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Abstract. One way to make engineering design effective and efficient is to 
make its processes flexible i.e. self-adjusting, self-configuring, and self-
optimizing at run time. This paper presents the descriptive part of the Dynamic 
Engineering Design Process (DEDP) modelling framework developed in the 
PSI1 project. The project aims to build a software tool to assist managers to 
analyse and enhance the productivity of the DEDPs through process 
simulations. The framework incorporates the models of teams and actors, tasks 
and activities as well as design artefacts as the major interrelated parts. DEDPs 
are modelled as weakly defined flows of tasks and atomic activities that may 
only “become apparent” at run time because of several presented dynamic 
factors. The processes are self-formed through the mechanisms of collaboration 
in the dynamic team of actors. These mechanisms are based on contracting 
negotiations. DEDP productivity is assessed by the Units of Welfare collected 
by the multi-agent system that models the design team. The models of the 
framework are formalized in the family of PSI ontologies.  

1   Introduction 

It is widely accepted that the processes of engineering design differ from 
manufacturing processes by the fact that they “… are frequently chaotic and non-
linear, and have not been well served by project management or workflow tools” (cf. 
[1]). The primary reason is that the ability to design is one of the signatures of human 
intelligence that can hardly be framed by the rigid and static bounds of pre-defined 
business processes. Therefore, one of the promising ways to make engineering design 
effective and efficient is to manage its processes in a flexible manner i.e. make them 
self-adjusting, self-configuring and self-optimizing at run time. By doing so, we may 
enhance the degree of coherence among the interrelated activities and make them 
better coordinated and therefore more productive. Hence, the model of a DEDP 
                                                           
1  Performance Simulation Initiative (PSI) is an R&D project of Cadence Design Systems 

GmbH. 
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should be at least capable of accounting for the many factors that make a DEDP 
“chaotic and non-linear” and, at most, to eliminate them as much as possible. Using 
software agents for optimizing DEDPs at runtime in dynamics is natural. Indeed, an 
agent by definition is capable of acting autonomously, pro-actively and rationally in 
pursuit of the desired state of affairs. Therefore, it may be used as the locus of self-
configuration and self-optimization in a DEDP. Provided that we have built such a 
fine-grained, agent-oriented DEDP modelling framework, we may implement 
software tools allowing to assess a process and, ultimately, to optimize DEDPs in 
terms of engineering design productivity. 

Improving DEDPs in terms of engineering design productivity is the focus of the 
PSI project. The project has prototyped a software tool that provides for the 
assessment of accomplished DEDPs and the prediction of the characteristics of 
planned DEDPs through their simulation. This simulation prototype has been 
implemented as a multi-agent system [2]2 which models: designers’ teams working on 
projects by dynamically formed teams of software agents; DEDPs performed by these 
teams by tasks; the results of these processes by design artefacts. The knowledge 
about the performed processes is formalized and stored in the PSI testbed in terms of 
the PSI family of ontologies presented in this paper. Thus, we obtain an incremental 
collection of the actors’ experience, which is further on re-used to make simulation 
results more reliable.  

The paper is structured as follows: Section 2 discusses modelling requirements 
justifying the necessity of coping with the dynamic character of DEDPs. Section 3 
outlines our approach to assessing the productivity of DEDPs. Section 4 presents the 
ontological model of a DEDP designed as a family of ontologies. Section 5 deals with 
the epistemological and usage aspects of PSI ontologies. It also briefly reports on the 
evaluation of the presented ontologies. Section 6 surveys the related work and 
analyses the contributions of the presented DEDP model. Section 7 concludes the 
work. 

This is a substantially revised version of ourworkshop  paper [3]. The revision has 
been undertaken to present the advancement we have achieved in the development of 
PSI ontologies and is based on their specification version 1.5 [4]. The negotiation part 
of this framework uses PSI Generic Negotiation Ontology [5].  

2   Modelling Principles 

A DEDP is understood as a weakly defined engineering design workflow. It aims to 
achieve its goal (the design artefact comprising a certain set of its representations) in 
an optimal way in the terms of result quality and gained productivity. It is therefore 
clear that the following entities are involved in the process: actors, who form design 
teams and collaboratively do the work in the flow; activities, which are the atomic 
parts of a workflow defined by the technology used in the house; tasks, which are the 
representations of hierarchical clusters of activities; and design artefacts, which are 
the results of engineering design activities. Hence, activities are defined by the  design  

                                                           
2  In this paper we omit the description of this important part of our research due to space 

limitations.  
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Fig. 1. Static and dynamic components of the modeling framework 

technology and are well known before a DEDP starts. They form the “basket” of 
activities (Fig. 1), are uniformly understood and used by any actor and, therefore, may 
be considered generic. Another static shared “basket” is the one of generic tasks – 
please refer to the description below. Other elements may only “become apparent” at 
run time because:  

− A generic activity may be executed only if it is assigned to an actor and is applied 
to a certain design artefact. Such an activity differs from a generic one by having 
particular associations to an actor and a design artefact. Task – Activity Ontology 
contains two separate concepts for a generic activity and an activity. 

− Tasks are also distinguished as generic and as actually performed in the presented 
ontologies. A generic task is a shared static template defining a typical 
transformation of a design artefact from an initial set of representations to the 
target state. This transformation can be achieved by different combinations of 
generic activities. A task is subjectively dynamic because of its relationship to the 
specific actor who performs the task. This relationship is resolved as the result of 
the task assignment to an actor which happens at run time, when the DEDP is 
performed. Task – Activity Ontology contains two separate concepts for a generic 
task and a task. 

− A task is the model of the emerging hierarchical structure of a DEDP or the part of 
a DEDP. It may contain tasks and activities as its integral parts. The main purpose 
of a task is to arrange the assignment of its sub-tasks and activities. This 
arrangement is done by the actor (having the function of the task manager) who 
performs the task. The assigned sub-tasks may be consequently arranged in the 
similar manner by their task managers until the “leaves” of the hierarchical 
structure (the activities) are reached. These activities are assigned to and executed 
by the actors. By formalizing the above, we define the model of the cascade 
decomposition of tasks and, ultimately, a DEDP at run time.  

− The number of activity loops is not defined in advance. It depends on the quality 
checks at intermediate steps. Changing the number of activity loops may cause 
changes in activity duration. In turn, it may cause delays of the dependent tasks and 
activities with associated penalties for deadline violation, for example.  
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− The duration of activity execution is not defined in advance. Different actors are 
able to spend different capacities to execute the same activity at a certain time. 
Actors may perform the same activity with different efficiencies (productivities – 
Section 3). An activity may remain idle while waiting until the pre-conditions have 
been triggered. Idle state duration can’t be computed in advance because the 
preconditions may be formed by other activities executed by other actors.  

− An actor is chosen by the task manager when s/he decides to assign the activity. In 
the PSI framework contracting negotiations are the means of optimally choosing 
the actors to perform the tasks. For the planning phase it means “optimally” from 
the point of view of the project manager. The DEDP model incorporates the actor 
model and the means to arrange actors’ collaboration through peer assessment and 
negotiations.  

The abovementioned factors provide certain degrees of freedom3 in DEDP 
planning, re-planning, scheduling, re-scheduling and execution. In PSI a DEDP is 
never rigidly planned before it starts. The decisions of how to continue its execution 
are made each time it reaches a certain state in the state space. These decisions are 
made by the design team members who manage the tasks that continue the process. 
According to the aforementioned properties of a DEDP, different paths through the 
state space may be more productive or less.  

As shown in Fig. 1, a DEDP has components that differ along the dimensions of 
their variability. The first dimension is the dynamic character ranging from static, i.e. 
pre-defined for all possible DEDPs, to dynamic, i.e. subjected to changes in a DEDP. 
Another dimension is the sphere of visibility or commitment. This dimension ranges 
from shared, i.e. having the same meaning and instances for all DEDP participants, to 
subjective, i.e. having specific instances for different actors (though in the terms of a 
common ontology). Static shared DEDP components are generic activities, associated 
software tools and resources. The model of a DEDP assumes that the processes are 
assembled (ultimately) of atomic activities, which are the pieces of the design 
technology used by the company. The technology normally provided by a design 
support unit often suggests the usage of a specific software tool to perform an activity. 
The execution of a given activity consumes certain resource instances in given 
quantities. The model of a design process is based on the following assumptions: a 
DEDP is initiated by an external influence providing a goal to a certain actor. This 
goal is subjectively transformed to a task according to the knowledge of this actor. 
The actor uses his subjective knowledge about sub-tasks and activities to decompose 
a task. The actor may decide to perform a sub-task or to execute an activity of a 
decomposed task themselves or to hire another actor for a price in Units of Welfare 
(Section 3) using the available collaboration mechanism (contract net negotiations in 
PSI). In the latter case, the sub-task becomes the goal of another peer-actor who 
commits to performing the corresponding task by striking the contract deal. Hence, 
the appearance of actor-task combinations in a DEDP is subjectively dynamic. The 
mechanism of incorporating new actors to the process and the model of the design 
team are subjectively dynamic as well, since they depend on the decisions and choices 

                                                           
3  It should be noted here that this freedom implies more complications in planning, scheduling 

and the necessity to deal with a finer grained DEDP model.  
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taken at run time by the actors the state of which can change in the process. The rules 
of encounter of the mentioned mechanism are shared static and provide the horizontal 
laws for the system [6, 7]. 

A design artefact is a subjectively dynamic outcome of the process since it is 
formed out by a subjectively dynamic collaborative team of actors. However, the 
proposed layering allows reaching this effect through applying shared static atomic 
activities, though in subjectively dynamic combinations. For an activity, a design 
artefact is both the material input and the result of its execution. 

The actors who perform a task and initiate collaboration are Task Managers. Their 
rational goal with respect to the performed task is to choose the next step on the 
process path as productively as possible. Of course, for that, an actor needs a sort of 
productivity assessment model.  

3   Assessing Productivity by the Earned Units of Welfare 

Productivity by its very nature is one of the most important economic metrics and is 
defined by the ratio of the produced output (value) to the consumed input (value). As 
such, it is an integral characteristic of any transformation process, e.g. a DEDP. This 
neo-classical definition of productivity imposes rigid requirements on the process 
under consideration. The homogeneity of inputs and outputs is the most severe one 
with respect to engineering design. Known productivity measurement methodologies 
in engineering design ground themselves on the assessment of design complexity 
characteristics in the creation of homogeneous input- and output-measures. They do it 
by applying heuristic weights to compared parameters (e.g. the normalized transistor 
count4 in Semiconductor and Electronic Systems (SES) design, FP, KSLOC counts5 
in software design etc.). But the fundamental problem of this approach is that the 
complexity characteristics need to be invariant both to the type of a process and to the 
transformed design artefact. If those characteristics are not invariant, measurement 
scales tend to lack well-defined units. Consequently, the properties of the 
measurement scale, the labelling of the units and the interpretation of the values 
derived are of very limited practical use. Furthermore, in non-deterministic 
environments such measures are not very reliable. It is therefore important to build a 
measure that addresses the homogeneity requirement with respect to inputs and 
outputs and that is invariant to the dynamic characteristics of a process (Section 2). 
Such a measure may be based on the integral process success indicators like, for 
example, the ratio of the Earned Value to the Planned Value or to the Actual Cost at a 
Sign-off Stage of the process. This implies that productivity of a DEDP may be 
assessed by the value produced and accumulated by designers in a team. The more 
value produced by a designer, the more relatively productive s/he is. It is also true in 
the longer term if several DEDPs are taken into consideration. Hence, more 
productive designers are characterized by the higher volume of accumulated Units of 
Welfare (UoW). It is assumed in PSI that designers receive incentive which is 
adequate to their produced  value. The characteristic  of UoW assets is  invariant to  all  
                                                           
4  Measuring IC and ASIC Design Productivity. White Paper. Numetrics Management Systems, 

5201 Great America Parkway, Suite 320 Santa Clara, CA 95054, 2000. 
5  FP stands for Functional Point, KSLOC – for kilo lines of source code. 
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Fig. 2. High-level structure of the family of PSI ontologies 

aforementioned dynamic features of an engineering design process. It is a normalized 
scalar measure, which, by its semantics, is similar to the notion of Utility that is used 
in Distributed Rational Decision Making. UoW earning and spending mechanisms in 
PSI are based on contracting deals struck in several types of negotiations [7].  

4   Overview of PSI Ontologies 

If we intend to model an arbitrary process of doing something (for example, a design 
process), the basic building blocks for such a model would be: a goal – the state of 
affairs to be reached; an action; an object to apply actions to; a subject who applies 
actions to objects; an instrument to be used by a subject to execute actions; and an 
environment in which the process occurs. The structure of the PSI ontologies family 
reflects this approach (Fig. 2). It comprises five tightly linked major ontologies which 
in UML representation are grouped in separate packages: the Actor Ontology (a 
subject), the Project Ontology (an environment), the Task-Activity Ontology (an 
action), the Software Tool Ontology (an instrument) and the Design Artefact 
Ontology (a goal and an object). The classes shown within the packages in Fig. 2 
identify the major concepts of the respective ontologies.   

This grouping of course reflects the principles of the modelling approach 
(Section 2). Indeed, the outline given in Fig. 1 and the high-level picture of the family 
of PSI ontologies have many features in common.  

4.1   Actors, Beliefs, Collaboration, Design Teams  

Actors are the models of designers who form Design Teams to perform design 
Projects (Fig. 36). As the members of a Design Team they have certain Commitments 
with respect to the Design Team and to the Project under performance. Actors 
perform (i.e. manage) Tasks and execute Activities, which transform certain Design 

                                                           
6  Yellow UML packages in Fig. 3, 4, 5 represent the ontologies that are external to the 

described one.   
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Artefacts. Actors use Software Tools to execute Activities and have certain Attitudes 
to these Software Tools. Actors consume Resources to execute Activities. One of the 
important aspects of the Actor model is the representation of Actor’s Ability to 
perform Tasks, execute Activities and perform organizational Roles (like Front-End 
Designer, Back-End Designer etc.). With respect to an abstract Generic Activity, a 
Generic Task and a Role, we are also interested if an Actor is able (and to what 
extent) to execute the atomic action, or to perform a task or a role. The association 
concepts of an AbilityWrtActivity, an AbilityWrtTask and an Ability provide the 
means for the answers. The Actor ontology also describes Communication Channels 
that emerge among different Actors who collaboratively work on different parts of the 
specific Design Artefact. The reason for such collaboration is the peculiarity of the 
structure of the Design Artefact. Collaboration occurs among the Actors who work on 
parts of the Design Artefact having common Interfaces. Another kind of collaboration 
among the members of a Design Team is their coordinated performance of Tasks and 
execution of Activities. This teamwork is arranged via contracting negotiations. An 
actor playing the Role of a task manager intends to outsource a Task to one of his or 
her peers. The following two aspects constrain the set of peer-Actors to the sub-set of 
the believed performers: a task manager believes that the believed performers are (i) 
capable to perform the Task and (ii) credible enough to trust the performance of the 
Task to them. These Beliefs are modelled by the Belief concept of the Actor ontology. 
Beliefs are the important part of the negotiation mechanisms and are related to the 
concepts of Negotiation Outcomes and Negotiation Strategies of the Generic 
Negotiation ontology [5]. The Beliefs of the negotiation participants are updated 
according to the outcome of the negotiation. Beliefs are used by Actors to adjust their 
negotiation strategies providing the assessments of the peers’ capabilities and 
credibility [6].  An Actor becomes the contractor for the negotiated generic task or 
generic activity in result of such a negotiation. He is the only one of believed 
performers who receives the negotiated Task (Activity) and commits to performing 
(executing) it as a member of the Design Team. A Design Team is the bridge 
providing the relationship of a DEDP to the Project, which is implemented 
performing this DEDP. 

 

Fig. 3. Outline of the PSI Actor ontology 
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4.2   A Project as the Environment of a DEDP 

The Project ontology describes the environment of a DEDP: an organizational 
structure around its performance. This ontology at the high level resembles the 
traditional project planning perspective, which states that a process is performed by a 
team (of Actors) and has a collection of Resources associated with it. A Process is 
viewed as a sequence of transformations of the target Design Artefact. These 
transformations may be viewed as the transitions between the States of a Design 
Artefact. The objective of each transformation is to develop the increment of a Design 
Artefact in a certain Representation. The States in this transformation process are 
therefore characterized by the addition of the certain Design Artefact Representations 
to the Design Artefact under transformation. In the process of this transformation, a 
Design Artefact receives its incremental “slices” at particular States. One such “slice” 
bijectively corresponds to one instance of a Design Artefact Representation. 
Representations are booked to the Project Memory. Please see also Section 4.4. 

4.3   Tasks, Activities, Co-execution, and Dependencies  

The purpose of the Task-Activity ontology (Fig. 4) is to provide the descriptive 
framework for modelling the emerging dynamic hierarchical structure of a design 
process.  

As outlined in the description of the modelling approach, only Activities are 
executed. An Activity is understood as the atomic purposeful action thatis applied to a 
certain Design Artefact and results in its transformation from one State to another 
State adding a Representation “slice” to it. For example, the RTL7-Design Activity 
uses a Design Artefact in the specification representation and transforms this Design 
Artefact by adding the RTL representation.  However, an Activity applied to different 
Design Artefacts results in different outcomes. Indeed, the RTL-Design Activity 
applied to FB1 or to FB2 – instances of a Design Artefact – will have FB1 in the 
target representation of RTL or FB2 in the target representation of RTL respectively as 
its outcomes. On the other hand, the same activity, even applied to the same FB1 but 
executed by different Actors, may require different efforts to be spent to achieve its 
outcome. That is why the ontology introduces the concept of an Activity assuming its 
particular association with an Actor and a Design Artefact.  

A Generic Activity is the more abstract concept that denotes or “shapes-out”, as the 
relationship name suggests, a purposeful, atomic action. This action is actually the 
transformation that is configured by the State Pattern of an (intended) Design 
Artefact. This State Pattern is the template that configures the inputs and outputs of 
the related Generic Activity. These abstract inputs and outputs may receive physical 
materialization as the particular instances of a Design Artefact (or its sub-concepts) 
only when the Activity corresponding to the configured Generic Activity is executed. 
The action specified by the Generic Activity may be performed using a Software Tool 
– either one specific, or several alternative ones. One more important aspect captured 
by the context of a Generic Activity is the relationship to co-executed activities.  
The model provided by the ontology allows specifying that a pair of activities may  be 

                                                           
7 RTL stands for Register Transfer Level. 
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Fig. 4. Outline of the PSI Task-Activity ontology 

executed in an arbitrary sequence or should be executed in parallel. For example, the 
RTL Debug and RTL Verification activities are to be executed in parallel because 
executing only one of them makes no sense according to the design technology. This 
part of the model is used in resolving the decomposition of Generic Tasks to Generic 
Activities at the Work Breakdown Structure generation phase of project planning. 

The concept of an Activity refines the concept of a Generic Activity by providing 
the new knowledge about the assigned Actor and the transformed Design Artefact 
through its relationships. A Generic Activity in contrast to an Activity is the abstract 
specification of an atomic action. These atomic actions are executed by Actors as 
Activities aimed to transform Design Artefacts in source representations into Design 
Artefacts in target representations.  

The concepts of a Generic Task and a Task have the similar relationship to each 
other. A Task is performed (managed) by the certain assigned Actor. However, the 
semantics of this pair of concepts is different from the ones describing activities. A 
Task is the concept that (i) describes the dynamic hierarchical nature of a design 
process; (ii) may contain sub-tasks of lower granularity as its integral parts; (iii) may 
wrap a single or a set of Activities under the umbrella of the single Actor who is the 
task manager. A Task refines the concept of an (abstract) Generic Task by being 
related to an Activity and an Actor. A Generic Task is the abstract template of a 
composite action (in difference to the atomic abstract action modelled by a Generic 
Activity). Tasks may also be viewed as the abstract descriptions of capabilities used 
to form Roles. 

The presented Task-Activity model handles the dependencies among Tasks and 
among Activities assuming that these dependencies are strong [3]. These depen-
dencies are resolved by using the knowledge about the initial and target states of the 
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associated Design Artefacts (Section 4.4). A representation of the Design Artefact 
reached in a particular state (by the execution of certain Activities) is required by the 
dependent Activity. This state also triggers the Precondition of the dependent Task if 
the dependencies among Tasks are analysed. A Task results in certain Post-Effects. A 
Post-Effect is the event of reaching the particular state by the processed Design 
Artefact (DA). A similar model is used for capturing the dependencies among Generic 
tasks or Generic Activities. The difference is in the semantics of the corresponding 
concepts. For example, a DAStatePattern does not denote the state(s) of a Design 
Artefact, but is rather the template used for the configuration of the intended inputs 
and outputs of a Generic Activity.  

As described in Section 4.1, Generic Tasks and Generic Activities are used as 
Negotiation Issues in the negotiations on the assignment of Tasks and Activities to 
certain Actors.  

4.4   Design Artefacts  

The central concept of the Design Artefact ontology (Fig. 5) is Design Artefact – the 
goal and the object of a design process. At a high level, the ontology focusses on  
the following aspects of this model: (i) a Design Artefact as the object of the 
transformation process is related to the executed actions i.e. to the concept of an 
Activity; (ii) a Design Artefact (more exactly the Functional Block of the topmost 
level) as the goal of the process is materialized in a Chip8 – the terminal state of 
affairs to be achieved; (iii) a Design Artefact as a complex structure comprising 
different integral parts in different representations may induce collaboration of 
different Actors by indicating common Interfaces of its integral parts; (iv) the trace of 
Design Artefact transformations and the related states are recorded into the Project 
Memory. A Project Memory, therefore, provides a link of a Design Artefact 
transformation trace to the design process environment. 

From the point of view of domain grounding, the ontology specifies that a Design 
Artefact comprises the hierarchy of Functional Blocks as the structural elements of 
designed functionality. Functional Blocks are generally viewed as “grey boxes” with 
functional subdivision defined by the taxonomy of Design Artefact Types. The top-
level examples of these types are: digital, analog, mixed-signal. The taxonomy of 
types also configures the Applicability of Generic Tasks and Generic Activities to a 
Design Artefact. The reason is that the technology and, therefore, the subsets of 
applicable tasks and activities are different for different types of design artefacts.  

The instances of a Functional Block are complemented by the instances of the 
other subclasses of a Design Artefact – Documentations, TestBenches and 
Verification Runsets – the means to document, test and verify designs according to 
the provided engineering design technology. 

                                                           
8  Design Artefacts may not be materialized in a Chip in some design processes. For example, a 

process having the goal to design Soft IP will have a different Design Artefact Representation 
(GDS2 or NetList) as the terminal one. Such Soft IPs are often released in Libraries for 
further re-use in different design processes and projects. However, Design Artefacts in 
Semiconductor and Electronic Systems domain are designed to be sooner (in the current 
process) or later (in another process) materialized in a Chip.  
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Fig. 5. Outline of the PSI Design Artefact ontology 

Design Artefacts are used as Negotiation Issues in a DEDP. The typical cases are: 
(i) an Actor looks for a Soft IP to be re-used in his current design and negotiates the 
terms of usage with the owners of this IP; (ii) a Design Artefact is one of the issues  in 
the multi-issue negotiation on the assignment of a Task to an Actor.  

4.5   Software Tools 

The Software Tool ontology focusses on the description of the two aspects of an 
instrument used by Actors to execute Activities. The first aspect is the instrument 
itself. A Software Tool is used by an Actor to execute an Activity. The second aspect 
is the usefulness of a Software Tool. Different Actors while using the same Software 
Tool may be somewhat productive. Therefore, Actors may have different Attitudes to 
a certain Software Tool. Though these subjective attitudes are important they, if 
analysed separately, do not provide a reliable judgment. Therefore the average 
impression provided by a Design Team may be more useful for Evaluation purposes. 
A Software Tool has these relationships to the concepts of an Actor and a Design 
Team. 

5   PSI Ontologies: Epistemology, Usage and Evaluation 

The descriptive part of the DEDP modelling framework has been initially designed as 
a family of ontologies and coded in a set of UML class diagrams. Further 
formalization and implementation work has been performed in the way aligned with 
scenarios of ontology usage identified by Uschold and Jasper [10]. PSI ontologies are 
used [2] for authoring DEDP logs recorded to the PSI testbed, for specifying the 
design of the DEDP-PMS simulator software and as shared ontologies for agent 
communication at run-time. Ontology usage aspects influenced the choice of the 
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formal languages for coding the ontologies. The ontologies were coded in OWL-DL9. 
This language was chosen because it is one of the de-facto ontology specification 
standards. The second reason for choosing OWL-DL was that its expressive power is 
similar to that of the internal mental model specification language (MMSL) of 
MASDK [11], which has been used for specifying the design and prototyping of the 
PSI prototype – DEDP-PMS.  From an epistemological viewpoint, the transformation 
of the PSI ontologies to OWL-DL representation required the change of UML 
associations to constructs with binary relationships with restrictions. This 
transformation has been performed manually with the help of the Protégé 3.010 
ontology editor as described in [4].  

DEDP-PMS11 has been implemented to evaluate the modelling framework, to 
experiment with several planning and scheduling algorithms, and to assess the 
feasibility of building a software tool for DEDP optimization using their productivity 
assessment. Two rounds of evaluation experiments have been performed. The first 
round has been done over the two simplified test cases (the DEDPs for the Digital and 
the Analog DAs) and used version 1.0 of the PSI family of ontologies. The second 
round used version 1.4 of the PSI family of ontologies and has been applied to a real 
world case study [8]. In the first round of evaluation experiments [2], the simulator 
has been used in two application modes: playback and predictive simulation. In 
playback mode, the simulation is used to assess the performance of DEDPs that have 
been accomplished in the past. The purpose of the predictive simulation is to support 
project managers in planning and dynamic re-planning of running design projects in 
the cases the occurrence of several kinds of events that are out of their control: late 
changes to the design objective, sudden unavailability of team members, changes in 
the workload of the designers according to the influence of other independent projects 
etc. In the first round of evaluation experiments, only the availability of the actors has 
been altered by random “screwing” of the corresponding simulation parameters. The 
second round has been focussed on the evaluation of the dynamic planning 
capabilities. The goal of the experiments was to compare the Work Breakdown 
Structure automatically generated by the DEDP-PMS with the one created manually 
by the project manager. The details of these experiments are described in [8].  

Evaluation experiments with the available DEDP records stored to the PSI testbed 
demonstrated that the simulator develops DEDP plans very closely to what happened 
in reality i.e. the plans developed by human project managers. Observed fluctuations 
were caused by the changes in the parameters of the availability of team members in 
the course of the simulation experiments by “screwing” their available capacities. 
This fact confirms the adequacy of the developed framework to the industrial 
requirements in Semiconductor and Electronic Systems Domain. 

6   Related Work and Discussion 

The projects that pioneered R&D in agent-based engineering design process 
modelling, support and automation appeared about a decade ago e.g. [12, 13, 14]. 
                                                           
 9 OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/ 
10 Protégé ontology editor and knowledge acquisition system http://protege.stanford.edu/  
11 DEDP-PMS has been presented at the 17th European Conference on Artificial Intelligence, 

ECAI 2006 [27]. 



180 V. Ermolayev et al. 

Some projects of the “second wave” [15, 16] helped to specify the focus of PSI in 
automating the near-optimal arrangement of DEDPs in terms of their productivity. In 
contrast to e.g. [26], the objective of PSI is not to automate the design process itself 
but to automate the arrangement of its activities in the most productive way. In PSI, 
the activities resulting in the elaboration of design artefacts are performed manually 
by human designers.  

The DEDP modelling framework in its part of organizational and actor-related 
knowledge representation is based on the frameworks [17, 18, 5, 9]. PSI contribution 
in this part is the incorporation of roles and actors, teams of actors, negotiation 
context in one coherent family of ontologies and the binding of these ontologies to the 
engineering design domain by incorporating Design Artefact and Software Tool 
ontologies. The main contribution of the PSI family of ontologies is the model of a 
dynamic team of designers that is formed through contracting negotiations and 
performs dynamically orchestrated processes. Hence, DEDPs in PSI are understood as 
socially performed processes in the sense close to [19]. For example, the notion of a 
Role of PSI Actor ontology is semantically close to that of the normative multi-agent 
framework.   

In the part of process modelling, PSI bases its approach on [20, 6, 21]. In the 
family of PSI ontologies, engineering design processes are modelled as tasks 
composed of sub-tasks and atomic activities. Similarly to [22], subtasks and 
activities may have strong dependencies. However, in PSI, the knowledge about 
these dependencies is presented in a different way. The means for that are DA State 
Patterns and Execution Relations. DA State Patterns are the patterns of DA States. 
These are the concepts to configure the inputs, the outputs and the dependencies 
caused by the usage of the outputs as inputs. By that, the dependencies among 
activities are also aligned with the corresponding DA States. Execution Relations 
are used to represent concurrency among the activities in a pair. This concurrency 
may be caused by the specifics of the DA structure. Similarly to [21], tasks  
have pre-conditions and post-effects. However, the Task-Activity ontology 
constrains the semantics of pre-conditions and post-effects by making them sub-
classes of an event concept. Material inputs and outputs [3] are modelled in frame 
of DA States.  

Examples of theoretical frameworks for solving planning tasks are Decision 
Theoretic Planning (DTP) [23] and Hierarchical Task Networks (HTN) [24]. The PSI 
framework is built upon the conceptual denotation of the planning task shared by the 
previously mentioned frameworks. Planning is understood as the process of cascade 
decomposition of the goal, transformation of the sub-goals to Generic Tasks, Generic 
Activities and committing Actors to Tasks and Activities. However, the PSI 
framework extends the capabilities of the classical AI approaches to planning by 
accounting for the dynamic character of the process and by the capability to 
collaborative distributed planning through negotiation mechanisms. The latter feature 
also distinguishes our descriptive framework from the plan-task ontology of KMI 
[25]. Moreover, the family of PSI ontologies provides conceptual means for dynamic 
re-scheduling based on the concepts of self-beliefs and beliefs.   
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7   Conclusions 

This paper has presented the descriptive part of the DEDP modelling framework 
developed in the PSI project. The project is aimed to build a software tool assisting in 
analysis and optimization of DEDPs’ productivity through agent-based simulations. 
The framework incorporates the models of projects, teams and actors, tasks and 
activities, design artefacts, and software tools as the major interrelated parts. DEDPs 
are modelled as weakly defined flows of tasks and atomic activities. These flows are 
transformation processes. They transform design artefacts passing through the 
sequence of their states. DEDPs may “become apparent” only at run time because of 
several factors that are beyond the control of the design team members. The processes 
are self-formed through the mechanisms of collaboration in the dynamic team of 
actors. These mechanisms are based on several types of negotiations. DEDP 
productivity is assessed by the Units of Welfare collected by the multi-agent system 
that models the design team. The models of the framework are formalized in the 
family of PSI ontologies. These ontologies are used in the implemented simulator 
software prototype. Evaluation experiments have been performed using the PSI 
testbed [2, 8]. These experiments showed that DEDP planning performed using the 
DEDP-PMS software prototype reflects reality. Generated DEDP plans are very close 
to that developed by human project managers. 
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