
M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 48 – 63, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Requirements Analysis of an Agent’s Reasoning
Capability

Tibor Bosse1, Catholijn M. Jonker2, and Jan Treur1

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{tbosse, treur}@cs.vu.nl
http://www.cs.vu.nl/~{tbosse, treur}

2 Radboud Universiteit Nijmegen, Nijmegen Institute for Cognition and Information,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

C.Jonker@nici.ru.nl
http://www.nici.ru.nl/~catholj

Abstract. The aim of requirements analysis for an agent that is to be designed is
to identify what characteristic capabilities the agent should have. One of the
characteristics usually expected for intelligent agents is the capability of
reasoning. This paper shows how a requirements analysis of an agent’s reasoning
capability can be made. Reasoning processes may involve dynamically
introduced or retracted assumptions: ‘reasoning by assumption’. It is shown for
this type of reasoning how relevant dynamic properties at different levels of
aggregation can be identified as requirements that characterize the reasoning
capability. A software agent has been built that performs this type of reasoning.
The dynamic properties have been expressed using the temporal trace language
TTL and can and have been checked automatically for sample traces.

1 Introduction

Requirements analysis addresses the identification and specification of the
functionality expected for the system to be developed, abstracting from the manner in
which this functionality is realized in a design and implementation of this system; e.g.
[1-3]. Recently, requirements analysis for concurrent systems and agent systems has
been addressed in particular, for example, in [4, 5]. An agent-oriented view on
requirements analysis can benefit from the more specific assumptions on structures
and capabilities expected for agents, compared to software components in general. To
obtain these benefits, a dedicated agent-oriented requirements analysis process can be
performed that takes into account specific agent-related structures and capabilities.
For example, for a number of often-occurring agent capabilities, a requirements
analysis can be made and documented that is reusable in future agent-oriented
software engineering processes. In the process of building agent systems, software
engineering principles and techniques, such as scenario and requirements
specification, verification and validation, can be supported by the reusable results of
such a requirements analysis.

 Requirements Analysis of an Agent’s Reasoning Capability 49

In this paper the results are presented of a requirements analysis of an agent’s
reasoning capability. Since reasoning can take different forms, intelligent agents may
sometimes require nontrivial reasoning capabilities. The more simple forms of
reasoning amount to determining the deductive closure of a logical theory (a
knowledge base), given a set of input facts. Requirements for such reasoning
processes can be specified in the form of a functional relation between input and
output states, abstracting from the time it takes to perform the reasoning e.g. [6].
Properties of such a functional relation can be related to properties of a knowledge
base used to realize the functionality, which provides possibilities for verification and
validation of this knowledge e.g. [7]. However, more sophisticated reasoning
capabilities can better be considered as involving a process over time; especially for
nontrivial reasoning patterns when the temporal aspects play an important role in their
semantics cf. [8, 9]. Therefore, within an agent-oriented software engineering
approach to an agent’s reasoning capability, requirements specification has to address
the dynamic properties of a reasoning process.

This paper shows how such a requirements analysis of the dynamics of an agent’s
reasoning capability can be made. The approach makes use of a semantic
formalization of reasoning processes by traces consisting of sequences of reasoning
states over time, following the semantic formalization introduced in [8]. Reasoning
processes as performed by humans may involve dynamically introduced or retracted
assumptions: a pattern used as a case study in this paper, called ‘reasoning by
assumption’. For requirements acquisition, it is to be shown for this type of reasoning
which relevant dynamic properties can be identified that characterize the reasoning
pattern.

For the requirements analysis of an agent’s capability to perform this type of
reasoning, a methodology has been used that comprises the following steps:

• First, a number of scenarios of practical human reasoning processes considered
as ‘reasoning by assumption’ have been analysed and specified to identify
requirements that are characteristic for this reasoning pattern. Required dynamic
properties at different levels of aggregation (or grain size) have been identified.
These characterizing properties have been formalized using the temporal trace
language TTL, thus permitting automated support of analysis.

• The specified dynamic properties at the lowest aggregation level are in an
executable format; they specify reasoning steps. Using a variant of Executable
Temporal Logic [10] and a dedicated software environment for simulation that
has been developed [11], these executable properties were used to generate
abstract simulation traces. Such traces can be used to provide system designers
with a concrete idea of the intended flow of events over time, without having to
actually implement the system.

• Next, logical relationships have been determined between dynamic properties at
different aggregation levels, in such a way that the dynamic properties at one
aggregation level together imply those at a higher aggregation level. Such
logical relationships constitute a formal theory of the interdependencies of the
different requirements.

50 T. Bosse, C.M. Jonker, and J. Treur

• Finally, verification of the requirements has been performed. Supported by
software tools, the dynamic properties at different levels have been checked
against three different types of traces: (1) human traces, (2) simulation traces,
and (3) prototype traces. As for (1), a number of reasoning puzzles were used to
acquire scenarios of further practical human reasoning processes that intuitively
fit the pattern of reasoning by assumption [12]. The properties were then
automatically checked against the formalized scenarios of these human traces.
Concerning (2), the (higher-level) dynamic properties were checked against the
traces that resulted from the simulation mentioned above, and confirmed, which
validates the identified logical relationships between the dynamic properties at
different aggregation levels. Finally, as for (3), a design of an existing software
agent performing reasoning by assumption [13] was analysed. This agent was
designed using the component-based design method DESIRE [14]. Using the
DESIRE execution environment, for this agent a number of reasoning traces
were generated. For these traces, all identified dynamic properties (also the
executable ones) were also checked and found to be confirmed.

In Section 2 the dynamic perspective on reasoning is discussed in further detail,
focussed on the pattern ‘reasoning by assumption’. Section 3 addresses some details
of the language used. Section 4 presents a number of requirements in the form of
dynamic properties identified for patterns of reasoning by assumption. Section 5
discusses logical relationships between dynamic properties at different aggregation
levels. In Section 6, it is discussed in which respects verification has been performed.
In Section 7, the contribution of the research presented in the paper is briefly
discussed.

2 The Dynamics of Reasoning

Analysis of reasoning processes has been addressed from different areas and angles,
for example, Cognitive Science, Philosophy and Logic, and AI. For reasoning
processes in natural contexts, which are usually not restricted to simple deduction,
dynamic aspects play an important role and have to be taken into account, such as
dynamic focussing by posing goals for the reasoning, or making (additional)
assumptions during the reasoning, thus using a dynamic set of premises within the
reasoning process. Also, dynamically initiated additional observations or tests to
verify assumptions may be part of a reasoning process. Decisions made during the
process, for example, on which reasoning goal to pursue, or which assumptions to
make, are an inherent part of such a reasoning process. Such reasoning processes or
their outcomes cannot be understood, justified or explained without taking into
account these dynamic aspects.

The approach to the semantic formalization of the dynamics of reasoning exploited
here is based on the concepts pf reasoning state, transitions and traces.

Reasoning state. A reasoning state formalizes an intermediate state of a reasoning
process. The set of all reasoning states is denoted by RS.

 Requirements Analysis of an Agent’s Reasoning Capability 51

Transition of reasoning states. A transition of reasoning states or reasoning step is
an element < S, S' > of RS x RS. A reasoning transition relation is a set of these
transitions, or a relation on RS x RS that can be used to specify the allowed transitions.

Reasoning trace. Reasoning dynamics or reasoning behaviour is the result of
successive transitions from one reasoning state to another. A time-indexed sequence
of reasoning states is constructed over a given timeframe (e.g. the natural numbers).
Reasoning traces are sequences of reasoning states such that each pair of successive
reasoning states in such a trace forms an allowed transition. A trace formalizes one
specific line of reasoning. A set of reasoning traces is a declarative description of the
semantics of the behaviour of a reasoning process; each reasoning trace can be seen as
one of the alternatives for the behaviour. In Section 3, a language is introduced in
which it is possible to express dynamic properties of reasoning traces.

The specific reasoning pattern used in this paper to illustrate the approach is
‘reasoning by assumption’. This type of reasoning often occurs in practical reasoning;
for example, in everyday reasoning, diagnostic reasoning based on causal knowledge,
and reasoning based on natural deduction. An example of everyday reasoning by
assumption is ‘Suppose I do not take my umbrella with me. Then, if it starts raining at
5 pm, I will get wet, which I don’t want. Therefore I'd better take my umbrella with
me’. An example of diagnostic reasoning by assumption in the context of a car that
won’t start is: ‘Suppose the battery is empty, then the lights won’t work. But if I try,
the lights turn out to work. Therefore the battery is not empty.’ Examples of reasoning
by assumption in natural deduction are as follows. Method of indirect proof: ‘If I
assume A, then I can derive a contradiction. Therefore I can derive not A.’. Reasoning
by cases: ‘If I assume A, I can derive C. If I assume B, I can also derive C. Therefore
I can derive C from A or B.’.

Notice that in all of these examples, first a reasoning state is entered in which some
fact is assumed. Next (possibly after some intermediate steps), a reasoning state is
entered where consequences of this assumption have been predicted. Finally, a
reasoning state is entered in which an evaluation has taken place; possibly in the next
state the assumption is retracted, and conclusions of the whole process are added. In
Section 3 and 4, this pattern is to be characterized by requirements.

3 Dynamic Properties

To specify properties on the dynamics of reasoning, the temporal trace language TTL
used in [5] is adopted. This is a language in the family of languages to which situation
calculus [15], event calculus [16] and fluent calculus [17] also belong.

Ontology. An ontology is a specification (in order-sorted logic) of a vocabulary. For
the example reasoning pattern ‘reasoning by assumption’ the state ontology includes
binary relations such as assumed, rejected, on sorts INFO_ELEMENT x SIGN and the
relation prediction_for on INFO_ELEMENT x SIGN x INFO_ELEMENT x SIGN. Table 1
contains all the relations that will be used in this paper, as well as their explanation.
The sort INFO_ELEMENT includes specific domain statements such as car_starts,
lights_burn, battery_empty, sparking_plugs_problem. The sort SIGN consists of the elements
pos and neg.

52 T. Bosse, C.M. Jonker, and J. Treur

Table 1. State ontology for the pattern ‘reasoning by assumption’

Internal concepts:
initial_assumption(A:INFO_ELEMENT, S:SIGN) The agent beliefs that it is most plausible to assume (A,S).

Therefore, this is the agent’s default assumption. For example, if it
is most likely that the battery is empty, this is indicated by
initial_assumption(battery_empty, pos).

assumed(A:INFO_ELEMENT, S:SIGN) The agent currently assumes (A,S).
prediction_for(A:INFO_ELEMENT, S1:SIGN,
 B:INFO_ELEMENT, S2:SIGN)

The agent predicts that if (B,S2) is true, then (A,S1) should also be
true.

rejected(A:INFO_ELEMENT, S:SIGN) The agent has rejected the assumption (A,S).
alternative_for(A:INFO_ELEMENT, S1:SIGN,
 B:INFO_ELEMENT, S2:SIGN)

The agent beliefs that (A,S1) is a good alternative assumption in
case (B,S2) is rejected.

Input and output concepts:
To_be_observed(A:INFO_ELEMENT) The agent starts observing whether A is true.
observation_result(A:INFO_ELEMENT, S:SIGN) If S is pos, then the agent observes that A is true. If S is neg, then

the agent observes that A is false.
External concepts:
domain_implies(A:INFO_ELEMENT, S1:SIGN,
 B:INFO_ELEMENT, S2:SIGN)

Under normal circumstances, (A,S1) leads to (B,S2). For example,
an empty battery usually implies that the lights do not work.

holds_in_world(A:INFO_ELEMENT, S:SIGN) If S is pos, then A is true in the world. If S is neg, then A is false.

Reasoning state. A (reasoning) state for ontology Ont is an assignment of truth-values
{true, false} to the set of ground atoms At(Ont). The set of all possible states for ontology Ont
is denoted by STATES(Ont). A part of the description of an example reasoning state S is:

assumed(battery_empty, pos) : true
 prediction_for(lights_ burn, neg, battery_empty, pos) : true
 observation_result(lights_burn, pos) : true
 rejected(battery_empty, pos) : false

The standard satisfaction relation |== between states and state properties is used: S |==
p means that state property p holds in state S. For example, in the reasoning state S
above it holds that S |== assumed(battery_empty, pos).

Reasoning trace. To describe dynamics, explicit reference is made to time in a
formal manner. A fixed timeframe T is assumed that is linearly ordered. Depending on
the application, for example, it may be dense (e.g. the real numbers) or discrete (e.g.
the set of integers or natural numbers or a finite initial segment of the natural
numbers). A trace γ over an ontology Ont and timeframe T is a mapping γ : T →

STATES(Ont), i.e. a sequence of reasoning states γt (t ∈ T) in STATES(Ont). Please note
that in each trace, the current world state is included.

Expressing dynamic properties. States of a trace can be related to state properties
via the formally defined satisfaction relation |== between states and formulae.
Comparable to the approach in situation calculus, the sorted predicate logic temporal
trace language TTL is built on atoms such as state(γ , t) |== p, referring to traces, time
and state properties. This expression denotes that state property p is true in the state of
trace γ at time point t. Here |== is a predicate symbol in the language (in infix
notation), comparable to the Holds-predicate in situation calculus. Temporal formulae
are built using the usual logical connectives and quantification (for example, over
traces, time and state properties). The set TFOR(Ont) is the set of all temporal formulae
that only make use of ontology Ont. We allow additional language elements as
abbreviations of formulae of the temporal trace language. The fact that this language

 Requirements Analysis of an Agent’s Reasoning Capability 53

is formal allows for precise specification of dynamic properties. Moreover, editors
can and actually have been developed to support specification of properties. Specified
properties can be checked automatically against example traces to find out whether
they hold.

Simulation. A simpler temporal language has been used to specify simulation
models. This temporal language, the LEADSTO language [11], offers the possibility
of modelling direct temporal dependencies between two state properties in successive
states. This executable format is defined as follows. Let α and β be state properties of
the form ‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real
numbers. In the LEADSTO language α →→e, f, g, h β, means:

If state property α holds for a certain time interval with duration g,
then after some delay (between e and f) state property β will hold

for a certain time interval of length h.

For a precise definition of the LEADSTO format, see [11]. A specification of
dynamic properties in LEADSTO format has as advantages that it is executable and
that it can easily be depicted graphically.

4 Dynamic Properties as Characterizing Requirements

Careful analysis of the informal reasoning patterns discussed in Section 2 led to the
identification of dynamic properties that can serve as requirements for the capability
of reasoning by assumption. In this section, a number of the most relevant of those
properties are presented in both an informal and formal way. The dynamic properties
identified are at three different levels of aggregation:

• Local properties address the step-by-step reasoning process of the agent. They
represent specific transitions between states of the process: reasoning steps.
These properties are represented in executable format, which means that they
can be used to generate simulation traces.

• Global properties address the overall reasoning behaviour of the agent, not the
step-by-step reasoning process of the agent. Some examples of global properties
are presented, regarding matters as termination, correct reasoning and result
production.

• Intermediate properties are properties at an intermediate level of aggregation,
which are used for the analysis of global properties (see also Section 5).

A number of local properties are given in Section 4.1. It will be shown how they can
be used in order to generate simulation traces. Next, Section 4.2 provides some global
properties and Section 4.3 some intermediate properties.

4.1 Local Dynamic Properties

At the lowest level of aggregation, a number of dynamic properties have been
identified for the process of reasoning by assumption. These local properties are given
below (both in an informal and in formal LEADSTO notation):

54 T. Bosse, C.M. Jonker, and J. Treur

LP1 (Assumption Initialization)
The first local property LP1 expresses that a first assumption is made. Here, note that
initial_assumption is an agent-specific predicate, which can be varied for different cases.
Formalization:
initial_assumption(A, S) →→0,0,1,1 assumed(A, S)

LP2 (Prediction Effectiveness)
Local property LP2 expresses that, for each assumption that is made, all relevant
predictions are generated.
Formalization:
assumed(A, S1) and domain_implies(A, S1, P, S2) →→0,0,1,1 prediction_for(P, S2, A, S1)

LP3 (Observation Initiation Effectiveness)
Local property LP3 expresses that all predictions made will be observed.
Formalization:
prediction_for(P, S1, A, S2) →→0,0,1,1 to_be_observed(P)

LP4 (Observation Result Effectiveness)
Local property LP4 expresses that, if an observation is made, the appropriate
observation result will be received. Formalization:
to_be_observed(P) and holds_in_world(P, S) →→0,0,1,1 observation_result(P, S)

LP5 (Evaluation Effectiveness)
Local property LP5 expresses that, if an assumption was made and a related
prediction is falsified by an observational result, then the assumption is rejected.
Formalization:
assumed(A, S1) and prediction_for(P, S2, A, S1) and observation_result(P, S3) and S2≠S3 →→
0,0,1,1 rejected(A, S1)

LP6 (Assumption Effectiveness)
Local property LP6 expresses that, if an assumption is rejected and there is still an
alternative assumption available, this will be assumed. Formalization:
assumed(A, S1) and rejected(A, S1) and alternative_for(B, S2, A, S1) and not rejected(B, S2) →→
0,0,1,1 assumed(B, S2)

LP7 (Assumption Persistence)
Local property LP7 expresses that assumptions persist as long as they are not rejected.
Formalization:
assumed(A, S) and not rejected(A, S) →→0,0,1,1 assumed(A, S)

LP8 (Rejection Persistence)
Local property LP8 expresses that rejections persist. Formalization:
rejected(A, S) →→0,0,1,1 rejected(A, S)

LP9 (Observation Result Persistence)
Local property LP9 expresses that observation results persist. Formalization:
observation_result(P, S) →→0,0,1,1 observation_result(P, S)

Using the software environment that is described in [11], these local dynamic
properties can be used to generate simulation traces. Using such traces, the
requirements engineers and system designers obtain a concrete idea of the intended
flow of events over time. A number of simulation traces have been created for several

 Requirements Analysis of an Agent’s Reasoning Capability 55

domains. An example simulation trace in the domain of car diagnosis is depicted in
Fig. 1. Here, time is on the horizontal axis, and the state properties on the vertical
axis. A dark box on top of the line indicates that the state property is true during that
time period, and a lighter box below the line indicates that the state property is false.
This figure shows the characteristic cyclic process of reasoning by assumption:
making assumptions, predictions and observations for assumptions, then rejecting
assumptions and creating new assumptions. As can be seen in Fig. 1, it is first
observed that the car does not start. On the basis of this observation, an initial
assumption is made that this is due to an empty battery. However, if this assumption
turns out to be impossible (because the lights are working), this assumption is
rejected. Instead, a second assumption is made (there is a sparking plugs problem),
which turns out to be correct.

assumed(battery_empty, pos)
assumed(sparking_plugs_problem, pos)

observation_result(car_starts, neg)
observation_result(lights_burn, pos)

prediction_for(car_starts, neg, battery_empty, pos)
prediction_for(lights_burn, neg, battery_empty, pos)

rejected(battery_empty, pos)
to_be_observed(car_starts)

to_be_observed(lights_burn)
time 0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. Example simulation trace

4.2 Global Dynamic Properties

At the highest level of aggregation, a number of dynamic properties have been
identified for the overall reasoning process. These global properties are given below
(both in an informal and in formal TTL notation). Note that, in each formula, γ stands
for a trace.

GP1 (Reasoning Termination)
Eventually there is a time point at which the reasoning terminates.
∃t:T termination(γ, t)

Here termination(γ, t) is defined as follows:
∀t’:T t’ ≥ t ⇒ state(γ, t) = state(γ, t’).

GP2 (Correctness of Rejection)
Everything that has been rejected does not hold in the world situation.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== rejected(A,S) ⇒
 state(γ,t) |=/= holds_in_world(A,S)

GP3 (At least one not Rejected Assumption)
If the reasoning has terminated, then there is at least one assumption that has been
evaluated and not rejected.

56 T. Bosse, C.M. Jonker, and J. Treur

∀t:T termination(γ, t)
 ⇒ [∃ A: INFO_ELEMENT, ∃ S: SIGN
 state(γ, t) |== assumed(A, S) ∧ state(γ, t) |=/= rejected(A, S)]

In addition, some assumptions on the domain can be specified:

WP1 (Static World)
If something holds in the world, it will hold for all time.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== holds_in_world(A,S) ⇒
 [∀t’:T ≥ t:T state(γ,t’) |== holds_in_world(A,S)]
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |=/= holds_in_world(A,S) ⇒
 [∀t’:T ≥ t:T state(γ,t’) |=/= holds_in_world(A,S)]

WP2 (World Consistency)
If something holds in the world, then its complement does not hold.
∀t:T ∀A:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== holds_in_world(A,S1) ∧ S1 ≠ S2 ⇒
 state(γ,t) |=/= holds_in_world(A,S2)

DK1 (Domain Knowledge Correctness)
The domain-specific knowledge is correct in the world.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== holds_in_world(A,S1) ∧ domain_implies(A,S1,B,S2)
 ⇒ state(γ,t) |== holds_in_world(B,S2)]

4.3 Intermediate Dynamic Properties

In the sections above, on the one hand, global properties for a reasoning process as a
whole have been identified. On the other hand, at the lowest level of aggregation,
local (executable) properties representing separate reasoning steps have been
identified. It may be expected that any trace that satisfies the local properties
automatically will satisfy the global properties (semantic entailment). As a form of
verification, it can be proven that the local properties indeed imply the global
properties. To construct a transparent proof, a number of intermediate properties have
been identified. Examples of intermediate properties are property IP1 to IP7 shown
below (both in an informal and in formal TTL notation).

IP1 (Proper Rejection Grounding)
If an assumption is rejected, then earlier on there was a prediction for it that did not
match the corresponding observation result.
∀t:T ∀A:INFO_ELEMENT ∀S1:SIGN
 state(γ,t) |== rejected(A,S1) ⇒
 [∃t’:T ≤ t:T ∃B:INFO_ELEMENT ∃S2,S3:SIGN
 state(γ,t’) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t’) |== observation_result(B,S3) ∧ S2 ≠ S3]

IP2 (Prediction-Observation Discrepancy implies Assumption Incorrectness)
If a prediction does not match the corresponding observation result, then the
associated assumption does not hold in the world.

 Requirements Analysis of an Agent’s Reasoning Capability 57

∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== observation_result(B,S3) ∧ S2 ≠ S3 ⇒
 state(γ,t) |=/= holds_in_world(A,S1)

IP3 (Observation Result Correctness)
Observation results obtained from the world indeed hold in the world.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== observation_result(A,S) ⇒
 state(γ,t) |== holds_in_world(A,S)

IP4 (Incorrect Prediction implies Incorrect Assumption 1)
If a prediction does not match the facts from the world, then the associated
assumption does not hold either.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== holds_in_world(B,S3) ∧ S2 ≠ S3 ⇒
 state(γ,t) |=/= holds_in_world(A,S1)

IP5 (Observation Result Grounding)
If an observation has been obtained, then earlier on the corresponding fact held in the
world.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== observation_result(A,S) ⇒
 [∃t’:T ≤ t:T state(γ,t’) |== holds_in_world(A,S)]

IP6 (Incorrect Prediction implies Incorrect Assumption 2)
If a prediction does not hold in the world, then the associated assumption does not
hold either.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |=/= holds_in_world(B,S2) ⇒
 state(γ,t) |=/= holds_in_world(A,S1)

IP7 (Prediction Correctness)
If a prediction is made for an assumption that holds in the world, then the prediction
also holds.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== holds_in_world(A,S1) ⇒
 state(γ,t) |== holds_in_world(B,S2)

5 Relationships Between Dynamic Properties

A number of logical relationships have been the identified between properties at
different aggregation levels. An overview of all identified logical relationships
relevant for GP2 is depicted as an AND-tree in Fig. 2. Here the grey ovals indicate
that the so-called grounding variant of the property is used. Grounding variants make
a specification of local properties more complete by stating that there is no other
means to produce certain behaviour. For example, the grounding variant of LP2 can
be specified as follows (in TTL notation):

58 T. Bosse, C.M. Jonker, and J. Treur

LP2G Prediction effectiveness groundedness
Each prediction is related (via domain knowledge) to an earlier made assumption.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ⇒
 [∃t’:T ≤ t:T state(γ,t’) |== assumed(A,S1) ∧
 domain_implies(A,S1,B,S2)]

This property expresses that predictions made always have to be preceded by a state
in which the assumption was made, and the domain knowledge implies the prediction.

Fig. 2. AND-tree of dynamic properties

The relationships depicted in Fig. 2 should be interpreted as semantic entailment
relationships. For example, the relationship at the highest level expresses that the
implication IP1 & IP2 & WP1 => GP2 holds. A sketch of the proof for this
implication is as follows.

Suppose IP1 holds. This means that, if an assumption is rejected at time t, then at a
certain time point in the past (say t') there was a prediction for it that did not match
the corresponding observation result. According to IP2, at the very same time point
(t') the assumption for which the prediction was made did not hold in the world.
Since the world is static (WP1), this assumption still does not hold at time point t. We
may thus conclude that, if something is rejected at a certain time point, it does not
hold in the world.

Logical relationships between dynamic properties can be very useful in the
analysis of empirical reasoning processes. For example, if a given person makes an
incorrect rejection (i.e. property GP2 is not satisfied by the reasoning trace), then by a
refutation process it can be concluded that either property IP1, property IP2, or
property WP1 fails (or a combination of them). If, after checking these properties, it
turns out that IP1 does not hold, then this must be the case because LP5G does not

 Requirements Analysis of an Agent’s Reasoning Capability 59

hold. Thus, by this example refutation analysis, it can be concluded that the cause of
the unsatisfactory reasoning process can be found in LP5G. For more information
about the analysis of human reasoning processes, see [12].

6 Verification

In addition to the simulation software described in Section 4, a special tool has been
developed that takes a formally specified property and a set of traces as input, and
verifies whether the property holds for the traces.

Using this checker tool, dynamic properties (of all levels) can be checked
automatically against traces, irrespective of who/what produced those traces: humans,
simulators or an implemented (prototype) system. A large number of such checks
have indeed been performed for several case studies in reasoning by assumption.
Table 2 presents an overview of all combinations of checks and their results. A ‘+’
indicates that all properties were satisfied for the traces, a ‘+/-’ indicates that some of
the properties were satisfied.

Table 2. Overview of the different verification results

 Human Traces
(Taken from [12])

Simulation Traces
(This paper)

Prototype Traces
(Taken from [13])

Local Properties

+/-

+

+
Intermediate Properties

+/-

+

+
Global Properties

+/-

+

+

As can be seen in Table 2, three types of traces were considered. First, the dynamic
properties have been checked against human traces in reasoning experiments. It
turned out that some of the properties were satisfied by all human traces, whereas
some other properties sometimes failed. This implies that some properties are indeed
characteristic for the pattern ‘reasoning by assumption’, whereas some other
properties can be used to discriminate between different approaches to the reasoning.
For example, human reasoners sometimes skip a step; therefore LP2 does not always
hold. More details of these checks can be found in [12].

Second, the dynamic properties have been checked against simulation traces such
as the one presented in Section 4.1 of this paper. As shown in Table 2, all properties
eventually were satisfied for all traces. Note that this was initially not the case: in
some cases, small errors were made during the formalization of the properties.
Checking the properties against simulation traces turned out to be useful to localize
such errors and thereby debug the formal dynamic properties.

Finally, all dynamic properties have been verified against traces generated by a
prototype of a software agent performing reasoning by assumption [13]. This agent
was designed on the basis of the component-based design method DESIRE, cf. [14].
Also for these traces eventually all dynamic properties turned out to hold.

To conclude, all automated checks described above have played an important role
in the requirements analysis of reasoning capabilities of software agents, since they

60 T. Bosse, C.M. Jonker, and J. Treur

permitted the results of the requirements elicitation and specification phase to be
formally verified and improved.

Note that, although the dynamic properties shown in the previous sections are
mainly aimed at functional requirements, in principle the approach based on TTL
allows one to verify non-functional requirements as well. Examples of non-functional
requirements are efficiency, reliability and portability of the system [18]. Despite the
fact that these types of requirements are generally difficult to formalize, some initial
steps have been made towards their formalization in TTL [19]. In that paper, it is
suggested that the efficiency of a system can be measured, for example, by counting
the amount of components that need to be activated in order to be successful. This
property is formalized in TTL as follows:

efficiency(γ:TRACE) ≡
 successfulness(γ) ∧
 ∃i :INTEGER component_activations(γ, i) ∧ i = shortest_path

Here, it is assumed that the length of the shortest path is known for the particular
example being checked. To enable a definition of the number of activations of a
component, first the activation of one component is defined, including its interval:

has_activation_interval(γ:TRACE, c:COMPONENT, tb:TIME, te:TIME) ≡
 tb < te ∧ state(γ,te) |≠ activated(c) ∧
 [∀t tb≤t<te ⇒ state(γ,t) |= activated(c)] ∧
 ∃t1<tb [∀t2 t1≤t2<tb ⇒ state(γ,t2) |≠ activated(c)]

An example of a definition for a trace with one component activation is shown below.

component_activations(γ:TRACE, 1) ≡
 ∃c:COMPONENT, tb:TIME, te:TIME
 has_activation_interval(γ, c:COMPONENT, tb:TIME, te:TIME) ∧
 [∀c2:COMPONENT, tb2:TIME, te2:TIME
 [has_activation_interval(γ, c2:COMPONENT, tb2:TIME, te2:TIME) ⇒
 c = c2 ∧ tb = tb2 ∧ te = te2]]

Another way to describe efficiency is by considering the amount of computation time
the approach needs to generate a solution.

7 Discussion

In the literature, software engineering aspects of reasoning capabilities of intelligent
agents have not been addressed well. Some literature is available on formal semantics
of the dynamics of non-monotonic reasoning processes; for an overview see [9].
However, these approaches focus on formal foundation and are far from the more
practical software engineering aspects of actual agent system development.

In this paper, it is shown how, during an agent development process, a requirements
analysis can be incorporated. The desired functionality of the agent’s reasoning
capabilities can be identified (for example, in cooperation with stakeholders), using
temporal specifications of scenarios and requirements specified in the form of (required)
traces and dynamic properties. This paper shows, for the example reasoning pattern
‘reasoning by assumption’, how relevant dynamic properties can be identified as
requirements for the agent’s reasoning behaviour, expressed in a temporal language, and

 Requirements Analysis of an Agent’s Reasoning Capability 61

verified and validated. Thus a set of requirements is obtained that is reusable in other
agent development processes. The main reason for the reusability of these requirements
is the fact that, within the presented dynamic properties, generic and domain-specific
concepts can be treated separately (compositionality of knowledge). For example, in
global property DK1, the domain-specific sort INFO_ELEMENT and the relation
domain_implies can be filled in for any specific case. This allows the software engineer to
reuse the presented requirements in any given domain, as long as it involves reasoning
by assumption. In fact, the approach has already been applied to several different
examples: whereas the main reasoning problem addressed in the current paper is about
‘car diagnosis’, other reasoning problems have been addressed in the past, among which
the ‘wise person’s puzzle’ [13] and the game of ‘Mastermind’ [12].

The language TTL used here allows for precise specification of the requirements
for an agent’s reasoning behaviour, covering both qualitative and quantitative aspects
of states and their temporal relations. Moreover, software tools have been developed
to (1) support specification of (executable) dynamic properties, and (2) automatically
check specified dynamic properties against example traces to find out whether the
properties hold for the traces. This provides a useful supporting software environment
to evaluate reasoning scenarios both in terms of simulated and prototype traces (in the
context of prototyping) and empirical traces (in the context of requirements elicitation
and validation in co-operation with stakeholders). In the paper, it is shown how this
software environment can be used to automatically check the dynamic properties
during a requirements analysis process. Note that it is not claimed that TTL is the
only language appropriate for this. For example, most of the properties encountered
could as well have been expressed in a variant of linear time temporal logic. The
language is only used as a vehicle; the contribution of the paper is in the method of
application of requirements analysis to an agent’s reasoning capability, and the
reusable results obtained by that method.

For an elaborate description about the role that the current approach may take in
requirements engineering, the reader is referred to [20]. In that paper, it is shown in
detail how dynamic properties can be used to specify (both functional and non-
functional) requirements of agent systems. Moreover, it is shown how these
requirements may be refined and fulfilled according to the Generic Design Model
(GDM) by Brazier et al. [21]. However, GDM is just one possible approach for
Agent-Oriented Software Engineering. Recently, several other architectures have
been proposed, for example, Tropos [22], KAOS [23] or GBRAM [24]. In future
work, the possibilities may be explored to incorporate the approach based on dynamic
properties presented here within such architectures. These possibilities are promising,
especially for architectures that provide a specific language for formalization of
requirements (KAOS for example uses a real-time temporal logic to specify
requirements in terms of goals, constraints and objects).

References

1. Dardenne, A., Lamsweerde, A. van, and Fickas, S.: Goal-directed Requirements
Acquisition. Science in Computer Programming, vol. 20 (1993) 3-50

2. Kontonya, G., and Sommerville, I.: Requirements Engineering: Processes and
Techniques. John Wiley and Sons, New York (1998)

62 T. Bosse, C.M. Jonker, and J. Treur

3. Sommerville, I., and Sawyer P.: Requirements Engineering: a good practice guide. John
Wiley & Sons, Chicester, England (1997)

4. Dubois, E., Du Bois, P., and Zeippen, J.M.: A Formal Requirements Engineering Method
for Real-Time, Concurrent, and Distributed Systems. In: Proceedings of the Real-Time
Systems Conference, RTS’95 (1995)

5. Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E.: Specification of Behavioural
Requirements within Compositional Multi-Agent System Design. In: F.J. Garijo, M.
Boman (eds.), Multi-Agent System Engineering, Proc. of the 9th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'99. LNAI, vol. 1647,
Springer Verlag (1999) 8-27

6. Treur, J.: Semantic Formalisation of Interactive Reasoning Functionality. International
Journal of Intelligent Systems, vol. 17 (2002) 645-686

7. Leemans, N.E.M., Treur, J., and Willems, M.: A Semantical Perspective on Verification of
Knowledge. Data and Knowledge Engineering, vol. 40 (2002) 33-70

8. Engelfriet, J., and Treur, J.: Temporal Theories of Reasoning. Journal of Applied Non-
Classical Logics, 5 (1995) 239-261

9. Meyer, J.-J., Ch., and Treur, J. (eds.): Dynamics and Management of Reasoning
Processes. Series in Defeasible Reasoning and Uncertainty Management Systems (D.
Gabbay, Ph. Smets, series eds.), Kluwer Acad. Publishers (2001)

10. Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds, M.: The Imperative
Future: Principles of Executable Temporal Logic, Research Studies Press Ltd. and John
Wiley & Sons (1996)

11. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.: LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T. et al. (eds.),
Proceedings of the 3rd German Conference on Multi-Agent System Technologies,
MATES'05. Lecture Notes in AI, vol. 3550, Springer Verlag (2005) 165-178

12. Bosse, T., Jonker, C.M., and Treur, J.: Formalization and Analysis of Reasoning by
Assumption. Cognitive Science Journal, vol. 30, issue 1 (2006) 147-180

13. Jonker, C.M., and Treur, J.: Modelling the Dynamics of Reasoning Processes: Reasoning
by Assumption. Cognitive Systems Research Journal, vol. 4 (2003) 119-136

14. Brazier, F.M.T., Jonker, C.M., and Treur, J.: Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering, vol. 41 (2002) 1-28

15. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press (2001)

16. Kowalski, R., and Sergot, M.: A logic-based calculus of events. New Generation
Computing, vol. 4 (1986) 67-95

17. Hölldobler, S., and Thielscher, M.: A new deductive approach to planning. New
Generation Computing, vol. 8 (1990) 225-244

18. Davis, A.M.: Software Requirements: Objects, Functions, and States. Prentice Hall (1993)
19. Bosse, T., Hoogendoorn, M., and Treur, J.: Automated Evaluation of Coordination

Approaches. In: Proceedings of the Eighth International Conference on Coordination
Models and Languages, Coordination'06. Lecture Notes in Computer Science, vol. 4038.
Springer Verlag (2006) 44-62

20. Bosse, T., Jonker, C.M., and Treur, J.: Analysis of Design Process Dynamics. In: R. Lopez
de Mantaras, L. Saitta (eds.), Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI’04, IOS Press (2004) 293-297

21. Brazier F.M.T., Langen P.H.G. van, Treur J.: Strategic knowledge in design: a
compositional approach. In: K. Hori (ed.), Knowledge-Based Systems. Special Issue on
Strategic Knowledge and Concept Formation, vol. 11, issue 7-8 (1998) 405-416

 Requirements Analysis of an Agent’s Reasoning Capability 63

22. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A.: Tropos: An
Agent-Oriented Software Development Methodology. Journal of Autonomous Agent and
Multi-Agent Systems, vol. 8 (2004) 203-236

23. Darimont, R., Delor, E., Massonet, P., and van Lamsweerde, A.: GRAIL/KAOS: An
Environment for Goal-Driven Requirements Engineering, Proc. ICSE’98 - 20th
International Conference on Software Engineering, Kyoto, vol. 2 (1998) 58-62

24. Antón, A.I.: Goal-based Requirements Analysis, Proc. of the International Conference on
Requirements Engineering (ICRE'96), IEEE Computer Soc. Press, Colorado Springs,
Colorado, USA (1996) 136-144

	Introduction
	The Dynamics of Reasoning
	Dynamic Properties
	Dynamic Properties as Characterizing Requirements
	Local Dynamic Properties
	Global Dynamic Properties
	Intermediate Dynamic Properties

	Relationships Between Dynamic Properties
	Verification
	Discussion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

