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Preface

The International Colloquium on Theoretical Aspects of Computing (ICTAC)
held in 2006 in Tunis, Tunisia, was the third of a series of events created by the
International Institute for Software Technology of the United Nations University.
The aim of the colloquium is to bring together researchers from academia, in-
dustry, and government to present their results, and exchange experience, ideas,
and solutions for their problems in theoretical aspects of computing.

The previous events were held in Guiyang, China (2004), and Hanoi, Viet-
nam (2005). Beyond its scholarly goals, another main purpose of ICTAC is to
promote cooperation in research and education between participants and their
institutions, from developing and industrial countries, as in the mandate of the
United Nations University.

These proceedings record the contributions from the invited speakers and
from the technical sessions. We present four invited papers, 21 technical papers,
selected out of 78 submissions from 24 countries, and two extended abstracts of
tutorials.

The Programme Committee includes researchers from 27 countries. Each of
the 78 papers was evaluated by at least three reviewers. After the evaluation,
reports were returned to the Programme Committee for discussion and resolu-
tion of conflicts. Based on their recommendations, we concluded the consensus
process, and selected the 21 papers that we present here. For the evaluation
of the submitted tutorials, this year we had the help of a separate Programme
Committee especially invited for that purpose.

We are grateful to all members of the Programme and Organizing Commit-
tees, and to all referees for their hard work. The support and encouragement
of the Advisory Committee were invaluable assets. Without the support of our
sponsoring institutions, ICTAC 2006 could not have been a reality. Their recog-
nition of the importance of this event is greatly appreciated.

Finally, we would like to thank all the authors of the invited and submitted
papers and tutorials, and all the participants of the colloquium. They are the
main focus of the whole event.

November 2006 Kamel Barkaoui, Ana Cavalcanti, and Antonio Cerone
Programme Chairs

ICTAC 2006
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Verifying a Hotel Key Card System

Tobias Nipkow

Institut für Informatik, TU München

Abstract. Two models of an electronic hotel key card system are con-
trasted: a state based and a trace based one. Both are defined, verified,
and proved equivalent in the theorem prover Isabelle/HOL. It is shown
that if a guest follows a certain safety policy regarding her key cards, she
can be sure that nobody but her can enter her room.

1 Introduction

This paper presents two models for a hotel key card system and the verification
of their safety (in Isabelle/HOL [5]). The models are based on Section 6.2, Hotel
Room Locking, and Appendix E in the book by Daniel Jackson [2]. Jackson
employs his Alloy system to check that there are no small counterexamples to
safety. We confirm his conjecture of safety by a formal proof.

Most hotels operate a digital key card system. Upon check-in, you receive a
card with your own key on it (typically a pseudorandom number). The lock for
each room reads your card and opens the door if the key is correct. The system
is decentralized, i.e. each lock is a stand-alone, battery-powered device without
connection to the computer at reception or to any other device. So how does
the lock know that your key is correct? There are a number of similar systems
and we discuss the one described in Appendix E of [2]. Here each card carries
two keys: the old key of the previous occupant of the room (key1), and your
own new key (key2). The lock always holds one key, its “current” key. When you
enter your room for the first time, the lock notices that its current key is key1
on your card and recodes itself, i.e. it replaces its own current key with key2
on your card. When you enter the next time, the lock finds that its current key
is equal to your key2 and opens the door without recoding itself. Your card is
never modified by the lock. Eventually, a new guest with a new key enters the
room, recodes the lock, and you cannot enter anymore.

After a short introduction of the notation we discuss two very different spec-
ifications, a state based and a trace based one, and prove their safety and their
equivalence. The complete formalization is available online in the Archive of
Formal Proofs at afp.sf.net.

1.1 Notation

HOL conforms largely to everyday mathematical notation. This section intro-
duces further non-standard notation and in particular a few basic data types
with their primitive operations.

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 1–14, 2006.
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2 T. Nipkow

Types The type of truth values is called bool. The space of total functions
is denoted by ⇒. Type variables start with a quote, as in ′a, ′b etc. The
notation t::τ means that term t has type τ .

Functions can be updated at x with new value y, written f (x := y). The range
of a function is range f, inj f means f is injective.

Pairs come with the two projection functions fst :: ′a × ′b ⇒ ′a and snd :: ′a
× ′b ⇒ ′b.

Sets have type ′a set.
Lists (type ′a list) come with the empty list [], the infix constructor · , the infix

@ that appends two lists, and the conversion function set from lists to sets.
Variable names ending in “s” usually stand for lists.

Records are constructed like this (|f 1 = v1, . . .|) and updated like this
r(|f i := v i, . . .|), where the f i are the field names, the v i the values and
r is a record.

Datatype option is defined like this

datatype ′a option = None | Some ′a

and adjoins a new element None to a type ′a. For succinctness we write �a�
instead of Some a.

Note that [[A1; . . .; An]] =⇒ A abbreviates A1 =⇒ . . . =⇒ An =⇒ A, which
is the same as “If A1 and . . . and An then A”.

2 A State Based Model

The model is based on three opaque types guest, key and room. Type card is
just an abbreviation for key × key.

The state of the system is modelled as a record which combines the informa-
tion about the front desk, the rooms and the guests.

record state =
owns :: room ⇒ guest option
currk :: room ⇒ key
issued :: key set
cards :: guest ⇒ card set
roomk :: room ⇒ key
isin :: room ⇒ guest set
safe :: room ⇒ bool

Reception records who owns a room (if anybody, hence guest option), the current
key currk that has been issued for a room, and which keys have been issued so
far. Each guest has a set of cards. Each room has a key roomk recorded in the
lock and a set isin of occupants. The auxiliary variable safe is explained further
below; we ignore it for now.

In specification languages like Z, VDM and B we would now define a number
of operations on this state space. Since they are the only permissible operations
on the state, this defines a set of reachable states. In a purely logical environment
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like Isabelle/HOL this set can be defined directly by an inductive definition. Each
clause of the definition corresponds to a transition/operation/event. This is the
standard approach to modelling state machines in theorem provers.

The set of reachable states of the system (called reach) is defined by four
transitions: initialization, checking in, entering a room, and leaving a room:

init :
inj initk =⇒
(| owns = (λr . None), currk = initk , issued = range initk ,

cards = (λg . {}), roomk = initk , isin = (λr . {}),
safe = (λr . True) |) ∈ reach

check-in:
[[ s ∈ reach; k /∈ issued s ]] =⇒
s(| currk := (currk s)(r := k), issued := issued s ∪ {k},

cards := (cards s)(g := cards s g ∪ {(currk s r , k)}),
owns := (owns s)(r := Some g),
safe := (safe s)(r := False) |) ∈ reach

enter-room:
[[ s ∈ reach; (k ,k ′) ∈ cards s g ; roomk s r ∈ {k ,k ′} ]] =⇒
s(| isin := (isin s)(r := isin s r ∪ {g}),

roomk := (roomk s)(r := k ′),
safe := (safe s)(r := owns s r = �g� ∧ isin s r = {} ∧ k ′ = currk s r

∨ safe s r)
|) ∈ reach

exit-room:
[[ s ∈ reach; g ∈ isin s r ]] =⇒
s(| isin := (isin s)(r := isin s r − {g}) |) ∈ reach

There is no check-out event because it is implicit in the next check-in for that
room: this covers the cases where a guest leaves without checking out (in which
case the room should not be blocked forever) or where the hotel decides to rent
out a room prematurely, probably by accident. Neither do guests have to return
their cards at any point because they may loose cards or may pretended to have
lost them. We will now explain the events.

init Initialization requires that every room has a different key, i.e. that currk is
injective. Nobody owns a room, the keys of all rooms are recorded as issued,
nobody has a card, and all rooms are empty.

enter-room A guest may enter if either of the two keys on his card equal the
room key. Then g is added to the occupants of r and the room key is set to
the second key on the card. Normally this has no effect because the second
key is already the room key. But when entering for the first time, the first
key on the card equals the room key and then the lock is actually recoded.

exit-room removes an occupant from the occupants of a room.
check-in for room r and guest g issues the card (currk s r , k) to g, where k is

new, makes g the owner of the room, and sets currk s r to the new key k.
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The reader can easily check that our specification allows the intended dis-
tributed implementation: entering only reads and writes the key in that lock,
and check-in only reads and writes the information at reception.

In contrast to Jackson we require that initially distinct rooms have distinct
keys. This protects the hotel from its guests: otherwise a guest may be able to
enter rooms he does not own, potentially stealing objects from those rooms. Of
course he can also steal objects from his own room, but in that case it is easier
to hold him responsible. In general, the hotel may just want to minimize the
opportunity for theft.

The main difference to Jackson’s model is that his can talk about transitions
between states rather than merely about reachable states. This means that he
can specify that unauthorized entry into a room should not occur. Because our
specification does not formalize the transition relation itself, we need to include
the isin component in order to express the same requirement. In the end, we
would like to establish that the system is safe: only the owner of a room can be
in a room:

[[s ∈ reach; g ∈ isin s r ]] =⇒ owns s r = �g�
Unfortunately, this is just not true. It does not take a PhD in computer science
to come up with the following scenario: because guests can retain their cards,
there is nothing to stop a guest from reentering his old room after he has checked
out (in our model: after the next guest has checked in), but before the next guest
has entered his room. Hence the best we can do is to prove a conditional safety
property: under certain conditions, the above safety property holds. The question
is: which conditions? It is clear that the room must be empty when its owner
enters it, or all bets are off. But is that sufficient? Unfortunately not. Jackson’s
Alloy tool took 2 seconds [2, p. 303] to find the following “guest-in-the-middle”
attack:

1. Guest 1 checks in and obtains a card (k1, k2) for room 1 (whose key in the
lock is k1). Guest 1 does not enter room 1.

2. Guest 2 checks in, obtains a card (k2, k3) for room 1, but does not enter
room 1 either.

3. Guest 1 checks in again, obtains a card (k3, k4), goes to room 1, opens it
with his old card (k1, k2), finds the room empty, and feels safe . . .

After Guest 1 has left his room, Guest 2 enters and makes off with the luggage.
Jackson now assumes that guests return their cards upon check-out, which

can be modelled as follows: upon check-in, the new card is not added to the
guest’s set of cards but it replaces his previous set of cards, i.e. guests return
old cards the next time they check in. Under this assumption, Alloy finds no
more counterexamples to safety — at least not up to 6 cards and keys and 3
guests and rooms. This is not a proof but a strong indication that the given
assumptions suffice for safety. We prove that this is indeed the case.

It should be noted that the system also suffers from a liveness problem: if a
guest never enters the room he checked in to, that room is forever blocked. In
practice this is dealt with by a master key. We ignore liveness.



Verifying a Hotel Key Card System 5

2.1 Formalizing Safety

It should be clear that one cannot force guests to always return their cards (or,
equivalently, never to use an old card). We can only prove that if they do, their
room is safe. However, we do not follow Jackson’s approach of globally assuming
everybody returns their old cards upon check-in. Instead we would like to take a
local approach where it is up to each guest whether he follows this safety policy.
We allow guests to keep their cards but make safety dependent on how they use
them. This generality requires a finer grained model: we need to record if a guest
has entered his room in a safe manner, i.e. if it was empty and if he used the
latest key for the room, the one stored at reception. The auxiliary variable safe
records for each room if this was the case at some point between his last check-in
and now. The main theorem will be that if a room is safe in this manner, then
only the owner can be in the room. Now we explain how safe is modified with
each event:

init sets safe to True for every room.
check-in for room r resets safe s r because it is not safe for the new owner yet.
enter-room for room r sets safe s r if the owner entered an empty room using

the latest card issued for that room by reception, or if the room was already
safe.

exit-room does not modify safe.

The reader should convince his or herself that safe corresponds to the informal
safety policy set out above. Note that a guest may find his room non-empty the
first time he enters, and safe will not be set, but he may come back later, find
the room empty, and then safe will be set. Furthermore, it is important that
enter-room cannot reset safe due to the disjunct ∨ safe s r. Hence check-in is the
only event that can reset safe. That is, a room stays safe until the next check-in.
Additionally safe is initially True, which is fine because initially injectivity of
initk prohibits illegal entries by non-owners.

Note that because none of the other state components depend on safe, it is
truly auxiliary: it can be deleted from the system and the same set of reachable
states is obtained, modulo the absence of safe.

We have formalized a very general safety policy of always using the latest
card. A special case of this policy is the one called NoIntervening by Jack-
son [2, p. 200]: every check-in must immediately be followed by the corresponding
enter-room.

2.2 Verifying Safety

All of our lemmas are invariants of reach. The complete list, culminating in the
main theorem, is this:

Lemma 1. 1. s ∈ reach =⇒ currk s r ∈ issued s
2. [[s ∈ reach; (k , k ′) ∈ cards s g]] =⇒ k ∈ issued s
3. [[s ∈ reach; (k , k ′) ∈ cards s g]] =⇒ k ′ ∈ issued s
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4. s ∈ reach =⇒ roomk s k ∈ issued s
5. s ∈ reach =⇒ ∀ r r ′. (currk s r = currk s r ′) = (r = r ′)
6. s ∈ reach =⇒ (currk s r , k ′) /∈ cards s g
7. [[s ∈ reach; (k1, k) ∈ cards s g1; (k2, k) ∈ cards s g2]] =⇒ g1 = g2
8. [[s ∈ reach; safe s r ]] =⇒ roomk s r = currk s r
9. [[s ∈ reach; safe s r ; (k ′, roomk s r) ∈ cards s g]] =⇒ owns s r = �g�

Theorem 1. If s ∈ reach and safe s r and g ∈ isin s r then owns s r = �g�.

The lemmas and the theorem are proved in this order, each one is marked as a
simplification rule, and each proof is a one-liner: induction on s ∈ reach followed
by auto.

Although, or maybe even because these proofs work so smoothly one may like
to understand why. Hence we examine the proof of Theorem 1 in more detail.
The only interesting case is enter-room. We assume that guest g1 enters room r1
with card (k1, k2) and call the new state t. We assume safe t r and g ∈ isin t r
and prove owns t r = �g� by case distinction. If r1 �= r, the claim follows directly
from the induction hypothesis using safe s r and g ∈ isin t r because owns t r =
owns s r and safe t r = safe s r. If r1 = r then g ∈ isin t r is equivalent with g ∈
isin s r ∨ g = g1. If g ∈ isin s r then safe s r follows from safe t r by definition
of enter-room because g ∈ isin s r implies isin s r �= ∅. Hence the induction
hypothesis implies the claim. If g = g1 we make another case distinction. If k2
= roomk s r, the claim follows immediately from Lemma 1.9 above: only the
owner of a room can possess a card where the second key is the room key. If k1
= roomk s r then, by definition of enter-room, safe t r implies owns s r = �g�
∨ safe s r. In the first case the claim is immediate. If safe s r then roomk s r =
currk s r (by Lemma 1.8) and thus (currk s r , k2) ∈ cards s g by assumption
(k1, k2) ∈ cards s g1, thus contradicting Lemma 1.6.

This detailed proof shows that a number of case distinctions are required.
Luckily, they all suggest themselves to Isabelle via the definition of function
update (:=) or via disjunctions that arise automatically.

2.3 An Extension

To test the flexibility of our model we extended it with the possibility for ob-
taining a new card, e.g. when one has lost one’s card. Now reception needs to
remember not just the current but also the previous key for each room, i.e.
a new field prevk :: room ⇒ key is added to state. It is initialized with the
same value as currk : though strictly speaking it could be arbitrary, this permits
the convenient invariant prevk s r ∈ issued s. Upon check-in we set prevk to
(prevk s)(r := currk s r). Event new-card is simple enough:

[[s ∈ reach; owns s r = �g�]]
=⇒ s(|cards := (cards s)(g := cards s g ∪ {(prevk s r , currk s r)})|) ∈ reach

The verification is not seriously affected. Some additional invariants are
required
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s ∈ reach =⇒ prevk s r ∈ issued s
[[s ∈ reach; owns s r ′ = �g�]] =⇒ currk s r 	= prevk s r ′

[[s ∈ reach; owns s r = �g�; g 	= g ′]] =⇒ (k , currk s r) /∈ cards s g ′

but the proofs are still of the same trivial induct-auto format.
Adding a further event for loosing a card has no impact at all on the proofs.

3 A Trace Based Model

The only clumsy aspect of the state based model is safe: we use a state com-
ponent to record if the sequence of events that lead to a state satisfies some
property. That is, we simulate a condition on traces via the state. Unsurpris-
ingly, it is not trivial to convince oneself that safe really has the informal meaning
set out at the beginning of subsection 2.1. Hence we now describe an alternative,
purely trace based model, similar to Paulson’s inductive protocol model [6]. The
events are:

datatype event =
Check-in guest room card | Enter guest room card | Exit guest room

Instead of a state, we have a trace, i.e. list of events, and extract the state
from the trace:

initk :: room ⇒ key
owns :: event list ⇒ room ⇒ guest option
currk :: event list ⇒ room ⇒ key
issued :: event list ⇒ key set
cards :: event list ⇒ guest ⇒ card set
roomk :: event list ⇒ room ⇒ key
isin :: event list ⇒ room ⇒ guest set
hotel :: event list ⇒ bool

Except for initk, which is completely unspecified, all these functions are de-
fined by primitive recursion over traces:

owns [] r = None
owns (e · s) r =
(case e of Check-in g r ′ c ⇒ if r ′ = r then �g� else owns s r
| - ⇒ owns s r)

currk [] r = initk r
currk (e · s) r =
(let k = currk s r
in case e of Check-in g r ′ c ⇒ if r ′ = r then snd c else k | - ⇒ k)

issued [] = range initk
issued (e · s) = issued s ∪ (case e of Check-in g r c ⇒ {snd c} | - ⇒ ∅)
cards [] g = ∅
cards (e · s) g =
(let C = cards s g
in case e of Check-in g ′ r c ⇒ if g ′ = g then {c} ∪ C else C | - ⇒ C )
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roomk [] r = initk r
roomk (e · s) r =
(let k = roomk s r
in case e of Enter g r ′ (x , y) ⇒ if r ′ = r then y else k | - ⇒ k)

isin [] r = ∅
isin (e · s) r =
(let G = isin s r
in case e of Check-in g r c ⇒ G

| Enter g r ′ c ⇒ if r ′ = r then {g} ∪ G else G
| Exit g r ′ ⇒ if r ′ = r then G − {g} else G)

However, not every trace is possible. Function hotel tells us which traces
correspond to real hotels:

hotel [] = True
hotel (e · s) =
(hotel s ∧
(case e of Check-in g r (k , k ′) ⇒ k = currk s r ∧ k ′ /∈ issued s
| Enter g r (k , k ′) ⇒ (k , k ′) ∈ cards s g ∧ roomk s r ∈ {k , k ′}
| Exit g r ⇒ g ∈ isin s r))

Alternatively we could have followed Paulson [6] in defining hotel as an inductive
set of traces. The difference is only slight.

3.1 Formalizing Safety

The principal advantage of the trace model is the intuitive specification of safety.
Using the auxiliary predicate no-Check-in

no-Check-in s r ≡ ¬(∃ g c. Check-in g r c ∈ set s)

we define a trace to be safe0 for a room if the card obtained at the last Check-in
was later actually used to Enter the room:

safe0 s r ≡ ∃ s1 s2 s3 g c.
s = s3 @ [Enter g r c] @ s2 @ [Check-in g r c] @ s1 ∧ no-Check-in (s3 @ s2) r

A trace is safe if additionally the room was empty when it was entered:

safe s r ≡ ∃ s1 s2 s3 g c.
s = s3 @ [Enter g r c] @ s2 @ [Check-in g r c] @ s1 ∧
no-Check-in (s3 @ s2) r ∧ isin (s2 @ [Check-in g r c] @ s1) r = {}
The two notions of safety are distinguished because, except for the main theorem,
safe0 suffices.

The alert reader may already have wondered why, in contrast to the state
based model, we do not require initk to be injective. If initk is not injective, e.g.
initk r1 = initk r2 and r1 �= r2, then [Enter g r2 (initk r1, k), Check-in g r1
(initk r1, k)] is a legal trace and guest g ends up in a room he is not the owner
of. However, this is not a safe trace for room r2 according to our definition. This
reflects that hotel rooms are not safe until the first time their owner has entered
them. We no longer protect the hotel from its guests.
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3.2 Verifying Safety

Lemma 1 largely carries over after replacing s ∈ reach by hotel s and safe by
safe0. Only properties 5 and 6 no longer hold because we no longer assume
that roomk is initially injective. They are replaced by two somewhat similar
properties:

Lemma 2.

1. [[hotel (s2 @ Check-in g r (k , k ′) · s1);
k ′ = currk (s2 @ Check-in g r (k , k ′) · s1) r ′]]

=⇒ r ′ = r
2. [[hotel (s2 @ [Check-in g r (k , k ′)] @ s1); no-Check-in s2 r ]]

=⇒ (k ′, k ′′) /∈ cards (s2 @ Check-in g r (k , k ′) · s1) g ′

Both are proved by induction on s2. In addition we need some easy structural
properties:

Lemma 3. 1. issued (s @ s ′) = issued s ∪ issued s ′
2. no-Check-in s2 r =⇒ owns (s2 @ s1) r = owns s1 r
3. no-Check-in s2 r =⇒ currk (s2 @ s1) r = currk s1 r

The main theorem again correspond closely to its state based counterpart:

Theorem 2. If hotel s and safe s r and g ∈ isin s r then owns s r = �g�.
Let us examine the proof of this theorem to show how it differs from the state
based version. For the core of the proof let s = s3 @ [Enter g ′ r (k , k ′)] @ s2
@ [Check-in g ′ r (k , k ′)] @ s1 and assume isin (s2 @ [Check-in g ′ r (k , k ′)] @
s1) r = ∅ (0). By induction on s3 we prove

[[hotel s; no-Check-in (s3 @ s2) r ; g ∈ isin s r ]] =⇒ g ′ = g

The actual theorem follows by definition of safe. The base case of the induction
follows from (0). For the induction step let t = (e · s3) @ [Enter g ′ r (k , k ′)]
@ s2 @ [Check-in g ′ r (k , k ′)] @ s1. We assume hotel t, no-Check-in ((e · s3)
@ s2) r, and g ∈ isin s r, and show g ′ = g. The proof is by case distinction
on the event e. The cases Check-in and Exit follow directly from the induction
hypothesis because the set of occupants of r can only decrease. Now we focus on
the case e = Enter g ′′ r ′ c. If r ′ �= r the set of occupants of r remains unchanged
and the claim follow directly from the induction hypothesis. If g ′′ �= g then g
must already have been in r before the Enter event and the claim again follows
directly from the induction hypothesis. Now assume r ′ = r and g ′′ = g. From
hotel t we obtain hotel s (1) and c ∈ cards s g (2), and from no-Check-in (s3
@ s2) r and (0) we obtain safe s r (3). Let c = (k1, k2). From Lemma 1.8 and
Lemma 3.3 we obtain roomk s r = currk s r = k ′. Hence k1 �= roomk s r by
Lemma 2.2 using (1), (2) and no-Check-in (s3 @ s2) r. Hence k2 = roomk s r
by hotel t. With Lemma 1.9 and (1–3) we obtain owns t r = �g�. At the same
time we have owns t r = �g ′� because hotel t and no-Check-in ((e · s3) @ s2) r :
nobody has checked in to room r after g ′. Thus the claim g ′ = g follows.

The details of this proof differ from those of Theorem 1 but the structure is
very similar.
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theorem safe: assumes hotel s and safe s r and g ∈ isin s r
shows owns s r = �g�

proof −
{ fix s1 s2 s3 g ′ k k ′

let ?s = s3 @ [Enter g ′ r (k ,k ′)] @ s2 @ [Check-in g ′ r (k ,k ′)] @ s1

assume 0 : isin (s2 @ [Check-in g ′ r (k ,k ′)] @ s1) r = {}
have [[ hotel ?s; no-Check-in (s3 @ s2) r ; g ∈ isin ?s r ]] =⇒ g ′ = g
proof(induct s3)
case Nil thus ?case using 0 by simp

next
case (Cons e s3

′)
let ?b = [Enter g ′ r (k ,k ′)] @ s2 @ [Check-in g ′ r (k ,k ′)] @ s1

let ?s = s3
′ @ ?b and ?t = (e · s3

′) @ ?b
show ?case
proof(cases e)
case (Enter g ′′ r ′ c)[simp]
show g ′ = g
proof cases
assume [simp]: r ′ = r
show g ′ = g
proof cases
assume [simp]: g ′′ = g
have 1 : hotel ?s and 2 : c ∈ cards ?s g using 〈hotel ?t〉 by auto
have 3 : safe ?s r using 〈no-Check-in ((e · s3

′) @ s2) r 〉 0
by(simp add :safe-def ) blast

obtain k1 k2 where [simp]: c = (k1,k2) by force
have roomk ?s r = k ′

using safe-roomk-currk [OF 1 safe-safe[OF 3 ]]
〈no-Check-in ((e · s3

′) @ s2) r 〉 by auto
hence k1 	= roomk ?s r
using no-checkin-no-newkey [where s2 = s3

′ @ [Enter g ′ r (k ,k ′)] @ s2]
1 2 〈no-Check-in ((e · s3

′) @ s2) r 〉 by auto
hence k2 = roomk ?s r using 〈hotel ?t〉 by auto
with only-owner-enter-normal [OF 1 safe-safe[OF 3 ]] 2
have owns ?t r = �g� by auto
moreover have owns ?t r = �g ′�
using 〈hotel ?t〉 〈no-Check-in ((e · s3

′) @ s2) r 〉 by simp
ultimately show g ′ = g by simp

next
assume g ′′ 	= g thus g ′ = g using Cons by auto

qed
next
assume r ′ 	= r thus g ′ = g using Cons by auto

qed
qed (insert Cons, auto)

qed
} with prems show owns s r = �g� by(auto simp:safe-def )

qed

Fig. 1. Isar proof of Theorem 2
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3.3 Eliminating isin

In the state based approach we needed isin to express our safety guarantees.
In the presence of traces, we can do away with it and talk about Enter events
instead. We show that if somebody enters a safe room, he is the owner:

Theorem 3. If hotel (Enter g r c · s) and safe0 s r then owns s r = �g�.
From safe0 s r it follows that s must be of the form s2 @ [Check-in g0 r c ′] @
s1 such that no-Check-in s2 r. Let c = (x , y) and c ′ = (k , k ′). By Lemma 1.8
we have roomk s r = currk s r = k ′. From hotel (Enter g r c · s) it follows that
(x , y) ∈ cards s g and k ′ ∈ {x , y}. By Lemma 2.2 x = k ′ would contradict (x ,
y) ∈ cards s g. Hence y = k ′. With Lemma 1.9 we obtain owns s r = �g�.

Having dispensed with isin we could also eliminate Exit to arrive at a model
closer to the ones in [2].

Finally one may quibble that all the safety theorems proved so far assume
safety of the room at that point in time when somebody enters it. That is, the
owner of the room must be sure that once a room is safe, it stays safe, in order to
profit from those safety theorems. Of course, this is the case as long as nobody
else checks in to that room:

Lemma 4. If safe0 s r and no-Check-in s ′ r then safe0 (s ′ @ s) r .

It follows easily that Theorem 3 also extends until check-in:

Corollary 1. If hotel (Enter g r c · s ′ @ s) and safe0 s r and no-Check-in s ′ r
then owns s r = �g�.

3.4 Completeness of safe

Having proved correctness of safe, i.e. that safe behaviour protects against in-
truders, one may wonder if safe is complete, i.e. if it covers all safe behaviour, or if
it is too restrictive. It turns out that safe is incomplete for two different reasons.
The trivial one is that in case initk is injective, every room is protected against
intruders right from the start. That is, [Check-in g r c] will only allow g to enter
r until somebody else checks in to r. The second, more subtle incompleteness is
that even if there are previous owners of a room, it may be safe to enter a room
with an old card c: one merely needs to make sure that no other guest checked
in after the check-in where one obtained c. However, formalizing this is not only
messy, it is also somewhat pointless: this liberalization is not something a guest
can take advantage of because there is no (direct) way he can find out which of
his cards meets this criterion. But without this knowledge, the only safe thing
to do is to make sure he has used his latest card. This incompleteness applies to
the state based model as well.

4 Equivalence

Although the state based and the trace based model look similar enough, the
nagging feeling remains that they could be subtly different. Hence I wanted
to show the equivalence formally. This was very fortunate, because it revealed
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some unintended discrepancies (no longer present). Although I had proved both
systems safe, it turned out that the state based version of safety was more
restrictive than the trace based one. In the state based version of safe the room
had to be empty the first time the owner enters with the latest card, whereas
in the trace based version any time the owner enters with the latest card can
make a room safe. Such errors in an automaton checking a trace property are
very common and show the superiority of the trace based formalism.

When comparing the two models we have to take two slight differences into
account:

– The initial setting of the room keys initk in the trace based model is an
arbitrary but fixed value. In the state based model any injective initial value
is fine.

– As a consequence (see the end of Section 3.1) state.safe is initially true
whereas Trace.safe is initially false.

Since many names occur in both models they are disambiguated by the prefixes
state and Trace.

In the one direction I have shown that any hotel trace starting with an injective
initk gives rise to a reachable state when the components of that state are
computed by the trace functions:

[[inj initk ; hotel t ]]
=⇒ (|state.owns = Trace.owns t , currk = Trace.currk t ,

issued = Trace.issued t, cards = Trace.cards t , roomk = Trace.roomk t,
isin = Trace.isin t ,
safe = λr . Trace.safe t r ∨ Trace.owns t r = None|)

∈ reach

Conversely, for any reachable state there is a hotel trace leading to it:

s ∈ reach =⇒
∃ t ik .

initk = ik −→
hotel t ∧
state.cards s = Trace.cards t ∧
state.isin s = Trace.isin t ∧
state.roomk s = Trace.roomk t ∧
state.owns s = Trace.owns t ∧
state.currk s = Trace.currk t ∧
state.issued s = Trace.issued t ∧
state.safe s = (λr . Trace.safe t r ∨ Trace.owns t r = None)

The precondition initk = ik just says that we can find some interpretation for
initk that works, namely the one that was chosen as the initial setting for the
keys in s.

The proofs are almost automatic, except for the safe component. In essence,
we have to show that the procedural state.safe implements the declarative
Trace.safe. The proof was complicated by the fact that initially it was not
true and I had to debug Trace.safe by proof. Unfortunately Isabelle’s current
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counterexample finders [1,7] did not seem to work here due to search space rea-
sons. Once the bugs were ironed out, the following key lemma, together with
some smaller lemmas, automated the correspondence proof for safe:
hotel (Enter g r (k , k ′) · t) =⇒
Trace.safe (Enter g r (k , k ′) · t) r =
(Trace.owns t r = �g� ∧ Trace.isin t r = ∅ ∧ k ′ = Trace.currk t r ∨
Trace.safe t r)

In addition we used many lemmas from the trace model, including Theorem 2.

5 Conclusion

We have seen two different specification styles in this case study. The state based
one is conceptually simpler, but may require auxiliary state components which
express properties of the trace that lead to that state. And it may not be obvious
if the definition of the state component correctly captures the desired property
of the trace. A trace based specification expresses those properties directly. The
proofs in the state based version are all automatic whereas in the trace based
setting 4 proofs (out of 15) require special care, thus more than doubling the
overall proof size. It would be interesting to test Isabelle’s emerging link with
automatic first-order provers [3] on the trace based proofs.

There are two different proof styles in Isabelle: unstructured apply-scripts [5]
and structured Isar proofs [8,4]. Figure 1 shows an example of the latter. Even
if the reader is unfamiliar with Isar, it is easy to see that this proof is very close
to the version given in the text. Although apply-scripts are notoriously obscure,
and even the author may not have an intuitive grasp of the structure of the
proof, in our kind of application they also have advantages. In the apply-style,
Isabelle’s proof methods prove as much as possible automatically and leave the
remaining cases to the user. This leads to much shorter (but more brittle) proofs:
The (admittedly detailed) proof in Figure 1 was obtained from an apply-script
of less than half the size.

The models given in this paper are very natural but by no means the only pos-
sible ones. Jackson himself uses an alternative trace based one which replaces the
list data structure by an explicit notion of time. It would be interesting to see fur-
ther treatments of this problem in other formalisms, for example temporal logics.

Acknowledgments. Daniel Jackson got me started on this case study, Stefano
Berardi streamlined my proofs, and Larry Paulson commented on the paper at
short notice.
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Abstract. We describe our experiences in mechanising the specifica-
tion, refinement, and proof of the Mondex Electronic Purse using the
Z/Eves theorem prover. We took a conservative approach and mecha-
nised the original LATEX sources, without changing their technical con-
tent, except to correct errors: we found problems in the original texts
and missing invariants in the refinements. Based on these experiences,
we present novel and detailed guidance on how to drive Z/Eves success-
fully. The work contributes to the research objectives of building the
Repository for the Verified Software Grand Challenge.
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security, smart cards, software archaeology, theorem proving, Verified
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1 Introduction

The Mondex case study is a year-long pilot project launched in January 2006
as part of the International Grand Challenge in Verified Software [8, 12]. The
case study demonstrates how research groups can collaborate and compete in
scientific experiments to generate artefacts to populate the Grand Challenge’s
Verified Software Repository [1]. The objective is to verify a key property of the
Mondex smart card in order to assess the current state of proof mechanisation.

Mondex [11] is an electronic purse hosted on a smart card and developed about
ten years ago to the high-assurance standard ITSEC Level E6 [5] by a consortium
led by NatWest, a UK high-street bank. Purses interact using a communications
device, and strong guarantees are needed that transactions are secure in spite of
power failures and mischievous attacks. These guarantees ensure that electronic
cash cannot be counterfeited, although transactions are completely distributed.
There is no centralised control: all security measures are locally implemented,
with no real-time external audit logging or monitoring.

Mondex is a seriously security-critical system that required careful justifica-
tion. Logica, a commercial software house, with assistance from the University of
Oxford, used the Z notation [17, 21] for the development process [20, 18, 2]. We
built formal models of the system and its abstract security policy, and conducted
hand-written proofs that the system design possesses the required security prop-
erties. The abstract security policy specification is about 20 pages of Z; the
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concrete specification (an n-step protocol) is about 60 pages of Z; the verifi-
cation, suitable for external evaluation, is about 200 pages of proofs; and the
derivation of new refinement rules is about 100 pages [20, 2].

The original proof was carefully structured for understanding, something
much appreciated by Mondex case study groups. The original proof was vi-
tal in successfully getting the required certification. It was also useful in finding
and evaluating different models. The original team made a key modelling dis-
covery, which led to an abstraction that gave the precise security property and
invariants that explain why the protocol is secure. The resulting proof revealed
a bug in the implementation of a secondary protocol, explained what had gone
wrong, and produced a convincing counterexample that the protocol was flawed.
This led to an insight to change the design to correct the problem. Third-party
evaluators also found a bug: an undischarged assumption in the hand-written
proofs.

A commercially sanitised version of the documentation of the Mondex de-
velopment is publicly available [20]. It contains the Z specifications of security
properties; the abstract specification; the intermediate-level design; the concrete
design; and rigorous correctness proofs of security and conformance. Originally,
there was absolutely no question of mechanising proofs: it was believed that the
extra cost would far outweigh the benefit of greater assurance in this case [19].
The feeling that mechanising such a large proof cost-effectively was beyond the
state of the art ten years ago gives us two sharply focused questions. (a) Was
that really true then? (b) Is it true now?

Six groups came together to collaborate and compete. The teams were:

Alloy [6, 7] Daniel Jackson/Tahina Ramananandro MIT
Event-B [9] Michael Butler Southampton

OCL[10] Martin Gogolla Bremen
PerfectDeveloper [3] David Crocker Escher Ltd

Raise [4] Chris George/Anne Haxthausen Macao/DTU
Z [17, 21] Leo Freitas/Jim Woodcock York

We all agreed to work for one year, without funding. Meanwhile, separately and
silently, a group led by Gerhard Schellhorn at the University of Augsburg began
work using KIV and ASMs [15, 16].

Two distinct approaches emerged amongst the six. The Archaeologists made
as few changes as possible to the original documentation. They reasoned that
models should not be changed just to make verification easier, because how else
would we know that our results had anything to do with the original specifica-
tion? The Technologists wanted to use the best proof technology now available.
Since these new tools do not work for Z, they had two choices: translate existing
models into new languages; or create new models better suited to new tools.

We spend the rest of this paper describing our archaeological experiment in
mechanising the proof of Mondex in Z/Eves. As a side effect of our work, we
discovered undocumented techniques for driving Z/Eves, and we present these
in section 2. We discuss our formalisation in section 3, including the fidelity
of our mechanisation, suggestions for improvement of the existing models, and
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completeness of our work. Section 4 contains a list of the problems, omissions,
and errors that we found. Benchmarks might be useful in calibrating tools and
comparing experiments, and we have collected some of these in section 5. In
section 6, we briefly describe only one of the other experiments currently be-
ing conducted on Mondex. Finally, in section 7, we present a few conclusions,
suggestions for further work, and call on interested colleagues to join in similar
experiments on Mondex and other challenges in the future.

2 Driving Z/Eves

In this section we provide general information about proving theorems in Z/Eves.
It is useful to understand how the theorem prover works, in order to explain how
to handle a specification as big and complex as Mondex.

2.1 Ability and Usage Directives

The level of automation in Z/Eves can be fine tuned by selecting abilities
(boolean enabling conditions) and usages (scope control) [13]. Usages may be
assumption (grule), forward (frule), and rewriting (rule), and they define the
scope of definitions and theorems with respect to available transformation tac-
tics. These directives must be chosen carefully in a theory to prevent the prover
taking wrong turns while transforming goals. Although some guidelines exist for
the proper selection of usages, it is difficult to predict the appropriate ability
values without experience with the theory being proved and the prover itself.

2.2 Housekeeping Rules

Rewriting rules can be used for fine-grained automation, since they are used by
the specialised tactics that rewrite the goal: rewrite, reduce, prove, prove by reduce,
and their corresponding trivial and normalised forms. Assumption rules can be
used for coarse-grained automation, commonly needed for non-maximal type
consistency checks that often appear in proofs, since they are used by every tactic
that rewrites the goal. Forward rules are normally used to expose implicit facts
about schema components and invariants, without expanding schema definitions.
This is particularly valuable when there are complex schema expressions, because
we can surgically guide specific aspects of the goal without cluttering the proof
with a mass of unrelated assumptions from included schemas. The resulting
proofs are easier to conduct, understand, and amend. For instance, for

S == [ x : N; s : seq N | x = #s ]

the following forward rules could be added

theorem frule fSSMaxType
∀S • s ∈ P (Z× Z)

theorem frule fSSInv
∀S • x = #s

giving access to simple properties of S required by almost all subsequent proofs.
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2.3 Automation for Schemas and Bindings

Z/Eves adds theorems for each schema: for S , we get an assumption rule defining
the maximal type of the set of bindings for S and a forward rule to infer the
types of each schema component.

theorem grule S$declaration
S ∈ P 〈|x : Z|〉

theorem frule S$declarationPart
S ⇒ x ∈ N ∧ s ∈ s ∈ seq N

Rules to reason about θ expressions are also added into context, and we describe
them in order of relevance for automation.

– θ and binding expressions

theorem rule S$thetaInSet
θS ∈ 〈|x : x ′; s : s ′|〉 ⇔ x ∈ x ′ ∧ s ∈ s ′

– θ expression as schema inclusion

theorem rule S$thetaMember
θS ∈ S ⇔ S

– θ expression equality, which is useful for Ξ inclusions

theorem rule S$thetasEqual
θS = θS ′ ⇔ x = x ′ ∧ s = s ′

– θ binding selection expression (for each schema component)

theorem rule S$select$x
θS .x = x

– θ expression as variables of type S

theorem disabled rule S$member
x$ ∈ S ⇔ (∃ S • x$ = θS )

– θ expression as variables of the binding type of S

theorem disabled rule S$inSet
x$ ∈ 〈|x : x ′; s : s ′|〉 ⇔ (∃ x : x ′; s : s ′ • x$ = θS )

– the meaning of the set of bindings of S

theorem disabled rule S$setInPowerSet
〈|x : x ; s : s |〉 ∈ P 〈|x : x ′; s : s ′|〉 ⇔

x ∈ P x ′ ∧ s ∈ P s ′ ∨ x = {} ∨ s = {}
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Although this gives a powerful automation toolkit for schema mechanisation,
when schema components are quite complex, such as layered inclusions or com-
ponents with binding type, one still might need to expose implicit facts about
schemas. For instance, the following frule is needed in Mondex for discharging
goals involving StartFromPurseEafromOkay [20, p.30], where some of its com-
ponents refer to bindings of the CounterPartyDetails schema.

theorem frule fCounterPartyDetailsValueType
x ∈ CounterPartyDetails ⇒ x .value ∈ N

Luckily, with the above toolkit, such theorems are often proved quite trivially.

2.4 Free-Type Rules

We usually need the implicit fact that the constructors are injective when we
reason about a free type. For example, for the free type List , cons is injective:

List ::= nil | cons〈〈Z × List〉〉 theorem grule gConsPInjType
cons ∈ (N× List) �� List

To prove this rule, we often need to provide intermediate theorems for expressions
that appear as side conditions on goals. These are similar theorems stating that
cons is a partial function, a relation, or even a set of pairs.

In the Mondex case study, free-type constructors appear frequently in the
specification of the protocol messages, with schema bindings as parameters to
give an extra complexity. For instance, the schema ValidStartFrom refers to the
expression startFrom∼ m?, where the result is a CounterPartyDetails schema.
Thus, we need not only the injectivity theorems, but also forward rules about
the binding type of the CounterPartyDetails schema as

theorem frule fCounterPartyDetailsMember
x ∈ CounterPartyDetails

⇒ x ∈ 〈|name : NAME ; nextSeqNo : N; value : N|〉

theorem frule fCounterPartyDetailsInSetMember
x ∈ 〈|name : NAME ; nextSeqNo : N; value : N|〉

⇒ x ∈ CounterPartyDetails

Thanks to the automation for θ and binding expressions provided by Z/Eves,
these forward rules are relatively easy to prove.

2.5 Rules for Axiomatically Declared Functions

The successful automation of proofs involving functions requires additional rules
about the function’s (maximal) type, the type of its result, and about its totality.
Depending on the structure of the function type and which toolkit theorems are
used, we often need more than one type theorem, and we must predict these in
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advance for the best automation. Fortunately, there is a pattern to these rules.
For instance, in a function f declared as

f : seq (F N)→ seq N

· · ·

we might need to add type information as assumptions (grules), such as

f ∈ P (P (Z× P Z) × P (Z× P (Z× Z)))

which is often required in applying rules, or

f ∈ seq (P Z)↔ seq Z

which might appear when relational definitions from the toolkit are used.
When using a free type we usually need to prove a theorem about the injec-

tivity of its constructors. It gets more complicated when the free type refers to
a schema binding, as is the case with MESSAGEs in Mondex [20, p.26].

MESSAGE ::= startFrom〈〈CounterPartyDetails〉〉 | · · ·

In Mondex, we have expressions such as

cpd ∈ CounterPartyDetails ∧ m? ∈ MESSAGE ∧ cpd = startFrom ∼m?

To discharge the consistency checks about this expression, the injectivity theo-
rem is given with the maximal type of CounterParyDetails as

theorem grule gStartFromInjType
startFrom ∈ 〈|name : NAME ; value : N; nextSeqNo : N|〉 �� MESSAGE

It establishes that the startFrom is an injection between CounterPartyDetails
and MESSAGE . Furthermore, to prove this injectivity theorem, we need auxil-
iary lemmas about functional and relational types of startFrom, as well as extra
(maximal) type rules for CounterPartyDetails, presented above.

2.6 Schema Invariants and Preconditions

While proving theorems involving schema inclusion, it is often necessary to ex-
pose particular elements and predicates of the state invariant. Nevertheless, it
is not productive to expand the inclusion, as this leads to lengthy and complex
predicates. Thus, in order to surgically expose schema components, we need to
introduce forward (frule) rules. For instance, let us define a state schema S as

S =̂ [ x : N; s : seq N | x ≥ # s ∧ s �= 〈〉 ]

and an operation over this state as

Op =̂ [ ΔS ; i? : N | x ′ = x + 1 ∧ s ′ = s � 〈i?〉 ]



Z/Eves and the Mondex Electronic Purse 21

Due to the nature of the predicates involved in the operations, as well as the
theorems we might be proving about them (such as precondition calculation or
refinement simulation), we might want to expose parts of the state invariant in
the middle of a proof without expanding S . This careful control is necessary
to avoid the hypothesis and goal explosion problem, but it should also be as
automatic as possible to avoid the need for micro-management of the proof. In
order to achieve all this, we introduce forward rules, such as

theorem frule fSSInv1
∀S • s �= 〈〉

theorem frule fSSInv2
∀S • x ≥ # s

They are trivially proved by expanding S ; nevertheless, they allow us to conclude
the invariants of S without expansion, provided that S appears as part of our
original goal.

As occurred before for functions and free types, we might also need to expose
the (maximal) type of the schema components, hence theorems like

theorem frule fSSMaxType
∀S • s ∈ P (Z× Z)

could be defined. The rationale of when such theorems should be introduced
depends on the kind of goals that appear in proofs about the schema in question.

During the refinement proofs in Mondex, it is often mentioned that partic-
ular elements of BetweenWorld should be used/exposed. To do that without
expanding the schema, one just needs to add a forward rule such as

theorem frule fBetweenWorldMaybeLostExpansion
∀BetweenWorld • maybeLost = (fromInEpa ∪ fromLogged) ∩ toInEpv

which is again trivially true from the definition of BetweenWorld [20, p.42].
A strategy is need for the proof of the preconditions of complex promoted

operations in Mondex. Additional lemmas are needed for the precondition of the
promoted operation, and although these lemmas cannot be used directly in the
promoted precondition proofs, they define how to instantiate the quantifiers in
the promoted precondition. This strategy turned out to be very effective.

2.7 Z Idioms

One-point-mu. It is notoriously hard to reason about definite descriptions
in Z, mainly because the notion is primitive to the language: it is not easy to
eliminate an arbitrary μ-term. There are three very specific automation rules in
Z/Eves: two symmetric rules concerning equality with a μ-term; and a third rule
concerning a definite description drawn from a singleton set. In each rule there
is a candidate value for the expression, and we can call them one-point rules,
by analogy with predicate calculus. Definite description is used in Mondex to
build bindings with components defined pointwise, and we devised another one-
point rule to eliminate a μ-term in favour of an explicit binding: a θ-term with
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substitutions for each component. That is, to replace (μS | x = e ∧ · · · ∧ z = g)
by θS [x := e, · · · , z := g]. The special Z/Eves assignments are a shorthand for
schema substitution with expressions rather than names:

θS [x := e]⇔ (∃ e : type(x ) | e = x • S [e/x ])

For example, here is such a theorem involving the schema PayDetails:

theorem rule rStartFromMuPayDetailsValue
∀name : NAME ; nextSeqNo : N; cpd : CounterPartyDetails |

name �= cpd .name •
(μPayDetails | from = name ∧ to = cpd .name ∧

value = cpd .value ∧ fromSeqNo = nextSeqNo ∧
toSeqNo = cpd .nextSeqNo)

= θPayDetails[from := name, to := cpd .name,
value := cpd .value, fromSeqNo := nextSeqNo,
toSeqNo := cpd .nextSeqNo]

This is useful because Z/Eves has better automation support for bindings, and
because it is an automatic rewriting rule, equality substitution takes place fully
automatically. This is also useful in proving the next three rules, which are neces-
sary for every proof involving definite descriptions of this sort. First, μPayDetails
maximal type in StartFromPurseEafromOkay:

theorem rule rStartFromMuPayDetailsMaxType
∀name : NAME ; nextSeqNo : N; cpd : CounterPartyDetails |

name �= cpd .name •
(μm : {PayDetails | from = name ∧ to = cpd .name ∧

value = cpd .value ∧ fromSeqNo = nextSeqNo ∧
toSeqNo = cpd .nextSeqNo})

∈ 〈|from : NAME ; fromSeqNo : Z;
to : NAME ; toSeqNo : Z; value : Z|〉

Second, μPayDetails non-maximal type in StartFromPurseEafromOkay:

theorem rule rStartFromMuPayDetailsType
∀name : NAME ; nextSeqNo : N; cpd : CounterPartyDetails |

name �= cpd .name •
(μm : {PayDetails | from = name ∧ to = cpd .name ∧

value = cpd .value ∧ fromSeqNo = nextSeqNo ∧
toSeqNo = cpd .nextSeqNo}) ∈ PayDetails

Third, μPayDetails from purse type in StartFromPurseEafromOkay:

theorem rule rStartFromMuPayDetailsFromType
∀name : NAME ; nextSeqNo : N; cpd : CounterPartyDetails |

name �= cpd .name •
(μm : {PayDetails | from = name ∧ to = cpd .name ∧

value = cpd .value ∧ fromSeqNo = nextSeqNo ∧
toSeqNo = cpd .nextSeqNo}).from ∈ NAME
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Finally, four more rules are added to establish the θ-μ PayDetails expressions
equivalence for to purses, with the same shape but name = to.

Keep declarations non-finite. There is very limited automation for reasoning
about finite sets in Z/Eves, and so the best advice is to avoid doing so unneces-
sarily. A useful tip is not to declare a set as finite, but rather to give its finiteness
as a property. This is important because the side conditions and rules available
in the automation toolkit are always with respect to the maximal type.
For example, instead of declaring abAuthPurse as a finite function

AbWorld =̂ [ abAuthPurse : NAME � �→ AbPurse ]

declare it as a function and constrain it to be finite:

[ abAuthPurse : NAME �→ AbPurse | abAuthPurse ∈ NAME � �→ AbPurse ]

Avoid binding selection on free-type constructor results. In schema
BetwInitIn [20, p.52], the use of (req∼ m?).from directly is a bad idea for Z/Eves
automation, as it incurs rather complex lemmas involving the functionality of
the inverse function. Instead, one could simply declare a variable to hold such
value: Z/Eves would then know the type of this expression, the main problem
appearing in the domain check. Nevertheless, for the sake of keeping to the
original as much as possible, we left it unchanged. The alternative would be to
have something like the following:

BetwInitIn == [ · · · ; x : PayDetails | x = req∼m? ∧ · · · ∧ x .from ]

2.8 Extending the Z Toolkit

Functional overriding. Although there are useful rules for relational overrid-
ing, there are no rules specifically for functional overriding. This operator plays
a central role in updating the state in the abstract specification and security
model. We added three simple rules in the proofs from [20, Chap.8].

theorem rule rPFunElement [X ,Y ]
∀ f : X �→ Y ; x : X ; y : Y | x ∈ dom f ∧ y = f x • (x , y) ∈ f

theorem rule rPFunSubsetOplusRel [X ,Y ]
∀ f , g : X �→ Y | g ⊆ f • f ⊕ g = f ⊕ (dom g � f )

theorem lPFunSubsetOplusUnitRel [X ,Y ]
∀ f : X �→ Y ; x : X ; y : Y | x ∈ dom f ∧ y = f x •

f = f ⊕ {(x �→ y)}

Finiteness. As mentioned above, reasoning about finiteness is difficult; there
are four reasons for this. (a) Proofs about finiteness often require reasoning about
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total functions, injections, bijections, and set cardinality. (b) Pointwise instan-
tiation is needed. (c) There is a lack of automation rules and toolkit theorems
about finiteness. (d) Low-level rewriting for set membership is not restricted to
finite sets. The definition for the finite powerset constructor is

F X == { S : PX | ∃n : N • ∃ f : 1 . . n → S • ran f = S }

and for cardinality

[X ]
# : F→ N

∀S : F X • ∃ f : 1 . . (#S ) �→ S • true

An alternative, inductive definition is given in the ISO Z Standard.

Fnew X ==
⋂
{A : P (P X ) | {} ∈ A ∧ (∀ a : A; x : X • a ∪ {x} ∈ A)}

This is useful because there is no need to deal with instantiations, and it gives
a better pattern for proofs involving the bijection present in cardinality.

The need to prove that a set is finite arises most often from proving properties
involving the cardinality operator. Here are some extra theorems to help reason
about set sizes. First, smaller sets have smaller sizes.

theorem disabled sizeOfPSubset [X ]
∀T : F X | S ⊂ T • 0 ≤ #S < #T

Next we have the maximal type of cardinality, which is useful for discharging
side conditions/type checks on proofs involving #.

theorem disabled grule cardType [X ]
∀ x : F X • # x ∈ Z

The next two theorems reason about the relationship between set membership
and the cardinality operator on sets.

theorem disabled rule cardDiffIsSmaller [X ]
∀S : F X ; x : X | x ∈ S • (#(S \ {x}) < #S )

theorem disabled rule cardDiffLower [X ]
∀S : F X ; x : X | x ∈ S • (0 ≤ #(S \ {x}))

Finite relations have finite domains and ranges.

theorem disabled finRelHasFinDom [X ,Y ]
∀R : X ↔ Y | R ∈ F (X ×Y ) • dom R ∈ F X

theorem disabled finRelHasFinRan [X ,Y ]
∀R : X ↔ Y | R ∈ F (X ×Y ) • ran R ∈ F Y

We also use a variation on the last rule that abstracts the sets involved.
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Similar rules apply to sequences.

theorem grule seqIsFinite [X ]
∀ s : seq X • s ∈ F (Z×X )

theorem disabled seqHasFinRan [X ]
∀ s : seq X • ran s ∈ F X

theorem disabled seqHasFinRan2 [X ]
∀A : P X • ∀ s : seq A • ran s ∈ F A

theorem disabled iseqHasFinRan [X ]
∀ s : iseq X • ran s ∈ F X

theorem disabled iseqHasFinRan2 [X ]
∀A : P X • ∀ s : iseq A • ran s ∈ F A

There are other mathematical datatypes in the toolkit that are not used in
Mondex (for example, bags), but they could be handled in the same way.

3 Formalisation

3.1 Fidelity

Our formalisation is a carbon copy of Oxford Monograph PRG-126, except in two
respects. The definition of PayDetails [20, p.24] required modification in order
to make it finite. In the original PRG this is a bug, which leads many claims
about finiteness unprovable (see 4.2 below).

The auxiliary toolkit definitions from [20, App.D] are inappropriate for mech-
anisation because they require reasoning about finiteness and cardinality; they
also require witnesses in their instantiation. For instance,

totalAbBalance : (NAME � �→ AbPurse)→ N

totalAbBalance ∅ = 0
∀w : (NAME � �→ AbPurse); n : NAME ; AbPurse | n /∈ dom w •

totalAbBalance({n �→ θAbPurse} ∪ w) = balance + totalAbBalance w

In order to use the inductive case of totalAbBalance, we need to partition the
argument into two parts, the first being a singleton. Without a witness for this
element, this rule is useless for automation.

We kept this definition in our formalisation, but did not prove the theorems
from [20, Sect.2.4], which is related to totalAbBalance and the other auxiliary
function from [20, App.D]. Moreover, the proofs given in [20, Sect.2.4] are infor-
mal, as the suggested instantiations are not possible as mentioned in the text.
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3.2 Suggestion of Improvement

Alternative definition for totalAbBalance. Although there is little automa-
tion for finite functions in general, there is good automation for sequences. An
alternative definition for totalAbBalance using sequences and induction avoids
both finiteness and instantiation problems by relying on the rich toolkit theorems
for sequences. Summation over sequences is very simple:

sum : seq Z→ Z

sum 〈〉 = 0
∀n : Z • sum 〈n〉 = n
∀ s , t : seq Z • sum (s � t) = sum s + sum t

An inductive update over sequences is given by

update : seq Z× Z× Z→ seq Z

∀ i ,n : Z • update(〈〉, i ,n) = 〈〉
∀ i , x ,n : Z • update(〈x 〉, i ,n) = if i = 1 then 〈n〉 else 〈x 〉
∀ s , t : seq Z; i ,n : Z • update((s � t), i ,n) =

if i ∈ dom s then update(s , i ,n) � t
else if i −#s ∈ dom t then s � update(t , (i −#s),n)
else s � t

The effect an update is given in terms of the changing sum:

theorem tSumUpdate
∀ s : seq Z; i ,n : Z | i ∈ dom s •

sum(update(s , i ,n)) = sum s − s i + n

theorem rule rSumPos
∀ s : seq N • sum s ∈ N

These definitions are much simpler than the ones using finite functions.

Better structuring of precondition proofs. The precondition proofs in
Chapter 8 are understated: they mention that various operations have trivial
preconditions because they are disjoined with Ignore, a schema with a very
easy proof of totality. Nevertheless, if one tries to calculate the preconditions in
Z/Eves without relying on Ignore, they turn out to be quite challenging, and
the informal proof is of little help. The reasons for this are as follows.

– Z/Eves does not support compositional precondition calculation (as de-
scribed in [21]), so there is no way to mimic the informal proof without
doing a lot of calculation.
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– There are many variables to instantiate, and so a lot of ingenuity is required
to find appropriate values. This cannot be automated.

– The proof needs to be structured with auxiliary lemmas, one for each con-
junct of the formulas; mainly the one on page 47, StartFromEafromOkay.

– The precondition proof of StartFromEafromOkay is missing; it requires the
precondition proof of various other parts of the specification.

– Several lemmas are needed for precondition proofs to deal with promoted
operations and appropriate instantiations.

– The hand-written proofs avoid analysis of promoted operations.
– Other lemmas are stated but not used (yet).
– No informal explanation is given for harder proofs.

Clearer proof explanation. As the promoted proofs for Eafrom operations
cannot rely on disjunction with Ignore, the whole proof is much more complex,
as we need to tackle the entire operation itself. Because of the various quantifiers
and schema inclusions, it is quite hard to figure out what the appropriate instan-
tiations would be, hence we have pretty hard precondition proofs to discharge.
We decided to break then down into the various schema inclusion parts, so that
the appropriate instantiations are clearly understood.

The definition of StartFromEafromOkay is given in [20, Sect.5.6.1] as

StartFromEafromOkay
=̂ ∃ΔConPurse • PhiBOp ∧ StartFromPurseEafromOkay

Thus, at first, we want to prove the precondition of StartFromPurseEafromOkay
alone. Because of the way these promoted operations are defined, we need
to include additional automation lemmas even before this first precondition.
More precisely, the use of pointwise definite descriptions in the definition of
StartFromPurseEaFromOkay makes automation hard.

The hand-written proofs in [20] are nicely written, and we have found this
informal help very useful (so far): the proofs are thoroughly explained, especially
in later chapters; the mechanised proofs are mostly the same as the explanation.

Minor suggestions. There are some minor mistakes in the text. First, there is
a mistaken LATEX markup involving a subscript and a stroke (Chapters 7 and 10),
which in fact turned out to be a bug in the Z standard. Consider the following
quantified predicate: ∃ x ′

1, x ′
1 : N • x ′

1 �= x ′
1. It parses; it is type correct; and it

evaluates to true. The two variables in the predicate are actually different, even
though they are typeset identically, as can be seen from the LATEX source used:

\exists x_1’, x’_1: \nat @ x_1’ \neq x’_1

This confusion is present in the Mondex source text: a variable is marked up in
both ways, introducing an undeclared variable and a failed type-check.

An operation and a theorem are both called AbOp (p.63, Chapter 8), causing
the type checker to fail, and the proofs in Chapter 10 refer to lemmas in [20,
App.C] without proper referencing.
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3.3 How Complete Is It?

At the time of writing, the following parts of Mondex have been mechanically
verified using Z/Eves:

– Models
• A model [20, Chap.3]
• B model: purse, world, init., final [20, Chap.4,5,6]
• C model [20, Chap.7]
• applicability proofs [20, Chap.8]

– Refinement: A to B
• retrieve definitions [20, Chap.10]
• A to B initialisation [20, Chap.11]
• A to B finalisation [20, Chap.12]
• A to B applicability [20, Chap.13]
• Abs to Betw lemmas for backward simulation [20, Chap.14,App.C]

– Security properties [20, Chap.2]
• all definitions (but [20, Sect.2.4])
• proofs in [20, Sect.2.4] contain informal arguments
• totalAbBalance [20, App.D] is inadequate for mechanisation
• mechanisable using suggested model of sequences

It is expected that the remaining chapters will be mechanised shortly.

4 Problems Found

4.1 Are After Purses Authentic?

There is a state invariant that requires all abstract purses involved in a trans-
action to be authentic: abAuthPurse. This invariant is not required in the after-
state of the operations AbTransferOkayTD and AbTransferLostTD (p.20, 21),
although it should be. We demonstrated the necessity of the after-invariant by
showing that the original definitions can lead to a state with inauthentic purses.

4.2 Four Missing Properties of BetweenWorld

BetweenWorld is inconsistent when val or ack messages are handled. For prop-
erty B3 (p.42), the original purse is missing additional information about the
authenticity of val messages in the ether for to and from purses. This does not
apply to rel messages, as property B1 shows. We include the new properties in
the predicate part to have a uniform signature across BetweenWorld properties.

∀ pd : PayDetails | val pd ∈ ether • pd ∈ authenticTo
∀ pd : PayDetails | val pd ∈ ether • pd ∈ authenticFrom

Similarly, for property B4, we need to include the authenticity of ack messages
in the ether for to and from purses.

∀ pd : PayDetails | ack pd ∈ ether • pd ∈ authenticTo
∀ pd : PayDetails | ack pd ∈ ether • pd ∈ authenticFrom
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For B5 nothing else is needed because the from purses in fromLogged are already
authentic, from the definition in AuxWorld . Similarly, for B6, B7, and B8, the
to purses in toLogged and from purses in fromLogged are already authentic.

4.3 Retrieve Relations

The proof of the first refinement [20, Chap.10] reaches the following goal:

RabCl ⇒ (∃ pdThis : PayDetails • true)

which requires that at least one PayDetails schema exists. For this to be true, we
must have at least two different names for from and to components. Of course
this is a reasonable assumption, but it has not been made explicitly in the original
specification. This problem also appears in lemmas from [20, Chap.14,App.C].

5 Benchmarks

In August 2006, more than half of Mondex has been verified: this discharges the
verification conditions of 160 definitions. Tables 1 and 2 present some statistics
from the proof work so far, which we explain in detail.

There are four kinds of conjectures that we needed to prove about Mondex: ad-
ditional rules for language constructs and mathematical toolkit definitions; theo-
rems stating consistency properties and verification conditions for the correctness
of refinements: lemmas used to structure theorems; and domain checks. Most of
the additional rules arise from automating the type-checking of free-types and
schemas, as described above.

We have proved 160 verification conditions to do with consistency and cor-
rectness properties. There are two parts to proving the consistency of a Z spec-
ification of a system as an abstract datatype: first, the existence of a model for
the specification; and second, the non-triviality of that datatype.

Is there a model for the definitions? This question asks whether the specifica-
tion is satisfiable, or are the definitions in contradiction? Notice from the table
that most paragraphs analysed so far are used to define schemas. Any contra-
dictions in the declarations and constraints of a schema result in the definition
of an empty set of bindings, so there is always a model for a schema, albeit
perhaps a trivial one. So the problem becomes one of finding carriers for the two
given sets that can lead to existence proofs for the free-typ and axiomatic defini-
tions. A total of nine proofs will be needed. Z/Eves has a further requirement for
consistency: it generates domain checks to guarantee the definedness of expres-
sions involving partial functions; it generates these checks for every definition
involving such functions, even the definition is never subsequently used.

Does the specification define a non-trivial abstract datatype? This question is
addressed by proving state initialisation and operation precondition theorems.

An interesting metric for a proof is the number of interactions required for
its successful completion by a mechanical theorem prover, but this metric can
be misleading. A proof with few interactions is rather like a successful attempt
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Table 1. Mondex Z/Eves statistics I

Paragraph type
Original given sets 2
Original free types 4
Oroginal axiomatic definitions 3
Original schemas 105
Original number of paragraphs 114
New axiomatic definitions 12
New schemas 34
Total number of paragraphs 160

Verification conditions
Original lemmas 4
Original theorems 15
Number of original proofs 19
New Z/Eves rules 59
New lemmas 44
New theorems 43
New domain checks 63
Number of new proofs 209
Total number of proofs 228

Automation grule frule rule lemmas
Free types 14 0 4 0 18
Schemas/bindings 0 14 3 4 21
μ-θ expressions 0 0 4 3 7
Extended toolkit 0 0 4 3 7
Finiteness 3 5 6 12 26
Structured names 2 0 0 6 8
Precondition proofs 0 0 0 20 20
Total 19 19 21 48 107

at push-button model-checking: it does not reveal what has gone on behind the
scenes to get to this stage. Our archaeological approach to Mondex meant that
we have not restructured the specification to make mechanisation easier: like
Peter Lely’s portrait of Oliver Cromwell, we have taken Mondex, warts and all.

About 43% of our proof steps are trivial, relying on the automation we in-
cluded for Z/Eves to discharge verification conditions. Another 43% rely on an
intermediate level of skill: this involves understanding how the proof is going,
often using repetitive steps from previous proofs or on knowledge of how Z/Eves
works internally. The final 14% rely on creative steps requiring domain knowl-
edge, such as instantiating existential variables.

The specification takes Z/Eves (GUI 1.5, Python 2.4) 2sec to parse and type-
check and the proofs scripts take 11min 20sec to run to completion. This is on
a Tablet PC with a dual Pentium T2400 CPU, running at 1.83GHz with 2GB
RAM 2005 under Windows XP SP2 with 48% CPU load.
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Table 2. Mondex Z/Eves statistics II

Trivial
invoke 135
rearrange 121
cases 49
next 99
simplify 78
rewrite 234
prove/proveby reduce 147
instantiate 16
Total 879

Intermediate
prenex 64
invoke 340
rearrange 5
split 13
apply 139
use 102
simplify 20
rewrite 50
reduce 1
trivialrewrite 11
withenabled/disabled 46
with normalization 2
instantiate 80
equality substitute 5
Total 878

Creative
use 41
invoke 3
equalitysubstitute 40
rearrange 5
instantiate 130
simplify 10
rewrite 20
split 30
Total 279

Proof steps
Chapter 3 198
Chapter 4 98
Chapter 5 364
Chapter 6 76
Chapter 7 4
Chapter 8 1065
Chapter 10 231
Total 2036

Trivial 43.2%
Intermediate 43.1%
Creative 13.7%

Chapter 3 9.7%
Chapter 4 4.8%
Chapter 5 17.9%
Chapter 6 3.7%
Chapter 7 0.2%
Chapter 8 52.3%
Chapter 10 11.4%

The work so far has involved around eight or nine days working with Z/Eves,
as well as additional effort studying the problem and planning the mechanisation.
In particular, the finiteness strategy took quite a lot of effort, which we hope to
amortise over future work.

6 Augsburg (KIV)

The team from Augsburg can claim the prize of being first to mechanise the
entire Mondex proof [15, 16]. They used the KIV specification and verification
system and ASMs, discovering the same small errors as we did in the original
rigorous hand-made proofs. They produced alternative, operational formalisation
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of the communication protocol in ASM, working as technologists, but with some
archaeology, since the models and proofs are clearly inspired by original work.
They produced a mechanical verification of the full Mondex case study, except
for transcription of failure logs to the central archive, a matter orthogonal to the
money-transfer protocol.

The Augburg team mimicked the Mondex data refinement proofs faithfully,
completing the work in four weeks: one week to get familiar with the case study
and specify the ASMs; one week to verify the proof obligations of correctness
and invariance; one week to specify the Mondex refinement theory; and one week
to prove data refinement and polish the work for publication. The existence of
a (nearly) correct refinement relation helped considerably. The main data re-
finement proofs require 1,839 proof steps, with 372 interactions. The work is
interesting, both technically and organisationally: the group took up the chal-
lenge and worked independently.

7 Conclusions

We have conducted an experiment to find out how the proof of the Mondex
electronic purse can be automated. Perhaps the most surprising result from this
experiment is that half of it can be accomplished in an order of magnitude
less effort than it took to conduct the original Mondex work. This has been
possible due to the existence of good models with their precise invariants. In
other words, we should not see this experiment as saying that the original work
could be slashed to one-tenth of its effort, but rather that a mechanical proof
could be added for an extra 10% of the overall effort. Since the theorem prover
that we used was available in the same release ten years ago, this contradicts
the popular opinion that it would not be cost-effective.

Our work discovered some unknown bugs as the payback for our efforts: the
missing properties of BetweenWorld reported in this paper affect six operations,
allowing operations involving inauthentic purses. Schema PayDetails not being
finite affects mostly everywhere in Betw and Conc.

Our future work involves comparing our results and methods in detail with
those of our colleagues working with different tools and notations. Our work
can act as a reference model for those not using Z. If they find suspect bug in
Mondex, then we can check to see if this behaviour is genuine, or simply an
artifact of translation or remodelling. Similarly, we can check to see if the bugs
we found are also found by our colleagues.

The Mondex case study shows that the verification community is willing to
undertake competitive and collaborative projects—and that there is some value
in doing this. A challenge now is to find the most effective way of curating all
our results in the Verified Software Repository. We urge all those interested in
this work to join the next project!
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Abstract. The deductive method reduces verification of safety prop-
erties of programs to, first, proposing inductive assertions and, second,
proving the validity of the resulting set of first-order verification condi-
tions. We discuss the transition from verification conditions to verifica-
tion constraints that occurs when the deductive method is applied to
parameterized assertions instead of fixed expressions (e.g., p0 + p1j +
p2k ≥ 0, for parameters p0, p1, and p2, instead of 3 + j − k ≥ 0) in order
to discover inductive assertions. We then introduce two new verification
constraint forms that enable the incremental and property-directed con-
struction of inductive assertions. We describe an iterative method for
solving the resulting constraint problems. The main advantage of this
approach is that it uses off-the-shelf constraint solvers and thus directly
benefits from progress in constraint solving.

1 Introduction

The deductive method of program verification reduces the verification of safety
and progress properties to proving the validity of a set of first-order verifica-
tion conditions [13]. In the safety case, the verification conditions assert that
the given property is inductive: it holds initially (initiation), and it is preserved
by taking any transition (consecution). Such an assertion is an invariant of the
program. In the progress case, the verification conditions assert that a given
function is bounded from below (bounded), yet decreases when any transition
is taken (ranking). The existence of such a function, called a ranking function,
guarantees that the program terminates. In this paper, we focus on the genera-
tion of inductive assertions. Section 5 briefly discusses the application of similar
techniques to the synthesis of ranking functions.

We discuss a natural shift in perspective from verification conditions to veri-
fication constraints. This shift is achieved by replacing the given assertion with
a parameterized assertion. The task is then to find some instantiation of the
parameters that validates the verification conditions. This task is a constraint
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satisfaction problem. Now, each verification condition is a constraint on the pa-
rameters. Instantiating the parameters of the parameterized assertion with a
solution produces an inductive assertion. This method of generating inductive
invariants is known as the constraint-based method [7].

In general, these verification constraint problems (VCPs) have many solutions,
only some of which are interesting. In particular, a solution is only interesting if
it provides more information than what is already known. If χi is the currently
known inductive invariant and ϕ is a new solution to a safety VCP, then χi+1

def=
χi ∧ ϕ should be stronger: χi+1 implies χi, but χi should not imply χi+1. We
introduce the new verification constraint form called strengthening to ensure this
property.

Additionally, we could have a safety property Π in mind when analyzing a
program. A safety property is an assertion that holds on all reachable states of
the program. In this context, solutions that strengthen Π are sometimes more
interesting than solutions that simply strengthen the currently known invariant
χi. We introduce the new verification constraint form called Π-strengthening to
facilitate property-directed invariant generation.

We present basic concepts in Section 2. In Section 3, we introduce verification
constraints as a natural generalization of verification conditions through a set of
examples. We also introduce the two new forms of verification constraints that
enable an incremental construction of invariants. Section 4 then turns to the
task of solving the verification constraint problems. To address the existential
constraints arising from the new forms of verification constraints, we describe
an iterative method of constructing incrementally stronger inductive assertions
using general constraint solvers. Section 5 then reviews past work on posing and
solving verification constraint problems in areas ranging from program analysis
to continuous and hybrid systems. Section 6 concludes.

2 Preliminaries

It is standard practice to formalize programs as mathematical objects called
transition systems. For our purposes in this paper, we define a simple form of
transition system.

Definition 1 (Transition System). A transition system S : 〈x, θ, T 〉 contains
three components:

– a set of variables x = {x1, . . . , xn} that range over the integers Z or reals R;
– an assertion θ[x] over x specifying the initial condition;
– and a set of transitions T = {τ1, . . . , τk}, where each transition τ is specified

by its transition relation ρτ [x, x′], an assertion over x and x′.

Primed variables x′ represent the next-state values of their corresponding vari-
ables x.

Thus, in this paper, a transition system consists simply of a set of transitions
that loop around a single program point. Variables have integer or real type.
Finally, the computation model is sequential, as formalized next.
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Definition 2 (State & Computation). A state s of a transition system S
is an assignment of values to its variables. A computation σ : s0, s1, s2, . . . is an
infinite sequence of states such that

– s0 is an initial state: s0 |= θ;
– for each i ≥ 0, each adjacent pair of states is related by some transition:
∃τ ∈ T . (si, si+1) |= ρτ .

Definition 3 (Invariant). An assertion ϕ is an invariant of S, or is S-
invariant, if for all computations σ : s0, s1, s2, . . ., for all i ≥ 0, si |= ϕ. An
assertion ϕ is S-inductive if

– it holds initially: ∀x. θ[x] → ϕ[x]; (initiation)
– it is preserved by every τ ∈ T : ∀x, x′. ϕ[x] ∧ ρτ [x, x′] → ϕ[x′]. (consecution)

If ϕ is S-inductive, then it is S-invariant.

For convenience, we employ the following abbreviation: ϕ ⇒ ψ abbreviates
∀x. ϕ → ψ; ⇒ is the logical entailment operator. Then, for example, initiation
and consecution are expressed as θ ⇒ ϕ and ϕ ∧ ρτ ⇒ ϕ′, respectively.

A safety property �Π asserts that a transition system S does not do anything
bad: it never reaches a ¬Π-state. In other words, Π is S-invariant. Proving
safety properties in practice typically consists of finding a strengthening inductive
assertion. That is, to prove that Π is S-invariant, find an S-inductive assertion
ϕ that entails Π : ϕ ⇒ Π .

Recall that a computation was defined to be an infinite sequence of states.
Thus, if S terminates, it does not have any computations according to the current
definition of transition systems. Let us agree that every transition system S
has an extra idling transition τidle that does not modify any of x. Then if S
terminates, only this transition is taken. Thus, the computations of a terminating
S all have infinite τidle-suffixes.

The first-order formulae that arise according to the initiation and consecution
conditions of an assertion and program are called verification conditions.

3 Verification Constraint Problems with Strengthening

Having formalized our computation model, we now turn to the main topic: ver-
ification constraints and verification constraint problems (VCPs). In the last
section, we saw that verification conditions are imposed on a given assertion ϕ.
Suppose instead that ϕ is a parameterized assertion.

Definition 4 (Parameterized Assertion). A parameterized assertion over
variables x has the form

p0 + p1t1 + · · ·+ pmtm ≥ 0 ,

where ti are monomials over x (e.g., x1, x2
1, x1x

3
4), and p are parameters.
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int j, k;
@ j = 2 ∧ k = 0
while (· · · ) do

if (· · · )
then j := j + 4;
else j := j + 2;

k := k + 1;
done

int x1, x2, y1, y2, y3, y4;

@
(

y1 = x1 ∧ y2 = x2 ∧
y3 = x2 ∧ y4 = 0

)
while (y1 	= y2) do

if (y1 > y2)
then y1 := y1 − y2;

y4 := y4 + y3;
else y2 := y2 − y1;

y3 := y3 + y4;
done

(a) Simple (b) GCD-LCM

int u, w, x, z;
@ x ≥ 1 ∧ u = 1 ∧ w = 1 ∧ z = 0
while (w ≤ x) do

(z, u, w) := (z + 1, u + 2, w + u + 2);
done

(c) Sqrt

Fig. 1. Example functions

For a given set of parameters that range over some domain, a parameterized
assertion represents a set of assertions — one assertion for each instantiation
of the parameters. Then the verification conditions become constraints over the
parameters. The constraint problem is to find an instantiation of the parameters
such that the verification conditions are valid. Usually, the parameters are con-
sidered to range over the rationals, although considering only the integers is suffi-
cient since only the ratio between parameters matters, not their absolute values.

In this section, we examine a set of examples illustrating VCPs and their
solutions. The first two examples perform invariant generation to discover
information about the loops. The strengthening condition guides the solver
to discover new information on each iteration of constraint solving. The
final example illustrates property-directed invariant generation, in which the
Π-strengthening condition guides the solver to discover inductive assertions that
eliminate error states.

Example 1 (Simple). Consider the loop Simple in Figure 1(a), which first ap-
peared in [11]. The corresponding transition system S is the following:

x : {j, k}
θ : j = 2 ∧ k = 0

ρτ1 : j′ = j + 4 ∧ k′ = k
ρτ2 : j′ = j + 2 ∧ k′ = k + 1

Because the guards are replaced by nondeterministic choice (· · · in Figure 1(a)),
the transitions τ1 and τ2 are always enabled.
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To prove that the assertion k ≥ 0 is S-inductive requires checking the validity
of the following verification conditions:

– j = 2 ∧ k = 0 ⇒ k ≥ 0 (initiation)
– k ≥ 0 ∧ j′ = j + 4 ∧ k′ = k ⇒ k′ ≥ 0 (consecution 1)
– k ≥ 0 ∧ j′ = j + 2 ∧ k′ = k + 1 ⇒ k′ ≥ 0 (consecution 2)

Simplifying according to equations yields:

– 0 ≥ 0 (initiation)
– k ≥ 0 ⇒ k ≥ 0 (consecution 1)
– k ≥ 0 ⇒ k + 1 ≥ 0 (consecution 2)

These verification conditions are clearly valid.
Now suppose that we want to discover facts about the loop in the form of

a conjunction of affine assertions that is S-invariant. An affine expression is a
linear combination of variables with an additional constant; an affine assertion
asserts that an affine expression is nonnegative. Our strategy is to construct
incrementally an S-inductive assertion χ by solving a sequence of VCPs.

Suppose that χi−1 has been discovered so far, where χ0
def= true. On the ith

iteration, construct the parameterized assertion

p0 + p1j + p2k︸ ︷︷ ︸
I[j,k]

≥ 0 ,

and solve the following VCP:

I[2, 0] ≥ 0 (initiation)
∧ χi−1 ∧ I ≥ 0 ⇒ I[j + 4, k] ≥ 0 (consecution 1)
∧ χi−1 ∧ I ≥ 0 ⇒ I[j + 2, k + 1] ≥ 0 (consecution 2)
∧ ∃j, k. χi−1 ∧ I < 0 (strengthening)

The notation I[j + 4, k] ≥ 0 simplifies j′ = j + 4 ∧ k′ = k ⇒ I[j′, k′] ≥ 0.
The first conjunct imposes initiation; the next two conjuncts impose consecution
for each of the two paths of the loop. Together, these three conjuncts constrain
I ≥ 0 to be inductive relative to χi−1. The final conjunct asserts that there is
some χi−1-state s that is excluded by the new invariant. We call this constraint
the strengthening condition.

Any solution for (p0, p1, p2) of this VCP represents an inductive assertion ϕi

that strengthens χi−1. Set χi
def= χi−1 ∧ ϕi, and generate the next VCP

with χi instead of χi−1. If a solution does not exist, then halt the incremental
construction.

Section 4 discusses how to solve the sequence of VCPs. For now, one possible
sequence of discovered inductive assertions is the following:

ϕ1 : k ≥ 0 ϕ2 : j ≥ 0 ϕ3 : j ≥ 2k + 2 ,
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χi

•I < 0
I ≥ 0

χi

•¬ΠI < 0
I ≥ 0

∃x. χi ∧ I < 0 ∃x. χi ∧ ¬Π ∧ I < 0
(a) strengthening (b) Π-strengthening

Fig. 2. Illustration of the two strengthening conditions

corresponding to the following sequence of χi’s:

χ0
def= true ⇒ χ0 : true

χ1
def= χ0 ∧ ϕ1 ⇒ χ1 : k ≥ 0

χ2
def= χ1 ∧ ϕ2 ⇒ χ2 : k ≥ 0 ∧ j ≥ 0

χ3
def= χ2 ∧ ϕ3 ⇒ χ3 : k ≥ 0 ∧ j ≥ 0 ∧ j ≥ 2k + 2

Conjuncts k ≥ 0 and j ≥ 2k + 2 entail j ≥ 2. Therefore, χ3 as well as j ≥ 2 are
S-invariant. Moreover, every χi and j ≥ 2 are S-inductive.

The strengthening condition is essential for making progress. For example, the
sequence of inductive assertions

ϕ1 : k ≥ 0 ϕ2 : k ≥ 0 ϕ3 : k ≥ 0 . . .

is a solution to the sequence of VCPs constructed without the strengthening
condition, but not to the sequence of VCPs constructed with the strengthening
condition.

Figure 2(a) illustrates the strengthening condition. The new invariant consists
of all states at and below the line. This invariant satisfies the strengthening
condition: there exists some χi-state (the dot) that the invariant excludes.

In the next example, we look at nonlinear properties.

Example 2 (GCD-LCM). The loop GCD-LCM in Figure 1(b) computes the
greatest common divisor (y1 and y2) and the least common multiple (y3 + y4) of
(x1, x2). As in Example 1, our goal is to discover information about the loop.
In this case, our strategy is to construct an S-inductive conjunction of quadratic
polynomial inequalities. Therefore, in each iteration, we use the parameterized
assertion

Quadratic(x1, x2, y1, y2, y3, y4)︸ ︷︷ ︸
I[x,y]

≥ 0 .

Quadratic forms the most general parameterized quadratic expression over the
given variables; e.g.,
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Quadratic(x, y) = p0 + p1x + p2y + p3xy + p4x
2 + p5y

2 .

In this case, I[x, y] contains 28 parameterized monomials.
Suppose that χi−1 has been constructed so far. On the ith iteration, solve the

following VCP:

∀x. I[x1, x2, x1, x2, x2, 0] ≥ 0 (initiation)
∧ χi−1 ∧ I ≥ 0 ∧ y1 > y2 ⇒ I[x1, x2, y1 − y2, y2, y3, y4 + y3] ≥ 0
∧ χi−1 ∧ I ≥ 0 ∧ y1 < y2 ⇒ I[x1, x2, y1, y2 − y1, y3 + y4, y4] ≥ 0

(consecution)
∧ ∃x, y. χi−1 ∧ I < 0 (strengthening)

The first conjunct imposes initiation; the next two impose consecution; and the
final conjunct imposes the strengthening condition, expressing that the new as-
sertion strengthens χi−1.

One possible sequence of inductive assertion discovery is the following:

χ0
def= true

χ1
def= χ0 ∧ ϕ1 : x1x2 − y1y3 − y2y4 ≥ 0

χ2
def= χ1 ∧ ϕ2 : x1x2 − y1y3 − y2y4 ≥ 0 ∧ −x1x2 + y1y3 + y2y4 ≥ 0

Thus, χ2 implies that
x1x2 = y1y3 + y2y4

is S-invariant.

In many cases, we have a safety property in mind that we would like to prove. The
next example describes such a case. We introduce a variant of the strengthening
condition to direct the invariant generation toward proving the property.

Example 3 (Integer Square-Root). The loop Sqrt in Figure 1(c) computes the
integer square-root z of a positive integer x. On exit, the following relation should
hold between z and x:

z2 ≤ x < (z + 1)2 .

Taking preconditions reveals that the following should be invariant at the top of
the loop:

Π : (w ≤ x → (z + 1)2 ≤ x) ∧ (w > x → x < (z + 1)2) .

Π is not S-inductive. The goal is to prove that Π is S-invariant by generating
a strengthening inductive assertion χ such that χ ⇒ Π . As in Example 2, our
strategy is to construct a conjunction of at most quadratic polynomial inequali-
ties. Unlike in previous examples, however, our goal is not to discover properties
of the loop; rather, it is to prove �Π .

On each iteration, we use the parameterized assertion

Quadratic(u, w, x, z)︸ ︷︷ ︸
I[u,w,x,z]

≥ 0 .
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Suppose that χi−1 has been generated so far; on the ith iteration, solve the
following VCP:

x ≥ 0 ⇒ I[1, 1, x, 0] ≥ 0 (initiation)
∧ χi−1 ∧ I ≥ 0 ∧ w ≤ x ⇒ I[u + 2, w + u + 2, x, z + 1] ≥ 0

(consecution)
∧ ∃u, w, x, z. χi−1 ∧ ¬Π ∧ I < 0 (Π-strengthening)

The first two conjuncts express initiation and consecution, respectively. The final
conjunct is a variant of strengthening called Π-strengthening: the new inductive
assertion should exclude some state that is both a χi−1-state (so that χi−1 is
strengthened) and a ¬Π-state (so that an error state is excluded, and thus Π is
strengthened).

It is not always possible to exclude a ¬Π-state with an inductive assertion of
a fixed form, so some iterations should use the weaker strengthening condition
instead.

One run of this incremental construction produces the following assertions,
listed in order from the discovered inductive assertion of the first iteration (top-
left) to that of the final iteration (bottom-right).

ϕ1 : −x + ux− 2xz ≥ 0
ϕ2 : u ≥ 0
ϕ3 : u− u2 + 4uz − 4z2 ≥ 0
ϕ4 : 3u + u2 − 4w ≥ 0
ϕ5 : x− ux + 2xz ≥ 0
ϕ6 : 1 + 2u + u2 − 4w ≥ 0

ϕ7 : −1 + u ≥ 0
ϕ8 : −2u− u2 + 4w ≥ 0
ϕ9 : −3− u2 + 4w ≥ 0

ϕ10 : −5u− u2 + 6w ≥ 0
ϕ11 : −15 + 22u− 11u2 + 4uw ≥ 0
ϕ12 : −1− 2u− u2 + 4w ≥ 0

Thus, χ12
def= ϕ1 ∧ · · · ∧ ϕ12. Each assertion is inductive relative to the

previous assertions.
On the thirteenth iteration, it is discovered that no (χ12 ∧ ¬Π)-state exists,

proving �Π . Specifically, ϕ1 and ϕ5 entail u = 1 + 2z, while ϕ6 and ϕ12 entail
4w = (u + 1)2. Thus, w = (z + 1)2, entailing Π .

In the next section, we discuss how the new assertion of each iteration is
actually found.

Figure 2(b) illustrates the Π-strengthening condition. The new invariant consists
of all states at and below the line. This invariant satisfies the Π-strengthening
condition: there exists some (χi ∧ ¬Π)-state (the dot) that the invariant ex-
cludes. Therefore, this new invariant strengthens both χi and Π , making progress
toward proving �Π .

4 Solving VCPs with Strengthening

Section 5 discusses previous work on solving specific forms of VCPs. In this
section, we discuss a refinement of the techniques introduced in [7] and [10]. The
method of [7] is complete for linear VCPs, while the method of [10] is sound
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and efficient but incomplete for polynomial VCPs [10]. In particular, we show
how to solve VCPs with a strengthening or Π-strengthening condition, which
have not been studied before. Solving constraints with such conditions enables
a simple incremental construction of invariants, as illustrated in the examples of
the previous section.

4.1 Farkas’s Lemma

To begin, we review the constraint-solving method based on Farkas’s Lemma
[7] or Lagrangian relaxation [10]. Farkas’s Lemma relates a constraint system
over the primal variables (the variables of the transition system S) to a dual
constraint system over the parameters [23]. It is restricted to affine constraints,
as in Example 1.

Theorem 1 (Farkas’s Lemma). Consider the following universal constraint
system of affine inequalities over real variables x = {x1, . . . , xm}:

S :

⎡⎢⎣ a1,0 + a1,1x1 + · · · + a1,mxm ≥ 0
...

...
...

an,0 + an,1x1 + · · · + an,mxm ≥ 0

⎤⎥⎦
If S is satisfiable, it entails affine inequality c0 + c1x1 + · · ·+ cmxm ≥ 0 iff there
exist real numbers λ1, . . . , λn ≥ 0 such that

c1 =
n∑

i=1

λiai,1 · · · cm =
n∑

i=1

λiai,m c0 ≥
(

n∑
i=1

λiai,0

)
.

Example 4 (Simple). Consider the VCP developed in Example 1 for Simple of
Figure 1(a). Using the tabular notation, the first three conjuncts have this form:

(initiation)

p0 + 2p1 + 0p2 ≥ 0

(consecution 1) (consecution 2)
χi

p0 +p1j +p2k ≥ 0
(p0 + 4p1) +p1j +p2k ≥ 0

χi

p0 +p1j +p2k ≥ 0
(p0 + 2p1 + p2) +p1j +p2k ≥ 0

Suppose that this is the first iteration so that χ0
def= true. Then dualizing

according to the lemma produces the following set of existential constraints over
the parameters and λ-multipliers {p0, p1, p2, λ1, λ2}:

p0 + 2p1 ≥ 0 ∧ (initiation)
p0 + 4p1 ≥ λ1p0 ∧ p1 = λ1p1 ∧ p2 = λ1p2 ∧ (consecution 1)
p0 + 2p1 + p2 ≥ λ2p0 ∧ p1 = λ2p1 ∧ p2 = λ2p2 (consecution 2)
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Clearly, λ1 = λ2 = 1, so the constraints are equivalent to

p0 + 2p1 ≥ 0 ∧ p1 ≥ 0 ∧ 2p1 + p2 ≥ 0 ,

for which solutions for (p0, p1, p2) include (0, 0, 1), (0, 1, 0), and (−2, 1,−2). These
solutions correspond to the three assertions computed in Example 1:

k ≥ 0 , j ≥ 0 , and j ≥ 2k + 2 .

Any one of these solutions could be returned by the constraint solver.
On later iterations, χi consists of a conjunction of affine assertions. These

assertions are added as additional rows in the tables, resulting in more λ-variables
and more complicated dual constraints.

Farkas’s Lemma states that the relationship between the primal and dual con-
straint systems is strict: the universal constraints of the primal system are valid
if and only if the dual (existential) constraint system has a solution. Generalizing
to polynomials preserves soundness but drops completeness.

Corollary 1 (Polynomial Lemma). Consider the universal constraint system
S of polynomial inequalities over real variables x = {x1, . . . , xm}:

A :

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
C :

a1,0 +
m∑

i=1

a1,iti ≥ 0

...

an,0 +
m∑

i=1

an,iti ≥ 0

c0 +
m∑

i=1

citi ≥ 0

where the ti are monomials over x. That is, S : ∀x. A → C. Construct the
dual constraint system as follows. For monomials ti of even power (e.g., 1, x2,
x2y4, etc.), impose the constraint

ci ≥ λja1,i + · · ·+ λnan,i ;

for all other terms, impose the constraint

ci = μja1,i + · · ·+ λnan,i .

If the dual constraint system is satisfiable (for all λj ≥ 0), then the primal
constraint system is valid.

In particular, if the constraint system S is parameterized, then a solution to the
dual constraint system provides an instantiation of the parameters that validates
the primal constraints.
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4.2 Solving Iterative VCPs

Farkas’s Lemma and its polynomial generalization provide a method for solv-
ing the universal constraints of a VCP. However, the strengthening and Π-
strengthening conditions impose existential constraints. One possibility is to
ignore these existential constraints and apply the methods of [7] and [10]. The
authors of [7] solve the constraints using a specialized solver described in [18].
The method of [10] is essentially restricted to verification constraints in which a
single solution solves the problem (e.g., to prove termination by finding a ranking
function; see Section 5).

Unfortunately, dropping the existential constraints prevents us from perform-
ing iterative strengthening easily. Even with a strong χi, the constraint solver
can always return the same solution that it has returned previously. For exam-
ple, in Example 4, ignoring the strengthening constraint would allow the solution
k ≥ 0 to be returned again and again, even after setting χ1

def= k ≥ 0.
Instead, we describe a sampling-based iterative method in this section. Un-

like the specialized solver of [18], this method is applicable to many types of
constraint systems and allows applying off-the-shelf constraint solvers.

As in the examples of Section 3, suppose we have a parameterized assertion
I[p, x] ≥ 0, where p are the parameters and x are the system variables. On
iteration i, we have already computed inductive assertion χi−1 and would like
to compute a stronger inductive assertion χi. Let ψi[p] be the universal con-
straints (arising from initiation and consecution) of the ith VCP; that is, ψi does
not include a strengthening or Π-strengthening constraint. Perform the following
steps:
1. Solve the existential constraint system χi−1 if the strengthening condition

is imposed, or the constraint system χi−1 ∧ ¬Π if the Π-strengthening
condition is imposed. In the latter case, if the system does not have a solution,
then declare that �Π is invariant. Otherwise, the solution is a state s.

2. Solve the existential constraint system

I[p, s] < 0 ∧ dual(ψi[p])

for p, where dual constructs the dual constraint system (recall that ψi con-
tains only universal constraints). If a solution is not found, return to Step 1; if
a Π-strengthening condition is imposed, possibly weaken it to a strengthening
condition. Otherwise, the solution q is an assignment to p.

3. Optimize the discovered solution q of p. Let J [p, x] be the non-constant part
of I (e.g., p1j +p2k in p0 +p1j +p2k). Then solve the following optimization
problem for the parameter p0 of I:

minimize p0
subject to

p0 + J [q, x] ≥ 0 ∧ dual(ψi[p0, q1, . . . , qk])

At most the value of q0 from Step 2 is returned as the minimum of p0. Set
q0 to the new solution.

4. Let χi
def= χi−1 ∧ I[q, x] ≥ 0.
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Thus, Step 1 addresses the strengthening or Π-strengthening constraint, while
Steps 2 and 3 address the other (universal) constraints.

The constraint problem of Step 1 can be solved in numerous ways, including
using decision procedures or numerical constraint solvers for solving linear and
semi-algebraic constraint problems. It is best if these solvers can be randomized
so that a wide selection of sample points is possible. The constraint problem
of Step 2 can be solved using linear or convex programming. If the Polynomial
Lemma is used, then linear programming is sufficient. Many implementations of
such constraint solvers are available.

Note that the strict inequality of Step 2 is easily handled by transforming the
feasibility problem into an optimization problem:

maximize ε
subject to

I[p, s] ≤ −ε ∧ dual(ψi[p])

The original system is feasible if and only if the maximum is positive. The
optimization of Step 3 is inspired by the optimization that is performed in [21].

The inductive invariants constructed incrementally in Examples 1, 2, and 3
were obtained using this approach.

Example 5 (Simple). Consider the first iteration of solving the VCP of Examples
1 and 4. According to the steps of the procedure, we have the following:

1. Solve the constraint problem χ0 (recall χ0
def= true), producing, for example,

state (j : −1, k : −3).
2. Solve

p0 − p1 − 3p2 < 0︸ ︷︷ ︸
I[−1,−3] < 0

∧ p0 + 2p1 ≥ 0 ∧ p1 ≥ 0 ∧ 2p1 + p2 ≥ 0︸ ︷︷ ︸
dual system, simplified from Example 4

.

One solution is (p0 : 1, p1 : 0, p2 : 1), corresponding to 1 + k ≥ 0.
3. Optimize

minimize p0
subject to

p0 + k ≥ 0 ∧ p0 ≥ 0

The optimal value of p0 is 0, corresponding to assertion k ≥ 0.
4. Let χ1

def= χ0 ∧ k ≥ 0.

The assertion χ1 : k ≥ 0 excludes the sample state (j : −1, k : −3), as well
as any other state in which k < 0. Thus, no future iteration can again discover
k ≥ 0 (or any weaker assertion).

On the next iteration, Step 1 could find, for example, sample point (j : −1, k :
5), satisfying χ1 : k ≥ 0. Then discovering inductive assertion j ≥ 0 in Steps 2
and 3 eliminates this point.
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5 Related Work

Set-Constraint Based Analysis. Set constraint-based program analyses (see,
e.g., [2, 1]) pose classical program analysis problems — e.g., standard dataflow
equations, simple type inference, and monomorphic closure analysis — as set
constraint problems and then solve them. Domains are discrete.

Ranking Function Synthesis. Synthesis of affine expressions for verification
purposes was first studied extensively in the context of ranking function synthe-
sis. A function δ : x→ Z is a ranking function if

– if τ ∈ T is enabled, then δ is nonnegative: ϕ ∧ ρτ ⇒ δ ≥ 0; (bounded)
– δ decreases when any τ ∈ T is taken: ϕ ∧ ρτ ⇒ δ > δ′. (ranking)

Unlike in the consecution condition of inductive assertions, the parameterized
expression appears only in the consequent of the bounded and ranking conditions.
Examining Farkas’s Lemma shows that synthesis of linear ranking functions over
linear loops with real variables is therefore polynomial-time computable: the dual
constraint system is linear and thus polynomial-time solvable.

[12] shows how to generate constraint systems over loops with linear asser-
tional guards and linear assignments for which solutions are linear ranking func-
tions. In [8, 9], it is observed that duality of linear constraints achieves efficient
synthesis. [15] proves that this duality-based method is complete for single-path
loops. [3] presents a complete method for the general case and shows how lexico-
graphic linear ranking functions can also be computed efficiently in practice. In
[10], the approach is generalized by using semidefinite programming to approxi-
mate the polynomial case.

Several extensions of the constraint-based approach have been explored. [4] ex-
tends the method to generate polyranking functions [6], which generalize ranking
functions. A polyranking function need not always decrease. Finally, [5] addresses
loops with integer variables.

Invariant Generation. Invariant generation is harder than pure ranking func-
tion synthesis. [7] proposes using Farkas’s Lemma and nonlinear constraint solv-
ing to generate affine invariants. A specialized solver for this method is described
in [18]. [17] specializes the technique to Petri nets, for which the problem is effi-
ciently solvable. In [20], polynomial equation invariants are generated using tools
from algebra. [5] addresses loops with integer variables.

Analysis of Continuous and Hybrid Systems. Lyapunov functions of con-
tinuous systems have been generated using convex optimization for over a decade
(see, e.g., [14]). In [19], the methods of [20] are adapted to generating polynomial
equation invariants of hybrid systems. [16] introduces barrier certificates, which
is a continuous analogue of program invariants. They describe a semidefinite
relaxation that approximates consecution. [22] introduces a general method for
constructing a time elapse operator for overapproximating the reachable space
during a continuous mode of a hybrid system.
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6 Conclusion

It is natural to view verification conditions as constraints on parameterized
expressions. In the constraint context, we show that the two new conditions
strengthening and Π-strengthening guide the incremental construction of in-
ductive assertions. Unlike previous approaches to incremental strengthening,
our proposed sampling-based incremental method applies standard constraint
solvers. Thus, it directly benefits from progress in constraint solving. Addition-
ally, the Π-strengthening condition facilitates property-directed invariant gen-
eration without imposing a fixed limit on the size of the discovered inductive
assertion.

We have a simple implementation of the iterative technique. To avoid numeri-
cal issues involved in floating-point computations, we always use the Polynomial
Lemma to produce a parametric-linear constraint problem in which only terms
with parameters are nonlinear (they are bilinear: the product of a parameter and
a dual λ-multiplier). We then solve this constraint problem by lazily instantiating
λ-multipliers over a fixed set of values (typically, {0, 1}) and passing the linear
part of the problem to a rational linear program solver. We thus obtain rational
instantiations of the parameters. As solvers for convex programs improve, we can
use stronger versions [10] of the Polynomial Lemma to obtain more invariants
and to analyze nonlinear transition systems. The iterative method extends to
applications of these solvers without modification.
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Abstract. An important concern in wireless network technology is bat-
tery conservation. A promising approach to saving energy is to allow
nodes periodically to enter a “low power mode”, however this strategy
contributes to message delay, and careful management is required so that
the system-wide performance is not severely compromised.

In this paper we show how to manage power schedules using the quan-
titative modal μ-calculus which allows the specification of a quantitative
performance property as a game in which a maximising player’s optimal
strategy corresponds to optimising overall performance relative to the
specified property.

We extend the standard results on discounted games to a class of in-
finite state systems, and illustrate our results on a small case study.

Keywords: Probabilistic abstraction and refinement, structured speci-
fication and analysis of performance, probabilistic model checking.

1 Introduction

The theme of this paper is the specification and analysis of performance-style
properties for wireless networks. The problem is particularly challenging in this
domain because of the many sources of underlying uncertainty, including collision
avoidance, clock-drift and degrading battery life [29]. We model such uncertain-
ties with probability or standard nondeterminism, using the former when the
uncertainty may be quantified and appealing to the latter when it cannot [19].

The formal investigation of probabilistic distributed systems (i.e. those com-
bining both probability and nondeterminism) is normally limited to the consid-
eration of probabilistic temporal properties [1], such as “the system eventually
satisfies predicate Pred with probability at least 1/3”. There are however many
other performance-style quantities which cannot be specified in this way, as they
are examples of the more general stochastic parity games [6, 15] in which two
players try to optimise a quantitative cost function according to their opposing
goals.
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Our principal aim in this paper is to illustrate how the quantitative modal
μ-calculus [15], a generalisation of the standard μ-calculus of Kozen [12] to
probabilistic systems, may be used as a convenient language for specifying and
analysing such a stochastic parity game relevant to power-management schemes
in wireless networks [29] — indeed careful power management is a pressing con-
cern, where the integrity of the communication relies on preserving battery lives
of the individual nodes that make up the network.

Our specific topic is how to optimise a scheme in which nodes periodically en-
ter a low power mode during which communication via so-called “sleeping” nodes
is impossible — the obvious drawback here is that messages may be severely de-
layed, as they are forced to wait for nodes to wake up. Thus the scheduling
problem is to decide how to choose the length of a sleep time so that an in-
terval of low power lasts as long as possible without significantly compromising
throughput.

Our approach is to specify a game, via the quantitative μ-calculus, in which
one player seeks to maximise power savings; we show that computing the op-
timal strategies of the maximising player is equivalent to optimising the power
management scheme so that the low power modes may be applied most advan-
tageously. Our particular contributions are as follows:

1. The extension of stochastic parity games to a class of infinite state sys-
tems normally lying outside the scope of standard game frameworks [15, 7]
(Sec. 2.5);

2. A formal model of a wireless communication protocol incorporating power
management (Sec. 3) using labelled probabilistic action systems (Sec. 2.1);

3. A novel stochastic-parity-game specification using quantitative μ-calculus,
qMμ for analysing the optimal expected time in the low power mode con-
strained by the relative cost of message delay (Sec. 3.1). Using this we are
able to compute the optimal sleep schedules.

The advantage of using the framework presented here is that they come
equipped with a full theory of abstraction and refinement, and thus we an-
ticipate that a formal proof will establish that this paper’s results apply even to
large-scale networks [14]. Moreover action systems also give access to detailed
numerical experiments using state-of-the-art probabilistic model checkers whose
results may be used to determine the optimal schedule, as well as computing
detailed expected delays and power savings.We illustrate our formal models in
Sec. 3.2 using the PRISM probabilistic model checker [24].

The notational conventions used are as follows. Function application is rep-
resented by a dot, as in f.x. We use an abstract state space S, and denote the
set of discrete probability distributions over S by S (that is the sub-normalised
functions from S into the real interval [0, 1], where function f is sub-normalised
if
∑

s : S f.s ≤ 1). Given predicate Pred we write [Pred] for the characteristic
function mapping states satisfying Pred to 1 and to 0 otherwise, so that 1 and 0
correspond respectively with “True” and “False”. The (p, 1−p)-weighted average
of distributions d and d′ is denoted d p⊕ d′.
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2 Probabilistic Guarded Commands

When programs incorporate probability, their properties can no longer be guar-
anteed “with certainty”, but only “up to some probability”. For example the
program

coin =̂ b : = 1 2/3⊕ b : = 0 , (1)

sets the variable b to 1 only with probability 2/3 — in practice this means that
if the statement were executed a large number of times, and the final values of
b tabulated, roughly 2/3 of them would record b having been set to 1 (up to
well-known statistical confidence).

The language pGCL and its associated quantitative logic [19] were developed
to express such programs and to derive their probabilistic properties by extend-
ing the classical assertional style of programming [20]. Programs in pGCL are
modelled (operationally) as functions (or transitions) which map initial states
in S to (sets of) probability distributions over final states — the program at
(1) for instance has a single transition which maps any initial state to a (single)
final distribution; we represent that distribution as a function δ, evaluating to
2/3 when b = 1 and to 1/3 when b = 0.

Since properties are now quantitative we express them via a logic of real-
valued functions, or expectations. For example the property “the final value of b
is 1 with probability 2/3” can be expressed as the expected value of the function
[b = 1] with respect to δ, which evaluates to 2/3× 1 + 1/3× 0 = 2/3.

Direct appeal to the operational semantics quickly becomes impractical for all
but the simplest programs — better is the equivalent transformer-style semantics
which is obtained by rationalising the above calculation in terms of expected
values rather than transitions, and the explanation runs as follows. Writing ES
for the set of all functions from S to R1, which we call the set of expectations,
we say that the expectation [b = 1] has been transformed to the expectation 2/3
by the program coin set out at (1) above so that they are in the relation “2/3
is the expected value of [b = 1] with respect to the coin’s result distribution”.
More generally given a program prog, an expectation E in ES and a state s ∈ S,
we define Wp.prog.E.s to be the expected value of E with respect to the result
distribution of program prog if executed initially from state s [19]. We say that
Wp.prog is the expectation transformer relative to prog. In our example that
allows us to write

2/3 = Wp.(b : = 1 2/3⊕ b : = 0).[b = 1] ,

where, as explained above, we use 2/3 as a constant expectation. In the case that
nondeterminism is present, execution of prog results in a set of possible distri-
butions and we modify the definition of Wp to take account of this, so that it
computes the maximum or minimum value (taken over the full set of result distri-
butions), depending on whether the nondeterminism is angelic or demonic. More
information of the expectation transformer semantics is set out elsewhere [19].
1 Strictly speaking we also include ∞ and −∞ for well-definedness of fixed points [10].

All expectations used in this paper are finitary.
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At Fig. 1 we set out the details of pGCL, a variation of Dijkstra’s GCL
with probability 2. All the programming features have been defined previously
elsewhere, and (apart from probabilistic choice) have interpretations which are
merely adapted to the real-valued context. For example demonic nondetermin-
ism, can be thought of as being resolved by a “minimal-seeking demon”, provid-
ing guarantees on all program behaviour, such as is expected for total correctness.
Angelic nondeterminism, on the other hand, can be thought of as a maximal-
seeking angel, and provides an upper bound on possible behaviours. Finally
probabilistic choice selects the operands at random with weightings determined
by the probability parameter p. We make use of the following definitions. The
combination of the various choices allows us to model two player stochastic
games; crucially however is that our definitions prevent the demon and angel
from predicting the result of subsequent probabilistic choices, and we shall use
that feature in our case study to come.
• Given a family I of commands we write []i : ICi for the generalised demonic

(nondeterministic) choice over the family, and
∑

i∈I Ci@pi for the generalised
probabilistic choice (where

∑
i∈I pi ≤ 1).

• We say that a command is normal if it is of the form of a generalised prob-
abilistic choice over standard (non-probabilistic) commands Fi only containing
angelic nondeterminism, i.e. of the form

∑
i∈I Fi @pi, where the Fi are standard,

possibly angelic (but nowhere demonic) commands.
• We say that a pair of states (s0, s

′) are related via (normal) command C if
it is possible to reach s′ from initial s0 via C with some non-zero probability. 3

We shall need to be able to compose the effect of “running” commands simul-
taneosly, and the next definition sets out how to do it.

Definition 1. Given normal guarded commands C =̂ G→ prog and C′ =̂ G′ →
prog′, we define their composition as follows.

C ⊗ C′ =̂ (G ∧G′)→
∑

(i,j)∈I×J

(Fi ⊗ F ′
j) @(pi×p′j) ,

where prog =
∑

i∈I Fi @pi and prog′ =
∑

j∈J F ′
j @p′j, and Wp.F ⊗ F ′ is given

by the fusion operator of Back and Butler [5]. In the case that F and F ′ operate
over distinct state spaces (as in our case study) F ⊗ F ′ is equivalent to F ; F ′.

2.1 Probabilistic Action Systems

Action systems [2] are a “state-based” formalism for describing so-called reactive
systems, viz. systems that may execute indefinitely. Although others [8, 25] have
added probability to action systems, our work is most closely related to Morgan’s
version of labelled probabilistic action systems [21], which have been extended
in various ways [14] described below.

2 The language also includes abortion, miracles and iteration, but we do not need
them here.

3 For total commands this condition is expressed as Wp.C.[s = s′].s0 > 0.
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Skip Wp.skip.E =̂ E ,
Assignment Wp.(x : = f).E =̂ E[f/x] ,
Sequential composition Wp.(r; r′).E =̂ Wp.r.(Wp.r′.E) ,
Probabilistic choice Wp.(r p⊕ r′).E =̂ p × Wp.r.E + (1−p) × Wp.r′.E ,
Demonic choice Wp.(r � r′).E =̂ Wp.r.E � Wp.r′.E ,
Angelic choice Wp.(r � r′).E =̂ Wp.r.E � Wp.r′.E ,

Boolean choice Wp.(r � G � r′).E =̂ G × Wp.r.E + ¬G × Wp.r′.E ,

Guarded command Wp.(G → r).E =̂ G × Wp.r.E + ¬G × ∞ ,

E is an expectation in ES, and f is a function of the state, E[f/x] represents substitu-
tion of f for x in E, and �, � are respectively the pointwise minimum and maximum
in the interpretations on the right. The real p is restricted to lie between 0 and 1.

Fig. 1. Structural definitions of Wp for pGCL

A (probabilistic) action system consists of a (finite) set of labelled guarded
commands, together with a distinguished command called an initialisation. An
action system is said to operate over a state space S, meaning that the variables
used in the system define its state space. Operationally an action system first
executes its initialisation, after which any labelled action may “fire” if its guard
is true by executing its body. Actions may continue to fire indefinitely until all
the guards are false. If more than one guard is true then any one of those actions
may fire, demonically.

In Fig. 2 we set out a small example of a probabilistic action system Guesser
which operates over the state defined by its variables x, y, d and t. They are all
initialised to 0 or 1, and then action a or b fires depending on whether d is 0 or 1;
the random flipper used to govern the setting of d degrades over time so that it
becomes more likely for d to change whenever an action fires. In terms of actions,
Guesser executes strings of a’s and b’s, whose relative frequency depends on the
probabilistic selection of d.

Guesser =̂

⎛⎜⎜⎜⎜⎜⎜⎝

var x, y, d : {0, 1}, t : N
initially x, d : = 0 ; y, t : = 1
a : (d = 0) → t : = t + 1 ; x : = 1 1/3⊕ x : = 0 ;

d : = 1 (t−1)/t⊕ d : = 0
b : (d = 1) → t : = t + 1 ; y : = 1 � y : = 0 ;

d : = 1 1/t⊕ d : = 0

⎞⎟⎟⎟⎟⎟⎟⎠
Fig. 2. Guessing a random number

For action system P and label a we write Pa for the generalised choice of all
actions labelled with a, and Pi for its initialisation. The set of labels (labelling
actions in P ) is denoted α.P , and called P ’s alphabet. The semantics of an action
system is given by pGCL set out at Fig. 1, so that, for example, Wp.Pa.E.s is the
greatest guaranteed expected value of E from execution of Pa, when s satisfies
the guard of Pa.
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Action systems are normally constructed in a modular fashion from a set
of separate modules. Each module is itself an action system, with (normally) a
state space independent from that of the other modules. In the complete system
however the modules operate essentially independently, except for having to
synchronise on shared actions.

2.2 Synchronising Actions

Synchronisation is defined so that all action systems participating in a parallel
composition simultaneously fire their shared actions — in this mode the demonic
nondeterminism (arising from possibly overlapping guards) is resolved first, fol-
lowed by any probability, and last of all any angelic nondeterminism (in the
bodies). All other actions fire independently, interleaving with any others.

Definition 2. Given action systems P and Q in which all actions are normal;
we define their parallel composition P ||Q as follows.

1. P ||Q operates over the union of the two state spaces, and α.(P ||Q) = α.P ∪ α.Q ;
2. (P ||Q)i =̂ Pi ⊗ Qi ;
3. (P ||Q)b =̂ if (b ∈ α.P ) then Pb else Qb, for b ∈ α.(P ||Q)\(α.P ∩ α.Q) ;
4. (P ||Q)a =̂ []{P a∈P,Qa∈Q}P

a ⊗ Qa, for a ∈ α.P ∩ α.Q, where P a and Qa are
the individual a-labelled actions belonging to P and Q respectively.

Finally we also make use of the convenient message-passing syntax found else-
where [9, 11] and set out at Fig. 3.

Sending x chan!x : G → P =̂ [](y : Y)chan : G ∧ (x = y) → P
Receiving x chan?x : G′ → Q(x) =̂ [](y : Y)chan : G′ ∧ (x = y) → Q(y)

Y is the set of values over which x ranges.

Fig. 3. Message-passing

In this section we have described pGCL and action systems as a basis for
describing probabilistic reactive systems. In the next section we consider how to
specify and analyse quantitative performance-style properties of those systems.

2.3 Property Specification and Optimisation Problems

Probabilistic temporal logic [1] is the well-known generalisation of standard tem-
poral logic for investigating properties such as “the system will eventually es-
tablish condition Pred with probability 1/2”, and indeed such properties can be
readily expressed using the expectation-transformer semantics and pGCL [19].
Besides standard temporal logic however there other quantitative properties per-
tinent to the analysis of performance, and in this section we investigate one such
example. To begin, we consider the expression

�A =̂ (μX ·A �Wp.System.X) , (2)
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where A is an expectation, and System an action system. The term (μX . . . )
refers to the least fixed point of the expectation-to-expectation function (λX ·
A �Wp.System.X) with respect to ≤, lifted pointwise to real-valued functions.
If A is any expectation then the expression at (2) is well-defined for any action
system System [22], since in this case the definitions set out at Fig. 1 guarantee
a least fixed point. 4

To understand the interpretation, consider for example when A is the expec-
tation defined by the “random variable”

if (x = y ∧ d = 1 ∧ t < 5) then 1 else 1/8 (3)

and System is Guesser. Here (2) gives a numerical value which averages the pos-
sible outcomes of repeatedly executing Guesser, so that a payoff of 1 is given
if ever (x = y ∧ d = 1 ∧ t < 5) is established, and only 1/8 otherwise. To see
that, we extend the basic idea of probabilistic temporal logic, which relies on
the observation that a probabilistic (action) system generates (a set of) distri-
butions5 over so-called “computation paths”, where a computation path is the
sequence of states through which the computation passes. Since formulae such
as the above define measurable functions over the space of path distributions,
the expected value is well defined (for bounded expectations). We discuss the
above interpretation in more detail below.

2.4 A Game View

In more complicated situations we sometimes combine both angelic and demonic
nondeterminism with probabilistic choice in System. Here (2) is also well-defined,
although the operational interpretation is now somewhat more involved.

When all three — demonic, angelic and probabilistic nondeterminism — are
present, the formula on the right-hand side of (2) describes a game [17], in
which two players Max and Min decide how to resolve respectively the angelic
and demonic nondeterminism in System, and (in this particular game) Max also
decides when to terminate for an immediate “payoff” defined by A. The aims of
Max and Min are opposite 6 — as the ultimate payoff goes to Max he tries to
maximise it, whereas Min tries to minimise it. We call the expected payoff the
value of the game.

We call a particular resolution of the nondeterminism (by a player) to be a
strategy (of that player), and it turns out that in this kind of game (where both
players have full knowledge of the state) the Wp-semantics gives a quantitative
result which may be interpreted as the optimal payoff which Max may achieve
against any strategy played out by Min [17], and furthermore that strategy is
equivalent to replacing all angelic choices with a Boolean choice which describes
which branch Max should take from any particular state.
4 The reals form a complete partial order if augmented with +∞ [10] and, by Tarski’s

result [27], that is sufficient to guarantee a least fixed point.
5 Usually called the Borel probability algebra over computation paths.
6 This is effectively a zero-sum game.
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More generally when A is a (fixed) bounded expectation, both players may
find optimal strategies in their play viz. each nondeterministic choice (either
angelic or demonic) in System may be replaced by a Boolean choice so that the
resulting System′ satisfies

(μX ·A �Wp.System.X) = (μX · A �Wp.System′.X) .

The strategies are memoryless, only depending on the current state [17]. For
example the command labelled b in Fig. 2 may be replaced by

b : (d = 1)→ t : = t + 1 ; y : = x ; d : = 1 1/t⊕ d : = 0 , (4)

for if Max always sets his value to the current value of x, then his expected
payoff is maximised when A is defined by (3).

The above facts may be applied to system design in the following way. Suppose
that the design of a protocol, besides satisfying some qualitative specification,
is also required to achieve some level of performance specified by (2), and that
the performance may vary depending on how the identified parameter is set. We
may determine the optimal value of the parameter relative to particular payoff A
as follows. First, we model the protocol as an action system, using angelic choice
to set the identified parameter. Next we compute the optimal cost relative to
A by evaluating (2) for the various definitions, and the optimal value for the
identified parameter may then be determined by, for example, using the “policy
iteration method” [26].These ideas are illustrated in our case study below.

Thus far our comments only apply when A is a bounded expectation. In our
case study however we are obliged to consider unbounded expectations A, to
express expected times. In the next section we consider a variation of the game
which applies to unbounded payoffs as well.

2.5 Discounted Games with Unbounded Payoffs

In some cases early payoffs are valued more highly over later ones, and in these
situations a discount factor is usually applied at each iteration [4]. In wireless
networks for example degrading battery lives mean that the results from later
payoffs become insignificant.

Definition 3. Given an action system System, the discounted game with dis-
count factor p ∈ (0, 1), is defined to be7

�pA =̂ (μX · A � p×Wp.System.X) . (5)

Discounted games over finite state spaces enjoy a number of nice properties [16],
which follow from standard results in real analysis; it turns out that the same
properties hold even in infinite state spaces (and for essentially the same reasons)
provided that the (possibly unbounded) payoff function is “well behaved” relative

7 We shall also consider the slightly less general (μX ·A �G� p×Wp.System.X), where
G is any predicate. We note that all the lemmas are still valid for this variation.
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to the underlying System. We say that expectation A grows linearly relative to
System if there is some fixed constant K ≥ 0 such that for all pairs of states
(s, s′) related via System, the inequality |A.s−A.s′| ≤ K holds.

In the remainder of this section we shall show that, for these payoffs, the
game is well-defined and the players still have optimal memoryless strategies.
The proofs of all the results may be found in the appendix.8

Lemma 1. Suppose that A grows linearly with respect to System in the expres-
sion �pA set out at (5), and is bounded below. The least fixed point on the right
hand side at (5) is well-defined (i.e. non-infinitary).

It turns out that the optimal strategies of the players may be computed from
the solution of the game at (5). We denote the optimal strategies of a single
step of System relative to an immediate post-expectation E as follows. We de-
fine SystemE to be System with each nondeterministic choice (both angelic and
demonic) is replaced by a Boolean choice such that

Wp.System.E = Wp.SystemE .E .

(The revised Guesser given by (4) defines such a Boolean choice for expectation
(2) and (3).) Note that such Boolean choices always exist if the nondeterminism
has only a finite range of possibilities [28, 17]. With that notation we may now
state a corollary of Lem. 1, that both players in (5) have optimal strategies.

Lemma 2. The players of the game �pA both have optimal strategies whenever
A grows linearly with respect to System, and is bounded below.

Computing the optimal strategies can be done using the well-known “value (pol-
icy) iteration method” [26]. The idea is that the optimal strategies may be im-
proved at each iteration by solving the equations

A �Wp.SystemEn
.Fn.A = Fn+1.A ,

where F =̂ (λX · A � Wp.System.X). Here SystemE0
, SystemE1

. . . define a
sequence of strategies, which converges in finite state spaces [26], so that there is
some N > 0 such that for all n ≥ N we have the equality SystemEn

= SystemEN
,

and that SystemEN
is optimal. It turns out that the same idea works even for

unbounded expectations, as the next lemma shows.

Lemma 3. The value (policy) iteration method is a valid method for computing
the optimal strategies under the assumptions of Lem. 2.

In this section we have indicated how angelic nondeterminism may be used to
optimise system design relative to a payoff function, even when that function
is unbounded. In the next section we illustrate these ideas in an application for
wireless communication.
8 Found at http://www.comp.mq.edu.au/∼anabel/ICTAC06.pdf.
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3 A Sleep/Awake Protocol for Wireless Networks

A promising approach to conserving battery power in wireless networks is to
allow nodes periodically to enter a “low power mode” at times when the network
traffic is low. During a low power phase, nodes do not actively listen for network
activity, thus power is conserved that would otherwise have been wasted on so-
called “idle listening” [29]. The disadvantage of this approach however is that
the throughput is (almost certainly) decreased since messages may be blocked
temporarily en route as they are forced to wait until sleeping nodes wake up.

In this section we describe a protocol designed to manage the scheduling of
low/high power modes in a wireless network, with the goal of analysing the
sleeping time so that the optimal sleep schedule may be determined.

Our study is based on a protocol suggested by Wei Ye et al. [29] and is
intended to reduce the effects of message delay by arranging neighbouring nodes
to wake up at approximately the same time. Nodes do this by broadcasting a
synch packet just before they go to sleep announcing when they will next wake.
Any neighbour in receipt of the synch packet then knows when it should also be
awake and listening for traffic.

The main events in the sleep/awake protocol are set out at Fig. 4; the general
scheme is as follows. After waking from a low power mode, a node listens for a
while, sending and receiving any data as necessary. It then broadcasts and/or
receives a synch packet, before setting its internal timer to its next scheduled
waking time; it then goes to sleep.

Although the overall scheme of the protocol is fixed, there are still some op-
portunities for fine-tuning. For example the synch packet informs a node only
approximately (rather than exactly) when its neighbour will next wake, and
therefore it may be better for the neighbour to become active at some slightly
different time, one which takes into account the uncertainties caused by natu-
ral delays involved in wireless communication and “clock drift”, both of which
diminish the reliability of the information received in the synch packet. Here
clock drift is a common phenomenon in distributed systems that cannot rely on
a global clock. Wireless nodes, for instance, use their own internal clocks, and
after some time (the order of tens of seconds [29]) nodes’ internal timers will
have drifted relative to others’ in the network. The problem may be corrected
by periodic time synchronisation, or (in some applications) the use of distributed
global clocking schemes.

Our formal model is constructed from a number of modules, each one consist-
ing of a set of labelled actions describing the underlying state changes incurred
after each event. In Fig. 5 we set out an action system modelling the main events
at Fig. 4 for a Receiver node. The Senderi nodes are similar except that we use
variables si, ti and wi instead of (respectively) r, tr and wr, and the commands
labelled † and ‡ are replaced as follows. We replace the †’s respectively by

send!i : (si = listen)→ si : = acki

acki : (si = ack)→ si = listen
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– Wake: If local timer exceeds the wake up deadline, then the mode changes from
low to high power;

– Listen: The node listens for a signal in the network;
– Send/Receive(data): The node receives any data, and replies with an acknowl-

edgement if necessary;
– Send/Receive(synch): The node either receives or sends a “synch packet” announc-

ing a sleep schedule.
– Choose(wr) : If a synch packet has been received from a neighbour, it sets its own

wake-up deadline by setting parameter wr;
– Sleep: It reinitialises its local timer and changes the mode from awake to sleeping.

Fig. 4. The major events in the sleep/awake protocol

Receiver =̂

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

var r : {listen, sleep, acki}, tr, wr : N
initially r : = listen;
[]isend?i : (r = listen) → r : = acki †
[]iacki : (r = acki) → r : = listen †
clash : (r = listen) → skip

tick : (r = sleep ∧ tr < wr) → tr : = tr + 1 d⊕ skip
tick : (r = sleep ∧ tr ≥ wr) → r : = listen
tick : (r = listen ∧ (∀i · si = sleep)) → skip ‡
synch : (r = listen) → r : = sleep ; tr : = 0 ; Choose(wr)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
The function Choose(wr) =̂ (wr : = 1) � . . . � (wr : = T ), for some fixed T ; the
probabilistic assignment to tr indicates some clock drift with rate relative to d.

Fig. 5. Specification of a Receiver node

and ‡ by

tick : (si = listen ∧ (r = sleep))→ skip .

Thus the exchange of data is indicated by the senders and receivers synchro-
nising on sendi and acki events. Additional delays on throughput can be due to
messages colliding (event clash handled by module Channel set out in Fig. 6),
or the time spent waiting for a node’s neighbour to wake. The latter may rou-
tinely happen because of clock drift, and here we model that behaviour using a
probabilistic increment for the internal timer variable.

The whole system is defined by the parallel composition of the senders, the
receivers, the channel and a module time which provides a notion of the real
passage of time so that statistics on the time spent in the sleep state and the
delays in throughput may be gathered. In this small example, we only have two
senders and a receiver.

Network =̂ Sender1 || Sender2 || Channel || Receiver || RealTime
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RealTime =̂ Channel =̂⎛⎝var t : N
initially t : = 0
[](evt : α) evt : (t ≥ 0) → t : = t + 1

⎞⎠ ⎛⎝var c : {block, clear}
initially c : = block ;
clash : (c = block) → skip q⊕ c : = clear

⎞⎠
The module RealTime is used to allow us to collect statistics for the performance
analysis. Here α is the union of all the timing events defined by the senders and
the receivers; specifically α =̂ {tick, synch, clash}. The event clash signifies a collision
between messages.

Fig. 6. Modelling the behaviour of real time and the channel

Our aim is to investigate how to choose the optimal sleeping schedule wr ,
namely to resolve the angelic nondeterminism in Choose(wr), where wr is chosen
from some finite range of values on the firing of action synch. Note that this choice
is made before going to sleep, i.e. at a time when the Receiver effectively has no
knowledge of when the senders actually do wake, as it cannot predict the result
of the subsequent random choices governing the clock-drift.

3.1 Optimal Behaviour of the Sleep/Awake Protocol

In this section we formalise a game in order to optimise Choose(wr) in Fig. 5
relative to an appropriate payoff function. The idea here is to optimise the payoff
for saving battery power in the context of message delivery; thus our payoff
function optimises time spent in the sleep state offset by the cost of possibly
delaying messages. To estimate the latter cost, we assign a value to the messages
according to the length of time they took to be delivered. For example if the
contents of the messages quickly become out of date, then the longer they take
to be delivered the less valuable they are.

(μX · (a × totalSleep − b × totalDelay) � G � (p × Wp.System ; X)) (6)

totalSleep is the total time that the receiver has spent in the sleeping mode; totalDelay
is the total message delay, and G is the termination condition, that all messages have
been delivered. Constants a and b are determined by the application.

Fig. 7. The game for optimising the cost of sleeping offset by the throughput

An example of such a function is set out at Fig. 7, where totalSleep and
totalDelay are statistics defining respectively the overall time spent in the low
power mode, and the total time it takes to deliver messages. 9 We can collect
those statistics from the formal model of Network as follows. To define the overall
time spent in the Receiver ’s low power state we augment the definition at Fig. 5
9 We include the termination condition in Fig. 7 rather than use � since we are only

intending to optimise the selection of wr.
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with variables SleepTime and totalSleep. Thus on powering down SleepTime is
set to the current value of the global time variable t, and on waking totalSleep
is set to totalSleep + t − SleepTime. We measure the total additional time it
takes to send a message, and store it in a variable called totalDelay by similarly
augmenting the Senderi’s.

When scalars a and b are set to 1, the problem does not articulate any con-
straint on message delay (and thus the optimal sleep schedule would be never to
wake up!) A better variation is to include scalars a and b to express the relative
importance between saving power and tolerance of message delay, depending on
the application [29]. Thus a high value of b relative to a means that message
delay costs more than power savings; for example if a/b = 1/2 then a delay of
1 second costs twice as much as the power saved by a low power interval of 1
second.10

Finally from Fig. 6 we see that time is incremented linearly with each execu-
tion of Network, and so (6) also only grows linearly with respect to Network, thus
Lem. 1 and Lem. 2 implies that (6) is well-defined and the player Max choosing
the schedule must have an optimal strategy.

3.2 Experimental Results

We used the PRISM model checker [24] to model Network, and to compute the
various probability distributions over totalSleep and totalDelay. From those re-
sults we computed the expected optimal productive sleeping time. We assumed
that the Senders always announced a fixed sleep schedule of 2 time steps, and
based on that we computed Receiver ’s optimal assignment to wr. In our experi-
ments we used parameters a, b : = 1 and also a : = 1 and b : = 2. As expected,
the results show that in the former case, it is better for the Receiver to set
its wait deadline greater than 2 time steps, whereas in the latter case, where
throughput is more essential (comparatively) than saving power it is better for
Receiver to wake up after 2.

4 Conclusions

We have proposed a stochastic parity game to investigate the tradeoff between
power savings and message throughput in a wireless network. Our formalisation
allows the use of standard value and policy iteration algorithms to compute
the optimal sleep schedule, moreover having access to model checking allows the
overall expected delays to be computed once the optimal sleep schedule has been
determined.

An alternative approach would be to formalise the problem as a standard op-
timisation problem viz. to optimise the time spent in the low power mode con-
strained by an upper bound on throughput. There are several practical and the-
oretical drawbacks to this however. The first is that both the objective function,
10 Note that the apparent unboundness (below) of (6) is not a problem — see Lem. 6

in the appendix.
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and the constraints in such a formalisation must be determined by expressions of
the form (6), and need themselves to be computed using (for example) non-trivial
probabilistic model-checking techniques. Furthermore there is an additional de-
pendency between the contraint and the objective function due to the inherent
nondeterminism, and this cannot be expressed straightforwardly. The use of our
proposed game addresses the latter problem, as there is no separate constraint
expression; moreover as there is only a single expression of the form (6) in-
volved in the problem fomalisation its solution can be obtained more efficiently.
A drawback is that it might be difficult to determine appropriate parameters a
and b.

We are not the first to give a game interpretation of Action Systems [3].
Others have explored similar two-player “Markov Games” [13], and de Alfaro et
al. have studied the use of discounting in systems theory [7]. Formal models of
power management have be investigated in other contexts [4, 23].
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Abstract. We introduce a multi-step semantics MTS-mp for LinCa
which demands maximum progress in each step, i.e. which will only al-
low transitions that are labeled with maximal (in terms of set inclusion)
subsets of the set of enabled actions. We compare MTS-mp with the
original ITS-semantics for LinCa specified in [CJY94] and with a slight
modification of the original MTS-semantics specified in [CJY94]. Given
a LinCa-process and a Tuple Space configuration, the possible transi-
tions under our MTS-mp-semantics are always a subset of the possible
transitions under the presented MTS-semantics for LinCa .

We compare the original ITS-semantics and the presented MTS-
semantics with our MTS-mp-semantics, and as a major result, we will
show that under MTS-mp neither termination nor divergence of LinCa
processes is decidable. In contrast to this [BGLZ04], in the original se-
mantics for LinCa [CJY94] termination is decidable.

1 Introduction

A Coordination Language is a language defined specifically to allow two or more
parties (components) to communicate for the purpose of coordinating operations
to accomplish some shared (computation) goal. Linda seems to be the mostly
known Coordination Language. Ciancarini, Jensen and Yankelevich [CJY94] de-
fined LinCa, the Linda Calculus and gave a single-step, as well as a multi-step
semantics for LinCa.

A Linda process may contain several parallel subprocesses that communicate
via a so called Tuple Space. The Tuple Space is some kind of global store, where
tuples are stored. In Linda, a tuple is a vector consisting of variables and/or con-
stants, and there is a matching relation that is similar to data type matching in
common programming languages. For the purpose of investigating the properties
of the coordination through the Tuple Space it is common practice to ignore the
matching relation and internal propagation of tuples. Tuples are distinguished
from each other by giving them unique names (t1, t2, t3, ...) and LinCa is based
on a Tuple Space that is countably infinite.
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As far as the semantics for LinCa is concerned, the traditional interleaving
point of view does not make any assumptions about the way concurrent actions
are performed, i.e. for any number of processing units and independently of their
speed all possible interleavings of actions are admitted. On the other hand, the
traditional multi-step point of view allows actions to be carried out concurrently
or interleaved.

Let us assume a system, where all processing units work at the same speed
and where all of them are globally clocked. For such a system, we might de-
mand maximum progress, i.e. as long as additional actions can be performed in
the present step they must be. More formally, we consider only (set inclusion)
maximal sets of actions for each step.

Consider, for example, a system where a number of workers (processes) have
to perform different jobs (calculations) on some object (tuple). The objects are
supplied sequentially by some environment, which is represented by the process
foreman. (Readers that are familiar with LinCa might want to have a look at
the end of Section 3, where we model the example in LinCa.)

In a setting with a common clock for all processes where the workers’ cal-
culations (plus taking up the object) can always be finished within one clock
cycle we would (for maximum efficiency) want the systems semantics to rep-
resent the actual proceeding as follows: All workers are idle while the foreman
supplies an object. The foreman waits while all the workers read the object and
perform their jobs simultaneously. All workers put their results into the tuple
space simultaneously while the foreman deletes the object, and so on.

In this paper we study a MTS-mp (Multi-Step Transition System with maxi-
mum progress) semantics that models the specified behavior. As already implic-
itly stated in this example, we assume a data-base-like setting, where multiple
read-operations may be performed on a single instance of a tuple (whereas this is
not the case for in-operations). As a remark, we want to add, that this detail in
design does however not affect the decidability results presented in Section 5 (this
is obvious due to the fact that the given encoding of a RAM in LinCa doesn’t
include any rd-operation). The paper is organized as follows: In Section 2, we set
up notation and terminology. In Section 3, we present the original interleaving se-
mantics for LinCa as well as a multi-step semantics and the MTS-mp semantics.
In Section 4, we establish a relation between the non-maximum-progress seman-
tics and MTS-mp. Finally, Section 5 includes the main purpose of this paper: i.e.
termination and divergence are undecidable for LinCa under MTS-mp. This is
an interesting result as we do adopt the basic version of the LinCa language used
in [BGLZ04], where it is shown that termination is decidable for the traditional
interleaving semantics. In particular, we do not apply the predicative operator
inp(t)?P Q (see, e.g. [BGM00]) that represents an “if-then-else-construct” and
thereby makes it easy to give a deterministic simulation of a RAM .

2 Definitions

– Most sets in this paper represent multisets. Given a multiset M , we write
(a, k) ∈ M (k ≥ 0) iff M includes exactly k instances of the element a. We
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will write a ∈ M instead of (a, 1) ∈ M and a �∈ M , instead of (a, 0) ∈ M .
We will use the operators �, \ and ⊆ on multisets in their intuitive meaning.

– Given a multiset M we denote by set(M) the set derived from M by deleting
every instance of each element except for one, i.e.
set(M) = {a | ∃i > 0 ∈ N : (a, i) ∈M}

– Given a set S we denote the power-multiset (that is the set of subsets that
may include multiple instances of the same element of S) of S by ℘(S).

– LinCa processes:
Note, that by Tuple Space, we denote the basic set from which tuples are
chosen and by Tuple Space configuration we refer to the state of our store
in the present computation, i.e. a Tuple Space configuration is a multiset
over the Tuple Space, i.e. for each Tuple Space configuration M and the
underlying Tuple Space TS, we have M ∈ ℘(TS).

In order to show some properties of the introduced semantics, we will
sometimes modify it slightly, by adding some extra tuples to TS. We will
denote these extra tuples by c, d, e and we will write TScde for TS∪{c, d, e},
where TS ∩ {c, d, e} = ∅.

Given a fixed Tuple Space TS, we can define the set of processes LinCaTS

as the set of processes derived from the grammar in Figure 1, where ev-
ery time we apply one of the rules {P := in(t).P, P := out(t).P, P :=
rd(t).P, P :=! in(t).P}, t is substituted by an element of the Tuple Space.
in(t), out(t) and rd(t) are called actions. If t ∈ {c, d, e} then they are called
internal actions, else observable actions. Trailing zeros (.0) will be dropped
in examples.

P := 0 | in(t).P | out(t).P | rd(t).P | P | P | ! in(t).P

Fig. 1. LinCa

– ea(P ) with P a LinCa-process denotes the multiset of enabled actions of P ,
defined in Figure 2. We define a decomposition of (the tuples used in) ea(P )
into three subsets eaIN (P ), eaOUT (P ), eaRD(P ) as given in Figure 3:

1) ea(0) = ∅
2) ea(in(t).P ) = {in(t)}
3) ea(out(t).P ) = {out(t)}
4) ea(rd(t).P ) = {rd(t)}
5) ea(! in(t).P ) = {(in(t),∞)}
6) ea(P | Q) = ea(P ) � ea(Q)

Fig. 2. The set of enabled actions ea(P ) of a process P ∈ LinCa
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eaIN(P ) = {(t, i) | (in(t), i) ∈ ea(P )}
eaOUT (P ) analogously
eaRD(P ) analogously

Fig. 3. The sets eaIN(P ), eaOUT (P ), eaRD(P ) of a process P ∈ LinCa

The notions (in(t),∞) ∈ ea(P ) and (t,∞) ∈ eaIN (P ) describe the fact,
that infinitely many actions in(t) are enabled in P . These notions will only
be used for enabled actions, never for Tuple Space configurations, because
(due to the in-guardedness of replication) all computed Tuple Space config-
urations remain finite.

– A Labeled Transition System is a triple (S, Lab,→), where S is the set of
states, Lab is the set of labels and →⊆ S ×Lab× S is a ternary relation (of
labeled transitions). If p, q ∈ S and a ∈ Lab, (p, a, q) ∈ → is also denoted
by: p

a→ q. This represents the fact that there is a transition from state
p to state q with label a. We write p �→ iff � ∃a ∈ Lab, q ∈ S : p

a→ q. In
addition we often want to designate a starting state s0, in this case we use
the quadruple (S, Lab,→, s0).

In the Transition Systems describing the various semantics, states are
pairs < P, M > of LinCa-processes and Tuple Space configurations and
labels are triples (I, O, R) of (possibly empty) multisets of tuples, where I
represents the performed in-actions, O the performed out -actions and R the
performed rd -actions. We write τ instead of (I, O, R) iff I, O, R ∈ ℘({c, d, e})
and call τ internal label and a transition s

τ→ s′ an internal transition. A
label a = (I, O, R) �= τ is called observable label and a transition s

a→ s′ is
called observable transition.

– Let SEM ∈ {ITS, MTS, MTS-mp} (see Section 3 for details). The SEM -
semantics of LinCaTS is given by the Transition System (S, Lab,→), where:
1. S = LinCaTS × ℘(TS)
2. Lab = ℘(TS)× ℘(TS)× ℘(TS)
3. → =→SEM (see Section 3)

For a process P ∈ LinCaTS the SEM -semantics is considered as (S, Lab,
→SEM , < P, ∅ >) and we denote it by SEM [P ].

– Given a LTS LTS1 and nodes s1, s
′
1 ∈ S we define: s1

(I,O,R)

→+ s′1
iff ∃s2, ..., sn ∈ S, such that: s1

τ→ s2
τ→ ...

τ→ sn
(I,O,R)→ s′1

– Given a LTS LTS1 with starting state s0 we define its set of traces as follows:

traces(LTS1) := {(a1, a2, ...) ∈ TrLab | ∃s1, s2, ... ∈ S : s0

a1

→+ s1

a2

→+ s2 ...}
where TrLab = (Lab \ {τ})∗ ∪ (Lab \ {τ})∞ and S∗ (S∞) denotes the set of
finite (infinite) sequences over a set S.

– a LTS LTS1 with starting state s0 terminates iff:
∃s1, ..., sn ∈ S, a1, ..., an ∈ Lab : s0

a1→ s1
a2→ ...

an→ sn �→
– a LTS LTS1 with starting state s0 diverges iff it has at least one infinite

transition sequence, i.e: ∃si ∈ S, ai ∈ Lab : s0
a1→ s1

a2→ ...
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– Let LTS1 = (S1, Lab1,→1, s01) and LTS2 = (S2, Lab2,→2, s02) be two La-
beled Transition Systems. We write LTS1 � LTS2 iff the following properties
hold:
1) traces(LTS1) = traces(LTS2)
2) LTS2 is able to weakly step simulate LTS1, i.e. ∃R ⊆ S1 × S2 such that:

2.1) (s01, s02) ∈ R and

2.2) (p, q) ∈ R ∧ p
(I,O,R)→ p′ ⇒ ∃q′ ∈ S2 : q

(I,O,R)

→+ q′ ∧ (p′, q′) ∈ R.

3 Semantics

In this section, we introduce the ITS-semantics for LinCa based on the semantics
given in [BGLZ04] and a MTS-semantics that we consider the natural extension
of ITS. In the given MTS-semantics, we allow (in contrast to [CJY94]) an
arbitrarily large number of rd -actions to be performed simultaneously on a single
instance of a tuple.

To describe the various semantics, we split the semantic description in two
parts: a set of rules for potential transitions of LinCa-processes (Figures 4 and 6)
and an additional rule to establish the semantics in which we check if some po-
tential transition is allowed under the present Tuple Space configuration (Fig-
ures 5, 7 and 9).

This allows us to reuse the rules in Figure 4 (henceforth called pure syntax
rules) for the succeeding MTS and MTS-mp semantics. Choosing this represen-
tation makes it convenient to point out common features and differences of the
discussed semantics.

In contrast to [BGLZ04] we label transitions. We have to do so to record which
actions a step-transition performs in order to check if this is possible under the
present Tuple Space configuration. The labels serve as a link between the rules

of pure syntax and the semantic rule: For a potential transition P
(I,O,R)→ P ′

the multisets I/O/R contain the tuples on which we want to perform in/out/rd
actions. In MTS (see Figure 7), such a potential transition is only valid for
some Tuple Space configuration M , if I � set(R) ⊆ M , i.e. M includes enough
instances of each tuple to satisfy all performed in-actions and at least one addi-
tional instance for the performed rd-actions on that tuple (if any rd-actions are
performed). For out-actions there is no such restriction.

In Figure 9 we use the notion of maximality of a potential transition for
some Tuple Space configuration M . Maximality is given iff conditions 1) and
2) in Figure 8 hold, where 1) means, that all enabled out-actions have to be
performed. 2) means, that as many of the in and rd-actions as possible have
to be performed. More precisely 2.1) represents the case, that the number of
instances of some tuple t in the present Tuple Space configuration M exceeds
the number of enabled in-actions on that tuple. In this case all in-actions and
all rd-actions have to be performed.

We define the relations→ITS , →MTS and→MTS-mp as the smallest relations
satisfying the corresponding rule in Figure 5, 7 and 9, respectively.
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1) in(t).P
({t},∅,∅)→ P

2) out(t).P
(∅,{t},∅)→ P

3) rd(t).P
(∅,∅,{t})→ P

4) ! in(t).P
({t},∅,∅)→ P | ! in(t).P

5) P
(I,O,R)→ P ′

P | Q
(I,O,R)→ P ′ | Q

Fig. 4. ITS: pure syntax (symmetrical rule for 5 omitted)

P
(I,O,R)→ P ′ ∈ ITS-Rules I⊆M R⊆M

<P,M>
(I,O,R)→ ITS <P ′,(M\I)�O>

Fig. 5. ITS

ITS-Rules 1) - 5) (from Figure 4)

6) ! in(t).P
({(t,i)},∅,∅)→

∏
i

P | ! in(t).P

7)
P

(IP ,OP ,RP )→ P ′ Q
(IQ,OQ,RQ)

→ Q′

P | Q
(IP 	IQ,OP 	OQ,RP 	RQ)

→ P ′ | Q′

Fig. 6. MTS: pure syntax

We end this Section by modeling1 the example mentioned in the Introduction
in LinCa. A foreman supplies a group of workers with jobs.

Let P := foreman | worker1 | ... | workern, where:

foreman = out(object).wait.in(object).foreman
workeri = rd(object).out(resulti).workeri

Ciancarini’s original MTS semantics would allow P to evolve in a variety of
ways. However, given a common clock and given that all workers can perform
their rd-operations (as well as their internal calculation which we abstract from
in LinCa) within one clock cycle, the expected/desired maximum-progress be-
havior of P (that has already been described in the introduction) corresponds
to the one and only path in MTS-mp[P ].

1 The wait-operator is used for ease of notation only, it is not part of the discussed
language. For details on the usage of the wait-operator see Section 4.2.
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P
(I,O,R)→ P ′ ∈ MTS-Rules (I�Set(R))⊆M

<P,M>
(I,O,R)→ MTS <P ′,(M\I)�O>

Fig. 7. MTS

1) (t, i) ∈ eaOUT (P ) ⇒ (t, i) ∈ O
∧ 2) (t, i) ∈ M ∧ (t, j) ∈ eaIN(P ) ∧ (t, k) ∈ eaRD(P ) ⇒

( 2.1) j < i ∧ (t, j) ∈ I ∧ (t, k) ∈ R
∨ 2.2) j ≥ i ∧ (t, i) ∈ I ∧ (t, 0) ∈ R
∨ 2.3) j ≥ i ∧ (t, i − 1) ∈ I ∧ (t, k) ∈ R ∧ k ≥ 1 )

Fig. 8. Cond. for Maximality of a trans. P
(I,O,R)→ P ′ for some Tuple Space config. M

P
(I,O,R)→ P ′∈MTS-Rules P

(I,O,R)→ P ′ is maximal for M

<P,M>
(I,O,R)→ MTS-mp <P ′,(M\I)�O>

Fig. 9. MTS-mp

4 Relations Between ITS, MTS, MTS-mp

For all P ∈ LinCa the following properties hold for the defined semantics ITS,
MTS and MTS-mp:

– ITS [P ] is always a subgraph of MTS [P ], as the pure syntax rules for ITS in
Figure 4 are a subset of those for MTS in Figure 6 and the way the semantics
are based on (Figures 5 and 7) the pure syntax rules is the same.

– MTS-mp[P ] is always a subgraph of MTS [P ], as the pure syntax rules for
MTS and MTS-mp are the same but for the MTS-mp semantics in Figure 9
we apply a stronger precondition than for the MTS semantics in Figure 7.

By LinCacde we denote the LinCa language based on an extended Tuple Space.
That is, we assume the existence of 3 designated tuples c,d,e that are not ele-
ments of the original LinCa Tuple Space. We extend our MTS-mp semanics to
treat actions on these tuples just like any other actions in the purely syntactic
description. However in Transition Systems whenever (I, O, R) consists of noth-
ing but designated tuples we replace it by τ , the internal label. Whenever some
internal actions are performed concurrently with some observable actions, the
label of the resulting transition will simply consist of the observable ones.

By MTS-mp[P ] where P ∈ LinCacde we denote its semantics as described
above.
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4.1 The Relation Between ITS and MTS-mp

In this subsection we define an encoding encITS : LinCa → LinCacde and prove
that ITS [P ] � MTS-mp[encITS(P)] holds.

encITS is composed of the main encoding ẽncITS and a parallel out(c):

ẽncITS(0) = 0
ẽncITS(act(t).P) = in(c).act(t).out(c).enc(P)
ẽncITS(P | Q) = enc(P) | enc(Q)
ẽncITS(! in(t).P ) = ! in(c).in(t).out(c).enc(P )

encITS(P ) = ẽncITS(P ) | out(c)

Theorem 1. ITS[P ] �MTS-mp[encITS(P )]

Proof. 1) Weak Similarity
encITS(P ) puts a prefix in(c) in front of and a suffix out(c) behind every action
in P . The weak step simulation deterministically starts by performing the inter-
nal action out(c) and subsequently simulates every step of the ITS Transition
System by performing three steps as follows:

First, we remove the encoding-produced guarding in(c)-prefix from the observ-
able action we want to simulate (henceforth we call this unlocking an action)
then we perform this action and finally we perform the suffix out(c) to supply
the Tuple Space configuration with the tuple c for the simulation of the next
action. As all described steps are indeed maximal, the transitions are valid for
MTS-mp.

2) Equality of traces
traces(ITS[P ]) ⊆ traces(MTS-mp[encITS(P)]) follows immediately from weak
similarity. As for the reverse inclusion: MTS-mp[encITS(P)] can either unlock
an action that can be performed under the present Tuple Space configuration
then ITS[P ] can perform the same action directly. MTS-mp[encITS(P)] could
also unlock an action that is blocked under the present Tuple Space configura-
tion, but in this case the computation (and thus the trace) halts due to the total
blocking of the process encITS(P ) (as the single instance of tuple c has been
consumed without leaving an opportunity to provide a new one).

4.2 The Relation Between MTS and MTS-mp

First, we introduce the basic encoding enc: LinCa → LinCacde, that simply
prefixes every action of a process with an additional blocking in(c) action.

enc(0) = 0
enc(act(t).P ) = in(c).act(t).enc(P )
enc(P | Q) = enc(P ) | enc(Q)
enc(! in(t).P ) = ! in(c).in(t).enc(P )
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Second, we introduce the encoding ẽncMTS which encodes a process by enc and
provides it with an additional parallel process P̃ . All actions performed by P̃ are
internal actions, and P̃ will be able to produce an arbitrary number of instances
of the tuple c simultaneously.

We define: P̃ := ! in(d).[rd(e).out(c) | out(d)]
| ! in(d).out(e).wait.in(e).wait.out(d)

ẽncMTS(P ) := enc(P ) | P̃ | out(d)

Strictly speaking the wait -operator used in P̃ is not included in LinCa. We
nevertheless use it because a wait -action (which has no other effect on the rest
of the process and is not observable) can be implemented by a rd-action in the
following way. Let t∗ be a designated tuple that is not used for other purposes. If
P is a LinCa-process except for the fact, that it may contain some wait -actions
then we consider it as the process P [wait/rd(t∗)] | out(t∗). However, we state
that the wait -actions are not at all needed for the correctness of the encoding
and we added them only for ease of proofs and understanding.

We now define the final encoding encMTS , that adds the parallel process
out(d) with the single purpose to put a tuple d into the initially empty Tuple
Space configuration to activate the process P̃ .

Theorem 2. MTS[P] � MTS-mp[encMTS(P)]

Proof. 1) Weak similarity
The proof is similar to that of Theorem 1. Whenever we want to simulate some

step < P, M >
(I,O,R)→ MTS< P ′, M ′ > (where |I|+ |O|+ |R| = z) P̃ first produces

z processes rd(e).out(c) by subsequently performing z times in(d) and out(d) in
line 1 of P̃ . Then line 2 of P̃ is performed, i.e. the tuple e is provided and then
read simultaneously by the z rd(e).out(c)-processes (and deleted by in(e) imme-
diately afterwards). This causes the simultaneous production of z instances of c,
which are used to unlock the desired actions in enc(P ) in the subsequent step.
As the step we want to simulate is valid in MTS and as all other actions (besides
the second internal wait -action of P̃ that is in fact performed simultaneously)
are still blocked by their prefixes in(c) the step is also maximal and thus it is
valid in MTS-mp.

2) Equality of traces
Again, traces(ITS[P ]) ⊆ traces(MTS−mp[encITS(P)]) follows immediately
from weak similarity. We give a sketch of the proof of the reverse inclusion:

The process P̃ performs some kind of loop in which it continuously produces
arbitrary numbers of instances of the tuple c (let the number of produced c’s be
z). In the subsequent step (due to our maximality-request) as many actions in(c)
as possible are performed. The actual number of these unlockings is restricted
either by the number of enabled in(c) processes (let this number be x, i.e. (c, x) ∈
eaIN(enc(P ))) in case x ≤ z or by the number of instances of c that we have
produced in case x > z.
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In the next step we perform as many unlocked actions as possible. That might
be all of them, if the present Tuple Space configuration M allows for it, or a subset
of them. In any of those cases, the same set of actions can instantly be performed
in MTS[P ] and it simply remains to show that neither the overproduction of c’s,
nor the unlocking of more actions than we can simultaneously perform under M
will ever enable any observable actions, that are not already enabled in MTS[P ].
To show this, we define a relation R′ that includes all pairs (< P, M >, <
encMTS(P ), M�{d} >) as well as any pair (< P, M >, s′) where s′ is a derivation
from < encMTS(P ), M�{d} > by τ -steps, and show, that whenever (s1, s2) ∈ R′

and s2 performs an observable step in MTS-mp[encMTS(P )], s1 will be ready to
imitate it in MTS[P ].

5 Termination and Divergence Are Undecidable in
MTS-mp-LinCa

5.1 RAMs

A Random Access Machine (RAM) M̂ [SS63] consists of m registers, that may
store arbitrarily large natural numbers and a program (i.e. sequence of n enu-
merated instructions) of the form:

I1
I2
...

In

Each Ii is of one of the following types (where 1 ≤ j ≤ m, s ∈ N):

a) i : Succ(rj)
b) i : DecJump(rj, s)

A configuration of M̂ can be represented by a tuple < v1, v2, ..., vm, k >∈ Nm+1,
where vi represents the value stored in ri and k is the number of the command
line that is to be computed next.

Let M̂ be a RAM and c =< v1, v2, ..., vm, k > the present configuration of
M̂ .

Then we distinguish the following three cases to describe the possible transi-
tions:

1) k > n means that M̂ halts, because the instruction that should be computed
next doesn’t exist. This happens after computing instruction In and passing on
to In+1 or by simply jumping to a nonexistent instruction.
2) if k ∈ {1, ..., n} ∧ Ik = Succ(rj) then vj and k are incremented, i.e. we incre-
ment the value in register rj and succeed with the next instruction.
3) if k ∈ {1, ..., n} ∧ Ik = DecJump(rj , s) then M̂ checks whether the value vj

of rj is > 0. In that case, we decrement it and succeed with the next instruction
(i.e. we increment k). Else (i.e. if vj = 0) we simply jump to instruction Is, (i.e.
we assign k := s).
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We say a RAM M̂ with starting configuration < v1, v2, ..., vm, k > terminates
if its (deterministic) computation reaches a configuration that belongs to case
1). If such a configuration is never reached, the computation never stops and
we say that M̂ diverges. It is well-known [M67] that the question whether a
RAM diverges or terminates under a starting configuration < 0, ..., 0, 1 > is
undecidable for the class of all RAMs.

It is quite obvious, that for those LinCa-dialects that include a predicative
in-operator inp(t)?P Q (with semantical meaning if t ∈ TS then P else Q, for
details see e.g. [BGM00]) the questions of termination and divergence are un-
decidable (moreover those dialects are even Turing complete), as for any RAM
there is an obvious deterministic encoding.

However neither the original Linda Calculus [CJY94] nor the discussed variant
(adopted from [BGLZ04]) include such an operator and the proof that neither
termination nor divergence are decidable under the MTS-mp semantics is more
difficult.

We will define encodings term and div that map RAM s to LinCa-processes
such that a RAM M̂ terminates (diverges) iff the corresponding Transition Sys-
tem MTS-mp[term(M̂ )] (MTS-mp[div(M̂ )]) terminates (diverges).

While the computation of M̂ is completely deterministic, the transitions in
the corresponding LTS given by our encoding may be nondeterministic. Note
that every time a nondeterministic choice is made, there will be one transition
describing the simulation of M̂ , and one transition that will compute something
useless. For ease of explanations in Sections 5.2 and 5.3 we call the first one right
and the second wrong.

To guarantee that the part of the LTS that is reached by a wrong transition
(that deviates from the simulation) does not affect the question of termination
(divergence) we will make sure that all traces of the corresponding subtree are
infinite (finite). This approach guarantees that the whole LTS terminates (di-
verges) iff we reach a finite (an infinite) trace by keeping to the right transitions.

Our encodings establish a natural correspondence betweenRAM configurations
and Tuple Space configurations, i.e. the RAM -configuration < v1, v2, ..., vm, k >
belongs to the Tuple Space configuration {(r1, v1), ..., (rm, vm), pk}. For a RAM
configuration c we refer to the corresponding Tuple Space configuration by TS(c).

Theorem 3 (RAM Simulation). For every RAM M̂ the Transition System
MTS-mp[term(M̂)] (MTS-mp[div(M̂ )]) terminates (diverges) iff M̂ terminates
(diverges) under starting configuration < 0, ..., 0, 1 >.

5.2 Termination Is Undecidable in MTS-mp-LinCa

Let term: RAMs→ LinCa be the following mapping:

term(M̂ ) =
∏

i∈{1,...,n}
[Ii] | ! in(div).out(div) | in(loop).out(div) | out(p1)

where the encoding [Ii] of a RAM -Instruction in LinCa is:
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[i : Succ(rj)] = ! in(pi).out(rj).out(pi+1)
[i : DecJump(rj , s)] = ! in(pi).[ out(loop) | in(rj).in(loop).out(pi+1) ]

| ! in(pi).[ in(rj).out(loop)
| wait.wait.out(rj).in(loop).out(ps) ]

Note that the first (deterministic) step of term(M̂ ) will be the initial out(p1).
The resulting Tuple Space configuration is {p1} = TS(< 0, ..., 0, 1 >). For ease of
notation, we will henceforth also denote the above defined process where out(p1)
has already been executed by term(M̂).

We now describe (given some RAM M̂ and configuration c) the possible tran-
sition sequences from some state < term(M̂), TS(c) > in MTS-mp[term(M̂)].
In cases 1 and 2 the computation in our LTS is completely deterministic and
performs the calculation of M̂ . In case 3 the transition sequence that simulates
DecJump(rj,s) includes nondeterministic choice. As described in Subsection 5.1
performing only right choices (cases 3.1.1 and 4.1.1) results in an exact simulation
of M̂ ’s transition c→M̂ c′, i.e. the transition sequence leads to the corresponding
state < term(M̂), TS(c′) >. Performing at least one wrong choice (cases 3.1.2,
3.2, 4.1.2 and 4.2) causes the subprocess ! in(div).out(div) to be activated, thus
assuring that any computation in the corresponding subtree diverges (denoted by
�). (In this case other subprocesses are not of concern because they can’t interfere
by removing the tuple div, so we substitute these subprocesses by “...”.)

1. k > n, i.e. M̂ has terminated. Then <term(M̂), TS(c)> is totally blocked.

2. k ∈ {1, ..., n} ∧ Ik = k : Succ(rj), then M̂ increments both rj and k.
The corresponding transition sequence in MTS-mp[term(M̂ )] is:

<term(M̂), TS(c)>
→ <term(M̂) | out(rj).out(pk+1), TS(c) \ {pk}>
→ <term(M̂) | out(pk+1), TS(c) \ {pk} � {rj}>
→ <term(M̂), TS(c) \ {pk} � {rj , pk+1}>
= <term(M̂), TS(c′)>

3. k ∈ {1, ..., n}∧ Ik = k : DecJump(rj, s)∧ vj �= 0, then M̂ decrements rj and
increments k. The possible transition sequences in MTS-mp[term(M̂ )] are:
<term(M̂), TS(c)>nondet.→
3.1 right:
<term(M̂) | out(loop) | in(rj).in(loop).out(pk+1), TS(c) \ {pk}>

→ <term(M̂) | in(loop).out(pk+1), TS(c) \ {pk, rj} � {loop}>nondet.→
3.1.1 right - right:

<term(M̂) | out(pk+1), TS(c) \ {pk, rj}>
→ <term(M̂), TS(c) \ {pk, rj} � {pk+1}>
= <term(M̂), TS(c′)>

3.1.2 right - wrong:
<term(M̂) | in(loop).out(pk+1), TS(c) \ {pk, rj} � {loop}>

→ <... | out(div), TS(c) \ {pk, rj}>�
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3.2 wrong :
<term(M̂) | in(rj).out(loop) | wait2.out(rj).in(loop).out(ps), TS(c) \ {pk}>

→ <term(M̂) | out(loop) | wait.out(rj).in(loop).out(ps), TS(c) \ {pk, rj}>
→ <term(M̂) | out(rj).in(loop).out(ps), TS(c) \ {pk, rj} � {loop}>
→ <... | out(div), TS(c) \ {pk}>�
4. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj , s) ∧ vj = 0, then M̂ assigns k := s

<term(M̂), TS(c)>nondet.→
4.1 right:

→<term(M̂) | in(rj).out(loop) | wait2.out(rj).in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(rj).out(loop) | wait.out(rj).in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(rj).out(loop) | out(rj).in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(rj).out(loop) | in(loop).out(ps), TS(c) \ {pk} � {rj}>
→<term(M̂) | out(loop) | in(loop).out(ps), TS(c) \ {pk}>
→<term(M̂) | in(loop).out(ps), TS(c) \ {pk} � {loop}>nondet.→

4.1.1 right - right:
<term(M̂) | out(ps), TS(c) \ {pk}>

→ <term(M̂), TS(c) \ {pk} � {ps}>
= <term(M̂), TS(c′)>

4.1.2 right - wrong:
<... | out(div), TS(c) \ {pk}>�
4.2 wrong:
<term(M̂) | out(loop) | in(rj).in(loop).out(pk+1), TS(c) \ {pk}>

→ <term(M̂) | in(rj).in(loop).out(pk+1), TS(c) \ {pk} � {loop}>
→ <... | out(div), TS(c) \ {pk}>�

5.3 Divergence Is Undecidable in MTS-mp-LinCa

Let div: RAMs→ LinCa be the following mapping:

div(M̂) =
∏

i∈{1,...,n}
[Ii] | in(flow) | out(p1)

where the encoding [Ii] of a RAM -Instruction in LinCa is:

[i : Succ(rj)] = ! in(pi).out(rj).out(pi+1)
[i : DecJump(rj , s)] = ! in(pi).in(rj).out(pi+1)

| ! in(pi). [ in(rj).out(flow)
| wait2.out(rj).in(flow).out(ps) ]

Note that the first (deterministic) step of div(M̂) will be the initial out(p1). The
resulting Tuple Space configuration is {p1} = TS(< 0, ..., 0, 1 >). For ease of
notation, we will henceforth also denote the above defined process where out(p1)
has already been executed by div(M̂).
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We now describe (given some RAM M̂ and configuration c) the possible
transition sequences from some state < div(M̂), TS(c) > in MTS-mp[div(M̂ )].
In cases 1 and 2 the computation in our LTS is completely deterministic and
performs the calculation of M̂ . In case 3 the transition sequence that simulates
DecJump(rj,s) includes nondeterministic choice. As described in Subsection 5.1
performing only right choices (cases 3.1 and 4.1.1) results in an exact simulation
of M̂s transition c→M̂ c′, i.e. the transition sequence leads to the corresponding
state < div(M̂), TS(c′) >. Performing at least one wrong choice (cases 3.2, 4.1.2
and 4.2) causes the tuple flow to be removed from the Tuple Space configura-
tion, thus leading to some state < P, M > where P is totally blocked under M ,
denoted by < P, M > �→. For cases 1 and 2 see preceding subsection.

3. k ∈ {1,..., n} ∧ Ik = k : DecJump(rj, s) ∧ vj �= 0, then M̂ decrements rj and
increments k. The possible transition sequences in MTS-mp[div(M̂ )] are:
<div(M̂), TS(c)>nondet.→
3.1 right:
<div(M̂) | in(rj).out(pk+1), TS(c) \ {pk}>

→ <div(M̂) | out(pk+1), TS(c) \ {pk, rj}>
→ <div(M̂), TS(c) \ {pk, rj} � {pk+1}>
= <div(M̂), TS(c′)>

3.2 wrong:
<div(M̂) | in(rj).out(flow) | wait2.out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | out(flow) | wait.out(rj).in(flow).out(ps), TS(c) \ {pk, rj}>
→ <div(M̂) | out(rj).in(flow).out(ps), TS(c) \ {pk, rj} � {flow}>
→ <Π [Ii] | in(flow).out(ps), TS(c) \ {pk}> �→
4. k ∈ {1, ..., n} ∧ Ik = k : DecJump(rj , s) ∧ vj = 0, then M̂ assigns k := s

<div(M̂), TS(c)>nondet.→
4.1 right:
<div(M̂) | in(rj).out(flow) | wait2.out(rj).in(flow).out(ps), TS(c) \ {pk}>

→ <div(M̂) | in(rj).out(flow) | wait.out(rj).in(flow).out(ps), TS(c) \ {pk}>
→ <div(M̂) | in(rj).out(flow) | out(rj).in(flow).out(ps), TS(c) \ {pk}>
→ <div(M̂) | in(rj).out(flow) | in(flow).out(ps), TS(c) \ {pk} � {rj}>
→ <div(M̂) | out(flow) | in(flow).out(ps), TS(c) \ {pk}>
→ <div(M̂) | in(flow).out(ps), TS(c) \ {pk} � {flow}>nondet.→

4.1.1 right - right:
<div(M̂) | out(ps), TS(c) \ {pk}>

→ <div(M̂), TS(c) \ {pk} � {ps}>
= <div(M̂), TS(c′)>

4.1.2 right - wrong:
<Π [Ii] | in(flow).out(ps), TS(c) \ {pk}> �→
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4.2 wrong:
<div(M̂) | in(rj).out(pk+1), TS(c) \ {pk}> �→

6 Conclusion

In order to guarantee maximum utilization of processing units in a MIMD set-
ting, we modified Ciancarini’s MTS-semantics for LinCa. We restricted the valid
paths of the Multi Step Transition System to those in which in each step there
are performed as many actions as possible. Pursuing the aim of maximizing the
resource utilization we found it astounding that the restriction to paths satis-
fying the maximum progress condition causes a change in expressiveness. The
fact that a RAM can be simulated (nondeterministically) is non-trivial for two
reasons: First, we are not able to implement an if-then-else construct (or at least
there is no obvious way to do that) without the usage of predicative tuple space
operators. Second, we do not even allow for a choice-operator and as a conse-
quence we have to “neutralize” remaining process-artifacts in order to prevent
them from interfering with the calculation at some time in the future.

We also discussed the relation between our semantics and ITS and MTS,
respectively. The outcome of our analysis is that in all future approaches of
maximizing the resource utilization for LinCa in a multiple-step scenario, one
has to take into account that - unpleasantly - there are programs for which
termination is undecidable. Nevertheless the existence of such programs does
not mean that demanding maximum progress is not meaningful or useless.
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Abstract. In this paper we study some topological aspects related to
the important operations of searching and classification over the Web.
Classification is dictated by some criteria, and these criteria can be de-
fined as a classification operator. An interesting problem is to prove the
existence of a stable classification with respect to a certain operator. In
this context we provide a topological approach to describe the structure
of the web based on the trips given by the links of the web documents,
and present various topologies defined over the Web. Some results re-
garding the topological properties as connectivity, density and separation
are presented. The Alexandrov topology plays a particular role, and we
have a certain equivalence between this topology and the classification
process.

1 Introduction

The World-Wide-Web is a large collection of accessible web pages. It is also a
fast growing network. The web is becoming an important resource in our lives,
and we use it mainly for finding information and communication. Nowadays our
computers are used more for surfing the web in order to find desired information
than to execute programs computing scientific or business information. This is
done by direct navigation, where the users go directly to the web page they
wish to see. Another possibility is given by surfing or navigating by following
the links. In this case the user may start from a home page of a site, and then
click on links following the direction given by link text. It is also possible to use
a search engine, where the search engine holds the key to find the web pages the
user wishes to see.

We consider the Web as a directed graph, with vertices represented by docu-
ments and arcs corresponding to the links between them. Due to its dynamics,
namely that new web pages and links are created, we consider the World-Wide-
Web as having potentially an infinite number of documents. The set of the
documents at a certain moment is an instance of the Web. An instance is always
finite. The dynamics of the Web can be described by its instances and their
evolution in a discrete time. As a consequence, the Web can be interpreted as
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a countable space. An important practical operation over this space is given by
searching (search engine). Web searching is based on indexing. Due to a high
dynamics, the Web indexing should be repeated periodically. We introduce here
some theoretical aspects related to these important operations over the Web.
Web indexing can be simplified by classification. Classification is dictated by
some criteria. In order to define a classification, we should associate a set to
each document, namely the set representing its class. Each document belongs to
its class. Moreover, if a document x belongs to the class of a document y, then
the class of x is a subset of the class of y. For instance, if x is a document contain-
ing information regarding differential geometry, and y is a document containing
information regarding geometry (in general), then the class of x (differential ge-
ometry) is included in the class of y (general geometry). Classification criteria
can be defined as a classification operator. Such an operator transforms usually
a classification into a finer classification, i.e., a set of documents into a smaller
set of documents. We say that a classification is stable with respect to a clas-
sification operator if the operator does not change it anymore. An interesting
problem is to prove the existence of the stable classifications with respect to a
certain operator.

Since we can associate an Alexandrov topology to each classification in a one-
to-one manner, the study of these topologies is relevant to the Web classification.
We introduce a preorder over the Web space given by the links between Web
pages. For a given web document a, an important set denoted by Ina is the
set of the documents having a link to a. Its cardinal could be a good indicator
regarding the importance or the relevance of a. It is easy to note that f(a) = Ina

is a classification. We study this classification and the topological properties of
the Web induced by it.

2 Web Classifications

Let W be the Web space.

Definition 1. Let f :W → P(W) be a function.

1. The function f is called reflective if x ∈ f(x), for all x ∈ W.
2. The function f is called hereditary if x ∈ f(y) implies f(x) ⊆ f(y).
3. The function f is a (Web) classification ofW if it is reflective and hereditary.

If f is a Web classification, then f(x) is called the class of the document x, and
x is a generator of the class f(x). A Web classification f is called unambigu-
ous if every class has a unique generator. Therefore, a Web classification f is
unambiguous iff f is injective.

Proposition 1. A function f : W → P(W) is a classification iff (x ∈ f(y) is
equivalent with f(x) ⊆ f(y)).

We denote by C(W) the set of all Web classifications, and by C0(W) the set
of all unambiguous Web classifications. We can define a relation over C(W) by
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f ≤ g iff f(x) ⊆ g(x) for all x ∈ W . This is a partial order on C(W). Let
u :W → P(W) defined by u(x) = {x} for all x ∈ W. Then u is the least element
of the poset (C(W),≤). If A ⊆ C(W), then the function g :W → P(W) defined
by g(x) = ∩f∈Af(x) for all x ∈ W is the infimum of the set A.

Definition 2.

1. A Web classification f is called stable relative to the operator T : C(W) →
C(W) if T (f) = f .

2. A monotone operator T : (C(W),≤) → (C(W),≤) is called classification
operator.

Since every subset of (C(W),≤) has infimum, by using the fixpoint theorem of
Knaster-Tarski[9], we get the following result:

Theorem 1. If T is a classification operator, then there is a stable classification
f ∈ C(W) with respect to the operator T . More, f(x) = ∩g∈C(W),T (g)≤gg(x) for
all x ∈ W.

3 Alexandrov Topology Associated to a Classification

In this section we devote a particular attention to the Alexandrov topology. More
details on Alexandrov topologies are in [1,8].

Let f : W → P(W) be a function. We define the relation ≤f= {(x, y) ∈
W ×W | x ∈ f(y)}. f is reflective iff ≤f is reflective, and f is hereditary iff ≤f

is transitive. Also, if f is a classification, then f is unambiguous iff ≤f is anti-
symmetric. Therefore defining a classification over W is equivalent to defining
a preorder over the same space. Moreover, defining an unambiguous classifica-
tion over W is equivalent to defining an order relation over W . Each preorder
corresponds one-to-one to an Alexandrov topology, and each partial order cor-
responds one-to-one to a T0 Alexandrov topology [1]. We can establish similar
correspondences between classifications and Alexandrov topologies. Then we can
study the Web space using the topological terms of connectivity, compactness,
density, continuity, etc., and we can use notions of neighbourhood, closure, fron-
tier, open and close sets. For instance, the monotone operators over (W ,≤f) are
continuous functions with respect to the Alexandrov topology associated to f .
We remind here some elementary notions.

A topology on the space W is a family τ of subsets of W such that:

1. ∅,W ∈ τ ,
2. for each family {Di}i∈I ⊂ τ we have ∪i∈IDi ∈ τ ,
3. if D1, D2 ∈ τ , then D1 ∩D2 ∈ τ .

The sets of a topology τ are called τ -open sets [5]. A set A ⊂ W is τ -closed
iff its complement W \ A is τ -open. A topology τ on W is called Alexandrov
topology if the family of the τ -closed sets forms a topology. The family of the
τ -closed sets forms also an Alexandrov topology called the dual of the topology τ .
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A topology can be defined directly by means of its open sets, or it can be defined
by means of a neighbourhood operator. A neighbourhood operator is a function
V :W → P(P(W)) such that V(x) holds the following conditions for all x ∈ W:

1. if V ∈ V(x), then x ∈ V ;
2. if V1, V2 ∈ V(x), then V1 ∩ V2 ∈ V(x);
3. if V ∈ V(x) and V ⊂ U , then U ∈ V(x);
4. for all V ∈ V(x), there is W ∈ V(x) such that V ∈ V(y) for all y ∈W .

If τ is a topology on W , then Vτ : W → P(P(W)) defined by Vτ (x) = {V ⊂
W | ∃D ∈ τ such that x ∈ D ⊂ V } is a neighbourhood operator on W . If V is a
neighbourhood operator on W , then τV = {D ⊂ W | D �= ∅ and D ∈ V(x), ∀x ∈
D} ∪ {∅} is a topology on W . The notions of topology and neighbourhood op-
erator are equivalent because τVτ = τ and VτV = V (see [2,5]).

We consider a function f : W → P(W), and define two topologies related to
the classification process.

First we consider a classification f : W → P(W). Then the function Vf :
W → P(P(W)) defined by Vf(x) = {V ⊆ W | f(x) ⊆ V } for all x ∈ W is a
neighbourhood operator on W . Let τf = {D ⊂ W | D �= ∅ and D ∈ Vf (x), ∀x ∈
D} ∪ {∅} be the topology generated by Vf . Since every document x ∈ W has a
minimal neighbourhood, it results that τf is an Alexandrov topology [1].
Let A(W) the set of the Alexandrov topologies on the spaceW , and A0(W) the
set of the T0 Alexandrov topologies on W . Then we have:

Theorem 2.

1. ϕ : (C(W),≤) → (A(W),⊇) defined by ϕ(f) = τf is a bijective and mono-
tone operator;

2. ϕ : (C0(W),≤)→ (A0(W),⊇) defined by ϕ(f) = τf is a bijective and mono-
tone operator.

Consequently, the study of Alexandrov topologies on W becomes relevant for
the classifications and search process over the Web.

The second topology is built starting from a reflective function f : W →
P(W). Then we can consider an extension F : P(W) → P(W) defined by
F (A) = ∪x∈Af(x) for all A ∈ P(W).

Proposition 2. F : P(W)→ P(W) defined above has the following properties:

1. A ⊆ F (A), for all A ∈ P(W);
2. if A ⊆ B, then F (A) ⊆ F (B);
3. F (∅) = ∅, and F (W) =W;
4. F (A ∪B) = F (A) ∪ F (B), for all A, B ∈ P(W).

From these properties it follows that τf = {D ⊆ W|F (W \ D) = W \ D}
is a topology on W . If clf(A) is the τf -closure of A, then F (A) ⊆ clf (A),
for all A ∈ P(W). If A is a τf -closed set, then F (A) = clf(A) = A. It is
easy to prove that if f is a classification on W , then F (F (A)) = F (A) for all
A ∈ P(W), and then F (A) = clf(A) for all A ∈ P(W). This means that τf is



84 G. Ciobanu and D. Rusu

an Alexandrov topology, and it is the dual of the topology τf . Indeed, if D ∈ τf ,
then f(x) ⊆ D for all x ∈ D, and we have D = ∪x∈D{x} ⊆ ∪x∈Df(x) ⊆ D.
Therefore D = F (D), i.e., W \D ∈ τf .

4 Link-Based Classifications of the Web

In this section we introduce and study the Web classifications based on the links
between the documents. The logic behind the classification based on links is
given by the related contents of two linked documents. Since such a content-
based relationship exists, the classifications based on links represent interesting
candidates for our approach. We would also like to sustain formally the idea
that the Web has a special kind of computability defined by travelling in search
of information. This computability is rather content-oriented. We look at two
entities composing the Web: the notion of page (document), and that of link.
Especially the latter is to be looked at more carefully, since it is the one that
provides the Web topologies. This section defines some topologies over the Web,
making possible a formal description of the Web connectivity, topological density,
and separation.

In the link-based ranking of the web pages there are two important algorithms:
PageRank and the authority measures of the Hyperlink-Induced Topic Search
(HITS) algorithm. PageRank is based on the probability of a random surfer to
be visiting a page. This probability is modelled with two actions: the chance of
the surfer to get bored and jump randomly to any page in the Web (with uniform
probability), or to choose randomly one of the links in the page. This defines
a Markov chain, that converges to a permanent state, where the probabilities
are defined as PRi = q

T + (1− q)
∑k

j=1, j �=i

PRmj

Lmj
, where T is the total number

of Web pages, q is the probability of getting bored (typically 0.15), mj with
j ∈ (1, . . . , k) are the pages that point to page i, and Lj is the number of
outgoing links in page j. Consistently with PageRank algorithm, we focus on
the process of surfing following the links in the page, and considering as relevant
the links pointing to a page as well as the outgoing links in a page.

We consider the collectionW of all pages available on-line. Due to its strongly
dynamic structure, we consider W as being a potentially infinite set (somehow
similar to the set of natural numbers). We define the links by a binary relation
↪→:W −→W called points-to; by a ↪→ b we denote that a document a contains
a link to a document b. ↪→ is extended to the smallest preorder � containing
↪→. We consider some topologies over W which are induced by this preorder �.

Thinking now in terms of Web navigation, we define first a surfing trip over
the Web documents.

Definition 3. Let a, b ∈ W and n ≥ 0. A n-trip from document a to document
b is a function f : {1, ..., n + 1} → W such that a = f(1) ↪→ f(2) ↪→ . . . ↪→
f(n + 1) = b. In this case n is called the length of the trip, and it is denoted by
λ(f). The image of f is denoted by Im(f).
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0-trips f : {1} → {a} with f(1) = a are used as a notation for a page a. We
denote by Lab the set of all trips from document a to document b.

Definition 4. Let a, b ∈ W.

1. Let k ≥ 0. We say that a is k-connected with b if there is a k-trip from a to
b. We denote this by a �k b.

2. We say that a is connected with b if there is a k ≥ 0 such that a is k-connected
with b. We denote this by a � b.

3. We say that a is biconnected with b if a is connected with b and b is connected
with a; this is denoted by a � b.

Proposition 3. The relation � is a preorder on W called the trip preorder.
Moreover, � is an equivalence over W.

Let a ∈ W, and A ⊆ W . We have the following notations:
Outa = {x ∈ W | a � x},
Ina = {x ∈ W | x � a},
Neta = Ina ∪Outa = {x ∈ W | a � x or x � a},
Ra=Ina ∩Outa={x ∈ W | a � x} – the center of Neta,
OutA = ∪a∈AOuta, InA = ∪a∈AIna,
NetA = InA ∪OutA = ∪a∈ANeta, RA = ∪a∈ARa,
Ia = {(x, y) ∈ W ×W | y � a⇒ x � a},
Oa = {(x, y) ∈ W ×W | a � y ⇒ a � x},
 ={(x, x) | x ∈ W}.

Ia and Oa define certain similarities regarding the contents of the documents
based on the common links. We call both of them as content-based surroundings
(entourages in topology, according to the notion introduced by Bourbaki).

Proposition 4. Let a, b ∈ W. Then we have
1. b ∈ Ina iff a ∈ Outb;
2. if b ∈ Ina, then Inb ⊆ Ina, and Outa ⊆ Outb;
3. if b ∈ Outa, then Outb ⊆ Outa, and Ina ⊆ Inb;
4. if b ∈ Ra, then Inb = Ina, Outa = Outb, Netb = Neta;
5. Ia = (W × (W\Ina)) ∪ (Ina ×W);
6. (W ×W)\Ia = (W\Ina)× Ina;
7. Oa = (W × (W\Outa)) ∪ (Outa ×W);
8. (W ×W)\Oa = (W\Outa)×Outa;
9.  ⊂ Oa ∩ Ia;
10. Oa and Ia are transitive relations.

Let U ⊂ W×W, and x ∈ W. We denote by U [x] the section {y ∈ W | (x, y) ∈ U}.

Proposition 5.
1. x � y ⇒ Ia[y] ⊆ Ia[x], and Oa[x] ⊆ Oa[y], ∀a ∈ W.
2. x � y iff y ∈ Iy [x] iff x ∈ Ox[y].

We consider an instance of the Web space, and use the notations �i= ∩a∈WIa,
and �o= ∩a∈WOa.
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As we already mentioned, we use an infinite W to express the dynamics of
the Web. Here we define some operators. Let Vi : W → P(P(W)) given by
Vi(x) = {V ⊂ W | there is a finite subset A of W such that ∩a∈AIa[x] ⊆ V }. In
a similar way, we can define Vo :W → P(P(W)) by Vo(x) = {V ⊂ W | there is
a finite subset A of W such that ∩a∈AOa[x] ⊆ V }.

Proposition 6. Vi and Vo are neighbourhood operators over W.

Let τi = {D ⊂ W | D �= ∅ and D ∈ Vi(x), ∀x ∈ D} ∪ {∅} be the topology
generated by Vi, and τo = {D ⊂ W | D �= ∅ and D ∈ Vo(x), ∀x ∈ D} ∪ {∅} be
the topology generated by Vo. We call τi the in-topology, and τo the out-topology.
It is easy to note that these topologies are dual, and the results in one of them are
obtained by duality from the results in the other. Consequently we can restrict
our study to only one of them, namely to τi. If A ⊆ W , then intiA, cliA, FriA
are respectively the interior, the closure, and the frontier of A with respect to
τi.

Theorem 3. Let x, y ∈ W.

1. If x � y, then Vi(x) ⊆ Vi(y).
2. Ina = cli{a} for all a ∈ W.
3. x � y iff x �i y iff y �o x (expressing that �i and �o are dual).

Proof. 1. If x � y, then Ia[y] ⊆ Ia[x] for all a ∈ W . If V ∈ Vi(x), then there is
a finite subset A of W such that ∩a∈AIa[x] ⊆ V . Since ∩a∈AIa[y] ⊆ ∩a∈AIa[x],
we have ∩a∈AIa[y] ⊆ V , and then V ∈ Vi(y). Therefore Vi(x) ⊆ Vi(y).
2. If x ∈ Ina, then x � a. So Vi(x) ⊆ Vi(a). Then a ∈ V , for all V ∈ Vi(x).
Therefore x ∈ cli{a}. Now, let x ∈ cli{a}. Then a ∈ Ib[x], for all b ∈ W . So
a ∈ Ia[x]. Then x � a, that is x ∈ Ina.
3. We have x � y iff x ∈ cli{y} iff y ∈ Ia[x], for all a ∈ W . Therefore x � y iff
(x, y) ∈�I , that is x �I y. The equivalence x � y iff y �o x is proved analogous.

Consequently, �i [x] = Outx, and �o [x] = Inx, for all x ∈ W. Hence �i

[x] is a τo-closed set, and �o [x] is a τi-closed set. According to Proposition
4(2), we can have a classification fi : W → P(W) defined by fi(a) = Ina, as
well as a classification fo : W → P(W) defined by fo(a) = Outa. We study
the Alexandrov topologies associated to these classifications. In fact, we have
τi = τfo and τo = τfi . We remark that the specialization preorder (i.e., x ≤ y iff
x ∈ cli({y})) is identical to the trip preorder. τi topology is not the only topology
satisfying this identity. The coarsest topology over W with this property is the
upper topology, i.e., the topology within which all closed sets are the sets Ina,
for all a ∈ W. The finest topology with this property is the Alexandrov topology,
i.e., the topology within which all closed sets are the sets InA, for all A ⊆ W .
There is also another interesting topology between these two extremes, namely
the Scott topology.

If B ⊆ W , then intiB, cliB and FriB are respectively the interior, the closure,
and the frontier of B with respect to τi. In an Alexandrov topology, the closure of
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every union of sets is equal to the union of their closures. Since cli{x} = Inx for
all x ∈ W, it follows that cliA = InA, intiA =W \ InW\A, and FriA = InA ∩
InW\A for all A ⊂ W . Since cliA = A∪FriA, we have InA = A∪(InA∩InW\A).

4.1 Content-Based Hierarchies

We define various topologies induced by the k-trip functions rather by the trip
function. These topologies can be used to define a hierarchy of the possible trips
over the web, and the Alexandrov topology τi is a lower limit of these topologies.

We use the relation y ↪→k x defined by a sequence x1, x2, ..., xk+1 ∈ W such
that y = x1 ↪→ x2 ↪→ ... ↪→ xk+1 = x. We note that z ↪→k y and y ↪→k x implies
z ↪→2k x. Let Ink

x = {y ∈ W|y ↪→k x} ∪ {x} and In≤k
x = ∪j=1,kInj

x, where
k ≥ 1.

We use a particular case for Proposition 2 by considering hk : P(W)→ P(W)
defined by hk(A) = ∪x∈AIn≤k

x for all A ∈ P(W).

Proposition 7. This operator has the following properties:

1. A ⊆ hk(A), for all A ∈ P(W);
2. hk(A ∪B) = hk(A) ∪ hk(B), for all A, B ∈ P(W);
3. hk(∅) = ∅;
4. hk(hk(A)) = h2k(A), for all A ∈ P(W);
5. if A ⊆ B, then hk(A) ⊆ hk(B);
6. hk(A) ⊆ hk+1(A), for all A ∈ P(W);

We remark that hk(∪i∈IAi) = ∪i∈Ihk(Ai) for every family of subsets {Ai}i∈I ⊂
P(W). Since hk(hk(A)) �= hk(A), the operator hk is not a Kuratowski operator
(i.e., satisfying (1), (2), (3) and hk(hk(A)) = hk(A), for all A ∈ P(W)). However,
we can consider that hk is a weaker Kuratowski operator.

Definition 5. A subset A ∈ P(W) is called k-closed iff hk(A) = A.

Let τk = {D ⊆ W | W\D is k-closed }. ¿From the properties (1), (2), (3) and
(5) of the previous proposition, it results that τk is a topology over the spaceW .
Since hk(hk(A)) �= hk(A), it results that hk(A) ⊆ clk(A), where clk(A) is the
closure of A in the topology τk. We also remark that y ↪→k x iff y ∈ hk({x}).

From (1) and (6) we can derive that if A is k + 1-closed, then A is k-closed.
Therefore τk+1 ⊆ τk, for all k ≥ 1. Since InA = ∪k≥1hk(A) and the operator
h(A) = InA is a Kuratowski operator generating the Alexandrov topology, we
have that τi = limk→∞τk = ∩k≥1τk. Therefore we have the following hierarchy:

τi ⊆ . . . ⊆ τk+1 ⊆ τk ⊆ . . . ⊆ τ1

If we impose a bounded number n, then hn(hn(A)) = hn(A) for all A ∈ P(W).
Then we have hn(A) = InA for all A ∈ P(W), and τn = τi.
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5 Topological Properties of the Web

Based on the topological notions presented in the previous sections, we present
some results regarding the connectivity, density and separation of the Web. Many
papers devoted to the Web structure focuses on the connectivity of the Web
pages. We also start by studying the connectivity of our topologies.

Since {a} is a τi-connected set, it results that cli{a} is a τi-connected set.
Therefore Ina is τi-connected. In a similar way, since {a} is a τo-connected set,
it results that clo{a} is a τo-connected set, and Outa is τo-connected. Moreover,
considering A ⊂ W , if A is a τi-connected set, then InA is a τi-connected set,
and if A is a τo-connected set, then OutA is a τo-connected set.

Let (X, τ) be a topological space, and x0, x1 ∈ X . A topological path in
(X, τ) from x0 to x1 is a continuous function g : [0, 1] → (X, τ) with g(0)=x0,
and g(1)=x1.

If g : [0, 1] → (X, τ) is a topological path from x0 to x1, then g([0, 1]) is a
τ -connected set in X .

Theorem 4. Let f : {1, ..., n} → W be a trip from a to b, and let the functions
g, h : [0, 1]→W be defined by

g (t) =

f (1) , t ∈ 0, 1
n

...
f (k) , t ∈ k−1

n
, k

n
,

...
f (n) , t ∈ n−1

n
, 1

h (t) =

f (1) , t ∈ 0, 1
n

...
f (k) , t ∈ k−1

n
, k

n

...
f (n) , t ∈ n−1

n
, 1

Then g is a topological path in (X, τi) from a to b, and h is such a path in (X, τo)
from a to b.

Proof. It is clear that g is continuous on [0, 1
n ), ( 1

n , 2
n ),. . . , (n−1

n , 1]. We prove
that g is continuous in 1

n , 2
n , ...,n−1

n . Let t0 = k
n , k ∈ {1, .., n − 1} and let

V ∈ Vi(g(t0)). Then ∩a∈W Ia[g(t0)] ⊆ V. Let ε ∈ (0, 1
2n ) and t ∈ (t0 − ε, t0 + ε).

If t ≤ t0, then (g(t0), g(t)) = (f(k), f(k)) ∈ ∩a∈W Ia ⇒ g(t) ∈ V. If t > t0,
then g(t) = f(k + 1). Because f(k) ↪→ f(k + 1), it results f(k) � f(k + 1). So
(g(t0), g(t)) = (f(k), f(k + 1)) ∈�I⇒ g(t) ∈ V . Therefore g is τi -continuous
and g(0) = a and g(1) = b.

Theorem 5. If f is a trip from a to b, then Im(f) is a τi-connected set, and
also a τo-connected set.

A web page a ∈ W is called an α-point if Ina ⊆ Outa. A web page a ∈ W is called
an ω-point if Outa ⊆ Ina. It is obvious that a is an α-point iff Neta = Outa,
and a ∈ W is an ω-point iff Neta = Ina. We denote by Γ the set of α-points,
and by Ω the set of all ω-points. Considering a ∈ W and B ⊆ W , we call B as
an in-branch of a if there are b ∈ Γ , and f ∈ Lba such that B = Im(f). In a
similar way, B is an out-branch of a if there are b ∈ Ω and f ∈ Lab such that
B = Im(f). Finally, B is a branch of a if B is either an in-branch, or an out-
branch of a. Every branch of a is a τi-connected set, as well as a τo-connected
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set. Let Bi,a be the set of all in-branches of a, Bo,a the set of all out-branches of
a, and Ba = Bi,a ∪ Bo,a.

Theorem 6. For all a ∈ W, Ina = ∪B∈Bi,aB, Outa = ∪B∈Bo,aB, and Neta =
∪B∈BaB.

Proof. Let a ∈ W . It is obvious that ∪B∈Bi,aB ⊆ Ina. Let now x ∈ Ina and
x1 = x. We consider the following algorithm:

Step (k ≥ 1) : If xk ∈ Γ break; else let xk+1 ∈ Inxk
such that xk+1 /∈

Outxk
; k + +; continue;

Because Ina is finite, there is l ∈ N∗ such that xl ∈ Γ . Since xk+1 ∈ Inxk
, ∀k ∈

{1, .., l− 1}, it results that Outx1 ⊆ Outx2 ⊆ ... ⊆ Outxl
. So x ∈ Outxl

. Because
x ∈ Ina, a ∈ Outxl

. Therefore, there is f ∈ Lxla such that x ∈ Im(f). It follows
that Ina ⊂ ∪B∈Bi,aB.

The equality Outa = ∪B∈Bo,aB is proved by similar arguments.

Corollary 1. Ina, Outa and Neta are τi, τo-connected sets.

In general, with respect to a classification, the Web connectivity can be described
in the following way [1]:

Theorem 7. Let f be an unambiguous classification. Then W is connected with
respect to τf iff for every a, b ∈ W, there exist a0, . . . , an+1 ∈ W such that a = a0,
an+1 = b and f(ai) ∩ f(aj) �= ∅ if |i− j| ≥ 1.

We work with instances of the Web, i.e., the sets of Web pages we consider at
each moment are finite (even arbitrary large). The following result shows that
α-points, as well as the ω-points, can generate the whole web space with respect
to our topologies.

Theorem 8. W is generated by Γ or by Ω:
1. Γ is a τo-dense set, i.e. W = clo(Γ ) = OutΓ .
2. Ω is a τi-dense set, i.e., W = cli(Ω) = InΩ.

Proof. Let a ∈ W . Then a ∈ Ina = ∪B∈Bi,aB. Therefore, there is B ∈ Bi,a such
that a ∈ B. Since B ∈ Bi,a, there is b ∈ Γ and f ∈ Lba such that B = Im(f). It
results that B ⊆ Outb. Therefore a ∈ Outb. We obtained that W = ∪b∈Γ Outb.
Then W = ∪b∈Γ Outb = ∪b∈Γ clo{b} = clo(∪b∈Γ {b}) = clo(Γ ).

We show that our topologies τi and τo are generated by quasi-pseudo-metrics. We
remind that a quasi-pseudo-metric onW is a function d :W×W → [0,∞) which
satisfies the following conditions: d(x, x) = 0, ∀x ∈ W, and d(x, y) ≤ d(x, z) +
d(z, y), ∀x, y, z ∈ W. A quasi-pseudo-metric d is pseudo-metric if d(x, y) =
d(y, x), for all x, y ∈ W.

Proposition 8. For all a ∈ W, let di,a:W ×W → [0,∞),

di,a(x, y) =
{

0, (x, y) ∈ Ia

1, (x, y) /∈ Ia
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for all (x, y) ∈ W ×W. Then di :W ×W → [0,∞) defined by

di(x, y) =
∑
a∈W

di,a(x, y)

is a quasi-pseudo-metric on W, and �i= {(x, y) ∈ W × W | di(x, y) < ε},
∀ε ∈ (0, 1).

Proposition 9. For all a ∈ W, let do,a:W ×W → [0,∞),

do,a(x, y) =
{

0, (x, y) ∈ Oa

1, (x, y) /∈ Oa

for all (x, y) ∈ W ×W. Then do :W ×W → [0,∞) defined by

do(x, y) =
∑
a∈W

do,a(x, y)

for all (x, y) ∈ W × W is a quasi-pseudo-metric on W, and �o= {(x, y) ∈
W ×W | do(x, y) < ε}, ∀ε ∈ (0, 1).

We note that di(x, y) = card{a ∈ W | (x, y) /∈ Ia}, and do(x, y) = card{a ∈ W |
(x, y) /∈ Oa}. Moreover, τi=τdi , and τo=τdo , where τdi is the topology generated
by di, and τdo is the topology generated by do [5]. This means that the topological
notions can be described in terms of quasi-pseudo-metrics.

We can define another quasi-pseudo-metric able to give a better representation
of Ra, the center of Neta. The function is dM :W ×W → [0,∞) defined by

dM (x, y) = max{di(x, y), do(x, y)}

for all (x, y) ∈ W ×W. It is clear that di, do ≤ dM .

Proposition 10. dM is a quasi-pseudo-metric on W, and τi ∪ τo ⊆ τM , where
τM is the topology on W generated by dM .

Theorem 9. clM{a} = Ra for all a ∈ W, and clMA = RA for all A ⊆ W,
where clMA is the τM -closure of A.

We can build now another set of generators for W . Since W is a finite set, we
suppose thatW = {x1, ..., xn}. Let a1 = x1. We consider the following algorithm:
Step i (i ≥ 2) : We already have the set {a1, ..., ak}. If xi �� aj for 1 ≤ j ≤ k,
ak+1 = xi; i++ and continue; otherwise i++ and continue. If i > n, then break.
This algorithm builds the set A = {a1, ..., am} ⊆ W , where every pair of elements
ai and aj are not biconnected, ∀i, j with i �= j. Hence Rai ∩Raj = ∅, ∀i, j with
i �= j. Since � is an equivalence, it follows that W = ∪a∈ARa. Therefore
W = clMA = RA, and we have a new set A of generators.

According to some previous results, we have �i �=  and �o �=  . Therefore
(W , τi) and (W , τo) are not Hausdorff separate, i.e., they are not T2 separate
(see [5]). Since generally single point subsets of W are not τi (or τo) closed, the
spaces (W , τi) and (W , τo) are not T1 separate.
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With respect to an arbitrary classification, we have the following results re-
lated to the Web separation according to [1]:

Theorem 10. Let f be a classification. Then (W , τf ) is regular (see [5]) iff f(x)
is a τf -closed set for all x ∈ W.

Theorem 11. Let f be a classification. Then (W , τf ) is pseudo-metrizable (see
[5]) iff f(x) is a finite τf -closed set for all x ∈ W.

The existence of a pseudo-metrics allows the quantitative evaluations with re-
spect to a Web classification.

6 Conclusion

In this paper we consider the Web as a dynamic set of web pages together with
a binary relation denoting that there is a link from a page to another. The
complexity of this structure derives not only from the quantity, but mainly from
its dynamics: new documents appear and disappear together with their links,
cutting off all the corresponding nodes and arcs in the web topology.

An important practical operation over the Web is given by searching, and Web
searching is based on indexing and classification. In this paper we introduce and
study some topological aspects related to the important operations of searching
and classification over the Web. Classification is dictated by some criteria. In
order to define a classification, we associate a set to each document. Classification
criteria can be defined as a classification operator. The Alexandrov topologies
play an important role because they are equivalent to the Web classifications. We
define and study the Alexandrov topologies associated to the Web classifications.
This approach provides a suitable formal framework to express Web connectivity,
density, and separation. As a consequence of investigating the relations between
web pages and the dynamics of the Web documents, we can define a notion
of Alexandrov computability for the web search and classification. We define a
content-based hierarchy given by various topologies induced by the the finite
trips over the web, and the Alexandrov topology τi is a lower limit of these
topologies.

According to our knowledge, there are no similar topological approach to the
problem of Web classification and computability. The further work consists in
both defining some efficient operators for classification, and providing algorithms
of building Web classifications.
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Abstract. The Calculus of Looping Sequences (CLS) is a calculus suit-
able to describe biological systems and their evolution. CLS terms are
constructed by starting from basic constituents and composing them by
means of operators of concatenation, looping, containment and parallel
composition. CLS terms can be transformed by applying rewrite rules.
We give a labeled transition semantics for CLS by using, as labels, con-
texts in which rules can be applied. We define bisimulation relations that
are congruences with respect to the operators on terms, and we show an
application of CLS to the modeling of a biological system and we use
bisimulations to reason about properties of the described system.

1 Introduction

In the last few years many formalisms originally developed by computer scientists
to model systems of interacting components have been applied to Biology. Among
these, there are Petri Nets [9], Hybrid Systems [1], and the π-calculus [6,12].
Moreover, some new formalisms have been proposed to describe biomolecular
and membrane interactions [2,4,5,7,10,11]. The formal modeling of biological
systems allows the development of simulators and the verification of properties
of the described systems.

The π–calculus and new calculi based on it [10,11] have been particularly suc-
cessful in the description of biological systems. Interactions of biological compo-
nents are modeled as communications on channels whose names can be passed.
Sharing names of private channels allows describing biological compartments,
such as membranes. Calculi such as those proposed in [4,5,7] give an abstract
description of systems and offer special biologically motivated operators.

In [3] we have presented a new calculus, called Calculus of Looping Sequences
(CLS for short), for describing biological systems and their evolution, and we
have shown how to use it for modeling interactions among bacteria and bac-
teriophage viruses as well as bacteria sporulation. In this paper we focus on
semantic aspects of the formalism, in particular on bisimulation relations. We
define a simplified variant of CLS (that we still call CLS in the following), we
study bisimulations for it, and we apply such relations on the CLS model of a
real example of gene regulation.
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The calculus we propose is more general than those in [4,5,7], which could
be encoded into CLS (see [3] for an example), and with respect to the π–calculi
and calculi based on the π–calculus [10,11], which are more expressive, it has
the advantage of allowing the definition of bisimulations that are congruences.

The terms of our calculus are constructed by starting from basic constituent
elements and composing them by means of operators of sequencing, looping, con-
tainment and parallel composition. Sequencing can be used to describe biological
elements such as DNA fragments and proteins. DNA fragments can be modeled
as sequences of nucleotides or as sequences of genes; proteins can be modeled
as sequences of amino acids or as sequences of interaction sites. Looping allows
tying up the ends of a sequence, thus creating a circular sequence of the con-
stituent elements. We assume that the elements of a circular sequence can rotate,
and this motivates the terminology of looping sequence. A looping sequence can
represent a membrane. This description of membranes is finer than the one given
in specialized membrane calculi (see e.g. [4,11]) as it allows representing interac-
tion of membrane constituent elements. The containment operator can be used
to represent that an element is inside the membrane, and parallel composition
expresses juxtaposition of elements.

A structural congruence relation allows considering as equivalent terms that
are intended to represent the same biological system. The evolution of a system
is described by a set of rewrite rules to be applied to terms. The definition of the
rewrite rules depends on the system and the evolution one wants to represent.

Bisimilarity is widely accepted as the finest extensional behavioural equiva-
lence one may want to impose on systems. It may be used to verify a property
of a system by assessing the bisimilarity of the considered system with a system
one knows to enjoy that property. The notion of congruence is very important for
a compositional account of behavioural equivalence. This is true, in particular,
for complex systems such as biological ones.

To define bisimilarity of systems, these must have semantics based on labeled
transition relations capturing potential external interactions between systems
and their environment. A labeled transition semantics for CLS is derived from
rewrite rules by using as labels contexts in which rules can be applied, in the
style of Sewell [13] and Leifer and Milner [8]. We define bisimulation relations
and we show them to be congruences with respect to the operators on terms.

The main difference between the definition of CLS we give in this paper with
respect to the one in [3], is the presence of some constraints on the syntax of terms
which simplifies the definition of the labeled transition relation for the calculus.
We model an example of gene regulation, namely the regulation of the lactose
operon in E. coli, to show that the new variant of the calculus, though simple,
is expressive enough to model real systems. We use bisimulations to obtain an
equivalent simplified model and to verify a property of the described system.

2 Calculus of Looping Sequences

In this section we introduce the Calculus of Looping Sequences (CLS).
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Definition 1 (Terms). Terms T , looping sequences SL, elementary sequences
S, and elementary constituents E of CLS are given by the following grammar:

T ::= S SL T | T SL � T

SL ::= S
L

S ::= E ε S · S
E ::= a b c . . .

We denote with E the set of elementary constituents a, b, c, . . ..
An elementary sequence S may be either an element in E or the empty se-

quence ε or a concatenation of elementary sequences. An example of elementary
sequence is a · b · c. We denote with S the set of elementary sequences.

A looping sequence SL is obtained by applying the looping operator
( )L to

an elementary sequence S. A term T may be either an elementary sequence S,
or a looping sequence SL, or the combination of a looping sequence and a term
by means of the containment operator � , or the combination of two terms by
means of the parallel composition operator | .

A looping sequence
(
S
)L is a closed circular sequence of the elements consti-

tuting the elementary sequence S. Term
(
S
)L � T represents the containment of

term T in the looping sequence
(
S
)L. The set of all terms is denoted by T .

Brackets can be used to indicate the order of application of the operators in
a term. We assume that the � operator has precedence over the | operator,
therefore S � T1 | T2 stands for (S � T1) | T2. Moreover, from the definition of
CLS terms, the � operator is right–associative, therefore S1 � S2 � T denotes
S1 � (S2 � T ). In Fig. 1 we show some examples of CLS terms and their visual
representation.

Definition 2 (Structural Congruence). The structural congruence relations
≡S and ≡T are the least congruence relations on elementary sequences and on
terms, respectively, satisfying the following axioms:

S1 · (S2 · S3) ≡S (S1 · S2) · S3 S · ε ≡S ε · S ≡S S

T1 | T2 ≡T T2 | T1 T1 | (T2 | T3) ≡T (T1 | T2) | T3 ε ≡T ε
L

T | ε ≡T T S
L � ε ≡T S

L
S1 · S2

L � T ≡T S2 · S1
L � T

Axioms of the structural congruence state the associativity of · and | , the
commutativity of the latter and the neutral role of ε and

(
ε
)L. We remark that(

ε
)L � T �≡ T . Moreover, axiom

(
S1 · S2

)L � T ≡T

(
S2 · S1

)L � T says that
elementary sequences in a looping can rotate.

Note that ≡S can be lifted to ≡T , in the sense that if S ≡S S′ then S ≡T S′.
Moreover, note that the first operand of the � operator is not a general term,
but a looping sequence

(
S
)L, which is an element of SL, hence ≡T cannot be

applied to it, but ≡S can be applied to the sequence S. In the following, for
simplicity, we will use ≡ in place of ≡T .
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Fig. 1. (i) represents a · b · c
L; (ii) represents a · b · c

L � d · e
L; (iii) represents

a · b · c L � ( d · e L | f · g)

Now, we define rewrite rules, which can be used to describe the transformation
of terms by giving a transition relation as the semantics of rule applications.
Let us consider a set of term variables TV ranged over by X, Y, Z, . . ., a set
of elementary sequence variables SV ranged over by x̃, ỹ, z̃, . . ., and a set of
element variables X ranged over by x, y, z, . . .. All these sets are possibly infinite
and pairwise disjoint. We denote by V the set of all variables, V = TV ∪SV ∪X .

An instantiation is a function σ : V → T ; let Σ be the set of all the possible
instantiations. With TV we denote the set of CLS terms which may also contain
variables in V and, given T ∈ TV , with Tσ we denote the term obtained by
replacing each occurrence of each variable XV ∈ V appearing in T with the
corresponding term σ(XV). An instantiation σ must respect the type of variables,
thus for X ∈ TV , x̃ ∈ SV and x ∈ X we have σ(X) ∈ T , σ(x̃) ∈ S and σ(x) ∈ E ,
respectively.

Definition 3 (Rewrite Rule). A rewrite rule is a pair of terms (T, T ′), de-
noted with T �→T ′, where T, T ′ ∈ TV , T �≡ ε and such that V ar(T ′) ⊆ V ar(T ).
We denote with " the infinite set of all the possible rewrite rules.

A rewrite rule (T, T ′) states that a ground term Tσ, obtained by instantiating
variables in T by some instantiation function σ, can be transformed into the
ground term T ′σ. The rewrite rules must be applied to terms only if they occur
in a legal context. Contexts are defined as follows.

Definition 4 (Contexts). Contexts C are given by the following grammar:

C ::= � C | T T | C S
L � C

where T ∈ T and S ∈ S. Context � is called the empty context.

By definition, every context contains a single �.
Let us assume C, C′ ∈ C. With C[T ] we denote the term obtained by replacing

� with T in C; with C[C′] we denote the context composition, whose result is
the context obtained by replacing � with C′ in C.

Definition 5 (Reduction Semantics). Given a set of rewrite rules R ⊆ ",
the reduction semantics of CLS is the least relation closed wrt ≡ and satisfying
the following inference rule:

T �→ T ′ ∈ R Tσ 	≡ ε σ ∈ Σ C ∈ C
C[Tσ] → C[T ′σ]
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Definition 6 (Parallel Contexts). Parallel contexts CP are a subset of con-
texts given by the following grammar, where T ∈ T :

CP ::= � CP | T T | CP

Given C1, C2 ∈ CP , we write C1 # C2 if the two parallel contexts share some
components, namely if ∃T1 �≡ ε, T2, T3 ∈ T .C1[ε] ≡ T1 | T2 ∧ C2[ε] ≡ T1 | T3. We
write C1 � # C2 otherwise. Contexts are used in the labeled semantics of CLS.

Definition 7 (Labeled Semantics). Given a set of rewrite rules R ⊆ ", the
labeled semantics of CLS is the labeled transition system given by the following
inference rules:

(rule appl)
T �→ T ′ ∈ R C[T ′′] ≡ Tσ T ′′ 	≡ ε σ ∈ Σ C ∈ C

T ′′ C−→ T ′σ

(cont)
T

�−→ T ′

T ′′ � T
�−→ T ′′ � T ′

(par)
T

C−→ T ′ C ∈ CP C 	 � � | T ′′

T | T ′′ C−→ T ′ | T ′′

where the dual version of the (par) rule is omitted.

The labeled semantics is similar to the one in [13] for ground term rewriting. A
transition T

C−→ T ′ indicates that the application of the context C to T creates
an instance of the left part of a rewrite rule, with target instance T ′. Intuitively,
the transition makes observable the context C, which, when filled with the term
T , can be reduced to T ′, namely C[T ] �→ T ′ is an instance of a rewrite rule.
Note that, since in rule (rule appl) T ′′ �≡ ε, the context C used as label cannot
provide completely the left part of the rule. Differently with respect to [13],
we allow to observe the context in the reduction of a subterm of a parallel
composition. Namely, if C[T ] �→ T ′ is an instance of a rewrite rule, then we have
that T |T ′′ C−→ T ′|T ′′ (rule (par)), under the condition that T ′′ does not provide
part of the context C. In this manner we obtain that the context observed is the
minimum necessary to apply a rule.

The following proposition states that the labeled semantics is equivalent to
the reduction semantics when the context is empty. The proof is immediate.

Proposition 1. T → T ′ ⇐⇒ T
�−→ T ′.

Lemma 1 gives a property of parallel contexts, and Lemma 2 gives the labeled
semantics with respect to context composition.

Lemma 1. Given T, T ′ ∈ T and a parallel context C ∈ CP , it holds that:
C[T ]|T ′ ≡ C[T |T ′].

Proof. Since C ∈ CP there exists TC such that C[T ] = TC |T , and moreover we
have that (TC |T )|T ′ ≡ TC |(T |T ′) = C[T |T ′].
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Lemma 2. T
C[C′]−−−→ T ′ ⇐⇒ C′[T ] C−→ T ′.

Proof. By induction on the depth of the derivation tree of T
C[C′]−−−→ T ′.

– Base. Derivation trees of depth 1 are obtained by rule (rule appl).

T
C[C′]−−−→ T ′ ⇐⇒ there exists T1 �→ T ′

1 ∈ R such that T1σ = C[C′[T ]] and
T ′

1σ = T ′ for some instantiation function σ ⇐⇒ C′[T ] C−→ T ′.
– Induction step. We assume that the thesis holds for depth n.

- (par). We first prove the direction =⇒. Let us assume T = T1|T2; then

T ′ = T ′
1|T2, T1

C[C′]−−−→ T ′
1, C[C′] ∈ CP and C[C′] � # �|T2 (which implies

C � # �|T2). We have C′[T1]
C−→ T ′

1 by induction hypothesis, which implies
C′[T1]|T2

C−→ T ′
1|T2 (by applying rule (par)), and hence C′[T ] C−→ T ′, since

T ′ = T ′
1|T2, C′ ∈ CP and by Lemma 1. The proof of ⇐= is symmetric.

- (cont). This case is trivial because C[C′] = �. #�

We introduce a notion of strong bisimilarity between CLS terms.

Definition 8 (Strong Bisimulation). A binary relation R on terms is a
strong bisimulation if, given T1, T2 such that T1RT2, the two following condi-
tions hold:

T1
C−→ T ′

1 =⇒ ∃T ′
2 such that T2

C−→ T ′
2 and T ′

1RT ′
2

T2
C−→ T ′

2 =⇒ ∃T ′
1 such that T1

C−→ T ′
1 and T ′

2RT ′
1.

The strong bisimilarity ∼ is the largest of such relations.

The strong bisimilarity ∼ is a congruence with respect to CLS operators.

Proposition 2 (Strong Congruence). The relation ∼ is a congruence.

Proof. We show that S def
= { (C[T1], C[T2]) | T1 ∼ T2 and C ∈ C} is a bisimula-

tion. In particular, we note that ∼ ⊆ S and T1ST2 =⇒ C[T1] S C[T2]. Finally,

given T1 ∼ T2, we prove by induction on the derivation of C[T1]
C′
−→ T ′

1 that

C[T1]
C′
−→ T ′

1 =⇒ ∃T ′
2.C[T2]

C′
−→ T ′

2 and T ′
1ST ′

2. A detailed proof can be found
in Appendix A.1. #�

We denote with �=⇒ a sequence of zero or more transitions �−→, and with C=⇒,
where C �= �, the sequence of transitions such that T

C=⇒ T ′ if and only if there
exist T1, T2 ∈ T such that T

�=⇒ T1
C−→ T2

�=⇒ T ′. We have two lemmas.

Lemma 3. If one of the following two conditions holds: (i) C, C′ ∈ CP with
C � # C′, (ii) C = �, C′ ∈ C, then T

C=⇒ T ′ ⇐⇒ C′[T ] C=⇒ C′[T ′].

Proof. By definition of C=⇒ and of the labeled semantics. #�
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Lemma 4. T
C[C′]
=⇒ T ′ ⇐⇒ C′[T ] C=⇒ T ′.

Proof. First of all, it is worth noticing that, by Lemma 3, T
�=⇒ T ′ ⇐⇒

C[T ] �=⇒ C[T ′] for any context C. Now, T
C[C′]
=⇒ T ′ ⇐⇒ there exist T1, T2 such

that T
�=⇒ T1

C[C′]−−−→ T2
�=⇒ T ′. By Lemma 2, we have that C′[T1]

C−→ T2, and

hence C′[T ] �=⇒ C′[T1]
C−→ T2

�=⇒ T ′, that is C′[T ] C=⇒ T ′. #�

Most of the time we want to consider bisimilarity without taking into account
system internal moves. This relation is usually called weak bisimilarity.

Definition 9 (Weak Bisimulation). A binary relation R on terms is a weak
bisimulation if, given T1, T2 such that T1RT2, the two following conditions hold:

T1
C−→ T ′

1 =⇒ ∃T ′
2 such that T2

C=⇒ T ′
2 and T ′

1RT ′
2

T2
C−→ T ′

2 =⇒ ∃T ′
1 such that T1

C=⇒ T ′
1 and T ′

2RT ′
1.

The weak bisimilarity ≈ is the largest of such relations.

Proposition 3 (Weak Congruence). The relation ≈ is a congruence.

Proof. Similar to the proof of Proposition 2, by using Lemmas 3 and 4. A detailed
proof can be found in Appendix A.2. #�
Example 1. Consider the following set of rules:

R = { a | b �→ c , d | b �→ e , e �→ e , c �→ e , f �→ a }

We have that a ∼ d, because a
�|b−−→ c

�−→ e
�−→ e

�−→ . . . and d
�|b−−→ e

�−→ e
�−→ . . .,

and f ≈ d, because f
�−→ a

�|b−−→ c
�−→ e

�−→ e
�−→ . . .. On the other hand, f �∼ e

and f �≈ e.

One may also be interested in comparing the behaviour of terms whose evolution
is given by the application of two possibly different sets of rewrite rules. To this
aim we define CLS systems as pairs consisting of a CLS term and a set of rewrite
rules.

Definition 10 (System). A CLS System is a pair 〈T,R〉 with T ∈ T , R ⊆ ".

Given a system 〈T,R〉, we writeR : T
C−→ T ′ to mean that the transition T

C−→ T ′

is performed by applying a rule in R, and we write R : T
C=⇒ T ′ to mean that

the sequence of transitions T
C=⇒ T ′ is performed by applying rules in R. Now,

we introduce strong and weak bisimilarities between CLS systems. With abuse
of notation we denote such relations with ∼ and ≈, respectively.

Definition 11 (Strong Bisimulation on Systems). A binary relation R on
CLS systems is a strong bisimulation if, given 〈T1,R1〉 and 〈T2,R2〉 such that
〈T1,R1〉R〈T2,R2〉, the two following conditions hold:
R1 : T1

C−→ T ′
1 =⇒ ∃T ′

2 such that R2 : T2
C−→ T ′

2 and 〈T ′
1,R1〉R〈T ′

2,R2〉
R2 : T2

C−→ T ′
2 =⇒ ∃T ′

1 such that R1 : T1
C−→ T ′

1 and 〈T ′
2,R2〉R〈T ′

1,R1〉.
The strong bisimilarity ∼ is the largest of such relations.
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Definition 12 (Weak Bisimulation on Systems). A binary relation R on
CLS systems is a weak bisimulation if, given 〈T1,R1〉 and 〈T2,R2〉 such that
〈T1,R1〉R〈T2,R2〉, the two following conditions hold:
R1 : T1

C−→ T ′
1 =⇒ ∃T ′

2 such that R2 : T2
C=⇒ T ′

2 and 〈T ′
1,R1〉R〈T ′

2,R2〉
R2 : T2

C−→ T ′
2 =⇒ ∃T ′

1 such that R1 : T1
C=⇒ T ′

1 and 〈T ′
2,R2〉R〈T ′

1,R1〉.
The weak bisimilarity ≈ is the largest of such relations.

If we fix a set of rewrite rules, strong and weak bisimilarities on CLS systems
correspond to strong and weak bisimilarities on terms, respectively. Namely, for
a given R ∈ ", 〈T1,R〉 ∼ 〈T2,R〉 if and only if T1 ∼ T2 and 〈T1,R〉 ≈ 〈T2,R〉 if
and only if T1 ≈ T2. However, as we show in the following example, bisimilarity
relations introduced for CLS systems are not congruences.

Example 2. Let R1 = {a | b �→ c} and R2 = {a | d �→ c , b | e �→ c}. We have
that 〈a,R1〉 ≈ 〈e,R2〉 and 〈b,R1〉 ≈ 〈d,R2〉, but 〈a | b,R1〉 �≈ 〈e | d,R2〉.

Even if bisimilarity on CLS systems are not congruences, they allow us to define
equivalence relations on sets of rewrite rules.

Definition 13 (Rules Equivalence). Two sets of rewrite rules R1 and R2
are strongly (resp. weakly) equivalent, denoted R1 ' R2 (resp. R1 ∼= R2), if and
only if for any term T ∈ T it holds 〈T,R1〉 ∼ 〈T,R2〉 (resp. 〈T,R1〉 ≈ 〈T,R2〉).

Example 3. Given R1 = {a �→ c}, R2 = {a �→ f} and R3 = {a �→ b , b �→ c},
we have that R1 ' R2, but R1 �' R3 and R1 ∼= R2.

Now, if we resort to equivalent rules, we can prove congruence results on CLS
systems.

Proposition 4 (Congruences on Systems). Given R1 ' R2 (resp. R1 ∼=
R2) and 〈T,R1〉 ∼ 〈T ′,R2〉 (resp. 〈T,R1〉 ≈ 〈T ′,R2〉), for any C ∈ C we have
〈C[T ],R1〉 ∼ 〈C[T ′],R2〉 (resp. 〈C[T ],R1〉 ≈ 〈C[T ′],R2〉).

Proof. Since R1 ' R2 we have that 〈T,R1〉 ∼ 〈T,R2〉; moreover, by hypothesis,
〈T,R1〉 ∼ 〈T ′,R2〉, and therefore 〈T,R2〉 ∼ 〈T ′,R2〉. Now, since the set of
rewrite rules is the same (R2), by the congruence results for CLS terms, we
have 〈C[T ],R2〉 ∼ 〈C[T ′],R2〉. Again, since R1 ' R2, we have 〈C[T ],R1〉 ∼
〈C[T ],R2〉, and hence, 〈C[T ],R1〉 ∼ 〈C[T ′],R2〉. The proof is identical for ∼=
and ≈ instead of ' and ∼, respectively. #�

3 An Application to the Modeling of Gene Regulation

In this section we develop a CLS model of the regulation process of the lactose
operon in E. coli (Escherichia coli), we use the weak bisimulation on terms to
simplify the model and the weak bisimulation on systems to prove a property.

E. coli is a bacterium often present in the intestine of many animals. As most
bacteria, it is often exposed to a constantly changing physical and chemical
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Fig. 2. The lactose operon

environment, and reacts to changes in its environment through changes in the
kinds of proteins it produces.

In general, in order to save energy, bacteria do not synthesize degradative
enzymes (which are proteins) unless the substrates for these enzymes are present
in the environment. For example, E. coli does not synthesize the enzymes that
degrade lactose (a sugar) unless lactose is in the environment. This phenomenon
is called enzyme induction or, more generally, gene regulation since it is obtained
by controlling the transcription of some genes into the corresponding proteins.

Let us consider the lactose degradation example in E. coli. Two enzymes are
required to start the breaking process: the lactose permease, which is incorpo-
rated in the membrane of the bacterium and actively transports the sugar into
the cell (without this enzyme lactose can enter the bacterium anyway, but much
more slowly), and the beta galactosidase, which splits lactose into glucose and
galactose. The bacterium produces also the transacetylase enzyme, whose func-
tion is less known, but is surely related with the usage of lactose.

The sequence of genes in the DNA of E. coli which produces the described
enzymes, is known as the lactose operon (see Fig. 2). It is composed by six genes:
the first three (i, p, o) regulate the production of the enzymes, and the last three
(z, y, a), called structural genes, are transcribed (when allowed) into the mRNA
for beta galactosidase, lactose permease and transacetylase, respectively1.

The regulation process is as follows (see Fig. 3): gene i encodes the lac Repres-
sor, which in the absence of lactose, binds to gene o (the operator). Transcription
of structural genes into mRNA is performed by the RNA polymerase enzyme,
which usually binds to gene p (the promoter) and scans the operon from left to
right by transcribing the three structural genes z, y and a into a single mRNA
fragment. When the lac Repressor is bound to gene o, it becomes an obstacle
for the RNA polymerase, and transcription of the structural genes is not per-
formed. On the other hand, when lactose is present inside the bacterium, it binds
to the Repressor and this cannot stop any more the activity of the RNA poly-
merase. In this case transcription is performed and the three enzymes for lactose
degradation are synthesized.

Now we describe how to model the gene regulation process with CLS. For
the sake of simplicity we give a partial model, in the sense that we describe
1 We recall that in protein synthesis first the DNA of one or more genes is transcribed

into a piece of mRNA, then the mRNA is translated into one or more proteins.



102 R. Barbuti et al.

i p o z y a

R  RNA

Polime-

  rase
NO TRANSCRIPTION

a)

i p o z y a

R

  RNA

Polime-

  rase

TRANSCRIPTION

b)

LACTOSE

Fig. 3. The regulation process. In the absence of lactose (case a) the lac Repressor
binds to gene o and precludes the RNA polymerase from transcribing genes z,y and a.
When lactose is present (case b) it binds to and inactivates the lac Repressor.

how the transcription of the structural genes is activated when the lactose is in
the environment, but we do not describe how the transcription of such genes is
stopped when the lactose disappears. Moreover, in order to simplify the exam-
ple, we assume that genes are transcribed directly into proteins (thus avoiding
the modeling of the mRNA), that the lac Repressor is transcribed from gene i
without the need of the RNA polymerase and that it can be produced only once.
Finally, we assume that one RNA polymerase is present inside the bacterium.

We model the membrane of the bacterium as the looping sequence
(
m
)L

,
where the elementary constituent m generically denotes the whole membrane
surface in normal conditions. Moreover, we model the lactose operon as the se-
quence lacI ·lacP ·lacO·lacZ ·lacY ·lacA (lacI−A for short), in which each element
corresponds to a gene, and we replace lacO with RO in the sequence when the
lac Repressor is bound to gene o. When the lac Repressor is unbound, it is mod-
eled by the elementary constituent repr. Finally, we model the RNA polymerase
as the elementary constituent polym, a molecule of lactose as the elementary
constituent LACT , and beta galactose, lactose permease and transacetylase en-
zymes as elementary constituents betagal, perm and transac, respectively.

When no lactose is present the bacterium is modeled by the following term:

Ecoli ::= m
L � (lacI−A | polym)

The transcription of the DNA is modeled by the following set of rules:

lacI · x �→ lacI ′ · x | repr (R1)

polym | x · lacP · y �→ x · PP · y (R2)

x · PP · lacO · y �→ x · lacP · PO · y (R3)

x · PO · lacZ · y �→ x · lacO · PZ · y (R4)

x · PZ · lacY · y �→ x · lacZ · PY · y | betagal (R5)

x · PY · lacA �→ x · lacY · PA | perm (R6)

x · PA �→ x · A | transac | polym (R7)
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Rule (R1) describes the transcription of gene i into the lac Repressor. After
transcription lacI becomes lacI ′ to avoid further productions of the lac Re-
pressor. Rule (R2) describes the binding of the RNA polymerase to gene p.
We denote the complex formed by the binding RNA polymerase to a gene lac
with the elementary constituent P . Rules (R3)–(R6) describe the scanning of
the DNA performed by the RNA polymerase and the consequent production of
enzymes. Rule (R3) can be applied (and the scanning can be performed) only
when the sequence contains lacO instead of RO, that is when the lac Repressor
is not bound to gene o. Finally, in rule (R7) the RNA polymerase terminates
the scanning and releases the sequence.

The following rules describe the binding of the lac Repressor to gene o, and
what happens when lactose is present in the environment of the bacterium:

repr | x · lacO · y �→ x · RO · y (R8)

LACT | m · x
L � X �→ m · x L � (X | LACT ) (R9)

x · RO · y | LACT �→ x · lacO · y | RLACT (R10)

Rule (R8) describes the binding of the lac Repressor to gene o, rule (R9)
models the passage of the lactose through the membrane of the bacterium and
rule (R10) the removal of the lac Repressor from gene o operated by the lactose.
In this rule the elementary constituent RLACT denotes the binding of the lactose
to the lac Repressor.

Finally, the following rules describe the behaviour of the enzymes synthesized
when lactose is present, and their degradation:

x
L � (perm | X) �→ perm · x L � X (R11)

LACT | perm · x
L � X �→ perm · x L � (LACT | X) (R12)

betagal | LACT �→ betagal | GLU | GAL (R13)

perm �→ ε (R14)

betagal �→ ε (R15)

transac �→ ε (R16)

Rule (R11) describes the incorporation of the lactose permease in the mem-
brane of the bacterium, rule (R12) the transportation of lactose from the en-
vironment to the interior performed by the lactose permease, and rule (R13)
the decomposition of the lactose into glucose (denoted GLU) and galactose (de-
noted GAL) performed by the beta galactosidase. Finally, rules (R14),(R15) and
(R16) describe degradation of the lactose permease, the beta galactosidase and
the transacetylase enzymes, respectively.

Let us denote the set of rewrite rules {(R1), . . . , (R16)} as Rlac, and the
lactose operon lacI ′ · lacP · lacO · lacZ · lacY · lacA, after the production of
the lac Repressor, as lacI ′−A. An example of possible sequence of transitions
which can be performed by the term Ecoli by applying rules in Rlac is the
following:
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Ecoli
�=⇒ m

L � (lacI ′ · lacP · RO · lacZ · lacY · lacA | polym)
LACT |�

=⇒ m
L � (lacI ′−A|polym|RLACT )

�=⇒ perm · m L � (lacI ′−A|betagal|transac|polym|RLACT )
LACT |�

=⇒ perm · m L � (lacI ′−A|betagal|transac|polym|RLACT |GLU |GAL)

In the example, by applying rules (R1) and (R8), Ecoli produces the lac
Repressor, which binds to gene o in the lactose operon. Then, the bacterium
interacts with an environment containing a molecule of lactose (represented by
the context LACT |�): by applying rule (R9) the lactose enters the membrane
of the bacterium and by applying rule (R10) it binds to the lac Repressor.
Then, a sequence of internal transitions are performed by applying rules (R2)–
(R7) and (R11): the result is the transcription of the structural genes and the
incorporation of the lactose permease in the membrane of the bacterium. Finally,
the term interacts with an environment containing another molecule of lactose,
which enters the bacterium and is decomposed into GLU and GAL. The rules
applied in this phase are (R12) and (R13).

Note that, if one starts from Ecoli, every time (R12) can be applied, also
(R9) can be applied giving the same results. Therefore, rule (R12) seems to
be redundant. Nevertheless, rule (R12) describes a precise phenomenon, namely
the action performed by the lactose permease, which is modeled by no other
rule. The difference between rules (R9) and (R12) is that the latter describes a
much faster event. However, since quantitative aspects are not considered in the
calculus, the difference between the two rules does not appear.

The model can be simplified. Let us denote by T the term lacP · lacO · lacZ ·
lacY · lacA | repr. Note that T behaves as lacI−A apart from the transcription
of the lac Repressor, which is already present. Therefore, the transition system
derived from T corresponds to the one derived form lacI−A apart from some �–
labeled transitions obtained by the application of rule (R1). As a consequence,
T ≈ lacI−A. Now, since ≈ is a congruence, we may replace lacI−A with T in
Ecoli, thus obtaining an equivalent term.

Now we use the weak bisimulation defined on CLS systems to verify a simple
property of the described system, namely that by starting from a situation in
which the lac Repressor is bound to gene o, and none of the three enzymes
produced by the lactose operon is present (which is a typical stable state of the
system), production of such enzymes can start only if lactose appears.

In order to verify this property with the bisimulation relation we defined, we
need to modify the rules of the model in such a way that the event of starting
the production of the three enzymes becomes observable. We can obtain this
result, for instance, by replacing rule (R10) with the rule

w
L � (x · RO · y | LACT | X) | START �→

w
L � (x · lacO · y | RLACT | X) (R10bis)
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We choose to modify (R10) because we know that, after applying rule (R10),
the three enzymes can be produced freely, and we add to the rule the interac-
tion with the artificial element START in the environment in order to obtain
�|START as a transition label every time the rule is applied to the term. The
property we want to verify is satisfied, for some ground terms T1, T2 and T3, by
the system 〈T1,R〉, where R consists of the following four rules:

T1 | LACT �→ T2 (R1’) T2 | START �→ T3 (R3’)

T2 | LACT �→ T2 (R2’) T3 | LACT �→ T3 (R4’)

It can be proved that the system 〈T1,R〉 is weakly bisimilar to the system
〈EcoliRO, (Rlac \ {R10}) ∪ {(R10bis)}〉, where:

EcoliRO = m
L � lacI ′ · PP · RO · lacZ · lacY · lacA

In particular, the bisimulation relation associates (the system containing) term
T1 with (the system containing) term EcoliRO, term T2 with all the terms
representing a bacterium containing at least one molecule of lactose with the
Lac repressor bound to gene o, and, finally, term T3 with all the terms in which
the repressor has left gene o and is bound to the lactose.

4 Conclusions

We have presented a variant of CLS, we have given the calculus a labeled seman-
tics and we have defined bisimulation relations on terms and on systems of the
calculus. We have proved bisimilarities to be congruences and shown an example
of application of CLS to the modeling of a biological system.

Bisimulations permit studying systems by comparison, and in this case they
could be used for making predictions on the modeled biological phenomenon.
However, as we have pointed out before, the framework we have developed in
this paper does not deal with speed of events, hence we cannot prove properties
depending on time and perform simulations. As future work, we plan to develop
a quantitative extension of the calculus in which speed of events are modeled as
rates of rewrite rule applications. This will increase significantly the complexity
of the semantics of the calculus. In fact, in biological systems the speed of an
event depends on the total number of entities that may cause that event, and
hence the rate of application of a rule will depend on the number of different
positions in a term where the rule can be applied.
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A Proofs

A.1 Proof of Proposition 2

We show that S def
= { (C[T1], C[T2]) |T1 ∼ T2 and C is a context} is a bisimula-

tion. First of all, it is worth noting that S includes ∼ because C[T1] = T1 when
C = �. Moreover, the following implication holds:

T1ST2 =⇒ C[T1]SC[T2] (1)

because T1ST2 implies ∃C′.T1 = C′[T ′
1], T2 = C′[T ′

2] for some T ′
1, T

′
2 ∈ T such

that T ′
1 ∼ T ′

2. Hence C[C′[T ′
1]]SC[C′[T ′

2]], that is C[T1]SC[T2].
Now, since ∼ is a symmetric relation, we have only to show that given T1 ∼ T2

it holds that: C[T1]
C′
−→ T ′

1 =⇒ ∃T ′
2.C[T2]

C′
−→ T ′

2 and T ′
1ST ′

2 .

We prove this by induction on the depth of the derivation tree of C[T1]
C′
−→ T ′

1:
– Base case (rule appl). There exists T �→ T ′

1 ∈ R such that C′[C[T1]] ≡ Tσ

for some instantiation function σ. This implies T1
C′[C]−−−→ T ′

1 and, since T1 ∼ T2,

there exists T ′
2 such that T2

C′[C]−−−→ T ′
2 with T ′

1 ∼ T ′
2. Finally, T2

C′[C]−−−→ T ′
2 implies

C[T2]
C′
−→ T ′

2 by Lemma 2 and T ′
1 ∼ T ′

2 implies T ′
1ST ′

2.
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– Induction step (par). In this case C = C1[C2] for some C2 and where C1 =
�|T for some T . Hence, C[T1] = C1[C2[T1]] and by the premise of the inference

rule we obtain C2[T1]
C′
−→ T ′′

1 with C1 � # C′. It follows that T ′
1 = C1[T ′′

1 ]. By

the induction hypothesis we have that ∃T ′′
2 .C2[T2]

C′
−→ T ′′

2 ∧ T ′′
1 ST ′′

2 , hence, by

applying the (par) rule, C1[C2[T2]]
C′
−→ C1[T ′′

2 ], that is C[T2]
C′
−→ T ′

2. By the
closure of S to contexts given in (1), we have C1[T ′′

1 ]SC1[T ′′
2 ], that is T ′

1ST ′
2.

– Induction step (cont). In this case C′ = � and C = C1[C2] for some C2 and
where C1 = T � � for some T . Hence, C[T1] = C1[C2[T1]] and by the premise

of the inference rule we obtain C2[T1]
�−→ T ′′

1 . It follows that T ′
1 = C1[T ′′

1 ]. By

the induction hypothesis we have that ∃T ′′
2 .C2[T2]

C′
−→ T ′′

2 ∧ T ′′
1 ST ′′

2 , hence, by

applying the (cont) rule, C1[C2[T2]]
�−→ C1[T ′′

2 ], that is C[T2]
�−→ T ′

2. By the
closure of S to contexts given in (1), we have C1[T ′′

1 ]SC1[T ′′
2 ], that is T ′

1ST ′
2. #�

A.2 Proof of Proposition 3

We show that S def
= { (C[T1], C[T2]) |T1 ≈ T2 and C is a context} is a weak

bisimulation. Similarly as in the proof of Proposition 2 we have that S includes
≈, and that the following implication holds:

T1ST2 =⇒ C[T1]SC[T2] (2)

and we have only to show that given T1 ≈ T2 it holds that: C[T1]
C′
−→ T ′

1 =⇒
∃T ′

2.C[T2]
C′

=⇒ T ′
2 and T ′

1ST ′
2 .

We prove this by induction on the depth of the derivation tree of C[T1]
C′
−→ T ′

1:
– Base case (rule appl). There exists T �→ T ′

1 ∈ R such that C′[C[T1]] ≡ Tσ

for some instantiation function σ. This implies T1
C′[C]−−−→ T ′

1 and, since T1 ≈ T2,

there exists T ′
2 such that T2

C′[C]
=⇒ T ′

2 with T ′
1 ≈ T ′

2. Finally, T2
C′[C]
=⇒ T ′

2 implies

C[T2]
C′

=⇒ T ′
2 by Lemma 4 and T ′

1 ≈ T ′
2 implies T ′

1ST ′
2.

– Induction step (par). In this case C = C1[C2] for some C2 and where
C1 = �|T for some T . Hence, C[T1] = C1[C2[T1]] and by the premise of the

inference rule we obtain C2[T1]
C′
−→ T ′′

1 with C1 � # C′. It follows T ′
1 = C1[T ′′

1 ].

By the induction hypothesis we have that ∃T ′′
2 .C2[T2]

C′
=⇒ T ′′

2 ∧ T ′′
1 ST ′′

2 , hence,

by Lemma 3, C1[C2[T2]]
C′

=⇒ C1[T ′′
2 ], that is C[T2]

C′
=⇒ T ′

2. By the closure of S
to contexts given in (2), we have C1[T ′′

1 ]SC1[T ′′
2 ], that is T ′

1ST ′
2.

– Induction step (cont). In this case C′ = � and C = C1[C2] for some C2 and
where C1 = T � � for some T . Hence, C[T1] = C1[C2[T1]] and by the premise

of the inference rule we obtain C2[T1]
�−→ T ′′

1 . It follows that T ′
1 = C1[T ′′

1 ]. By

the induction hypothesis we have that ∃T ′′
2 .C2[T2]

C′
=⇒ T ′′

2 ∧ T ′′
1 ST ′′

2 , hence, by

Lemma 3, C1[C2[T2]]
�=⇒ C1[T ′′

2 ], that is C[T2]
�=⇒ T ′

2. By the closure of S to
contexts given in (2), we have C1[T ′′

1 ]SC1[T ′′
2 ], that is T ′

1ST ′
2. #�
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Abstract. Local First Search (LFS) is a partial order technique for
reducing the number of states to be explored when trying to decide
reachability of a local (component) property in a parallel system; it is
based on an analysis of the structure of the partial orders of executions
in such systems. Intuitively, LFS is based on a criterion that allows to
guide the search for such local properties by limiting the “concurrent
progress” of components.

In this paper, we elaborate the analysis of the partial orders in ques-
tion and obtain related but significantly stronger criteria for reductions,
show their relation to the previously established criterion, and discuss
the algorithmics of the proposed improvement. Our contribution is both
fundamental in providing better insights into LFS and practical in pro-
viding an improvement of high potential, as is illustrated by experimental
results.

1 Introduction

Partial order methods [16,5,8,7,13,17,9,10,14,4,6] exploit the structural property
of independence that occurs naturally in asynchronous parallel systems. The ba-
sic observation exploited by partial order methods is the commutation of pairs
of independent transitions which, by definition, lead to the same state indepen-
dently of the order of execution. This structural information can be applied in
order to remove redundant transitions or, if the property in question permits,
even states, without changing the validity of the property. Independence is typ-
ically derived from distribution, i.e. transitions of distinct processes in a system
may commute (unless they access shared variables or synchronize). This commu-
tation of independent transitions gives rise to a notion of equivalent executions,
and the equivalence classes are called Mazurkiewicz traces.

Among these methods, Local First Search (LFS) [11,1] is specialized for the
complete search for local properties, i.e. properties that can only be modified by
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dependent transitions. The definition and justification of LFS highly depend on
the characterization of equivalent executions as labelled partial orders. In [11],
it is shown that prime traces, i.e. partial orders with a single maximal element,
suffice to search for local properties; in turn, to approximate all prime traces,
it suffices to consider only traces (partial orders) with a logarithmic number
of maximal elements (compared to the overall parallelism in the system); this
number is called LFS -bound.

In [11], a first method for exploiting this criterion was given, which however
did not guarantee that the number of states actually explored would be inferior
to the global number of states. In [1] in contrast, the LFS-bound is combined
with ideas from McMillan unfoldings [4] to obtain a breadth first search based
algorithm that is complete and never explores the same state twice. For a number
of benchmarks, it was observed that (asymptotically) LFS with the unfolding
approach gives decent reductions where the stubborn set method [17], the ample
set [13] and related methods give only very weak reductions.

In the current work, we revisit the LFS correctness theorem and derive a
hierarchy of criteria, peak rest compliance (pr-compliance), peak width sequence
compliance (pws-compliance), a recursive LFS-bound and finally the previously
published logarithmic LFS-bound. These criteria characterize subsets of traces,
ordered by inclusion: pr-compliance defines the smallest set of traces and the log-
arithmic LFS-bound the biggest. We prove that any prime trace can be reached
through a sequence of prefixes such that each one is pr-compliant, and for that
matter pws-compliant, and satisfies the LFS-bounds. On the whole, we thus
obtain a modular proof of the original theorem and stronger reduction crite-
ria. Efficient exploration algorithms have been implemented using the technique
from [1].

The paper is structured as follows. Section 2 presents the necessary back-
ground on Marzurkiewicz trace theory. Section 3 explains the basic concepts
of the LFS technique. Section 4 introduces pr-compliance based on a tree like
recursive decomposition of traces, and a proof of the preservation of local prop-
erties is given. In Section 5, we derive a simplified version of pr-compliance,
pws-compliance, which is computationally less expensive. In Section 6 in turn,
we derive a recursive LFS-bound from pws-compliance and the previously pub-
lished logarithmic bound from the recursive bound. In Section 7, we explain
the complexity and steps needed to implement a pws-compliance procedure. In
Section 8, we report experimental results obtained with our prototype imple-
mentation and conclude in Section 9.

2 Basic Concepts

The theory of Marzurkiewicz traces is built on the concept of a concurrent al-
phabet, which is a tuple (Σ, I) with Σ a finite set of actions and I an irreflexive
symmetric binary relation on Σ. I is called the independence relation of the al-
phabet, and we will refer to D = (Σ ×Σ)\I as the dependence relation of such
an alphabet. We will assume that (Σ, I) is fixed for this paper.
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A transition system over Σ is a triple T = (S,→, s0) with S a set of states,
s0 ∈ S the initial state, and→⊆ S×Σ×S a transition relation. For (s, a, s′) ∈→
we also write s

a→ s′. We only consider deterministic transition systems, i.e.
systems such that s

a→ s1 and s
a→ s2 implies s1 = s2. Moreover, we only

consider systems that respect the independence relation in the following way: If
s

a→ s1
b→ s2 and a I b then there exists s′1 with s

b→ s′1
a→ s2.

A word over Σ is a – possibly empty – finite sequence of symbols from Σ;
the set of words is Σ∗, ranged over by u, v, w, etc.; the empty sequence will be
denoted by ε. When used on words, � will denote the usual prefix ordering on
words.

Let ≡I be the least congruence on the monoid generated by Σ∗ and concate-
nation such that ∀a, b ∈ Σ : (a, b) ∈ I ⇒ ab ≡I ba. The equivalence classes of
≡I will be called traces, the equivalence class of u will be denoted by [u] and the
set of all traces by [Σ∗]. Since ≡I is a congruence, concatenation carries over to
traces: [u][v] = [uv] is well-defined. Similarly, the prefix relation � carries over,
i.e. [u] � [v] iff there exists [w] with [u][w] = [v].

For a transition system T , let L(T ) ⊆ Σ∗ denote the words u = a1 . . . an such
that there exists a path s0

a1→ s1 . . . sn−1
an→ sn and let σ(u) = sn denote the

state reached by the word. Obviously, if u ∈ L(T ) and u ≡I u′ then u′ ∈ L(T )
and σ(u) = σ(u′). We therefore also write σ([u]) := σ(u).

A property of a transition system T is a subset P ⊆ S. An action a is visible
for P iff there exist s1 ∈ P and s2 ∈ S \ P such that s1

a→ s2 or s2
a→ s1 (i.e. a

may “change” the validity of P ). A property P is a local property iff, for all pairs
of actions a and b both visible for P , we have a D b. Typically, a local property
is a property of a single variable or a single process in a parallel product.

Local properties have an interesting link with traces, as has been observed in
[11]: if some state satisfies local property P , then such a state can be reached
by a trace which seen as a partial order has exactly one maximal element; cf.
Section 3.

3 Local First Search

The aim of “Local First Search” is to optimize the search for local properties
in transition systems. It is based on the following parameters of a concurrent
alphabet.

Definition 1. We say that (Σ, I) has parallel degree m if m is the maximal
number of pairwise independent actions in Σ, i.e.

m = max{|A| | A ⊆ Σ and a, b ∈ A, a �= b⇒ aIb}.

We say that (Σ, I) has communication degree cd if cd is the maximal num-
ber of pairwise independent actions such that all of them depend on a common
action, i.e.

cd=max{|B| | B⊆Σ, ∃c ∈Σ : (∀b ∈B : ¬cIb) and (∀b, b′∈B : b �= b′ ⇒ bIb′)}.
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Intuitively, the parallel degree might correspond to the number of processes of a
concurrent system, whereas the communication degree is related to synchronisa-
tion, e.g. systems based on binary channels have a communication degree 2.

The main idea of Local First Search (LFS) is better understood by viewing
traces as partial orders. This is based on the well known one-to-one correspon-
dence [3, Chapter 2] between traces and the class of finite Σ-labeled partial
orders (E,≤, λ) such that

(1) For any e, f ∈ E with λ(e) D λ(f) we have e ≤ f or f ≤ e.
(2) ≤ is equal to the transitive closure of ≤ ∩{(e, f) | λ(e) D λ(f)}.

We will refer to such partial orders as a (Σ, I)-lpo or lpo for short. Any of them
can be seen as an abstract representation of an execution. In this representation,
two elements are unordered if and only if the actions labelling them could have
occurred in any relative order (or in parallel). Correspondingly, any two such
elements are labeled with independent actions.

By a linearisation we mean a word over E which contains each element of
E once and where an element e occurs before f whenever e < f . We obtain a
labeled linearisation from such a word, if we replace each element by its label.
The relation between traces and lpo’s is simply that the set of all labelled lin-
earisations of an lpo is a trace and each trace, as described above, induces such
a lpo.

If we have an lpo (E,≤, λ), we call subset F of E an interval iff for all e, f ∈ F
and g ∈ E with e ≤ g ≤ f also g ∈ F . We identify an interval F with the labeled
partial order it induces by restricting ≤ and λ appropriately. Note that F is a
(Σ, I)-lpo again. For a linearisation v of F we define set(v) by set(v) = F .

The downward closure of F ⊆ E is ↓ F = {e ∈ E | ∃f ∈ F : e ≤ f}, and we
write ↓ f if F = {f}.

Element e of an lpo is an immediate predecessor of f and f an immediate
successor of e iff e < f and ∀g : e ≤ g ≤ f =⇒ g = e or g = f . We now
define notions for (E,≤, λ) some of which correspond to the parallel and the
communication degree of a concurrent alphabet.

Definition 2. Let (E,≤, λ) be an lpo. An element e ∈ E is maximal if there is
no f ∈ E such that e < f . We define max(E) as the set of maximal elements of
E and call E prime, if max(E) has just one element.

The width of E (denoted by width(E)) is the maximal number of pairwise
incomparable elements, i.e. max{|A| | A ⊆ E ∧ ∀e, f ∈ A : e ≤ f ⇒ e = f}.

The communication degree of E is the maximal number of immediate prede-
cessors of an element of E.

The following proposition first relates these notions to the concurrent alphabet;
the proof of this relation can be found in [11]. The last claim is easy to see.

Proposition 3. Let (E,≤, λ) be an lpo.
Then |max(E)| ≤ width(E) and width(E) is at most the parallel degree of (Σ, I)
and the communication degree of E is at most cd.

For an interval F ⊆ E we have width(F ) ≤ width(E).
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From the definition of local properties, one gets immediately the following: If a
system can reach a state satisfying such a property, then a satisfying state can be
reached with a prime trace corresponding to a prime lpo (the proof can be seen
in [1]). The following fundamental result of LFS shows that one can construct all
prime lpo’s by restricting attention to lpo’s with a bounded number of maximal
elements; this implies that checking for satisfaction of a local property can be
performed on a restricted state space.

Theorem 4 (LFS theorem [11]). Let (E,≤, λ) be an lpo of width m with at
most cd maximal elements. Then there exists a linearisation w of E such that,
for every prefix v of w, set(v) has at most 1 maximal element if cd = 1, and at
most �(cd − 1)logcd(m) + 1� maximal elements if cd > 1.

This theorem provides a filter for excluding traces in the search of states satis-
fying local properties. The best known way of exploiting this filter in a search
procedure is given in [1]. For guidance purposes, it is also outlined below. Let us
first consider a kind of “unfolding” of transition system T that respects traces,
the trace system of T :

Definition 5 (Trace system). Let T = (S,→, s0) be a transition system re-
specting (Σ, I). Then the trace system of T is the transition system T S(T ) whose
states are the traces associated to words in L(T ), with the empty trace [ε] as ini-
tial state and such that the transition relation is →= {([u], a, [ua]) | ua ∈ L(T )}.

Based on σ([u]) we can lift properties of T to properties of T S(T ), and we can
restrict the test for a local property to the search for a suitable prime trace.

The next notion, originating from McMillan prefixes [10], is needed to avoid
the exploration of an infinite number of traces.

Definition 6 (Adequate order). A partial order ) on the whole set of traces
is called adequate if

(Ad1) it is well-founded;
(Ad2) it refines the prefix order, i.e. [u] � [v] implies [u] ) [v];
(Ad3) it is a right congruence, i.e. [u] ) [v] implies [u.z] ) [v.z] for any z ∈ Σ∗.

In practice, only adequate orders that refine the length order, i.e. |u| < |v| implies
[u] ) [v], are used. Together with the filter of Theorem 4, adequate orders are
used to cut the search in the state space, as is shown in the following algorithm
that refines breadth first search.

Algorithm 1 guarantees that each state of the system is explored at most once
(i.e. for at most one Mazurkiewicz trace leading to it), while preserving reach-
ability of local properties. In practice, it considerably reduces the set of states
explored. The correctness proof of the algorithm and a detailed explanation was
presented in [1], and this proof relies on Theorem 4 as a module. What is impor-
tant here is the consequence that the LFS-criterion in the algorithm, which is
“bounding the set of maximal elements of trace [ua] by �(cd − 1)logcd(m)+1�”,
can be replaced by other criteria similar to Theorem 4 without changing the
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correct functioning. The aim of this paper is to provide more restrictive criteria
or tighter filters for lpo’s that suffice to guarantee reachability of all prime lpo’s
but exclude a lot of traces or lpo’s violating the criterion.

Algorithm 1. Computation of a finite locally complete subsystem
Table ← {(s0, [ε])}, Next Level ← {(s0, [ε])}
while Next Level 	= ∅ do

Current Level ← Next Level; Next Level ← ∅
for all (s, [u]) ∈ Current Level, a ∈ Σ, s′ ∈ S such that s

a→ s′ do
if s′ ∈ P then

Return(ua)
else

if [ua] respects LFS-criterion then
if (s′, [v]) ∈ Table then

if |ua| = |v| and (s′, [v]) ∈ Next Level and [ua] � [v] then
Table ← (Table \ {(s′, [v])}) ∪ {(s′, [ua])}
Next Level ← (Next Level \ {(s′, [v])}) ∪ {(s′, [ua])}

end if
else

Table ← Table ∪ {(s′, [ua])}
Next Level ← Next Level ∪ {(s′, [ua])}

end if
end if

end if
end for

end while
Return unreachable

4 A New Approach for Tighter Constraints

We will show in this section that, for building up prime lpo’s, it is sufficient to
consider peak-rest-compliant lpo’s, which we define below. We will discuss in
the succeeding sections in some detail how one can check this condition, and
how one can weaken it to make the check more efficient; in the course of this
discussion we will also prove that each peak-rest-compliant lpo obeys the bound
on the number of maximal elements given in Theorem 4.

Definition 7. Let (E,≤, λ) be an lpo. Let e1, . . . , ek ∈ max(E) be different,
k ≥ 0, and F = max(E) \ {e1, . . . , ek} with F �= ∅. Define Ei = (↓ ei) \

⋃
{↓ f |

ei �= f ∈ max(E)} for i = 1, . . . , k and Ek+1 = (↓ F ) \
⋃
{↓ ei | i = 1, . . . , k}.

Then (E1, . . . , Ek+1) is a peak-rest-decomposition of E, and in case that F
is a singleton a peak-decomposition. We call E1, . . . , Ek, and also Ek+1 in the
latter case, peaks of E.

A peak is defined by a maximal element e; it consists of all elements that are
below e, but not below any other maximal element. From this, it is clear that
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there exists a peak-decomposition, which is unique up to the ordering of its
components; further, peaks are disjoint, elements of different peaks are unordered
and a label appearing in one peak is independent of any label appearing in
another peak – and this even holds for E1, . . . , Ek+1 in the general case. From
this, we see that the sum over the width(Ei) is at most width(E).

Note that, in the general case, Ek+1 could contain more elements than just
the union of the peaks of the maximal elements in F , namely some elements
that are below more than one maximal element of F .

Definition 8. An lpo (E,≤, λ) is called peak-rest-compliant or pr-compliant for
short if it has at most cd maximal elements or it has a peak-rest-decomposition
(E1, . . . , Ek+1) with 1 ≤ k < cd such that width(Ek+1) ≤ width(Ei) for i =
1, . . . , k and Ek+1 is pr-compliant as well.

Intuitively, a pr-compliant lpo has at most cd maximal elements or it is an initial
part of an lpo with at most cd maximal elements and needed to build up the
latter lpo; in the latter case, the idea is that k of the peaks of the latter lpo have
already been built and that Ek+1 will lead to the next peak. This idea will be
formalized in the proof of our first main theorem, which we present now.

Theorem 9. Let (E,≤, λ) be an lpo with at most cd maximal elements. Then
there exists a linearisation w of E such that for each prefix v of w, set(v) is
pr-compliant.

Proof. The proof will be by induction on the size of E, the case of E = ∅ being
trivial. We assume that the claim has been shown for all smaller lpo’s and make
the following distinction of cases.

i) E has just one maximal element e. Then by Proposition 3, E\{e} has at most
cd maximal elements, namely the immediate predecessors of e. Choose a suitable
linearisation u of E \ {e} by induction, and then we are done by setting w = ue.

ii) Let max(E) = {e1, . . . , ek+1} with 1 ≤ k < cd . Let (E1, . . . , Ek+1) be
the peak-decomposition of E ordered according to decreasing width. Choose
linearisations u for ↓ (E1 ∪ . . . ∪ Ek) and u′ for Ek+1 by induction. Since these
sets are a partition of E with no element of the latter below any element of the
first, w = uu′ is a linearisation of E; we have to check all prefixes of w.

Let v be a prefix of w; if v is a prefix of u, we are done by induction, oth-
erwise v = uv′ with v′ a prefix of u′. Let F = set(uv′). Clearly, e1, . . . , ek ∈ F
are still maximal; so let max(F ) = {e1, . . . , ek, f1, . . . , fl}, where l ≥ 1 and
max(set(v′)) = {f1, . . . , fl}. Let (F1, . . . , Fk+1) be the peak-rest-decomposition
of F induced by the maximal elements e1, . . . , ek and the set {f1, . . . , fl}.

Since each e ≤ ei for some i ∈ {1, . . . , k} occurs in u, we have Fk+1 ⊆ set(v′) ⊆
Ek+1, which implies width(Fk+1) ≤ width(Ek+1) by Proposition 3. Vice versa,
for each f ∈ set(v′) ⊆ Ek+1, we cannot have f ≤ ei for any i ∈ {1, . . . , k}, hence
we must have Fk+1 = set(v′), which implies that Fk+1 is pr-compliant by choice
of u′.

For i = 1, . . . , k, we have Ei ⊆ Fi: any e ∈ Ei occurs in u, hence e ∈ F ; we do
not have e ≤ ej for j �= i and we cannot have e ≤ fj for some j = 1, . . . , l since
fj ≤ ek+1. Thus, we have width(Ei) ≤ width(Fi) by Proposition 3.
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Hence, due to the chosen ordering of the Ei, we have width(Fk+1) ≤
width(Ek+1) ≤ width(Ei) ≤ width(Fi) for all i = 1, . . . , k, and we are done.

�

5 The Peak-Width-Sequence Criterion

In this section, we present a criterion that is slightly weaker than pr-conformance
but avoids the recursive checks of the rest in a peak-rest-decomposition for pr-
conformance. For this, we need the following notion for sequences of numbers,
which is rather technical but easy to check.

Definition 10 (n-cumulative sequence). For n ≥ 2, a decreasing sequence
of natural numbers m1 ≥ m2 ≥ . . . ≥ ml with mi ≥ 1 is called n-cumulative,
if l < n or there exists a j with 1 < j ≤ n such that mj−1 ≥

∑l
k=j mk and

mj , . . . , ml is n-cumulative.

Definition 11. Let m1 ≥ m2 ≥ . . . ≥ ml be the widths of the peaks of an lpo
(E,≤, λ); then the lpo is called peak-width-sequence-compliant or pws-compliant
for short if this sequence is cd-cumulative.

Together with Theorem 9, the following theorem demonstrates that we can re-
strict ourselves to pws-compliant lpo’s if we want to build up all lpo’s with at
most cd maximal elements incrementally.

Theorem 12. Each pr-compliant lpo is pws-compliant.

Proof. Let (E,≤, λ) be a pr-compliant lpo and (E1, . . . , Ek+1) the respective
peak-rest-decomposition with the peaks ordered by decreasing size. The proof
is by induction on the size of E. Let (Fk+1, . . . , Fl) be the peak-decomposition
of Ek+1, again with the peaks ordered by decreasing size. Since no element of
Ek+1 is below any element outside of Ek+1, (E1 , . . ., Ek, Fk+1, . . ., Fl) is the
peak-decomposition of E. Since (Fk+1, . . . , Fl) is cd -cumulative by induction and
k < cd , it remains to check that width(Ek) ≥

∑l
j=k+1 width(Fj). This follows

from
∑l

j=k+1 width(Fj) ≤ width(Ek+1), which is satisfied since the Fj are the
peaks of Ek+1, and width(Ek+1) ≤ width(Ek) according to Definition 8. �

The difference between pws-compliance and pr-compliance is that the width of
the rest in a peak-rest-decomposition might be larger than the sum of the peak
widths for the peaks in this rest; in such case, the lpo could be pws-compliant
without being pr-compliant. Hence, pr-conformance may give a stronger restric-
tion of the visited part of the state space. But algorithmically, checking for pr-
conformance requires to identify the rest of a suitable peak-rest-decomposition,
and this would presumably involve to determine all peaks and their widths first.
Then one has additionally to compute the width of the rest, where the lat-
ter might be even larger than the union of the respective peaks. For the re-
cursive checks for pr-conformance, the peaks of the rest and their widths are
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already given, but the problems with finding and checking a suitable peak-rest-
decomposition of the rest occur repeatedly.

To test pws-compliance, we have to construct the peaks of the given lpo and to
determine their widths m1 ≥ m2 ≥ . . . ≥ ml; this sequence is cd -cumulative if –
viewed from the end – there are never cd−1 indices in a row where the cumulative
sum is larger than the next (smaller) number. It is easy to check this in linear time
by one scan from right to left, building the cumulative sums on the way.

6 Deriving the LFS Bounds

In this section, we derive the classical LFS-bound as presented in [11], as well
as some slight improvements, from the pws-criterion. Moreover, this is the first
published proof of the LFS-bound for the general case (communication degree
not limited to 2).

We begin by introducing a recursive formula for the bound that gives a relation
of length and sum of n-cumulative sequences. Then, we derive the previously
published logarithmic bound for the recursive formula.

Definition 13 (recursive bound). For n ≥ 2 and m ≥ 1 let L(n, m) be
inductively defined by

L(n, m) = m for m ≤ n

L(n, m) = n− 1 + L(n, �m
n �) for m > n

Lemma 14.
For 1 ≤ k ≤ n and m ≥ 1 we have k + L(n, �m

k �) ≤ n + L(n, �m
n �).

Proof. By induction on m. We assume that the statement is already proven for
all m′ < m with m′ ≥ 1. For an easier case analysis observe that L(n, m) =
n − 1 + L(n, �m

n �) also for m = n. This allows us to distinguish the following
three cases: (a) �m

n � ≤ �
m
k � < n, (b) �m

n � < n ≤ �m
k � and (c) n ≤ �m

n � ≤ �
m
k �.

For (a), we have to show that k + �m
k � ≤ n + �m

n �. Due to properties of
�.� this follows from k + m

k ≤ n + m
n or equivalently nk + nm

k ≤ n2 + k m
k or

m
k (n− k) ≤ n(n− k). This follows, since k ≤ n and m

k ≤ n by �m
k � < n.

For (b), we have that � �
m
k �
n � = � m

kn� < n ≤ �m
k �. Therefore, we have to show

that k + n − 1 + � m
kn� ≤ n + �m

n � which follows from k − 1 + m
kn ≤

m
n . This is

equivalent to n(k − 1) + m
k ≤ k m

k or n(k − 1) ≤ m
k (k − 1). The latter follows

since k ≥ 1 and n ≤ m
k by the assumption n ≤ �m

k �.
For (c), we have to show that k+n−1+L(n, � �

m
k �
n �) ≤ n+n−1+L(n, � �

m
n �
n �).

Since � �
m
k �
n � = � m

kn� = � �
m
n �
k �, this follows immediately from induction for m′ =

�m
n � < m. �

Proposition 15. Let m1 ≥ m2 ≥ . . . ≥ ml be n-cumulative (n ≥ 2) and m =∑l
i=1 mi. Then for the length l of the sequence we have l ≤ L(n, m).

Proof. The proof is by induction on l.
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For the case m ≤ n (in accordance with the first defining equation of L), we
use l ≤ m (since mi ≥ 1 for each of the l summands mi) and m = L(m, n).

Now, for m > n, let j be the first position in the sequence, such that mj−1 ≥∑l
k=j mk =: m′. Then j ≤ n. Since mj ≥ . . . ≥ ml (as a suffix of an n-cumulative

sequence) is itself n-cumulative of length l′ = l−(j−1), it holds by induction that
l′ ≤ L(n, m′) and consequently l ≤ j−1+L(n, m′). Since m′ ≤ mj−1 ≤ . . . ≤ m1,
we have that m′ ≤ �m

j �. By Lemma 14 and the monotonicity of L in the second
argument, we finally obtain l ≤ n− 1 + L(n, �m

n �) = L(n, m) as desired. �

Corollary 16. Let (E,≤, λ) be an lpo of width m with at most cd ≥ 2 maximal
elements. Then there exists an linearisation w of E such that, for every prefix v
of w, set(v) has at most L(cd , m) maximal elements.

Proof. We choose w as linearisation according to Theorem 9. Let v be a prefix
of w; then set(v) is by choice pr-compliant and according to Theorem 12 also
pws-compliant, and width(set(v)) ≤ width(E) = m (Proposition 3). The peaks
of set(v) are mutually independent and hence the sum of their widths is bounded
by m (antichains of the peaks freely combine to antichains of set(v)). Hence, the
number of peaks of set(v) is bounded by L(cd , m) according to Proposition 15
and monotonicity of L(n, m) in m. �

The recursive formula L is an improvement over the originally published bound
of Theorem 4, as shown by the following statement.

Proposition 17.
For 2 ≤ n and 1 ≤ m we have L(n, m) ≤ �(n− 1) logn m�+ 1.

Proof. By induction on m. For m ≤ n by definition L(n, m) = m. Observe that
logn m is concave in m and has for m = 1 and m = n the same value as m−1

n−1 ,
thus m−1

n−1 ≤ logn m for 1 ≤ m ≤ n. Hence, m ≤ (n− 1) logn m + 1 which implies
m ≤ �(n− 1) logn m�+ 1 and we are done.

Now for m > n we get L(n, m) = n− 1 + L(n, �m
n �). By induction, we obtain

that L(n, m) ≤ (n− 1)+ �(n− 1)(logn�m
n �)�+1 = �(n− 1)(1+ logn�m

n �)�+1 =
�(n− 1)(lognn�m

n �)�+ 1 ≤ �(n− 1)(lognm)�+ 1, as desired. �

Now, we can see how the original Theorem 4 is the end of a chain of reasoning
in our present paper: We simply have to combine Corollary 16 with Proposition
17.

Concluding, we have seen how pr-compliance implies pws-compliance and pws-
compliance induces a new recursive bound, which itself implies the original log-
arithmic bound.

7 Complexity and Algorithmics of Pws-Compliance

Pws-compliance may filter out significantly more traces than the LFS-bound,
which means less states need to be stored. But its overhead, i.e. the cost of
testing pws-compliance of each explored trace, has an impact on execution time.
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The test for pws-compliance of a trace can be decomposed as follows:

– At first, the peaks need to be extracted as subtraces of the trace. Due to the
characterization of dependency graphs at the beginning of Section 3, this
task can be carried out in time at most O(m2), where m is the length of
the trace. In the case of dependency based on reading and writing of shared
variables, this can be improved to O(m ·n) where n is the number of shared
variables. The computation of the partial order for a peak, the transitive
closure of the dependency relation of (ordered) occurrences of actions, can
be performed in O(m3), but again this can be improved to O(m2n) where n
is the number of shared variables.

– Then, for the partial order of each peak, its width has to be computed.
Computing the width of a partial order is a problem that is known to be
equivalent to that of finding a maximal matching in a bipartite graph [15].
The matching problem can then be solved with Hopcroft and Karp’s algo-
rithm [2] in O(n

5
2 ), where n is the size of the bipartite graph. This is in turn,

twice the size of the peak.
– At last, the resulting widths have to be ordered and the test for an n-

decreasing sequence has to be done. This is largely subsumed in the com-
plexity of the previous task.

On the whole, the worst-case complexity of the pws-compliance test is thus
subsumed by the O(n

5
2 ) of the matching algorithm in case of shared variable

dependency. Profiling has shown that in practice the matching algorithm dom-
inates in the computation time. We therefore opted for reuse of computed peak
widths as much as possible which greatly improved the performance: Very of-
ten, only few peaks need to be recomputed under extension of a trace [u] by an
action a.

– Suppose that the subtrace [vb] corresponding to a peak of [u] is completely
independent of a, then this peak is also a peak of [ua].

– If a is dependent only of one peak with subtrace [vb] and in addition a D b,
then all peak widths are preserved.

– Otherwise, the peaks with subtrace [vb] such that a depends on v are not
preserved and must be “recomputed”, whereas the peak of a is necessarily a
singleton peak of with.

The optimization indicated by these observations allowed us to speed up our
prototype significantly (for the examples in the next sections 4 to 15 times faster).

Still, exploring a transition system that has very long paths to some state is
costly, the time complexity can only be limited by O(n

7
2 ) where n is the number

of actually visited states (after reduction). On the other hand, our filtering may
lead to an exponential reduction of the size of the state space; in such cases, this
at first sight high complexity pays well off with a significant speed up and even
with dramatic space savings, as the experiments of the next section suggest.
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8 First Experimental Results

We have conducted first experiments with a new prototype using Algorithm 1.
In one version, we use the bound of Proposition 15, which is slightly tighter than
the previously published bound of Theorem 4. In another version, we use pws-
compliance according to Theorem 12. We also did less systematic experiments
with an implementation of pr-compliance (cf. Section 5). Without figures, we
report qualitatively that pr-compliance offered little extra reduction compared
to pws-compliance and our prototype implementation obviously took much more
computation time.

In each parametric experiment, we compare the number of states, the memory
consumption and the running time for exhaustive exploration on a machine with
2GB memory. We only give data for cases not running out of memory, which
sometimes means that we can treat bigger problem instances with one or the
other reduction method.
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k l

eft

pic
k l

eft

pick right

pick right
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Fig. 1. An instance of the philosophers / the “comb” process as Petri net

The first experiment concerns a version of Dijkstra’s dining philosophers with
5 states, which each choose nondeterministically, which fork they pick up first
(Figure 1 at left). This is an example, where typical partial order techniques
like stubborn sets [17] or ample sets [13] fail to achieve significant reduction; in
fact, experimentally, Spin’s partial order reduction does not remove any state.
Moreover, we ran the experiment on a partial order package (PO-PACAKGE)
based on Spin 1.6.5, which was developed in the University of Liege. This pack-
age supports stubborn-set-like techniques and does better reduction than Spin.
Indeed, it works very well, i.e. generates very small state spaces, on lefthanded
dining philosophers, which always try to first pick up forks on their left, and
Sieve of Erastosthenes, the third example in this section. The data in parenthe-
ses, numbers of states visited by the package, are the evidence that supports
our claim. Finally, it turns out that already the bound-based algorithm obtains
a decent reduction, while the pws-compliant based reduction has an advantage
in states, time and memory on this series. Observe the sub-exponential growth
with reduction, whereas growth is cleanly exponential without reduction.

The second example “comb” (indicated as a Petri net in Figure 1 at right) is
an artificial series of “best-case reductions” for the pws-criterion. While expo-
nential without reduction, and while Spin’s partial order reduction does fail to
eliminate any state, it is clearly sub-exponential using the LFS-bound and it is
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N No reduction LFS bound PWS compliant SPIN PO red
states time memory states time memory states time memory states time memory

(s) (m) (s) (m) (s) (m) (s) (m)
2 13 0.01 4.1 13 0.01 4.6 13 0.01 4.8 13(13) 0.00 2.6
3 51 0.01 4.1 49 0.01 4.7 49 0.01 4.8 51(50) 0.00 2.6
4 193 0.01 4.1 191 0.01 4.7 147 0.01 4.9 193(183) 0.01 2.6
5 723 0.01 4.1 651 0.01 4.7 441 0.01 4.9 723(631) 0.02 2.6
6 2701 0.02 4.4 1937 0.02 4.8 1552 0.02 5.0 2701(2207) 0.02 2.7
7 10083 0.05 5.4 5041 0.05 5.4 4694 0.05 5.4 10083(7564) 0.09 3.1
8 37633 0.22 9.3 25939 0.25 8.8 11825 0.12 5.5 37633(26369) 0.35 7.9
9 140451 1.02 25.6 70225 0.76 17.3 26269 0.32 9.3 140451(91202) 1.59 43.8
10 524173 4.52 91.6 173031 2.13 38.1 63561 0.84 16.5 524173(322163) 7.03 74.1
11 1956243 21.06 357.5 392701 5.28 84.9 139788 1.96 32.6 1956243(1128208) 31.03 325.1
12 7300801 106.49 1422.5 830415 12.33 183.5 340179 5.06 79.5 7300801(3950372) 127.40 1030.1
13 — — — 1652587 26.99 378.3 808390 12.56 191.8 — — —
14 — — — 3121147 56.44 743.9 1817375 29.39 441.5 — — —
15 — — — 5633381 111.55 1399.0 3815044 67.35 948.4 — — —
16 — — — — — — 7492734 240.85 1911.7 — — —

Fig. 2. Results of the philosophers example
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Fig. 3. Results of the comb example

not difficult to understand that it has cubic growth under pws-compliant reduc-
tion. Observe the jumps in state memory and time for the LFS-bound reduction:
They occur when the LFS-bound increases.

The third example is a series of instances of an asynchronous version1 of the
Sieve of Erastosthenes, where N is the number of iterations of the sieve. This
is an example where the partial order methods like the ample set method are
good at. Indeed, PO-PACKAGE visited quite few states (see the numbers in
parentheses), which are far less than those by pws-compliance. However, pws-
compliance gives a significantly better reduction with respect to both memory
and time than LFS-bound and Spin.

A natural question to ask is the performance of the LFS reduction com-
pared to McMillan unfoldings [4]. Without going into all details, by nature,
the latter only consider traces with a single maximal element (the events of
the event structure) and thus produce significantly smaller structures than LFS
(which generates also states from certain interleavings). The academic exam-
ples presented are naturally modeled as Petri nets and decend unfolders easily
outperform LFS. However, unfoldings use the operation of combining traces for
“possible extensions”, an operation that may not always be feasible, where LFS
just computes successors.

1 Our prototype does not allow rendezvous yet, so to compare, we had to modify this
example for Promela/Spin.
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N No reduction LFS bound PWS compliant SPIN PO red
states time memory states time memory states time memory states time memory

(s) (m) (s) (m) (s) (m) (s) (m)
1 340 0.01 4.1 198 0.01 4.7 198 0.01 4.8 188(41) 0.00 2.3
2 1912 0.01 4.3 1456 0.01 4.8 910 0.02 4.9 630(77) 0.00 2.3
3 8632 0.04 5.4 4560 0.05 5.5 2874 0.04 5.2 2134(121) 0.00 2.5
4 63984 0.39 15.5 18252 0.19 8.5 14392 0.27 7.5 10599(203) 0.04 3.6
5 178432 1.30 40.7 35072 0.46 12.9 26644 0.67 10.5 25048(263) 0.13 6.2
6 1097296 10.31 259.2 361736 9.10 99.8 63212 3.64 20.3 109880(361) 0.70 21.7
7 2978208 34.12 772.2 707120 19.75 206.7 112964 10.23 35.2 1076639(437) 9.32 243.5
8 — — — 2072162 75.71 650.1 304386 37.85 95.0 4311167(551) 86.52 1801.0
9 — — — — — — 1158208 166.24 395.1 —(711) — —
10 — — — — — — 1858340 308.54 654.2 —(811) — —

Fig. 4. Results of the sieve example

9 Conclusions and Future Work

In this paper, we report on an improvement concerning both the theoretical basis
and practice of Local First Search, a recent partial order reduction technique.
The theory not only gives a better insight into previously published results, but in
particular yields a stronger reduction method than previously known, using peak-
width-sequence compliance. Concerning the previously published “LFS-bound”,
pws-compliance can be used in a chain of reasoning that derives it.

We have also built an ambitious prototype implementation of the algorithm
that starts to yield results. The prototype uses an implementation of traces and
a new adequate order described in [12]. Already for a version of Local First
Search according to [1], the results reported here are more conclusive and show
that the latter method scales and is a serious partial order reduction method,
and although simple often superiour to the one implemented in Spin.

However, the new pws-compliance test resulting in stronger reductions gives
reductions of a new quality to a point which surprised the authors. The latter
reduction is more complicated to implement efficiently and we gave a few hints
on how this can be done. The first observations reported here show that the pws-
compliance provides a model checking algorithm that is competitive with state
of the art partial order reduction techniques, and can give significantly stronger
reductions depending on the model. In the future, we will experiment on realistic
applications rather than benchmarks. We believe that in particular applications
in the field of AI planning should be an interesting domain of application due
to the goal oriented nature of LFS.

An open theoretical question of practical interest remains whether the ap-
proach of using adequate orders as in [1] is avoidable while maintaining exhaus-
tive exploration using the LFS reduction criteria. The importance of this question
lies in the fact that the adequate orders known (and the one we use) implicitely
force a breadth first search order, which is not optimal for all applications.
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Abstract. We present a new lattice-theoretic model for communicat-
ing sequential processes. The model underpins a process algebra that is
very close to CSP. It differs from CSP “at the edges” for the purposes
of creating an elegant algebra of communicating processes. The one sig-
nificant difference is that we postulate additional distributive properties
for external choice. The shape of the algebra that emerges suggests a
lattice-theoretic model, in contrast to traditional trace-theoretic mod-
els. We show how to build the new model in a mathematically clean
step-by-step process. The essence of our approach is to model simple
processes (i.e. those without choice, parallelism, or recursion) as a poset
S of sequences, and then order-embed S into a complete (and completely
distributive) lattice called the free completely distributive lattice over S.
We explain the technique in detail and show that the resulting model
does indeed capture our algebra of communicating sequential processes.
The focus of the paper is not on the algebra per se, but on the model
and the soundness of the algebra.

Keywords: communicating sequential processes, denotational models,
nondeterminacy.

1 Introduction

Process algebras are formally defined languages for the study of fundamental con-
cepts in concurrent processes, including communication, synchronisation, non-
determinacy, abstraction, recursion, divergence, and deadlock. Among the best-
known is CSP (Communicating Sequential Processes). Although CSP satisfies
a large body of laws, the laws are not intended to be sufficient for everyday
formal reasoning. Rather they “provide a useful way of gaining understanding
and intuition about the intended meaning of constructs [and can] be useful in
proofs about CSP processes” [6]. In fact, practitioners do not typically use al-
gebraic means to reason about CSP code, but instead rely on model-checking
approaches.
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We embarked on constructing a practically useful algebra for communicating
sequential processes that would be as CSP-like as we could make it, but which
might depart from CSP “at the edges” if the algebra demanded it. We have
constructed what seems to us to be a satisfactory algebra for a language that
differs from CSP in one significant respect: we postulate that external choice
enjoys the same distributive properties as internal choice. In contrast, external
choice is somewhat less distributive in classical CSP. We speculate that this
change does not impact significantly on the practice of writing CSP code, and
that any drawbacks will be more than compensated for by the usefulness of
the new algebra. However, the pros and cons of this are not the subject of the
present paper. Our purpose here is to present a new model for an algebra of
communicating sequential processes and show that the algebra is sound.

CSP has various models, all based on trace theory [6]. We have not adopted
them because a more mathematically appealing approach suggested itself. In
our algebra, internal and external choice are mathematical duals of one another,
and so one would expect that they could be modelled by some lattice in which
lattice meets and joins model internal and external choice, respectively. The
creative part of our work lies in discovering this lattice and mapping all the
terms and operators of communicating sequential processes into it. We think our
model-building technique is sufficiently general to be useful in other contexts, in
particular wherever nondeterministic choice is employed.

We construct the model, and show that the axioms of our algebra hold in it.
Although it is not our purpose here to discuss our algebra per se, we will describe
it to the extent that the reader needs to follow the soundness argument.

The model-building strategy can be broken into six steps, which we outline
briefly:

Step 1. In the first step we model simple processes (or proper processes as we
shall prefer to call them). These consist of processes that do not employ choice,
parallelism, or recursion. Such processes are trivially modelled as sequences. The
operations that apply to proper processes are easily modelled as operations on
sequences. For example, sequential composition of processes is modelled more or
less as sequence concatenation.
Step 2. Next we impose a partial ordering on the set of sequences. Our model
building technique is indifferent as to how one chooses this ordering. One simply
chooses it so that it captures the mathematical properties we want to hold, such
as yielding the desired least fixpoint when modelling recursion, and ensuring
that parallelism will have the properties we want.
Step 3. Next we introduce choice. We do so by finding an order-embedding of
the sequence poset into some complete (and completely distributive) lattice such
that lattice meets and joins model internal and external choice, respectively. The
lattice we want turns out to be what is called the free completely distributive
(FCD) lattice over the sequence poset.
Step 4. We have to “lift” the poset operators into the lattice. For example,
sequence concatenation in the poset must be lifted into a similar operator in
the lattice such that it preserves its behaviour. In addition, we have to give
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the lifted operator additional behaviour to cater for the new lattice elements
(these represent processes with choice). We develop a small suite of higher-order
“lifting” devices that lift operators from a poset to the FCD lattice. For each
operator on the sequence poset, we select an appropriate lifting into the lattice.
Step 5. In Step 5 we add parallelism. This has to be treated separately since
unlike the other operators, parallelism can give rise to choice even when applied
to proper processes.
Step 6. In the final step, we model recursively defined processes using completely
standard fixed-point theory.

The rest of the paper is organised as follows:
Section 2. We describe the process algebra, and give its axioms.
Section 3. We give a poset model for proper processes.
Section 4. We show how to model choice using the FCD lattice construction.
Section 5. We give the model for the full language, and give the soundness

result for the algebra.
Section 6. We give our conclusions and discuss related work.

2 The Process Algebra

Our language is based on that of CSP [6]. For brevity we will not consider all of
the constructs of CSP. The subset we deal with is given in Table 1. Actually we
will write

⊔
rather than

�
to emphasise the fact that our two choices are duals

of one another. We will henceforth refer to our two choices as demonic and an-
gelic choice instead of the traditional internal and external choice, respectively.
Internal choice in CSP is precisely demonic choice as it occurs in other contexts
(such as the refinement calculus [1]), and so the two names are interchangeable.
The dual of demonic choice is typically called angelic choice in the literature, and
so our terminology is in this regard consistent with established usage. However,
we caution the reader against associating any “badness” with demonic choice,
or any “goodness” with angelic choice. They are simply two choice operators
that are mathematically dual. Henceforth, “external choice” will refer to CSP’s
version, and “angelic choice” will refer to ours. Angelic nondeterminacy is often
associated with backtracking. However, our use of the term should not be taken
to imply that an implementation is necessarily backtracking.

2.1 Proper Processes

We assume an alphabet of events denoted by Σ. There are two primitive pro-
cesses: SKIP and STOP . SKIP denotes a process that has terminated success-
fully, and STOP denotes a process which has failed in some respect. We construct
other simple processes from these base cases by prefixing, as in a�b�c�SKIP
and a�b�STOP , where a, b and c are drawn from the alphabet of events.

For a set of events A ⊆ Σ, we define Proc(A) to be the set of processes
constructed from SKIP , STOP and prefixing by events in A. We abbreviate
Proc(Σ) by Proc. We call these simple processes proper processes and denote
them by p, q, r.
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Table 1. CSP

Σ universal set of events
STOP deadlocked process
SKIP terminated process
a�P process P prefixed by event a�

S internal choice of the terms in set S
P � Q external choice of processes P and Q
P 	A restriction of P to the events in A
P A‖B Q alphabetised parallel composition of P and Q with alphabets A and B
μN.P recursively defined process

We partially order Proc by the refinement order , denoted by ), and defined
by the following axioms:

(A1) ) is a partial order
(A2) STOP ) p

(A3) a�p ) b�q ⇔ (a = b) ∧ (p ) q)

where p, q denote proper processes and a, b denote (possibly equal) events. Ac-
tually, we need to assert that p ) q does not hold unless it follows from the
preceding axioms, and so we postulate in addition:

(A4) a�p �) SKIP �) a�p

(Note: We label the axioms of our algebra (A1), (A2), etc., and the theorems
(other than axioms) by (T1), (T2), etc.)

It follows from (A1)–(A4) that SKIP and all proper processes ending in SKIP
are maximal in the refinement order. A process which fails is refined by a process
which can engage in the same events and then terminate, or one which can
engage in the same events and then some further events. Otherwise processes
are incomparable. Note that the refinement order is quite different from the
common prefix order.

There are two operators which act on proper processes: restriction p 	A and
sequential composition p ; q. They are defined by the following axioms:

(A5) SKIP 	A = SKIP
(A6) STOP 	A = STOP

(A7) (a�p)	A =
{

a�(p	A) if a ∈ A
p	A otherwise

(A8) SKIP ; p = p

(A9) STOP ; p = STOP
(A10) (a�p) ; q = a�(p ; q)

where A is a set of events, a is an event, and p, q are proper processes.
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2.2 Choice Operators

For S a set of process terms, the term
�

S denotes the demonic (or internal)
choice of processes in S, and

⊔
S denotes the angelic choice. We write # and �

for the binary infix versions of
�

and
⊔

, respectively. They are governed by the
following axioms:

(A11) P ) Q ⇔ (∀X ⊆ Proc ·
�

X ) P ⇒
�

X ) Q)

(A12) P ) Q ⇔ (∀X ⊆ Proc ·Q )
⊔

X ⇒ P )
⊔

X)

(A13)
�

S )
⊔

X ⇔ (∃P ∈ S · P )
⊔

X)

(A14)
�

X )
⊔

S ⇔ (∃P ∈ S ·
�

X ) P )

where P, Q are process terms, X is a set of proper processes, and S is a set of
process terms. It is not easy to put an intuitive interpretation on these, and we
suggest the reader does not try to do so. They have little role in the practical
use of the algebra, but rather are used to establish a body of more practical
theorems.

The preceding axioms also extend the refinement relation from proper to
arbitrary processes, except that we need to postulate antisymmetry of refinement
for arbitrary processes:

(A15) (P ) Q ∧Q ) P ) ⇔ P = Q

We can infer that if R ⊆ S then
�

S )
�

R, i.e. that refinement allows reduction
in demonic choice (and dually an increase in angelic choice). We can also establish
the classic lattice-theoretic relationship P ) Q ⇔ P # Q = P ⇔ P � Q = Q
where P and Q denote processes.

For empty choices, we define the abbreviations ⊥ and + for
⊔
∅ and

�
∅,

respectively. These satisfy ⊥ ) P ) + for all processes P ; also � and # have
units and zeros among ⊥ and +.

One of the most significant theorems of the algebra is that all processes can
be expressed in a simple normal form. Before stating it, we introduce some
additional notation: To express complex sets of process terms, we employ the
set comprehension notation {x ∈ T | R · P }, where R denotes a predicate and
P denotes a term, in each of which x may occur free as a term of type T . This
denotes the set of P ’s for each x in T that satisfy R . We write {x ∈ T | R} as
an abbreviation for {x ∈ T | R · x} and {x ∈ T · P} as an abbreviation for
{x ∈ T | true · P }.

Let us say that a term is angelically proper if it can be expressed as the angelic
choice of a set of proper processes. It turns out that every process term can be
expressed as the demonic choice of a set of angelically proper terms:

(T1) P =
�{

X ⊆ Proc
∣∣∣ P )

⊔
X ·

⊔
X
}

for any process term P . (T1) says that any process P is equivalent to the demonic
choice over all

⊔
X where X ranges over those subsets of Proc satisfying P )



128 M. Tyrrell et al.⊔
X . A term written this way is said to be in demonic normal form (there is

also a dual angelic normal form which needn’t concern us here).

2.3 Distribution Properties

We define prefixing and restriction to distribute over choice in their process
arguments:

(A16) a �(
�

S) =
�
{P ∈ S · a�P}

(A17) a �(
⊔

S) =
⊔
{P ∈ S · a�P}

(A18) (
�

S)	A =
�
{P ∈ S · P 	A}

(A19) (
⊔

S)	A =
⊔
{P ∈ S · P 	A}

where a denotes an event, S a set of process terms and A a set of events. For
sequential composition, which has two process arguments, we assert that it dis-
tributes over choice on the left:

(A20) (
�

S) ; P =
�
{Q ∈ S · Q ; P}

(A21) (
⊔

S) ; P =
⊔
{Q ∈ S · Q ; P}

where S is a set of process terms and P a process term. We also assert that it
distributes over choice on the right, provided the left argument is proper:

(A22) p ; (
�

S) =
�
{P ∈ S · p ; P}

(A23) p ; (
⊔

S) =
⊔
{P ∈ S · p ; P}

where p is a proper process and S is a set of process terms. The requirement that
the left argument in (A22) and (A23) be proper is a formal way of expressing
that if both arguments of a sequential composition contain choice, distribution
should happen on the left first and then on the right. Bearing in mind that the
arguments can be expressed in normal form, (A20) to (A23) suffice to eliminate
all choice from the arguments of a sequential composition, after which we can
apply (A8) to (A10).

2.4 Alphabetised Parallel

There are several parallel operators in CSP, for example synchronising parallel,
alphabetised parallel, interleaving, interface parallel, etc. We will describe the
alphabetised parallel operator here, as it is typical. We give the operator three
axioms, the first of which applies to angelically proper terms:

(A24) P
A
‖
B

Q =
⊔
{p ∈ Proc(A ∪B) | p	A ) P ∧ p	B ) Q}
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where P , Q are angelically proper and A, B are sets of events. Its other two
axioms assert that it distributes over demonic choice:

(A25)
�

S
A
‖
B

Q =
�{

P ∈ S · P
A
‖
B

Q
}

(A26) P
A
‖
B

�
S =

�{
Q ∈ S · P

A
‖
B

Q
}

where S is a set of process terms, P , Q are arbitrary process terms and A, B are
sets of events. The axioms are sufficient to prove that the operator is symmetric,
associative (with appropriate alphabet adjustment) and satisfies a useful step law.

2.5 Recursively Defined Processes

Processes may be defined recursively, as in for example:

N = a�N � SKIP

A recursive process definition is written N = P where P is a process term
which may contain free occurrences of N . The definition is well-formed only if
P is monotonic in N and P [STOP/N ] �= ⊥. (P [Q/N ] denotes the substitution
of term Q for all free occurrences of N in P .) The monotonicity requirement
excludes some unusual uses of the choice operators.

A well-formed recursive process definition N = P defines a process μN.P
which satisfies the following axioms:

(A27) μN.P = P [(μN.P )/N ]
(A28) P [Q/N ] ) Q ⇒ (μN.P ) ) Q

(A29) μN.P �= ⊥
where Q is a process such that Q �= ⊥.

An example of a recursively defined process is μN.(a�N). We can prove
that it equals

⊔
n∈N

(an � STOP) where an abbreviates a sequence of n as.
Another example is μN.(a�N � SKIP) which can be shown to equal

⊔
n∈N

(an �
SKIP). We don’t distinguish between deadlock and divergence in our model: the
divergent process μN.N equals STOP .

A recursive process definition may also involve an argument, as in for example:

COUNT = λn: N. up�COUNT(n + 1)
� if n > 0 then down�COUNT(n− 1) else STOP fi

A parametrised recursive process definition is written N = E where E is an ab-
stracted process (λx: T.P ) and T is some simple type (such as N). The definition
is well-formed only if N occurs in monotonic positions in P and for all x ∈ T ,
E[(λy : T · STOP)/N ](x) �= ⊥. The defined process is written (μN.E) and it
satisfies the following axioms:

(A30) μN.E = E[(μN.E)/N ]
(A31) (∀x : T · E[F/N ](x) ) F (x)) ⇒ (∀x : T · (μN.E)(x) ) F (x))
(A32) ∀x : T · (μN.E)(x) �= ⊥

where F is any function of type T→Proc such that (∀x : T · F (x) �= ⊥).
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3 Modelling Proper Processes

Our first step in giving the semantics of our process algebra is to model the
collection of proper processes as a poset.

Semantically, we won’t distinguish between the type of events, Σ, and the set
we use to model it. Similarly, we will allow an event a to model itself.

We model proper processes with a partially-ordered set denoted [Proc]. This
consists of finite sequences of events which terminate in one of two ways: 〈〉 or
Ω. Proper processes p have an interpretation in [Proc] which we denote [p]. They
are interpreted as follows:

[SKIP ] 
 〈〉
[STOP ] 
 Ω
[a�p] 
 a:[p]

where a is an event, p is a proper process and : is the cons operator on sequences.
Let ≤ be the smallest partial order on [Proc] such that:

(∀u ∈ [Proc] · Ω ≤ u)
(∀ a ∈ Σ, u, v ∈ [Proc] · a:u ≤ a:v ⇔ u ≤ v)

We use ≤ to model the refinement relation on proper processes.
The operators on proper processes are given meanings as monotonic operators

on the poset [Proc]. Restriction is interpreted as:

[	 ] : [Proc]× PΣ → [Proc]

[	 ](u, A) 


⎧⎪⎪⎨⎪⎪⎩
a:([	 ](u′, A)) if u = a:u′, a ∈ A
[	 ](u′, A) if u = a:u′, a /∈ A
〈〉 if u = 〈〉
Ω if u = Ω

for all u ∈ [Proc] and A ⊆ Σ.
Sequential composition is interpreted as:

[;] : [Proc]× [Proc]→ [Proc]

[;](u, v) 


⎧⎨⎩
a:([;](u′, v)) if u = a:u′

v if u = 〈〉
Ω if u = Ω

for all u, v ∈ [Proc].
We can use [	 ] to give the interpretation of Proc(A):

[Proc(A)] 
 {x ∈ [Proc] | [	 ](x, A) = x}

We have shown that the definitions we give for the poset and its operations
are well-defined [8].
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4 Modelling Unbounded Demonic and Angelic Choice

To model the choice operators, we will embed the poset in a complete lattice.
There are many ways to embed a poset in a complete lattice, but the one we
want is what’s known as the free completely distributive lattice over a poset
(FCD). The FCD lattice preserves the order of the original poset, is completely
distributive, and has meets and joins that capture demonic and angelic choice,
respectively.

4.1 Lattice Theory

Everything in this subsection is standard and is available in more detail in any
standard text (such as [3,2]).

A complete lattice is a partially ordered set L such that every subset of L has
a least upper bound and greatest lower bound. We will denote the order on the
lattice by ≤. We denote the least upper bound of S ⊆ L by

∨
S and the greatest

lower bound by
∧

S. Least upper bounds are also called joins and greatest lower
bounds are also called meets . A complete lattice is completely distributive iff
joins distribute over meets and vice versa.

A function f from poset C to poset D is monotonic iff x ≤C y ⇒ f x ≤D f y
for all x, y ∈ C, and an order-embedding iff x ≤C y ⇔ f x ≤D f y for all
x, y ∈ C. An order-embedding from a poset C to a complete lattice is said to be
a completion of C. We write C → D to denote the space of monotonic functions
from C to D, which is a poset under the pointwise order. If L and M are complete
lattices, then a function f : L→M is a complete homomorphism iff it preserves
joins and meets, i.e. f(

∨
S) =

∨
(fS) and f(

∧
S) =

∧
(fS) for all S ⊆ L.

4.2 The Free Completely Distributive Lattice over a Poset

A completely distributive lattice L is called the free completely distributive lat-
tice over a poset C iff there is a completion φ : C → L such that for every com-
pletely distributive lattice M and function f : C →M , there is a unique function
φ∗

Mf : L→M which is a complete homomorphism and satisfies φ∗
Mf ◦ φ = f .

For any poset C, the free completely distributive lattice over C exists and is
unique up to isomorphism [5]. It is written FCD(C). The completions φ : C →
FCD(C) involved in the definition are not necessarily unique, but for each poset
C, we assume that some such completion has been chosen.

We briefly offer some insight into the properties of FCD lattices. One of their
most useful features is that each element of FCD(C) can be described as the
meet of joins of subsets of φC, or the join of meets of subsets of φC. Another
property of FCD lattices is that their bottom and/or their top element can be
removed and the resulting structure is still a complete lattice. We will make use
of this property when we model recursion.

Theorem 1. Let φ be the FCD completion of C in FCD(C). Then, for all x ∈
FCD(C):

x =
∧
{X ⊆ φC | x ≤

∨
X ·

∨
X } =

∨
{X ⊆ φC |

∧
X ≤ x ·

∧
X }
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Proof. This is proved in [5].

Theorem 2. {x ∈ FCD(C) | x �= ⊥} is a complete lattice under the inherited
order from FCD(C).

Proof. This is proved in [8].

4.3 Lifting Operators

Suppose that φ completes poset C in FCD(C). For each of the operators on C,
we will want to lift them to corresponding operators on FCD(C). Since FCD(C)
is a much richer space than C, it turns out that there are several options for
how an operator is lifted.

To lift a unary operator f : C → C, we define:

U : (C → C)→ (FCD(C)→ FCD(C))
U f 
 φ∗(φ ◦ f)

As the following theorem shows, Uf ’s behaviour on φC corresponds to f ’s be-
haviour on C. Its behaviour outside φC is determined by the fact that it dis-
tributes over meets and joins.

Theorem 3. For all f : C → C, x ∈ C and X ⊆ FCD(C):

(U f)(φx) = φ (f x)
(U f)(

∧
X) =

∧
{y ∈ X · (U f) y}

(U f)(
∨

X) =
∨
{y ∈ X · (U f) y}

We define the following two functions for when only one of the arguments of a
binary operator is lifted to an FCD:

R : (D × C → C)→ (D × FCD(C)→ FCD(C))
R f 
 uncurry (U ◦ curry f)

L : (C ×D → C)→ (FCD(C)×D → FCD(C))
L 
 swap ◦ R ◦ swap

where curry, uncurry and swap are defined:

curry = λf : C ×D → B · λx : C · λy : D · f(x, y)
uncurry = λf : C → D → B · λ(x, y) : C ×D · f x y
swap = λf : C ×D → B · λ(x, y) : D × C · f(y, x)

Theorem 4. For all f : D × C → C, g : C × D → C, x ∈ C, y ∈ D and
X ⊆ FCD(C):

(R f) (y , φ x) = φ (f(y , x))
(R f) (y ,

∧
X) =

∧
{z ∈ X · (R f) (y , z)}

(R f) (y ,
∨

X) =
∨
{z ∈ X · (R f) (y , z)}

(L g) (φx , y) = φ (g(x , y))
(L g) (

∧
X , y) =

∧
{z ∈ X · (L g) (z , y})

(L g) (
∨

X , y) =
∨
{z ∈ X · (L g) (z , y})
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If both arguments of a binary operator are lifted to an FCD, one way of lifting
the operator is called left-first lifting. Define the left-first lifting operator:

B : (C × C → C)→ (FCD(C)× FCD(C)→ FCD(C))
B f 
 uncurry(φ∗(U ◦ (curryf)))

B f distributes over meets and joins on its left-hand argument first, and then on
its right-hand argument.

Theorem 5. For all x, y ∈ C, X ⊆ FCD(C) and z ∈ FCD(C):

(B f) (φx , φ y) = φ (f(x , y))
(B f) (

∧
X , z) =

∧
{w ∈ X · (B f) (w , z})

(B f) (
∨

X , z) =
∨
{w ∈ X · (B f) (w , z})

(B f) (φx ,
∧

X) =
∧
{w ∈ X · (B f) (φx , w)}

(B f) (φx ,
∨

X) =
∨
{w ∈ X · (B f) (φx , w)}

As well as left-first lifting, there are also right-first, meet-first and join-first lifting
operators. These are not needed for the material considered here.

The theorems in this section are proved in [8].

5 The Model

The interpretation of the type Proc is given as:

�Proc� 
 FCD([Proc])

Let φ complete [Proc] in �Proc�. Each process term P has an interpretation �P � ∈
�Proc�. Strictly, the interpretation is evaluated in an environment which assigns
values to free variables. For the sake of readability, we will leave environments
implicit whenever possible.

The constructors and operators of proper processes are interpreted as:

�SKIP� 
 φ 〈〉
�STOP� 
 φΩ
�a�P � 
 ���(a, �P �)
�P 	A� 
 �	 �(�P �, A)
�P ; Q� 
 � ;�(�P �, �Q�)

where a is an event, P, Q are process terms, A is a set of events and ���, �	� and
� ;� are liftings of prefixing, restriction and sequential composition, respectively,
defined as follows: ��� : Σ × �Proc�→ �Proc�

��� 
 R (:)

�	 � : �Proc�× PΣ → �Proc�
�	 � 
 L [	 ]

� ;� : �Proc�× �Proc�→ �Proc�
� ;� 
 B[;]
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where, in the definition of ���, (:) is the cons operator : on [Proc] in prefix form.
The interpretation of a proper process lies in φ [Proc]. We interpret demonic

and angelic choice as meet and join in the lattice, respectively.

5.1 Alphabetised Parallel Operator

To give the interpretation of the alphabetised parallel operator, we start with
its behaviour on angelically proper processes. An angelically proper process can
be represented by a set of elements of φ[Proc]. We define an operator 〈‖〉 which
takes subsets of φ[Proc] as arguments. 〈‖〉 is defined as:

〈‖〉 : (P(φ[Proc])× PΣ)× (P(φ[Proc])× PΣ)→ �Proc�
〈‖〉 ((X, A), (Y, B))



∨
{y ∈ φ[Proc(A ∪B)] | �	 �(y, A) ≤

∨
X ∧ �	�(y, B) ≤

∨
Y }

We now give the denotation of ‖ on �Proc�:
� ‖ � : (�Proc�× PΣ)× (�Proc�× PΣ)→ �Proc�
� ‖ � ((x, A), (y, B))



∧
{X, Y ⊆ φ[Proc] | x ≤

∨
X ∧ y ≤

∨
X · 〈‖〉 ((X, A), (Y, B))}

The interpretation of parallel compositions is as follows:

�P
A
‖
B

Q� 
 �‖� ((�P �, A), (�Q�, B))

5.2 Recursive Process Definitions

Let �Proc�− be �Proc� with ⊥ removed. By Theorem 2, �Proc�− is a complete
lattice. Given a recursive process definition N = P , define f to be the following
function:

f : �Proc�− → �Proc�−
f 
 λx : �Proc�− · �P �x

N

where �P �x
N denotes the interpretation of P when the environment associates x

with N . For well-formed definitions, this is a well-defined monotonic function on
the complete lattice �Proc�−. Therefore, by the standard Knaster-Tarski theory
[7], generalised by Park [4], it has a least fixpoint μf . We define �μN.P � = μf .

Given a parametrised recursive process definition N = E where E has the
form (λx: T.P ), define f as follows:

f : (�T �→ �Proc�−)→ (�T �→ �Proc�−)
f 
 λg : �T �→ �Proc�− · λy : �T � · �P �y

x
g
N

For well-formed definitions, this is a well-defined monotonic function on the
complete lattice �T �→ �Proc�−. Therefore, it has a least fixpoint μf . We define
�μN.E� 
 μf .
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5.3 Soundness

The soundness of the axioms is a corollary of the following two theorems. Each
statement of the theorems justify a single axiom. The statements are marked
with the corresponding axiom number.

Theorem 6. For all z, w ∈ �Proc�, X ⊆ φ [Proc] and S ⊆ �Proc�:
(A11) z ≤ w ⇔ (∀X ⊆ φ [Proc] ·

∧
X ≤ z ⇒

∧
X ≤ w)

(A12) z ≤ w ⇔ (∀X ⊆ φ [Proc] · w ≤
∨

X ⇒ z ≤
∨

X)

(A13)
∧

S ≤
∨

X ⇔ (∃ z ∈ S · z ≤
∧

X)

(A14)
∧

X ≤
∨

S ⇔ (∃ z ∈ S ·
∧

X ≤ z)

(A15) ≤ is a partial order

Proof. This follows from results in [5].

Theorem 7. For all a, b ∈ Σ, x, y ∈ φ [Proc], A, B ⊆ Σ, S ⊆ �Proc�, z ∈
�Proc�, X, Y ⊆ φ [Proc], f ∈ �Proc�− → �Proc�−, g ∈ (�T � → �Proc�−) →
(�T �→ �Proc�−), and h ∈ �T �→ �Proc�−:

(A1) ≤ is a partial order
(A2) φΩ ≤ x

(A3) ���(a, x) ≤ ���(b, y) ⇔ (a = b) ∧ (x ≤ y)
(A4) ���(a, x) �≤ φ 〈〉 �≤ ���(a, x)
(A5) �	�(φ〈〉, A) = φ 〈〉
(A6) �	�(φΩ, A) = φΩ

(A7) �	�(���(a, x), A) =
{ ���(a, �	�(x, A)) if a ∈ A

�	�(x, A) otherwise
(A8) � ; �(φ 〈〉, x) = x

(A9) � ; �(φΩ, x) = φΩ
(A10) � ; �(���(a, x), y) = ���(a, � ; �(x, y))

(A16) ���(a,
∧

S) =
∧
{w ∈ S · ���(a, w)}

(A17) ���(a,
∨

S) =
∨
{w ∈ S · ���(a, w)}

(A18) �	�(∧S, A) =
∧
{w ∈ S · �	 �(w, A)}

(A19) �	�(∨S, A) =
∨
{w ∈ S · �	 �(w, A)}

(A20) � ; �(∧S, z) =
∧
{w ∈ S · � ; �(w, z)}

(A21) � ; �(∨S, z) =
∨
{w ∈ S · � ; �(w, z)}

(A22) � ; �(x,
∧

S) =
∧
{w ∈ S · � ; �(x, w)}
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(A23) � ; �(x,
∨

S) =
∨
{w ∈ S · � ; �(x, w)}

(A24) �‖�((∨X, A), (
∨

Y, B)) =
∨
{x ∈ φ[Proc(A ∪B)] |

�	�(x, A) ≤
∨

X ∧ �	 �(x, B) ≤
∨

Y }

(A25) �‖�((∧S, A), (z, B)) =
∧
{w ∈ S · �‖�((w, A), (z, B))}

(A26) �‖�((z, A), (
∧

S, B)) =
∧
{w ∈ S · �‖�((z, A), (w, B))}

(A27) μf = f (μf)
(A28) z �= ⊥ ∧ f z ≤ z ⇒ μf ≤ z

(A29) μf �= ⊥
(A30) μg = g (μg)
(A31) (∀w ∈ �T � · g h w ≤ h w) ⇒ (∀w ∈ �T � · (μg)w ≤ h w)
(A32) (∀w ∈ �T � · (μg)w �= ⊥)

Proof. These results are proven in [8].

6 Conclusions

We have shown how to construct a model for an algebra of communicating se-
quential processes. The approach follows a mathematically clean step-by-step
process which we speculate will apply whenever languages with choice are mod-
elled. We first provide a poset which models the subset of the language without
choice, parallelism or recursion. To model the whole language, we use the free
completely distributive lattice over that poset. This is a suitable model for the
choice operators, permits a very general model of the alphabetised parallel com-
position, and a natural definition of recursion. We have shown the algebra is
sound by proving that the axioms hold in the model.

The algebra of communicating sequential processes we describe is very close to
CSP: it differs mainly in the distributive properties of external choice. The model,
however, is quite different from those of CSP and, in comparison, possesses some
appealing qualities.

There exist several models for CSP [6], for example the failures-divergences
model and the stable-failures model, all of which are based on trace theory.
From a mathematical perspective, a complete, completely distributive lattice is
a preferable structure to work with than the sets of pairs of traces employed by
the standard CSP models, not least because it allows us to apply the tools of
established lattice-theory.

Our prime motivation is the construction an algebra for communicating se-
quential processes which supports algebraic intuition and reasoning. The role a
model plays in this context is to guarantee the soundness of the axioms. For this
purpose, a single canonical model is desirable. This is what we have provided.
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Abstract. In this paper, we propose a finite structural translation of
possibly recursive π-calculus terms into Petri nets. This is achieved by
using high level nets together with an equivalence on markings in order
to model entering into recursive calls, which do not need to be guarded.

Keywords: mobility, process algebra, π-calculus, Petri nets, composi-
tional translation, behavioural consistency.

1 Introduction

In our previous paper [8], we devised a structural way of translating terms from
the finite fragment of the π-calculus into finite Petri nets. This translation relies
on a combination of PBC [1] and M-net [2,10,11] features and its result is a
Petri net whose semantics in terms of a labelled transition system is strongly
bisimilar [17], and often even isomorphic, to that of the original π-term.

The translation in [8] only concerned terms without recursion (and replication,
but the latter is equivalent to recursion), and in this paper we will show how to
remove this restriction. The standard way of incorporating recursion in a PBC-
like framework is to rely on net refinement and a fixpoint approach [1]. However,
in the π-calculus framework, successive refinements would generally need to ap-
ply (somewhat arbitrary) alpha-conversions in order to keep the well-formedness
of process expressions, making fixpoint approach much more complicated.

An alternative could be to use recursive Petri nets [14], but this would lead
to a formalism, which in our view would be difficult to lift to the high level
nets and to the specific framework needed to deal with recursive π-calculus
terms (in particular, it is far from clear how one could support communications
between different levels of recursion). Moreover, the various kinds of causality
and concurrency semantics are not currently available in the recursive Petri net
theory. We therefore decided to use instead a simpler and more direct approach
inspired by [7] and used in the context of PBC.

We assume that the reader is familiar with the basics concepts of π-calculus
and high-level Petri nets (all formal definitions and proofs can be found in [9]).

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 138–152, 2006.
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2 The π-Calculus and Its Indexed Operational Semantics

We start by recalling the syntax and semantics of the π-calculus [18], assuming
that C is a countably infinite set of channels ranged over by the first few lower
case Roman letters; and that X = {X1, . . . , Xm} is a finite set of process vari-
ables, each variable X ∈ X having a finite arity nX . The concrete syntax we use
is given below, where P denotes an agent (or π-expression).

� ::= ab � ac � τ (output/input/internal prefixes)
P ::= 0 � � .P � P + P � P |P � (νc)P � X(a1, . . . , anX ) (agents)

The constructs ac .P (input) and (νc)P (restriction) bind the channel c in P , and
we denote by fn(P ) the free channels of P . For each process variable X ∈ X, there
is exactly one definition DX of the form X(a1, . . . , anX ) df= PX , where ai �= aj

for i �= j. We assume that fn(PX) ⊆ {a1, . . . , anX}, so that the free channels of
PX are parameter bound. Agents are defined up to the alpha-conversion, mean-
ing that bound channels may be coherently renamed avoiding potential clashes.
Moreover, {b/c, . . .}P will denote the agent obtained from P by replacing all free
occurrences of c by b, etc, possibly after alpha-converting P in order to avoid
name clashes; for example {b/c, f/a}ab .gb .X(d, c) = fe . ge .X(d, b).

The semantical treatment of the π-calculus adopted in this paper is that
expounded by Cattani and Sewell [5], where the usual transition steps are aug-
mented with an explicit information about unrestricted channels:

A . P
�

−−−−−→ B . Q

where � is a prefix and A, B ⊂ C are finite sets of indexing channels such that
fn(P ) ⊆ A ⊆ B ⊇ fn(Q). Its intuitive meaning is that

“in a state where the channels A may be known by agent P and by its
environment, P can do � to become agent Q and the channels B may be
known to Q and its environment”.

As a result, Q may know more channels than P as an input � = ab adds b
whenever b /∈ A (intuitively, such a b is a new channel communicated by the
outside world – see the In rule in table 1), and an output � = ab adds b whenever
b /∈ A (intuitively, such a b is a channel restricted in P which becomes a new
known channel in Q – see the Open rule in table 1).

The operational semantics rules for the indexed π-expressions are shown in
table 1 (in [5], the ‘B .’ parts of the rules are implicit). The complete behaviour
of an expression A . P , where fn(P ) ⊆ A, is then given by a labelled transition
system derived using these rules, and denoted ltsA�P .

As a running example, consider an expression {a} . X(a) + τ . 0 with X

defined by X(e) df= ec . ce . 0 + (νd)(X(d)|de . 0). It admits, e.g., the following
executions:

{a} . X(a) + τ . 0 τ−→ {a} . (νd)((ad . 0)|0)
{a} . X(a) + τ . 0 τ−→ {a} . 0 .
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Table 1. Operational semantics of π-calculus, where: ns(τ ) df= ∅; ns(ab) = ns(ab) df=
{a, b}; the notation A, c stands for the disjoint union A � {c}; and (νc \ A)P is P if
c ∈ A and (νc)P otherwise. Symmetric versions of Sum, Par and Com are omitted.

Tau
A � τ . P

τ−−−−−→ A � P A � ac . P
ab−−−−−→ A ∪ {b} � {b/c}P

In

Out
A � ab . P

ab−−−−−→ A � P

A, c � P
ac−−−−−→ A, c � P ′ a 	= c

A � (νc)P
ac−−−−−→ A ∪ {c} � P ′

Open

Par
A � P

�−→ A′ � P ′

A � P |Q �−→ A′ � P ′|Q
A, c � P

�−→ A′, c � P ′ c 	∈ ns(�)

A � (νc)P �−→ A′ � (νc)P ′
Res

Sum
A � P

�−→ A′ � P ′

A �P +Q
�−→ A′ �P ′

A � P
ac−→ A′ � P ′ A � Q

ac−→ A′′ � Q′

A � P |Q τ−→ A � (νc \ A)(P ′|Q′)
Com

ProcDef
A � {b1/a1, . . . , bnX /anX }P �−→ A′ � P ′ X(a1, . . . , anX ) df= P

A � X(b1, . . . , bnX ) �−→ A′ � P ′

Given an indexed π-expression A . P , it is always possible to apply alpha-
conversions to P and the process definitions so that no channel across P , DX1 , . . .,
DXm is both free and bound, no such channel generates more than one binding,
and no restricted channel occurs in A. Such an indexed π-expression will be called
well-formed. We fix such a well-formed A . P for the rest of this paper.

Context-based representation. Before translating to nets, we give a term a pre-
sentation which separates its structure from the specific channels used to express
what is visible from the outside and which channels are (input or parameter)
bound or restricted. This also involves separating the features related to control
flow of the term from those related to channel substitution and binding. For the
resulting context based representation we need two fresh countably infinite sets
of restricted channels R ranged over by the upper case Greek letters, and channel
holders H ranged over by the first few lower case Greek letters. A context itself
is a partial mapping ς : H→ C � R with a finite domain.

The aim is to represent an expression like {b, d} . ba . (νc)ac . cb . 0 as a con-
text based expression P :ς, where P df= βα . αγ . γβ . 0 is a restriction-free agent
based solely on channel holders and ς

df= [β �→ b, δ �→ d, γ �→ Δ] is a context allow-
ing their interpretation. In this particular case ς implies that: (i) α is a channel
holder bound by an input prefix (since α is not in the domain of the context map-
ping though it occurs in P); (ii) β and δ correspond respectively to the known
channels b and d; and (iii) γ is a channel holder corresponding to the restricted
channel Δ, the detailed identity of this restricted channel being irrelevant.

Now, given our well-formed indexed expression A . P together with pro-
cess definitions DX1 , . . . , DXm , we proceed as follows. For each channel name c
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occurring in the indexed expression or process definitions, we choose a distinct
channel holder αc. The bodies of P, DX1 , . . . , DXm are then transformed by first
deleting all the instances of the restriction operator, and then replacing each oc-
currence of each channel by the corresponding channel holder, resulting in new
holder-based terms: P ,DX1 , . . . ,DXm .

We then construct contexts, ς, ς1, . . . , ςm. The context ς maps every αc used in
the body of P for which c was restriction bound into a distinct restricted channel
Δc, and every αc for which c ∈ A into c. Each ςi simply maps every αc which
is restriction bound in the body of DXi into a distinct Δc. We finally obtain a
main expression H = P :[ς] and the modified definitions DX1 :[ς1], . . . ,DXm :[ςm],
which will be used as an input to our translation into Petri nets.

For example, our running example can be rendered in the context-based
scheme as: X(α)+ τ . 0 : [α �→ a] with X(ε) df= εγ . γε . 0+(X(δ)|δε . 0) : [δ �→ Δ].

3 An Algebra of Nets

The development of our Petri net model, called rp-nets, has been inspired by
the box algebra [1,2,10] and by the p-net algebra used in [8] to model the finite
fragment of π-calculus. In particular, we shall use coloured tokens and read-arcs
(allowing any number of transitions to simultaneously check for the presence of
a resource stored in a place [6]). Transitions in rp-nets will have four different
kinds of labels:

– UV , Uv and UV (where U , V and v are net variables) to specify communi-
cation with the external environment.

– τ to represent internal actions.
– rcv and snd to effect internal process communication.
– X(α1, . . . , αnX ) to identify hierarchical transitions supporting recursion (we

use gray rectangles to represent such transitions).

A key idea behind our translation of a context-based expression using a set
of process definitions is to view this system as consisting of a main program
together with a number of procedure declarations. We then represent the control
structure of the main program and the procedures using disjoint unmarked nets,
one for the main program and one for each of the procedure declarations. The
program is executed once, while each procedure can be invoked several times
(even concurrently), each such invocation being uniquely identified by structured
tokens which correspond to the sequence of recursive calls along the execution
path leading to that invocation.1 With this in mind, we will use the notion of a
trail σ to denote a finite (possibly empty) sequence of hierarchical transitions of
an rp-net. The places of the nets which are responsible for control flow will carry
tokens which are simply trails. (The empty trail will be treated as the usual
1 That this sequence is sufficient to identify an invocation will follow from the fact

that a given hierarchical transition may be activated many times, but each time with
a different sequence.
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Fig. 1. Holder places and read arcs (a), and the usage of the tag-place (b, c), where
K, R, N are constants, while the other symbols in arc inscriptions are net variables

‘black’ token.) Procedure invocation is then possible if each of the input places
of a hierarchical transition t labelled with X(. . .) contains the same trail token
σ, and it results in removing these tokens and inserting a new token σt in each
initial (entry) place of the net corresponding to the definition of X .

Trailed channels and holder places. Places in rp-nets are labelled in ways re-
flecting their intended role. Those used to model control flow are labelled by
their status symbols (internal places by i, and interface places by e and x, for
entry and exit, respectively), and the tokens they carry are simply the trails σ.
Another kind of places, called holder places, carry structured tokens represent-
ing channels used by different procedure invocations. Each such token, called a
trailed channel, is of the form σ.ξ where σ is a trail and ξ is a known channel in
C, or a restricted channel ωΔ (ω is a trail and Δ ∈ R). Intuitively, its first part,
σ, identifies the invocation in which the token is used, while the second part,
a or ωΔ, provides its value. In the diagrams, holder places are labelled by the
elements of H and have thick borders. (A third kind of places will be introduced
later on.)

Referring to figure 1(a), a holder place can be accessed by directed arcs, which
can deposit or remove tokens, as well as by read arcs (drawn as thick undirected
edges), which test for the presence of specific tokens. The net itself may be seen
as a fragment of the translation of a context-based process definition, Y (α, β) df=
(αβ . . . |αγ . . .) : [ ], where the channel holders α, β and γ are represented
by the corresponding holder places. The depicted procedure invocation has been
activated by the trail σ, and two trailed channels, σ.a and σ.b, have been inserted
as actual parameters into the holder places labelled by α and β, respectively. On
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the other hand, the γ-labelled holder place, corresponding to an input bound
channel holder, remains empty until a communication or input action inserts a
trailed channel into it.

Control flow places are connected using directed arcs, labelled with trail vari-
ables, s or r, while the holder places are connected using directed arcs and read
arcs labelled with structured annotations, like s.u, with two variables directly
matching the type of tokens allowed in holder places. To interpret arcs anno-
tations, we use bindings � assigning concrete values to the variables occurring
there as well as those appearing in transition labels. In our setting, �(s) and
�(r) return trails, �(u) and �(v) return channels (or trailing restricted channels),
whereas �(U) and �(V ) return channels. As usual in high-level Petri nets, bindings
will yield tokens transferred/tested along arcs adjacent to executed transitions
as well as the visible labels of the latter.

For the net depicted in figure 1(a), the rcv -labelled transition is enabled if
the right entry place contains a trail (in our case, σ) and the α-labelled place
contains a trailed channel with precisely the same ‘trail’ part (in our case, σ.a).
More formally, there must be a binding � such that �(r) evaluates to σ and
�(r.u) df= �(r).�(u) evaluates to σ.a. Indeed, such a binding can be constructed, by
setting �(r) = σ and �(u) = a. The firing of the rcv -labelled transition transforms
the current marking in the following way: σ is removed from the right entry
place and deposited in the right internal place, the token in the α-labelled place
is left unchanged, and a trailed channel �(r.v) (e.g., σ.e or σ.b, depending on
the choice of the binding which in this case is not unique) is inserted into the
γ-labelled holder place. Similarly, the firing of the snd -labelled transition is also
possible and results in a transfer of the trail σ from the left entry place to the
left internal place. Now, if we look at the firing of the τ -labelled transition,
which corresponds to the fusion of the two transitions considered previously, the
binding with �(v) = e is inconsistent with the only binding option for v (i.e.,
�(v) = b), and so a unique internal communication is possible through which the
γ-labelled holder place acquires the trailed channel σ.b.

Tag-places. The third, and last, kind of node in a rp-net is a special holder
place, called the tag-place, which is always present and unique; it is T-labelled
and indicated in the diagrams by a double border. The tokens, called bookkeeping
tokens, stored in this place are structured by being tagged with a member of the
set T

df= {K, N, R}. The first tag, K, will be used to indicate the known channels
(initially, those in ς(H) ∩ C). The second tag, N, will be used to indicate the
new, yet unknown channels (initially, those in C \ ς(H)), and the third tag, R,
will be used to indicate the restricted channels. The first case is slightly more
complicated than the remaining two, for a restricted ωΔ may be present with
different preceding trails σ’s in holder places, due to internal communications.2
Now, if the restriction has been opened, ωΔ should become a newly known
channel c, but it is not possible to replace ωΔ by c in all the relevant holder places

2 More precisely, we may have various ωΔ’s in various holder places with the same trail
σ due to internal communications, and with different σ’s due to parameter passing.
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without some global transformation of the net. Instead, we will indicate this fact
by inserting a bookkeeping token c.ωΔ.K into the tag-place, and then consulting
it whenever necessary (i.e., whenever we need to establish whether a restricted
channel has been opened and what is its actual known value). Moreover, to keep
the notation uniform, we shall use bookkeeping tokens a.a.K to denote all those
known channels which were never restricted. To summarise, a bookkeeping token
in the tag-place may be of the form:

– a.N meaning that a is a new channel.
– ωΔ.R meaning that Δ is a restricted channel for the incarnation of its defin-

ing process corresponding to trail ω.
– a.a.K meaning that a is a known channel (either a has always been known

or a was initially new and then became known).
– a.ωΔ.K meaning that the restricted ωΔ has become known as a.

The arcs adjacent to the tag-place (both directed and read ones) are labelled
with annotations which are evaluated through bindings so that the tags are left
intact; e.g., �(V.N) df= �(V ).N and �(U.u.K) df= �(U).�(u).K.

To explain the way a tag-place is used, we consider an rp-net fragment in
figure 1(b), where the (irrelevant) labels of the two control flow places have been
omitted. The marking in the tag-place indicates that ωΔ is a restricted channel
in the incarnation of some procedure definition identified by ω. Moreover, e is
a new unknown channel, and a is a known one. The transition is enabled with
the binding �(u) = �(U) = a, �(v) = ωΔ, �(V ) = e and �(s) = σ. Its firing
produces the visible action �(UV ) df= �(U)�(V ) = ae and leads to the marking
in figure 1(c). This firing illustrates how a restricted channel becomes known
(which is represented by the insertion of the bookkeeping token e.ωΔ.K in the
tag-place), and corresponds to the Open rule in table 1.

Composing rp-nets. The operators we shall use to combine rp-nets can be seen
as suitably adapted instances of those defined within PBC and its various ex-
tensions [1,10]. In particular, the way in which the holder places are handled
when composing nets is directly inspired by the asynchronous communication
construct of APBC [10].

The rp-net composition operators that we need are prefixing, N.N ′, choice,
N + N ′, parallel composition, N |N ′, and scoping, sco(N). The first three op-
erators merge the tag-places, as well as the corresponding holder places (i.e.,
labelled by the same channel holder). This corresponds to the asynchronous
links used in [10], and will allow one to mimic the standard rewriting mecha-
nism of the π-calculus. For two operand nets, their transitions and control flow
places are made disjoint before applying a composition operator in order to allow
to properly handle the cases when, for example, N = N ′.

– In the choice composition, the entry and exit places of N and N ′ are com-
bined through a cartesian product together. This has the following effect: if
we start from a situation where each entry place contains a copy of a com-
mon token σ, then either N or N ′ can be executed, mimicking the Sum rule
and its symmetric counterpart.
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– The prefixing operator combines the exit place (it will always be unique) of
the prefix N with the entry places of N ′ into internal places, and the effect
is that the execution of N after reaching the terminal marking, where the
only exit place is marked, is followed by that of N ′. Such a behaviour mimics
the Tau, In and Out rules.

– The parallel composition of N and N ′ puts them side by side, allowing
to execute both parts in parallel, as in the Par rule and its symmetric
counterpart; and then merges all pairs of transitions labelled rcv and snd ,
resulting in τ -labelled transitions: the connectivity of the new transition
is the combination of those of the composed transitions. This merging is
illustrated in the middle of figure 1; it has an effect similar to the Com rule.

– Finally, the scoping operation erases all the rcv - and snd -labelled transitions.

4 Translating Context-Based Expressions into Rp-Nets

We now come back to our context-based expression H = P :[ς] and the process
definitions DX1 :[ς1], . . . ,DXm :[ςm]. The proposed rendering of H in terms of rp-
nets is obtained in three phases. First, we compositionally translate P and each
DXi into disjoint unmarked rp-nets K(P), K(DX1), . . . , K(DXm). The resulting
nets are then combined using parallel composition and scoping. Finally, using
the contexts ς, ς1, . . . , ςm, we construct an initial marking, which results in the
target rp-net PN(H).

Phase I. The translation K(P) (resp. K(PX)), guided by the syntax tree of
P , consists in first giving the translation for the basic sub-terms (i.e., the basic
process 0, the process calls, and the internal, input and output prefixes) shown
in figure 2, and then applying rp-net operators following the syntax.

The translations of the basic process 0 and the internal prefix τ are very
simple (they do not involve any manipulation on channels). The same is true of
a process call X(α1, . . . , αnX ), but the result employs a hierarchical transition,
which will never fire but rather contribute to a marking equivalence.

Each output prefix αβ, for α �= β, is translated into the rp-net K(αβ) which
may exhibit three kinds of behaviours, corresponding to the firing, under some
binding �, of three specific transitions:

– tk: known output. A known channel �(V ) is sent through a channel �(U). The
actual values of U and V are provided by the bookkeeping tokens present in
the tag-place matching those in the holder places α and β, accessed through
u and v and preceded by a trail which corresponds, thanks to the common
annotation s, to a token in the entry place. This corresponds to the Out rule.
That the channels �(U) and �(V ) are known is determined by the presence
in the tag-place of bookkeeping tokens tagged with K.

– tn: new output. A new channel �(V ) is sent through a known channel �(U),
for some trail token, �(s) as before. That the channels �(v) and �(V ) are
respectively restricted and new is determined by the presence in the tag-
place of a bookkeeping token tagged with R for �(v), and a bookkeeping
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Fig. 2. The unmarked rp-nets for 0, τ , the process call and the three kinds of prefixes
(the tag-place is omitted when disconnected)

token tagged with N for �(V ). After the firing of this transition, the restricted
channel represented by v becomes known; this is indicated by inserting a
bookkeeping token of the form �(V.v.K) into the tag-place which now replaces
�(v.R) and �(V.N). This corresponds to the Open rule.

– tc: communicating output. It is intended to synchronise with a correspond-
ing communication input in order to provide the transfer of a channel �(v)
through the channel �(u), be it known or restricted. This models one of the
main features of the π-calculus which is the ability of passing the channels
around.

The special case of the output prefix αα has a simpler translation, since α
may not be both known and restricted, so that tn is irrelevant in this case.
Even though the α-labelled holder place will never contain more than one token
with the same trail part, it is not a problem to have two variables on the arcs
adjacent to it since these are read arcs, and so transitions will be enabled by
simply identifying s.u and s.v with the same token in the α-labelled place.

For an input prefix αβ, the translation is broadly the same as for the output
prefix (notice that prefixes of the form αα are excluded by the well-formedness
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assumption). In particular, the known, new and communicating inputs should
be interpreted in a similar way. Simply, �(r.v) is now inserted into β instead of
being checked, tk corresponds to the rule In when b is already known (includ-
ing the case of a previously restricted channel), and tn to the same rule when b
is new (it may not be restricted here). In the latter case, the variable V is not
involved, and the transition is labelled Uv rather than UV . Notice also that,
for tk, while �(v) is known as �(V ), it is the possibly restricted original value
�(v) which is written (together with the trailed token �(s)) into β, and not the
corresponding known value for V . This is important in order to allow subse-
quent synchronisations between rcv (with �(u)) coming from β and snd (with
�(u)) coming from another holder place and containing a copy of the original
token.

For the compound sub-terms, we proceed compositionally: K(P ′ op P ′′) df=
K(P ′) op K(P ′′), where op ∈ {|, +, .}. There is however a simplification which
may be applied to the above translation rule, which amounts to throwing away
useless instances of the translation for 0. One simply has to first apply the
following simplifications: K(P |0) = K(0|P ) � K(P ) and K(a.0) � K(a) (notice
that we already have that K(P + 0) = K(0 + P ) = K(P )). Finally, we add a
holder place for each channel holder occurring in the domain of ς but not in P .

The translation of process definitions proceeds similarly. Assuming that DX

is of the form X(κX
1 , . . . , κX

nX
) df= PX , we derive K(PX) following the scheme just

described, and then add a holder place for each channel holder κX
i which does

not occur in PX .

Phase II. The various components are then connected by constructing the net
sc
(
K(P)|K(DX1)| . . . |K(DXm)

)
. This merges the various tag places and the

pairs of snd - and rcv -labelled transitions, possibly from different components.
All the rcv - and snd-labelled transitions are erased after that.

Phase III. Having applied the parallel composition and scoping, we add the
initial marking, leading to the full translation PN(H), in the following way:

– An empty trail token • is inserted in each entry place of K(P).
– •.ς(α) trailed channel (in the diagrams represented as ς(α), • representing

the empty trail) is inserted into each α-labelled holder place, for α ∈ dom(ς).
– ω.ωςi(α) trailed channel is inserted into the α-labelled holder place, and

ωςi(α).R bookkeeping token is inserted into the tag-place, for each trail ω
and α ∈ dom(ςi) (1 ≤ i ≤ m).

– a.a.K bookkeeping token is inserted into the tag-place, for a ∈ ς(H) ∩ C.
– e.N bookkeeping token is inserted into the tag-place, for e ∈ C \ ς(H).
– Δ.R bookkeeping token is inserted into the tag-place, for Δ ∈ ς(H) ∩ R.

Figure 3 (top) shows the rp-net resulting from the translation where, for clarity,
all the arcs adjacent to the tag-place and holder places are omitted and arc
annotations have been shortened or omitted.
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5 Firing Rule and Marking Equivalence

To define the semantics of the resulting rp-net PN(H), we need to introduce
the firing rule for non-hierarchical transitions, which may use a combination of
annotated standard (oriented) arcs and read-arcs, and a marking equivalence
corresponding to procedure calls.

For each transition t, we denote by ι(t) its label (a term with variables),
by ι(s, t), ι(t, s) and ι({s, t}) the labels (sets of terms with variables) of its in-
coming arcs, out-going arcs and read-arcs, respectively. We shall assume that
each variable has an associated domain of possible values, for instance, the do-
main of u, v, U and V is C ∪ {ωΓ | ω is a trail, Γ ∈ R} and that of r and s
is {ω | ω is a trail}. For each transition t, if {u1, ..., un} denotes the variables
occurring in the label of t and on the arcs adjacent to t, we shall denote by
� a binding assigning to each variable ui a value in its domain. We shall only
consider legal bindings, i.e., such that for each arc A between t and an adjacent
place s, if � is a function in ι(A), the evaluation of � under the binding � (de-
noted �(�)) will deliver a value allowed in s. Moreover, the observed label of a
transition fired under binding � will be denoted by �(ι(t)).

A marking M of a rp-net N is a function assigning to each place s a multiset of
tokens belonging to its type. A marked rp-net will be denoted by (N,M). Below
we use ⊕ and / to denote respectively multiset sum and difference. Moreover,
if M and M′ are multisets over the same set of elements Z then M≥M′ will
mean that M(z) ≥ M′(z), for all z ∈ Z. We shall also denote by z ∈ M the
fact that M(z) > 0.

Let M be a marking of PN(H), t be any of its non–hierarchical transitions,
and � be a binding for t. Then we denote byM�

t,in andM�
t,out the two markings

such that, for every place s,

M�
t,in(s) df=

⊕
�∈ι((s,t))

{�(�)} and M�
t,out(s)

df=
⊕

�∈ι((t,s))

{�(�)} .

A non-hierarchical transition t will be enabled (i.e., allowed to be fired) under
the binding � and the marking M if, for every place s, M(s) ≥ M�

t,in(s) and,
moreover3, �(�) ∈ M(s) for every � ∈ ι({s, t}). An enabled t may then be fired,
which transforms the current markingM into a new markingM′ in such a way
that, for every place s:

M′(s) = M(s)/M�
t,in(s)⊕M�

t,out(s) .

This will be denoted by (N,M)
�(ι(t))
−−−−−→ (N,M′) and moves of this type will be

used in the definition of labelled transition systems generated by rp-nets.
As already mentioned, hierarchical transitions do not fire; instead, they drive

a marking equivalence ≡ corresponding to procedure calls (this resembles to
certain extent the approach presented in [16]). This relation is defined as the

3 Notice that this allows to have M(z)=1 and �1, �2 ∈ ι({s, t}) with �(�1)=z= �(�2).
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smallest equivalence such that, for each transition t labelled X(α1, . . . , αnX )
with a definition X(κX

1 , . . . , κX
nX

) df= PX :ςX , and for each trailed channel σ.ξi

(for 1 ≤ i ≤ nX), we have

M⊕Mσ
t ⊕Mσ.ξ

α ≡ M⊕Mσt
X ⊕Mσ.ξ

α ⊕Mσt.ξ
κ , where: (1)

– Mσ
t is the marking with a trail σ in each place s such that there is a directed

arc from s to t (note that hierarchical transitions are only connected to
control flow places), and nothing else.

– Mσt
X is the marking with a trail σt in each entry place of K(PX), and nothing

else.
– Mσ.ξ

α (and Mσt.ξ
κ ) is the marking with a trailed channel σ.ξi (resp. σt.ξi) in

the holder place for αi (resp. κi), for i = 1 . . . nX , and nothing else.

The complete behaviour of the rp-net PN(H), is then given by a labelled
transition system derived using the above rules (the nodes of this system are ≡-

equivalence classes of net markings, and (N, [M1]≡)
act
−−−−−→ (N, [M2]≡) iff there

are M′
1 and M′

2 such that M1 ≡M′
1

act
−−−−−→M′

2 ≡M2), and denoted ltsPN(H).
For the running example, a double application of the rule (1) above leads,

from the initial marking shown in figure 3(a) to that in figure 3(b) (for clarity,
we omitted all the arcs linking the transitions of the process definition part with
the holder places). From there, the rightmost τ -transition may be fired, with the
binding � = {r �→ tz, s �→ t, u �→ tΔ, v �→ a}. The resulting marking is illustrated
in figure 3(c), where all the arcs linking the executed transition with the holder
places are shown and, for clarity, the other transitions appearing in the part of
the net corresponding to the process definition have been left out.

6 Main Results

We proposed in this paper a translation from finite π-calculus specifications to
rp-nets with finite structure, i.e., PN(H) is a net with finitely many places, tran-
sitions and arcs. Even though its marking is not finite, a closer examination of
the possible reachable markings can reveal that they all may be obtained from
a finite condensed form. For instance, in the rp-net for the running example, the
marking of the holder place δ is constant and each token σ.σΔ in it only becomes
checkable if we enter a process instance corresponding to the trail σ, while the
marking of the tag-place T is constantly such that the N-tagged and R-tagged to-
kens may be deduced from the K-tagged ones, which are a finite number. In other
words, only a finite number of tokens is relevant at any given stage of evolution,
and one can keep adding new tokens ‘on demand’ as the new instantiations of
procedure calls are entered, and as new channels become known. Crucially, the
proposed translation is sound. This means that, for every well-formed indexed π-
expression A . P , its labelled transition system ltsA�P is strongly bisimilar [17]
to the labelled transition system ltsPN(H) of the corresponding rp-net.

Theorem 1. PN(H) is an rp-net with finitely many places and transitions such
that ltsA�P and ltsPN(H) are strongly bisimilar transition systems.
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Fig. 3. Translation of the running example (a); marking transformation (b); and tran-
sition firing (c). For clarity, in (a,b), all the directed arcs annotated with s only are
shown unannotated.
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The above theorem yields a bisimilarity property between the labelled transition
systems of the original π-agents and their Petri net translations. That the result
is not formulated in terms of isomorphism is due to the amnesia feature of the
Sum rule, complemented by a similar phenomenon for the prefix rules (Tau,
In and Out). The loss of the past in the prefix rules is not essential by itself,
since it corresponds to the progression of the control flow token(s) in the cor-
responding net. However, when combined with the Sum rule, which completely
forgets the non-chosen branch, this may lead to differences in the labelled transi-
tion systems. Indeed, if we have a choice between two branches with a reachable
common suffix then, after some time, the two branches will lead to the same in-
termediate expression in the π-semantics, while this never happens in the Petri
net semantics, where the two branches correspond to two disjoint subnets, hence
two different markings depending on which branch has been chosen.

The proposed translation is also a conservative extension of that in [8].

Theorem 2. If the indexed π-expression A . P is recursion-free (i.e., m = 0)
then PN(H) is the same as that in [8] up to some dead transitions and the
suppression of all trails and trail variables.

7 Related Work and Concluding Remarks

A first paper giving a Petri net semantics for the π-calculus is [12]. However, it
only considers the so-called ‘small’ π-calculus (without the choice composition)
provided with the reduction semantics (addressing only the communications be-
tween parallel components). Due to these limited aims, the problem is greatly
simplified as restrictions may be managed syntactically. While not based on
nets, [3] already considers the causality structures of the π-calculus, and distin-
guishes structural and link dependencies (the former mainly due to prefixing and
communications, and the latter due to extrusion). A graph-rewriting system is
proposed in [19] as a semantic model for a fragment of the π-calculus mainly
addressing the concurrency feature of systems. Although it is not the objective
of the present paper, we intend to look at concurrency issues, and in this respect
we may notice a discrepancy between our approach and [19] in the handling
of restriction. More precisely, [19] allows parallel opening for expressions like
(νy)(xy|P |zy) by letting the actions xy and zy to occur in parallel, while in our
approach they must in some sense agree on their common exportation, so that
only one of them is in fact an opening. The translation of π-terms into Petri
nets of [4] uses (low-level) labelled Petri nets extended with inhibitor arcs, while
we use high-level nets with read-arcs. Moreover, the way compositionality is ob-
tained is different from that used in our approach, relying to a construction of
a general infrastructure, with places corresponding to all the possible sequential
π-terms with all possible transitions between those places, and a compositionally
defined initial marking corresponding to each π-term.

We outlined a translation of recursive π-calculus process expressions into high-
level Petri domain. The next step is to incorporate it into suitable computer
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aided tools, such as Pep [13], to allow the verification and simulation of π-
calculus specifications using techniques found in the Petri net domain (for the
finite π-calculus translation of [8] this has been already been done in [15]).

Acknowledgements. We thank the anonymous referees for their helpful com-
ments. This research was supported by the EC IST grant 511599 (Rodin).
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Abstract. In this paper we extend the approximation based theoretical
framework in which the security problem – secrecy preservation against
an intruder – may be semi-decided through a reachability verification.

We explain how to cope with algebraic properties for an automatic
approximation-based analysis of security protocols. We prove that if the
initial knowledge of the intruder is a regular tree language, then the se-
curity problem may by semi-decided for protocols using cryptographic
primitives with algebraic properties. More precisely, an automatically
generated approximation function enables us 1) an automatic normaliza-
tion of transitions, and 2) an automatic completion procedure. The main
advantage of our approach is that the approximation function makes it
possible to verify security protocols with an arbitrary number of sessions.

The concepts are illustrated on an example of the view-only protocol
using a cryptographic primitive with the exclusive or algebraic property.

Keywords: Security protocol, algebraic properties, automatic verifica-
tion, approximation.

1 Introduction

Cryptographic protocols are widely used to secure the exchange of information
over open modern networks. It is now widely accepted that formal analysis can
provide the level of assurance required by both the developers and the users
of the protocols. However, whatever formal model one uses, analyzing crypto-
graphic protocols is a complex task because the set of configurations to consider
is very large, and can even be infinite. Indeed, any number of sessions (sequential
or parallel executions) of protocols, sessions interleaving, any size of messages,
algebraic properties of encryption or data structures give rise to infinite-state
systems.

Our main objective is to automate in so far as possible the analysis of protocols.
More precisely, we are interested in a fully automatic method to (semi)decide the
security problem. In the context of the verification of protocols, the security prob-
lem consists of deciding whether a protocol preserves secrecy against an intruder,
or not.
� This work has been supported by the European project AVISPA IST-2001-39252
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For this problem, current verification methods based on model-checking can
be applied whenever the number of participants and the number of sessions
between the agents are bounded. In this case, the protocol security problem
is co-NP-complete [21]. The recent work [22] presents new decidability results
for a bounded number of sessions, when the initial knowledge of the intruder
is a regular language under the assumption that the keys used in protocols are
atomic.

When the number of sessions is unbounded, the security problem of crypto-
graphic protocols becomes undecidable, even when the length of the messages
is bounded [15]. Decidability can be recovered by adding restrictions as in [13]
where tree automata with one memory are applied to decide secrecy for crypto-
graphic protocols with single blind copying.

Another way to circumvent the problem is to employ abstraction-based ap-
proximation methods [19, 17]. In fact, these methods use regular tree languages
to approximate the set of messages that the intruder might have acquired during
an unbounded number of sessions of protocols. In this framework, the security
problem may be semi-decided through a reachability verification. The finite tree
automata permit to ensure that some states are unreachable, and hence that the
intruder will never be able to know certain terms.

To achieve the goal of an automatic analysis of protocols, we have investi-
gated, improved [7] and extended [6] the semi-algorithmic method by Genet and
Klay. The main advantage of our approach is that the automatically generated
symbolic approximation function makes it possible to automatically verify secu-
rity protocols while considering an unbounded number of sessions. The efficiency
and usefulness of our approach have been confirmed by the tool TA4SP (Tree Au-
tomata based on Automatic Approximations for the Analysis of Security Pro-
tocols), which has already been used for analyzing many real Internet security
protocols as exemplified in the European Union project AVISPA 1 [2].

However, for some cryptographic protocols, the secrecy is not preserved even
when used with strong encryption algorithms. The purpose of the work we
present in this paper is to extend the symbolic approximation-based theoreti-
cal framework defined in [6] to security protocols using cryptographic primitives
with algebraic properties. To be more precise, the goal is to relax the perfect
cryptography assumption in our symbolic approximation-based method. As ex-
plained in [14], such an assumption is too strong in general since some attacks
are built using the interaction between protocol rules and properties of crypto-
graphic operators.

The main contribution of this paper consists of showing the feasibility of the
automatic analysis of secrecy properties of protocols where the number of ses-
sions is unbounded and some algebraic properties of the cryptographic primitives
– e.g. the exclusive or – are taken into account.

The main result of the paper is that the automatically generated approxima-
tion function allows us to over-approximate the knowledge of the intruder. For
obtaining experimental results we have used the tool TA4SP. The most important

1 http://www.avispa-project.org/
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new feature is the exclusive or algebraic property, XOR for short, modulo which
the protocol analysis is performed. The feasibility of our approach is illustrated
on the example of the view-only protocol.

Related Work. In [20] it has been shown that using equational tree automata
under associativity and/or commutativity is relevant for security problems of
cryptographic protocols with an equational property. For protocols modeled by
associative-commutative TRSs, the authors announce the possibility for the
analysis to be done automatically thanks to the tool ACTAS manipulating
associative-commutative tree automata and using approximation algorithms.
However, the engine has still room to be modified and optimized to support
an automated verification.

In [23], the authors investigate algebraic properties and timestamps in the
approximation-based protocol analysis. Like in [6], there is no left-linearity con-
dition on TRSs modeling protocols. However, the weakness of the work is that
no tool is mentioned in [23].

In the recent survey [14], the authors give an overview of the existing methods
in formal approaches to analyze cryptographic protocols. In the same work, a list
of some relevant algebraic properties of cryptographic operators is established,
and for each of them, the authors provide examples of protocols or attacks using
these properties.

This survey lists two drawbacks with the recent results aiming at the analysis
of protocols with algebraic properties. First, in most of the papers a particular
decision procedure is proposed for a particular property. Second, the authors
emphasize the fact that the results remain theoretical, and very few implemen-
tations automatically verify protocols with algebraic properties.

Following the result presented in [10], the authors have prototyped a new
feature to handle the XOR operator in CL-AtSe (Constraint Logic based Attack
Searcher), one of the four official tools of the AVISPA tool-set [2].

Layout of the paper. The paper is organized as follows. After giving prelimi-
nary notions on tree-automata and term rewriting systems (TRSs), we introduce
in Section 2 a substitution notion depending on rules of a TRS, and a notion of
compatibility between that substitutions and finite tree-automata, both suitable
for our work. Section 3 presents the completion theorem making the comple-
tion procedure stop even when protocols – modeled by non left-linear TRSs –
use cryptographic primitives with algebraic properties. The main result is then
a consequence of the completion theorem allowing us to use an approximation
function to obtain an over-approximation of the knowledge of the intruder. In
Section 4, we explain how to apply the main theorem to verify the view-only pro-
tocol using a cryptographic primitive with the exclusive or algebraic property.

2 Background and Notation

In this section basic notions on finite tree automata, term rewriting systems and
approximations are reminded. The reader is refereed to [12] for more detail.
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2.1 Notations

We denote by N the set of natural integers and N∗ denotes the finite strings over
N.

Let F be a finite set of symbols with their arities. The set of symbols of F
of arity i is denoted Fi. Let X be a finite set whose elements are variables. We
assume that X ∩ F = ∅.

A finite ordered tree t over a set of labels (F ,X ) is a function from a prefix-
closed set Pos(t) ⊆ N∗ to F ∪ X . A term t over F ∪ X is a labeled tree whose
domain Pos(t) satisfies the following properties:

- Pos(t) is non-empty and prefix closed,
- For each p ∈ Pos(t), if t(p) ∈ Fn (with n �= 0), then {i | p.i ∈ Pos(t)} =
{1, . . . , n},

- For each p ∈ Pos(t), if t(p) ∈ X or t(p) ∈ F0, then {i | p.i ∈ Pos(t)} = ∅.

Each element of Pos(t) is called a position of t. For each subset K of X ∪ F
and each term t we denote by PosK(t) the subset of positions p’s of t such that
t(p) ∈ K. Each position p of t such that t(p) ∈ F , is called a functional position.
The set of terms over (F ,X ) is denoted T (F ,X ). A ground term is a term t such
that Pos(t) = PosF (t) (i.e. such that PosX (t) = ∅). The set of ground terms is
denoted T (F).

A subterm t|p of t ∈ T (F ,X ) at position p is defined by the following:

- Pos(t|p) = {i | p.i ∈ Pos(t)},
- For all j ∈ Pos(t|p), t|p(j) = t(p.j).

We denote by t[s]p the term obtained by replacing in t the subterm t|p by s.
For all sets A and B, we denote by Σ(A, B) the set of functions from A to

B. If σ ∈ Σ(X , B), then for each term t ∈ T (F ,X ), we denote by tσ the term
obtained from t by replacing for each x ∈ X , the variable x by σ(x).

A term rewriting system R (TRS for short) over T (F ,X ) is a finite set of
pairs (l, r) from T (F ,X )×T (F ,X ), denoted l→ r, such that the set of variables
occurring in r is included in the set of variables of l. A term rewriting system
is left-linear if for each rule l → r, every variable occurring in l occurs at most
once. For each ground term t, we denote by R(t) the set of ground terms t′ such
that there exist a rule l→ r of R, a function μ ∈ Σ(X , T (F)) and a position p of
t satisfying t|p = lμ and t′ = t[rμ]p. The relation {(t, t′) | t′ ∈ R(t)} is classically
denoted →R. For each set of ground terms B we denote by R∗(B) the set of
ground terms related to an element of B modulo the reflexive-transitive closure
of →R.

A tree automaton A is a tuple (Q, Δ, F ), where Q is the set of states, Δ the
set of transitions, and F the set of final states. Transitions are rewriting rules of
the form f(q1, . . . , qk)→ q, where f ∈ Fk and the qi’s are in Q. A term t ∈ T (F)
is accepted or recognized by A if there exists q ∈ F such that t →∗

Δ q (we also
write t→∗

A q). The set of terms accepted by A is denoted L(A). For each state
q ∈ Q, we write L(A, q) for the tree language L((Q, Δ, {q})). A tree automaton
is finite if its set of transitions is finite.
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2.2 Approximations to Handle Algebraic Properties

This section recalls the approximation-based framework we have been develop-
ing, and explains our objectives from a formal point of view.

Given a tree automaton A and a TRS R (for several classes of automata
and TRSs), the tree automata completion [17, 16] algorithm computes a tree
automaton Ak such that L(Ak) = R∗(L(A)) when it is possible (for the classes
of TRSs covered by this algorithm see [16]), and such that L(Ak) ⊇ R∗(L(A))
otherwise.

The tree automata completion works as follows. From A = A0 completion
builds a sequence A0,A1, . . . ,Ak of automata such that if s ∈ L(Ai) and s→R t
then t ∈ L(Ai+1). If we find a fixpoint automaton Ak such that R∗(L(Ak)) =
L(Ak), then we have L(Ak) = R∗(L(A0)) (or L(Ak) ⊇ R∗(L(A)) if R is not in
one class of [16]). To build Ai+1 from Ai, we achieve a completion step which
consists of finding critical pairs between →R and →Ai . For a substitution σ :
X �→ Q and a rule l→ r ∈ R, a critical pair is an instance lσ of l such that there
exists q ∈ Q satisfying lσ →∗

Ai
q and rσ �→∗

Ai
q. For every critical pair lσ →∗

Ai
q

and rσ �→∗
Ai

q detected between R and Ai, Ai+1 is constructed by adding new
transitions to Ai such that it recognizes rσ in q, i.e. rσ →Ai+1 q.

lσ

Ai

R
rσ

q

∗
Ai+1

∗

However, the transition rσ → q is not necessarily a normalized transition of
the form f(q1, . . . , qn) → q′ and so has to be normalized first. For example, to
normalize a transition of the form f(g(a), h(q′))→ q, we need to find some states
q1, q2, q3 and replace the previous transition by a set of normalized transitions:
{a→ q1, g(q1)→ q2, h(q′)→ q3, f(q2, q3)→ q}.

Assume that q1, q2, q3 are new states, then adding the transition itself or
its normalized form does not make any difference. Now, assume that q1 = q2,
the normalized form becomes {a → q1, g(q1) → q1, h(q′) → q3, f(q1, q3) → q}.
This set of normalized transitions represents the regular set of non normalized
transitions of the form f(g
(a), h(q′))→ q; which contains the transition initially
we wanted to add amongst many others. Hence, this is an over-approximation.
We could have made an even more drastic approximation by identifying q1, q2, q3
with q, for instance.

The above method does not work for all TRSs. For instance, consider a con-
stant A and the tree automaton A = ({q1, q2, qf}, {A→ q1, A→ q2, f(q1, q2)→
qf}, {qf}) and the TRS R = {f(x, x) → g(x)}. There is no substitution σ
such that lσ →∗

A q, for a q in {q1, q2, qf}. Thus, following the procedure, there
is no transition to add. But f(A, A) ∈ L(A). Thus g(A) ∈ R(L(A)). Since
g(A) /∈ L(A), the procedure stops (in fact does not begin) before providing an
over-approximation of R∗(L(A)).

The TRSs used in the security protocol context are often non left-linear.
Indeed, there are a lot of protocols that cannot be modeled by left-linear TRSs.
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Unfortunately, to be sound, the approximation-based analysis described in [17]
requires the use of left-linear TRSs. Nevertheless, this method can still be applied
to some non left-linear TRSs, which satisfy some weaker conditions. In [16] the
authors propose new linearity conditions. However, these new conditions are not
well-adapted to be automatically checked.

In our previous work [6] we explain how to define a criterion on R and A to
make the procedure automatically work for industrial protocols analysis. This
criterion ensures the soundness of the method described in [17, 16].

However, to handle protocols the approach in [6] is based on a kind of constant
typing. In this paper we go further and propose a procedure supporting a fully
automatic analysis and handling – without typing – algebraic properties like XOR
presented in Fig. 1.
Let us remark first that the criterion defined in [16] does not allow managing the
above rule IV. Second, in [6] we have to restrict XOR operations to typed terms
to deal with the rule IV.

However, some protocols are known to be flawed by type confusing attacks
[14, 8, 11]. In order to cope with these protocols, a new kind of substitution
is defined in Section 2.3, and a new left-linear like criterion is introduced in
Section 3.

Notice that following and extending [6], our approach can be applied for any
kinds of TRSs. Moreover, it can cope with exponentiation algebraic properties
and this way analyse Diffie-Hellman based protocols.

xor(xor(x,y),z) −→xor(x,xor(y,z))
xor(x,0) −→ x
xor(x,x) −→0

xor(x,y) −→ xor(y,x)

III.
IV.

II.
I.

Fig. 1. XOR properties

2.3 (l → r)-Substitutions

In this technical subsection, we define the notion of a (l → r)-substitution suit-
able for the present work.

Definition 1. Let R be a term rewriting system and l → r ∈ R. A (l → r)-
substitution is an application from PosX (l) into Q.

Let l → r ∈ R and σ be a (l → r)-substitution. We denote by lσ the term of
T (F ,Q) defined as follows:

– Pos(lσ) = Pos(l),
– for each p ∈ Pos(l), if p ∈ PosX (l) then lσ(p) = σ(l(p)), otherwise lσ(p) =

l(p).
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Similarly, we denote by rσ the term of T (F ,Q) defined by:

– Pos(rσ) = Pos(r),
– for each p ∈ Pos(r), if p /∈ PosX (r) then rσ(p) = r(p) and rσ(p) = σ(l(p′))

otherwise, where p′=minPosr(p)(l) (positions are lexicographically ordered).

Example 1. Let us consider l=f(g(x), h(x, f(y, y))) and r = f(h(x, y), h(y, x))
represented by the following trees (elements after the comma are the positions in
the term; l is represented on the left and r on the right):

f, ε

g, 1 h, 2

x, 1.1 x, 2.1 f, 2.2

y, 2.2.1 y, 2.2.2

f, ε

h, 1 h, 2

x, 1.1 y, 1.2 y, 2.1 x, 2.2

Variable positions of l are 1.1 and 2.1 for x, and 2.2.1 and 2.2.2 for y. Let
σ(1.1) = q1, σ(2.1) = q2, σ(2.2.1) = q3 and σ(2.2.2) = q4; σ is a (l → r)-
substitution and

lσ = f(g(q1), h(q2, f(q3, q4)))

is the term obtained from l by substituting the variable in position p by σ(p). Now
we explain how to compute rσ. The minimal position where x [resp. y] occurs in
l is 1.1 [resp. 2.2.1]. Thus rσ is obtained from r by substituting all x’s in r by
σ(1.1) = q1 and all y’s by σ(2.2.1) = q3. Thus

rσ = f(h(q1, q3), h(q3, q1)).

As mentioned in Section 2.2, the completion procedure does not work for all
tree automata and TRSs. That is why we introduce the notion of compatibility
between finite tree-automata and (l → r)-substitutions. The intuition behind
the next definition is that different occurences of a variable may be substitute
by different states if there exists a term recognized by all of these states, at least.
Notice that the condition required below is weaker than the conditions in [16].
Moreover, it is more general and can be applied to a larger class of applications.

Definition 2. Let A be a finite tree automaton. We say that a (l → r)-substi-
tution σ is A-compatible if for each x ∈ Var(l),⋂

p∈Pos{x}(l)

L(A, σ(p)) �= ∅.

Example 2. Let Aexe = ({q0, qf}, Δexe, {qf}) with the set of transitions Δexe =
{A → q0, A → qf ,f(qf , q0) → qf , h(q0, q0) → q0}. Let Rexe = {f(x, h(x, y)) →
h(A, x)}. The automaton Aexe recognizes the set of trees such that every path
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from the root to a leaf is of the form f∗h∗A. Let us consider the substitution
σexe defined by σexe(1) = qf , σexe(2.1) = q0 and σexe(2.2) = q0. The tree t = A
can be reduced to qf and belongs to L(A, σexe(1)). Furthermore t → q0, so t ∈
L(A, σexe(2.2)). Therefore σexe is A-compatible.

3 Approximations for Non-left Linear TRSs

In this section R denotes a fixed term rewriting system and Q an infinite set of
states. We first introduce the notion of normalization associated with (l → r)-
substitutions. Secondly, we give the main result – consequence of the completion
theorem – allowing us to over-approximate the descendants of regular sets.

3.1 Normalizations

The notion of normalization is common. The definitions below are simply a-
dapted to our notion of (l→ r)-substitutions.

Definition 3. Let A be a finite tree automaton. An approximation function (for
A) is a function which associates to each tuple (l → r, σ, q), where l → r ∈ R,
σ is an A-compatible (l → r)-substitution and q a state of A, a function from
Pos(r) to Q.

Example 3. Consider the automaton Aexe, the term rewriting system Rexe and
the substitution σexe defined in Example 2. For σexe, an approximation function
γexe may be defined by

γexe(l→ r, σexe, qf ) :

⎧⎪⎨⎪⎩
ε �→ q1

1 �→ q0

2 �→ q1

.

To totally define γexe, the others (finitely many) Aexe-compatible substitutions
should be considered too.

The notion of normalization below is classical. The definition takes our notion
of (l → r)-substitutions into account only.

Definition 4. Let A = (Q0, Δ, F0) be a finite tree automaton, γ an approxima-
tion function for A, l → r ∈ R, σ an A-compatible (l → r)-substitution, and q
a state of A. We denote by Normγ(l → r, σ, q) the following set of transitions,
called normalization of (l → r, σ, q):

{f(q1, . . . , qk)→ q′ |p ∈ PosF (r), t(p) = f,

q′ = q if p = ε otherwise q′ = γ(l → r, σ, q)(p)
qi = γ(l → r, σ, q)(p.i) if p.i /∈ PosX (r),

qi = σ(min{p′ ∈ PosX (l) | l(p′) = r(p.i)})otherwise}

The min is computed for the lexical order.
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Notice that the set {p′ ∈ PosX (l) | l(p′) = r(p.i)} used in the above definition is
not empty. Indeed, in a term rewriting system variables occurring in the right-
hand side must, by definition, occur in the left-hand side too.

Example 4. Following Example 3, ε is the unique functional position of r =
h(A, y). We set q′ of the definition to be equal to qf . Consequently the set
Normγexe(l → r, σexe, qf ) is of the form {A → q?, h(q?, q??) → qf}. Since for
r, the position 1 is a functional position and 2 is in PosX (r), we use the last
line of the definition to compute q?? and q? is defined by the approximation
function γexe. Finally we obtain:

Normγexe(l→ r, σexe, qf ) = {r(1)→ γexe(1), r(ε)(γexe(1), σexe(1))→ qf}
= {A→ q0, h(q0, qf )→ qf}.

Lemma 1. Let A = (Q0, Δ, F0) be a finite tree automaton, γ an approximation
function, l → r ∈ R, σ an A-compatible (l → r)-substitution, and q a state of
A. If lσ →∗

A0
q then

rσ →∗
Normγ(l→r,σ,q) q.

Proof is obvious. The transitions in Normγ are precisely added to reduce rσ to q.

3.2 Completions

This section is dedicated to the proof of the main result: how to build a regular
over-approximation ofR∗(A)? The above lemma shows how to over-approximate
one rewriting step.

Lemma 2. Let A0 = (Q0, Δ0, F0) be a finite tree automaton and γ an approxi-
mation function for A0. The automaton Cγ(A0) = (Q1, Δ1, F1) is defined by:

Δ1 = Δ ∪
⋃

Normγ(l→ r, σ, q)

where the union involves all rules l→ r ∈ R, all states q ∈ Q0, all A0-compatible
(l → r)-substitutions σ such that lσ→∗

A0
q and rσ �→∗

A0
q,

F1 = F0 and Q1 = Q0 ∪ Q2,

where Q2 denotes the set of states occurring in left or right-hand sides of tran-
sitions of Δ1. One has

L(A0) ∪R(L(A0)) ⊆ L(Cγ(A0)).

Proof. Let t ∈ L(A0)∪R(L(A0)). By definition of Cγ(A0), L(A0) ⊆ L(Cγ(A0)).
Consequently, if t ∈ L(A0), one has t ∈ L(Cγ(A0)). Thus we may now assume
that t ∈ R(L(A0)). Thus there exists a rule l → r ∈ R a term t0 in L(A0), a
position p of t0 and a substitution μ in Σ(X , T (F)) such that

t0|p = lμ and t = t0[rμ]p. (1)
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t[]p = t0[]p

lμ

t0 : t[]p = t0[]p

rμ

t :

Since t0 ∈ L(A0), there exists a state q ∈ Q0 and a state qf ∈ F0 such that

lμ→∗
A0

q and t0[q]p →∗
A0

qf . (2)

Since lμ →∗
A0

q there exists an (l → r)-substitution σ such that lμ →A0 lσ.
Furthermore, for each x ∈ Var(l),

μ(x) ∈
⋂

p∈Pos{x}(l)

L(A, σ(p)),

thus the (l → r)-substitution σ is A0 compatible. Therefore , using Lemma 1
(by hypothesis, lσ →∗

A0
q), one has

rσ →∗
Cγ(A0) q. (3)

For each variable x occurring in l and all positions p of x in l one has μ(x)→∗
A0

σ(p). In particular, for each variable x occurring in l, μ(x)→∗
A0

σ(p′), where p′

is the minimal position where x occurs in l. Consequently and by definition of
rσ, one has

rμ→∗
A0

rσ. (4)

We are now able to conclude.

t = t0[rμ]p using (1)
→∗

A0
t0[rσ]p using (4)

→∗
Cγ(A0) t0[q]p using (3)

→∗
A0

qf using (2)

Thus t ∈ L(Cγ(A0)), proving the theorem.

Let us remark that using well chosen approximation functions may iteratively
lead to a fixpoint automaton which recognizes an over-approximation ofR∗(A0).
One can formally express this by the following (soundness) main theorem.

Theorem 5. Let (An) and (γn) be respectively a sequence of finite tree automata
and a sequence of approximation functions defined by: for each integer n, γn is
an approximation function for An and

An+1 = Cγn(An).
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If there exists a positive integer N , such that for every n ≥ N An = AN , then

R∗(L(A0)) ⊆ L(AN ).

The proof is immediate by a simple induction using Lemma 2. Notice that in [6],
we have defined a family of approximation functions which can be automatically
generated. Another advantage is that they can be easily adapted to the present
construction as explained in the next section. Furthermore using appropriate
approximation functions may lead to a proof of the non-reachability of a term.
However, these methods don’t provide a way to prove that a particular term
is reachable, since we compute an over-approximation of reachable terms (the
method is not complete).

An example is given in Appendix A.

4 Application to the View-Only Protocol

In this section we illustrate the main concepts on the example of the view-
only protocol, and we explain how to manipulate the tool TA4SP supporting an
automated verification.

4.1 The View-Only Protocol

Before describing the protocol, notice that encoding security protocols and se-
crecy properties with tree automata and term rewriting systems is classical [17].

The View-Only protocol (Fig. 2) is a component of the Smartright system
[1]. In the context of home digital network, this system prevents users from
unlawfully copying movie broadcasts on the network. The view-only participants
are a decoder (DC) and a digital TV set (TVS). They share a secret key Kab
securely sealed in both of them. The goal of this protocol is to periodically change
a secret control word (CW) enabling to decode the current broadcast program. As
seen in Fig. 2, the properties of the XOR operator allow to establish the sharing
of CW between the participants.

The data VoKey, VoR and VoRi are randomly generated numbers. The func-
tional symbol h represents a one-way function, meaning that no-one can guess x
from h(x), unless he already knows x.

Let us explain how this protocol works.

– Step 1: DC sends a message containing xor(CW,VoR) and VoKey to TVS. This
message is encoded by the private shared key Kab. The data VoKey is a fresh
symmetric key used along the session. At this stage, TVS can extract neither
CW nor VoR from xor(CW,VoR) since TVS knows neither CW nor VoR.

– Step 2: TVS sends in return a random challenge VoRiwhose goal is to identify
DC.

– Step 3: DC replies by sending VoR.{h(VoRi)}VoKey. Receiving this message,
TVS both checks whether the challenge’s answer is correct (by comparing the
hashed value h(VoRi) with its own value), and extracts CW from the datum



164 Y. Boichut, P.-C. Héam, and O. Kouchnarenko

TVS applies xor(VoR,xor(CW,VoR)) =⇒ CW

VoRi

DC TVS

TVSDC

DC TVS
{VoKey.xor(CW,VoR)}Kab

VoR.{h(VoRi)}VoKey

DC declares CW as a secret datum between DC and TVS

TVS declares CW as a secret datum between TVS and DC.

Fig. 2. The ”view-only” Protocol

xor(CW,VoR) received at step 1 and using VoR.
This is done by computing xor(xor(CW,VoR),VoR), and by applying sequen-
tially rules II., IV. and III. of Fig. 1 to it, TVS obtains: xor(xor(CW,VoR),
VoR) II.→ xor(CW,xor(VoR,VoR)) IV.→ xor(CW,0) III.→ CW.

Notice that Rule IV. of Fig. 1 is crucial at Step 3 of this protocol.
We have implemented our approach within the TA4SP tool presented in the
following subsection.

4.2 Using TA4SP

This tool, whose method is detailed in [6], is one of the four official tools of the
AVISPA tool-set [2]. The particularity of this tool is verifying of secrecy properties
for an unbounded number of sessions.

The structure of the TA4SP tool is detailed in Fig. 3.
The language IF is a low level specification language automatically gener-

ated from HLPSL (High Level Protocol Specification Language) [9] in the AVISPA
toolset.

The TA4SP tool is made up of:

– IF2TIF, a translator from IF to a specification well-adapted to TIMBUK+, and
– TIMBUK+,2 a collection of tools for achieving proofs of reachability over term

rewriting systems and for manipulating tree automata. This tool has been
initially developed by Th. Genet (IRISA/ INRIA-Rennes, FRANCE) and
improved to handle our approximation functions.

2 Timbuk is available at http://www.irisa.fr/lande/genet/timbuk/.
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TA4SP

TIMBUK

IF2TIF

SAFE / FLAWED / DON’T KNOW

IF Specification

tree automaton + secret terms
+ approximation function

Fig. 3. TA4SP tool

Note that the tool TA4SPmay also answer “FLAWED” while performing under-
approximations. Let us remark that the available version of TA4SP at http://
www.avispa-project.org used in the framework of the AVISPA project is not yet
updated with the XOR features. It is intended that this be updated in the near
future.

4.3 Verifying the View-Only Protocol

In [18], the authors verified that no old value of CW can be reused. Indeed, if the
freshness of CW was not satisfied then we can imagine that the copy-protection
would become obsolete. By storing all control words and by reusing them, an
unethical individual could for instance decrypt the broadcasted program without
paying the amount. However, the model considered is strongly typed in the sense
that the authors handle the XOR operator only for terms satisfying a particular
given form.

In order to consider type confusing attacks, we have succeeded in verifying
the secrecy of CW on an untyped model for the XOR algebraic properties, using the
method developed in this paper. Furthermore, using the family of approximation
functions defined in [6] we have succeeded in verifying it automatically.

Time computation of the verification is about one hundred minutes on a clas-
sical laptop, but we hope to manage to have a faster computation by removing
some redundant calculus. The computed fixed point automaton (encoding an
over-approximation of intruder’s knowledge) has 203 states and 583 transitions.
Some technical details (HLPSL specification, input/output automata, etc), on
this verification are given in Appendix B.
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5 Conclusion

This paper shows that the symbolic approximation-based approach we have been
developing is well-adapted for analyzing security protocols using algebraic prop-
erties while considering an unbounded number of sessions. Indeed, the automat-
ically generated symbolic approximation function enables us 1) an automated
normalization of transitions, and 2) an automated completion procedure. No-
tice that the variables used to manipulate algebraic properties are not typed,
like in [23]. Our symbolic approximation-based framework allowing us to handle
algebraic properties does not deal with timestamps.

The tool TA4SP has been updated to take the exclusive or algebraic property
of cryptographic primitives into account. This way the feasibility of the analysis
has been confirmed by the experimentation on the view-only protocol. Future
development concerns the implementation optimization.

We intend to investigate further algebraic properties that can be handled
in practice. We anticipate that it could be carried out for algebraic properties
expressed by quadratic rules. At this stage, experiments should be performed
again.

To the best of our knowledge, this is the first attempt to automatically handle
a large class of algebraic properties used in cryptographic protocols. Indeed, we
wish to emphasize the fact that our theoretical framework is supported by a
push-button tool TA4SP [3, 5]. Moreover, TA4SP is used for protocols specified in
the standard High Level Protocol Specification Language (HLPSL) [9, 4]. This
language is known to be suitable for industrial users.

These two significant advantages make it possible to use our framework and
the fully automatic tool in the industrial context.
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Abstract. The reachability problem as well as the computation of the
phase portrait for the class of planar hybrid systems defined by constant
differential inclusions (SPDI), has been shown to be decidable. The ex-
isting reachability algorithm is based on the exploitation of topological
properties of the plane which are used to accelerate certain kind of cy-
cles. The complexity of the algorithm makes the analysis of large systems
generally unfeasible. In this paper we present a compositional parallel al-
gorithm for reachability analysis of SPDIs. The parallelization is based
on the qualitative information obtained from the phase portrait of an
SPDI, in particular the controllability kernel.

1 Introduction

Hybrid systems are systems in which the discrete and the continuous worlds co-
exist. Examples can be found in avionics, robotics, bioinformatics and highway
systems. For the majority of non trivial systems, reachability and most verifica-
tion questions are undecidable. Various decidable subclasses have, subsequently,
been identified, including timed [AD94] and rectangular automata [HKPV95],
hybrid automata with linear vector fields [LPY01], piecewise constant derivative
systems (PCDs) [MP93] and polygonal differential inclusion systems1 (SPDIs)
[ASY01], just to mention a few. From the practical point of view, a proof of
decidability of reachability is only useful if accompanied with a decision pro-
cedure for effectively computing it, which is the case in the above-mentioned
examples. Also of importance is the complexity of the algorithm: How expensive
is it to compute reachability? Is it feasible with reasonable memory and time
requirements? How large are the systems we can treat? Only in a few cases have
the algorithms found scaled up to large industrial systems, and obtaining faster
and cheaper algorithms is still an ongoing research challenge. One approach is
the identification of smart ways of parallelizing and distributing reachability
algorithms.

Reduction of memory and time requirements are the main reasons for seeking
parallelization. In verification, in particular, the main bottleneck is usually mem-
ory. The effort in distributed programming is usually put on finding good ways
1 In the literature the name simple planar differential inclusion has been used to

describe the same class of systems.
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of partitioning the task among different processes in order to keep a balanced
distribution of the use of memory and execution time. An important issue is the
communication cost; it is desirable to have a good ratio between process com-
putation and communication time, where the communication cost should not be
much greater than the analysis cost of the original system without parallelization.
One way of reducing communication cost in distributed algorithms in general, is
compositionality, that is dividing the problem in independent smaller ones. The
partial results are then combined in order to exactly answer the original ques-
tion. This approach reduces communication between processes to a minimum
— communication is only carried out at instantiation and when returning the
result.

Given the non-compositional nature of hybrid systems, obtaining distributed
reachability algorithms for hybrid systems is a challenging task. A qualitative
analysis of hybrid systems may, however, provide useful information for par-
titioning the state-space in independent subspaces, thus helping in achieving
compositional analysis.

In this paper we present a compositional algorithm for parallel reachability
analysis of polygonal differential inclusion systems. The identification and com-
putation of controllability kernels is the core of our algorithm and the main rea-
son for compositionality. We also give a lower bound for the number of parallel
processes which may be launched for computing reachability in an independent
way, each one operating in smaller state spaces than the original, and we prove
soundness and completeness of our algorithm.

2 Preliminaries

A (positive) affine function f : R → R is such that f(x) = ax + b with a > 0.
An affine multivalued function F : R → 2R, denoted F = 〈fl, fu〉, is defined by
F (x) = 〈fl(x), fu(x)〉 where fl and fu are affine and 〈·, ·〉 denotes an interval.
For notational convenience, we do not make explicit whether intervals are open,
closed, left-open or right-open, unless required for comprehension. For an interval
I = 〈l, u〉 we have that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse of F is defined by
F−1(x) = {y | x ∈ F (y)}. It is not difficult to show that F−1 = 〈f−1

u , f−1
l 〉.

A truncated affine multivalued function (TAMF) F : R → 2R is defined by
an affine multivalued function F and intervals S ⊆ R+ and J ⊆ R+ as follows:
F(x) = F (x)∩J if x ∈ S, otherwise F(x) = ∅. For convenience we write F(x) =
F ({x}∩S)∩J . For an interval I, F(I) = F (I∩S)∩J andF−1(I) = F−1(I∩J)∩S.
We say that F is normalized if S = Dom(F) = {x | F (x) ∩ J �= ∅} (thus,
S ⊆ F−1(J)) and J = Im(F) = F(S). TAMFs are closed under composition:

Theorem 1 ([ASY01]). The composition of two TAMFs F1(I) = F1(I ∩S1)∩
J1 and F2(I) = F2(I∩S2)∩J2, is the TAMF (F2◦F1)(I) = F(I) = F (I∩S)∩J ,
where F = F2 ◦ F1, S = S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2). #�
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Fig. 1. (a) An SPDI and its trajectory segment; (b) Reachability analysis

2.1 SPDIs

An angle ∠b
a on the plane, defined by two non-zero vectors a,b is the set of all

positive linear combinations x = α a + β b, with α, β ≥ 0, and α + β > 0. We
can always assume that b is situated in the counter-clockwise direction from a.

A polygonal differential inclusion system (SPDI) is defined by giving a finite
partition2 P of the plane into convex polygonal sets, and associating with each
P ∈ P a couple of vectors aP and bP . Let φ(P ) = ∠bP

aP
. The SPDI’s behavior at

a point x ∈ P is expressed by the differential inclusion ẋ ∈ φ(P ).
Let E(P ) be the set of edges of P . We say that e is an entry of P if for all

x ∈ e (considering only interior points of e) and for all c ∈ φ(P ), x + cε ∈ P
for some ε > 0. We say that e is an exit of P if the same condition holds for
2 Since the edges of the adjacent polygons are shared, more precisely it is a closed

cover with disjoint interiors.
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some ε < 0. We denote by in(P ) ⊆ E(P ) the set of all entries of P and by
out(P ) ⊆ E(P ) the set of all exits of P .

Assumption 1. All the edges in E(P ) are either entries or exits, that is, E(P )=
in(P ) ∪ out(P ).

Reachability for SPDIs is decidable provided the above assumption holds [ASY01];
without such assumption it is not known whether reachability is decidable.

A trajectory segment over T ∈ R of an SPDI is a continuous function ξ :
[0, T ] → R2 which is smooth everywhere except in a discrete set of points, and
such that for all t ∈ [0, T ], if ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P ).
The signature, denoted Sig(ξ), is the ordered sequence of edges traversed by the
trajectory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei and ti < ti+1. If T =∞,
a trajectory segment is called a trajectory.

Example 1. Consider the SPDI illustrated in Fig. 1-(a). For sake of simplicity
we will only show the dynamics associated to regions R1 to R6 in the picture.
For each region Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi), where: a1 =
(45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 = b3 = (−2, 3), a4 = b4 = (−2,−3),
a5 = b5 = (1,−15), a6 = (1,−2),b6 = (1,−1). A trajectory segment starting
on interval I ⊂ e0 and finishing in interval I ′ ⊂ e4 is depicted.

We say that a signature σ is feasible if and only if there exists a trajectory
segment ξ with signature σ, i.e., Sig(ξ) = σ. From this definition, it immediately
follows that extending an unfeasible signature, can never make it feasible.

Successors and Predecessors. Given an SPDI, we fix a one-dimensional co-
ordinate system on each edge to represent points laying on edges [ASY01]. For
notational convenience, we indistinctly use letter e to denote the edge or its
one-dimensional representation. Accordingly, we write x ∈ e or x ∈ e, to mean
“point x in edge e with coordinate x in the one-dimensional coordinate system of
e”. The same convention is applied to sets of points of e represented as intervals
(e.g., x ∈ I or x ∈ I, where I ⊆ e) and to trajectories (e.g., “ξ starting in x” or
“ξ starting in x”).

Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e, Succe,e′ (I) is the
set of all points in e′ reachable from some point in I by a trajectory segment
ξ : [0, t]→ R2 in P (i.e., ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Succe,e′ is a TAMF
[ASY01].

Example 2. Let e1, . . . , e6 be as in Fig. 1-(a) and I = [l, u]. We assume a one-
dimensional coordinate system. We show only the first and last edge-to-edge
TAMF of the cycle:

Fe1e2 (I) =
[

l
4 , 9

20u
]
, S1 = [0, 10] , J1 =

[
0, 9

2

]
Fe6e1 (I) = [l, 2u] , S6 = [0, 10] , J6 = [0, 10]

with Succeiei+1(I) = Feiei+1(I ∩ Si) ∩ Ji, for 1 ≤ i ≤ 6; Si and Ji are computed
as shown in Theorem 1.
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Given a sequence w = e1, e2, . . . , en, the successor of I along w defined as
Succw(I) = Succen−1,en ◦ . . . ◦ Succe1,e2(I) is a TAMF.

Example 3. Let σ = e1 · · · e6e1. We have that Succσ(I) = F (I ∩Sσ)∩Jσ, where:
F (I) = [ l

4 + 1
3 , 9

10u + 2
3 ], with Sσ = [0, 10] and Jσ = [13 , 29

3 ].

For I ⊆ e′, Pree,e′ (I) is the set of points in e that can reach a point in I by
a trajectory segment in P . The definition can be extended straightforwardly to
signatures σ = e1 · · · en, Preσ(I).

Qualitative Analysis of Simple Edge-Cycles. Let σ = e1 · · · eke1 be a
simple edge-cycle, i.e., ei �= ej for all 1 ≤ i �= j ≤ k. Let Succσ(I) = F (I∩Sσ)∩Jσ

with F = 〈fl, fu〉 (we suppose that this representation is normalized). We denote
by Dσ the one-dimensional discrete-time dynamical system defined by Succσ,
that is xn+1 ∈ Succσ(xn).

Assumption 2. None of the two functions fl, fu is the identity.

Let l∗ and u∗ be the fix-points3 of fl and fu, respectively, and Sσ ∩Jσ = 〈L, U〉.
A simple cycle is of one of the following types [ASY01]: STAY, the cycle is
not abandoned neither by the leftmost nor the rightmost trajectory, that is,
L ≤ l∗ ≤ u∗ ≤ U ; DIE, the rightmost trajectory exits the cycle through the left
(consequently the leftmost one also exits) or the leftmost trajectory exits the
cycle through the right (consequently the rightmost one also exits), that is, u∗ <
L∨ l∗ > U ; EXIT-BOTH, the leftmost trajectory exits the cycle through the left
and the rightmost one through the right, that is, l∗ < L∧u∗ > U ; EXIT-LEFT,
the leftmost trajectory exits the cycle (through the left) but the rightmost one
stays inside, that is, l∗ < L ≤ u∗ ≤ U ; EXIT-RIGHT, the rightmost trajectory
exits the cycle (through the right) but the leftmost one stays inside, that is,
L ≤ l∗ ≤ U < u∗.

Example 4. Let σ = e1 · · · e6e1. We have that Sσ∩Jσ = 〈L, U〉 = [13 , 29
3 ]. The fix-

points of the Eq. given in Example 3 are such that 1
3 < l∗ = 11

25 < u∗ = 20
3 < 29

3 .
Thus, σ is a STAY.

Any trajectory that enters a cycle of type DIE will eventually quit it after a
finite number of turns. If the cycle is of type STAY, all trajectories that happen
to enter it will keep turning inside it forever. In all other cases, some trajectories
will turn for a while and then exit, and others will continue turning forever. This
information is crucial for proving decidability of the reachability problem.

Reachability Analysis. It has been shown that reachability is decidable for
SPDIs. Proof of the decidability result is constructive, giving an algorithmic
procedure Reach(S, e, e′) based on a depth-first search algorithm. An alterna-
tive breadth-first search algorithm which can deal with multiple edges has been
presented in [PS03].
3 The fix-point x∗ is computed by solving the equation f(x∗) = x∗, where f(·) is

positive affine.
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Theorem 2 ([ASY01]). The reachability problem for SPDIs is decidable. #�
An edgelist is a set of intervals of edges. Given edgelists I and I ′, we denote
the reachability of (some part of) I ′ from (some part of) I as Reach(S, I, I ′).
Clearly, using the decidability result on edge intervals, reachability between edge-
lists is decidable. Although decidability may be point-to-point, edge-to-edge,
edgelist-to-edgelist and region-to-region, in the rest of this paper, we will only
talk about edgelist reachability. We define the following predicate: I

S−→ I ′

≡ Reach(S, I, I ′).

Example 5. Consider the SPDI of Fig. 1-(a). Fig. 1-(b) shows part of the reach
set of the interval [8, 10] ⊂ e0, answering positively to the reachability question:
Is [1, 2] ⊂ e4 reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automatically
generated by the SPeeDI toolbox [APSY02] we have developed for reachability
analysis of SPDIs based on the results of [ASY01].

2.2 Controllability and Viability Kernels

We recall the definition of controllability and viability kernels of an SPDI and
we show how to obtain such kernels — proofs are omitted and for further details,
refer to [ASY02]. In the following, given σ a cyclic signature, we define Kσ as
follows: Kσ =

⋃k
i=1(int(Pi)∪ei) where Pi is such that ei−1 ∈ in(Pi), ei ∈ out(Pi)

and int(Pi) is Pi’s interior.
We say that K, a subset of R2, is controllable if for any two points x and y in K

there exists a trajectory segment ξ starting in x that reaches an arbitrarily small
neighborhood of y without leaving K. More formally: A set K is controllable if
∀x,y ∈ K, ∀δ > 0, ∃ξ : [0, t] → R2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈
[0, t] . ξ(t′) ∈ K). The controllability kernel of K, denoted Cntr(K), is the largest
controllable subset of K.

For I ⊆ e1 we define Preσ(I) to be the set of all x ∈ R2 for which there exists
a trajectory segment ξ starting in x, that reaches some point in I, such that
Sig(ξ) is a suffix of e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal subset
of the plane which can be calculated using the following procedure. We start by
defining: Pree(I) = {x | ∃ξ : [0, t]→ R2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e}
and apply this operation k times: Preσ(I) =

⋃k
i=1 Preei(Ii) with I1 = I, Ik =

Preek,e1(I1) and Ii = Preei,ei+1(Ii+1), for 2 ≤ i ≤ k − 1.
For I ⊆ e1 let us define Succσ(I) as the set of all points y ∈ R2 for which

there exists a trajectory segment ξ starting in some point x ∈ I, that reaches
y, such that Sig(ξ) is a prefix of e1 . . . ek. The successor Succσ(I) is a polygonal
subset of the plane which can be computed similarly to Preσ(I).

For a given cyclic signature σ, we define CD(σ) as follows:

CD(σ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
〈L, U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(1)
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CD(σ) is an interval on the first edge of the signature σ with the property that
any point on such interval is reachable from any other point in the interval, and
conversely. We compute the controllability kernel of Kσ as follows:

Theorem 3 ([ASY02]). Cntr(Kσ) = (Succσ ∩ Preσ)(CD(σ)). #�

In what follows we present some definitions and a result which are crucial for ob-
taining a compositional algorithm for reachability analysis of SPDIs. See [PS06]
for proofs and more details.

Let Cntrl(Kσ) be the closed curve obtained by taking the leftmost trajectory
and Cntru(Kσ) be the closed curve obtained by taking the rightmost trajectory
which can remain inside the controllability kernel. In other words, Cntrl(Kσ)
and Cntru(Kσ) are the two polygons defining the controllability kernel.

A non-empty controllability kernel Cntr(Kσ) of a given cyclic signature σ
partitions the plane into three disjoint subsets: (1) the controllability kernel
itself, (2) the set of points limited by Cntrl(Kσ) (and not including Cntrl(Kσ))
and (3) the set of points limited by Cntru(Kσ) (and not including Cntru(Kσ)).

We define the inner of Cntr(Kσ) (denoted by Cntrin(Kσ)) to be the subset
defined by (2) above if the cycle is counter-clockwise or to be the subset defined
by (3) if it is clockwise. The outer of Cntr(Kσ) (denoted by Cntrout(Kσ)) is
defined to be the subset which is not the inner nor the controllability itself.

We proceed now by defining and stating the computability result of viability
kernels. A trajectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a viability
domain if for every x ∈ K, there exists at least one trajectory ξ, with ξ(0) = x,
which is viable in K. The viability kernel of K, denoted Viab(K), is the largest
viability domain contained in K.

The following result provides a non-iterative algorithmic procedure for com-
puting the viability kernel of Kσ on an SPDI:

Theorem 4 ([ASY02]). If σ is DIE, Viab(Kσ) = ∅, otherwise Viab(Kσ) =
Preσ(Sσ). #�

Note that an edge in the SPDI may intersect a kernel. In such cases, we can
generate a different SPDI, with the same dynamics but with the edge split into
parts, such that each part is completely inside, on or outside the kernel. Although
the signatures will obviously change, it is easy to prove that the behavior of the
SPDI remains identical to the original. In the rest of the paper, we will assume
that all edges are either completely inside, on or completely outside the kernels.
We note that in practice splitting is not necessary since we can just consider
parts of edges.

Example 6. Fig. 2 shows all the controllability and viability kernels of the SPDI
given in Example 1. There are 4 cycles with controllability and viability kernels
— in the picture two of the kernels are overlapping.

Properties of the Kernels. Before stating two results relating controllability
and viability kernels, we need the following definition:
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(a) Controllability kernels (b) Viability kernels

Fig. 2. Kernels of the SPDI in Fig. 1

Definition 1. Given a controllability kernel C (of a loop σ — C = Cntr(Kσ)),
then let C+ be the related viability kernel (C+ = Viab(Kσ)), Cin be the inside of
the kernel, and Cout be the outside.

Proposition 3 in [PS06] gives conditions for feasible trajectories traversing con-
trollability kernels. The following is a generalization of such result:

Proposition 1. Given two edges e and e′, one lying completely inside a kernel,
and the other outside or on the same kernel, such that ee′ is feasible, then there
exists a point on the kernel, which is reachable from e and from which e′ is
reachable. #�

The following corollary follows from [PS06, Proposition 2], asserting that the
controllability kernel is the local basin of attraction of the viability kernel:

Corollary 1. Given an controllability kernel C, and related viability kernel C+,
then for any e ⊆ C+, e′ ⊆ C, there exists a feasible path eσe′. #�

3 Independent Questions and Parallelization

3.1 SPDI Decomposition

In this section, we propose a number of theorems which, given an SPDI and
a reachability question, for each controllability kernel, allow us to either (i)
answer the reachability question without any further analysis; or (ii) reduce the
state space necessary for reachability analysis; or (iii) decompose the reachability
question into two smaller, and independent reachability questions.

The following theorem enables us to answer certain reachability questions
without any analysis, other than the identification of controllability and viability
kernels. This result is based on two properties, that within the controllability
kernel of a loop, any two points are mutually reachable, and that any point
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on the viability kernel of the same loop can eventually reach the controllability
kernel. Therefore if the source edgelist lies (possibly partially) within the viability
kernel of a loop, and the destination edgelist lies (possibly partially) within the
controllability kernel of the same loop, then, there must exist a trajectory from
the source to the destination edgelist. The full proof of this result can be found
in [PS06].

Theorem 5. Given an SPDI S, two edgelists I and I ′ and a controllability
kernel C, then if I ⊆ C+ and I ′ ⊆ C, then I

S−→ I ′. #�

The following theorem allows us to reduce the state space based on controllability
kernels. If both the source and destination edgelists lie on the same side of a
controllability kernel, then we can disregard all edges on the other side of the
kernel. The full proof of this result can be found in [PS06].

Theorem 6. Given an SPDI S, two edgelists I and I ′ and a controllability

kernel C, then if I ⊆ Cin and I ′ ⊆ Cin, then I
S−→ I ′ if and only if I

S\Cout−→ I ′.

Similarly, if I ⊆ Cout and I ′ ⊆ Cout, then I
S−→ I ′ if and only if I

S\Cin−→ I ′. #�

Finally, the following new result allows us to decompose a reachability question
into two smaller questions independent of each other. The theorem states that
if the source and destination edgelists lie on opposite sides of a controllability
kernel, then we can try (i) to reach the related viability kernel from the source
edgelist, and (ii) to reach the destination from the controllability kernel. The
original reachability question can be answered affirmatively if and only if both
these questions are answered affirmatively.

Theorem 7. Given an SPDI S, two edgelists I and I ′ and a controllability

kernel C, then if I ⊆ Cin and I ′ ⊆ Cout, then I
S−→ I ′ if and only if I

S\Cout−→
C+ ∧ C

S\Cin−→ I ′. Similarly, if I ⊆ Cout and I ′ ⊆ Cin, then I
S−→ I ′ if and only

if I
S\Cin−→ C+ ∧ C

S\Cout−→ I ′.

Proof. Without loss of generality, let I ⊆ Cin and I ′ ⊆ Cout.

Soundness of Decomposition. Let us assume that I
S\Cin−→ C+ and C

S\Cout−→
I ′. From I

S\Cin−→ C+ we can conclude that there are partial edges e0 ⊆ I and
em ⊆ C+, and a path σ in (S \ Cout), such that e0σem is a feasible path.

Similarly, from C
S\Cout−→ I ′ we can conclude that there are partial edges

em′ ⊆ C and ef ⊆ I ′, and a path σ′ in (S \ Cin), such that em′σ′ef is a
feasible path. However, since em′ is in a controllability kernel, and em is in
the related viability kernel, then by corollary 1, there exists a feasible path
emσ′′em′ in S. Therefore, e0σemσ′′em′σ′ef is a feasible path in S. Since

e0 ⊆ I and ef ⊆ I ′, we can conclude that I
S−→ I ′.

Completeness of Decomposition. Conversely, let us assume that I
S−→ I ′.

Then, there must be edges e0 ⊆ I and ef ⊆ I ′ such that e0σef is feasible in S.



A Compositional Algorithm for Parallel Model Checking 177

By the Jordan curve theorem [Hen79], the trajectory must cross Cntrl(Kσ)
or Cntru(Kσ) at least once, meaning that there exists a partial edge em

in the controllability kernel C such that e0σ1emσ2ef is feasible. But every
subpath of a feasible path is itself feasible, meaning that both e0σ1em and
emσ2ef are feasible in S, implying that I

S−→ C+ and C
S−→ I ′. Consider the

feasible path e0σ1em. Recall that I ⊆ Cin, and that e0 ⊆ I, hence e0 ⊆ Cin.
Assume that σ1 contains some edges in Cout, and let f be the first such edge.
The path is thus: e0σafσbem. Since f is the first edge inside the kernel, it
follows that the last element of σa is outside the kernel. Using proposition
1, it follows that there exists a point p on the kernel reachable from the last
element of σa. We have thus obtained a shorter discrete path e0σap which is

feasible and no point of which lies inside the kernel. Therefore, I
S\Cin−→ C+.

Similarly, we can prove that C
S\Cout−→ I ′. #�

3.2 Unavoidable Kernels

Unavoidable kernels are defined geometrically to be kernels which a straight line
from the source interval to the destination interval ‘intersects’ an odd number
of times. We call the kernel unavoidable since it can be proved that any path
from the source to the destination will have to pass through the kernel.

Definition 2. Given an SPDI S and two edgelists I and I ′, we say that a con-
trollability kernel Cntr(Kσ) is unavoidable if any segment of line with extremes
on points lying on I and I ′ intersects with both the edges of Cntrl(Kσ) and those
of Cntru(Kσ) an odd number of times (disregarding tangential intersections with
vertices).

The following theorem enables us to discover separating controllability kernels
using a simple geometric test.

Theorem 8. Given an SPDI S, two edgelists I and I ′, and a controllability
kernel C = Cntr(Kσ), then C is an unavoidable kernel if and only if one of
the following conditions holds (i) I ⊆ Cin and I ′ ⊆ Cout; or (ii) I ⊆ Cout and
I ′ ⊆ Cin.

Proof. This theorem is a standard geometrical technique frequently used in com-
puter graphics [FvDFH96] (referred to as the odd-parity test). #�

Corollary 2. Given an SPDI S, two edgelists I and I ′, and an unavoidable
controllability kernel C = Cntr(Kσ), then I

S−→ I ′ if and only if I
S−→ C and

C
S−→ I ′.

Proof. This follows directly from theorems 6 and 8. #�
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Fig. 3. Unavoidable kernels and independent reachability questions

The following result relates unavoidable kernels between each other:

Proposition 2. Given two disjoint controllability kernels C and C′, both un-
avoidable from I to I ′, then either C′ is unavoidable from I to C or C′ is
unavoidable from C to I ′, but not both.

Proof. This follows directly from definition of unavoidable kernel, the disjoint-
ness assumption and theorem 8. #�

3.3 Counting Sub-problems

The following theorem bounds the number of times a reachability question may
be decomposed into independent sub-questions using theorem 7. We will consider
a collection of mutually disjoint controllability kernels.

Theorem 9. Given an SPDI S and two edgelists I and I ′, the question I
S−→

I ′ can be split into no more than k reachability questions, k is the number of
mutually-disjoint controllability kernels.

Proof. We note that whenever we decompose an SPDI, the source and destina-
tion intervals are always within the sub-SPDI under consideration.

Now consider a reachability question I
S−→ I ′, and a controllability kernel

C upon which we can branch. Without loss of generality, we assume I ⊆ Cin

and I ′ ⊆ Cout. The question is thus decomposed into two questions: I
S\Cin−→ C+

(question a) and C
S\Cout−→ I ′ (question b).

Now consider another controllability kernel C′. We now have two possible
cases: (i) C′ ⊆ Cin; (ii) C′ ⊆ Cout. Note that by the Jordan curve theorem, C′

cannot be partially in and partially out of C without intersecting C.
In the first case (i), we note that since all edges in S \Cout lie outside or inside

C′, this new kernel cannot be be used to split question (b) or any question derived
from it. Therefore, C′ can only induce a split in question (a). Case (ii), is the
mirror case and the argument follows identically.
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Therefore, each controllability kernel can contribute at one extra process,
bounding the number of reachability questions to k. #�
We now give a lower bound on the number of independent questions induced by
theorem 7 in terms of the number of mutually-disjoint unavoidable controllability
kernels.

Theorem 10. Given an SPDI S and two edgelists I and I ′, the question I
S−→

I ′ can be split into at least u + 1 reachability questions, u is the number of
mutually-disjoint unavoidable controllability kernels.

Proof. We prove this by induction on the number of mutually-disjoint unavoid-
able controllability kernels.

With u = 0, the number of questions is clearly at least u + 1.
Now consider the unavoidable controllability kernel C, and the question I

S−→
I ′. By theorem 8, it follows that I and I ′ are on opposite sides of C. The

reachability question can be thus decomposed to I
S\Cin−→ C+ (question a) and

C
S\Cout−→ I ′ (question b) by theorem 7. Also, by proposition 2, we known that any

other unavoidable controllability kernel C′ from I to I ′, is also an unavoidable
controllability kernel from either I to C or from C to I ′ (but not both). In both

cases we obtain a decomposition of the reachability question into I
S\Cout−→ C

and C
S\Cin−→ C′ (or, I

S\C′
out−→ C′ and C′ S\C′

in−→ C). Splitting the kernels into
the relevant ones to the two questions (u1 kernels relevant to question a and u2
relevant to question b — u = u1 + u2 + 1), we can conclude that the number of
questions we get is (u1 + 1) + (u2 + 1) which is u + 1. #�
We have thus given lower and upper bounds on the the number of independent
questions generated by applying theorem 7 over a number of mutually disjoint
unavoidable controllability kernels. The results may be extended to work with
overlapping kernels.

Example 7. Let us consider again the SPDI defined in Example 1 and the same
intervals I and I ′. In Fig. 3-(a) we show the unavoidable kernels. The segment of
line from I to I ′ traverses C1 and C2 twice and C3 exactly once (an odd number
of times). Thus, only C3 is an unavoidable kernel. The reachability question can

be split into at least 2 independent questions: I
S\C3in−→ I ′′ and I ′′

S\C3out−→ I ′.
As another example let us consider I and I ′ as in Fig. 3-(b). The segment of

line from I to I ′ traverses C1 and C3 exactly once (an odd number of times),
while C2 is traversed twice. Thus, there are two unavoidable kernels, namely
C1 and C3. In this case the reachability question can be split into at least 3

independent questions: I
S\C1out−→ I ′′, I ′′

S\(C1in∪C3in)−→ I ′′′, and I ′′′
S\C3out−→ I ′.

4 Parallel Reachability Algorithm

In Fig. 4 we give an algorithm for parallel reachability analysis of SPDIs using
parallel recursive calls corresponding to independent reachability questions.
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function ReachPar(S, I, I ′) =
ReachParKernels (S, ControllabilityKernels(S), I, I ′)

function ReachParKernels(S, [], I, I ′) =
Reach(S, I, I ′);

function ReachParKernels(S, k:ks, I, I ′) =
if (ImmedieteAnswer(S, I, I ′)) then

True;
elsif (SameSideOfKernel(S, k, I, I ′)) then

S_I := S \ EdgesOnOtherSideOf(S, k, I ′);
ReachParKernels(S_I, ks, I, I ′);

else
S_I := S \ EdgesOnOtherSideOf(S, k, I);
S_I’ := S \ EdgesOnOtherSideOf(S k, I ′);
parbegin

r1 := ReachParKernels(S_I, ks, I, viability(k));
r2 := ReachParKernels(S_I’, ks, k, I ′);

parend;
return (r1 and r2);

Fig. 4. Parallel algorithm for reachability of SPDIs

The function ReachParKernels is called with the SPDI to consider, a list of
kernels still to be used for reduction, and the source and destination edgelists.
With no kernels to consider, the algorithm simply calls the standard sequential
algorithm (Reach). Otherwise, one of the kernels is analyzed, with three possible
cases:

1. If the source lies (possibly partially) on the extended kernel, and the desti-
nation lies (possibly partially) on the kernel, then we can give an immediate
answer (using theorem 5).

2. If both the edgelists lie on the same side of the kernel, then we simply
eliminate redundant parts of the SPDI — anything on the other side of the
kernel (theorem 6).

3. Otherwise, if the edgelists both lie on opposite sides of the kernel, we can
split the problem into two independent questions (reaching the kernel from
the source, and the destination from the kernel) which can be run in par-
allel (theorem 7). An affirmative answer from both these subquestions is
equivalent to an affirmative answer to the original question.

Note that the function ReachParKernels is compositional in the sense that
each recursive call launch a process which operates in (most cases in) disjoint
state spaces which are smaller than the original one (S). The final answer is the
composition of the partial reachability questions.

Given two edgelists I and I ′, we define the following predicate I
S−→‖ I ′ ≡

ReachPar(S, I, I ′). The following theorem states that the (compositional) parallel
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algorithm exactly answers the reachability question, also giving a soundness and
completeness proof of the algorithm:

Theorem 11. Given an SPDI S and two intervals I ⊆ e and I ′ ⊆ e′, I
S−→ I ′

if and only if I
S−→‖ I ′.

Proof. The proof follows from theorems 5, 6 and 7 and induction on ks. #�

5 Concluding Remarks

We have shown how answering reachability on an SPDI can be reduced to a
number of smaller reachability questions. Moreover, our algorithm can be com-
bined with recent optimizations developed for the reachability analysis of SPDIs
[PS06] in order to optimize each local reachability question.

We note that due to the fact that we present the algorithm working on edge-
lists, the breadth-first-search algorithm we present in [PS03] is better adapted
than the original algorithm [ASY01] to be used in this context. The algorithm
consists essentially in partitioning4 the state space into parts, discarding some of
these partitions and performing reachability analysis on others. Furthermore, as
long as separate reachability analysis of two disjoint state spaces is not more
expensive than performing reachability analysis on the state spaces merged
together (which is true for any reachability algorithm with complexity worse
than linear) the state space partitioning provides a speedup over global model
checking.

Part of our algorithm is based on certain geometric tests (e.g., theorem 8)
which may be avoided if we consider a more abstract approach by enriching the
reachability graph with information about the order among edges of each SPDI
region. This is part of our on-going work, as well as the study of a variant of the
algorithm which executes exactly u + 1 parallel processes, u being the number
of unavoidable kernels.

Another natural question that arises is whether this can somehow be appli-
cable to model checking of other models. To attempt to partially answer this
question, we identify the properties of SPDIs that were used in the system de-
composition. The property depends on the ability to identify subsets of the state
space such that each such subset (i) is a strongly connected set (in terms of reach-
ability); and (ii) partitions the state space into two — such that any state on
one side that can reach states on the other side can do so via an intermediate
state within the subset. These conditions are satisfied thanks to the planarity of
SPDIs. In fact, the conditions can possibly be applied to systems with a planar
state graph. The application and generalization of the results presented here
remains an open research area.

One current research direction is to apply our results to semi-decide the reach-
ability question for SPDIs defined on 2-dimensional manifolds, for which the de-
cidability of reachability remains unresolved [AS02]. Maybe the most prominent
4 The division is almost a partition, since the controllability kernels may be shared

between parts.
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application of SPDIs is for approximating complex non-linear differential equa-
tions on the plane, for which an exact solution is not known. The decidability of
SPDI’s reachability and of its phase portrait construction would be of invaluable
help for the qualitative analysis of such equations. The challenge would be to
find an “intelligent” partition of the plane in order to get an optimal approxi-
mation of the equations. Since such partition might produce a high number of
regions, our parallel algorithm might be extremely useful here.
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Abstract. Verification of multithreaded programs is difficult. It requires
reasoning about state spaces that grow exponentially in the number of
concurrent threads. Successful verification techniques based on modular
composition of over-approximations of thread behaviors have been de-
signed for this task. These techniques have been traditionally described
in assume-guarantee style, which does not admit reasoning about the ab-
straction properties of the involved compositional argument. Flanagan
and Qadeer thread-modular algorithm is a characteristic representative
of such techniques. In this paper, we investigate the formalization of this
algorithm in the framework of abstract interpretation. We identify the
abstraction that the algorithm implements; its definition involves Carte-
sian products of sets. Our result provides a basis for the systematic study
of similar abstractions for dealing with the state explosion problem. As
a first step in this direction, our result provides a characterization of a
minimal increase in the precision of the Flanagan and Qadeer algorithm
that leads to the loss of its polynomial complexity.

1 Introduction

Multithreaded software is everywhere. Verifying multithreaded software is an
important and difficult task. The worst-case runtime of every existing verification
algorithm is exponential in the number of threads. Due to inherent theoretical
restrictions (see [9]) this is unlikely to change in the future.

However there are many successful algorithms and tools for different types of
communication between components of a concurrent system. One can mention
algorithms in SPIN (see [8]) and BLAST (see [7]) model-checkers. The main
challenge for any verification algorithm is to reason modularly, avoiding explicit
products of states and state spaces, which lead to combinatorial explosion. Such
algorithms are called thread-modular.

Assume-guarantee reasoning offers a prominent approach to devise thread-
modular algorithms. The behavior of each thread with respect to global vari-
ables is described by its guarantee. You can view this guarantee as a transition
relation. For each thread, the model-checking procedure is applied to a parallel
composition of the thread’s transition relation and guarantees of other threads.
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In this way the thread assumes that its environment sticks to the guarantees of
other threads. Thus the guarantees of other threads represent the environment
assumption. During model-checking of the parallel composition, the behavior of
each thread is checked to stick to its own guarantee.

However, assume-guarantee reasoning doesn’t provide an insight about the ab-
straction process involved. All that is known about precision loss during search
in a thread’s state space is that during discovering states of the thread, the be-
havior of all other threads is reduced to their action on global variables. Nothing
was known about the loss of precision for the program as a whole. It was un-
clear whether or how is it possible to represent thread-modular reasoning in the
standard framework of abstract interpretation.

As soon as the abstraction is identified, it provides additional insight into the
algorithms. For instance, one could try to increase precision of the abstraction,
to try to adapt the precision to a verification task, to optimize the algorithms, to
combine with other abstractions or add refinement and create a counterexample-
guided abstraction refinement loop. One could construct modifications of the
abstraction, derive the corresponding algorithms and look at their runtime and
precision.

We study the Flanagan-Qadeeralgorithm for thread-modular verification (from
now - FQ-algorithm). The distinguishing property of this algorithm lies in its
low complexity. It is polynomial in the number of threads. The low complexity
has its price: the algorithm is incomplete. The algorithm is also of the assume-
guarantee type. Each computed guarantee is a set of pairs of valuations of un-
primed and primed global variables (g, g′). While model-checking a thread, each
time a thread state is discovered, we allow the global variables to be changed
according to the guarantees of other threads. Each time the thread itself changes
global variables from a discovered state, the corresponding pair of valuations of
global variables before and after the step is added to the guarantee. Upon con-
vergence, the environment assumptions are devised and the discovered states of
each threads include the reachable thread states.

We would like to identify the abstraction used by the FQ-algorithm to be able
to reason about the algorithm. In particular, we would like to know how far one
can push the FQ-algorithm while still being polynomial in time and space.

In this paper we study the abstraction used in FQ-algorithm and identify the
boundary. Our result is that FQ-algorithm implements Cartesian abstraction in
special setting with threads (a so-called local Cartesian abstraction).

This insight allows us to find the “least modification” of the FQ-algorithm
that leads to the loss of polynomial complexity. Thus, the identification of the
abstraction provides the insight into the algorithm itself.

Local Cartesian abstraction formulation does not immediately provide a basis
for complexity analysis, since the concrete domain (which is both the domain
and the range of local Cartesian abstraction) admits exponentially long chains.
Since local Cartesian abstraction is “the what” of FQ-algorithm, we obtain a
polynomial time algorithm for reachability under local Cartesian abstraction.
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Cartesian abstraction in program analysis is also known as “independent at-
tribute method” (see [10]). There has been a lot of research since then, but to our
best knowledge the method has not been applied to multithreaded programs yet.
So our work is the first attempt to develop the theory of Cartesian abstraction
for multithreaded programs.

Outline of the paper : First we define our program model.
Then we explain the algorithm. We provide a small example.
After that we define a concrete and an abstract domain and a corresponding

Galois-connection that involve Cartesian products of sets. We state our first
theorem saying how the output of the FQ-algorithm is expressible in the standard
framework of abstract interpretation. We prove this theorem.

Then we define local Cartesian abstraction of multithreaded programs. We
state our second theorem which says that the algorithm implements local Carte-
sian abstraction: the output of the algorithm represents local Cartesian abstrac-
tion of the program. We demonstrate the theorem on our example and prove it
in general.

At last, we give a boundary of the abstraction, namely, an optimizing modi-
fication that works for many other verification methods but immediately breaks
the polynomial-time border of the FQ-algorithm.

2 Preliminaries

2.1 Programs with Threads

We are interested in proving safety properties of multithreaded programs. Each
safety property can be encoded as a reachability property. Simplifying, we consider
programs consisting of only two threads communicating via shared variables.

A two-threaded program is given by a tuple

(Glob, Loc1, Loc2,→1,→2, init)

where
– Loc1 and Loc2 contain valuations of local variables of the first and second

threads, we call them the local stores of the first and second thread;
– Glob contains valuations of shared variables, we call it the global store;
– the elements of States = Glob× Loc1 × Loc2 are called program states, the

elements of Q1 = Glob×Loc1 and Q2 = Glob×Loc2 are called thread states ;
– the relation →1 (resp. →2) is a binary transition relation on the states of

the first (resp. second) thread;
– init ⊆ States is a set of initial states.

The program is equipped with the interleaving semantics. If a thread makes a
step, then it may change its own local variables and the global variables but may
not change the local variables of another thread; a step of the whole program is
either a step of the first or a step of the second thread. The following successor
operator maps a set of program states to the set of their successors:
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post : 2States → 2States

S �→ {(g′, l′1, l′2) | ∃ (g, l1, l2) ∈ S : (g, l1)→1 (g′, l′1) and l2 = l′2
or (g, l2)→2 (g′, l′2) and l1 = l′1} .

We are interested whether there is a computation of any length k ≥ 0 that starts
in an initial state and ends in a single user-given error state f , formally:

∃ k ≥ 0 : f ∈ postk(init) .

2.2 Flanagan-Qadeer Algorithm

The FQ-algorithm from [6] tests whether a given bad state f is reachable from
an initial state. The test says “no” or “don’t know”.

The algorithm computes setsRi ⊆ Glob×Loci and Gi ⊆ Glob×Glob (i = 1, 2)
defined by the least fixed point of the following inference rules:

INIT
initi ∈ Ri

STEP
(g, l) ∈ Ri (g, l) →i (g′, l′)
(g′, l′) ∈ Ri (g, g′) ∈ Gi

ENV
(g, l) ∈ Ri (g, g′) ∈ Gj

(g′, l) ∈ Ri

i 	= j

Here, init1 = {(g, l1) | (g, l1, ) ∈ init}, similarly init2 = {(g, l2) | (g, , l2) ∈
init}. (The underscore means “anything”, i.e. an existentially quantified variable.
The quantification is innermost, so in a formula, two underscores at different
places denote different existentially quantified variables.) If f ∈ {(g, l1, l2) |
(g, l1) ∈ R1 and (g, l2) ∈ R2}, the algorithm says ”don’t know”, otherwise it
says “no”.

The rules work as follows. The STEP rule discovers successors of a state
of a thread that result due to a step of the same thread. Further, it stores the
information about how the step changed the globals in the sets Gi. The ENV rule
uses this information to discover successors of a state of a thread that result due
to communication between threads via globals. After the fixed point is reached,
the set R1 (resp. R2) contains those states of the first (resp. second) thread
that the algorithm discovers. The discovered thread states contain those thread
states that occur in computations.

3 Represented Program States

The inference rules of the FQ-algorithm define the sets R1,R2 of “discovered”
thread states. These sets represent those program states, whose globals and locals
of the first thread are in R1 and globals and locals of the second thread are in
R2, namely {(g, l1, l2) | (g, l1) ∈ R1 and (g, l2) ∈ R2} .

Here is a small example. The program below has one global variable g that
can take values 0 or 1, the first (resp. second) thread has a single local variable
pc1 (resp. pc2), representing the program counter.
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Initially g = 0
A : g := 0; C : g := 1;
B : D :

The algorithm discovers the following thread states:

R1 = {(0, A), (0, B), (1, A), (1, B)} , R2 = {(0, C), (0, D), (1, D)} ,

where (x, Y ) is a shorthand for the the pair of two maps ([g �→ x], [pci �→ Y ]).
These two sets represent the set of program states

{(g, l1, l2) | (g, l1) ∈ R1 and (g, l2) ∈ R2} =
{(0, A, C), (0, A, D), (0, B, C), (0, B, D), (1, A, D), (1, B, D)},

where (x, Y, Z) means the triple of maps ([g �→ x], [pc1 �→ Y ], [pc2 �→ Z]).

4 Cartesian Abstract Interpretation

In order to characterize the FQ-algorithm in the abstract interpretation frame-
work, we first need a concrete domain, an abstract domain and a Galois connec-
tion between them:

D = 2States is the set underlying the concrete lattice,
D# = 2Q1 × 2Q2 is the set underlying the abstract lattice,
αcart : D → D#, S �→ (T1, T2) where T1 = {(g, l) | (g, l, ) ∈ S}

T2 = {(g, l) | (g, , l) ∈ S},
γcart : D# → D, (T1, T2) �→ {(g, l1, l2) | (g, l1) ∈ T1 and (g, l2) ∈ T2}.

The ordering on the concrete lattice D is inclusion, the least upper bound is the
union ∪, the greatest lower bound is the intersection ∩.

The ordering on the abstract lattice D# is the product ordering, i.e. (T1, T2) �
(T ′

1, T
′
2) if and only if T1 ⊆ T ′

1 and T2 ⊆ T ′
2. The least upper bound 	 is compo-

nentwise union, the greatest lower bound 
 is componentwise intersection.

Remark that the image of the abstraction map αcart is always contained in

D#+ = {(T1, T2) ∈ D# | ∀ g ∈ Glob : (g, ) ∈ T1 ⇔ (g, ) ∈ T2} .

Now we show that for the finite-state case the maximal chain length of the
abstract domain is in general smaller than that of the concrete domain.

Proposition 1. Let Glob, Loc1, Loc2 be finite. Let G := |Glob| ≥ 1 be the car-
dinality of the global store and L1 := |Loc1|, L2 := |Loc2| be the cardinalities of
the local stores, both at least 2 and l := min{L1, L2}. Then the maximal chain
length of abstract domain is smaller and also asymptotically smaller than the
maximal chain length of the concrete domain. Formally:
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a) (maximal chain length of D#) ≤ (maximal chain length of D) ;

b) liml→∞
maximal chain length of D#

maximal chain length of D
= 0 .

Proof. a) Consider any longest chain in D and any adjacent elements A ⊂ B in
the chain. Then A

.∪ { } = B (otherwise the chain could be lengthened). So if
∅ is the 0th element of the chain, then its ith element from the bottom has size
i. The maximal element is States, so the chain has 1 + |States| = 1 + GL1L2
elements.
Consider any longest chain in D# and any two adjacent elements (A1, A2) �
(B1, B2) in the chain. Then either A1 = B1 and A2

.∪ { } = B2 or A2 =
B2 and A1

.∪ { } = B1 (otherwise the chain could be lengthened). So one
can construct the chain by starting with (∅, ∅) and adding elements one by
one in some order to the first or to the second component. The number
of such additions is bounded by the maximal sizes of the components |Q1|
and |Q2|. Totally |Q1| + |Q2| additions can be performed, so the chain has
1 + |Q1|+ |Q2| = 1 + GL1 + GL2 elements.

b)

lim
l→∞

maximal chain length of D#

maximal chain length of D
= lim

l→∞
1 + G(L1 + L2)

1 + GL1L2
=

lim
l→∞

1
1 + GL1L2︸ ︷︷ ︸

0

+ lim
l→∞

G(L1 + L2)
1 + GL1L2

= lim
l→∞

1
1

GL1
+ L2

+ lim
l→∞

1
1

GL2
+ L1

= 0 .


	

Two remarks should be made. First, if only one local store grows but the other re-
mains constant-size, then the quotient maximal chain length of D#

maximal chain length of D approaches some
small positive value between 0 and 1. In case the number of threads is not two,
but variable (say, n), we get similar asymptotic results for n → ∞.

From now on, we sometimes omit the parentheses around the argument of a
map, writing, e.g. fx for f(x).

A pair of maps (α, γ) with α : D → D# and γ : D# → D is called a Galois
connection if for all S ∈ D, T ∈ D# we have: αS ⊆ T iff S � γT .

Proposition 2. The pair of maps (αcart, γcart) is a Galois connection, formally:

∀ S ∈ D, (T1, T2) ∈ D# : αcartS � (T1, T2) iff S ⊆ γcart(T1, T2) .

Proof. “⇒”: Let (g, l1, l2) ∈ S. Let (T ′
1, T

′
2) = αcartS. Then by definition of αcart

we have (g, l1) ∈ T ′
1 ⊆ T1 and (g, l2) ∈ T ′

2 ⊆ T2. So (g, l1, l2) ∈ γcart(T1, T2) by
definition of γcart.
“⇐”: Let (T ′

1, T
′
2) = αcartS. Let (g, l1) ∈ T ′

1. By definition of αcart there is an l2
with (g, l1, l2) ∈ S ⊆ γcart(T1, T2). By definition of γcart we have (g, l1) ∈ T1. So
T ′

1 ⊆ T1. Analogously we get T ′
2 ⊆ T2. 
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5 Flanagan-Qadeer Algorithm Implements Cartesian
Abstract Fixpoint Checking

Given a Galois connection (α, γ) between an abstract and a concrete domain,
the abstraction of the program is defined as the least fixed point of λT.α(init ∪
postγT ) (see e.g. [5]). Recall that the FQ-algorithm computes R1 and R2, the
sets of “discovered” states of the first and second thread.

Theorem 3. [Thread-Modular Model Checking is Cartesian Abstract Interpre-
tation]

The output of the FQ-algorithm is the least fixed point of the abstract fixpoint
checking operator with the abstraction map αcart and concretization map γcart.
Formally:

(R1,R2) = lfp λT. αcart(init ∪ postγcartT ) .

It is not clear why this is so and how the assumptions are connected. For our
tiny example, the right hand of the above equation (i.e. the least fixed point) is

({(0, A), (0, B), (1, A), (1, B)}, {(0, C), (0, D), (1, D)}) ,

which coincides with (R1,R2) computed by the algorithm. We prove that the
left and right hand side always coincide in the next section.

6 Proof

First we transform the inference rules of the FQ-algorithm by getting rid of the
sets G1 and G2. We get an equivalent system of inference rules

INIT′
1 init1 ∈ R1

STEP′
1

(g, l) ∈ R1 (g, l) →1 (g′, l′)
(g′, l′) ∈ R1

ENV′
1

(g, l) ∈ R1 (g, l2) ∈ R2 (g, l2) →2 (g′, )
(g′, l) ∈ R1

The rules INIT′
2, STEP′

2 and ENV′
2 are accordingly to INIT′

1, STEP′
1 and ENV′

1
where the indices 1 and 2 are exchanged. Remark that init1 and init2 contain
thread states with the same global parts. Also remark that whenever (g, l) ∈ R1
and (g, l) →1 (g′, ) and there is some thread state (g, ) in R2, then both rules
STEP′

1 and ENV′
2 apply, giving two thread states for R1 and R2 with the same

global part g′. Similarly, whenever (g, l) ∈ R2 and (g, l) →2 (g′, ) and there is
some thread state (g, ) in R1, then both rules STEP′

2 and ENV′
1 apply, giving

two thread states for R2 and R1 with the same global part g′. By induction
follows that whenever there is a thread state in Ri with some global part g,
there is a thread state in Rj with the same global part g (i �= j).

This means that we can replace the STEP’ and ENV’ rules by one rule. The
following system of inference rules is equivalent to the system above.
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INIT′
1 init1 ∈ R1

INIT′
2 init2 ∈ R2

POST#
1

(g, l1) ∈ R1 (g, l2) ∈ R2 (g, l2) →2 (g′, l′2)
(g′, l1) ∈ R1 (g′, l′2) ∈ R2

POST#
2

(g, l2) ∈ R2 (g, l1) ∈ R1 (g, l1) →1 (g′, l′1)
(g′, l2) ∈ R2 (g′, l′1) ∈ R1

Each POST# rule takes two sets (called R1 and R2 above) and gives new ele-
ments for the first and new elements for the second set. All possible applications
of the POST# rules on a fixed pair of sets (T1, T2) can be expressed as computing

p#(T1, T2) = {((g′, l′1), (g′, l′2)) | ∃ ((g, l1), (g, l2)) ∈ T1 × T2 :
(g, l1) →1 (g′, l′1) and l2 = l′2

or (g, l2) →2 (g′, l′2) and l1 = l′1},

the new elements being the first and second projection of the result. Thus, ap-
plying the POST# rules corresponds to applying the map post# : D# → D#,

(T1, T2) �→ (π1p
#(T1, T2), π2p

#(T1, T2)) ,

where πi is the projection on the ith component (i = 1, 2). Notice: (init1, init2) =
αcartinit. Then the pair of computed sets (R1,R2) is the least fixed point of

λT . αcartinit 	 post#T .

The abstract successor map post# can be expressed in terms of post and the
abstraction/concretization maps:

Proposition 4. For any T ∈ D# holds:

post#T = αcartpostγcartT .

Proof. Let (T1, T2) := T .
“�”:
Let (g′, l′1) ∈ π1p

#T . Then there is an l′2 so that the pair ((g′, l′1), (g
′, l′2)) ∈ p#T .

Then there are g, l1, l2 with (g, l1) ∈ T1, (g, l2) ∈ T2 and

(g, l1) →1 (g′, l′1) and l2 = l′2
or (g, l2) →2 (g′, l′2) and l1 = l′1 .

Then (g, l1, l2) ∈ γcart(T1, T2) = γcartT by definition of γcart. So (g′, l′1, l
′
2) ∈

postγcartT by definition of the successor map post and thus (g′, l′1) is in the
first component of αcartpostγcartT . So π1p

#T is contained in the first compo-
nent of αcartpostγcartT . That π2p

#T is contained in the second component of
αcartpostγcartT can be proven analogously.
“�”:
Let (g′, l′1) be in the first component of αcartpostγcartT . Then there is an l′2 with
(g′, l′1, l

′
2) ∈ postγcartT . So there are g, l1, l2 with (g, l1, l2) ∈ γcartT and

(g, l1) →1 (g′, l′1) and l2 = l′2
or (g, l2) →2 (g′, l′2) and l1 = l′1 .
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From (g, l1, l2) ∈ γcartT we know that (g, l1) ∈ T1 and (g, l2) ∈ T2. By definition
of p# we have ((g′, l′1), (g

′, l′2)) ∈ p#(T1, T2). So (g′, l′1) ∈ π1p
#T . We have shown

that the first component of αcartpostγcartT is included in π1p
#T .Analogously one

can show that the second component of αcartpostγcartT is included in π2p
#T .


	

So the algorithm computes the least fixed point of

λT . αcartinit 	 αcartpostγcartT = λT . αcart(init ∪ postγcartT ) .

7 Local Cartesian Abstraction

Up to now we identified the FQ-algorithm as abstract fixpoint checking on an
abstract domain. However, it turns out that the output of the FQ-algorithm can
also be characterized by a very simple abstraction of multithreaded programs
which is defined on the concrete domain. Now we define this abstraction.

Recall that the Cartesian abstraction of a set of pairs is the smallest Cartesian
product containing this subset. We define it formally as

C# : 2Q1×Q2 → 2Q1×Q2 ,

P �→ {(s1, s2) | (s1, ) ∈ P and ( , s2) ∈ P} ,

We have C#P = π1P ×π2P . An analog of Cartesian abstraction on the concrete
domain is

C : D → D

S �→ {(g, l1, l2) | (g, l1, ) ∈ S and (g, , l2) ∈ S} .

We call this map local Cartesian abstraction of a set of program states since it
simplifies to the Cartesian abstraction of a set of pairs if Glob is a singleton.

It turns out that local Cartesian abstraction is representable in the abstract
interpretation framework.

Proposition 5. Local Cartesian abstraction is overapproximation with the ab-
straction map αcart and the concretization map γcart. Formally:

C = γcartαcart

Proof. Let S ⊆ States. We show that CS = γcartαcartS. Let (T1, T2) = αcartS.
We have
(g, l1, l2) ∈ CS

def. of C⇔ (g, l1, ) ∈ S and (g, , l2) ∈ S
def. of αcart⇔ (g, l1) ∈ T1

and (g, l2) ∈ T2
definition of γcart⇔ (g, l1, l2) ∈ γcart(T1, T2) = γcartαcartS. 
	

8 Thread-Modular Model-Checking as
Local Cartesian Abstraction

Given an abstraction map α and a concretization map γ between an abstract
and a concrete domain, we can alternatively perform the abstract fixed point
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checking in the concrete domain. Then the least fixed point of λS.γα(init∪postS)
is computed.

For our special Galois connection (αcart, γcart) we can discover the states of the
program by iterative successor computation and at each step overapproximate by
local Cartesian abstraction. Naively implemented, this algorithm would require
exponential time (in number of threads, if it is not constant). It turns out that
the FQ-algorithm solves the same problem in polynomial time.

Theorem 6 (Thread-Modular Model-Checking as Local Cartesian ab-
straction). The concretization of the output of the FQ-algorithm is equal to the
result of abstract fixpoint checking with local Cartesian abstraction. Formally:

γ(R1,R2) = lfp λS. C(init ∪ postS). (1)

For our tiny example, let us compute the least fixed point of λS.C(init ∪ postS)
by definition. The corresponding chain is

{(0, A, C)} � {(0, A, C), (0, B, C), (1, A, D)} �
� {(0, A, C), (0, B, C), (1, A, D), (1, B, D), (0, B, D), (0, A, D)} (fixed point) ,

the last term being the right hand side of (1). The left and the right hand side
coincide in this example. We prove that they always coincide in the next section.

9 Proof

9.1 Preparations

Before we start proving the theorem, let’s prove a basic fact about the abstract
fixpoint checking.

Let D be a complete lattice with ordering ⊆, bottom element ∅, join ∪, meet ∩
(concrete lattice). Further, let D# be a complete lattice with ordering �, bottom
element ⊥, join 	 and meet 
 (abstract lattice). Let a pair of maps α : D → D#

and γ : D# → D be a Galois connection between the concrete and abstract
lattices. Let F : D → D be any monotone map and init ∈ D any concrete
element. Further, we call ρ := γα : D → D the overapproximation operator.

One way to perform abstract fixpoint checking is to compute the least fixed
point of G# = λT. α(init ∪ FγT ) in the abstract lattice. The other way is to
compute the least fixed point of G = λS. γα(init ∪ FS) in the concrete lattice.

One would expect that these two fixed points are the same up to abstrac-
tion/concretization. Now we show that this is indeed the case if we assume the
following

Hypothesis. The concretization map γ is semi-continuous, i.e. for all ascending
chains X ⊆ D# we have γ(	X) = ∪γX .

This hypothesis is especially satisfied for a continuous γ, i.e. when for all
chains X ⊆ D# we have γ(	X) = ∪γX .
Let μ be any ordinal whose cardinality (the cardinality of the class of ordinals
smaller than μ) is greater than the cardinalities of D and D#. Let’s define two
sequences with indices from μ:
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T 0 = αinit S0 = ρ init for k = 0 ,
T k+1 = G#T k Sk+1 = GSk for successor ordinals k + 1 ∈ μ ,

T k =
⊔

k′<k T k′
Sk =

⋃
k′<k Sk′

for limit ordinals k ∈ μ .

From [3] Cor 3.3 we know that the sequences (Sk)k, (T k)k are stationary in-
creasing chains and the limits are the least fixed points over αinit and ρ init,
respectively. One can show that if we start the sequences (T k)k and (Sk)k with
the bottom elements ⊥ and ∅ (instead of αinit and ρ init), the limits would be
the same, respectively. So the limits are the least fixed points (over ⊥ and ∅).
The hypothesis immediately implies that for each limit ordinal k ∈ μ holds

γ
⊔

k′<k

T k′
=
⋃

k′<k

γT k′
and γ

⊔
k′<k

αSk′
=
⋃

k′<k

γαSk′
. (2)

We need some basic facts about Galois connections and about the overapproxi-
mation operator (see e.g. [2], [4]). From the definition of Galois connection one
can prove that the abstraction and concretization maps α and γ are monotone.
Further overapproximation map ρ is idempotent. Further, overapproximating
and then abstracting is the same as abstracting: αρ = α.

First we show that overapproximating Sk doesn’t change it.

Proposition 7. Each Sk is invariant under overapproximation. Formally:

∀ k ∈ μ : ρSk = Sk .

Proof. We use transfinite induction.
For k = 0, we have ρS0 = ρρ init

ρ idempotent
= ρ init = S0.

For a successor ordinal k + 1, we have ρSk+1 = ρρ(init ∪ FSk)
ρ idempotent

=
ρ(init ∪ FSk) = Sk+1.

If k is a limit ordinal, ρSk = γα
⋃

k′<k Sk′ α complete join morphism
= γ

⊔
k′<k αSk′

formula(2)
=

⋃
k′<k γαSk′ ρ=γα

=
⋃

k′<k ρSk′ induction assumption
=

⋃
k′<k Sk′

= Sk. 
	

Proposition 8. Each T k is the abstraction of Sk. Formally:

∀ k ∈ μ : T k = αSk .

Proof. Transfinite induction.
For k = 0 we have T 0 = αinit

α=αρ
= αρinit = αS0.

For a successor ordinal k + 1 we have T k+1 = α(init ∪FγT k)
induction assumption

=

α(init∪FγαSk)
γα=ρ
= α(init∪FρSk)

ρSk=Sk

= α(init∪FSk)
α=αρ
= αρ(init∪FSk) =

αSk+1.
For a limit ordinal k holds T k =

⊔
k′<k T k′ induction assumption

=
⊔

k′<k αSk′

α complete join morphism
= α

⋃
k′<k Sk′

= αSk. 
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Proposition 9. Each Sk is the concretization of T k. Formally:

∀ k ∈ μ : γT k = Sk .

Proof. Transfinite induction.
For k = 0 we have γT 0 = γαinit = ρinit = S0.
For a successor ordinal k + 1 we have γT k+1 = γα(init ∪ FγT k) = ρ(init ∪
FγT k)

induction assumption
= ρ(init ∪ FSk) = Sk+1.

If k is a limit ordinal, γT k = γ
⊔

k′<k T k′ formula(2)
=

⋃
k′<k γT k′

induction assumption
=

⋃
k′<k Sk′

= Sk. 
	

Let λ ∈ μ be any ordinal at which both sequences are stationary, i.e. Sλ = Sλ+1

and T λ = T λ+1. Then the least fixed point of G is Sλ and the least fixed point
of G# is T λ. Propositions 8 and 9 imply the following

Theorem 10. Let the concretization map be semi-continuous. Then the least
fixed points of G and G# coincide up to abstraction and concretization:

γ lfp G# = lfp G and lfp G# = α lfp G .

9.2 Applying the Theory

We now show that for our Galois connection (αcart, γcart) the hypothesis holds.

Proposition 11. γcart is continuous, i.e. for all chains X ⊆ D# holds:

γcart(	X) = ∪ γcartX .

Proof. “⊆”. Let (g, l1, l2) ∈ γcart(	X). Then (g, l1) (resp. (g, l2)) is in the first
(resp. second) component of 	X . Then there are (T1, T2) and (T ′

1, T
′
2) in X with

(g, l1) ∈ T1 and (g, l2) ∈ T ′
2. Since X is a chain, we have either (T1, T2) � (T ′

1, T
′
2)

or (T1, T2) � (T ′
1, T

′
2). Without loss of generality let (T1, T2) � (T ′

1, T
′
2). Then

(g, l2) ∈ T2, so (g, l1, l2) ∈ γcart(T1, T2) ⊆ ∪γcartX .
“⊇” holds by monotonicity of γcart and definition of the least upper bound. 
	

The map post : D → D is monotone. Proposition 5 and Theorems 3 and 10
imply

γ(R1,R2) = lfp λS. C(init ∪ postS) .

10 Boundary of the Flanagan-Qadeer Algorithm

Now we try to push the FQ-algorithm to increase precision without losing poly-
nomial complexity and show where this fails. For speaking about runtime, let’s
assume that all the domains are finite. The definitions of the multithreaded pro-
gram, of the concrete and the abstract domain, of abstraction/concretization
maps and the corresponding theorems extend to n threads in a natural way.
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A usual way to gain more precision is to abstract not all states, but only the
recently discovered states:

T 0 = αcartinit and T i+1 = post#T i (i ≥ 0).

The sequence stops for k ≥ 0 with γcartT
k+1 ⊆ ∪k

i=0γcartT
i. Then X :=

∪k
i=0γcartT

k is an inductive invariant, i.e. init ⊆ X and postX ⊆ X .
We can implement this iteration in the abstract domain D# by the following

inference rule:

POST#
ij

(g, li) ∈ Ri (g, lj) ∈ Rj (g, lj) →j (g′, l′j)
(g′, li) ∈ R′

i (g′, l′j) ∈ R′
j

i 	= j.

Except for the primed versions R′
i and R′

j in the conclusion of the rule, this is
the same rule that is used in the reformulation of the FQ-algorithm. As before
we have (R′

1, ...,R′
n) = post#(R1, ...,Rn). So each steps of the new iteration

scheme is polynomial. But it turns out that number of steps can be exponential:

Theorem 12. Frontier search with Cartesian abstraction has exponential worst-
case runtime in the number of threads.

Proof. It suffices to present a family of multithreaded programs so that:

1. the nth program in the family has n threads;
2. the sizes of the global store and local stores are polynomial in n;
3. each program of the family has exactly one run of exponential length in n.

Assume such a program with a single initial state is given. If for some i ≥ 0
the components of the tuple T i contain at most one element each, then γcartT

i

contains at most one element, and hence postγcartT
i is a singleton or empty, so

T i+1 = αcartpostγcartT
i is a tuple of singletons or empty sets. Since γcartT

i con-
tains posti(init), we inductively follow that γcartT

i = posti(init) for all i ≥ 0, i.e.
no approximation happens. Especially the sequence (T i)0≤i≤k is exponentially
long.

Now we give a family of programs satisfying the conditions above.

Example 13. [Binary Counter] The statements in brackets <> are atomic.
Global boolean variable with initial value:
t = 1 (takes values from {0, ..., n})
Thread 1:
0: wait until t = 1;
1: <t := 2; goto 0;>
Thread i (1 < i < n):
0: <wait until t = i; t := 1;>
1: <wait until t = i; t := i + 1; goto 0;>
Thread n:
0: <wait until t = n; t := 1;>
1: <wait until t = n; t := 0; goto 0;>
The program implements a binary counter with the school addition method.
The local store of the ith thread represents the position i − 1 of the number
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(1 ≤ i ≤ n). The carry position is stored in the global variable t. The value t = 0
means the carry is nowhere.

Below is the single run for n = 3 where pci is the program counter of the ith
thread. Each column represents a state of the whole program, a successor state
is to the right of its predecessor:

variable ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
t 1 1 2 1 1 2 3 1 1 2 1 1 2 3 0
pc1 0 1 0 0 1 0 0 0 1 0 0 1 0 0 0
pc2 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0
pc3 0 0 0 0 0 0 0 1 1 1 1 1 1 1 0

Let us look at the columns marked by the star (*), i.e where carry is above
the 0th position. The values of the program counters (pc3, pc2, pc1) evolve like a
binary counter. 
	

So frontier search breaks the polynomial time border of Cartesian Abstraction.
Another interesting property of the binary counter is that the set of reachable

states is so big that the output of the FQ-algorithm is exact:

R1 = {(1, 0), (1, 1), (2, 0), (3, 0), (0, 0)} ,

R2 = {(1, 0), (1, 1), (2, 0),(2, 1), (3, 0), (0, 0)} ,

R3 = {(1, 0), (1, 1), (2, 0),(2, 1), (3, 0),(3, 1), (0, 0)} .

Namely, γcart(R1,R2,R3) is exactly the set of reachable states. So no more
precision can be regained.

The binary counter has a property that the size of the global store grows
linearly with n and the transition graph has exponential diameter. Can one get
exponential diameter with a sublinear or even constant global store size? We
pose the following open

Problem 14. Prove or give a counterexample. There is no family (Pn)n≥1 of
multithreaded programs so that

1. the nth program Pn consists of n threads;
2. the global and local stores are constant throughout the family;
3. there is a constant c > 1 so that for almost all n ∈ N the diameter of the

transition graph of Pn exceeds cn.

We do not see how to solve this problem at the moment.

11 Summary

We have examined an approach for verifying concurrent programs.
On one side, we have examined the FQ-algorithm for checking safety of mul-

tithreaded programs. We have characterized it in a well-known framework of
abstract interpretation. Using this characterization, we have shown the bound-
ary of this algorithm.
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On the other side, we have started developing the theory of Cartesian abstrac-
tion for multithreaded programs. We have shown two equivalent approaches for
abstract fixpoint checking on the abstract and the concrete domain. We have
seen that local Cartesian abstraction is polynomial in the number of threads.

Both contributions seem to be first steps in a systematic study of similar
abstractions of the state explosion problem.
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Abstract. Substitution is fundamental to computer science, underly-
ing for example quantifiers in predicate logic and beta-reduction in the
lambda-calculus. So is substitution something we define on syntax on a
case-by-case basis, or can we turn the idea of ‘substitution’ into a math-
ematical object?

We exploit the new framework of Nominal Algebra to axiomatise sub-
stitution. We prove our axioms sound and complete with respect to a
canonical model; this turns out to be quite hard, involving subtle use of
results of rewriting and algebra.

1 Introduction

Substitution is intuitively the operation v[a �→ t] meaning:

Replace the variable a by t in v.

Is there an algebra which describes exactly the properties of v[a �→ t] indepen-
dently of what v and t are (λ-terms, formulae of a logic, or any mixture or
variation thereof)?

Consider by way of analogy the notion of ‘a field’. This has an algebraic
characterisation which tells us what properties ‘a field’ must have, independently
of which field it is, or how it may be implemented (if we are programming). This
is useful; for example the definition of ‘vector space’ is parametric over fields,
and this step requires a characterisation of what fields are [1].

When we begin to algebraically axiomatise substitution some unusual difficul-
ties present themselves. Consider the following informally expressed candidate
property of substitution:

v[a �→ t][b �→ u] = v[b �→ u][a �→ t[b �→ u]] provided a �∈ fv(u).

This is not algebraic, because of the side-condition a �∈ fv(u). Here fv (u) is ‘the
free variables of u’, which is a property of the syntax of u.

So is it the case that substitution cannot be axiomatised, and only exists as
an incidental property of syntax used to talk about ‘real’ mathematical objects?

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 198–212, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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But in that case, what is the status of the intuition which makes us agree that
the property above should be satisfied by any self-respecting substitution action?

We shall argue that the following properties axiomatise substitution, all of
substitution, and nothing but substitution. We express them in Nominal Algebra
(given formal meaning in the rest of this paper):

(var �→) � var(a)[a �→ T ] = T
(# �→) a#X � X[a �→ T ] = X
(f �→) � f(X1, . . . , Xn)[a �→ T ] = f(X1[a �→ T ], . . . , Xn[a �→ T ]) (f 	= var)

(abs �→) b#T � ([b]X)[a �→ T ] = [b](X[a �→ T ])
(ren �→) b#X � X[a �→ var(b)] = (b a) · X

Fig. 1. Axioms of SUB

For convenience we now give an informal reading:

(var �→): If a is a variable then a with a replaced by T , is T .
(# �→): If a is fresh for X then X with a replaced by T is X .
(f �→): Substitution distributes through term-formers (we can have as many

as we like); f ranges over them.
(abs �→): Substitution distributes under abstraction, provided an ‘accidental

capture-avoidance’ condition holds (b is fresh for T ).
(ren �→): If b is fresh for X then X with a replaced by b is identical to X with

a replaced by b and simultaneously b replaced by a.

Formally, Fig. 1 uses nominal terms [2] as a syntax, and nominal algebra [3] as
an algebraic framework.

A number of questions now arise: a) Is this substitution? In what sense; are the
axioms sound, and for what model? b) Are the axioms complete for that model?
c) Do other (perhaps unexpected) models exist of the same axioms? d) Can the
axioms be used to found theories of predicate logic, λ-calculus, unification, and
so on?

Sections 2 and 3 define nominal terms and nominal algebra. Section 4 defines
substitution as a nominal algebraic theory. Section 5 develops some highly non-
trivial technical results. Section 6 answers a) by showing that on a canonical
model, our axioms for substitution give rise to something which is recognisably
substitution as we might expect it to behave. Section 7 further shows the harder
property mentioned in b) that our axioms for substitution precisely characterise
what is true of that concrete model. The Conclusions then describes related and
future work. Questions c) and d) are answered positively in other papers [4, 5].

2 Nominal Terms

We define a syntax of nominal terms. For simplicity fix a sort of atoms A and
a (base) sort of terms T. Then sorts τ are inductively defined by:1

1 So sorts are just T, [A]T, [A][A]T, and so on, and similarly A, [A]A, and so on.
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τ ::= T | A | [A]τ

We could admit more sorts of atoms, and base sorts other than T, if we wished.
Our syntax has term-formers: Fix term-formers fρ to each of which is asso-

ciated some unique arity ρ = (τ1, . . . , τn)τ . We may write f : ρ for ‘f, which has
arity ρ’. We assume term-formers:

sub : ([A]τ, T)τ (τ ∈ {T, [A]T}) var : (A)T pair : (T, T)T binder : ([A]T)T

The two subs will be used to represent the substitutions from Fig. 1; the condition
on τ is for simplicity only.

var, pair, and binder define a sufficiently rich language for our axioms of sub-
stitution to have an interesting action, but as mentioned in the Introduction
almost anything else would do (e.g. see example signatures in [6]).

Finally, we can define the sorted syntax itself:
Fix some countably infinite set of atoms a, b, c, . . . ∈ A. These model object-

level variable symbols (the ones we axiomatise substitution for).
Fix a countably infinite collection of unknowns X, Y, Z, T , U, . . ..2 Intuitively

these represent unknown terms. We assume unknowns are inherently sorted and
infinitely many populate each sort: so X is shorthand for Xτ , and XA and XT

are two different unknowns with confusingly similar names.
Terms t, u, v are inductively defined by the following grammar:

t ::= aA | (π ·Xτ )τ | ([aA]tτ )[A]τ | (f(τ1,...,τn)τ (t1τ1
, . . . , tnτn

))τ

Here we call (π ·Xτ )τ a moderated unknown; π is described below. We have
indicated sorts with a subscript but we shall usually omit them; we repeat the
definition above without subscripts, for clarity:

t ::= a | π ·X | [a]t | f(t1, . . . , tn).

A permutation π of atoms is a bijection on A with finite support meaning
that for some finite set of atoms π(a) �= a, and for all other atoms π(a) = a;
in other words, for ‘most’ atoms π is the identity. As usual write Id for the
identity permutation, π-1 for the inverse of π, and π ◦π′ for the composition
of π and π′, i.e. (π ◦ π′)(a) = π(π′(a)). Id is also the identity of composition,
i.e. Id ◦ π = π and π ◦ Id = π. We may abbreviate Id · X to X . Importantly,
we shall write (a b) for the permutation which maps a to b and vice versa, and
maps all other c to themselves.

In Fig. 1 we have sugared sub([a]u, t) to u[a �→t]. We suggestively name a term
of this form an explicit substitution.

A few more simple notations are useful for later: We call the size of t its
inductive rank.3 Write a ∈ t (or X ∈ t) for ‘a (or X) occurs in (the syntax
of) t’. Occurrence is literal, e.g. a ∈ [a]a and a ∈ π ·X when π(a) �= a. Similarly

2 Unknowns, atoms, and term-formers, are assumed disjoint.
3 In plain english: the depth of a proof that t is in the set of terms, using the inductive

definition above.
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write a �∈ t and X �∈ t for ‘does not occur in the syntax of t’. Write syntactic
identity of terms t, u as t ≡ u to distinguish it from provable equality. Important:
we do not quotient terms in any way.

It may help to show how nominal terms relate to ‘ordinary’ syntax. For con-
venience identify atoms with variable symbols, then the syntax of the untyped
λ-calculus is inductively defined by e ::= a | ee | λa.e. We define a map (-)′ to
nominal terms by: a′ = var(a), (e1e2)′ = pair(e′1, e

′
2), (λa.e)′ = binder([a](e′)).

Even for this simple signature of var, pair, and binder, there are interesting things
to say. For example we shall see that binder([a]X) behaves much like the λ-
context λa.- where - is a ‘hole’, and of course sub will allow us to state (and
prove!) nontrivial properties of substitution in the presence of those holes. Ex-
ample 4.1 gives three such properties; there are many more and our main result
Theorem 7.5 asserts that we can prove all of them from our axioms.

3 Nominal Algebra

We can now do algebra. For us, algebra is the logic of equality (no implication, no
quantification). We consider a canonical syntax-based model later in Section 6
and find much of interest to say about it in Section 7 — other models of our
axioms are the topic of other work [4].

A freshness (assertion) is a pair a#t of an atom and a term. Call a freshness
of the form a#X (so t ≡ X) primitive. Write Δ for a (possibly infinite) set
of primitive freshnesses and call it a freshness context. We may drop set
brackets in freshness contexts, e.g. writing a#X, b#Y for {a#X, b#Y }. Also, we
may write a, b#X for a#X, b#X . Define derivability on freshnesses in natural
deduction style by:

(#ab)
a#b

a#t1 · · · a#tn

(#f)
a#f(t1, . . . , tn)

(#[]a)
a#[a]t

a#t
(#[]b)

a#[b]t

π-1(a)#X
(#X)

a#π · X
Here f ranges over term-formers,4 t and t1, . . . , tn range over terms, X ranges
over unknowns, and a and b permutatively range over atoms, i.e. a and b represent
any two distinct atoms. We use similar conventions henceforth.

Write Δ � a#t when a derivation of a#t exists using the elements of Δ as
assumptions. Say that Δ entails a#t or a#t is derivable from Δ; call this a
freshness judgement.

An equality (assertion) is a pair t = u where t and u are terms of the same
sort. Define derivability on equalities in natural deduction style by:

(refl)
t= t

t= u
(symm)

u = t

t =u u = v
(tran)

t= v

t1 = u1 · · · tn =un

(congf)
f(t1, . . . , tn) = f(u1, . . . , un)

t= u
(cong[])

[a]t = [a]u

a#t b#t
(perm)

(a b) · t= t

[a#X1, . . . , a#Xn] Δ···
t= u

(fr) (a 	∈ t, u, Δ)
t= u

4 More precisely, f is a meta-variable ranging over term-formers.
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We may call this the core theory and refer to it as CORE. We may write
Δ �CORE t = u for ‘t = u is derivable from assumptions Δ in the core theory’; call
this an equality judgement.

In (fr) square brackets denote discharge in the sense of natural deduction, as
in implication introduction [7]; Δ denotes the other assumptions of the derivation
of t = u.5 This is useful because unknowns in a derivation intuitively represent
unknown terms, but any finite collection of such terms can mention only finitely
many atoms; (fr) expresses that we can always find a fresh one.

In (perm) read (a b) · t as ‘swap a and b in t’. It is defined on syntax by:

π · a ≡ π(a) π · (π′ ·X) ≡ (π ◦ π′) ·X π · [a]t ≡ [π(a)](π · t)
π · f(t1, . . . , tn) ≡ f(π · t1, . . . , π · tn)

So π propagates through the structure of t until it reaches an atom or a moder-
ated unknown. We can easily verify that (π ◦ π′) · t ≡ π · (π′ · t) and Id · t ≡ t.

Here is an example derivation, using the fact that [a]a ≡ (a b) · [b]b:

(#ab)
a#b

(#[]b)
a#[b]b

(#[]a)
b#[b]b

(perm)
[a]a = [b]b

Provable equality in CORE coincides with provable equality on nominal terms
in the sense of nominal unification [2], for details see elsewhere [3]. This corre-
sponds in a suitable sense to α-equivalence, though in a non-trivial way since
�CORE [a]X = [b]X does not hold — but b#X �CORE [a]X = [b](b a) ·X does [2].

Nominal Algebra (NA) is the theory outlined above, along with the ability
to impose axioms. Call a triple Δ � t = u where Δ is finite an axiom. We may
write � t = u when Δ is empty (the empty set). Call an instance of an axiom
a step in a derivation where the conclusion is obtained from an axiom by instan-
tiating unknowns by terms,6 and permutatively renaming atoms, such that the
hypotheses are corresponding instances of freshness conditions of the axiom.

4 SUB: The Theory of Explicit Substitution

NA substitution allows the axioms in Fig. 1. Here (f �→) represents a schema
of axioms, one for each term-former other than var; one particular example is
(sub�→). We make concrete choices of atoms a and b, of an unknown T of sort
T, and of unknowns X, X1, . . . , Xn of appropriate sorts. We call the axioms and
the resulting equality a theory of substitution and write it SUB.

5 In sequent style, (fr) would be
Δ, a#X1, . . . , a#Xn � t = u

Δ � t = u
(a 	∈ t, u, Δ).

6 Instantiation of unknowns is mostly what the reader would expect: textual replace-
ment of X by t. See Sect. 7.1 for the formal definition.
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Example 4.1. The following judgements are derivable in SUB:

1. a#Y �SUB Z[a �→ X ][b �→ Y ] = Z[b �→ Y ][a �→ X [b �→ Y ]]
2. b#Z �SUB Z[a �→ X ] = ((b a) · Z)[b �→ X ]
3. �SUB X [a �→ var(a)] = X

We give only the first derivation in full. We write σ for [b �→ Y ] and we use the
unsugared syntax for the other substitutions.

(f �→)
sub([a]Z, X)σ = sub(([a]Z)σ, Xσ)

a#Y
(abs �→)

([a]Z)σ = [a](Zσ)
(refl)

Xσ = Xσ
(congf)

sub(([a]Z)σ, Xσ)= sub([a](Zσ), Xσ)
(tran)

sub([a]Z, X)σ = sub([a](Zσ), Xσ)

For part 2: We must prove b#Z �SUB sub([a]Z, X) = sub([b](b a) · Z, X). By
(congf), (refl), and (symm), it suffices to derive [b](a b) · Z = [a]Z. Using
(perm) it suffices to derive a, b#[a]Z, which is easy.

For part 3: By (fr) we may assume b#X for some b �∈ X, X [a �→ var(a)],
i.e. b �= a. By (tran) it suffices to derive X [a �→ var(a)] = ((b a) ·X)[b �→ var(a)]
and ((b a) ·X)[b �→ var(a)] = X. The former is an instance of part 2 of this ex-
ample. For the latter it suffices to derive a#(b a) ·X, by axiom (ren �→) and
X ≡ (a b) · (b a) ·X . By (#X), this follows from the assumption b#X.

5 SUBfr: Explicit Substitution Rewritten

Equality has no algorithmic content so we have specified what is equal, but not
how to verify it. Rewriting is algorithmic in that sense, given confluence. It is
useful to give a rewrite system for SUB.

Nominal rewriting is like nominal algebra, but with a directed notion of equal-
ity; terms are taken up to equality in CORE. A rewrite rule∇ � l → r may trigger
a rewrite in a term t when (an instance of) l is provably equal in CORE to some
subterm of t, and the corresponding instance of ∇ is derivable using the ambient
context of freshness assumptions Δ (so ∇ is freshness conditions on the rewrite
rule) [8, 9, 10]. Rewrite rules are given in Fig. 2. Write →Δ for the rewrite relation
induced by rewrites in CORE, given Δ.

Say a freshness context Δ′ freshly extends Δ when Δ′ = Δ∪Δ′′ where Δ′′

may be empty, but if a#X ∈ Δ′′ then a �∈ Δ. Note that the rule (fr) precisely
‘introduces a Δ′′’. So b#X, a#X freshly extends a#X but a#Y, a#X does not.

Lemma 5.1 (Rewriting is equality). Δ �SUB t = u is derivable if and only
if t is related to u by the symmetric transitive reflexive closure of →Δ′ for some
Δ′ freshly extending Δ.

Say a property holds of a triple (Δ, t, u) ‘provided Δ has sufficient fresh-
nesses’ when that property holds of some (Δ′, t, u) for Δ′ freshly extending Δ.
So for Δ, t, and u, equality between t and u SUB coincides with rewritability
between them in SUBfr, provided that Δ has sufficient freshnesses.
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(Rvar) � var(a)[a �→ X] → X
(R#) a#Z � Z[a �→ X] → Z
(Rf) � f(Z1, . . . , Zn)[a �→ X] → f(Z1[a �→ X], . . . , Zn[a �→ X]) (f 	=var, sub)
(Rsub) a#Y � Z[a �→ X][b �→ Y ] → Z[b �→ Y ][a �→ X[b �→ Y ]]
(Rabs) c#X � ([c]Z)[a �→ X] → [c](Z[a �→ X])
(Rren) b#Z � Z[a �→ var(b)] → (b a) · Z

Fig. 2. Substitution as a rewrite system SUBfr

5.1 SUBe and Strong Normalisation Up to SUBe

Substitution has the character of a computation and our re-casting SUB as a
rewrite system recognises this. However substitutions also have an awkward ‘si-
multaneous’ character. For example

�SUB X[a �→ var(a′)][b �→ var(b′)][c �→ var(c′)] = X[c �→ var(c′)][b �→ var(b′)][a �→ var(a′)]

is derivable but there is no obvious direction to the equality and SUBfr does not
strongly normalise on the terms.

Call a binary relation (by incredible coincidence write it →) strongly nor-
malising when if for t1, t2, . . . we have t1→t2→t3→ . . . then i exists such that
if j ≥ i then ti = tj . Clearly this is not the case of any →Δ from SUBfr.

Let SUBe be the NA theory with axioms in Fig. 3.

(Eswap) a#Y, b#X � Z[a �→ X][b �→ Y ] = Z[b �→ Y ][a �→ X]
(Egarbage) a#Z � Z[a �→ X] = Z

Fig. 3. The theory SUBe

Lemma 5.2. The rules obtained from directing the equalities from SUBe, are
admissible in SUBfr, i.e. every instance of the following can be obtained in SUBfr:

(Rswap) a#Y, b#X � Z[a �→ X][b �→ Y ] → Z[b �→ Y ][a �→ X]
(Rgarbage) a#Z � Z[a �→ X] → Z

As a corollary, provable equality in SUBe implies provable equality in SUB.

We will show that → of SUBfr is strongly normalising up to provable equality in
SUBe. Some auxiliary functions and notations are needed.

Fix Δ and write a#v for Δ � a#v and ¬a#v for Δ �� a#v. Let f range over all
term-formers excluding sub (but including var), and let . denote the arithmetic
product. Define |v|b by |v|b = 0 if b#v and only otherwise by:

|a|a = 1 |v[a �→ t]|a = |t|a + 1 |v[a �→ t]|b = |v|b (a#v)

|v[a �→ t]|b = |v|b (¬a#v, b#t) |v[a �→ t]|b = |v|b+|t|b.|v|a+1 (¬a#v,¬b#t)

|f(v1, . . . , vn)|b = |v1|b + · · · + |vn|b + 1 |[a]v|b = |v|b + 1 |π · X|a = 1

Then the following inductive definition makes Theorem 5.3 a matter of easy
arithmetic:
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|f(v1, . . . , vn)| = |v1| + · · · + |vn| (n > 0) |f()| = 1 |[a]v| = |v|
|π · X| = 1 |a| = 1 |v[a �→ t]| = |t|.|v|a + |v|

Theorem 5.3. If t →Δ t′ then either Δ �SUBe t = t′ or |t|Δ > |t′|Δ. As a result
SUBfr is strongly normalising up to provable equality in SUBe.

Write →∗
Δ

for the transitive reflexive (but not symmetric) closure of →Δ. We
note that Δ �SUBe t = u does not imply t →∗

Δ
u or u →∗

Δ
t. For a counterexample

consider t ≡ var(a)[b �→ var(c)] and u ≡ var(a)[b �→ var(c′)].

5.2 Garbage and Garbage-Collection

Call the pair Δ � t a (nominal) term-in-context. Equalities, and rewrites,
are on terms in context. Only if t is closed is context irrelevant.

Say that a term-in-context Δ � t has garbage when:

– for some subterm t′[a �→ u] it is the case that Δ � a#t′, or
– for some subterm of the form π ·X and some a ∈ π ·X , it is the case that

both Δ � a#X and Δ � π(a)#X hold.

Otherwise say Δ � t has no garbage.

Example 5.4. Terms in the top line have no garbage, the others do:

� var(a)[a �→X] � X[a �→Y ] a#X � (a b)·X
� var(a)[b �→X] a#X � X[a �→Y ] a, b#X � (a b)·X a, b#X � ((a b)·X)[c�→var(c′)].

Alas the rewrite rule (Rsub) in SUBfr may introduce garbage (the innermost
[b �→ Y ] acting on X). Alas also, α-equivalence (provable equality in CORE) may
introduce garbage, for example a, b#X �CORE (a b) ·X = X .7

Say that Δ � t is a SUBfr-normal form when Δ �SUBe t = t′ for all t′ with
t →Δ t′. So a SUBfr-normal form may still rewrite with a rule from SUBfr ((R#)
and (Rsub) to be precise) but that rewrite just has no effect up to provable
equality in SUBe.

Lemma 5.5 (Garbage collection). For any Δ � t there is some t′ a SUBfr-
normal form with no garbage such that t →∗

Δ
t′. Furthermore, if Δ �SUBe t = u

is derivable then there is some SUBfr-normal form v with no garbage such that
t →∗

Δ
v and u →∗

Δ
v.

5.3 Confluence

A standard way to prove confluence is to prove local confluence and strong nor-
malisation. But SUBfr is not strongly normalising, see the example of Sect. 5.1.
The interest of this proof is that we use SUBe to ‘cancel that out’.

Lemma 5.6. Rewrites of Δ � t in the nominal rewrite system SUBfr are locally
confluent in a context with sufficient freshnesses, up to provable equivalence in
CORE.
7 This is one reason SUB is a difficult beast to handle, and it took us quite a while

to decide to split it up as a rewrite system over a provable equality, and then which
provable equality to use.



206 M.J. Gabbay and A. Mathijssen

(Recall that the restriction on contexts is not a ‘real’ one, because we have (fr).)

Theorem 5.7. SUBfr is confluent in a context with sufficient freshnesses.

Proof. SUBfr is strongly normalising up to provable equality in SUBe by The-
orem 5.3. It is locally confluent (in a context with sufficient freshnesses) by
Lemma 5.6. By Newman’s Lemma [11] it is confluent up to provable equality in
SUBe. Finally, we use the second part of Lemma 5.5. 
	
From this follow:

Theorem 5.8. SUB is conservative over CORE. That is, Δ �SUB t = u if and
only if Δ �CORE t = u, assuming that neither t nor u mention explicit substitution.

Corollary 5.9 (Consistency). For all Δ there are t, u such that Δ ��SUB t = u.

6 Ground Terms

Call terms g and h ground terms when they do not mention unknowns or
explicit substitutions. These are inductively characterised by

g ::= a | f(g, . . . , g) | [a]g

where f ranges over all term-formers except for sub.
We consider the meaning of explicit substitution on ground terms (mak-

ing a connection between [a �→ t] and actual capture-avoiding substitution on
syntax).

Define a ‘free atoms of’ function fa(g) on ground terms inductively as follows:

fa(a) = {a} fa(f(g1, . . . , gn)) =
1≤i≤n

fa(gi) fa([a]g) = fa(g) \ {a}

Define the support of g by supp(g) = {a | �� a#g}.
Lemma 6.1. fa(g) = supp(g).
For each finite set of atoms arbitrarily choose some canonical ‘fresh’ atom not
in that finite set. Then define a ground substitution action g[h/a] on ground
terms of sort T and [A]T by

var(b)[h/a] ≡ var(b) var(a)[h/a] ≡ h f(g1, . . . , gn)[h/a] ≡ f(g1[h/a], . . . , gn[h/a])

([a]g)[h/a] ≡ [a]g ([b]g)[h/a] ≡ [b](g[h/a]) (b 	∈ fa(h))

([b]g)[h/a] ≡ [c](g[var(c)/b][h/a]) (b ∈ fa(h), c fresh),

where f ranges over all term-formers excluding var (and sub of course), and ‘c
fresh’ means c is fresh for {a, b}∪ fa(g)∪ fa(h) according to our arbitrary choice.

Theorem 6.2. �SUB g[h/a] = g[a �→ h] is always derivable.

Proof. By straightforward induction on the structure of g, using Lemma 6.1. 
	
Define an α-equivalence relation g =α h inductively by:

a=αa
g1=αh1 · · · gn=αhn

f(g1, . . . , gn)=αf(h1, . . . , hn)

g=αh

[a]g=α[a]h

g[var(c)/a]=αh[var(c)/b]

[a]g=α[b]h
(c fresh)
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Here ‘c fresh’ means c fresh for {a, b} ∪ fa(g) ∪ fa(h).

Theorem 6.3. g =α h if and only if �SUB g = h is derivable.

Proof. By Theorem 5.8 �SUB g = h is equivalent to �CORE g = h. By results about
nominal terms [2, 3] this happens precisely when g =α h. 
	

So intuitively: On ground terms �SUB g = h is α-equivalence and explicit substi-
tution is capture-avoiding substitution.

7 ω-Completeness

How do we know that SUB really is an axiomatisation of substitution? We now
give a soundness and completeness result. ω-completeness (notation from [12])
is ‘soundness and completeness with respect to the closed term model’.

We need a number of technical definitions and lemmas.

7.1 Meta-level Substitution

Call a substitution σ a finitely supported function from unknowns to terms of
the same sort. Here, finite support means that σ(X) ≡ Id ·X for all but finitely
many unknowns X , i.e. for ‘most’ X .

Write [t/X ] for σ defined by σ(X) ≡ t and σ(Y ) ≡ Id · Y , for all Y �≡ X .
Let tσ (‘σ applied to t’) be inductively defined by:

aσ ≡ a (π ·X)σ ≡ π · σ(X) ([a]t)σ ≡ [a](tσ) f(t1, . . . , tn)σ ≡ f(t1σ, . . . , tnσ)

We may call tσ an instance of t. The substitution action extends to freshness
assertions, equalities, and so on. We extend notations and terminologies silently.
Note that this does not avoid capture; ([a]X)[a/X ] ≡ [a]a and in this formal
sense X is ‘meta’ and really does represent an unknown term.

Call σ nontrivial on X when σ(X) �≡ Id ·X . By assumption σ is nontrivial
for only finitely many unknowns. Say that σ′ extends σ when σ′(X) ≡ σ(X)
whenever σ is nontrivial on X . Call σ closing for some collection of freshness
and equality assertions S when σ(X) is a closed term for every X ∈ S. We will
not mention S when it is clear from the context.

Say a closing σ is Δ-consistent when � a#σ(X) for all a#X ∈ Δ.

Lemma 7.1. Fix Δ, X, and closed term v. If � a#v for every a#X ∈ Δ then
there is a Δ-consistent closing σ which extends [v/X ].

7.2 Suspended Explicit Substitutions

Suppose a term-in-context Δ � t ≡ (π · t′)[a1 �→ t1] . . . [am �→ tm] is such that
Δ � ai#tj for all 1 ≤ i, j ≤ m. Here m may equal 0, in which case t ≡ (π · t′).

Then call the partial syntax (π · -)[a1 �→ t1] . . . [am �→ tm] a suspended
substitution; we generally let α and β vary over suspended substitutions. β
will typically be (π′ · -)[b1 �→ u1] . . . [bn �→ un]. Suspended substitutions have a
natural action on terms t′α given by replacing - by t′.
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Lemma 7.2. Assuming sufficient freshnesses, if Δ � t is a SUBfr-normal form
with no garbage then every explicit substitution t mentions is in a subterm u
such that Δ �CORE u = Xα and Δ � Xα has no garbage.

Proof. Otherwise there is a rewrite such that Δ � t → t′ where Δ ��SUBe t = t′. 
	

Lemma 7.3. Suppose t and u are SUBfr-normal forms with no garbage. Then
Δ �SUBe t = u precisely when one of the following hold:

1. t ≡ a and u ≡ a.
2. t ≡ π ·X and u ≡ π ·X.
3. t ≡ [a]t′ and u ≡ [a]u′ and Δ �SUBe t′ = u′.
4. t ≡ [a]t′ and u ≡ [b]u′ and Δ �SUBe (b a) · t′ = u′ and Δ � b#t′.
5. t ≡ f(t1, . . . , tn) and u ≡ f(u1, . . . , un) and Δ �SUBe ti = ui for 1 ≤ i ≤ n

(f �= sub).
6. t ≡ t′α and u ≡ u′β and m = n > 0 and Δ �SUBe t′ = u′, and for every i there

is a unique j such that π-1(ai) = π′-1(bj) and Δ �SUBe ti = uj — and similarly
for every j.

Theorem 7.4. Equality in SUB is decidable.

Proof. Given Δ, t and u, we can calculate whether Δ �SUB t = u is derivable:

1. Rewrite t and u to SUBfr-normal forms t′ and u′, using Theorem 5.3.
2. Remove garbage from t′ and u′, using Lemma 5.5.
3. Check if the top-level term-formers of t′ and u′ satisfy the criteria stated

in Lemma 7.3; for each of the new proof obligations Δ �SUBe t′′ = u′′ go to
step 2.8

4. If all criteria checks were successful, return true; otherwise false. 
	

7.3 ω-Completeness

ω-completeness is soundness and completeness with respect to a model made
out of closed terms (terms which do not mention unknowns X); since syn-
tax is the canonical example on which substitution is defined, soundness and
completeness with respect to this model is a powerful argument that in the-
ory SUB, we got it right. An NA judgement Δ �SUB t = u has the flavour of
a universal quantification over the unknowns it mentions. Soundness for the
closed terms model means: if Δ �SUB t = u is derivable then all instances of
this equality (subject to Δ) on closed terms are derivable. Much harder to
prove is that furthermore if all instances are derivable (subject to Δ), then
so is Δ �SUB t = u.

Call SUB ω-complete when if �SUB tσ = uσ is derivable for all Δ-consistent
closing substitutions σ (for Δ, t and u), then Δ �SUB t = u is derivable.

8 Garbage could be introduced by case 4 of Lemma 7.3, so we must remove it.
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Theorem 7.5. SUB is ω-complete.

Proof. By contraposition. Suppose not Δ �SUB t = u. We construct Δ-consistent
σ such that not �SUB tσ = uσ. It suffices to do this for some Δ′ which freshly
extends Δ; for convenience assume Δ = Δ′. By the first part of Lemma 5.5 and
by Lemma 5.1 we may suppose t and u are SUBfr-normal forms with no garbage.
By Lemma 7.2 further assume they have the particular form mentioned in that
result. By Lemma 5.2 also Δ �SUBe t = u is not derivable. So now we must prove(

Δ ��SUBe t = u
)

implies
(
∃σ closing and Δ-consistent. ��SUB tσ = uσ

)
,

where t and u have the structure as described above.
We work by induction on the size of t and u. We proceed by case distinction

(we omit routine cases, and calculations concerning size):

– t ≡ a and u ≡ b. By Theorem 6.3.
– t ≡ f(t1, . . . , tm) and u ≡ g(u1, . . . , un) (f, g �= sub). Apply any closing Δ-

consistent σ (easy to manufacture), use Theorem 6.2 to remove all explicit
substitutions, and then use Theorem 6.3 to conclude ��SUB tσ = uσ.

– t ≡ f(t1, . . . , tm) and u ≡ f(u1, . . . , um) (f �= sub). By part 5 of Lemma 7.3
Δ ��SUBe ti = ui for some i. We use the inductive hypothesis and Theorems 6.2
and 6.3.

– t ≡ [a]t′ and u ≡ [b]u′. Using Lemma 7.3 Δ ��SUBe (b a) · t′ = u′ or Δ �� b#t′.
If Δ �� b#t′, then choose appropriate σ and use Theorems 6.2 and 6.3. If
Δ ��SUBe (b a) · t′ = u′ then we can remove possible garbage from (b a) · t′
without increasing size, apply the inductive hypothesis, and finally use The-
orems 6.2 and 6.3.

– t ≡ Xα and u ≡ Xβ and m = n > 0. Using Lemma 7.3 and notation from
that result, Δ �SUBe t = u precisely when Δ �SUBe ti = uj for every i, j such
that π-1(ai) = π′-1(bj). So suppose i and j are such that Δ ��SUBe ti = uj.
Now using pair, var, and binder, generate v such that ai ∈ supp(v) and
supp(v) is otherwise fresh (thus, disjoint from atoms mentioned in t and u).
Choose Δ-consistent closing σ extending [v/X ] using Lemma 7.1. Then by
Theorems 6.2 and 6.3 we see that ��SUB tσ = uσ. 
	

8 Conclusions

Substitution underlies quantifiers in predicate logics, the λ-binder of the λ-
calculus, unification, and lots more besides. It is a central, not incidental, fea-
ture of these systems. This paper throws a new and unexpected light on this
profoundly important common denominator.

Future work on nominal techniques needs a nominal axiomatisation of sub-
stitution. This paper provides that and the work has already found application
in concurrent work; we use it to ‘power’ a nominal axiomatisation of first-order
logic [5], and we develop abstract (non-term-based) models of SUB in [4]. Such
enterprises would not be mathematically secure without Theorem 7.5 to tell us
that we got our foundations right.
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We have considered one substitution and Theorem 7.5 tells us it is capture-
avoiding substitution. We can think of other kinds of substitution, for example
context substitution which does not avoid capture; the basic principles are clear
in this paper and there are a great many possibilities for applying them elsewhere.

Note how we decompose an equational system into a rewrite system over a
simpler equational system, and we fully exploit results of nominal rewriting and
nominal algebra as well as detailed calculations on terms (such as the notion of
measure we use to prove confluence). Similar techniques may be useful for other
systems; they seemed to arise in our treatment of first-order logic [5].

We find the nominal terms treatment of binding pleasingly clean; a nominal
term such as λ[a]X or ∀[a]X corresponds exactly and syntax-for-syntax to what
we intend when we write λa.t and ∀a.φ, right down to the way in which t and φ
are instantiated. Other approaches to binding involve some degree of emulation
(index lifting in de Bruijn [13], type-raising in type-based techniques [14]). Thus
a nominal treatment of substitution is worthwhile to investigate in itself.

8.1 Related Work

Crabbé [15, 16] axiomatises substitution much like us and shares (in our termi-
nology) atoms and freshness conditions. Crabbé does not treat binding.9 So our
substitution is capture-avoiding. Also, for us atoms and freshness side-conditions
are parts of a broader nominal framework whereas Crabbé expresses them in
first-order logic; we feel that nominal techniques have given us a cleaner separa-
tion of the layers of complexity hidden in these deceptively simple ideas.

Feldman [17] gives an algebraic axiomatisation inspired by a concrete model
of functions/evaluations. His axioms are closer in spirit to Cylindric Algebras
[1] and Lambda Abstraction Algebras [18, 19]. The three approaches share an
infinity of term-formers which are ‘morally’ precisely λ[a], -[a �→ -], and ∃[a]. We
see the advantage of our treatment as systematising and formalising precisely
what rôle the atoms really have. In any case the approaches above cannot directly
express (ren�→), (#�→), and (abs �→), even though instantiations are derivable
for closed terms by calculations parametric over their specific structure.

Combinatory Algebra (CA) [20] and related systems implement substitution
by ‘pipes’ (e.g. the translation of λ-terms into CA [20]). General truths such as
(#�→) are only provable for fixed closed terms by calculations parametric over
its specific structure.

Lescanne’s classic survey [13] and the thesis of Bloo [21] chart a vast litera-
ture on λ-calculi with explicit substitutions. These decompose β-reduction as a
rule to introduce explicit substitution ( (λa.u)t → u[a �→ t] ), and explicit rules
for that substitution’s subsequent behaviour (which is to substitute, of course).
These calculi are designed to measure the cost of a β-reduction (in an imple-
mentation, which may be based on de Bruijn indexes [22] or on named variable
9 He declares as much: ‘. . . we are not concerned with the notion of bound variable’ [16,

page 2]. See also the axioms (there is no (abs �→)) and the soundness and complete-
ness result — Crabbé’s model is based on (in our notation) var and pair, whereas we
consider a model based on var, pair, binder, and sub.
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symbols). They do not axiomatise substitution, they implement it. For example,
‘confluence’ is a typical correctness criterion for a calculus, and ‘ω-completeness’
is not.

8.2 Future Work

Nominal unification [2] is ‘merely’ unification of nominal terms up to CORE. Our
confluence results are a step towards unification up to SUB. Nominal Unification
is to be compared (in a sense we do not discuss here) with higher-order patterns
[23]; we now suggest that unification up to SUB is to be compared with higher-
order unification [24] — with the difference that SUB is weaker, because there
is no λ and application, only their combination as ‘substitution’.

There is no obstacle to taking SUB over itself — that is, to taking what
we write in this paper as, say, (X [a �→ Y ])[t/X ] and expressing it in a stronger
axiom system as (X [a �→ Y ])[X �→ T ] where T is a ‘stronger’ meta-variable. This
relates to the NEW calculus of contexts [25] and hierarchical nominal rewriting
[26] investigated by the first author, but much more is possible and there are
many substitutions out there which we could axiomatise.

Armed with SUB and the knowledge that it is correct in the sense of The-
orem 7.5 we hope to develop logics and λ-calculi with a fundamentally new,
beautiful, and mathematically advantageous, way of treating substitution and
more generally internalising the meta-level.
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Abstract. Given a class C of codes. A regular code in C is called prime
if it cannot be decomposed as a catenation of at least two non-trivial
regular codes in C. The prime decomposition problem for the class C of
codes consists in decomposing regular codes in C into prime factors in C.
In this paper, a general approach to this problem is proposed, by means
of which solutions for the prime decomposition problem are obtained, in
a unified way, for several classes of codes. These classes are all subclasses
of prefix codes and can be defined by binary relations.

Keywords: Code, invariant relation, prime decomposition problem.

1 Introduction

Throughout the paper about codes we mean length-variable codes whose theory
has been initiated by M. P. Schützenberger and then developed by many others.
Codes are closely related to formal languages. A code is a language such that
every text encoded by words of the language can be decoded in a unique way
or, in other words, every encoded message admits only one factorization into
code-words. For background of the theory of codes we refer to [1,12,15].

Codes are useful in many areas of application such as information processing,
data compression, cryptography, information transmission and so on (see [12]).
A prefix code (suffix code) is a language such that no word is a prefix (suffix,
resp.) of another word in it. Prefix codes and suffix codes play a fundamental role
in the theory of codes as well as in applications. They are classified by means of
different relations on code-words such as being prefix (suffix, infix, outfix, ...) of
each other. These relations define different classes of prefix codes (suffix codes),
such as those of bifix codes [1], infix codes, outfix codes [10,11], hypercodes [15],
subinfix codes [6,7], supercodes [16] and so on.

A. Mateescu, A. Salomaa, and S. Yu [13,14] examined prime decompositions
for regular languages and showed that it is decidable whether or not a given
regular language has a decomposition and that, in general, the prime decom-
position is not unique. J. Czyzowicz et al. [2] studied the prime decomposition
problem for the class of prefix codes and proved that the prime decomposition
of a regular prefix code is unique. They also demonstrated the importance of
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the prime decomposition for prefix codes in practice. Recently, Y. -S. Han et
al. [3] examined the prime decomposition problem for regular infix codes and
showed that the prime decomposition in this case is not unique. An algorithm
for testing the primality of regular infix codes was designed. Also, it was shown
that the prime decomposition can be computed in polynomial time. Then, in [4]
these authors demonstrated the uniqueness of the prime decomposition for reg-
ular outfix codes. A linear-time algorithm to compute the prime decomposition
for regular outfix codes was designed.

In this paper, a general approach to the prime decomposition problem is
proposed. As applications, solutions for the prime decomposition problem are
obtained, in a unified way, for several classes of codes. These classes are all
subclasses of prefix codes and can be defined by binary relations. In Section
2 necessary definitions are recalled, and several facts useful in the sequel are
shown. Section 3 presents a general approach to the prime decomposition prob-
lem which consists of several general prime decomposition theorems (Theorems
1-3). This is based mainly on the notion of (strong) bridge states in the mini-
mal finite-state automata recognizing codes. In Section 4 the general approach
is used to consider the prime decomposition problem for several classes of codes,
namely those of bifix codes, infix codes, subinfix codes, outfix codes, hypercodes,
supercodes and uniform codes. We show that the minimal finite-state automaton
recognizing a code in each of these classes of codes has k strong bridge states if
and only if the code can be decomposed uniquely into k + 1 prime factors in the
corresponding class of codes (Theorem 6). Moreover, for regular outfix codes,
hypercodes, supercodes and uniform codes, the primality can be tested and the
unique prime decomposition can be computed in O(μ) time, where μ is the size
of the minimal finite-state automaton recognizing the corresponding code (The-
orem 7). For regular bifix codes it takes O(m3), where m is the number of states
(Theorem 8). Note that, the prime decomposition problem for finite codes is not
trivial at all because the primality test for finite languages is believed to be NP-
complete [14]. Our work is motivated by the idea to define codes as independent
sets with respect to a binary relation [10,15], and the way to solve the prime
decomposition problem for regular infix codes [3] and regular outfix codes [4].

2 Preliminaries

Let A throughout be a finite alphabet and A∗ the set of all the words over A.
The empty word is denoted by 1 and A+ stands for A∗ − {1}. The number of
all the occurrences of letters in a word u is the length of u, denoted by |u|. Any
subset of A∗ is a language over A. A language X is a code if for any n, m ≥ 1
and any x1, . . . , xn, y1, . . . , ym ∈ X, the condition

x1x2 . . . xn = y1y2 . . . ym

implies n = m and xi = yi for i = 1, . . . , n. Since 1.1 = 1, a code never contains
the empty word 1. It is clear that, the empty set is a code and called a trivial
code.



Prime Decomposition Problem for Several Kinds of Regular Codes 215

Given a binary relation ≺ on A∗. A subset X in A∗ is an independent set
with respect to the relation ≺ if any two elements of X are not in this relation.
A class C of codes is said to be defined by ≺ if these codes are exactly the
independent sets w.r.t. ≺. The class C is then denoted by C≺. When the relation
≺ characterizes some property α of words, instead of ≺ we write ≺α, and also
Cα stands for C≺α . We denote by � the reflexive closure of ≺, i.e. for any
u, v ∈ A∗, u � v iff u = v or u ≺ v.

A word u is called an infix (a prefix, a suffix) of a word v if there exist words
x, y such that v = xuy (v = uy, v = xu, resp.). The infix (prefix, suffix) is proper
if xy �= 1 (y �= 1, x �= 1, resp.). A word u is called an outfix of a word v if
there exists word x such that u = u1u2 and v = u1xu2. If x �= 1 then u is a
proper outfix of v. A word u is a subword of a word v if, for some n ≥ 1, u =
u1 . . . un, v = x0u1x1 . . . unxn with u1, . . . , un, x0, . . . , xn ∈ A∗. If x0 . . . xn �= 1
then u is called a proper subword of v. A word u is called a permutation of a
word v if |u|a = |v|a for all a ∈ A, where |u|a denotes the number of occurrences
of the letter a in u.

Definition 1. Let A be an alphabet and X ⊆ A+.

(i) X is a prefix code (suffix code) if no word in X is a proper prefix (proper
suffix, resp.) of another word in X;

(ii) X is a bifix code if it is both a prefix code and a suffix code;
(iii) X is an infix code if no word in X is a proper infix of another word in X;
(iv) X is an outfix code if no word in X is a proper outfix of another word in X;
(v) X is a hypercode if no word in X is a proper subword of another word in X;
(vi) X is a subinfix code if no word in X is a subword of a proper infix of

another word in X;
(vii) X is a supercode if no word in X is a proper subword of a permutation of

another word in X;
(viii) X is a uniform code if it consists of elements of equal length.

The classes of prefix codes, suffix codes, bifix codes, infix codes, outfix codes,
hypercodes, subinfix codes, supercodes and uniform codes are denoted respec-
tively by Cp, Cs, Cb, Ci, Co, Ch, Csi, Csp and Cu. It is easy to see that these
classes of codes are defined respectively by the relations which satisfy, for any
u, v ∈ A∗, the following corresponding conditions:

u ≺p v ⇔ v = ux, with x �= 1;
u ≺s v ⇔ v = xu, with x �= 1;
u ≺b v ⇔ (u ≺p v) ∨ (u ≺s v);
u ≺i v ⇔ v = xuy, with xy �= 1;
u ≺o v ⇔ u = u1u2, v = u1xu2, with x �= 1;
u ≺h v ⇔ ∃n ≥ 1 : u = u1 . . . un ∧ v = x0u1x1 . . . unxn, with x0 . . . xn �= 1;
u ≺si v ⇔ ∃w ∈ A∗ : w ≺i v ∧ u �h w;
u ≺sp v ⇔ ∃v′ ∈ π(v) : u ≺h v′;
u ≺u v ⇔ |u| < |v|;

where π(v) is the set of all permutations of v.
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Prefix codes, suffix codes and bifix codes play a fundamental role in the theory
of codes (see [1,15]). For details about infix codes and outfix codes we refer to
[10,15]. Hypercodes, a special kind of infix codes, have some interesting proper-
ties, especially, all hypercodes are finite (see [15]). Subinfix codes and supercodes
were introduced and considered in [5,6,7,8,16,17,18] (see also [19]).

Now we formulate, in the form of lemmas, several facts which will be useful
in the sequel.

Lemma 1 ([1,7,10]). The classes Cb of bifix codes, Ci of infix codes and Csi

of subinfix codes are closed under catenation.

A finite automaton A is specified by a tuple (Q, A, δ, s, F ), where Q is a finite
set of states, A is an input alphabet, δ ⊆ Q×A×Q is a (finite) set of transitions,
s ∈ Q is the start state and F ⊆ Q is a set of final states. Let |Q| denote the
number of states and |δ| the number of transitions in of A. Then, the size |A| of
A is defined as |Q|+ |δ|. If t = (p, a, q) is a transition, where p, q ∈ Q and a ∈ A,
then we say that t is an out-transition of p and an in-transition of q. Also, p is
called a source state of q and q a target state of p. Instead of writing (p, a, q) ∈ δ,
we often write also δ(p, a) = q. Then δ is extended to a mapping from Q × A∗

to Q in a normal way. A word w over A is accepted by A if there is a labeled
path from s to a state in F , called a successful path in A, which spells out the
word w. Thus, the language recognized by A, denoted by L(A), is the set of the
labels of all the successful paths in A. The languages recognized by finite-state
automata are called regular languages.

Lemma 2. Given prefix (suffix) codes L, L1, L2, . . . , Lk, k ≥ 2, such that
L = L1.L2. . . . .Lk. Then L is regular iff so are L1, L2, . . . , Lk.

Proof. It is easily proved for k = 2 (see for example [2]). With the remark that
the class Cp (Cs, resp.) is closed under catenation, the assertion can be proved
easily by induction. 
	

We say that the automaton A is non-returning if the start state of A has no any
in-transitions, and that A is non-exiting if no final state of A has out-transitions.
Clearly, if A is non-exiting then we may always assume that A has only one final
state. Moreover, we always assume that A has only useful states, that is each
state of A must appears on at least one successful path in A. In this paper,
we restrict ourselves to consider only deterministic finite automata, which are
non-returning and non-exiting, denoted by N-DFAs, for short.

Lemma 3. For every regular code in Cb there exists an N-DFA recognizing L.

Proof. Suppose L is a regular code in Cb. There is then a deterministic finite-
state automaton A recognizing L, L = L(A). It is easy to see that if the start
state of A has an in-transition then L cannot be a suffix code, and if a final
state of A has an out-transition then L cannot be a prefix code. Thus, A must
be both non-returning and non-exiting, i.e. A is an N-DFA. 
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Let A = (Q, A, δ, s, F ) be a deterministic finite-state automaton recognizing a
language L, L = L(A). Let ≡A be the equivalence relation on the states of A
such that p ≡A q iff, for any input string w, δ(p, w) is in F iff so is δ(q, w). As well
known (see [9]), A is a minimal deterministic automaton recognizing L iff, for
any two different states p, q in Q, p �≡A q. Note that the minimal deterministic
finite-state automaton recognizing a language L is unique up to an isomorphism.
Let A1 and A2 be two N-DFAs with the start states s1, s2 and the unique final
states f1, f2 respectively. The N-DFA A obtained from A1 and A2 by identifying
f1 with s2 is called the composition of A1 and A2 and denoted by A1 ◦A2. Note
that the composition operation is associative.

Lemma 4. If A1,A2, . . . ,Ak, k ≥ 2, are minimal N-DFAs recognizing the bifix
codes L1, L2, . . . , Lk, respectively, then A = A1 ◦ A2 ◦ · · · ◦ Ak is a minimal
N-DFA recognizing the bifix code L = L1.L2 . . . Lk.

Proof. Because the class of bifix codes is closed under catenation, it suffices
to prove for k = 2. Let A1 = (Q1, A, δ1, s1, f1), A2 = (Q2, A, δ2, s2, f2), and
A = A1 ◦A2. Thus, A = (Q = Q1∪Q2, A, δ, s1, f2), where δ coincides with δ1 on
Q1 and with δ2 on Q2. Let denote by r the state of A which is f1 identified with
s2. Clearly, A is an N-DFA recognizing L = L1.L2. We prove that A is minimal
among such automata. It suffices to prove that for any p, q ∈ Q, p �= q, p �≡A q.
We consider separately three possible cases.

Case 1: p, q ∈ Q1. The minimality of A1 implies p �≡A1 q. There exists a word
w1 in A∗ such that one and only one among δ1(p, w1) and δ1(q, w1) is equal to
r, say δ1(p, w1) = p′ �= r with p′ ∈ Q1, and δ1(q, w1) = r. Choose a word w2
such that δ2(r, w2) = f2. Putting w = w1w2 we have δ(q, w) = δ(q, w1w2) =
δ2(δ1(q, w1), w2) = δ2(r, w2) = f2. Assume δ(p, w) = f2 too, we have δ(p, w) =
δ(δ1(p, w1), w2) = δ(p′, w2) = f2. It follows that w2 = w′

2w
′′
2 with w′

2 �= 1 such
that δ(p′, w′

2) = r and δ(r, w′′
2 ) = f2. Thus δ2(r, w2) = δ2(r, w′′

2 ) = f2, i.e.
w2, w

′′
2 ∈ L2, which is impossible because L2 is bifix. So we have δ(p, w) �= f2

whereas δ(q, w) = f2, which means p �≡A q.
Case 2: p, q ∈ Q2. By the minimality of A2, there must exist a word w in

A∗ such that one and only one among δ2(p, w) and δ2(q, w) is equal to f2. This
implies evidently that one and only one among δ(p, w) and δ(q, w) is equal to
f2. Thus we have again p �≡A p.

Case 3: p ∈ Q1, q ∈ Q2 with p, q �= r. If q = f2 then by taking w = 1 we
have δ(p, w) = p �= f2 whereas δ(q, w) = q = f2, which implies p �≡A q. Suppose
q �= f2. There must exist a word v �= 1 such that δ2(q, v) = f2. Choose a word u
such that δ2(r, u) = q. Put w = uv, we have δ(r, w) = δ2(r, w) = δ2(δ2(r, u), v) =
δ2(q, v) = f2. It follows w ∈ L2. Assume that δ(p, v) = f2 too. There must exist
v′, v′′ with v′ �= 1 such that v = v′v′′ and such that δ(p, v′) = r and δ(r, v′′) = f2.
This implies δ2(r, v′′) = f2, i.e. v′′ ∈ L2. Thus we have w, v′′ ∈ L2 with v′′ is a
proper suffix of w, a contradiction. Thus δ(p, v) �= f2 whereas δ(q, v) = f2, which
imply p �≡A q.

So, in all the cases we have proved that whenever p �= q, p �≡A q. By this the
minimality of A is confirmed. 
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3 General Prime Decomposition Theorems

In this section we present several general prime decomposition theorems. For
this we need some more definitions and notations.

Definition 2. Given a class C of codes. A regular code L in C is prime in C if
L cannot be decomposed into at least two non-trivial regular codes in C. Clearly,
if C is closed under catenation then L is prime iff it cannot be decomposed into
two non-trivial regular codes in C.

Definition 3. A state b in an N-DFA A is called a bridge state of A if hold
the following conditions:

(i) The state b is neither the start state nor a final state;
(ii) Every successful path in A must pass through b;
(iii) The state b does not belong to any cycle in A.

Thus, if b is a bridge state in the N-DFA A, then we can partition A into two
subautomata A1 and A2 such that A1 consists of all the states incomming to b,
b including, and A2 consists of all the states outgoing from b, b including. Such
a partition, denoted by (A1,A2)b or simply (A1,A2) when there is no confusion,
is called the partition of A at the bridge state b. The subautomata A1 and A2
are called components of the partition.

Definition 4. Let C be a class of bifix codes, let A be an N-DFA recognizing
a code in C. Let b be a bridge state of A and (A1,A2) be the partition of A at
b. The bridge state b is called a strong bridge state of A w.r.t. C (or simply a
strong bridge state of A, if no any confusion may arise) if L(A1), L(A2) ∈ C.

Clearly, if (A1,A2) is the partition of an N-DFA A at a bridge state then, by (ii)
in Definition 3, we have L(A) = L(A1).L(A2). If moreover L(A) is in a class C
of codes and b is a strong bridge state of A w.r.t. C then L(A1).L(A2) becomes
a decomposition of L(A) into regular codes in C.

Lemma 5. Let C be a class of bifix codes which is closed under catenation. Let
A be a minimal N-DFA recognizing a regular code in C. Let j be a strong bridge
state of A w.r.t. C. Let (A1,A2) be the partition of A at j. Then, if i is a state
of A not being a strong bridge state of A, then i cannot be a strong bridge state
of any among A1 and A2.

Proof. Suppose that i is not a strong bridge state of A but it becomes a strong
bridge state of one of the components of the given partition (A1,A2), say A1
(see Fig. 1). We may assume that i is a bridge state of A, otherwise, as easily
verified, it cannot be a bridge state of A1 neither, and therefore cannot be a
strong bridge state of A1.

Let L′
j .L

′′
j be the decomposition of L(A) corresponding to the partition ofA at

the state j, and L′
i.L

′′
i the decomposition of L(A1) corresponding to the partition

of A1 at i. Then, we have L′
j , L

′′
j , L′

i, L
′′
i ∈ C because j and i are strong bridge

states of A and A1, respectively. From L′′
i ∈ C and L′′

j ∈ C it follow L′′
i .L′′

j ∈ C
since the class C is closed under catenation. Therefore, L(A) = L′

i.L
′′
i .L′′

j , which
means that i is also a strong bridge state of A, a contradiction. 
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��
��

s ��
��

i ��
��

j ��
��

f� � �

|— L′
i —| |— L′′

i —|

|———— L′
j ————| |— L′′

j —|

Fig. 1. Decomposing A at j and A1 at i

Lemma 6. Let L be a regular code in a class C of bifix codes, and let A be a
minimal N-DFA A recognizing L. Then,

(i) If L is prime then A has no any strong bridge state;
(ii) If A has no strong bridge states then L is prime.

Proof. (i) Let denote by s and f the start state and the final state in A, respec-
tively. Suppose L is prime in C but A has a strong bridge state q. Let (A1,A2) be
the partition of A at q. Then, A1 has s as the start state and q as its unique final
state while A2 has q as the start state and f as its unique final state. Therefore,
L = L(A1).L(A2) with L(A1), L(A2) ∈ C, which contradicts the primality of L.
Thus A must have no any strong bridge state.

(ii) Suppose the contrary that L is not prime. Then, L = L1.L2 . . . Lk with
k ≥ 2, where L1, L2, . . . , Lk are non-trivial codes in C which are all bifix.
Moreover, because L is regular, by Lemma 2, L1, L2, . . . , Lk are all regular bifix
codes. Hence, by Lemma 3, L1, L2, . . . , Lk can be recognized by N-DFAs. Let
A1,A2, . . . ,Ak be minimal N-DFAs recognizing L1, L2, . . . , Lk, respectively. By
Lemma 4, A′ = A1 ◦A2◦· · ·◦Ak is a minimal N-DFA recognizing L1.L2 . . . Lk =
L. Thus A′ is isomorphic to A. But A′ has strong bridge states, namely the final
states of A1,A2, . . . ,Ak−1, a contradiction. So L must be prime. 
	

Theorem 1. Let C be a subclass of Cb which is closed under catenation. Let
A be a minimal N-DFA recognizing a regular code L in C. If A has k strong
bridge states, k ≥ 1, then L can be decomposed into t prime regular codes in C,
L = L1.L2 . . . Lt, with t ≤ k + 1. Conversely, if L can be decomposed into k + 1
prime regular codes in C, k ≥ 1, then A has k strong bridge states.

Proof. Consider a successful path p in A. By (ii) of Definition 3, all the strong
bridge states of A must appear on p. Let denote by b1, b2, . . . , bk all these strong
bridge states in the order we meet them on p when going from the starting
state to the final state of A. Note that, by (iii) of Definition 3, this order does
not depend on the choice of p. Now we prove the assertion of the theorem by
induction on k. With k = 1 we consider the partition (A1,A2) of A at b1.
We have L = L(A) = L(A1).L(A2). By the definition of strong bridge states,
L(A1) and L(A2) are regular codes in C. By Lemma 5, A1 and A2 have no any
strong bridge states. Therefore, by Lemma 6, L1 = L(A1) and L2 = L(A2) are
both prime, and hence L1.L2 is a prime decomposition of L, L = L1.L2, where
t = 2 = k + 1. Suppose now k > 1 and that the assertion is already true for all
k′ < k. Let (A1,A2) be the partition of A at b1. We have L = L(A1).L(A2). By
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Lemma 5, A1 has no strong bridge states. Therefore, by Lemma 6, L1 = L(A1)
is prime. Again by Lemma 5, all the strong bridge states of A2 must be among
b2, . . . , bk, whose number is k − 1 < k. By the induction hypothesis, L(A2)
can be decomposed into t′ prime regular codes in C, L(A2) = L2 . . . Lt′+1, with
t′ ≤ k−1+1 = k. Put t = t′+1 we obtain L = L1.L2 . . . Lt, with t = t′+1 ≤ k+1,
where all Li, 1 ≤ i ≤ t, are prime regular codes in C. The rest of the proof is
immediate from Lemma 4. 
	

Definition 5. A binary relation ≺ on A∗ is called invariant if, for any u, v ∈
A∗, u ≺ v implies either uw ≺ vw or wu ≺ wv each w �= 1. Especially, if it
implies both uw ≺ vw and wu ≺ wv instead, for all w �= 1, then the relation ≺
is called strictly invariant.

Lemma 7. Let ≺ be an invariant binary relation on A∗ which defines a class
C≺ of bifix codes. Let A be a minimal N-DFA recognizing a regular code in C≺
which has strong bridge states. Let j be an arbitrary strong bridge state of A.
Then, every strong bridge state i of A, i �= j, must be a strong bridge state of
one of the components of the partition of A at j.

Proof. Let (A1,A2) be the partition of A at j. The state i must be in one and
only one of the components of this partition, say A1. Assume that i is not a
strong bridge state of A1 (see Fig. 2). By the definition of strong bridge states,
we have L′

i, L
′′
i , L′

j, L
′′
j ∈ C≺. Evidently, i must be a bridge state of A1. Since i

is not a strong bridge state in A1, it follows that Lij /∈ C≺. Then, there exist
two words u, v ∈ Lij such that u ≺ v. Since the relation ≺ is invariant, either
uw ≺ vw or wu ≺ wv, for any w �= 1. For the first case, choosing w as a word
in L′′

j , we have uw ≺ vw with uw, vw ∈ L′′
i , which contradicts the fact that

L′′
i ∈ C≺. Similarly, for the second case, taking w as a word in L′

i, we have
wu ≺ wv with wu, wv ∈ L′

j, again a contradiction. Thus, i must be a strong
bridge state of A1. For the case when i is in A2 the argument is similar. 
	

��
��

s ��
��

i ��
��

j ��
��

f� � �

|— L′
i —| |———— L′′

i ————|
|— Lij —|

|———— L′
j ————| |— L′′

j —|

Fig. 2. Decompositions of L(A) corresponding to the strong bridge states i and j

Theorem 2. Let ≺ be an invariant binary relation on A∗ which defines a class
C≺ of codes. Let C≺ be a subclass of Cb which is closed under catenation. Let
A be a minimal N-DFA recognizing a regular code L in C≺. Then A has exactly
k strong bridge states, k ≥ 1, if and only if L can be decomposed uniquely into
k + 1 prime factors, namely, L = L1.L2 . . . Lk+1 where L1, L2, . . . , Lk+1 are all
prime regular codes in C≺.
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Proof. Let b1, b2, . . . , bk be the strong bridge states of A ordered as in the proof
of Theorem 1. We prove the existence of a prime decomposition by induction
on k. It is sufficient to show that L(A) = L′.L′′ such that L′ is accepted by an
N-DFA A′ with k−1 strong bridge states and L′′ is a prime regular code in C≺.

Indeed, let (A′,A′′) be the partition of A at bk. By the definition of strong
bridge states, L(A′) and L(A′′) are regular codes in C≺. By Lemma 5, A′′

has no strong bridge states. Therefore, L′′ = L(A′′) is prime by Lemma 6.
Next, by Lemmas 5 and 7, A′ has exactly k − 1 strong bridge states which are
b1, b2, . . . , bk−1. Thus, by using induction hypothesis, we can conclude that L
can be decomposed into k + 1 prime regular codes in C≺.

Suppose L = L′
1.L

′
2 . . . L′

l+1 be an arbitrary prime decomposition of L. Since
L ∈ C≺ and C≺ ⊆ Cb, the languages L′

1, L
′
2, . . . , Ll+1 are all bifix codes in

C≺. By Lemma 2, they are all regular too. Let A′
1,A′

2, . . . ,A′
l+1 be minimal

N-DFAs recognizing L′
1, L

′
2, . . . , L

′
l+1, respectively. By Lemma 4, the automaton

A′ = A′
1 ◦ A′

2 ◦ · · · ◦ A′
l+1 is a minimal N-DFA recognizing L. Evidently, A′ has

exactly l strong bridge states. Let b′1, b′2, . . . , b′l be these strong bridge states in
the order we meet them on one (and therefore on any) successful path in A′.
Because A′ is isomorphic to A, we must have l = k and for any isomorphism
φ between A and A′, b′i corresponds to bi, φ(bi) = b′i, 1 ≤ i ≤ k. It follows
that for all i, 1 ≤ i ≤ k + 1, A′

i is isomorphic to Ai, where Ai is a minimal
N-DFA recognizing Li, that implies Li = L′

i. Thus, we have proved that the
prime decomposition of L is unique.

Conversely, suppose L can be decomposed uniquely into k + 1 prime regular
factors, L = L1.L2 . . . Lk+1. By Lemma 4, A = A1 ◦A2 ◦ · · · ◦Ak+1, where Ai is
the minimal N-DFA recognizing Li (i = 1, . . . , k + 1). Evidently A has k bridge
states. They are strong because C≺ is closed under catenation. The uniqueness
of the prime decomposition of L implies that A has no more than k strong bridge
states mentioned above. 
	

Lemma 8. Let ≺ be a strictly invariant binary relation on A∗ which defines
the class C≺ of bifix codes. Suppose that A is a minimal N-DFA recognizing a
regular code in C≺. Then,

(i) All bridge states in A are strong bridge states in A;
(ii) If i is not a strong bridge state in A, and j, j �= i, is a strong bridge state in

A then i cannot be a strong bridge state of any component of the partition
of A at j.

Proof. (i) Suppose that b is a bridge state in A. We prove that b must be a
strong bridge state in A. It suffices to show that L(A1) and L(A2) are in C≺,
where (A1,A2) is the partition of A at b. Clearly, we have L(A) = L(A1).L(A2).
Assume that L(A1) is not in C≺. Then, there exist two words u, v ∈ L(A1) such
that u ≺ v. Since ≺ is strictly invariant, both uw ≺ vw and wu ≺ wv hold, for
all w �= 1. Therefore, taking w as any word in L(A2), we have uw ≺ vw with
uw, vw ∈ L(A), a contradiction with L(A) ∈ C≺. Thus L(A1) must be in C≺.
A similar argument shows that L(A2) ∈ C≺.
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(ii) Let (A1,A2) be the partition of A at j. Assume that i is a strong bridge
state in a component of the partition of A at j, say A1. Clearly, i is not neither
the starting state nor the final state of A. By the definition of strong bridge
states in A1, all successful paths in A1 and therefore all the successful paths in
A must pass through i. If i is not in any cycle in A then i is a bridge state of A,
and therefore, by (i), it is also a strong bridge state of A, a contradiction. Thus
there must exist a cycle V in A containing i. Since i is a strong bridge state of
A1, the cycle V cannot belong entirely to A1. So V contains at least one state in
A2. It follows that V must contain j, which is impossible because j is a strong
bridge state of A. We conclude that i cannot be a strong bridge state of A1. For
the case when i is a strong bridge state of A2, the argument is similar. 
	

Theorem 3. Let ≺ be a strictly invariant binary relation on A∗ which defines
a class C≺ of codes, and let C≺ be a subclass of Cb. Let A be a minimal N-DFA
recognizing a regular code L in C≺. Then A has exactly k strong bridge states
w.r.t. C≺, k ≥ 1, if and only if L can be decomposed uniquely into k + 1 prime
factors, namely, L = L1.L2 . . . Lk+1 where L1, L2, . . . , Lk+1 are all prime regular
codes in C≺.

Proof. The proof is quite similar to that of Theorem 2, where Lemma 8 is used
instead of Lemma 5, and therefore we don’t need the requirement that C≺ is
closed under catenation. 
	

Now we consider how to verify the primality and how to compute a prime de-
composition. Let C be a subclass of Cb. Suppose moreover that either C is closed
under catenation or C can be defined by a strictly invariant binary relation ≺,
C = C≺. Then, by Lemma 3, every regular code L in C is recognized by a min-
imal N-DFA A, L = L(A). By Theorem 2 and Theorem 3, if A has k strong
bridge states w.r.t. C then L can be decomposed into k + 1 prime factors in C.

Given L, to verify the primality of L it suffices to verify whether A has strong
bridge states or not. If not, then L is prime and is a prime decomposition of
itself. If yes, we partition A at a strong bridge state into two subautomata A1
and A2. If both of L(A1) and L(A2) are prime then L(A1).L(A2) is a prime
decomposition of L. Otherwise, the above procedure is repeated for one among
L(A1) and L(A2) or both of them according to the case.

Let B denote the set of strong bridge states of the given minimal N-DFA A.
Clearly, the number of states in B is at most m, where m is the number of states
in A. Note that every time we partition A at a strong bridge state b ∈ B into
A1 and A2, then only states in B \ {b} can be strong bridge states of A1 and
A2 (by virtue of Lemmas 5 and 8). Therefore, we can determine the primality
of L(A) by checking whether A has strong bridge states or not and compute a
prime decomposition of L(A) using only these strong bridge states. Since there
are at most m strong bridge states in an N-DFA for a regular code in C≺, we
can obtain a prime decomposition of L(A) after a finite number times, no more
than m, of partitioning component automata at the strong bridge states in B.

The following result is due to Y. -S. Han, Y. Wang and D. Wood.
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Lemma 9 ([3]). We can compute the set of bridge states for a given N-DFA
A = (Q, A, δ, s, f) in O(|Q|+ |δ|) worst-case time using DFS (depth-first search).

Using this result we obtain the following theorem.

Theorem 4. Let ≺ be a strictly invariant binary relation on A∗ which defines
the class C≺ of codes, and let C≺ be a subclass of Cb. Let A be a minimal N-DFA
recognizing a regular code in C≺.

(i) We can determine the primality of L(A) in O(μ) time;
(ii) We can compute the unique prime decomposition of L(A) in O(μ) time if

L(A) is not prime;

where μ is the size of A.

Proof. By (i) of Lemma 8, all bridge states inA become strong bridge states inA.
Then, by Lemma 9, the set of strong bridge states in A can be computed in O(μ)
worst-case time. Therefore, if A has no strong bridge states then L(A) is prime.
Otherwise, by Theorem 3, we can compute the unique prime decomposition of
L(A) using strong bridge states in O(μ) time. 
	

4 Applications

In this section we apply the general prime decomposition theorems to solve the
prime decomposition problem for the classes of codes introduced in Sec. 2.

Firstly, note that, by Lemma 1, the class Ci of infix codes is closed under
catenation. Therefore, as an immediate consequence of Theorem 1, we obtain
again the following result the first part of which has been proved in [3].

Theorem 5 ([3]). Let A be a minimal N-DFA recognizing a regular infix code
L. If A has k strong bridge states, k ≥ 1, then L can be decomposed into t prime
regular infix codes, L = L1.L2 . . . Lt, with t ≤ k + 1. Conversely, if L can be
decomposed into k + 1 prime regular infix codes, k ≥ 1, then A has exactly k
strong bridge states.

Furthermore, we need some more lemmas.

Lemma 10. The relations ≺b and ≺si are invariant on A∗.

Proof. Let u ≺b v for some u, v ∈ A∗. Then, by the definition of ≺b, either
u ≺p v or u ≺s v. Therefore, for any w �= 1, either uw ≺s vw or wu ≺p wv. This
means either uw ≺b vw or wu ≺b wv.

Now let u ≺si v. Then ∃n ≥ 1 : u = u1 . . . un ∧ v = x0u1x1 . . . unxn, with
x0xn �= 1. It is easy to check that, for any w �= 1, either uw ≺si vw or wu ≺si wv
according as x0 �= 1 or xn �= 1. 
	

Lemma 11. The relations ≺o,≺h,≺sp and ≺u are strictly invariant on A∗.

Proof. It can be easily verified from the corresponding definitions. 
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As a consequence of Theorems 2 and 3 we have.

Theorem 6. Let A be a minimal N-DFA recognizing a regular code L in Cα,
α ∈ {b, si, o, h, sp, u}. Then, A has exactly k strong bridge states, k ≥ 1, if
and only if L can be decomposed uniquely into k + 1 prime factors, namely,
L = L1.L2 . . . Lk+1 where L1, L2, . . . , Lk+1 are all prime regular codes in Cα.

Proof. It follows immediately from Lemmas 1, 10, 11 and Theorems 2, 3. 
	

Let’s take some examples.

Example 1. Consider the language L = {aaab, ab+abab} over A = {a, b}. It easy
to see that L is both a regular infix code and a regular subinfix code.

��
��

��
��
b1 ��

��
��
��

��
��
b2 ��

��
b3 ���

��↘
�a �b �a �b �a �b

� �
�

a

	

�� b

Fig. 3. The minimal N-DFA A for L = {aaab, ab+abab}

• The minimal N-DFA A recognizing L has 3 strong bridge states w.r.t Ci

which are b1, b2 and b3 (see Fig. 3). However, if (A1,A2) is the partition of A
at b2, then b1 is no longer a strong bridge state of A1 w.r.t. Ci. Similarly, if
(A′

1,A′
2) is the partition of A at b1, then b2 is no longer a strong bridge state of

A′
2 w.r.t. Ci. Thus, by Theorem 5, L has two different prime decompositions

L = {a}.{aa, b+aba}.{b} = {aa, ab+ab}.{a}.{b}

where {a}, {b}, {aa, b+aba} and {aa, ab+ab} are prime regular infix codes.
• Considering X as a regular subinfix code, A has the only strong bridge state

w.r.t. Csi which is b3. Therefore, by Theorem 6, L can be decomposed uniquely
into two prime factors in Csi, namely

L = {aaa, ab+aba}.{b},

where {aaa, ab+aba} and {b} are prime regular subinfix codes.

Example 2. Consider the regular bifix code L={aabbaa+b+a, abaa+b+a, aabbab,
abab} over A = {a, b}. It is easy to see that the minimal N-DFA A recognizing
L has b1 and b2 as strong bridge states w.r.t. Cb and b0 as a bridge state (see
Fig. 4). Thus, by Theorem 6, L can be decomposed uniquely into three prime
factors in Cb, namely

L = {ab, aabb}.{a}.{b, a+b+a},

where {ab, aabb}, {a} and {b, a+b+a} are prime regular bifix codes.
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Example 3. Consider the supercode L = {a2b2c, a2bc4, ab5c, ab4c4} over A =
{a, b, c}. The minimal N-DFA A for L has 4 (strong) bridge states which are
b1, b2, b3 and b4 (see Fig. 5). By Theorem 6, L may be decomposed uniquely into
5 prime factors in Csp, namely

L = {a}.{a, b3}.{b}.{b, c3}.{c}

where {a}, {b}, {c}, {a, b3} and {b, c3} are prime supercodes.
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��
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Fig. 4. The minimal N-DFA A for L = {aabbaa+b+a, abaa+b+a, aabbab, abab}
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Fig. 5. The minimal N-DFA A for L = {a2b2c, a2bc4, ab5c, ab4c4}

The following result is a consequence of Lemma 11 and Theorem 4.

Theorem 7. Given a minimal N-DFA A recognizing a regular code in Cα, with
α ∈ {o, h, sp, u}.
(i) We can determine the primality of L(A) in O(μ) time;
(ii) We can compute the unique prime decomposition of L(A) in O(μ) time if

L(A) is not prime;

where μ is the size of A.

In [3], Y. -S. Han et al. showed that given an NFA A = (Q, A, δ, s, f), we can
determine whether or not L(A) is a bifix code in O(|Q|2 + |δ|2) worst-case time.
Therefore, using Thompson automata (see [3,9]), we obtain the following result
for checking whether or not a regular expression defines a bifix code.

Lemma 12. Given a regular expression E, we can determine whether or not
L(E) is a bifix code in O(|E|2) worst-case time.

Theorem 8. Given a minimal N-DFA A = (Q, A, δ, s, f) recognizing a bifix reg-
ular code L(A), we can determine the primality of L(A) in O(m3) worst-case
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time and compute the unique prime decomposition of L(A) in O(m3) worst-case,
where m is the number of states in A.

Proof. Denote by B the set of all the bridge states of A. There can be at most m
bridge states after DFS. Then, by Lemma 12, it takes O(m2) time, for each bridge
state, to determine whether or not L(A1) and L(A2) are bifix codes. Therefore,
the total running time for determining the primality of L(A) is O(m).O(m2) =
O(m3) in the worst-case.

If a state b ∈ B is not a strong bridge state, then we remove b from B
because, by Lemma 5, it can never be a strong bridge state of any component.
Furthermore, each time we find a strong bridge state b′, then we partition A at
b′ into two components A1 and A2, and then repeat the procedure for L(A1) and
L(A2), respectively, using the remaining bridge states in B. Since each bridge
state in B can contribute at most one time in partitioning, it takes O(m3) worst-
case time to compute the unique prime decomposition for L(A). 
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Abstract. We present a new approach to the determinisation process of
specified types of automata using bit-parallel algorithms. We present the
determinisation of nondeterministic pattern matching automata (PMA)
for approximate pattern matching and we introduce the determinisation
of suffix automata. This new approach speeds the determinisation up
to m times, where m is the length of the pattern searched by PMA, or
accepted by the suffix automaton, respectively.

1 Introduction

The determinisation process is a key process for many automata-based appli-
cations. The subset construction algorithm is the most popular algorithm for
solving the determinisation issue and it has been explained e.g. in [HMU01]. The
time complexity of the algorithm is known to be at worst O(2|Q| × |Q|2 × |A|)
in the general case, where Q is the set of states of the nondeterministic finite
automaton (NFA) and A = a1, a2, . . . , a|A| is the input alphabet. The time
complexity is lower for the pattern matching automaton, where the number of
states of the NFA is linear with the length of matching pattern P = p1p2 . . . pm,
|Q| = O(m). Thus the time complexity is O(|QD| × |Q| × C × |A| + τ), where
QD is the set of states of the deterministic finite automaton (DFA), C is the
average number of transitions from one state and τ is the time needed to verify
the uniqueness of the newly constructed deterministic states (d -subsets). The
transition table of DFA has |QD| rows, each for a unique d -subset and each d -
subset has an average length |Q|. Thus the subset construction has to compute
a new d -subset by a union of all transitions from all approximately |Q| states in
each of |QD| d -subsets for each symbol of the alphabet. Note that for exact PMA
there is only a constant number of transitions for each state, with the exception
of the initial state, which makes the final time complexity of the determinisation
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no different. For Levenshtein distance (see definition lower), however, there are
O(k) transitions (because of the ε-transitions) from one state. Our idea is to
compute all of the approximately |Q| states in one d -subset at a time and to do
so we use the bit-parallel simulation technique. This technique has been intro-
duced in [Döm64](the “shift-and” variation), and improved in [BYG92, WM92]
(the “shift-or” variation used in this paper). It has been shown [Hol00], that the
bit-parallel algorithms simulate NFA and we modify them for the determinisa-
tion of PMA and suffix automata. Note that simulation of the suffix automata
was introduced in [NR98].

We now introduce some notation. A finite automaton is a quintuple (Q,A, δ, I,
F ) where Q is a finite set of states, A is a finite input alphabet, F ⊆ Q is a set
of final states. If FA is nondeterministic (NFA), then δ is a mapping Q× (A ∪
{ε}) �→ P (Q) and I ⊆ Q is a set of initial states. If FA= (Q,A, δ, q0, F ) is
deterministic (DFA), then δ is a (partial) function Q×A �→ Q and q0 is the only
initial state. We refer to NFA used for pattern matching as the pattern matching
automaton (PMA). A suffix automaton is an automaton accepting all the suffixes
of pattern x defined as Suff (x )={y : x = uy, u, x ∈ A∗, y ∈ A+}, x ∈ A∗.

The Hamming distance H(x, y) ≤ k is maximum k substitutions (replace
operations) required to transform string x into string y (see [Ham86]). The Lev-
enshtein distance L(x, y) ≤ k is maximum k operations “replace”, “insert”, or
“delete” required to transform string x into string y. PMA for pattern P using
the Hamming distance k is a pattern matching automaton that matches any
pattern x, such that H(P, x) ≤ k. PMA for pattern P using the Levenshtein
distance k is a pattern matching automaton that matches any pattern x, such
that L(P, x) ≤ k. A suffix automaton for pattern P using the Hamming dis-
tance k is a suffix automaton that accepts any pattern x, such that H(y, x) ≤ k,
y ∈ suff(P ).

We use some bitwise operation in the following text. Operation or is a stan-
dard bitwise OR operation and operation and is a standard bitwise AND opera-
tion. Operation shl is a standard shift-left bitwise operation, and the right-most
(the top-most when depicted) bit is set to 0. We use operation shl1, which
is a shift-left bitwise operation, but the right-most bit is set to 1, shl1(x) ≡
shl(x) or 1.

This paper is organized as follows. Section 2 explains the “shift-or” variation
of a bit-parallel algorithm. Section 3 presents the “shift-or” modification for the
determinisation of PMA and Section 4 presents a modification for determinisa-
tion of the suffix automaton. Section 5 provides a conclusion.

2 Bit-Parallelism

Here we explain the “shift-or” variation of the bit-parallel algorithms for the
simulation of PMA. It uses matrices Rl, 0 ≤ l ≤ k of size m × (n + 1), and
matrix D of size m× |A|, where k is the maximum number of edit operations in
pattern P . Each element rl

j,i, 0 ≤ i ≤ n contains 0, if the edit distance between
string p1p2 . . . pj and string ending at position i in text T = t1t2 . . . tn is ≤ l, or
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1, otherwise. Each element dj,x, 0 < j ≤ m, x ∈ A, contains 0, if pj = x, or 1,
otherwise.

In exact pattern matching, vectors R0
i , 0 ≤ i ≤ n, are computed as follows:

r0
j,0 = 1, 0 < j ≤ m

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n
(1)

In approximate pattern matching using the Hamming distance, vectors Rl
i, 0 ≤

l ≤ k, 0 ≤ i ≤ n, are computed as follows:

rl
j,0 = 1, 0 < j ≤ m, 0 ≤ l ≤ k

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n

Rl
i = (shl(Rl

i−1) or D[ti]) and shl(Rl−1
i−1), 0 < i ≤ n, 0 < l ≤ k

(2)

In approximate pattern matching using the Levenshtein distance, vectors
Rl

i, 0 ≤ l ≤ k, 0 ≤ i ≤ n, are computed as follows:

rl
j,0 = 0, 0 < j ≤ l, 0 < l ≤ k

rl
j,0 = 1, l < j ≤ m, 0 ≤ l ≤ k

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n
Rl

i = (shl(Rl
i−1) or D[ti])

and shl(Rl−1
i−1 and Rl−1

i )
and (Rl−1

i−1 or V ), 0 < i ≤ n, 0 < l ≤ k

(3)

The auxiliary vector V is computed as follows:

V =

⎡⎢⎢⎢⎣
v1
v2
...

vm

⎤⎥⎥⎥⎦ , where vm = 1 and vj = 0, ∀j, 1 ≤ j < m. (4)

The term shl(Rl
i−1) or D[ti]) represents matching – position i in text T

is increased, the position in pattern P is increased by operation shl, and the
positions corresponding to the input symbol ti are selected by the term or D[ti].
The term shl(Rl−1

i−1) represents edit operation “replace” – position i in text T is
increased, the position in pattern P is increased, and edit distance l is increased.
The term shl(Rl−1

i ) represents edit operation “delete” – the position in the
pattern is increased, the position in the text is not increased, and edit distance
l is increased. The term Rl−1

i−1 represents edit operation “insert” – position in
pattern is not increased, position in the text is increased, and edit distance l is
increased. The term or V provides that no “insert” transition leads from any
final state.

3 Determinisation of Pattern Matching Automata

The idea of determinisation is simple. The bit-parallel formulas represent the
transitions from a set of states (d -subset). Thus we use them to compute the
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transition table of the DFA and we do not need any transition table of the NFA
at all. This section shows the determinisation of PMA for exact and approx-
imate string matching. For the example pattern we use “adbb”, because the
DFA (“Hamming” and “Levensthein” PMA, k = 1) has only 15 states after the
determinisation.

3.1 Exact and “Hamming” Pattern Matching Automata

The nondeterministic and deterministic transition table for exact PMA is shown
in Table 1. We do not highlight initial and final states in this paper, because
this is not fundamental for the explanation.

Table 1. Transition table of the exact nondeterministic and deterministic pattern-
matching automaton for the pattern P = adbb

NFA a b d

00 0010 00 00

10 20

20 30

30 40

40

DFA a b d

00 0010 00 00

0010 0010 00 0020

0020 0010 0030 00

0030 0010 0040 00

0040 0010 00 00

Using bit-parallelism for the determinisation, we need a bit-mask matrix D,
which is partially different from the matrix for the pattern matching simulation
defined in Section 2, and it is shown in Table 2. We will deal with the matrix D
later when speaking about the Hamming distance. The first row for ε refers to the
self-loop of PMA. The “shift-or” algorithm starts with vector r0

j,0 = 1, 0 < j ≤ m
and therefore we need some initial vector too. This vector refers to the initial
state and it has the following form: r0

1,1[ε] = 0, r0
j,1[ε] = 1, 1 < j ≤ m + 1. This

vector has the length m+1, in spite of the pattern matching “shift-or” algorithm,
due to the number of states of NFA.

Table 2. Matrices D and D for the pattern P = adbb

D a b d A \ {a, b, d}
ε 0 0 0 0
a 0 1 1 1
d 1 1 0 1
b 1 0 1 1
b 1 0 1 1

D a b d A \ {a, b, d}
ε 1 1 1 1
a 1 0 0 0
d 0 0 1 0
b 0 1 0 0
b 0 1 0 0

The determinisation of exact PMA is very similar to pattern matching (1).
The initial vector is left-shifted and new states are selected by the term or
D[x], where each symbol from the alphabet A is taken as symbol x. These new
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bit-vectors (see Table 3) refer to the deterministic states (d -subsets), and the bit-
vectors are pushed in a queue. All zeros in a bit-vector correspond to the states
of NFA. As we can see, the first four bit-vectors correspond to the first row of
the transition table of DFA in Table 1. Already processed bit-vectors (referring
to the d -subsets) are stored. In this case the initial bit-vector is stored, and later
all already non-stored bit-vectors popped from the queue are also stored, after
processing. The computation ends when the queue is empty.

Table 3. Matrix R0 for determinisation of exact PMA for the pattern P = adbb

R0 ε a b d ε a b d ε a b d ε a b d ε a b d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
2 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

d
-s

ub
se

t

00 00
10

00 00 00
10

00
10

00 00
20

00
20

00
10

00
30

00 00
30

00
10

00
40

00 00
40

00
10

00 00

The determinisation is shown in Table 3. Each bit in the vector corresponds
to one of the states (0-4) and the bit-vector popped from the queue is labeled
with symbol “ε” in the header of the table. There follow all three symbols of
the alphabet and the new bit-vectors pushed to queue. Each such quadruple is
delimited by a double line.

Before formalizing these ideas, we prefer to look at the example of determin-
isation using Hamming distance k=1. The transition tables of both the NFA
and DFA pattern-matching automaton for pattern P = adbb using Hamming
distance k = 1 are depicted in Table 4.

Using the Hamming distance k, four main changes have to be made in the
algorithm to the original Formula (2). The first change is to the initial bit-vector.
Because there is no state 0l, 0 < l ≤ k, we set rl

j,1[ε] = 1, 0 < j ≤ m+1, 0 ≤ l < k,
and the bit-vector R0

1[ε] remains.
The second change is to the computation style. In determinisation we need to

know the exact level of the state, the number of mismatches. This level is given
by index l of table Rl. Therefore in table R0 there are bit-vectors corresponding
to the deterministic states with upper index 0, in table R1 corresponding to
states with index 1 and so on. The d -subset is then merged from all k + 1 bit-
vectors, therefore all k + 1 bit-vectors are computed together. The (k + 1)-tuple
of the bit-vectors is pushed to and popped from the queue together.

The third change is to the algorithm. The idea of the “shift-or” algorithm is
“when I found a pattern without mismatches I had to find it using mismatches
too”. However, this idea is wrong when dealing with determinisation, because
it is originally implemented as “replace a symbol with any symbol, even with
the same one”. Since we need to know the exact level of the state, the number
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Table 4. Transition table of the nondeterministic and deterministic pattern-matching
automaton for the pattern P = adbb and the Hamming distance k=1

NFA a b d

00 0010 0011 0011

10 21 21 20

20 31 30 31

30 41 40 41

40

11 21

21 31

31 41

41

DFA a b d

00 0010 0011 0011

0010 001021 001121 002011

0011 0010 0011 001121

001021 001021 00112131 002011

001031 001021 00112141 002011

001041 001021 001121 002011

002011 001031 003011 00112131

003011 001041 004011 00112141

004011 0010 0011 001121

001121 0010 001131 001121

001131 0010 001141 001121

001141 0010 0011 001121

00112131 0010 00113141 001121

00112141 0010 001131 001121

00113141 0010 001141 001121

of mismatches, the replace term shl(Rl−1
i−1) in the table Rl, l > 0 is only used

when there really is the replace transition in the automaton for that symbol.
This means that we deselect states without these replace transitions and thus
change the “replace” term to (shl(Rl−1

i−1) or D[ti]).
The last change is to operation shl. Any time when computing the table

Rl, l > 0, we use operation shl1 instead of operation shl. This is because there
is only one self-loop, exactly in state 00 and the right-most 0 in the operation
shl refers exactly to it.

Table 5 shows an example of the determinisation of PMA for the pattern
P = adbb using the Hamming distance k = 1. The DFA contains 15 states, and
for this reason both tables R0 and R1 are split into two parts, one above the
other, to fit these tables on the page.

Here we formalise the “shift-or” determinisation algorithm. It uses sets Rl, 0 ≤
l ≤ k of size (m + 1) × (|QD| × (|A| + 1)), where k is the maximum number of
edit operations in pattern P of length m, and QD is the set of states of the
deterministic PMA automaton. It also uses matrix D of size (m + 1)× |A|, and,
for the Hamming and Levenshtein distance, matrix D of size (m + 1)× |A|.

Each element rl
j,i[x], 0 < j ≤ (m + 1), 0 < i ≤ |QD|, 0 ≤ l ≤ k, x ∈ {A ∪ ε}

contains 0, if the d -subset corresponding to the vector Rl
i[x] contains state jl,

or 1, otherwise. Each element dj,x, 0 < j ≤ (m+1), x ∈ A, contains 0, if pj = x
or j = 1, or 1, otherwise. Element dj,x is bit-negated dj,x.

In determinisation of exact PMA, vectors R0
i , 1 ≤ i ≤ |QD|, are computed as

follows:
r0
1,1[ε] = 0

r0
j,1[ε] = 1, 1 < j ≤ (m + 1)

R0
i [x] = shl(R0

i [ε]) or D[x], x ∈ A, 1 < i ≤ |QD|
(5)
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Table 5. Matrices R0 and R1 for determinisation of PMA using the Hamming distance
k = 1, p = adbb

R0 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0
2 1 1 1 1 1 0 0 1 1 1 1 0 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1

d
-s

ub
se

t

00 00
10

00
11

00
11

00
10

00
10

21

00
11

21

00
20

11

00
11

00
10

00
11

00
11

21

00
10

21

00
10

21

00
11

21
31

00
20

11

00
11

21

00
10

00
11

31

00
11

21

00
20

11

00
10

31

00
30

11

00
11

21
31

00
11

21
31

00
10

00
11

31
41

00
11

21

00
11

31

00
10

00
11

41

00
11

21

R0 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1
2 cont. 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1
3 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

R1 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 1 0 0 0 1 0 0 0 1 0 0
2 cont. 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 1 1 0
3 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
4 1 1 0 1 1 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1

d
-s

ub
se

t

00
10

31

00
10

21

00
11

21
41

00
20

11

00
30

11

00
10

41

00
40

11

00
11

21
41

00
11

31
41

00
10

00
11

41

00
11

21

00
11

41

00
10

00
11

00
11

21

00
10

41

00
10

21

00
11

21

00
20

11

00
11

21
41

00
10

00
11

31

00
11

21

00
40

11

00
10

00
11

00
11

21

In determinisation of approximate PMA using the Hamming distance, vectors
Rl

i, 0 ≤ l ≤ k, 1 ≤ i ≤ |QD|, are computed as follows:

r0
1,1[ε] = 0

r0
j,1[ε] = 1, 1 < j ≤ (m + 1)

rl
j,1[ε] = 1, 0 < j ≤ (m + 1), 1 ≤ l ≤ k

R0
i [x] = shl(R0

i [ε]) or D[x], x ∈ A, 1 < i ≤ |QD|
Rl

i[x] = (shl1(Rl
i[ε]) or D[x])

and (shl1(Rl−1
i [ε]) or D[x]), 1 < i ≤ |QD|, 0 < l ≤ k, x ∈ A

(6)

Each bit-vector Rl
i[ε] in Formulas (5) and (6) is exactly the bit-vector popped

from the queue. The complete algorithm is then as follows:
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Algorithm 1. Determinisation of the nondeterministic pattern-matching au-
tomaton using the “shift-or” algorithm.
Input: Pattern P , allowed number of mismatches k, an empty queue
Output: Deterministic pattern-matching automaton
Method:

1 Create matrices D and D for pattern P .
2 Set step-counter i ← 1
3 Create initial vectors Rl

1[ε], 0 ≤ l ≤ k.
4 queue.push(R0

1[ε], R1
1[ε], . . . , Rk

1 [ε]).
5 while not queue.empty()
6 R0

i [ε], R1
i [ε], . . . , Rk

i [ε] ← queue.pop()
7 for each x ∈ A do
8 Compute R0

i [x], R1
i [x], . . . , Rk

i [x] using Formula(6)
9 queue.push(R0

i [x], R1
i [x], . . . , Rk

i [x])
10 endfor
11 i ← i+1
12 endwhile


	
Algorithm 1 remains unchanged for determinisation of both exact and Hamming
NFA. It also assumes an intelligent queue, which pushes only new bit-vectors.

3.2 “Levenshtein” Pattern Matching Automata

The transition tables of both nondeterministic and deterministic PMA using the
Levenshtein distance for the pattern adbb, k = 1 is shown in Table 6.

We have three edit operations using the Levenshtein distance and one “match”
operation. The problem is the operation “delete”. The idea from Formula (3)
cannot be used, and we have to invent a new term representing this operation.
The new idea follows the transitions in the automaton, where the operation
“delete” is implemented by ε-transitions along the “replace” transitions. Hence,
we have two types of sequences of transitions. The first is the transition labeled
by a symbol followed by a sequence of ε-transitions. The second is a sequence of
ε-transitions followed by the transition labeled by a symbol.

Both cases need special bit-vectors computed along with bit-vectors Rl
i. We

use bit-vectors El
i [x] for the first case defined as follows:

E0
i [x] = R0

i [x], 1 ≤ i ≤ (m + 1)
El

i[x] = shl1(El−1
i [x]) and Rl

i[x], l < i ≤ (m + 1), 1 ≤ l ≤ k
(7)

The bit-vector El−1
i [x] represents states accessible by the transition x followed

by ε-transitions (operation “delete”). We define bit-vectors El
i[ε] for the second

case as follows:

E0
i [ε] = R0

i [ε], 1 ≤ i ≤ (m + 1)
El

i[ε] = shl1(El−1
i [ε]) and Rl

i[ε], l < i ≤ (m + 1), 1 ≤ l ≤ k
(8)
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Table 6. Transition table of the nondeterministic and deterministic pattern-matching
automaton for the pattern P = adbb and the Levenshtein distance k=1

NFA a b d

00 0010 0011 001121

10 1121 112131 2011

20 2131 302141 2131

30 3141 4031 3141

40

11 21

21 31

31 41

41

DFA a b d

00 0010 0011 001121

0010 00101121 00112131 00201121

0011 0010 0011 001121

001121 0010 001131 001121

001131 0010 001141 001121

001141 0010 0011 001121

00101121 00101121 00112131 00201121

00102131 00101121 0011213141 00201121

00103141 00101121 0011213141 00201121

00201121 00102131 003011213141 00112131

00112131 0010 00113141 001121

00113141 0010 001141 001121

0040113141 0010 001141 001121

0011213141 0010 00113141 001121

003011213141 00103141 0040113141 0011213141

The operations “match”, “replace”, and “insert” use the second case and
thus the bit-vectors El

i [ε]. Operation “delete” following a non-ε-transition uses
the bit-vectors El

i [x] and it is represented by the term: (shl1(El−1
i [x])).

For the operation “match” and “replace” we use Formula (6), but we have to
count with the ε-transitions. Therefore these operations are represented by the
terms (shl1(El

i[ε]) or D[x]) and (shl1(El−1
i [ε]) or D[x]), respectively.

The operation “insert” is similar to the operation “insert” in Formula (3)
and it is represented by the term Rl−1

i [ε]. Of course, we have to count with the
ε-transitions, and the automaton does not have states 0l, 1 ≤ l ≤ k, 1l, 2 ≤
l ≤ k, . . . , (k − 1)k, and this is different from a pattern matching issue, which
might contain them for simplicity in the bit-parallel algorithms. Therefore we
use auxiliary vectors Zl defined as follows:

zl
i = 1, 1 ≤ i ≤ l, 1 ≤ l ≤ k

zl
i = 0, l < i ≤ (m + 1), 1 ≤ l ≤ k

(9)

and the “insert” term has the form: (El−1
i [ε] or Zl or V ), where V is defined as

Formula (4).
Now we might define the exact formula for determinisation using the Leven-

shtein distance as follows:
r0
1,1[ε] = 0

r0
j,1[ε] = 1, 1 < j ≤ (m + 1)

rl
j,1[ε] = 1, 0 < j ≤ (m + 1), 1 ≤ l ≤ k

R0
i [x] = shl(R0

i [ε]) or D[x], x ∈ A, 1 < i ≤ |QD|
Rl

i[x] = (shl1(El
i[ε]) or D[x])

and (shl1(El−1
i [ε]) or D[x])

and (El−1
i [ε] or Z l or V )

and (shl1(El−1
i [x])), 1 < i ≤ |QD|, 0 < l ≤ k, x ∈ A

(10)
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Table 7. Matrices R0 and R1 for determinisation of PMA using the Levenshtein dis-
tance k = 1, P = adbb

R0 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d a b d ε a b d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1
2 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 1
2 1 1 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 0
3 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 1 1
4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1
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11
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31

00
11
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00
10
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11

41
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11

21

R0 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 1
2 cont. 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1
3 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
4 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1

R1 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 0 1 0 0 1 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 1 0 0
2 cont. 1 1 1 0 0 0 0 0 0 1 1 0 1 1 1 0 0 1 1 0 1 0 0 0 1 1 1 0
3 0 1 1 1 0 1 0 1 0 0 0 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 1 1
4 0 1 0 1 1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1

d
-s

ub
se

t

00
11

31
41

00
10

00
11

41

00
11

21

00
10

21
31

00
10

11
21

00
11

21
31

41

00
20

11
21

00
30

11
21

31
41

00
10

31
41

00
40

11
31

41

00
11

21
31

41

00
11

41

00
10

00
11

00
11

21

00
11

21
31

41

00
10

00
11

31
41

00
11

21

00
10

31
41

00
10

11
21

00
11

21
31

41

00
21

11
21

00
40

11
31

41

00
10

00
11

41

00
11

21

The example for pattern adbb is shown in Table 7. Algorithm 1 holds even with
the Levenshtein distance, with one exception. The Formula 10 is used instead of
Formula 6.

Each bit-vector El
i [ε], l > 0 is in fact computed twice. Once as El

i [x] and then
once more, after the bit-vectors Rl

i[ε] are popped from the queue. To avoid this,
the bit-vectors El

i[x] can be pushed to the queue with the bit-vectors Rl
i[x] and

popped as the bit-vectors El
j [ε], j > i.

4 Determinisation of Suffix Automata

Determinisation of suffix automata is easier than determinisation of PMA, mainly
because of the missing self-loop. However, it is more complicated to establish the
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initial bit-vectors. When they have been established, the determinisation is very
similar to the determinisation of PMA and therefore we explain the process on
an example using the Hamming distance k = 1 without bothering with an exact
case. Once more we use the pattern P = adbb, and the transition table of the suffix
automaton for this pattern using the Hamming distance k = 1 is given in Table 8.

Table 8. Transition table of the deterministic and nondeterministic suffix automaton
for the pattern P = adbb using the Hamming distance k = 1

NFA a b d

00 10213141 30401121 20113141

10 21 21 20

20 31 30 31

30 41 40 41

40

11 21

21 31

31 41

41

DFA a b d

00 10213141 30401121 20113141

20 31 30 31

30 41 40 41

40

21 31

31 41

41

3041 41 40 41

4031 41

2131 3141

2141 31

3141 41

213141 3141

10213141 21 213141 20

20113141 31 3041 2131

30401121 41 4031 2141

We explain the determinisation using the “shift-or” algorithm. First we need
the initial bit-vectors. They are obtained from the first row of the transition
table of NFA by converting the d -subsets into bit-vectors. These bit-vectors are
the first four bit-vectors in the set R0 in Table 10. The initial bit-vectors and no
other bit-vectors derived from them refers to the initial state 00 of the NFA, and
therefore matrices D and D no longer contain the row for symbol ε and these
matrices are shown in Table 9.

Table 9. Matrices D and D for the pattern P = adbb

D a b d A \ {a, b, d}
a 0 1 1 1
d 1 1 0 1
b 1 0 1 1
b 1 0 1 1

D a b d A \ {a, b, d}
a 1 0 0 0
d 0 0 1 0
b 0 1 0 0
b 0 1 0 0

The determinisation is shown in Table 10, and it is processed using the same
rules as in Formula (6) except for two changes. The first change is to the initial
vectors Rl

1[ε] and Rl
1[x], x ∈ A as we have already explained. The second change
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Table 10. Matrices R0 and R1 for determinisation of the suffix automata using the
Hamming distance k = 1, P = adbb

R0 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

1 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
3 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1
4 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

1 1 1 0 0 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 0 0 1 0 0 0 1 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1
3 1 0 1 0 0 1 0 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1
4 1 0 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 1 1
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11
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41
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41
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11
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41
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41

21
31

21 31 21
31

41

31
41

20 31 30 31 41

R0 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1
4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1

R1 ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d ε a b d

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
2 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
3 0 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1
4 1 1 0 1 0 1 1 1 1 1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1

d
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se

t

40
31

41 21
41

31 31 41 30
41

41 41 30 21
31

31
41

31
41

41 30 41 40 41 40

is to the shl operation. Because there is no self-loop, every shl operation in
Formula (6) is rather operation shl1. Since there is no self-loop, the bit-vectors
R may be one-bit shorter.

Now we can define the formal formulas of computation. The initial bit-vectors
for R0

1[ε] are exactly the bit-vectors from matrix D. This is because all states were
active due to the ε-transitions at the beginning – vector (00 . . . 0) – and a move
using symbolx ∈ A is performed as shl(00 . . .0) orD[x]. The initial bit-vectors for
R1

1[ε] are exactly the bit-vectors from matrix D, because the “replace” transitions
are used. Other initial bit-vectors Rl

j,1[ε] = 1 for all l ≤ 2 ≤ k, 1 ≤ j ≤ m.
In the determinisation of the exact suffix automaton, vectors R0

i , 0 ≤ i ≤ |QD|,
are computed as follows:

r0
1,1[ε] = 0

r0
j,1[ε] = 1, 1 < j ≤ m

R0
1[x] = D[x], x ∈ A

R0
i [x] = shl1(R0

i [ε]) or D[x], x ∈ A, 1 < i ≤ |QD|

(11)
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In the determinisation of the approximate suffix automaton using the Ham-
ming distance, vectors Rl

i, 0 ≤ l ≤ k, 0 ≤ i ≤ |QD|, are computed as follows:

r0
1,1[ε] = 0

r0
j,1[ε] = 1, 1 < j ≤ m

R0
1[x] = D[x], x ∈ A

R1
1[x] = D[x], x ∈ A

rl
j,1[ε] = 1, 0 < j ≤ m, 0 < l ≤ k

R0
i [x] = shl1(R0

i [ε]) or D[x], x ∈ A, 1 < i ≤ |QD|
Rl

i[x] = (shl1(Rl
i[ε]) or D[x])

and (shl1(Rl−1
i [ε]) or D[x]), 1 < i ≤ |QD|, 0 < l ≤ k, x ∈ A

(12)

The complete Algorithm 1 still holds, except that Formula (12) is used instead
of Formula (6). Of course, the initial bit-vectors R0

1[x] have to be pushed to the
queue instead of R0

1[ε].

5 Conclusion

We have presented algorithms for simulation of the determinisation of special
types of finite automata, pattern-matching automata and suffix automata.

The algorithms take O(|QD| × |A| × (k + 1) + τ) time, where QD is the set
of states after the determinisation, A is the input alphabet, k is the number of
allowed edit operations, and τ is the time needed to search among the already
existing d -subsets to verify the uniqueness of the d -subset. The standard subset
construction takesO(|QD|×|Q|×C×|A|+τ), where C is the number of transitions
from one state. Since C is O(1) for exact automata and O(k) for approximate
automata using the Levenshtein distance, our algorithm is |Q| = O(m) times
faster for these automata. Since C = O(1) for the Hamming distance, our algo-
rithm is O(m

k ) times faster for this case. This result is valid for both the PMA
and suffix automaton.

It is interesting that the determinisation process does not need any transition
table, even a nondeterministic table. The determinisation is driven only by the
formulas of the “shift-or” algorithm.
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Abstract. Alternating temporal logic (atl*) was introduced to prove
properties of multi-agent systems in which the agents have different ob-
jectives and may collaborate to achieve them. Examples include (distrib-
uted) controlled systems, security protocols, and contract-signing pro-
tocols. Proving atl* properties over finite-state systems was shown de-
cidable by Alur et al., and a model checker for the sublanguage atl
implemented in mocha.

In this paper we present a sound and complete proof system for prov-
ing atl* properties over infinite-state systems. The proof system reduces
proofs of atl* properties over systems to first-order verification condi-
tions in the underlying assertion language. The verification conditions
make use of predicate transformers that depend on the system structure,
so that proofs over systems with a simpler structure, e.g., turn-based sys-
tems, directly result in simpler verification conditions. We illustrate the
use of the proof system on a small example.

1 Introduction

atl* [1] is a logic used to specify properties of computing systems in which dif-
ferent agents have different goals. It allows reasoning about temporal properties
that players can achieve in cooperation or competition with each other.

Alur et al. [1] showed that the verification of atl* properties over finite-
state systems is decidable, and they proposed several model-checking algorithms.
Model checking of atl (a restricted form of atl*) properties over finite-state
alternating systems was implemented in mocha [2]. Mocha has since been
applied to the analysis of a wide variety of systems, extending to such diverse
realms as security and contract-signing protocols [3,4,5], or mechanism design
[6]. Although in some of these analyses the restriction to finite-state systems
was not a problem, in general this is not the case. For example, the analysis
of the multi-party contract-signing protocol of [4,5], which is parameterized by
the number of participating parties, was limited to small instances with three or
four parties. Thus there is a need for methods for verifying atl properties over
infinite-state systems.
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In this paper we present a sound and complete proof system for proving atl*
properties over infinite-state alternating systems.

Proof systems for program logics come in two flavors. The first approach [7]
reduces proofs of system properties to proofs of validities in the program logic.
To prove a property ϕ over a system S, the system is encoded in a formula ΦS
in the program logic, and ΦS → ϕ is proved valid. A complete proof system of
this kind for propositional atl was developed by Goranko & al. [8]. The second
approach [9,10,11] reduces proofs of system properties to proofs of first-order
validities by means of rules that act on the system representation directly. The
proof system proposed in this paper follows the second approach.

Our proof system consists of proof rules that reduce the verification of an atl*
property over an alternating system to a set of first-order verification conditions
in the underlying assertion language of the system. The verification conditions
are expressed in terms of a controllable predecessor predicate transformer (cpre).
The advantage of parameterizing the proof rules by cpre is that the rules are
independent of the system structure, but the resulting verification conditions
for different types of systems – e.g., turn-based systems – can be simplified by
instantiating cpre with the version that exploits the more constrained system
structure. The proof rules are constructive: a proof of the verification conditions
can be used to construct controllers for the original property proved.

Our proof system incrementally converts temporal formulas into finite au-
tomata that are then composed with the system. This technique of lifting au-
tomata-theoretic results to proof systems was first proposed by Vardi and applied
to ltl [12]. Later a similar approach was applied to ctl [13] and ctl* [11]. Our
approach is most closely related to that in [11].

The rest of the paper is organized as follows. Section 2 presents our model of
computation. Section 3 defines atl*. Section 4 describes the proof system and
Section 5 concludes. The models and proof rules are illustrated with a small
example. Proofs of soundness and completeness can be found in [14].

2 Alternating Discrete Systems

As computational model we use alternating discrete systems (ads), based on the
fair discrete systems of Kesten and Pnueli [11]. An ads is a general first-order
representation of alternating structures, that generalizes turn-based, synchro-
nous and asynchronous concurrency models of [1] and recursive programming
languages. States and fairness conditions are represented as value assignments
to a finite set of typed variables. To enable a first-order representation of the
next-state relation, the player’s available actions are represented by special ac-
tion variables. The formal definitions are as follows.

An alternating discrete system (ads) is a tuple

S = 〈Ω, VS , VΩ, ξ, χ,F〉 ,
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where:

– Ω is a finite set of players.
– VS is a finite set of typed system variables; a state is a typed value assignment

to the variables in VS ; the set of all states is denoted by Σ.
– VΩ = 〈Va | a ∈ Ω〉 provides each player with a finite set of typed action

variables. An a-action is a typed value assignment to the variables in Va; the
set of all a-actions is denoted by Γa. An A-action for a set of players A ⊆ Ω
is a typed value assignment to the variables in VA =

⋃
a∈A Va; the set of all

A-actions is denoted by ΓA. We write Γ for ΓΩ.
– ξ = 〈ξa | a ∈ Ω〉 associates to each player a a first-order formula over

variables VS and Va that restricts the actions player a can choose at each
state: at state VS , player a can choose only actions such that ξa(VS , Va)
holds. The extension of ξ to a set of players A ⊆ Ω is defined as ξA(VS , VA) ≡∧

a∈A ξa(VS , Va).
– χ is a first-order formula over VS , VΩ, V ′

S ; χ represents the game matrix:
χ(VS , VΩ, V ′

S) expresses that the system can move from state VS to state V ′
S

when the players’ choices are VΩ.
– F : Ω → B(∞QF(VS)) assigns to each player a fairness condition, repre-

sented as a Boolean formula over atoms of the form ∞p (read “infinitely
many times p”), where p is an assertion (quantifier-free formula) over VS .
For example, ∞(x = 2 ∧ y > x) →∞(y ≥ z2).

We assume that an ads has no blocking states, i.e., states from which a
player has no legal action, or from which there is no available successor state for
certain choices of the players. Clearly, the property of being non-blocking can
be expressed by a simple set of verification conditions, of the following forms:

∀VS ∃Va. ξa(VS , Va) for all a ∈ Ω, and
∀VS ∀VΩ. ξΩ(VS , VΩ) → ∃V ′

S . χ(VS , VΩ, V ′
S) .

The non-blocking assumption is not restrictive, since we can add a new state and
make all previously blocking actions move to it; from there, all actions would
then lead back to the same state. Thus we can assume without mentioning that
these conditions hold in any system under consideration.

Some of the proof rules that we shall describe modify the underlying ads. In
those cases, if the original ads is non-blocking, then the modified one is non-
blocking too.

Example 1. As an illustration of the computational model of ads, consider the
model of processor, a simple system consisting of a processor that must be
scheduled to execute multiple processes, shown in Fig. 1. In the model, processes
are stored in a queue, represented by the system variable qu, and the processor
is either active or not active, represented by the boolean system variable pa.
When the processor is inactive, a new process, represented by the environment
action variable np, can enter and is inserted at the end of the queue. The en-
vironment may choose not to enter a new process by setting np to ⊥. When
the processor becomes active, the process at the head of the queue is therefrom
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Ω : {Env ,Sched}
VS : {qu : list of process, pa : boolean, xp : process⊥}
VEnv : {np : process⊥, te : {no, yes , cont}}
VSched : {pos : N}
ξEnv : t
ξSched : pa → (0 ≤ pos ≤ |qu|)
χ : (¬pa ∧ np = ⊥ ∧ pres{pa, xp, qu}) ∨

(¬pa ∧ np 	= ⊥ ∧ qu ′ = append(qu ,np) ∧ pres{pa , xp}) ∨
(¬pa ∧ np = ⊥ ∧ qu 	= empty ∧ pa ′ ∧ qu = cons(xp′, qu ′)) ∨
(pa ∧ te = no ∧ pres{pa , xp}) ∨
(pa ∧ te = yes ∧ ¬pa ′ ∧ xp′ = ⊥ ∧ pres{qu}) ∨
(pa ∧ te = cont ∧ ¬pa ′ ∧ xp ′ = ⊥ ∧ qu ′ = insert(qu, pos , xp))

FEnv : ∞¬pa ∧ ∞pa
FSched : t

Fig. 1. ads for processor: pres{. . . } means the values are preserved by the transition;
append adds an element to the end of a list, insert adds an element at a certain position,
&c

removed and becomes the executing process, represented by the system variable
xp. When the process releases the processor, it may or may not need to continue
later, represented by the environment action variable te. If it needs to continue,
the scheduler reinserts it in the queue at the position determined by its action
variable pos. It is assumed that all executing processes eventually release the
processor and that there is an unlimited supply of processes to be executed,
represented by the environment fairness condition. An informal representation
of the model is shown in Fig. 2.

pano

cont

yes ¬pa

np �=⊥

np=⊥

Fig. 2. Informal representation of ads for processor

Given an ads S, a run consists of the following game played ad infinitum: At
each state s ∈ Σ assigning values to variables VS , every player a ∈ Ω, indepen-
dently of the others, picks an action by choosing values for the local variables
Va so that ξa(VS , Va) holds. Then, the next state is nondeterministically chosen
among the assignments to V ′

S such that χ(VS , VΩ, V ′
S) holds. Notice that our

assumption of non-blocking guarantees that such an assignment always exists.
The formal definitions are as follows.

A sequence π ∈ Σω is a run of S from s ∈ Σ, with choices ρ ∈ Γ ω, if
π[0] = s and
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ξa(π[n], ρ[n]a) χ(π[n], ρ[n], π[n + 1])

for all n < ω and a ∈ Ω. A run from X ⊆ Σ is a run from any state s ∈ X . We
omit the initial state if it is irrelevant or clear from the context. A run π is fair
to player a, written π � Fa, if Fa evaluates to true under the interpretation of
atoms ∞p as “p holds at π[n] for infinitely many n”.

A player a ∈ Ω can make its choices ρ in accordance with a strategy, a function

fa : Σ+ → Γa

such that ξa(s, fa(ws)) holds for all w ∈ Σ∗ and s ∈ Σ. A run π is compatible
with strategy fa for player a if its choices ρ satisfy

ρ[n]a = fa(π[0 . . . n])

for all n < ω. A run is compatible with strategies fA (denoting the sequence
〈fa | a ∈ A〉), for A ⊆ Ω, if it is compatible with fa for all a ∈ A. The set of
all runs compatible with fA starting at a certain state s ∈ Σ is called the set of
outcomes of fA from s and denoted

outS(s, fA) ,

or out(s, fA) when S is clear from the context.
The fundamental operator to describe properties of discrete structures is the

controllable predecessors operator cpreA. Given a set of states X ⊆ Σ and a set
of players A ⊆ Ω, cpreA(X) denotes the set of states from which the players in
A have a collaborative action with which they can ensure that the game will be
in X at the next state. Formally,

cpreA(ϕ)(VS) ≡ ∃VA. ξA(VS , VA) ∧
∀VΩ\A. ξΩ\A → ∀V ′

S . χ(VS , VΩ, V ′
S) → ϕ(V ′

S) . (1)

Dual to cpreA is the uncontrollable predecessors operator upreA, defined as

upreA(X) = Σ \ cpreA(Σ \X) ,

or, explicitly, as

upreA(ϕ)(VS) ≡ ∀VA. ξA(VS , VA) →
∃VΩ\A. ξΩ\A ∧ ∃V ′

S . χ(VS , VΩ , V ′
S) ∧ ϕ(V ′

S) . (2)

For classes of ads with special properties, the cpre transformers have simpler
forms [1,15]. To take advantage of these simpler forms, we express our verification
conditions in terms of these transformers as much as possible.

Example 2. As an illustration of how the cpre operator is affected by the system
structure, consider the following asynchronous game structure S, consisting of
two agents a and b. The state space of S is partitioned so that, from any given
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state, either a or b has complete control of the next state, represented by the
formulas turna(VS) and turnb(VS) ≡ ¬turna(VS). Furthermore, the next-state
relation is represented by the formulas χa(VS , V ′

S) and χb(VS , V ′
S), meaning when

it is a’s turn, agent a can choose any state in V ′
S such that ξa(VS , V ′

S) holds, and
similarly for agent b. For this game structure, cprea(ϕ) can be simplified to

cprea(ϕ)(VS) ≡

⎛⎝ turna(VS) → ∃V ′
S . χa(VS , V ′

S) ∧ ϕ(VS)
∧

¬turna(VS) → ∀V ′
S . χb(VS , V ′

S) → ϕ(V ′
S)

⎞⎠
As we shall see, cpre always appears in verification conditions in the consequent
of a universally quantified implication, and thus the corresponding verification
conditions for this game structure can always be split into two simpler ones.

3 The Logic ATL*

atl* (Alternating Temporal Logic) was proposed by Alur & al. to allow selective
quantification over runs that are the possible outcomes of games [1]. For conve-
nience we use a version of atl* with a few more connectives. (The expressive
power is not affected.)

3.1 Syntax

atl* formulas come in two types, state formulas and path formulas, defined by
mutual induction.

A (state) formula is one of:

– an assertion (first-order formula) in the underlying state language,
– a Boolean combination of state formulas,
– 〈〈A〉〉ϕ, �A�ϕ, 〈〈A〉〉fϕ, or �A�fϕ, for A a set of players and ϕ a path formula.

A path formula is one of:

– a state formula,
– a Boolean combination of path formulas, or
– an ltl temporal operator applied to path formulas.

The operators 〈〈A〉〉, �A�, 〈〈A〉〉f , �A�f are called alternating quantifiers. The
most basic one is 〈〈A〉〉, stating that A have a strategy to make a path formula
true in all runs starting in the current state. The dual operator �A� is defined as
�A�ϕ ≡ ¬〈〈A〉〉¬ϕ: we usually say that A cannot avoid ϕ from happening. The
fair alternating quantifiers 〈〈A〉〉f and �A�f are similar, but interpreted over all
fair runs instead of all runs.

For ltl operators we use the notation of [9, 10]:  for always in the future, 
for eventually in the future, &c.
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3.2 Semantics

Let S be an ads. We define truth relations

S, s � ϕ S, π � ψ

for a state formula ϕ at a state s and for a path formula ψ over a path π,
by mutual induction on the structure of the formula. Recall that outS(s, fA)
denotes the set of runs of S starting at s and compatible with strategies fA.

– S, s � p, for p an assertion, if s � p in the assertion language;
– Boolean operators distribute over � in the natural way, both for state and

path formulas;
– S, s � 〈〈A〉〉ψ if there exist strategies fA such that, for all π ∈ out(s, fA), we

have S, π � ψ;
– S, s � �A�ψ if, for all strategies fA, there exists an outcome π ∈ out(s, fA)

such that S, π � ψ holds;
– S, s � 〈〈A〉〉fψ if there exist strategies fA such that, for all outcomes π ∈

out(s, fA) such that π � FΩ\A, we have also π � FA and S, π � ψ;
– S, s � �A�fψ if, for all strategies fA, there is at least an outcome π ∈

out(s, fA) such that π � FΩ\A and, if π � FA, then also S, π � ψ;
– ltl operators are evaluated over path formulas in the usual way.

When S is clear from the context, we simply write s � ϕ and π � ψ. We say that

S � p ⇒ ϕ

when S, s � ϕ for all states s ∈ Σ satisfying p.

Example 3. Reconsider the system modeled in Example 1. We want to prove
that the scheduler has a strategy that allows it to be fair: from a state where a
process x is in the queue, the scheduler can play its choices in such a way that x
will eventually be executed. We model this requirement with the atl* formula

where x is a free variable and exec(x) is an abbreviation for pa ∧ xp = x.

4 Proof System

4.1 Overview

Our proof system operates on statements of the form

S � p ⇒ ((A))ϕ ,

where S is an ads, p is an assertion, ((A)) is an alternating quantifier, and ϕ is a
path formula in positive normal form. (Every atl* formula can be put in positive
normal form, where all negations have been pushed to the assertion level, in the
same way used for propositional logic and ltl, and rewriting ¬〈〈A〉〉ϕ to �A�¬ϕ
&c.) When clear from the context, we omit S and simply write p ⇒ ((A))ϕ. The
rules of the proof system can be classified into four groups:

x ∈ qu ⇒ 〈〈Sched〉〉fexec(x) ,
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1. A basic state rule, which reduces all statements to the form p ⇒ ((A))ϕ,
where ϕ is an ltl formula.

2. A basic path rule, which reduces ϕ (an ltl formula) to an assertion while
extending the system S by synchronously composing it with an automaton
for ϕ.

3. A history rule, which augments the system with extra history variables such
that, in the new system, A can win ϕ with memoryless strategies from its
winning set.

4. Assertion rules, which reduce the validity of statements about winnability
with memoryless strategies to assertional verification conditions.

The application of these rules results in a set of verification conditions to be
proved in the underlying theory of the system plus the cpre predicate transform-
ers. The advantage of parameterizing the underlying language to the cpre’s is
that, as illustrated in Example 2, in most practical cases the alternating system
has specific properties that can be exploited by defining a simpler version of cpre
than the generic form for ads’s shown in (1).

Completeness of the proof system is relative to validities in the first-order
logic, with fixpoints and cpre, of the underlying theory – the same as required
for relative completeness for ltl, or program termination, proof systems [9].
Proofs of soundness and completeness of all proof rules can be found in [14].

4.2 Basic State Rule

For ψ a state formula appearing with positive polarity in ϕ(ψ),

basic-state:
p ⇒ ϕ(q)
q ⇒ ψ

p ⇒ ϕ(ψ)

This rule says that, in order to prove p ⇒ ϕ(ψ), where ψ is a state formula ap-
pearing with positive polarity in ϕ, we guess an assertion q underapproximating
the set of states on which ψ holds and substitute q for ψ in ϕ. The two premises
require us to prove that q is indeed an underapproximation (q ⇒ ψ) and that
the formula after the substitution holds in the system (p ⇒ ϕ(q)). Notice that
there is an implicit “S � ” at the left of every line in the rule.

Example 4. Reconsider the system from Example 1. In trying to prove

¬pa ⇒ 〈〈Env〉〉〈〈Sched〉〉fexec(x)

over this system, we can apply rule basic-state with ψ ≡ 〈〈Sched〉〉fexec(x)
and q ≡ x ∈ qu to obtain the subgoals ¬pa ⇒ 〈〈Env〉〉(x ∈ qu) and x ∈ qu ⇒
〈〈Sched〉〉fexec(x).
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4.3 Basic Path Rule

Augmentation. The Basic Path Rule applies to statements of the form S �
p ⇒ ((A))ϕ where ϕ is an ltl formula. The first step in the application of this
rule is the synchronous composition of an automaton for ϕ with S [12,11].

Let ϕ be a (quantifier-free) ltl formula over variables VS . Let

Aϕ = 〈Q, q0, δ, F〉

be a deterministic Muller automaton accepting the language of ϕ, where:

– Q is a finite set of states;
– q0 ∈ Q is the initial state;
– δ : Q × Σ → Q is a full deterministic transition function;
– F ∈ 22Q

is the Muller acceptance condition.

The definition suggests that the alphabet of Aϕ is Σ, the – generally infinite –
set of states of the underlying ads. Only a finite quotient of Σ, however, is
necessary, determined by the values assumed by the states on the atoms of ϕ.
We use Muller acceptance condition for simplicity of notation. In practice, Streett
is of course preferable (or, if possible, an even simpler acceptance condition).

The role of Aϕ is to act as a temporal tester [11], that is, to observe the evo-
lution of ϕ on the ads. To achieve this, we construct a synchronous composition
of Aϕ and the ads S and introduce a new player aϕ with the fairness conditions
of Aϕ. The requirement that Aϕ be deterministic ensures that no player gains
power by the composition with Aϕ. In particular, the new player aϕ has only
one choice of action at all times. The formal definition is as follows.

Let S = 〈Ω, VS , VΩ , ξ, χ,F〉 be an ads, and A = 〈Q, q0, δ, FA〉 a deterministic
Muller (or Büchi, or Streett . . . ) automaton on alphabet Σ, as defined above.
The synchronous composition of S and A, denoted S � A, is the ads

Ŝ = 〈Ω̂, V̂S , V̂Ω, ξ̂, χ̂, F̂〉 ,

where:

– Ω̂ = Ω ∪ {aA}, where aA is a new player;
– V̂S = VS ∪ {q}, where q is a new variable of type Q;
– V̂a = Va if a ∈ Ω;

V̂aA = ∅;
– ξ̂a(V̂S , Va) ≡ ξa(VS , Va) if a ∈ Ω;

ξ̂aA(V̂S , ∅) ≡ t;
– χ̂(V̂S , V̂Ω, V̂ ′

S) ≡ χ(VS , VΩ , V ′
S) ∧ q′ = δ(q, VS);

– F̂ ≡ F ∧ FA, where FA is an expression of A’s acceptance condition.

The Basic-Path Rule. For an ltl formula ϕ,

basic-path:
S � Aϕ � p ∧ q = q0 ⇒ ((A, aϕ))ft

S � p ⇒ ((A))fϕ
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where Aϕ is a deterministic automaton on infinite words accepting ϕ, � is syn-
chronous composition, ((A))f is either 〈〈A〉〉f or �A�f , and aϕ stands for aAϕ . Notice
that we require the alternating quantifiers to be fair. If this is not the case, we
simply remove all fairness conditions from the system before applying the rule.

q0¬exec(x)
exec(x)

q1 t

with initial state q0 and fairness condition ∞q1. Then S � A becomes:

Ω̂ : {Env ,Sched , a} V̂S : VS ∪ {q : {q0, q1}}
V̂Env : VEnv V̂Sched : VSched V̂a : ∅

ξ̂Env : ξEnv ξ̂Sched : ξSched ξ̂a : t

χ̂ : χ ∧
(
(q = q0 ∧ ¬exec(x) → q′ = q0) ∧ (q = q1 ∨ exec(x) → q′ = q1)

)
F̂Env : ∞pa ∧ ∞¬pa F̂Sched : t F̂a : ∞(q = q1)

The following picture summarizes the game matrix χ̂ for the augmented ads:

pa, q0no,xp �=x

no,xp=x

cont ,xp �=x

yes,xp �=x

cont,xp=x

yes,xp=x

¬pa, q0

np �=⊥

np=⊥

pa, q1no cont

yes

¬pa, q1

np �=⊥

np=⊥

The property to prove on this system is now

x ∈ qu ∧ q = q0 ⇒ 〈〈Sched , a〉〉ft . (3)

4.4 History Rule

The purpose of the history rule is to allow for memoryless strategies in all the
games of interest. Consider a property of the form S � p ⇒ 〈〈A〉〉ϕ, where ϕ is an
ltl property. It is known (see, for example, [16]) that if we partition the states
of S into two sets, W1 and W2, such that players A have a winning strategy (can
ensure ϕ) from every state in W1, but not from any state in W2, then players A
have a finite memory winning strategy from every state in W1.

Example 5. Returning to our example, we apply basic-path using the following
deterministic automaton A for exec(x):
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The application of the assertion rules requires that A have a memoryless
strategy. To achieve this, we add to the structure some new variables, called
history variables, and a new player h (for history). We let h play in coalition
with A and give it the task of maintaining the history variables: at every step, h
will make a deterministic choice for the history variables, and the game matrix
χ will simply copy these choices into the next stage of the game.

History Augmentations. Let h be a new player and Vh a new set of history
variables. We define the history augmentation of S with history Vh, denoted
S[h, Vh], to be the ads

Ŝ = 〈Ω̂, V̂S , V̂Ω, ξ̂, χ̂, F̂〉 ,

where:

– Ω̂ = Ω ∪ {h};
– V̂S = VS ∪ V ∗

h , where V ∗
h is a copy of Vh;

– V̂a = Va if a ∈ Ω;
V̂h = Vh;

– ξ̂a(V̂S , Va) ≡ ξa(VS , Va) if a ∈ Ω;
ξ̂h(V̂S , Vh) ≡ t;

– χ̂(V̂S , V̂Ω, V̂ ′
S) ≡ χ(VS , VΩ , V ′

S) ∧ V ∗
h
′ = Vh;

– F̂ ≡ F .

The History Rule. For an ltl formula ϕ,

history:
S[h, Vh] � p ⇒ ((A, h))ϕ

S � p ⇒ ((A))ϕ

where S[h, Vh] is a history augmentation of S.

4.5 Assertion Rules

After applying the previous rules as much as possible, we are left with a set of
statements of the form

S � p ⇒ ((A))q ,

where S is an ads, p and q are assertions, and ((A)) is one of the four alternating
quantifiers 〈〈A〉〉, �A�, 〈〈A〉〉f , �A�f . In this section we show how to reduce each of
these to first-order validities. First, we transform the fair quantifiers into unfair
ones by making the fairness conditions explicit. This reintroduces temporal oper-
ators in the scope of the alternating quantifier. The resulting temporal formula,
however, is of a special form that is dealt with directly by the assertion rule.
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From the definitions of the semantics of the alternating quantifiers it follows
that p ⇒ 〈〈A〉〉fq can be rewritten as the conjunction of the two statements

p ∧ q ⇒ 〈〈A〉〉(FΩ\A → FA) p ∧ ¬q ⇒ 〈〈A〉〉¬FΩ\A

and p ⇒ �A�fq as the conjunction of

p ∧ q ⇒ �A�FΩ\A p ∧ ¬q ⇒ �A�(FΩ\A ∧ ¬FA)

These statements are all of the form

p ⇒ ((A))F ,

where ((A)) is either 〈〈A〉〉 or �A� and F is a Boolean combination of ∞ atoms,
and can be rewritten as

S � p ⇒ ((A))
∧
i

(
∞J i

1 ∧ . . . ∧ ∞J i
k → ∞qi

)
.

(Technically, the number k of antecedents is different for every i. Without loss
of generality, we drop this distinction to lighten the notation.) Below we present
proof rules to reduce these particular forms to assertional verification conditions.

The Positive Assertion Rule. This rule applies to formulas of the form

p ⇒ 〈〈A〉〉
∧
i

(
∞J i

1 ∧ . . . ∧ ∞J i
k → ∞qi

)
. (4)

To apply the rule, we guess intermediate assertions ri and rj
i (for i ∈ {1, . . . , n}

and j ∈ {1, . . . , k}) and ranking functions δj
i on a well-founded domain 〈A, ≺〉.

pos-assertion:
p ⇒

∧n
i=1 ri

For every i ∈ {1, . . . , n}:
ri ⇒

∨k
j=1 ri

j

For every choice of {ji | i ∈ {1, . . . , n}}:

∧n
i=1(r

i
ji

∧ δi
ji

= ai) ⇒ cpreA

∧n
i=1

⎡⎢⎢⎢⎢⎣
(ri ∧ qi)

∨∨k
l=1(r

i
l ∧ δi

l ≺ ai)
∨

(ri
ji

∧ δi
ji

 ai ∧ ¬J i
ji

)

⎤⎥⎥⎥⎥⎦
p ⇒ 〈〈A〉〉

∧n
i=1

(
∞J i

1 ∧ . . . ∧ ∞J i
k → ∞qi

)
The intuition behind this rule is similar to that for the analogous rules for

ltl [9]. The ranking functions enforce progress towards realizing the qi, and the

Making Fairness Conditions Explicit. Recall that every fairness condition
Fa is a Boolean combination of atoms of the form ∞p, where p is an assertion.
We write ∞p instead of p to make it clear that we are now dealing with a
special case and not with arbitrary ltl formulas.
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rj
i denote regions inside which the ranking functions are constant. The verifica-

tion conditions assure that, assuming fairness of the adversaries, the players A
can eventually force the game out of these regions, and thus decrease the ranking.

This proof rule is sound and relatively complete to prove properties of the
form (4). Relative completeness means that, if (4) holds of a system, then there
exist assertions ri, ri

j , δ
i
j that are expressible in the language and satisfy the

premises.

Example 6. Returning to our running example, making the fairness conditions
of (3) explicit results in

x ∈ qu ∧ q0 ⇒ 〈〈Sched , a〉〉(F̂Env → F̂Sched ∧ F̂a) ,

or, equivalently

x ∈ qu ∧ q0 ⇒ 〈〈Sched , a〉〉(∞¬pa ∧∞pa →∞q1) ,

where we abbreviate q = q0 with q0 and q = q1 with q1.
To apply rule pos-assertion, with n = 1 and k = 2 (since n = 1, we drop

the superscripts), we need to find assertions r, r1, r2 and ranking functions δ1, δ2
(index 1 corresponds to the ∞¬pa requirement, index 2 to ∞pa) and then prove
the following verification conditions:

x ∈ qu ∧ q0 → r

r→ r1 ∨ r2

r1 ∧ δ1 = d→ cpreSched,a

[
(r ∧ q1) ∨ (r1 ∧ δ1 ≺ d)
∨ (r2 ∧ δ2 ≺ d) ∨ (r1 ∧ δ1 � d ∧ pa)

]
r2 ∧ δ2 = d→ cpreSched,a

[
(r ∧ q1) ∨ (r1 ∧ δ1 ≺ d)
∨ (r2 ∧ δ2 ≺ d) ∨ (r2 ∧ δ2 � d ∧ ¬pa)

]
We choose the following:

r : ((x ∈ qu ∨ x = xp) ∧ q0) ∨ q1

r1 : r ∧ pa r2 : r ∧ ¬pa
δ1 : 〈g, depth(x, qu), 1〉 δ2 : 〈g, depth(x, qu), 0〉

where

g =

{
0 if x = xp ,
1 otherwise

and depth(x, qu) is the distance from the head of the first occurrence of x in qu,
or 0 if x is not in qu. The domain of the ranking functions is {0, 1}×N× {0, 1}
with the standard lexicographic order. The main part of the ranking functions
is the depth term – its value decreases as we remove items from the head of qu,
provided the scheduler reinserts processes far enough back in the queue. The
other two components are adjustments needed for the cases of going from active
to not active (third component) and for the boundary case of x having left the
queue and being executed (first component).
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The Negative Assertion Rule. The negative assertion rule is used for for-
mulas of the form

p ⇒ �A�∧
i

(
∞J i

1 ∧ . . . ∧∞J i
k →∞qi

)
.

The rule and its properties are identical to the positive version, except that it
uses the predicate transformer upre instead of cpre.

5 Conclusions and Future Work

We have presented a sound and complete proof system for proving atl* prop-
erties over infinite-state alternating structures. The proof system can be used
as a basis for the construction of special-purpose proof systems for alternating
systems with a specific structure, e.g., turn-based or lock-step [1], or for prov-
ing specific properties, e.g., invariants or reachability. We expect that our proof
system will be particularly beneficial in the verification of security and contract-
signing protocols, which often have a very specific structure that can be exploited
to simplify the cpre predicate transformers.

Our proof system may also contribute to the construction of abstraction-based
verification methods. The foundations for proving atl* properties over infinite-
state alternating systems using abstraction were laid in [17]. However, methods
for finding a suitable abstraction function and proving its correctness, which for
infinite-state systems must necessarily rely on deduction, still require investiga-
tion. We expect that the proof rules presented here will provide valuable insights
in proving that a proposed abstraction is sound, since the corresponding verifi-
cation conditions are of the same form as those generated by our proof system.

Other areas for further investigation include the development of approxima-
tions and heuristics for special cases, e.g., automatic generation of ranking func-
tions; the construction of efficient decision procedures, tailored to the verification
conditions produced, e.g., for simple ∀∃ formulas over program types; and the
representation of proofs by diagrams, similar to verification diagrams [18], which
allow to reduce the complexity of the premises of the assertion rules, by making
use of user-provided structure.
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Abstract. Mainly concerned with type safety, Featherweight Java, or FJ, is a
well known minimal core for Java and Generic Java. However, in the type system
of FJ, the treatment of downcast is omitted. In this paper we propose a stronger
type system for FJ and FGJ. In order to deal with the cast problems, we introduce
some special techniques for types, and also strengthen the types for expressions
and methods in terms of the type declaration notations. Supported by the type sys-
tem and our techniques, we can ensure properties stronger than the ones proved
in Igarashi et al’s original FJ paper. Examples making the above mentioned con-
tributions clear are illustrated throughout this paper. Furthermore a case study on
design patterns showing the advantages of our results is given.

Keywords: Featherweight Java, Downcast, Type Safety, Observer Pattern.

1 Introduction

To understand the design of programming languages, a common practise is to develop
a formal model which defines lightweight fragments as a minimal core of the original
language. It is helpful to prove the key properties of languages.

Igarashi et al. presented a minimal core for Java: Featherweight Java, or FJ for
short [9]. FJ is a functional language which excludes not only complex features like
threads, exception handling, but also most basic features of Java, such as assignments.
With such a small language, rigorous proofs about the key property concerned — type
safety — can be clearly carried. In the paper, Igarashi et al. built a typing environment
for FJ and proved the main theorem, the type soundness theorem which ensues their
type safety for casts: a well-typed program is cast-safe if it includes only upcasts.

This minimal core is a significant attempt for static checking for Java programs.
However, the result is not precise enough in the sense that it says nothing about down-
casts which are frequently used in software development. For instance, many design
patterns [6] involve downcast, thus can not be analyzed in FJ framework. Although
sometimes the generic classes [1, 2] can be used to reduce the occurrences of downcast,
resulting a more complex system, the downcast can not be eliminated entirely. This
problem motivates this work, while we build another typing environment to capture the
essential of casts in the programs, to distinguish correct downcast, wrong downcast,
as well as suspicious downcast. In contrast to the main theorems in [9], our typing en-
vironment permits correct downcast, rejects wrong downcast, and leaves the least of

� Supported by NNSF of China (No. 605730081).

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 257–271, 2006.
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Fig. 1. The Inheritant Tree for Classes

suspicious downcast to the run-time checking. To intuitively illustrate the problem and
our approach, we consider a simple example as follows.

Suppose B is a well defined FJ class, we consider the following class declarations1:

class C extends B {...}
class D extends C {...}
class E extends D {...

C m(D x){ return (C)x; } // upcast
D q(){ return (D)new C(); } // wrong downcast

}
class F extends B {...

C m(D x){ return (E)x; } // suspicious downcast
C n(){ return (C)new D(); } // upcast
D p(){ return (D)(C)new E(); } // correct downcast
F r(){ return (F)new D(); } // stupid cast

}
(E)(new F().m(new D())) // suspicious downcast

Thus (E � D stands for that E is a subclass of D),

E � D � C � B, F � B

Figure 1 shows the class hierarchy defined by these class declarations, with the casts
presented in the definition by dashed arrows. We classify them into five cases:

– Upcast, e. g., (C)new D() or (C)x in the body of m in class E
– Wrong downcast, e. g., (D)new C(). The expression is wrong because it attempts

to cast an object to its subtype. It is wrong in any OO language.
– Correct downcast, e. g., (D)((C)new E()). We see that (D)(C)... is a

downcast. But the object upcasted by (C) has the original type E. So it is a correct
downcast which will not cause any execution error for sure.

– Suspicious downcast, e. g., “(E)x” in the body of m in F. The expression attempts
to cast a variable of type D to its subtype E. It seems not safe. But please notice
that, the real object type of x (of its value) is determined by the actual arguments

1 The syntax of FJ is given in Section 2. Readers could consider the programs as in general Java.
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during the execution. It is too early to sentence this expression to death at the static
checking phase. In our model, we will deal with this kind of downcast statically to
the full extent, and leave other non-determined ones to dynamic checking.

– Stupid cast, e. g., “(F)new D()” attempts to cast an object to a type without any
inheritance relationship.

In [9], the main theorem only ensures that when the type derivations of the whole
class table and the well-typed expression contain neither downcast nor stupid cast, the
expression can reduce to a final expression. This leaves too many cases with correct and
wrong casts to dynamic checking (Figure 2, left), thus makes a very weak type system.
This weakness is what we are going to remedy.

wit h
susp ic io us
do wn cast

wro n g
p ro gramwit h  co r rec t

do wn cast

up cast
o n ly

up cast
o n ly

wro n g
p ro gram

wro n g
cast

Fig. 2. The Effect Graph of [9] (left) vs The Effect Graph of Our Type System (right)

Inspired by [7], in this paper, we propose a stronger type system with an extended
typing environment. For expression e, we define its type as a pair (T1,T2), where T1
is called the expression type, etype(e), and T2 the object type, otype(e), to indicate
the type information known already about the real object. For instances, expression
(C)new E() has the type (C, E); and the type of new C() is (C, C). When a downcast
appears, we can validate it by comparing the casting type with the otype of the expres-
sion. For instances, type((D)(C)new E()) = (D,E) because E � D; but (D)new
C() is not well-typed because the otype of new C() is not a subclass of D.

To distinguish suspicious downcast from wrong downcast, we use two additional
forms of otype: �? and C�. Informally, �? indicates that the validity of the cast is not
sure, while C� indicates that the otype of the expression might be some subtype of C.
Another important technique used here is to strengthen types for methods. From the
application, it can reduce the non-determinism (�?) to some extent in static time.

Supported by these techniques, we can give better typing results than the ones given
in [9]. Figure 2 illustrates our contribution explicitly: The dashed region denotes the
programs which can not pass static type checking and dotted region for type safe pro-
grams. Our model admits more “good” programs and rejects more “bad” ones. While
paper [9] leaves all programs including downcast to the run-time checking, our model
reduces the white area to include only the programs with suspicious downcast.

Another important point is that our typing environment adopts a denotational style.
The typing rules and reduction rules in [9] are defined by operational transition rules
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Table 1. The Syntax of FJ

L ::= class C extends D {C f; K M}
K ::= C(C f){super(f); this.f=f}
M ::= C m(C x){return e;}
e ::= x|e.f|e.m(e)| new C(e)|(C)e

Table 2. The Syntax of FGJ

T ::= X|N
N ::= C〈T〉
L ::= class C〈X� N〉� N{T f; K M}
K ::= C(T f){super(f); this.f = f;}
M ::= 〈X� N〉 T m(T x){return e;}
e ::= x|e.f|e.m 〈T〉(e)| new N(e)|(N)e

which are non-deterministic. But the corresponding rules in this paper are defined in
the form of deterministic functions of type and eval.

The page limitation prevents us to include all the details of our work about FJ and
FGJ (a generic extension of FJ, Featherweight Generic Java), as well as the soundness
proofs in this paper. We will present the details of the FJ part here and leave some details
of the other half (about FGJ) to our research report [11].

The remainder of this paper is organized as follows. An overview of FJ and FGJ
is given in Section 2. Our typing system, evaluation function, and main results about
type safety are presented in Section 3. The overview of parallel results on FGJ is in
Section 4. In Section 5, we consider a case study about the Observer Pattern, and deal
with its cast problems with our type system. Then we have a conclusion.

2 A Brief Overview of FJ and FGJ

FJ [9] is a pure functional minimal core calculus of Java. This makes the property of
FJ easy to prove, and the proof may remain manageable for significant extensions. The
abstract syntax of FJ is listed in Table 1. It includes only five forms of expressions
(e): variables, field access, method invocation, object creation, and casting. A class
declaration (L) consists of names of the new class and its super class, a sequence of
field declarations C f, a constructor K, and a sequence of method declarations M. The
attributes and methods are both public. We use C to denote a possibly empty sequence
C1,C2, · · · ,Cn, also the same in f,e, etc. FJ contains only expressions without side
effects, which makes the semantics of the language more concise to describe. A program
in FJ is a sequence of class declarations plus an expression e to be evaluated.

The main property investigated in [9] is the type safety. A type system is built to
analyze FJ expressions statically. The model ensures that, for an expression e, if the
type derivation of the whole class table and the expression contains no downcasts or
stupid casts, then it is type safe.

Paper [9] presented also the corresponding minimal part of Generic Java as given
in [2], called Featherweight Generic Java (FGJ for short), which adds generic types
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to FJ. The syntax for FGJ is in Table 2. In FGJ, both classes and methods may have
generic type parameters. The relation extends is abbreviated to the symbol � for con-
venience. In the table, X over type variables, T ranges over types, representing both non-
variable types and type variables. For uniforming the definition of classes and methods,
as in [9], C〈〉, m〈〉 can be regarded as C,m respectively. Obviously, FJ is a proper subset
of FGJ. Also, [9] proved the type safety property for FGJ.

3 Semantic Model for FJ

Now we present the semantic model of FJ. We consider the static structures of a program
as its static semantics, while the evaluation of a program as dynamic semantics.

3.1 Static Semantics

Class Declaration. We denote the class declarations section as cdecls. The typing
environment extracted from cdecls is denoted by Γcdecls, which records the typing in-
formation of methods and attributes, and the inheritant structures presented in cdecls.
Γcdecls includes four fields: 〈cnames, superclass, attr, op〉, with the details as follows.

– cnames: the set of class names declared in cdecls plus the particular class Object,
which is the superclass of all classes. Object has no fields or methods.

– superclass: a partial relation between classes. C �→ D holds iff the declaration
class C extends D{· · · } is in cdecls, i.e., D is the direct superclass of C.
Each declared class has a direct superclass. We define subtype relation � as the
reflective and transitive closure of �→. If C � D, we call C the subtype of D.

– attr: a partial function from cnames to their attributes, defined as:

attr(C) def= {〈Ci fi〉|Ci fi is declared as an attribute of C}
∪ {attr(D)|D is the direct superclass of C}

The field attr records the names and types of all declared and inherited attributes
of every declared class. The predicate f ∈ attr(C) is used for brevity to denote that
∃C′ ∈ cnames, 〈C′ f〉 ∈ attr(C) holds.

– op: a partial function from cnames to signatures and bodies of methods, defined as:

op(C) def= op(D)⊕ {m �→ 〈(E → E), λx · e〉 | In(C,m(E,E), λx · e)}
where
• D is the direct superclass of C.
• In(C,m(E,E), λx ·e) means that m is a method of class C, with the declaration

of the form E m(E x){return e; }.

Some notations used in the semantics definitions are introduced for simplifying the
description. Suppose the current typing environment is Γ ,

– If Γ.op(C)(m) = 〈(E → E), λx · e〉, then we have:

sign(C,m) def= E → E, mbody(C,m) def= λx · e
– We use etype() to denote the initial declared type of class attributes or method pa-

rameters. If Γ.attr(C) = {〈C f〉}, then we have:

etype(C.fi)
def= Ci
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And if the parameter list of m is E x, then

paras(C,m) def= x and etype(xi)
def= Ei

Also, we will use etype(e) to denote the expression type of e, which will be ex-
plained below.

Type Language. For simplicity, FJ doesn’t have primitive types, thus each expression
is of some class type C. The type of a method, including the constructor, is a pair written
as C → D, where C is a sequence of parameter types and D is the return type. In our
model, in order to solve the problem of cast, we introduce a new type language for
expressions and methods in FJ, defined as follows. We use μ, ν to range over expression
types and method types respectively.

Expression types
μ ::=(C, τ ), τ ::= D | D� | �?
where C,D ∈ Γ.cnames are valid class names.
Method types
ν ::= (C,C′) → (D, τ)
where C,C

′
,D ∈ Γ.cnames are valid class names, and τ is defined as above.

The type of an expression in FJ is a pair (C, τ ), where τ has three forms: a valid class
name D, or D�, or �?. In the type, C is the static type of the expression, which is the
same as in [9], denoted by etype(e), while τ represents our knowledge about the real
type of the object that expression e refers, denoted by otype(e). The three forms of τ
represent three possibilities of the type of the object denoted by e: a class name D, a
subtype of a class D, or unknown �?, which can not be determined until the execution.

The type of a method is of the form (C,C′) → (D, τ). C and D are the corresponding
sequence of types of parameters and the return type in the method definition respec-
tively, while C′ are the types for the arguments computed from the body of the method,
which are subtype to C. We use C′ to record the fact that, the arguments of a method
may have further restriction than what in the declaration of the method. Sometimes the
arguments must have the stronger types than the types of formal parameter, to guarantee
that the execution of the method body will not stuck. However, we may not get the just
required types statically for arguments to guarantee the execution. Here we would like
to get the most requirement for method arguments by static analyzing to the full extent.

Types for Methods in FJ. Now we show how to compute the types for the methods,
i.e., the values of C′

, τ above. Suppose we have a method m defined in class A (we
assume the method m has only one parameter for simplicity):

class A · · · { · · · D m(C x){return e;} · · · }

We compute the least type required of the argument for x of method m. The least
type means that values of supertypes of it are definitely wrong for instantiating x in
execution. It is determined by the body e of m, denoted by rtypee(x). Before giving the
definition of rtype, we first classify a set of expressions cast(e) coming from e after
zero or more casts (here C ranges over valid class names in the environment Γ ).

cast(e) ::= e | (C)cast(e)
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Table 3. Definition of rtypee(x)

rtypee(x) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

etype(x) if x is not included in e
etype(x) if e = x

rtypee1 (x) if e = e1.fi
∧n

i=0(rtypeei(x)) ∧ rtypeg(xi)
if e = e0.m1(e) ∧ x = ei ∧ ∃D • otype(e0) = D

∧ Γ.op(D)(m1) = 〈(E → E), λx.g〉
∧n

i=0(rtypeei(x))
if e = e0.m1(e) ∧ (x 	= ei ∨ ¬∃D • otype(e0) = D)

∧n
i=1(rtypeei(x))

if e = new C(e)
C if e = (C)cast(x) ∧ C ! rtypecast(x)(x)
rtypee1 (x) if e = (C)e1 ∧ (e 	= (C)cast(x)

∨ C � rtypecast(x)(x))

rtypee(x) is defined by induction on the structure of e (Table 3, suppose e =
e1, · · · ,en), where C1 ∧ C2 returns the smaller type between C1 and C2. In a con-
text without confusion, we write rtype(x) instead of rtypee(x) for convenience. Now
we can see that we get the further required restriction for the argument for x. τ is the
otype of the expression body e of the method m , but on the premise that the type of
the parameter x is (etype(x), rtype(x)�). The computation of otype(e) will be defined
next in Table 4. Please note that, there are three forms of τ as defined above. Therefore,
the type of method m in class A is: typeA(m) = (C, rtype(x)) → (D, τ). We denote the
above four types that constitute typeA(m) as typeA(m)i(i=1,2,3,4) respectively.

Now we illustrate the computation of method type by a simple example. The impor-
tant thing is that, it makes great sense to reduce the cases of suspicious downcast. That
is, it can determine statically some suspicious downcasts whether correct or wrong.

class C extends D {· · · }
class E extends F { · · · D m(D x) {return (C)x;} }

The declared type of m in E is D → D. When m is invoked, we can not determine whether
the invocation is cast-safe statically, in general. For instance, new E().m(new D())

is not cast-safe; while new E().m(new C()) is cast-safe. The new form of method
type solves the problem. It advances some checking of the arguments from execution
time to static time. It rejects the first instance above. From the rules, the type of m is
(D,C) → (D,C�). Note C and C� are both better than the original types (D and D
here). From the typing rules defined later for expressions, new E().m(new D()) is
not well-typed because of the fact D � typeE(m)2. It turns the originally suspicious
downcast to wrong downcast statically.

Construction of Γcdecls. Now we show the construction of the typing environment from
a sequence of class declarations. Suppose the sequence cdecls considered is of the form:

cds1 class C extends D { C f; K E m(E x){ return e; } } cds2
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where cds1 and cds2 are two declaration sequences, which can both be empty. Here
class C (we will call the declaration cdec in the follows) includes just one method m
for simplicity, while its generalization to a class with an arbitrary number of methods
is rather longer, but trivial. Typing environment Γ is constructed and used to check the
class declared in progress. It is defined on induction with the initial value:

Γ∅ = 〈{Object}, {Object �→ Object}, {Object �→ ∅}, {Object �→ ∅}〉

Suppose we have built Γcds1, and also computed the type for method m: typeC(m) in
class C. Before adding corresponding information for cdec to the typing environment,
we must check whether the following condition, denoted by wt(cdec), holds in Γcds1,

wt(cdec) def= C ∈ Γcds1.cnames ∧ D ∈ Γcds1.cnames ∧ wt(K) ∧ wt(m) ∧ wt(f)
wt(m) def= E ∈ Γcds1.cnames ∪ {C} ∧ E ∈ Γcds1.cnames ∪ {C}

∧m ∈ Γcds1.op(D) ⇒ sign(C, m) = sign(D,m)
∧(wt(e) ∧ etype(e) � E),

where etype(x) = E, otype(x) = E�

and etype(this) = otype(this) = C.

wt(f) def= C ∈ Γcds1.cnames ∪ {C} ∧ f ∈ Γcds1.attr(D)

In case of overriding, if a method with the same name is declared in a subclass, then
it must have the same signature as its superclass. This is embodied in the definition
of wt(m). In any method body, we always have the fact that wt(this) = true. On
the premise of the typing information of method parameters x and the variable this,
wt(m) also checks whether the body of m is well-typed, i. e., wt(e) to be defined in the
sequel, and whether the method body type is the subtype of the return type.

The condition wt(K) checks that the constructor must first apply the corresponding
constructor of the superclass to the fields of the superclass and then initialize the fields
declared in this class, as showed in the syntax of FJ in Table 1. Here we omit the trivial
formalization. Predicate wt(f) states that the fields can not be redefined in subclass.

If wt(cdec) holds, we will continue to construct Γcds1∪cdec as follows; otherwise, we

will define Γcdecls
def= , which means that the typing environment fails to be built.

Γcds1∪cdec = 〈 Γcds1.cnames ∪ {C}, Γcds1.superclass ∪ {C �→ D},
Γcds1.attr ∪ {C �→ {〈C f〉} ∪ Γcds1.attr(D)},
Γcds1.op ∪ {C �→ Γcds1.op(D)⊕ {m �→ 〈typeC(m), λx · e〉}}〉

Typing FJ. The typing rules for FJ are given in Table 4. Γcdecls is the typing environ-
ment defined above. The typing rule for expression e consists of two parts: wtΓcdecls(e)
and typeΓcdecls

(e), where the predicate wtΓcdecls(e) checks whether e is well-typed in the
environment Γcdecls, and when it holds, typeΓcdecls

(e) records the type of e. From now
on, on the premise of no confusion, we will omit the environment Γcdecls and write
wt(e), type(e) and cnames, superclass, attr, op instead.

In order to solve the downcast problem, we use a pair (T1,T2) to represent the type
of expression e, where T1 is the static type of e denoted by etype(e), and T2 is the
type of the object that e refers in the run-time, denoted by otype(e). For example, if
e = (C)new D(v) is well-typed, then etype(e) = C, while otype(e) = D.
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Table 4. Typing FJ

Expr. Typing Rules

x wt(x) def= etype(x) ∈ cnames

type(x) def= (etype(x), etype(x)�)

e.fi
wt(e.fi)

def= wt(e) ∧ fi ∈ attr(etype(e))

type(e.fi)
def=
{

(etype(etype(e).fi), �?) if otype(e) = �?
(etype(etype(e).fi), etype(etype(e).fi)�) othewise

e0.m(e) Suppose that sign(etype(e0),m) = D → C,

wt(e0.m(e)) def=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wt(e0) ∧ wt(e) ∧ (m ∈ op(etype(e0)) ∧ etype(e) ! D∧∧n

i=1(∃Ei • otype(ei) = Ei ⇒ Ei ! (typeE0(m)2)i))
if ∃E0 • otype(e0) = E0

wt(e0) ∧ wt(e) ∧ (m ∈ op(etype(e0)) ∧ etype(e) ! D)
otherwise

type(e0.m(e)) def=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C, typeE0(m)4)
if for i = 0, 1, · · · , n, ∃Ei • otype(ei) = Ei
(C, otype(mbody(E0,m)))
if ∃E0 • otype(e0) = E0 ∧ (¬∃i∈1..n • otype(ei) = �?)
(C,

∨
∀i•Fi	E

(otype(mbody(Fi,m))))

if ∃E • otype(e0) = E� ∧ (¬∃i∈1..n • otype(ei) = �?)
(C, �?) otherwise

new C(e) wt(new C(e)) def= C ∈ cnames ∧ wt(e) ∧ etype(e) ! etype(C.f)

type(new C(e)) def=
{

(C, �?) if ∃ei ∈ e, otype(ei) = �?
(C,C) otherwise

(C)e wt((C)e) def= C ∈ cnames ∧ wt(e)
∧ (etype(e) ! C ∨ (C ! etype(e) ∧ otype(e) ! C)

∨ (C ! otype(e) ∧ ∃ E • otype(e) = E�)
∨ (C ! etype(e) ∧ otype(e) = �?))

type((C)e) def=
{

(C, �?) if ∃ E • otype(e) = E� ∧ C ≺ otype(e)
(C, otype(e)) otherwise

As stated before, we will distinguish two different kinds of casts: wrong downcast
and suspicious downcast. The key point lies in the fact that the otype of the entity for
wrong downcast and that for suspicious downcast are different: It is known for the first
kind of cases; however, only the upper bound of it is known for the second. There
are two other forms of the otype except the normal class type. As listed in Table 4,
the otypes of x and e.fi can be C� for some C, to mean that the type of the objects
referred by the expression is of some subtype of a knownC. When a downcast applied to
an expression e with its otype of the form C�, the cast is suspicious, and the expression
is treated as a well-typed one with otype assigned to �?. On the other side, expressions
containing wrong downcast are not considered as well-typed. Except for this case, type
C� acts the same as C. The type �? shows that the object type of the expression can
not be determined before the execution. From Table 4, we can see that �? occurs only
as values of otype and will spread over expressions containing suspicious downcast.
T1 ∨ T2 returns the greater type between them. We define for each T, T ∨�? = �?.
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Table 5. Evaluation of Expressions in FJ

Expression Evaluation

e.fi eval(e.fi)
def=
{

eval(ei) if e=new C(e)
eval(eval(e).fi) otherwise

e0.m(e) eval(e0.m(e)) def=

⎧⎨⎩
eval([e/x,new C(d)/this]mbody(C, m))

if e0 = new C(d)
eval(eval(e0).m(e)) otherwise

new C(e) eval(new C(e)) def=
{
new C(e) if new C(e) ∈ V
eval(new C(eval(e))) otherwise

(C)e eval((C)e) def=
{

eval(e) if e = new D(e) ∧ D ! C
eval((C)eval(e)) if e 	= new D(e)

3.2 Dynamic Semantics of FJ

The evaluation rules for expressions are given in Table 5, which are similar to reduction
rules in [9]. The value of expression e is denoted as evalΓ (e). To state the evaluation
rules formally, we give the definition of the set of values, V, as the final normal form2

of the evaluated expressions as follows:

V ::= new C()|new C(V) where C ∈ Γ.cnames

A program in FJ is of the form cdecls • e, where e is the main expression to be
evaluated. Now we can define the semantics of the whole program easily:

Definition 3.1. For a program cdecls • e, suppose the typing environment built from
cdecls is Γcdecls, then the semantics of the program is defined as:

[[cdecls • e]] def= evalΓcdecls(e)

3.3 Properties

Now we are ready to give the type soundness results. First, three lemmas are introduced.

Lemma 3.2 (Subject Evaluation). Suppose e is a well-typed expression in typing en-
vironment Γ . According to the evaluation rules in Table 5, if we have eval(e) =
eval(e′), and e′ is well-typed, then etype(e′) � etype(e). So particularly, if eval(e) ∈
VΓ , then we have etype(eval(e)) � etype(e).

Proof. See our report [11] for details. ��

Lemma 3.3 (Progress). Suppose e is a well-typed expression in Γ , then:

– If e includes new C(e).fi as a subexpression, then Γ.attr(C) = {〈C f〉} and
fi ∈ f.

– If e includes new C(d).m(e) as a subexpression, then mbody(C,m) is well-typed,
and |x| = |e|.

Proof. Immediate from the typing rules in Table 4 based on the structure of e. ��

2 In [9], it is not clearly defined.
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Lemma 3.4 (Stuck). Suppose e is a closed well-typed expression in typing environ-
ment Γ . If e is evaluated to e′ containing as a subexpression (C)new D(e) where
C ≺ D, then otype(e) = �?.

Proof. See our report [11] for details. ��

Theorem 3.5 (Typing Soundness). Suppose e is a closed well-typed FJ expression
in typing environment Γ , i.e., wtΓ (e) holds, then eval(e) is either a value in VΓ with
etype(eval(e)) � etype(e), or an expression containing (C)new D(e) where C ≺ D.
Particularly, the former holds if otype(e) �= �?.

Proof. Immediate from Lemma 3.2, 3.3 and 3.4. ��

From Theorem 3.5, a well-typed expression e is cast-safe, if otype(e) �= �?, i.e., e
contains no suspicious cast. Programs containing wrong downcast are not well-typed in
our system, while programs including only upcasts and correct downcasts are cast-safe.
Furthermore, some suspicious casts are determined actually wrong (not well-typed) or
correct statically. The results are more precise and much better than what of [9].

3.4 Examples

We give some examples here to illustrate the properties stated above.

Example 3.1. Look at the class declarations sequence listed in the introduction. In the
following, we check expressions containing various casts occurring in those class dec-
larations in our type system to show the better results than in [9].

– Expressions containing upcast:
e1 = (C)x in the body of m in E or e2 = (C)new D()
Typing : wt(e1) = (C ∈ Γ.cnames ∧ etype(x) ! C) = (true ∧ D ! C) = true

type(e1) = (C,D�)
wt(e2) = (C ∈ Γ.cnames ∧ wt(new D()) ∧ etype(new D()) ! C)

= true
type(e2) = (C, D)

Eval. : eval(e2) = eval(new D()) = new D() ∈ VΓ

– Expressions containing wrong downcast: e=(D)new C()
Typing : wt(e) = D ∈ Γ.cnames ∧ wt(new C())

∧((etype(new C()) ! D) ∨ (otype(new C()) ! D)
∨ (otype(e) = T�) ∨ (otype(e) = �?))

=false

– Expressions containing correct downcast: e=(D)((C)new E())
Typing : wt(e) = (D ∈ Γ.cnames ∧ wt((C)new E())

∧(otype((C)new E()) ! D)) = true
type(e) = (D, E)

Eval. : eval(e) = eval((D)eval((C)new E())) = eval((D)new E())
= eval(new E()) = new E() ∈ VΓ
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– Expressions containing suspicious downcast: e1 = (E)x in the body of m in F, or
e2 = (E)new F().m(new D())
Typing : From the fact that type(x) = (D,D�),

wt(e1) = E ∈ Γ.cnames ∧ wt(x) ∧ ((etype(x) ! E) ∨ (otype(x) ! E)∨
(E ! otype(x) ∧ otype(x) = T�) ∨ otype(x) = �?)

= true
type(e1) = (E, �?)

However, we can determine statically that the suspicious downcast in e2 is actually
a wrong downcast.
Typing : wt(e2) = otype(new D()) ! typeF(m)2 ∧ · · · = false

– Expressions containing stupid cast: e=(F)new D()
Typing : wt(e) = F ∈ Γ.cnames ∧ wt(new D())

∧((etype(new D()) ! F) ∨ (otype(new D()) ! F)
∨(otype(new D()) = T�) ∨ (otype(new D()) = �?))

= false

4 Parallel Results for FGJ

In the case of Featherweight Generic Java (FGJ), the situation is more complicated due
to the fact that many accessorial techniques to deal with type variables are involved.
However, we also obtained the parallel results for FGJ. In [11], we in detail present our
formalisms for FGJ including the static semantics, dynamic semantics and type systems.
We reached the property of Type Soundness which is better than that in [9], as similar to
the case of FJ. Our FGJ type model can also distinguish the correct, wrong and suspi-
cious downcasts statically and effectively. As in [9], We have also the Backward Com-
patibility property, which says that a well-typed FJ program is always a well-typed FGJ
program, and that FJ and FGJ evaluations correspond. For the page limitation, we omit
the detailed content in this paper. Please see [11] for the techniques as well as the proofs.

5 A Case Study

In this section, we consider a frequently used design pattern, Observer Pattern [6] and
deal with the corresponding cast problems. The whole program is written in FJ extended

Table 6. The Observer Pattern

class Observer extends Object { · · · }
class Subject extends Object {
private:
List observers; · · · ;

protected:
Object Attach(Observer o); // add observer o to the list of the subject
Object Notify(); · · ·

}
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Table 7. Example Client for the Observer Pattern

class Screen extends Observer {
· · ·
Object display(string s) { ... } }

class Point extends Subject {
· · ·

Object Notify(){
ListIterator i=new ListIterator(observers);
for(i.First(); !i.IsDone(); i.Next()){
this.updateObserver((Observer)i.CurrentItem());

} }
Object updateObserver(Observer o) {

((Screen)o).display("Color change.");
}

}

class Main extends Object {
Object main(){
List obl=nil; Point p=new Point(obl);
p.attach(new Screeen()); p.Notify();

}
}

with some other common language features. For example, we have used the sequential
composition and for command, and a method without return value is considered as with
return type Object. However, with respect to the type issues, these are not essential.
We can also check the program using the type system we built above.

Table 6 shows the Observer Pattern. A subject role maintains a list of observers
(“views”) to be notified when some event occurs. Method Attach provides a mean
to add new observer, while notify represents the event of interest. Table 7 shows
example client classes Screen, Point, and Main. Method main constructs and ini-
tializes a Subject, installs an Observer, and invokes Notify. In the process of
the type derivations of the class table CT [9] and Main, there are two places involv-
ing downcast: (Observer)i.CurrentItem() and (Screen)o. As a result, the
cast-safety of this program can not be determined by the type system in [9]. Our type
system can determine that the program is well-typed and cast-safe.

We should build the environment Γ for the program first, and then check the main
method (corresponding to the closed expression to be evaluated in FJ). We can know
that the environment Γ is well-built. We omit the detailed form of Γ here. The main
method is also well-typed by our typing rules. We focus on the cast problems now, and
investigate the two downcasts here:

– (Screen)o
Note that the method type has the form (C,C’) → (D, τ). We can compute that the
type for method updateObserver is

(Observer, Screen) → (Object, Object)
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– (Observer)i.CurrentItem()
Because type(i.CurrentItem()) = (Object,Object�), so according to
the typing rules, type((Observer)i.CurrentItem()) = (Observer, �?).
This kind of downcast problem lies in the use of the container class List and its
iterator ListIterator, whose element types are both Object. It can be solved
easily by the addition of generic classes in FGJ. So the program itself can have a
little modification, which leads to the deletion of the downcast without change of
the semantics. Then we make use of the corresponding typing rules and theorems
in our FGJ system. We can see that our FGJ system solves this kind of downcasts
entirely (The original downcast is deleted!):
class Subject extends Object {
List〈Screen〉 observers;
· · · // same as above

}
class Point extends Subject {
Object Notify() {
ListIterator〈Screen〉i=new ListIterator〈Screen〉(observers);
for(i.First(); !i.IsDone(); i.Next()) {

updateObserver(i.CurrentItem 〈Screen〉());
// note the deletion of the downcast

}
· · · }
class Main extends Object {
Object main(){ List〈Screen〉 obl=nil; · · · //same as above
} }

– In the end, from the typing rules, otype(main( )) = Object �= �?. We take the
type of the last non-structural command as the type of the whole sequential.

According to the type soundness theorem in FGJ, the program is cast-safe.

6 Conclusions and Future Work

In this paper, we build a type system for FJ and FGJ. Supported by this model and
some special techniques, such as paired types for expressions and methods, “C�” type,
and “�?” type, we proved similar, but stronger results than the ones in [9]. Using our
results, the system can ensure more programs to be type safe and reject more incorrect
programs during the static checking, and further, leave only the really suspicious ones
to the dynamic checking, which are also plausibly correct programs.

Nipkow et. al [10] presented Javalight-a large subset of the sequential part of Java.
They gave the type soundness theorem, and prove it in the theorem prover Isabelle/HOL,
which makes machine-checked language design become a reality. Many core calculi for
Java language, such as [3, 4, 5], are proposed. The authors gave proofs of type soundness
in their subsets of Java. But all of these work did not precisely describe the cast cases as
what we do here. In [7], J. He et al. proposed a denotational semantics for OO programs
using Unifying Theories of Programming [8]. The idea of etype and otype used here
is enlightened by that work. One can see that our wt() seems similar to their D().
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However, there are clear differences between our work and theirs: Firstly, we focus
on a different language and different problems. Secondly, they used D() to denote
the precondition of designs, and made not distinction of dynamic checking from static
checking. The last, but not the least, we propose the �? and C� as otype in the typing
environment. We have not found literature with such notations in the type systems.

As for the future work, we will continue to investigate the properties of FJ and FGJ
using our framework. In order to reason across the programs in different languages,
we want to define a linking function between programs of FJ and FGJ. Hopefully, this
linking can preserve some properties such as type safety, evaluation results, etc. An-
other future work is to extend our results for FJ (and FGJ) to more fully-fledged OO
languages, to connect the results to the practical programming.

Acknowledgement. Quan Long would like to show his great appreciations to Jifeng He
and Zhiming Liu for introducing him [7] and the knowledge of denotational models.
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Abstract. Partizan Games (PGs) were invented by John H. Conway
and are described in his book On Numbers and Games. We formalize PGs
in Higher Order Logic extended with ZF axioms (HOLZF) using Isabelle,
a mechanical proof assistant. We show that PGs can be defined as the
unique fixpoint of a function that arises naturally from Conway’s original
definition. While the construction of PGs in HOLZF relies heavily on the
ZF axioms, operations on PGs are defined on a game type that hides its
set theoretic origins. A polymorphic type of sets that are not bigger than
ZF sets facilitates this. We formalize the induction principle that Conway
uses throughout his proofs about games, and prove its correctness. For
these purposes we examine how the notions of well-foundedness in HOL
and ZF are related in HOLZF. Finally, games (modulo equality) are
added to Isabelle’s numeric types by showing that they are an instance
of the axiomatic type class of partially ordered abelian groups.

1 Introduction

Partizan Games are extensively and beautifully described in Conway’s book
ONAG [1]. In this paper, we will instead focus on the issues that arise when rep-
resenting and reasoning about PGs in the mechanical theorem proving assistant
Isabelle1. For PGs we improve on the methods of Mamane, who has formalized
PGs and surreal numbers, which are a special kind of PGs, in Coq [2]. Especially,
our constructions and proofs are in direct relation to the ones found in ONAG
and therefore short. The proofs in [2] often deviate from the original proofs and
are (much) longer. This difference has two major reasons:

1. We use a logic / axiom system, HOLZF, that is very suitable for formalizing
set-theoretic notions but still offers the advantages of Higher Order Logic,
so that we can define our own type of games. Mamane uses the Calculus of
Inductive Constructions (CIC).

2. We have formalized the induction principle that Conway uses, and proved
its correctness once and for all. Actual inductions in the proofs about games
are simple instantiations of this general induction principle.

� Supported by the Ph.D. program “Logik in der Informatik” of the “Deutsche
Forschungsgemeinschaft.”

1 The theory files can be downloaded from [14].

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 272–286, 2006.
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Mamane has identified this induction principle and calls it permuting induc-
tion (and so will we) but has neither proven nor formalized it [2]. We show
that also Conway’s transitivity proof is perfectly correct according to this
principle, contrary to what Mamane [2] states. On the other hand we have
discovered a true flaw in one of Conway’s proofs.

This paper can be seen from two points of view. One is that this paper is about
formalizing PGs, and in order to achieve this, we will introduce Isabelle/HOLZF
and some properties of it. The other point of view is that it really is about
Isabelle/HOLZF, a logic that extends both Higher Order Logic (HOL) and
Zermelo-Fraenkel set theory (ZF), and about the first application of it, namely
formalizing games, that neither Isabelle/HOL nor Isabelle/ZF is suitable for.

2 Which Axiom System Suits Partizan Games?

Conway defines Partizan Games inductively:

If L and R are any two sets of games, there is a game G = {L | R}. All
games are constructed this way. The left options of G are the elements
of L, and R is the set of right options of G. Two games G and H are
called identical if they have the same left and right options.

Underlying this definition is the idea that every game has certain positions and
is played by two players, Left and Right. Every position is characterized by the
moves that either of both players could make if it were his turn. Each such move
leads to a new position. In a given position G a move is identified with the
position it leads to. The moves of Left are called the left options of G, the moves
of Right are called the right options of G. Identifying a game with its starting
position we arrive at the above definition of games.

There is a restriction on PGs that Conway demands: There is no infinite
sequence of games (Gi)i∈IN such that Gi+1 is an option (left or right) of Gi. This
restriction is contained in the definition of PGs if set is understood in the sense
of Zermelo-Fraenkel set theory.

Isabelle is a generic theorem prover [8]. Its meta logic is intuitionistic higher
order logic, on top of which other logics can be built by asserting axioms and
declaring types. Two such extensions of pure Isabelle are in more widespread use
and we argue that neither of them is suitable for mechanizing Partizan Games:

Isabelle/HOL [8] is the Isabelle implementation of Higher Order Logic. It
features packages for defining datatypes and general recursive functions. We
might be tempted to use the datatype package to define the game type:

datatype game = Game (game set) (game set). (1)

If admissible, this statement would define a new type game that has one
constructor Game that takes as arguments a game set, the left options of
the game, and a further game set, the right options. But this statement is not
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admissible because Game L needs to be an injective function for any fixed
L but cannot be; as a consequence of the Schroeder-Bernstein theorem one
can prove in HOL that no function of type ′a set ⇒ ′a is possibly injective.

Isabelle/ZF [6,7] is based on classical first-order logic and the axioms of ZF set
theory. Here we might try to use the provided facilities to define fixpoints;
let us define a function h by

h A = {(L, R) | L ⊆ A ∧ R ⊆ A}. (2)

Any set G that fulfills the fixpoint equation h G = G would be a good can-
didate for a set of Partizan Games. But the cardinality of hA is greater than
that of A for all sets A and therefore there is no such candidate. Therefore,
Partizan Games do not form a set but rather a proper class.

In Isabelle/HOLZF we can solve all these problems; the next section introduces
and describes Isabelle/HOLZF.

3 HOLZF = HOL + ZF

We obtain Isabelle/HOLZF by starting from Isabelle/HOL and introducing a
new type ZF and a relation Elem of type ZF ⇒ ZF ⇒ bool on it; we then make
this type into the universe of ZF sets by postulating the ZF axioms.

That something like Isabelle/HOLZF could be possible was suspected by
Tjark Weber and the author when they tried to formalize the semantics of the
λ-calculus in Isabelle/HOL (and failed). The actual viability and how-to of the
approach was brought to the attention of the author by Bob Solovay who out-
lined HOLZF on the Isabelle mailing list and claimed that “for certain reasons he
needed such a monster”, opposing Larry Paulson’s remark that HOLZF might
be “too much of a good thing”. Bob Solovay also provided a proof of the consis-
tency of HOLZF relative to the consistency of ZFC + ’there is an inaccessible
cardinal’. Mike Gordon has worked on HOLZF already ten years ago [3]. He uses
the name HOL-ST instead of HOLZF. Also, Sten Agerholm has used HOL-ST
to formalize the inverse limit construction of domain theory to build a model of
the λ-calculus [4].

We use the same axioms as Gordon in [3] with one exception; his axiom of
separation is superfluous if one is willing to apply the axiom of choice which
HOL provides via the Hilbert choice operator.

We first declare the new type ZF and introduce six new constants denoting
the empty set (Empty), the element relation (Elem), the sum or union operator
(Sum), the power set operator (Power), the replacement operator (Repl) and
an infinite set (Inf ):

typedecl ZF

consts
Empty :: ZF
Elem :: ZF ⇒ ZF ⇒ bool
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Sum :: ZF ⇒ ZF
Power :: ZF ⇒ ZF
Repl :: ZF ⇒ (ZF ⇒ ZF ) ⇒ ZF
Inf :: ZF

Standard constructions like unordered pairs (Upair), the singleton set (Single-
ton) and the union of two sets (union) are defined in terms of the new constants.
We also need the function SucNat which just encodes the successor of a natural
number as a set in the standard way.

Our seven axioms can now be expressed as follows:

axioms
Empty : ¬ (Elem x Empty)
Ext : (x = y) = (∀ z . Elem z x = Elem z y)
Sum: Elem z (Sum x) = (∃ y . Elem z y ∧ Elem y x)
Power : Elem y (Power x) = (∀ z . Elem z y −→ Elem z x)
Repl : Elem b (Repl A f ) = (∃ a. Elem a A ∧ b = f a)
Regularity : A 	= Empty −→ (∃ x . Elem x A ∧ (∀ y . Elem y x −→ ¬ (Elem y A)))
Infinity : Elem Empty Inf ∧ (∀ x . Elem x Inf −→ Elem (SucNat x) Inf )

As mentioned, separation (Sep) can be defined in terms of replacement and does
not need an extra axiom.

constdefs
Sep :: ZF ⇒ (ZF ⇒ bool) ⇒ ZF
Sep A p ≡ (if (∀ x . Elem x A −→ ¬ (p x)) then Empty else
(let z = (ε x . Elem x A ∧ p x) in
let f = λ x . (if p x then x else z) in Repl A f ))

We also define ordered pairs (Opair):

constdefs
Opair :: ZF ⇒ ZF ⇒ ZF
Opair a b ≡ Upair (Upair a a) (Upair a b)
Fst :: ZF ⇒ ZF
Fst q ≡ ε x . ∃ y . q = Opair x y
Snd :: ZF ⇒ ZF
Snd q ≡ ε y . ∃ x . q = Opair x y

The reasoning about these constants is easy if one can prove an equation for
the constant that is characteristic for it and has the form of a simple logical
equivalence so that the constant does not appear any more on the right hand
side. In that way the actual work can be delegated to the classical reasoner
and to the simplifier of Isabelle/HOL. The characteristic equations for Upair,
Singleton, union, Sep, Opair, Fst and Snd are:

Elem x (Upair a b) ≡ x = a ∨ x = b,
Elem x (Singleton y) ≡ x = y,
Elem x (union A B) ≡ Elem x A ∨ Elem x B,
Elem b (Sep A p) ≡ Elem b A ∧ p b,
Opair a b = Opair c d ≡ a = c ∧ b = d,
Fst (Opair x y) ≡ x,
Snd (Opair x y) ≡ y.



276 S. Obua

The development of set theory proceeds along the same lines as in Isabelle/ZF [6].
We have not developed the whole theory but at least the pieces that are necessary
to later construct Partizan Games. Paulson goes on building up an infrastructure
for inductive definition and recursion within set theory [7]. This machinery is not
sufficient in order to deal with Partizan Games as we have seen before. But this is
no problem anyway because we can rely on the machinery of fixpoints, primitive
and well-founded recursion that already exists in HOL instead of replicating the
mechanisms of ZF! Before delving into that let us first construct Partizan Games
in HOLZF.

4 Constructing Partizan Games

Partizan Games do not form a ZF set but, if they exist at all, only a proper
class as we have explained earlier. Intuitively, a proper class is a collection of
elements that is too ‘big’ to form a ZF set but which is rather defined by a
property which all elements of the class, and only those, share. In HOL we have
the polymorphic type of sets at our disposal which is just an abbreviation for a
predicate / property:

α set = α ⇒ bool. (3)

Therefore we call an object of type ZF set a class. When we discuss well-
foundedness we will see that this is the right intuition. An object of type ZF
is referred to as set. If we are talking about an object of type α set and we do
not have necessarily α = ZF then we use the expression HOL set.

For each set there is a corresponding class which we obtain by applying the
explode function to the set.

constdefs
explode :: ZF ⇒ ZF set
explode z ≡ { x . Elem x z }
implode :: ZF set ⇒ ZF
implode ≡ inv explode

Obviously we have the characteristic equations

(x ∈ explode X ) = Elem x X, implode (explode x ) = x . (4)

The empty set corresponds to the empty class ∅:

explode Empty = ∅. (5)

What about the universal class UNIV ? Russell’s Paradox allows us to prove that
there is no set which corresponds to the universal class:

explode z �= UNIV . (6)

Classes without a corresponding set are called proper.
We are now able to fix (2) by defining the function whose fixpoint we are

interested in not on sets but on classes:
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constdefs
fixgames :: ZF set ⇒ ZF set
fixgames A ≡ { Opair l r | l r . explode l ⊆ A ∧ explode r ⊆ A}

It is easy to see that fixgames is a monotone function,

mono fixgames, (7)

where mono is defined by

mono f ≡ ∀A B . A ≤ B −→ f A ≤ f B . (8)

Note that for HOL sets ≤ is just ⊆. The Knaster-Tarski theorem is already
available in Isabelle/HOL for the complete lattice of HOL sets:

mono f =⇒ lfp f = f (lfp f ), mono f =⇒ gfp f = f (gfp f ), (9)

where lfp is the least and gfp the greatest fixpoint operator. Therefore we know
that fixgames has a fixpoint. Every such fixpoint would be acceptable as a sen-
sible definition for Partizan Games so we pick the least and the greatest.

constdefs
games-lfp :: ZF set
games-lfp ≡ lfp fixgames
games-gfp :: ZF set
games-gfp ≡ gfp fixgames

From (9) we deduce

games-lfp = fixgames games-lfp, games-gfp = fixgames games-gfp. (10)

Every fixpoint G of fixgames is bounded by games-lfp and games-gfp:

G = fixgames G =⇒ games-lfp ⊆ G ∧ G ⊆ games-gfp. (11)

So it seems that we can choose among several, maybe infinitely many definitions
for Partizan Games! Fortunately, there is only one fixpoint of fixgames :

games-lfp = games-gfp. (12)

To see why, we first define the options of a game.

constdefs
left-option :: ZF ⇒ ZF ⇒ bool
left-option g opt ≡ (Elem opt (Fst g))
right-option :: ZF ⇒ ZF ⇒ bool
right-option g opt ≡ (Elem opt (Snd g))
is-option-of :: (ZF × ZF ) set
is-option-of ≡ {(opt , g) . g ∈ games-gfp ∧ (left-option g opt ∨ right-option g opt)}

We prove
g ∈ games-gfp −→ g ∈ games-lfp (13)

by induction over g.
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Proof. Let us assume that (13) holds for all options of g, that is for all opt such
that (opt , g) ∈ is-option-of. Let us further assume g ∈ games-gfp. Because of
games-gfp = fixgames games-gfp there are L and R such that

g = Opair L R, explode L ⊆ games-gfp, explode R ⊆ games-gfp. (14)

All elements of explode L and explode R are options of g. Applying the induction
hypothesis yields explode L ⊆ games-lfp and explode R ⊆ games-lfp. Because of
fixgames games-lfp = games-lfp we deduce g ∈ games-lfp. ��

Therefore (12) holds.
The alert reader might not be entirely convinced. And rightly so! Above proof

only holds up if is-option-of is a well-founded relation. So it is time now to turn
to well-founded relations in HOLZF.

5 Well-Foundedness and Induction in HOLZF

In Isabelle/HOL a relation is called well-founded (wf ) if it comes with an induc-
tion principle:

wf r ≡ ∀P . (∀ x . (∀ y. (y, x ) ∈ r −→ P y) −→ P x ) −→ (∀ x . P x ). (15)

The predicate wf has type (α × α) set ⇒ bool. Equivalent to (15) is that every
non-empty HOL set has a minimal element with respect to the relation:

wf r = (∀Q x . x ∈ Q −→ (∃ z∈Q . ∀ y. (y, z ) ∈ r −→ y /∈ Q)). (16)

In order to complete our above proof that fixgames has a unique fixpoint we
have to show:

wf is-option-of. (17)

But is-option-of is already a fairly complicated relation; we have to consider
both left and right options. Looking around we discover a more basic relation:

constdefs
is-Elem-of :: (ZF × ZF ) set
is-Elem-of ≡ {(a,b) . Elem a b}

Because of the way we constructed ordered pairs we can derive

∃ z . Elem x z ∧ Elem y z ∧ Elem z (Opair x y). (18)

Now assume (opt , g) ∈ is-option-of. This implies g ∈ games-gfp = fixgames
games-gfp and therefore we know that there exist sets L and R such that g =
Opair L R and Elem opt L ∨ Elem opt R. Together with (18) follows

(opt , g) ∈ is-option-of =⇒ ∃ u v . Elem opt u ∧ Elem u v ∧ Elem v g, (19)

and further
is-option-of ⊆ is-Elem-of +. (20)
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Here r+ denotes the transitive closure of the relation r which is of course well-
founded if r is. Therefore we are left with the proof obligation

wf is-Elem-of. (21)

It is not exaggerated to call (21) the main theorem of well-foundedness in
HOLZF. Despite that, to the author’s knowledge it has neither been considered
nor proven in previous work on HOLZF/HOL-ST.

Of course the Elem relation is well-founded on every set P ; for every nonempty
subset K of P there is a such that Elem a K and ∀ x . Elem x a −→ ¬ Elem x K
hold. This is a direct consequence of the axiom of regularity. Considering (16),
what (21) says is that Elem is also well-founded on every class P!

Once this is understood, standard literature on set theory tells us how to
proceed [10, ch. 6]. We introduce the notion of ZF-well-foundedness (wfzf ):

constdefs
Ext :: ( ′α × ′β) set ⇒ ′β ⇒ ′α set
Ext R y ≡ {x . (x , y) ∈ R}

regular :: (ZF × ZF ) set ⇒ bool
regular R ≡ ∀A. A 	= Empty −→

(∃ x . Elem x A ∧ (∀ y . (y , x) ∈ R −→ ¬ (Elem y A)))

set-like :: (ZF × ZF ) set ⇒ bool
set-like R ≡ ∀ y . ∃ z . Ext R y = explode z

wfzf :: (ZF × ZF ) set ⇒ bool
wfzf R ≡ regular R ∧ set-like R

A ZF-well-founded relation is therefore a relation R that is

1. regular, that is it is well-founded on every set, and
2. set-like, that is for any x the class Ext R x of all predecessors of x is a set.

Because of the axiom of regularity we have regular is-Elem-of. Obviously

Ext is-Elem-of = explode (22)

holds, therefore we also know set-like is-Elem-of. Finally we deduce

wfzf is-Elem-of. (23)

Thus the main theorem (21) can be reformulated as

wfzf R =⇒ wf R. (24)

The proof of (24) is quite involved, at least if one needs to build all the tools from
scratch. We refer the reader who is interested in the details to the set theory
literature [10, ch. 6] or the Isabelle theory files themselves [14].
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6 The Type of Games

So there is a unique class of Partizan Games. If we carefully listen to Conway’s
‘cry for a Mathematician’s liberation movement’, also known as Appendix to
Part Zero of ONAG, we might hear that it is desirable to package this class as a
type so that we can forget about its set-theoretic origin. Software engineers call
this approach data abstraction.

Defining the type is easy enough:

typedef game = games-lfp

The next item on our wish list is to have a function Game that takes the left
and right options of a game as arguments and constructs a game out of them.
But what type should the left and right options have, maybe game set? We have
seen earlier that this does not work; we would want Game to be injective, but
there is no injective function of type

Game :: (game set) ⇒ (game set) ⇒ game. (25)

A solution to this problem would be not only to introduce the type of games,
but also the type gameset of sets of games.

But this would entail the dreary definition of element relation, union operator
and so on just for this one type.

There is a better solution; we still introduce a new type and we still have to
define a third suit of operators on ‘sets’, but we do it in a general way. This
new type is a natural addition to the types already available in HOL which is
definable only in HOLZF:

typedef ′α zet = {A :: ′α set . ∃ f z . inj-on f A ∧ f ‘ A ⊆ explode z}
We define a polymorphic type zet of ‘sets’ that are ‘not bigger’ than some set
of type ZF. We need a new name for them in order to not confuse them with
our other notions class, set and HOL set. We will call them zets. A zet of type
α zet corresponds to an HOL set A of type α set such that there is a set z and
a mapping f from α to ZF such that the image of A under f is contained in the
class that corresponds to z. We ensure that f preserves the size of A by requiring
f to be injective on A.

We then define operators on zets that mimic those available on sets. We will
not bother the reader with details here; we just state the names of the functions
that are used frequently and also their characteristic property:

name :: type characteristic property

zin :: α ⇒ α zet ⇒ bool
zempty :: α zet ¬ zin x zempty

zimage
:: (α ⇒ β) ⇒ α zet ⇒ β zet zin y (zimage f A) = (∃ x . zin x A ∧ y = f x)

zunion :: α zet ⇒ α zet ⇒ α zet zin x (zunion a b) = (zin x a ∨ zin x b)

Now we are equipped with the tools to introduce the left and right options of a
game; we also introduce the Game constructor we wanted all along.
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consts
left-options :: game ⇒ game zet
right-options :: game ⇒ game zet
options :: game ⇒ game zet
option-of :: (game × game) set
Game :: game zet ⇒ game zet ⇒ game

Again, we do not give definitions here; the curious reader is referred to the
Isabelle theory file. All that matters are the characteristic properties which have
been proven from the definitions:

(Game L1 R1 = Game L2 R2 ) = (L1 = L2 ∧ R1 = R2 ), (26)
g = Game (left-options g) (right-options g), (27)

zin opt (left-options g) =⇒ zin opt (options g), (28)
zin opt (right-options g) =⇒ zin opt (options g), (29)

((opt , g) ∈ option-of ) = zin opt (options g). (30)

The construction of our game type is completed by proving

wf option-of. (31)

This is an immediate consequence of the well-foundedness of is-option-of and
gives us an induction principle for games.

7 The Partially Ordered Group Pg

In this section we formalize comparison, equality, addition and negation of games
and show that they form a partially ordered group when considered modulo
equality. We will not give any intuition behind these operations; ONAG provides
plenty of intuition.

Easiest to define is the negation of games:

consts
neg-game :: game ⇒ game

recdef neg-game option-of
neg-game g = Game (zimage neg-game (right-options g))

(zimage neg-game (left-options g))

The above statements define neg-game via well-founded recursion over option-of.

lemma neg-game (neg-game g) = g
apply (induct g rule: neg-game.induct)
. . .

The short proof (8 lines) of the lemma above is by induction over g using the
automatically generated and pre-proven induction rule neg-game.induct :

(
∧

g. (∀ x . zin x (left-options g) −→ P x )

=⇒ (∀ x . zin x (right-options g) −→ P x )
=⇒ P g) =⇒ P x (32)
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Next comes comparison of games:

consts
ge-game :: (game × game) ⇒ bool

recdef ge-game (gprod-2-1 option-of )
ge-game (G, H ) =

(∀ x . if zin x (right-options G) then (
if zin x (left-options H ) then ¬ (ge-game (H , x) ∨ (ge-game (x , G)))

else ¬ (ge-game (H , x)))
else (if zin x (left-options H ) then ¬ (ge-game (x , G)) else True))

The above definition uses the if -operator to give recdef the necessary hints for
proving termination. A better definition can easily be derived:

ge-game (G, H ) = (∀ x . (zin x (right-options G) −→ ¬ ge-game (H , x ))
∧ (zin x (left-options H ) −→ ¬ ge-game (x , G))).

Because ge-game is essentially a function of two arguments which swaps the
order of its arguments when calling itself recursively it is important to provide
the right termination relation, gprod-2-1 option-of, where

gprod-2-1 R ≡ {((a, b), (c, d)) | a = d ∧ (b, c) ∈ R ∨ b = c ∧ (a, d) ∈ R.

It seems clear that wf (gprod-2-1 R) should follow from wf R; we need to prove
this, otherwise recdef will reject above definition of ge-game. Actually, gprod-2-1
is only a special case of a more general well-founded relation that crops up in
most definitions and proofs dealing with games. Mamane calls the induction
principle that this relation induces permuting induction [2, p. 41, p. 95]. He was
not able to formalize the principle in CIC but only instances of it like gprod-2-1.
We have a problem at this point, too; our general relation should not only deal
with pairs of games, but with n-tuples of games for arbitrary n. So for n = 2
our relation should have type

((game × game) × (game × game)) set (33)

but for n = 3 it must have type

((game × game × game) × (game × game × game)) set (34)

and so on. We have no dependent types available in HOL, but there is a solution;
we define our relation not on tuples, but inductively on lists.

consts
lprod :: ( ′α × ′α) set ⇒ ( ′α list × ′α list) set

inductive lprod R
intros

(a, b) ∈ R =⇒ ([a], [b]) ∈ lprod R
(ah@at , bh@bt) ∈ lprod R =⇒ (a,b) ∈ R ∨ a = b

=⇒ (ah@a#at , bh@b#bt) ∈ lprod R

Here xs@ys denotes the concatenation of two lists xs and ys, x#xs denotes the
consing of x to the list xs ; lprod R is really a generalized version of gprod-2-1 R:
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gprod-2-1 R ⊆ inv-image (lprod R) (λ(a, b). [a, b]). (35)

The inverse image inv-image R f of a relation R under a map f is well-founded
if R is. Therefore all we have to show is the well-foundedness of lprod R which
then proves the well-foundedness of gprod-2-1 R and similar relations. Using
induction one shows

lprod R ⊆ inv-image (mult (R+)) multiset-of, (36)

that is we reduce the well-foundedness of lprod R to the well-foundedness of the
multiset order mult (R+). The function multiset-of takes a list as its argument
and returns the corresponding multiset. See [9, ch. 2.5] for more information on
multisets and the multiset order. Luckily, multisets have already been formal-
ized in Isabelle and the well-foundedness of mult (R+) is available as a lemma.
Therefore we show easily

wf R =⇒ wf (lprod R). (37)

When showing that ge-game is a partial order, one has to show transitivity:

ge-game x y =⇒ ge-game y z =⇒ ge-game x z. (38)

The proof of (38) that Conway gives in ONAG is particularly short and elegant.
Mamane gives a much longer CIC proof [2, pp. 49-53]. We have a short proof
(44 lines in Isar) that is in direct correspondence to the proof of Conway. The
trick is to convert a statement of the form P x y z where in this case we set

P x y z ≡ ge-game (x , y) ∧ ge-game (y, z ) −→ ge-game (x , z ), (39)

into a statement of the form ∀ x y z . gs = [x , y, z ] −→ P x y z and prove this
by well-founded induction over gs with respect to lprod option-of. This ensures
that when trying to prove P x y z we can use the induction hypothesis P a b c
for all a, b and c that fulfill

([a, b, c], [x , y, z ]) ∈ lprod option-of. (40)

Currently one has to show manually that (40) holds for particular instances,
typically involving proofs of two or three lines using the introduction rules for
lprod. Of course this could be automated.

Equality (eq-game) is defined in terms of ge-game. Addition (plus-game) is
defined recursively; there are no technical differences to the definition of ge-game.
We also introduce the zero game (zero-game).

constdefs
eq-game :: game ⇒ game ⇒ bool
eq-game G H ≡ ge-game (G, H ) ∧ ge-game (H , G)

zero-game :: game
zero-game ≡ Game zempty zempty
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consts
plus-game :: game × game ⇒ game

recdef plus-game gprod-2-2 option-of
plus-game (G, H ) = Game

(zunion (zimage (λ g . plus-game (g , H )) (left-options G))
(zimage (λ h. plus-game (G, h)) (left-options H )))

(zunion (zimage (λ g . plus-game (g , H )) (right-options G))
(zimage (λ h. plus-game (G, h)) (right-options H )))

Most properties of addition and comparison are straightforward to prove; just
copy the proofs that Conway gives and apply above reformulation technique.
There is one proof though where this does not work because the proof that
Conway gives is flawed. The proof is supposed to verify the theorem

ge-game (y, z ) = ge-game (plus-game (x , y), plus-game (x , z )). (41)

The error is on page 18 of ONAG in the proof of theorem 5. Conway claims that
the truth of

xR + y ≤ x + z ∨ x + yR ≤ x + z ∨ x + y ≤ xL + z ∨ x + y ≤ x + zL, (42)

assuming furthermore y ≥ z, implies the truth of

xR + y ≤ x + y ∨ x + yR ≤ x + y ∨ x + z ≤ xL + z ∨ x + z ≤ x + zL, (43)

obviously taking for granted

y ≥ z =⇒ x + z ≤ x + y. (44)

But this is just what he is trying to prove!
We can fix this error quickly; two of the assumptions in (42) lead immediately

to a contradiction by applying the induction hypothesis:

x + yR ≤ x + z ⇒ yR ≤ z ≤ y, x + y ≤ x + zL ⇒ z ≤ y ≤ zL. (45)

The other two assumptions yield a contradiction by first unfolding the definition
of ≤ and then applying the induction hypothesis:

xR + y ≤ x + z ⇒ ¬(xR + z ≤ xR + y)⇒ z �≤ y, (46)
x + y ≤ xL + z ⇒ ¬(xL + z ≤ xL + y)⇒ z �≤ y. (47)

Note that we were able to apply the induction hypothesis in several different dis-
guises because all of [x, z, yR], [x, zL, y], [xR, y, z] and [xL, y, z] are predecessors
of [x, y, z] with respect to lprod option-of.

Does the type game form a group with respect to the defined operations? No,
it does not! We only have the theorem

eq-game (plus-game (x , neg-game x )) zero-game (48)

not the stronger, but false statement

plus-game (x , neg-game x ) = zero-game. (49)
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The equality relation eq-game is compatible with the other operations. Further-
more eq-game is an equivalence relation, that is transitive, reflexive and sym-
metric. Therefore we can define a new type Pg of Partizan Games that consists
of the equivalence classes of game with respect to eq-game.

typedef Pg = UNIV // { (p, q) . eq-game p q }
Using the techniques described in [12] we then lift the theorems we have shown
about games to theorems about Pgs. The icing on the cake is the Isabelle meta-
theorem

instance Pg :: pordered-ab-group-add

that states that Pg is an instance of the axiomatic type class of partially ordered
groups pordered-ab-group-add.

8 Conclusion

We have presented a formalization of Conway’s Partizan Games. Our work can
be split into two parts.

One part consists of the development of HOLZF in Isabelle and provides in-
frastructure for this logic. The main result in this context is to identify a notion
of well-foundedness particularly suited to the ZF part of HOLZF and to connect
this notion with the common notion of well-foundedness in HOL via (24). This
allows us to use all of the HOL machinery when dealing with recursion. Further-
more we argue that HOLZF is not only theoretically stronger than both ZFC
and HOL but that this difference is also of practical importance, as the example
of Partizan Games shows. Interesting is that we have now available a new type
of ‘set’ called zet which might be a valuable addition to the datatype package of
Isabelle/HOL. For example, it might then be possible to define Partizan Games
directly by

datatype game = Game (game zet) (game zet)

Also part of the developed infrastructure is the lprod -relation that allows defining
of and reasoning about recursive functions of several arguments of the same type.

The second part of our work can be seen as an application of Isabelle/HOLZF.
Knowing wf is-Elem-of it was easy to show that there is a unique fixpoint of
Partizan Games. We have shown that Conway’s proofs withstand uttermost
scrutiny with the exception of the slip in the proof of (41).

Altogether we have written about 2200 lines of theory text2. About 60% is
infrastructure development, about 40% specific to Partizan Games. This is not
too much text; actually the total time of proving that Partizan Games form a
partially ordered group was not more than a couple of days after the type game
had been constructed and an induction principle for it had been established.
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caused him to look into the multiset order. Clemens Ballarin helped to prove the
2 Which can be downloaded from [14].



286 S. Obua

properties of the zunion operator. Norbert Schirmer taught the author how to
feed congruence rules to the recdef-package. Thanks to Bob Solovay for providing
the initial idea and consistency proof of HOLZF, and to Tobias Nipkow for
providing references to Mike Gordon’s work. Special thanks to the anonymous
referee who pointed out that set-like is the established name for property 2 of a
ZF-well-founded relation.

References

1. John H. Conway. On Numbers And Games, 2nd ed., A K Peters Ltd., 2001.
2. Lionel E. Mamane. Surreal Numbers in Coq. TYPES 2004, LNCS 3839, Springer

2005, pp. 170-185.
3. Mike J.C. Gordon. Set Theory, Higher Order Logic or Both. Theorem Proving

in Higher Order Logics, 9th International Conference, TPHOLs’96, LNCS 1125,
Springer 1996, pp. 190-201.

4. Sten Agerholm. Formalising a Model of the λ-Calculus in HOL-ST. Technical Re-
port 354, University of Cambridge Computer Laboratory, 1994.

5. Sten Agerholm, Mike J.C. Gordon. Experiments with ZF Set Theory in HOL and
Isabelle. Technical Report RS-95-37, BRICS 1995.

6. Lawrence C. Paulson. Set theory for verification: I. From foundations to functions.
J. Automated Reasoning 11 (1993), 353-389.

7. Lawrence C. Paulson. Set theory for verification: II. Induction and Recursion. J.
Automated Reasoning 15 (1995), 167-215.

8. Tobias Nipkow, Lawrence C. Paulson, Markus Wenzel. Isabelle/HOL: A Proof As-
sistant for Higher-Order Logic, Springer 2002.

9. F. Baader, T. Nipkow. Term Rewriting and All That, Cambridge U.P. 1998.
10. Thomas Jech. Set Theory, 3rd rev. ed., Springer 2003.
11. Lawrence C. Paulson. Organizing Numerical Theories Using Axiomatic Type

Classes. Journal of Automated Reasoning, 2004, Vol. 33, No. 1, pages 29-49.
12. Lawrence C. Paulson. Defining Functions on Equivalence Classes. ACM Transac-

tions on Computational Logic, in press.
13. Steven Obua. Proving Bounds for Real Linear Programs in Isabelle/HOL. TPHOLs

2005, LNCS 3683, Springer 2005, pp. 227-244.
14. Steven Obua. Partizan Games in Isabelle/HOLZF.

http://www4.in.tum.de/∼obua/partizan.



Proof-Producing Program Analysis

Amine Chaieb

Institut für Informatik
Technische Universität München

Abstract. Proof-producing program analysis augments the invariants
inferred by an abstract interpreter with their correctness proofs. If these
invariants are precise enough to guarantee safety, this method is an au-
tomatic verification tool. We present proof-synthesis algorithms for a
simple flow chart language and domains V → V mapping variables to
abstract values and discuss some benefits for proof carrying code sys-
tems. Our work has been carried out in Isabelle/HOL and incorporated
within a verified proof carrying code system.

1 Introduction

Formal verification of imperative programs using a theorem prover is not always
an easy task since. Besides the formalization of syntax, semantics and a verifi-
cation calculus, it especially involves finding appropriate invariants. If these are
provided, the verification calculus reduces program correctness to proving a for-
mula, the verification condition. This is in essence reverifying that the invariants
really fit with the program semantics. In our proof carrying code (pcc) context,
we automate safety proofs by letting an abstract interpreter infer the invariants.
Since this analyzer already cares about the program semantics the reverification
of its result, i.e. proving the verification condition, is double work.

This paper presents some techniques, that have been successfully implemented,
to augment the inferred invariants with their correctness proofs, which results
in an automatic proof method provided the invariants are strong enough to en-
sure program safety. Assume, for instance, the analyzer discovers the Hoare triple
{P} x := a {Q}, then our method also proves that P implies Q(x/a). We focus
on domains V|V| (which we denote by V → V) mapping each program variable
x ∈ V to an abstract value vx ∈ V that approximates the set of concrete values
x may take during execution. For these domains we give algorithms in a generic
functional programming notation and concrete examples for interval analysis. All
the work we present has been successfully implemented for a subset of Jinja byte-
code (Jinja [9] is a Java-like language, for which also a proof carrying code (pcc)
infrastructure is verified in Isabelle/HOL, cf. [17]). All the proofs are synthesized
in Isabelle/HOL [13].

Abstract interpretation [7,8] is a generic framework in which a program analy-
sis is fully specified by an abstract domain, a complete lattice D, and a monotone
abstract semantics to interpret programs over D. The correctness of the analysis
is guaranteed by proving that (α, C, D, γD) is a a Galois connection and that the

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 287–301, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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abstract semantics safely approximates the concrete one. In this framework the
invariants are the result of a fix-point computation, generally done iteratively.
Termination of the analysis relies on the absence of infinite ascending chains
(without loss of generality), which is ensured by restricting D or using widening
[7]. Proving termination of iterative solvers, especially formally i.e. in a theorem
prover, is hard work even if only lattices without infinite ascending chains are
considered, cf. [5]. The verification of optimized solvers or the use of lattices
of infinite height and widening is more complicated. The termination proof is,
however, irrelevant to the correctness proof for the found invariants. Motivated
by these arguments we develop a simple proof-producing analysis without for-
malizing abstract interpretation in a theorem prover. Alternatively we trust an
abstract interpreter, external to the theorem prover, to terminate and then use
its result to generate a correctness proof for every edge in the control flow graph
(cfg). The proofs are compact, generic and make minimal assumptions on the
underlying theorem prover machinery, which makes them portable and suitable
for pcc-systems [12].

The rest of this paper is structured as follows. In § 2 we introduce notation
and preliminary definitions. In § 3 we present the proof-synthesis for the found
invariants. Benefits for theorem provers and pcc systems are subject of § 4.

Related Work. Proof carrying code has been introduced in [12]. Since then
several extensions have been proposed to automate generation of proofs on the
producer side. Abstraction carrying code (ACC) [1] proposes the use of the
post-fix-point reached by the analyzer as a certificate. Note that this changes
the pcc architecture: it assumes the consumer to have an implementation of the
abstract domain used by the producer and that this implementation is trusted
while proof-checking. Our method allows without loss of efficiency (w.r.t. ACC,
i.e. we also need only one pass through the cfg) to produce a proof in terms of
the safety logic and hence keeping the architecture as it is. This is important
since the abstract interpreter may fail to find invariants that are precise enough
to ensure safety. In such a case one still can carry out the proof by hand as
before, which is not possible in the ACC approach.

An implementation of an abstract interpreter with some domains in Coq is
presented in [11], where the goal was the generation of certified abstract inter-
preters. A different and more successful approach has been adopted in [5] and
the authors also claim that termination of the analysis is the most tedious part,
although they forbid lattices of infinite height (interval analysis would not be
expressible there). After finishing this work we noticed that [15] presents a very
similar approach, yet we developed this work independently. Our language is not
structured and admits multiplication. Our method is more abstract and general.
We implemented proof lifting (from V to V→ V) and we actually implemented
the presented methods to synthesize correctness proof-skeletons for Jinja byte-
code [9], integrated it with Isabelle/HOL[13] and a certified pcc architecture [17]
and synthesize Isabelle/HOL theorems, and finally present an abstract descrip-
tion of its implementation. In [16] we presented an integration between our static
analyzer (without proof-synthesis) and the pcc-framework.
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2 Notation and Preliminaries

2.1 Logic

We make a difference between theorems (elements of an abstract type) and
the formulae they prove (elements of a concrete datatype that allows pattern
matching on the implementation level). To refer to a formula f proven by a
theorem th we write th as‘f ’. An inference rule with premises A1, · · · , An and
conclusion C is denoted by [[A1; · · · ; An]] =⇒ C. These rules allow manipu-
lations on the logical connectives −→,∧,∨,¬ and =, which stands for both
equivalence and equality. Forward deduction is supported by a generalization
of modus ponens fwd : thm → thm list → thm. If th is the theorem above
and th1 as‘B1’, · · · , thn as‘Bn’ are theorems, where every Bi is of the form
[[H1

i ; . . . ; Hmi

i ]] =⇒ Pi and the Pi’s match the premises A1, · · · , An then the
theorem fwd th [th1, · · · , thn] is th′as‘[[Θ(H1

1 ), . . . , Θ(Hm1
1 ), . . . , Θ(Hmn

n )]] =⇒
Θ(C)′, where Θ = mgu{A1 = B1, · · · , An = Bn}. For simplicity we also assume
that in the resulting theorem no premise occurs twice.

The theorems used along this paper are listed in appendix A. They are all
almost trivial and included mainly for completeness and to illustrate the modu-
larity of the method. Free variables in a theorem th could be instantiated from
left to right by terms t1, · · · , tn by writing th[t1, · · · , tm], e.g. thm∼

I [1, y, 3] is
[[1 ≤ y ≤ 3]] =⇒ −3 ≤ y ≤ −1. We also use a function prove to carry on simple
proofs like 3 ≤ 5 and 0 < 1. If (th as‘P ’) is a theorem and x is a free variable in
P then gen x th returns a theorem th′ as‘∀x.P (x)’.

2.2 The Implementation Programming Language

We use a generic functional programming notation to present some algorithms.
Lambda-abstraction uses a λ and permits pattern-matching. Because formulae
(a concrete recursive type) and theorems (some abstract type) are quite distinct,
we use pattern matching to refer to the formula proven by some theorem. If th is
a theorem variable and f a formula pattern then we write th as‘f ’, thus binding
the formula variables in f . For example, matching the theorem 0 = 0 ∧ 1 = 1
against the pattern th as‘A ∧B’ binds th to the given theorem, A to the term
0 = 0 and B to the term 1 = 1. Patterns may be guarded by boolean conditions
as in Haskell: p | b is the pattern p that is guarded by the condition b. We denote
by x :: xs consing x to the list xs.

2.3 The Programming Language We Reason About

Syntax. We consider a flow-chart language [8] where a program is given by its
cfg G = (N, E, ne, nx, lab) and a set Val where each variable takes its values.

The set N of program nodes N contains at least the entry (ne) and the exit
(nx) nodes. The set E ⊆ N×N of edges contains an edge (n1, n2), if and only if
control could pass from n1 to n2. The label lab(n1, n2) describes the command
that takes place. The language for labels is defined by:
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Lab ::= v := exp|exp
exp ::= v | c | μe′ | e1βe2
μ ::=∼ | ¬ ; β ::=+ | − | ∗ | ≤ | < | = | ∧ | ∨
v ::= x1| . . . |x|V| ∈ V ; c ∈ Val

They represent assignments of expressions to a variable or a branching condition.
In contrast to the operators of the logic, those used for the labeling language
are set in bold face and are self explanatory, except ∼ which stands for unary
minus. We consider only well formed control flow graphs, i.e. the expressions in
the labels are well typed and if there exists (n, m) ∈ E, where b = lab(n, m) is
a branching condition, then there exists a unique m′, s.t. (n, m′) ∈ E such that
¬b = lab(n, m′). We denote by cmd(l) the command which has been translated
to label l. We also assume that (m, ne) �∈ E and (nx, m) �∈ E for all m ∈ N.

Deductive Semantics. Our concrete semantics is a predicate transformer se-
mantics in backward style. It describes at each node an invariant which charac-
terizes the set of states ascendant to an output state specified by an assertion
Q ∈ P. Assertions are predicates where the program variables occur freely. Those
form a complete lattice (P,−→,False,True,∨,∧) partially ordered by the impli-
cation −→. The predicate transformer wp, weakest precondition, is the transfer
function and satisfies

wp (x := e) P = P (x/e)
and wp b P = b −→ P.

We emphasize that in the following wp is a function of the meta-language, i.e
the programming language the theorem prover is written in. It is implicit in the
implementation but fits with the definition above.

If (D,�D,⊥D,�D,�D,�D) is a complete lattice and fD : Lab → (D → D) a
monotone transfer function and iD ∈ D an initial value, then the merge over all
paths solution d ∈ D|N| is the least solution to{

dne = iD
dj =

⊔
(i,j)∈E fD

lij
(di), for j �= ne, lij = lab(i, j).

The analyzer over-approximates the solution to these equations, i.e. find a post-
fix-point, using an iterative solver.

2.4 Abstract Interpretation

In abstract interpretation [7,8] a program analysis is fully specified by an abstract
domain, a complete lattice D, and a monotone abstract semantics to interpret
programs over D. Correctness of the analysis is guaranteed if one gives a Galois
connection (α, C, D, γD) and if the abstract semantics safely approximates the
concrete one. The Galois connection ensures safe abstraction (∀x ∈ C.x �C

γD(α(x))) and safe concretization (∀d ∈ D.α(γD(d)) �D d). Moreover α and γD
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are order-preserving, i.e. conserve information. A semantic fD is said to safely
approximate fC iff. ∀s s′.fC(s) = s′ −→ s′ �C γD(fD(α(s))).

From a practical point of view, an abstract domain has to be implemented
using efficient data structures. The abstract semantics is then a function ma-
nipulating elements of these data structures. Usually the correctness proof of
an abstract interpretation is done on paper. The concretization γD is seldom
implemented. In this paper we identify the abstract domain and its implemen-
tation, which reduces the correctness proof of the abstract interpretation to the
correctness proof of the implementation. In order to make analysis results useful
for the verification, the concretization γD has to be implemented. It transforms
any d ∈ D into γD(d), an assertion pluggable into the verification environment.
Predicates from γD(D) ⊆ P describe semantical aspects the analysis is interested
in. Their syntactical shape is imposed by γD.

We use the lattice D = V → V to associate to each program variable x ∈ V

an abstract value vx ∈ V, approximating the set of concrete values x may take.
To each program node we associate ⊥V→V, if it is dead, and d ∈ V → V, where
∃xi ∈ V. d(xi) = vi �= ⊥V, otherwise. We define the concretization γV→V by{

γV→V(⊥V→V) = False
γV→V(d) =

∧
γxi

V
(d(xi)), for all d(xi) �= ⊥V.

The predicate γa
V
(va) states that the values taken by the expression a during

execution are among the concrete values represented by va ∈ V. Consider the
lattice I of intervals as an example for V. An interval is either ⊥I or [l, u], where
l ∈ Z ∪ {−∞},u ∈ Z ∪ {+∞} and l ≤ u. We then define γa

I
by⎧⎨⎩

γa
I
(⊥I) = False, γa

I
([l, u]) = La(l) ∧ Ua(u)

La(−∞) = True, La(l ∈ Z) = l ≤ a
Ua(+∞) = True, Ua(u ∈ Z) = a ≤ u.

2.5 System Overview

Given a Jinja bytecode program p to be verified within the formalized pcc-
framework [17], our work provides an interface (a tactic) that takes p, builds its
cfg and runs our analyzer and annotates p, at junction nodes, with the inferred
invariants. The analyzer also returns proofs that the inferred invariants fit with
p’s behavior. These proofs are generic, i.e. in an internal proof format. The tactic
interprets these proofs in Isabelle/HOL to obtain Isabelle/HOL theorems, which
are returned with the annotated program to the verification environment.

3 Proof Generation

Consider an edge (n1, n2) ∈ E labeled by l and let c = cmd(l) and d1, d2 ∈ D
denote the inferred invariants at nodes n1 and n2. Our goal is to give a proof
method for

γD(d1) −→ (wp l γD(d2)). (�)
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The main observation is that at post-fix-point, cf. §2.3, we have :
fD

l (d1) �D d2 (post-fix-point result)
hence γD(fD

l (d1)) −→ γD(d2) (γD is order preserving)
and finally wp l (γD(fD

l (d1))) −→ wp l (γD(d2)) (wp l is monotone).
We can therefore reduce our goal to providing proof methods for

– the monotonicity of wp, cf.§3.4,
– deriving γD(d) −→ γD(d′), for all d �D d′, cf.§3.4, and
– deriving γD(d1) −→ wp l γD(fD

l (d1)), cf. §3.1-§3.3.

Note that by transitivity, they yield a proof method for (�). The first proof-
method depends on the logic we use and the last two methods depend on the
domain we consider, and express intuitively that we are able to prove the correct-
ness of the implemented �D and fD

l operations, for all labels l. In the following
we give a method for domains D = V → V, where no dependency between
program variables is present. Generally, a domain implementation gives a good
guideline: just keep in mind that domain elements represent formulae.

3.1 Syntax Driven Proof Generation

In this section we present a generic mechanism to synthesize structural induction
proofs. The main function thm-of, below, implements divide and conquer. It
takes a problem decomposition function of type α → α list × (β list → β)
and a problem t of type α, decomposes t into a list of subproblems ts and a
recombination function recomb, solves the subproblems recursively, and combines
their solution into an overall solution. This method is referred to as tactic style
proving in [14] and represents a generic proof method by structural induction.
Note that decomp determines the induction scheme.

thm-of decomp t =
let (ts ,recomb) = decomp t
in recomb (map (thm-of decomp) ts)

Example 1. Evaluating an expression e in an abstract state d ∈ V→ V, denoted
by [[e]]Dd and defined below, approximates the set of values e may evaluate to.
For an operator τ we denote by τV its implementation for V.

[[e]]V→Vd =
case e of

c ⇒ α(c)
x ∈ V⇒ d(x)
ue′ | u ∈ {∼,¬} ⇒ uV[[e′]]V→Vd
e1βe2 | β ∈ {+,−, ∗,≤, <, =,∧,∨} ⇒ ([[e1]]V→Vd)βV([[e2]]V→Vd)

The correct evaluation of an arithmetical expression a in an abstract state d is
stated by γV→V(d) =⇒ γa

V
([[a]]V→Vd). The proof is by structural induction and is

based on correctness of abstraction, i.e. thmc
V : γα

V
(α(c)), for the unary operator,

i.e. thm∼

V : γa
V
(va) =⇒ γ∼a

V
(∼V va), and for the binary operators β ∈ {+, −, ∗},

i.e.thmβ
V

: [[γa1
V

(v1); γa2
V

(v2)]] =⇒ γa1βa2
V

(v1βVv2)). Note that for variables we just
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decomp-aboundsV d a =
case a of

c ⇒ ([], λ[]. thmc
V[c])

x ∈ V ⇒ ([], λ[]. trivial[γx
V(d(x))])

∼ a′ ⇒ ([a′], fwd thm∼

V )
a1 βr a2 | βr ∈ {+,−, ∗} ⇒ ([a1, a2], fwd thmβr

V
)

prove-abounds
V

d a = thm-of (decomp-abounds
V

d) a

Fig. 1. Proof synthesis for bounds on arithmetical expressions

assume the bounds in d. See Appendix A for the intervals versions. Fig. 1 shows
a generic implementation for arithmetical expressions using thm-of.

Our Analyzer scrutinizes the expressions in order to deduce more precise
approximations. This is also supported by the method we present for proof gen-
eration. For instance the following theorem may be used instead of thm∗

I when
the operands are equal.

l ≤ x ≤ u =⇒ (if 0 ≤ l then l2 else if u ≤ 0 then u2 else 0) ≤ x2

≤ (if 0 ≤ l then u2else if u ≤ 0 then l2else max l2 u2)

Since domain elements represent semantic properties and the correctness of
their manipulations is usually proved by structural induction, syntax driven
proof-synthesis is a powerful tool for our purpose. We used this technique for a
proof-producing quantifier elimination procedure for full Presburger arithmetic,
which gives us the feeling that it will be also useful for domains more complex
than V→ V.

3.2 Proofs for Approximate Bounds on Expressions

The transfer functions approximate the expressions in order to compute the
next state. Hence proofs for the derived approximations on expressions are im-
portant steps for the correctness proofs for the transfer functions. The previ-
ous example dealt with arithmetical expressions. Now we investigate boolean
expressions. The correct evaluation of a boolean expression b in an abstract
state d is expressed by γV→V(d) =⇒ b = b′, where b′ is a simplified version
of b which may be different from T rue or False. The last reflects the analyz-
ers incapability of deciding b in the abstract state d. prove-bboundsV d b, cf.
Fig. 2, returns a theorem for [[A1; . . . ; An]] =⇒ b = b′, where Ai is γxi

V
(d(xi))

for some xi ∈ V and hence a conjunct of γV→V(d). The call proveβr

V
d a1 a2

derives a theorem for [[γxj1
V

(d(xj1 )); . . . ; γ
xjn

V
(d(xjn ))]] =⇒ a1βra2 = b′, where

b′ ∈ {T rue, False, a′
1βra

′
2} and a′

1 and a′
2 are simplified versions of a1 and

a2. This theorem expresses the correctness of the relation operators on the
abstract values. Fig. 2 also gives an example for interval analysis. The call
prove-bboundsI {x �→ [0, 5], y �→ [−1, 3]} (x ≤ y ∗ y ∧ y ≤ x2 + 4) returns a the-
orem th as‘[[0 ≤ x ≤ 5;−1 ≤ y ≤ 3]] =⇒ (x ≤ y2∧x ≤ x2+4) = (x ≤ y2∧T rue)’.
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decomp-bboundsV d b =
case b of

tt ⇒ ([], λ[].refl[True])
ff ⇒ ([], λ[].refl[False])
b1βrb2 | βr ∈ {≤, <, =} ⇒ ([], λ[].proveβr

V
d b1 b2)

¬b′ ⇒ ([b′], fwd cong¬)
b1βlb2 | βl ∈ {∧, ∨} ⇒ ([b1, b2], fwd congβl

)

prove-bbounds
V

d b = thm-of (decomp-bbounds
V

d) b

prove≤
I

d b1 b2 =
let

th1as‘[[. . .]] =⇒ l1 ≤ b1 ≤ u1’ = (prove-aboundsI d b1)
th2as‘[[. . .]] =⇒ l2 ≤ b2 ≤ u2’ = (prove-abounds

I
d b2)

in
if u1 ≤ l2 then fwd cong≤tt[th1, th2, prove(u1 ≤ l2)]
else if u2 < l1 then fwd cong≤ff[th1, th2, prove(u2 < l1)] else refl[b1 ≤ b2]

Fig. 2. Proof synthesis for approximations of boolean expressions

3.3 Proofs for the Abstract Transfer Functions

Assignment. For an assignment xk := a and an abstract state d ∈ V → V we
have to provide a proof-method for γV→V(d) −→ γV→V(fV→V

xk:=a(d))(xk/a), i.e.

|V|∧
i=1

γxi

V
(d(xi)) −→

k−1∧
i=1

γxi

V
(d(xi)) ∧ γa

V([[a]]V→Vd) ∧
|V|∧

i=k+1

γxi

V
(d(xi)).

Since most of the conclusion occurs in the premise, the main challenge con-
sists in proving

∧|V|
i=1 γxi

V
(d(xi)) −→ γa

V
([[a]]V→Vd), which is almost the result of

prove-aboundsV d a. Assume we have a function adjust, which transforms a the-
orem for [[γxi1

V
(d(xi1 )); . . . ; γ

xim

V
(d(xim ))]] =⇒ γa

V
([[a]]V→Vd) into a theorem for∧|V|

i=1 γxi

V
(d(xi)) −→ γa

V
([[a]]V→Vd), using the result [th1, . . . , th|V|] of destruct d

(note that thj proves γV→V(d) −→ γ
xj

V
(d(xj)), see Fig. 3). The implementation

is simple and hence omitted: perform −→ introductions then use the result of
destruct d and trans→. Fig. 4 gives the overall implementation. The result of
reconstruct [th1 as‘P −→ P1’, · · · , thn as‘P −→ Pn’] is th as‘P −→

∧n
i=1 Pi’.

destruct d ∈ V → V =
let

destructh n th =
if n > 1 then (fwd elim1

∧ [th]) :: (destructh (n − 1) (fwd elim2
∧ [th])

else [th]
in destructh |V| triv[γV→V(d)]

Fig. 3. Proving |V|
i=1 γxi

V
(d(xi)) −→ γ

xj

V
(d(xj)), j = 1 . . . |V|
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prove-aexpV d a = adjust (destruct d) (prove-abounds
V

d a)
prove-fV→V

xk :=a d =
let

[th1, . . . , th|V|] = destruct d
tha = adjust [th1, . . . , th|V|] (prove-abounds

V
d a)

in reconstruct [th1, · · · , thk−1, tha, thk+1, · · · , th|V|]

Fig. 4. Proof synthesis for fV→V
xk :=a

prove-vcondI thms d (y ≤ a) =
let

tha = prove-abounds
I
d a

thy = trivial[γy
I
(d(y))]

in adjust thms (fwd bcond≤I[thy , tha])
prove- fV→V

xkβra d =
let

[th1, . . . , th|V|] = map(λth.(fwd weak→ [th])[xkβra])(destruct d)
thb = prove-vcond

V
[th1, . . . , th|V|] d (xkβra)

in reconstruct’ [th1, . . . , thk−1, thb, thk+1, . . . , th|V|]

Fig. 5. Proof synthesis for a case of fV→I
xkrβa

Example 2. We can now prove 0 ≤ x ≤ 5 ∧ −1 ≤ y ≤ 3 −→ 0 ≤ x + y2 ≤
14 ∧ −1 ≤ y ≤ 3 by calling prove-fV→I

x:=x+y∗y {x �→ [0, 5], y �→ [−1, 3]}.

Branching Conditions. For a branching condition b and an abstract state
d ∈ V→ V we have to prove γV→V(d) −→ b −→ γV→V(d′), where d′ = fV→V

b (d).
This depends on [[b]]V→Vd. We distinguish three cases:

– [[b]]V→Vd = α(tt): then d′ = d, since b does not restrict d. In this case our
proof is simply (fwd weak→[triv[γV→V(d)]])[b].

– [[b]]V→Vd = α(ff): then d′ = ⊥V→V and thus unreachable. Our proof is then
synthesized by the following steps:
• adjust (destruct d) (prove-bbounds

V
d b) proves γV→V(d) −→ (b = b′)

• prove (b = b′) −→ (b −→ False) by simplification
• apply transitivity to get the goal.

– [[b]]V→Vd �∈ {α(ff), α(tt)}: in this case d′ is d restricted by b. Let us consider
the case where b is xβra, x ∈ V, βr ∈ {≤,=, <} and let va = [[a]]V→Vd.
The output state d′ is d[x �→ d(x)�V vcond(βr, va)], where vcond(βr, va) ∈ V
approximates the set {y|yβra}, i.e. γa

V
(va) −→ xβra −→ γx

V
(vcond(βr, va)).

For intervals, we use for instance vcond(≤, [l, u]) = [−∞, u].

The proofs for V → V are again reconstructed from those for V. Fig. 5 shows
a representative case. prove-vcondV d (xβra) deduces the restriction on x from
the actual state, i.e. γV→V(d) −→ b −→ γx

V
(d(x) �V vcond(βr, va)). reconstruct’

synthesizes a theorem th as‘
∧|V|

i=1 Pi −→ b −→
∧|V|

i=1 P ′
i ’ from the theorems th1
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as‘
∧|V|

i=1 Pi −→ b −→ P ′
1’, . . . , and th|V| as‘

∧|V|
i=1 Pi −→ b −→ P ′

|V|’. It simply
conjuncts the conclusions since the premises are the same.

Example 3. We can now prove 0 ≤ x ≤ 5 ∧ −1 ≤ y ≤ 3 −→ x ≤ y2 − 5 −→ 0 ≤
x ≤ 4 ∧ −1 ≤ y ≤ 3 by calling prove-fV→I

x≤y∗y−3 {x �→ [0, 5], y �→ [−1, 3]}.

3.4 Finishing the Proofs

Recall from the introduction to §3 that we have to provide three proof meth-
ods. The result of §3.3 is a proof method prove-fV→V

l to synthesize proofs for
γV→V(d1) −→ wp l γV→V(fV→V

l (d1)). This section presents the simpler proof
methods prove-wpV→V for the monotony of wp and prove�V→V

for proving�V→V.

prove-wp-monotonD l (th as‘P −→ P ′’) =
case l of

x := a ⇒ (fwd spec [gen x th])[a]
b ⇒ (fwd weak→[th])[b]

prove-wpD l d1 d2 =
let

th1 = prove-fD
l d1

th2 = prove-wp-monoton (proveD
fD

l (d1) d2)
in fwd trans→ [th1, th2]

Fig. 6. Overall proof

Proofs for �D. Proving γD(d) −→ γD(d′) for d �D d′ needs knowledge about
D. This should be the result of prove�D

d d′. For D = V→ V we have

prove�V→V
d d′ = reconstruct∧ (map (λx.prove�V

x d(x) d′(x)) [x1, . . . , x|V|]),

where the theorem prove�V
x v1 v2 proves γx

V
(v1) −→ γx

V
(v2), for v1 �V v2.

Moreover the call reconstruct∧ [th1as‘P1 −→ P ′
1’, . . . , thnas‘Pn −→ P ′

n’] proves∧n
i=1 Pi −→

∧n
i=1 P ′

i .

Example 4. For intervals we have

prove�I
y [l, u] [l′, u′] =

(fwd thm�I [prove l′ ≤ l, prove u ≤ u′])[y],

where thm�I is [[l′ ≤ l; u ≤ u′]] =⇒ l ≤ x ≤ u −→ l′ ≤ x ≤ u′.

Monotonicity of wp. The final step is now to argue the monotonicity of wp. It
is simple and given in Fig. 6. For an assignment x := a we generalize the result
of prove�D

d d′ as‘P −→ P ′’ to ∀x.P (x) −→ P ′(x) and then just specialize
the theorem to the expression a. Recall that x occurs free before generalization.
Monotonicity of wp for a branch condition is explicitly stated by weak→.
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3.5 A Short Example for Relational Domains

The aim of this section is not to present proof-synthesis for a relational domain,
but to give an example of the usefulness of the syntax-driven proof-synthesis for
relational domains. The octagon domain [10] abstracts a state by a potential
graph g ∈ O. Unreachable states are represented by ⊥O. Each variable x ∈ V is
present in a graph g = (V±, E, w) twice: positive as x+ and negative as x−. An
edge (u, v) ∈ E represents the constraint u − v ≤ w(u, v). The concretization
could therefore be given by{

γO(⊥O) = False
γO((V±, E, w)) =

∧
(u,v)∈E γV±(u)− γV±(v) ≤ w(u, v)

and
{

γV±(x+) = x
γV±(x−) = −x

For (u, v) ∈ E we also write u − v ≤ w(u, v) but mean γV±(u) − γV±(v) ≤
w(u, v).All the proofs to be synthesized could be done by linear arithmetic, which
is available in every state-of-the-art theorem prover, yet simulating the analyzers
behavior would lead to shorter proofs.

If there is a path [u0, . . . , un] from u0 to un of total weight c = , then the
constraint u0 − un ≤ c holds (two consecutive edges represent ui − ui+1 ≤
ci ∧ ui+1 − ui+2 ≤ ci+1, and hence ui − ui+2 ≤ ci + ci+1 holds). Hence the most
precise way to bound u0−un is by cmin the total weight of the shortest path from
u0 to un. This operation of “tightening” the bounds is called strong closure and is
based on the Floyd-Warshall algorithm for shortest paths, cf. [6] and represents a
basic operation in the domain. Here we only show how to use thm-of to synthesize
the main parts of the correctness proof for this transformation. Fig. 7 shows how
to compile a non empty path π = [u0, . . . , un] into a theorem proving the new
bound on u0 − un assuming the actual constraints.

Note that if the emptiness test by Bellman-Ford algorithm, cf. [6], returns cy-
cle π of negative total weight, then the same algorithm derives the contradiction
x− x < 0 represented by π, needed for an unreachability proof.

decomp-path w π =
case π of

[xn−1, xn] ⇒ ([], λ[].trivial[γV±(xn−1) − γV±(xn) ≤ w(xn−1, xn)])
(xi :: xi+1 :: xs) ⇒ ([xi+1 :: xs], λ[th].(fwd thm≤+

O [th])[γV± (xi), w(xi, xi+1)])
prove-path w c = thm-of (decomp-path w) c

Fig. 7. Deriving a new bound from a shortest path

3.6 Alternative Approaches for Proof-Synthesis

The most intuitive way to realize proof-producing program analysis is maybe to
formalize the analyzer in a theorem prover as in [11,5]. This involves implement-
ing the abstract domain and iterative solvers and finally proving once and for all
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the analyzer correct, i.e. its results are consistent with the semantics. Whereas
this approach is completely in the formalized world (a theory of a proof assis-
tant), one can say that the approach we presented is fully in the meta-language
world, since it runs completely on the meta-level, the programming language the
theorem prover is written in. Hence our method generates the correctness proofs
for every instance of the problem.

One can think of a hybrid approach. The analyzer is extern to the theorem
prover and returns as in our case the invariants and proofs skeletons. In the
verification environment, programs are not only enriched by invariants (annota-
tions), but also by their proofs, elements of a datatype P . The verification of a
program consists not only in generating proof obligations, but rather checking
the present proofs and generating obligations for the rest. The proof checker is
naturally a function on the theory level. This notion of verification has to be
proven once and for all in a theorem, say thc. The invariants and proofs of the
external analyzer are then reified and instantiated into thc. Using reflection [2]
the whole correctness proof reduces to reflexivity. This is of course balanced by
the fact that the proof checker has to expand the definitions of the involved re-
cursive functions to reach the normal form. Note that this principle is included
in several prominent theorem provers like Coq [3]. Despite the loss of portability
of the proofs to other theorem provers, this method has the great advantage,
that the obtained proofs are small for theorem provers, e.g. Coq, where proofs
are considered modulo normalization (the evaluation of the proof checker in our
case).

4 Benefits for pcc and Theorem Proving

Special-PurposeDecisionProcedures. When implementingproof-producing
program analysis (using domain D) one implicitly implements a sound yet incom-
plete decision procedure for a subset of γD(D) ⊆ P. Recall that prove�D

d1 d2,
prove-fD

x:=e d and prove-fD
b d prove theorems corresponding to γD(d1) −→ γD(d2)

for d1 �D d2, γD(d) −→ γD(fD
x:=a(d))[x/a] and γD(d) −→ b −→ γD(fD

b (d)),
respectively. In our example the decision procedure is simple but useful for very
simple non linear reasoning.

For D = V → V the most interesting part comes from the proof-producing
safe approximation of expressions in abstract states, i.e prove-aboundsV and
prove-bboundsV. These proof-producing procedures represent potential exten-
sions for theorem provers, as tactics. The integration of these procedures is
straightforward. This approach has also been used in [4], where sign analysis
was used to simplify and maintain polynomials during (partial) quantifier elim-
ination for real algebra. We integrated the interval arithmetic reasoning as a
proof-producing decision procedure in Isabelle/HOL. The main challenge was,
in fact, to reconstruct a good representation of the abstract state (∈ D) from
a given goal, allowing the user to state the interval constraints liberally. The
tactics are still interesting even if the theorem prover already has decision pro-
cedures for a larger theory, since the “special purpose” tactics proofs are shorter.
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Moreover the proofs are well structured and generic. A proof could be a skeleton,
that may be interpreted on different theorem provers to synthesize the theorem
we want. We naturally need the same fwd function and that the used theorems
are proven on that platform. This may be useful for pcc systems as §4 suggests.

Proof Length. In order to give exact bounds on proof length, one has to
define a syntax for proofs. We give here just approximate lengths in terms of the
needed instantiations (i) and fwd operations (f). Let us consider an expression e
with n nodes, nl leaves, nv among them are variable-occurrences. The function
prove-abounds d e needs nl·i + (n − nl)·f to obtain [[P1; . . . ; Pnv ]] =⇒ γe

V
(ve),

where ve stands for [[e]]V→Vd. The function adjust (destruct d) transforms it to
γV→V(d) −→ γxi

V
(d(xi))) after (nv−1)·f +1·f +(nv−1)·f steps. The summands

thereby correspond to the three steps given in §3.3.
The function destruct generates the theorems γV→V(d) −→ γxi

V
(d(xi))) in

i+2f ·(|V|− 1). The call to reconstruct takes (|V|− 1)·f . Hence finally the result
of prove-fV→V

xk:=e d is obtained after (nl + 1)·i + (n− nl + 2nv + 3|V| − 4)·f , which
remains linear in expression length and the number of variables. Similar results
could be obtained for the other functions presented in §3.

We should interpret these results as “the synthesized proofs for the found
invariants are short”, and not as “the synthesized program correctness proofs are
short”. This is due to the simple fact that the found invariants only approximate
the program behavior and thus the synthesized proofs might gratuitously include
arguments about infeasible execution paths. This problem is inherent to static
analysis.

Benefits for pcc Systems. In pcc [12] the code consumer expects a proof for a
verification condition that captures code safety and which is generated according
to a predefined safety policy. If the invariants found by a static analyzer are
precise enough to ensure safety then proof-producing program analysis represents
a powerful tool for automatic certification. The extracted proofs could simply be
transferred to the consumer. The generated proofs are small and hence suitable
for complicated safety policies and larger programs. They are exclusively based
on a small set of theorems required by abstract interpretation. This allows high
sharing and hence compact representation of proofs.

5 Conclusion

We presented our approach to proof-producing program analysis, which resides
in augmenting program analysis results by correctness proofs, a step towards
automatic program verification in a proof assistant setting. We illustrated a
generic proof synthesis method for domains of the form V→ V. The method we
presented mimics the abstract interpretation framework: global proof synthesis is
guaranteed, if it is locally possible. Since domain implementations usually argue
their correctness by induction on the structure of their elements, we believe that
the syntax-driven approach is the way to go. We emphasized this aspect in §3.5.



300 A. Chaieb

References

1. Elvira Albert, Germán Puebla, and Manuel Hermenegildo. Abstraction carrying
code. In 11th International Conference on Logic for Programming Artificial Intel-
ligence and Reasoning (LPAR). Springer, 2004.

2. Henk Barendregt and Erik Barendsen. Autarkic computations in formal proofs. J.
Autom. Reasoning, 28(3):321–336, 2002.
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A Theorems

thmc
I x ≤ x ≤ x

thm+
I

[[lx ≤ x ≤ ux; ly ≤ y ≤ uy]] =⇒ lx + ly ≤ x + y ≤ ux + uy

thm−
I

[[lx ≤ x ≤ ux; ly ≤ y ≤ uy]] =⇒ lx − uy ≤ x− y ≤ ux − ly
thm∗

I [[lx ≤ x ≤ ux; ly ≤ y ≤ uy]] =⇒ min F ≤ x·y ≤ max F , where F =
{lx·ly, lx·uy, ux·ly, ux·uy, }

thm∼

I [[lx ≤ x ≤ ux]] =⇒ −ux ≤ −x ≤ −lx
thm�I [[lx ≤ x ≤ ux; l′x ≤ lx; ux ≤ u′

x]] =⇒ l′x ≤ x ≤ u′
x

cong≤tt [[la ≤ a ≤ ua; lb ≤ b ≤ ub; ua ≤ lb]] =⇒ a ≤ b = T rue
cong≤ff [[la ≤ a ≤ ua; lb ≤ b ≤ ub; ub < la]] =⇒ a ≤ b = False
bcond≤I [[lx ≤ x ≤ ux; le ≤ e ≤ ue]] =⇒ x ≤ e −→ lx ≤ x ≤ min ux ue

bcond≤ff [[lx �≤ u; lx ≤ x ≤ ux; x ≤ u]] =⇒ False

thm≤+
O [[y − x ≤ c; z − y ≤ c′]] =⇒ z − x ≤ c + c′

refl P = P
cong∧ [[P = P ′; Q = Q′]] =⇒ P ∧Q = P ′ ∧Q′

cong∨ [[P = P ′; Q = Q′]] =⇒ P ∨Q = P ′ ∨Q′

cong¬ [[P = P ′]] =⇒ ¬P = ¬P ′

trans→ [[P −→ Q; Q −→ R]] =⇒ P −→ R
elim1

∧ [[P −→ Q ∧R]] =⇒ P −→ Q
elim2

∧ [[P −→ Q ∧R]] =⇒ P −→ R
trivial [[P ]] =⇒ P
triv P −→ P
weak→ [[P −→ Q]] =⇒ P −→ R −→ Q
spec [[∀x.P (x)]] =⇒ P (a)
mpP→ [[P −→ P ′; P −→ P ′ −→ Q]] =⇒ P −→ Q



Reachability Analysis of Mobile Ambients in
Fragments of AC Term Rewriting

Giorgio Delzanno and Roberto Montagna

Dipartimento di Informatica e Scienze dell’Informazione
Università di Genova
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Abstract. In this paper we investigate the connection between frag-
ments of associative-commutative Term Rewriting and fragments of
Mobile Ambients, a powerful model for mobile and distributed computa-
tions. The connection can be used to transfer decidability and undecid-
ability results for important computational properties like reachability
from one formalism to the other. Furthermore, it can be viewed as a ve-
hicle to apply tools based on rewriting for the simulation and validation
of specifications given in Mobile Ambients.

1 Introduction

Models for mobile and distributed computation like the Mobile Ambients (MA) of
Cardelli and Gordon [5] provide mechanisms for moving collections of processes
across a network. The basic block of the MA model is the notion of ambient.
Each ambient has a name, a collection of local agents, and a collection of sub-
ambients. Local agents model the possible computations that can take place
inside the ambient. Differently from standard process algebraic languages, MA
agents have movement capabilities as well as primitives to dissolve the boundary
of an ambient. Several variations of MA have been proposed in the literature.
For instance, the Safe Ambients of [10] and the Boxed Ambients of [2] provide
more sophisticated mechanisms for controlling the access to an ambient. In this
paper we restrict our attention to pure and public versions of MA-like calculi. The
pure public fragment of MA (ppMA) is obtained by forbidding the use of name
restriction and of communication between local agents, two features inherited
from the π-calculus. The ppMA fragment allows us to focus our attention on
ambients and movement operations, the novel features with respect to the π-
calculus. As shown in [11], ppMA is still Turing complete.

From an abstract point of view, the movement mechanisms of MA-like calculi
can be viewed as update schemes for dynamically changing tree structures. Fol-
lowing this abstract view, in this paper we investigate the connection between
fragments of MA and associative-commutative (AC) Term Rewriting, a natural
operational model for manipulating unordered finite trees. To be as closest as
possible to the MA syntax, we consider terms built via a constructor for repre-
senting parallel composition, a constructor for representing ambients (internal

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 302–316, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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nodes), and a finite set of constants for representing local agents (leaves). We
refer to this class of AC Term Rewriting as Tree Update Calculus (TUC).

The connection between the two computational models can be used to transfer
properties from one formalism to the other. In this paper we focus our analysis on
the reachability problem for fragments and variations of ppMA. For two processes
P0 and P1, the reachability problem consists in checking whether there exists a
reduction from P0 to P1. The same decision problem can be formulated for a set
of rewrite rules and two fixed ground terms t0 and t1.

As a first analysis, we show how to express a reachability problem between
ppMA-processes as a reachability problem between terms in TUC. Resorting to
results on ppMA [1,11], we can exploit the encoding to show that the reachability
problem is undecidable in TUC. This negative result motivates further investiga-
tions in search of fragments of TUC that can still model ambients and movement
operations and in which computational problems like reachability

In this paper we focus our attention on structure preserving rewriting rules
(TUCsp). Intuitively, a structure preserving rule is such that its application never
removes ambients (internal nodes) of a tree, while it can produce and consume
leaves without any limit. Thus, structure preserving rewrite rules are monotonic
with respect to the number of internal nodes of terms, but not with respect
to their size. By exploiting this property, we show that TUCsp-reachability is
decidable via a reduction to a reachability problem for a Petri net. The latter
problem is known to be decidable [12]. It is important to remark that the TUCsp

fragment is not directly related to other fragments of Term Rewriting for which
reachability is known to be decidable [6,9,14,15].

By exploiting again the encoding from ppMA to TUC, we show that our de-
cidability result for TUCsp generalizes in an elegant way those proved in [1,3]
for reachability in fragments of ppMA. Specifically, we show that the semantic
restrictions for replication proposed in [1] (weak reduction) and the syntactic
restrictions proposed in [3] (guarded replication) can be captured in a uniform
way using the syntactic restrictions of TUCsp. Furthermore, we apply our result
to prove decidability of reachability for fragments of Safe and Boxed Ambi-
ents similar to those mentioned in [1,4]. It is important to remark that TUCsp

can express more general tree update schemes than those provided by the MA-
fragments studied in [1,3,4]. Thus, TUC and TUCsp can be viewed as operational
models in which to reason on extensions of languages inspired by MA.

Plan. In Section 2 we introduce ppMA. In Section 3 we introduce TUC and study
its relation with ppMA. In Section 4 we define TUCsp and study its properties. In
Section 5 we study the relation between TUCsp and fragments of ppMA. In Sec-
tion 6 we discuss related work. Finally, in Section 7 we address some conclusions.

2 ppMA: Pure Public Mobile Ambients

In this paper we consider the pure (without communication) public (without
name restriction) fragment of MA (ppMA for short), studied in [1,3,11], in which
processes comply with the following grammar:
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open m.P | m[Q] � P | Q

n[in m.P | Q] | m[R] � m[n[P | Q] | R]

m[n[out m.P | Q] | R] � n[P | Q] | m[R]

P � Q

P | R � Q | R

P � Q

n[P ] � n[Q]

P ′ ≡ P P � Q Q ≡ Q′

P ′ � Q′

Fig. 1. Reduction semantics for ppMA

P ::= 0 | n[P ] | M.P | P |P | !P

M ::= in n | out n | open n

where n ranges over a denumerable set Amb of ambient names. The process
n[P ] denotes an ambient with public name n. The process M.P denotes sequen-
tial composition (action prefixing), while P |Q denotes the parallel composition
of P and Q. The replication !P denotes an arbitrary number of parallel copies
of P . Finally, 0 denotes the null process. Since ambients can be nested, the
spatial structure of an MA process can be viewed as an unordered tree (with
arbitrary width). Movement capabilities may change the ambient spatial struc-
ture of processes. The meaning of the operators becomes clearer by looking at
the operational semantics defined in terms of a structural congruence ≡ and of a
reduction relation �. The structural congruence ≡ is the smallest one satisfying

P | Q ≡ Q | P P | (Q | R) ≡ (P | Q) | R P | 0 ≡ P !P ≡!P | P

The reduction relation � is defined in Fig. 1. We use
∗� to denote the reflexive

and transitive closure of the relation �.

Definition 1. Given two ppMA processes P and Q, the reachability problem
consists in deciding whether P

∗� Q holds or not.

Example 1. Assume P0 =!P |pc[Q] and P = trojan[in pc.virus[out trojan.P ′]].
By using the congruence on !P and the in capability, a copy of P can move inside
the ambient pc yielding the process P1 =!P |pc[trojan[virus[out trojan.P ′]]|Q].
By using the out capability, the virus agent can now be released inside the
ambient pc leading to P2 =!P |pc[trojan[0]|virus[P ′]|Q]. Thus, P0

∗� P2 holds.

2.1 Safe and Boxed Ambients

In the Safe Ambients (SA) model [10] movement capabilities have co-capabilities
used the regulate the access to an ambient. For instance, the SA reduction rule
for the in capability is defined as:

n[in m.P | Q] | m[in n.P ′ | R] � m[n[P | Q] | P ′ | R]

i.e., ambient n enters m only if m grants the access to n using in n.
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In the Boxed Ambients (BA) model [2] the open capability is replaced by
a parent-child communication mechanism. As an example, let (x)↑P denote a
process ready to receive a sequence of capabilities from a process in the parent
ambient (x is a variable that may occur in P ), and 〈M〉.R denote a process
ready to send M to a child ambient. Then, the following reduction rule models
parent-child communication:

n[(x)↑P |Q] | 〈M〉.R � n[P{x := M}|Q] | R

where P{x := M} denotes the substitution of x with M in P .

3 TUC: A Fragment of AC Term Rewriting

In this section we define a fragment of AC rewriting, called Tree Update Cal-
culus (TUC), that can be viewed as a generalization of the tree update schemes
underlying ppMA.

Given two finite sets of constants N and Q with N ∩ Q = ∅, we use a con-
structor n〈. . .〉 to represent an ambient (internal node) with label n ∈ N , an
AC constructor | to build multisets of trees (the multiset of sons of an internal
node), ε to represent the empty multiset, and the finite set of constants in Q to
represent processes (leaves). For instance, given N = {n, m} and Q = {a, b} the
term n〈a | a | n〈ε〉 | m〈a | b〉〉 can be viewed as an abstract representation of an
ambient n with two subprocesses of type a and two subambients. Since ambients
can be dynamically populated, we keep terms like n〈ε〉 (the empty ambient)
distinguished from leaves in Q. Formally, given a denumerable set of variables
ranging over multiset of terms (multiset-variables) V = {X, Y, . . .} the sets TR
(tree terms) and MS (multiset terms) are the least sets satisfying:

– the empty multiset ε is in MS, every multiset-variable X ∈ V is in MS;
– every constant in Q is in TR (leaf);
– If m ∈MS and n ∈ N , then n〈m〉 ∈ TR (internal node);
– If t ∈ TR, then t ∈MS (singleton multiset);
– If m, m′ ∈MS, then m|m′ ∈MS (parallel composition).

A ground term is a term without variables. Notice that, with a little bit of
overloading, we use the same notation for a term t and the singleton multiset
containing t. The multiset constructor | is associative and commutative, i.e.,
m1|(m2|m3) = (m1|m2)|m3, and m1|m2 = m2|m1 for m1, m2, m3 ∈ MS. Fur-
thermore, m | ε = m for any m ∈MS.

From here on, we use the special symbol tuc to represent a forest t1| . . . |tn
as a single tree term tuc〈t1| . . . |tn〉. We always assume that tuc never occurs in
t1, . . . , tn. Furthermore, we use the syntax t[ ] to indicate a tree term with one
occurrence of the constant ◦, and t[s] to indicate the term obtained by replacing
the constant ◦ in t[ ] with s. We use var(t) to denote the set of variables in t.
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A TUC-rewrite rule l → r is such that l, r ∈ MS, var(r) ⊆ var(l), the label
tuc does not occur in l, r and every variable in l occurs within a tree term.1 A
TUC-theory R is a set of TUC rewrite rules.

The rules in the theory describe how the current tree configuration is updated
during a computation in accord with the following operational semantics. For
a fixed set of rules R and given two ground TR terms t1 = tuc〈m1〉 and t2 =
tuc〈m2〉, t1 ⇒ t2 if and only if there exists a context t[ ], a rule l → r in R, and a
mapping σ from var(l) to terms in MS (multiset of trees) such that t1 = t[σ(l)]
and t2 = t[σ(r)]. For a set of rules R, we use ∗⇒ to indicate the reflexive and
transitive closure of ⇒.

Definition 2. For a set of TUC rules R and two ground terms t1 = tuc〈m1〉
and t2 = tuc〈m2〉, the reachability problem consists in deciding if t1

∗⇒ t2 holds.2

Example 2. Assume N = {n}, Q = {a, b}, and let R consist of the rules

a → a | a
a | a → a
n〈X〉 → n〈a | n〈X〉〉

The first rule adds one occurrence of leaf a, while the second rule consumes one
occurrence of a. The third rule inserts a new internal node n with leaf a on top of
an existing n-rooted tree. The multiset-variable X represents the content of the
node labelled by n. With these rules, the term t = tuc〈a | n〈b〉〉 can be rewritten
into trees of arbitrary width and depth as shown by the following derivation:

t
∗⇒ tuc〈a | a | n〈a | n〈b〉〉〉 ∗⇒ tuc〈a | n〈a | a | n〈a | n〈b〉〉〉〉 ∗⇒ . . .

As another example, we can use the rule n〈X〉 → X to remove an internal node
by moving its sons one level up in the tree, while the rule n〈X〉 → a replaces an
entire n-rooted subtree with the leaf a.

In the next section we will show that TUC is powerful enough to express reach-
ability problems for ppMA.

3.1 From Reachability in ppMA to Reachability in TUC

In this section we show how to reduce the reachability problem for ppMA to
reachability in TUC. Before going into the details of the reduction, we need
however some preliminary considerations on the semantics of MA. Let us first
notice that we can work with a congruence relation applied only to context
different from !P (as for the reduction semantics). Let us now reformulate the
axioms P | 0 ≡ P and !P ≡ P | !P as the following reduction rules

P � P | 0 P | 0 � P !P � !P | P !P | P � !P

1 With this condition, we forbid rules like X → t where X ∈ V.
2 We assume that the label tuc does not occur in m1 and m2.
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T (0) = q0 T (!Q1) = q!Q1 T (M.Q1) = qM.Q1

T (n[Q1]) = n〈T (Q1)〉 T (Q1|Q2) = T (Q1)|T (Q2)

Fig. 2. Encoding of processes into ground terms

In MA the empty ambient is represented by n[0]. To maintain this property, we
refine the reduction semantics of the out rule as follows

n[m[out n.P | R] | Q] � m[P | R] | n[Q | 0]

Several computation steps of the modified semantics may correspond to one com-
putation or congruence step in the original semantics. Reachability is preserved
by the modified semantics: If Q is reachable from P0 in the standard semantics,
then there exists Q′ reachable from P0 in the modified semantics such that Q′ is
equivalent modulo the congruences for 0 to Q, and Q′ is obtained by replacing
every occurrences of a process !R in Q with an equivalent process !R′ occurring
in P0. Given a process term P , let us now define the set of replicated or se-
quential processes Der(P ) that may become active during a computation (the
derivatives of P ).

Der(0) = {0}
Der(!P ) = {!P} ∪Der(P )
Der(M.P ) = {M.P} ∪Der(P )
Der(n[P ]) = Der(P )
Der(P | Q) = Der(P ) ∪Der(Q)

It is easy to check that Der(P ) is a finite set. Furthermore, if P
∗� Q using the

modified reduction semantics, then Der(Q) ⊆ Der(P ) ∪ {0}.
Let us now consider the reachability problem P0

∗� P1. To encode it into
TUC, we use tree terms in which internal nodes have labels in N = Amb, the
set of ambient names, and leaves range over the finite set of constants

Q = {qR | R ∈ Der(P0)} ∪ {q0}

Given a process Q derived from P0, we define the ground term T (Q) by induction
on Q as shown in Fig. 2. The semantics of MA processes can be simulated by
the TUC-theory R(P0) of Fig. 3. Indeed, the following property holds.

Proposition 1. P0
∗� P1 if and only if tuc〈T (P0)〉 ∗⇒ tuc〈T (P1)〉 in R(P0).

Proposition 1 allows us to transfer the undecidability result for reachability in
ppMA proved in [1] to our fragment of AC Term Rewriting.

Theorem 1. Reachability is undecidable in TUC.

3.2 Expressiveness of TUC

In [11] it has been shown that ppMA is a Turing complete model. We can exploit
this result and Prop. 1 to show that TUC is Turing complete as well. This
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(open) qopen n.Q | n〈Y 〉 → T (Q) | Y

(in) m〈qin n.Q | Y 〉 | n〈Z〉 → n〈m〈T (Q) | Y 〉 | Z〉
(out) n〈m〈qout n.Q | Y 〉 | Z〉 → m〈T (Q) | Y 〉 | n〈q0|Z〉
(copyt) q!Q → q!Q | T (Q)

(absorbt) q!Q | T (Q) → q!Q

(zero) q → q | q0 q | q0 → q

n〈X〉 → n〈X〉 | q0 n〈X〉 | q0 → n〈X〉
For any n, m ∈ N , qopen n.Q, qin n.Q, qout n.Q, q!Q ∈ Q

Fig. 3. TUC theory for ppMA

property as well as the undecidability of reachability can be seen in a more
direct way by defining an encoding of Two Counter Machines (2CMs) in TUC.
Let us first define the instruction set of a 2CM with control states s1, . . . , sn and
counters c1 and c2. When executed in state sk, INCi(k, l) increments counter
ci and then moves to state sk, while DECi(k, l, m) decrements ci and then
moves to sl if ci > 0, and moves to state sm if ci = 0. A 2CM configuration
consists of a control state and of the current values of the counters. Our TUC
representation makes use of the constants Q = {s1, . . . , sn, zero1, zero2} and of
the labels N = {c1, c2}. A 2CM configuration C = (si, c1 = n1, c2 = n2), for
n1, n2 ≥ 0, is represented by the term C• = tuc〈si | cn1

1 〈zero1〉 | cn2
2 〈zero2〉〉,

where c0
i 〈t〉 = t, and cn+1

i 〈t〉 = ci〈cn
i 〈t〉〉 for n ≥ 0. To encode INCi(k, l) and

DECi(k, l, m), we use the TUC rules

(inc) sk | ci〈X〉 → sl | c2
i 〈X〉 (incz) sk | zeroi → sl | ci〈zeroi〉

(dec) sk | ci〈X〉 → sl | X (test) sk | zeroi → sm | zeroi

The latter encodes the zero-test on counter ci. If the 2CM configuration C1
evolves into C2 via the instruction i, then the term C•

1 can be rewritten into C•
2

using the TUC rule encoding i. The following property then holds.

Theorem 2. TUC is a Turing complete model.

In the following section we introduce a non trivial subclass of TUC that can still
be used to model movement operations of MA-calculi and for which reachability
is decidable.

4 The Structure Preserving Fragment of TUC

The structure preserving fragment of TUC (TUCsp) is obtained by restricting
the syntax of rules so as to avoid that their application can remove internal
nodes. This property does not imply that the resulting system is monotonic with
respect to the size of terms. Indeed, although we forbid rules like n〈X〉 → X and
n〈X〉 → a that delete internal nodes or subtrees, a rule that removes a leave like
a|a → a is still definable in TUCsp.
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In order to define the syntax of TUCsp-rules, we introduce two subclasses of
tree terms, namely RTL (restricted terms used in the left-hand side of rules)
and RTR (used in the right-hand side) with the following characteristics. Leaves
in Q are the only ground terms we allow in RTL. Every non ground tree term
occurring in an RTL term must be of the form n〈t1 | . . . | tn | X〉, where n ∈ N ,
X is a variable and ti is an RTL term for 1 ≤ i ≤ n and n ≥ 0. RTR terms are
slightly more general since they can have ground trees as subterms.

Formally, RTL and RML are the least sets satisfying

– Q ⊆ RTL;
– if t1, . . . , tn ∈ RTL and X ∈ V , then t1| . . . |tn|X ∈ RML for n ≥ 0;
– if m ∈ RML and n ∈ N , then n〈m〉 ∈ RTL.

RTR and RMR are the least sets satisfying

– Q ⊆ RTR and ε ∈ RMR;
– if t1, . . . , tn ∈ RTR, then t1| . . . |tn ∈ RMR for n ≥ 1;
– if t1, . . . , tn ∈ RTR and X ∈ V , then t1| . . . |tn|X ∈ RMR for n ≥ 0;
– if m ∈ RMR and n ∈ N , then n〈m〉 ∈ RTR.

In the rest of the paper we use n〈t1, . . . , tn〉 as an abbreviation for n〈t1 | . . . | tn〉
and n〈t1, . . . , tn| X〉 for n〈t1 | . . . | tn | X〉. Given a term t let IntNds(t) denote
the number of occurrences of labels in N (internal nodes) in t. IntNds(t) is de-
fined by induction on t as follows: IntNds(ε) = IntNds(X) = IntNds(q) = 0 for
X∈ V and q∈ Q, IntNds(t1| . . . |tk) = IntNds(t1| . . . |tk|X) = Σk

i=1IntNds(ti),
and IntNds(n〈m〉) = IntNds(m) + 1. For instance, if t = n〈n〈q|q′|X〉|n′〈q〉〉,
X ∈ V , q, q′ ∈ Q, then IntNds(t) = 3. We are ready now to define the class of
structure preserving rules.

Definition 3. A structure preserving rule l → r is such that

1. l = t1 | . . . | tn, and ti ∈ RTL for i : 1, . . . , n;
2. r = t′1 | . . . | t′m and t′i ∈ RTR for i : 1, . . . , m;
3. l and r have the same set V of variables;
4. each variable in V occurs once in l and once in r;
5. IntNds(l) ≤ IntNds(r).

A TUCsp-theory is a set of structure preserving rules.

By definition of RTL and RTR, with the first condition we associate one and
only one variable to each node, whereas in the right-hand side we also admit
internal nodes with ground subtrees. The last three conditions ensure that the
tree structure of terms, involved in a rewriting step can only get larger: condition
3 and 4 ensure that subtrees can neither be eliminated nor duplicated, condition
5 ensures that internal nodes can never be eliminated. Since IntNds(t) only
counts the number of occurrence of labels of internal nodes, these conditions do
not imply monotonicity with respect to the size of a term.

Some examples of TUCsp rules are:
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– a | a → a and a → a | a (resp. deletion and insertion of a leaf);
– n〈X〉 | m〈Y 〉 → n〈Y 〉 | m〈X〉 (swapping of subtrees);
– n〈q|X〉 | m〈q|Y 〉 → n〈r|n〈X〉〉 | m〈r|m〈Y 〉〉 | n〈ε〉 (insertion of nodes).

As opposite, the following rules are not in the TUCsp fragment:

– n〈X〉 → n〈X〉 | n〈X〉 (duplication of a subtree),
– n〈X〉 → X (removal of a node),
– n〈ε〉 → n〈ε〉|q (ground term on the left-hand side),
– n〈X〉 → a (removal of a complete subtree).

Despite all restrictions of Def. 3, TUCsp is still a powerful computational model.
As a first example, it is easy to check that Petri nets can be encoded in TUCsp by
using terms with one nesting level only. For instance, if Q = {a, b, c}, then the
ground term tuc〈a | a | b〉 can be used to represent a marking in which places
a, b and c have two, one, and zero tokens, respectively. The rule a | a → c
represents a transition that removes two tokens from place a, and adds one
token to place c. From this observation, it follows that TUCsp reachability is
at least as hard as Petri net reachability. Actually, in the next section we show
that reachability between terms in a TUCsp-theory can always be reduced to
a reachability problem for a Petri net extracted from the terms and from the
rules (Proposition 2). From this property and from the decidability of Petri net
reachability [12], we obtain that TUCsp-reachability is decidable (Theorem 3).

4.1 Decidability of Reachability in TUCsp

Given a TUCsp-theory R, and two ground tree terms t0 and tf , let us consider
the reachability problem t0

∗⇒ tf . By definition, if there exist t1, . . . , tk such
that t0 ⇒ t1 ⇒ . . . ⇒ tk ⇒ tf , then IntNds(ti) ≤ IntNds(tf ) for i : 0, . . . , k.
This property gives us an upper bound on the number of internal nodes, but not
on the number of leaves, occurring in each intermediate tree ti. As an example,
consider the two TUCsp rules a → a|a and a|a → a and the tree term t = tuc〈a〉.
In a derivation from t to t we find terms with any number of occurrences of a.

To keep track of the number of leaves we can resort however to a Petri net. The
construction is based on the following key observations. Firstly, we can exploit
the above mentioned upper bound on the number of internal nodes to isolate the
finite set of possible tree structures (tree terms without leaves) that can occur in
a derivation leading to tf . The Petri net has a finite set of places (T-places) each
one denoting one of these tree structures. Only one T-place can be marked in a
reachable marking. Another finite set of places (L-places) is used to keep track of
the current number of occurrences of leaves (constants in Q) at every level of the
tree structure denoted by the currently marked T-place. The association between
an internal node of a T-place and the set of its leaves is maintained via a finite
set of position labels. To make these ideas more formal, let us first introduce the
set of terms we use to represent T-places, i.e., tree structures with position labels.

Let P be the set of position labels {•1, •2, . . . , }. Then TS (tree structures)
and MTS (multisets of TS terms) are the least set satisfying: if t1, . . . , tr ∈
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TS and •i ∈ P , then t1, . . . , tr|•i is in MTS for r ≥ 0 and i ≥ 1; if m ∈
MTS and n ∈ N , then n〈m〉 is in TS. We still use IntNds(t) to denote the
number of occurrences of labels of internal nodes in t (we assume that tuc �∈ N ).
Furthermore, we use Pos(t) to denote the multiset that keeps track of the number
of occurrences in t of position labels in P . As an example, let N = {n, p, q}, then
t = tuc〈n〈•4〉, p〈p〈•5〉|•3〉, •8〉 is a TS term with IntNds(t) = 3. Furthermore,
we have that Pos(t) = {•3, •4, •5, •8}. Notice that a tree structure represents a
skeleton for an infinite set of tree terms, all those obtained by populating internal
nodes with multisets of leaves.

Given a natural number N ≥ 1, t ∈ TS is said to be N -well-formed if and
only if Pos(t) = {•1, . . . , •k+1} for k ≤ N , i.e., t has k internal nodes and k + 1
position labels numbered 1, . . . , k + 1 (the top level label in a multiset term is
not associated to an internal node). We use WSK to denote the set of MTS
terms that are K-well-formed. As an example, WS3 consists of MTS-terms like
n1〈•i1〉|n2〈•i2〉|n3〈•i3〉|•i4 , n1〈n2〈•i1〉, n3〈•i2〉 | •i3〉|•i4 , . . . , where ni ∈ N for
i : 1, . . . , 3, and (i1, i2, i3, i4) is a permutation of (1, 2, 3, 4).

Let R be a TUCsp-theory, t0 and tf be two ground tree terms and K be
the number of internal nodes of tf , i.e., K = IntNds(tf ). The Petri net N

associated to the reachability problem t0
∗⇒ tf has two kind of places. The set

of T-places is defined as {tuc〈w〉 | w ∈ WSK} (the set of tree structures with
at most K internal nodes with labels in N ). The set of L-places is defined as
{〈q, •i〉 | q ∈ Q and i ∈ {1, . . . , K + 1}}. Transitions have in their preset and
postset a single T-place together with a set of L-places.

To define the marking and transitions of the Petri net associated to t0, tf , and
R, we introduce two functions called match and extract. The intuition behind
their definitions is as follows. Given a rule l → r and a T-place s, we first
try to match the left-hand side l with a multiset term m occurring in s. The
matching procedure works by a parallel inspection of the structure of l and m
and returns a substitution θ for the variables in l. Every variable is associated to
a multiset term labelled by a position. During the matching phase, we collect in
a set S all the leaves occurring in l. Leaves are labelled with the position of the
corresponding internal nodes. If the matching between l and m succeeds then we
can build a transition t with {s} ∪ S as input places. To determine the output
places, we first have to apply the substitution θ, computed during the matching
phase, to the right-hand side r, and then extract the new tree structure m′ and
the corresponding leaves from θ(r). Since r can have ground subterms, during
the visit of θ(r) we may need to introduce new position labels, distinct from
those in s. New labels are collected in a set N . Finally, we have to replace m
with m′ in s to obtain the output T-place s′ of the transition.

For instance, suppose that s = n〈m〉|•1, m = n′〈n〈•3〉|•2〉, and that the rule
l → r is such that l = n′〈q1, q2|X〉 and r = n′〈q3|X〉|n′〈q4〉. The mapping θ =
[X �→ n〈•3〉|•2] can be used to unify m and l. The set S = {〈q1, •2〉, 〈q2, •2〉}.
contains the leaves in l partitioned according to the position labels in m. Further-
more, from θ(r) = n′〈q3, n〈•3〉|•2〉|n′〈q4〉 we can extract the labelled term (with-
out leaves)m′ = n′〈n〈•3〉|•2〉|n′〈•4〉 after having associated the new position label
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•4 to the ground tree n′〈q4〉. The set S′ = {〈q3, •2〉, 〈q4, •4〉} contains the leaves
of the new tree structure (again partitioned according to the position labels). Fi-
nally, let s′ be the term obtained by replacing m with m′ in s. Then, we can define
a transition with input places {s} ∪ S and output places {s′} ∪ S′.

Match. Since TUC has an AC constructor, we need to work with sets of matching
substitutions. The function match takes in input a (multiset) term s ∈ WSM
and a term t ∈ RML and returns a set of pairs 〈θ, S〉, such that θ is a mapping
from the variables in t to multisets of TS terms, and S is a multiset of L-places.
Formally, 〈θ, S〉 ∈ match(s, t) iff there exist u, v, w ≥ 0 and k ≥ 1 such that

– s = n1[s1], . . . , nv[sv], r1, . . . , ru | •k,
– t = q1, . . . , qw, n1[t1], . . . , nv[tv] | X where qi ∈ Q for 1 ≤ i ≤ w
– 〈θi, Si〉 ∈ match(si, ti) for 1 ≤ i ≤ v,
– θ = {X �→ (r1, . . . , ru | •k)} ∪

⋃v
i=1 θi,

– S = {〈q1, •k〉, . . . , 〈qw, •k〉} ⊕
⊕v

i=1 Si.

Here ⊕ denotes multiset union. Notice that if v = u = 0, then θ = {X �→ •k},
and that if v = u = w = 0 then S = ∅. For instance, consider

s = a〈b〈a〈•3〉 | •2〉, c〈•1〉, a〈•4〉|•5〉| •6 t = a〈b〈q1|X〉, a〈q2|Y 〉|Z〉|W

Then, match(s, t) returns

θ = {X �→ (a〈•3〉 | •2), Y �→ •4, Z �→ (c〈•1〉 | •5), W �→ •6}
S = {〈q1, •2〉, 〈q2, •4〉}

As another example, if s = n〈•1〉|n〈•2〉|•3 and t = n〈X〉|n〈Y 〉|Z then {X �→
•1, Y �→ •2, Z �→ •3} and {X �→ •2, Y �→ •1, Z �→ •3} are two possible substitu-
tions returned by match(s, t) (in both cases S = ∅).

Extract. Let θ be a substitution computed by match(s, t1). Suppose that t2 is an
RMR term with the same variables as t1. The term θ(t2) obtained by applying θ
to t2 is such that all variables in t2 are replaced by MTS terms (multiset of tree
structures with position labels). The extract function extracts the tree structure
of θ(t2) and associates to each leaf in t2 a position label accordingly to those
injected by θ in t2. The function extract returns a set of pairs 〈s, S〉, where s is
an MTS term, and S is a multiset of L-places.

Formally, 〈s, S〉 ∈ extract(t) iff there exist v, w ≥ 0, and k ≥ 1 such that

– t= p1, . . . , pw, n1〈m1〉, . . . , nv〈mv〉 | •k or t= p1, . . . , pw, n1〈m1〉, . . . , nv〈mv〉
with pj ∈ Q for 0 ≤ j ≤ w,

– (si, Si) ∈ extract(mi) for 1 ≤ i ≤ v,
– s = n1〈s1〉, . . . , nv〈sv〉 | •k, and
– S = {〈p1, •k〉, . . . , 〈pw, •k〉} ⊕

⊕v
i=1 Si.

Notice that if a certain level of t there is no position label, then we choose
one non-deterministically to label the corresponding level of s. As an exam-
ple, given t = a〈q1, b〈q2, a〈•3〉 | •2〉, a〈•4〉〉, extract(t) contains the pair s =
a〈b〈a〈•3〉 | •2〉, a〈•4〉 | •5〉, S = {〈q1, •5〉, 〈q2, •2〉}, where •5 is a new label.
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Let τR = ∅
For every rule l → r ∈ R
For every T-place v and term t = n〈m | •k〉 such that v = v′[t]
Let t′ = n〈l | Z〉 for a variable Z 	∈ var(l)
For every 〈θ, S〉 ∈ match(m | •k, l | Z)
For every 〈s | •tmp, S′〉 ∈ extract(θ(r)) s.t. w = v′[n〈s | θ(Z)〉] is K-well-formed
Add a transition with preset {v} ⊕ S and postset {w} ⊕ S′ to τR.

Fig. 4. Algorithm for computing Petri net transitions

Transitions. The set τR of Petri net transitions associated to rules in R is
computed via the algorithm of Fig. 4. Notice that, well-formedness ensures that
all position labels introduced in w by extract must be distinct and new with
respect to those in Pos(t).

Markings. Given a ground tree term t, the set of Petri net markings marking(t)
associated to t is the set marking(t) = {M | 〈s, S〉 ∈ extract(t), M = {s}⊕S}.
Intuitively, the marking associated to t has one token in the T-place s repre-
senting the tree structure of t, and k tokens in place 〈q, �〉 if q occurs k times at
position � in s. The following property then holds.

Proposition 2. Let N be the Petri net associated to the reachability problem
t0

∗⇒ tf and R. Then, t0
∗⇒ tf holds iff there exist M ∈ marking(t0) and

M ′ ∈ marking(tf ) such that M ′ is reachable from M in N .

Example 3. Given t = a〈q1, b〈q2, q2, q3, a〈q2〉〉, a〈q1, b〈q1〉〉, a〈q1, q2〉〉, extract(t)
returns s = a〈s′〉 | •7 where s′ = b〈a〈•1〉 | •2〉, a〈b〈•3〉 | •4〉, a〈•5〉 | •6 and
S = {〈q1, •6〉, 〈q2, •2〉, 〈q2, •2〉, 〈q3, •2〉, 〈q2, •1〉, 〈q1, •4〉, 〈q1, •3〉, 〈q1, •5〉, 〈q2, •5〉}.
We obtain the marking Mt associated to 〈s, S〉 by putting 1 token in the T-place
s, 1 token in the L-place 〈q1, •6〉, 2 tokens in the L-place 〈q2, •2〉, etc.

Now consider the rule l → r such that l = a〈q2 | X〉 | b〈q3 | Y 〉 and r =
a〈q1, b〈q1 | X〉 | Y 〉. Then, we have that t′ = a〈l | Z〉 can be matched against s.
Indeed match(s′, l | Z) returns among other possible solutions

θ = {X �→ •5, Y �→ (a〈•1〉 | •2), Z �→ (a〈b〈•3〉 | •4〉 | •6)}
U = {〈q2, •5〉, 〈q3, •2〉}

Another possibility is to swap the terms associated to Y and Z. Furthermore,
θ(r) = a〈q1, b〈q1 | •5〉, a〈•1〉 | •2〉 and extract(θ(r)) contains the pair 〈s′, S′〉,
where s′ = a〈b〈•5〉, a〈•1〉 | •2〉 | •new and S′ = {〈q1, •2〉, 〈q1, •5〉}. Thus, we
build a transition τ with input places {s}∪U and output places {s′′′}∪S′ where

s′′′ = a〈s′, a〈b〈•3〉 | •4〉 | •6〉 = a〈a〈b〈•5〉, a〈•1〉 | •2〉, a〈b〈•3〉 | •4〉 | •6〉

Furthermore, since U ⊆ S we have that τ is enabled at MT . Its firing leads to
the marking obtained by removing one token from the T-place s and from the
L-places 〈q2, •5〉 and 〈q3, •2〉, and by adding one token to the T-place s′′′ and to
the L-places 〈q1, •2〉 and 〈q1, •5〉. Namely, the newly marked L-places is

V = {〈q1, •2〉, 〈q1, •5〉, 〈q1, •6〉, 〈q2, •2〉, 〈q2, •2〉, 〈q2, •1〉, 〈q1, •4〉, 〈q1, •3〉, 〈q1, •5〉}
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From the resulting marking we can reconstruct the term obtained by applying
the rule. We just have to populate s′′′ with the corresponding leaves in V to
obtain the term: a〈q1, a〈q1, b〈q1〉, a〈q2, q2〉〉, a〈q1, b〈q1〉〉〉.

Proposition 2 allows us to reduce reachability in a TUCsp-theory to a finite set
of reachability problems for a Petri net. Since the latter problem is decidable
[12], we obtain the following result.

Theorem 3. Reachability is decidable in TUCsp.

5 Reachability Analysis of Fragments of ppMA in TUCsp

As investigated in [1,3], the use of the open capability and of the congruence
!P ≡!P |P represent two different sources for the undecidability of the reacha-
bility problem in ppMA. To overcome this problem, in [1] Boneva and Talbot
proposed a weaker semantics for the open-free fragment of ppMA: the original
semantics of !P is replaced by the oriented reduction rule !P � P | !P , thus drop-
ping the absorbtion law !P | P �!P from the calculus. In [1], they prove that
reachability is decidable in this “semantic” fragment of open-free ppMA. In [3]
Busi and Zavattaro introduced instead a “syntactic” fragment of open-free ppMA
for which reachability is decidable. In this fragment replication is allowed only
when guarded by an action, i.e., in terms like !in n.P and !out n.P . Differently
from the Boneva-Talbot fragment, the semantics of replication is not modified
with respect to the original MA model. In [4] Busi and Zavattaro proved also the
decidability of reachability for the public BA with guarded replication and with
parent-child communication defined only for finite sequences of capabilities.

Consistently with the above mentioned results, we first notice that, due to the
presence of the rules open and absorbt, the TUC-theory that models a reachabil-
ity problem in ppMA of Fig. 3 is not structure preserving. The semantic restric-
tion of Boneva-Talbot can be mimicked here by dropping open and absorbt from
the calculus. We now observe that the following TUCsp rules naturally model
the semantics of guarded replication:

q!M.P → q!M.P | qM.P q!M.P | qM.P → q!M.P

for any !M.P occurring in the set Der(P0) associated to the initial process P0.
The syntactic restriction of Busi-Zavattaro can be mimicked by removing the
rules open, copyt, and absorbt from the TUC theory in Fig. 3, and by adding the
new rules for q!M.P . Furthermore, under the same assumptions taken in [4], we
can use a TUCsp-theory to model parent-child communication. For instance, the
rule

n〈q(x)↑P |X〉 | q〈M〉.R → n〈T (P{x := M})|X〉 | T (R)

models the transmission of a finite sequence of capabilities M to a child ambient
n. In all the above cases the resulting rewrite rules are structure preserving.
Therefore, we can apply Theorem 2 to obtain a uniform and elegant way to
prove the decidability of reachability in these fragments of MAand BA. A similar
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reasoning can be applied for other variations of the MA model. For instance,
it is immediate to check that reachability in open-free pure public SA can be
encoded as TUCsp reachability. Indeed, safe movement operations like safe in
can be modelled via the TUCsp rules

m〈qin n.Q | Y 〉 | n〈qin n.R | Z〉 → n〈m〈T (Q) | Y 〉 | T (R) | Z〉

which is structure preserving.
It is interesting to notice that in TUCsp we can model tree update schemes

that are not present as primitive operations in MA. For instance, the rule that
swaps the sons of two ambients, i.e.,

n〈X〉 | m〈Y 〉 → n〈Y 〉 | m〈X〉

is structure preserving. Thus, when such a tree update scheme is added to ppMA,
it does not break the good property of the above mentioned fragments.

6 Related Work

Reachability is known to be decidable for ground Term Rewriting Systems
(TRSs) [7,13]. In our setting we consider however reachability problems with
substitutions and rewrite rules with infinite sets of ground instances. Ground
AC TRSs are equivalent to Process Rewrite Systems (PRS) a combination of
prefix rewrite systems and Petri nets introduced in [14]. TUCsp seems to be not
directly related to PRS. Indeed, PRS does not allow synchronization rules of the
form n〈X〉 | m〈Y 〉 → n′〈X〉 | m′〈Y 〉 which are expressible in TUCsp. Using these
kind of rules, it is easy to see that TUCsp-rules can generate non-regular tree
languages when viewing rewrite rules as grammar rules. Despite of the non reg-
ularity of the generated languages, the decidability of reachability gives us a way
to decide the membership problem of a given term t in the set of terms reachable
from a certain term via a set of TUCsp rewrite rules. This property seems a dis-
tinguished feature from decidability results of TRSs based on tree automata like
those obtained for right-linear and monadic TRSs [15], linear and semi-monadic
TRSs [6], and decreasing TRSs [9]. To be more specific, the rule used to encode
movement capabilities in Fig. 3 violate all the syntactic restrictions proposed in
[15,9,6] since they contain a variables in a nested term in the right-hand side that
also occurs in the left hand side. The completion algorithm for tree automata
presented in [8] could be a useful heuristic for testing non-reachability of a given
(set of) term(s). Concerning the reachability problem for fragments of ppMA,
we are only aware of the work in [3,1,4]. As discussed in detail in Section 5, the
decidability result for TUCsp gives us a uniform and more general view of these
results.

7 Conclusions

In this paper we have investigated the relation between fragments of Mobile
Ambients and AC Term Rewriting. Our investigations show that a large class
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of tree update mechanisms that includes the movement capabilities of Mobile
Ambients can be naturally expressed in simple fragments of Term Rewriting in
which it is possible to decide important computational properties like reacha-
bility. On the practical side, we are currently investigating two main directions:
the use of tools for manipulating AC Term Rewriting Systems for simulation
and analysis of specifications given in Mobile Ambients, and of approximation
techniques based on unfoldings for exploiting in an effective way the reduction
of reachability in TUCsp to Petri net reachability.

Acknowledgments. We thank Nadia Busi and Cristiano Calcagno for fruitful
discussions and suggestions.
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Abstract. We are interested in black-box conformance testing of real-
time systems. Our framework is based on the model of timed automata
with inputs and outputs (TAIO). We use a timed conformance rela-
tion called tioco which is the extension of the untimed relation ioco. We
show that considering only lazy-input TAIO is enough for describing all
possible non-blocking specifications. We compare between tioco and the
trace-inclusion relation. We prove that tioco is undecidable and that it
does not distinguish specifications with the same set of observable traces.
We prove tioco to be transitive and stable w.r.t both compositionality
and action hiding for input-complete specifications. We compare between
tioco and two other timed conformance relations, rtioco and $tioco.

1 Introduction

In this work, we are interested in so-called black-box conformance testing, where
the aim is to check conformance of the system under test (SUT) to a given
specification. The SUT is a “black box” in the sense that we do not have a
model of it, thus, can only rely on its observable input/output behavior. The
considered specification is a real-time system . Real-Time Systems are systems
which operate in an environment with strict timing constraints.

Our framework is expressive: it can fully handle partially-observable, non-
deterministic timed automata. More precisely, we model specifications as timed
automata with inputs and outputs − TAIO. The semantics of TAIO are given as
timed labeled transition systems − TLTS.

In a previous work [5], we introduced the timed input-output conformance
relation tioco, an extension of the relation ioco [7]. In this work, we show some
interesting properties of the conformance relation tioco.

The rest of this document is organized as follows. Section 2 introduces the
TAIO Model. Section 3 shows how conformance is formally defined and compares
between tioco and trace-inclusion relation. Section 3 also states some interesting
properties of tioco, namely, undecidability, transitivity and stability w.r.t both
compositionality and action hiding. Section 4 gives a comparison between tioco
and two other timed conformance relations, rtioco [4] and �tioco [3]. Section 5
presents conclusions.
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2 Timed Automata with Inputs and Outputs

2.1 Real-Time Sequences

Let R be the set of non-negative reals. Given a finite set of actions Ac, the set
(Ac∪R)∗ of all finite-length real-time sequences over Ac will be denoted RT(Ac).
ε ∈ RT(Ac) is the empty sequence. Given Ac′ ⊆ Ac and ρ ∈ RT(Ac), PAc′(ρ)
denotes the projection of ρ to Ac′, obtained by “erasing” from ρ all actions
not in Ac′. For example, if Ac = {a, b}, Ac′ = {a} and ρ = a 1 b 2 a 3, then
PAc′(ρ) = a 3 a 3. The time spent in a sequence ρ, denoted time(ρ) is the sum of
all delays in ρ, for example, time(ε) = 0 and time(a 1 b 0.5) = 1.5.

In the rest of the document, we assume given a set of actions Ac, partitioned
in two disjoint sets: a set of input actions Acin and a set of output actions Acout.
Actions in Acin ∪ Acout are called observable actions. We also assume there is an
unobservable action τ �∈ Ac. Let Acτ = Ac ∪ {τ}.

2.2 Timed Labeled Transition Systems

A timed labeled transition system (TLTS) over Ac is a tuple (S, s0, Ac, Td, Tt): S
is a set of states; s0 is the initial state; Td is a set of discrete transitions of the
form (s, a, s′) where s, s′ ∈ S and a ∈ Ac; Tt is a set of timed transitions of the
form (s, t, s′) where s, s′ ∈ S and t ∈ R.

Timed transitions must be deterministic, that is, (s, t, s′) ∈ Tt and (s, t, s′′) ∈
Tt implies s′ = s′′. Tt must also satisfy the following conditions:

– (s, t, s′) ∈ Tt and (s′, t′, s′′) ∈ Tt implies (s, t + t′, s′′) ∈ Tt;
– (s, t, s′) ∈ Tt implies that for all t′ < t, there is some (s, t′, s′′) ∈ Tt.

We use standard notation concerning TLTS. For s, si ∈ S, μ, μi ∈ Acτ ∪ R,
a, ai ∈ Ac ∪ R, ρ ∈ RT(Acτ ) and σ ∈ RT(Ac), we have:

– s
μ→ = ∃s′ · s μ→ s′;

– s
μ1···μn−→ s′ = ∃s1, · · · , sn · s = s1

μ1→ s2
μ2→ · · · μn→ sn = s′;

– s
ρ→ = ∃s′ · s ρ→ s′;

– s
ε⇒ s′ = s = s′ or s

τ ···τ−→ s′;
– s

a⇒ s′ = ∃s1, s2 · s ε⇒ s1
a→ s2

ε⇒;
– s

a⇒ = ∃s′ · s a⇒ s′;
– s

a1···an=⇒ s′ = ∃s1, · · · , sn · s = s1
a1⇒ s2

a2⇒ · · · an⇒ sn = s′;
– s

σ⇒ = ∃s′ · s σ⇒ s′;

A sequence of the form s0
μ1→ s

μ2→ · · · μn→ s′ is called a run and a sequence of
the form s0

a1⇒ s
a2⇒ · · · an⇒ s′ an observable run.

2.3 Timed Automata

We use timed automata [1] with deadlines to model urgency [6, 2]. A timed
automaton over Ac is a tuple A = (Q, q0, X, Ac, E) where: Q is a finite set of
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locations; q0 ∈ Q is the initial location; X is a finite set of clocks; E is a finite set
of edges.

Each edge is a tuple (q, q′, ψ, r , d , a), where: q, q′ ∈ Q are the source and
destination locations; ψ is the guard, a conjunction of constraints of the form
x#c, where x ∈ X , c is an integer constant and # ∈ {<,≤, =,≥, >}; r ⊆ X is a
set of clocks to reset to zero; d ∈ {lazy, delayable, eager} is the deadline; a ∈ Ac
is the action.

We will not allow delayable edges with guards of the form x < c and eager
edges with guards of the form x > c.

A timed automaton A defines an infinite TLTS which is denoted LA. Its states
are pairs s = (q, v), where q ∈ Q and v : X → R is a clock valuation. 0 is the
valuation assigning 0 to every clock of A. SA is the set of all states and sA

0 =
(q0,0) is the initial state. Discrete transitions are of the form (q, v) a→ (q′, v′),
where a ∈ Ac and there is an edge (q, q′, ψ, r , d , a), such that v satisfies ψ and v′

is obtained by resetting to zero all clocks in r and leaving the others unchanged.
Timed transitions are of the form (q, v) t→ (q, v + t), where t ∈ R, t > 0 and
there is no edge (q, q′′, ψ, r , d , a), such that: either d = delayable and there exist
0 ≤ t1 < t2 ≤ t such that v + t1 |= ψ and v + t2 �|= ψ; or d = eager and v |= ψ. A
state s ∈ SA is reachable if there exists ρ ∈ RT(Ac) such that sA

0
ρ→ s. The set

of reachable states of A is denoted Reach(A).

2.4 Timed Automata with Inputs and Outputs

A timed automaton with inputs and outputs (TAIO) is a timed automaton over
the partitionned set of actions Acτ = Acin ∪ Acout ∪ {τ}. For clarity, we will
explicitly include inputs and outputs in the definition of a TAIO A and write
(Q, q0, X, Acin, Acout, E) instead of (Q, q0, X, Acτ , E).

A TAIO is called observable if none of its edges is labeled by τ .
Given a set of inputs Ac′ ⊆ Acin, a TAIO A is called input-complete w.r.t Ac′

if it can accept any input in Ac′ at any state: ∀s ∈ Reach(A) . ∀a ∈ Ac′ . s a→. It
is simply said to be input-complete when Ac′ = Acin. A is called lazy-input w.r.t
Ac′ if the deadlines on all the transitions labeled with input actions in Ac′ are
lazy. It is called lazy-input if it is lazy-input w.r.t Acin. Note that input-complete
does not imply lazy-input in general.

A is called deterministic if

∀s, s′, s′′ ∈ Reach(A) . ∀a ∈ Acτ . s
a→ s′ ∧ s

a→ s′′ ⇒ s′ = s′′.

A is called non-blocking if

∀s ∈ Reach(A) . ∀t ∈ R . ∃ρ ∈ RT(Acout ∪ {τ}) . time(ρ) = t ∧ s
ρ→ . (1)

This condition guarantees that A will not block time in any environment.
The set of timed traces of a TAIO A is defined to be

TTr(A) = {ρ | ρ ∈ RT(Acτ ) ∧ sA
0

ρ→}. (2)
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The set of observable timed traces of A is defined to be

OTT(A) = {PAc(ρ) | ρ ∈ RT(Acτ ) ∧ sA
0

ρ→}. (3)

The TLTS defined by a given TAIO is called a timed input-output LTS
(TIOLTS). From now on, unless otherwise stated, all the considered TAIO are de-
fined w.r.t the same sets Acin and Acout and unobservable action τ . As for TAIO,
a TIOLTS L is denoted (S, s0, Acin, Acout, Td, Tt) instead of (S, s0, Acτ , Td, Tt).

2.5 Parallel Composition of TAIO

Most of the time, it is easier to write models in a modular way. That is, to
consider models which are the product of some interacting components. For
that, we introduce the notion of parallel composition for the case of TAIO.

�
�

�
�

� � � � � �

� � � � � �

A1

Ac1→2

A2

Ac2→1

Ac1in Ac2in

Ac1
out Ac2out

Fig. 1. The generic scheme of two interacting TAIO

We are given two TAIO A1 = (Q1, q
1
0 , X1, Ac1

in∪Ac2→1, Ac1
out∪Ac1→2, E1) and

A2 = (Q2, q
2
0 , X2, , Ac2

in ∪ Ac1→2, Ac2
out ∪ Ac2→1, E2). The pair of TAIO (A1, A2)

is said to be compatible w.r.t the pair of action sets (Ac1→2, Ac2→1) if X1 ∩
X2 = ∅, the sets Ac1

in, Ac1
out, Ac2

in, Ac2
out, Ac1→2 and Ac2→1 are pairwise disjoint

(as illustrated in Figure 1) and Ai is both input-complete and lazy-input w.r.t
Ac(3−i)→i, for i = 1, 2.

The two TAIO synchronise both on time and on their shared common actions
Ac1→2 ∪ Ac2→1. When connected to each other, the interaction between the
two TAIO is assumed to be unobservable from outside. We further assume that
(A1, A2) is compatible w.r.t (Ac1→2, Ac2→1).

The parallel composition of A1 and A2 is denoted A1||A2. It is the TAIO
(Q1 ×Q2, (q1

0 , q2
0), X1 ∪X2, Acin, Acout, E) such that

Acin =
⋃

i=1,2

Aci
in, Acout =

⋃
i=1,2

Aci
out
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and E is the smallest set such that:

– For (q1, q2) ∈ Q1 ×Q2 and a ∈ Ac1
in ∪ Ac1

out ∪ {τ1}:

(q1, q
′
1, ψ1, r1, d1, a) ∈ E1 ⇒ ((q1, q2), (q′1, q2), ψ1, r1, d1, a) ∈ E; (4)

– For (q1, q2) ∈ Q1 ×Q2 and a ∈ Ac2
in ∪ Ac2

out ∪ {τ2}:

(q2, q
′
2, ψ2, r2, d2, a) ∈ E2 ⇒ ((q1, q2), (q1, q

′
2), ψ2, r2, d2, a) ∈ E; (5)

– For a ∈ Ac1→2: (q1, q
′
1, ψ1, r1, d1, a) ∈ E1 ∧ (q2, q

′
2, ψ2, r2, d2, a) ∈ E2

1

⇒ ((q1, q2), (q1, q
′
2), ψ1 ∧ ψ2, r1 ∪ r2, d1, τa) ∈ E; (6)

– For a ∈ Ac2→1: (q1, q
′
1, ψ1, r1, d1, a) ∈ E1 ∧ (q2, q

′
2, ψ2, r2, d2, a) ∈ E2

⇒ ((q1, q2), (q1, q
′
2), ψ1 ∧ ψ2, r1 ∪ r2, d2, τa) ∈ E. (7)

2.6 Parallel Composition of TIOLTS

Similarly, it is also useful to define parallel composition over TIOLTS. Given
two TIOLTS L1 and L2, the corresponding parallel product is denoted L1||L2.
Li = (Si, s

i
0, Aci

in ∪ Ac(3−i)→i, Aci
out ∪ Aci→(3−i), T

i
d, T

i
t ). The sets Ac1

in, Ac1
out,

Ac2
in, Ac2

out, Ac1→2 and Ac2→1 are pairwise disjoint (as illustrated in Figure 1).
The two TIOLTS synchronize on time delays and their common shared actions
Ac1↔2 = Ac1→2 ∪ Ac→1. The parallel product of the two TIOLTS is L1||L2 =
(S, (s1

0, s
2
0), Acin, Acout, Td, Tt) such that

Acin =
⋃

i=1,2

Aci
in, Acout =

⋃
i=1,2

Aci
out

and S, Td and Tt are the smallest sets such that:

– (s1
0, s

2
0) ∈ S;

– For (s1, s2) ∈ S and δ ∈ R: s1
δ→ s′1 ∈ T 1

t ∧ s2
δ→ s′2 ∈ T 2

t

⇒ (s′1, s
′
2) ∈ S ∧ (s1, s2)

δ→ (s′1, s
′
2) ∈ Tt; (8)

– For (s1, s2) ∈ S and a ∈ Ac1
in ∪ Ac1

out ∪ {τ1}:

s1
a→ s′1 ∈ T 1

d ⇒ (s′1, s2) ∈ S ∧ (s1, s2)
a→ (s′1, s2) ∈ Td; (9)

– For (s1, s2) ∈ S and a ∈ Ac2
in ∪ Ac2

out ∪ {τ2}:

s2
a→ s′2 ∈ T 2

d ⇒ (s1, s
′
2) ∈ S ∧ (s1, s2)

a→ (s1, s
′
2) ∈ Td; (10)

– For (s1, s2) ∈ S and a ∈ Ac1↔2: s1
a→ s′1 ∈ T 1

d ∧ s2
a→ s′2 ∈ T 2

d

⇒ (s′1, s
′
2) ∈ S ∧ (s1, s2)

τa→ (s′1, s
′
2) ∈ Td. (11)

1 We know that d2 = lazy since a is an input w.r.t A2.
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It is not difficult to see that from each possible run λ of L1||L2 it is possible
to extract two (unique) timed traces σ1 and σ2 of L1 and L2, respectively. For
example for

λ = (s1
0, s

2
0)

1.5→ (s, t) τa→ (p, q) ?b→ (r, q) !c→ (r, u)

we have σ1 = 1.5 ?a ?b and σ2 = 1.5 !a !c, where a ∈ Ac2→1, b ∈ Ac1
in and

c ∈ Ac2
out.

Conversely, two traces σ1 and σ2, respectively in OTT(L1) and OTT(L2), are
said to be synchronizable in L1||L2 if there exists a run λ of L1||L2 from which
the two traces can be extracted. In general, the run from which σ1 and σ2 can
be extracted may not be unique, due to different possible interleavings . For
instance, the two traces σ1 and σ2 given above can be also extracted from the
run

λ′ = (s1
0, s

2
0)

1.5→ (s, t) τa→ (p, q) !c→ (p, u) ?b→ (r, u).

Let L′
1 and L′

2 be two new TIOLTS. For i = 1, 2, L′
i has the same sets of inputs

and outputs as Li. Moreover, L′
1 and L′

2 synchronize on the same set of actions
Ac1↔2 as for L1 and L2. Let σ1 ∈ OTT(L1)∩OTT(L′

1), σ2 ∈ OTT(L2)∩OTT(L′
2),

λ a run of L1||L2 and σ ∈ OTT(L1||L2) the observable timed trace corresponding
to λ.

Lemma 1. If σ1 and σ2 are the traces extracted from λ, then σ1 and σ2 are
synchronizable in L′

1||L′
2 and σ ∈ OTT(L′

1||L′
2).

Let A1 = (Q1, q
1
0 , X1, Ac1

in ∪ Ac2→1, Ac1
out ∪ Ac1→2, E1) and A2 =

(Q2, q
2
0 , X2, , Ac2

in ∪ Ac1→2, Ac2
out ∪ Ac2→1, E2) be two TAIO. Then we have the

following.

Proposition 2. If (A1, A2) is compatible w.r.t (Ac1→2, Ac2→1) then

LA1||A2 = LA1 ||LA2 .

3 Timed Input-Output Conformance: tioco

We assume that the specification of the SUT is given as a non-blocking TAIO AS

and that the SUT can be modeled as a non-blocking, input-complete TAIO AI .2

3.1 Definition

Given a TAIO A and σ ∈ RT(Ac), A after σ is the set of all states of A that can
be reached by some timed sequence ρ whose projection to observable actions is
σ. Formally:

A after σ = {s ∈ SA | ∃ρ ∈ RT(Acτ ) . sA
0

ρ→ s ∧ PAc(ρ) = σ}. (12)

Given state s ∈ SA, elapse(s) is the set of all delays which can elapse from s
without A making any observable action. Formally:
2 We do not assume that AI is known, simply that it exists.
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elapse(s) = {t > 0 | ∃ρ ∈ RT({τ}) . time(ρ) = t ∧ s
ρ→}. (13)

Given state s ∈ SA, out(s) is the set of all observable “events” (outputs or the
passage of time) that can occur when the system is at state s. The definition
naturally extends to a set of states S. Formally:

out(s) = {a ∈ Acout | s a→} ∪ elapse(s), out(S) =
⋃
s∈S

out(s). (14)

The timed input-output conformance relation, tioco, is defined as

AI tioco AS ≡ ∀σ ∈ OTT(AS) . out(AI after σ) ⊆ out(AS after σ). (15)

We proceed in giving a number of properties of tioco. The first states that
specifications that have the same set of observable timed traces are equivalent
w.r.t tioco, in other words, they specify the same requirements.

Lemma 3. Given two TAIO AS and A′
S, if OTT(AS) = OTT(A′

S) then

∀AI ·AI tioco AS ⇔ AI tioco A′
S .

Proof. Let σ ∈ OTT(AS) = OTT(A′
S). We claim that out(AS after σ) =

out(A′
S after σ). Indeed for any a ∈ Acout∪R, a ∈ out(AS after σ)\out(A′

S after σ)
implies σa ∈ OTT(AS) \ OTT(A′

S) which contradicts the hypothesis. Thus, for
any implementation AI , out(AI after σ) ⊆ out(AS after σ) iff out(AI after σ) ⊆
out(A′

S after σ), and the result follows by definition of tioco. ��

The next lemma relates tioco to observable timed trace inclusion.

Lemma 4. Consider two TAIO A and B.

1. OTT(A) ⊆ OTT(B) implies A tioco B.
2. If B is input-complete then A tioco B implies OTT(A) ⊆ OTT(B).

Proof. 1. Let σ ∈ OTT(B) and a ∈ out(A after σ). a ∈ out(A after σ)
implies σa ∈ OTT(A). Since OTT(A) ⊆ OTT(B), σa ∈ OTT(B). Thus,
a ∈ out(B after σ), or out(A after σ) ⊆ out(B after σ). The result follows by
definition of tioco.

2. Suppose there exists σ ∈ OTT(A) \ OTT(B). Thus, there exist σ1, σ2 ∈
RT(Ac) and a ∈ Ac ∪ R, such that σ = σ1aσ2, σ1 ∈ OTT(B) and σ1a /∈
OTT(B). If a ∈ Acin then σ1a /∈ OTT(B) is a contradiction since σ1 ∈
OTT(B) and B is input-complete. If a ∈ Acout ∪ R then we have again a
contradiction, since σ1 ∈ OTT(B), a ∈ out(A after σ1) and A tioco B. ��

3.2 Only lazy Inputs Are Needed in Specifications

In this section, we show that considering only lazy-input TAIO is enough for
describing all possible (non-blocking) specifications. A lazy-input TAIO is one
where every edge labeled with a ∈ Acin has deadline lazy. Given a TAIO A, let
Lazy(A) be the TAIO obtained by setting the deadline of every edge of A labeled
with input to lazy.
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Lemma 5. For any non-blocking TAIO A, OTT(A) = OTT(Lazy(A)).

Proof. It should be clear that OTT(A) ⊆ OTT(Lazy(A)), since Lazy(A) is at
least as “permissive” as A (i.e., every transition in the TLTS defined by A is
also a transition of the TLTS defined by Lazy(A)). It remains to prove that
OTT(Lazy(A)) ⊆ OTT(A). Suppose there exists σ ∈ OTT(Lazy(A)) \ OTT(A).
Let s0

σ1→ s1 · · ·
σN→ sN a possible run of Lazy(A) corresponding to the trace σ.

Since σ �∈ OTT(A), there must exist some k ≤ N such that s0
σ1→ s1 · · ·

σk−1→ sk−1

is a possible run in A and sk−1 �
σk→ in A. Let q and v be the location and the

clock valuation, respectively, such that sk−1 = (q, v). Depending on the value of
σk, two cases are possible:

– σk ∈ Acτ : By construction, location q has outgoing edges which are labeled
with the same actions and have the same deadlines and clocks to reset, both
in A and Lazy(A). Thus for the same valuation v, the discrete transition
sk−1 = (q, v) σk→ sk, possible in Lazy(A), is also possible in A. Contradiction.

– σk ∈ R: The fact that sk−1 �
σk→, in A, means that there is some delayable

or eager outgoing edge e from q which prevents the delay σk from elapsing.
e cannot be labeled with τ or an output action, since then it would block
time in Lazy(A) as well. Thus, e is labeled with an input action. This implies
that at state sk−1 time is blocked unless this input action is received, which
contradicts the hypothesis that A is non-blocking. ��

From Lemma 3 and Lemma 5, we obtain the following.

Proposition 6. For any non-blocking TAIO AS,

∀AI · AI tioco AS ⇔ AI tioco Lazy(AS).

3.3 Making Specifications Input-Complete

A deterministic (and fully observable) specification can be made input-complete
without changing its conformance semantics by adding edges covering the miss-
ing inputs and leading to a “don’t care” location where all inputs and outputs
are accepted. More precisely, this transformation is done as follows. Given a
TAIO A = (Q, q0, X, Ac, E), we build the corresponding input-complete TAIO
Ã = (Q̃, q0, X, Ac, Ẽ). First, Q̃ = Q ∪ {qdc} where qdc /∈ Q is the “don’t care”
location. Second,

Ẽ = E ∪ {(qdc, qdc, true, ∅, lazy, a) | a ∈ Ac}∪
{(q, qdc,¬ψ, ∅, lazy, a) | q ∈ Q ∧ a ∈ Acin}

such that for each q ∈ Q and each a ∈ Acin, ψ = ψ1 ∨ ψ2 ∨ · · · ∨ ψk where ψ1,
ψ2, ... , ψk are the guards of the outgoing edges of q labeled with a. An example
showing how this transformation works is given in Figure 2. We transform A to
Ã. The TAIO A has only one input (a) and one output (b). The added edges are
the dashed ones.

Let AS be a deterministic and fully observable TAIO and let ÃS be the
input-complete TAIO corresponding to AS obtained by the transformation given
above.
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Fig. 2. How to transform a deterministic, fully-observable, but not input-complete
specification to an equivalent input-complete specification

Proposition 7. For any input-complete TAIO AI , AI tioco AS if and only if
AI tioco ÃS .

The proof of the above proposition is based on the following two lemmata.

Lemma 8. OTT(AS) ⊆ OTT(ÃS).

Lemma 9. Let σ ∈ OTT(ÃS). If σ ∈ OTT(AS) then out(AS after σ) = out(ÃS

after σ). Otherwise, out(AS after σ) ⊆ out(ÃS after σ) = R ∪ Acout.

Proof (of Proposition 7).

(⇒) We assume that AI tioco AS and we prove that AI tioco ÃS . So let σ ∈
OTT(ÃS). If σ ∈ OTT(AS) then by Lemma 9 we have out(AS after σ) =
out(ÃS after σ). Moreover since AI tioco AS we have out(AI after σ) ⊆
out(AS after σ). So out(AI after σ) ⊆ out(ÃS after σ) and we are done. If
σ /∈ OTT(AS), by Lemma 9 we have out(ÃS after σ) = R∪Acout. Thus, we
clearly have out(AI after σ) ⊆ out(ÃS after σ) and we are done once again.

(⇐) We assume that AI tioco ÃS and we prove that AI tioco AS . Let σ ∈
OTT(AS). By Lemma 8, we have σ∈OTT(ÃS). By Lemma 9, out(AS after σ)
= out(ÃS after σ). Moreover, out(AI after σ) ⊆ out(ÃS after σ) since
AI tioco ÃS and σ ∈ OTT(ÃS). Thus, out(AI after σ) ⊆ out(AS after σ)
and we are done. ��

Combined with Lemma 4, Proposition 7 implies that for deterministic and fully-
observable specifications, tioco can be replaced by timed trace inclusion, modulo
the above input-completing transformation. However, this transformation is not
correct for non-deterministic or partially observable specifications. A counter-
example is given in Figure 3. The specification AS has one input (a) and two
outputs (b and c). The implementation AI is input-complete. 3 We have AI tioco
ÃS but AI ���tiocoAS .
3 We omit self-loops labeled with a in order not to overload the figure.
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Fig. 3. An example showing that the transformation of Figure 2 is incorrect for non-
deterministic or partially-observable specifications

Also note that the determinization of TAIO is undecidable in general [8].
Hence, reducing tioco to timed trace inclusion is not always possible and a specific
framework for checking conformance w.r.t tioco needs to be established for non-
deterministic or partially-observable specifications.

3.4 Transitivity

Next we show that tioco is a transitive relation, given the usual assumption that
implementations are input-complete.

Proposition 10. Let A, B and C be three TAIO such that A and B are input-
complete, If A tioco B and B tioco C then A tioco C.

Proof. Let σ ∈ OTT(C). Two cases are possible:

– σ ∈ OTT(B). From A tioco B and B tioco C, we obtain out(A after σ) ⊆
out(B after σ) and out(B after σ) ⊆ out(C after σ). Thus, out(A after σ) ⊆
out(C after σ).

– σ /∈ OTT(B). By part 2 of Lemma 4, input-completeness of B and A tioco B,
we get σ /∈ OTT(A). Thus, out(A after σ) = ∅ ⊆ out(C after σ).

The result follows by definition of tioco. ��

3.5 Undecidability

Proposition 11. Checking tioco is undecidable.

Proof. We reduce the timed trace inclusion problem for timed automata which
is known to be undecidable [1] to the problem of checking tioco. Let A and B be
two TA over the set of actions Ac. The timed trace inclusion problem consists
in checking whether OTT(A) ⊆ OTT(B). Let Acout = Ac, i.e., Acin = ∅. Then,
both A and B are input-complete. By part 2 of Lemma 4, OTT(A) ⊆ OTT(B)
iff A tioco B. ��
It is worth noting that the undecidability of tioco is not a problem for black-box
testing: since the implementation AI is unknown, we cannot check conformance
directly, anyway.
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3.6 Compositionality

Let A1, A
′
1, A2 and A′

2 be four TAIO such that, for i = 1, 2, Ai and A′
i have the

same sets of inputs and outputs, as shown in Figure 1. Suppose that all four
automata are input-complete w.r.t their respective sets of inputs. Furthermore,
suppose that A1 and A2 are compatible w.r.t (Ac1→2, Ac2→1), and so are A′

1 and
A′

2. Then, we have the following compositionality result.

Proposition 12. If A′
1 tiocoA1 and A′

2 tiocoA2 then

A′
1||A′

2 tiocoA1||A2.

Proof. Observe that both A1||A2 and A′
1||A′

2 have the same set of inputs Acin =
Ac1

in ∪ Ac2
in and set of outputs Acout = Ac1

out ∪ Ac2
out.

– We first prove that A1||A2 is input-complete w.r.t Ac1
in ∪ Ac2

in. A state s of
A1||A2 is a pair (s1, s2) where si is a state of Ai for i = 1, 2. By assumption,
each Ai is input-complete w.r.t Aci

in. Thus for each a ∈ Aci
in, si

a→. By (4)
and (5), for each a ∈ Ac1

in ∪ Ac2
in, s

a→.
– By the same reasoning, A′

1||A′
2 is input-complete w.r.t Ac1

in ∪ Ac2
in.

– Now, we show that A′
1||A′

2 tiocoA1||A2. By Lemma 4, it suffices to prove that
OTT(A′

1||A′
2) ⊆ OTT(A1||A2). Let Ac = Acin∪Acout, Ac1↔2 = Ac1→2∪Ac2→1

and σ ∈ OTT(A′
1||A′

2). Since Ac1↔2 ∪ {τ} are internal unobservable actions
of A′

1||A′
2, there exists γ ∈ TTr(A′

1||A′
2) such that PR∪Ac(γ) = σ. For i = 1, 2,

let Aci = (Aci
in ∪Aci

out ∪Ac1↔2) (i.e., the observable actions of Ai) and σi =
PR∪Aci(γ). Then σi ∈ OTT(A′

i). By part 2 of Lemma 4, input-completeness
of Ai and A′

i and the assumption A′
i tiocoAi, we get σi ∈ OTT(Ai). By

Lemma 1, σ1 and σ2 are synchronizable in A1||A2 and σ ∈ OTT(A1||A2).
��

Note that the above result does not generally hold for the case of non input-
complete TAIO. A counter-example is given in Figure 4. We consider four TAIO
A1, A2, A

′
1 and A′

2. TAIO A2 and A′
2 are the same. The action a (dashed arrows

in the figure) is shared between A1 and A2, as well as between A′
1 and A′

2. That
is, Ac1

in = {c}, Ac1
out = {d, e}, Ac2→1 = {a} and Ac2

in = Ac2
out = Ac1→2 = ∅. The

two TAIO A1 and A′
1 are input-complete w.r.t {a}. A1 is not input-complete

w.r.t {c}. The guards of the transitions of all the automata are equal to true with
deadline lazy. We clearly have A′

2 tiocoA2 since A′
2 = A2. It is also not difficult

to see that A′
1 tiocoA1. The figure also shows the two product automata A1||A2

and A′
1||A′

2. After receiving input c, A′
1||A′

2 may generate either output d or e
while A1||A2 may generate only d. Thus, A′

1||A′
2���tiocoA1||A2.

3.7 Decreasing the Number of Observable Actions

Given a TAIO A and an observable action a ∈ Ac, we denote by A[τ/a] the TAIO
obtained from A by replacing action a, anywhere it appears, by τ . We have the
following result.
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Fig. 4. A counter example showing that tioco is not compositional for the case of
non-input-complete TAIO

Proposition 13. Given two input-complete TAIO A and A′ and an observable
action a ∈ Ac, if A′ tiocoA then A′

[τ/a] tiocoA[τ/a].

The above result is not valid for non-input-complete TAIO, in general. We use
the counter-example of Figure 4. We consider the two TAIO A1 and A′

1. As
already mentioned, A′

1 tiocoA1. It is easy to see that A1[τ/a] = A1||A2 and
A′

1[τ/a] = A′
1||A′

2. So, clearly A′
1[τ/a]�

��tiocoA1[τ/a].

4 Comparison with Other Conformance Relations

4.1 The Relativized Timed Conformance Relation

In [4], the relativized timed conformation relation, rtioco, is defined. It is “rela-
tivized” in the sense that it compares the implementation I and the specifica-
tion S w.r.t some given environment E . Both S, I and E are given as TIOLTS.
S and I are assumed to be input-complete w.r.t Acin; and E input-complete
w.r.t Acout. S, I and E are also non-blocking. For comparing S and I, the first
step consists in making the parallel composition of each of them with E . The
used parallel composition is slightly distinct from the one we propose. To avoid
confusion, we denote it ||r. What is new with ||r is that it does not hide the
actions on which the two TIOLTS synchronize (i.e., in (11) the action a remain
observable after synchronization). Moreover, ||r is defined in a way such that
OTT(S ||r E) = OTT(S) ∩ OTT(E). The formal definition of rtioco w.r.t E is
given by the following

I rtiocoE S iff ∀σ ∈ OTT(E) · out((I ||r E) after σ) ⊆ out((S ||r E) after σ).
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Proposition 14. Let S and I be two input-complete and non-blocking TLTS.
Furthermore, let E be an environment of S given as an input-complete and non-
blocking LTS. Then we have

I rtiocoE S ⇔ (I ||r E) tioco (S ||r E).

Proof.(⇒) Let σ ∈ OTT(S ||r E). Since OTT(S ||r E) = OTT(S) ∩ OTT(E), σ ∈
OTT(E). Since I rtiocoE S, out((I ||r E) after σ) ⊆ out((I ||r E) after σ).

(⇐) Let σ ∈ OTT(E). Two cases are possible:
– σ ∈ OTT(S). Since OTT(S ||r E) = OTT(S) ∩ OTT(E), σ ∈

OTT(S ||r E) too. Thus, out((I ||r E) after σ) ⊆ out((I ||r E) after σ) since
(I ||r E) tioco (S ||r E).

– σ /∈ OTT(S). Thus there exist σ′ ∈ RT(Ac) and b ∈ R ∪ Ac such
that: σ′b is a prefix of σ, σ′ ∈ OTT(S) and σ′b /∈ OTT(S). Since S is
input-complete we deduce that b ∈ R ∪ Acout. Since (I ||r E) tioco (S ||r E),
σ′ ∈ OTT(E) ∩ OTT(S) and b /∈ out((S ||r E) after σ′), we deduce that
b /∈ out((I ||r E) after σ′) either. The latter means that σ′b /∈ OTT(I)
which, in turn, means that σ /∈ OTT(I) either. So, out((I ||r E) after σ) =
out((S ||r E) after σ) = ∅ and we are done. ��

For the (universal) environment Eu such that OTT(Eu) = (R ∪ Ac)∗, we clearly
have S ||r Eu = S and I ||r Eu = I. By Proposition 14, we have I rtiocoEu S iff
I tiocoS. That is, tioco and rtiocoEu are equivalent.

4.2 The Conformance Relation �tioco

An other conformance relation, �tioco, is introduced in [3]. The main goal of this
work is to propose a testing framework which extends the notion of quiescence to
the case of timed systems. �tioco bears a lot of similarity with tioco. It is defined
w.r.t TIOLTS. The considered TLTS are assumed to be non-blocking and input-
complete. Given two TLTS S the specification and I the implementation, the
first step for comparing S and I consists in identifying the quiescent states of
both of them. A given state s of S is said to be quiescent if ∀t ∈ R·out(s after t) =
R (i.e., from s no discrete output can be generated if no input is received). For
each detected quiescent state s, a self loop s

δ→ s is added to the TLTS. The
obtained TLTS are denoted Δ(S) and Δ(I). �tioco is defined w.r.t an arbitrary
duration M . We let OTTM (S) = OTT(Δ(S))∩ (R · (Ac∪{Mδ}))∗. Given a state
s and a set of states S, we let

outM (s) = {tb ∈ R · Acin | s tb⇒} ∪ {Mδ | s Mδ⇒}; outM (S) =
⋃
s∈S

outM (s).

The relation �tioco w.r.t M , denoted �M
tioco, is defined as follows

I �M
tioco S iff ∀σ ∈ OTTM (S) · outM (Δ(I)afterσ) ⊆ outM (Δ(S)afterσ).

�tioco and tioco are not identical. We consider the example given in Figure 5.
For simplicity, both S, I, Δ(S) and Δ(I) are given as TAIO. It is easy to see
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Fig. 5. A counter example showing that $tioco and tioco are not identical

that I tiocoS. However for any M , we have I ��M
tioco S, since Δ(I) produces δ

after receiving a while Δ(S) does not.
Now, we check the other direction.
We first introduce the following intermediary result.

Lemma 15. Let S be a non-blocking TLTS and S a set of states of S.

1. For b ∈ Acout: b ∈ out(S) ⇔ 0b ∈ outM (S).
2. For t ∈ R: t ∈ out(S) ⇔ Mδ ∈ outM (S) or ∃t′b ∈ outM (S) ∩ R · Acout such

that t ≤ t′.

Proposition 16. Given two non-blocking and input-complete TLTS S and I
and a duration M . If I �M

tioco S then I tiocoS.

Proof. Let σ ∈ OTT(S). Since OTT(S) ⊆ OTTM (S) then σ ∈ OTTM (S) too.
By the definition of Δ(S),it is not difficult to see that S after σ = Δ(S) after σ.
Similarly, we have I after σ = Δ(I) after σ, as well. Let b ∈ out(I after σ). Two
cases are possible then. Either b ∈ Acout or b ∈ R.

– For b ∈ Acout: By Lemma 15, we know that 0b ∈ outM (Δ(I) after σ). More-
over, since I �M

tioco S then 0b ∈ outM (Δ(S) after σ), too . Then once again
by Lemma 15, we have b ∈ out(S after σ) and we are done.

– For b ∈ R: Quite similar to the previous case. ��

5 Summary

In this work, we gave a more detailed description of the class of timed systems
we consider in our testing framework. We showed that considering only lazy-
input TAIO is enough for describing all possible non-blocking specifications. We
made a comparison between tioco and the trace-inclusion relation. We proved
that tioco is undecidable and that it does not distinguish specifications with the
same set of observable traces. We also proved that tioco is transitive and stable
w.r.t compositionality and action hiding for input-complete sepcifications. We
compared between tioco and the two relations rtioco [4] and �tioco [3] as well.
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Abstract. Model checking of real-time systems with respect to Dura-
tion Calculus (DC) specifications requires the translation of DC formulae
into automata-based semantics. This task is difficult to automate. The
existing algorithms provide a limited DC coverage and do not support
compositional verification. We propose a translation algorithm that ad-
vances the applicability of model checking tools to real world applica-
tions. Our algorithm significantly extends the subset of DC that can be
handled. It decomposes DC specifications into sub-properties that can be
verified independently. The decomposition bases on a novel distributive
law for DC. We implemented the algorithm as part of our tool chain for
the automated verification of systems comprising data, communication,
and real-time aspects. Our translation facilitated a successful application
of the tool chain on an industrial case study from the European Train
Control System (ETCS).

1 Introduction

Verification of embedded hardware and software systems requires reasoning
about data, communication, and real-time aspects. Duration Calculus (DC) rep-
resents these dimensions in one formalism. As a fundamental concept, it offers
the use of data variables with possibly infinite data domains that are interpreted
over dense real-time intervals.

To apply the automata theoretic approach of Vardi and Wolper [VW86] for
model checking DC, we need to translate DC formulae into automata. This is
a difficult task and it has been shown in [ZHS93] that it cannot be solved in
general. Translation algorithms into automata-based semantics are known for
restricted classes of DC only [Rav94, BLR95, Pan02, Frä04]. But they are not
compositional and consider neither infinite data domains nor communication.

We identify a new class of DC formulae, called test formulae, that can be
translated into automata, also referred to as test automata in this paper. Test
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formulae (1) significantly extend the previously known classes and (2) take com-
munication aspects and infinite data domains into account. Our expressiveness
results suggest that the new class is among the richest for which satisfiability
with respect to an automaton is decidable under a dense time interpretation.

Translations of DC suffer from an exponential blow up of the resulting au-
tomata in the number of operators. To overcome this problem, we provide an
algorithm that decomposes a formula into sub-formulae that are translated in-
dependently. It allows for an efficient verification as it reduces the size of the
automata. The decomposition is realised using a new operator for the DC that
permits a distributive law of linear complexity.

We implemented our translation algorithm as part of a tool chain and provide
evidence that it can handle industrial problems. We verify the emergency treat-
ment of the European Train Control System (ETCS) [ERT02]. Our approach
is the first that permits model checking of a comprehensive ETCS fragment
considering communication, data, and real-time. Therefore, we bridge the gap
between theoretical results and their practical applications. Due to our model’s
parameters and infinite data types, we apply the abstraction refinement model
checker ARMC [Ryb06].

To summarise our contributions, we identify a novel class of DC formulae
and give a translation algorithm into enhanced timed automata [AD94]. Since
a direct translation leads to an exponential blow up of the automata, we give
a normal form for our novel class to decompose given properties. The normal
form is realised using a new distributive law of linear complexity based on a new
operator for the DC. We implemented the algorithm and applied our tool chain
to verify real-time properties of the ETCS case study.

The paper is organised as follows. After a short introduction to our case
study, we recall the DC and the applied automaton model, phase event automata
(PEA), in Sect. 2. The class of test formulae, the new operator, and the normal
form are presented in Sect. 3. Based upon these results, Sect. 4 gives the test
automata semantics and states its correctness. The case study and our model
checking results are sketched in Sect. 5. Section 6, reviewing related work and
suggesting future investigations, concludes the paper.

1.1 Motivating Example

The emerging European Train Control

Fig. 1. Consecutive trains

System (ETCS) is an international stan-
dard [ERT02] that shall replace national
train control systems to ensure cross-
border interoperability and to improve
railway safety as well as track utilisation.
In the final ETCS implementation level,
the existing national trackside systems

for detection of train speed, location, and integrity will not be used anymore.
Instead, data values required for a moving train are ascertained in coopera-
tion of the train’s on-board ETCS unit with a radio block centre (RBC) that
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controls the traffic in a well-defined area and grants movement authorities to
trains. RBCs and trains communicate over a GSM-R radio connection. To in-
crease the possible traffic density, the ETCS employs the moving block principle,
by which the movement authorities are always given up to a position closely be-
hind the preceding train (cf. Fig. 1). In our case study, we analyse the emergency
handling. In case of an accident, the train control system has to stop all trains
safely. The main desired property in our case study is that the trains will never
collide.

Verification approaches for safety requirements of industrial systems like the
ETCS have to consider the identified dimensions: data, communication, and real-
time. It is the first time, a fragment of the ETCS is verified considering all of
these aspects.

2 Preliminaries

Since we translate DC formulae into phase event automata (PEA), we review
the DC and PEA in this section.

2.1 Duration Calculus

Duration Calculus [ZH04] is an interval-based logic for the specification of real-
time systems. We use dense real-time, Time := R≥0. To represent a system state
at a point in time, DC uses state expressions. State expressions, denoted by ϕ,
are quantifier-free first-order formulae over time-dependent variables, so-called
observables (X ∈) SV ar. For every observable X there is a data domain D(X ).
The semantics of an observable X is given by an interpretation I assigning
a mapping I(X ) : Time → D(X ) to the observable. Additionally, there are
predicates p/n of arity n ∈ N with interpretations p̂ : D(X1)× . . .×D(Xn)→ B.

The semantics of a state expression ϕ depends on the semantics of the ob-
servables. Given an interpretation I of the observables in ϕ, the semantics of ϕ
is given by the mapping I[[ϕ]] : Time → {0, 1} as follows.

I[[p(X1, . . . ,Xn)]](t) := 1 iff p̂(I(X1)(t), . . . , I(Xn)(t)) = tt (1)
I[[¬ϕ1]](t) := 1− I[[ϕ1]](t)

I[[ϕ1 ∧ ϕ2]](t) := 1 iff I[[ϕ1]](t) = 1 and I[[ϕ2]](t) = 1.

We require finite variability, i.e., for every predicate and every choice of observ-
ables the function in (1) has finitely many discontinuities on every finite interval.
Consider ∼ ∈ {≤, <, =, >,≥}, k ∈ R≥0. The class of DC formulae (F ∈) Form
is defined by

Form ::=!ϕ" | � ∼ k | ¬Form | Form1 ∧ Form2 | Form1 ; Form2 | ∃X : Form.

Given an interpretation I of the observables in state expressions, the semantics
of a DC formula F is a mapping evaluating the formula on a given finite interval.
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I[[!ϕ"]][b, e] := tt iff
∫ e
b I[[ϕ]](t) dt = e − b and e > b

I[[� ∼ k ]][b, e] := tt iff (e − b) ∼ k
I[[¬F ]][b, e] := tt iff I[[F ]][b, e] = ff

I[[F1 ∧ F2]][b, e] := tt iff I[[F1]][b, e] = tt and I[[F2]][b, e] = tt
I[[F1 ; F2]][b, e] := tt iff there is m ∈ [b, e] such that

I[[F1]][b,m] = tt and I[[F2]][m, e] = tt
I[[∃X : F ]][b, e] := tt iff there is I ′ =\X I such that I ′[[F ]][b, e] = tt .

Two interpretations are equal up to X , I′ =\X I, if they coincide on all observ-
ables except X . The finite variability ensures that I[[ϕ]] is integrable.

Two formulae F1,F2 are satisfiability equivalent iff for any interpretation I
holds:

∃ t ∈ R≥0 : I, [0, t ] |= F1 ⇔ ∃ t ′ ∈ R≥0 : I, [0, t ′] |= F2.

The definition of test formulae in Section 3 depends on the notion of events
specifying changes in the values of Boolean observables (cf. transition formulae
defined in [ZH04]). Let E be a Boolean observable. An event # E is valid at time
t iff the value of E changes at t . A forbidden event � # E holds at time t iff the
value of E does not change at t . For an interval the no event formula � E holds
iff the value of E is constant in the given interval.

2.2 Phase Event Automata

PEA [HM05] are a class of timed automata [AD94] that synchronise on both
events and data variables. Let L(V ) be the set of first-order formulae over vari-
ables in V .

Definition 1 (Phase Event Automaton). A phase event automaton is a
tuple A = (P ,V ,A,C ,E , s , I ,P0), where

– P is a finite set of phases with initial phases P0 ⊆ P,
– V ,A,C are finite sets of real-valued state variables, events, and real-valued

clocks, respectively,
– E ⊆ P × L(V ∪ V ′ ∪ A ∪ C )× P(C )× P is a set of transitions,
– s : P → L(V ) associates with each phase a predicate that holds during the

phase, and
– I : P → L(C ) associates with each phase a clock invariant.

An edge (p1, g,X , p2) represents a transition from p1 to p2 with a guard g over
(possibly primed) variables, clocks, and events, and a set X of clocks that are
to be reset. Primed variables v ′ denote the post-state of v whereas v always
refers to the pre-state. In addition, we postulate the presence of a stuttering
edge (p,

∧
e∈A ¬e ∧

∧
v∈V v ′ = v , ∅, p) for every phase p.

The operational semantics of PEA is given by infinite sequences of configurations
and events, called runs.
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Definition 2 (Run of a PEA). A run of a PEA A is a sequence

〈(p0, β0, η0), t0,Y0, (p1, β1, η1), t1,Y1, . . . 〉,

with phases pi ∈ P, entry event sets Yi ⊆ A, valuations of variables βi and
primed variables β′

i , where βi(v) = β′
i(v

′), clock valuations ηi , and points in
time ti > 0. Furthermore, we demand p0 ∈ P0, η0(c) = 0 for all clocks c ∈ C,
βi |= s(pi), and ηi + ti |= I (pi ). For all transitions (pi , g,X , pi+1) we require
βi , β

′
i+1, ηi + ti ,Yi |= g and ηi+1 = (ηi + ti)[X := 0]. We denote the set of all

runs of A by Run(A).

PEA composed in parallel synchronise over common events and additionally over
common variables. That is, a variable that occurs in both automata may only
be changed if both automata agree.

Definition 3 (Parallel Composition). The parallel composition of PEA A1
and A2 with Ai = (Pi ,Vi ,Ai ,Ci ,Ei , si , Ii ,P0

i ) is given by

A1 || A2 := (P1 × P2,V1 ∪ V2,A1 ∪ A2,C1 ∪ C2,E , s1 ∧ s2, I1 ∧ I2,P0
1 × P0

2 ),

where ((p1, p2), g1∧g2,X1∪X2, (p′
1, p

′
2)) ∈ E iff (pi , gi ,Xi , p′

i) ∈ Ei with i = 1, 2.

This parallel product allows for compositional verification, because once a safety
property is proven for an arbitrary subset of parallel components, it is also true
for the entire system.

3 Test Formulae

In this section, we introduce the DC subclass of test formulae, denoted by Test-
form. For test formulae we construct test automata in Sect. 4. Applying the
automata theoretic approach [VW86, ABBL03], we can automatically decide
whether a system satisfies a negated test formula. Thus, test formulae may be
interpreted as undesired system behaviour.

We use so-called trace formulae to specify system executions. The class Test-
form is built up from trace formulae and admits a restricted use of negation.

Definition 4 (Testform). The formula class Testform is defined inductively:

Phase ::= � > 0 ∧ � ∼ k | Phase ∧ !ϕ" | Phase ∧� E
Trace ::= Phase | # E |� # E | Trace1 ; Trace2

Form ::= Trace | ¬Form | Form1 ∧ Form2

Testform ::= Form | Testform1 ; Testform2 | Testform1 ∧ Testform2 |
Testform1 ∨ Testform2,

where k ∈ R>0, ϕ is a state expression, E is a Boolean observable, and ∼ ∈
{∅,≤, <, >,≥}. We use ∼ = ∅ to indicate � > 0 is the only time bound. We
impose the condition that the first element of a trace always is a phase.



Model Checking Duration Calculus: A Practical Approach 337

In our running example, undesired behaviour is that the leading train sends an
alert message, indicated by formula (2), but for longer than five time units neither
the leading nor the following train applies the brakes, stated in formula (3), with
i = 1, 2. Test formula (4) reflects the critical behaviour:

Warn :=!true" ; #Train1ToRBC Alert ; !true";
#RBCToTrain1 Warn1 ; !true" ; #RBCToTrain2 Warn2 (2)

NoBrakei :=�ApplyEmergencyBrakei ∧ � > 5 (3)
TF :=Warn ; (NoBrake1 ∧ NoBrake2) ; !true". (4)

A different approach would express the undesired behaviour directly in terms
of test automata. The benefit of DC is its conciseness. A negated DC trace
comprising n phases requires in the worst case a test automaton of size 4n . Thus,
even for simple behaviour the modelling of test automata by hand is error-prone,
a disadvantage the automated compilation overcomes.

3.1 Sync Events

For arbitrary DC formulae F ,G,H there is no distributive law between the chop
operator and the conjunction, i.e., F ; (G ∧H ) �⇔ (F ; G) ∧ (F ; H ). To recover
some form of distributive law, we introduce sync events $

S
, i.e., distinguished

events occurring only once. They can be used to uniquely identify a chop point.
For sync events the following distributivity holds:

F $
S
(G ∧ H )⇔

(
F $

S
G
)
∧
(

F $
S
H
)

. (5)

Definition 5 (Sync Events). Let F , G be DC formulae, S a Boolean observ-
able not contained in F nor G. Let I be an interpretation, b, e ∈ R≥0, b ≤ e.
The sync event F $

S
G is defined as follows:

I, [b, e] |= F $
S
G :⇔ ∃ t ∈ [b, e] :(I, [b, t ] |= F) ∧ (I, [t , e] |= G)∧

(I, [t , t ] |= #S) ∧ (∀ t ′ ∈ [0, t) ∪ (t ,∞) : I, [t ′, t ′] |= � # S ).

To introduce sync events to the class of test formulae, equivalence (6) in the
following lemma allows the replacement of a chop operator with a fresh sync
event not used in one of the formulae. Furthermore, an efficient distributivity
between sync events and conjunctions is stated.

Lemma 1 (Sync Event Introduction and Linear Distributivity). Let S
be a Boolean observable not contained in F, Fi , G, Gj , 1 ≤ i ≤ m, 1 ≤ j ≤ n,
m,n ∈ N. The following equivalences hold:

(F ∧ � > 0) ; G ⇔ ∃S :
(

F $
S
G
)

(6)
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(
m∧

i=1
Fi

)
$
S

(
n∧

j=1
Gj

)
⇔

m∧
i=1

(
Fi $

S
true

)
∧

n∧
j=1

(
!true"$

S
Gj

)
. (7)

We know that the true phase before a sync event has a duration greater zero,
i.e., !true" holds, because events cannot happen at time zero. The distributivity
in equivalence (7) results in m + n + 1 conjuncted formulae compared to the
distributivity in (5) resulting in m ∗ n formulae:

m∧
i=1

n∧
j=1

(
Fi $

S
Gj

)
⇔

m∧
i=1

(
Fi $

S
true

)
∧

n∧
j=1

(
!true"$

S
Gj

)
.

The introduction of sync events transforms a time-triggered real-time system
specification using chopped formulae into an event-triggered specification with
sync events replacing chops. Event-triggered system specifications allow for
canonical operational semantics using labelled transitions whereas time-triggered
specifications need some elaborate clock construction to represent the timing
issues.

3.2 A Normal Form Theorem for Test Formulae

Our normal form is a disjunctive normal form (DNF) over traces.

Theorem 1 (Normal Form Theorem). Every test formula is satisfiability
equivalent with a formula of the form

∃Sijk :
∨

i
∧

jTij , (8)

with Tij ::= Trij $
Sij

!true" | !true" $
Sij1

Trij $
Sij2

!true", (9)

where Trij are (negated) traces, k = 1, 2, and Sijk are fresh Boolean observables.

For the construction of the normal form, we assume the given test formula
TF to end with a !true" phase (cf. satisfiability equivalence, Sect. 2.1). We
then replace every Form formula inside TF with its DNF. To obtain the outer-
most disjunctions in (8), we apply the known distributivities for disjunction and
chop/conjunction to the resulting formula. We end with chop separated conjunc-
tions of (negated) traces. For all these chops, we introduce sync events (6) and
use distributivity (7).

The computation of the DNFs and the known distributivities may lead to
an exponential blow up of TF . We tackle this problem by model checking all
disjuncts separately. Distributivity (7) neither increases the number of (negated)
traces nor the size of the product automata (cf. restriction, Sect. 4).

For example, we gain the normal form of formula (4) by introducing two sync
events (6) and using the distributivity of sync events and conjunctions (7):

Warn ; (NoBrake1 ∧NoBrake2) ; !true"
⇔∃S0 : ∃S1 : Warn $

S0

!true" ∧
∧

i=1,2!true" $
S0

NoBrakei $
S1

!true".
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4 Model Checking with Test Automata

To define whether a PEA model of a system satisfies a test formula, we need
to clarify the meaning of satisfiability of a DC formula with respect to a PEA
(cf. Definitions 1 and 2). Given Boolean observables E1 . . . , En and observables
X1, . . . ,Xm , an interpretation I is said to fit to a run r iff

– the set of events A in the PEA can be identified with the set of interpreted
Boolean observables, A = {E1 . . . , En}, the set of variables in the PEA is
identical with the set of interpreted observables, V = {X1 . . . ,Xm},

– the observables used in the PEA are interpreted as imposed by the valuations
in the run,

– a change in the interpretation of a Boolean observable Ei occurs at time t
iff the PEA changes its state at time t and the variable is contained in the
set of events, Ei ∈ Y .

Every run of a PEA induces a fitting interpretation. Satisfiability of a formula by
a PEA is defined over the interpretations fitting to the runs of the automaton.

Definition 6. A PEA A satisfies a DC formula F , denoted by A |=0 F, iff all
interpretations I fitting to a run r satisfy the formula from time zero:

A |=0 F :⇔ ∀I : ∀ r ∈ Run(A) : (I fits to r ⇒ I |=0 F ) .

4.1 Test Automata

Test automata (TA) are PEA with a distinguished state, called the bad state.
The runs of a TA are the runs of the underlying PEA. A run is said to be
a test run iff it reaches the bad state. Reaching the bad state in the parallel
composition of the system with a TA means that the system can exhibit the
undesired behaviour specified in the test formula the TA is constructed for.

We define the TA semantics for the normal form of test formulae. Therefore,
we require three operations on TA: parallel composition to express the con-
junction, sequential composition to represent the formula structure in (9), and
restriction to model sync events.

The parallel composition of test automata, TA1 ‖ TA2, takes the parallel
composition of the underlying PEA and defines the bad state of the composed
automaton as the pair of the bad states of the original automata.

The sequential composition of two test automata, denoted by TA1•S,γ
TA2, means

the second TA is started when the first one has accepted its formula. Since the
acceptance of trace formulae depends on clock valuations, we cannot use bad
states to check the acceptance in the TA for traces. Instead, we use a guard
function γ yielding a first-order formula for every state. We define the sequential
composition as follows. A transition between every state in the first automaton
and every initial state in the second automaton is inserted. The new transitions
demand an event S representing the sync events in (9). Furthermore, they require
a guard that holds iff the test formula represented by the first TA is satisfied.
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The guard is given by the function γ. All clocks in both automata are reset when
the first TA is left.

As an example, consider the formula tr$
S
!true" for a trace tr . Figure 2 repre-

sents the structure of the TA for the sequential composition P(tr) •
S,γtr

P(!true")
connecting the trace automaton P(tr) with the automaton P(!true").

Given a test automaton TA,

true

S ∧ γtr(p0),C

S ∧ γtr(p1),C

p0

p1

pi

pj

P(tr)

S ∧ γtr(pi),C

S ∧ γtr(pj ),C

Fig. 2. Sequential composition (illustration)

the restriction of TA to the event
S, denoted by TA \ {S}, is de-
fined by TA with the guards of
the transitions changed: if the
guard does not contain S in TA,
the requirement ¬S is added in
TA \ {S}, otherwise, the tran-
sition remains unchanged. The
restriction operator is used to
make the occurrences of sync
events unique.

4.2 A Test Automata Semantics for Test Formulae

We now define a test automata semantics for test formulae, i.e., a mapping
that assigns to each test formula (in normal form, cf. Theorem 1) TF a test
automaton P(TF ). To begin with, we sketch the following non-compositional
TA construction for traces. A trace tr consists of several subsequent phases. A
state in the TA P(tr) represents a subset of these phases combined with a set of
flags. For each phase p in this set all runs leading to the state accept the prefix of
the trace up to p. The flags indicate the bound types (∅,≤, <, >,≥) that need
to be used for every phase in this state. Given a state in the TA, a successor
state is computed for every possible event set, clock and variable valuation.
This results in a deterministic automaton, that may grow exponentially in the
number of phases inside the trace. The phase p is accepted, if the given valuation
and event set satisfy the guard function γtr,p of this phase. The successor state
contains the next phase in the trace. In Definition 7, the function γtr is the guard
function of the last phase in the trace. Details of the construction and the guard
function can be found in [Hoe06].

The disjunction in the normal form is not lifted to automata level but model
checking is done stepwise for all disjuncts until a satisfied disjunct is found.

Definition 7 (Test Automata Semantics). Let tr be a trace and S,S1,S2 be
Boolean observables. The test automata semantics for a test formula in normal
form TF yields a PEA P(TF ) defined as follows:

P(tr$
S
!true") :=(P(tr) •

S,γtr

P(!true")) \ {S}

P(¬tr$
S
!true") :=(P(tr) •

S,¬γtr

P(!true")) \ {S}
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P(!true" $
S1

T r $
S2

!true") :=[(P(!true") •
S1,true

P(T r $
S2

!true")) \ {S2}] \ {S1}

P(TF1 ∧TF2) :=P(TF1) ‖ P(TF2),

where T r is a (negated) trace, TF1 and TF2 are in the form of (9). The function
γtr guarantees that the trace tr is accepted.

Figure 3 shows the TA semantics for the formula !true" $
S0

NoBrake1 $
S1

!true",

simplified by removing a transition with guard false from state 2 to state 4.
State 2 and state 3 represent the states of the trace automaton P(NoBrake1).

A test formula is satisfied by an interpretation on an interval iff the bad state
in the TA is reachable in a run the interpretation fits to.

Lemma 2 (Characterisation of Satisfiability with Test Automata).
Consider the normal form

∨
i
∧

j Tij of a test formula. Given an interpretation
I and t ∈ R≥0, the following equivalence holds for every disjunct:

I, [0, t ] |=
∧

jTij ⇔∃ test run r ∈ Run(P(
∧

jTij )) :

I fits to r and r reaches the bad state at time t .

With Lemma 2 we can reduce the problem whether a PEA satisfies a negated
test formula to a reachability question. The correctness of our semantics with
respect to model checking is stated in the following theorem.

Theorem 2 (Model Checking Theorem). Let TF be a test formula with
the normal form

∨
i
∧

j Tij . The question whether the negated test formula is
satisfied by a PEA A can be decided as follows:

¬ (A |=0 ¬TF ) ⇔ ∃ i : ∃ r ∈ Run(A ‖ P(
∧

jTij )) : r reaches a state (p, pBad ),

where p is a state of A and pBad is the bad state of P(
∧

j Tij ).
The decidability of the reachability problem depends on the constraints over the
state variables of the PEA.

Model checking can be done separately for all disjuncts and terminates as soon
as the bad state is reachable in one of the disjuncts. The parallel composition
A ‖ P(

∧
j Tij ) only needs to be computed for the evaluated disjuncts.

A disjunct may consist of several conjuncted formulae. For model checking,
a subset of these formulae may be chosen. If the bad state is reachable in the
TA for the subset, further formulae may be added. Model checking is repeated
for the new set of formulae gained by this iterative procedure. If the bad state
is not reachable for the subset, we know that it is not reachable for the whole
disjunct. This incremental approximation can significantly reduce the TA size.

5 Case Study: Real-Time Aspects of the ETCS

In this section we take up the case study of Sect. 1.1 for the experimental eval-
uation of our verification method.
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¬S0 ∧ ¬S1

¬ApplyEmergencyBrake1∧¬ApplyEmergencyBrake1∧
¬S0 ∧ ¬S1¬S0 ∧ ¬S1c < 5 ∧ ¬S0 ∧ ¬S1

true c ≤ 5
S0 ∧ ¬S1, {c}

21

¬ApplyEmergencyBrake1∧
c ≥ 5 ∧ ¬S0 ∧ ¬S1

¬S0 ∧ S1, {c}

3 4
truetrue

Fig. 3. Test automaton for %true& '
S0

NoBrake1 '
S1

%true&

Complex systems like the ETCS consist of several components running in
parallel, by the communications between these components, by internal data and
state changes, and by real-time aspects. We use the declarative formal language
CSP-OZ-DC [HO02] to model our case study. CSP-OZ-DC integrates the well-
investigated languages CSP [Hoa85], Object-Z [Smi00], and DC [ZH04] into a
unified formalism. CSP-OZ-DC is given an operational semantics [Hoe06] in
terms of PEA.

Our case study incorporates five different components that can be modelled
with CSP-OZ-DC in an object-oriented way using classes: Train, RBC, Track,
Driver, and a communication layer ComNetwork, which is necessary to model
the transfer times of messages between trains and RBC. Every CSP-OZ-DC class
comprises an interface part (Fig. 4) defining channels that can be used for the
inter-class communication.
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Train
chan send : [id : TrainID ]
...

main
c= Running ‖|HandleEM ‖| ...

HandleEM c= receive.EmergencyWarning?id → ...

position : R . . .

com applyBrakes
...

Init
brakingMode = None . . .

com updatePosition
...

¬(!true" ; # indicationToDriver ; � driverAck ∧ 5 < �)
...

Fig. 4. Exemplary train class

The external and in-
ternal communications of
parallel components are
described with Commu-
nicating Sequential Pro-
cesses (CSP) [Hoa85].
These processes commu-
nicate over channels (or
events) that facilitate the
transfer of data values,
e.g., the main process of a
train comprises the inter-
leaving of three subpro-
cesses. When the RBC
sends an emergency warning, the train receives this message on the channel
receive with the process HandleEM (Fig. 4).

Data aspects are specified with the object-oriented specification language
Object-Z (OZ) [Smi00]. The OZ part consists of schemas describing data changes
of a class. For instance, the OZ part of Train (Fig. 4) includes the state schema
defining attributes of the class, e.g., position, the Init-schema defining that
initially the train is not braking, and operation schemas, e.g., com applyBrakes
defining data changes that are performed at the same time when—in agreement
with the CSP part of the class—the event applyBrakes occurs. In particular, our
case study comprises, besides the real-time aspects, infinite data types, e.g., the
positions, that are modelled as reals. Furthermore, the values of such infinite
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data types are also transferred via channels to other classes. Another important
property of the data handling in CSP-OZ-DC is the use of parameters, i.e., we
do not need to interpret all constants. Instead, it suffices to specify conditions
that restrict the values adequately. In our case study, we have a parameter for
the length of trains and the only condition we need is length > 0.

Real-time constraints are described using the logic DC [ZH04]. Since the full
DC is too expressive for automatic verification, we only use counterexample-trace
formulae, i.e., negated trace formulae according to Sect. 3.

The operational semantics of CSP-OZ-DC is given in terms of PEA, which
can handle infinite data types and parameters. It is compositional in the sense
that every part (CSP, OZ, and DC) of every component is translated into a
single PEA, and the whole specification is translated into the parallel product
of all these automata. For details we refer to [HM05, Hoe06].

The desired safety property in our case study is that the trains will never
collide. For a setting with two trains, this can be expressed in the DC formula

¬(!true" ; !position1 > position0 − length0"), (10)

where position0 is the position of the first train with length length0. The variable
position1 represents the position of the subsequent train.

5.1 Tool Support

TA

PEA

Testform

CSP-OZ-DC

Normalform
PEA

ARMC

Fig. 5. Flow of the verification process

In order to verify
whether a CSP-OZ-
DC model satisfies a
test formula, we ex-
ecute the following
steps (cf. Fig. 5). We translate the model into PEA according to its seman-
tics. The translation of the DC part is automated. To develop PEA for the CSP
and the OZ part the graphical design tool Moby/PEA [HMF06] is available. The
DC test formula is transformed into a set of test automata (TA), applying the
algorithm introduced in Sect. 3 and 4. To this end, we implemented a compiler
(available on [HMF06]) that automatically computes the normal form and the
corresponding test automata semantics. In a next step, we compute the parallel
composition of the test automata and the PEA of the model. Our tool generates
outputs in the Uppaal [UUP05] and ARMC [Ryb06] supported formats. Finally,
we apply a model checker on the product automaton. For our case study, Up-
paal is of limited use, because it can neither cope with infinite data domains nor
parameters.

We use the abstraction refinement model checker ARMC [Ryb06] for infinite
state systems to prove the unreachability of bad states in PEA. We implemented
a new abstraction refinement method in ARMC that allows us to handle large in-
put PEA from the case study. ARMC automatically constructs a safe abstraction
of the input PEA. The abstraction is defined by predicates over PEA variables,
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Table 1. Experimental results (Athlon XP 2200+, 512 MB RAM)

Task (1) (2) (3) (4) (5) (6) (7) (8)
Running 178 6.1T 31 46 347 22 25s 26m
Running (decomp. 1) 8 150 20 11 11 8 2.5s 7.5s
Running (decomp. 2) 20 899 22 8 32 8 4.0s 21.5
Running (decomp. 3) 48 1.2T 27 13 93 10 5.9s 45s
Running (decomp. 4) 48 1.7T 27 11 70 7 6.3s 47.5s
Delivery 122 18T 20 41 2.2T 32 50s 86m
Delivery (decomp. 1) 14 366 14 9 29 8 2.7s 13.9s
Delivery (decomp. 2) 17 173 10 25 17 17 2.2s 1.9s
Delivery (decomp. 3) 12 71 9 12 9 9 1.9s 0.7s
Delivery (decomp. 4) 17 156 12 25 19 17 2.2s 2.6s
Delivery (decomp. 5) 7 28 4 3 5 3 1.6s 0.1s
Braking 1 44 240 17 45 44 3 3s 5.1s
Braking 2 172 1.6T 33 63 88 59 9s 35.3s

(1) program locations
(2) transitions
(3) variables
(4) predicates generated by

ARMC
(5) abstract states
(6) refinements loops performed

by ARMC
(7) runtime for generating

test automata and
parallel product

(8) runtime for model checking

T : thousand units
m : minutes s : seconds

events, and clocks, and computed in the standard way [GS97]. The process of
choosing the right abstraction is guided by spurious counterexamples that are
found if the abstraction is not precise enough to verify the property [CGJ+00].
We apply the recent methodology for the extraction of new predicates from spu-
rious counterexamples that is based on interpolation [HJMM04, McM03]. We
designed and implemented an efficient algorithm for the computation of inter-
polants for linear arithmetic over rationals/reals based on linear programming,
which are particularly needed for the verification of real-time systems.

5.2 Results

The model of the case study is too large to verify the global safety property (10)
in a single step. Therefore, we decompose the model manually into smaller parts
and verify local properties for the parallel components. The semantics of CSP-
OZ-DC ensures that local properties hold for the entire system (cf. Sect. 2.2).

Table 1 shows our experimental results for a range of verification tasks. For
instance, we consider the running behaviour of the train in isolation and verify
(10) on the assumption that the first train does not apply the emergency brakes.
To this end, we take only those PEA into account that influence the running
behaviour, i.e., the automata for the subprocess Running (Fig. 4) together with
the automata for the OZ and the DC part. The performance results of applying
our model checking approach to this verification task are listed as “Running”
in Tab. 1. The other entries (decomp. 1 – decomp. 4) contain our results for a
further (manual) decomposition of “Running” into smaller tasks that allows for
a more efficient verification. For the “Delivery” task (and also the decomposed
variants) we verify that messages like an emergency message between train and
RBC are not delivered too late. Bringing together the verification tasks and
showing that they imply (10) for the entire model is subject of ongoing work.

The table illustrates that we can handle up to 18000 program transitions and
up to 33 variables (with potentially infinite data types) in an order of 86 min.
Hence, these results demonstrate that our new algorithm implemented in our
tool chain can deal with problems in real world applications.
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6 Related and Future Work

Our class of test formulae is a proper generalisation of previously known classes.
It is based on the class of counterexample-trace formulae [Hoe06], that corre-
spond to negated traces. Counterexample-traces cover the class of DC imple-
mentables [Rav94, Hoe06]. Non-negated traces with phases of exact length, i.e.,
� = k bound, are covered by Testform. With this observation our class forms
a proper superset of {!ϕ", � < k , � = k , � > k}-formulae that have exactly one
outermost negation [Frä04]. We conjecture that the classes of constraint dia-
grams used for model checking timed automata in [DL02] form proper subsets
of Testform. We have not yet compared the expressiveness of our class with the
results in [ABBL03].

For positive Duration Interval Logic formulae (DIL+ formulae) a translation
into Integration Automata (IA) is given in [BLR95]. DIL+ formulae are cov-
ered by Testform, because they correspond to traces that contain phases of
exact length. To give IA semantics to negated formulae, the authors of [BLR95]
show that the negation of a strongly overlap free DIL+ formula has a congruent
DIL+ formula. Since our translation for negated traces does not require over-
lap freeness, it covers a strictly larger class of negated formulae. Pandya proves
the decidability of Interval Duration Logic with located constraints (LIDL–) by
translation into event recording timed automata [Pan02]. Located constraints re-
quire disjoint phases, a condition our construction does not impose. In contrast,
LIDL– is closed under negation even for phases with exact length.

The idea of sync events is closely related to the theory of nominals. In a
DC extended with nominals [Han06], intervals can be identified uniquely using
their names. Similarly, sync events identify chop points. In [KP05] phases in the
QDDC are equipped with fresh observables to identify chop points. This yields
decomposition results similar to ours. The benefit of our work is the integration
of sync events with the operators of the full DC.

Related work on ETCS case studies like [ZH05, HJU05] focuses on the stochas-
tic examination of the communication reliability and models components like the
train and the RBC in an abstract way without considering data aspects.

We currently work on model checking DC liveness properties with the au-
tomata theoretic approach. In addition, enhancing our decomposition techniques
is ongoing work. They allow for compositional verification of inherently parallel
systems like the ETCS.
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Abstract. This paper presents an automatic verification method for
combined temporal and spatial properties of mobile real-time systems.
We provide a translation of the Shape Calculus (SC), a spatio-temporal
extension of Duration Calculus, into weak second order logic of one suc-
cessor (WS1S). A prototypical implementation facilitates successful ver-
ification of spatio-temporal properties by translating SC specifications
into the syntax of the WS1S checker MONA. For demonstrating the for-
malism and tool usage, we apply it to the benchmark case study “gener-
alised railroad crossing” (GRC) enriched by requirements inexpressible
in non-spatial formalisms.

Keywords: model checking, real-time systems, mobile systems, spatial
logic, temporal logic, Duration Calculus.

1 Introduction

Mobile real-time systems are omnipresent today, e.g. in airplane and railroad
control systems. Failures in these systems may have severe consequences which
can even endanger lives. Formal specification and automatic verification is a
promising approach to increase the safety of such systems. As these systems often
require the consideration of real-time and spatial aspects, real-time formalisms
like Timed Automata [AD94] or Duration Calculus (DC) [ZHR91, HZ04] often
fall short in these cases.

The main contribution of this paper is the development of a model checking
approach for systems involving temporal and spatial aspects. We implemented
our verification technique in a prototypical tool. Our approach is the first that
enables the automatic verification of temporal and spatial properties. We suc-
cessfully demonstrate our approach on the benchmark case study generalised
railroad crossing [HL94]. Spatial aspects like movement and the distance of trains
are modelled explicitly here, whereas they are usually abstracted in the analysis
using real-time formalisms.

There are many well-understood formal techniques for the specification and
verification of real-time systems, among them Timed Automata [AD94] and
the interval temporal logic Duration Calculus (DC) [ZHR91, HZ04]. Tools like
Uppaal [BDL04], Kronos [BDM+98], and DCValid [Pan00] for the automatic
verification of systems specified in these formalisms contributed a lot to their
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applicability. However, these formalisms are insufficient for problems with spatial
requirements. A central point in the UniForM [KBPOB99] project in cooper-
ation with the industrial partner Elpro was the development of a control for a
single-tracked line segment (SLS) for tramways. The problem is to ensure the
safety of trams if only one track is available and this track may be passed in both
directions and occupied by up to two trams simultaneously as long as they head
into the same direction. A controller has been derived, simulated and partially
verified. However, the main safety requirement, i.e., mutual exclusion of trams
with distinct directions on the critical section, is a spatio-temporal property and
could not be expressed [Die99]. Similar problems arise in specifications for mobile
robots [Sch05b] that may not leave certain working areas.

This led to the idea to extend a well-known formalism for real-time systems in
order to be able to also describe spatial properties. The use of the formalism is
similar to the use of pure temporal logics when no spatial reasoning is required.
Thus, experienced users of temporal logics can easily adopt the new features.

To express spatio-temporal properties, we propose to use the Shape Calculus
[Sch05a], a spatio-temporal extension of the interval logic Duration Calculus
[ZHR91] introduced by Zhou, Hoare, and Ravn. The mutual exclusion property
for the SLS can be expressed in Shape Calculus by the formula

¬♦ex
♦ey

♦et
!tram1 ∧ tram2"

which reads as follows: It is not possible that somewhere (♦ex♦ey) sometimes
(♦et

) both tram1 and tram2 occupy the same place.
Although Shape Calculus is undecidable in general, decidability is obtained by

restricting it to discrete infinite time and discrete finite space. Instead of devel-
oping a model checker from scratch, we present a modular approach translating
Shape Calculus specifications into the WS1S input format of the well-known
model checker MONA [KM01]. Thereby, we profit from the work done in this
project concerning efficient internal representation and optimisations of the anal-
ysis. Subsequently, we introduce the formalism, the scenario of the case study,
and demonstrate its applicability using the case study. In section 2, we describe
the translation of Shape Calculus in monadic second order logic with one succes-
sor predicate (WS1S) before presenting the prototypical implementation of our
model checking tool MoDiShCa in section 3. To allow for comparison with other
real-time formalisms, we show the feasibility of the approach on the benchmark
case study “generalised railroad crossing”. To emphasise the strong points of
Shape Calculus, we subsequently extend the setting of the case study and inves-
tigate the problem of two succeeding trains that cannot be tackled directly by
standard real-time formalisms.

1.1 Generalised Railroad Crossing (GRC)

The generalised railroad crossing introduced by Heitmeyer and Lynch in [HL94]
is a benchmark example for specification and verification formalisms for real-
time systems. However, although the spatial behaviour is crucial in this sys-
tem, these aspects are often neglected and abstracted in the analysis. The
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case study considers a railroad crossing and a controller that shall close the
gates early enough when a train is approaching to ensure that the train can-
not reach the gate while it is open. The controller uses a sensor to detect

x

Train gate

2 10

emptyapproachingcrossing

0

Fig. 1. The train gate zones

if the rails are empty,
if there is a train ap-
proaching the gate or on
the crossing. Figure 1 il-
lustrates these different
spatial zones before the
railroad crossing. Us-
ing the safety require-
ment of the UniForM
[KBPOB99] project, we
extend the classical case study by the following: For switching trains near rail-
road stations, railroad crossings may be passed successively by more than one
trains moving in the same direction without intermediately opening the gates as
illustrated in figure 1. In this case two trains shall not collide.

2 Shape Calculus

We introduce the Shape Calculus – proposed in [Sch05b] as an extention of Dura-
tion Calculus [ZHR91] – in a discrete spatio-temporal setting. System behaviour
is modelled by observables which depend on the point in time and position in
space. In [Sch05b] we have shown that Shape Calculus is not recursively enu-
merable for infinite discrete time and space domains, in contrast to Duration
Calculus for which to corresponding subset is still decidable for infinite discrete
time domains. Decidable subsets of Shape Calculus are discussed in [Sch05a] and
it turns out that having only one dimension with infinite discrete domain and
all other dimensions having only finite domains yields decidability and hence-
forth the feasibility of model-checking. With more than one infinite dimensions
it is possible to encode the tiling problem for the Euclidean plane. We choose
a discrete infinite time domain, here the set N, and a discrete finite space. The
model-checking approach which we present here relies on the possibility to explic-
itly enumerate all spatial points. Since space is bounded in real-life applications,
the restriction to a finite spatial domain is not severe in contrast to restricting
to a finite temporal domain. Such a restriction would prevent us from verifying
the absence of errors as the restricted observation interval could be chosen to
small to exhibit the erroneous behaviour.

As we present a model checking technique by translation, we need to review
syntax and semantics of Shape Calculus. A priory fixing a number n of spa-
tial dimensions and an upper bound (its cardinality card(i)) for the space in
each dimension, the semantics of an observable X is formally given by a trajec-
tory I assigning each moment in time and point in space a boolean value. In-
stead of enumerating the dimensions by natural numbers, we will use mnemonic
names like x, y to identify the spatial dimensions and t to identify the temporal
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dimension. The language of SC is built from state expressions and formulae. A
state expression characterises a property of one point in time and space. They
are denoted by π and built from boolean combinations of observables. The se-
mantics is a function I[[π]] : N×

∏n
i=1{0, . . . , card(i)−1} → {0, 1} and is defined

as a straightforward extension of trajectories of observables.

I[[¬π]](z)
df
= 1− I[[π]](z) I[[π ∧ π′]](z)

df
= I[[π]](z) · I[[π′]](z)

Formulas are interpreted over n-dimensional intervals and — as usual for interval
logics — they incorporate a special “chop” operator illustrated in figure 2 to
partition the current interval into two parts. As we consider a higher dimensional
logic, we allow chops along each axis. Formally, the set of formulas is defined by

F ::= !π" | !π"ei
| !π"et

| F1 〈ei〉F2 | F1 〈et〉F2 |
�ei
∼ x | �et

∼ x | ¬F1 | F1 ∧ F2

where ei is the i-th unit vector and et denotes the unit vector in the temporal
dimension. The terms �ei

and �et
provide the diameter of the current spatial and

temporal interval, respectively and can be compared with first order variables x
over the natural numbers, i.e.∼∈ {=,≤,≥, <, >}. Comparison of interval lengths
with constants is handled accordingly. Although the original definition in [Sch05b]
does not distinguish temporal and spatial dimensions and intervals, the distinction
is introduced here for clarification as all spatial dimensions are assumed to be finite
whereas the temporal dimension is assumed to be discrete and infinite.
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1.0
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3.0
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5.0
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1.0
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3.0
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�ex

F

G

Fig. 2. The Chop Operation for F 〈ex〉G

The boolean connectives and
the quantifications over the nat-
ural numbers are defined as usual
in first order logic, so we omit a
description here and go into de-
tails only for the uncommon op-
erators. In the following let D be
an n-dimensional spatial, [t1, t2]
a one-dimensional temporal inter-
val and V a valuation of the vari-
ables.

Notation. To give a concise defi-
nition of the semantics, we intro-
duce the following notation. Let
D = [a1, b1] × . . . × [am, bm] be a discrete m-dimensional interval. We denote
the lower bound ai of the i-th dimension by mini D and the upper bound bi

by maxi D respectively. Furthermore, denote by D ≺i r
df
= [a1, b1] × . . . ×

[ai, r] × . . . × [am, bm] the first subinterval obtained by chopping the origi-
nal interval along the i-th axis at position r and the second part by D 'i

r
df
= [a1, b1] × . . . × [r, bi] × [am, bm]. The “interior” D− of D is defined by

D− df
= [a1, b1) × . . . × [am, bm). Using Z-notation, we define x ⊕ {i �→ r} to

be the vector x having its i-th component replaced by r.
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Almost Everywhere. The everywhere operator !π" expresses that the state as-
sertion π is true on all points in space and time. As not all system properties
depend on all dimensions, Shape Calculus provides projections onto axes. The
everywhere operator with projection on the ith axis !π"ei

performs a projection
of all points fulfilling π onto the ith axis and then checks if every point on this
axis is the target such a projection. This intuition is formally characterised by
the following definitions.

I,V , [t1, t2], D |= !π" iff t1 < t2 and for all i, mini D < maxi D and

∀t ∈ [t1, t2) ∀x ∈ D− : I[[π]](t, x) = 1
I,V , [t1, t2], D |= !π"ei

iff miniD < maxi D and

∀ r ∈ [mini D, maxi D) ∃x ∈ D− ∃t ∈ [t1, t2) :
I[[π]](t, x ⊕ {i �→ r}) = 1

I,V , [t1, t2], D |= !π"et iff t1 < t2 and ∀t ∈ [t1, t2) ∃x ∈ D− : I[[π]](t, x) = 1

Chop. A formula F 〈ei〉G is satisfied on an n-dimensional interval if there is
a point m in the current observation interval such that the two n-dimensional
subintervals induced by the hyperplane defined by the point m and the orthog-
onal vector ei satisfy F and G respectively. As the n-dimensional observation
interval is the n-fold Cartesian product of 1-dimensional intervals, the chop-
ping operation in the i-th dimension can be formally defined by splitting the
corresponding 1-dimensional interval.

I,V , [t1, t2], D |= F 〈ei〉G iff ∃m ∈ [mini D, maxi D] : I,V ,[t1, t2], (D≺i m) |= F

and I,V , [t1, t2], (D 'i m) |= G

I,V , [t1, t2], D |= F 〈et〉G iff ∃ t ∈ [t1, t2] : I,V , [t1, t], D |= F

and I,V , [t, t2], D |= G

Diameters. As �ei
refers to the diameter of the current spatial observation inter-

val in direction ei, and �et
to the diameter of the current temporal observation

interval, its semantics is defined as follows:

I,V , [t1, t2], D |= �ei
∼ x iff maxi D −mini D ∼ V(x)

I,V , [t1, t2], D |= �et
∼ x iff t2 − t1 ∼ V(x)

Abbreviations and Derived Modalities. Some abbreviations commonly used in
Duration Calculus ease the handling. We will use d to denote spatial dimensions
as well as temporal dimensions. The empty interval �ed

= 0 is denoted by !"ed
.

The somewhere operator ♦ed
F is satisfied iff F is true on some subinterval:

♦ed
F

df
= true 〈ed〉F 〈ed〉 true

The dual globally operator �ed
expresses validity on all subintervals and is

defined by
�ed

F
df
= ¬♦ed

¬F.
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2.1 The Railroad Crossing in SC

In this section we elaborate a formal model of the GRC case study in Shape
Calculus. This model is used subsequently for the demonstration of the model
checker MoDiShCa. In the first part, we model the standard GRC in Shape
Calculus. In the second part, we elaborate a specification for two trains that
pass the crossing successively.

The Standard Benchmark Version. We model the rails using one spatial dimen-
sion x and employ two observables: train and open. The observable train is
true in a spatial point at a given time iff the train occupies this position at that
point in time. The other observable models the gate status, it is true iff the gate is
open. The train touches the bound of a spatial interval if this interval cannot be
split such that there is no train on the first part. This is defined in SC as follows:

trainPartWeak
df
= ¬(!¬train" 〈ex〉 true).

While trainPartWeak is satisfied for the empty observation interval without en-
forcing the existence of a train, the existence is ensured by a stronger version
additionally requiring the observation interval to be non-zero.

trainPart
df
= trainPartWeak ∧ �ex > 0

Using this specification, the distance of the nearest train is captured by the
following formula:

dist(δ)
df
= ((!¬train" ∨ !"ex) ∧ �ex = δ) 〈ex〉 trainPart

Using the chop operator 〈ex〉 , we split the track into two parts such that the
leftmost part has length δ and is not occupied by any train. As the rightmost
part itself cannot be split again without the beginning being occupied, this ex-
presses the maximality of the chopping position and therefore the maximum
choice for the variable δ. Using this pattern, we can formally specify the three
regions empty, approaching and crossing.

empty
df
=!¬train" appr

df
=dist(δ) ∧ 2 ≤ δ < 10 cross

df
=dist(δ) ∧ δ < 2

Thus, the track is empty iff there is no train. The train is considered to be ap-
proaching (appr) if it is in the spatial interval [2, 10), and it is crossing (cross) if it
is in the interval [0, 2). We model the train to proceed with velocity maxSpeed
spatial units per time unit and define the progress requirement by the following
formula.

runProgress
df
= �et�ex

((
(�ex = maxSpeed 〈ex〉 trainPart) ∧ �et = 1

)
〈et〉 �et = 1

)
⇒ (�et = 1 〈et〉 trainPart)
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The formula runProgress reads as follows. If for some spatio-temporal subinterval
some part of the train has distance of maxSpeed spatial units then one time-unit
later it has distance zero. The operators �et and �ex quantify over all spatio-
temporal subintervals. A subinterval satisfies the antecedent of the implication
if it can be chopped in time such that both subintervals have a temporal length
of one. Furthermore, the first subinterval can be chopped in space such that the
first part has length maxSpeed and the second part satisfies trainPart. Hence-
forth, the antecedent is satisfied if the train is maxSpeed spatial units away
at the beginning. Similarly, the succedent is satisfied if the interval is chopped
in the middle again and the train has arrived on the second part. Vice versa,
we have to ensure that a train may only have distance zero now if it has been
maxSpeed spatial units away a second ago. Otherwise teleportation would be
permitted by the specification.

runMaxSpeed
df
= �et

�ex

(
�ex

> maxSpeed ∧ (�et
= 1 〈et〉 trainPart)

)
⇒
((

(�ex
= maxSpeed 〈ex〉 trainPart) ∧ �et

= 1
)
〈et〉 �et

= 1
)

We need the following assumptions about the environment. Initially, the track
is assumed to be empty and reactTime time units after some train is detected
in the approaching or crossing region the gates are closed.

initEmpty
df
= �et

> 0⇒ (empty 〈et〉 true)

reactBound
df
= �et

(
(appr ∨ cross) ∧ �et

> reactTime
)

⇒
(
(�et = reactTime) 〈et〉 !¬open"

)
Using these assumptions, the main safety requirement can be automatically ver-
ified for predefined values of maxSpeed and reactTime:

runProgress ∧ runMaxSpeed ∧ initEmpty ∧ reactBound ⇒ ¬♦et(cross ∧ !open")

Extending the GRC. To allow for two trains to pass the crossing successively,
we introduce two observables train1 and train2 and assume the constants
maxSpeed1 and maxSpeed2 to describe the speed of first and the second train,
respectively. The movement of both trains is modelled using the same patterns
as in the previous section. The only new requirement that is needed is initial
mutual exclusion, i.e,

initExcl
df
= ¬♦et

(�ex
= 9) 〈ex〉 !train1 ∧ train2"

This formula reads as follows: It is never possible that on the last spatial position
both train1 and train2 are true. Using this assumption and assuming that
both trains have the same speed, i.e., maxSpeed1 = maxSpeed2, it is possible
to verify a second safety requirement expressing that two trains never collide.

safety2
df
= ¬♦et

♦ex
!train1 ∧ train2".
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3 From SC to WS1S

Weak second order logic with one successor (WS1S) is a decidable subset of
monadic second order logic. In addition to first order logic, second order logic
introduces the possibility to use quantifiers over relations. Monadic second order
logic permits only quantification over sets. In weak S1S the interpretation of the
second order quantifiers ∃X and ∀X are changed into “there is a finite subset
X of N. . . ” and “for all finite subsets X of N. . . ”. However, this change of the
interpretation does not affect the expressiveness of the logic [Tho97]. Weak S1S
formulas can be constructed using the following EBNF grammar:

F ::= x ∈ X | ∃x : F | ∃X : F | F ∧G | ¬F | S(x, y)

where X is a second order variable, x and y are first order variables, F and G
are formulas and S(x, y) is the successor predicate necessary for the temporal
ordering; the expression S(x, y) is true iff y = x+1. The successor predicate can
be used to define the ordering relations <,≤, =, >≥.

3.1 MONA

MONA [KM01] is a model checker for WS1S. Its development started 1994
at BRICS [HJJ+95]. MONA translates the formulas into finite automata and
performs a reachability check representing the transition relation using BDDs.
Among others, it is used as a backend by the model checker DCValid for Duration
Calculus with discrete time [Pan00].

3.2 Model-Checking Shape Calculus

To use the model checker MONA for automatic verification with Shape Cal-
culus, we translate the SC formulas into WS1S. Fixing the number of spatial
dimensions to be n, we introduce for each observable X and each point x in the
finite space one second order variable Xx – thus altogether

∏n
i=0 card(i) · |Obs|

variables – such that Xx models the truth value of X at spatial position x on
the time line. The intuition is that the observable X is true at spatial point x
and point in time t iff t ∈ Xx. Assuming a temporal interval [t1, t2] and a spatial
interval D, we derive a WS1S formula that is satisfiable iff the SC formula is
satisfiable on these intervals. The temporal interval is parametric, i.e,, t1 and t2
are first order variables, whereas D is known at translation time. The translation
is accomplished by a translation function SO([t1, t2], D)(F ) taking the temporal
interval [t1, t2], the spatial interval D and the formula F as parameters. A Shape
Calculus formula F is satisfiable iff there is a temporal interval [t1, t2] and spatial
interval D such that the translation to WS1S is satisfiable for these intervals. We
present the definition of SO inductively on the structure of the Shape Calculus
formula F . We use the same names for the axes as in the previous section.

State expressions are boolean combinations of observables and they trans-
late straightforward into second order logic using set operations and boolean
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connectives. For simplicity in the following presentation, we only consider the
simple state expression X involving no boolean operators, which is translated
into tm ∈ Xx. Note that the state expression ¬X is translated into tm /∈ Xx and
X ∧ Y is translated into tm ∈ Xx ∧ tm ∈ Yx.

Translating !X" (everywhere-Operation). As the formula is satisfied on a spatio-
temporal interval, if X is true for all points in time and space, the second order
translation involves quantification over all temporal and all spatial points. Due
to the finiteness of all spatial dimensions, the universal quantification over spatial
points can be expressed by a finite conjunction.

SO([t1, t2], D)(!X") = t1 < t2 ∧
n∧

i=0

mini D < maxi D ∧

∀tm : t1 ≤ tm < t2 ⇒
∧

x∈D−
tm ∈ Xx

Translating !X"ei and !X"et . The formula !X"ei evaluates to true if for all
possible values of xi ∈ [mini D, maxi D) of the spatial observation interval, there
is a point in time and space that a) satisfies X and b) projects on xi. Clearly,
this is a projection to the i-th spatial axis. The existential quantification over
spatial points is expressed as finite disjunction over all possible points.

SO([t1, t2], D)(!X"ei
) = t1 < t2 ∧mini D < maxi D ∧

maxi D−1∧
xi=mini D

∨
x∈D−

∃tm : t1 ≤ tm < t2 ∧ tm ∈ Xx⊕{i�→xi}

The operator !X"et
(all-the-time) expresses that for every point in time t there

is a vector x such that X is true at the point x and time t. Obviously, this is a
projection to the time line.

SO([t1, t2], D)(!X"t) = t1 < t2 ∧ ∀tm : t1 ≤ tm < t2 ⇒
∨

x∈D−
tm ∈ Xx

Translating chops. The temporal chop is defined as: there is a point t in the
current temporal interval such that F is true in the interval [t1, t] and G is true
in the interval [t, t2]. Hence, we translate it using conjunction and changing the
timestamp parameters.

SO([t1, t2], D)(F 〈et〉G) = ∃tm : t1 ≤ tm ≤ t2 ∧
SO([t1, tm], D)(F ) ∧ SO([tm, t2], D)(G)

The chop operator in ei direction is defined as: there is a point xm on the ith-
axis such that F is true for the subinterval “below” xm and G is true for the
subinterval “above”. To translate this operation, we use the same idea as for the
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translation of the temporal chop, but explicitely calculate all possible intervals
D ≺i xm and D 'i xm instead of changing the timestamps.

SO([t1, t2], D)(F 〈ei〉G) =
maxi D∨

xm=mini D

(
SO([t1, t2], D ≺i xm)(F ) ∧

SO([t1, t2], D 'i xm)(G)
)

Translating boolean connectives. The translation of conjunction and negation is
straightforward. The requirement t1 ≤ t2 is ensured by the overall construction,
so we do not need to add it explicitly for the negation.

SO([t1, t2], D)(F ∧G) = SO([t1, t2], D)(F ) ∧ SO([t1, t2], D)(G)
SO([t1, t2], D)(¬F ) = ¬SO([t1, t2], D)(F )

Translating length expressions. Using �et
∼ n with ∼∈ {≤,≥, <, >,=}, we

can determine the length of the temporal interval. In the temporal case, �et is
obtained as the difference of the two boundaries of the temporal interval, namely

SO([t1, t2], D)(lt ∼ n) = t2 − t1 ∼ n.

As WS1S encompasses Presburger arithmetic with inequality this encoding is
a valid WS1S formula. In contrast, expressions involving �ei

— a length of the
spatial observation interval — are to be calculated explicitly beforehand. Due
to the finiteness of space, all spatial intervals are explicitely enumerated and
therefore the length can always be calculated. Hence, the length of the spatial
interval �ei

is given by

SO([t1, t2], D)(ldi ∼ n) =

{
true if maxi D −mini D ∼ n.

false otherwise

which can be evaluated during the translation process.

4 Automatic Verification of Shape Calculus Specifications

A prototype of the decision procedure presented beforehand is implemented in
the tool MoDiShCa [Que05]. In the spirit of DCValid [Pan00] it translates a
textual representation of the discrete SC into MONA syntax and uses MONA as
a backend for satisfiability and validity checking. Additionally, MONA is able to
generate satisfying examples and counterexamples. Beyond the operators defined
in section 2 further operators are implemented in order to enhance the usability
of the program. Additionally, MoDiShCa supports formula macros, constants
and integer variables permitting structured specifications.

4.1 The Tool MoDiShCa

MoDiShCa supports an arbitrary number of spatial dimensions which have to
be declared together with their cardinality as sketched in Figure 4. Observables
can either be Boolean or bounded integers. Formula macros can be used to make
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Operation SC MoDiShCa
Everywhere !π" [pi]
Everywhere in direction x !π"x [pi]_x
All the time !π"t [pi]_t
Temporal chop 〈t〉 <t>
Spatial chop 〈x〉 <x>
Diameter of interval �et

or �ex
l_t or l_x

Always �t or �x []_t or []_x
Eventually ♦t or ♦x <>_t or <>_x
Boolean Connectives ∧,∨,⇒,⇔,¬ &,|,->,<->,not

Fig. 3. MoDiShCa syntax

the specifications
more concise. The
formula to examine
is introduced by the
keywordverify: in
the last line in the
file. As the transla-
tion of SC for satis-
fiability checking is
different from the
encoding for valid-
ity checking, the key-
word validity is
used to switch MoDiShCa to validity checking mode, as shown in listing 1. An
overview of the operator syntax is given in Figure 3.

4.2 Checking the Extended Generalised Railroad Crossing

The specification of the extended case study in MoDiShCa syntax is given ab-
breviatedly in listing 1. As the spatial points are explicitly enumerated, the
spatial parameters have to be instantiated to concrete values. Henceforth, we
assume maxSpeed = 1 and reactTime = 5 in this specification and verified the

Declaration Keyword Example
Boolean observable bool bool X
Integer observable int int a[5]
Constant const const ten = 10
Spatial dimension dim dim x = 3
Formula macro $req = [X]<t>[Y]

Fig. 4. MoDiShCa declaration part

Card. MoDiShCa file size MONA
5 0.05 sec 192 K 0.3 sec
10 0.15 sec 1.7 M 2.7 sec
11 0.20 sec 2.3 M 4.2 sec
12 0.28 sec 3.2 M 7.8 sec
13 0.40 sec 4.4 M 13.7 sec
14 0.52 sec 5.9 M 26.2 sec
15 0.66 sec 7.8 M Overflow of

MONA BDD structure

Fig. 5. GRC: Results for checking safety

requirement increasing
the cardinality of the
spatial dimension. The
results of the tests pre-
sented in Figure 5 were
conducted on an AMD
Sempron 2800+ with
1 GB RAM. For a
spatial cardinality of
5 the safety require-
ment is not satisfied, as
the train can proceed
5 spatial units during
the reaction time. This
behaviour is exhibited
by the generated coun-
terexample. Similarly to
DCValid for Duration
Calculus, MoDiShCa
suffers from the non-
elementary complexity
of the validity problem. The W1S1 formula grows polynomial in the size of the
spatial dimension (its cardinality) and the degree of the polynomial is determined
by the number of nested spatial chops. Hence, even small spatial dimensions
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– here size of 15 – exceed the capacity of MONA, although the MONA devel-
opers devoted much attention to an efficient BDD based representation of the
transition relation. The usage of projection in specifications permits more sys-
tem behaviour and therefore increases the model checking complexity. Specifying
the three zones empty, approach, and crossing using projection onto the x axis
exceeds the capabilities of MONA even for a space of cardinality ten.

bool t1; # declaration of observable t1 for the first train
bool t2; # declaration of observable t2 for the second train
dim x = 6; # declaration of dimension with cardinality 6
const speed1 = 1; # declaration of the constant speed1 for

# the first train , the same for second train
const reactTime = 5; # declaration of constant reactTime for

# the gate controller
validity; # checking for validity
## specification of the GRC in MoDiShCa Syntax
# The train−patterns
$trainPart1 = (( not ([not t1] <x> true)) & l_x > 0) ;
$trainPartWeak1 = (( not ([not t1] <x> true))) ;
# defining the three zones
$empty = ([not t1] & [not t2]);
$appr = ([(not t1) & (not t2)] & l_x < 5 & l_x >= 2)
<x> not ([not (not t1) & (not t2)] <x> true);

$cross = (([(not t1) & (not t2)] & l_x < 2 ) | l_x = 0)
<x> ((not ([(not t1) & (not t2)] <x> true)) & l_x > 1);

# Defining the movement of both trains
$runProgress1 = ([]_t ([]_x

(((((l_x = speed1)<x> ($trainPart1))& l_t = 1) <t>(l_t=1))
-> (l_t = 1 <t> (($trainPart1))))));

$runMaxSpeed1 = ([]_t ([]_x
((l_x > speed1 & (l_t = 1 <t> ($trainPart1 & l_t = 1)))
-> (((l_x = speed1) <x> ($trainPartWeak1))& l_t = 1)

<t>(l_t=1))));
# ... the same for the second train ...
# specifying the reaction time of the gate controller
$reactAppr = ([]_t ((($appr | $cross) & l_t > reactTime)

-> ((l_t = reactTime)<t>[not open])));
#assumptions on the Environment
$initEmpty = l_t > 0 -> ($empty <t> true);
$initExclusion = []_t (not (l_x = 5 <x> [t1 & t2] <x> true));
$assumptions = $reactAppr & $initEmpty & l_x = 6
& $runMaxSpeed1 & $runMaxSpeed2 & $runProgress1
& $runProgress2 & $initExclusion;

# the safety requirement
$safety = $assumptions ->

( (not <>_t <>_x [t1 & t2]) & not (<>_t ($cross & [open])));
# formula to verify
verify: $safety

Listing 1. Extended Railroad crossing in MoDiShCa syntax
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5 Discussion

We proposed a formal method extending the Duration Calculus that is able to
express spatial aspects of system behaviour as well as temporal aspects, which
is well suited for the specification and verification of mobile real-time systems.
To the best of our knowledge, we presented the first implementation of a model
checker for such a spatio-temporal formalism for mobile real-time systems. To
benefit from research on efficient second order model checking, we decided to use
the well proven second order model checker MONA as a backend rather than
developing a new model checker from scratch. The applicability of the formalism
and its model checking approach is demonstrated by elaborating on a well known
benchmark case study, extended by explicit spatial modelling.

Related Work. There is a lot of work in the area of spatio-temporal logics, for
example formalisms based on modal logic like in [BCWZ02, AvB01, RS85] or
spatio-temporal logics [Gal95] based on the Region Connection Calculus by Ran-
dell, Cui and Cohn [RCC92] with applications in Artificial Intelligence. However,
these approaches do not facilitate measuring time and space. The combination of
different modal logics with Kripke semantics is extensively discussed by Gabbay
et al in [GKWZ03]. As the logic presented in [WZ03] uses the very general class
of metric spaces as semantic models, only one quantitative distance metric is
available, losing the ability to distinguish directions.

Other approaches, like [Cai04] and [MWZ03] adopt the π-calculus’ [Mil99] or
ambient calculus’ [CG98] notion of mobility, where mobility is interpreted as
the change of links and ambients respectively. For the π-calculus and the logic
[Cai04] tool support is available by the Spatial Logics Model Checker of
Vieira and Caires [VC05].

Perspectives. As indicated by the results of the case study, further investigations
of optimisation and reduction possibilities for the generated second order formula
are important goals. However, since already for discrete Duration Calculus the
validity problem is known to have non-elementary complexity, other approaches
deserve further research. This comprises bounded model checking using a combi-
nation of SAT solvers and decision procedures as used in [BP06, DS04] or using a
different target language as used in [Lam05] for checking real-time requirements.
On the other hand, additional expressiveness can be gained by permitting first
order variables over a finite domain in SC specifications enabling more concise
specifications. Similar to Duration Calculus, a restricted Shape Calculus should
be decidable for continuous temporal domains. Such a decision procedure is to
implemented in the tool MoDiShCa.

Acknowledgements. The authors thank E.-R. Olderog, A. Platzer, R. Meyer
and the other members of the “Correct System Design” group for draft-reading
previous versions and fruitful discussions on this topic.
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3 Université d’Evry-Val-d’Essone, IBISC, CNRS FRE 2873
523, place des Terrasses de l’Agora, 91000 Evry - France

Hanna.Klaudel@ibisc.fr
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Abstract.

1 Introduction

This tutorial is proposed by representatives of the MeFoSyLoMa1 group. MeFo-
SyLoMa is an informal group gathering several teams from various universities
in the Paris area:

– Université Paris-Dauphine (LAMSADE laboratory),
– Université P. & M. Curie (LIP6 laboratory),
– Université Paris 13 (LIPN laboratory),
– ENST (LTCI laboratory),
– Conservatoire National des Arts et Métiers (CEDRIC laboratory).

These teams have extensive knowledge and experience in the design, analysis
and implementation of distributed systems. The cooperation within the group
aims at joining forces, sharing experiences and building joint projects to solve
issues in the design of reliable distributed systems.

One of the major actions of this community is a collective book due to appear
in the fall 2006, and entitled “Formal Methods for Distributed Cooperative Sys-
tems” (Méthodes formelles pour les systèmes répartis et coopératifs in french,
published by Hermès). The purpose of this book is to gather a state of the art of

1 MeFoSyLoMa stands for Formal Methods for Software and Hardware Systems
(Méthodes Formelles pour les Systèmes Logiciels et Matériels in french).

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 362–365, 2006.
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the most advanced techniques for modelling and formal analysis of distributed
systems.

The book is divided into three parts, which constitute the basis for the tu-
torial we propose at ICTAC 2006. Following the design process, the first part
deals with specification of distributed systems, the second one with analysis tech-
niques and the third one presents actual experimentations of such modelling and
verification techniques in real systems (i.e. industrial size case studies).

Each part of the book will correspond to a two hours tutorial presented by
two of the authors of the corresponding part.

2 Part I: Dedicated Specification Languages and Models

This part is devoted to giving guidelines for designing a consistent system model.
First, we present criteria to consider so as to build a specification satisfying the
demands. Then, methodologies to write specifications are introduced.

Presenters: This part of the tutorial will be presented by:

– Laure Petrucci, Professor at University Paris 13, member of the CNRS
laboratory LIPN,

– Christine Choppy, Professor at University Paris 13, member of the CNRS
laboratory LIPN.

Outline: Many sorts of models can be used to specify a complex system. Hence,
it might prove difficult, for a non-experienced designer, to choose among this
large collection. Therefore, the first part of the presentation is dedicated to
criteria that should be taken into account before choosing a modelling formalism:
relevant concepts, abstraction level, specification goals, structuring, expected
properties.

The relevant concepts are the different data types important in the system,
timing issues, the structure of the system, i.e. its decomposition into subsystems,
sequential or parallel execution mode, synchronous/asynchronous communica-
tion. When considering the abstraction level, one should keep in mind that the
specification process may include incremental development and refinement. The
relevance of the concepts and the abstraction level must be considered w.r.t.
the goals for designing the specification, e.g. time is relevant when checking
scheduling issues but may not be when verifying the correctness of a commu-
nication protocol. Structuring the specification into subsystems allows for both
a better view of the different components and reusability. Finally, the expected
properties must be written in a language consistent with the modelling technique.

Considering all these criteria should help the designer in choosing a specifica-
tion paradigm, the appropriate level of abstraction and the relevant properties
to be checked using the model.

The second part of the presentation is concerned with guidelines to start writ-
ing the detailed specification, considering data types structures, simple dynamic



364 C. Choppy et al.

systems, and dynamic systems structured using subsystems. This approach can
be combined with other approaches that guide the overall structuring of the spec-
ification using structuring concepts provided by problem frames, or architectural
styles, and with a component approach to combine the specifications developed.

3 Part II: Dedicated Verification Techniques

This part is dedicated to efficient verification methods for distributed applica-
tions and systems.

Presenters: This part of the tutorial will be presented by:

– Serge Haddad, Professor at University Paris-Dauphine, member of the
CNRS laboratory Lamsade,

– Yann Thierry-Mieg, Associate Professor at University P. & M. Curie,
member of the CNRS laboratory LIP6.

Outline: The presentation comprises two parts.
The diversity of verification methods may puzzle the engineer facing the choice

of the appropriate technique for analysing her/his system. So the first part of
the presentation aims at clarifying the bases of such a choice by discussing three
critical questions associated with the verification process:

– How to choose the formalism for verification?
– How to express the expected properties of the system modelled?
– Which verification methods apply on the model?

The second part of the presentation details one of the most successful verifi-
cation methods in order to tackle the increasing complexity of the systems: the
decision diagram based methods. It starts with a general introduction on data
representation and manipulation using such structures. Then it shows how the
reachability problem (the main verification problem) can efficiently be handled
and how to generalise its application to the model-checking of temporal logic
formulae. It concludes by detailing experiments in order to understand when
and why the method is successful.

The whole presentation illustrates the different concepts with the help of
(extended) Petri nets.

4 Part III: Application to Distributed Systems

This part is dedicated to the effective use of the techniques presented in the
design and implementation of real systems.
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Presenters: This part of the tutorial will be presented by:

– Fabrice Kordon, Professor at University P. & M. Curie and head of the
MoVe (Modelling and Verification) team in the CNRS laboratory LIP6,

– Hanna Klaudel, Professor at University Evry-Val-d’Essonne and head of
the LIS (Languages, Interaction, Simulation) team in the CNRS laboratory
IBISC.

Outline: The presentation is divided into two parts. The first one is devoted to
the PolyORB experience. PolyORB is a middleware dedicated to distributed real-
time systems. It thus requires high reliability that is achieved by means of an
original architecture on which formal verification of qualitative properties (such
as absence of deadlock or livelock) is enforced thanks to Symmetric Petri Nets2.
The presentation will explain how a strong interaction between the design of the
software architecture, combined with new model-checking techniques, allows for
coping with a high complexity of the formal specification.

The second part deals with the design of adaptive reactive systems, i.e. sys-
tems that dynamically adapt their architecture depending on the context of the
execution. We use the formalism of timed automata for the design of the modules
behaviour. Hence, it is possible to evaluate beforehand the properties of the sys-
tem (regarding logical correctness and timelines), thanks to model-checking and
simulation techniques. The approach is illustrated by a case study for which we
show how to produce very quickly a running prototype satisfying the properties
of the model, and how to evaluate a priori the pertinence of adaptive strategies.

5 Conclusion

This tutorial is thus intended for young researchers or engineers to have an
overview of the specification process.

The first part is concerned with specification issues. Indeed, writing a specifi-
cation from scratch is a difficult task for a non-experienced person. The criteria
pointed out and the specification design methodology should help in choosing
the appropriate formalism and starting the design of a system.

The second part is devoted to analysis issues. A complex model is intrinsically
difficult to analyse. It is thus important to choose the appropriate technique to
prove the expected properties of the system. Some advanced techniques are also
shortly presented, which give a feeling on how to handle large systems.

Finally, the third part shows how these techniques have been succesfully
applied to real systems.

2 Formerly called in the literature Well-formed Petri Nets.
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1 Introduction

Catching bugs in programs is difficult and time-consuming. The effort of de-
bugging and proving correct even small units of code can surpass the effort of
programming. Bugs inserted while “programming in the small” can have dra-
matic consequences for the consistency of a whole software system as shown, e.g.,
by viruses which can spread by exploiting buffer overflows, a bug which typically
arises while coding a small portion of code. To detect this kind of errors, many
verification techniques have been put forward such as static analysis and model
checking.

Recently, in the program verification community, there seems to be a growing
demand for more declarative approaches in order to make the results of the
analysis readily available to the end user.1 To meet this requirement, a growing
number of program verification tools integrate some form of theorem proving.

The goals of our research are two. First, we perform theoretical investigations
of various combinations of propositional and first-order satisfiability checking
so to automate the theorem proving activity required to solve a large class of
program analysis problems which can be encoded as first-order formulae. Second,
we experimentally investigate how our techniques behave on real problems so
to make program analysis more precise and scalable. Building tools capable of
providing a good balance between precision and scalability is one of the crucial
challenge to transfer theorem proving technology to the industrial domains.

2 Designing Decision Procedures

Decision procedures, their combination, and their integration with other rea-
soning activities (such as Boolean solving or quantifier handling) have recently

� This author has been supported in part by CNPq grant 506469/04-2.
1 See, for example, the challenge at http://research.microsoft.com/specncheck/
consel challenge.htm

K. Barkaoui, A. Cavalcanti, and A. Cerone (Eds.): ICTAC 2006, LNCS 4281, pp. 366–370, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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attracted a lot of attention because of their importance for many verification
techniques (such as bounded model checking, software model checking, and
deductive verification to name but a few). In this tutorial, we will describe
some of the techniques which allow us to build, combine, and integrate decision
procedures.

2.1 Building

A lot of papers in the literature address the problem of building decision pro-
cedure for theories of interest in program verification, such as [8]. The methods
used in these papers are rather ad hoc and seem difficult to generalize.

We will present the so-called rewriting approach to decision procedures [2]
for theories which can be axiomatized by a finite set of clauses (in first-order
logic with equality) which are quite relevant for software verification: the theory
of uninterpreted function symbols, theories of (possibly cyclic) lists, the theory
of arrays (with or without extensionality), and their combinations. This ap-
proach allows us to synthesize such procedures in a uniform way by working in a
well-understood framework for all the theories listed above. The proof that the
decision procedures are correct is straightforward w.r.t. other correctness proofs
given in the literature since it amounts to proving the termination of the ex-
haustive application of the rules of a calculus (see [2] for details). Furthermore,
these theoretical results pave the way to synthesizing decision procedures from
rewriting-based theorem provers (almost) taken off-the-shelf. We will present
experimental results [1] which confirm the practical feasibility of this approach
by showing that an automated theorem prover compares favorably with ad hoc
decision procedures.

2.2 Combining

Verification problems frequently require more than just a single theory to model
a given system and/or specify a property that we would like the system to sat-
isfy. Hence, there is an obvious need to combine the decision procedures which
are available for some component theories in a modular way so to obtain a de-
cision procedure for unions of theories. This modular approach is particularly
interesting to combine (fragments of) Presburger Arithmetics (for which the
rewriting-based approach does not work) with rewriting-based decision proce-
dures. There has been a long series of works devoted to the combination of
decision procedures in the context of program verification. This line of research
was started in the early 80’s by two combination schemas independently pre-
sented by Nelson-Oppen [9] and Shostak [14] for unions of theories with disjoint
signatures. Recently, a series of papers have clarified the connections between
both combination schemas [13].

We will present a rational reconstruction of combination schemas [11] which
will allow us to derive and prove correct Nelson-Oppen and Shostak combina-
tion schemas in a simple and uniform way. The reconstruction is based on a
classification of the semantic properties that the theories being combined should
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satisfy (e.g., being stably-infinite). Then, we describe how some of the schemas
might be generalized in order to find a better trade-off between the simplicity of
Nelson-Oppen schema and the efficiency of Shostak’s. We will discuss how to lift
some of the requirements needed for the Nelson-Oppen combination schema to
work; e.g., both theories need to be stably-infinite [12]. This is particularly rele-
vant to software verification problems involving container data structures (such
as lists, arrays, or sets) and the elements stored in such data structures whose
theories may not satisfy the requirement of being stably-infinite (consider, for
example, enumerated data-types). Finally, we will explain how rewriting-based
procedures can be efficiently combined with arbitrary decision procedures in the
Nelson-Oppen schema by showing that, under suitable assumptions, they derive
all facts that need to be exchanged for the synchronization of the states of the
procedures [7].

2.3 Integrating

When building decision procedures for certain theories or unions of theories, only
the problem of checking the satisfiability of conjunctions of literals is considered.
Now, verification problems often generate proof obligations consisting of complex
Boolean combination of ground literals and may even contain quantifiers. So, to
make the decision procedures really usable for software verification, it is crucial
to integrate them with (i) Boolean solvers (such as SAT solvers or BDDs) and
with (ii) mechanisms to handle quantifiers. Such system are called Satisfiability
Modulo Theory solvers. The idea underlying (i) is to consider a propositional
abstraction of the formula to be checked for satisfiability and then enumerating
its propositional assignments. Such assignments are then refined back to con-
junctions of ground literals which are checked for satisfiability by means of an
available decision procedure. If all the (refined) propositional assignments are
discarded as unsatisfiable with respect to the theory, we can conclude that the
original formula is unsatisfiable. Otherwise, the formula is satisfiable. This is a
very hot topic in automated deduction and verification as witnessed by many
systems based on this type of integration.2 The idea underlying (ii) is to pre-
process the formula in order to abstract away the quantified sub-formulas by
propositional letters and, at the same time, to enrich the background theory
with enough information for a first-order theorem prover to refine the abstrac-
tion. In this way, we obtain a ground formula which must be checked for sat-
isfiability modulo an extended theory. If the decision procedure can cope with
the extended theory, it is possible to use (i) in order to solve the new satisfi-
ability problem. We will discuss the encouraging experimental results obtained
with an implementation of such techniques (see Section 3 for more details) on
a set of benchmarks taken from the certification of auto-generated aerospace
code [4].

2 See the Satisfiability Modulo Theory Library at http://combination.cs.uiowa.
edu/smtlib for pointers to the available systems.
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2.4 Embedding

Formal system verification calls for expressive specification languages, but also
requires highly automated tools. These two goals are not easy to reconcile, es-
pecially if one also aims at high assurances for correctness. Interactive proof
assistants encode rich logics, which are at the basis of highly expressive (and
user-extensible) modeling languages. Their verification environment is often built
around a small kernel that ensures that theorems can only be produced from
given axioms and proof rules; this approach helps to keep the trusted code base
small and therefore gives high assurance of correctness. These tools however do
not focus on automation, and much interaction is often required for even simple
(but tedious) reasoning. At the other end of the spectrum one finds decision pro-
cedures, based on a restricted language, but that provide fully automatic (and
efficient) deductive capabilities within that language.

There is a growing interest in making interactive proof assistants and auto-
matic tools based on decision procedures cooperate in a safe way. This allows
assistants to delegate proofs of formulas that fall within the scope of automatic
tools. First, this involves translating formulas from the language of the assistant
to the language of the automatic tool. Second, to comfort the confidence in the
translation process and in the automatic tool, it is necessary to extract a proof
from the automatic tool and certify it within the trusted kernel of the proof
assistant. We will focus on proof extraction from decision procedures, but also
mention state-of-the-art techniques for general first-order automatic theorem
provers, and investigate proof certification for proof assistants. In particular, we
will examine our recent [6] and ongoing work on combining the system haRVey
(see Section 3) with the Isabelle [10] proof assistant.

3 Implementing Decision Procedures: haRVey

All the techniques discussed in Section 2 are implemented (or being imple-
mented) in a system, called haRVey3. By now, the system has two incarn-
ations. The former (called haRVey-FOL) integrates Boolean solvers with an
automated theorem prover, to implement the rewriting-based decision proce-
dures overviewed in Section 2.1 (see [3,4]). The latter (called haRVey-SAT) in-
tegrates Boolean solvers with a combination of decision procedures for the theory
of uninterpreted function symbols and Linear Arithmetic based on the Nelson-
Oppen schema and techniques to handle quantifiers and lambda-expressions
(see [5]). Furthermore, haRVey-SAT can produce proofs which can then be in-
dependently checked by the proof assistant Isabelle (see [6]).

While haRVey-FOL offers a high degree of flexibility and automation for a
variety of theories, haRVey-SAT is usually faster on problems with simpler back-
ground theories and ensures a high degree of certification by its proof checking
capability. Along the lines hinted in [7], our current work aims at merging the
two incarnations in one system which retains the flexibility and high-degree of
3 http://harvey.loria.fr/
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automation for expressive theories of haRVey-FOL and provides better perfor-
mances on simpler problems as haRVey-SAT.

References

1. A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz. On a rewriting approach
to satisfiability procedures: extension, combination of theories and an experimen-
tal appraisal. In B. Gramlich, editor, Frontiers of Combining Systems (FroCoS),
volume 3717 of Lecture Notes in Computer Science, pages 65–80. Springer, 2005.

2. A. Armando, S. Ranise, and M. Rusinowitch. A Rewriting Approach to Satisfia-
bility Procedures. Information and Computation, 183(2):140–164, June 2003.
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