
M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 243 – 258, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adapted Information Retrieval in Web Information
Systems Using PUMAS

Angela Carrillo-Ramos, Jérôme Gensel, Marlène Villanova-Oliver,
and Hervé Martin

Laboratory LSR-IMAG. B.P. 72
38402 Saint Martin D’Hères Cedex, France

{carrillo, gensel, villanov, martin}@imag.fr

Abstract. In this paper, we describe how PUMAS, a framework based on
Ubiquitous Agents for accessing Web Information Systems (WIS) through
Mobile Devices (MD), can help to provide nomadic users with adapted
information. Using PUMAS, the information delivered to a nomadic user is
adapted according to, on the one hand, her/his preferences, intentions and
history in the system and, on the other hand, the limited capacities of her/his
MD. The adaptation performed by PUMAS relies on pieces of knowledge (we
call "facts"), which are stored in Knowledge Bases managed by PUMAS agents.
We focus here on the facts exploited to achieve adaptation by two of the four
Multi-Agent Systems (MAS) that constitute the architecture of PUMAS (the
Information and the Adaptation MAS). We also present an example which
illustrates how PUMAS works and considers these facts when processing a
query.

Keywords: PUMAS, Adaptation, Web Information System, Mobile Devices,
Information Retrieval, Agent, Knowledge, Fact.

1 Introduction

Web-based Information Systems (WIS) are systems that permit collection, structuring,
storage, management and diffusion of information, like traditional Information Systems
(IS) do, but over a Web infrastructure. A WIS provides users with complex
functionalities that are activated through a Web browser in a hypermedium interface.
Nowadays, Mobile Devices (MD) can be used as devices for accessing a distant WIS but
also as storage devices for (simple) WIS or applications. Thus, a WIS which executes on
MD allows access, search and storage of resources (files) located on these MD.

However, having to cope with the limited capacities of MD (e.g. size of screen,
memory, hard disk), WIS designers must use mechanisms and architectures in order to
efficiently store, retrieve and deliver data using these devices. The underlying
challenge is to provide WIS users with useful information based on an intelligent
search and a suitable display of delivered information. In order to reach this goal, a
Multi-Agent System (MAS) constitutes an interesting approach. The W3C [1] defines
an agent as “a concrete piece of software or hardware that sends and receives
messages”. These messages can be used to access a WIS and to exchange information.
A MAS can be a useful tool for modelling a WIS due to the inherent properties of

244 A. Carrillo-Ramos et al.

agents like the defined, owned and acquired knowledge they manage, their ability to
communicate with users or other agents, etc. Carabelea et al. [2] have defined a MAS
as “a federation of software agents interacting in a shared environment that
cooperate and coordinate their actions given their own goals and plans”. Moreover,
agents can be executed on the MD and/or migrate through the net, searching for
information on different servers (or MD) in order to satisfy user’s queries. This is the
underlying idea of the Mobile Agent concept [3].

Rahwan et al. [4] recommend the use of agent technology in MD applications
because agents that execute on the user’s MD can inform the systems accessed by the
user about her/his contextual information. However, in the case of a mobile user, the
agent must consider the fact that the changing location could produce changes in user
tasks and information needs. Then, the agent also has to be proactive, and has to
reason about user goals and the way they can be achieved.

Applications running on the MD (and their agents) must allow users to consult data
at any time from any place. This is the underlying idea of Ubiquitous Computing
(UC) [1]. Shizuka et al. [5] have stressed the fact that Peer to Peer (P2P) computing
is one of the potential communicative architectures and technologies for supporting
ubiquitous/pervasive computing. We can consider a MAS as a P2P System, since an
agent is an inherent peer, because it can perform its tasks independently from the
server and other agents. P2P systems [6] are characterized by i) a direct
communication between peers with no communication needed through a specific
server, and ii) the autonomy a peer gets for accomplishing some assigned tasks.

Concerning adaptation, special attention is paid to user’s location in her/his profile.
In order to provide the nomadic user only with relevant information (i.e. “the right
information in the right place at the right time"), Thilliez et al. [7] have proposed
“location dependent” queries, which are evaluated according to the user’s current
physical location (e.g. “which are the restaurants located in the street where the user
is?”). Our work focusses also on this kind of queries.

Regarding adaptation to the reduced capacities of the MD, one objective is to
anticipate the fact that some retrieved information cannot eventually be properly
displayed (e.g. MD may not support a cumbersome format file). It is necessary to
anticipate such situations at design time in order to decide which solution to
implement. For instance, considering a query whose result contains video data, the
corresponding result may not be delivered if the user accesses the WIS through a
mobile phone that cannot display videos. In that case, the Negotiation vocabulary
proposed by Lemlouma [8] can be used for adaptation purposes. It permits description
of the user’s MD, considering constraints in terms of network, software and hardware.

Many technical and functional aspects have to be considered when designing a WIS
accessed through MD, especially when addressing the issue of adaptation of delivered
information to the nomadic user [6, 7]. The goal of our work is to provide nomadic
users who access a WIS through a MD with the most relevant information according
to their preferences, but also according to their contextual characteristics and to the
features of their MD. In [9], we have defined PUMAS, a framework for retrieving
information distributed among several WIS and/or accessed through different types of
MD. The architecture of PUMAS is composed of four MASs (a Connection MAS, a
Communication MAS, an Information MAS and an Adaptation MAS), each one
encompassing several ubiquitous agents which cooperate in order to achieve the

 Adapted Information Retrieval in Web Information Systems Using PUMAS 245

different tasks handled by PUMAS (MD connection/disconnection, information
storage and retrieval etc.). In PUMAS, data representation, agent roles and data
exchange are ultimately based on XML files (using OWL1). Through PUMAS, our
final objective is to propose and build a framework which is, beyond the management
of accesses to WIS through MD, also in charge of performing some adaptation
processing over information. Users equipped with MD can use the PUMAS central
platform in order to communicate together by means of agents that execute on their
MD, or in order to exchange information (user’s contextual information). In our case,
users communicate through an Hybrid P2P system.

This paper is structured as follows. We first describe in Section 2 the architecture
of PUMAS. The main contributions of this paper are, on the one hand, the definition
of pieces of knowledge (that we call facts) used for adaptation purposes by PUMAS
agents, especially those belonging to the Information and to the Adaptation MAS, and,
on the other hand, the data representation based on XML files. In Section 3, we
present a scenario that shows how PUMAS processes a query submitted to the system.
An example that illustrates our proposition is given in Section 4. We discuss works
related to PUMAS in Section 5 before we conclude in Section 6.

2 The PUMAS Framework

In this section, we present the architecture of PUMAS, its four MASs, their relations
and, the data exchange and communications they perform in order to achieve
adaptation of information for the user.

2.1 An Overview of the PUMAS Architecture

The architecture of PUMAS is composed of four MASs (see Fig. 1 for the logical
structure of PUMAS). Firstly, the Connection MAS provides mechanisms for
facilitating connection from different types of MD to the system. Secondly, the
Communication MAS ensures a transparent communication between MD and the
system, and applies a Display Filter to display the information in an adapted way
according to technical constraints of the user’s MD. To achieve this, it is helped by
agents of the Adaptation MAS. Thirdly, the Information MAS receives users’ queries,
redirects them to the “right” WIS (e.g. the nearest WIS, the more consulted one),
applies a Content Filter (with the help of the Adaptation MAS agents) according to the
user’s profile in the system and returns results to the Communication MAS. Finally,
the Adaptation MAS communicates with agents of the three other MAS in order to
provide them with information about the user, connection and communication
features, MD characteristics etc. The services and tasks of its agents essentially
consist of managing specific XML files that contain information about the user and the
device. These agents also have some knowledge, which allows them to select and to
filter information for users. This knowledge comes from analysis of the user’s history
in the system (e.g. last connections, queries, preferences).

1 OWL: Ontology Web Language builds on RDF and RDF Schema and adds more vocabulary

for describing properties and classes (relations between classes, cardinality, equality, richer
typing of properties, characteristics of properties and enumerated classes). http://www.
w3.org/2004/OWL/

246 A. Carrillo-Ramos et al.

Fig. 1. The PUMAS Architecture

The inherent mobility of nomadic users is supported by ubiquitous agents: the
Mobile Device Agents executed on the user’s MD and the ISAgents executed on the
same device than the WIS to which they belong. Such ubiquitous agents retrieve some
needed information and can communicate with other agents to perform tasks. The
Hybrid P2P Architecture of PUMAS copes with the following issues: security in
applications (security problems inherent to agent mobility), communication between
agents in a point to point or in a broadcast way, management of the status of the agent
(e.g. connected, disconnected and killed) and its services. In the following
subsections, we describe the tasks achieved by each MAS of PUMAS.

2.2 The Connection MAS

This MAS includes several Mobile Device Agents (MDA) and one Connection
Controller Agent (CCA).

The Mobile Device Agent is executed on the user’s MD. Its knowledge is
composed of general rules of behaviour and characteristics related to the type of MD
used (e.g. PDA) as well as some specific roles defined according to the application
(e.g. this agent is used for transmitting a file). The Mobile Device Agent manages a
XML file (Device Profile XML file, located on the user’s MD), which describes MD
features and shares this information with the Display Filter Agent (belonging to the
Adaptation MAS) through the Connection Controller Agent (the Mobile Device Agent
sends this file to the Connection Controller Agent – executing on the central platform
of PUMA – and the latter exchanges this information with the Display Filter Agent).
This file contains some information about the requirements of the application,
network status, hypermedia files supported by the MD, conditions for disconnecting:
inactive session for more than X minutes, disconnection type (e.g. willingly,
automatic), etc. One Mobile Device Agent also manages another XML file, which
describes characteristics of the user’s session (using OWL, see Fig. 2): who is the user

 Adapted Information Retrieval in Web Information Systems Using PUMAS 247

connected (user ID), when the session began and what is the MD connected
(beginning time, CurrentMD). This file will be sent to the UserAgent (belonging to
the Adaptation MAS):

<?xml version="1.0"?>
<rdf:RDF… …

 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="SessionProfile"/>
 <owl:Class rdf:ID="CurrentUser">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>
 <owl:Class rdf:ID="BeginningTime">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>
 <owl:Class rdf:ID="CurrentDevice">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>

</rdf:RDF>

Fig. 2. Code excerpt of the User’s Session XML file

The Connection Controller Agent executes on the central platform of PUMAS and
gets the user’s location and MD type (e.g. PDA) from the User Location XML file
(which contains the physical and logical user’s location features; this file is also
defined using OWL) and from the Device Profile XML file (which describes the
features of the MD), respectively. Both files are provided by the Mobile Device Agent
and locally managed by the Connection Controller Agent. The latter serves as an
intermediary between the Connection MAS and the Communication MAS. It also
checks connections established by users and the status of agents (e.g. connected,
disconnected, killed), and links each Mobile Device Agent to its corresponding Proxy
Agent in the Communication MAS (see next section).

The XML files (User Location, Session and Device Profile XML files) managed by
the Mobile Device Agent and the Connection Controller Agent have been defined
using extensions introduced by Indulska et al. [10] to CC/PP [1]. These extensions
include some user’s characteristics like her/his location, application requirements,
session features (e.g. user, device, application) and the profile of the MD in order to
provide a complete description of the user and her/his MD.

2.3 The Communication MAS

This MAS has an interface that makes communication between users transparent and
activates the mechanism for displaying the information according to the features of
the MD. It is composed by several Proxy Agents (PA), one MDProfile Agent (MDPA)
and one Coordinator Agent (CA). These agents execute on the central platform of
PUMAS.

There is one Proxy Agent for the connection of each Mobile Device Agent. Two
different users can connect themselves to the system through the same MD, which
leads to two different Proxy Agents and two different sessions. The main task of a
Proxy Agent is to represent a Mobile Device Agent within the system. In this case,
there are two agents: one Mobile Device Agent in the MD and one Proxy Agent in the
central platform of PUMAS.

248 A. Carrillo-Ramos et al.

The MDProfile Agent has to check the user’s profile (according to her/his MD)
and her/his information needs. In addition, this agent together with the Coordinator
Agent defines and checks the mechanism that sends, for example, hypermedia data to
the user. If the user’s request has, as a result, several images, these agents define the
order and number of images to be shown by the screen according to the capabilities of
the user’s MD. The MDProfile Agent also shares information about specific MD
features for the user’s session with the Display Filter Agent (belonging to the
Adaptation MAS).

The Coordinator Agent is in permanent communication with the Connection
Controller Agent in order to verify the connection status of the agent that searches for
information. The Coordinator Agent knows all the agents connected in the system
thanks to XML files managed by the Mobile Device Agent (through its Proxy Agent). If
there are some problems with the Connection Controller Agent (e.g. if the Connection
Controller Agent fails or if there is a lot of connections), the Coordinator Agent can
play the role of the Connection Controller Agent until the problems are fixed. At that
moment, the Connection Controller Agent and the Coordinator Agent must
synchronize the information about connected agents and check current connections.

A more detailed description of the Connection and the Communication MAS can be
found in [9]. The main contribution of this paper, described in the next section, deals
with the description of the knowledge managed by the Information and the
Adaptation MAS agents in order to support the adaptation capabilities of PUMAS.

2.4 The Information MAS

The Information MAS is composed of one or several Receptor/Provider Agents
(R/PA), one or several Router Agents (RA) and one or several ISAgents (ISA).

A Receptor/Provider Agent that is located in the central platform of PUMAS owns
a general view of the whole system. It knows agents of both the Communication and
the Information MAS. The Receptor/Provider Agent receives all requests that are
transmitted from the Communication MAS and redirects them to the Router Agent,
which is in charge of finding the “right” WIS in order to execute the query. Once a
query has been processed by the ISAgents, the Receptor/Provider Agent checks
whether query results consider the user’s profile (i.e. preferences, user’s history) by
means of the Content Filter Agent (belonging to the Adaptation MAS).

In order to redirect a query to the “right” WIS, a Router Agent (which executes on
the central platform of PUMAS) applies a strategy that depends on one or several
criteria: user’s location, peer similarity, time constraints, user’s preferences etc. The
strategy can lead to sending the query to a specific WIS, to sending the query using
broadcast and/or to the division of the query in sub-queries, each being sent to one or
several WIS. A Router Agent is also in charge of compiling results returned by the
WIS and of analyzing them (according to the defined criteria) to decide whether the
whole set of results or only a part has to be sent to a Receptor/Provider Agent.

The Router Agent stores in its Knowledge Base pieces of knowledge (that we call
facts and describe below using JESS2) for each WIS. One fact is made up of the

2 JESS is a rule engine and scripting environment that enables building Java applications that

have the capacity of "reasoning" using knowledge supplied in the form of declarative rules.
http://herzberg.ca.sandia.gov/jess/

 Adapted Information Retrieval in Web Information Systems Using PUMAS 249

characteristics of the WIS, like its name, its managed information, the type of device
on which it is executed (e.g. server, MD) and the agent (ISAgent) associated with this
WIS and which can be asked for information. When the Router Agent has to redirect a
user’s query, it exploits these facts in order to select the WIS, especially, the ISAgents
(which execute on the same device that the WIS) to which sub-queries have to be
redirected. The following fact defines a WIS and is represented by a JESS template3:

(deftemplate WIS (slot name)
(slot agentID) (slot device)
(multislot information_items))

For instance, the following fact defines the Pharmacy WIS of a hospital. The WIS is
called PharmacyWIS and it executes on a server. PharmacyISA is the ISAgent which
executes on this WIS. The PharmacyWIS contains information about medicines and
patient prescriptions:

(assert (WIS (name PharmacyWIS)
(agentID PharmacyISA) (device server)
(information_items “medicines” “patient’s_prescription”)))

The location of the WIS could change, especially if this WIS runs on a MD. The
Router Agent can be informed about the changes in the location of the WIS by means
of the ISAgents that execute on these WIS.

In order to send (sub-) queries and analyse their results, the Router Agent must
check the user’s preferences (information provided by the Content Filter Agent via
the Receptor/Provider Agent). The user’s preferences are represented as facts defined
as follows:

(deftemplate User_Preference (slot userID)
(slot required_info)
(multislot complementary_info)
(multislot actionD) ; actions for doing
(slot problem)
(multislot actionR)) ; actions for recovering

An ISAgent associated with a WIS (and which executes on the same device that the
WIS) receives the user’s query from the Router Agent and is in charge of searching for
information. Once a result for the query is obtained, the ISAgent returns it to the
Router Agent. An ISAgent can execute a query by itself or delegate this task to the
adequate WIS component. This depends notably on the nature of the WIS. Our
approach addresses complex and possibly a distributed WIS located on server(s) but
also a very simple WIS that only relies on some files located on a MD. In this last
case, one ISAgent may be sufficient to ensure the right functioning of the Information
MAS. It is worth noting that, in this case, what we call an “ISAgent” is in fact the
Mobile Device Agent of a MD that can play the role of an ISAgent since it has the
knowledge required for executing a query on files stored in the MD. In a complex
WIS, the ISAgent can collaborate with other ISAgents (if the WIS has been developed

3 We define our pieces of knowledge using the syntax of the JESS unordered facts. We declare

each unordered fact by means of the primitive “deftemplate”. To define an instance of an
unordered fact in JESS and store it into the JESS Knowledge Base, we use the primitive
“assert”.

250 A. Carrillo-Ramos et al.

following the MAS paradigm) or with any other WIS component to perform a query.
In the case of a non MAS based WIS, our approach only requires that an ISAgent is
developed in order to ensure the communication between PUMAS and the WIS.

2.5 The PUMAS Adaptation MAS

The adaptation capabilities of PUMAS rely on a two step filter process that aims at
providing a user with adapted information according to both the user and her/his MD.
First, the Content Filter allows selection of the most relevant information according to
the user’s profile defined. Second, the Display Filter is applied on the results of the
first filter and considers characteristics and technical constraints of the user’s MD.

The Adaptation MAS is composed of several UserAgents (UA), one Display Filter
Agent (DFA) and one Content Filter Agent (CFA). These agents execute on the
central platform of PUMAS.

<rdf:RDF …
<owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="UserProfile"/> <owl:Class rdf:ID="Beliefs">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="Intentions">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="User">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="Preferences">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 </rdf:RDF>

Fig. 3. Code excerpt of the User Profile XML file

Each UserAgent manages a XML file (User Profile XML file, see Fig. 3) that
contains personal characteristics of the user (e.g. user ID, location) and her/his
preferences (e.g. the user wants only video files). This file is obtained by means of the
Mobile Device Agent (this file is managed by the UserAgent and updated by the
Mobile Device Agent). There is only one UserAgent that represents a user at the same
time (even though the user has two sessions at the same time through the same or
different MD). Since a user can access the system through several MDs, the
UserAgent communicates with the Mobile Device Agents and the Proxy Agents
(which respectively belong to the Connection and the Communication MAS) to
analyse and centralize all the characteristics of the same user. The UserAgent
communicates with the Content Filter Agent to send the User Profile XML file. When
the Content Filter Agent receives this file, it stores this information as facts in its
Knowledge Base (this agent manages a registry of user’s preferences). When the
Receptor/Provider Agent (belonging to the Information MAS) asks the Content Filter
Agent for the user’s preferences, the latter sends it the latest XML file received from
the UserAgent. If the UserAgent does not send this file (e.g. there are no user
preferences for the current session), the Content Filter Agent considers the
preferences from previous sessions.

 Adapted Information Retrieval in Web Information Systems Using PUMAS 251

We can establish that queries depend on one or several criteria for adaptation
purposes: the user’s location, her/his history in the system, activities developed during
a time period, movement orientation, privacy preferences, etc. An Adaptation_
Criterion could be defined as:

(deftemplate Adaptation_Criterion
(slot userID) (multislot criteria) (multislot attributes))

An example of Adaptation_Criterion that expresses that all of Doctor Smith’s queries
depend on his location, especially when he is at the North Hospital could be:

(assert (Adaptation_Criterion
(userID “Doctor Smith”) (criteria location) (attributes “North_Hospital”)))

The Display Filter Agent manages a Knowledge Base that contains general
information about features of different types of MD (e.g. format files supported) and
acquired knowledge from previous connections (e.g. problems and capabilities of
networks according to data transmissions). Each MDFeature is defined as a fact and
represented as follows:

(deftemplate MDFeature (slot MDtype) (multislot feature))

where each feature is represented as a fact as follows:

(deftemplate feature (slot type) (multislot causes))

An example of a fact for a MDFeature which corresponds to file formats that are
supported by a Pocket PC hp IPAQ h5550 in different network types is shown as
follows. We assume that it cannot support video sent on a Wi-Fi Network but it does
support several images using either Bluetooth or a Classical Network:

(deffacts MDFeature (MDType “PocketPC hpIPAQ h5550”)
(feature (type “video_not_supported”) (causes “Wi-Fi Network”))
(feature (type “several_images”) (causes “Bluetooth” “Classical Network”)))

The Content Filter Agent manages a Knowledge Base that contains preferences,
intentions and characteristics of users. The User_Preference fact is composed of a
userID (which identifies the owner of this preference), required information
(required_info) and complementary information (complementary_info). The last is
added to the User_Preference definition by the Content Filter Agent, which analyses
queries of previous sessions (e.g. information frequently asked). This fact is also
composed of information describing what and how user would like answers from the
system (to be presented to her/him) and in case there are any problems, what and how
the system must answer (list of actions for recovering). In order to do this, each action
is defined as a fact and represented as follows:

(deftemplate action (slot name) (multislot attribute))

In this definition, name refers to an action chosen between a defined list (e.g. “show”,
“save”, “transfer file”, “cancel”) and each action has a list of attributes. For instance,
the fact which represents the action “show” has for its properties the order, format and
type of the file, is:

(assert (action (name show) (attributes “order” ” format” “file_type”)))

252 A. Carrillo-Ramos et al.

Since an attribute can be complex, we define it as a fact:

(deftemplate attribute (slot name) (multislot list))

An example of attribute that defines the order in which information is displayed,
could be:

(assert (attribute (name order)
(list “patient’s_tests” “patient’s_diet” “patient’s_prescribed_medicines”)))

We define a problem as an event that is not desirable during the execution of an
action or that is the cause of a failure (e.g. the MD cannot show an image). Each
problem is defined as a fact and represented as follows:

(deftemplate problem (slot name) (slot type) (multislot causes))

where name corresponds to a description of the problem, the type can be chosen from
a defined list (e.g. incompatibility, unable IS, unable agent) and the causes
correspond to a list of causes of this problem (e.g. MD cannot support a specific
format file, network problems). A fact, which defines the problem related to a specific
user’s location that is out of range of a wireless network and disables her/him from
accessing the Internet, is:

(assert (problem (name “out_range_connection”) (type “lack_of_access”)
(causes “user_located_out_of_range” “ network_out_of_service”)))

3 PUMAS Scenario

In this section, we present a scenario in order to show the interactions that take place
between PUMAS agents when a query is submitted to the system.

When a user sends an information query Q (see Fig. 4), the Mobile Device Agent
sends it to the Connection Controller Agent. Whenever this query is location and time
dependent, the Connection Controller Agent introduces the time of connection, the
user’s location and the characteristics of the user’s MD connection (these latter
characteristics are exchanged with the Display Filter Agent) in query Q which leads to
the production of a new query Q’ (in Fig. 4, Q’=Q + user’s ST) that is then sent to the
Proxy Agent. The query passes by the Coordinator Agent and then by the MDProfile
Agent. The latter adds to query Q’ some features related to the MD; these features are
provided by the Display Filter Agent which has previously learned them from
previous queries or retrieved them from its Knowledge Base. The new query Q” (in
the Fig. 4, Q”= Q’ + MD features) is sent by the MDProfile Agent to the
Receptor/Provider Agent. The Receptor/Provider Agent complements the query Q”
with specific characteristics of the user in the system by requesting the Content Filter
Agent (in Fig. 4, Q’’’=Q” + user’s preferences, intentions, history). The
Receptor/Provider Agent sends the query Q’’’ to the Router Agent, which decides
(according to the query, the system rules and the facts in its Knowledge Base) which
are the ISAgents able to answer. It can send the query to a specific ISAgent or to
several ISAgents (e.g. waiting for the first to answer) or, it can divide the query into
sub-queries, which are sent to one or several ISAgents. The scenario in Fig. 4, shows
for instance that query Q’’’ is divided into Q’’’ – 1.1, Q’’’ – 1.2, Q’’’ – 1.3 and Q’’’ – 1.4, which are
sent to the ISAgents executed on a server and different MD.

 Adapted Information Retrieval in Web Information Systems Using PUMAS 253

Fig. 4. Scenario of sending a query

When a user U1 has an information query for another user U2, both equipped with
MD, the query is propagated from the Mobile Device Agent executed on the U1’s MD
towards the Router Agent, which redirects it to the Mobile Device Agent executed on
the U2’s MD. This U2’s Mobile Device Agent changes its role to become an ISAgent,
i.e. the agent in charge of answering information queries. This change of role is
possible because a Mobile Device Agent has knowledge for managing information
stored in the MD on which it executes and it has the capability of answering
information queries.

4 Example

In this section, we illustrate processes performed by PUMAS agents using the
example of a hospital WIS.

Let us suppose that doctors equipped with MD (e.g. PDA) access the information
system of a hospital that is distributed between several MD and/or one or several WIS
(see Fig. 5). Doctors can also receive information according to their location,
preferences, technical characteristics of their MD and considerations about their
connection time. For instance, when visiting a patient, doctors with MD can consult
information about her/his clinical history, medical tests, prescriptions etc. By
indicating the location of the patient (e.g. room, bed) and the current date (extracted
from the system), the doctor can identify the patient and get her/his personal
information. To do this, the application on her/his MD must consult different WIS of
the hospital (e.g. pharmacy, doctors). Doctors could also communicate with other
doctors (peers), through their MD, in order to get some advice or help (e.g. questions
which can only be answered by the specialist doctor who has previously examined
this patient).

When a doctor comes into the patient’s room, she/he enters information about the
location of the patient while the application gets the date of the system (information
about the time). The Mobile Device Agent that executes on the doctor’s MD sends the

254 A. Carrillo-Ramos et al.

Fig. 5. Sending a query in the hospital WIS

query (who is the patient?). The query is propagated through the PUMAS core: it is
first transmitted through the Connection Controller Agent, then to the Communication
MAS agents (Proxy Agent, Coordinator Agent and MDProfile Agent). The MDProfile
Agent can include, in the query, information according to the MD (e.g. this kind of
MD cannot support graphical format but only text files. Then, if the doctor asks for
the results of the test, she/he only could get them in a text format). For example, if the
doctor has been connected through a Palm Tungsten C, the MDProfile Agent asks the
Display Filter Agent for information about this MD. The MDProfile Agent could
receive from Display Filter Agent facts defined as follows:

(deffacts MDFeature (MDType “Palm Tungsten C”)
(feature (type “video_not_supported”)(causes “Wi-Fi_Network”))
(feature (type “several_images”)(causes “Wi-Fi_Network”)
(feature (type “text”)(causes “Wi-Fi_Network” “Classical_Network Bluetooth”))) ;

Then, the MDProfile Agent sends the query to the Receptor/Provider Agent, which
can include in the query preferences previously expressed by the doctor. Those
preferences are expressed in the User Profile XML file (see Section 2.5) and are
translated as facts by the UserAgent and the Content Filter Agent. The following
example corresponds to a doctor’s preference: when a doctor says “when asking for a
blood tests, the system must also provide me with the patient’s diet and the prescribed
medicines. I do prefer graphical results but if my MD cannot support this format, I
would like receive the results in text format”, this can be translated into the following
fact of the UserAgent:

(deffacts User_Preference
(userID “Doctor Smith”)(required_info “blood tests”)
(complementary_info “patient’s_diet” “prescribed_medicines”)
(action show) (attribute (name order)
(list “patient’s_tests” “patient’s_diet” “patient’s_prescribed_medicines”))
(attribute (name graphical_format) (list “JPEG”))
(problem (name “HyperMediaNotSupportedByMD”)
(type “incompatibility”) (causes “OnlyTextFileSupported”)) (attribute (name order)
(list “patient’s_tests” “patient’s_diet” “patient’s_prescribed_medicines”))
(attribute (name text_format) (list “XML” “txt”)))

 Adapted Information Retrieval in Web Information Systems Using PUMAS 255

The UserAgent transfers this information to the Content Filter Agent, which stores
this fact and sends it to the Receptor/Provider Agent. The Receptor/Provider Agent
adds this preference to the query and sends it to the Router Agent. The Router Agent
receives the complete query and, with the information about the WIS, the Router
Agent can split the query in sub-queries and redirect each one towards the
appropriated WIS. The following facts are exploited in this example by the Router
Agent in order redirect the queries to the ISAgents of the hospital’s WIS:

(assert (WIS (name LaboratoryWIS)
(agentID LaboratoryISA) (device server)
(information_items “ test” “ patient’s_ test” “reactive”)))

(assert (WIS (name PatientDietWIS)
(agentID DietISA) (device MD)
(information_items “patient’s_diet” “nutritionist’s_appointments”)))

The Router Agent redirects the query to the ISAgent located in the WIS, which
manages information about patients in the hospital. All queries follow the same path
from the Mobile Device Agent towards the Router Agent. If the doctor wants to know
the last medicines prescribed to this patient, the Router Agent redirects the query to
the ISAgent located in the PharmacyWIS. If the query concerns another doctor (peer),
the Router Agent redirects the query to the ISAgent located in the peer’s MD. A doctor
can also ask for information about a specific patient to several of her/his peers. In this
case, the Router Agent could send the query using broadcast or it could split the query
according to the receiver peer (e.g. queries related to heart conditions for the
cardiologist) or according to the defined criteria in the User Profile XML file (e.g. if
the criterion of adaptation of the query is the location, queries must only be redirected
to doctors at the same or closed location of the sender). Retrieved information is
organized by the Router Agent (e.g. the last prescribed medicines, peer answers about
this patient) and is returned to the doctor who has sent the query following the inverse
path. The different agents have to check results because, for instance, the doctor may
have been disconnected from the system (due to some network problems), and
recovered her/his session in a new connection whose characteristics are different from
the previous ones: it could be that she/he can now consult the system using another
kind of MD that supports some graphical format (which constitutes a doctor’s
preference that can now be satisfied).

Through this example, we can observe the behaviour of the Hybrid P2P
Architecture of PUMAS. The core of PUMAS centralizes queries: i) it is in charge of
obtaining the most relevant information and, ii) it is in charge of applying the Content
and Display Filters to adapt answers. The main peer characteristics of PUMAS agents
are illustrated by the fact that, firstly, agents have the autonomy of connecting to and
disconnecting from the system. Secondly, a MD can ask for a communication with a
specific WIS (located on a server or on a MD) passing this information as a parameter
of the query; the Router Agent transmits the query to this specific WIS which
exemplifies an agent to agent communication (e.g. when doctors exchange
information about a patient using their MD).

Another advantage offered by PUMAS is that it helps a user who does not know
which specific WIS to ask for information to find the most appropriate one(s). The
Router Agent redirects a query by means of an intelligent analysis of the query and the

256 A. Carrillo-Ramos et al.

help of the ISAgents that achieve an intelligent search inside the different WIS
(pharmacy, laboratory, patients etc. in our example).

5 Related Works

In this section, we present some agent-based architectures or frameworks for adapting
information to users.

Berhe et al. [11] proposes an architectural framework that exploits four profiles for
adapting information content to a user: content or media (type, format, size, location
where media is stored), user (preferences), device (hardware and software
capabilities), network and service (supported media formats, network connection,
bandwidth, latency performance). However, unlike PUMAS, this proposal does not
consider information retrieval from different types of devices (servers and MD).

Sashima et al. [6] proposes an agent-based coordination framework for ubiquitous
computing. It coordinates services and devices to assist a particular user in receiving a
particular service in order to maximize her/his satisfaction. This framework assists
users in accessing resources in ubiquitous environments. These authors consider
contextual features of nomadic user, especially location. Unlike PUMAS, this
framework does not consider the adaptation of information according to the access
devices or the possible distribution of data among different devices.

The work of Gandon et al. [12] proposes a Semantic Web architecture for context-
awareness and privacy. This architecture supports automated discovery and access of
a user’s personal resources subject to user-specified privacy preferences. Service
invocation rules along with services ontologies and services profiles allow
identification of the most relevant resources available to answer a query. However, it
does not consider the information that can answer a query can be distributed between
different sources.

CONSORTS Architecture [13] is based on ubiquitous agents and designed for a
massive support of MD. It detects user’s location and defines the user’s profile to
adapt the information to her/him. The CONSORTS architecture proposes a mechanism
for defining relations that hold between agents (e.g. communication, hierarchy, role
definition), with the purpose of satisfying user’s requests. However, it does not
consider the distribution of information between MD (which could improve response
time) nor user’s preferences.

PIA-System [14] is an agent-based personal information system for collecting,
filtering and integrating information at a common point, offering access to
information by WWW, e-mail, SMS, MMS and J2ME clients. It allows the user on the
one hand, to search explicitly for specific information and, on the other hand, to be
informed automatically about relevant information divided into slots (user specifies
her/his working time and this divided the day in pre, work and recreation). A
personal agent manages the individual information provisioning, tailored to user’s
needs according to her/his profile and current situation. However, a PIA-System only
searches information in text format (e.g. documents). It does not take into account
either the adaptation of different kinds of media to different MD or the user’s
location.

 Adapted Information Retrieval in Web Information Systems Using PUMAS 257

6 Conclusion

In this paper, we have presented PUMAS, a framework based on agents and the P2P
approach. Peer characteristics of PUMAS appear in the cooperation developed by
agents in order to store and retrieve information and in the possibility that two users,
equipped with MD, communicate through the central platform offered by PUMAS. Its
architecture relies on four Multi-Agents Systems (MAS) for the Connection, the
Communication, the Information and the Adaptation MAS. PUMAS also benefits from
the P2P characteristics of an Hybrid P2P architecture. PUMAS provides each agent
with a mechanism for identifying, authenticating and recognizing its peers. This paper
has focussed on the representation of the pieces of knowledge (called facts), stored in
Knowledge Bases and used by PUMAS agents in order to perform their assigned
tasks. We can highlight the intelligent and adaptive information search achieved by
means of PUMAS agents. The search is intelligent because it is based on the
knowledge of an agent and its capability of reasoning. It is also adaptive because it
considers nomadic user’s profiles, characteristics of her/his MD and features of the
ubiquitous context.

Our future work concerns the implementation of each component (MAS) of
PUMAS. We also need to define an extension of the current ACL that considers
spatial-temporal (contextual) features and a strategy description language, as well as
Query Routing mechanisms and algorithms [15] for the Router Agent in order to
propagate queries towards the “right” WIS and to compile answers. Moreover, the
mechanisms and strategies applied by the PUMAS agents (especially those belonging
to the Adaptation MAS) in order to achieve the Content and the Display Filters also
have to be precisely defined.

Acknowledgments. The author Angela Carrillo-Ramos is partially supported by
Universidad de los Andes (Bogotá, Colombia).

References

1. http://www.w3.org/TR/webont-req/ (L.A.: August 2006).
2. Carabelea, C., Boissier, O., Ramparany, F.: Benefits and Requirements of Using Multi-

agent Systems on Smart Devices. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.):
Proc. of the European Conference on Parallel Processing. Lecture Notes in Computer
Science, Vol. 2790, Springer-Verlag, Berlin Heidelberg New York (2003) 1091-1098.

3. Lin, F.C., Liu, H.H.: MASPF: Searching the Shortest Communication Path with the
Guarantee of the Message Delivery between Manager and Mobile Agent. In: Yang, L.T.,
Guo, M., Gao, G.R., Jha, N.K. (eds.): Proc. of the Conference on Embedded and
Ubiquitous Computing. Lecture Notes in Computer Science, Vol. 3207, Springer-Verlag,
Berlin Heidelberg New York (2004) 755-764.

4. Rahwan, T., Rahwan, T., Rahwan, I., Ashri, R.: Agent-Based Support for Mobile Users
Using AgentSpeak(L). In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.): Proc.
of the 5th International Bi-Conference Workshop on Agent-Oriented Information Systems.
Lecture Notes in Artificial Intelligence, Vol. 3030, Springer-Verlag, Berlin Heidelberg
New York (2004) 45-60.

258 A. Carrillo-Ramos et al.

5. Shizuka, M., Ma, J., Lee, J., Miyoshi, Y., Takata, K.: A P2P Ubiquitous System for
Testing Network Programs. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.): Proc. of
the Conference on Embedded and Ubiquitous Computing. Lecture Notes in Computer
Science, Vol. 3207, Springer-Verlag, Berlin Heidelberg New York (2004) 1004-1013.

6. Sashima, A., Izumi, N., Kurumatani, K.: Bridging Coordination Gaps between Devices,
Services, and Humans in Ubiquitous computing. In: Proc. of the Workshop on Agents for
Ubiquitous Computing. http://www.ift.ulaval.ca/~mellouli/ubiagents04/. (L.A.: July 2006)

7. Thilliez M., Delot T.: Evaluating Location Dependent Queries Using ISLANDS. In:
Ramos, F.F., Unger, H., Larios, V. (eds.): Proc. of the Symposium on Advanced
Distributed Systems. Lecture Notes in Computer Science, Vol. 3061, Springer-Verlag,
Berlin Heidelberg New York (2004) 126-136.

8. Lemlouma, T.: Architecture de Négociation et d’Adaptation de Services Multimédia dans
des Environnements Hétérogènes. PhD Thesis, Institut National Polytechnique de
Grenoble, Grenoble, June 2004 (in French).

9. Carrillo-Ramos, A., Gensel, J., Villanova-Oliver, M., Martin, H.: PUMAS: a Framework
based on Ubiquitous Agents for Accessing Web Information Systems through Mobile
Devices. In: Haddad, H., Liebrock, L.M., Omicini, A., Wainwright, R.L. (eds.): Proc. of
the 20th ACM Symposium on Applied Computing. ACM Press, New York (2005)
1003-1008.

10. Indulska, J., Robinson, R., Rakotonirainy, A., Henricksen, K.: Experiences in Using CC/PP
in Context-Aware Systems. In: Chen, M.S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A.B.
(eds.): Proc. of the 4th International Conference on Mobile Data Management. Lecture Notes
in Computer Science, Vol. 2574, Springer-Verlag, Berlin Heidelberg N.Y. (2003) 247-261.

11. Berhe, G., Brunie, L., Pierson, J.M.: Modeling Service-Based Multimedia Content
Adaptation in Pervasive Computing. In: Vassiliadis, S., Gaudiot, J., Piuri, V. (eds.): Proc.
of the 1st Conference on Computing Frontiers. ACM Press, New York (2004) 60-69.

12. Gandon, F., Sadeh, N.: Semantic Web Technologies to Reconcile Privacy and Context
Awareness. In: Journal of Web Semantics 1(3) (2004). http://www.websemanticsjournal.
org/ps/pub/2004-17 (L.A.: August 2006).

13. Kurumatani, K.: Mass User Support by Social Coordination among Citizen in a Real
Environment. In: Kurumatani, K., Chen, S., Ohuchi, A. (eds.): Proc. of the International
Workshop on Multi-Agent for Mass User Support. Lecture Notes in Artificial Intelligence,
Vol. 3012, Springer-Verlag, Berlin Heidelberg New York (2004) 1-16.

14. Albayrak, S., Wollny, S., Varone, N., Lommatzsch, A., Milosevic, D.: Agent Technology
for Personalized Information Filtering: The PIA-System. In: Haddad, H., Liebrock, L.M.,
Omicini, A., Wainwright, R.L. (eds.): Proc. of the 20th ACM Symposium on Applied.
ACM Press, New York (2005) 54-59.

15. Xu, J., Lim, E., Ng, W.K.: Cluster-Based Database Selection Techniques for Routing
Bibliographic Queries. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.): Proc. of the
Workshop on Database and Expert Systems Applications. Lecture Notes in Computer
Science, Vol. 1677, Springer-Verlag, Berlin Heidelberg New York (1999) 100-109.

	Introduction
	The PUMAS Framework
	An Overview of the PUMAS Architecture
	The Connection MAS
	The Communication MAS
	The Information MAS
	The PUMAS Adaptation MAS

	PUMAS Scenario
	Example
	Related Works
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

