9,10,11] reduces proofs of system properties to proofs of first-order
validities by means of rules that act on the system representation directly. The
proof system proposed in this paper follows the second approach.

Our proof system consists of proof rules that reduce the verification of an atl*

property over an alternating system to a set of first-order verification conditions
in the underlying assertion language of the system. The verification conditions
are expressed in terms of a controllable predecessor predicate transformer (cpre).
The advantage of parameterizing the proof rules by cpre is that the rules are
independent of the system structure, but the resulting verification conditions
for different types of systems – e.g., turn-based systems – can be simplified by
instantiating cpre with the version that exploits the more constrained system
structure. The proof rules are constructive: a proof of the verification conditions
can be used to construct controllers for the original property proved.

Our proof system incrementally converts temporal formulas into finite au-
tomata that are then composed with the system. This technique of lifting au-
tomata-theoretic results to proof systems was first proposed by Vardi and applied
to ltl [12]. Later a similar approach was applied to ctl [13] and ctl* [11]. Our
approach is most closely related to that in [11].

The rest of the paper is organized as follows. Section 2 presents our model of
computation. Section 3 defines atl*. Section 4 describes the proof system and
Section 5 concludes. The models and proof rules are illustrated with a small
example. Proofs of soundness and completeness can be found in [14].

2 Alternating Discrete Systems

As computational model we use alternating discrete systems (ads), based on the
fair discrete systems of Kesten and Pnueli [11]. An ads is a general first-order
representation of alternating structures, that generalizes turn-based, synchro-
nous and asynchronous concurrency models of [1] and recursive programming
languages. States and fairness conditions are represented as value assignments
to a finite set of typed variables. To enable a first-order representation of the
next-state relation, the player’s available actions are represented by special ac-
tion variables. The formal definitions are as follows.

An alternating discrete system (ads) is a tuple

S = 〈Ω, VS , VΩ, ξ, χ,F〉 ,
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where:

– Ω is a finite set of players.
– VS is a finite set of typed system variables; a state is a typed value assignment

to the variables in VS ; the set of all states is denoted by Σ.
– VΩ = 〈Va | a ∈ Ω〉 provides each player with a finite set of typed action

variables. An a-action is a typed value assignment to the variables in Va; the
set of all a-actions is denoted by Γa. An A-action for a set of players A ⊆ Ω
is a typed value assignment to the variables in VA =

⋃
a∈A Va; the set of all

A-actions is denoted by ΓA. We write Γ for ΓΩ.
– ξ = 〈ξa | a ∈ Ω〉 associates to each player a a first-order formula over

variables VS and Va that restricts the actions player a can choose at each
state: at state VS , player a can choose only actions such that ξa(VS , Va)
holds. The extension of ξ to a set of players A ⊆ Ω is defined as ξA(VS , VA) ≡∧

a∈A ξa(VS , Va).
– χ is a first-order formula over VS , VΩ, V ′

S ; χ represents the game matrix:
χ(VS , VΩ, V ′

S) expresses that the system can move from state VS to state V ′
S

when the players’ choices are VΩ.
– F : Ω → B(∞ QF(VS)) assigns to each player a fairness condition, repre-

sented as a Boolean formula over atoms of the form ∞p (read “infinitely
many times p”), where p is an assertion (quantifier-free formula) over VS .
For example, ∞(x = 2 ∧ y > x) → ∞(y ≥ z2).

We assume that an ads has no blocking states, i.e., states from which a
player has no legal action, or from which there is no available successor state for
certain choices of the players. Clearly, the property of being non-blocking can
be expressed by a simple set of verification conditions, of the following forms:

∀VS ∃Va. ξa(VS , Va) for all a ∈ Ω, and
∀VS ∀VΩ. ξΩ(VS , VΩ) → ∃V ′

S . χ(VS , VΩ, V ′
S) .

The non-blocking assumption is not restrictive, since we can add a new state and
make all previously blocking actions move to it; from there, all actions would
then lead back to the same state. Thus we can assume without mentioning that
these conditions hold in any system under consideration.

Some of the proof rules that we shall describe modify the underlying ads. In
those cases, if the original ads is non-blocking, then the modified one is non-
blocking too.

Example 1. As an illustration of the computational model of ads, consider the
model of processor, a simple system consisting of a processor that must be
scheduled to execute multiple processes, shown in Fig. 1. In the model, processes
are stored in a queue, represented by the system variable qu, and the processor
is either active or not active, represented by the boolean system variable pa.
When the processor is inactive, a new process, represented by the environment
action variable np, can enter and is inserted at the end of the queue. The en-
vironment may choose not to enter a new process by setting np to ⊥. When
the processor becomes active, the process at the head of the queue is therefrom
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Ω : {Env ,Sched}
VS : {qu : list of process, pa : boolean, xp : process⊥}
VEnv : {np : process⊥, te : {no, yes , cont}}
VSched : {pos : N}
ξEnv : t

ξSched : pa → (0 ≤ pos ≤ |qu|)
χ : (¬pa ∧ np = ⊥ ∧ pres{pa, xp, qu}) ∨

(¬pa ∧ np �= ⊥ ∧ qu ′ = append(qu ,np) ∧ pres{pa , xp}) ∨
(¬pa ∧ np = ⊥ ∧ qu �= empty ∧ pa ′ ∧ qu = cons(xp′, qu ′)) ∨
(pa ∧ te = no ∧ pres{pa , xp}) ∨
(pa ∧ te = yes ∧ ¬pa ′ ∧ xp′ = ⊥ ∧ pres{qu}) ∨
(pa ∧ te = cont ∧ ¬pa ′ ∧ xp ′ = ⊥ ∧ qu ′ = insert(qu, pos , xp))

FEnv : ∞¬pa ∧ ∞pa
FSched : t

Fig. 1. ads for processor: pres{. . . } means the values are preserved by the transition;
append adds an element to the end of a list, insert adds an element at a certain position,
&c

removed and becomes the executing process, represented by the system variable
xp. When the process releases the processor, it may or may not need to continue
later, represented by the environment action variable te. If it needs to continue,
the scheduler reinserts it in the queue at the position determined by its action
variable pos. It is assumed that all executing processes eventually release the
processor and that there is an unlimited supply of processes to be executed,
represented by the environment fairness condition. An informal representation
of the model is shown in Fig. 2.

pano

cont

yes ¬pa

np �=⊥

np=⊥

Fig. 2. Informal representation of ads for processor

Given an ads S, a run consists of the following game played ad infinitum: At
each state s ∈ Σ assigning values to variables VS , every player a ∈ Ω, indepen-
dently of the others, picks an action by choosing values for the local variables
Va so that ξa(VS , Va) holds. Then, the next state is nondeterministically chosen
among the assignments to V ′

S such that χ(VS , VΩ, V ′
S) holds. Notice that our

assumption of non-blocking guarantees that such an assignment always exists.
The formal definitions are as follows.

A sequence π ∈ Σω is a run of S from s ∈ Σ, with choices ρ ∈ Γ ω, if
π[0] = s and
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ξa(π[n], ρ[n]a) χ(π[n], ρ[n], π[n + 1])

for all n < ω and a ∈ Ω. A run from X ⊆ Σ is a run from any state s ∈ X . We
omit the initial state if it is irrelevant or clear from the context. A run π is fair
to player a, written π � Fa, if Fa evaluates to true under the interpretation of
atoms ∞p as “p holds at π[n] for infinitely many n”.

A player a ∈ Ω can make its choices ρ in accordance with a strategy, a function

fa : Σ+ → Γa

such that ξa(s, fa(ws)) holds for all w ∈ Σ∗ and s ∈ Σ. A run π is compatible
with strategy fa for player a if its choices ρ satisfy

ρ[n]a = fa(π[0 . . . n])

for all n < ω. A run is compatible with strategies fA (denoting the sequence
〈fa | a ∈ A〉), for A ⊆ Ω, if it is compatible with fa for all a ∈ A. The set of
all runs compatible with fA starting at a certain state s ∈ Σ is called the set of
outcomes of fA from s and denoted

outS(s, fA) ,

or out(s, fA) when S is clear from the context.
The fundamental operator to describe properties of discrete structures is the

controllable predecessors operator cpreA. Given a set of states X ⊆ Σ and a set
of players A ⊆ Ω, cpreA(X) denotes the set of states from which the players in
A have a collaborative action with which they can ensure that the game will be
in X at the next state. Formally,

cpreA(ϕ)(VS) ≡ ∃VA. ξA(VS , VA) ∧
∀VΩ\A. ξΩ\A → ∀V ′

S . χ(VS , VΩ, V ′
S) → ϕ(V ′

S) . (1)

Dual to cpreA is the uncontrollable predecessors operator upreA, defined as

upreA(X) = Σ \ cpreA(Σ \ X) ,

or, explicitly, as

upreA(ϕ)(VS) ≡ ∀VA. ξA(VS , VA) →
∃VΩ\A. ξΩ\A ∧ ∃V ′

S . χ(VS , VΩ , V ′
S) ∧ ϕ(V ′

S) . (2)

For classes of ads with special properties, the cpre transformers have simpler
forms [1,15]. To take advantage of these simpler forms, we express our verification
conditions in terms of these transformers as much as possible.

Example 2. As an illustration of how the cpre operator is affected by the system
structure, consider the following asynchronous game structure S, consisting of
two agents a and b. The state space of S is partitioned so that, from any given
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state, either a or b has complete control of the next state, represented by the
formulas turna(VS) and turnb(VS) ≡ ¬turna(VS). Furthermore, the next-state
relation is represented by the formulas χa(VS , V ′

S) and χb(VS , V ′
S), meaning when

it is a’s turn, agent a can choose any state in V ′
S such that ξa(VS , V ′

S) holds, and
similarly for agent b. For this game structure, cprea(ϕ) can be simplified to

cprea(ϕ)(VS) ≡

⎛

⎝
turna(VS) → ∃V ′

S . χa(VS , V ′
S) ∧ ϕ(VS)

∧
¬turna(VS) → ∀V ′

S . χb(VS , V ′
S) → ϕ(V ′

S)

⎞

⎠

As we shall see, cpre always appears in verification conditions in the consequent
of a universally quantified implication, and thus the corresponding verification
conditions for this game structure can always be split into two simpler ones.

3 The Logic ATL*

atl* (Alternating Temporal Logic) was proposed by Alur & al. to allow selective
quantification over runs that are the possible outcomes of games [1]. For conve-
nience we use a version of atl* with a few more connectives. (The expressive
power is not affected.)

3.1 Syntax

atl* formulas come in two types, state formulas and path formulas, defined by
mutual induction.

A (state) formula is one of:

– an assertion (first-order formula) in the underlying state language,
– a Boolean combination of state formulas,
– 〈〈A〉〉ϕ, �A�ϕ, 〈〈A〉〉fϕ, or �A�fϕ, for A a set of players and ϕ a path formula.

A path formula is one of:

– a state formula,
– a Boolean combination of path formulas, or
– an ltl temporal operator applied to path formulas.

The operators 〈〈A〉〉, �A�, 〈〈A〉〉f , �A�f are called alternating quantifiers. The
most basic one is 〈〈A〉〉, stating that A have a strategy to make a path formula
true in all runs starting in the current state. The dual operator �A� is defined as
�A�ϕ ≡ ¬〈〈A〉〉¬ϕ: we usually say that A cannot avoid ϕ from happening. The
fair alternating quantifiers 〈〈A〉〉f and �A�f are similar, but interpreted over all
fair runs instead of all runs.

For ltl operators we use the notation of [9, 10]:  for always in the future, 
for eventually in the future, &c.
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3.2 Semantics

Let S be an ads. We define truth relations

S, s � ϕ S, π � ψ

for a state formula ϕ at a state s and for a path formula ψ over a path π,
by mutual induction on the structure of the formula. Recall that outS(s, fA)
denotes the set of runs of S starting at s and compatible with strategies fA.

– S, s � p, for p an assertion, if s � p in the assertion language;
– Boolean operators distribute over � in the natural way, both for state and

path formulas;
– S, s � 〈〈A〉〉ψ if there exist strategies fA such that, for all π ∈ out(s, fA), we

have S, π � ψ;
– S, s � �A�ψ if, for all strategies fA, there exists an outcome π ∈ out(s, fA)

such that S, π � ψ holds;
– S, s � 〈〈A〉〉fψ if there exist strategies fA such that, for all outcomes π ∈

out(s, fA) such that π � FΩ\A, we have also π � FA and S, π � ψ;
– S, s � �A�fψ if, for all strategies fA, there is at least an outcome π ∈

out(s, fA) such that π � FΩ\A and, if π � FA, then also S, π � ψ;
– ltl operators are evaluated over path formulas in the usual way.

When S is clear from the context, we simply write s � ϕ and π � ψ. We say that

S � p ⇒ ϕ

when S, s � ϕ for all states s ∈ Σ satisfying p.

Example 3. Reconsider the system modeled in Example 1. We want to prove
that the scheduler has a strategy that allows it to be fair: from a state where a
process x is in the queue, the scheduler can play its choices in such a way that x
will eventually be executed. We model this requirement with the atl* formula

where x is a free variable and exec(x) is an abbreviation for pa ∧ xp = x.

4 Proof System

4.1 Overview

Our proof system operates on statements of the form

S � p ⇒ ((A))ϕ ,

where S is an ads, p is an assertion, ((A)) is an alternating quantifier, and ϕ is a
path formula in positive normal form. (Every atl* formula can be put in positive
normal form, where all negations have been pushed to the assertion level, in the
same way used for propositional logic and ltl, and rewriting ¬〈〈A〉〉ϕ to �A�¬ϕ
&c.) When clear from the context, we omit S and simply write p ⇒ ((A))ϕ. The
rules of the proof system can be classified into four groups:

x ∈ qu ⇒ 〈〈Sched〉〉fexec(x) ,
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1. A basic state rule, which reduces all statements to the form p ⇒ ((A))ϕ,
where ϕ is an ltl formula.

2. A basic path rule, which reduces ϕ (an ltl formula) to an assertion while
extending the system S by synchronously composing it with an automaton
for ϕ.

3. A history rule, which augments the system with extra history variables such
that, in the new system, A can win ϕ with memoryless strategies from its
winning set.

4. Assertion rules, which reduce the validity of statements about winnability
with memoryless strategies to assertional verification conditions.

The application of these rules results in a set of verification conditions to be
proved in the underlying theory of the system plus the cpre predicate transform-
ers. The advantage of parameterizing the underlying language to the cpre’s is
that, as illustrated in Example 2, in most practical cases the alternating system
has specific properties that can be exploited by defining a simpler version of cpre
than the generic form for ads’s shown in (1).

Completeness of the proof system is relative to validities in the first-order
logic, with fixpoints and cpre, of the underlying theory – the same as required
for relative completeness for ltl, or program termination, proof systems [9].
Proofs of soundness and completeness of all proof rules can be found in [14].

4.2 Basic State Rule

For ψ a state formula appearing with positive polarity in ϕ(ψ),

basic-state:

p ⇒ ϕ(q)
q ⇒ ψ

p ⇒ ϕ(ψ)

This rule says that, in order to prove p ⇒ ϕ(ψ), where ψ is a state formula ap-
pearing with positive polarity in ϕ, we guess an assertion q underapproximating
the set of states on which ψ holds and substitute q for ψ in ϕ. The two premises
require us to prove that q is indeed an underapproximation (q ⇒ ψ) and that
the formula after the substitution holds in the system (p ⇒ ϕ(q)). Notice that
there is an implicit “S � ” at the left of every line in the rule.

Example 4. Reconsider the system from Example 1. In trying to prove

¬pa ⇒ 〈〈Env〉〉〈〈Sched〉〉fexec(x)

over this system, we can apply rule basic-state with ψ ≡ 〈〈Sched〉〉fexec(x)
and q ≡ x ∈ qu to obtain the subgoals ¬pa ⇒ 〈〈Env〉〉(x ∈ qu) and x ∈ qu ⇒
〈〈Sched〉〉fexec(x).
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4.3 Basic Path Rule

Augmentation. The Basic Path Rule applies to statements of the form S �
p ⇒ ((A))ϕ where ϕ is an ltl formula. The first step in the application of this
rule is the synchronous composition of an automaton for ϕ with S [12,11].

Let ϕ be a (quantifier-free) ltl formula over variables VS . Let

Aϕ = 〈Q, q0, δ, F〉

be a deterministic Muller automaton accepting the language of ϕ, where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– δ : Q × Σ → Q is a full deterministic transition function;
– F ∈ 22Q

is the Muller acceptance condition.

The definition suggests that the alphabet of Aϕ is Σ, the – generally infinite –
set of states of the underlying ads. Only a finite quotient of Σ, however, is
necessary, determined by the values assumed by the states on the atoms of ϕ.
We use Muller acceptance condition for simplicity of notation. In practice, Streett
is of course preferable (or, if possible, an even simpler acceptance condition).

The role of Aϕ is to act as a temporal tester [11], that is, to observe the evo-
lution of ϕ on the ads. To achieve this, we construct a synchronous composition
of Aϕ and the ads S and introduce a new player aϕ with the fairness conditions
of Aϕ. The requirement that Aϕ be deterministic ensures that no player gains
power by the composition with Aϕ. In particular, the new player aϕ has only
one choice of action at all times. The formal definition is as follows.

Let S = 〈Ω, VS , VΩ , ξ, χ,F〉 be an ads, and A = 〈Q, q0, δ, FA〉 a deterministic
Muller (or Büchi, or Streett . . . ) automaton on alphabet Σ, as defined above.
The synchronous composition of S and A, denoted S � A, is the ads

Ŝ = 〈Ω̂, V̂S , V̂Ω, ξ̂, χ̂, F̂〉 ,

where:

– Ω̂ = Ω ∪ {aA}, where aA is a new player;
– V̂S = VS ∪ {q}, where q is a new variable of type Q;
– V̂a = Va if a ∈ Ω;

V̂aA = ∅;
– ξ̂a(V̂S , Va) ≡ ξa(VS , Va) if a ∈ Ω;

ξ̂aA(V̂S , ∅) ≡ t;
– χ̂(V̂S , V̂Ω, V̂ ′

S) ≡ χ(VS , VΩ , V ′
S) ∧ q′ = δ(q, VS);

– F̂ ≡ F ∧ FA, where FA is an expression of A’s acceptance condition.

The Basic-Path Rule. For an ltl formula ϕ,

basic-path:

S � Aϕ � p ∧ q = q0 ⇒ ((A, aϕ))ft

S � p ⇒ ((A))fϕ
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where Aϕ is a deterministic automaton on infinite words accepting ϕ, � is syn-
chronous composition, ((A))f is either 〈〈A〉〉f or �A�f , and aϕ stands for aAϕ . Notice
that we require the alternating quantifiers to be fair. If this is not the case, we
simply remove all fairness conditions from the system before applying the rule.

q0¬exec(x)
exec(x)

q1 t

with initial state q0 and fairness condition ∞q1. Then S � A becomes:

Ω̂ : {Env ,Sched , a} V̂S : VS ∪ {q : {q0, q1}}
V̂Env : VEnv V̂Sched : VSched V̂a : ∅

ξ̂Env : ξEnv ξ̂Sched : ξSched ξ̂a : t

χ̂ : χ ∧
(
(q = q0 ∧ ¬exec(x) → q′ = q0) ∧ (q = q1 ∨ exec(x) → q′ = q1)

)

F̂Env : ∞pa ∧ ∞¬pa F̂Sched : t F̂a : ∞(q = q1)

The following picture summarizes the game matrix χ̂ for the augmented ads:

pa, q0no,xp �=x

no,xp=x

cont ,xp �=x

yes,xp �=x

cont,xp=x

yes,xp=x

¬pa, q0

np �=⊥

np=⊥

pa, q1no cont

yes

¬pa, q1

np �=⊥

np=⊥

The property to prove on this system is now

x ∈ qu ∧ q = q0 ⇒ 〈〈Sched , a〉〉ft . (3)

4.4 History Rule

The purpose of the history rule is to allow for memoryless strategies in all the
games of interest. Consider a property of the form S � p ⇒ 〈〈A〉〉ϕ, where ϕ is an
ltl property. It is known (see, for example, [16]) that if we partition the states
of S into two sets, W1 and W2, such that players A have a winning strategy (can
ensure ϕ) from every state in W1, but not from any state in W2, then players A
have a finite memory winning strategy from every state in W1.

Example 5. Returning to our example, we apply basic-path using the following
deterministic automaton A for exec(x):
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The application of the assertion rules requires that A have a memoryless
strategy. To achieve this, we add to the structure some new variables, called
history variables, and a new player h (for history). We let h play in coalition
with A and give it the task of maintaining the history variables: at every step, h
will make a deterministic choice for the history variables, and the game matrix
χ will simply copy these choices into the next stage of the game.

History Augmentations. Let h be a new player and Vh a new set of history
variables. We define the history augmentation of S with history Vh, denoted
S[h, Vh], to be the ads

Ŝ = 〈Ω̂, V̂S , V̂Ω, ξ̂, χ̂, F̂〉 ,

where:

– Ω̂ = Ω ∪ {h};
– V̂S = VS ∪ V ∗

h , where V ∗
h is a copy of Vh;

– V̂a = Va if a ∈ Ω;
V̂h = Vh;

– ξ̂a(V̂S , Va) ≡ ξa(VS , Va) if a ∈ Ω;
ξ̂h(V̂S , Vh) ≡ t;

– χ̂(V̂S , V̂Ω, V̂ ′
S) ≡ χ(VS , VΩ , V ′

S) ∧ V ∗
h
′ = Vh;

– F̂ ≡ F .

The History Rule. For an ltl formula ϕ,

history:

S[h, Vh] � p ⇒ ((A, h))ϕ

S � p ⇒ ((A))ϕ

where S[h, Vh] is a history augmentation of S.

4.5 Assertion Rules

After applying the previous rules as much as possible, we are left with a set of
statements of the form

S � p ⇒ ((A))q ,

where S is an ads, p and q are assertions, and ((A)) is one of the four alternating
quantifiers 〈〈A〉〉, �A�, 〈〈A〉〉f , �A�f . In this section we show how to reduce each of
these to first-order validities. First, we transform the fair quantifiers into unfair
ones by making the fairness conditions explicit. This reintroduces temporal oper-
ators in the scope of the alternating quantifier. The resulting temporal formula,
however, is of a special form that is dealt with directly by the assertion rule.
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From the definitions of the semantics of the alternating quantifiers it follows
that p ⇒ 〈〈A〉〉fq can be rewritten as the conjunction of the two statements

p ∧ q ⇒ 〈〈A〉〉(FΩ\A → FA) p ∧ ¬q ⇒ 〈〈A〉〉¬FΩ\A

and p ⇒ �A�fq as the conjunction of

p ∧ q ⇒ �A�FΩ\A p ∧ ¬q ⇒ �A�(FΩ\A ∧ ¬FA)

These statements are all of the form

p ⇒ ((A))F ,

where ((A)) is either 〈〈A〉〉 or �A� and F is a Boolean combination of ∞ atoms,
and can be rewritten as

S � p ⇒ ((A))
∧

i

(
∞J i

1 ∧ . . . ∧ ∞J i
k → ∞qi

)
.

(Technically, the number k of antecedents is different for every i. Without loss
of generality, we drop this distinction to lighten the notation.) Below we present
proof rules to reduce these particular forms to assertional verification conditions.

The Positive Assertion Rule. This rule applies to formulas of the form

p ⇒ 〈〈A〉〉
∧

i

(
∞J i

1 ∧ . . . ∧ ∞J i
k → ∞qi

)
. (4)

To apply the rule, we guess intermediate assertions ri and rj
i (for i ∈ {1, . . . , n}

and j ∈ {1, . . . , k}) and ranking functions δj
i on a well-founded domain 〈A, ≺〉.

pos-assertion:

p ⇒
∧n

i=1 ri

For every i ∈ {1, . . . , n}:
ri ⇒

∨k
j=1 ri

j

For every choice of {ji | i ∈ {1, . . . , n}}:

∧n
i=1(r

i
ji

∧ δi
ji

= ai) ⇒ cpreA

∧n
i=1

⎡

⎢
⎢
⎢
⎢
⎣

(ri ∧ qi)
∨

∨k
l=1(r

i
l ∧ δi

l ≺ ai)
∨

(ri
ji

∧ δi
ji

� ai ∧ ¬J i
ji

)

⎤

⎥
⎥
⎥
⎥
⎦

p ⇒ 〈〈A〉〉
∧n

i=1

(
∞J i

1 ∧ . . . ∧ ∞J i
k → ∞qi

)

The intuition behind this rule is similar to that for the analogous rules for
ltl [9]. The ranking functions enforce progress towards realizing the qi, and the

Making Fairness Conditions Explicit. Recall that every fairness condition
Fa is a Boolean combination of atoms of the form ∞p, where p is an assertion.
We write ∞p instead of p to make it clear that we are now dealing with a
special case and not with arbitrary ltl formulas.
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rj
i denote regions inside which the ranking functions are constant. The verifica-

tion conditions assure that, assuming fairness of the adversaries, the players A
can eventually force the game out of these regions, and thus decrease the ranking.

This proof rule is sound and relatively complete to prove properties of the
form (4). Relative completeness means that, if (4) holds of a system, then there
exist assertions ri, ri

j , δ
i
j that are expressible in the language and satisfy the

premises.

Example 6. Returning to our running example, making the fairness conditions
of (3) explicit results in

x ∈ qu ∧ q0 ⇒ 〈〈Sched , a〉〉(F̂Env → F̂Sched ∧ F̂a) ,

or, equivalently

x ∈ qu ∧ q0 ⇒ 〈〈Sched , a〉〉(∞¬pa ∧ ∞pa → ∞q1) ,

where we abbreviate q = q0 with q0 and q = q1 with q1.
To apply rule pos-assertion, with n = 1 and k = 2 (since n = 1, we drop

the superscripts), we need to find assertions r, r1, r2 and ranking functions δ1, δ2
(index 1 corresponds to the ∞¬pa requirement, index 2 to ∞pa) and then prove
the following verification conditions:

x ∈ qu ∧ q0 → r

r → r1 ∨ r2

r1 ∧ δ1 = d → cpreSched,a

[
(r ∧ q1) ∨ (r1 ∧ δ1 ≺ d)
∨ (r2 ∧ δ2 ≺ d) ∨ (r1 ∧ δ1 � d ∧ pa)

]

r2 ∧ δ2 = d → cpreSched,a

[
(r ∧ q1) ∨ (r1 ∧ δ1 ≺ d)
∨ (r2 ∧ δ2 ≺ d) ∨ (r2 ∧ δ2 � d ∧ ¬pa)

]

We choose the following:

r : ((x ∈ qu ∨ x = xp) ∧ q0) ∨ q1

r1 : r ∧ pa r2 : r ∧ ¬pa
δ1 : 〈g, depth(x, qu), 1〉 δ2 : 〈g, depth(x, qu), 0〉

where

g =

{
0 if x = xp ,
1 otherwise

and depth(x, qu) is the distance from the head of the first occurrence of x in qu,
or 0 if x is not in qu. The domain of the ranking functions is {0, 1} × N × {0, 1}
with the standard lexicographic order. The main part of the ranking functions
is the depth term – its value decreases as we remove items from the head of qu,
provided the scheduler reinserts processes far enough back in the queue. The
other two components are adjustments needed for the cases of going from active
to not active (third component) and for the boundary case of x having left the
queue and being executed (first component).
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The Negative Assertion Rule. The negative assertion rule is used for for-
mulas of the form

p ⇒ �A�
∧

i

(
∞J i

1 ∧ . . . ∧ ∞J i
k → ∞qi

)
.

The rule and its properties are identical to the positive version, except that it
uses the predicate transformer upre instead of cpre.

5 Conclusions and Future Work

We have presented a sound and complete proof system for proving atl* prop-
erties over infinite-state alternating structures. The proof system can be used
as a basis for the construction of special-purpose proof systems for alternating
systems with a specific structure, e.g., turn-based or lock-step [1], or for prov-
ing specific properties, e.g., invariants or reachability. We expect that our proof
system will be particularly beneficial in the verification of security and contract-
signing protocols, which often have a very specific structure that can be exploited
to simplify the cpre predicate transformers.

Our proof system may also contribute to the construction of abstraction-based
verification methods. The foundations for proving atl* properties over infinite-
state alternating systems using abstraction were laid in [17]. However, methods
for finding a suitable abstraction function and proving its correctness, which for
infinite-state systems must necessarily rely on deduction, still require investiga-
tion. We expect that the proof rules presented here will provide valuable insights
in proving that a proposed abstraction is sound, since the corresponding verifi-
cation conditions are of the same form as those generated by our proof system.

Other areas for further investigation include the development of approxima-
tions and heuristics for special cases, e.g., automatic generation of ranking func-
tions; the construction of efficient decision procedures, tailored to the verification
conditions produced, e.g., for simple ∀∃ formulas over program types; and the
representation of proofs by diagrams, similar to verification diagrams [18], which
allow to reduce the complexity of the premises of the assertion rules, by making
use of user-provided structure.
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