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Abstract. The aim of requirements analysis for an agent that is to be designed is 
to identify what characteristic capabilities the agent should have. One of the 
characteristics usually expected for intelligent agents is the capability of 
reasoning. This paper shows how a requirements analysis of an agent’s reasoning 
capability can be made. Reasoning processes may involve dynamically 
introduced or retracted assumptions: ‘reasoning by assumption’. It is shown for 
this type of reasoning how relevant dynamic properties at different levels of 
aggregation can be identified as requirements that characterize the reasoning 
capability. A software agent has been built that performs this type of reasoning. 
The dynamic properties have been expressed using the temporal trace language 
TTL and can and have been checked automatically for sample traces. 

1   Introduction 

Requirements analysis addresses the identification and specification of the 
functionality expected for the system to be developed, abstracting from the manner in 
which this functionality is realized in a design and implementation of this system; e.g. 
[1-3]. Recently, requirements analysis for concurrent systems and agent systems has 
been addressed in particular, for example, in [4, 5]. An agent-oriented view on 
requirements analysis can benefit from the more specific assumptions on structures 
and capabilities expected for agents, compared to software components in general. To 
obtain these benefits, a dedicated agent-oriented requirements analysis process can be 
performed that takes into account specific agent-related structures and capabilities. 
For example, for a number of often-occurring agent capabilities, a requirements 
analysis can be made and documented that is reusable in future agent-oriented 
software engineering processes. In the process of building agent systems, software 
engineering principles and techniques, such as scenario and requirements 
specification, verification and validation, can be supported by the reusable results of 
such a requirements analysis. 
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In this paper the results are presented of a requirements analysis of an agent’s 
reasoning capability. Since reasoning can take different forms, intelligent agents may 
sometimes require nontrivial reasoning capabilities. The more simple forms of 
reasoning amount to determining the deductive closure of a logical theory (a 
knowledge base), given a set of input facts. Requirements for such reasoning 
processes can be specified in the form of a functional relation between input and 
output states, abstracting from the time it takes to perform the reasoning e.g. [6]. 
Properties of such a functional relation can be related to properties of a knowledge 
base used to realize the functionality, which provides possibilities for verification and 
validation of this knowledge e.g. [7]. However, more sophisticated reasoning 
capabilities can better be considered as involving a process over time; especially for 
nontrivial reasoning patterns when the temporal aspects play an important role in their 
semantics cf. [8, 9]. Therefore, within an agent-oriented software engineering 
approach to an agent’s reasoning capability, requirements specification has to address 
the dynamic properties of a reasoning process.  

This paper shows how such a requirements analysis of the dynamics of an agent’s 
reasoning capability can be made. The approach makes use of a semantic 
formalization of reasoning processes by traces consisting of sequences of reasoning 
states over time, following the semantic formalization introduced in [8]. Reasoning 
processes as performed by humans may involve dynamically introduced or retracted 
assumptions: a pattern used as a case study in this paper, called ‘reasoning by 
assumption’. For requirements acquisition, it is to be shown for this type of reasoning 
which relevant dynamic properties can be identified that characterize the reasoning 
pattern. 

For the requirements analysis of an agent’s capability to perform this type of 
reasoning, a methodology has been used that comprises the following steps: 

• First, a number of scenarios of practical human reasoning processes considered 
as ‘reasoning by assumption’ have been analysed and specified to identify 
requirements that are characteristic for this reasoning pattern. Required dynamic 
properties at different levels of aggregation (or grain size) have been identified. 
These characterizing properties have been formalized using the temporal trace 
language TTL, thus permitting automated support of analysis.  

• The specified dynamic properties at the lowest aggregation level are in an 
executable format; they specify reasoning steps. Using a variant of Executable 
Temporal Logic [10] and a dedicated software environment for simulation that 
has been developed [11], these executable properties were used to generate 
abstract simulation traces. Such traces can be used to provide system designers 
with a concrete idea of the intended flow of events over time, without having to 
actually implement the system. 

• Next, logical relationships have been determined between dynamic properties at 
different aggregation levels, in such a way that the dynamic properties at one 
aggregation level together imply those at a higher aggregation level. Such 
logical relationships constitute a formal theory of the interdependencies of the 
different requirements. 
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• Finally, verification of the requirements has been performed. Supported by 
software tools, the dynamic properties at different levels have been checked 
against three different types of traces: (1) human traces, (2) simulation traces, 
and (3) prototype traces. As for (1), a number of reasoning puzzles were used to 
acquire scenarios of further practical human reasoning processes that intuitively 
fit the pattern of reasoning by assumption [12]. The properties were then 
automatically checked against the formalized scenarios of these human traces. 
Concerning (2), the (higher-level) dynamic properties were checked against the 
traces that resulted from the simulation mentioned above, and confirmed, which 
validates the identified logical relationships between the dynamic properties at 
different aggregation levels. Finally, as for (3), a design of an existing software 
agent performing reasoning by assumption [13] was analysed. This agent was 
designed using the component-based design method DESIRE [14]. Using the 
DESIRE execution environment, for this agent a number of reasoning traces 
were generated. For these traces, all identified dynamic properties (also the 
executable ones) were also checked and found to be confirmed. 

In Section 2 the dynamic perspective on reasoning is discussed in further detail, 
focussed on the pattern ‘reasoning by assumption’. Section 3 addresses some details 
of the language used. Section 4 presents a number of requirements in the form of 
dynamic properties identified for patterns of reasoning by assumption. Section 5 
discusses logical relationships between dynamic properties at different aggregation 
levels. In Section 6, it is discussed in which respects verification has been performed. 
In Section 7, the contribution of the research presented in the paper is briefly 
discussed. 

2   The Dynamics of Reasoning 

Analysis of reasoning processes has been addressed from different areas and angles, 
for example, Cognitive Science, Philosophy and Logic, and AI. For reasoning 
processes in natural contexts, which are usually not restricted to simple deduction, 
dynamic aspects play an important role and have to be taken into account, such as 
dynamic focussing by posing goals for the reasoning, or making (additional) 
assumptions during the reasoning, thus using a dynamic set of premises within the 
reasoning process. Also, dynamically initiated additional observations or tests to 
verify assumptions may be part of a reasoning process. Decisions made during the 
process, for example, on which reasoning goal to pursue, or which assumptions to 
make, are an inherent part of such a reasoning process. Such reasoning processes or 
their outcomes cannot be understood, justified or explained without taking into 
account these dynamic aspects. 

The approach to the semantic formalization of the dynamics of reasoning exploited 
here is based on the concepts pf reasoning state, transitions and traces. 

Reasoning state. A reasoning state formalizes an intermediate state of a reasoning 
process. The set of all reasoning states is denoted by RS. 
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Transition of reasoning states. A transition of reasoning states or reasoning step is 
an element  < S, S' > of  RS x RS. A reasoning transition relation is a set of these 
transitions, or a relation on RS x RS that can be used to specify the allowed transitions. 

Reasoning trace. Reasoning dynamics or reasoning behaviour is the result of 
successive transitions from one reasoning state to another. A time-indexed sequence 
of reasoning states is constructed over a given timeframe (e.g. the natural numbers). 
Reasoning traces are sequences of reasoning states such that each pair of successive 
reasoning states in such a trace forms an allowed transition. A trace formalizes one 
specific line of reasoning. A set of reasoning traces is a declarative description of the 
semantics of the behaviour of a reasoning process; each reasoning trace can be seen as 
one of the alternatives for the behaviour. In Section 3, a language is introduced in 
which it is possible to express dynamic properties of reasoning traces. 

The specific reasoning pattern used in this paper to illustrate the approach is 
‘reasoning by assumption’. This type of reasoning often occurs in practical reasoning; 
for example, in everyday reasoning, diagnostic reasoning based on causal knowledge, 
and reasoning based on natural deduction. An example of everyday reasoning by 
assumption is ‘Suppose I do not take my umbrella with me. Then, if it starts raining at 
5 pm, I will get wet, which I don’t want. Therefore I'd better take my umbrella with 
me’. An example of diagnostic reasoning by assumption in the context of a car that 
won’t start is: ‘Suppose the battery is empty, then the lights won’t work. But if I try, 
the lights turn out to work. Therefore the battery is not empty.’ Examples of reasoning 
by assumption in natural deduction are as follows. Method of indirect proof: ‘If I 
assume A, then I can derive a contradiction. Therefore I can derive not A.’. Reasoning 
by cases: ‘If I assume A, I can derive C. If I assume B, I can also derive C. Therefore 
I can derive C from A or B.’. 

Notice that in all of these examples, first a reasoning state is entered in which some 
fact is assumed. Next (possibly after some intermediate steps), a reasoning state is 
entered where consequences of this assumption have been predicted. Finally, a 
reasoning state is entered in which an evaluation has taken place; possibly in the next 
state the assumption is retracted, and conclusions of the whole process are added. In 
Section 3 and 4, this pattern is to be characterized by requirements. 

3   Dynamic Properties 

To specify properties on the dynamics of reasoning, the temporal trace language TTL 
used in [5] is adopted. This is a language in the family of languages to which situation 
calculus [15], event calculus [16] and fluent calculus [17] also belong. 

Ontology. An ontology is a specification (in order-sorted logic) of a vocabulary. For 
the example reasoning pattern ‘reasoning by assumption’ the state ontology includes 
binary relations such as assumed, rejected, on sorts INFO_ELEMENT x SIGN and the 
relation prediction_for on INFO_ELEMENT x SIGN x INFO_ELEMENT x SIGN. Table 1 
contains all the relations that will be used in this paper, as well as their explanation. 
The sort INFO_ELEMENT includes specific domain statements such as car_starts, 
lights_burn, battery_empty, sparking_plugs_problem. The sort SIGN consists of the elements 
pos and neg. 
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Table 1. State ontology for the pattern ‘reasoning by assumption’ 

Internal concepts:  
initial_assumption(A:INFO_ELEMENT, S:SIGN) The agent beliefs that it is most plausible to assume (A,S). 

Therefore, this is the agent’s default assumption. For example, if it 
is most likely that the battery is empty, this is indicated by 
initial_assumption(battery_empty, pos). 

assumed(A:INFO_ELEMENT, S:SIGN) The agent currently assumes (A,S). 
prediction_for(A:INFO_ELEMENT, S1:SIGN, 
   B:INFO_ELEMENT, S2:SIGN) 

The agent predicts that if (B,S2) is true, then (A,S1) should also be 
true. 

rejected(A:INFO_ELEMENT, S:SIGN) The agent has rejected the assumption (A,S). 
alternative_for(A:INFO_ELEMENT, S1:SIGN,  
   B:INFO_ELEMENT, S2:SIGN) 

The agent beliefs that (A,S1) is a good alternative assumption in 
case (B,S2) is rejected. 

Input and output concepts:  
To_be_observed(A:INFO_ELEMENT) The agent starts observing whether A is true. 
observation_result(A:INFO_ELEMENT, S:SIGN) If S is pos, then the agent observes that A is true. If S is neg, then 

the agent observes that A is false. 
External concepts:  
domain_implies(A:INFO_ELEMENT, S1:SIGN, 
   B:INFO_ELEMENT, S2:SIGN) 

Under normal circumstances, (A,S1) leads to (B,S2). For example, 
an empty battery usually implies that the lights do not work. 

holds_in_world(A:INFO_ELEMENT, S:SIGN) If S is pos, then A is true in the world. If S is neg, then A is false. 

Reasoning state. A (reasoning) state for ontology Ont is an assignment of truth-values 
{true, false} to the set of ground atoms At(Ont). The set of all possible states for ontology Ont 
is denoted by STATES(Ont). A part of the description of an example reasoning state S is: 

 

assumed(battery_empty, pos)    : true 
 prediction_for(lights_ burn, neg, battery_empty, pos)  : true 
 observation_result(lights_burn, pos)    : true 
 rejected(battery_empty, pos)    : false 

 

The standard satisfaction relation |== between states and state properties is used: S |== 
p means that state property p holds in state S. For example, in the reasoning state S 
above it holds that S |== assumed(battery_empty, pos). 

 

Reasoning trace. To describe dynamics, explicit reference is made to time in a 
formal manner. A fixed timeframe T is assumed that is linearly ordered. Depending on 
the application, for example, it may be dense (e.g. the real numbers) or discrete (e.g. 
the set of integers or natural numbers or a finite initial segment of the natural 
numbers).  A  trace γ over an ontology  Ont  and timeframe T  is a mapping γ : T → 

STATES(Ont), i.e. a sequence of reasoning states γt (t ∈ T) in  STATES(Ont). Please note 
that in each trace, the current world state is included.  

 

Expressing dynamic properties. States of a trace can be related to state properties 
via the formally defined satisfaction relation |== between states and formulae. 
Comparable to the approach in situation calculus, the sorted predicate logic temporal 
trace language TTL is built on atoms such as state(γ , t) |== p, referring to traces, time 
and state properties. This expression denotes that state property p is true in the state of 
trace γ at time point t. Here |== is a predicate symbol in the language (in infix 
notation), comparable to the Holds-predicate in situation calculus. Temporal formulae 
are built using the usual logical connectives and quantification (for example, over 
traces, time and state properties). The set TFOR(Ont) is the set of all temporal formulae 
that only make use of ontology Ont. We allow additional language elements as 
abbreviations of formulae of the temporal trace language. The fact that this language 
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is formal allows for precise specification of dynamic properties. Moreover, editors 
can and actually have been developed to support specification of properties. Specified 
properties can be checked automatically against example traces to find out whether 
they hold. 

 

Simulation. A simpler temporal language has been used to specify simulation 
models. This temporal language, the LEADSTO language [11], offers the possibility 
of modelling direct temporal dependencies between two state properties in successive 
states. This executable format is defined as follows. Let α and β be state properties of 
the form ‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real 
numbers. In the LEADSTO language α →→e, f, g, h β, means: 

 

If state property α holds for a certain time interval with duration g, 
then after some delay (between e and f) state property β will hold 

for a certain time interval of length h. 
 

For a precise definition of the LEADSTO format, see [11]. A specification of 
dynamic properties in LEADSTO format has as advantages that it is executable and 
that it can easily be depicted graphically. 

4   Dynamic Properties as Characterizing Requirements 

Careful analysis of the informal reasoning patterns discussed in Section 2 led to the 
identification of dynamic properties that can serve as requirements for the capability 
of reasoning by assumption. In this section, a number of the most relevant of those 
properties are presented in both an informal and formal way. The dynamic properties 
identified are at three different levels of aggregation: 

 

• Local properties address the step-by-step reasoning process of the agent. They 
represent specific transitions between states of the process: reasoning steps. 
These properties are represented in executable format, which means that they 
can be used to generate simulation traces. 

• Global properties address the overall reasoning behaviour of the agent, not the 
step-by-step reasoning process of the agent. Some examples of global properties 
are presented, regarding matters as termination, correct reasoning and result 
production.  

• Intermediate properties are properties at an intermediate level of aggregation, 
which are used for the analysis of global properties (see also Section 5).  

 

A number of local properties are given in Section 4.1. It will be shown how they can 
be used in order to generate simulation traces. Next, Section 4.2 provides some global 
properties and Section 4.3 some intermediate properties. 

4.1   Local Dynamic Properties 

At the lowest level of aggregation, a number of dynamic properties have been 
identified for the process of reasoning by assumption. These local properties are given 
below (both in an informal and in formal LEADSTO notation): 
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LP1 (Assumption Initialization)  
The first local property LP1 expresses that a first assumption is made. Here, note that 
initial_assumption is an agent-specific predicate, which can be varied for different cases. 
Formalization:  
initial_assumption(A, S) →→0,0,1,1  assumed(A, S) 

 

LP2 (Prediction Effectiveness) 
Local property LP2 expresses that, for each assumption that is made, all relevant 
predictions are generated. 
Formalization:  
assumed(A, S1) and domain_implies(A, S1, P, S2) →→0,0,1,1  prediction_for(P, S2, A, S1) 

 

LP3 (Observation Initiation Effectiveness) 
Local property LP3 expresses that all predictions made will be observed. 
Formalization:  
prediction_for(P, S1, A, S2) →→0,0,1,1  to_be_observed(P) 

 

LP4 (Observation Result Effectiveness) 
Local property LP4 expresses that, if an observation is made, the appropriate 
observation result will be received. Formalization:  
to_be_observed(P) and holds_in_world(P, S) →→0,0,1,1  observation_result(P, S) 

 

LP5 (Evaluation Effectiveness) 
Local property LP5 expresses that, if an assumption was made and a related 
prediction is falsified by an observational result, then the assumption is rejected. 
Formalization:  
assumed(A, S1) and prediction_for(P, S2, A, S1)  and  observation_result(P, S3) and S2≠S3 →→
0,0,1,1  rejected(A, S1) 

 

LP6 (Assumption Effectiveness) 
Local property LP6 expresses that, if an assumption is rejected and there is still an 
alternative assumption available, this will be assumed. Formalization:  
assumed(A, S1) and rejected(A, S1) and alternative_for(B, S2, A, S1) and not rejected(B, S2) →→
0,0,1,1  assumed(B, S2) 

 

LP7 (Assumption Persistence) 
Local property LP7 expresses that assumptions persist as long as they are not rejected. 
Formalization:  
assumed(A, S) and not rejected(A, S) →→0,0,1,1  assumed(A, S) 

 

LP8 (Rejection Persistence) 
Local property LP8 expresses that rejections persist. Formalization:  
rejected(A, S) →→0,0,1,1  rejected(A, S) 

 

LP9 (Observation Result Persistence) 
Local property LP9 expresses that observation results persist. Formalization:  
observation_result(P, S) →→0,0,1,1  observation_result(P, S) 

 

Using the software environment that is described in [11], these local dynamic 
properties can be used to generate simulation traces. Using such traces, the 
requirements engineers and system designers obtain a concrete idea of the intended 
flow of events over time. A number of simulation traces have been created for several 
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domains. An example simulation trace in the domain of car diagnosis is depicted in 
Fig. 1. Here, time is on the horizontal axis, and the state properties on the vertical 
axis. A dark box on top of the line indicates that the state property is true during that 
time period, and a lighter box below the line indicates that the state property is false. 
This figure shows the characteristic cyclic process of reasoning by assumption: 
making assumptions, predictions and observations for assumptions, then rejecting 
assumptions and creating new assumptions. As can be seen in Fig. 1, it is first 
observed that the car does not start. On the basis of this observation, an initial 
assumption is made that this is due to an empty battery. However, if this assumption 
turns out to be impossible (because the lights are working), this assumption is 
rejected. Instead, a second assumption is made (there is a sparking plugs problem), 
which turns out to be correct. 

assumed(battery_empty, pos)
assumed(sparking_plugs_problem, pos)

observation_result(car_starts, neg)
observation_result(lights_burn, pos)

prediction_for(car_starts, neg, battery_empty, pos)
prediction_for(lights_burn, neg, battery_empty, pos)

rejected(battery_empty, pos)
to_be_observed(car_starts)

to_be_observed(lights_burn)
time 0 1 2 3 4 5 6 7 8 9 10 11 12 

Fig. 1. Example simulation trace 

4.2   Global Dynamic Properties 

At the highest level of aggregation, a number of dynamic properties have been 
identified for the overall reasoning process. These global properties are given below 
(both in an informal and in formal TTL notation). Note that, in each formula, γ stands 
for a trace. 

 

GP1  (Reasoning Termination) 
Eventually there is a time point at which the reasoning terminates. 
∃t:T   termination(γ, t)   

 

Here termination(γ, t)  is defined as follows: 
∀t’:T   t’ ≥ t  ⇒ state(γ, t) = state(γ, t’). 

 

GP2  (Correctness of Rejection) 
Everything that has been rejected does not hold in the world situation. 
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN 
   state(γ,t) |== rejected(A,S)   ⇒  
      state(γ,t) |=/= holds_in_world(A,S) 

 

GP3  (At least one not Rejected Assumption) 
If the reasoning has terminated, then there is at least one assumption that has been 
evaluated and not rejected. 
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∀t:T   termination(γ, t) 
   ⇒ [ ∃ A: INFO_ELEMENT, ∃ S: SIGN  
      state(γ, t) |== assumed(A, S)  ∧  state(γ, t) |=/= rejected(A, S) ] 

 

In addition, some assumptions on the domain can be specified: 
 

WP1  (Static World) 
If something holds in the world, it will hold for all time. 
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN 
   state(γ,t) |== holds_in_world(A,S)   ⇒ 
      [ ∀t’:T ≥ t:T   state(γ,t’) |== holds_in_world(A,S) ] 
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN 
   state(γ,t) |=/= holds_in_world(A,S)  ⇒ 
      [ ∀t’:T ≥ t:T   state(γ,t’) |=/= holds_in_world(A,S) ] 

 

WP2  (World Consistency) 
If something holds in the world, then its complement does not hold. 
∀t:T ∀A:INFO_ELEMENT ∀S1,S2:SIGN 
   state(γ,t) |== holds_in_world(A,S1) ∧ S1 ≠ S2   ⇒ 
      state(γ,t) |=/= holds_in_world(A,S2) 

 

DK1  (Domain Knowledge Correctness) 
The domain-specific knowledge is correct in the world. 
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN 
  state(γ,t) |== holds_in_world(A,S1) ∧ domain_implies(A,S1,B,S2) 
      ⇒  state(γ,t) |== holds_in_world(B,S2)] 

4.3   Intermediate Dynamic Properties 

In the sections above, on the one hand, global properties for a reasoning process as a 
whole have been identified. On the other hand, at the lowest level of aggregation, 
local (executable) properties representing separate reasoning steps have been 
identified. It may be expected that any trace that satisfies the local properties 
automatically will satisfy the global properties (semantic entailment). As a form of 
verification, it can be proven that the local properties indeed imply the global 
properties. To construct a transparent proof, a number of intermediate properties have 
been identified. Examples of intermediate properties are property IP1 to IP7 shown 
below (both in an informal and in formal TTL notation). 

 

IP1 (Proper Rejection Grounding) 
If an assumption is rejected, then earlier on there was a prediction for it that did not 
match the corresponding observation result. 
∀t:T ∀A:INFO_ELEMENT ∀S1:SIGN 
   state(γ,t) |== rejected(A,S1) ⇒ 
      [∃t’:T ≤ t:T ∃B:INFO_ELEMENT ∃S2,S3:SIGN 
         state(γ,t’) |== prediction_for(B,S2,A,S1)  ∧ 
         state(γ,t’) |== observation_result(B,S3) ∧ S2 ≠ S3] 

 

IP2 (Prediction-Observation Discrepancy implies Assumption Incorrectness) 
If a prediction does not match the corresponding observation result, then the 
associated assumption does not hold in the world. 
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∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN 
   state(γ,t) |== prediction_for(B,S2,A,S1) ∧ 
   state(γ,t) |== observation_result(B,S3) ∧ S2 ≠ S3 ⇒ 
      state(γ,t) |=/= holds_in_world(A,S1) 

 

IP3 (Observation Result Correctness) 
Observation results obtained from the world indeed hold in the world. 
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN 
   state(γ,t) |== observation_result(A,S)  ⇒ 
      state(γ,t) |== holds_in_world(A,S) 

 

IP4 (Incorrect Prediction implies Incorrect Assumption 1) 
If a prediction does not match the facts from the world, then the associated 
assumption does not hold either. 
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN 
   state(γ,t) |== prediction_for(B,S2,A,S1) ∧ 
   state(γ,t) |== holds_in_world(B,S3) ∧ S2 ≠ S3 ⇒ 
      state(γ,t) |=/= holds_in_world(A,S1) 

 

IP5 (Observation Result Grounding) 
If an observation has been obtained, then earlier on the corresponding fact held in the 
world. 
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN 
   state(γ,t) |== observation_result(A,S)  ⇒ 
      [ ∃t’:T ≤ t:T   state(γ,t’) |== holds_in_world(A,S) ] 

 

IP6 (Incorrect Prediction implies Incorrect Assumption 2) 
If a prediction does not hold in the world, then the associated assumption does not 
hold either. 
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN 
   state(γ,t) |== prediction_for(B,S2,A,S1) ∧ 
   state(γ,t) |=/= holds_in_world(B,S2) ⇒ 
      state(γ,t) |=/= holds_in_world(A,S1) 

 

IP7 (Prediction Correctness) 
If a prediction is made for an assumption that holds in the world, then the prediction 
also holds. 
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN 
   state(γ,t) |== prediction_for(B,S2,A,S1) ∧ 
   state(γ,t) |== holds_in_world(A,S1) ⇒ 
      state(γ,t) |== holds_in_world(B,S2) 

5   Relationships Between Dynamic Properties 

A number of logical relationships have been the identified between properties at 
different aggregation levels. An overview of all identified logical relationships 
relevant for GP2 is depicted as an AND-tree in Fig. 2. Here the grey ovals indicate 
that the so-called grounding variant of the property is used. Grounding variants make 
a specification of local properties more complete by stating that there is no other 
means to produce certain behaviour. For example, the grounding variant of LP2 can 
be specified as follows (in TTL notation): 
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LP2G  Prediction effectiveness groundedness 
Each prediction is related (via domain knowledge) to an earlier made assumption. 
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN 
   state(γ,t) |== prediction_for(B,S2,A,S1) ⇒ 
   [∃t’:T ≤ t:T   state(γ,t’) |== assumed(A,S1) ∧ 
    domain_implies(A,S1,B,S2)] 

 

This property expresses that predictions made always have to be preceded by a state 
in which the assumption was made, and the domain knowledge implies the prediction. 

Fig. 2. AND-tree of dynamic properties 

The relationships depicted in Fig. 2 should be interpreted as semantic entailment 
relationships. For example, the relationship at the highest level expresses that the 
implication IP1 & IP2 & WP1 => GP2 holds. A sketch of the proof for this 
implication is as follows. 

 

Suppose IP1 holds. This means that, if an assumption is rejected at time t, then at a 
certain time point in the past (say t') there was a prediction for it that did not match 
the corresponding observation result. According to IP2, at the very same time point 
(t') the assumption for which the prediction was made did not hold in the world. 
Since the world is static (WP1), this assumption still does not hold at time point t. We 
may thus conclude that, if something is rejected at a certain time point, it does not 
hold in the world. 

 

Logical relationships between dynamic properties can be very useful in the 
analysis of empirical reasoning processes. For example, if a given person makes an 
incorrect rejection (i.e. property GP2 is not satisfied by the reasoning trace), then by a 
refutation process it can be concluded that either property IP1, property IP2, or 
property WP1 fails (or a combination of them). If, after checking these properties, it 
turns out that IP1 does not hold, then this must be the case because LP5G does not 
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hold. Thus, by this example refutation analysis, it can be concluded that the cause of 
the unsatisfactory reasoning process can be found in LP5G. For more information 
about the analysis of human reasoning processes, see [12]. 

6   Verification 

In addition to the simulation software described in Section 4, a special tool has been 
developed that takes a formally specified property and a set of traces as input, and 
verifies whether the property holds for the traces.  

Using this checker tool, dynamic properties (of all levels) can be checked 
automatically against traces, irrespective of who/what produced those traces: humans, 
simulators or an implemented (prototype) system. A large number of such checks 
have indeed been performed for several case studies in reasoning by assumption. 
Table 2 presents an overview of all combinations of checks and their results. A ‘+’ 
indicates that all properties were satisfied for the traces, a ‘+/-’ indicates that some of 
the properties were satisfied. 

Table 2. Overview of the different verification results 

 Human Traces 
(Taken from [12]) 

Simulation Traces 
(This paper) 

Prototype Traces 
(Taken from [13]) 

Local Properties  

+/- 
 

+ 
 

+ 
Intermediate Properties  

+/- 
 

+ 
 

+ 
Global Properties  

+/- 
 

+ 
 

+ 

As can be seen in Table 2, three types of traces were considered. First, the dynamic 
properties have been checked against human traces in reasoning experiments. It 
turned out that some of the properties were satisfied by all human traces, whereas 
some other properties sometimes failed. This implies that some properties are indeed 
characteristic for the pattern ‘reasoning by assumption’, whereas some other 
properties can be used to discriminate between different approaches to the reasoning. 
For example, human reasoners sometimes skip a step; therefore LP2 does not always 
hold. More details of these checks can be found in [12]. 

Second, the dynamic properties have been checked against simulation traces such 
as the one presented in Section 4.1 of this paper. As shown in Table 2, all properties 
eventually were satisfied for all traces. Note that this was initially not the case: in 
some cases, small errors were made during the formalization of the properties. 
Checking the properties against simulation traces turned out to be useful to localize 
such errors and thereby debug the formal dynamic properties. 

Finally, all dynamic properties have been verified against traces generated by a 
prototype of a software agent performing reasoning by assumption [13]. This agent 
was designed on the basis of the component-based design method DESIRE, cf. [14]. 
Also for these traces eventually all dynamic properties turned out to hold. 

To conclude, all automated checks described above have played an important role 
in the requirements analysis of reasoning capabilities of software agents, since they 
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permitted the results of the requirements elicitation and specification phase to be 
formally verified and improved. 

Note that, although the dynamic properties shown in the previous sections are 
mainly aimed at functional requirements, in principle the approach based on TTL 
allows one to verify non-functional requirements as well. Examples of non-functional 
requirements are efficiency, reliability and portability of the system [18]. Despite the 
fact that these types of requirements are generally difficult to formalize, some initial 
steps have been made towards their formalization in TTL [19]. In that paper, it is 
suggested that the efficiency of a system can be measured, for example, by counting 
the amount of components that need to be activated in order to be successful. This 
property is formalized in TTL as follows: 

 

efficiency(γ:TRACE) ≡ 
   successfulness(γ) ∧ 
   ∃i :INTEGER component_activations(γ, i) ∧ i = shortest_path 

 

Here, it is assumed that the length of the shortest path is known for the particular 
example being checked. To enable a definition of the number of activations of a 
component, first the activation of one component is defined, including its interval: 

 

has_activation_interval(γ:TRACE, c:COMPONENT, tb:TIME, te:TIME) ≡ 
   tb < te ∧ state(γ,te) |≠ activated(c) ∧ 
   [∀t tb≤t<te ⇒ state(γ,t) |= activated(c)] ∧ 
   ∃t1<tb  [∀t2 t1≤t2<tb ⇒ state(γ,t2) |≠ activated(c)] 

 

An example of a definition for a trace with one component activation is shown below.  
 

component_activations(γ:TRACE, 1) ≡ 
   ∃c:COMPONENT, tb:TIME, te:TIME 
   has_activation_interval(γ, c:COMPONENT, tb:TIME, te:TIME) ∧ 
   [∀c2:COMPONENT, tb2:TIME, te2:TIME 
   [has_activation_interval(γ, c2:COMPONENT, tb2:TIME, te2:TIME) ⇒ 
      c = c2 ∧ tb = tb2 ∧ te = te2]] 

 

Another way to describe efficiency is by considering the amount of computation time 
the approach needs to generate a solution.  

7   Discussion 

In the literature, software engineering aspects of reasoning capabilities of intelligent 
agents have not been addressed well. Some literature is available on formal semantics 
of the dynamics of non-monotonic reasoning processes; for an overview see [9]. 
However, these approaches focus on formal foundation and are far from the more 
practical software engineering aspects of actual agent system development. 

In this paper, it is shown how, during an agent development process, a requirements 
analysis can be incorporated. The desired functionality of the agent’s reasoning 
capabilities can be identified (for example, in cooperation with stakeholders), using 
temporal specifications of scenarios and requirements specified in the form of (required) 
traces and dynamic properties. This paper shows, for the example reasoning pattern 
‘reasoning by assumption’, how relevant dynamic properties can be identified as 
requirements for the agent’s reasoning behaviour, expressed in a temporal language, and 
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verified and validated. Thus a set of requirements is obtained that is reusable in other 
agent development processes. The main reason for the reusability of these requirements 
is the fact that, within the presented dynamic properties, generic and domain-specific 
concepts can be treated separately (compositionality of knowledge). For example, in 
global property DK1, the domain-specific sort INFO_ELEMENT and the relation 
domain_implies can be filled in for any specific case. This allows the software engineer to 
reuse the presented requirements in any given domain, as long as it involves reasoning 
by assumption. In fact, the approach has already been applied to several different 
examples: whereas the main reasoning problem addressed in the current paper is about 
‘car diagnosis’, other reasoning problems have been addressed in the past, among which 
the ‘wise person’s puzzle’ [13] and the game of ‘Mastermind’ [12]. 

The language TTL used here allows for precise specification of the requirements 
for an agent’s reasoning behaviour, covering both qualitative and quantitative aspects 
of states and their temporal relations. Moreover, software tools have been developed 
to (1) support specification of (executable) dynamic properties, and (2) automatically 
check specified dynamic properties against example traces to find out whether the 
properties hold for the traces. This provides a useful supporting software environment 
to evaluate reasoning scenarios both in terms of simulated and prototype traces (in the 
context of prototyping) and empirical traces (in the context of requirements elicitation 
and validation in co-operation with stakeholders). In the paper, it is shown how this 
software environment can be used to automatically check the dynamic properties 
during a requirements analysis process. Note that it is not claimed that TTL is the 
only language appropriate for this. For example, most of the properties encountered 
could as well have been expressed in a variant of linear time temporal logic. The 
language is only used as a vehicle; the contribution of the paper is in the method of 
application of requirements analysis to an agent’s reasoning capability, and the 
reusable results obtained by that method. 

For an elaborate description about the role that the current approach may take in 
requirements engineering, the reader is referred to [20]. In that paper, it is shown in 
detail how dynamic properties can be used to specify (both functional and non-
functional) requirements of agent systems. Moreover, it is shown how these 
requirements may be refined and fulfilled according to the Generic Design Model 
(GDM) by Brazier et al. [21]. However, GDM is just one possible approach for 
Agent-Oriented Software Engineering. Recently, several other architectures have 
been proposed, for example, Tropos [22], KAOS [23] or GBRAM [24]. In future 
work, the possibilities may be explored to incorporate the approach based on dynamic 
properties presented here within such architectures. These possibilities are promising, 
especially for architectures that provide a specific language for formalization of 
requirements (KAOS for example uses a real-time temporal logic to specify 
requirements in terms of goals, constraints and objects). 
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