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Abstract. The work presented in this paper is an attempt to bridge two 
co-existing realties: Semantic Web and Multi-Agent Systems. Semantic aware 
agents will be able to interoperate in a semantic way as well as to produce and 
consume semantically annotated information and services. Agents should be 
enhanced with tools and mechanisms in order to autonomously achieve these 
strategic and ambitious objectives. In this paper, we focus on what we consider 
the central issue when moving towards the vision of semantic multi-agent 
systems: the ontology management support. Due to the heterogeneity of 
resources available and roles played by different agents of a system, a one-level 
approach with the aim of being omni comprehensive seems to be seldom 
feasible. In our opinion, a good compromise is represented by a two-level 
approach: a light ontology management support embedded in each agent and 
one or more ontology servers, providing a more expressive and powerful 
support.  
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1   Introduction 

One of the most important challenges in agent research is the realization of truly 
semantic aware agents, i.e. agents that are able to interoperate in a semantic way as 
well as to produce and consume semantically annotated information and services, 
supporting automated business transactions. To achieve this goal, researchers can take 
advantage of semantic Web technologies and, in particular, of OWL and its related 
software tools. 

In this paper, we concentrate on what we consider the central theme when moving 
towards the vision of semantic multi-agent systems: the management and exploitation 
of OWL ontologies. We present a two-level approach, coping with the issues of 
managing complex ontologies and providing ontology management support to 
lightweight agents. 

In the next section, we examine the rationale of embedding a light ontology 
support in each agent of a multi-agent system. Agents refer to this ontology support 
when they express the content of ACL messages, e.g. the domain concepts and the 
relationships that hold among them. Section 3 describes the implemented library 
providing agents with the aforementioned two-level ontology management support. 
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Finally, Section 4 gives some concluding remarks and presents our future research 
directions on ontology management in multi-agent systems. 

2   A Perspective on Object-Oriented vs. OWL DL Model 

The scenario in which our research is situated is characterized by different domain 
knowledge modelling techniques and by different needs. On the one hand, there is the 
semantic Web and OWL [1], the most recent development in standard ontology 
languages. On the other hand, the popularity of the Java language for the development 
of multi-agent systems pushes the need for having an ontology representation more in 
line with the object-oriented model. 

The idea behind our two-level approach originates from the awareness that agents 
seldom need to deal with the whole complexity of a semantically annotated Web. Our 
objective is hence to cut off this complexity and provide each agent with simple 
artefacts to access structured information. These simple artefacts are based on Java 
technology. 

At this point a crucial question arises: are the semantics implied by the object-
oriented paradigm powerful enough? A comparison between the two models (object-
oriented model, e.g. the Java data model, and OWL DL) is compelling in order to 
understand similarities and differences, and furthermore to evaluate the feasibility of 
using an object-oriented representation of the ontology. As a matter of fact, the 
language used to build an ontology influences the kind of details that one can express 
or takes into consideration. 

Restricting only to the semantics of the object-oriented model, i.e. without 
considering the possibility of defining a meta-model, what we are able to express is a 
taxonomy among classes1. 

Briefly, we can rephrase the object-oriented model as follows. An instance of a 
class refers to an object of the corresponding class. Attributes are part of a class 
declaration. Objects are associated with attribute values describing properties of the 
object. An attribute has a name and a type specifying the domain of attribute values. 
All attributes of a class have distinct names. Attributes with the same name may, 
however, appear in different classes that are not related by generalization. Methods 
are part of a class definition and they are used to specify the behaviour and evolution 
of objects2. A generalization is a taxonomic relationship between two classes. This 
relationship specializes a general class into a more specific class. Generalization 
relationships form a hierarchy over the set of classes. 

As far as OWL is concerned, it provides three increasingly expressive 
sublanguages designed for use by specific communities of implementers and users. 
Here we focus mainly on OWL DL (called simply OWL in the following), based on 
SHIQ Description Logics. OWL benefits from years of DL research and can rely on a 
well defined semantics, known reasoning algorithms and highly optimized 
implemented reasoners. 
                                                           
1 We focus on the semantics of the so called “class based” model. 
2  The dynamic properties of the model are not dealt with in this paper, focussed on the 

structural aspects, even if they constitute an important part of the model. 
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OWL, as the majority of conceptual models, relies on an object centred view of the 
world. It allows three types of entities: concepts, which describe general concepts of 
things in the domain and are usually represented as sets; individuals, which are 
objects in the domain, and properties, which are relations between individuals.  

At first glance OWL looks like an object-oriented model. Indeed, they are both 
based on the notion of class: in the object-oriented model, a class provides a common 
description for a set of objects sharing the same properties; in OWL, the extent of a 
class is a set of individuals.  

Behind this resemblance, there is however a fundamental and significant difference 
between the two approaches, centred on the notion of property. 

Individual attributes and relationships among individuals in OWL are called 
properties. The property notion appears superficially to be the same as the 
attribute/component in the object-oriented model. But, looking deeply to the DL 
semantics on which OWL DL is based, we can see that the two notions are fairly 
different. Formally [2], considering an interpretation Ι that consist of a set ΔI (the 
domain of the interpretation) that is not empty and an interpretation function .I, to 
every atomic concept A is assigned a set A I⊆ΔI and to every atomic role R a binary 
relation R⊆ΔI×ΔI. By means of the semantics of terminological axioms, we can make 
statements about how concepts and even roles are related to each other (e.g. RI⊆SI 
inclusion relationship between two roles). What is clear is that roles in DL, and 
therefore OWL DL properties, are first-class modelling elements. Most of the 
information about the state of the world is captured in OWL by the interrelations 
between individuals. In other words, data are grouped around properties. For instance, 
all data regarding a given individual would usually be spread among different 
relations, each describing different properties of the same individual.  

Differently, the object-oriented representation relies on the intentional notion of 
class, as an abstract data type (partially or fully) implemented [3], and on the 
extensional notion of object identifier. An object is strictly related and characterized 
by its own features including attributes and methods. In other words, data are grouped 
around objects, thought of as a collection of attributes/components.  

As a consequence, in OWL it is possible to state assertions on properties that have 
no equivalent in the object-oriented semantics. Properties represent without any doubt 
one of the most problematic differences between OWL and object-oriented models. 

To conclude, we can say that grounding the conceptual space of the ontological 
domain to a programming language such as Java has several obvious advantages but 
also some limitations. What we intend to do in next sub-section is an analysis of the 
weaknesses of the object-oriented representation compared to OWL, and to verify if 
its expressive power is powerful enough to capture the semantics of the agent 
knowledge base. In this study, we take into consideration that agents do not often 
need to face the computational complexity of performing inferences on large, 
distributed information sources; rather, they often simply need to produce and 
validate messages that refer to concepts of a given ontology. 

2.1   Mapping OWL to Java 

During the past years, much research work has been devoted to deal with the 
comparison between OWL and UML [4-5]. Among these, some considered the 
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mapping related to a particular object-oriented programming language: Java. 
Focussing on these, we can essentially identify two major directions followed by the 
research community in order to express the OWL semantics using the Java language. 

 
1. The definition of a meta-model that closely reflect the OWL syntax and semantics. 

Examples are the modelling APIs of Jena [6-7] and OWL API [8-9]. The latter 
consists of a high-level programmatic interface for accessing and manipulating 
OWL ontologies. Its aim is to implement a highly reusable component suitable for 
applications like editors, annotation tools and query agents. 

2. The use of the Java Beans API [10] to realize a complete mapping between the two 
meta-models. In particular, to cope with the central issue, i.e. the property-
preserving transformation, [10] defines suitable PropertyChecker classes in order 
to support the semantics of the property axioms and restrictions. However, in our 
opinion, this approach lacks an explicit meta-model and therefore the 
corresponding explicit information. Moreover, it cannot be supported by a reasoner 
because of the impracticality of implementing one.  
 
Our approach differs from those listed above since it aims at offering a two-level 

support: the most powerful one is based on Jena; the other is based on the object-
oriented semantics. 

When establishing a correspondence between two models, it is important to 
understand what the purpose of the mapping is. For example, the aim of having a full 
mapping and preserving the semantics is satisfied when using the Jena toolkit, 
whereas it is too strong in the case of the lightweight support. In the latter case, we 
decided to relax this constraint and consider a partial mapping, required only to be 
consistent (in the sense that it does not preserve semantics but only semantic 
equivalence [4]). This means that there is a one-to-one correspondence between 
instances of one model and the instances of the other model that preserves 
relationships between instances. This lets us use, for example, renaming and 
redundancy in order to achieve this goal, as in the use of interfaces in Java in order to 
express multiple inheritance. 

For the sake of clarity and in order to avoid a lengthy dissertation, in the following 
we consider only the more salient aspects of the mapping, analysing commonalities as 
well as dissimilarities, and ending, in the successive sub-section, by delineating the 
application sphere of our approach. 

Every OWL class is mapped into a Java interface containing the accessor method 
declarations (getters and setters) for properties of that class (properties whose domain 
is specified as this class). Then, for each interface, a Java class is generated, 
implementing the interface. Creating an interface and then separately implementing a 
Java class for each ontology class is necessary to overcome the single-inheritance 
limitation that applies to Java classes. In OWL, there is a distinction between named 
classes (i.e. primitive concepts), for which instances can only be declared explicitly, 
and defined classes (i.e. defined concepts), which specify necessary and sufficient 
conditions for membership. Java does not support this semantics and so only primitive 
concepts can be defined. In the following we refer only to named classes. 

Individuals in OWL may be an instance of multiple classes, without one being 
necessarily a subclass of another. This is in contrast with the object-oriented model: 
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an object could get the properties of two classes only by means of a third one which 
has both of them in its ancestors. A workaround is thus to create a special subclass for 
this notion.  

Considering the terminological axioms used to express how classes are related to 
each other, the only one that has an equivalent semantics in Java is the OWL synopsis 
intersectionOf  (mapped as an interface which implements two interfaces). The 
unionOf OWL synopsis can be mapped in Java defining an interface as a super-
interface of two interfaces but, in order to ensure the semantic equivalence, it is 
compulsory to prevent the implementation of the super-interface.  

The constructs asserting completeness or disjointness of classes are those which 
characterized more OWL, from the point of view of the “open-world” assumption, i.e. 
modelling the state of the world with partial information. In OWL, classes are 
overlapping until disjointness axioms are entered. Moreover, generalization can be 
mutually exclusive, meaning that all the specific classes are mutually disjoint and/or 
complete, meaning that the union of the more specific classes completely covers the 
more general class. In Java, there is no way of expressing it and other similar 
properties (e.g. equivalentClass); the representation of the world that we can state 
using this model can only refer to a “closed-world” assumption. This obviously 
constitutes a limitation when one cannot assume that the knowledge in the knowledge 
base is complete. 

Regards properties, since they are not first-class modelling elements in Java, it is 
not possible to create property hierarchies and to state that a property is symmetric, 
transitive, equivalent or the inverse of another property. Properties can be used to 
state relationships between individuals (ObjectProperty) or from individuals to data 
values (DatatypeProperty). DatatypeProperties can be directly mapped into Java 
attributes of the corresponding data type and ObjectProperties to Java attributes 
whose type is the class specified in the property’s range. In OWL there are constraints 
that can be enforced on properties: 

1. Cardinality constraints state the minimum and maximum number of objects that 
can be related;  

2. The “domain” constraint limits the individuals to which the properties can be 
applied;  

3. The “range” constraint limits the individuals that the property may have as its 
value. 

Java accessor methods could ensure that cardinality constraints be satisfied. This 
information, however, is implicit and embedded in the class source code and it would  
not become known to a possible reasoner and therefore it would be most likely of no use. 

Concerning the domain restriction, if the property domain is specified as a single 
class, the corresponding Java interface contains declarations of accessor methods for 
the property. In the case of a multiple domain property, there are two possible 
alternatives: 

 
1. The domain is an intersection-of all the classes specified as the domain; to cope 

with this we create an intersection interface (see above).  
2. Multiple alternative domains are defined using the unionOf operator; we can cope 

with this creating a union interface but with the limitations expressed above. 
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Finally, in relation to the range restriction, our approach fails to account for multi-
range properties, since variables in Java can be only of one type. 

It clearly emerges, from the previous analysis, that the Java language 
expressiveness is lower even than OWL Lite but, despite this, in our view, it is still 
valuable with respect to the common agent needs. 

2.2   Reasoning About Knowledge 

Although DLs (and hence OWL DL) and object-oriented models have a common root 
in class-based models, they were developed by different communities and for 
different purposes. The different target applications significantly affect the 
expressiveness of the languages and consequently the reasoning services that can be 
performed on the corresponding knowledge base. 

The object model only permits the specification of necessary conditions for the 
class (i.e. the definition of the properties that must be owned by objects belonging to a 
specific class) that are not sufficient to identify a member of the class. The only way 
to associate an instance to a class is therefore to explicit assert its membership. As a 
consequence some basic reasoning services lose their importance and significance 
(e.g. knowledge base consistency, subsumption and instance checking). A fairly 
common complex reasoning service, i.e. classification, also plays a marginal role in 
an object-oriented model. In fact, in DL, the terminological classification consists in 
making explicit the taxonomy entailed by the knowledge base. Whereas the 
classification of individuals has its role in DL, since individuals can be defined giving 
a set of their properties and therefore objects’ classes, membership can be 
dynamically inherited. 

The previous remarks lead us to consider the aspect that differentiates even more 
between the two models, that is the divergent assumption on the knowledge about the 
domain being represented - open vs. closed world assumption. Indeed while a DL-
based system contains implicit knowledge that can be made explicit through 
inference, a system based on an object-oriented model exhibits a limited use of 
entailment. Inheritance may represent a simple way of expressing implicit knowledge 
(a class inherits all the properties of its parents without explicit specifying it). Another 
way is to represent part of the information within methods (e.g. initialization 
methods), but this implicit information is not (or hard) available to a potential 
reasoner. 

If we consider the knowledge base as a means of storing information about 
individuals, an interesting complex reasoning task is represented by retrieval. 
Retrieval (or query answering) consists in finding all the individuals in the knowledge 
base in a concept expression. The information retrieval task plays a leading role in a 
knowledge base centred on an object-oriented representation. 

3   System Architecture 

The concrete implementation of the proposed system is a direct result of the 
evaluations set out in the previous sections. The proposed two-level approach to 
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ontology management is implemented as a framework providing the following 
functionality: 
1. Light support: to import OWL ontologies as an object-oriented hierarchy of 

classes; 
2. Ontology Server: to provide the centralized management of shared ontologies. 

3.1   OWLBeans 

The OWLBeans framework, which is going to be presented in this section, does not 
deal with the whole complexity of a semantically annotated Web. Instead, its purpose 
is precisely to cut off this complexity, and to provide simple artefacts to access 
structured information. 

In general, interfacing agents with the Semantic Web implies the deployment of an 
inference engine or of a theorem prover. In fact, this is the approach we are currently 
following to implement an agent-based server to manage OWL ontologies. Instead, in 
many cases, autonomous agents cannot (or do not need to) face the computational 
complexity of performing inferences on large, distributed information sources. The 
OWLBeans framework is mainly thought for these agents, for which an object-
oriented view of the application domain is enough to complete their tasks. 

The software artefacts produced by the framework, i.e. mainly JavaBeans and 
simple metadata representations used by JADE [11], are not so expressive as OWL-
DL. But in some context this is not required. Conversely, especially if software and 
hardware resources are very limited, it is often preferable to deal only with common 
Java interfaces, classes, attributes and objects. Its main functionality is to extract a 
subset of the relations expressed in an OWL document for generating a hierarchy of 
JavaBeans, and possibly for creating a corresponding JADE ontology to represent 
metadata. However, given its modular architecture, it also provides other 
functionality, e.g. to save a JADE ontology into an OWL file or to generate a package 
of JavaBeans from the description provided by a JADE ontology. 

Intermediate ontology model. In order to keep the code maintainable and modular, 
we decided to base the framework on an internal, intermediate representation of the 
ontology. This intermediate model can be alternatively used to generate the sources of 
some Java classes, a JADE ontology or an OWL file. The intermediate model itself 
can be filled with data obtained, e.g. by reading an OWL file or by inspecting a JADE 
ontology. 

The main design goals of the internal ontology representation were: 
 

1. Simplicity: it had to include only few simple classes to allow a fast and easy 
introspection of the ontology. The model had to be simple enough to be managed 
in scripts and templates; in fact, one of the main design goals was to have a model 
be directly used by a template engine to generate the code. 

2. Expressiveness: it had to include the information needed to generate JavaBeans and 
all other desired artefacts. The main guideline was to avoid limiting the translation 
process. The intermediate model had to be as simple as possible, though not 
creating a metadata bottleneck in the translation of an OWL ontology to 
JavaBeans. 



 An Ontology Support for Semantic Aware Agents 147 

3. Primitive data-types: it had to handle not only classes, but even primitive data-
types, since both Java and OWL classes can have properties using primitive data-
types as their range. 

4. External references: ontologies are often built extending more general 
classifications and taxonomies. For example, an ontology can detail the description 
of some products in the context of a more general trade ontology. We wanted our 
model not to be limited to single ontologies, but to allow the representation of 
external entities too: classes may extend other classes, defined locally or in other 
ontologies, and property ranges may allow not only primitive data-types and 
internal classes, but also classes defined in external ontologies. 
 
One of the main issues related to properties, since they are handled in different 

ways in description logics and in object-oriented systems (see the previous section). 
For the particular aims and scope of OWLBeans, property names must be unique only 
in the scope of their own class in object-oriented systems, while they have global 
scope in description logics. Our choice, in the internal model design, was to have 
properties “owned” by classes. This allows an easier manipulation of the meta-objects 
while generating the code for the JavaBeans, and a more immediate mapping of 
internal description of classes to the desired output artefacts. 

The intermediate model designed for the OWLBeans framework is made of just a 
few, very simple classes. The simple UML class diagram shown in Fig. 1 describes 
the main classes of the intermediate model package. 

The root class is OwlResource, which is extended by all the others. It has just two 
fields: a local name and a namespace, which are intended to store the same data as 
resources defined in OWL files. All the resources of the model – refernces, 
ontologies, classes and properties – are implicitly OwlResource objects. 

OwlReference is used as a simple reference, to point to super-classes, range and 
domain types, and does not add anything to the OwlResource class definition. It is 
defined to underline the fact that classes cannot be used directly as ranges, domain or 
parents. 

OwlOntology is nothing more than a container for classes. It owns a list of 
OwlClass objects. It inherits from OwlResource the name and namespace fields. In 
this case the namespace is mandatory and is supposed to be the namespace of all local 
resources, for which it is optional. 

OwlClass represents OWL classes. It points to a list of parents, or super-classes, 
and owns a list of properties. Each parent in the list is an OwlReference object, i.e. a 
name and a namespace, and not an OwlClass object. Its name must be searched in the 
owner ontology to get the real OwlClass object. Properties instead are owned by the 
OwlClass object, and are stored in the properties list as instances of the OwlProperty 
class. 

OwlProperty is the class representing OWL properties. As in UML, their name is 
supposed to be unique only in the scope of their “owner” class. Each property points 
to a domain class and to a range class or data-type. Both these fields are simple 
OwlReference objects: while the first contains the name of the owner class, the latter 
can indicate an OwlClass, or an XML data-type, according to the namespace. Two 
more fields are present in this class: minCardinality and maxCardinality. They are 
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OWLResource

namespace : String
name : String

OWLOntology

OWLReference

OWLProperty

minCardinality : int
maxCardinality : int

+domain
+range

OWLClass

1..*1..*
1..*

+parent

1..*

1..*1..*

 

Fig. 1.  Class diagram of the intermediate model 

used to store respectively the minimum and maximum allowed cardinality for the 
property values. A minCardinality = 0 has the implicit meaning of an optional 
property, while maxCardinality = 1 has the implicit meaning of a functional property. 

It is worth pointing the unusual treatment of indirect references to OwlClass objects. 
This decision has two main advantages over direct Java references to final objects. 
Parsing an OWL file is a bit simpler, since references can point to classes that are not 
yet defined. Furthermore, in this way, super-classes, domain and ranges are not forced 
to be local classes, but can be references to resources defined somewhere else. 

In our framework, the intermediate model is used as the glue to put together the 
various components needed to perform the desired, customizable task. These 
components are classes implementing the OwlReader or the OwlWriter interface, 
representing ontology readers and writers, respectively. While readers can read an 
intermediate representation of the ontology, acquiring metadata from different kinds 
of sources, writers, instead, can use this model to produce the desired artefacts. 

The current version of the framework provides readers to inspect OWL files and 
JADE ontologies, and writers to generate OWL files, source files of JavaBeans and 
JADE ontologies. 

Reading OWL Ontologies. Two classes are provided to manage OWL files. 
OwlFileReader allows reading an intermediate model from an OWL file, while 
OwlFileWriter allows saving an intermediate model to an OWL file. These two 
classes respectively implement the OwlReader and OwlWriter interfaces and are 
defined in the package confining all the dependencies from the Jena toolkit. 

The direct process, i.e. converting an OWL ontology into the intermediate 
representation, is possible only under quite restrictive limitations, mainly caused by 
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the rather strong differences between the OWL data model and the object-oriented 
model. In fact, only few, basic features of the OWL language are supported. 

Basically, the OWL ontology is first read into a Jena OntModel object and then all 
classes are analysed. In this step, all anonymous classes are just discarded. For each 
one of the remaining classes, a corresponding OwlClass object is created in the 
internal representation. Then, all properties listing the class directly in their domain 
are added to the intermediate model as OwlProperty objects. Here, each defined 
property points to a single class as domain and to a single class or data-type as range. 
Set of classes are not actually supported. Data-type properties are distinguished in our 
model by the namespace of their range: http://www.w3.org/2001/XMLSchema#. The 
only handled restrictions are owl:cardinality, owl:minCardinality and 
owl:maxCardinality, which are used to set the minCardinality and maxCardinality 
fields of the new OwlProperty object. The rdfs:subClassOf element is handled in a 
similar way: only parents being simple classes are taken into consideration and added 
to the model. 

All remaining information in the OWL file is lost in the translation, as it does not 
fit into the desired object-oriented model. 

Generating JavaBeans. Rather than generating the source files of the desired 
JavaBeans directly from the application code, we decided to integrate a template 
engine in our project. This helped to keep the templates out of the application code, 
and centralized in specific files, where they can be analysed and debugged much more 
easily. Moreover, new templates can be added and existing ones can be customized 
without modifying the application code. 

The chosen template engine was Velocity [12], distributed under LGPL licence by 
the Apache Group. It is an open source project with a widespread group of users. 
While its fame mainly comes from being integrated into the Turbine Web framework, 
where it is often preferred to other available technologies, as JSP pages, it can be 
effortlessly integrated in custom applications, too. 

Currently, the OWLBeans framework provides templates to generate the source 
file for JavaBeans and JADE ontologies. JavaBeans are generated according to the 
mapping between classes and concepts that we described in the previous sections. In 
particular, all JavaBeans are organized in a common package where, first of all, some 
interfaces mapping the classes defined in the ontology are written. Then, for each 
interface, a Java class is generated, implementing the interface and all accessor 
methods needed to get or set properties. 

As stated in Section 2, creating an interface and then a separate implementing Java 
class for each ontology class is necessary to overcome the single-inheritance 
limitation that applies to Java classes. 

The generated JADE ontology file can be compiled and used to import an OWL 
ontology into JADE, thus allowing agents to communicate about the concepts defined 
in the ontology. The JavaBeans will be automatically marshalled and un-marshalled 
from ACL messages in a completely transparent way. 

Additional components. Additional components are provided to read and write 
ontologies in different formats. 
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For example, the JadeReader class allows the loading of a JADE ontology and 
saving it in OWL format or generating the corresponding JavaBeans. 

Another component is provided to instantiate an empty JADE ontology at run time, 
and to populate it with classes and properties read from an OWL file or from other 
supported sources. This proves useful when the agent does not really need JavaBeans 
but can use the internal ontology model of JADE to manage the content of 
semantically annotated messages. 

Finally, the OwlWriter class allows an ontology to be converted from its 
intermediate representation to an OWL model. This is quite straightforward, since all 
the information stored in the intermediate model can easily fit into an OWL ontology, 
in particular into a Jena OntModel object. One particular point deserves attention. 
While the property names in the OWLBeans model are defined in the scope of their 
owner class, all OWL properties are instead first level elements and share the same 
namespace. This poses serious problems if two or more classes own properties with 
the same name and, above all, if these properties have different ranges or cardinality 
restrictions. 

In the first version of the OWLBeans framework, this issue is faced in two ways: if 
a property is defined by two or more classes, then a complex domain is created in the 
OWL ontology for it; in particular, the domain is defined as the union of all the 
classes that share the property, using an owl:UnionClass element. Cardinality 
restrictions are specific to classes in both models and are not an issue. Currently, the 
range is assigned to the property by the first class that defines it and is kept constant 
for the other classes in the domain. Obviously this could be incorrect in some cases. 
Using some class-scoped owl:allValuesFrom restrictions could solve most of the 
problems, but difficulties would arise in the case of a property defined in some classes 
as a data-type property and somewhere else as an object property. 

Another mechanism allows the optional use of the class name as a prefix for the 
names of all its properties, hence automatically enforcing different names for 
properties defined in different classes. This solution is appropriate only for ontologies 
where property names can be decided arbitrarily. Moreover, it is appropriate when 
resulting OWL ontologies are used only to generate JavaBeans and JADE ontologies, 
since in this case the leading class name would be automatically stripped off by the 
OwlFileReader class. 

Scripting Engine. The possibilities opened by embedding a scripting engine into an 
agent system are various. For example, agents for e-commerce often need to trade 
goods and services described by a number of different, custom ontologies. This 
happens in the Agentcities network [13], where different basic services can be 
composed dynamically to create new compound services. 

To increase adaptability, these agents should be able to load needed classes and 
code at runtime. The OWLBeans package allows them to load into the Java Virtual 
Machine some JavaBeans directly from an OWL file, together with the ontology-
specific code needed to reason about the new concepts. 

This is achieved by embedding Janino [14], a Java scripting engine, into the 
framework. Janino can be used as a special class loader capable of loading classes 
directly from Java source files without first compiling them into bytecode. 
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Obviously, pre-compiled application code cannot access newly loaded classes, 
which are not supposed to be known at compile time. However, the same embedded 
scripting engine can be used to interpret some ontology specific code, which could be 
loaded at run time from the same trusted source of the OWL ontology file, for 
example, or provided to the application in other ways. 

3.2   Ontology Server 

The OWLBeans framework allows agents to import taxonomies and classifications 
from OWL ontologies, in the form of an hierarchy of Java classes. Clearly, a more 
general solution must be provided for all those cases where a simplified, object-
oriented view of the ontology is not enough. 

For all those applications, that need a complete support of OWL ontologies, we are 
developing an Ontology Server. It is an agent-based application providing ontology 
knowledge and reasoning facilities for a community of agents. The main rationale for 
building on Ontology Server is to endow a community of agents with the ability to 
automatically process semantically annotated documents and messages. The Ontology 
server shares a common knowledge base about some application domains with this 
community of agents. 

The first functionality is related to loading, importing, removing ontologies. Apart 
from loading ontologies at agent startup, specific actions are defined in terms of ACL 
requests to add ontologies to the agent knowledge base, and to remove them. 
Ontologies that are linked through import statements can be loaded automatically with 
a single request. Moreover, new relations among ontologies can be dynamically 
created, and existing ones can be destroyed. This import mechanism can be used to 
build a distributed knowledge base hierarchy; in this way, a new ontology can be 
plugged in easily and inherit the needed general knowledge base, instead of building 
it totally from scratch. 

After the initial set-up, through a number of potentially related ontologies, this 
knowledge base can be queried from other agents. A set of predicates is defined, to 
check the existence of specific relations among entities. For example the Ontology 
Server can be asked about the equivalence of two classes or about their hierarchical 
relationships.  

Apart from checking the existence of specific relations, the knowledge base can 
also be used to search for the entities satisfying certain constraints. For example, the 
list of all the super-classes, or of all the sub-classes, of a given class can be obtained. 

Finally, client agents may be allowed to modify an ontology managed by the 
Ontology Server. Agents can ask to add new classes, individuals and properties to the 
ontology or to remove defined entities. Moreover, relations among ontology entities 
can also be added and removed at runtime. 

Our current implementation is built as a JADE agent, using the Jena toolkit to load 
and manage OWL ontologies. An inference engine can be plugged into the 
application to reason on the knowledge base. An ontology is defined, to allow  
the management of the internal knowledge base. ACL requests, to access and query 
the Ontology Server about its knowledge base, can use this meta-ontology to 
represent their semantic content. 
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As a final point, for the Ontology Server to be really useful in an open 
environment, we are adding proper authorization mechanisms. In particular, we are 
leveraging the underlying JADE security support to implement a certificate-based 
access control. Only authenticated and authorized users will be granted access to 
managed ontologies. The delegation mechanisms of JADE allow the creation of 
communities of trusted users, which can share a common ontology, centrally managed 
by the Ontology Server. 

Finally, we are developing a graphical user interface to allow the interaction with 
the Ontology Server through Web pages. It allows both the introspection of the 
existing knowledge base, as well as its modification by human users. 

4   Conclusion 

In this paper, we have presented a software implementation intended to provide an 
OWL ontology management support for multi-agent systems implemented by using 
JADE. The key feature that distinguishes our approach from others is the fact that 
lightweight agents have the possibility of directly managing ontologies that can be 
mapped in JavaBeans, while they can take advantage of special agents, called 
Ontology Servers, when they need to use more complex. Well aware of the need to 
clearly define the weakness of our approach in comparison to a fully-fledged OWL 
support, we have carried out a meticulous analysis of its expressiveness. 

Our current activities are related to the experimentation of the implemented 
software in the realization of a multi-agent system for the remote assistance of 
software programmers. Furthermore, we are working on its improvement by trying 
alternative solutions to the use of the Jena software tool. 
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