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Abstract. In this paper, we propose a finite structural translation of
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to model entering into recursive calls, which do not need to be guarded.
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1 Introduction

In our previous paper [8], we devised a structural way of translating terms from
the finite fragment of the π-calculus into finite Petri nets. This translation relies
on a combination of PBC [1] and M-net [2,10,11] features and its result is a
Petri net whose semantics in terms of a labelled transition system is strongly
bisimilar [17], and often even isomorphic, to that of the original π-term.

The translation in [8] only concerned terms without recursion (and replication,
but the latter is equivalent to recursion), and in this paper we will show how to
remove this restriction. The standard way of incorporating recursion in a PBC-
like framework is to rely on net refinement and a fixpoint approach [1]. However,
in the π-calculus framework, successive refinements would generally need to ap-
ply (somewhat arbitrary) alpha-conversions in order to keep the well-formedness
of process expressions, making fixpoint approach much more complicated.

An alternative could be to use recursive Petri nets [14], but this would lead
to a formalism, which in our view would be difficult to lift to the high level
nets and to the specific framework needed to deal with recursive π-calculus
terms (in particular, it is far from clear how one could support communications
between different levels of recursion). Moreover, the various kinds of causality
and concurrency semantics are not currently available in the recursive Petri net
theory. We therefore decided to use instead a simpler and more direct approach
inspired by [7] and used in the context of PBC.

We assume that the reader is familiar with the basics concepts of π-calculus
and high-level Petri nets (all formal definitions and proofs can be found in [9]).
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2 The π-Calculus and Its Indexed Operational Semantics

We start by recalling the syntax and semantics of the π-calculus [18], assuming
that C is a countably infinite set of channels ranged over by the first few lower
case Roman letters; and that X = {X1, . . . , Xm} is a finite set of process vari-
ables, each variable X ∈ X having a finite arity nX . The concrete syntax we use
is given below, where P denotes an agent (or π-expression).

� ::= ab � ac � τ (output/input/internal prefixes)
P ::= 0 � � .P � P + P � P |P � (νc)P � X(a1, . . . , anX ) (agents)

The constructs ac .P (input) and (νc)P (restriction) bind the channel c in P , and
we denote by fn(P ) the free channels of P . For each process variable X ∈ X, there
is exactly one definition DX of the form X(a1, . . . , anX ) df= PX , where ai �= aj

for i �= j. We assume that fn(PX) ⊆ {a1, . . . , anX }, so that the free channels of
PX are parameter bound. Agents are defined up to the alpha-conversion, mean-
ing that bound channels may be coherently renamed avoiding potential clashes.
Moreover, {b/c, . . .}P will denote the agent obtained from P by replacing all free
occurrences of c by b, etc, possibly after alpha-converting P in order to avoid
name clashes; for example {b/c, f/a}ab .gb .X(d, c) = fe . ge .X(d, b).

The semantical treatment of the π-calculus adopted in this paper is that
expounded by Cattani and Sewell [5], where the usual transition steps are aug-
mented with an explicit information about unrestricted channels:

A � P
�

−−−−−→ B � Q

where � is a prefix and A, B ⊂ C are finite sets of indexing channels such that
fn(P ) ⊆ A ⊆ B ⊇ fn(Q). Its intuitive meaning is that

“in a state where the channels A may be known by agent P and by its
environment, P can do � to become agent Q and the channels B may be
known to Q and its environment”.

As a result, Q may know more channels than P as an input � = ab adds b
whenever b /∈ A (intuitively, such a b is a new channel communicated by the
outside world – see the In rule in table 1), and an output � = ab adds b whenever
b /∈ A (intuitively, such a b is a channel restricted in P which becomes a new
known channel in Q – see the Open rule in table 1).

The operational semantics rules for the indexed π-expressions are shown in
table 1 (in [5], the ‘B �’ parts of the rules are implicit). The complete behaviour
of an expression A � P , where fn(P ) ⊆ A, is then given by a labelled transition
system derived using these rules, and denoted ltsA�P .

As a running example, consider an expression {a} � X(a) + τ . 0 with X

defined by X(e) df= ec . ce . 0 + (νd)(X(d)|de . 0). It admits, e.g., the following
executions:

{a} � X(a) + τ . 0 τ−→ {a} � (νd)((ad . 0)|0)
{a} � X(a) + τ . 0 τ−→ {a} � 0 .
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Table 1. Operational semantics of π-calculus, where: ns(τ ) df= ∅; ns(ab) = ns(ab) df=
{a, b}; the notation A, c stands for the disjoint union A � {c}; and (νc \ A)P is P if
c ∈ A and (νc)P otherwise. Symmetric versions of Sum, Par and Com are omitted.

Tau
A � τ . P

τ
−−−−−→ A � P A � ac . P

ab
−−−−−→ A ∪ {b} � {b/c}P

In

Out
A � ab . P

ab
−−−−−→ A � P

A, c � P
ac

−−−−−→ A, c � P ′ a �= c

A � (νc)P
ac

−−−−−→ A ∪ {c} � P ′
Open

Par
A � P

�−→ A′ � P ′

A � P |Q �−→ A′ � P ′|Q

A, c � P
�−→ A′, c � P ′ c �∈ ns(�)

A � (νc)P �−→ A′ � (νc)P ′
Res

Sum
A � P

�−→ A′ � P ′

A �P +Q
�−→ A′ �P ′

A � P
ac−→ A′ � P ′ A � Q

ac−→ A′′ � Q′

A � P |Q τ−→ A � (νc \ A)(P ′|Q′)
Com

ProcDef
A � {b1/a1, . . . , bnX /anX }P

�−→ A′ � P ′ X(a1, . . . , anX ) df= P

A � X(b1, . . . , bnX ) �−→ A′ � P ′

Given an indexed π-expression A � P , it is always possible to apply alpha-
conversions to P and the process definitions so that no channel across P , DX1 , . . .,
DXm is both free and bound, no such channel generates more than one binding,
and no restricted channel occurs in A. Such an indexed π-expression will be called
well-formed. We fix such a well-formed A � P for the rest of this paper.

Context-based representation. Before translating to nets, we give a term a pre-
sentation which separates its structure from the specific channels used to express
what is visible from the outside and which channels are (input or parameter)
bound or restricted. This also involves separating the features related to control
flow of the term from those related to channel substitution and binding. For the
resulting context based representation we need two fresh countably infinite sets
of restricted channels R ranged over by the upper case Greek letters, and channel
holders H ranged over by the first few lower case Greek letters. A context itself
is a partial mapping ς : H → C � R with a finite domain.

The aim is to represent an expression like {b, d} � ba . (νc)ac . cb . 0 as a con-
text based expression P :ς, where P df= βα . αγ . γβ . 0 is a restriction-free agent
based solely on channel holders and ς

df= [β 	→ b, δ 	→ d, γ 	→ ∆] is a context allow-
ing their interpretation. In this particular case ς implies that: (i) α is a channel
holder bound by an input prefix (since α is not in the domain of the context map-
ping though it occurs in P); (ii) β and δ correspond respectively to the known
channels b and d; and (iii) γ is a channel holder corresponding to the restricted
channel ∆, the detailed identity of this restricted channel being irrelevant.

Now, given our well-formed indexed expression A � P together with pro-
cess definitions DX1 , . . . , DXm , we proceed as follows. For each channel name c
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occurring in the indexed expression or process definitions, we choose a distinct
channel holder αc. The bodies of P, DX1 , . . . , DXm are then transformed by first
deleting all the instances of the restriction operator, and then replacing each oc-
currence of each channel by the corresponding channel holder, resulting in new
holder-based terms: P , DX1 , . . . , DXm .

We then construct contexts, ς, ς1, . . . , ςm. The context ς maps every αc used in
the body of P for which c was restriction bound into a distinct restricted channel
∆c, and every αc for which c ∈ A into c. Each ςi simply maps every αc which
is restriction bound in the body of DXi into a distinct ∆c. We finally obtain a
main expression H = P :[ς] and the modified definitions DX1 :[ς1], . . . , DXm :[ςm],
which will be used as an input to our translation into Petri nets.

For example, our running example can be rendered in the context-based
scheme as: X(α)+ τ . 0 : [α 	→ a] with X(ε) df= εγ . γε . 0+(X(δ)|δε . 0) : [δ 	→ ∆].

3 An Algebra of Nets

The development of our Petri net model, called rp-nets, has been inspired by
the box algebra [1,2,10] and by the p-net algebra used in [8] to model the finite
fragment of π-calculus. In particular, we shall use coloured tokens and read-arcs
(allowing any number of transitions to simultaneously check for the presence of
a resource stored in a place [6]). Transitions in rp-nets will have four different
kinds of labels:

– UV , Uv and UV (where U , V and v are net variables) to specify communi-
cation with the external environment.

– τ to represent internal actions.
– rcv and snd to effect internal process communication.
– X(α1, . . . , αnX ) to identify hierarchical transitions supporting recursion (we

use gray rectangles to represent such transitions).

A key idea behind our translation of a context-based expression using a set
of process definitions is to view this system as consisting of a main program
together with a number of procedure declarations. We then represent the control
structure of the main program and the procedures using disjoint unmarked nets,
one for the main program and one for each of the procedure declarations. The
program is executed once, while each procedure can be invoked several times
(even concurrently), each such invocation being uniquely identified by structured
tokens which correspond to the sequence of recursive calls along the execution
path leading to that invocation.1 With this in mind, we will use the notion of a
trail σ to denote a finite (possibly empty) sequence of hierarchical transitions of
an rp-net. The places of the nets which are responsible for control flow will carry
tokens which are simply trails. (The empty trail will be treated as the usual
1 That this sequence is sufficient to identify an invocation will follow from the fact

that a given hierarchical transition may be activated many times, but each time with
a different sequence.
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Fig. 1. Holder places and read arcs (a), and the usage of the tag-place (b, c), where
K, R, N are constants, while the other symbols in arc inscriptions are net variables

‘black’ token.) Procedure invocation is then possible if each of the input places
of a hierarchical transition t labelled with X(. . .) contains the same trail token
σ, and it results in removing these tokens and inserting a new token σt in each
initial (entry) place of the net corresponding to the definition of X .

Trailed channels and holder places. Places in rp-nets are labelled in ways re-
flecting their intended role. Those used to model control flow are labelled by
their status symbols (internal places by i, and interface places by e and x, for
entry and exit, respectively), and the tokens they carry are simply the trails σ.
Another kind of places, called holder places, carry structured tokens represent-
ing channels used by different procedure invocations. Each such token, called a
trailed channel, is of the form σ.ξ where σ is a trail and ξ is a known channel in
C, or a restricted channel ω∆ (ω is a trail and ∆ ∈ R). Intuitively, its first part,
σ, identifies the invocation in which the token is used, while the second part,
a or ω∆, provides its value. In the diagrams, holder places are labelled by the
elements of H and have thick borders. (A third kind of places will be introduced
later on.)

Referring to figure 1(a), a holder place can be accessed by directed arcs, which
can deposit or remove tokens, as well as by read arcs (drawn as thick undirected
edges), which test for the presence of specific tokens. The net itself may be seen
as a fragment of the translation of a context-based process definition, Y (α, β) df=
(αβ . . . |αγ . . .) : [ ], where the channel holders α, β and γ are represented
by the corresponding holder places. The depicted procedure invocation has been
activated by the trail σ, and two trailed channels, σ.a and σ.b, have been inserted
as actual parameters into the holder places labelled by α and β, respectively. On
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the other hand, the γ-labelled holder place, corresponding to an input bound
channel holder, remains empty until a communication or input action inserts a
trailed channel into it.

Control flow places are connected using directed arcs, labelled with trail vari-
ables, s or r, while the holder places are connected using directed arcs and read
arcs labelled with structured annotations, like s.u, with two variables directly
matching the type of tokens allowed in holder places. To interpret arcs anno-
tations, we use bindings � assigning concrete values to the variables occurring
there as well as those appearing in transition labels. In our setting, �(s) and
�(r) return trails, �(u) and �(v) return channels (or trailing restricted channels),
whereas �(U) and �(V ) return channels. As usual in high-level Petri nets, bindings
will yield tokens transferred/tested along arcs adjacent to executed transitions
as well as the visible labels of the latter.

For the net depicted in figure 1(a), the rcv -labelled transition is enabled if
the right entry place contains a trail (in our case, σ) and the α-labelled place
contains a trailed channel with precisely the same ‘trail’ part (in our case, σ.a).
More formally, there must be a binding � such that �(r) evaluates to σ and
�(r.u) df= �(r).�(u) evaluates to σ.a. Indeed, such a binding can be constructed, by
setting �(r) = σ and �(u) = a. The firing of the rcv -labelled transition transforms
the current marking in the following way: σ is removed from the right entry
place and deposited in the right internal place, the token in the α-labelled place
is left unchanged, and a trailed channel �(r.v) (e.g., σ.e or σ.b, depending on
the choice of the binding which in this case is not unique) is inserted into the
γ-labelled holder place. Similarly, the firing of the snd -labelled transition is also
possible and results in a transfer of the trail σ from the left entry place to the
left internal place. Now, if we look at the firing of the τ -labelled transition,
which corresponds to the fusion of the two transitions considered previously, the
binding with �(v) = e is inconsistent with the only binding option for v (i.e.,
�(v) = b), and so a unique internal communication is possible through which the
γ-labelled holder place acquires the trailed channel σ.b.

Tag-places. The third, and last, kind of node in a rp-net is a special holder
place, called the tag-place, which is always present and unique; it is T-labelled
and indicated in the diagrams by a double border. The tokens, called bookkeeping
tokens, stored in this place are structured by being tagged with a member of the
set T

df= {K, N, R}. The first tag, K, will be used to indicate the known channels
(initially, those in ς(H) ∩ C). The second tag, N, will be used to indicate the
new, yet unknown channels (initially, those in C \ ς(H)), and the third tag, R,
will be used to indicate the restricted channels. The first case is slightly more
complicated than the remaining two, for a restricted ω∆ may be present with
different preceding trails σ’s in holder places, due to internal communications.2
Now, if the restriction has been opened, ω∆ should become a newly known
channel c, but it is not possible to replace ω∆ by c in all the relevant holder places

2 More precisely, we may have various ω∆’s in various holder places with the same trail
σ due to internal communications, and with different σ’s due to parameter passing.
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without some global transformation of the net. Instead, we will indicate this fact
by inserting a bookkeeping token c.ω∆.K into the tag-place, and then consulting
it whenever necessary (i.e., whenever we need to establish whether a restricted
channel has been opened and what is its actual known value). Moreover, to keep
the notation uniform, we shall use bookkeeping tokens a.a.K to denote all those
known channels which were never restricted. To summarise, a bookkeeping token
in the tag-place may be of the form:

– a.N meaning that a is a new channel.
– ω∆.R meaning that ∆ is a restricted channel for the incarnation of its defin-

ing process corresponding to trail ω.
– a.a.K meaning that a is a known channel (either a has always been known

or a was initially new and then became known).
– a.ω∆.K meaning that the restricted ω∆ has become known as a.

The arcs adjacent to the tag-place (both directed and read ones) are labelled
with annotations which are evaluated through bindings so that the tags are left
intact; e.g., �(V.N) df= �(V ).N and �(U.u.K) df= �(U).�(u).K.

To explain the way a tag-place is used, we consider an rp-net fragment in
figure 1(b), where the (irrelevant) labels of the two control flow places have been
omitted. The marking in the tag-place indicates that ω∆ is a restricted channel
in the incarnation of some procedure definition identified by ω. Moreover, e is
a new unknown channel, and a is a known one. The transition is enabled with
the binding �(u) = �(U) = a, �(v) = ω∆, �(V ) = e and �(s) = σ. Its firing
produces the visible action �(UV ) df= �(U)�(V ) = ae and leads to the marking
in figure 1(c). This firing illustrates how a restricted channel becomes known
(which is represented by the insertion of the bookkeeping token e.ω∆.K in the
tag-place), and corresponds to the Open rule in table 1.

Composing rp-nets. The operators we shall use to combine rp-nets can be seen
as suitably adapted instances of those defined within PBC and its various ex-
tensions [1,10]. In particular, the way in which the holder places are handled
when composing nets is directly inspired by the asynchronous communication
construct of APBC [10].

The rp-net composition operators that we need are prefixing, N.N ′, choice,
N + N ′, parallel composition, N |N ′, and scoping, sco(N). The first three op-
erators merge the tag-places, as well as the corresponding holder places (i.e.,
labelled by the same channel holder). This corresponds to the asynchronous
links used in [10], and will allow one to mimic the standard rewriting mecha-
nism of the π-calculus. For two operand nets, their transitions and control flow
places are made disjoint before applying a composition operator in order to allow
to properly handle the cases when, for example, N = N ′.

– In the choice composition, the entry and exit places of N and N ′ are com-
bined through a cartesian product together. This has the following effect: if
we start from a situation where each entry place contains a copy of a com-
mon token σ, then either N or N ′ can be executed, mimicking the Sum rule
and its symmetric counterpart.
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– The prefixing operator combines the exit place (it will always be unique) of
the prefix N with the entry places of N ′ into internal places, and the effect
is that the execution of N after reaching the terminal marking, where the
only exit place is marked, is followed by that of N ′. Such a behaviour mimics
the Tau, In and Out rules.

– The parallel composition of N and N ′ puts them side by side, allowing
to execute both parts in parallel, as in the Par rule and its symmetric
counterpart; and then merges all pairs of transitions labelled rcv and snd ,
resulting in τ -labelled transitions: the connectivity of the new transition
is the combination of those of the composed transitions. This merging is
illustrated in the middle of figure 1; it has an effect similar to the Com rule.

– Finally, the scoping operation erases all the rcv - and snd -labelled transitions.

4 Translating Context-Based Expressions into Rp-Nets

We now come back to our context-based expression H = P :[ς] and the process
definitions DX1 :[ς1], . . . , DXm :[ςm]. The proposed rendering of H in terms of rp-
nets is obtained in three phases. First, we compositionally translate P and each
DXi into disjoint unmarked rp-nets K(P), K(DX1), . . . , K(DXm). The resulting
nets are then combined using parallel composition and scoping. Finally, using
the contexts ς, ς1, . . . , ςm, we construct an initial marking, which results in the
target rp-net PN(H).

Phase I. The translation K(P) (resp. K(PX)), guided by the syntax tree of
P , consists in first giving the translation for the basic sub-terms (i.e., the basic
process 0, the process calls, and the internal, input and output prefixes) shown
in figure 2, and then applying rp-net operators following the syntax.

The translations of the basic process 0 and the internal prefix τ are very
simple (they do not involve any manipulation on channels). The same is true of
a process call X(α1, . . . , αnX ), but the result employs a hierarchical transition,
which will never fire but rather contribute to a marking equivalence.

Each output prefix αβ, for α �= β, is translated into the rp-net K(αβ) which
may exhibit three kinds of behaviours, corresponding to the firing, under some
binding �, of three specific transitions:

– tk: known output. A known channel �(V ) is sent through a channel �(U). The
actual values of U and V are provided by the bookkeeping tokens present in
the tag-place matching those in the holder places α and β, accessed through
u and v and preceded by a trail which corresponds, thanks to the common
annotation s, to a token in the entry place. This corresponds to the Out rule.
That the channels �(U) and �(V ) are known is determined by the presence
in the tag-place of bookkeeping tokens tagged with K.

– tn: new output. A new channel �(V ) is sent through a known channel �(U),
for some trail token, �(s) as before. That the channels �(v) and �(V ) are
respectively restricted and new is determined by the presence in the tag-
place of a bookkeeping token tagged with R for �(v), and a bookkeeping
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Fig. 2. The unmarked rp-nets for 0, τ , the process call and the three kinds of prefixes
(the tag-place is omitted when disconnected)

token tagged with N for �(V ). After the firing of this transition, the restricted
channel represented by v becomes known; this is indicated by inserting a
bookkeeping token of the form �(V.v.K) into the tag-place which now replaces
�(v.R) and �(V.N). This corresponds to the Open rule.

– tc: communicating output. It is intended to synchronise with a correspond-
ing communication input in order to provide the transfer of a channel �(v)
through the channel �(u), be it known or restricted. This models one of the
main features of the π-calculus which is the ability of passing the channels
around.

The special case of the output prefix αα has a simpler translation, since α
may not be both known and restricted, so that tn is irrelevant in this case.
Even though the α-labelled holder place will never contain more than one token
with the same trail part, it is not a problem to have two variables on the arcs
adjacent to it since these are read arcs, and so transitions will be enabled by
simply identifying s.u and s.v with the same token in the α-labelled place.

For an input prefix αβ, the translation is broadly the same as for the output
prefix (notice that prefixes of the form αα are excluded by the well-formedness
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assumption). In particular, the known, new and communicating inputs should
be interpreted in a similar way. Simply, �(r.v) is now inserted into β instead of
being checked, tk corresponds to the rule In when b is already known (includ-
ing the case of a previously restricted channel), and tn to the same rule when b
is new (it may not be restricted here). In the latter case, the variable V is not
involved, and the transition is labelled Uv rather than UV . Notice also that,
for tk, while �(v) is known as �(V ), it is the possibly restricted original value
�(v) which is written (together with the trailed token �(s)) into β, and not the
corresponding known value for V . This is important in order to allow subse-
quent synchronisations between rcv (with �(u)) coming from β and snd (with
�(u)) coming from another holder place and containing a copy of the original
token.

For the compound sub-terms, we proceed compositionally: K(P ′ op P ′′) df=
K(P ′) op K(P ′′), where op ∈ {|, +, .}. There is however a simplification which
may be applied to the above translation rule, which amounts to throwing away
useless instances of the translation for 0. One simply has to first apply the
following simplifications: K(P |0) = K(0|P ) � K(P ) and K(a.0) � K(a) (notice
that we already have that K(P + 0) = K(0 + P ) = K(P )). Finally, we add a
holder place for each channel holder occurring in the domain of ς but not in P .

The translation of process definitions proceeds similarly. Assuming that DX

is of the form X(κX
1 , . . . , κX

nX
) df= PX , we derive K(PX) following the scheme just

described, and then add a holder place for each channel holder κX
i which does

not occur in PX .

Phase II. The various components are then connected by constructing the net
sc

(
K(P)|K(DX1)| . . . |K(DXm)

)
. This merges the various tag places and the

pairs of snd - and rcv -labelled transitions, possibly from different components.
All the rcv - and snd-labelled transitions are erased after that.

Phase III. Having applied the parallel composition and scoping, we add the
initial marking, leading to the full translation PN(H), in the following way:

– An empty trail token • is inserted in each entry place of K(P).
– •.ς(α) trailed channel (in the diagrams represented as ς(α), • representing

the empty trail) is inserted into each α-labelled holder place, for α ∈ dom(ς).
– ω.ωςi(α) trailed channel is inserted into the α-labelled holder place, and

ωςi(α).R bookkeeping token is inserted into the tag-place, for each trail ω
and α ∈ dom(ςi) (1 ≤ i ≤ m).

– a.a.K bookkeeping token is inserted into the tag-place, for a ∈ ς(H) ∩ C.
– e.N bookkeeping token is inserted into the tag-place, for e ∈ C \ ς(H).
– ∆.R bookkeeping token is inserted into the tag-place, for ∆ ∈ ς(H) ∩ R.

Figure 3 (top) shows the rp-net resulting from the translation where, for clarity,
all the arcs adjacent to the tag-place and holder places are omitted and arc
annotations have been shortened or omitted.
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5 Firing Rule and Marking Equivalence

To define the semantics of the resulting rp-net PN(H), we need to introduce
the firing rule for non-hierarchical transitions, which may use a combination of
annotated standard (oriented) arcs and read-arcs, and a marking equivalence
corresponding to procedure calls.

For each transition t, we denote by ι(t) its label (a term with variables),
by ι(s, t), ι(t, s) and ι({s, t}) the labels (sets of terms with variables) of its in-
coming arcs, out-going arcs and read-arcs, respectively. We shall assume that
each variable has an associated domain of possible values, for instance, the do-
main of u, v, U and V is C ∪ {ωΓ | ω is a trail, Γ ∈ R} and that of r and s
is {ω | ω is a trail}. For each transition t, if {u1, ..., un} denotes the variables
occurring in the label of t and on the arcs adjacent to t, we shall denote by
� a binding assigning to each variable ui a value in its domain. We shall only
consider legal bindings, i.e., such that for each arc A between t and an adjacent
place s, if � is a function in ι(A), the evaluation of � under the binding � (de-
noted �(�)) will deliver a value allowed in s. Moreover, the observed label of a
transition fired under binding � will be denoted by �(ι(t)).

A marking M of a rp-net N is a function assigning to each place s a multiset of
tokens belonging to its type. A marked rp-net will be denoted by (N, M). Below
we use ⊕ and � to denote respectively multiset sum and difference. Moreover,
if M and M′ are multisets over the same set of elements Z then M ≥ M′ will
mean that M(z) ≥ M′(z), for all z ∈ Z. We shall also denote by z ∈ M the
fact that M(z) > 0.

Let M be a marking of PN(H), t be any of its non–hierarchical transitions,
and � be a binding for t. Then we denote by M�

t,in and M�
t,out the two markings

such that, for every place s,

M�
t,in(s) df=

⊕
�∈ι((s,t))

{�(�)} and M�
t,out(s)

df=
⊕

�∈ι((t,s))

{�(�)} .

A non-hierarchical transition t will be enabled (i.e., allowed to be fired) under
the binding � and the marking M if, for every place s, M(s) ≥ M�

t,in(s) and,
moreover3, �(�) ∈ M(s) for every � ∈ ι({s, t}). An enabled t may then be fired,
which transforms the current marking M into a new marking M′ in such a way
that, for every place s:

M′(s) = M(s) � M�
t,in(s) ⊕ M�

t,out(s) .

This will be denoted by (N, M)
�(ι(t))
−−−−−→ (N, M′) and moves of this type will be

used in the definition of labelled transition systems generated by rp-nets.
As already mentioned, hierarchical transitions do not fire; instead, they drive

a marking equivalence ≡ corresponding to procedure calls (this resembles to
certain extent the approach presented in [16]). This relation is defined as the

3 Notice that this allows to have M(z)=1 and �1, �2 ∈ ι({s, t}) with �(�1)=z= �(�2).
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smallest equivalence such that, for each transition t labelled X(α1, . . . , αnX )
with a definition X(κX

1 , . . . , κX
nX

) df= PX :ςX , and for each trailed channel σ.ξi

(for 1 ≤ i ≤ nX), we have

M ⊕ Mσ
t ⊕ Mσ.ξ

α ≡ M ⊕ Mσt
X ⊕ Mσ.ξ

α ⊕ Mσt.ξ
κ , where: (1)

– Mσ
t is the marking with a trail σ in each place s such that there is a directed

arc from s to t (note that hierarchical transitions are only connected to
control flow places), and nothing else.

– Mσt
X is the marking with a trail σt in each entry place of K(PX), and nothing

else.
– Mσ.ξ

α (and Mσt.ξ
κ ) is the marking with a trailed channel σ.ξi (resp. σt.ξi) in

the holder place for αi (resp. κi), for i = 1 . . . nX , and nothing else.

The complete behaviour of the rp-net PN(H), is then given by a labelled
transition system derived using the above rules (the nodes of this system are ≡-

equivalence classes of net markings, and (N, [M1]≡)
act

−−−−−→ (N, [M2]≡) iff there

are M′
1 and M′

2 such that M1 ≡ M′
1

act
−−−−−→ M′

2 ≡ M2), and denoted ltsPN(H).
For the running example, a double application of the rule (1) above leads,

from the initial marking shown in figure 3(a) to that in figure 3(b) (for clarity,
we omitted all the arcs linking the transitions of the process definition part with
the holder places). From there, the rightmost τ -transition may be fired, with the
binding � = {r 	→ tz, s 	→ t, u 	→ t∆, v 	→ a}. The resulting marking is illustrated
in figure 3(c), where all the arcs linking the executed transition with the holder
places are shown and, for clarity, the other transitions appearing in the part of
the net corresponding to the process definition have been left out.

6 Main Results

We proposed in this paper a translation from finite π-calculus specifications to
rp-nets with finite structure, i.e., PN(H) is a net with finitely many places, tran-
sitions and arcs. Even though its marking is not finite, a closer examination of
the possible reachable markings can reveal that they all may be obtained from
a finite condensed form. For instance, in the rp-net for the running example, the
marking of the holder place δ is constant and each token σ.σ∆ in it only becomes
checkable if we enter a process instance corresponding to the trail σ, while the
marking of the tag-place T is constantly such that the N-tagged and R-tagged to-
kens may be deduced from the K-tagged ones, which are a finite number. In other
words, only a finite number of tokens is relevant at any given stage of evolution,
and one can keep adding new tokens ‘on demand’ as the new instantiations of
procedure calls are entered, and as new channels become known. Crucially, the
proposed translation is sound. This means that, for every well-formed indexed π-
expression A � P , its labelled transition system ltsA�P is strongly bisimilar [17]
to the labelled transition system ltsPN(H) of the corresponding rp-net.

Theorem 1. PN(H) is an rp-net with finitely many places and transitions such
that ltsA�P and ltsPN(H) are strongly bisimilar transition systems.
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Fig. 3. Translation of the running example (a); marking transformation (b); and tran-
sition firing (c). For clarity, in (a,b), all the directed arcs annotated with s only are
shown unannotated.
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The above theorem yields a bisimilarity property between the labelled transition
systems of the original π-agents and their Petri net translations. That the result
is not formulated in terms of isomorphism is due to the amnesia feature of the
Sum rule, complemented by a similar phenomenon for the prefix rules (Tau,
In and Out). The loss of the past in the prefix rules is not essential by itself,
since it corresponds to the progression of the control flow token(s) in the cor-
responding net. However, when combined with the Sum rule, which completely
forgets the non-chosen branch, this may lead to differences in the labelled transi-
tion systems. Indeed, if we have a choice between two branches with a reachable
common suffix then, after some time, the two branches will lead to the same in-
termediate expression in the π-semantics, while this never happens in the Petri
net semantics, where the two branches correspond to two disjoint subnets, hence
two different markings depending on which branch has been chosen.

The proposed translation is also a conservative extension of that in [8].

Theorem 2. If the indexed π-expression A � P is recursion-free (i.e., m = 0)
then PN(H) is the same as that in [8] up to some dead transitions and the
suppression of all trails and trail variables.

7 Related Work and Concluding Remarks

A first paper giving a Petri net semantics for the π-calculus is [12]. However, it
only considers the so-called ‘small’ π-calculus (without the choice composition)
provided with the reduction semantics (addressing only the communications be-
tween parallel components). Due to these limited aims, the problem is greatly
simplified as restrictions may be managed syntactically. While not based on
nets, [3] already considers the causality structures of the π-calculus, and distin-
guishes structural and link dependencies (the former mainly due to prefixing and
communications, and the latter due to extrusion). A graph-rewriting system is
proposed in [19] as a semantic model for a fragment of the π-calculus mainly
addressing the concurrency feature of systems. Although it is not the objective
of the present paper, we intend to look at concurrency issues, and in this respect
we may notice a discrepancy between our approach and [19] in the handling
of restriction. More precisely, [19] allows parallel opening for expressions like
(νy)(xy|P |zy) by letting the actions xy and zy to occur in parallel, while in our
approach they must in some sense agree on their common exportation, so that
only one of them is in fact an opening. The translation of π-terms into Petri
nets of [4] uses (low-level) labelled Petri nets extended with inhibitor arcs, while
we use high-level nets with read-arcs. Moreover, the way compositionality is ob-
tained is different from that used in our approach, relying to a construction of
a general infrastructure, with places corresponding to all the possible sequential
π-terms with all possible transitions between those places, and a compositionally
defined initial marking corresponding to each π-term.

We outlined a translation of recursive π-calculus process expressions into high-
level Petri domain. The next step is to incorporate it into suitable computer
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aided tools, such as Pep [13], to allow the verification and simulation of π-
calculus specifications using techniques found in the Petri net domain (for the
finite π-calculus translation of [8] this has been already been done in [15]).

Acknowledgements. We thank the anonymous referees for their helpful com-
ments. This research was supported by the EC IST grant 511599 (Rodin).
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