
Design Options for Subscription Managers

Aloys Mbala, Lin Padgham, and Michael Winikoff

RMIT University
Melbourne, Australia

{aloys, linpa, winikoff}@cs.rmit.edu.au

Abstract. An important issue in open agent systems such as the Internet is the
discovery of service providers by potential consumers (requesters). This paper is
concerned with services that involve the ongoing provision of up-to-date
information to requesters. We explore three separate issues: subscription to an in-
formation provider for ongoing provision of information; monitoring for new
information providers; and maintaining awareness of when providers disappear
from the system. We explore several models for how this functionality may best
be provided, with emphasis on the ways in which certain choices affect the over-
all system; and provide an analysis of preferred design options for environments
with different characteristics.

1 Introduction

An important issue in open agent systems such as the Internet is the discovery of service
providers by potential consumers (requesters). There is a broad range of work in this
area, including work on web service description languages, such as WSDL1 and OWL-S
[1], as well as work on distributed search algorithms and architectures such as peer-to-
peer systems [2]. A common approach, even in peer-to-peer systems, is to have some
specialized agents (or services) that assist providers and requesters to find one another.
These are variously called yellow page agents [3], directory facilitators2, brokers [4] and
match-makers [5] with the term middle-agent being used to characterize these kinds of
agents. UDDI (Universal Description, Discovery and Integration) directories3 are one
standard instantiation of such a facility while FIPA (Foundation for Intelligent Physical
Agents) Directory Facilitators are another.

In many application areas, a large number of the services that are required from
other entities in the system are services that provide information. In many cases what
is required is not just information at a given point in time but rather ongoing updates of
information as the situation changes. For example, in an intelligent alerting system that
we are working on with the Australian Bureau of Meteorology [6], if the fire monitoring
agent within the system discovers a new fire, it will then want to be informed of any
weather events that may affect the fire, such as nearby storms. It is clearly preferable for
the relevant agent to set up subscriptions and to be notified immediately when relevant

1 http://www.w3.org/TR/wsdl
2 http://www.fipa.org/specs/fipa00023/SC00023K.html
3 http://www.uddi.org

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 259–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

http://www.w3.org/TR/wsdl
http://www.fipa.org/specs/fipa00023/SC00023K.html
http://www.uddi.org


260 A. Mbala, L. Padgham, and M. Winikoff

new information becomes available, rather than to make regular requests to determine
whether new information is available. This notion of subscription is well known and it
is supported by standard protocols4.

However, an additional facility is needed. If the subscriptions are long-lived then it
is quite likely that there will be changes in the available information providers. The
subscribing agent may well need to be made aware of new information providers that
join the system, and of any information providers that it has subscribed to that leave
the system. Again, rather than have the subscribing agent make periodic requests, it is
preferable for it to subscribe to this information. This subscription is to changes in the
available (relevant) information providers rather than to information, and is made with
the middle-agent. This requires the middle-agent to provide a monitoring capability, in
addition to the more commonly discussed matchmaking (or brokering) functionality [7].

By providing information on changes in available information providers, we allow
additional flexibility and intelligence in the requesters. For example, in the meteorol-
ogy application, two kinds of weather information sources are used in reasoning about
whether there is an alertable situation with respect to a particular fire. If the storm
observations from radar become unavailable, then storm likelihood forecasts from the
atmospheric model are accessed instead. The provision of information on available rele-
vant providers to requesters is a key difference between our work and event notification
systems such as Siena [8] or NaradaBrokering [9], which do not provide requesters with
information on changes to available providers5.

In this paper, we explore design options for “Subscription Manager” middle-agents
that support subscriptions to changes in available relevant information providers. There
are three issues that we concentrate on. Firstly, the mechanism that allows an informa-
tion requester to be continually updated regarding new information sources. Secondly,
the details of how subscriptions are created and cancelled. Thirdly, how the departure
of agents from the system is detected and what is done in response to detecting a “dead”
agent. With each of these issues we will explore what functionality can potentially re-
side with the middle-agent, and the costs and benefits of the alternative approaches.

The contribution of this paper is the detailed analysis of these three issues, identify-
ing tradeoffs and leading to recommendations regarding design choices in Subscription
Manager middle-agents. We believe that these recommendations would be useful to the
designer of a system that is to use a Subscription Manager middle-agent. Since our con-
cern is with key design decisions — such as whether subscriptions should be made by
the middle-agent or by requester agents — we do not provide a complete design for the
Subscription Manager.

The issues discussed in this paper are only a part of a complete solution. In order
to implement a system, one must also define a language for describing services and
requests and a matching mechanism between these. However, these issues have been
explored in previous work and a wide range of options exist for service/request descrip-
tion and matching including standards around web service, FIPA standards, KQML
[10], and others such as LARKS [11] and Infosleuth [12].

4 e.g. http://www.fipa.org/specs/fipa00035/
5 What they provide corresponds to the design option where decision making is delegated to the

middle-agent, i.e. what we call subscribe-all in Section 4.

http://www.fipa.org/specs/fipa00035/


Design Options for Subscription Managers 261

The need for subscription and monitoring services vary from application to appli-
cation, but we would suggest that they are quite broadly applicable. For example, in a
travel and tourism services network, it would be likely that there was a need to subscribe
to information on schedule updates for planes, buses and trains. Similarly, a tourism
operator in a particular region is likely to want to monitor for any new providers of
services such as accommodation, tours and car rentals in the region of interest. Simi-
larly in an e-business domain, subscription to catalogues of items available from known
providers may well make sense, and monitoring of providers of certain kinds of items
is also motivated. Consequently, we argue that subscription support, and monitoring for
providers of certain kinds of services joining and leaving the system, are infrastructure
facilities that are required in a dynamic and open domain of services. These capabili-
ties should be provided by middle-agents. In the rest of this paper we explore several
models for how this functionality may best be provided, with emphasis on the ways in
which certain choices affect the overall system.

2 The Interaction Models

Service Discovery frameworks can be categorized in two groups. The first group in-
cludes peer-to-peer dissemination models where a peer propagates its requests through
the network it belongs to and expects a list of relevant providers from its peers. A peer
can act as a provider, a requester or simply be a kind of proxy that just redirects a given
message to others. An alternative framework uses middle-agents where requesters and
providers register to a middle-agent that provides some kind of connection service to
assist the agents to find other relevant agents. Some systems propose a peer-to-peer
structure amongst the middle-agents [13] in order to distribute the functionality of reg-
istering and servicing the client agents.

In this work, we do not consider the structure of the middle-agents. Although we as-
sume that in a large system this functionality would be distributed in some manner, this
is left as future work, building on a range of existing work e.g. [9,8,2,13]. What we con-
sider here is the relationship between the middle-agent (or network of middle-agents)
and what we call the end-agents, namely the service requesters or service providers.6

Previous work [4,7,5,14] has compared different styles of middle-agents and con-
cluded that Matchmakers that provide a list of providers matching a request are the
most appropriate type of middle-agent for large open systems. Middle-agents such as
broadcasters and blackboards, which simply pass on all connections, un-filtered, re-
sult in unnecessarily large lists of agents being provided and also require end-agents to
have individual matchmaking capabilities. Brokers, which manage all interactions with
a provider on behalf of a requester, have the disadvantage that they are a bottleneck in
large systems. In this work, we assume a basic matchmaking capability and then add to
this a Subscription Management function, which we explore in further detail.

There are three different processes that we explore as part of this work. The first is
the mechanism to allow an information requester to be continually updated regarding
the existence of new information sources of a particular kind. The second is the basic

6 A single agent can be both a provider and a requester, but for the purpose of this work we
consider them separately.



262 A. Mbala, L. Padgham, and M. Winikoff

subscription mechanism to support an information requester being able to subscribe to
provider agents and cancel subscriptions. The third is an ability to be aware of agents
that disappear from the system. With each of these aspects, we will explore what func-
tionality can potentially reside with the middle-agent, and the costs and benefits of the
alternative approaches.

2.1 Monitoring for New Arrivals

As indicated previously, a common need in dynamic systems is for agents to be aware of
new services arising in the system that may be of interest to them. One way to achieve
this is to have middle-agents maintain information about requester needs and update
the requesters as new providers register. However, this ability does not appear to be
common in the various kinds of middle-agents that exist or are discussed in detail in
the literature. Retsina [5] mentions a monitoring capability, although very little detail is
given7. The notion of facilitator defined by Finin et al. [10] is broad and encompasses
monitoring of both information and information providers, but little detail is given (for
example, the issue of detecting “dead” agents is not discussed), and there is no explo-
ration of the design options and associated tradeoffs.

Fig. 1 indicates the type of mechanism we are suggesting. Providers and requesters
send their profiles to the middle-agent, which maintains information about both. When
requesters request monitoring for a particular type of information, they are first sent an
initial list of matches (message 3) and, subsequently, if any new matching providers ad-
vertise with the middle-agent (message 4), the requester is sent an update (message 5).

Requester Middle Provider 1

1. Advertise

2. Request Monitor

3. List of Matches

Provider 2

4. Advertise

5. Update

Fig. 1. The discovery mechanism

However, this figure is incomplete as it focusses only on the monitoring capability.
It does not consider aspects of the subscription life-cycle such as who sets up a sub-
scription? Who cancels a subscription? Or, once a subscription has been established,
who ensures that the agents involved in the subscription are still alive? These aspects

7 The notion of “monitor” vs. “single shot” match-making is mentioned on page 42 of [5].



Design Options for Subscription Managers 263

are considered below. Of course, the monitoring capability must also include a mecha-
nism for cancelling monitoring when it is no longer required or cancelling an advertised
profile.

2.2 Subscription Management

In order to handle subscriptions, information providers need to be able to provide a
subscription facility, sending information to their subscribers either at regular intervals
or when relevant changes occur. Hence, there must be a mechanism to set up and cancel
such subscriptions.

From the point of view of the information requester wishing to subscribe to a certain
kind of information, they may wish to subscribe to all sources of information of a certain
type, or a single source. The initial action would be a request to the middle-agent with
a query describing the information need (attached to either a monitoring request or a
one-off request). At that point, it would be possible either for the middle-agent to return
a list of matching providers, as in Fig. 1, or for the middle-agent to simply set up the
subscription(s). If the latter was done, presumably it would be necessary to have two
forms of the request: one for subscribe to all and one for subscribe to one8.

The possible value in having the middle-agent set up the subscription would be that
fewer messages are needed in the system as a whole. On receiving the request, the
middle-agent could simply send the subscription message to the relevant information
provider(s), and the requester would begin to receive information. Subscription cancel-
lations could be sent either to the middle-agent, or directly to the information provider,
if we assume that the identity of the provider(s) is known to the requester once infor-
mation begins to arrive.

2.3 Monitoring for Disappearances

If an agent has a subscription to an information source, it is expecting that information
will be sent whenever relevant. However, it is possible that the information provider
disappears from the system, in which case it may be important for the information
subscriber to know of this. This fact may affect reasoning done or it may result in
subscribing to other information sources.

For example, in the meteorology application we are working with, two kinds of
weather information sources are used in reasoning about whether there is an alertable
situation with respect to a particular fire. If the storm observations from radar become
unavailable, then storm likelihood forecasts from the atmospheric model are accessed
instead.

The only reliable way to be sure of knowing when an agent disappears is for some
process to check liveness regularly. It is possible for this to be done by all interested
subscribers. However, assuming there are likely to be multiple subscribers to any given
information source, this is creating more message traffic than necessary. Another op-
tion would be for this to be done by the middle-agent and for the information about a
provider’s disappearance to be passed on to the relevant agents.

8 An additional form would be subscribe to N .



264 A. Mbala, L. Padgham, and M. Winikoff

3 Analysis

In this section, we analyse the alternative design choices for a Subscription Manager
middle-agent. The analysis makes certain simplifying assumptions but is nonetheless
valuable. The analysis focusses primarily on the message traffic and looks specifically
at the number of messages, the total size of the messages and at bottlenecks in the
system.

The number of messages circulating in the system is a natural and important param-
eter for the evaluation of service discovery frameworks since it is a reasonable approx-
imate measure of the workload of the system, and an analysis of the message traffic
received and sent by a given agent can be used to detect potential bottlenecks. How-
ever, using only the number of messages isn’t sufficient because it ignores the size of
the messages. Therefore we also use the size of the messages to estimate the amount of
network traffic.

The analysis in this section uses the terms below. Since the analysis is done at design-
time, we do not need to concern ourselves with whether the terms can be measured at
run-time in a real agent system: these terms are not used at run-time.

– R: the number of requester agents in the system.
– P : the number of provider agents in the system.
– α: the probability of a random capability and a random interest matching (0 ≤

α ≤ 1). This is a measure of the matching precision and can be expected to be well
below 0.5.

– RF : the (average) number of requesters whose interests match a given provider’s
capabilities RF = α × R.

– PF : the (average) number of providers whose capabilities match a given requester’s
interests PF = α × P .

– S: the number of subscriptions in the system. If each requester agent subscribes to
all relevant providers (PF ) then the number of subscriptions is S = R × PF . If
each requester agent subscribes to PS providers then S = R × PS .

– PS : the (average) number of providers that a requester agent subscribes to. This can
be all relevant providers (PF ), a single provider or an arbitrary number
(1 ≤ PS ≤ PF ).

– RS : the (average) number of requesters that are subscribed to a given provider
(0 ≤ RS ≤ RF ). The value of RS depends on whether requesters subscribe to
one provider, all providers or PS providers, and can be calculated by dividing the
number of subscriptions in the system (S) by the number of providers. If each
requester agent subscribes to all relevant providers (PF ) then S = R × PF and
RS = (R ×PF )÷P = (R ×α ×P )÷P = R ×α = RF . If each requester agent
subscribes to PS providers then S = R × PS and RS = R × PS ÷ P , which is just
PS if there are equal numbers of providers and requesters.

– PD: the number of provider agents that have left the system since the last liveness
monitoring check (0 ≤ PD ≤ P ).

– k: the size of a description of an agent’s capabilities or interests relative to the size
of its name (k > 1). This is used in computing the size of messages.



Design Options for Subscription Managers 265

We assign a message containing a simple request (e.g. a single name of another
agent) a size of 1 and a message containing a description of the interests or capa-
bilities of an agent a size of k. A message that contains a list has a size that is com-
puted by multiplying the contents of the list by its length. For example, a message
containing a list of PF relevant provider names has size PF , whereas a message
containing a list of the capabilities of PF relevant providers has size k × PF .

Our presentation of the analysis is structured according to the life-cycle of the sys-
tem: we consider the metrics associated with adding an agent (requester or provider)
with cancelling subscriptions and with monitoring the liveness of provider agents. In
order to help make the analysis more concrete, we will include actual numbers, com-
puted by assuming fairly arbitrary — but, we hope, reasonable — figures for the terms
above. These assumed values are given in table 1, where brackets are used to indicate
numbers that are derived from other values. For example, RF is derived from R and α
(since RF = α × R). Two of these assumed values need explanation. Firstly, the value
for PS (and hence the value of RS) depends on whether requester agents ask to be sub-
scribed to one relevant provider, some constant number of relevant providers or all rele-
vant providers. This will obviously vary depending on the requirements of the requester
agents. If we arbitrarily assume that half of the requester agents ask to be subscribed to
one provider, a quarter of requester agents ask to be subscribed to 5 providers and the re-
maining quarter of requester agents ask to be subscribed to all (in this case, on average,
10 providers), then we have that PS = (0.5×1)+(0.25×5)+(0.25×10) = 4.25 ≈ 4.
Secondly, the value for PD assumes that over the course of a polling period 0.5% of
provider agents will disappear. Since we have 200 provider agents, this gives one agent
that will disappear in a polling period, on average.

Table 1. Example values for terms

term: R P α RF PF S PS RS PD

value: 200 200 0.05 (10) (10) (800) ≈ 4 (≈ 4) 1

3.1 Adding an Agent

Adding a Requester Agent: The sequence of messages associated with adding a re-
quester agent depends on whether subscription is done by the middle-agent or the re-
quester.

If subscription is done by the middle-agent then the sequence of messages is: (1)
the requester registers its interests with the middle-agent, (2) the middle-agent sends
messages to all relevant providers asking them to subscribe the requester, (3) the middle-
agent optionally sends a message informing the requester of its subscriptions. The num-
ber of messages involved is 1+PF if the third (optional) notification message isn’t sent
and 2 + PF if it is sent.

If we assume that each requester wants to subscribe to PS relevant providers and that
the decision of which providers can be made on its behalf by the middle-agent, then the
number of messages is 1 + PS .



266 A. Mbala, L. Padgham, and M. Winikoff

If subscription is done by the requester, then the sequence of messages is: (1) the
requester registers its interests with the middle-agent, (2) the middle-agent responds
with a list of relevant providers, (3) the requester selects some (PS) or all (PF ) of the
providers in the list and sends each of the selected providers a subscription request. If
the requester selects a subset of the available relevant providers and the middle-agent
needs to track subscriptions, then it must be notified by the requester of its choice of
providers, unless it is assumed that requesters always subscribe to all relevant available
providers or to some easily predicted subset such as only the first provider in the list.
The number of messages involved is 2 + PS (if the middle-agent needs to be informed
then the number of messages goes up by one).

We now consider the message size and begin with the first case where subscription
is done by the middle-agent. If we assume for the moment that requesters subscribe to
all relevant providers (PF ), then the size of the three messages is respectively k for the
first step, 1 for each of the messages involved in the second step and (optionally) PF

for the third step giving a total size of k +PF (or k +2PF if requesters are informed of
their subscriptions). If we assume that each requester subscribes to PS providers, then
the total size if k + PS (or k + 2PS if requesters are informed of their subscriptions).

Consider now the second case, where subscription is done by the requester. If we
assume for the moment that requesters subscribe to all relevant providers, then the size
of the three messages is respectively k, PF , and 1 for each of the PF messages from
requester to providers, giving a total of k+2PF (and k+3PF if the middle-agent needs
to be informed). If we assume that requesters will only subscribe to PS providers, then
the message to the requester containing the list of relevant providers will need to contain
the provider’s capabilities, as well as their names (so that the requester can decide to
which providers to subscribe). Therefore, the size of the messages is k + kPF + PS (or
k + kPF + 2PS if the middle-agent needs to be informed).

These cases are summarized in Table 2. In all cases, informing the other agent takes a
single additional message of size equal to the number of desired providers. The numbers
in the table give the actual number of messages, computed using the assumed values in
Table 1.

Table 2. Adding a requester (message size analysis is in brackets)

Middle Subscribes Requester Subscribes
All 1 + PF 2 + PF

providers (k + PF ) (k + 2PF )
11 12

PS 1 + PS 2 + PS

providers (k + PS) (k + kPF + PS)
5 6

In summary, having the middle-agent subscribe saves a single (potentially large)
message and, if the middle-agent needs to track subscriptions, then a second message
is also saved (assuming that requesters don’t need to be notified of their subscriptions).
However, having the middle-agent subscribe prevents a requester from being able to



Design Options for Subscription Managers 267

directly select its provider(s) and, if requesters need to subscribe to something other
than all providers, then there is additional complexity in specifying how many providers
are desired (e.g. one, all or some constant number PS).

Adding a Provider Agent: The sequence of messages associated with adding a pro-
vider agent depends on whether subscription is done by the middle-agent or the re-
quester.

For the moment, let us assume that requesters subscribe to all relevant providers.
If subscription is done by the middle-agent, then the sequence of messages is: (1) the
provider registers its capabilities with the middle-agent, (2) the middle-agent sends a
message back to the provider with all relevant requesters that it should subscribe (pos-
sible none) and (3) the requesters are (optionally) informed of their new subscriptions.
The number of messages involved is 2 if the third (optional) notification message isn’t
sent and 2+RF if it is. The messages informing the requesters (step 3) could be sent by
either the middle-agent or the provider. In the interests of trying to avoid overloading
the middle-agent, it is preferable to have the provider inform the requesters.

If subscription is done by requesters then the sequence is: (1) the provider registers
with the middle-agent, (2) the middle-agent sends a message to each relevant requester
with the identity of the provider, (3) each requester sends a subscription request message
to the new provider. The number of messages involved is 1 + 2RF . Note that there is
a bottleneck issue here: the provider will, during a short time period, be sent messages
from a number of requesters, potentially overloading it.

Considering the size of the messages, in the first case, where subscription is done by
the middle-agent, the size of the three messages is respectively k, RF and (optionally)
1 for each of the RF messages giving a total size of k + RF (or k + 2RF if requesters
are informed of their subscriptions). Considering the second case, where subscription
is done by the requester, the size of the three messages is respectively k for the first
message, 1 for each of the RF messages, and 1 for each of the RF messages from
requesters to the provider, giving a total of k + 2RF .

These cases are summarized in the top row of Table 3. Informing the requester (if
the Subscription Manager subscribes) takes an additional RF messages of size 1. The
numbers in the table give the actual number of messages, computed using the assumed
values in Table 1.

Table 3. Adding a provider (message size analysis is in brackets)

Middle Subscribes Requester Subscribes
All 2 1 + 2RF

providers (k + RF ) (k + 2RF )
21

typical PS 1 1
providers (k) (k)
max. PS 2 1 + RF + RS

providers (k + RS) (k + RF + RS)
15



268 A. Mbala, L. Padgham, and M. Winikoff

The bottom two rows of Table 3 assume that requesters only want to be subscribed to
a fixed number of providers. In this case when a provider joins an existing multi-agent
system, most or all requesters will already have the desired number of subscriptions.
This is because requesters subscribe when they join the system and departing providers
are detected and replaced. Therefore, the only situation where a requester will not have
its desired number of subscriptions is where there are not enough relevant providers in
the system. In this case, the typical number of messages generated by a new provider
joining an existing system is one (of size k) but it is possible for this to be higher: up to
the (unlikely) maximum shown in the third row of Table 3. Informing the other agent
takes an additional RS messages of size 1.

In summary, if requesters subscribe to all relevant providers then having the middle-
agent subscribe saves a significant number of messages and also has a saving in terms
of the size of messages. Additionally, if the requesters subscribe then there are potential
bottleneck issues. If requesters subscribe to a fixed number of providers then the saving
is much smaller.

3.2 Cancelling Subscriptions

Cancelling a subscription can be done directly, by having the requester send a message
to the provider (or vice versa if the provider is the one cancelling the subscription). Al-
ternatively, cancelling a subscription can be done via the middle-agent. In the first case,
cancelling a subscription involves a single message, with an optional second message
informing the middle-agent. Both messages have size 1. In the second case, cancelling
a subscription involves two messages each with size 1. Thus, the difference in terms of
messages involved between direct and indirect cancellation of subscriptions is minor,
and is non-existent if the middle-agent needs to be informed of the cancellation.

If a provider wishes to cancel all of its subscriptions, then there are a number of
cases: (1) If requesters don’t need to be kept informed of their subscriptions then a
single message (of size 1) to the middle-agent is all that is required. (2) If requesters
need to be told, but the middle-agent doesn’t need to be told, then there are RS messages
from the provider to the requesters that are subscribed to it. (3) If both middle-agent
and requester agents need to be informed, then there is one message from the provider
to the middle-agent and RS messages from the provider to the requesters. Although
it is possible to have the middle-agent inform the requesters, this increases the load
on the middle-agent, requires that the provider specify explicitly the list of subscribed
requesters (unless the middle-agent has a record of subscriptions) and doesn’t give any
benefit.

Thus if a provider wishes to cancel all of its subscriptions, then it is most efficient to
not inform the requesters but only inform the middle-agent. However, if the requesters
do need to be informed then the cost of also informing the middle-agent is low.

The analysis for a requester cancelling all of its subscriptions is similar. If the re-
quester agent does not know who it is subscribed to then it needs to first obtain the list
from the middle-agent (which also has the side effect of informing the middle-agent of
the cancelled subscriptions). In this case, cancelling all subscriptions requires 2 + PS

messages with total size 1 + 2PS. If the requester agent does know who it is subscribed



Design Options for Subscription Managers 269

to, then informing the providers takes PS messages of size 1 and informing the middle-
agent is a single additional (size 1) message.

3.3 Monitoring Liveness

Providers need to be monitored, so that a provider disappearing is detected and ap-
propriate action taken. Monitoring liveness of requesters by providers doesn’t seem to
make sense: if the providers have information to send, then that transmission acts as
a ping9. If they don’t have information to send, then they don’t really care about the
requester being alive! If monitoring of requesters is desired, then it makes sense to have
the middle-agent do this.

Monitoring of providers can be done either by the middle-agent or by the requesters.
Consider the first possibility. In this case, the cost for checking each provider for live-
ness can be worked out as follows10. Firstly, there are P messages to the providers.
Secondly, there are PD responses, one for each departed agent11, where PD is the num-
ber of departed agents found in this check (we assume that live agents do not respond).
If subscriptions are done by the requester agents, then the middle-agent will need to
inform the requesters (PD×RF messages12); otherwise informing the requester agents
is optional.

Consider now the second possibility, where monitoring the providers is done by the
requester agents. This is considerably less efficient because each provider will be mon-
itored (redundantly!) by each requester agent that is subscribed to it. More precisely,
each provider will be monitored by RS agents. Thus P×RS messages are sent, and
PD×RS responses received. If the middle-agent needs to be informed, then it will
(eventually) receive messages from each of the RS requester agents that are monitoring
the departed provider (an additional RS × PD messages).

An alternative is for the first requester agent that detects a departed provider to inform
the other requester agents that are subscribed to that provider, rather than allowing
them to independently realize that the provider is departed. This involves the following
sequence of messages: (1) a message from a requester to the departed provider, (2) a
message from the departed provider’s platform to the requester, (3) a message from the
requester to the middle-agent and (4) RS−1 messages from the middle-agent to the other
requesters. The total number of messages for pinging a single departed provider then is
3+(RS −1) = 2+RS and the message size is also2+RS. The total number of messages
for pinging all providers is this multiplied by the number of departed providers, plus RS

messages to each live provider, i.e. (P −PD)×RS +PD × (2+RS) = P ×RS +2PD.
Note that this slightly more efficient, but more complex, approach requires that the

middle-agent has a record of subscriptions (otherwise it is more expensive: replace RS

9 That is, we assume that the provider will detect a departed requester when it attempts to send
the requester information.

10 Note that a reasonable design decision is to spread this monitoring over a time period by
gradually traversing a list of providers.

11 The responses are sent by either the relevant agent platform (saying that the agent is unknown),
or from the middleware (saying that the agent platform is unknown).

12 If the middle-agent has an up-to-date record of the subscriptions then this can be tightened to
PD × RS .



270 A. Mbala, L. Padgham, and M. Winikoff

by RF ). This approach also avoids a bottleneck issue: the middle-agent is only informed
of a departed provider agent once, rather than RS times.

A much more significant potential saving in having liveness monitoring done by
requesters is that it becomes possible to exploit “implicit” pings: if a provider sends
data to a requester, then this is evidence that the provider is alive and it can be assumed
to have been pinged. If a provider agent is sending data frequently enough, then it
will never need to be explicitly pinged as long as it is alive. If this is the case, and
assuming that the optimization described above is not used, then the number of ping
messages that are sent goes down from P × RS to PD × RS , giving 2 × PD × RS

messages overall and 3 × PD × RS if the middle-agent needs to be informed. If the
optimization described above is included, then the effect of implicit pings is, in the best
case, to eliminate the pinging of live agents, i.e. the term (P − PD) × RS , leaving
PD × (2 + RS) = 2PD + PDRS messages. However, it is not clear that this best
case will hold, so the significant reductions promised by exploiting ‘implicit’ pings is
perhaps exaggerated by the numbers in Table 4.

This analysis is summarized in Table 4. The bracketed formulae include informing
the requesters (if the middle-agent pings) or middle-agent (if requesters ping). The third
row (“Improved”) is when requesters ping, but includes informing both the middle-
agent and other (relevant) requester agents of a departed provider. The numbers in the
table give the actual number of messages, computed using the assumed values in Ta-
ble 1; the numbers in brackets include informing the requesters.

Table 4. Monitoring provider liveness (bracketed formulae include informing)

Who pings? Number of + Implicit
messages pings

Middle P + PD N/A
agent (P + PD + PDRS)

201 (205)
Requester PRS + PDRS 2PDRS

agents (PRS + 2PDRS) (3PDRS)
804 (808) 8 (12)

Improved PRS + 2PD 2PD + PDRS

802 6

The analysis above only considers monitoring and detecting departed agents. What
is done in response to detecting a departed agent depends on the subscription policy of
the requester agents that were subscribed to the departed agent. If a requester is sub-
scribed to all relevant providers, then there is nothing further to be done – there are
no other relevant providers that could be added, because the requester is already sub-
scribed to them. However, this doesn’t mean that monitoring liveness is not important
– for instance, there is a difference between receiving no information because there
is no information, and receiving no information because there is no available source
for the information. On the other hand, if a requester is subscribed to one provider (or,
more generally, PS providers), then a replacement provider needs to be found. How this



Design Options for Subscription Managers 271

is done, and the number of messages involved, depends on whether subscriptions are
done by the requester or by the middle-agent. The analysis is similar to that presented
in Section 3.1.

4 Subscription Manager Specification

Based on the analysis in the previous section, we now specify a Subscription Man-
ager middle-agent. The most difficult issue is regarding whether or not the Subscription
manager should actually set up subscriptions on behalf of a requester. On the one hand,
there is a reasonable savings in doing this and it assists with bottleneck issues at the
provider. On the other hand, it removes flexibility from the requester, which may need
or prefer to make its own choices. If requesters subscribe to all providers, then there is
no issue with flexibility, and the savings are significant; so, in this case, it makes sense
to have the Subscription Manager subscribe. On the other hand, if requesters subscribe
to a fixed number of providers (and especially if this fixed number is low), then the
savings are lower, and allowing the requester to select its providers becomes more im-
portant. In this case it may make more sense to have requesters subscribe themselves.
Consequently, we recommend that the Subscription Manager allow both options.

In addition to supporting subscription being done by either requesters or the Sub-
scription Manager, there is also a need to allow for both one-off and ongoing matching,
as well as subscription to one or subscription to all13. This requires that the interface
allows four14 kind of requests: single-match (requester subscribes), ongoing-match (re-
quester subscribes), subscribe-one (Subscription Manager subscribes the requester, and
replaces if provider disappears), and subscribe-all (Subscription Manager subscribes
requester, and subscribes to new providers as they arrive). Additionally, the Subscrip-
tion Manager’s interface needs to allow for a requester to cancel the ongoing-match,
subscribe-one or subscribe-all, and for a provider to cancel its registration.

It is slightly more efficient for end-agents to manage cancellations directly, if the
Subscription Manager does not need to be updated. If the Subscription Manager is up-
dated, the overhead is little. Consequently, we recommend that cancellations be done
directly between end-agents, since this relieves the Subscription Manager of a central-
ized responsibility that carries no real benefit. Requesters with an ongoing subscribe-
one request will need to notify the Subscription Manager of the cancellation so that they
can be subscribed to a new provider.

Monitoring of provider liveness can be done by either requesters or by the Subscrip-
tion Manager. If we use the improved version of requester monitoring and
assume that “implicit” pings completely eliminate pinging of live agents, then requester-
based liveness monitoring requires fewer messages (2PD + PDRS compared with
P + PD + PDRS , given the assumptions of Table 1 these are respectively 6 and 205).
However, this requires a more complex mechanism, shifts the responsibility for a cru-
cial infrastructure task on to the requesters (which is not practical in an open system),
and assumes that implicit pings completely eliminate pinging of live agents and that

13 We assume that subscription to some other number must be handled by the requester.
14 If the requester subscribes then it doesn’t make sense to distinguish between subscribe-to-one

and subscribe-to-all. If the middle-agent subscribes then an ongoing match is assumed.



272 A. Mbala, L. Padgham, and M. Winikoff

Provider 1 SubManager Requester

AdvertiseProfile

SubscribeAll

Subscribe[r1]

Data

Ping

PingResponse

Data Provider 2

AdvertiseProfile

Subscribe [r1]

Data

RemoveProfile

NotifyVanished[p1]

AdvertiseProfile
Ping

NotifyVanished[p2]
timeout

Fig. 2. An example interaction

requester agents need to be informed of departed providers15. Therefore, we recom-
mend that monitoring of provider liveness be done by the Subscription Manager.

Fig. 2 shows an example interaction. In this example, a Requester has asked to be
subscribed to all relevant providers (SubscribeAll). Provider 1 is relevant, and so the
requester is subscribed (by the Subscription Manager) to Provider 1. The Provider then
begins providing the requester with regular information (Data). The Subscription Man-
ager also periodically checks that the provider is still available by sending Ping mes-
sages. A little later a second provider joins the system, and since it is also relevant to
the requester, the requester is subscribed to this provider as well. The first provider then
changes its service specification (RemoveProfile followed by a new AdvertiseProfile).
The requester is notified that provider 1 is no longer relevant. Finally in this example,
provider 2 disappears, and the Subscription Manager realizes this when it attempts to
Ping the provider, at which point the requester is notified that provider 2 is no longer
available.

15 If requesters are not required to be informed of departed providers, then having middle-agents
monitor providers requires P + PD messages. In this case having requesters monitor is more
efficient if PD(1 + RS) < P .



Design Options for Subscription Managers 273

5 Conclusion

We have presented a new type of middle-agent, the Subscription Manager, and moti-
vated its use in systems that involve ongoing information provision to requesters. An
analysis of different design options for the Subscription Manager was presented, lead-
ing to recommendations for the design of Subscription Managers. To summarize, the
key recommendations are:

– that the Subscription Manager provide support for setting up subscriptions to be
done either by itself or by requester agents.

– that the Subscription Manager provider a number of ways of requesting
information:
1. single-match, which returns a list of matching providers at the current time,

but will not inform the requester of additional (relevant) providers that subse-
quently join the system.

2. ongoing-match, which returns a list of matching providers and also asks the
Subscription Manager to inform the requester should new relevant providers
become available.

3. subscribe-one, which asks the Subscription Manager to maintain a subscrip-
tion by the requester to exactly one relevant provider (which is selected by the
Subscription Manager).

4. subscribe-all, which asks the Subscription Manager to maintain subscriptions
by the requester to all relevant providers.

– that cancellations of subscriptions be done directly between end-agents.
– that monitoring of provider liveness be done by the Subscription Manager agent.

For a given application, some of the flexibility recommended may not be needed. For
example, in a domain where requester agents always subscribe to all available informa-
tion sources, there is no need for the Subscription Manager to support subscription to a
single provider.

Areas for future work include investigating ways of structuring a network of middle-
agents, carrying out experimental evaluation of the analysis presented and looking at
how often agents should be ‘pinged’ given a particular rate of agent departure.

Acknowledgments

We would like to acknowledge the support of the Australian Research Council, the
Australian Bureau of Meteorology and Agent Oriented Software Pty. Ltd. under grant
LP0347925.

References

1. Paolucci, M., Soudry, J., Srinivasan, N., Sycara, K.: A broker for OWL-S web services. In:
First International Semantic Web Services Symposium. (2004)

2. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide
Web Journal 7(2) (2004) 211–229



274 A. Mbala, L. Padgham, and M. Winikoff

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applications. Springer-Verlag, Berlin, Germany (2004)

4. Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In: Fifteenth Inter-
national Joint Conference on Artificial Intelligence, Morgan Kaufmann (1997) 578–583

5. Sycara, K.: Multi-agent infrastructure, agent discovery, middle agents for web services and
interoperation. In: Multi-Agent Systems and Applications, LNAI 2086, Springer-Verlag
(2001) 17–49

6. Mathieson, I., Dance, S., Padgham, L., Gorman, M., Winikoff, M.: An open meteorological
alerting system: Issues and solutions. In Estivill-Castro, V., ed.: Proceedings of the 27th
Australasian Computer Science Conference, Dunedin, New Zealand (2004) 351–358

7. Decker, K., Williamson, M., Sycara, K.: Matchmaking and brokering. In: 2nd International
Conference on Multi-Agent Systems (ICMAS 1996), MIT Press (1996)

8. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design of a scalable event notification ser-
vice: Interface and architecture. Technical Report CU-CS-863-98, University of Colorado,
Department of Computer Science (1998)

9. Fox, G., Pallickara, S.: The Narada event brokering system: Overview and extensions. In:
Proceedings of the 2002 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’02). (2002) 353–359

10. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication lan-
guage. In: CIKM ’94: Proceedings of the third international conference on Information and
knowledge management, ACM Press (1994) 456–463

11. Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among heteroge-
neous software agents in cyberspace. Autonomous Agents and Multi-Agent Systems 5(2)
(2002) 173–203

12. Cassandra, A., Chandrasekara, D., Nodine, M.: Capability-based agent matchmaking. In:
AGENTS ’00: Proceedings of the fourth international conference on Autonomous agents,
ACM Press (2000) 201–202

13. Gibbins, N., Hall, W.: Scalability issues for query routing service discovery. In: Proceedings
of the 2nd International Workshop on Infrastructure for Agents, MAS, and Scalable MAS.
(2001) 209–217

14. Wong, H.C., Sycara, K.: A taxonomy of middle-agents for the internet. In: 4th International
Conference on Multi-Agent Systems (ICMAS 2000), IEEE Press (2000) 465–466


	Introduction
	The Interaction Models
	Monitoring for New Arrivals
	Subscription Management
	Monitoring for Disappearances

	Analysis
	Adding an Agent
	Cancelling Subscriptions
	Monitoring Liveness

	Subscription Manager Specification
	Conclusion


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




