

Lecture Notes in Artificial Intelligence 3529
Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Manuel Kolp Paolo Bresciani
Brian Henderson-Sellers Michael Winikoff (Eds.)

Agent-Oriented
Information Systems III

7th International Bi-Conference Workshop, AOIS 2005
Utrecht, Netherlands, July 26, 2005
and Klagenfurt, Austria, October 27, 2005
Revised Selected Papers

13

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA
Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Manuel Kolp
Catholic University of Louvain (UCL)
School of Management (IAG), Information Systems Research Unit (ISYS)
1, Place des Doyens, 1348 Louvain-La-Neuve, Belgium
E-mail: kolp@isys.ucl.ac.be

Paolo Bresciani
European Commission
DG Information Society and Media, Unit D3: Software Technologies
Avenue de Beaulieu 29, level 4, office 49, 1049 Brussels, Belgium
E-mail: paolo.bresciani@ec.europa.eu

Brian Henderson-Sellers
University of Technology, Sydney
Faculty of Information Technology
P.O. Box 123, Broadway, NSW 2007, Australia
E-mail: brian@it.uts.edu.au

Michael Winikoff
RMIT University
School of Computer Science and Information Technology
Melbourne, VIC 3001, Australia
E-mail: winikoff@cs.rmit.edu.au

Library of Congress Control Number: 2006936083

CR Subject Classification (1998): I.2.11, H.4, H.3, H.5.2-3, C.2.4, I.2

LNCS Sublibrary: SL 7 – Artificial Intelligence

ISSN 0302-9743
ISBN-10 3-540-48291-1 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-48291-8 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2006
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11916291 06/3142 5 4 3 2 1 0

Preface

Information systems underpin today’s business and entertainment. The means by
which these information systems have been developed has changed over the years.
Although the current paradigm is to use object-oriented concepts, a new set of
concepts, focussed on agent technology, is starting to be evaluated. Agents offer
higher level abstractions (than objects) for the conceptualization, design and
implementation of information systems. Agents have autonomy, can reason and can
coordinate within societies of agents.

The AOIS series of workshops explores the potential for facilitating the increased
usage of agent technology in the creation of information systems in the widest sense.
In 2005, two AOIS workshops were held internationally. The first was affiliated with
the AAMAS 2005 meeting in July in Utrecht in The Netherlands and chaired by
Henderson-Sellers and Winikoff and the second with ER 2005 in November in
Klagenfurt in Austria and chaired by Kolp and Bresciani. The best papers from these
meetings were identified and authors invited to revise and possibly extend their papers
in the light of reviewers’ comments and feedback at the workshop.

We have grouped these papers loosely under four headings: Agent behavior,
communications and reasoning; Methodologies and ontologies; Agent-oriented
software engineering; and Applications. These categories fairly represent the breadth
of current AOIS research as well as encompassing the papers presented at the two
AOIS workshops. We trust you will find the content of these selected and revised
papers to be of interest and utility.

Since the papers presented at the Utrecht workshop were not formally published,
some of the authors chose not to make any significant extension to their papers. On
the other hand, the Klagenfurt workshop papers were published by Springer as part of
the ER proceedings and thus have been significantly extended before acceptance for
this volume. All invited papers for this volume were re-reviewed (in their extended
forms) by three members of the Program Committee prior to acceptance. We wish to
thank all authors for undertaking the necessary revisions and meeting the editorial
deadlines.

September 2006 Manuel Kolp
Paolo Bresciani

Brian Henderson-Sellers
Michael Winikoff

Organization

Workshop Co-chairs

Manuel Kolp (Catholic University of Louvain, Belgium)
Paolo Bresciani (IRST-ITC, Italy)
Brian Henderson-Sellers (University of Technology, Sydney, Australia)
Michael Winikoff (RMIT, Australia)

Steering Committee

Yves Lesperance (York University, Canada)
Gerd Wagner (Eindhoven University of Technology, Netherlands)
Eric Yu (University of Toronto, Canada)
Paolo Giorgini (University of Trento, Italy)

Program Committee

Carole Bernon (University Paul Sabatier, Toulouse, France)
Brian Blake (Georgetown University, Washington DC, USA)
Paolo Bresciani (ITC-IRST, Italy)
Jaelson Castro (Federal University of Pernambuco, Brazil)
Luca Cernuzzi (Universidad Católica Nuestra Señora de la Asunción, Paraguay)
Massimo Cossentino (ICAR-CNR, Palermo, Italy)
Luiz Cysneiros (York University, Toronto)
John Debenham (University of Technology, Sydney)
Scott DeLoach (Kansas State University, USA)
Frank Dignum (University of Utrecht, Netherlands)
Paolo Donzelli (University of Maryland, College Park, USA)
Bernard Espinasse (Domaine Universitaire de Saint-Jérôme, France)
Stéphane Faulkner (University of Namur, Belgium)
Behrouz Homayoun Far (University of Calgary, Canada)
Innes Ferguson (B2B Machines, USA)
Alessandro Garcia (PUC Rio)
Chiara Ghidini (ITC-IRST, Italy)
Aditya Ghose (University of Wollongong, Australia)
Marie-Paule Gleizes (University Paul Sabatier, Toulouse, France)
Cesar Gonzalez-Perez (University of Technology, Sydney, Australia)
Giancarlo Guizzardi (University of Twente, Netherlands)
Igor Hawryszkiewycz (University of Technology, Sydney, Australia)
Brian Henderson-Sellers (University of Technology, Sydney, Australia)
Carlos Iglesias (Technical University of Madrid, Spain)

 Organization VIII

Manuel Kolp (Catholic University of Louvain, Belgium)
Daniel E. O'Leary (University of Southern California, USA)
Carlos Lucena (PUC Rio, Brazil)
Graham Low (UNSW, Australia)
Philippe Massonet (CETIC, Belgium)
Haris Mouratidis (University of East London, UK)
Jörg Mueller (Siemens, Germany)
Juan Pavón (Universidad Complutense Madrid, Spain)
Omer F. Rana (Cardiff University, UK)
Onn Shehory (IBM Haifa Labs, Israel)
Nick Szirbik (Technische Universiteit Eindhoven, Netherlands)
Kuldar Taveter (University of Melbourne, Australia)
Quynh-Nhu Numi Tran (UNSW, Australia)
Viviane Torres da Silva (PUC Rio, Brazil)
Michael Winikoff (RMIT, Australia)
Carson Woo (University of British Columbia, Canada)
Bin Yu (North Carolina State University, USA)
Amir Zeid (American University of Cairo, Egypt)
Zili Zhang (Deakin University, Australia)

Table of Contents

Agent Behavior, Communications and Reasoning

Automated Interpretation of Agent Behaviour . 1
Dung N. Lam, K. Suzanne Barber

A Semantic and Pragmatic Framework for the Specification of Agent
Communication Languages: Motivational Attitudes and Norms 16

Rodrigo Agerri, Eduardo Alonso

Broadening the Semantic Coverage of Agent Communicative Acts 32
Hong Jiang, Michael N. Huhns

Requirements Analysis of an Agent’s Reasoning Capability 48
Tibor Bosse, Catholijn M. Jonker, Jan Treur

On the Cost of Agent-Awareness for Negotiation Services 64
Andrea Giovannucci, Juan A. Rodŕıguez-Aguilar

OWL-P: A Methodology for Business Process Development 79
Nirmit Desai, Ashok U. Mallya, Amit K. Chopra,
Munindar P. Singh

Methodologies and Ontologies

Identification of Reusable Method Fragments from the PASSI
Agent-Oriented Methodology . 95

Brian Henderson-Sellers, John Debenham, Quynh-Nhu Numi Tran,
Massimo Cossentino, Graham Low

Foundations of Ontology-Based MAS Methodologies 111
Ghassan Beydoun, Quynh-Nhu Numi Tran, Graham Low,
Brian Henderson-Sellers

An Ontology-Driven Technique for the Architectural and Detailed
Design of Multi-agent Frameworks . 124

Rosario Girardi, Alisson Neres Lindoso

An Ontology Support for Semantic Aware Agents . 140
Michele Tomaiuolo, Paola Turci, Federico Bergenti,
Agostino Poggi

X Table of Contents

Agent-Oriented Software Engineering

AOSE and Organic Computing - How Can They Benefit from Each
Other? . 154

Bernhard Bauer, Holger Kasinger

An Agent-Oriented Model of a Dynamic Engineering Design Process 168
Vadim Ermolayev, Eyck Jentzsch, Oleg Karsayev, Natalya Keberle,
Wolf-Ekkehard Matzke, Vladimir Samoylov, Richard Sohnius

Formalizing Agent-Oriented Enterprise Models . 184
Ivan Jureta, Stéphane Faulkner, Manuel Kolp

Fragmented Workflows Supported by an Agent Based Architecture 200
Christine Reese, Jan Ortmann, Sven Offermann, Daniel Moldt,
Kolja Markwardt, T. Carl

Applications

An Agent-Based Meta-level Architecture for Strategic Reasoning in
Naval Planning . 216

Mark Hoogendoorn, Catholijn M. Jonker, Peter-Paul van Maanen,
Jan Treur

Coordination Efficiency in Rational Choice Theory, Norm and Rights
Based Multi-agent Systems . 231

Peter Kristoffersson, Eduardo Alonso

Adapted Information Retrieval in Web Information Systems Using
PUMAS . 243

Angela Carrillo-Ramos, Jérôme Gensel, Marlène Villanova-Oliver,
Hervé Martin

Design Options for Subscription Managers . 259
Aloys Mbala, Lin Padgham, Michael Winikoff

Supporting Program Indexing and Querying in Source Code Digital
Libraries . 275

Yuhanis Yusof, Omer F. Rana

Author Index . 291

Automated Interpretation of Agent Behaviour

D.N. Lam and K.S. Barber

The University of Texas at Austin
The Laboratory for Intelligent Processes and Systems
dnlam@lips.utexas.edu, barber@lips.utexas.edu

Abstract. Software comprehension, which is essential for debugging
and maintaining software systems, has lacked attention in the agent
community. Comprehension has been a manual process, involving the
analysis and interpretation of log files that record agent behaviour in
the implemented system. This paper describes an approach and tool to
automate creating interpretations of agent behaviour from observations
of the implementation execution, thus helping users (i.e. designers, devel-
opers, and end-users) to understand the motivations of agent actions. By
explicitly modelling the user’s comprehension of the implemented system
as background knowledge for the tool, feedback can be provided as to
whether the user’s comprehension accurately represents the implementa-
tion’s behaviour and, if not, how it can be corrected. Additionally, with
the aid of the Tracer Tool, many of the manual tasks are automated, such
as verifying that agents are behaving as expected, identifying unexpected
behaviour and generating explanations for any particular observation.

1 Introduction

Agents are distributed software entities that are capable of autonomous decision-
making. Besides being motivated by its own goals, an agent’s behaviour is
influenced by interactions with other agents (i.e. their goals, beliefs and inten-
tions), by events that have occurred in the past and by the current situation.
With so many factors that can influence an agent’s decision, end-users may
not trust the agent’s decision, and developers may have difficulty debugging
the implementation. Software designers, developers and end-users often need to
comprehend why an agent acted in a particular way when situated in its oper-
ating environment, which itself can be unpredictable and uncertain. Currently,
the process of comprehending agent behaviour is done manually by interpreting
the observations from the implementation executions to create a connected,
comprehensive view of what the software is doing. The interpretation process
links (usually with a causal link) actual observations together using the user’s
comprehension (or background knowledge of expected behaviour). In essence,
an interpretation compares the actual implementation behaviour with expected
behaviour, which may have been created by the user from the software design,
previous experience, intuition etc.

Considering the complexities of agent software (e.g. autonomous decision-
making and a high degree of interaction) and the usual disparity between

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 1–15, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

2 D.N. Lam and K.S. Barber

software design and implementation, software comprehension is a difficult, time-
consuming and tedious process. To alleviate these issues, this research aims to
automate the comprehension process as much as possible. This paper describes
(1) how the Tracer Tool can be used to help build and verify a model of the user’s
comprehension of the implemented agent system’s behaviour (i.e. background
knowledge) and (2) how an interpretation of agent behaviour can be automati-
cally generated from the background knowledge and recorded observations.

Sophisticated software such as an agent-based system presents obstacles that
are difficult to overcome using current software comprehension and verification
tools. In general, traditional software comprehension (or reverse engineering)
tools are limited by their low abstraction level, their dependence on analyzing
source code, their lack of automation to help decipher tremendous amounts of
collected data and their lack of a model for how much the user understands.
Taking the formal approach to modelling systems, model-checking facilitates
comprehension by verifying properties of systems but is limited by its demand
for expert knowledge of the model-checking process, its high computational
complexity, and the translation gap between the model being checked and the
actual system.

To remedy limitations of current comprehension techniques, this research
offers a novel approach to computer-aided software comprehension that involves:
(1) modelling the user’s comprehension of the system as background knowledge
usable by tools, (2) ensuring that the user’s comprehension accurately reflects the
actual system and (3) generating interpretations and explanations as evidence
of comprehension.

This paper describes an approach and tool that builds on the ideas from
reverse engineering and model-checking to better assist the human user (of
various skill levels) in comprehending agent-based software. Section 2 reviews
limitations of existing work and highlights advantages that are used in this
research. Section 3 presents the formulation of the problem and the approach
employed to automate building the interpretation of agent behaviour. Section 4
describes how the Tracer Tool implements the approach. Section 5 demonstrates
how the interpretation can be used to generate explanations. Finally, Section 6
summarizes the contributions of this research.

2 Background

Agent concepts (i.e. beliefs, goals, intentions, actions, events and messages) are
abstractions of low-level implementation constructs (e.g. data structures, classes
and variables) that make designing and communicating the design easier. Though
agent concepts help in designing software for sophisticated and distributed do-
mains, there has been little research in leveraging them for the expensive main-
tenance phase of software engineering. Since software designs use agent concepts
to describe agent structure (e.g. an agent encapsulates localized beliefs, goals,
and intentions) and behaviour (e.g. an agent performs an action when it believes
an event occurred), agent concepts should be leveraged for comprehending the

Automated Interpretation of Agent Behaviour 3

software. If the same concepts and models are used in forward and reverse
engineering, tools would be able to better support re-engineering, round-trip
engineering, maintenance and reuse [1]. In this research, agent concepts are used
to take advantage of the user’s intuitive knowledge of agent-based systems to
comprehend agent behaviour in the implementation. The set of concepts can
be extended or replaced by practically any set of concepts that are relevant in
understanding the behaviour of a software system and influential factors that
affect those behaviours.

Software comprehension, which historically has been associated with program
comprehension and reverse engineering, involves extracting and representing
the structural and behavioural aspects of the implementation in an attempt
to recreate the intended design of the software. Software comprehension is mo-
tivated by the fact that the software may need to be (1) verified to ensure that
the implementation is behaving as it was designed to behave; (2) maintained
to fix bugs or make modifications; or (3) redesigned and evolved to improve
performance, reusability or extensibility (among other reasons). In order to
perform these tasks, an understanding of the current implementation is required
and is attained using reverse engineering (RE) tools and techniques.

RE tools (e.g. Rigi [2] and PBS [3]) analyse the implementation at a very
low abstraction level (i.e. at the source code level) and, thus, are inappropriate
for agent software because they produce models of the implementation that
are too detailed (e.g. component dependence and class inheritance models).
Besides being limited to supported programming languages, these tools do not
provide abstracted views of the implementation as a whole in terms of high-
level agent concepts (e.g. beliefs, tasks, goals and communication messages).
Wooldridge states that as software systems become more complex, more powerful
abstractions and metaphors are needed to explain their operation because “low
level explanations become impractical” [4]. To attain an understanding of agent
behaviour, the models resulting from the comprehension process must be at the
abstraction level at which agent concepts are the elemental or base concepts.

In addition to static analysis of the source code, dynamic analysis tools (e.g.
SCED [5] and Hindsight [6]) can create flowcharts, control-flow and state dia-
grams. However, these tools also face the same problem of detailed representation
of programmatic concepts such as process threads, remote procedure calls and
data structures, rather than agent-oriented models of goals, plans and inter-
action protocols. Dynamic analysis is particularly important for agent systems
that operate in the presence of environmental dynamics and uncertainty. This
research leverages agent concepts to build abstract representations of the agents’
run-time behaviour (i.e. relational graphs), which can be quickly understood by
the user and can also be used for automated reasoning to further assist the user.

To deal with the large amount of data resulting from source code or execution
analysis, some RE tools (e.g. SoftSpec [7]) allow users to query a relational
database of gathered data. However, most RE tools leave it up to the user to
parse, interpret and digest the data. The research described in this paper deals
with the large amount of data by automating data interpretation for the user.

4 D.N. Lam and K.S. Barber

Instead of a list of unconnected, detailed data that the user must relate manually,
the presented solution automatically relates run-time observations together in
a causal graph. This is similar to the GUPRO toolset [8], where source code
is transformed into graphs, except that the graphs nodes are in terms of agent
concepts.

As described, RE tools only produce representations of the implementation and
have no model of the user’s comprehension. It is the user’s responsibility to digest
the RE results (e.g. diagrams, charts and databases). RE tools do not reflect how
much the user understands and, thus, cannot provide feedback to the user about
the user’s comprehension. However, in model-checking, the user expresses their
understanding of the implementation as a “model”, which can be automatically
checked for specified properties. Thus, model-checking tools have a representation
of the user’s comprehension of the system. Though useful due to the exhaustive
state-space search, model-checking techniques in general do not verify the accu-
racy of the “model” with respect to the actual system (often referred to as the
translation gap problem). Hence, any checked properties may not apply to the
actual implementation. Additionally, the model must be made simple enough such
that the model-checker can search the entire state-space. By combining model-
checking with reverse engineering, this research maintains a model of the user’s
comprehension (as the user is learning about the implemented agent system) and
also ensures that the model accurately represents the actual system.

3 Building the Interpretation

When a user tries to comprehend agent behaviour in the implemented system,
the user is essentially building an interpretation by observing and examining
agent actions, communicated messages, environmental events and any other
run-time data that can be acquired from the implementation. As shown in
Fig. 1, background knowledge about the expected behaviour of the implemented
system is required to relate the otherwise unconnected observations together.
Background knowledge K represents the user’s comprehension of the system,
which is commonly derived from many sources, such as specifications of the
design, experience with the implementation and intuition from presentations. In
model-checking, K is a model that is to be checked and it is manually specified
by the user.

In this research, K is modelled using a semantic network (i.e. directed graph)
of agent concepts that are interconnected by causal relations. The current set
of agent concepts includes goal, belief, intention, action, event and message –
the set can be extended to include other concepts that may be of interest to the
user. For example, in Fig. 1, the background knowledge for an agent’s behaviour
denotes an intention that is influenced by two different beliefs (denoted by a
circle and square). The intention causes an action to occur, which in turn affects
one of the beliefs.

This research takes advantage of agent concepts to create interpretations of
agent behaviour in the implemented system. Note that K represents a

Automated Interpretation of Agent Behaviour 5

Fig. 1. An interpretation for an agent, given the background knowledge K and
observations OsSS

behavioural pattern and, thus, can have cycles in the graph. However, the in-
terpretation, which consists of actual observations and their relationships, does
not have cycles.

To build an interpretation, observations are mapped to agent concepts in K
and are linked together using relations defined in K. For example, observations
b1 and b5 are mapped to agent concept B because the observations are beliefs
about a target’s state; b′2 and b′6 are mapped to B′ because the observations are
beliefs about the target’s location; i3 and i7 are mapped to I; etc. Since I is
causally related to B and B′, directed edges are added between the appropriate
nodes (e.g. from b1 and b2 to i3) to relate the observations together. In other
words, since the user expects beliefs about a target’s state B to influence the
agent’s intention I, the user will create an interpretation where the corresponding
observations for that agent are causally linked.

Background knowledge K is constructed by the user and describes how the
agents are expected to behave in terms of the agent concepts. As shown in Fig. 2,
the manual procedure for building comprehension can be expressed as

K ′ = updatemanual(K, D, I, Os) (1)

where K is the previous background knowledge, D denotes the design models
and documentation, I is the implementation expressed in source code, and Os

is a set of observations resulting from executing the implementation I in some
scenario s:

Os = observe(execute(I, s)) (2)

Note that since comprehension is an iterative process, construction of K ′ involves
modifying and updating the previous background knowledge K. To build up com-
prehension, the user has the tedious task of gathering, organizing and relating the
data from the design D, the implementation I and the observations Os.

6 D.N. Lam and K.S. Barber

Fig. 2. Manual software comprehension

Due to human error or outdated design specifications, system behaviour de-
scribed by K may be erroneous or inaccurate with respect to the actual behaviour
of the system, particularly as the implementation is updated and maintained
over time. To generate accurate interpretations, K must accurately reflect the
implementation’s actual behaviour. Using empirical techniques, the user must
manually verify that the expected behaviour expressed as K is representative
of the actual behaviour from the implementation. Due to complexities and
uncertainties of some systems, agent behaviours cannot always be predicted from
only the design specification in general [9]. Thus, the construction of K must
incorporate empirical studies of the implementation.

The overall approach of this research is to build up the background knowledge
K using observations from the actual implementation’s executions, rather than
relying on design specifications as it is in model-checking. As a result, everything
in K is based directly on the actual implementation (similar to the RE approach).
Modifications to K (e.g. addition of relations between agent concepts) are au-
tomatically suggested by the Tracer Tool. However, unlike RE, where detailed
models are automatically created for the user to digest, this approach demands
that the user confirms all modifications to K so that K also reflects what the user
comprehends. In other words, since the user is building K, there is nothing in K
that the user does not already comprehend or at least has seen. Consequently,
the user does not have to digest all interpretations. Any new or inconsistent
behaviours are automatically detected and brought to the attention of the user.
Additionally, automatically generated suggestions and explanations can help the
user deal with the anomalous behaviour.

The following describes the overall approach taken by this research to ensure
the representativeness of the background knowledge. Functions begin with a
lowercase letter (e.g. interpret(K, Os)), while predicates begin with an uppercase
letter (e.g. Consistent(K, Ns)).

As seen in Fig. 3, the reverse engineering approach helps the user by analyz-
ing Os to produce interpretations Ns, which consists of models derived from
observations Os resulting from actual system behaviour:

Automated Interpretation of Agent Behaviour 7

Ns = interpretRE(Os) (3)

However, the user still has the task of ensuring that K accurately represents Ns.
To aid the user in software comprehension, this research automates the tasks

of interpreting the observations with respect to K (and in the process, verifying
K) and suggesting modifications to K (see Fig. 4). This is possible by explicitly
modelling the user’s background knowledge K and using it as input to the Tracer
Tool. Thus, the new update function is

K ′ = update(K, D, Ns, k) (4)

where interpretation Ns is derived by mapping the observations Os to agent
concepts in K:

Ns = interpret(K, Os) (5)

and the set of suggestions k consists of relations that can be added to the
background knowledge K:

k = suggest(Ns) (6)

Since background knowledge K should accurately model the user’s compre-
hension, the user remains in control of K and must confirm all suggestions
before K is modified. However, the user no longer needs to directly analyse the
observations Os from the implementation execution or verify that K accurately
reflects the implementation’s behaviour, as these tasks are automated by the
Tracer Tool. With the interpretations Ns readily available, the user can modify
K as they see fit. Through each iteration of building up K, the Tracer Tool
verifies K against the observations Os in case the user introduced errors into K.

If the implementation’s behaviour changes (resulting from design changes or
maintenance tasks) and is different from the expected behaviour represented by
K, the Tracer Tool alerts the user of the new or inconsistent behaviour in Ns

and generates suggestions for updating K. Since changes to the implementation
can be propagated to K, the accuracy of K with respect to the implementation
is maintained as the implementation evolves.

Formally stated, the background knowledge K is representative of the im-
plementation I if and only if K is complete and consistent with respect to
interpretations Ns for each execution scenario s in a set of scenarios S:

Representative(K, I, S) ⇐⇒
∀s ∈ S (Complete(K, Ns) ∧ Consistent(K, Ns))

(7)

where Complete(K, Ns) is true if there is no suggestions for updating K (i.e.
k = ∅) and Consistent(K, Ns) is true if there are no contradicting behaviours.
Ideally, S would be a complete set of scenarios covering all possible threads of
execution the implementation would encounter. Since this is not usually feasible,
a scenario set that covers a reasonable number of execution threads is assumed
to be given.

8 D.N. Lam and K.S. Barber

Fig. 3. Reverse engineering approach

Fig. 4. Automated interpretation approach using Tracer

4 Tracer Tool

To generate accurate interpretations, the background knowledge K should be
representative of what is being explained (i.e. agent behaviour in the imple-
mentation). This implies that the K (representing expected agent behaviour)
must be complete and consistent with the implementation’s behaviour (Eq. 7).
By explicitly modelling the user’s comprehension as K, the accuracy of K can
be verified during the interpretation process, which has been mostly automated
by the Tracer Tool.

The Tracer Tool addresses the comprehension issues (described in Section 2)
in the following ways:

low abstraction level: Background knowledge K is represented as a collection
of high-level agent concepts familiar to designers, developers, and end-users.

language-dependent: The Tracing Tool records observations logged from the
implementation’s execution, rather than analyzing language-dependent stack
traces and process threads.

Automated Interpretation of Agent Behaviour 9

large amount of data: The Tracer Tool automates the task of collecting, or-
ganizing and interpreting the observations and can present the interpretation
to the user as a relational graph that can be quickly digested.

human user must digest data: Given interpretations and K, automated
reasoning can highlight new concepts and relations that the user has not
yet modelled in K and ignore already modelled relations.

The following subsections describe the Tracer Tool with respect to Eqs.2, 5, and 6.

4.1 Equation 2: Os = observe(execute(I,s))

Since K and Ns are modelled at the agent concept abstraction level, only agent
concepts are extracted from the implementation – more detailed concepts (e.g.
data structures and method calls) are not needed. To acquire only the agent
concepts from the implementation, the approach is to instrument the source
code (i.e. add extra code to log data). The extra logging code (generated by
the Tracer Tool) is inserted at locations where agent concepts occur or change.
When the implementation is executed in a scenario s, only agent-relevant data
are logged as observations Os, which are collected by the Tracer Tool. By not
parsing the implementation’s source code, the Tracer Tool can operate with any
software system implemented in practically any mix of languages. This reverse
engineering approach requires only a high-level structural understanding of the
implementation and encompasses the entire agent system implementation rather
than just portions of the code. Scalability is better than reverse engineering be-
cause only relevant data about the system are analysed, not every method call or
data structure change. This approach translates run-time data and occurrences
from the implementation execution into observations of agent concepts. Since
the observations are coming from numerous agents and may be out of order, the
Tracer Tool sorts and organizes the observations (during run-time) for the next
step, which is creating the interpretations.

4.2 Equation 5: Ns = interpret(K, Os)

To produce interpretations Ns from the implementation, observations Os of the
implementation execution are used as shown in Fig. 4. That is, actual obser-
vations are mapped to concepts defined in K. If relations exists among the
concepts, then concrete relations (shown as directed edges) are defined between
the observations. Instead of having the user manually organize and relate obser-
vations, the Tracer Tool automatically collects and interprets the observations
for the user by linking observations with each other based on the explicitly
modelled background knowledge K. If K is initially empty or minimal, the
Tracer Tool will suggest updates for K to the user, as described in the next
section. In this case, the interpretations are semantic graphs with observations
as nodes. Run-time attributes of the the observations, such as observation type
and name, time-stamp and belief values, are used to map observations to agent
concepts in K. If a relation exists between two agent concepts according to

10 D.N. Lam and K.S. Barber

K, a directed edge is created between the corresponding observations. In [10],
a detailed demonstration of creating interpretations using the Tracer Tool is
described. In [11], the Tracer Tool is combined with a temporal logic tool to
discover behaviour violations in an UAV (Unmanned Aerial Vehicle) domain.

Essentially, K is being used as a template for creating the interpretation Ns

of an execution trace. K is a representation of expected behaviour, while inter-
pretation Ns is a representation of actual behaviour. If there are inconsistencies
between the Ns and K, then K may need to be modified, similar to the changes
that need to be made to the user’s comprehension if the implementation does
not behave as expected. Suggestions provided by the Tracer Tool can help the
users correctly modify K.

4.3 Equation 6: k = suggest(Ns)

Since the interpretation process performs the mapping between the observa-
tions Os and agent concepts in K, K is verified against the implementation
I. If there exists an observation o ∈ Os that cannot be related to some other
observation based on defined relations in the current K, then a suggestion is
offered by the Tracer Tool to update K so that o is a consequence of some other
observation. This happens when there is no incoming relation for the agent
concept corresponding to the observation o. Beginning with o, the relations-
suggesting algorithm searches temporally backwards through the observation list
to determine if a previous observation is related in some way to o using heuristics.
The heuristics leverage the typical relationships among agent concepts. For
example, if o is an action, then the algorithm searches for the last observed
intention i that has some similar attribute as those of action o. If such an
intention is found, a relation from i to o is suggested.

If there is no suggestion (i.e. k = ∅), then K is complete – all actual be-
haviours are modelled by the expected behaviour representation of the back-
ground knowledge. If K is not representative of the implementation’s behaviour
(¬Representative(K, I, S)) and suggestions do not help, then K and/or the
implementation need to be manually modified since neither K nor the imple-
mentation is assumed to be correct. For example, if the user expects (as modelled
in K) an agent to have a belief called ‘target location’ before the agent creates
an intention involving the associated target, and the belief is not in Os, then the
implementation may need to be updated to ensure that the belief ‘target location’
is actually being ascertained by the agent. On the other hand, K may need to be
updated according to design changes that may have occurred during development
that were not incorporated into K. This type of inconsistency is manifested as
a missing incoming edge for the intention observation in the semantic network
interpretation. However, experiments show that the generated suggestions can
correct most of the representative errors in K [12].

Table 1 enumerates completeness and consistency problems between K and
Ns that can be identified with the help of Tracer Tool. Causes and solutions for
those problems are also listed. Nodes are observations when referring to Ns and
agent concepts when referring to K; and edges refer to relations between nodes.

Automated Interpretation of Agent Behaviour 11

The Tracer Tool offers suggestion for all observations without a (causal) relation
from another observation – nodes with no incoming edge, which are detected
by the tool. Note that the Tracer tool cannot verify whether all causal agent
concepts have been identified – such information is application-dependent and
relies on the user’s knowledge of the domain.

Table 1. Possible completeness and consistency problems between K and Ns

symptom cause Tracer’s solution
node in Ns is
missing in K

user logged an observation that
has no corresponding agent con-
cept in K

Tracer adds the agent concept and
suggests relation(s) that link the
new agent concept to other agent
concepts in K.

edge in Ns is
missing in K

not possible since edges are
created only if a corresponding
relation exists in K

not applicable

node in K is
missing in Ns

observation did not occur in the
scenario;
or user did not correctly insert
the corresponding logging code;
or user incorrectly added the
node in K

not considered an error by Tracer
because there is no inconsistency –
K models a superset of behaviours
exhibited in Ns. The node may
appear for an interpretation of
another scenario.

edge in K is
missing in Ns

the relation did not occur in the
scenario

not considered an error by Tracer
because there is no inconsistency.
The edge may appear for an inter-
pretation of another scenario.

5 Using Interpretations

Explanations of agent actions offer an understanding of why agents behave in
a certain way in a given scenario. An explanation of agent behaviour answers a
question like “Why did agent action m occur?” A desirable explanation could be
“Action m was performed by agent n1 because n1 believed belief b, which was
due to the occurrence of event e, which was an expected consequence of agent
n1 performing action a, which was planned as a result of negotiations with agent
n2 about n2’s goal g.” Other relevant agent concepts can include details about
communication messages and updated beliefs resulting from the messages.

Since there is no direct way to measure how much the user comprehends,
a person’s comprehension of a subject is indirectly measured by how much the
person can explain about the subject because the process of creating an accurate
explanation demands correct comprehension of the system. Explanations bridge
the gap between expected and actual behaviour (i.e. between the explainer’s
background knowledge and the implementation’s execution). Thus, explanations
can be very important in designing, debugging, and trusting agent behaviour.

Unfortunately, ensuring accurate explanations is difficult because the im-
plementation evolves over time and there are many factors that can influence

12 D.N. Lam and K.S. Barber

agent behaviour. Firstly, since comprehending the behaviour of the implemented
system relies on how accurately the background knowledge represents the im-
plementation, the representative accuracy of the background knowledge must
be maintained as the implementation changes. The second problem in manual
explanation generation is that an explanation may be too difficult to conceive due
to the sophistication (e.g. in reasoning or agent interaction) of the agent system
or the amount of observed data to consider. In response to these difficulties,
this research proposes an automated approach to agent software comprehension
that can handle large amounts of observation data and that can automate the
generation of explanations to aid the user in comprehending the system as the
implementation evolves over time.

Once background knowledge K has been checked for representative accuracy
over the chosen set of scenarios S, K can be used to accurately explain an obser-
vation (called the manifestation m ∈ Os), such as an agent action, that occurred
in a specific scenario s using observations Os (resulting from the scenario in
which m occurred). An explanation ε consists of a subset of observations from
Os and relations among those observations that contributed to (i.e. caused or
influenced) the occurrence of m. The relations are derived from K, which defines
relations among agent concepts. Thus, explanation generation involves mapping
observations to agent concepts and following the relations (backwards) from m
to observations that caused m.

Based on the approach illustrated in Fig. 4, an explanation ε for manifestation
m ∈ Os (e.g. agent action) can be generated using the checked background
knowledge K and observations Os (arrows not shown in Fig. 4). To generate an
explanation for an observation m, the explainer uses the same technique as in
interpretation – mapping observations to agent concepts in K and using relations
in K to link observations together. As shown in Fig. 4, if an interpretation Ns of
the scenario exists (which it often does in practice), the same explanation can
be generated more quickly using Ns because interpret(K, Os) has already done
the work of mapping and relating the observations. Whereas an interpretation
(of an agent) displays all recorded observations (for the particular agent) and
the relations between the observations, an explanation shows only the casual
factors (other observations) that are relevant to the manifestation being ex-
plained. Starting from observation m in the interpretation Ns, the explanation
is generated by identifying observations that cause or influence the occurrence
of m by following edges pointing to m. Recall that the background knowledge
K defines the (causal) relations among observation types (i.e. agent concepts).
This can be performed recursively to an arbitrary depth to find causes of causes.

ε = explain(m, Ns) = explain(m, K, Os) (8)

From Eq. 8, the accuracy of the generated explanations is dependent on the
representative accuracy of the K, specifically on how accurately K reflects the
context of what is being explained (i.e. the implementation I) – thus, stressing
the need to maintain the representativeness between K and I as described in
Section 3. This justifies the value of maintaining an accurate K, in addition to
modelling the user’s comprehension.

Automated Interpretation of Agent Behaviour 13

Fig. 5. Explanation in Tracer

Since background knowledge K is represented using agent concepts, the gen-
erated explanations will be in terms of the same high-level agent concepts,
understandable by anyone with a general knowledge of agents. The explanation
can be expressed as a tree graph (as seen in Fig. 5), where the root of the tree
is the observation m that is being explained. Child nodes are observations that
influenced or caused the parent node observation to occur. The depth of the
explanation tree continues until an observation with no causal observation exists,
which is one of the initial observations or an exogenous event that independently
occurs in the environment. If the explanation does not end with one of these
observations, then K may be incomplete and require relations to be added.

Explanations can help focus on and track down the cause of the undesir-
able behaviour. With explanations readily available to the user, tasks such
as redesigning, debugging and understanding agent behaviour becomes a more
manageable task and less prone to human error.

6 Summary

The objective of this research is to help users (i.e. designers, developers, and end-
users) comprehend agent behaviours within agent-based software systems. This
paper describes an approach to automate the process of interpreting agent be-
haviour. Borrowing the model-checking approach, a model of the user’s compre-
hension (i.e. background knowledge) is maintained as the user is learning about
the implemented agent system. Using the reverse engineering approach, the
background knowledge is verified against the actual system using observations

14 D.N. Lam and K.S. Barber

of the implementation execution. In this way, the correctness of the background
knowledge can be given as feedback to update the user’s comprehension of the
system.

The contribution of this paper is a practical method to produce a model
that (1) accurately represents the actual system (i.e. the implementation) in
terms of agent concepts familiar to the designer, developer, and end-user, (2)
explicitly represents the user’s growing knowledge of the software’s behaviour,
and (3) can be used for automated reasoning to reduce the effort of software
comprehension. The method describes a process to create, refine and verify the
user’s comprehension of the system with respect to the implementation. With
the aid of the Tracer Tool, many of the manual tasks are automated, such as
verifying expected behaviour, scanning for unexpected behaviour and generating
explanations. With the verified background knowledge, accurate explanations
of actual agent behaviour that are consistent with run-time observations can
be generated. The Tracer Tool generates interpretations and explanations as
evidence of software comprehension and allows the user to analyse reasons for
agent behaviour, thereby facilitating software maintenance tasks and promoting
confidence in the adoption of agent technology.

Acknowledgments

This research was funded in part by the Defense Advanced Research Projects
Agency and Air Force Research Laboratory, Air Force Materiel Command,
USAF, under agreement number F30602-00-2-0588. The U.S. Government is
authorized to reproduce and distribute reprints for Governmental purposes
notwithstanding any copyright annotation thereon. The views and conclusions
herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed on implied,
of the Defense Advanced Research Projects Agency (DARPA), the Air Force
Research Laboratory, or the U.S. Government.

References

1. Stroulia, E., Syst, T.: Dynamic Analysis for Reverse Engineering and Program
Understanding. ACM SIGAPP Applied Computing Review 10(1) (2002) 8–17

2. Agrawal, A., Du, M., McCollum, C., Syst, T., Wong, K., Yu, P., Mller, H.: Rigi
- An End-User Programmable Tool for Identifying Reusable Components. In: 5th
International Conference on Software Reuse, Victoria, British Columbia (1998)

3. Finnigan, P.J., Holt, R.C., Kalas, I., Kerr, S., Kontogiannis, K., Meller, H.A.,
Mylopoulos, J., Perelgut, S.G., Stanley, M., Wong, K.: The Software Bookshelf.
IBM Systems Journal 36(4) (1997) 564–593

4. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley and Sons,
Chichester, England (2002)

5. Koskimies, K., Mnnist, T., Syst, T., Tuomi, J.: Automated Support for Modeling
OO Software. IEEE Software 15(1) (1998) 87–94

6. Hindsight: http://www.testersedge.com/hindsight.htm. (2004)

Automated Interpretation of Agent Behaviour 15

7. Bruening, D., Devabhaktuni, S., Amarasinghe, S.: Softspec: Software-based
Speculative Parallelism. In: 3rd ACM Workshop on Feedback-Directed and
Dynamic Optimization, Montery, California, ACM Press (2000)

8. Kullbach, B., Winter, A.: Querying as an Enabling Technology in Software
Reengineering. In Nesi, P., Verhoef, C., eds.: 3rd European Conf. on Software
Maintenance and Reengineering, Los Alamitos, IEEE Computer Society (1999)
42–50

9. Jennings, N.R.: On Agent-based Software Engineering. Artificial Intelligence 117
(2000) 277–296

10. Lam, D.N., Barber, K.S.: Debugging Agent Behavior in an Implemented Agent
System. In Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A., eds.: Lecture
Notes in Computer Science. Volume 3346. Springer-Verlag (2005) 103–125

11. Lam, D.N., Bosse, T, Barber, K.S.: Automated Analysis and Verification of Agent
Behavior. In: 5th International Conference on Autonomous Agents and Multiagent
Systems, Hakodate, Japan (2006) 1317–1319

12. Lam, D.N., Barber, K.S.: Comprehending Agent Software. In: 4th International
Joint Conference on Autonomous Agents and Multi-Agent Systems, Utrecht,
Netherlands (2005)

A Semantic and Pragmatic Framework for the
Specification of Agent Communication Languages:

Motivational Attitudes and Norms

Rodrigo Agerri1 and Eduardo Alonso2

1 School of Computer Science, University of Birmingham
B15 2TT, Birmingham, UK

r.agerri@cs.bham.ac.uk
2 Dept. of Computing, City University

EC1V 0HB London, UK

Abstract. The ability to communicate is one of the most important properties of
agents. In an open environment, like the Internet, in which agents are designed in
many different ways, it is important to clearly establish the meaning of a standard
language for artificial agents. Traditionally, the pragmatics of ACLs take the form
of interaction protocols, which only specify the order in which messages occur
without taking into account the content of the message, or the role of the agents. We
present a unified ACL which attempts to define the ACL semantics and pragmatics
within the same framework, including an intentional view of speaker’s meaning
and a pragmatic level based on the normative notion of right. The framework is
developed by defining a logic with modal and deontic operators grounded in a
computational model. The pragmatics takes the form of declarative rules.

1 Introduction

The adoption of a standard Agent Communication Language (ACL) is crucial for arti-
ficial agents to interact in open environments. Communication is a kind of interaction
that should not affect the autonomy or heterogeneity of the agents. This is particularly
true in open environments, such as electronic commerce applications based on the In-
ternet, where agents are designed by different constructors and work for their individual
interests.

Most of the approaches to ACLs are based on speech act theory [1]. According to
this theory, linguistic communication is just a special type of action that can be seen
from three different points of view. An illocution is the central component of a com-
municative action and it corresponds to what the action is intended to achieve. This
goal should be distinguished from the effect that the communicative action is meant to
produce on the receiver (perlocution), as well as from how the actual communication
is physically carried out (locution). In this paper, we aim to introduce a framework in
that the semantics consists of a complete catalogue of communicative actions with a
complementary pragmatic component that accounts for the social effects of performing
a communicative action and thereby facilitates the achievement of its perlocutionary
effects.

Current approaches to ACLs can be classified according to three different views:
KQML (Knowledge Query Manipulation Language [2]) and FIPA ACL (Foundation

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 16–31, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

A Semantic and Pragmatic Framework for the Specification of ACL 17

for Intelligent Physical Agents [3]) are based on a mentalistic approach. The meaning
of the communicative actions is defined in terms of the private mental states of the
agents. The semantics of the cognitive operators for beliefs, intentions etc. are given
using possible world semantics, which means that the resultant ACL semantics are not
public. Furthermore, it has been argued that, in open environments, in which agents are
heterogeneous and competitive, it is not sensible for agents to trust their opponents in
a negotiation process by making assumptions about their current beliefs or intentions
[4,5]. The second approach, known as procedural, focusses on the design of conversa-
tion templates. ACLs are defined in terms of message sequences, that is, the meaning
of a communicative actions depends on the order in which can be used. Examples of
this approach can be found in [6] and [7], among others. It has been claimed that pro-
cedural accounts over-constrain agents’ behaviour, transforming communication in a
meaningless exchange of ordered tokens [4]. Finally, the social approach takes into ac-
count the social consequences derived from performing a communicative action. For
instance, the commitments that agents acquire by sending a particular message. Some
authors take commitment as the core social notion to define the meaning of the speech
acts [4,5]. The general idea is that by defining the ACL in terms of commitments, the
ACL is made public.

The social approach is a very promising approach to the specification of public ACLs
but we also believe that some of the criticisms of the mentalistic approaches are the
result of a misconception, namely, that the ACL semantics should also capture the so-
cial character of communication, or that it should achieve the perlocutionary effects.
Traditionally, mentalistic and social approaches are semantic based. Sometimes some
interaction protocols are also provided (Contract-Net, English Auction etc.) to specify
the order in which speech acts are to be performed. Procedural approaches are purely
protocol-based, so the resultant protocol is not high-level enough for the ACL to be
used in open multi-agent systems. In our view, the ACL pragmatics should complement
the ACL semantics not only by specifying conversation templates, but also by contex-
tually regulating the use of the speech acts in a way that it provides a method for the
achievement of the perlocutionary effects.

A number desiderata for ACLs have been proposed by various authors. Table 1 sum-
marizes the most common requirements that ACL should satisfy and it compares some
ACLs proposed so far.

Although the social approaches perform well with respect to some of the require-
ments, they still do not provide a pragmatic theory to regulate the use of the speech
acts in conversation. None of these approaches guarantee the fulfilment of the perlocu-
tionary effects. Dealing with autonomous agents, it is not possible to guarantee that the
perlocutionary action is satisfied, because its fulfilment depends on the receiving agent.

The remainder of the paper is structured as follows: In the next section, we introduce
the main concepts of a unified ACL framework. In Section 3 a formal definition of the
semantics is given. Section 4 defines the pragmatic specification language and proposes
the use of conversation policies and interaction protocols within the framework pro-
vided. Section 5 discusses how our proposal compares to related approaches and some
conclusions and further work are discussed.

18 R. Agerri and E. Alonso

Table 1. Desiderata for ACLs

Requirements ACLs
FIPA ACL Procedural Singh (2000) Fornara and Colombetti (2004)

Autonomous - - � �
Complete - � � �
Contextual - - - -
Declarative � - � -
Formal � - � �
Grounded - � ? �
Public - � � �
Perlocutionary - - - -

2 General Framework

Agent Communication consists of agents exchanging messages which are well-formed
formulae of a communication languageLc. By sending messages, agents perform speech
acts. Speech Acts are usually classified in terms of their illocutionary point [1].

A well-defined semantics is a central component of the specification of an ACL.
Traditionally, ACLs consist of a set of communicative actions and several interaction
protocols that define conversational templates for specific scenarios (e.g. auctions). This
means that it was generally assumed that the meaning of speech acts could be semanti-
cally defined for every context. Social approaches aim to provide public ACLs, but the
absence of a complementary pragmatic component to the semantics means that some
issues such as the achievement of the perlocutionary effects are still not solved. We
claim that the ACL pragmatics should not only consist of the interaction protocols but
it should also define policies that contextually enrich the minimal meaning of the speech
acts. As Singh [4] put it

“What we usually refer to informally as meaning is a combination of the
semantics and the pragmatics. We will treat the semantics as the part of the
meaning that is relatively fixed and minimal. Pragmatics is the component of
meaning that is context-sensitive and depends on both the application and the
social structure within which is applied. [. . .] Pragmatic claims would be based
on considerations such as the Gricean maxims of manner, quality and quantity.”

We believe that a declarative ACL pragmatics with these characteristics is needed.
Our unified ACL consists of a set of speech acts, the Speech Acts Library (SAL), and
the ACL pragmatics, which are structured as a set of conversation policies and interac-
tion protocols. The ACL pragmatics are called NPRAG (from Normative PRAGmatics)
and it consists of normative rules to regulate agents’ behaviour. The key concept of
NPRAG is a notion of right defined specially for our tasks. We also define two spec-
ification languages, MCTLI and NCTLI , to define the semantics of the cognitive
and normative concepts used in the ACL. The ACL semantics encodes the intentional
character of communication between autonomous agents. The ACL pragmatics contex-
tually regulates the use of the speech to facilitate the achievement of the perlocutionary
effects. Thus, a unified ACL is defined as the tuple

A Semantic and Pragmatic Framework for the Specification of ACL 19

UACL = 〈SAL, MCTLI, NPRAG, NCTLI〉
Messages of SAL are based on a STRIPS-like language with preconditions and ef-

fects. On the one hand, the preconditions are to be true for the agent to send a message
(including the goal the sender intends to achieve by sending that message). On the other
hand, the effects state the response that the sender wants to produce in the audience. This
is a problematic issue because, as has already been discussed, autonomous agents, by
definition, cannot be forced to guarantee the effects. The semantics of SAL are given
by a function

�−�SAL : wff (SAL) → wff (MCTLI)

The syntax of the communication language SAL is based on the FIPA ACL [3]. The
semantics of the motivational and temporal operators will be given by MCTLI in the
next section. The language MCTLI is based on Computational Tree Logic (CTL) [8]
extended with operators for beliefs, goals and intentions. We combine the cognitive
notions with the temporal operators à la Fagin et al. [9]. In doing so, we are effectively
grounding MCTLI to a computational model, which is the first stage to facilitate its
verification [10].

In the interpretation for beliefs, goals and intentions proposed here, these attitudes
are ascribed to the agents by an external reasoner about the system. In this approach,
agents do not compute their beliefs, goals and intentions in any way and, as a conse-
quence, the ACL defined using MCTLI as the semantic specification language does
not rely on agents’ internal (mental) states.

NCTLI consists of branching temporal operators combined with a deontic for obli-
gations. NCTLI provides the semantics for the normative operators used in the spec-
ification of NPRAG. The semantics of NPRAG are given like the semantics of SAL
above. The conversation policies and interaction protocols of NPRAG can be specified
using a logic-based declarative language.

In the following sections, we present the ACL semantics. Firstly, MCTLI is defined
showing to the semantics of beliefs, goals and intentions are grounded in a computa-
tional model. MCTLI is then used to define a complete set of speech acts.

3 MCTLI

3.1 Syntax

Definition 1 (MCTLI Syntax). The BNF definition of MCTLI formulae is as fol-
lows. Consider n agents.

φ := AP |¬ϕ|φ ∧ ψ|Biφ|Giφ|Iiφ|EXφ|AXφ|A[φUψ]|E[φUψ]

The boolean operators are standard. E and A are quantifiers over paths, meaning “there
exists a run” and “for all runs” respectively. As in CTL, MCTLI temporal connectives
consist of a pair of symbols. The first pair is one of the quantifiers, whereas the second
one is F , G, U or X meaning “some future state”, “all future states (globally)”, “until”
and “next state”, respectively. Until is a special operator which means that ψ does even-
tually hold and that φ will hold everywhere until ψ holds. As usual, we define F and

20 R. Agerri and E. Alonso

G as abbreviations AFφ ≡ A[True U φ], EFφ ≡ E[True U φ], AGφ ≡ ¬EF¬φ,
EGφ ≡ ¬AF¬φ. Biφ, Giφ and Iiφ are operators for beliefs, goals and intentions
respectively.

There are two main semantic approaches to the formalization of agent systems via
modal logics. The traditional model is based on the work of [11] on possible-world
semantics. It has been argued that possible-world models cannot be related to a compu-
tational model The possible-world approach includes the theory of intention [12] and
the BDI logic of [13]. Appropriate grounded semantics ensures that a clear correspon-
dence can be found between states in the computing system and configurations in the
logical description (see [10] for a good discussion on these issues).

The second approach, the Interpreted Systems model, offers a natural interpretation
of the notion of knowledge in terms of states of agents in distributed systems [9]. We
adapt the interpreted systems to our purposes of giving a grounded semantics for beliefs,
goals and intentions.

3.2 Semantics

The key idea is that agents in multi-agent system are in some state at any point in time.
This state is the agent’s local state, which consists of all the information about other
agents and about the environment to which agents have access (we follow [9] in the
definition of Interpreted System).

Furthermore, we can also think of the whole system as being in some state. In this
sense, the notion of environment refers to everything else in the system that is not an
agent. Both the agent’s local state and the environment’s state conform to the global
state of a system.

Definition 2 (Global States). A tuple (se, s1, . . . , sn) represents a global state in a
multi-agent system where se is the environment’s state and si is agent i’s local state,
for i = 1, . . . , n.

A system evolves over time. Thus, we define a run as a function from time to global
states, which gives a complete description of what happens over time in one possible
execution of the system. Following this, we define a system as a set of runs. The system
is always at a global state at some point.

Definition 3 (Points). A point is a pair (r, m) consisting of a run r and a time m. We
assume that time is discrete and ranges over the natural numbers. At a point (r, m)
the system is in some global state r(m). If r(m) = (se, s1, . . . , sn), then ri(m) is the
agent’s local state at the point (r, m).

A system can be seen as a Kripke structure except that we do not have any labelling or
interpretation function to assign truth values to the atomic propositions.

Definition 4 (Interpreted System). A system T over GS is a set of runs over global
states in GS. A point (r, m) is a point in system T if the run r is in the system T such
that r ∈ T . A round m in run r takes place between m − 1 and time m. Thus, an
interpreted system IS is a tuple (T, L) where T is a system of runs and L is a labelling
function which assigns truth values to the atomic propositions at the global states.

A Semantic and Pragmatic Framework for the Specification of ACL 21

We extend the interpreted system models with beliefs, goals and intentions. Beliefs are
given a standard KD45 axiomatization relative to each agent. For goals and intentions,
we assume a minimal KD axiomatization to ensure consistency.

Definition 5 (MCTLI Structure). Given a system of runs T , the structure MCTLI

is generated by associating the interpreted system IS = (T, L) with the serial, tran-
sitive and euclidean Kripke structure M = (S, Bi, Gi, Ii, L), such that MCTLI =
(GS, Bi, Gi, Ii, L) where GS corresponds to the sets of global states in IS. L is a la-
belling function L : S → 2AP from global states to truth values, where AP is a set
of atomic propositions. Bi where i = (1, . . . , n) is a set of agents, gives the accessi-
bility relation on global states, which is serial, transitive and euclidean. Thus, we have
that (le, l1, . . . , ln) Bi (l′e, l

′
1, . . . , l

′
n) if l′i ∈ GSi. The serial relations for goals Gi and

intentions Ii are defined in the same manner.

We say that a formula φ is true at a point (r, m) in a system IS, (IS, r, m) |= φ, iff φ is
true in the MCTLI structure generated by IS and M , that is, (MCTLI , (r, m)) |= φ.

Before we define the semantics of MCTLI , we need an extra definition:

Definition 6 (Extension). Given an interpreted system IS, we say that r′ ∈ T extends
the point (r, m) ∈ T if both runs r and r′ go through the same sequence of global states
up to time m. Formally, if r′(m′) = r(m′) for all m′ ≤ m.

Definition 7 (MCTLI Semantics). The semantics of MCTLI are inductively defined
as follows:

(IS, r, m) |= φ iff L(r, m)(φ) = true
(IS, r, m) |= φ ∧ ψ iff (IS, r, m) |= φ and (IS, r, m) |= ψ
(IS, r, m) |= ¬φ iff it is not the case that (IS, r, m) |= φ
(IS, r, m) |= EXφ iff for some run r′ that extends (r, m) then (IS, r′, m+1) |= φ
(IS, r, m) |= AXφ iff for all runs r′ extending (r, m) then (IS, r′, m + 1) |= φ
(IS, r, m) |= Biφ iff ∀(r′, m′) such that (r, m) Bi (r′, m′), then (IS, r′, m′) |= φ
(IS, r, m) |= Gi(φ) iff for all (r′, m′) such that (r, m) Gi (r′, m′), then (IS, r′, m′)
|= φ
(IS, r, m) |= Ii(φ) iff for all (r′, m′) such that (r, m) Ii (r′m′), then (IS, r′m′) |=
φ
(IS, r, m) |= E[φUψ] iff there is a run r′ extending (r, m) such that φ U ψ, that
is, there is some m′ ≥ m along the run such that (IS, r′, m′) |= ψ and for each
m ≤ m′′ < m′ we have (IS, r′, m′′) |= φ.
(IS, r, m) |= A[φUψ] iff for all runs r′ extending (r, m), that run satisfies φ U ψ,
that is, there is some m′ ≥ m along the run such that (IS, r′, m′) |= ψ and for
each m ≤ m′′ < m′ we have (IS, r′, m′′) |= φ.

In this framework, “agent i believes φ” means that, “as far as agent beliefs are con-
cerned, the system could be at a point in which φ holds”. In other words, beliefs refer
to the runs of the system. The notion of belief used in this paper does not require that
the belief be true. Therefore, an agent holding a belief does not automatically made true

22 R. Agerri and E. Alonso

the content of the belief. This property is central for an open MAS, where agents have
available incomplete and modifiable information.

An “agent i has the goal of bringing about φ” means that, “with respect to the agent’s
goals, the system could be at a point where φ holds”. Goals can be seen as facts φ at a
global state that an agent wants to bring about. “An agent i having the intention to bring
about φ”, means that, from the point of view of the agents’ intentions, there is a run in
which i intends, along that run, to bring about φ.

The states accessible through the relation Gi are a subset of those accessible through
the accessibility relation for beliefs Bi. It is quite common that the set of goal states is
a subset of those believed possible, such that Gi ⊆ Bi. This responds to the common
sense claim that there are facts along runs that the agent does not want to bring about.
MCTLI can be now used to define a catalogue of speech acts.

4 Speech Acts Library

Following Searle’s taxonomy [1], we classify speech acts into assertives, commissives,
directives, declarations and expressives. The last category is not relevant for the pur-
poses of this paper, so it will not be included. Table 2 presents a speech act for each of
the other four categories, plus two more (agree and refuse) that will be used later. The
two speech acts at the top, inform and request, are classified as assertives and directives
respectively. Declare is a declarative and promise is a commissive.

Table 2. A complete set of speech acts

〈i, inform(j, φ)〉 〈i, request(j, φ)〉
FP : Bi(φ) ∧ Gi(Bj(φ)) FP : Gi(Ij(EFφ))
RE : Bjφ RE : EFφ

〈i, agree(j, φ)〉 〈i, refuse(j, φ)〉
〈i, inform(j, IiE(φ U ψ))〉 〈i, inform(j, ¬IiE(ψ U ψ))〉
FP : Iiφ U ψ FP : ¬IiE(φ U ψ)
RE : Bj(IiE(φ U ψ)) RE : Bj(¬IiE(φ U ψ))

〈i, promise(j, φ)〉 〈i, declare(j, φ)〉
FP : IiEFφ FP : Gi(EXφ)
RE : EFφ RE : EXφ

We analyse inform, request and agree in detail and we compare them to other for-
malizations [12,3,4,5].

4.1 Inform

In our approach, agent i informs j that, according to its beliefs, a fact φ holds at a
point in the system. The preconditions for i to send an inform require i to believe that
φ holds and to have the goal of j believing that φ holds. The Rational Effects are that
agent j believes that φ is true. The main intuition in this analysis is that when one
sends an inform, one usually believes the content of the speech act and one has the

A Semantic and Pragmatic Framework for the Specification of ACL 23

communicative goal that the receiver comes to believe the content of the inform speech
act. The Rational Effect (perlocution) state that the response one wants to produce in
the audience is that the receiver adopts the belief in φ.

We explicitly define the semantics of the cognitive operators upon a computational
model. It is well known that a common problem of possible-world semantics is the dif-
ficulty of relating them to a system. However, the ACL semantics are based on mental
states (e.g, [3,12]) with semantics defined in terms of possible-world models. Further-
more, these approaches use complex languages with dynamic and cognitive operators
that greatly increases the complexity of the logic and of the speech act itself. For ex-
ample, the FIPA specification requires in the preconditions that the sender i is believes
that the receiver is uncertain about the content of the inform message, but it does not
require that i has the goal of agent j (the receiver) believing the content of the inform
speech act. We have not study the axiomatics of MCTLI for space constrains, but it is
well-known that both components (the cognitive and the branching time operators) can
be given a sound and complete axiomatization [13].

With respect to the social-based approaches, Singh [4] proposes that an inform means
that objectively, “the sender commits that the content is true” and, practically, “the
sender commits that it has a reason to know the content”. Singh’s aim is to use commit-
ments to make the ACL semantics public, but in doing so the idea that the sender has
the goal that the receiver adopts a belief is missing. This is what we mean by saying
that social-based approaches do not capture the goal-based character of communication.
Another way of saying this is that the illocutionary aspect of the speech act which we
defined as “what the speech act is intended to achieve” is lost. The analysis proposed by
[5] follows similar lines to Singh, but the semantics of speech acts are no longer declar-
ative but are given operationally. Finally, Singh defines a language that consists of CTL
with modal operators for beliefs, commiments and intentions. However, the operators
for beliefs and intentions are not grounded in a computational model.

4.2 Request

The above definition of request states that when an agent i requests that agent j brings
about some proposition φ the preconditions to be satisfied consist of agent i having the
goal that agent j intends along a run that φ eventually holds. The rational effect is that
φ eventually holds along a run.

We have already made the point about the complexity of the mentalistic formaliza-
tions so we will focus on the social-based proposals: Singh [4] defines request to objec-
tively mean that “the sender commits that the receiver will commit to making it true”
and practicaly that “the sender commits that the receiver has committed to accepting a
request from him”. Giving this meaning to a request seems a bit odd. Since it is not clear
anymore why a sender sends a request. In our view, the reason is that the sender intends
to achieve a communicative goal that will be satisfied if the receiver agrees to perform
whatever was requested. Obviously, this cannot be expressed without using cognitive
operators. In this sense, the use of precommitments [5] to analyse requests fails, in our
view, to express that the sender explicitly expresses its interest of having the receiver
executing a particular action. In this approach, a request is the execution of a public
method that creates an empty slot that has to be filled in.

24 R. Agerri and E. Alonso

The definition of agree is a good example to appreciate the benefits of using temporal
logic as specification language. The informal meaning of agree according to FIPA is that
an agent agrees to do some action when some preconditions hold. Since we aim to define
our library of Speech Acts in the spirit of FIPA CAL specification, we use the until
operator to express that agent i agrees to bring about φ as long as some precondition ψ
holds. This form is far simpler than other formalizations of this speech act proposed to
date (see [3]).

Following this point, when an agent i promises to agent i that φ will be true, this
means that agent i intends along a run that φ will eventually hold. The perlocutionary
effect state that φ eventually holds indeed. Finally, when an agent performs a declare
that φ, the preconditions of the act require that i intends along a run that φ holds in the
next immediate global state. The perlocutionary effect to be achieved is that φ holds at
the next state.

Note that the ACL semantics proposed has solved some of the problems summarized
in Table 1. The crucial point is that MCTLI offers a grounded semantics to beliefs,
goals and intentions (these notions are external).

The rest of the requirements state that the semantics provided by SAL respects the
autonomy of agents, it defines a complete set of speech acts, it does not take into account
different contexts in which the speech acts are used, it provides a declarative and formal
meaning, and it does not account for the achievement of the perlocutionary effects. The
requirements left are that the ACL be public and contextual. This accounts for fact that
the perlocutionary effects are not met by the ACL semantics proposed in this section.
In fact, we claim that these problems should not be tackled by the ACL semantics but
by an ACL pragmatics that complements the ACL semantics by regulating the use of
the speech acts depending on the context, scenario, agents’ roles etc. Note that this
idea allows us to capture the intentional aspect (illocutionary) of the speech acts in the
semantics leaving the public and contextual (or social) issues for the pragmatics.

5 Normative Pragmatics

The ACL pragmatic theory proposed in this paper is normative. So, it is only natural
to ask: What are the benefits of using norms in ACL pragmatics? We hope that the
following example will illustrate the problems of a semantic-based approach to agent
communication. Our specification of inform given in the previous section states that
when an agent i performs this act:

i It believes its propositional content φ and
ii It has the goal that the receiver j will eventually come to believe that φ holds.

iii The perlocution is that j comes eventually to believe that φ holds.

The process of intention recognition would presumably be described as follows:
When agent j receives the message, it will assume that the first two preconditions hold.
As a consequence, j should believe that i believes that φ, if j trusts the sender’s mes-
sage, j will believe φ, which corresponds to communicative goal i wanted to achieve.
Assuming that agents do this process is, however, too idealistic. Moreover, it is compu-
tationally expensive to let agents do all this reasoning.

A Semantic and Pragmatic Framework for the Specification of ACL 25

This is where interaction protocols come to work. Interaction protocols define the
sequences in which speech acts can be performed, so that agents can follow the conver-
sational template without doing all this complex reasoning pictured above. Although in-
teraction protocols are necessary for agent communication, most of them restrict agent
conversation to a “follow-the-rule” activity, in which a conversation simply becomes in
an exchange of meaningless tokens. These approaches are not concerned with the use
of speech acts according to their content in specific contexts. This is due to the fact that
none of these approaches consider both aspects, semantic and pragmatic, as the two
sides of communicative meaning. The basic intuition behind the normative pragmatics
presented in this paper is that the intention recognition process described above is to be
regulated by means of rights, obligations and permissions. In fact, when we were talk-
ing about the process itself we were saying that agents should believe this and should
do that. If we can make policies to take into account contextual information to regulate
the use of the semantics, we do not need agents to do all that complex reasoning.

A second question easily arises: Why using rights and not just obligations and/or
permissions? The main reason is because we want to give agents enough freedom, but
also limit their behaviour. We believe that there is a middle ground between traditional
obligations and permissions as defined in standard deontic logic, and that the concept of
right that we define below is appropriate to capture this. We do not follow any definition
of right in the literature, nor we try to provide a solution for any possible ambiguity that
could be found in the notion of right, that is, in the fact that right has been usually used
to refer to various things. A concept of right will provide a normative notion that helps
to coordinate agent communication but that does not completely pre-determine their
behaviour. This concept is in some sense close to what [14] calls strong permission. An
interesting point in the etymological meaning of the word ‘right’ comes from that that
is fair or just. This sense allows us to talk about a society that is “rightly ordered”, for
example. When applied to individuals, rights entitle their holders to some freedom.

5.1 NCTLI

The pragmatic specification language NCTLI inherits most of the formal machinery
used in the definition of MCTLI . The only difference is that instead of beliefs, goals
and intentions, we simply add a deontic operator for obligations within an organiza-
tional structure in which agents are assigned a role [15]. Thus, special propositions i rr
j, gi rni are introduced to mean that agents i and j are role-related by rr, i is a member
of group g, and i plays the role rn, respectively. A role is a set of constraints that should
be satisfied when an agent plays the role. For example, the role of auctioneer constrains
the goals, obligations, permissions and rights of the agent that plays that role. The scope
of the role depends on the institutional reality in which it is defined (e.g. auction). A
group is a set of agents (roles) that share a specific feature (i.e. being auctioneers).
Finally, role relations constrain the relations between roles (e.g. the auctioneer-bidder
relation).

Given a finite set of agents Ag, a finite set of group names GN , a finite set RN
of role names, a finite set RR of role relations, and a countable set AP of primitive
propositions, the syntax of NCTLI is given by the following BNF expression:

26 R. Agerri and E. Alonso

Definition 8 (NCTLI Syntax)

ϕ := AP |¬φ|φ ∧ ψ|Oiϕ|EXφ|AXφ|E[φ U ψ]|A[φ U ψ]

As usual, permissions are defined as the dual of obligations. The axiomatization of
obligation is given by the system KD. NCTLI structures are the result of associating
the interpreted system IS with a Kripke structure in which the accessibility relation for
obligation is serial.

Definition 9 (NCTLI Semantics). The temporal operators of NCTLI are the same
as in MCTLI , so we give only the definition for the new operator.

(IS, r, m) |= Oiφ iff ∀(r′, m′) such that (r, m) Oi (r′, m′), then (IS, r′, m′) |= φ

The traditional reading of the obligation operator has been something like “agent i is
obliged to bring about φ”. A more recent interpretation is proposed by [16] where an
operator Oiφ expresses the idea that “if agent i is functioning correctly, then φ holds”,
where φ can refer to global or local states in the system. Lomuscio and Sergot intro-
duce the Deontic Interpreted System models, where a deontic notion is grounded in an
interpreted system. However, they do not include a temporal component in their logic.
Given that we have introduced time in our models, we modify slightly their definition
and say “the system is at a point in which φ holds if agent i acts correctly”.

It remains to define the normative notions of NCTLI that are not primitive. Specif-
ically, we define what it means for some φ to be a violation, for an agent i to have the
right to bring about φ, and an intuitive notion of sanction. In order to define violation,
we extend the language of NCTLI to include the propositional constant V as an ab-
breviation of the formula defined below. The meaning of the expression V φ states that
φ holding in the system at some point is a violation.

Definition 10 (Violation). From each literal built from a variable φ, V ¬φ means that
¬φ is a violation at some point (r, m) in the system for some ns ∈ NS, such that NS
is a set of norms, iff

OiE(φ U ψ) → ¬E(φ U ψ)

If the system is at a point in which φ holds if agent i acts correctly until ψ holds, then
¬φ holds until ψ holds. Agent i not working correctly means that φ does not hold and
that constitutes a violation. We can imagine a context in which if an agent i is function-
ing correctly then it will send an accept message to a request when some agreement
preconditions hold, then agent i does not accept the request. In this situation, we say
that agent’s i not bringing about φ violates the pragmatic specification of accepting the
request. In some cases, agents have their behaviour specified in a way that performing
some action does not constitute a violation. Rights give agents some freedom to act in
some specific way. In this sense, rights are considered here exceptions to obligations.
An agent has the right bring about φ under some condition ψ if bringing about φ is not
a a violation (¬V (φ)). From an external point of view, we say that “there is a point in
the system where agent i is functioning rightly if the holding of φ does not constitute a
violation”. We formalize this concept as follows:

A Semantic and Pragmatic Framework for the Specification of ACL 27

Definition 11 (Right). Let NS be a set of norms (ns1, . . . , nsn), and let the variables
of agent Ag contain a set of violation variables V = V (φ) such that φ ∈ AP . Agent i’s
functioning is right when φ holds, Riφ, for some ns ∈ NS at some global state r(m),
r(m) ∈ GS iff

E(¬V φ Uψ)

Therefore, having the right to bring about φ under some precondition ψ means that until
ψ holds along a run, then φ not being a violation also holds along that run. So, what
happens when an agent not functioning correctly or rightly brings about some φ, which
constitutes a violation? The specific nature of the sanction varies from system to system,
and within the same system, from one scenario to another. The general pattern, however,
is that the sanctioned agent will have the obligation to do something as a punishment
for its violation. For example, agent i wants to participate in a bidding process to buy
a property on behalf of some estate agents. Say that to enter the auction, you need to
pay some deposit of 1,000 in advance. If the agent (its role is bidder, bidder ∈ RN)
wins the auction with an agreed price of 200,000 for the property, but decides to break
the agreement and not buying the house after winning the auction, then it agent has the
obligation to pay a fine. In this case, the fine can be the 1,000 deposit paid to enter the
auction in the first place. The agent with the right to impose fines in this scenario can
be the agent playing the role of auctioneer auctioneer ∈ RN . We can formalize this
notion of sanction as follows:

Definition 12 (Sanction). Let b denote the role of bidder such that b ∈ RN , then a
agent i such that i ∈ Ag playing the role of bidder b has the obligation to pay a fine (by
bringing about φ) iff

bi ∧ (OiE(φ U ψ) ∧ ¬(Eφ U ψ)) → Oiω

Once the notions of obligation, right, permission etc., are defined by NCTL, the next
step is to use them to specify a set of normative interaction protocols and conversation
policies (NPRAG) for agent communication to complement the Speech Acts Library
of the previous section. Note that the main aim of this paper is to define the general
framework in which meaning is defined by the combination of the ACL semantics and
pragmatics and where the semantics of the two specification languages are grounded in
a computational model. Due to space constraints, the next section briefly outlines the
development of interaction protocols and policies within the framework provided.

5.2 Policies and Protocols

In our approach, interaction protocols are seen as conversational constitutive rules that
specify the structure of conversations. Conversation policies make coordination eas-
ier by assigning rights and obligations on the participants, and specifying which speech
acts are appropriate at certain points (the agent playing the role of auctioneer establishes
the rights and permissions of the participants). The conformity of the participants to the
protocol is based on the content of the speech acts used. Conversation policies spec-
ify the communicative actions that agents should perform when functioning correctly.
Thus, these rules includes contextual information, they make conversations public by

28 R. Agerri and E. Alonso

means of social rules and they state that, when agents act correctly, some course of ac-
tion should be taken. Among these, those actions that satisfy the perlocutionary effects
of the speech acts.

We propose the use of a logic-based declarative language (such as Prolog) to specify
the protocols and policies. We could have thought of using NCTLI to define rules that
could be capture by finite-state automata. However, it is very difficult to do so when we
are talking of assigning roles, rights etc. Prolog offers an intuitive method of expressing
rules to build automata, which could prove useful for issues of verification.

Conversation policies involved agents, roles, speech acts, contextual-dependent ac-
tions (e.g. bidding), transition actions (for turn-taking), conflict resolution actions (to
override conflicts between rules) and normative rules. Contextual actions are expressed
in terms of goals, preconditions and effects:

done(Agent, Goal, Precondition, Effect)

Contextual actions are those actions specific of the institution (e.g. bidding), in which
the interaction is taking place, that we call context-dependent actions. Broadcasting ac-
tions depend on the platform in which agents run. That is, broadcasting actions are de-
fined by the programming language in which agents are built. For example, in Java built
platforms like JADE, sending messages is simply a case of creating an ACLMessage,
setting the parameters (sender, receiver, reply-to, performative, etc.) and then sending it
using the send() method in the agent object.

Finally, normative rules consist of a deontic operator (obligations, rights) and a con-
dition that has to be true for the rule to be applicable:

right(X, request(X, Y, Condition))

Agents hold the right to bring about φ as long as it does not constitute a violation.
An obligation rule states that an agent must perform an action before its applicability
condition becomes false; a permission rule establishes that the agent can bring about φ
if its condition(s) is true. We show two simple examples of how to model interaction
protocols of the FIPA IPL in terms of the rights of the agents to use the performatives.
In the FIPA interaction protocol for query-if, agent X queries agent Y whether or not
a proposition P is true. The receiver has the right to either agree or refuse to send and
inform message providing an answer. In the case that agent Y agrees, then it has an
obligation to send a notification, which can be an inform speech act stating the truth or
falsehood of the proposition P . If agent Y sends a refuse message the protocol ends there.
We can complement this by specifying the roles of the participating agents as follows:

role(X, customer).
role(Y, seller).

right(X, query-if(X, Y, P), _).

right(Y, agree(Y, X, P));
right(Y, refuse(Y, X, P)) :-

receive(query-if(X, Y, P).

A Semantic and Pragmatic Framework for the Specification of ACL 29

right(Y, inform(Y, X, P));
right(Y, inform(Y, X, not P)) :-

send(agree(Y, X, P), _).

Policies can then be defined to constrain the agents’ use of the speech acts in virtue
of their content. For example, agent Y , acting on behalf of an airline company serving
flights to European countries, could have a policy that states that it should agree to every
query regarding flight tickets to Europe (i.e. answering about flight times and providing
the best offer for a potential buyer) and another one specifying that it has the obligation
to refuse every query about flights to non European countries.

role(X, customer).
role(Y, seller).

obligation(Y, agree(Y, X, P) :-
receive(query-if(X, Y, P)), europeanFlight(P)).

obligation(Y, refuse(Y, X, P) :-
receive(query-if(X, Y, P), nonEuropeanFlight(P)).

Similarly, other conversation policies can be defined to state that an agent can de-
ceive, or that it has the right to do so in particular circumstances. It can be specified that
an agent X will always answer every message it receives etc. The unified framework for
agent communication presented in this paper, consisting of two specification languages
and the semantic and pragmatic component of an ACL, captures all the requirements
states for agent communication languages. Crucially, it establishes the need for defin-
ing a pragmatic theory that help agents to use the speech acts available depending on
the contextual parameters of a specific scenario. Therefore, conversation policies would
play a crucial part in helping agents to achieve the perlocutionary acts of the speech acts
used and, as a consequence, fulfil the requirements regarding the desiderata of an ACL
for open MAS. Importantly, the conversation policies proposed are based on the mean-
ing of the speech acts defined, so that the high-level character of the ACL is preserved.

6 Concluding Remarks

Our approach analyses agent communication from a perspective in which the meaning
of speech acts results from the combination of the semantic and pragmatic specifica-
tions. Every speech act is used in a specific context, and that context usually affects
agents’ communicative behaviour. We propose a normative pragmatics to stabilize in-
teraction in agent communication. There have been quite a lot of work in the specifica-
tion of ACL semantics [3,17,4,5] while other authors have proposed several interaction
protocols to define the order in which messages are used [3,5,7,18].

Two specification languages MCTLI and NCTLI , provide the semantics for the
ACL semantics and pragmatics. Unlike most of other approaches, our specification lan-
guages are grounded in a computational model. This would facilitates the compliance

30 R. Agerri and E. Alonso

testing of the ACL [10]. We have shown how our proposal can be used to define prag-
matic rules using a declarative language. Unlike other approaches, normative pragmat-
ics does not consist only in establishing the order of messages. By defining normative
policies, we facilitate the fulfilment of the perlocutionary effects. In this sense, our uni-
fied ACL performs better with respect to the requirements discussed in Table 1 than the
other proposals.

The characterization of roles is inspired by the literature on organizational concepts
[19,15] and adapted for their use in ACL pragmatics. Other authors [20], have also pre-
sented temporal deontic logic with dynamic operators. We believe that the combination
of deontic, dynamic and temporal notions results in highly complex logics. NCTLI is
far simpler that those formalisms and therefore is easier to axiomatize. Our proposal is
also related to [21], but there are several differences: firstly, they do not provide a formal
definition for any of the deontic operators they use; secondly, they claim that policies
are independent of the ACL semantics, and that in fact policies should be specified in
the general structure of the system; thirdly, the use of obligations produces policies that
in some cases could be too restrictive for autonomous agents; fourthly, they use an on-
tology language based on OWL as the policy specification language, but we believe that
logic is a more suitable language to reason about multi-agent systems.

For standardization reasons, our proposal intends to be as close as possible to the FIPA
ACL specification. With this purpose in mind, we have provided definitions for the ac-
tions absent in the FIPA Communicative Actions Library, commissives and declaratives.
We understand that in FIPA CAL some of the definitions are unnecessarily complex. This
is partially due to the multimodal language used as the semantic language. Current and
future work involves the development of protocols and policies using Prolog and study-
ing different verification techniques based on existing temporal logic algorithms.

References

1. Searle, J.R.: Speech Acts. An Essay in the Philosophy of Language. Cambridge: Cambridge
University Press (1969)

2. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communication Lan-
guage. In Adam, N., Bhargava, B., Yesha, Y., eds.: Proceedings of the 3rd International
Conference on Information and Knowledge Management (CIKM’94), Gaithersburg, MD,
USA, ACM Press (1994) 456–463

3. FIPA ACL: FIPA Communicative Act Library Specification (2002) http://www.fipa.org/
repository/aclspecs.html.

4. Singh, M.P.: A social semantics for agent communication languages. In: Dignum, F.,
Greaves, M. eds.: Issues in Agent Communication. Lectures Notes in Artificial Intelligence,
Vol. 1916. Springer-Verlag, Heidelberg (2000)

5. Fornara, N., Colombetti, M.: A commitment-based approach to agent communication. Ap-
plied Artificial Intelligence an International Journal 18 (2004) 853–866

6. Greaves, M., Holmback, H., Bradshaw, J.: What is a Conversation Policy? In Dignum, F.,
Greaves, M., eds.: Issues in Agent Communication. Lectures Notes in Artificial Intelligence,
Vol. 1916. Springer-Verlag, Heidelberg (2000) 118–131

7. Pitt, J., Mamdani, A.: A protocol-based semantics for an agent communication language. In:
Proceedings of the 16th International Joint Conference on Artificial Intelligence IJCAI’99,
Stockholm, Morgan-Kaufmann Publishers (1999) 486–491

A Semantic and Pragmatic Framework for the Specification of ACL 31

8. Emerson, E.A.: Temporal and modal logic. In van Leeuwen, J., ed.: Handbook of Theoretical
Computer Science, volume B. North Holland, Amsterdam (1990) 995–1072

9. Fagin, R., Halpern, J.Y., Moses, Y., Vardi, M.Y.: Reasoning about Knowledge. The MIT
Press, Cambridge, MA (1995)

10. van der Hoek, W., Wooldridge, M.: Towards a logic of rational agency. Logic Journal of the
IGPL 11 (2003) 135–159

11. Kripke, S.: Semantical considerations on modal logic. Acta Philosophical Fennica XVI
(1963) 83–94

12. Cohen, P., Levesque, H.: Communicative actions for artificial agents. In Bradshaw, J.M.,
ed.: Software Agents. AAAI Press / The MIT Press, Cambridge (MA) (1997)

13. Rao, A.S., Georgeff, M.P.: Decision procedures for bdi logics. Journal of Logic and Com-
putation 8 (1998) 293–342

14. Castelfranchi, C.: Practical permission: Dependence, power and social commitment. In:
Proceedings of 2nd workshop on Practical Reasoning and Rationality, London (1997)

15. van der Torre, L., Hulstijn, J., Dastani, M., Broersen, J.: Specifying multiagent organiza-
tions. In: Proceedings of the Seventh Workshop on Deontic Logic in Computer Science
(Deon’2004). Lectures Notes in Artificial Intelligence, Vol. 3065. Springer, Heidelberg
(2004) 243–257

16. Lomuscio, A., Sergot, M.: Deontic interpreted systems. Studia Logica 75 (2003)
17. Labrou, Y., Finin, T.: A semantic approach for KQML - a general purpose communication

language for software agents. In: Proceedings of the Third International Conference on
Information and Knowledge Management (CIKM’94). (1994) 447–455

18. Endriss, U., Maudet, N., Sadri, F., Toni, F.: Logic-based communication protocols. In:
Advances in Agent Communication. Lectures Notes in Artificial Intelligence, Vol. 2922.
Springer-Verlag, Heidelberg (2004) 91–107

19. Ferber, J., Gutknecht, O.: A meta-model for the analysis of organizations in multi-agent
systems. In: Proceedings of the Third International Conference on Multi-Agent Systems
(ICMAS’98). (1998) 128–135

20. Dignum, F., Kuiper, R.: Combining dynamic deontic logic and temporal logic for the speci-
fication of deadlines. In Sprague, J.R., ed.: Proceedings of thirtieth HICSS, Hawaii (1997)

21. Kagal, L., Finin, T., Joshi, A.: A policy language for a pervasive computing environment. In:
IEEE 4th International Workshop on Policies for Distributed Systems and Networks. (2003)

Broadening the Semantic Coverage of

Agent Communicative Acts

Hong Jiang and Michael N. Huhns

Department of Computer Science and Engineering
University of South Carolina, Columbia, SC 29208, USA

{jiangh, huhns}@engr.sc.edu

Abstract. Communicative acts-based ACLs specify domain-indepen-
dent information about communication and relegate domain-dependent
information to an unspecified content language. This is reasonable, but
the ACLs cover only a small fraction of the domain-independent infor-
mation possible. As a key element of modern ACLs, the set of com-
municative acts needs to be as complete as possible to allow agents to
communicate the widest range of information with agreed-upon seman-
tics. This paper describes a new approach to broaden the semantic cov-
erage of agent communicative acts. It provides agents with the ability
to express more of the semantics of human languages and yields a more
powerful ACL. We first describe the main meaning categories and se-
mantics for an ACL, which we derive from prior work on speech-act
classifications. Next, we prove the resultant semantic coverage. Finally,
we present some example applications, which demonstrate that the ap-
proach can combine the benefits of the FIPA ACL with Ballmer and
Brennenstuhl’s speech act classification, resulting in a more expressive
and efficient ACL.

Keywords: ACL, Semantics, Communicative Acts, FIPA.

1 Introduction

As a critical element of multi-agent systems and a key to the successful applica-
tion of agents in commerce and industry, modern agent communication languages
(ACLs), such as the FIPA ACL, provide a standardized set of performatives de-
noting types of communicative actions. Such ACLs have been designed as general
purpose languages to simplify the design of multi-agent systems. However, recent
research shows that these ACLs do not support adequately all relevant types of
interactions. Serrano and Ossowski [1] report a need for new ad hoc sets of per-
formatives in certain contexts, which the FIPA ACL does not support. Singh [2]
points out that agents from different venders or even different research projects
cannot communicate with each other. In [3], Kinny shows that the FIPA ACL
has a confusing amalgam of different formal and informal specification techniques
whose net result is ambiguous, inconsistent and underspecified communication.
He proposes a set of requirements and desiderata against which an ACL specifi-
cation can be judged, and briefly explores some of the shortcomings of the FIPA
ACL and its original design basis.

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 32–47, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Broadening the Semantic Coverage of Agent Communicative Acts 33

Early work on communicative act-based ACLs, such as KQML and FIPA,
separated the communication problem into three layers—a message transport
layer providing the mechanics of a communication, a domain-independent layer
of communication semantics, and a domain-dependent content layer. The ACL
speech acts were intended to describe the domain-independent middle layer. The
problem is that the 22 communicative acts in the current FIPA ACL cover only
a small fraction of the domain-independent concepts that an agent might want
to express. For example, one agent can inform another of a domain concept
using the FIPA ACL, but cannot promise another something. If an agent wants
to make a promise, its only recourse is to express it in the content language, for
which there typically is no standardized support.

Therefore, a larger set of communicative acts would be desirable in an ACL
to improve understanding among agents. Recognizing that the ~4800 speech
acts in [4] would be desirable but impractical to use individually, we describe
a feasible approach to broaden the semantic coverage of ACLs by formalizing
speech act categories that subsumes the ~4800, enabling the meanings of all the
speech acts to be conveyed. Different from [5], we focus on the standard messages
used for communication instead of designing a conversation protocol.

Specifically, Section 2 describes prior work on a comprehensive classification of
speech acts by Austin, Searle, and Ballmer and Brennenstuhl. The main mean-
ing categories and their semantics are given in Section 3, where we use FIPA’s
formal semantic language to represent the semantics of our communicative act
categories. This permits our approach to combine the benefits of the FIPA ACL
with a broader set of communicative acts. Finally, Section 4 proves the semantic
coverage by comparing it with the FIPA ACL, and several example applications
are described in Section 5.

2 Research Background

Current ACLs derive their language primitives from the linguistic theory of
speech acts, originally developed by Austin [6]. The most important part of his
work was to point out that human natural language can be viewed as actions
and people can perform things by speaking. Austin also classified illocutionary
acts as verfictives, exercitives, commissives, behabitives and expositives [6]. The
classification has been criticized for overlapping categories, too much hetero-
geneity in categories, ambiguous definitions of classes, and misfits between the
classification of verbs and the definition of categories [4,7,8].

Austin’s work was extended by Searle [7,9,10,11], who posited that an illocu-
tionary speech act forms the minimum meaningful unit of language. He classified
speech acts into five categories: assertives, directives, commissives, declaratives,
and expressives. Searle’s speech act theory focusses on the speaker. The success
of a speech act depends on the speaker’s ability to perform a speech act that
should be understandable and successful.

Ballmer and Brennenstuhl [4,8] criticize six aspects of Searle’s classification:
clarity, definition of declaratives as a speech act type, principles used in the
classification, selection of illocutionary verbs, vague definition of the illocutionary

34 H. Jiang and M.N. Huhns

point, and vagueness of the line between illocutionary force and propositional
content. They propose an alternative classification, which contains both simple
linguistic functions such as expression and appeal, and more complex functions
such as interaction and discourse. Models for alternative actions are formed and
verbs are classified according to the phases of the model.

Ballmer and Brennenstuhl’s classification has motivated us to rethink the
speech acts used in ACLs. Since the classification is based on an almost complete
domain (~4800 speech acts) and the authors claim they provide a “theoretically
justified” classification “based explicitly and systematically on linguistic data”,
we believe that to generate a speech act set for ACLs based on their classification
will be a powerful way to represent meaning. However, this classification is not
perfect: the classification for English is obtained by translating the verbs of a
German classification, the names of the categories are not systematically chosen,
and there is no formal semantic representation for the categories. However, most
of these problems can be fixed by rebuilding the categories. Thus, we endeavour
herein to derive a reasonable set of categories for agent communication from
their theory and to give a formal semantics using more typical English names.

3 Semantic Description

This section describes the semantic categories for a relatively complete set of
speech activity verbs, derived from the classification in [4]. The categories reflect
an ontological and a conceptual structuring of linguistic behaviour. The main
categories and their relationships are represented in Fig. 1. The top node, Speech
Acts, represents the entire set of speech acts in human language and the four
major groups—Emotion Model, Enaction Model, Interaction Model and Dialogic
Model—represent four basic functions of linguistic behaviour.

The Emotion Model is the most speaker-oriented and focusses on representing
kinds of emotional states of a human or agent.

The Enaction Model is a function directed toward a hearer, by which a speaker
tries to control the understanding of the hearer.

The Interaction Model is a function involving speaker and hearer in mutual
verbal actions. This group includes three sub-categories to represent different
degrees of the mutual competition: (1) in the Struggle Model, the speaker tries
to get control over the hearer, or the speaker is more competitive in controlling
mutual verbal actions; (2) in contrast, the hearer is more competitive in the
Valuation Model; and (3) in the Institutional Model, the hearer and speaker are
equally competitive.

The Dialogic Model covers a kind of reciprocal cooperation where there is
a better-behaved and more rigidly organized verbal interaction. Its three sub-
categories focus on different types of the content and the organization: (1) the
Discourse Model focusses on the organization and types of discourse; (2) the
Text Model focusses on the textual assimilation and processing of reality, i.e.
the specific knowledge involved; (3) and the Theme Model focuses on the pro-
cess of thematic structuring and its results, in other words, the structure or
organization of some knowledge system.

Broadening the Semantic Coverage of Agent Communicative Acts 35

Fig. 1. Ontology of the Main Speech Act Categories

In the above ontology, the four basic models can be divided into unilateral and
multilateral models. The Emotion Model and Enaction Model are unilateral, be-
cause they focus on a single speech action. The Interaction Model and Dialogic
Model are multilateral, because they consider the response from a hearer. The
Emotion Model and Interaction Model are more original and less constrained,
and the Enaction Model and Dialogic Model are more institutionalized and con-
trolled. Practically, these four basic models may be combined.

We next define several formal semantic model notations and then describe the
detailed semantics for the meaning categories.

3.1 Formal Semantic Model Notations

The semantic model used in representing the categories in this paper follows the
formal semantic language described for the FIPA ACL [12]. Components of the
formalism are

– p, p1, ... are closed formulas denoting propositions;
– φ, ψ are formula schemes, which stand for any closed proposition;
– i, j are schematic variables denoting agents.

The mental model of an agent is based on four primitive attitudes: belief
(what the agent knows or can know); desire (what the agent desires); intention
(an agent’s persistent goal that could lead to some actions); and uncertainty.
They are respectively formalized by operators B, D, I, and U :

– Bip agent i (implicitly) believes (that) p;
– Dip agent i desires that p currently holds;
– Iip agent i intends a persistent goal p;
– Uip agent i is uncertain about p, but thinks that p is more likely than ¬p;

We use the abbreviations:

– Bifiφ ≡ Biφ ∨ Bi¬φ, which means that agent i believes either φ or ¬φ.
– Uifiφ ≡ Uiφ ∨ Ui¬φ, which means that either agent i is uncertain about φ

(φ is more likely) or ¬φ (¬φ is more likely).

To support reasoning about action, we also introduce operators Feasible,
Done and Agent:

36 H. Jiang and M.N. Huhns

– Feasible(a, p) means that an action a can take place and, if it does, then p
will be true.

– Done(a, p) means that when p is true, then action a takes place.
– Agent(i, a) means agent i is the agent who performs action a.

Generally, the components of a speech act model involved in a planning pro-
cess should contain both the conditions that have to be satisfied for the act to
be planned and the reasons for which the act is selected. The former is termed
FP (feasibility preconditions) and the latter RE (rational effect). We use the
same model here, represented as

< i, act (j, C) >

FP : φ1 (1)
RE : φ2

where i is the sender or speaker, j the recipient or hearer, act is the name of the
speech act, C is the semantic content, and φ1 and φ2 are propositions.

3.2 Emotion Model

The Emotion Model focusses on representing the emotional states of a human
or agent. We assume there is a finite set of emotions, E, represented as

E = {e+, e0, e−} (2)

where e+ is an emotion in the set of positive emotions, which is characterized by
or displaying a kind of certainty, acceptance or affirmation (about the content
involved), such as {happy, love, ...}; e0 is in the set of neutral emotions, which
does not show any tendency, such as {hesitate, ...}; e− is in the set of negative
emotions, which intends or expresses a kind of negation, refusal or denial, such
as {angry, sad, afraid , ...}.

The Emotion Model is represented as follows:

< i, em (j, φ) >

FP : ¬Bi (BjAgent(i, em(φ))) ∧ Di(BjAgent(i, em(φ))) (3)
RE : Bj Agent(i, em(φ))

where em ∈ E and the semantic content φ can be empty. Here, desire D is used
instead of the stronger notion I, since emotions are easy to show for humans.
This model represents that agent i sends a message to j that i has emotion em
about φ or i is in the state of em when φ is empty. The FP shows that, when
agent i does not believe that agent j knows that i is currently in emotion em
about φ, and i desires that j knows it, then this message can be sent. The RE
shows that the desired result is that agent j believes that i is in emotion em
about φ.

To simplify usage of this model, we can directly use e+, e0, or e− as commu-
nicative acts. In this case, we focus on the effect of the emotion speech act on the

Broadening the Semantic Coverage of Agent Communicative Acts 37

content φ. That is, for a positive effect, i hopes j knows that i has an intention
on φ; for a negative one, i hopes j knows that i has a negative intention on φ; for
a neutral one, i shows its attitude is uncertain about φ. Just like human interac-
tions, we do not have to know the precise value of an attitude. Instead, we just
need to know that something is viewed favourably, unfavourably or neutrally.

However, detailed emotions are also desirable in some cases. To make this
usable, we generate a set of foundational meaning units from 155 emotion speech
acts listed in [4]. Table 1 gives the foundational meaning units of emotions that
combine the idea from [13,14], and they are organized with consideration of
positive, neutral and negative values.

Table 1. Foundational Meaning Units of Emotional Speech Acts

+ 0 -

happy N/A sad
love N/A hate

excited nervous angry
desire hesitate fear
N/A shocked N/A

In Table 1, each row represents a kind of meaning unit. In the first row,
sad has the opposite meaning of happy. Hate has the opposite meaning of love
in the second row. Excited represents a positive attitude to something with
strong feeling, nervous represents a strong uncertain feeling about something
and angry represents a strong negative feeling about something. In the fourth
row, desire shows a feeling to get something, hesitate shows no intentions or
some uncertainty and fear shows a feeling to avoid something. In the last row,
shocked shows a neutral feeling about surprise.

3.3 Enaction Model

In the Enaction Model, the speaker more or less coercively attempts to get the
hearer to do something by expressing an idea, wish, intention, proposal, goal etc.
There are many speech acts in this group. To organize them and simplify the
usage, we define the set of enactions as:

EN = {en+, en−} (4)

Unlike the Emotion Model, which describes emotions, the Enaction Model
tries to make a hearer do something. Thus, there are no neutral enactions: if
agent i does not want j to do anything, i does not have to send any message to j.
en+ is an action in the set of positive enactions, such as {intend, desire, askfor,
encourage, ...}; en− is an action in the set of negative enactions, such as
{ warning, cancel, ...}.

38 H. Jiang and M.N. Huhns

The Enaction Model can be defined as:

< i, en±(j, φ) >

FP : ¬Biφ ∧ Diφ ∧ Bi(Bjφ ∧ ¬Djφ) for en+ (5)
¬Bi¬φ ∧ Di¬φ ∧ Bi(Bj¬φ ∧ ¬Dj¬φ) for en−

RE : Done(en±(φ))

where en± ∈ EN . This model represents agent i sending a message to j to
ask j to do en± on φ. The FP shows that this message could be sent for en+
when i does not believe that i can do φ and it desires φ, while i believes that
j can do it, but j does not want to do it. FP is the same for en−, except φ
is replaced by ¬φ. The expected result is that en± on φ is done. Practically, j
could just add the action to its action queue for a positive enaction (in this case,
Done(en+(φ)) = Done(φ)) or delete it from its queue for a negative enaction.

3.4 Interaction Model

The Interaction Model is a function involving a speaker and a hearer mutually
interacting. We assume an interaction set IN and the communicative act set
Acts so that IN ⊆ Acts, and for some in ∈ IN and act ∈ Acts, ∃rule : in → act,
such that:

< i, in(j, (a, goal)) >

FP : Iigoal ∧ ¬BiDone(a) ∧ DiDone(a) ∧ Bi(Agent(j, a) ∧ ¬DjDone(a)) (6)
RE : Done(a) ∧ (< j, act(i, (a′, goal − a) > ∨ < j, succeed(i, goal) >)

∨ < j, fail(i, goal) >

where a, a′ are actions, and goal can be a plan or a sequence of actions. This
model represents agent i sending a message to j to ask j to do action a for some
goal. The FP shows that i intends to achieve the goal, so i desires to do a but
cannot do it itself, and i believes that j can do it. However, j does not desire to
do it. The expected result is j does a first, and then generates another message
back to i. This reply message follows the rule in → act. Generally, the message
has the form < j, act(i, (a′, goal − a) >, which means that after j has done a, it
generates another action a′ and reduces the goal. In some cases, for example after
j has done a and the goal is already achieved, then j sends back the message
< j, succeed(i, goal) >, which means that the goal is achieved. Another extreme
case is that j finds out that the goal is impossible to be achieved, then it sends
back message < j, fail (i, goal) >, which means the goal is unachievable.

There are three subcategories of the interaction model representing different
degrees of the mutual competition: Struggle Model, Institutional Model and
Valuation Model. In the Struggle Model, the speaker tries to get control over the
hearer or the speaker is more competitive in controlling mutual verbal actions.
In this case, the rule in → act is decided by the speaker or sender i.

In the Institutional Model, the hearer and speaker are equally competitive. For
example, the establishment of a behaviour in an institution equally affects the

Broadening the Semantic Coverage of Agent Communicative Acts 39

upholders of and the participants in the institution, especially when entering
an institution and thereby adopting its norms, following its norms and rules,
violating them and being pursued by the upholders of the institution. Thus, the
agents i and j should have some common rule system defined in advance.

In the Valuation Model, the hearer is more competitive, so it decides which
communication act to use in its reply. That is, the rule in → act is decided by
agent j after its evaluation of the previous message. Details of the Valuation
Model cover both positive and negative valuations of actions, persons, things
and states of affairs.

3.5 Dialogic Model

The Dialogic Model covers a kind of reciprocal cooperation, and is a more regular
and constrained verbal interaction. For this model, we at first assume a dialogic
speech act set DS and the communicative act set Acts so that DS ⊆ Acts, and
for some d ∈ DS and act ∈ Acts, ∃rule : d → act, such that

< i, d(j, φ) >

FP : Biφ ∧ DiBjφ (7)
RE : Bjφ∧ < j, act(i, φ′) >

For agent i to send a message to j about φ in this model, agent i believes φ,
and i desires j to believe it. The expected result is that j believes φ and j replies
to i with another message about a new φ, which is the reasoning result of agent
j, and the communicative act used in the message follows the rule d → act.

Corresponding to the three subcategories that focus on different types of con-
tent and organization, we can define three types for φ:
– The Discourse Model focusses on the organization and types of discourse, so

φ points to some kind of type or organization that is predefined. For example,
according to the status of a discourse, it could be {beginning discourse, be-
ing in discourse, discourse inconvenience, reconciliation of discourse, ending
discourse }; according to the attitude for some content, it could be {accept,
refuse, cancel }; according to the number of agents involved in the discourse,
it could be {discourse with several speakers, discourse with one speaker, ... };
or a kind of irony, joke etc.

– The Text Model focusses on the textual assimilation and processing of the
specific knowledge involved, i.e. φ describes some knowledge about perceiving
reality, producing texts, systematically searching for data etc.

– The Theme Model focusses on the process of thematic structuring and its
results, in other words, φ points to the structure or organization of some
knowledge system.

4 Proof of Semantic Coverage

The FIPA ACL has four primitive communicative acts, and its other commu-
nicative acts are composed of the primitive acts or are composed from primitive
messages by substitution or sequencing [12]. The four primitive acts are:

40 H. Jiang and M.N. Huhns

Fig. 2. Relationship of FIPA Primitive and Composite Communicative Acts

– The Assertive Inform:

< i, inform(j, φ) >

FP : Biφ ∧ ¬Bi(Bifjφ ∨ Uifjφ)
RE : Bjφ

– The Directive Request:

< i, request(j, a) >

FP : FP(a)[i\j] ∧ BiAgent(j, a) ∧ Bi¬PGjDone(a)
RE : Done(a)

where FP(a) denotes the feasibility preconditions of a; FP(a)[i\j] denotes
the part of the FPs of a that are mental attitudes of i; and PGiP means
that i has P as a persistent goal.

– Confirming an Uncertain Proposition (Confirm):

< i, confirm(j, φ) >

FP : Biφ ∧ BiUjφ

RE : Bjφ

Broadening the Semantic Coverage of Agent Communicative Acts 41

– Contradiction Knowledge (Disconfirm):

< i, disconfirm(j, φ) >

FP : Bi¬φ ∧ Bi(Ujφ ∨ Bjφ)
RE : Bj¬φ

Furthermore, among the 22 communicative acts of FIPA ACL, the composite
ones corresponding to the above four primitive acts are as shown in Fig. 2:

– Inform: accept-proposal, agree, failure, inform-if, inform-ref, not-understood,
propagate, propose, proxy, reject-proposal, request-when, request-whenever,
subscribe

– Request: cfp(call for proposal), query-if, query-ref
– Confirm: N/A
– Disconfirm: cancel, refuse

It can be seen that the composite communicative acts relate to the primitive
ones unevenly. Most of the communicative acts are derived from inform , and
even the primitive acts, confirm and disconfirm , are special cases of inform ,
which can be proved as follows.

Lemma 1. In the primitive communicative acts of FIPA ACL, confirm (<
i, confirm(j, φ) >) is a special case of inform (< i, inform(j, φ) >).

Proof. Comparing the definitions of confirm and inform , we see they have the
same message body format and rational effect—RE. The only difference is the
feasibility preconditions—FP . We can then try to prove that FP of confirm is a
sufficient but not necessary condition of inform . That is, when the FP of confirm
is satisfied, the FP of inform is also satisfied, or the satisfaction of FP of confirm
can trigger an inform message; alternatively, the FP of confirm is not necessary
for sending an inform .

FP of inform is:

Biφ ∧ ¬Bi(Bifjφ ∨ Uifjφ)
≡ Biφ ∧ ¬Bi((Bjφ ∨ Bj¬φ) ∨ (Ujφ ∨ Uj¬φ)) (8)
≡ Biφ ∧ (¬BiBjφ ∨ ¬BiBj¬φ ∨ ¬BiUjφ ∨ ¬BiUj¬φ)
≡ Biφ ∧ (¬BiBjφ ∨ BiBjφ ∨ ¬BiUjφ ∨ BiUjφ) (9)
≡ (Biφ ∧ ¬BiBjφ)∨(Biφ ∧ BiBjφ)∨ (Biφ ∧ ¬BiUjφ) ∨ (Biφ ∧ BiUjφ) (10)

where equation (8) is derived from the definitions of Bifip and Uifip. We get
equation (9) since agent i not believing j believes φ usually means the same as
agent i believing j does not believe φ.

From equation (10), the last part Biφ ∧ BiUjφ is exactly the FP of confirm.
When FP of confirm is satisfied, that is, when Biφ∧BiUjφ is true, then equation
(10) will also be true. However, FP of confirm is not a necessary condition, since
only if one of Biφ∧¬BiBjφ, Biφ∧BiBjφ and Biφ∧¬BiUjφ is satisfied, equation
(10) will also be satisfied.

Thus, confirm is a special case of inform .

42 H. Jiang and M.N. Huhns

Lemma 2. In the primitive communicative acts of the FIPA ACL, disconfirm
(< i, disconfirm(j, φ) >) is a special case of inform (< i, inform(j, ¬φ) >).

Proof. Comparing the definitions of disconfirm and inform , we have

< i, inform(j, ¬φ) >

FP : Bi¬φ ∧ ¬Bi(Bifj¬φ ∨ Uifj¬φ) (11)
RE : Bj¬φ

Thus, we get the same rational effect format—RE. Let’s compare the feasibility
preconditions—FP , and similarly equation (11) can be changed to:

Bi¬φ ∧ ¬Bi(Bifj¬φ ∨ Uifj¬φ)
≡ Bi¬φ ∧ ¬Bi((Bj¬φ ∨ Bjφ) ∨ (Uj¬φ ∨ Ujφ))
≡ Bi¬φ ∧ ¬Bi(Bj¬φ ∨ Bjφ ∨ Uj¬φ ∨ Ujφ)
≡ Bi¬φ ∧ ¬Bi((Ujφ ∨ Bjφ) ∨ (Bj¬φ ∨ Uj¬φ))
≡ Bi¬φ ∧ (¬Bi(Ujφ ∨ Bjφ) ∨ ¬Bi(Bj¬φ ∨ Uj¬φ))
≡ (Bi¬φ ∧ ¬Bi(Ujφ ∨ Bjφ)) ∨ (Bi¬φ ∧ ¬Bi(Bj¬φ ∨ Uj¬φ)) (12)

From equation (12), the first part Bi¬φ∧¬Bi(Ujφ∨Bjφ) is exactly the FP of
disconfirm . When FP of disconfirm is satisfied, that is, when Bi¬φ∧¬Bi(Ujφ∨
Bjφ) is true, then equation (12) will also be true, which will trigger message
< i, inform(j, ¬φ) >. However, FP of disconfirm is not a necessary condition,
since if Bi¬φ∧¬Bi(Bj¬φ∨Uj¬φ) is satisfied, equation (12) will also be satisfied.

Thus, we proved that FP of disconfirm is a sufficient but not necessary
condition to trigger message < i, inform(j, ¬φ) >. In other words, disconfirm
(< i, disconfirm(j, φ) >) is a special case of inform (< i, inform(j, ¬φ) >).

So far, we can conclude that there are actually two foundational commu-
nicative acts inform and request. If we can prove that our approach covers the
semantic meaning of these two communicative acts, then our approach covers
all the semantic meanings of the FIPA communicative acts, since the others can
be derived from these two by adding constraints.

However, we think inform is too general. Considering ¬Bi(Bifjφ ∨ Uifjφ) in
FP of inform , it actually lists all the possibility of j’s knowledge about φ, such
that: i does not believe j believes φ, or i does not believe j believes not φ, or
i does not believe j is uncertain about φ, or i does not believe j is uncertain
about not φ. Since at least one of them will be true, ¬Bi(Bifjφ ∨ Uifjφ) will
always be true. So FP of inform can be simplified to Biφ, which is reasonable
because only if agent i has the belief φ can it inform j about φ. While, we still
think it should not ignore the desire to have j to believe φ, no matter what i
believes or does not believe j’s knowledge about φ, if i does not have any desire
to have j believe φ, why does i want to send the message to j?

Based on the above analysis, now we prove that our approach covers the se-
mantic meaning of the two foundational communicative acts inform and request.

Broadening the Semantic Coverage of Agent Communicative Acts 43

Lemma 3. The Dialogic model covers the semantic meaning of FIPA’s inform.

Proof. According to our above analysis of inform , ¬Bi(Bifjφ ∨ Uifjφ) did not
supply any of i’s opinion on j’s knowledge about φ, and i’s desire for j to
know about φ was also be ignored. By adding these considerations, we can then
represent inform with more precise semantic meaning as:

< i, inform(j, φ) >

FP : Biφ ∧ DiBjφ

RE : Bjφ

Then it has a format similar to the semantic representation of the dialogic model,
and the difference is in RE. For the dialogic model, we assume a dialogic com-
municative act set DS and the communicative act set Acts with DS ⊆ Acts,
and for some d ∈ DS and act ∈ Acts, ∃rule : d → act, If d ∈ DS is a ter-
minal symbol, that is, there is no rule from d to something else, then in this
case, < j, act(i, φ′) > in RE can be ignored, so that we can get the same se-
mantic meaning of inform . Thus, we can use the dialogic model to represent the
semantic meaning of inform .

Lemma 4. The interaction model covers the semantic meaning of FIPA’s
request.

Proof. Let’s first consider the definition of request, which is used to request a
receiver to perform some action. Usually it presumes feedback from the receiver.
FP of request involves three parts:

– FP(a)[i\j]: denotes the part of the FPs of action a that are mental attitudes
of agent i. We do not know exactly what the mental attitudes will be, al-
though they should satisfy the following conditions for sending out a request:
agent i should intend to have action a done—IiDone(a); and i cannot do a
by itself.

– BiAgent(j, a): i believes that j is the only agent that can perform a.
– Bi¬PGjDone(a): this part (in page 36 of [12]) is also presented as ¬BiIj

Done (a) (in page 25 of [12]), which roughly points out a required condition:
i does not believe j intents to do a.

The goal in the interaction model denotes a plan or a sequence of actions.
To get comparable format of the interaction model, we can let the goal involve
only one action, that is, let goal = Done(a). Then the interaction model can be
simplified to:

< i, in(j, a) >

FP : IiDone(a) ∧ ¬BiDone(a) ∧ DiDone(a) ∧ (13)
Bi(Agent(j, a) ∧ ¬DjDone(a))

RE : Done(a)∧ < j, succeed(i, Done(a)) >

44 H. Jiang and M.N. Huhns

In the BDI model, intention is generated from desire. If we separate desires into
intentional desires (I) and non-intentional desires (NI), then we can represent
Dip to be Iip ∨ NI i p, such that equation (13) becomes

IiDone(a) ∧ ¬BiDone(a) ∧ DiDone(a) ∧ Bi(Agent(j, a) ∧ ¬DjDone(a))
≡ IiDone(a) ∧ ¬BiDone(a) ∧ (IiDone(a) ∨ NI i Done(a))

∧Bi(Agent(j, a) ∧ ¬DjDone(a))
≡ IiDone(a) ∧ ¬BiDone(a) ∧ Bi(Agent(j, a) ∧ ¬DjDone(a))
≡ IiDone(a) ∧ ¬BiDone(a) ∧ BiAgent(j, a) ∧ Bi¬DjDone(a)
≡ IiDone(a) ∧ ¬BiDone(a) ∧ BiAgent(j, a) ∧ ¬Bi(IiDone(a) ∨ NI i Done(a))
≡ (IiDone(a) ∧ ¬BiDone(a) ∧ BiAgent(j, a) ∧ ¬BiIiDone(a)) ∨

(IiDone(a) ∧ ¬BiDone(a) ∧ BiAgent(j, a) ∧ ¬Bi NI i Done(a)) (14)

The first part of equation (14) has a format similar to the FP of request:

– IiDone(a) ∧ ¬BiDone(a) corresponds to the first part of FP for request,
which presents the detailed required conditions—agent i should intend to
have action a done and i cannot do a by itself.

– BiAgent(j, a) is the same as the second part of FP for request.
– ¬BiIiDone(a) is the same as the third part of FP for request. We did not

use symbol PG in our approach, since PG is very similar to I, and here this
part follows the format on page 25 of [12].

So far, we see that when FP of request is true, the equation (14) will also
be true, and message of interaction model will be triggered. However, the FP of
request is not necessary for equation (14) to be satisfied.

Let’s continue to consider the RE of request, which is the same as the first
part of RE of interaction model. However, the second part is also reasonable for
request, since in most cases request implies feedback from the receiver.

Thus, request is a special case of interaction model, and the interaction model
covers the semantic meaning of request in the FIPA ACL.

In summary, our approach covers the semantic meaning of the two founda-
tional communicative acts, so it also covers all the semantic meanings of the
communicative acts in the FIPA ACL. Moreover, our approach also covers ad-
ditional semantic meanings. For example, our emotion model supplies a way to
communicate emotions, which the FIPA ACL does not. We believe it is important
to cover emotions in agent communicative acts, since other researchers [15,16,17]
have already discovered that emotions influence human decision-making; unfor-
tunately, this influence has traditionally been ignored.

5 Example Applications

This section provides several examples showing how these defined semantic cat-
egories can be used.

Broadening the Semantic Coverage of Agent Communicative Acts 45

Example 1: Bob tells Sue that he loves her. Using the emotion model, the
sender is Bob, the receiver is Sue and φ = Sue to yield the message on the left
below. The expected result will be that Sue has a belief that Bob is in love with
her. Since the FIPA ACL does not have a communicative act with a similar
meaning, the content must include the expression of emotion, as shown in the
message on the right.

(love (inform
:sender Bob :sender Bob
:receiver Sue :receiver Sue
:content (Sue)) :content (Bob loves Sue))

The left message separates domain independent from domain dependent infor-
mation better and is less ambiguous.

Example 2: Jack commands Bill to turn off the TV. Using the enaction model,
the message to be sent is

(command
:sender Jack
:receiver Bill
:content (turn off the TV))

The expected result will be that Bill turns off the TV. The communicative act
command implies a master-slave relationship between the sender and receiver.
The FIPA ACL does not have a similar communicative act, so all the information
must be put in the content, as in Example 1 , although it is more ambiguous.

Example 3: Bob and Jack work together to open a case with ID 011. Bob gets
the key but it is broken. Jack is an expert in fixing keys, so Bob asks Jack to fix
the key.

According to the interaction model, the message sent to Jack will be

(interact
:sender Bob
:receiver Jack
:content (fix key) (open case 011))

The goal “open case 011” implies a sequence of actions, which are assumed
known to both sender and receiver in advance. Thus Jack tries to fix the key.
If Jack fixes the key successfully, he will send a reply to Bob that Bob can pick
up the key to open the case now, as shown in the message below on the left. If
Jack cannot fix the key, he will then tell Bob that the goal failed, as shown on
the right.

(interact (fail
:sender Jack :sender Jack
:receiver Bob :receiver Bob
:content (pick-up key) :content (open case 011)

(open case 011 - fix key))

46 H. Jiang and M.N. Huhns

This model is especially useful for multiple agents working together on a
project.

Example 4: Bill wants to tell Bob about the structure of the subway system
in Boston, which includes the red line, orange line, green line and blue line.
According to the dialogic model, the message sent to Bob would be

(structure
:sender Bill
:receiver Bob
:content (Subway in Boston: red line, orange line, green line, blue line)

The expected result will be that Bob records the structure information as one
of his beliefs. We can also use FIPA’s inform to represent the above message,
but the relationship of the subway system and those lines would have to be part
of the content.

6 Conclusion and Future Work

Comparing our approach to the FIPA ACL reveals that:

Better coverage: our approach covers more of human semantics.

Precise semantics : we adopt the same formalism as used by FIPA for our four
basic categories and subcategories.

Easy usage: An ACL must be easy to use, and the FIPA ACL has many suc-
cessful uses. Instead of replacing it, we substitute our communicative acts and
keep its message structure. We organize the communicative acts as an ontology
with different abstract levels, so that a user or agent can more easily navigate
through them to choose the desired ones.

Better understood : Easy usage requires that the ACL be well understood. How-
ever, the original categories given by Ballmer and Brennenstuhl’s classifica-
tion are poor, because the classification is obtained by translating German
verbs and the names of the categories are not chosen systematically. We mod-
ified their classification by using typical English names, which should be more
understandable.

Efficiency: Efficiency is desirable for an ACL. As can be seen in the above
examples, our approach separates domain-independent from domain-dependent
information better, which can shorten the message sent while improving the
semantics.

In summary, our approach combines the benefits of the FIPA ACL and
Ballmer and Brennenstuhl’s speech act classification. It is more expressive in
representing a broader range of domain-independent communication semantics,
while remaining consistent with current approaches to ACLs. However, a better
communicative act set with reasonable size still needs work. Instead of just con-

Broadening the Semantic Coverage of Agent Communicative Acts 47

sidering the categories, some frequently used speech acts also need to be found
for the communicative act set.

References

1. Serrano, J.M., Ossowski, S.: An organizational metamodel for the design of cata-
logues of communicative actions. In: Proceedings of the 5th Pacific Rim Interna-
tional Workshop on Multi Agents, London, UK, Springer-Verlag (2002) 92–108

2. Singh, M.P.: Agent communication languages: Rethinking the principles. Computer
31(12) (1998) 40–47

3. Kinny, D.: Reliable agent communication - a pragmatic perspective. In: PRIMA
’99: Proceedings of the Second Pacific Rim International Workshop on Multi-
Agents, London, UK, Springer-Verlag (1999) 16–31

4. Ballmer, T., Brennenstuhl, W.: Speech Act Classification – A Study in the lexical
Analysis of English Speech Activity Verbs. Springer-Verlag, Berlin, Heidelberg,
New York (1981)

5. Chang, M.K., Woo, C.C.: A speech-act-based negotiation protocol: design, imple-
mentation, and test use. ACM Trans. Inf. Syst. 12(4) (1994) 360–382

6. Austin, J.L.: How to do Things with Words. Oxford University Press, Oxford, UK
(1962)

7. Searle, J.R., Vanderveken, D.: Foundations of Illocutionary Logic. Cambridge U.
Press, London (1985)

8. Auramaki, E., Lyytinen, K.: On the success of speech acts and negotiating com-
mitments. In: LAP’96: Proceedings of the First International Workshop on Com-
munication Modelling, Oisterwijk, The Netherlands (1996)

9. Searle, J.R.: Speech Acts: An Essay in the Philosophy of Language. Cambridge
U. Press, Cambridge, England (1970)

10. Searle, J.R.: A taxonomy of illocutionary acts. Language, Mind, and Knowledge
7 (1975)

11. Searle, J.R.: Expression and Meaning: Studies in the Theory of Speech Acts.
Cambridge U. Press, Cambridge (1979)

12. FIPA: FIPA Communicative Act Library Specification. Foundation for Intelligent
Physical Agent, Geneva, Switzerland (2002)

13. Li yun (ceremenial usages: Their origin, development, and intention). The Book
of Rites (200 B.C.)

14. Ekman, P., Davidson, R.J., eds.: The Nature of Emotion: Fundamental Questions.
Oxford University Press, New York (1994)

15. Damasio, A.R.: Descartes’ Error : Emotion, Reason, and the Human Brain. Avon
Books, New York (1994)

16. Wegner, D.M., Wheatley, T.: Apparent mental causation: Sources of the experience
of will. American Psychologist 54(7) (1999) 480–492

17. Bechara, A.: The role of emotion in decision-making: Evidence from neurological
patients with orbitofrontal damage. Brain and Cognition 55(1) (2004) 30–40

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 48 – 63, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Requirements Analysis of an Agent’s Reasoning
Capability

Tibor Bosse1, Catholijn M. Jonker2, and Jan Treur1

1 Vrije Universiteit Amsterdam, Department of Artificial Intelligence,
De Boelelaan 1081a, 1081 HV Amsterdam, The Netherlands

{tbosse, treur}@cs.vu.nl
http://www.cs.vu.nl/~{tbosse, treur}

2 Radboud Universiteit Nijmegen, Nijmegen Institute for Cognition and Information,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

C.Jonker@nici.ru.nl
http://www.nici.ru.nl/~catholj

Abstract. The aim of requirements analysis for an agent that is to be designed is
to identify what characteristic capabilities the agent should have. One of the
characteristics usually expected for intelligent agents is the capability of
reasoning. This paper shows how a requirements analysis of an agent’s reasoning
capability can be made. Reasoning processes may involve dynamically
introduced or retracted assumptions: ‘reasoning by assumption’. It is shown for
this type of reasoning how relevant dynamic properties at different levels of
aggregation can be identified as requirements that characterize the reasoning
capability. A software agent has been built that performs this type of reasoning.
The dynamic properties have been expressed using the temporal trace language
TTL and can and have been checked automatically for sample traces.

1 Introduction

Requirements analysis addresses the identification and specification of the
functionality expected for the system to be developed, abstracting from the manner in
which this functionality is realized in a design and implementation of this system; e.g.
[1-3]. Recently, requirements analysis for concurrent systems and agent systems has
been addressed in particular, for example, in [4, 5]. An agent-oriented view on
requirements analysis can benefit from the more specific assumptions on structures
and capabilities expected for agents, compared to software components in general. To
obtain these benefits, a dedicated agent-oriented requirements analysis process can be
performed that takes into account specific agent-related structures and capabilities.
For example, for a number of often-occurring agent capabilities, a requirements
analysis can be made and documented that is reusable in future agent-oriented
software engineering processes. In the process of building agent systems, software
engineering principles and techniques, such as scenario and requirements
specification, verification and validation, can be supported by the reusable results of
such a requirements analysis.

 Requirements Analysis of an Agent’s Reasoning Capability 49

In this paper the results are presented of a requirements analysis of an agent’s
reasoning capability. Since reasoning can take different forms, intelligent agents may
sometimes require nontrivial reasoning capabilities. The more simple forms of
reasoning amount to determining the deductive closure of a logical theory (a
knowledge base), given a set of input facts. Requirements for such reasoning
processes can be specified in the form of a functional relation between input and
output states, abstracting from the time it takes to perform the reasoning e.g. [6].
Properties of such a functional relation can be related to properties of a knowledge
base used to realize the functionality, which provides possibilities for verification and
validation of this knowledge e.g. [7]. However, more sophisticated reasoning
capabilities can better be considered as involving a process over time; especially for
nontrivial reasoning patterns when the temporal aspects play an important role in their
semantics cf. [8, 9]. Therefore, within an agent-oriented software engineering
approach to an agent’s reasoning capability, requirements specification has to address
the dynamic properties of a reasoning process.

This paper shows how such a requirements analysis of the dynamics of an agent’s
reasoning capability can be made. The approach makes use of a semantic
formalization of reasoning processes by traces consisting of sequences of reasoning
states over time, following the semantic formalization introduced in [8]. Reasoning
processes as performed by humans may involve dynamically introduced or retracted
assumptions: a pattern used as a case study in this paper, called ‘reasoning by
assumption’. For requirements acquisition, it is to be shown for this type of reasoning
which relevant dynamic properties can be identified that characterize the reasoning
pattern.

For the requirements analysis of an agent’s capability to perform this type of
reasoning, a methodology has been used that comprises the following steps:

• First, a number of scenarios of practical human reasoning processes considered
as ‘reasoning by assumption’ have been analysed and specified to identify
requirements that are characteristic for this reasoning pattern. Required dynamic
properties at different levels of aggregation (or grain size) have been identified.
These characterizing properties have been formalized using the temporal trace
language TTL, thus permitting automated support of analysis.

• The specified dynamic properties at the lowest aggregation level are in an
executable format; they specify reasoning steps. Using a variant of Executable
Temporal Logic [10] and a dedicated software environment for simulation that
has been developed [11], these executable properties were used to generate
abstract simulation traces. Such traces can be used to provide system designers
with a concrete idea of the intended flow of events over time, without having to
actually implement the system.

• Next, logical relationships have been determined between dynamic properties at
different aggregation levels, in such a way that the dynamic properties at one
aggregation level together imply those at a higher aggregation level. Such
logical relationships constitute a formal theory of the interdependencies of the
different requirements.

50 T. Bosse, C.M. Jonker, and J. Treur

• Finally, verification of the requirements has been performed. Supported by
software tools, the dynamic properties at different levels have been checked
against three different types of traces: (1) human traces, (2) simulation traces,
and (3) prototype traces. As for (1), a number of reasoning puzzles were used to
acquire scenarios of further practical human reasoning processes that intuitively
fit the pattern of reasoning by assumption [12]. The properties were then
automatically checked against the formalized scenarios of these human traces.
Concerning (2), the (higher-level) dynamic properties were checked against the
traces that resulted from the simulation mentioned above, and confirmed, which
validates the identified logical relationships between the dynamic properties at
different aggregation levels. Finally, as for (3), a design of an existing software
agent performing reasoning by assumption [13] was analysed. This agent was
designed using the component-based design method DESIRE [14]. Using the
DESIRE execution environment, for this agent a number of reasoning traces
were generated. For these traces, all identified dynamic properties (also the
executable ones) were also checked and found to be confirmed.

In Section 2 the dynamic perspective on reasoning is discussed in further detail,
focussed on the pattern ‘reasoning by assumption’. Section 3 addresses some details
of the language used. Section 4 presents a number of requirements in the form of
dynamic properties identified for patterns of reasoning by assumption. Section 5
discusses logical relationships between dynamic properties at different aggregation
levels. In Section 6, it is discussed in which respects verification has been performed.
In Section 7, the contribution of the research presented in the paper is briefly
discussed.

2 The Dynamics of Reasoning

Analysis of reasoning processes has been addressed from different areas and angles,
for example, Cognitive Science, Philosophy and Logic, and AI. For reasoning
processes in natural contexts, which are usually not restricted to simple deduction,
dynamic aspects play an important role and have to be taken into account, such as
dynamic focussing by posing goals for the reasoning, or making (additional)
assumptions during the reasoning, thus using a dynamic set of premises within the
reasoning process. Also, dynamically initiated additional observations or tests to
verify assumptions may be part of a reasoning process. Decisions made during the
process, for example, on which reasoning goal to pursue, or which assumptions to
make, are an inherent part of such a reasoning process. Such reasoning processes or
their outcomes cannot be understood, justified or explained without taking into
account these dynamic aspects.

The approach to the semantic formalization of the dynamics of reasoning exploited
here is based on the concepts pf reasoning state, transitions and traces.

Reasoning state. A reasoning state formalizes an intermediate state of a reasoning
process. The set of all reasoning states is denoted by RS.

 Requirements Analysis of an Agent’s Reasoning Capability 51

Transition of reasoning states. A transition of reasoning states or reasoning step is
an element < S, S' > of RS x RS. A reasoning transition relation is a set of these
transitions, or a relation on RS x RS that can be used to specify the allowed transitions.

Reasoning trace. Reasoning dynamics or reasoning behaviour is the result of
successive transitions from one reasoning state to another. A time-indexed sequence
of reasoning states is constructed over a given timeframe (e.g. the natural numbers).
Reasoning traces are sequences of reasoning states such that each pair of successive
reasoning states in such a trace forms an allowed transition. A trace formalizes one
specific line of reasoning. A set of reasoning traces is a declarative description of the
semantics of the behaviour of a reasoning process; each reasoning trace can be seen as
one of the alternatives for the behaviour. In Section 3, a language is introduced in
which it is possible to express dynamic properties of reasoning traces.

The specific reasoning pattern used in this paper to illustrate the approach is
‘reasoning by assumption’. This type of reasoning often occurs in practical reasoning;
for example, in everyday reasoning, diagnostic reasoning based on causal knowledge,
and reasoning based on natural deduction. An example of everyday reasoning by
assumption is ‘Suppose I do not take my umbrella with me. Then, if it starts raining at
5 pm, I will get wet, which I don’t want. Therefore I'd better take my umbrella with
me’. An example of diagnostic reasoning by assumption in the context of a car that
won’t start is: ‘Suppose the battery is empty, then the lights won’t work. But if I try,
the lights turn out to work. Therefore the battery is not empty.’ Examples of reasoning
by assumption in natural deduction are as follows. Method of indirect proof: ‘If I
assume A, then I can derive a contradiction. Therefore I can derive not A.’. Reasoning
by cases: ‘If I assume A, I can derive C. If I assume B, I can also derive C. Therefore
I can derive C from A or B.’.

Notice that in all of these examples, first a reasoning state is entered in which some
fact is assumed. Next (possibly after some intermediate steps), a reasoning state is
entered where consequences of this assumption have been predicted. Finally, a
reasoning state is entered in which an evaluation has taken place; possibly in the next
state the assumption is retracted, and conclusions of the whole process are added. In
Section 3 and 4, this pattern is to be characterized by requirements.

3 Dynamic Properties

To specify properties on the dynamics of reasoning, the temporal trace language TTL
used in [5] is adopted. This is a language in the family of languages to which situation
calculus [15], event calculus [16] and fluent calculus [17] also belong.

Ontology. An ontology is a specification (in order-sorted logic) of a vocabulary. For
the example reasoning pattern ‘reasoning by assumption’ the state ontology includes
binary relations such as assumed, rejected, on sorts INFO_ELEMENT x SIGN and the
relation prediction_for on INFO_ELEMENT x SIGN x INFO_ELEMENT x SIGN. Table 1
contains all the relations that will be used in this paper, as well as their explanation.
The sort INFO_ELEMENT includes specific domain statements such as car_starts,
lights_burn, battery_empty, sparking_plugs_problem. The sort SIGN consists of the elements
pos and neg.

52 T. Bosse, C.M. Jonker, and J. Treur

Table 1. State ontology for the pattern ‘reasoning by assumption’

Internal concepts:
initial_assumption(A:INFO_ELEMENT, S:SIGN) The agent beliefs that it is most plausible to assume (A,S).

Therefore, this is the agent’s default assumption. For example, if it
is most likely that the battery is empty, this is indicated by
initial_assumption(battery_empty, pos).

assumed(A:INFO_ELEMENT, S:SIGN) The agent currently assumes (A,S).
prediction_for(A:INFO_ELEMENT, S1:SIGN,
 B:INFO_ELEMENT, S2:SIGN)

The agent predicts that if (B,S2) is true, then (A,S1) should also be
true.

rejected(A:INFO_ELEMENT, S:SIGN) The agent has rejected the assumption (A,S).
alternative_for(A:INFO_ELEMENT, S1:SIGN,
 B:INFO_ELEMENT, S2:SIGN)

The agent beliefs that (A,S1) is a good alternative assumption in
case (B,S2) is rejected.

Input and output concepts:
To_be_observed(A:INFO_ELEMENT) The agent starts observing whether A is true.
observation_result(A:INFO_ELEMENT, S:SIGN) If S is pos, then the agent observes that A is true. If S is neg, then

the agent observes that A is false.
External concepts:
domain_implies(A:INFO_ELEMENT, S1:SIGN,
 B:INFO_ELEMENT, S2:SIGN)

Under normal circumstances, (A,S1) leads to (B,S2). For example,
an empty battery usually implies that the lights do not work.

holds_in_world(A:INFO_ELEMENT, S:SIGN) If S is pos, then A is true in the world. If S is neg, then A is false.

Reasoning state. A (reasoning) state for ontology Ont is an assignment of truth-values
{true, false} to the set of ground atoms At(Ont). The set of all possible states for ontology Ont
is denoted by STATES(Ont). A part of the description of an example reasoning state S is:

assumed(battery_empty, pos) : true
 prediction_for(lights_ burn, neg, battery_empty, pos) : true
 observation_result(lights_burn, pos) : true
 rejected(battery_empty, pos) : false

The standard satisfaction relation |== between states and state properties is used: S |==
p means that state property p holds in state S. For example, in the reasoning state S
above it holds that S |== assumed(battery_empty, pos).

Reasoning trace. To describe dynamics, explicit reference is made to time in a
formal manner. A fixed timeframe T is assumed that is linearly ordered. Depending on
the application, for example, it may be dense (e.g. the real numbers) or discrete (e.g.
the set of integers or natural numbers or a finite initial segment of the natural
numbers). A trace γ over an ontology Ont and timeframe T is a mapping γ : T →

STATES(Ont), i.e. a sequence of reasoning states γt (t ∈ T) in STATES(Ont). Please note
that in each trace, the current world state is included.

Expressing dynamic properties. States of a trace can be related to state properties
via the formally defined satisfaction relation |== between states and formulae.
Comparable to the approach in situation calculus, the sorted predicate logic temporal
trace language TTL is built on atoms such as state(γ , t) |== p, referring to traces, time
and state properties. This expression denotes that state property p is true in the state of
trace γ at time point t. Here |== is a predicate symbol in the language (in infix
notation), comparable to the Holds-predicate in situation calculus. Temporal formulae
are built using the usual logical connectives and quantification (for example, over
traces, time and state properties). The set TFOR(Ont) is the set of all temporal formulae
that only make use of ontology Ont. We allow additional language elements as
abbreviations of formulae of the temporal trace language. The fact that this language

 Requirements Analysis of an Agent’s Reasoning Capability 53

is formal allows for precise specification of dynamic properties. Moreover, editors
can and actually have been developed to support specification of properties. Specified
properties can be checked automatically against example traces to find out whether
they hold.

Simulation. A simpler temporal language has been used to specify simulation
models. This temporal language, the LEADSTO language [11], offers the possibility
of modelling direct temporal dependencies between two state properties in successive
states. This executable format is defined as follows. Let α and β be state properties of
the form ‘conjunction of atoms or negations of atoms’, and e, f, g, h non-negative real
numbers. In the LEADSTO language α →→e, f, g, h β, means:

If state property α holds for a certain time interval with duration g,
then after some delay (between e and f) state property β will hold

for a certain time interval of length h.

For a precise definition of the LEADSTO format, see [11]. A specification of
dynamic properties in LEADSTO format has as advantages that it is executable and
that it can easily be depicted graphically.

4 Dynamic Properties as Characterizing Requirements

Careful analysis of the informal reasoning patterns discussed in Section 2 led to the
identification of dynamic properties that can serve as requirements for the capability
of reasoning by assumption. In this section, a number of the most relevant of those
properties are presented in both an informal and formal way. The dynamic properties
identified are at three different levels of aggregation:

• Local properties address the step-by-step reasoning process of the agent. They
represent specific transitions between states of the process: reasoning steps.
These properties are represented in executable format, which means that they
can be used to generate simulation traces.

• Global properties address the overall reasoning behaviour of the agent, not the
step-by-step reasoning process of the agent. Some examples of global properties
are presented, regarding matters as termination, correct reasoning and result
production.

• Intermediate properties are properties at an intermediate level of aggregation,
which are used for the analysis of global properties (see also Section 5).

A number of local properties are given in Section 4.1. It will be shown how they can
be used in order to generate simulation traces. Next, Section 4.2 provides some global
properties and Section 4.3 some intermediate properties.

4.1 Local Dynamic Properties

At the lowest level of aggregation, a number of dynamic properties have been
identified for the process of reasoning by assumption. These local properties are given
below (both in an informal and in formal LEADSTO notation):

54 T. Bosse, C.M. Jonker, and J. Treur

LP1 (Assumption Initialization)
The first local property LP1 expresses that a first assumption is made. Here, note that
initial_assumption is an agent-specific predicate, which can be varied for different cases.
Formalization:
initial_assumption(A, S) →→0,0,1,1 assumed(A, S)

LP2 (Prediction Effectiveness)
Local property LP2 expresses that, for each assumption that is made, all relevant
predictions are generated.
Formalization:
assumed(A, S1) and domain_implies(A, S1, P, S2) →→0,0,1,1 prediction_for(P, S2, A, S1)

LP3 (Observation Initiation Effectiveness)
Local property LP3 expresses that all predictions made will be observed.
Formalization:
prediction_for(P, S1, A, S2) →→0,0,1,1 to_be_observed(P)

LP4 (Observation Result Effectiveness)
Local property LP4 expresses that, if an observation is made, the appropriate
observation result will be received. Formalization:
to_be_observed(P) and holds_in_world(P, S) →→0,0,1,1 observation_result(P, S)

LP5 (Evaluation Effectiveness)
Local property LP5 expresses that, if an assumption was made and a related
prediction is falsified by an observational result, then the assumption is rejected.
Formalization:
assumed(A, S1) and prediction_for(P, S2, A, S1) and observation_result(P, S3) and S2≠S3 →→
0,0,1,1 rejected(A, S1)

LP6 (Assumption Effectiveness)
Local property LP6 expresses that, if an assumption is rejected and there is still an
alternative assumption available, this will be assumed. Formalization:
assumed(A, S1) and rejected(A, S1) and alternative_for(B, S2, A, S1) and not rejected(B, S2) →→
0,0,1,1 assumed(B, S2)

LP7 (Assumption Persistence)
Local property LP7 expresses that assumptions persist as long as they are not rejected.
Formalization:
assumed(A, S) and not rejected(A, S) →→0,0,1,1 assumed(A, S)

LP8 (Rejection Persistence)
Local property LP8 expresses that rejections persist. Formalization:
rejected(A, S) →→0,0,1,1 rejected(A, S)

LP9 (Observation Result Persistence)
Local property LP9 expresses that observation results persist. Formalization:
observation_result(P, S) →→0,0,1,1 observation_result(P, S)

Using the software environment that is described in [11], these local dynamic
properties can be used to generate simulation traces. Using such traces, the
requirements engineers and system designers obtain a concrete idea of the intended
flow of events over time. A number of simulation traces have been created for several

 Requirements Analysis of an Agent’s Reasoning Capability 55

domains. An example simulation trace in the domain of car diagnosis is depicted in
Fig. 1. Here, time is on the horizontal axis, and the state properties on the vertical
axis. A dark box on top of the line indicates that the state property is true during that
time period, and a lighter box below the line indicates that the state property is false.
This figure shows the characteristic cyclic process of reasoning by assumption:
making assumptions, predictions and observations for assumptions, then rejecting
assumptions and creating new assumptions. As can be seen in Fig. 1, it is first
observed that the car does not start. On the basis of this observation, an initial
assumption is made that this is due to an empty battery. However, if this assumption
turns out to be impossible (because the lights are working), this assumption is
rejected. Instead, a second assumption is made (there is a sparking plugs problem),
which turns out to be correct.

assumed(battery_empty, pos)
assumed(sparking_plugs_problem, pos)

observation_result(car_starts, neg)
observation_result(lights_burn, pos)

prediction_for(car_starts, neg, battery_empty, pos)
prediction_for(lights_burn, neg, battery_empty, pos)

rejected(battery_empty, pos)
to_be_observed(car_starts)

to_be_observed(lights_burn)
time 0 1 2 3 4 5 6 7 8 9 10 11 12

Fig. 1. Example simulation trace

4.2 Global Dynamic Properties

At the highest level of aggregation, a number of dynamic properties have been
identified for the overall reasoning process. These global properties are given below
(both in an informal and in formal TTL notation). Note that, in each formula, γ stands
for a trace.

GP1 (Reasoning Termination)
Eventually there is a time point at which the reasoning terminates.
∃t:T termination(γ, t)

Here termination(γ, t) is defined as follows:
∀t’:T t’ ≥ t state(γ, t) = state(γ, t’).

GP2 (Correctness of Rejection)
Everything that has been rejected does not hold in the world situation.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== rejected(A,S)
 state(γ,t) |=/= holds_in_world(A,S)

GP3 (At least one not Rejected Assumption)
If the reasoning has terminated, then there is at least one assumption that has been
evaluated and not rejected.

56 T. Bosse, C.M. Jonker, and J. Treur

∀t:T termination(γ, t)
 [∃ A: INFO_ELEMENT, ∃ S: SIGN
 state(γ, t) |== assumed(A, S) ∧ state(γ, t) |=/= rejected(A, S)]

In addition, some assumptions on the domain can be specified:

WP1 (Static World)
If something holds in the world, it will hold for all time.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== holds_in_world(A,S)
 [∀t’:T ≥ t:T state(γ,t’) |== holds_in_world(A,S)]
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |=/= holds_in_world(A,S)
 [∀t’:T ≥ t:T state(γ,t’) |=/= holds_in_world(A,S)]

WP2 (World Consistency)
If something holds in the world, then its complement does not hold.
∀t:T ∀A:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== holds_in_world(A,S1) ∧ S1 ≠ S2
 state(γ,t) |=/= holds_in_world(A,S2)

DK1 (Domain Knowledge Correctness)
The domain-specific knowledge is correct in the world.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== holds_in_world(A,S1) ∧ domain_implies(A,S1,B,S2)
 state(γ,t) |== holds_in_world(B,S2)]

4.3 Intermediate Dynamic Properties

In the sections above, on the one hand, global properties for a reasoning process as a
whole have been identified. On the other hand, at the lowest level of aggregation,
local (executable) properties representing separate reasoning steps have been
identified. It may be expected that any trace that satisfies the local properties
automatically will satisfy the global properties (semantic entailment). As a form of
verification, it can be proven that the local properties indeed imply the global
properties. To construct a transparent proof, a number of intermediate properties have
been identified. Examples of intermediate properties are property IP1 to IP7 shown
below (both in an informal and in formal TTL notation).

IP1 (Proper Rejection Grounding)
If an assumption is rejected, then earlier on there was a prediction for it that did not
match the corresponding observation result.
∀t:T ∀A:INFO_ELEMENT ∀S1:SIGN
 state(γ,t) |== rejected(A,S1)
 [∃t’:T ≤ t:T ∃B:INFO_ELEMENT ∃S2,S3:SIGN
 state(γ,t’) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t’) |== observation_result(B,S3) ∧ S2 ≠ S3]

IP2 (Prediction-Observation Discrepancy implies Assumption Incorrectness)
If a prediction does not match the corresponding observation result, then the
associated assumption does not hold in the world.

 Requirements Analysis of an Agent’s Reasoning Capability 57

∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== observation_result(B,S3) ∧ S2 ≠ S3
 state(γ,t) |=/= holds_in_world(A,S1)

IP3 (Observation Result Correctness)
Observation results obtained from the world indeed hold in the world.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== observation_result(A,S)
 state(γ,t) |== holds_in_world(A,S)

IP4 (Incorrect Prediction implies Incorrect Assumption 1)
If a prediction does not match the facts from the world, then the associated
assumption does not hold either.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2,S3:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== holds_in_world(B,S3) ∧ S2 ≠ S3
 state(γ,t) |=/= holds_in_world(A,S1)

IP5 (Observation Result Grounding)
If an observation has been obtained, then earlier on the corresponding fact held in the
world.
∀t:T ∀A:INFO_ELEMENT ∀S:SIGN
 state(γ,t) |== observation_result(A,S)
 [∃t’:T ≤ t:T state(γ,t’) |== holds_in_world(A,S)]

IP6 (Incorrect Prediction implies Incorrect Assumption 2)
If a prediction does not hold in the world, then the associated assumption does not
hold either.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |=/= holds_in_world(B,S2)
 state(γ,t) |=/= holds_in_world(A,S1)

IP7 (Prediction Correctness)
If a prediction is made for an assumption that holds in the world, then the prediction
also holds.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1) ∧
 state(γ,t) |== holds_in_world(A,S1)
 state(γ,t) |== holds_in_world(B,S2)

5 Relationships Between Dynamic Properties

A number of logical relationships have been the identified between properties at
different aggregation levels. An overview of all identified logical relationships
relevant for GP2 is depicted as an AND-tree in Fig. 2. Here the grey ovals indicate
that the so-called grounding variant of the property is used. Grounding variants make
a specification of local properties more complete by stating that there is no other
means to produce certain behaviour. For example, the grounding variant of LP2 can
be specified as follows (in TTL notation):

58 T. Bosse, C.M. Jonker, and J. Treur

LP2G Prediction effectiveness groundedness
Each prediction is related (via domain knowledge) to an earlier made assumption.
∀t:T ∀A,B:INFO_ELEMENT ∀S1,S2:SIGN
 state(γ,t) |== prediction_for(B,S2,A,S1)
 [∃t’:T ≤ t:T state(γ,t’) |== assumed(A,S1) ∧
 domain_implies(A,S1,B,S2)]

This property expresses that predictions made always have to be preceded by a state
in which the assumption was made, and the domain knowledge implies the prediction.

Fig. 2. AND-tree of dynamic properties

The relationships depicted in Fig. 2 should be interpreted as semantic entailment
relationships. For example, the relationship at the highest level expresses that the
implication IP1 & IP2 & WP1 => GP2 holds. A sketch of the proof for this
implication is as follows.

Suppose IP1 holds. This means that, if an assumption is rejected at time t, then at a
certain time point in the past (say t') there was a prediction for it that did not match
the corresponding observation result. According to IP2, at the very same time point
(t') the assumption for which the prediction was made did not hold in the world.
Since the world is static (WP1), this assumption still does not hold at time point t. We
may thus conclude that, if something is rejected at a certain time point, it does not
hold in the world.

Logical relationships between dynamic properties can be very useful in the
analysis of empirical reasoning processes. For example, if a given person makes an
incorrect rejection (i.e. property GP2 is not satisfied by the reasoning trace), then by a
refutation process it can be concluded that either property IP1, property IP2, or
property WP1 fails (or a combination of them). If, after checking these properties, it
turns out that IP1 does not hold, then this must be the case because LP5G does not

 Requirements Analysis of an Agent’s Reasoning Capability 59

hold. Thus, by this example refutation analysis, it can be concluded that the cause of
the unsatisfactory reasoning process can be found in LP5G. For more information
about the analysis of human reasoning processes, see [12].

6 Verification

In addition to the simulation software described in Section 4, a special tool has been
developed that takes a formally specified property and a set of traces as input, and
verifies whether the property holds for the traces.

Using this checker tool, dynamic properties (of all levels) can be checked
automatically against traces, irrespective of who/what produced those traces: humans,
simulators or an implemented (prototype) system. A large number of such checks
have indeed been performed for several case studies in reasoning by assumption.
Table 2 presents an overview of all combinations of checks and their results. A ‘+’
indicates that all properties were satisfied for the traces, a ‘+/-’ indicates that some of
the properties were satisfied.

Table 2. Overview of the different verification results

 Human Traces
(Taken from [12])

Simulation Traces
(This paper)

Prototype Traces
(Taken from [13])

Local Properties

+/-

+

+
Intermediate Properties

+/-

+

+
Global Properties

+/-

+

+

As can be seen in Table 2, three types of traces were considered. First, the dynamic
properties have been checked against human traces in reasoning experiments. It
turned out that some of the properties were satisfied by all human traces, whereas
some other properties sometimes failed. This implies that some properties are indeed
characteristic for the pattern ‘reasoning by assumption’, whereas some other
properties can be used to discriminate between different approaches to the reasoning.
For example, human reasoners sometimes skip a step; therefore LP2 does not always
hold. More details of these checks can be found in [12].

Second, the dynamic properties have been checked against simulation traces such
as the one presented in Section 4.1 of this paper. As shown in Table 2, all properties
eventually were satisfied for all traces. Note that this was initially not the case: in
some cases, small errors were made during the formalization of the properties.
Checking the properties against simulation traces turned out to be useful to localize
such errors and thereby debug the formal dynamic properties.

Finally, all dynamic properties have been verified against traces generated by a
prototype of a software agent performing reasoning by assumption [13]. This agent
was designed on the basis of the component-based design method DESIRE, cf. [14].
Also for these traces eventually all dynamic properties turned out to hold.

To conclude, all automated checks described above have played an important role
in the requirements analysis of reasoning capabilities of software agents, since they

60 T. Bosse, C.M. Jonker, and J. Treur

permitted the results of the requirements elicitation and specification phase to be
formally verified and improved.

Note that, although the dynamic properties shown in the previous sections are
mainly aimed at functional requirements, in principle the approach based on TTL
allows one to verify non-functional requirements as well. Examples of non-functional
requirements are efficiency, reliability and portability of the system [18]. Despite the
fact that these types of requirements are generally difficult to formalize, some initial
steps have been made towards their formalization in TTL [19]. In that paper, it is
suggested that the efficiency of a system can be measured, for example, by counting
the amount of components that need to be activated in order to be successful. This
property is formalized in TTL as follows:

efficiency(γ:TRACE) ≡
 successfulness(γ) ∧
 ∃i :INTEGER component_activations(γ, i) ∧ i = shortest_path

Here, it is assumed that the length of the shortest path is known for the particular
example being checked. To enable a definition of the number of activations of a
component, first the activation of one component is defined, including its interval:

has_activation_interval(γ:TRACE, c:COMPONENT, tb:TIME, te:TIME) ≡
 tb < te ∧ state(γ,te) |≠ activated(c) ∧
 [∀t tb≤t<te state(γ,t) |= activated(c)] ∧
 ∃t1<tb [∀t2 t1≤t2<tb state(γ,t2) |≠ activated(c)]

An example of a definition for a trace with one component activation is shown below.

component_activations(γ:TRACE, 1) ≡
 ∃c:COMPONENT, tb:TIME, te:TIME
 has_activation_interval(γ, c:COMPONENT, tb:TIME, te:TIME) ∧
 [∀c2:COMPONENT, tb2:TIME, te2:TIME
 [has_activation_interval(γ, c2:COMPONENT, tb2:TIME, te2:TIME)
 c = c2 ∧ tb = tb2 ∧ te = te2]]

Another way to describe efficiency is by considering the amount of computation time
the approach needs to generate a solution.

7 Discussion

In the literature, software engineering aspects of reasoning capabilities of intelligent
agents have not been addressed well. Some literature is available on formal semantics
of the dynamics of non-monotonic reasoning processes; for an overview see [9].
However, these approaches focus on formal foundation and are far from the more
practical software engineering aspects of actual agent system development.

In this paper, it is shown how, during an agent development process, a requirements
analysis can be incorporated. The desired functionality of the agent’s reasoning
capabilities can be identified (for example, in cooperation with stakeholders), using
temporal specifications of scenarios and requirements specified in the form of (required)
traces and dynamic properties. This paper shows, for the example reasoning pattern
‘reasoning by assumption’, how relevant dynamic properties can be identified as
requirements for the agent’s reasoning behaviour, expressed in a temporal language, and

 Requirements Analysis of an Agent’s Reasoning Capability 61

verified and validated. Thus a set of requirements is obtained that is reusable in other
agent development processes. The main reason for the reusability of these requirements
is the fact that, within the presented dynamic properties, generic and domain-specific
concepts can be treated separately (compositionality of knowledge). For example, in
global property DK1, the domain-specific sort INFO_ELEMENT and the relation
domain_implies can be filled in for any specific case. This allows the software engineer to
reuse the presented requirements in any given domain, as long as it involves reasoning
by assumption. In fact, the approach has already been applied to several different
examples: whereas the main reasoning problem addressed in the current paper is about
‘car diagnosis’, other reasoning problems have been addressed in the past, among which
the ‘wise person’s puzzle’ [13] and the game of ‘Mastermind’ [12].

The language TTL used here allows for precise specification of the requirements
for an agent’s reasoning behaviour, covering both qualitative and quantitative aspects
of states and their temporal relations. Moreover, software tools have been developed
to (1) support specification of (executable) dynamic properties, and (2) automatically
check specified dynamic properties against example traces to find out whether the
properties hold for the traces. This provides a useful supporting software environment
to evaluate reasoning scenarios both in terms of simulated and prototype traces (in the
context of prototyping) and empirical traces (in the context of requirements elicitation
and validation in co-operation with stakeholders). In the paper, it is shown how this
software environment can be used to automatically check the dynamic properties
during a requirements analysis process. Note that it is not claimed that TTL is the
only language appropriate for this. For example, most of the properties encountered
could as well have been expressed in a variant of linear time temporal logic. The
language is only used as a vehicle; the contribution of the paper is in the method of
application of requirements analysis to an agent’s reasoning capability, and the
reusable results obtained by that method.

For an elaborate description about the role that the current approach may take in
requirements engineering, the reader is referred to [20]. In that paper, it is shown in
detail how dynamic properties can be used to specify (both functional and non-
functional) requirements of agent systems. Moreover, it is shown how these
requirements may be refined and fulfilled according to the Generic Design Model
(GDM) by Brazier et al. [21]. However, GDM is just one possible approach for
Agent-Oriented Software Engineering. Recently, several other architectures have
been proposed, for example, Tropos [22], KAOS [23] or GBRAM [24]. In future
work, the possibilities may be explored to incorporate the approach based on dynamic
properties presented here within such architectures. These possibilities are promising,
especially for architectures that provide a specific language for formalization of
requirements (KAOS for example uses a real-time temporal logic to specify
requirements in terms of goals, constraints and objects).

References

1. Dardenne, A., Lamsweerde, A. van, and Fickas, S.: Goal-directed Requirements
Acquisition. Science in Computer Programming, vol. 20 (1993) 3-50

2. Kontonya, G., and Sommerville, I.: Requirements Engineering: Processes and
Techniques. John Wiley and Sons, New York (1998)

62 T. Bosse, C.M. Jonker, and J. Treur

3. Sommerville, I., and Sawyer P.: Requirements Engineering: a good practice guide. John
Wiley & Sons, Chicester, England (1997)

4. Dubois, E., Du Bois, P., and Zeippen, J.M.: A Formal Requirements Engineering Method
for Real-Time, Concurrent, and Distributed Systems. In: Proceedings of the Real-Time
Systems Conference, RTS’95 (1995)

5. Herlea, D.E., Jonker, C.M., Treur, J., and Wijngaards, N.J.E.: Specification of Behavioural
Requirements within Compositional Multi-Agent System Design. In: F.J. Garijo, M.
Boman (eds.), Multi-Agent System Engineering, Proc. of the 9th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, MAAMAW'99. LNAI, vol. 1647,
Springer Verlag (1999) 8-27

6. Treur, J.: Semantic Formalisation of Interactive Reasoning Functionality. International
Journal of Intelligent Systems, vol. 17 (2002) 645-686

7. Leemans, N.E.M., Treur, J., and Willems, M.: A Semantical Perspective on Verification of
Knowledge. Data and Knowledge Engineering, vol. 40 (2002) 33-70

8. Engelfriet, J., and Treur, J.: Temporal Theories of Reasoning. Journal of Applied Non-
Classical Logics, 5 (1995) 239-261

9. Meyer, J.-J., Ch., and Treur, J. (eds.): Dynamics and Management of Reasoning
Processes. Series in Defeasible Reasoning and Uncertainty Management Systems (D.
Gabbay, Ph. Smets, series eds.), Kluwer Acad. Publishers (2001)

10. Barringer, H., Fisher, M., Gabbay, D., Owens, R., and Reynolds, M.: The Imperative
Future: Principles of Executable Temporal Logic, Research Studies Press Ltd. and John
Wiley & Sons (1996)

11. Bosse, T., Jonker, C.M., Meij, L. van der, and Treur, J.: LEADSTO: a Language and
Environment for Analysis of Dynamics by SimulaTiOn. In: Eymann, T. et al. (eds.),
Proceedings of the 3rd German Conference on Multi-Agent System Technologies,
MATES'05. Lecture Notes in AI, vol. 3550, Springer Verlag (2005) 165-178

12. Bosse, T., Jonker, C.M., and Treur, J.: Formalization and Analysis of Reasoning by
Assumption. Cognitive Science Journal, vol. 30, issue 1 (2006) 147-180

13. Jonker, C.M., and Treur, J.: Modelling the Dynamics of Reasoning Processes: Reasoning
by Assumption. Cognitive Systems Research Journal, vol. 4 (2003) 119-136

14. Brazier, F.M.T., Jonker, C.M., and Treur, J.: Principles of Component-Based Design of
Intelligent Agents. Data and Knowledge Engineering, vol. 41 (2002) 1-28

15. Reiter, R.: Knowledge in Action: Logical Foundations for Specifying and Implementing
Dynamical Systems. MIT Press (2001)

16. Kowalski, R., and Sergot, M.: A logic-based calculus of events. New Generation
Computing, vol. 4 (1986) 67-95

17. Hölldobler, S., and Thielscher, M.: A new deductive approach to planning. New
Generation Computing, vol. 8 (1990) 225-244

18. Davis, A.M.: Software Requirements: Objects, Functions, and States. Prentice Hall (1993)
19. Bosse, T., Hoogendoorn, M., and Treur, J.: Automated Evaluation of Coordination

Approaches. In: Proceedings of the Eighth International Conference on Coordination
Models and Languages, Coordination'06. Lecture Notes in Computer Science, vol. 4038.
Springer Verlag (2006) 44-62

20. Bosse, T., Jonker, C.M., and Treur, J.: Analysis of Design Process Dynamics. In: R. Lopez
de Mantaras, L. Saitta (eds.), Proceedings of the 16th European Conference on Artificial
Intelligence, ECAI’04, IOS Press (2004) 293-297

21. Brazier F.M.T., Langen P.H.G. van, Treur J.: Strategic knowledge in design: a
compositional approach. In: K. Hori (ed.), Knowledge-Based Systems. Special Issue on
Strategic Knowledge and Concept Formation, vol. 11, issue 7-8 (1998) 405-416

 Requirements Analysis of an Agent’s Reasoning Capability 63

22. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., and Perini, A.: Tropos: An
Agent-Oriented Software Development Methodology. Journal of Autonomous Agent and
Multi-Agent Systems, vol. 8 (2004) 203-236

23. Darimont, R., Delor, E., Massonet, P., and van Lamsweerde, A.: GRAIL/KAOS: An
Environment for Goal-Driven Requirements Engineering, Proc. ICSE’98 - 20th
International Conference on Software Engineering, Kyoto, vol. 2 (1998) 58-62

24. Antón, A.I.: Goal-based Requirements Analysis, Proc. of the International Conference on
Requirements Engineering (ICRE'96), IEEE Computer Soc. Press, Colorado Springs,
Colorado, USA (1996) 136-144

On the Cost of Agent-Awareness for Negotiation
Services

Andrea Giovannucci and Juan A. Rodrı́guez-Aguilar

Artificial Intelligence Research Institute, IIIA
Spanish Council for Scientific Research, CSIC

08193 Bellaterra, Barcelona, Spain
{andrea, jar}@iiia.csic.es

Abstract. Significant advances in the development of agent technology have
spurred the development of agent-oriented information systems (AOIS). None-
theless, accounts on the benefits and shortcomings of state-of-the-art agent tech-
nology when employed for the deployment of AOIS for electronic commerce are
scant. The purpose of this work is to report on a case study that attempts to shedd
some light on this matter.

1 Introduction

While a significant number of agent-based applications for electronic commerce have
been presented to the agent community during the last years, little attention has been
devoted to analysing the practical benefits and shortcomings of agent technology when
applied to such domain. To the best of our knowledge, little effort has been devoted
to study the applicability of state-of-the-art agent technology to develop actual-world
e-commerce applications. In particular, we believe that it is necessary to assess the
computational cost added by agent technology in this type of applications so that we
can diagnose the improvements required by state-of-the-art agent technology.

For this purpose, we report on a case study that is intended to shed some light on this
matter. We depart from iBundler (fully described in [1]), an agent-aware negotiation
service for combinatorial negotiations designed to be employed as: (1) an open agent
platform within the Agentcities.RDT1 (http://www.agentcities.org/EURTD) project that
could be discovered, communicate and offer services to any FIPA compliant agent
(http://www.fipa.org); (2) an agent façade to Quotes[2], a commercial negotiation tool,
to allow for the participation of third-party business agents in actual-world procure-
ment events. In both cases, our aim has been to study the computational cost of agent
awareness for the iBundler negotiation service so that its users are aware of the type of
negotiation scenarios that iBundler can acceptably handle when buying and providing
agents are involved. This exercise has also included the determination of those general
or domain-dependent measures that can help reduce the cost of the service.

At this aim, we have measured the performance in time and memory of iBundler
through a wide range of artificially generated negotiation scenarios. For each scenario,
we sampled at several stages both the time and memory that iBundler employed to

1 The Agentcities.RDT project’s objectives were to create an on-line, distributed test-bed to ex-
plore and validate the potential of agent technology for future dynamic service environments.

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 64–78, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

On the Cost of Agent-Awareness for Negotiation Services 65

handle it. We have interestingly observed that the management of ontologies is a rather
delicate issue that actually causes a significant overload. Furthermore, we have also ob-
served that the design of highly expressive, compact bidding languages can definitely
help cut down the computational cost for any agent-aware negotiation service consider-
ing combinatorial scenarios.

The paper is organized as follows. Firstly, section 2 briefly reviews the literature
concerning scalability and applicability of agent technology. Section 3 succinctly intro-
duces iBundler. Section 4 deals with the description of the evaluation scenarios arranged
to evaluate iBundler. In Section 5 we present and thoroughly discuss the test results. Fi-
nally, Section 6 discusses some conclusions deriving from the results’ analysis.

2 Related Work

The applicability analysis of agent technology in the literature primarily focusses on
scalability issues as robustness, system performance with large populations of agents
and ontology engineering. Brazier emph et al. [3] address the problem of scalability
in naming services and location services. In addition, they analyse the concept of scal-
ability in multi-agent systems (MAS) and discuss scalability for many existing multi-
agent frameworks. Deters [4] studies the problems derived from large number of agents
running in an MAS: agent resource consumption, the exchange of great number of
messages, identifying agent hosting and message routing as bottlenecks. Furthermore,
he performs some scalability experiments. An important result in [4] is that the main
deficiencies of JESS (http://herzberg.ca.sandia.gov/jess/) derive from serialization pro-
cesses. Kahn investigates how timing of sequential agent registration and lookup varies
as the total number of registered agents increases in COABS [5]. The works in [6] and
[7] analyse robustness and fault tolerance, whereas [8] exemplifies ad hoc, domain-
dependent agent technology scaling techniques. On the other hand, the literature on
ontology scalability focusses on three major issues: the size of ontology contents, the
complexity of ontology construction and knowledge reusability ([9], [10]). In particular,
Jarrar states that experience shows that “unscalable solutions emerging from academic
research often fails at the industrial level” [9].

Thus, we believe that it is an urgent necessity to report on practical deployments of
actual-world agent-based applications in order to: (1) progressively derive best method-
ological practices; and (2) assess the improvements required by state-of-the-art agent
technologies to be adopted at an industry level, particularly since much of the research
effort on agent technology does not consider the application of widely employed agent
frameworks and programming tools to real-world problems.

We consider iBundler as representative of the main trends on the state-of-the-art
agent programming tools and platforms, firstly, because it is based on the FIPA specifi-
cation standard, probably the most widely adopted by the agent community2. Secondly,
the considerations emerging from the experiments derived in this paper are related to

2 OGM (www.ogm.org) is another standardization effort based on CORBA IDL interface. This
solution is efficient for agent migration and client-server applications, but less suitable than
FIPA-compliant platforms for peer-to-peer applications. For an interesting comparison, refer
to [11].

66 A. Giovannucci and J.A. Rodrı́guez-Aguilar

the FIPA nature of the agent platform, not to a particular JADE implementation. Thus,
the results in Section 5 are not limited to the JADE framework, being valid for all the
FIPA-compliant agent frameworks.

3 iBundler An Agent-Aware Negotiation Service

Consider the problem faced by a buying agent when negotiating with providing agents.
In a negotiation event involving multiple, highly customisable goods, buying agents
need to express relations and constraints between attributes of different items. More-
over, it is common practice to buy different quantities of the very same product from dif-
ferent providing agents, either for safety reasons or because offer aggregation is needed
to cope with high-volume demands. This introduces the need to express business con-
straints on providing agents and the contracts they may have assigned. Not forgetting
the provider side, providing agents may also wish to impose constraints or conditions
over their offers. These may be only valid if certain configurable attributes (e.g. quan-
tity, delivery days) fall within some intervals, or assembly and packing constraints need
to be considered. Once a buying agent collects all offers, he/she is faced with the bur-
den of determining the winning offers. It would be desirable to relieve buying agents
from solving such a problem. iBundler is an agent-aware decision support service that
makes headway in this direction by acting as a combinatorial negotiation solver (solv-
ing the winner determination problem) for both multi-item, multi-unit negotiations and
auctions. Thus, the service can be employed by both buying agents and auctioneers in
combinatorial negotiations and combinatorial reverse auctions [12] respectively. To the
best of our knowledge, iBundler represents the first agent-aware service for multi-item
negotiations, since agent services have mostly focussed on infrastructure issues related
to negotiation protocols and ontologies.

The iBundler service has been implemented as an agency composed of agents that
cooperatively interact to offer a negotiation support service. A fundamental aspect of
iBundler is that it was not only intended as a stand-alone agent-aware service. iBundler
was also designed to become the agent façade of the commercial sourcing tool Quotes
[2] with the aim of providing a higher level of automation to external parties. In this
manner, the negotiations run through Quotes allow for the participation of both human
and software buyers and providers. However, while human buyers and providers ne-
gotiate via web-based interfaces, buying and providing agents owned by third parties
can also negotiate through the service whenever they incorporate protocols and the on-
tology required by iBundler. In this work, we do not address security issues, such as
buyers and providers trusting a central server. It could be considered as a next step in
the deployment of an actual-world negotiation service.

Fig. 1 depicts the components of the iBundler agency (along with the fundamental
connections of buying and providing agents with the service):

[Logger agent]. It manages the access to the iBundler agency from outside.
[Manager agent]. Agent devoted to providing the solution of the problem of choosing
the set of bids that best matches a user’s requirements. There exists a single Manager
agent per user (buyer or auctioneer), created by the Logger agent, offering the following
services: brokering service to forward buyers requirements (RFQs) to selected providers

On the Cost of Agent-Awareness for Negotiation Services 67

SOLVER

MANAGER TRANSLATOR

LOGGER

IBUNDLER
AGENCY

BUYER
(auctioneer)

PROVIDER#1 PROVIDER#2 PROVIDER#n

Fig. 1. Architecture of the iBundler Agency

capable of multi-agenting them; collection of bids; winner determination in a combi-
natorial negotiation/auction; and award of contracts on behalf of buyers. Furthermore,
the manager agent is also responsible for bundling each RFQ and its bids into a negoti-
ation problem in FIPA-compliant format to be conveyed to the Translator agent; and to
extract the solution to the negotiation problem handled back by the Translator agent.
[Translator agent]. It creates a representation of the negotiation problem in a format
understandable by the Solver departing from the FIPA-compliant description received
from the Manager. It also translates the solution returned by the Solver into an object of
the ontology employed by user agents.
[Solver component]. The iBundler component itself extended with the offering of a
language for expressing offers, constraints and requirements. The specification is parsed
into a Mixed Integer Programming (MIP) formulation and solved using available MIP
solvers (a version using ILOG CPLEX and another version using using a Java MIP
modeller that integrates the GNU (www.gnu.org) Programming Kit GLPK). The Solver
component is complete in the sense that, if an optimal solution exists, it will find it. If the
problem has a set of Pareto-optimal, equivalent solutions, the solver component will re-
turn only one solution, depending on the underlying branch-and-bound algorithm [13].

Our design manages to separate concerns among the three members of the agency.
On the one hand, the Manager is strictly devoted to coordination. It represents the façade
of the service. In addition, since every negotiation requested by a buyer makes the
agency create an instance of the Manager, the service can cope with asynchronous and
multiple accesses to the service. The Translator agent is in charge of relieving both
Managers and Solver from the burden of translating FIPA-compliant specifications into
the language required by Solver. Notice that the fact of having only one Translator agent
represents a bottleneck in the overall process when many buyers access the service con-
currently. Such a limitation could be overcome by creating multiple instances of Trans-
lator Agents and Solvers on different machines. However, in this work, we focussed on
the service performances in managing large negotiation scenarios, not on multiple con-
current accesses to the service. We leave such issue as a possible future development.

68 A. Giovannucci and J.A. Rodrı́guez-Aguilar

Fig. 2 depicts the interaction protocol involved in the interplay of buyers and provides
with iBundler. It is expressed in AUML (Agent Unified Modelling Language) [14] fol-
lowing the FIPA interaction protocol library specification compiled in [15]. Observe
that the specification in Fig. 2 involves four roles, namely buyer, manager, translator
and provider. Whereas multiple agents can act as providers, the remaining roles can
each be uniquely adopted by a single agent. Notice too that the iBundler interaction
protocol is composed of several interleaved interaction protocols:
[IP-RFQ]. Held between a buyer and the manager agent created by the Logger agent
after registration. The buyer delivers an RFQ to his manager agent requesting the op-
timal set of offers from the available providers. In the case when it is not possible to
obtain a solution to the problem, the received response is an empty bid set.
[IP-CFP]. Prior to delivering the optimal set of offers, the manager interacts with the
available providers to request their offers under the rules of this CFP interaction pro-
tocol. If no offers are received, the manager refuses to deliver the optimal set of offers
in the context of the IP-RFQ interaction protocol. Otherwise, the manager agrees on
providing the service and proceeds ahead by starting an instance of the IP-Request-
Solution interaction protocol. The protocol completes with the notification of contract
awards to selected providers according to the buyer’s decision. In the case in which no
optimal solution could be found, the buyer is sent an empty bid set and the IP-CFP pro-
tocol is ended communicating a Reject-Proposal to each provider involved. Notice that
the manager mediates between buyer and providers.
[IP-Request Solution]. This interaction protocol held between the manager and the
translator agent within the iBundler agency is aimed at calculating the optimal set of
offers considering the offers submitted by providers, along with the buyer’s require-
ments and constraints. The result delivered by the translator is further conveyed by the
manager to the buyer in the context of the interleaved IP-RFQ interaction protocol.
[IP-AWARD]. At the end of the IP-RFQ interaction protocol the buyer obtains the op-
timal set of offers. He/she may request also to receive all offers. Thereafter, if the buyer
received a non-empty optimal set of offers (k > 0 in Fig. 2), the buyer initiates the
IP-AWARD interaction protocol in order to request the manager to award contracts to
selected providers. Observe that the contract award distribution is autonomously com-
posed by the buyer, and thus the buyer may decide to either ignore or alter the optimal
set.

iBundler’s ontology is founded on the following core concepts: RFQ, ProviderRe-
sponse, Problem, and Solution. As an example, Fig. 3 depicts — as shown by the On-
toviz Protégé plug-in (http://protege.stanford.edu) — the Problem ontological concept.
The RFQ concept is employed by buying agents to express their requests for bids (via
a request in IP-RFQ). An RFQ is composed of a sequence of Request concepts, one per
requested item, along with the buyer’s business rules expressed as constraints. On the
provider side, providers express their offers in terms of the ProviderResponse concept
(via a proposal in IP-CFP), which in turn is composed of several elements: a list of
Bid concepts (each Bid allows to express a bid per either a single requested item or a
bundle of items) along with constraints on the production/servicing capabilities of the
bidding provider (Capacity concept) and constraints on bundles of bids formulated with
the BidConstraint concept.

On the Cost of Agent-Awareness for Negotiation Services 69

buyer manager

request(RFQ)
cfp(RFQ)

j

refuse

propose

translator provider

refuse

agree

deadline

request

refuse

agree

inform(offers)

request(award)

refuse

agree

not-understood

[j>0][j=0]

failure

inform-result

inform-done

failure

inform-result

inform-done

inform

failure

reject-proposal

accept-proposal

IP-RFQ
IP-CFP

IP
Request
solution

IP-AWARD

iBUNDLER-Protocol

[k>0]

k

[k=0]
reject-proposal

reject-proposal

Fig. 2. iBundler Interaction Protocol

70 A. Giovannucci and J.A. Rodrı́guez-Aguilar

Fig. 3. Problem concept

Once the manager agent collects all offers submitted by providers, he/she wraps up
the RFQ concept as received from the buyer along with the offers as ProviderResponse
concepts to compose the negotiation problem to be solved by the Solver component
(via a request in IP-Request-Solution). Finally, the solution produced by the Solver
component is transformed by the translator agent into a Solution concept, which is
handed over to the manager (via an inform-result in IP-Request-Solution). The Solution
concept contains the specification of the optimal set of offers calculated by Solver. Thus
Solution contains a list of SolutionPerProvider concepts, each one containing the bids
selected in the optimal bid set per provider, as a list of BidSolution concepts, along with
the provider’s agent identifier, as an AID concept. Each BidSolution in turn is composed
of a list of BidItemFixed concepts containing the number of units selected per bid along
with the bid’s total cost.

4 Evaluation Scenario

In this section, we detail the way we conducted our evaluation. Firstly, we describe
how to generate artificial negotiation scenarios for testing purposes. Next, we detail the
different stages considered through our evaluation process.

4.1 Artificial Negotiation Scenarios

In order to evaluate the agent service performance, the times needed by iBundler to
receive an RFQ from a Buyer agent and to collect the different bids from providers is

On the Cost of Agent-Awareness for Negotiation Services 71

considered to be of no interest because they depend on some uncontrolled variables
(e.g. the time needed by providers to send their bids and the network delay). Thus, our
evaluation starts from the moment at which all the required data (RFQ and bids) are
available to the Manager agent. We tried to simulate such an ideal situation generating
multiple datasets in separate files, each one standing for a different input negotiation
problem composed of FIPA messages and containing both an RFQ and the bids received
as a response to this. In this way, we can use the file stream as if it was the incoming
message stream and perform all the subsequent message manipulation as if the message
had been received from a socket.

Another important consideration has to do with the way we sampled time and mem-
ory. We established checkpoints through the process carried out by iBundler when solv-
ing a negotiation problem. Such checkpoints partition the process into several stages.
We observed time and memory at the beginning and at the end of these stages.

In order to automate the testing, it was necessary to develop a generator of artifi-
cial negotiation scenarios involving multiple units of multiple items. The generator is
fed with mean and variance values for the following parameters: number of providers
participating in the negotiation; number of bids per provider (number of bids each
provider sends to the Manager agent); number of RFQ items (number of items to
be negotiated by the Buyer agent); number of items per bid (number of items within
each bid sent by a provider); number of units per item per bid; and bid cost per item.
In this first experimental scenario, we did not generate either inter-item or intra-item
constraints.

The generator starts by randomly creating a set of winning combinatorial offers.
After that, it generates the rest of bids for the negotiation scenario employing normal
distributions based on the values set for the parameters above. Thus, in some sense, the
negotiation scenario can be regarded as a set of winning combinatorial bids surrounded
by noisy bids (far less competitive bids). Notice that the generator directly outputs the
RFQ and bids composing an artificial negotiation scenario in FIPA format. In this man-
ner, both RFQ and bids can be directly fed into iBundler as buyers’ and providers’ agent
messages.

We have analysed the performance of iBundler through a large variety of negotiation
scenarios artificially generated by differently setting the parameters above. The data
representing each negotiation scenario are saved onto a file, named by a string of type
A.B.C.D, where A stands for the number of providers, B stands for the number of bids
per provider, C stands for the number of RFQ items and D stands for the number of
items per bid. For instance, 250.20.100.20 represents the name of a dataset generated
for 250 providers, 20 bids per provider, 100 RFQ items and 20 items per bid.

The artificial negotiation scenarios we have generated and tested result from all the
possible combinations of the following values:

Number of providers: 25, 50, 75, 100
Number of bids per provider: 5, 10, 15, 20
Number of RFQ items: 5, 10, 15, 20
Number of items per bid: 5, 10, 25, 50

72 A. Giovannucci and J.A. Rodrı́guez-Aguilar

4.2 Evaluation Stages

In order to introduce the evaluation stages that we considered, it is necessary firstly to
understand how JADE manipulates messages and ontological objects. In particular, we
summarize the process of sending and receiving messages (for a complete description
refer to the JADE documentation). Fig. 4 graphically summarizes the activities involved
in sending and receiving messages. In the figure, the squared boxes represent data,
whereas the rounded boxes represent processes.

JADE agents receive messages as serialized objects in string format. JADE decodes
the string into a Java class, the ACLMessage JADE class (which represents a FIPA ACL
Message). One of these class fields is the content field, which usually contains either
the action to be performed or the result of a performed action. Next, JADE extracts the
content of the message. The content is once more a string, on which JADE needs to
perform an ontology check to decode it. As a result, a Java object representing the onto-
logical object is built upon the content field, guaranteeing that the ontological structure
is not violated.

As to the dual case, i.e. when a JADE agent sends a message, the process works the
other way around. JADE encodes the ontological object representing the communica-
tion content into a string that sets the content field of the ACLMessage class. During
this process JADE verifies that the message content matches perfectly with an ontology
object. Once the content field is set, the agent sends the message: the ACLMessage
class is decoded into a string that is sent through a socket.

Serialized
Object
(String)

MESSAGE
DECODING

ACLMessage
(Java class)

CONTENT
DECODING

Ontology object
(Java class)

MESSAGE RECEPTION

MESSAGE SENDING

Ontology object
(java class)

ACLMessage
(Java class)

serialized
Object
(String)

CONTENT
ENCODING

MESSAGE
ENCODING

Fig. 4. Message life cycle in JADE

Considering the process above, we sampled both the time and memory usage through
the following stages of the iBundler’s solving process:

On the Cost of Agent-Awareness for Negotiation Services 73

Δt1: JADE decodes all the FIPA messages contained in the data set file containing
the input negotiation problem, converting them into instances of the ACLMessage Java
class. Δt2: the Manager agent composes the problem by creating an instance of the
Problem Java ontology class and setting its fields after merging the RFQ and the col-
lected bids. Δt3: the ACLMessage to be sent to the Translator Agent is filled with the
Java class representing the Problem ontology class. At this stage, an ontology check
occurs.
Δt4: the above-mentioned ACLMessage is now encoded by the Manager agent, and
subsequently sent to the Translator agent through a socket. Once received, the Transla-
tor agent decodes it into an ACLMessage class.
Δt5: the Translator agent extracts from the received message the Problem ontology
class containing the RFQ and all the collected Bids. Another ontology check occurs.
Δt6: this stage is devoted to the transformation of the Problem ontology class into a
matrix-based format to be processed by the Solver component.
Δt7: at this stage the Solver component solves the MIP problem using ILOG CPLEX.
Δt8: the output generated by Solver in matrix-based format is decoded by the Transla-
tor agent into the Solution ontology class.
Δt9: the Translator agent fills the response message with the Solution ontology class,
encodes the corresponding ACLMessage class and sends it. Then, the Manager agent
decodes the message upon reception.
Δt10: the Manager agent extracts the Solution concept from the received ACLMessage
with a last ontology check.
Δt11: the solution is decomposed into different parts, one per provider owning an
awarded bid.
Δt12: the solution containing the set of winning offers is sent from the Manager agent
to the Buyer agent. Note that this object is small with respect to the original problem
since it only contains the winning bids.

5 Evaluation

In this section, we give a quantitative account of the tests we run. Firstly, in Section 5.1,
we analyse time performance and, secondly, in Section 5.2 the memory usage for all the
evaluation stages described above. In order to run our tests we employed the following
technology: a PC with a Pentium IV processor, 3.1 Ghz, 1 Gbyte RAM running a Linux
Debian (kernel v.2.6) operating system (http://www.debian.org); Java SDK 1.4.2.04
(http://java.sun.com); JADE v2.6; and ILOG CPLEX 9.0 (http://www.ilog.com).

5.1 Time Performance

Next, we show the variation in time performance per stage by varying the different
degrees of freedom available to create an artificial negotiation scenario. In particular,
we consider the following types of negotiation scenarios:

100.20.100.X: the number of items contained in a single bid varies (where X takes on
the 5,10,25, and 50 values).

74 A. Giovannucci and J.A. Rodrı́guez-Aguilar

100.X.100.50: the number of bids each provider sends varies (where X takes on the
5,10,15, and 20 values).
X.20.100.50: the number of providers varies (where X takes on the 25,50,75, and 100
values).

5
10

15
20 dt

1 dt
2 dt

3 dt
4 dt

5 dt
6 dt

7 dt
8 dt
9

dt
10 dt
11 dt
12

0

10

20

30

40

50

60

70

80

90

tim
e(

se
c.

)
Bids/

provider

dt1
dt2
dt3
dt4
dt5
dt6
dt7
dt8
dt9
dt10
dt11
dt12

Fig. 5. Time measures when varying the number of bids per provider

Fig. 5 depicts the time spent in each of the described stages, considering different
number of bids per provider. We experimented with similar trends varying the num-
ber of items and the number of providers3. These results suggest that the variables’
sensitivity is similar in all cases, i.e. varying the number of items per bid, the number
of providers or the number of bids per provider leads to similar trends. Therefore, the
stages that are more time-consuming are quite the same in every possible configuration:
for instance, stage Δt10 is always the most time consuming, irrespective of which pa-
rameter is being varied. Moreover, we can observe similar trends for the rest of stages
(from Δt1 to Δt10). Hence, it seems that the time distribution along the different stages
can be regarded as being independent from the parameter setting.

Fig. 6 illustrates the average percentage, over all the performed trials, of the total
time that each stage consumes. We observe that: (1) The Δt1, Δt3, Δt4, Δt5, Δt9,
Δt10 stages are the most time-consuming (92% of the total time). Since these stages
involve ontology checking and message encoding and decoding, we can conclude that

3 The way the times vary when increasing those parameters is not linear. Nonetheless, we did
not deeply study this aspect, because the main issue for us was to assess the difference of these
times with respect to the solver component time by itself.

On the Cost of Agent-Awareness for Negotiation Services 75

these activities are a bottleneck. (2) The solver time (Δt7) is almost a negligible part of
the total time. (3) Manipulating classes (stages Δt2, Δt6, Δt8 and Δt11) and solving
the combinatorial problem (Δt7) is not as time-consuming as encoding and decoding
messages and ontology objects.

dt1
18%

dt3
12%

dt4
16%dt5

16%

dt6
1%

dt7
7%

dt9
12%

dt10
18%

dt8
~0%

dt2
~0%

dt11
~0%

dt12
~0%

Fig. 6. Average times spent at the different evaluation stages

Fig. 8 depict the accumulated time spent on all stages for a collection of negotiation
scenarios, which we refer to as the total time. More precisely, Fig. 8 depicts configura-
tions whose total time lies between 30 and 50 seconds. It is conceivable to regard them
as the edge values, although it is a very arbitrary matter. Some observations follow from
analysing the figures above:

1. The agent-awareness of iBundler is costly. We observe that the percentage of total
time employed to solve the winner determination problem is small with respect to
agent related tasks.

2. Using the solver component we can easily solve problems of more than 2000 bids
in less than one minute, whereas the agent service can handle in reasonable time
less than 750 bids.

3. Therefore, small, and medium-size negotiation scenarios can be reliably tackled
with iBundler. Nonetheless, time performance significantly impoverishes when
handling large-size negotiation scenarios.

5.2 Memory Usage

In this case, we found similar results when comparing the Solver component with
iBundler. The amount of memory required in the worst case is much the same for

76 A. Giovannucci and J.A. Rodrı́guez-Aguilar

75
.2

0.
25

.1
0

10
0.

10
.5

0.
25

75
.1

0.
10

0.
50

50
.2

0.
10

0.
10

75
.1

5.
10

0.
50

10
0.

15
.1

00
.5

0

10
0.

20
.1

00
.2

5

10
0.

20
.1

00
.5

0

SOLVER

0
50

100
150
200
250
300
350
400
450

M
em

or
y(

M
by

te
s)

SOLVER
IBUNDLER AGENCY

Fig. 7. Memory consumption

31
32

33
33

34
35
35

36
37
37

39
40
40
40

41
41
41
41

42
43

45
46

48

0 10 20 30 40 50 60

50.20.50.5

50.15.100.5

100.5.50.10

100.10.25.5

50.10.100.10

75.5.100.10

75.15.25.5

50.15.25.10

100.5.100.5

75.10.25.10

50.5.100.25

50.15.50.10

100.10.50.5

75.15.50.5

25.15.50.25

75.10.100.5

50.20.100.5

75.20.10.5

100.15.10.5

75.10.50.10

75.20.25.5

25.15.100.25

75.5.50.25

Total Time(sec.)

Fig. 8. Time performance for negotiation scenarios on the edge of acceptability

On the Cost of Agent-Awareness for Negotiation Services 77

both cases. The memory consumption in both cases is highly dependent on the on-
tology structure. It is not surprising that the memory peak is similar in both cases, as
the information quantity to be represented is actually the same. The largest amount of
information is used to represent all the bids. Both Solver and JADE have to load in
memory the information representing a problem, namely an RFQ and the received bids
(the former as a Java object and the latter as a file containing matrices). Fig. 7 compares
the memory use for the iBundler agency and Solver.

6 Conclusions

The tests we ran show that offering iBundler as an agent service implies a significant
time overload, while the memory usage is only slightly affected. The main cause of
such an overload is related to the encoding and the decoding of ontological objects
and messages. The message serializations and deserializations, along with ontology
checkings, heavily overload the system as the dimensions of the negotiation scenario
grow. We propose several actions to alleviate this effect. Firstly, we have observed
that the main amount of information is gathered in representing bids. Their presence
in objects and messages is the foremost cause of iBundler’s time overload. Thus, a
suitable work-around is to use, at ontology design time, a more synthetic bidding lan-
guage, in which bids can be expressed more concisely; for instance, introducing a
preprocessing phase in which equal (and even similar) bids are grouped, in order to
obtain a more compact representation. The resulting ontology would generate more
tractable objects. Secondly, it would be also helpful to improve the performances of
the JADE modules devoted to the ontology checking and serialization processes. All
in all, iBundler can satisfactorily handle small and medium-size negotiation scenarios.
Thus, although the automation of the negotiation process with agents helps in saving
time in managing negotiations, the scalability in terms of time response of iBundler is
limited.

As future work, we propose a comparison of iBundler with other distributed so-
lutions such as CORBA (http://www.corba.org) or JAVA RMI (http://java.sun.com).
Nonetheless, we should notice that agent technology offers a higher level of abstrac-
tion, and thus we would lose the transparency and portability offered by the agent
paradigm.

We conclude that, while agent technology adds a higher level of abstraction and
eases inter-platform communication, state-of-the-art agent technologies require further
improvements to tackle real-world domains.

Acknowledgments

This work has been funded by the Spanish Science and Education Ministry as part of the
Web-i2 (TIC-2003-08763-C02-00) and IEA (TIN2006-15662-C02-01) projects, and by
the Spanish Council for Scientific Research as part of the 20065 OI 099 project. Andrea
Giovannucci enjoys the BEC.09.01.04/05164 CSIC scholarship.

78 A. Giovannucci and J.A. Rodrı́guez-Aguilar

References

1. Giovanucci, A., Rodrı́guez-Aguilar, J.A., Reyes-Moro, A., Noria, F.X., Cerquides, J.:
Towards automated procurement via agent-aware negotiation support. In: Third Interna-
tional Joint Conference on Autonomous Agents and Multiagent Systems, New York (2004)
244–251

2. Reyes-Moro, A., Rodrı́guez-Aguilar, J.A., López-Sánchez, M., Cerquides, J., Gutiérrez-
Magallanes, D.: Embedding decision support in e-sourcing tools: Quotes, a case study.
Group Decision and Negotiation 12 (2003) 347–355

3. Brazier, F., van Steen, M., Wijngaards, N.: On MAS scalability. In: Proceedings of Second
International Workshop on Infrastructure for Agents, MAS, and Scalable MAS, Montreal
(2001) 121–126

4. Deters, R.: Scalability & multi-agent systems. In: Proceedings of Second International
Workshop on Infrastructure for Agents, MAS, and Scalable MAS, Montreal (2001)

5. Kahn, M.L., Della Torre Cicalese, C.: COABS grid scalability experiments. Autonomous
Agents and Multi-Agent Systems 7 (2003) 171–178

6. Klein, M., Rodriguez-Aguilar, J.A., Dellarocas, C.: Using domain-independent exception
handling services to enable robust open multi-agent systems: The case of agent death.
Autonomous Agents and Multi-Agent Systems 7 (2003) 179–189

7. Fedoruk, A., Deters, R.: Improving fault-tolerance by replicating agents. In: AAMAS ’02:
Proceedings of the first international joint conference on Autonomous agents and multiagent
systems, ACM Press (2002) 737–744

8. Yoo, M.J.: An industrial application of agents for dynamic planning and scheduling. In:
AAMAS ’02: Proceedings of the first international joint conference on Autonomous agents
and multiagent systems, ACM Press (2002) 264–271

9. Jarrar, M., Meersman, R.: Scalability and knowledge reusability in ontology modeling. In:
Proceedings of the International conference on Infrastructure for e-Business, e-Education,
e-Science, and e-Medicine. Volume SSGRR2002s., Rome, SSGRR education center (2002)

10. Wache, H., Serafini, L., Garcı́a-Castro, R.: D2.1.1 survey of scalability techniques for
reasoning with ontologies. Technical report, Knowledge Web (2004)

11. OMG, FIPA: OMG and FIPA standardisation for agent technology: competition or conver-
gence? http://www.cordis.lu/infowin/acts/analysys/products/thematic/agents/ch2/ch2.htm
(1999)

12. Sandholm, T., Suri, S., Gilpin, A., Levine, D.: Winner determination in combinatorial
auction generalizations. In: First Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS’02), Bologna (2002) 69–76

13. Hillier, F.S., Liberman, G.J. In: Introduction to Operations Research. Mc Graw Hill (2001)
576–653

14. Odell, J., van Dyke Parunak, H., Bauer, B.: Extending UML for agents. In: Proceedings of
the Agent-Oriented Information Systems Workshop, Austin, TX, 17th National Conference
on Artificial Intelligence (2000) 3–17

15. FIPA: FIPA interaction protocol library specification. Technical Report DC00025F,
Foundation for Intelligent Physical Agents (2003)

OWL-P: A Methodology for Business Process
Development

Nirmit Desai1, Ashok U. Mallya2, Amit K. Chopra1, and Munindar P. Singh1

1 Department of Computer Science
North Carolina State University, Raleigh, NC 27695-8206, USA

{nvdesai, aumallya, akchopra, singh}@ncsu.edu
2 Veraz Networks Inc

926 Rock Avenue, Suite 20, San Jose, CA 95131, USA
amallya@veraznet.com

Abstract. Business process modelling and enactment are notoriously complex,
especially in open settings where the business partners are autonomous, require-
ments must be continually finessed, and exceptions frequently arise because of
real-world or organizational problems. Traditional approaches, which attempt
to capture processes as monolithic flows, have proved inadequate in addressing
these challenges. We propose an agent-based approach for business process mod-
elling and enactment which is centred around the concepts of commitment-based
agent interaction protocols and policies. A (business) protocol is a modular, pub-
lic specification of an interaction among different roles. Such protocols, when
integrated with the internal business policies of the participants, yield concrete
business processes. We show how this reusable, refinable and evolvable abstrac-
tion simplifies business process design and development.

1 Introduction

Unlike traditional business processes, processes in open, Web-based settings typically
involve complex interactions among autonomous, heterogeneous business partners.
Conventionally, business processes are modelled as monolithic workflows, specifying
exact steps for each participant. Because of the exceptions and opportunities that arise
in open environments, business relationships cannot be pre-configured to the full detail.
Thus, flow-based models are difficult to develop and maintain in the face of evolving
requirements. Furthermore, such conventional models do not facilitate flexible actions
by the participants.

This paper proposes an approach for business process modelling and enactment,
which is based on a combination of protocols and policies. The key idea is to capture
meaningful interactions as protocols. Protocols can involve multiple roles and address
specific purposes such as ordering, payment, shipping and so on. Protocols are given
a contractual semantics in terms of commitments among roles that capture the essence
of the relationship among roles. In order to maximize participants’ autonomy and to
be reusable, protocols emphasize the essence of the interactions and omit local details.
Such details are supplied by each participant’s policies. For example, when a protocol
allows a participant to choose from multiple actions, the participant’s policy decides

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 79–94, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

80 N. Desai et al.

which one to perform. Typically, policies are business logic that provide and process
message contents.

This paper seeks to develop the main techniques needed to make this promising ap-
proach practical. Our contributions include a language and an ontology for protocols
called OWL-P, which is coded in the Web Ontology Language (OWL) [1]. OWL-P de-
scribes concepts such as roles, the messages exchanged between the roles, and declara-
tive protocol rules. OWL-P compiles into Jess rules which then can be integrated with
the local policies in a principled manner.

Protocols are not only reusable across business processes but also amenable to ab-
stractions such as refinement and aggregation [2]. The key benefits of this approach are
(1) a separation of concerns between protocols and policies in contrast to traditional
monolithic approaches; and (2) reusability of protocol specifications based on design
abstractions such as specialization and aggregation.

1.1 Running Example

As a running example, let’s consider a business process involving a small number of
parties. Fig. 1 depicts a purchase process where items to be purchased have already
been selected and the price has been agreed upon. Each participant is shown by a sepa-
rate shaded region, the graph made of dark edges denotes the flow of the given partic-
ipant. Circular nodes represent the participant’s internal business logic or policies, e.g.
to decide the parameters of an out-bound message. Rectangular nodes represent exter-
nal interfaces through which a participant receives messages. Thus, an ordering of dark
arrows, circles and rectangles represents the local process of the participant. When there

2.
 s

hi
p

in
fo

3. feasible ?

4. yes

5.
 p

ay
 o

pt
io

ns

6.
 p

ay
 in

fo 9.
 r

e c
ei

pt

14. status req

15. status resp

13. capture

11. track#

7. auth req

 1
2.

 s
hi

p
co

nf
irm

#

CUSTOMER

MERCHANT

S
H

IP
P

E
R

P
A

Y
M

E
N

T
 G

A
T

E
W

A
Y

1.
 s

hi
p

 o
pt

io
ns

17. delivery

10. ship it

16. captured

8. auth OK

Fig. 1. A purchasing process

OWL-P: A Methodology for Business Process Development 81

are multiple out-edges from a node, all of them are taken concurrently. The messages
are labelled with numbers to indicate a possible order in which they might occur.

1.2 Shortcomings of Traditional Approaches

The process of Fig. 1 can be captured via a traditional flow-based modelling approach.
Such a representation would be functionally correct, but inadequate from the perspec-
tives of open environments. The following are its shortcomings:

Lack of Contractual Semantics. Traditional approaches expose low-level interfaces,
e.g. via WSDL [3], but associate no contractual semantics with the participants’
actions. To control the autonomy of the participants and enforcing compliance,
such a semantics is crucial. This lack precludes flexible enactment (as needed to
handle exceptions) as well as reliable compliance checking. For this reason, we
cannot determine if a deviation from a specific sequence of steps is significant.

Lack of Reusable Components. The local processes of the partners are not reusable
even though the patterns of interaction among the participants might be. Local pro-
cesses are monolithic in nature and formed by ad hoc intertwining of internal busi-
ness logic and external interactions. Since business logic is proprietary, local pro-
cesses of one partner are not usable by another. For instance, if a new customer
were to participate in this open environment, its local process would have to be
developed from scratch.

Organization

Section 2 introduces some key concepts and terminology. Section 3 describes our pro-
tocol specification language and its semantics. Section 4 discusses composite protocols
and their construction. Section 5 shows how augmenting policies with protocols can be
used to develop processes. Section 6 compares our work with relevant research efforts
in the area and Section 7 concludes the paper.

2 Concepts and Terminology

Fig. 2 shows our conceptual model for treatment of business processes based on pro-
tocols and policies. Boxed rectangles are abstract entities (interfaces), which must be
combined with business policies to yield concrete entities that can be fielded in a run-
ning system (rounded rectangles). Abstract entities should be published, shared and
reused among the process developers. We specify a business protocol using rules termed
protocol logic that specify the interactions of the participating roles. Roles are abstract
and are adopted by agents to enable concrete computations. Whereas the protocol logic
specifies the protocol from the global perspective, a role skeleton specifies the proto-
col from the perspective of the corresponding participant role. Thus, each role skeleton
defines the behaviour of the respective role in a protocol.

When an agent needs to participate in multiple protocols, a composite skeleton can be
constructed by combining the protocols according to some composition constraints and
deriving the role skeleton. For example, in a supply chain process, a supplier would be

82 N. Desai et al.

Protocol
Logic

1
2+

1
1

specified by

involves

1
2+

derives

1
1

defines

Agent

adopts
1+

1+

Local
Process

1

1

enacts

Business
Process

aggregation
of

1

2+

1

1+

com
position of

1

1 Implementation of

1

1+

Im
plem

entation of

Business
Protocol

Role

Role
Skeleton

Abstract entity

Concrete entity

Composite
Skeleton

co
up

le
s

1

2+

Business
Logic

1
1

consults

1
1

stipulates

Composite
Protocol

1

1+

composedOf

1

1+

derives

Fig. 2. Conceptual model

a merchant when interacting with a retailer in a trading protocol and would be an item-
sender in a shipping protocol for sending goods to the retailer. A composite skeleton for
such a supplier could be composed by combining trading and shipping protocols and
then deriving the role skeleton for item-sender/merchant role. The resultant composite
skeleton could also be published and then reused for developing local processes of other
suppliers.

An agent’s private policies or business logic are described via rules. The local pro-
cess of an agent is an executable realization of a composite skeleton obtained by in-
tegration of the protocol logic of the composite skeleton and the business logic of the
agent. A business process is the aggregation of the local processes of all the agents par-
ticipating in it. Conversely, a business process is an implementation of the constituent
business protocols.

2.1 Protocols and Commitments

Commitments are used to give semantics to agent interaction. As agents interact, they
create and manipulate commitments. A commitment C(x, y, p) denotes that agent x is
obligated to agent y for bringing about condition p. Commitments can be conditional,
denoted by CC(x, y, p, q), meaning that x is committed to y to bring about q if p holds

OWL-P: A Methodology for Business Process Development 83

where p is called the precondition of the commitment. For example, the conditional
commitment CC(c, b, goods(g), pay(p)) means that the customer c is committed to pay
the bookstore b an amount p if the bookstore delivers the book g to the customer. Com-
mitments are created, satisfied and transformed in certain ways [4]. The following are
the operations defined on commitments:

Op1. CREATE(x, c) establishes the commitment c in the system.
Op2. CANCEL(x, c) cancels the commitment c.
Op3. RELEASE(y, c) releases c’s debtor from commitment c without c being fulfilled.
Op4. ASSIGN(y, z, c) replaces y with z as c’s creditor.
Op5. DELEGATE(x, z, c) replaces x with z as the c’s debtor.
Op6. DISCHARGE(x, c) c’s debtor x fulfils the commitment.

A commitment is said to be active if it has been created but not yet discharged. The
rules regarding discharge of a commitment are given below.

Dis1. C(x,y,p)∧p
discharge(x,C(x,y,p))

Dis2. CC(x,y,p,q)∧p
create(x,C(x,y,q))∧discharge(x,CC(x,y,p,q))

Dis3. CC(x,y,p,q)∧q
discharge(x,CC(x,y,p,q))

3 Protocol Specification

A business protocol is a specification of the allowed interactions between two or more
participant roles. The specification focusses on the interactions and their semantics.
What does it mean to send a certain message to a business partner? What is expected
of the participants wishing to comply to a business protocol? How are the protocols
specified? These are the questions we address in this section.

3.1 OWL-P: OWL for Protocols

OWL-P is an ontology based on OWL for specifying protocols; it functions as a schema
or language for protocols. The main computational aspects of protocols are specified
using rules. We employ the Semantic Web Rule Language (SWRL) [5] for defining
rules. SWRL allows us to specify implication rules over entities defined as OWL-P
instances. The availability of tools such as Protégé [6] is a motivation for grounding our
approach in OWL.

The important OWL-P elements and their properties are shown in Fig. 3. An entity
with a little rectangle represents the domain of the corresponding property. Many of the
properties are self-explanatory and reflect the conceptual model introduced in Section 2.

Slots are analogous to data variables. A slot is said to be defined when it is assigned a
value and it said to be used when its value is assigned to another slot. A slot in a protocol
may be assigned a value produced by another protocol and hence be represented as an
External Slot. An external slot is untyped until it is given the type of the external value
to which it is bound. By contrast, a Native Slot is typed and defined inside the protocol.

84 N. Desai et al.

ProtocolRole

2..* 1

hasRole

Message

*

1

involvesMessage

1

1

hasSender

1

1

hasReceiver

Commitment

1

1

hasCreditor

1

1

hasDebtor

Rule

*

1

dictates Knowledge Base

Proposition

1
1 consults

1
*

contains

1 1

represents

Slot
* 1

modifies
1

*

hasParameter

*
1

hasSlot

ExternalSlot NativeSlot

Fig. 3. Basic OWL-P ontology

A Protocol dictates several rules and consults a Knowledge Base. A knowledge base
consists of a set of Propositions. A proposition in a knowledge base may correspond to
a message, active commitments or other domain specific propositions.

Fig. 4 shows a protocol for ordering goods (along with others, to which we refer
later). For readability, a leading and trailing * is placed around external slot names,
as in *amount* and *itemID*. The customer requests a quote for an item, to which the
merchant responds by providing a quote. Here, a commitment is created providing se-
mantics for the message. The commitment means that the merchant guarantees receipt
of the item if the customer pays the quoted price. The customer can either accept the
quote or reject it (not shown). Again, the semantics of acceptance is given by the cre-
ation of another commitment from the customer to pay the quoted price if it receives
the requested item. Below are the rules for the Order protocol in the “antecedents ⇒
consequents” notation.

Ord1. contains(KB, startProp) ⇒ send(B, reqForQuote(?itemID))
Ord2. contains(KB, reqForQuoteProp(?itemID)) ⇒ send(S, quote(?itemID, ?item-
Price)) ∧ createCommitment(S, CC(S, B, pay(?itemPrice), goods(?itemID)))
Ord3. contains(KB, quoteProp(?itemID, ?itemPrice))⇒send(B, acceptQuote(?itemID,
?itemPrice)) ∧ createCommitment(C, CC(C, M, goods(?itemID), pay(?itemPrice)))
Ord4. contains(KB, quoteProp(?itemID, ?itemPrice))⇒send(B, acceptQuote(?itemID,
?itemPrice))

In the above rules, reqForQuote, quote, and acceptQuote are OWL-P message in-
stances (individuals in OWL terminology). Corresponding proposition instances are
reqForQuoteProp, quoteProp, and acceptQuoteProp. Propositions pay and goods are
commitment conditions, while itemID and itemPrice are native slots. Readers may no-
tice that the itemID variable in the first rule is not assigned any value by the antecedents.
It means that the rule is abstract and not executable and, as we will see in Section 5.2,
it can be augmented with business logic that produces such values. Rules having unde-

OWL-P: A Methodology for Business Process Development 85

Fig. 4. Example: Order, Shipping, and Payment protocols and their composition

86 N. Desai et al.

fined native slots must be augmented with the business logic that produces such values.
How do these rules define the protocol? The next section describes the operational se-
mantics of the protocol rules. The OWL-P ontology and protocol instance examples in
their RDF/XML serialization, and corresponding Protégé projects are available on the
Web [7].

3.2 Operational Semantics

Protocols are specified from the global perspective with an assumption of an abstract
global knowledge base and the rules are assumed to be forward-chained. OWL-P de-
fines several property predicates with operational semantics. Table 1 lists the seman-

Table 1. Operational semantics of protocol rules

Predicate Domain Range Meaning

contains KB Proposition Proposition ∈ KB ?
assert Proposition KB KB ← KB ∪ Proposition
send Role Message Asynchronous send to the receiver

assert(KB, MessageProp)
receive Role Message Asynchronous receive from the sender

assert(KB, MessageProp)
createComm Role Commitment assert(KB, CommitmentProp)

tics for such property predicates of OWL-P. A proposition cannot be retracted from a
knowledge base. In the forthcoming examples, we may omit the OWL-P properties, e.g.
contains, send, createCommitment when the meaning is clear. Fig. 5 shows an inside
view of an agent to demonstrate how the rules govern the interactions. For now, ignore
steps 3, 4, and 5 dealing with policy rules. When a message is received, it is checked
against the protocol rules to see if it may be consumed. If so, a corresponding proposi-
tion is asserted and any activated rules are executed. Doing so may activate other rules,
resulting in further propositions being asserted and messages being sent.

4 Composite Protocols

The previous section described how to specify individual protocols. To meet the require-
ments of business processes, it is necessary to compose them from simpler protocols.
Now we show how protocols can be composed.

Conceptually, each component protocol achieves a business goal. Thus, several such
protocols composed together would achieve the goals of the larger business process.
Composition also enables refinements of protocols with additional rules. The ability to
compose protocols would allow significant reuse of published protocols. How can we
construct such composite protocols? How do they facilitate reusability? How do they
allow refinements of protocols? This section answers these questions.

OWL-P: A Methodology for Business Process Development 87

Rule Base

Protocol Rules

Policy
Rules

Local domain

Public domainMessages

To and from
other participants

Knowledge Base

Messaging Interface

Business Logic
(Human Inputs)

(2)(8)proposition /
commitment

(4)invoke

(3)activate

(7
)m

e
s

s
ag

e

(6)activate

(5)policy

(1
)m

e
s

s
ag

e

Fig. 5. Agent architecture: protocol and policy interplay

4.1 Construction of Composite Protocols

Fig. 6 describes the OWL-P classes and properties that deal with the problem of protocol
composition. A Composite Protocol is an aggregation of component protocols and is
defined by a Composition Profile. A composition profile describes the combination of
two or more protocols by stipulating several Composition Axioms. Composition axioms

Protocol CompositeProtocolCompositionProfile

11
definedBy

2..* 1

combines

CompositionAxiom

RoleDefinition

DataFlow EventOrder

Implication

1

*

stipulates

Proposition

11

body

Role

1 1..*
unify1

1

head

ExternalSlot Slot Message

1

1

usage

1

1

definition
1

1

earlier

1

1

later

1

1

define

12..*
composedOf

Fig. 6. OWL-P composition classes and properties

88 N. Desai et al.

define relationships among the protocols being combined. The operational semantics
of an axiom specifies the way in which the relationships affect the composite protocol.
Fig. 4 depicts an Order protocol, a Shipping protocol, a Payment protocol and a set of
composition axiom instances stating the relationships among them.

A Role Definition axiom states which of the roles in the component protocols are to
be adopted by the same agent and defines the name of the unified (coalesced) role in the
composite protocol. In the example, the first axiom states that the roles of a customer in
Order, a payer in Payment and a receiver in Shipping protocol are played by an agent
who will play the role of a customer in the Purchase protocol.

A Data Flow axiom states a data-flow dependency among the protocols. A compo-
nent protocol might be using a slot defined by another component protocol, possibly
with a different name. Since a slot can be defined only once, and native slots must be
defined inside the protocol, they cannot use a value defined by another protocol. Hence,
the range of the usage property must be an external slot. In the example, the fourth
axiom states that the slot amount in the Payment protocol gets its value from the slot
itemPrice in the Order protocol. Such a dependency exerts an ordering among the rule
defining the slot and all the rules using it: none of the the rules using the slot can fire
before the slot is assigned a value by the defining rule.

An Implication axiom states that an assertion of proposition X in a component proto-
col implies an assertion of proposition Y in another component protocol. For example,
the sixth axiom states that an assertion of authOKProp in the Payment protocol means
an assertion of pay in the Order protocol. This can be easily achieved by adding an
implication rule to the composite rulebase.

Unlike the DataFlow axiom, an EventOrder axiom explicitly specifies an ordering
among the messages of the component protocols. For example, the seventh axiom states
that an authOK message from the payment gateway must be received before a shipOrder
message is sent to the shipper. This can be achieved by making the rule for the later
event depend on the rule for the earlier event.

Operational semantics of these axioms are given in [8]. Composition axioms have to
be specified by a designer. There might be several ways of composing the component
protocols yielding different composite protocols. As a special case, if the component
protocols are completely independent of each other, no axioms need be specified and
their OWL-P specifications can be simply aggregated yielding the OWL-P specification
of the composite protocol. If deemed necessary, more types of composition axiom can
be defined along with their properties and operational semantics. A composite protocol
exposes its compositionProfile and possesses all the properties of the component pro-
tocols. Hence, a composite protocol itself can be a component protocol in some other
composition profile instance. How can we determine whether additional component
protocols are needed? To answer this question, we define closed and open protocols.
A protocol is closed if it has no external slots, and all the commitments created in the
protocol can be discharged by the protocol. A protocol is open if it is not closed. A
designer’s goal is to obtain a closed protocol by repeated applications of composition.
Observe that, in Fig. 4, the Order protocol is open as its rules do not assert proposi-
tions pay and goods necessary for discharging the commitments created. The Payment,

OWL-P: A Methodology for Business Process Development 89

Fig. 7. Handling refinements by composition

Shipping and Purchase protocols are also open according to the definition. A designer
would choose protocols that assert these missing propositions and combine them with
the Purchase protocol to obtain a closed composite protocol.

4.2 Refinement by Composition

Business protocols evolve continually as new requirements and new features routinely
arise. Therefore, the ability to systematically refine protocols is valuable. In the com-
posite Purchase protocol, consider a situation in which the customer has already paid
the merchant for the goods and hence the commitment C(S,B,goods(itemID)) is active.
However, while trying to order the shipment, if a fire destroys the merchant’s ware-
house, the merchant will not be able to honor its commitment to ship the item. How
can such exceptions be handled? The protocol could detect the violation due to an un-
fulfilled commitment and the merchant could be held legally responsible. However, A
more flexible solution would be to allow the merchant to refund money and cancel its
commitment to ship, provided the customer agrees to it. We can achieve this flexibil-
ity by combining the purchase protocol with the adjustment protocol shown in Fig. 7
yielding the composite protocol Flexible with these composition axioms:

AdjAx1. roleDefinition(define: Flexible.customer, unify: Purchase.customer, unify:
Adjustment.creditor)
AdjAx2. roleDefinition(define: Flexible.merchant, unify: Purchase.merchant, unify:
Adjustment.debtor)
AdjAx3. implication(body: Purchase.C(B,S,goods(itemID)), head: Cancel.C(D,C,
cond))
AdjAx4. implication(body: Cancel.C(D,C,newCond), head: Purchase.C(S,B,refund))

Similar protocols for assigning, delegating, and releasing commitments can be de-
fined. Adding new functionalities would involve composition of a set of rules for the
new requirements with the original protocol.

90 N. Desai et al.

5 Processes

As described in Section 2, a process is an aggregation of the local processes of par-
ticipating agents. However, an OWL-P specification of a protocol is a model of the
interaction from a global perspective. To construct the local process of a participant, we
need to derive the participant’s view of the protocol, called its role skeleton. Section 5.1
describes the generation of role skeletons from an OWL-P specification.

5.1 Role Skeletons

A role skeleton is one role’s view of the protocol. Here, we provide the intuition behind
generating role skeletons from an OWL-P protocol specification. The complete algo-
rithm is given in [8]. OWL-P describes a protocol from the global perspective where
the propositions are added to the global state and there are no distributed sites. As in
all distributed systems, the state of a protocol as seen by a role is changed only when a
message is sent or received by that role. This observation forms the basis for deriving
role skeletons.

As an example, we show a rule in the Shipping protocol in Fig. 4, and the same rule
in the generated skeleton of the receiver. As the receiver would not be aware of the
previous exchanges between the sender and the shipper, the antecedent of the rule for
receiving senderOptionQuote should be adjusted as shown below.

Protocol Rule
shipperOptionQuoteProp(.,.) ⇒ senderOptionQuote(.,.) ∧
CC(Se,Re,payToSenderProp(.),shipmentProp(.))

Receiver Skeleton Rule
shipInfoProp(?shipAddress) ⇒ receive(senderOptionQuote(.,.))
∧ CC(Se,Re,payToSenderProp(.),shipmentProp(.))

5.2 Policies

Generation of a role skeleton is not enough to obtain a local process of a participant.
As we mentioned earlier, some of the rules of the protocols may be abstract, meaning
that values of some of the native slots in the rule must be produced by the role’s busi-
ness logic. Hence, a role skeleton must be augmented with the business logic to obtain
a local process. How can we determine whether an augmented role skeleton is a local
process? To answer this question, we first define concrete and abstract role skeletons,
as well as a local process. A role skeleton is concrete if all of its native slots are defined.
A role skeleton is abstract if it is not concrete. A local process is a role skeleton that is
concrete and derived from a closed protocol.

Seller skeleton rules:
startProp ⇒ receive(C, reqForQuote(?itemID))

reqForQuoteProp(?itemID) ∧ quotePolicy(?itemPrice) ⇒
quote(?itemID, ?itemPrice) ∧ CC(S, B, pay(?itemPrice), goods(?itemID))

OWL-P: A Methodology for Business Process Development 91

quoteProp(?itemID, ?itemPrice) ⇒ receive(C, acceptQuote(?itemID, ?itemPrice)) ∧
CC(C, M, goods(?itemID), pay(?itemPrice))

Seller policy rule for quote:
reqForQuoteProp(?itemID) ⇒ call(policyDecider, quotePolicy(?itemID))

We propose that the business logic be specified in terms of the local policy rules of
the agents. The skeleton of the merchant role in the Order protocol augmented with the
policy rules of the seller agent is shown above. The last rule is the policy rule that calls
a business logic operation to decide how much to quote. The operation would assert the
quotePolicy proposition and that would activate the second protocol rule. Observe that
this pattern of augmenting policy rules is general and will be applied to the rules where
the agent has to make a decision and respond. It would also assign a value to native
slots that are not defined.

5.3 Usage

Fig. 8 summarizes our methodology with a scenario involving a customer interested in
purchasing goods online. Software designers design protocols and register them with
protocol repositories. They may also construct composite protocols and reuse the exist-
ing component protocols from the repository. A merchant wishing to sell goods online
looks up the repository for a suitable Purchase protocol. It generates the skeleton for
the merchant role, augments it with its local policies and deploys the result as a service.
The service profile for this service would contain an OWL-P description of the Purchase
protocol. The service can be registered with a UDDI registry. If a customer wishes to
buy goods online, it searches the UDDI registry, finds the merchant and acquires the
OWL-P skeleton for the customer role from the merchant. The customer enacts its local
process by augmenting the skeletons with its local policies and starts interacting with
the merchant. We have developed tools to support these development scenarios and a
prototype implementation based on the agent architecture of Fig. 5 [9]. Note that we
propose only a methodology for development and there might be other issues to be
resolved for realizing an e-commerce enterprise.

6 Related Work

Several areas of research are relevant to our work. We discuss each of them briefly and
highlight the differences.

Composition. BPEL [10] is a language designed to specify the static composition
of Web services. However, it mixes the interaction activities with the business logic
making it unsuitable for reuse. OWL-S [11], which includes a process model for Web
Services, uses semantic annotations to facilitate dynamic composition. A composed
service is produced at runtime based on constraints. While dynamic service composi-
tion has some advantages, it assumes a perfect markup of the services being composed.
Dynamic composition in OWL-S involves ontological matching between inputs and
outputs. Such a matching might be difficult to obtain automatically given the hetero-
geneity of the web. For this reason, we do not emphasize dynamic service composition.

92 N. Desai et al.

Fig. 8. Usage scenario

Our goal is to provide a human designer with tools to facilitate service composition.
Unlike BPEL, which specifies the internal orchestration of services, WSCI [12] speci-
fies the conversational behaviour of a service using control flow constructs. However,
these specifications lack a semantics, which makes them difficult to compose and reuse.

Several other approaches aim to solve the service composition problem by empha-
sizing formal specifications to achieve verifiability. Solanki et al. [13] employ interval
temporal logic to specify and verify ongoing behaviour of a composed service. Their
use of “assumption” and “commitment” (different meaning than here) assertions al-
lows better compositionality. Gerede et al. [14] treat services as activity-based finite
automata to study the decidability of composability and existence of a look-ahead del-
egator given a set of existing services. However, these approaches consider neither the
autonomy of the partners, nor the flexibility of composition.

Software Engineering. Our methodology advocates and enables reuse of protocols
as building blocks of business processes. Protocols can not only be composed, they
can also be systematically refined to yield more robust protocols. Mallya and Singh
[2] treat these concepts formally. The MIT Process Handbook [15], in a similar vein,
catalogues different kinds of business processes in a hierarchy. For example, sell is a
generic business process. It can be qualified by sell what, sell to who, and so on. Our
notion of a protocol hierarchy bears some similarity to the Handbook. RosettaNet [16] is
similar to our approach in that it centres around publishing protocols and designing the
business processes around them. However, it is currently limited to two-party request-
response interactions called Partner Interface Processes (PIPs) and, more importantly,
PIPs lacks a formal semantics.

OWL-P: A Methodology for Business Process Development 93

Agent-oriented software methodologies aim to apply software engineering principles
in the agent context e.g. Gaia, KAOS, MaSE, and SADDE [17]. Tropos [18] differs
from these in that it includes an early requirements stage in the process. Gaia [19]
differs from others in that it describes roles in the software system being developed and
identifies processes in which they are involved as well as safety and liveness conditions
for the processes. It incorporates protocols under the interaction model and can be used
with commitment protocols. Baı̈na et al. [20] advocate a model-driven Web service
development approach to ensure compliance between a service’s implementation and
its external protocol specifications. Our work differs from these in that it is aimed at
achieving protocol re-usability by separation of protocols and policies and it addresses
the problem of protocol compositions.

7 Conclusions

We have presented an approach for designing processes that recognizes the fundamental
interactive nature of open environments where the autonomy of the participants must
be preserved. Commitments provide the basis for a semantics of the actions of the par-
ticipants, thereby enabling the detection of violations. The significance of this work
derives from the importance of processes in modern business practice. With over 100
limited business protocols having been defined [16], this approach will permit the devel-
opment and usage of an ever-increasing set of protocols for critical business functions.
We demonstrated the practicality of our approach by embedding it in an ontology and
language for specifying protocols. Not only is this approach conducive to reuse, refine-
ment and aggregation but it has also been implemented in a prototype tool. It would be
ineteresting to see theoretical foundations of this work in the process algebra. It would
allow one to establish properties of the protocols and relationships among them.

Acknowledgments

This research was sponsored by NSF grant DST-0139037 and a DARPA project.

References

1. OWL Web Ontology Language: Overview. www.w3.org/TR/owl-features/ (2004) W3C
Recommendation.

2. Mallya, A.U., Singh, M.P.: An algebra for commitment protocols. Autonomous Agents and
Multiagent Systems (2006) http://dx.doi.org/10.1007/s10458-006-7232-1.

3. WSDL: Web Services Description Language (2002) http://www.w3.org/TR/wsdl.
4. Singh, M.P.: An ontology for commitments in multiagent systems: Toward a unification of

normative concepts. Artificial Intelligence and Law 7 (1999) 97–113
5. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A

semantic web rule language combining OWL and RuleML (May, 2004 (W3C Submission))
http://www.w3.org/Submission/2004/SUBM-SWRL-20040521/.

6. Protégé: The Protégé ontology editor and knowledge acquisition system (2004) http://
protege.stanford.edu/.

94 N. Desai et al.

7. OWL-P Examples: (Business protocols modeled with owl-p) http://research.csc.ncsu.edu/
mas/OWL-P/.

8. Desai, N., Mallya, A.U., Chopra, A.K., Singh, M.P.: Interaction protocols as design ab-
stractions for business processes. IEEE Transactions on Software Engineering 31 (2005)
1015–1027

9. OWL-P Project: (Software, tools, and documentation) http://projects.semwebcentral.org/
projects/owlp/.

10. BPEL: Business process execution language for web services, version 1.1 (2005) www-
106.ibm.com/developerworks/webservices/library/ws-bpel.

11. DAML Services Coalition: DAML-S: Web service description for the semantic Web. In:
Proceedings of the 1st International Semantic Web Conference (ISWC). (2002)

12. WSCI: Web service choreography interface 1.0 (2002) wwws.sun.com/ software/ xml/ de-
velopers/ wsci/ wsci-spec-10.pdf.

13. Solanki, M., Cau, A., Zedan, H.: Augmenting semantic web service descriptions with com-
positional specification. In: Proceedings of the International World Wide Web Conference.
(2004) 544–552

14. Gerede, C.E., Hull, R., Ibarra, O., Su, J.: Automated composition of e-services: Lookaheads.
In: Proceedings of the International Conference on Service Oriented Computing. (2004)

15. Malone, T.W., Crowston, K., Herman, G.A., eds.: Organizing Business Knowledge: The
MIT Process Handbook. MIT Press, Cambridge, MA (2003)

16. RosettaNet: Home page (1998) www.rosettanet.org.
17. Bergenti, F., Gleizes, M.P., Zambonelli, F., eds.: Methodologies and Software Engineering

for Agent Systems. Kluwer (2004)
18. Bresciani, P., Perini, A., Giorgini, P., Guinchiglia, F., Mylopolous, J.: Tropos: An agent-

oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8 (2004) 203–236

19. Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software Engineering Methodology 12 (2003) 317–370

20. Baı̈na, K., Benatallah, B., Casati, F., Toumani, F.: Model-driven web service development. In:
Proceedings of Advanced Information Systems Engineering: 16th International Conference,
CAiSE. (June 2004)

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 95 – 110, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Identification of Reusable Method Fragments from the
PASSI Agent-Oriented Methodology

B. Henderson-Sellers1, J. Debenham1, Q.-N.N. Tran1, M. Cossentino2, and G. Low3

1 University of Technology, Sydney, P.O. Box 123, Broadway, NSW 2007, Australia
{brian, debenham}@it.uts.edu.au, numitran@yahoo.com

2 ICAR - Consiglio Nazionale Ricerche, Italy
cossentino@pa.icar.cnr.it

3 University of New South Wales, NSW 2052, Australia
g.low@unsw.edu.au

Abstract. Theoretical proposals for the development of reusable method frag-
ments are applied to the identification of method fragments in the agent-
oriented methodology, PASSI. The format of these fragments is ensured as
compatible with the structure and format already established for the OPEN
Process Framework’s (OPF) repository, which uses a method engineering (ME)
approach. Since the OPF repository has already been enhanced by fragments
from several other AO methodologies, we expect a “convergence to comple-
tion” (or near-completion) such that most of the PASSI fragments are likely to
map to existing OPF fragments. Indeed, only seven new fragments (six of
which are novel diagram types) are identified in this study.

1 Introduction: Acquisition of New Method Fragments

Method engineering (ME) offers a novel approach to a formalized way of creating a
software development methodology [1-7]. Rather than create a single methodology
in which there is significant intertwining of elements of the methodology, method
engineering proposes that a methodology can be decomposed into a number of
method fragments [5] (or method chunks). With the necessary interfaces on these
method fragments, they can then be used in more than one methodology construction
effort [7] and thus fulfil the criterion of methodological reuse [6]. Either this decom-
position can be done on existing methodologies in order to extract these reusable
method fragments or else method fragments can be identified ab initio (called Ad-
Hoc construction in [6]). We apply the first of these approaches (decomposition of
an existing methodology) to a case study of the PASSI agent-oriented methodology
[8-10]. To guide the decomposition, we utilize an existing metamodel-underpinned
repository of method fragments – the OPEN Process Framework (OPF) [11]. Within
that framework, once a candidate method fragment for inclusion in the OPF reposi-
tory has been identified (from PASSI), a decision can be made as to whether (1) to
reject the proposal, (2) to accept as new fragment either “as is” (or with possibly
small modifications to ensure compatibility with existing fragments) or (3) to merge
the new fragment with others already in the repository, e.g. by taking an existing
fragment and extending it to encompass the new detail.

96 B. Henderson-Sellers et al.

The analysis of PASSI discussed here is one in a series of such extractions of
method fragments from extant AO methodologies. It is therefore anticipated that the
proposed additions of these newly identified method fragments to the OPF’s reposi-
tory will lead asymptotically to completeness such that the new method fragments
likely to be identified will be few. In the next phase of the project, we intend to test
out this hypothesis (that completion has been attained) by use of an external (meth-
odological) data set.

In Section 2, we give a brief overview of both PASSI and the OPF, followed, in
Section 3, by identification of appropriate method fragments from PASSI. For each
fragment, we then ask whether it already exists in the OPF repository – if so, it will
likely be rejected (decision 1) – or whether it should be accepted either as a new
fragment (decision 2) or whether additional work is needed to merge together the
newly proposed fragment with a pre-existing one (decision 3).

2 Very Brief Overviews of PASSI and OPF

2.1 PASSI

PASSI (A Process for Agent Societies Specification and Implementation) [8-10] offers
a step-by-step requirement-to-code process for the development of an MAS (Fig. 1),
integrating models and concepts from both the object-oriented (OO) software engineer-
ing and the agent-oriented paradigms. The methodology adopts (with minor exten-
sions) the UML notation for its work products and targets the FIPA implementation
environment.

Deployment Model

Syst. Req. Model

Tasks
Specification

Roles
Identification

Ag. Impl. Model

Agent Structure
Definition

Agent Behavior
Description

Code Model

Code Reuse

Code
Completion

Ontology
Description

Roles
Description

Protocols
Description

Agent Society Model

Initial
Requirements New Requirements

Agents
Identification

Domain
Description

Deployment
Configuration

Fig. 1. Overview of PASSI

As depicted in Fig. 1, PASSI supports five phases of software development: (i)
system requirements, to produce a use-case based description of the functionalities
and an initial decomposition according to the agent paradigm; (ii) agent society, an
analysis phase aimed at composing a model of domain ontology, social interactions
and dependencies among the agents; (iii) agent implementation, which is a design

 Identification of Reusable Method Fragments 97

phase aimed at modelling the solution architecture in terms of required agents, classes
and methods, composed of both a structural definition and a behavioural description
of the whole system; (iv) code, the implementation phase aimed at modelling a solu-
tion at the code level - largely supported by pattern reuse and automatic code genera-
tion; (v) deployment, aimed at modelling the distribution of the system parts across a
distributed platform. PASSI also includes support for testing, divided into two differ-
ent stages: the agent test, where each individual agent is tested after its implementa-
tion, and the society test, where the multi-agent system is tested after its deployment.

The methodology is supported by PTK (PASSI Toolkit), a Rational Rose plug-in,
and also by a repository of patterns for agents [12]. These tools proved very useful in
the design and development of our systems because of the relevant level of automa-
tion they introduce in the process. This is particularly effective when entire portions
of the model are reused from the patterns repository; this operation, that according to
the PASSI prescription is performed during the design phase, also affects the coding
activity since a significant portion of code is automatically generated starting from the
pattern structure [13].

2.2 OPF

OPEN (Object-oriented Process, Environment and Notation) [11] is an established
approach for developing software, primarily, but not exclusively, that with an object-
oriented implementation. Within the OPEN approach, the most relevant element is the
OPF (Fig. 2), which comprises a metamodel that defines all the methodology1
elements at a high level of abstraction plus a repository that contains instances of
those metalevels concepts supplemented by a set of construction guidelines.

OPEN

OPF
Metamodel

Repository of
method fragments

Construction guidelines

OPF-compatible
notations

OPF-compatible
tools

(Optional) Metamodel
extensions

OPEN

OPF
Metamodel

Repository of
method fragments

Construction guidelines

OPF-compatible
notations

OPF-compatible
tools

(Optional) Metamodel
extensions

Fig. 2. The OPF consists of a metamodel, a repository and construction guidelines. OPEN
consists of the OPF, OPF-compatible notations and tools and optionally metamodel extensions.

Each element in the repository is a method fragment generated, by instantiation,
from the metamodel. There are several (meta)classes in the metamodel [11] but the

1 We use a definition in which the term methodology encompasses both process and

product [4].

98 B. Henderson-Sellers et al.

most relevant for our study are two subclasses of Work Unit (namely Task and Tech-
nique) and the class Work Product.

Method engineering is then applied in the sense of identification of appropriate
method fragments from the repository and their assembly into a full methodology.
Using guidelines, such as ensuring that all output work products (except the deliverable
code) are used elsewhere in the constructed method as inputs to some other task, a
usable and quality methodology can be constructed for application on a specific project
or organization – so called situational method engineering [1, 2, 14, 15]. Exemplar
constructed processes can be found in [7].

3 Method Fragments in PASSI

In this section, we analyse PASSI by decomposing it (as an existing methodology)
into fragments for process (cycles, phases), work units (tasks and techniques) and
work products (models and diagrams). Each of these is first identified from PASSI
and then we evaluate whether the pre-existing support in the OPF repository is
adequate.

3.1 Fragments for Process Elements

3.1.1 Cycle
PASSI adopts an iterative and recursive lifecycle, where iteration is driven by new
requirements, dependencies between structural and behavioural modelling, and de-
pendencies between multi-agent and single-agent views. This lifecycle fits well into
OPEN’s “Iterative, Incremental, Parallel Lifecycle”.

3.1.2 Phases
PASSI uses the term “phase” to refer to each of its steps in the MAS development
process. However, in OPEN, the term “Phase” is defined as a large-grained span of
time within the lifecycle that works at a given level of abstraction. Thus, “phases” of
PASSI do not match the definition of OPEN “Phases”, but instead correspond to OPF
“Tasks”, which are small-grained, atomic units of work that specify what must be
done in order to achieve some stated result. We thus discuss PASSI’s “phases” in
Section 3.2 and note here that PASSI covers the OPF Phases of “Initiation” and
“Construction”.

3.2 Fragments for Tasks

In this section, we briefly describe each task fragment gleaned from PASSI and iden-
tify those that already exist in the OPF repository (decision 1), those that need to be
added (decision 2) and those that enhance existing fragments (decision 3). In some
instances, there is a one to many or many to one mapping (Table 1) as a consequence
of the different granularities between the PASSI fragment and the OPF repository
fragment.

 Identification of Reusable Method Fragments 99

3.2.1 “Domain Description”
This task aims to elicit the functional requirements of the target system via the devel-
opment of use case diagrams (called Domain Description Diagrams in PASSI). It is a
large task supported by three existing OPF tasks - as documented in Table 1. (Deci-
sion 1 fragment).

3.2.2 “Agent Identification”
PASSI identifies agents early in the development process because it views an MAS as
a society of intended and existing agents. Agents are introduced from the identified
requirements, and modelled in an Agent Identification Diagram(s) (see Section 3.4).
Existing support from the OPF repository is shown in Table 1. (Decision 1 fragment).

Table 1. Mappings of PASSI fragments to existing OPF fragments

PASSI fragment Existing OPF fragment(s)

Domain description Elicit requirements
Analyse requirements
Use case modelling

Agent identification Construct the agent model [16-19]
Role identification Model agent’s roles [20]
Task specification Construct the agent model

Model agents’ tasks (new here)
Ontology description Define ontologies [21]

Construct the agent model
Role description Model agents’ roles [19]
Protocol description Determine agent interaction protocol

Determine agent communication protocol
Agents structure definition Construct the agent model

Model agents’ tasks (new here)
Agents behaviour description Construct the agent model

Model agents’ tasks (new here)
Code reuse Code

Identify appropriate reusable work products
Acquire reusable work products
Manage library of reusable components.

Code completion Code
Deployment configuration Create a system architecture

3.2.3 “Role Identification”
This task is concerned with the definition of agents’ externally visible behaviour in
the form of roles. Role identification produces a set of sequence diagrams (referred to
as Role Identification Diagrams) that describe the scenarios in which the agents inter-
act to achieve the required behaviour of the target system, and the roles played by
each agent in these scenarios. Existing support from the OPF repository is shown in
Table 1. (Decision 1 fragment).

100 B. Henderson-Sellers et al.

3.2.4 “Task Specification”
This task is concerned with the definition of each agent’s behaviour in the form of
agent tasks. A Task Specification Diagram summarizes what each agent is capable of
doing, ignoring information about roles that the agent plays when performing particu-
lar tasks. Existing support from the OPF repository is shown in Table 1. (Decision 1
fragment).

Support from OPF repository. The OPF Task “Construct the Agent Model” covers
the specification of tasks or responsibilities for each agent. However, to make explicit
PASSI’s “task specification”, we propose here a new Sub-Task to this Task, the new
subtask to be named “Model agents’ tasks”. (Decision 2 fragment).

SUBTASK NAME: Model agents’ tasks

Focus: Delineation of responsibilities/services of agents
Typical supportive techniques: “Responsibility identification”, “Service identifica-
tion”, “Commitment management”, “Deliberative reasoning”, “Reactive reasoning”,
“Task selection by agents”

Explanation: This sub-task defines the tasks (or responsibilities or services) of each
agent in the Agent Model. The internal structure of the tasks should be specified, i.e.
the required knowledge and the involved operations/methods. Transitions among
tasks within and between agents should also be defined. Task transitions are typically
caused by events (e.g. an incoming message or task conclusion) or method invocation.

3.2.5 “Ontology Description”
This PASSI task develops domain-specific ontology for the target MAS in order to
describe the pieces of domain knowledge that are ascribed to the agents. It produces
two diagrams: Domain Ontology Description Diagram (to model the content of the
ontology) and Communication Ontology Description Diagram (to model the agents’
knowledge and the ontology used for each inter-agent communication). Existing sup-
port from the OPF repository is shown in Table 1. (Decision 1 fragment).

3.2.6 “Role Description”
This task provides an overview of the roles played by the agents, the changes in roles
of an agent, the tasks performed by each role, the communications between roles, and
inter-role dependencies. These elements are captured in Role Description Diagrams.
Existing support from the OPF repository is shown in Table 1. (Decision 1 fragment).

3.2.7 “Protocol Description”
Each interaction protocol governing the inter-agent communications in the Communi-
cation Ontology Description Diagram (cf. PASSI task “Ontology description”) needs
to be documented using AUML sequence diagrams. Existing support from the OPF
repository is shown in Table 1. (Decision 1 fragment).

3.2.8 “Agents Structure Definition”
This task specifies the general architecture of the system in terms of agents making up
the system, their knowledge and their tasks, using a Multi-Agent Structure Definition
Diagram. It also models the internal structure of each agent in terms of agent’s
knowledge and methods, and its tasks’ knowledge and methods, using Single-Agent
Structure Definition Diagrams. Existing support from the OPF repository is shown in
Table 1. (Decision 1 fragment).

 Identification of Reusable Method Fragments 101

3.2.9 “Agents Behaviour Description”
This task influences and is influenced by the Agents Structure Definition task. At the
system level, it specifies the transitions between the methods of different agents
and/or the methods of different agents’ tasks using Multi-Agent Behaviour Descrip-
tion Diagrams. At the agent level, it specifies the implementation of the methods of
each agent and each agent’s task via Single-Agent Behaviour Description Diagrams.
Existing support from the OPF repository is shown in Table 1. (Decision 1 fragment).

3.2.10 “Code Reuse”
The designer should try to reuse predefined patterns [22] prior to the coding of agents
and tasks. Existing support from the OPF repository is shown in Table 1. (Decision 1
fragment).

3.2.11 “Code Completion”
This is a conventional task in the system development process where the programmer
completes the code of the application, taking as inputs the design specification and the
reused patterns. Existing support from the OPF repository is shown in Table 1. (Deci-
sion 1 fragment).

3.2.12 “Deployment Configuration”
This task is particularly important if the system is highly distributed and/or contains
mobile agents. A Deployment Configuration Diagram should be developed to detail
the locations of agents. Existing support from the OPF repository is shown in Table 1.
(Decision 1 fragment).

3.3 Fragments for Techniques

In this section, we briefly describe the techniques discussed in PASSI. These are not
explicit so we have to identify appropriate technique fragments from the OPF reposi-
tory or else identify areas where no such fragments pre-exist. Each subsection below
refers to one of the PASSI tasks discussed above in Section 3.2.

3.3.1 For “Domain Description”
The functional requirements of the target system are described using a hierarchical
series of use case diagrams, with the uppermost diagram serving as a context diagram.

Support from OPF repository. The OPF repository offers Technique “Scenario
development” that directly supports the identification and construction of use cases
and scenarios.

3.3.2 For “Agent Identification”
Starting from a sufficiently detailed use case diagram, agents are identified as a use
case or a package of use cases. The functionality of the (package of) use case defines
the functionality of the agent.

Support from OPF repository. Currently the OPF repository provides a Technique
“Intelligent agent identification”, which addresses the need for agents and agent mod-
elling notation.

102 B. Henderson-Sellers et al.

3.3.3 For “Role Identification”
Roles of each agent are identified by exploring all the communication paths between
agents in the Agent Identification Diagram (produced by PASSI task “Agent Identifi-
cation”). A communication path is captured as a «communicate» relationship be-
tween two agents in the diagram. At least one scenario should be developed for each
path to specify how the agents interact, and to discover which role each agent plays
during this interaction.

Support from OPF repository. The development of scenarios during the process of
role identification is supported by OPF Technique “Scenario development”. OPF
Technique “Collaboration analysis” may also be useful to analyse inter-agent interac-
tions for role discovery.

3.3.4 For “Task Specification”
The designer should examine all Role Identification Diagrams produced by task “Role
Identification” (i.e. all scenarios that the agents participate). From each Role Identifi-
cation Diagram (i.e. each scenario), a collection of related tasks can be identified for
each agent by exploring the interactions and the internal actions that the agent per-
forms to accomplish the scenario’s purpose. Grouping all the tasks identified for a
particular agent will result in a Task Specification Diagram for that agent.

Support from OPF repository. The identification of agents’ tasks can be assisted by
various OPF Techniques such as “Responsibility identification”, “Service identifica-
tion”, “Commitment management”, “Deliberative reasoning”, “Reactive reasoning”
and “Task selection by agents” [19].

3.3.5 For “Ontology Description”
PASSI does not offer any techniques for the development of the Domain Ontology
Description Diagram, such as how to identify the concepts, predicates, actions and
relationships in the ontology. Regarding the Communication Ontology Description
Diagram, agents in the diagram are those identified by the Agent Identification Dia-
gram, while the communications between agents are deduced from the interactions
between agents’ roles in Role Identification Diagrams. The designer must define
agents’ knowledge (represented as attributes) and the ontology governing each inter-
agent communication in terms of the elements of the Domain Ontology Description
Diagram.

Support from OPF repository. For the specification of domain ontology, OPF
Technique “Domain analysis” can be applied to identify the relevant domain-specific
concepts, predicates, actions and their relationships. Regarding the specification of
agents’ knowledge in terms of domain ontology, OPF Technique “Agent Internal
Design” [16] needs to be enhanced in order to exercise the consistency rule between
the definition of agents’ knowledge and the definition of domain ontology. OPF
Technique “Interaction modelling” is also useful here.

3.3.6 For “Role Description”
The roles of each agent are identified from the Role Identification Diagram. Commu-
nications between roles can be deduced from the communications between agents in

 Identification of Reusable Method Fragments 103

Communication Ontology Description Diagram, using exactly the same names for the
communication relationships. Changes in roles of an agent and inter-role dependen-
cies should also be specified. Three potential types of dependencies are:

− Service dependency: where a role depends on another role to bring about a
goal;

− Resource dependency: where a role depends on another for the availability
of an entity; and

− Soft-Service or Soft-Resource dependency: where the requested service or
resource is helpful but not essential to bring about a role’s goal.

PASSI does not document any techniques for the identification of tasks for each
agent’s role.

Support from OPF repository. Support for modelling communication between
roles, changes in roles of an agent and inter-role dependencies can be accommodated
by OPF Technique “Role Modelling”, although this technique is to be enhanced here
by inclusion of the various guidances suggested by PASSI. For the identification of
tasks for each role, OPF Techniques “Responsibility identification”, “Service identifi-
cation” and “Scenario development” should be applied.

3.3.7 For “Protocol Description”
PASSI advocates the adoption of standard FIPA interaction protocols and AUML
sequence diagrams to document these protocols. If the existing FIPA protocols are
found inadequate for the target system, the designer may specify his or her own, using
the same FIPA documentation’s approach.

Support from OPF repository. Conventional OPF Technique “Interaction model-
ling” and OPF Techniques “Contract net”, “Market mechanisms” and “FIPA-KIF
compliant language” [19] can be applied to specify protocols and the exchanged mes-
sages between agents.

3.3.8 For “Agents Structure Definition”
The names of the agents in the Multi-Agent Structure Definition Diagram can be
derived from the Agent Identification Diagram, their knowledge from Communica-
tion Ontology Description Diagram, their tasks from Task Specification Diagrams and
their communications from Role Description Diagrams. The internal structure of each
agent should then be defined in a Single-Agent Structure Definition Diagram (one
diagram for each agent). The agent internal structure consists of the agent’s knowl-
edge and methods, together with the knowledge and methods of each of its tasks. The
designer should not overlook methods that are needed for the implementation plat-
form, e.g. constructor and shutdown methods. Tasks that require inter-agent commu-
nication should also contain methods that deal with communication events.

Support from OPF repository. The Technique of “Organizational structure specifi-
cation” [17] is useful in multi-agent structure definition; while the specification of
agent internal structure (including agent knowledge, tasks, methods etc) is directly
supported by OPF Technique “Agent internal design” [16]. In addition, since PASSI
employs the OO concepts of class, attribute and method to model agents and agents’
tasks, the OPF conventional Technique “Class internal design” is also appropriate.

104 B. Henderson-Sellers et al.

3.3.9 For “Agents Behaviour Description”
One or more Multi-Agent Behaviour Description Diagrams should be developed for
the target system to show the transitions between the methods of agents and/or meth-
ods of agent’s tasks. These transitions represent either events (e.g. an incoming
message or task conclusion) or invocation of methods. They can be identified from
inter-role/inter-agent communications captured in the Role Identification Diagram,
Task Specification Diagram and Communication Ontology Description Diagram. If
the transition represents an exchanged message, the message’s performatives must be
consistent with the protocol defined in the Communication Ontology Description
Diagram and Role Description Diagram, and the message’s content should contain
elements defined in the Domain Ontology Description Diagram. With regard to the
implementation of methods (of agent classes and task classes), standard OO diagrams
such as flowcharts and state diagrams can be used as Single-Agent Behaviour De-
scription Diagrams.

Support from OPF repository. Standard OPF Techniques “Event modelling” and
“State modelling” are appropriate to the identification and modelling of transitions
between methods and implementation of each method (no matter whether the methods
belong to agents or to agents’ tasks).

3.3.10 For “Code Reuse”
Code reuse does not merely mean the reuse of pieces of codes, but also pieces of
design of agents and tasks. The designer should thus look at the design diagrams de-
tailing the library of patterns rather than at the code directly. PASSI provides an add-
in to the Rational Rose UML CASE tool (called “PASSI Toolkit”) and a pattern reuse
application (called “Agent Factory”) that assist in code reuse. “PASSI Toolkit” (PTK)
can generate the code for all skeletons of agents. In the context of the generation of
PASSI from the newly enhanced OPF repository (as described here), PASSI tools
become elements of the OPF-compatible tools (Fig. 2).

Support from OPF repository. The OPF repository provides various Techniques for
reuse that can be applied to PASSI, namely “Pattern recognition”, “Library class
incorporation”, “Library management” and “Reuse measurement”.

3.3.11 For “Code Completion”
No specific techniques are documented by PASSI because this is a classical task of
the programmer.

Support from OPF repository. The OPF repository contains a number of Tech-
niques for coding, which, although originally intended for objects, are equally appli-
cable to agents, e.g. “Inspection”, “Creation charts”, “Pair programming”, “Screen
scraping” and “Wrappers”.

3.3.12 For “Deployment Configuration”
No techniques are given by PASSI to support agent deployment configuration, for
example how to allocate agents to processing units or how to configure agent mobility.

Support from OPF repository. The OPF repository offers Technique “Distributed
systems partitioning and allocation”. However, it offers inadequate support for the

 Identification of Reusable Method Fragments 105

deployment configuration of agent systems, including mobility of agents. Since
PASSI offers no guidance here, in the context of this paper, we must defer this exten-
sion to future work.

3.3.13 Summary
Although only a single subtask is identified as needing adding to the OPF repository
(together with the need to investigate extending a single technique (Distributed
systems partitioning and allocation), this does not reflect upon any lack of compre-
hensiveness in PASSI itself. The reason is that a significant number of other agent-
oriented methodologies have already been analysed [20], each of which has
provided method fragments that could equally well have been derived from PASSI.
We have chosen not to highlight these here to avoid duplication with those previ-
ously published [16-19, 21].

3.4 Fragments for Work Products

All work products of PASSI are represented in UML notation although with some
small extensions.

3.4.1 System Requirements Model
This is an anthropomorphic model of the system requirements in terms of agency and
purpose. It is composed of the following types of diagrams:

• Domain Description Diagram: This is a standard UML use case diagram that is
used (by PASSI task “Domain Description”) to capture the functional description
of the target system.

PurchaseMonitor
<<Agent>>

PurchaseManager
<<Agent>>

Univ Courses
Web Server

Keep Univ Needs Updated

<<communicate>>

Predict Students Needs

<<include>>

Provide Books

<<communicate>>

Fig. 3. Agent Identification Diagram

• Agent Identification Diagram: One or more use cases in the above use case dia-
grams are grouped into stereotyped packages to form Agent Identification Diagrams
(Fig. 3). This assumes that use cases are fully contained in a single agent, which
is not the case for object-oriented systems. The names of the packages are the
names of the resulting agents. Relationships between use cases of different agents
are stereotyped as «communicate», while relationships between uses cases of the
same agent are modelled using the standard UML relations (i.e. «include» and
«extend»). This is a new style of diagram recommended for addition to the OPF
repository.

106 B. Henderson-Sellers et al.

• Role Identification Diagram: This is a UML sequence diagram where objects
represent agent roles, specified using the syntax <role-name>:<agent_name>. An
agent may play distinct roles within the same sequence diagram. Messages in the
sequence diagram may either signify events generated by the environment or
communication between roles. This is a new style of diagram recommended for
addition to the OPF repository.

• Task Specification Diagram: This diagram is drawn as a UML activity diagram
with two swimlanes. The right-hand lane contains a collection of tasks of the tar-
get agent, while the left-hand lane specifies the relevant tasks of other interacting
agents. Relationships between tasks signify transitions between them (e.g. ex-
changed messages or task triggering events). This is a new style of diagram rec-
ommended for addition to the OPF repository.

3.4.2 Agent Society Model
This model captures the communications and dependencies among agents in the target
system. It is composed of the following types of diagrams:

• Domain Ontology Description Diagram: This diagram models the domain ontol-
ogy of the target system in terms of concepts (domain entities), predicates (asser-
tions on properties of concepts), actions (performed in the domain) and their rela-
tionships (association, generalization and aggregation). This diagram is repre-
sented as a UML class diagram, while the elements of the ontology (i.e. concepts,
predicates, actions and relationships) are described in an XML schema.

• Communication Ontology Description Diagram: This is a UML class diagram
that shows all agents of the system, their knowledge (represented as attributes)
and the ontology governing their communications (Fig. 4). Each communication
(drawn from the initiator to the participant) is characterized by three attributes:
ontology, language and interaction protocol, which are grouped into an associa-
tion class. Roles played by agents are denoted at the respective ends of the asso-
ciation lines. This is a new style of diagram recommended for addition to the OPF
repository.

DeliveryNotification

Ontology : Delivery
Language : RDF
Protocol : Inform

StoreUI

_delivery_details : Delivery

PurchaseManager

open_purchases : GoingOnPurchases
suppliers_list : SuppliersArchive

BooksReceiver DeliveryNotifier

Fig. 4. Communication Ontology Description Diagram

• Role Description Diagram: This is a UML class diagram that shows agents as
packages, and agents’ roles as classes (Fig. 5). Each role’s tasks are specified in
the operation compartment of the role class. Connections between roles represent
either changes of roles (if the roles belong to the same agent) or inter-role com-
munications (if the roles belong to different agents). Dependencies among roles
are also shown. This is a new style of diagram recommended for addition to the
OPF repository.

 Identification of Reusable Method Fragments 107

Purchase Advisor
<<Agent>>

Consultant : PurchaseAdvisor

IdleTask()
ReceiveAdviceRequest()
QueryOnHistory()

Recorder : PurchaseAdvisor

IdleTask()
ReceiveRecordingRequest()
UpdateHistory()

BooksProvider : PurchaseManager

IdleTask()
ReceivePurchaseRequest()
StartPurchase()
AskForAdvise()
StartNegotiation()
StartOrdering()
ReceiveDeliveryNotification()
NotifyEndOfPurchase()
UpdatePurchaseHistory()

Purchase Manager
<<Agent>>

[ROLE CHANGE]

QueryForAdvice

PurchaseDetails

(service)

Fig. 5. Role Description Diagram

• AUML Sequence Diagram: This diagram is used for documenting inter-agent
interaction protocols.

3.4.3 Agent Implementation Model
This model captures the solution for the target MAS in terms of classes and methods.
It consists of four types of diagram:

Univ Courses
Web Server

PurchaseManager

ReceivePurchaseRequest()
StartPurchase()
AskForAdvise()
StartNegotiation()
StartOrdering()
ReceiveDeliveryNotification()
NotifyEndOfPurchase()
UpdatePurchaseHistory()

<<Agent>>

PurchaseMonitor

RequestBooks()
LookForChanges()

<<Agent>>

Fig. 6. Multi-Agent Structure Definition Diagram

• Multi-Agent Structure Definition Diagram: This is a UML class diagram where
classes represent agents and associations between classes signify inter-agent
communications (Fig. 6). Attributes represent the agents’ knowledge, while op-
erations are used to specify agents’ tasks. This is a new style of diagram recom-
mended for addition to the OPF repository.

• Single-Agent Structure Definition Diagram: One UML class diagram is devel-
oped for each agent. This diagram contains one main class to represent the target
agent, and multiple inner classes to represent the agent’s tasks (one inner class for
each task). The knowledge and methods of each agent class and task class should
be specified in the attribute and operation compartments respectively.

• Multi-Agent Behaviour Description Diagram: This is a UML activity diagram
where each swimlane specifies the methods of each agent or each agent’s task.
The methods (represented as activities) are connected with each other through
transitions, i.e. events (e.g. an incoming message or a task conclusion) or invoca-
tions of methods.

108 B. Henderson-Sellers et al.

• Single-Agent Behaviour Description Diagram: This diagram can be represented
as standard UML flowcharts, state diagrams or even semi-formal text description.

3.4.4 Code Model
This model captures the codes for implementing the solution.

3.4.5 Deployment Model
This model contains a Deployment Configuration Diagram, which is represented as a
UML deployment diagram. This diagram shows the locations of agents (i.e. the im-
plementation platforms and processing units where the agents reside), the agents’
movements and their communication. A «move_to» stereotyped connection is intro-
duced by PASSI to model agent mobility, connecting an agent from its initial process-
ing unit to the final location.

3.4.6 Recommendations
PASSI focusses on the use of UML diagrams. There are, however, some interesting
observations to make. Firstly, in the UML there is a tendency to have a one to one
relationship between a diagram type and its context of application. In PASSI (and also
incidentally in Tropos e.g. [23]), one diagram type is used to serve many purpose. In
PASSI, the UML class diagram, for example, is used as (i) a domain ontology de-
scription diagram, (ii) a communication ontology description diagram, (iii) a role
description diagram, (iv) a multi-agent structure definition diagram and (v) a single-
agent structure definition diagram. Such multi-viewpoint usage can be beneficial in
terms of only using one notational style but potentially confusing unless the bounda-
ries between the diagram types and the contexts and scales of the various viewpoints
are carefully delineated.

Table 2. New Work Products, derived from PASSI, recommended for inclusion in the OPF
repository

Agent Identification Diagram
Communication Ontology Description Diagram
Multi-Agent Structure Definition Diagram
Role Description Diagram
Role Identification Diagram
Task Specification Diagram

In terms of OPF method fragments, six of the PASSI diagrams are distinctive to
warrant proposal for inclusion in the OPF repository (Table 2).

Inadequate support for distributed systems partitioning and allocation was identi-
fied in both PASSI and the OPF and remains a topic for future investigation.

4 Conclusion

By decomposing PASSI into a set of fragments and then comparing these newly
derived fragments with those already stored in the OPF repository, as enhanced by

 Identification of Reusable Method Fragments 109

previous AO methodology studies [16-21], we have identified only one major
WorkUnit fragment (Subtask: Model agent’s tasks) that needs to be added to this
particular repository plus a recommendation to (a) extend the “Distributed systems
partitioning and allocation” technique described in [24] and (b) consider six of the
twelve PASSI work products for inclusion in the repository. The next stage of the
work will posit the hypothesis that completeness of the repository has been reached,
testing this by means of an external data set, as provided in [25]. It is also interesting
to note that the work reported here represents an evaluation of the possibilities of
interaction of the FIPA Methodology TC2 approach with the OPF one. Since the
original PASSI fragments have been built by following the FIPA Method Fragment
Specification and their introduction in the OPF repository has been smooth enough,
we think there is a reasonable hope of making the two approaches converge towards
some interoperability level and we plan to explore this possibility further.

References

1. Kumar, K., Welke, R.J.: Method engineering: a proposal for situation-specific methodol-
ogy construction, in Systems Analysis and Design: A Research Agenda, (eds. W.W. Cot-
terman and J.A. Senn), J. Wiley & Sons, NY, USA (1992) 257-269.

2. Brinkkemper, S.: Method engineering: engineering of information systems development
methods and tools, Inf. Software Technol., 38(4) (1996) 275-280.

3. Ralyté, J., Rolland, C.: An assembly process model for method engineering, in K.R. Dit-
trich, A. Geppert and M.C. Norrie (Eds.) Advanced Information Systems Engineering,
LNCS2068, Springer-Verlag, Berlin (2001) 267-283.

4. Rolland, C., Prakash, N., Benjamen, A.: A multi-model view of process modelling, Req.
Eng. J., 4(4) (1999) 169-187

5. van Slooten, K., Hodes, B.: Characterizing IS development projects, in S. Brinkkemper, K.
Lyytinen and R. Welke (Eds.) Procs. IFIP TC8 Working Conference on Method Engineering:
Principles of method construction and tool support, Chapman & Hall, London (1996) 29-44.

6. Ralyté, J.: Towards situational methods for information systems development: engineering
reusable method chunks, Procs. 13th Int. Conf. on Information Systems Development. Ad-
vances in Theory, Practice and Education (eds. O. Vasilecas, A. Caplinskas, W.
Wojtkowski, W.G. Wojtkowski, J. Zupancic and S. Wrycza), Vilnius Gediminas Technical
University, Vilnius, Lithuania (2004) 271-282.

7. Henderson-Sellers, B., Serour, M., McBride, T., Gonzalez-Perez, C., Dagher, L.: Process
construction and customization, J. Universal Computer Science, 10(4) (2004) 326-358

8. Burrafato, P., Cossentino, M.: Designing a multi-agent solution for a bookstore with the
PASSI methodology. Procs. 4th International Bi-Conference Workshop on Agent-Oriented
Information Systems (AOIS-2002), Toronto (2002)

9. Cossentino, M.: From requirements to code with the PASSI methodology, in Agent-
Oriented Methodologies (eds. B. Henderson-Sellers and P.Giorgini), Idea Group (2005)
79-106.

10. PASSI website. http://www.pa.icar.cnr.it/passi/
11. Firesmith, D.G., Henderson-Sellers, B.: The OPEN Process Framework, Addison-Wesley,

UK (2002)
12. Chella, A., Cossentino, M., Sabatucci, L.: Tools and patterns in designing multi-agent sys-

tems with Passi. WSEAS Transactions on Communications, 3(1) (2004) 352-358.

2 http://www.pa.icar.cnr.it/~cossentino/FIPAmeth/

110 B. Henderson-Sellers et al.

13. Cossentino, M., Sabatucci, L., Chella. A.: Patterns reuse in the PASSI methodology. In
Engineering Societies in the Agents World IV, 4th International Workshop, ESAW 2003,
Revised Selected and Invited Papers, volume XIII of Lecture Notes in Artificial Intelli-
gence. Springer-Verlag (2004)

14. Welke, R., Kumar, K.: Method engineering: a proposal for situation-specific methodology
construction, in Systems Analysis and Design: A Research Agenda (Cotterman and Senn,
eds.), Wiley (1991)

15. Odell, J.J.: Keynote paper: a primer to method engineering, in Method Engineering. Prin-
ciples of method construction and tool support (eds. S. Brinkkemper, K. Lyytinen and R.J.
Welke), Chapman & Hall (1996) 1-7

16. Tran, Q.N., Henderson-Sellers, B., Debenham, J.: Incorporating the elements of the MASE
methodology into Agent OPEN. Procs. 6th Int. Conference on Enterprise Information Sys-
tems (ICEIS'2004) (2004) 380-388.

17. Henderson-Sellers, B., Debenham, J., Tran, Q.N.: Adding Agent-Oriented Concepts De-
rived from GAIA to Agent OPEN. Advanced Information Systems Engineering. 16th In-
ternational Conference, CAiSE 2004, Riga, Latvia, June 2004 Proceeding (eds. A. Persson
and J. Stirna), LNCS 3084, Springer-Verlag, Berlin (2004) 98-111.

18. Henderson-Sellers, B., Tran, Q-N.N., Debenham, J.: Incorporating elements from the Pro-
metheus agent-oriented methodology in the OPEN Process Framework. Procs.
AOIS@CAiSE*04, Faculty of Computer Science and Information, Riga Technical Univer-
sity, Latvia (2004) 370-385

19. Henderson-Sellers, B., Debenham, J.: Towards OPEN methodological support for agent-
oriented systems development. Procs. 1st International Conference on Agent-Based Tech-
nologies and Systems (eds. B.H. far, S. Rochefort and M. Moussavi), University of Cal-
gary, Canada (2003) 14-24.

20. Henderson-Sellers, B.: Creating a comprehensive agent-oriented methodology - using
method engineering and the OPEN metamodel, in Agent-Oriented Methodologies (eds. B.
Henderson-Sellers and P. Giorgini), Idea Group (2005) 368-397.

21. Henderson-Sellers, B., Tran, Q-N.N., Debenham, J., Gonzalez-Perez, C.: Agent-oriented
information systems development using OPEN and the Agent Factory. Information Sys-
tems Development Advances in Theory, Practice and Education, 13th International Con-
ference on Information Systems Development, ISD 2004, Vilnius, Lithuania, September
2004, Proceedings, Kluwer, New York, USA (2050) 149-160.

22. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns – Elements of Reusable
Object-Oriented Software, Addison-Wesley (1994)

23. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopolous, J., Perini, A.: Tropos: an agent-
oriented software development methodology, Autonomous Agents and Multi-Agent Sys-
tems, 8(3) (2004) 203-236.

24. Henderson-Sellers, B., Simons, A.J.H., Younessi, H.: The OPEN Toolbox of Techniques,
Addison-Wesley, UK (1998)

25. Zhang, T.I., Kendall, E., Jiang, H.: An agent-oriented software engineering methodology
with applications of information gather systems for LLC, Procs AOIS-2002, (eds. P. Gior-
gini, Y. Lespérance, G. Wagner and E. Yu), Toronto (2002) 32-46

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 111 – 123, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Foundations of Ontology-Based MAS Methodologies

G. Beydoun1, N. Tran2, G. Low2, and B. Henderson-Sellers3

1 School of Economics and Information Systems, University of Wollongong, Australia
beydoun@uow.edu.au

2 School of Information Management and Technology Management, University of New
South Wales, Australia

{g.low, numitran}@unsw.edu.au
3 Faculty of Information Technology, University of Technology, Australia

brian@it.uts.edu.au

Abstract. Support for software extensibility, interoperability and reuse are
critical concerns for long term commercial viability of any MAS and they un-
derpin the eventual adoption of agent technology by industry. Existing AOSE
methodologies lack adequate support for these concerns. We argue in this paper
that a methodology that uses ontologies as a central modelling artifact, beyond
the analysis phase, is better equipped to address those concerns.

We observe that the influence of ontologies in Knowledge-based Systems
(KBS) methodologies extended well beyond the initial analysis phase, leading
to domain-independent KBS methodologies in the ’90s. We reflect on those
lessons and on the roles of ontologies in KBS development. We analyse and
identify which of those roles can be transferred to an ontology-based MAS de-
velopment methodology. We identify ontology-related inter-dependencies be-
tween the analysis and design phases. We produce a set of recommendations
towards creating a domain-independent MAS methodology that incorporates
ontologies beyond the analysis phase. We identify the essential features and
sketch the characteristic tasks within both the analysis and design phases.

1 Introduction

AOSE researchers have proposed a number of methodologies to support the analysis
and design of MASs e.g. [1-3]. Our research [4] has revealed that existing AOSE
methodologies lack support for software extensibility (extending the functionality and
lifetime of an MAS), software interoperability with other systems in heterogenous
environments and reuse of modelling effort (e.g. as requirements change). This paper
argues that a methodology that is ontology based (that is, it uses ontologies as a cen-
tral model beyond the analysis phase) can better produce reusable MAS designs and
components (beyond the ontologies themselves). In this paper, we discuss the soft-
ware engineering requirements to create such an ontology-based MAS methodology.

This paper describes the first step towards the long term reuse of software engi-
neering knowledge and effort involved in developing MASs. The long term reuse may
take the form of extending functionality of an existing system, reusing components of
an existing system in an entirely different context or to creating a new system using
the design (in whole or parts) of an existing system. This is akin to the type of reuse in
KBS that allowed profiting from knowledge engineering efforts by extending the

112 G. Beydoun et al.

functionality and lifetime of a given system as a whole or in part. This was based on
interoperability between various KBS components and reuse of original designs as
requirements change. We argue that these concerns will need to be addressed at de-
sign time of an MAS and accommodated in agent methodologies. We use as a guide
the roles of ontologies of reuse and domain-independent development in modern
Knowledge-based Systems (KBSs) rooted in the situated view of knowledge (as ad-
vocated for example in [5]). This leads us to highlight the often-overlooked ontology-
related interactions between the analysis and design software development phases for
MASs (with intelligent knowledge-based agents as advocated by the popular BDI
agent model [6]).

Tran et al. (2003) show that ontologies are not used in the design process of MASs
in the more prominent of the Agent-Oriented Methodologies. Using the domain inde-
pendence of KBS methodologies as a guide, we believe that what is required so that
ontologies are effectively accommodated as ready components in MAS architectures
and throughout the design phase is a domain-independent methodological approach
founded on ontological analysis throughout the whole software development lifecy-
cle. This paper proposes using ontologies in both the analysis and design phases. We
analyse the interplay between analysis and design and describe the software engineer-
ing requirements of an ontology-based domain-independent methodology.

This paper is organized as follows: Section 2 presents the background and related
work. In particular, it highlights how ontologies originated in the process of develop-
ing knowledge-based systems to address reuse concern. This section exposes how
these original motives of using ontologies are overlooked in MAS development proc-
esses. Section 3 views a multi-agent system as a distributed collection of knowledge-
based systems and accordingly highlights how ontologies can be accommodated
during and throughout the development of an MAS. Section 4 uses the analysis of
Section 3 to sketch an actual MAS ontology-based methodology to accommodate
reuse of MAS components and software engineering products. Section 5 concludes
with a summary and future work.

2 Background and Related Work

Ontologies are an explicit formal specification of a shared conceptualization [7]. They
have been employed in many computing areas e.g. knowledge management [8], natu-
ral language processing [9], information retrieval and integration [10]. In knowledge-
based systems development, they have been successfully used to enhance reusability
and interoperability and to verify various products of software development e.g. [11].
They have lately become an essential tool in sharing models of dependencies between
webpages, in order to transform WWW into a semantic web [12]. In this paper, we
propose using ontologies as a central software engineering construct throughout the
whole development lifecycle of MAS, and address software interoperability, reusabil-
ity and verification concerns for MAS. We focus on protecting the different facets of
software engineering investments associated with using an MAS, not only through
interoperability of systems and reuse of their components but also through the reuse
of human skills acquired and designs generated during development. This will accel-
erate and spearhead the adoption of MAS technology into the mainstream software
development community.

 Foundations of Ontology-Based MAS Methodologies 113

In reviewing the related work, we take two perspectives: we first focus on the tradi-
tional roles of ontologies in the ’80s and ’90s in enhancing the interoperability and reus-
ability of knowledge-based systems components. We then examine the current role of
ontologies in MAS and note how their traditional roles are essentially downplayed in
current AOSE practices. The contrast between these two perspectives is later used as a
basis to analyse how we can extend the roles of ontologies into MAS development.

2.1 Traditional Roles of Ontologies in Knowledge-Based Systems

In the ’80s and ’90s, developers of Knowledge-based Systems (KBS) were frustrated by
two conflicting goals: the more usable and effective systems were for a given problem,
the harder it was to adapt them to new problems. This became known as the usability-
reusability tradeoff [13]. To address this, the idea of decoupling problem solving
knowledge from domain knowledge was pursued. This idea underlies the use of ontolo-
gies in single agent systems. Reusability of system design is recognized as a key
concern in single agent knowledge-based systems [11, 14] and is the impetus for the
ontology-based architectural view of a KBS as being formed from two components: a
PSM (Problem Solving Method) and a suitable ontology (Fig. 1). This view is central to
many KBS methodologies e.g. [15-18]. It was the impetus for most of the KBS research
in the ’80s and ’90s, with the aim of reducing KBS analysis and design to ontology
engineering coupled with a suitable choice of a PSM from some existing library of
PSMs [19]. Ontologies were used to support the reuse of PSMs in different problem
areas. Alternatively, PSM components permitted reuse of ontologies to address different
problems within the same area. The success of this view is expressed in KBS method-
ologies e.g. [15-18]. Delving further into history of knowledge-based systems, this view
was born out of two decades of research in Artificial Intelligence (AI).

The era of knowledge-based systems and expert systems began in AI as a response
to the failure of general problem solving approaches. Newell [20] suggested the notion
of knowledge level, i.e. the idea of specifying all necessary knowledge that a system
needs at a level that, roughly speaking, corresponds to the level at which humans
communicate their knowledge to their fellows. This idea penetrated much of the work
that followed in the ’80s and ’90s [19, 21, 22]. The idea of the knowledge level itself
received some attention, resulting in developments such as a finer categorization of
knowledge into domain knowledge, problem solving knowledge etc., each type of
knowledge describing different aspects of what a human problem solver or expert may
use. The idea of splitting a problem solving method from its application domain was
born out of investigation of techniques necessary to use the provided knowledge and to
turn it into a working system. In other words, it has been realized that problem solving
generic techniques such as deductive reasoning techniques or forward and backward
chaining suffice to utilize knowledge in order to address all sorts of problems (termed
‘weak problem solving methods’). Rather, specific techniques for different kinds of
problems are necessary in order to build relatively complete and competent systems.
This resulted in collections of problem-solving methods that are used in conjunction
with domain ontologies together with the relevant domain knowledge (see, e.g. [19, 23,
24]). Ontologies provided domain-dependent reusable encapsulation of the structural
basis of domain knowledge. They provide a structured representation of a knowledge
area related to a problem to be solved that can be processed by a computer.

114 G. Beydoun et al.

Fig. 1. KBS architecture based on an ontology and a Problem Solving Method

2.2 Ontologies and AOSE

As discussed above, the reliance on ontologies produced reusable and effective
components for building robust KBS more economically. Moreover, this led to meth-
odologies founded on ontological analysis and that are consequently domain-
independent. Examples include KAMET [18], Ibrow3 [17], KAMET II [25], KADS
[16] and CommonKADS [26]. In contrast, in the current state of the art in MAS Soft-
ware Engineering (usually referred to as Agent Oriented Software Engineering
(AOSE)), agent-oriented methodologies are being published at an increasing rate and
most acknowledge their own suitability for a given class of applications. For example,
Adelfe [27] targets adaptive systems. Passi [28] is limited to a class of communication
architectures. Other notable examples are Gaia [3], Tropos [1] and Prometheus [2].
Few MAS methodologies include ontologies in their models and processes e.g. [29,
30]. The inclusion of ontologies in such works is confined to the analysis phase of the
development. For instance, the authors of Balby [31] distinguish between an initial
ontology and a domain model geared towards designing an MAS and they specify
how a domain model that includes goal and role analyses is developed from an initial
ontology. Similarly, in [30], the MaSE methodology is extended to incorporate the
use of an ontology to mediate the transition between the goal and the task analyses
(both are within the analysis phase). Our work in this paper is perhaps closest to re-
cent work in [32], which recognizes the role of using ontologies for verification of
models during the analysis phase. Outside the analysis phase, ontologies currently are
mainly used to express a common terminology for agent interactions in an MAS e.g.
[33]. These interactions have no parallel within a single agent KBS (since an agent
does not usually need to interact with itself!). We find that the initial motivation for
using ontologies (for single agent systems), that of enhancing reuse (cf. [7]) of system
architectures and components, is absent in AOSE.

In the next section, we examine how assumptions about the way knowledge is used
vary between a single agent KBS and individual agents in an MAS. We use these
differences to formulate ways to enhance the use of ontologies for developing an
MAS. We highlight the changes required by methodological approaches of MAS

 Foundations of Ontology-Based MAS Methodologies 115

development in order to accommodate reuse together with ontology-oriented MAS
analysis and design phases.

3 Ontologies for MAS Development

The idea of using domain ontologies in KBS aims at reusing part of the domain
knowledge in different systems. That is, a domain is characterized by a set of objects
that are referred to by a set of terms that are deemed relevant and that can be used by
different systems to handle different types of tasks. The development of reusable
ontologies creates the problem that a general-purpose ontology is very rich, while for
a particular task only a small part of it will actually be needed. To compensate, KBS
developers carefully choose a suitable problem-solving method and adapt the ontol-
ogy used to a suitable level of refinement. This idea does not have a direct parallel
from single agents to multi-agents. Modern MAS methodologies still do not incorpo-
rate domain-independent ontological analysis in their processes. Viewing a Multi-
Agent System as a ‘distributed knowledge’ based system, we explore in this section
how we can incorporate domain-independent ontological analysis in an MAS meth-
odology by considering differences in the way knowledge is used for an agent system
and for an MAS.

In an MAS, each agent has a localized knowledge base. Agent knowledge bases
may overlap. Shared knowledge is usually of some concern, but certainly each will
have its own private knowledge component. In an MAS, two or more agents interact
or work together to achieve a set of goals. The coordination between agents possess-
ing diverse knowledge and problem-solving capabilities usually permits the achieve-
ment of global goals that cannot be otherwise achieved by a single agent working in
isolation. MASs are thought to be an answer to a number of shortcomings of general
problem-solving methods [5]: incomplete knowledge requirement specification,
incomplete PSM requirement and limited computational resources. MASs are particu-
larly useful in the engineering of open, dynamic and adaptive systems. Associated
with these shortcomings that MASs address, we note the following differences be-
tween agents within an MAS and a single agent KBS: an MAS may have different
PSMs for different agents, some agent ontologies may be incomplete in an MAS,
individual PSMs for agents may be insufficient for their own goals in an MAS, and
agents within an MAS may have limited execution resources. In what follows, we
overview how each of these differences characterize the way agents may interact
within an MAS, noting six additional requirements to support these differences. Later,
in Section 4, we sketch an appropriate ontology-based methodology. In this discus-
sion, we ignore mobility and any additional security requirements that the distributed
and mobile code may impose.

3.1 Heterogeneity of PSMs in an MAS

In the case of multi-agent systems, different problem solvers operate on the same
domain. Using ontologies in an MAS is complicated by having to provide knowledge
requirements to different PSMs at the same time. Whilst individual PSM may operate
at different levels of abstraction of the domain, they still need to share their results

116 G. Beydoun et al.

Fig. 2. As new problems arise, the PSM and the ontology banks are used to construct suitable
KBSs. An ontology from the ontology bank strengthens a given PSM from the PSM bank to
suit the domain.

using a common terminology. PSMs may be complementary and may have different
degrees of strength. How much specificity they exhibit to a given domain may vary.
In the commonly adopted Belief-Desire-Intention (BDI) [34] architecture of agents, a
PSM essentially specifies how plans are generated and discarded and how beliefs are
updated and maintained/shared. In contrast, within a single agent KBS, ontologies
were conceived and used to strengthen a single PSM for a given domain. Their use for
KBS was never intended to simultaneously strengthen different PSMs for the same
domain (see Fig. 2). Therefore, in developing MASs, we may additionally need the
following requirements:

Requirement 1: Ontology mappings are required to allow individual problem solvers
(of individual agents) to interact and to use a common domain conceptualization.

Requirement 2: Verification of individual PSM knowledge requirements against
allocated ontologies is required at design time.

3.2 Incompleteness of Individual Agent Ontologies in an MAS

A domain ontology underlying knowledge requirements of all agents is available.
However, the version available to an individual agent, matching its PSM, is not nec-
essarily complete (as is assumed to be the case for single agent systems). In addition
to 1 and 2, we add:

Requirement 3: Knowledge extensibility is required at the agent level at least to
accommodate any new ontological units added to the system about the domain.
This can often create inconsistencies [35].

 Foundations of Ontology-Based MAS Methodologies 117

Requirement 4: Associated with 3, a structured and understood knowledge repre-
sentation is required to resolve inconsistencies.

3.3 Incompleteness of PSMs in an MAS

An agent PSM is not assumed to be sufficiently powerful to respond to all events it
encounters during its lifetime within an MAS. It usually negotiates cooperation from
other agents. Current practices often assume that functional goal analysis is sufficient to
specify the knowledge requirement for agents [1], and any deficiencies in its later prob-
lem-solving capacity are assumed to be offset by that cooperation. However, in our
view, without consideration of its actual PSM (or other available PSM within the sys-
tem), there is no guarantee that this cooperation would ultimately work. This suggests:

Requirement 5: Iteration between the PSM design and the goal analysis is re-
quired to ensure that the chosen problem solver for a given agent is capable of
meeting its specified goals.

Requirement 6: A consideration of the total PSMs of all agents is required to en-
sure that system goals are achievable.

3.4 Limitation of MAS External Resources

Agents are limited by their resources e.g. computation, storage and response time. It is
often assumed that agents cooperate through sharing of their processing resources.
This requires synchronization. Common agent platforms such as Jade can resolve this.

Towards accommodating the above six ontology-related design considerations
within an existing methodological framework, in the next section we develop the
above analysis into software engineering (SE) requirements to improve current AOSE
practices.

4 Ontologies for MAS Reuse

In this section, we refine the analysis of the previous section to sketch the key features
of an ontology-based methodology. The sketched methodology is motivated by the
original KBS drive for using ontologies (of Section 2) for reuse. Similar to KBS de-
velopment, we assume that the choice of PSM may be made independently of domain
analysis. Moreover, we assume that a domain ontology describing domain concepts
and their relationships is available. Such an ontology may be available from an exist-
ing repository e.g. [36] or a domain analysis may be considered the first stage of de-
veloping the system. The purpose of such a domain analysis would only be to identify
concepts and their relationships. Cordi et al. [37] propose the best ways to undertake
this. Given such a domain ontology and the six SE requirements from the previous
section, we sketch features of the analysis and design phases for an ontology-based
MAS methodology.

The six SE requirements are collated here for convenience:

1. Ontology mappings to integrate problem solvers of individual agent.
2. Verification of PSM knowledge requirements against ontologies at design

time.

118 G. Beydoun et al.

3. Knowledge extensibility is required at the agent level at least, this usually cre-
ating inconsistencies.

4. Structured and understood knowledge representation to resolve inconsistencies.
5. Iteration between lower level design (of the problem solver design) and goal

analysis.
6. A consideration of the total PSMs of all agents.

There is inter-play between the role of reuse and other roles of ontologies in an
MAS. Various reuse roles cannot be smoothly accommodated (e.g. interoperability at
run-time) without careful consideration of run-time temporal requirements. For ex-
ample, an ontology’s role in reasoning at run-time is based on fulfilling PSM knowl-
edge requirements at design time. This requires scoping domain analysis for each
individual agent at design time (towards requirement 2).

Requirement 2 recognizes that the key to ontology-based design of an MAS is the
appropriate allocation of a PSM to individual agents in order to match system re-
quirements. Towards this, we note that goal analysis is the usual way to express re-
quirements e.g. see [1, 3], and we suggest associating PSMs (using PSM libraries) and
system goals in the early stages of an MAS design. The rest of the system can then be
developed with appropriate ontological mappings (Fig. 2).

The collection of all PSMs for local goals should also be verified for completeness
against stated system goals. These goals should also be checked against cooperation
potential. (A form of distributed goal interaction evaluation could be done using ap-
proaches such as [38].) Most current methodologies view the decision of problem-
solving mechanisms as a low level design step. In our current view, paralleling KBS
development, ontology-based design and development requires elevating this to an
early design phase and making it central to a later decision on the communication and
interface requirement of each agent (rather than the other way around as in many
other methodologies e.g. [1, 3]). This elevation of reasoning and iterative verification
with goal analysis is one way to satisfy Requirements 5 and 6 (see Fig. 2).

Chosen problem solving capabilities for different agents in a given MAS do not
necessarily have required degree of domain dependence. Hence, for a PSM chosen for
some agents, the ontology required may need to be adapted. For this, the domain
ontology is again the most convenient reference point. Ontology mapping (between
portions of domain ontology and the local agent’s knowledge) is required to ensure
that all PSMs have their knowledge requirement available to their reasoning format
(adaptors of Fensel [39] may be useful here). Agents need to communicate their re-
sults and instigate cooperation using a common language. For this purpose, we rec-
ommend a global communication ontology (as in [40]), rather than many-to-many
individual mappings between agents. Such a communication ontology is most con-
veniently based on the domain ontology available and depends on the individual on-
tology of each agent. In some cases, an ontology mapping may be required between
PSM ontologies and the communication ontology. The same adaptation between the
reasoning and domain ontology can be used to map the result of reasoning back to a
common communication ontology (based on the domain ontology). Our work so far is
geared towards ‘extendable closed’ systems. In the case of ‘open systems’, introduc-
ing new agents may require at runtime extending the communication ontology or
some local ontologies to allow cooperation with new agents. This is currently beyond

 Foundations of Ontology-Based MAS Methodologies 119

Fig. 3. 1. Ontology-based MAS development: Domain Ontology produces Goal Analysis
2. Goal analysis produces a collection of PSMs (using a PSM bank) 3. Knowledge requirement
analysis (4). can then be used to delineate local ontologies that can be verified against the do-
main ontology (step 5). Finally, in step 6 the communication ontology (language) can then be
derived using appropriate mappings.

our current scope. However, we note that we never assume that local ontologies for
agents are complete from the perspective of the agent (see Section 2). This is a con-
siderable step in the right direction towards implementing completely ‘open systems’.

Towards requirements 3 and 4, hierarchical ontologies are one way to have flexible
domain ontology refinement for agents according to their PSMs, and to accommodate
differences in strength of the PSM of agents. A common hierarchical domain ontol-
ogy can be used as a starting point for verification during development and for multi-
ple access at multiple abstraction levels depending on the individual knowledge
requirement of each agent PSM. For this purpose, Multiple Hierarchical Restricted
Domain (MHRD) ontologies, employed by many authors (e.g. [41]), are well under-
stood and expressive for most domains. MHRD models are sets of inter-related con-
cepts that are defined through a set of attributes, so the presence of axioms between
these attributes is not considered. There can be part-of and taxonomic relations among
the concepts so that attribute (multiple) inheritance is permitted.

120 G. Beydoun et al.

Fig. 3 provides a methodological sketch accommodating the observations of this
section. The MAS development process starts with a domain ontology. This is used to
identify goals and roles. These are used to index an appropriate set of PSMs from a
bank of PSMs (similar to Fig. 2). Appropriate individual ontologies for each PSM are
extracted from the initial ontology. These ontologies are used for reasoning by indi-
vidual problem solvers and may be used to represent results communicated by the
individual problem solver. They are next verified against the knowledge requirement
of chosen PSMs. The collection of these ontologies is then used to develop a common
communication ontology. Appropriate mappings may be needed between individual
local ontologies and the communication ontology, to facilitate communicating results
between individual agents. Verification between problem solvers and the communica-
tion ontology is undertaken, which may result in further localized ontology mappings.

5 Discussion, Conclusion and Future Work

In this paper, we have evaluated the goal of long term reuse of software engineering
knowledge and effort involved in developing MASs. This reuse may take the form of
extending functionality of an existing system, reusing components of an existing
system in an entirely different context or creating a new system using the design (in
whole or part) of an existing system. We have argued that an ontology-founded MAS
methodology can produce reusable MAS components and designs. This issue of reuse
is often overlooked in the MAS software engineering community. Moreover, we have
argued that an ontology-based MAS methodology can truly become a domain-
independent methodology by combining domain-dependent concerns of existing
methodologies.

The current use of ontologies in MAS methodologies is limited to the early analy-
sis phases and, in other cases, to express the communication languages for agents
within the system. Current usage ignores the impact of using ontologies for the late
design phase when components of the system begin to emerge. Taking into account
this impact, we have highlighted several software engineering requirements for ontol-
ogy-based multi-agent systems development. We have drawn from lessons of the
knowledge-based systems (KBS) and engineering communities to use the separation
of problem solving methods and ontology as a basis for reuse. As a conclusion of our
analysis, we have sketched an MAS ontology-based methodology that assumes that
an initial domain ontology is available. This methodology guides the allocation of
individual ontologies and problem solving capabilities to individual agents in the
system. To complete our sketched methodology, domain-dependence of some of its
steps described in Section 4 should be recognized. An example of where this may
occur is during the step producing goal analysis from the initial domain ontology, in
order to index individual agents PSM. In other words, we acknowledge that it is not
wise to assume that all domain dependencies are bundled in the PSM bank. Cordi et
al. [37] explain the best way to undertake such domain-dependent model conversions.
Our sketched methodology also requires the development of appropriate interfaces to
PSM and ontology banks. Such banks already exist e.g. [42].

As for the later phases of our sketched methodology, there are a number of existing
agent-oriented methods with differing concerns and assumptions that can be com-
bined to produce a largely domain-independent unified approach. The result would be

 Foundations of Ontology-Based MAS Methodologies 121

a comprehensive framework that addresses the ontology concerns elucidated here and
combines all domain-dependent techniques. This would produce the equivalent of
PSM banks, but for the MAS software development process itself. We are currently
examining different ways to unify all domain-dependent concerns of existing meth-
odologies and interleave the domain-independent ontological SE guidelines as out-
lined in this paper. Metamodelling based method engineering as we outlined in [43] is
particularly promising as are the very recently published foundational ontological
ideas of [44].

Acknowledgment

The work is supported by the Australian Research Council under Discovery grant
number: DP0451213.

References

1. Giunchiglia, F., Mylopoulos, J., Perini, A.: The Tropos Software Development Methodol-
ogy: Processes, Models and Diagrams, in Agent-Oriented Software Engineering III: Third
International Workshop, AOSE 2002, Giunchiglia, F., Odell, J. and Weiß, G., Editors.
Springer (2003). 162-173.

2. Padgham, L., Lambrix, P.: Agent Capabilities: Extending BDI Theory, in 17th National
Conference on Artificial Intelligence (AAAI-2000). Austin, Texas USA: MIT Press (2000)

3. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design, in Autonomous Agents and Multi-Agent Systems. The Netherlands:
Kluwer Academic Publishers (2000)

4. Tran, Q.N., Low, G.: Comparison of Methodologies, in Agent-Oriented Methodologies,
Henderson-Sellers, B. and Giorgini, P., Editors. Idea Group Publishing: Hershey (2005)
341-367.

5. Russell, S., Norvig, P.: Artificial Intelligence, A modern Approach, the intelligent agent
book, Prentice Hall (2003)

6. Wooldridge, M.: Reasoning About Rational Agents. MIT Press (2000)
7. Gruber, T.R.: A Translation Approach to Portable Ontology Specifications. Knowledge

Acquisition, 5 (1993) 199-220
8. Beydoun, G., Breis, J.T.F., Béjar, R., Hoffmann, A.: Statistical Monitoring of Ontology In-

tegration for Corporate Memory, in Pacific Rim Knowledge Acquisition Conference
(PKAW20002). Japan (2002)

9. Farquhar, A., Fikes, R., Rice, J.: The Ontolingua Server: a tool for collaborative ontology
construction. International Journal of Human-Computer Studies, 46 (1997) 707-727.

10. Mukherjee, R., Dutta, P.S., Sen, S.: Analysis of domain specific ontologies for agent-
oriented information retrieval, in AAAI-2000 Workshop on Agent-Oriented Information
Systems. Austin, Texas (2000)

11. Uschold, M., Grueninger, M.: Ontologies: Principles, Methods and Application. Knowl-
edge Engineering Review, 11(2) (1996) 93-195

12. Davies, J., Fensel, D., Harmelen, F.V., eds.: Towards The Semantic Web: Ontology-driven
Knowledge Management. Wiley: London (2003)

13. Fensel, D.: The tower-of-adaptor method for developing and reusing problem-solving
methods, in European Knowledge Acquisition Workshop. Spain: Springer-Verlag (1997)

122 G. Beydoun et al.

14. Chandrasekaran, B., Johnson, T., Smith, J.: Task Structure Analysis for Knowledge Mod-
elling. Communications of ACM, 35(9) (1992) 124-137

15. Shreiber, G., Akkermans, H., Anjewierden, A., Hoog, R., Shadbolt, N., de Velde, W.V.,
Wielinga, B.: Knowledge Engineering And Management: The CommonKADS Methodol-
ogy. London: The MIT Press (2001)

16. Wielinga, B., Schreiber, G., Breuker, J.: KADS: a modelling approach to knowledge engi-
neering. Knowledge Acquisition, 4 (1992) 5-53.

17. Benjamins, R., Plaza, E., Motta, E., Fensel, D., Studer, R., Wielinga, B., Schreiber, G.,
Zdrahal, Z.: IBROW3 - An Intelligent Brokering Service for Knowledge-Component Re-
use on the World Wide Web, in Banff Knowledge Acquisition Workshop (KAW98). Can-
ada. (1998)

18. Cairo, O.: The KAMET Methodology: Content, Usage and Knowledge Modeling, in 11th
Banff Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW98). Canada:
SRDG publications (1998)

19. Benjamins, R.: Problem solving methods for diagnosis and their role in knowledge acqui-
sition. International Journal of Expert Systems: Research and Applications, 2(8) (1995)
93-120.

20. Newell, A.: The knowledge level. Artificial Intelligence, 18 (1982) 87-127
21. Chandrasekaran, B.: Generic tasks in knowledge-based reasoning: High level building

blocks for expert system design. IEEE Expert, 3(1) (1986) 23-30
22. Chandrasekaran, B.: What kind of information processing is intelligence? A perspective on

AI Paradigms, and a Proposal., in Foundations of AI: A Sourcebook., Partridge, D., and
Wilks, Y., Editors. Cambridge University Press (1988)

23. Puppe, F.: Systematic Introduction to Expert Systems: Knowledge Representation and
Problem-Solving Methods. Berlin: Springer-Verlag (1993)

24. Motta, E.: Parametric design problem solving, in 10th Banff Knowledge Acquisition for
Knowledge Based System Workshop. Canada)1006_

25. Cairo, O., Alvarez, J.C.: The KAMET II Approach for Knowledge-Based System Con-
struction, in 8th International Conference on Knowledge-Based Intelligent Information
and Engineering Systems (KES 2004). New Zealand: Springer (2004).

26. Schreiber, G., Wielinga, B., Akkermans, J., de Velde, W.V., Hoog, R.: CommonKADS: A
comprehensive methodology for KBS. IEEE Expert, 9(6) (1994) 28-37

27. Bernon, C., Gleizes, M.-P., Peyruqueou, S., Picard, G.: ADELFE, a Methodology for
Adaptive Multi-Agent Systems Engineering, in Engineering Societies in the Agents World.
Spain (2002)

28. Cossentino, M., Potts, C.: A CASE tool supported methodology for the design of multi-
agent systems, in International Conference on Software Engineering Research and Prac-
tice (SERP'02). Las Vegas (NV), USA (2002)

29. Girardi, R., Serra, I.: Using ontologies for the specification of domain-specific languages
in multi-agent domain engineering, in CAiSE Workshops (2) 2004. (2004)

30. Dileo, J., Jacobs, T., Deloach, S.: Integrating Ontologies into Multi-Agent Systems Engi-
neering, in 4th International Bi-Conference Workshop on Agent Oriented Information Sys-
tems (AOIS2002). Italy (2002)

31. Girardi, R., de Faria, C.G., Balby, L.: Ontology-based Domain Modeling of Multi-Agent
Systems, in OOPLSA Workshop (2004)

32. Brandao, A.A.F., de Silva, V.T., de Lucena, C.J.P.: Ontologies as Specification for the
Verification of Multi-Agent Systems Design, in Object Oriented Programmings, Systems,
Languages and Applications Workshop (2004). California (2004)

 Foundations of Ontology-Based MAS Methodologies 123

33. Esteva, M.: Electronic Institutions: From Specification To Development, in Artificial Intel-
ligence Research Insitute. UAB - Universitat Autonòma de Barcelona: Barcelona (2003)

34. Padgham, L., Winikoff, M.: Prometheus: A Methodology for Developing Intelligent
Agents, in Agent-Oriented Software Engineering III: Third International Workshop (AOSE
2002, Italy), Giunchiglia, F., Odell, J., and Weib, G., Editors. Springer (2002) 174-185

35. Beydoun, G., Hoffmann, A., Breis, J.T.F., Martinez-Béjar, R., Valencia-Garcia, R., Au-
rum, A.: Cooperative Modeling Evaluated. International Journal of Cooperative Informa-
tion Systems, World Scientific, 14(1) (2005) 45-71

36. DARPA: Ontology Repository. http://www.daml.org/ontologies/ (2000)
37. Cordi, V., Mascardi, V., Martelli, M., Sterling, L.: Developing an Ontology for the Re-

trieval of XML Documents: A Comparative Evaluation of Existing Methodologies, in
AOIS2004 @CaiSE04. (2004)

38. van Lamsweerde, A., Darimont, R., Letier, E.: Managing Conflict in Goal-Driven Re-
quirements Engineering. IEEE Transaction on Software Engineering, 24(11) (1998)

39. Fensel, D.: Using Ontologies for Defining Tasks, Problem-Solving Methods and Their
Mappings, in European Knowledge Acquisition Workshop. Spain: Springer-Verlag (1997).

40. Esteva, M., de Cruz, D., Sierra, C.: ISLANDER: an electronic institutions editor, in Inter-
national Conference on Autonomous Agents & Multiagent Systems (AAMAS02). Italy:
ACM (2002)

41. Eschenbach, C., Heydrich, W.: Classical mereology and restricted domains. International
Journal of Human-Computer Studies, 43 (1995)723-740

42. Fensel, D., Benjamins, V.R., Motta, E., Wielinga, B.: UPML: A framework for knowledge
system reuse, in Sixteenth International Joint Conference on Artificial Intelligence
(IJCAI99). Sweden: Morgan Kaufmann Publishers (1999)

43. Beydoun, G., Gonzales-Perez, C., Low, G., Henderson-Sellers, B.: Synthesis of a Generic
MAS Metamodel, in International Conference on Software Engineering (ICSE05) Work-
shops (SELMAS2005). ACM Digital Library (2005)

44. Guizzardi, G., Wagner, G.: On the ontological foundations of agent concepts, in Agent-
Oriented Information Systems II, Bresciani, P., Giorgini, P., Henderson-Sellers, B., Low,
G. and Winikoff, M., Editors. Springer (2005) 113-128

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 124 – 139, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Ontology-Driven Technique for the Architectural
and Detailed Design of Multi-agent Frameworks

Rosario Girardi and Alisson Neres Lindoso

Federal University of Maranhão, Portugueses Av., Campus do Bacanga,
65.080-480, São Luiz-MA, Brazil

rgirardi@deinf.ufma.br, alissonlindoso@uol.com.br

Abstract. Multi-agent Domain Engineering is a process for the construction of
domain-specific agent-oriented reusable software artifacts, like domain models,
representing the requirements of a family of multi-agent systems and frame-
works, implementing an agent-oriented solution to those requirements. This
work describes DDEMAS, an ontology-driven technique for the architectural
and detailed design of multi-agent frameworks providing a solution to the re-
quirements of a family of multi-agent software systems specified in a domain
model. DDEMAS is part of MADEM, a methodology for domain analysis, de-
sign and implementation of a family of multi-agent systems in a domain. Do-
main models and multi-agent frameworks are part of a knowledge base
constructed through the instantiation of ONTOMADEM, an ontology that
represents the knowledge of MADEM. Some examples from a case study on the
application of DDEMAS on the construction of a multi-agent framework model
for the development of usage mining-based Web recommender systems are also
described.

1 Introduction

Considerable advances on the systematization of the agent-oriented development
paradigm have been achieved and several techniques, methodologies and software
development environments are already available for the development of multi-agent
applications [1-8]. Some methodologies promote the reuse of software patterns [3],
although little work has been done on the development of techniques and
methodologies for the construction of high-level reusable software abstractions in this
development paradigm.

Domain Engineering and Application Engineering [9-10] are two complementary
software processes. Domain Engineering, also known as Development for Reuse, is a
process for creating software abstractions reusable on the development of a family of
software systems in a domain, and Application Engineering or Development with
Reuse, for constructing a specific application using reusable software abstractions
available in the target domain(s). A family of systems is defined as a set of existing
software systems sharing some commonalities but also particular features [9].

The process for Domain Engineering is composed of the phases of analysis, design
and implementation of a domain. Domain analysis activities identify reuse oppor-
tunities and determine the common and variable requirements of a family of
applications. The product of this phase is a domain model. Domain design activities

 An Ontology-Driven Technique for the Architectural and Detailed Design 125

look for a documented solution to the problem specified in a domain model. The
product of this phase is composed of one or more frameworks and, possibly, a
collection of design patterns, documenting good solutions in that domain. Reusable
components integrating the framework are constructed during the phase of domain
implementation. This is the compositional approach of Domain Engineering. In a
generative approach, Domain Engineering produces Domain Specific Languages
(DSLs) and application generators to construct a family of applications in a domain.
Knowledge of the domain and design patterns are encoded in DSLs [9, 11].

Ontologies [12] are knowledge representation structures particularly useful for the
specification of high-level reusable software abstractions, providing an unambiguous
terminology that can be shared by all involved in a development process. Ontologies
can also be as generic as needed allowing its reuse and easy extension.

A collection of ontology-based reusable software abstractions is being developed
in the context of a Multi-Agent Domain and Application Engineering research project
[11, 13, 14]. The multi-agent paradigm has been adopted because of its effectiveness
to approach software complexity.

This work describes the DDEMAS technique for the architectural and detailed do-
main design of multi-agent systems. The technique is part of MADEM (“Multi-Agent
Domain Engineering Methodology”), an ontology-based methodology that provides
support for all the phases of the Multi-agent Domain Engineering process. MADEM
also integrates GRAMO [14], a technique for domain analysis of multi-agent systems.
Previous work on the DDEMAS technique has been already published [15]. MADEM
is supported by ONTOMADEM, an ontology-driven tool in which MADEM products
are represented as instances of an ontology that conceptualizes the methodology.

The paper is organized as follows. Section 2 summarizes the modelling phases and
respective tasks of MADEM. Section 3 details the architectural and detailed design
phases of DDEMAS. Section 4 discusses related work on this research topic. Section
5 concludes the paper with some remarks on further work being conducted.

2 An Overview of the MADEM Methodology

Modelling concepts, tasks and products of MADEM are based on techniques for
Domain Engineering [9], development of multi-agent systems [1-7] and software
pattern specification and reuse [16-17].

For the specification of the problem domain to be solved, MADEM focusses on
modelling goals, roles, activities and interactions of entities of an organization.
Entities have knowledge and use it to exhibit autonomous behaviour.

An organization is composed of entities with general and specific goals that
establish what the organization intends to reach. The achievement of specific goals
permits the attainment of the general goal of the organization. For instance, an
information system can have the general goal “satisfying the information needs of an
organization” and the specific goals of “satisfying dynamic or long term information
needs”. Specific goals are reached through the performance of responsibilities that
entities have by playing roles with a certain degree of autonomy.

Responsibilities are exercised through the execution of activities. The set of
activities associated with a responsibility are a functional decomposition of it.

126 R. Girardi and A.N. Lindoso

Roles have skills on one or a set of techniques that support the execution of
responsibilities and activities in an effective way. Pre-conditions and post-conditions
may need to be satisfied for/after the execution of an activity. Knowledge can be
consumed and produced through the execution of an activity. For instance, an entity
can play the role of “information retriever” with the responsibility of executing
activities to satisfy the dynamic information needs of an organization. Another entity
can play the role of “information filter” with the responsibility of executing activities
to satisfy the long-term information needs of the organization. Skills can be, for
instance, the rules of the organization that entities know to access and structure its
information sources.

Sometimes, entities have to communicate with other internal or external entities to
cooperate in the execution of an activity. For instance, the entity playing the role of
“information filter” may need to interact with a user (external entity) to observe
his/her behaviour in order to infer his/her profile of information interests.

For the specification of a design solution, responsibilities of roles are assigned to
agents structured and organized into a particular multi-agent architectural solution
according to non-functional requirements.

Fig. 1 illustrates the phases of the MADEM methodology in the context of a Multi-
agent Domain Engineering process, and Table 1 summarizes their modelling phases,
respective tasks and modelling products. The framed concepts of Fig. 1 illustrate the
phases and reusable products generated through the application of the DDEMAS
technique of MADEM.

Domain Analysis supported by the GRAMO technique approaches the
specification of current and future requirements of a family of applications in a
domain by considering domain knowledge and development experiences extracted
from domain specialists and applications already developed in the domain. Existing
analysis patterns can also be reused in this modelling task.

Domain Analysis is performed through the following modelling tasks: Concept
Modelling, Goal Modelling, Role Modelling, Variability Modelling and Role
Interaction Modelling (Table 1). In this phase, a Domain Model is obtained through
the composition of:

• a Concept Model, representing a first draft of concepts in the problem domain and
relationships between them;

• a Goal Model, specifying the general and specific goals of the system family
along with the responsibilities required to achieve the goals;

• a Role Model, specifying the roles in charge of responsibilities; activities that
need to be executed to exercise a responsibility; skills required for exercising a
responsibility, pre- and post-conditions that must be satisfied before and after the
execution of an activity; and, finally, the knowledge required/produced for/from
the execution of the activities.

• a set of Role Interaction Models specifying the interactions between roles and
external entities needed to achieve a specific goal.

The Goal and Role Models provide a static view of the organization; the set of
Interactions Models, a dynamic one.

 An Ontology-Driven Technique for the Architectural and Detailed Design 127

Fig. 1. MADEM methodology in the context of the Multi-agent Domain Engineering process

Table 1. Modelling phases, tasks and products of the MADEM methodology

Phases Tasks Products

Modelling of domain concepts Concept Model

Goal Modelling Goal Model Variability

Modelling Role Modelling Role Model D
om

ai
n

A
na

ly
si

s

Modelling of Role Interactions Role Interaction Models

D
om

ai
n

M
od

el

Agent Society
Modelling

Multi-agent Society Model

Agent Interaction
Modelling

Agent Interaction Model
Architectural

Modelling Cooperation
and

Coordination
Modelling

Coordination and Cooperation
Model

A
rc

hi
te

ct
ur

al

M
od

el

Modelling the Knowledge of the
 Multi-agent Society

Model of the Multi-agent Society
Knowledge

Agent Knowledge and Activity
Models

D

om
ai

n
 D

es
ig

n

Agent Modelling
Agent State Models A

ge
nt

M

od
el

s

M
od

el
 o

f
th

e
m

ul
ti

-a
ge

nt
 f

ra
m

ew
or

k

Mapping from design to
implementation agents and behaviours

Model of agents and behaviours

D
om

ai
n

Ip

le
m

en
ta

tio
n

Mapping from agent interactions to
communication acts

Model of communication acts

Im
pl

em
en

ta
tio

n
M

od
el

 o
f

th
e

M
ul

ti-
ag

en
t

So
ci

et
y

Pattern extraction and representation Software Patterns and Pattern Systems

128 R. Girardi and A.N. Lindoso

Domain design supported by the DDEMAS technique targets the architectural and
detailed design of multi-agent frameworks providing a solution to the requirements of
a family of multi-agent software systems specified in a domain model. The DDEMAS
technique is the main topic of this paper (described in Section 3).

Domain implementation supported by the DIMAS technique approaches the
mapping of design models to agents, behaviours and communication acts [23],
concepts involved in the JADE framework [19], which is the adopted implementation
platform. An Implementation Model of the Multi-agent Society is constructed as a
product of this phase of MADEM, composed of a Model of agents and behaviours
and a Model of communication acts.

In the Pattern extraction and representation phase, MADEM provides guidelines
for the extraction of patterns and systems of patterns from available software
applications and considering successful development experiences.

3 The DDEMAS Technique

The DDEMAS technique approaches the architectural and detailed domain design of
multi-agent systems guiding a set of modelling tasks for the construction of a
framework model of the multi-agent society.

The technique consists of three sub-phases:

• Architectural modelling, for the construction of the architecture of a family of
multi-agent systems.

• Modelling of the knowledge of the multi-agent society, for representing the
meaning of concepts which agents in the society need to understand in order to
communicate with each others.

• Agent modelling, for the construction of the internal architecture of each agent in
the society.

The following sub-sections detail the tasks performed in each sub-phase of
DDEMAS illustrated with examples extracted from a case study on the development
of ONTOWUM, a family of multi-agent Web recommender systems based on usage
mining and collaborative filtering [20].

3.1 Architectural Modelling

The purpose of the Architectural modelling task is to develop an architectural model
representing an agent-oriented architectural solution to the problem specified in a
domain model. This architectural model is composed of three sub-products: a Multi-
agent society model, an Agent Interaction model and a Coordination and Cooperation
model developed, respectively, through the tasks Agent Society Modelling, Modelling
the interactions of the multi-agent society and Modelling of Cooperation and
Coordination, described as follows.

Agent Society Modelling. The purpose of this subtask is to identify and represent the
agents that will populate the multi-agent society and represent them in a Multi-Agent
Society Model. The agents are identified from the roles specified in the Role Model
and Role Interaction Models of the Domain Model. Initially, each "role" maps to one

 An Ontology-Driven Technique for the Architectural and Detailed Design 129

"agent". Agent variability is derived from role variability. Responsibilities, activities,
knowledge, conditions and skills required for performing the role are also mapped to
the corresponding agent. Then, design rules like functional cohesion may be applied
and non-functional requirements must be considered (e.g. performance). Roles in
charge of similar responsibilities, roles exhibiting a high number of interactions
between them or roles interacting with the same external entity are candidates for
fusion into one agent. In this case, the agent will perform more than one role.

The Multi-Agent Society Model is represented graphically in a three level
organizational chart. Agents and skills are represented in the first and third level,
respectively; the other concepts of modelling in the second one. Fig. 2 shows part of
the Multi-agent Society Model of the ONTOWUM multi-agent framework model
showing the Interface and User Modeller agents.

In the Role Modelling task of the Domain Analysis phase [16], the User Monitor,
User Modeller, Acquirer, Miner, Classifier, Customizer and Interface roles were
identified with, respectively, the following responsibilities:

• User Monitoring for the extraction of the user browsing information on a Web
page from the interactions of a user with a Web page;

• Modelling of current user for the creation and updating of a model of the current
user, a formal representation of the user browsing information on a Web page.

• Usage data maintenance for the creation and update of a repository of usage
data, from the model of the current user;

• Discovery of usage patterns for the identification and representation of groups of
users with similar browsing behaviour;

• Classification of current user for the classification of the model of current user in
a model of groups of users discovered by the Miner role thus determining the
groups of users to which the current user belongs;

• Construction of adaptation model for the creation and update of an adaptation
model specifying the adaptation rules to be applied on the interface of a current
user according to the groups of users to which the current user belongs;

• Adaptation of the Web Interface for the creation and update of a customized user
interface according to the adaptation model.

According to the rules of the Agent Society Modelling task explained above, roles
are mapped to agents and some of them are fused into one agent. An Interface agent
will play the roles of User Monitor and User Interface since both roles interact with
the User external entity [16].

The Interface agent. When a new user is connected, a new Interface agent is created
which performs the User Monitoring responsibility for the extraction of the user
browsing information on a Web page, containing information like the URL of a
visited page and the time spent on that page from the interactions of a user with a
Web page. Among the alternative skills specified in the domain model of
ONTOWUM [16] for user monitoring, the approach of Shahabi et al. [22] for client
side data acquisition through Java applet remote-agents was chosen.

When an adaptation model is available, the Interface agent performs the
Adaptation of the Web Interface responsibility for the creation and update of a
customized user interface according to the adaptation model. The customization is

130 R. Girardi and A.N. Lindoso

based on a set of recommended links, which are displayed in a frame of the Web
page. As soon as there are new recommendations, the frame becomes visible showing
the current recommendations to the user.

Fig. 2. Part of the Multi-agent Society Model of the ONTOWUM multi-agent framework model
showing the Interface and User Modeller agents

The User Modeller agent. For each new user connected to the system, a User
modelling agent is created. When the pre-condition User browsing information on a
Web page collected is satisfied, the User Modeller agent performs the Modelling of
current user responsibility which involves the creation and updating of a model of the
current user with the user browsing information on a Web page, captured by the
Interface agent. Among the alternative skills specified in the domain model of
ONTOWUM [16], the Feature Matrix model [22] was used as the technique to
formally represent the user models of the system where features are the visited URLs
and time of page view.

Modelling the interactions of the multi-agent society. The purpose of this subtask
is to identify the interactions between agents needed to accomplish their
responsibilities. For that, initially, the interactions between roles in the Role
Interaction Models of the Domain Model are refined according to the agents specified
in the Multi-agent Society Model. Through an analysis of the agent responsibilities
and activities along with their required and produced knowledge, the interactions
between agents and between agents and external entities are identified and
represented in an Agent Interaction Model whose graphical representation and
semantics are similar to the interaction diagram of AUML [5]. Agent interactions are
represented using the performatives of FIPA-ACL [23]. The events provoked by
actions of external entities and perceived by agents are also represented in this
diagram.

 An Ontology-Driven Technique for the Architectural and Detailed Design 131

Fig. 3 shows the Agent Interaction Model of the ONTOWUM multi-agent
framework model. When a new user is connected, a new Interface agent and a new
User Modeller agent are created to act on behalf of this user. By performing the User
monitoring responsibility, the Interface agent captures the URL and the time spent
visiting a Web page and informs this browsing behaviour to the User Modeller agent.
The Interface agent communicates with the User Modeller agent each time a user
loads a new page on the same site. The User Modeller agent then creates a model of
the current user, if it is the first page visited on the site or updates it with the new
pages visited. Then, it informs the Miner agent about the new model of the current
user. When the system is initialized, a Miner and an Acquirer agent are created.

When the current user leaves the site or closes the browser, the User Modelling
agent is notified by the Interface agent and then it informs the Acquirer agent of the
model of the current user. The Acquirer agent will use this model to create a
repository of usage data, if this is the first user that has connected to the system, or
update it, otherwise.

Fig. 3. The Agent Interaction Model of the ONTOWUM multi-agent framework model

Once the Miner agent has classified the current user in one of the groups of users
previously discovered, it informs the User Modeller agent about this group. Then, the
User Modeller agent will construct an adaptation model with the rules associated
with that group and will inform this model to the Interface agent, which will perform
the customization of the user interface.

The repository of usage data maintained by the Acquirer agent is periodically
consulted by the Miner agent for the identification and representation of groups of
users with similar browsing behaviour.

132 R. Girardi and A.N. Lindoso

Modelling of Cooperation and Coordination. From the first drafts of the Multi-
agent Society Model and Agent Interaction Models, and considering available
architectural patterns [17] and/or appropriate mechanisms of cooperation and
coordination [24-25], the agent society is organized in a Cooperation and
Coordination Model.

For the identification of an architectural pattern, the descriptions of general and
specific goals in a Goal Model of a Domain Model produced in the domain analysis
phase of the MADEM methodology are matched with the problem attribute in a
pattern description or the description attribute in a pattern system. A Goal model
specifies the problems and sub-problems that an MAS is intended to solve (Table 1).

Obviously, selected patterns must have a context description related to the
architectural design of multi-agent systems. If a total or partial match is obtained, the
solution described in the pattern is considered for the execution of the other tasks of
architectural design.

Through this reorganization, two or more agents can fuse or one agent can be
divided in two or more agents. These changes are represented in a new Agent Society
Model and new Agent Interaction Models.

Fig. 4 shows the Coordination and Cooperation Model of the ONTOWUM
architectural model, where a two-layer architecture and the solution suggested by the
WUMA_MAS architectural pattern [17] is adopted to organize the agents that
populate the framework ONTOMUW. The model follows the architectural design of a
multi-agent layer pattern [17]. The architectural organization of multi-agent systems
in layers contributes to the understanding, reuse and maintenance of the systems. The
alteration of a layer affects at most two other layers, because a layer communicates, at
least, with a layer and, at most, with two. The reuse of layers is promoted because
similar responsibilities are grouped in a layer.

The solution (Fig. 4) involves the definition of a criterion for the division of the
responsibilities between agents distributed in layers, according to the Multi-agent
Layer pattern [17]: a Discovery of user navigational patterns layer, responsible for
discovering groups of users with similar navigational behaviour, which provides
services to a User information processing layer in order to offer customized services
to the end user.

A group of agents is associated to each layer. Each layer is structured as follows.

User information processing layer. In this layer, one interface agent and one user
modelling agent are associated with each user. These agents are structured according
to the WUMA - Interface and WUMA - UserM patterns [17], respectively, supporting
the following responsibilities:

• Constructing and displaying a personalized interface;
• Capturing implicitly the user profile.
• Creating and updating a user model representing the user profile.

Discovery of user navigational patterns layer. This layer is composed of one acquirer
and one miner agent structured according to the WUMA - Acquirer and WUMA -
Miner patterns, respectively, supporting the following responsibilities:

• Recording and updating a usage data repository.
• Discovering groups of users with similar navigation behaviour and identifying to

which group a current user belongs.

 An Ontology-Driven Technique for the Architectural and Detailed Design 133

Fig. 4. Coordination and Cooperation Model of the ONTOWUM architectural model based on
a multi-agent layer pattern

Modelling the Knowledge of the Multi-agent Society. The purpose of this task is to
represent the meaning of concepts that agents of the society need to understand in
order to communicate with each other. This is done through the construction of a
model of the multi-agent society knowledge, represented in a semantic network. For
that, the techniques specified as skills for the execution of agent activities in the Agent
Society Model (e.g. Fig. 2) are analysed and a basic vocabulary is defined for each
skill. When an Agent Society Model is constructed in ONTOMADEM, the skills
represented in the model are instantiated with a detail description and related
literature on the corresponding techniques. The analysis of the techniques to be
represented in the Knowledge Model of the Multi-agent Society is then based on these
descriptions and related literature.

Each term in the vocabulary is represented as a node in the semantic network. The
relationships between the different concepts in the vocabulary are also defined and
represented as links in the semantic network. Note that variable skills (alternative or
optional) produce alternative semantic networks.

Fig. 5 shows an example of a Multi-agent Society Knowledge Model, which is part
of the framework ONTOMUW [20] and specifies the semantics of concepts involved
in a Web usage mining process. For the discovery of groups of similar users over
unlabelled usage data, a clustering technique is used [22]. For that, it is necessary to
match each individual user model with each other in order to construct groups with
the most similar users. For the construction of the individual user models to be further
matched, the Feature Matrix model [22] is used. Note that these concepts are captured
through an analysis of the Feature Matrix model specified as a resource of the User
Modeller and Miner agents of the Agent Society Model of the domain model of
ONTOWUM [16].

134 R. Girardi and A.N. Lindoso

Fig. 5. Multi-agent Society Knowledge Model of the ONTOWUM framework model

3.2 Agent Modelling

The purpose of this sub-phase is to perform the detailed design of each agent in the
framework, resulting in a set of agent models, each composed of an Agent State
Model and a set of Agent Knowledge and Activity Models.

For each agent represented in the Multi-agent Society Model, an Agent Model is
constructed. First, design patterns describing solutions for the detailed design of the
agent are identified [16-17, 26-27], in a similar way as illustrated in Fig. 4 for
architectural design. When patterns that apply to the design of the internal architecture
of an agent are identified, the problem and forces in the selected patterns are then
matched with the description of the responsibilities of the agent as specified in the
Multi-agent Society Model. After the selection of a pattern, the agents are structured
according to the solution proposed by the pattern.

If there are no reusable design patterns available for the design of an agent, a
specific solution must be constructed. In this case, the type of agent (reactive or
deliberative) is selected, establishing the mechanisms for mapping perceptions to
agent actions [28] by considering non functional requirements (e.g. performance).

Next, from the specifications in the Multi-agent Society Model, Agent Interaction
Model and Cooperation and Coordination Model, the possible states and state transitions
of this agent are identified and represented in an Agent State Model. The graphical
notation of the Agent State Model is similar to the corresponding diagram of AUML [5].

Then, for each responsibility to be exercised by the agent specified in the Multi-
agent Society Model and for a particular set of techniques selected to perform it, a
Knowledge and Activity Model is constructed based initially on the activities,

 An Ontology-Driven Technique for the Architectural and Detailed Design 135

conditions and knowledge of that agent represented in the Multi-agent Society Model,
refined according to the particular techniques being applied.

Fig. 6 shows the example of the Model of the Miner Agent of the ONTOWUM
framework model. The WUMA-Miner detailed design pattern [17] has been identified
and has been applied in the design of the agent.

Fig. 6. Model of the Miner Agent of the ONTOWUM multi-agent framework

A reactive structure has been chosen according to the pattern guidelines and an
Agent Model has been constructed composed of an Agent State Model and two Agent
Knowledge and Activity Models, corresponding to the Discovery of usage patterns
and Classification of current user responsibilities.

Fig. 7 shows the State chart diagram representing the internal behaviour of the
Miner agent. After the system is initiated, the agent is created. As soon as the agent is
created it enters the Waiting schedule expiration state. Since there is probably no
usage data to be mined when the system is first started, the agent waits for a certain
period of time in order to start the execution of the mining process.

The mining process executes periodically according to a schedule defined by the
developer. After this schedule has expired, the agent enters the Creating group
models state. Once in this state, the agent performs the extraction of user models of
past users from the usage file and creates the groups, through a dynamic clustering
algorithm. Once the groups are available, the agent waits for a classification requests
from the user modelling agents (Waiting user modelling agent request state).

Once a request arrives from a user modelling agent, the miner agent enters the
Classifying current user state and performs the real time classification of the current
user through dynamic clustering. Note that the schedule for the mining process can
expire at any time; whenever this happens the agent reinitiates the mining process.

Fig. 8 shows the Agent Knowledge and Activity Model of the Miner Agent
corresponding to the responsibility Discovery of Usage patterns. Once a determined
schedule has expired, the Miner Agent requires the Repository of Usage Data from
the Acquirer Agent, extracts from it the models of users and represents them using the
Feature Matrix Modelling technique [22]. Clustering techniques are then applied for
mining user models and group them in models of groups of user with similar
navigational behaviour.

136 R. Girardi and A.N. Lindoso

Fig. 7. Agent State Model of the Miner Agent of the ONTOWUM framework

Fig. 8. Agent Knowledge and Activity Model of the Miner Agent corresponding to the
responsibility Discovery of Usage patterns

 An Ontology-Driven Technique for the Architectural and Detailed Design 137

4 Related Work

Several techniques for Domain Engineering [9-10] and development of multi-agent
systems [3-7, 29] were analysed and have influenced in different aspects the
definition of the DDEMAS technique.

Two main features distinguish DDEMAS from other existing approaches. First, it
provides support for the construction of reusable agent-oriented software artifacts, and
second, it is a knowledge-based technique where models of agents and frameworks
are represented as instances of the ONTOMADEM ontology. Thus, concepts are
semantically related allowing effective searches and inferences thus facilitating the
understanding and reuse of the models during the development of specific
applications in a domain.

On the other hand, some prototypes of knowledge-based tools and environments
[30] have been already developed to increase the productivity of the software
development process, the reusability of generated products and the effectiveness of
project management. One main characteristic distinguishing MADEM from these
approaches is its reuse support for agent-oriented software development.

5 Concluding Remarks

This work has introduced DDEMAS, an ontology-based technique for Domain
Design in Multi-agent Domain Engineering. The technique approaches the
construction of frameworks to be reused on the development of multi-agent software
applications.

Frameworks are embedded in a knowledge base and created through the
instantiation of the hierarchy of classes of ONTOMADEM, an ontology that
represents the knowledge of MADEM. This is a methodology that integrates
DDEMAS to GRAMO and DIMAS, techniques for Domain Analysis and
Implementation of Multi-agent Domain Engineering.

Using MADEM, a case study has been developed where a domain model and a
multi-agent framework of a family of multi-agent Web recommender applications
based on usage mining have been constructed [16, 20]. From this experience, a
system of architectural and design patterns for that problem-solving area has been
extracted [17] and classified in the ONTOPATTERN ontology [31]. ONTO-
PATTERN collects general and specific problem solving patterns for agent-oriented
software development. These models and patterns can be reused in the development
of recommendation systems for the legal domain according to the techniques for
Multi-Agent Application Engineering we are currently developing [32].

Acknowledgments

This work has been supported by CNPq, an institution of the Brazilian Government
for scientific and technologic development.

138 R. Girardi and A.N. Lindoso

References

1. Bresciani, P. et al.: TROPOS: An Agent-Oriented Software Development Methodology.
Journal of Autonomous Agents and Multi-Agent Systems, Kluwer Academic Publishers
Vol. 8, N. 3 (2004) 203 – 236.

2. Caire, G. et al.: Agent-Oriented Analysis using MESSAGE/UML. In: Lecture Notes in
Computer Science, Vol. 2222. Springer-Verlag, Berlin Heidelberg New York (2002)
119-135.

3. Cossentino, M. et al.: Patterns reuse in the PASSI methodology. In: Lecture Notes in
Computer Science, Vol. 3071. Springer-Verlag, Berlin Heidelberg New York (2004)
294-310.

4. Dileo, J., Jacobs, T. and Deloach, S.: Integrating Ontologies into Multi-Agent Systems En-
gineering. In: Proceedings of 4th International Bi-Conference Workshop on Agent Ori-
ented Information Systems, CEUR, Vol, 59 (2002) 15-16.

5. Odell, J., Parunak, H.V.D. and Bauer, B.: Representing Agent Interaction Protocols in
UML. In: In: Lecture Notes in Computer Science, Vol. 1957. Berlin Heidelberg: Springer-
Verlag (2000) 3-17.

6. Omicini, A.: SODA Societies and Infrastructures in the Analysis and Design of Agent-
based Systems. In: Lecture Notes in Computer Science, Vol. 1957. Berlin Heidelberg:
Springer-Verlag (2001) 185-194.

7. Wooldridge, M., Jennings, N. and Kinny, D.: The Gaia Methodology for Agent-Oriented
Analysis and Design. In: International Journal of Autonomous Agents and Multi-Agent
Systems, Kluwer, Vol. 3 (2000) 285-312.

8. Zambonelli, F. and Omicini, A.: Challenges and Research Directions in Agent-Oriented
Software Engineering. Autonomous Agents and Multi-Agent Systems, Vol. 9, N. 3 (2004)
253 – 283.

9. Czarnecki, K., Eisenecker, U. W.: Generative Programming: Methods, Tools, and Applica-
tions. ACM Press/Addison-Wesley Publishing Co., New York (2000).

10. Harsu, M.: A Survey of Domain Engineering. Report 31, Institute of Software Systems,
Tampere University of Technology (2002).

11. Girardi, R, Serra, I.: Using Ontologies for the Specification of Domain-Specific Languages
in Multi-Agent Domain Engineering. In: Grundspenkis, J. and Kirikova, M. (eds.) Pro-
ceedings of the Sixth International Bi-Conference Workshop on Agent-oriented Informa-
tion Systems at CAISE’04 (2004) 295-308.

12. Chandrasekaran, B., Josephson, J. R., and Benjamins, V. R.: What are Ontologies, and
why do we need them? IEEE Intelligent Systems, Vol. 14, N.1 (1999) 20-26.

13. Girardi, R., Faria, C. and Marinho, L.: Ontology-based Domain Modeling of Multi-Agent
Systems. In: Cesar Gonzalez-Perez (Ed.) Proceedings of the Third International Workshop
on Agent-Oriented Methodologies at International Conference on Object-Oriented Pro-
gramming, Systems, Languages and Applications (2004) 51-62.

14. Girardi, R., and Faria, C.: An Ontology-Based Technique for the Specification of Domain
and User Models in Multi-Agent Domain Engineering. CLEI Electronic Journal, Vol. 7, N.
1 (2004) Pap. 7.

15. Girardi, R.; Lindoso, A.: DDEMAS: A Domain Design Technique for Multi-agent Domain
Engineering”. In: Proceedings of ER Workshops, Lecture Notes in Computer Science,
Vol. 3770. Berlin Heidelberg: Springer-Verlag (2005) 141-150.

16. Girardi, R., Oliveira, I, and Bezerra, G.: Towards a System of Patterns for the Design of
Agent-based Systems. In: Proceedings of The Second Nordic Conference on Pattern Lan-
guages of Programs” (VikingPLoP 2003). Bergen, Norway (2003).

 An Ontology-Driven Technique for the Architectural and Detailed Design 139

17. Girardi, R., Marinho, L. and Oliveira, I.: A System of Agent-based Patterns for User Mod-
eling based on Usage Mining. Interacting with Computers, Elsevier, Vol. 17, N. 5 (2005)
567-591.

18. FIPA Communicative Act Library Specification, Technical Report SC00037J (2002).
http://www.fipa.org/

19. Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.: JADE A White Paper. Exp Vol. 3 N. 3
(2003) 6-19.

20. Marinho, L. B.: A Multi-Agent Framework for Usage Mining and User Modeling-based
Web Personalization. Master dissertation, Federal University of Maranhão - UFMA –
CPGEE (2005). (In Portuguese)

21. Girardi, R. and Marinho, L.: A Domain Model of Web Recommender Systems based on
Usage Mining and Collaborative Filtering. Requirements Engineering Journal, Ed.
Springer-Verlag. London (2006). (to appear)

22. Shahabi, C. and Banaei-Kashani, F.: Efficient and Anonymous Web Usage Mining for
Web Personalization. INFORMS Journal on Computing , Vol.15, No.2 (2003) 123-147.

23. FIPA Communicative Act Library Specification, Technical Report SC00037J (2002).
http://www.fipa.org/

24. Ferber, Jacques. Multi-Agent Systems: An Introduction to Distributed Artificial Intelli-
gence, Addison-Wesley (1999).

25. Jennings, N. R.: Coordination Techniques for Distributed Artificial Intelligence. In:
O’Hare G M P and Jennings N R (eds): Foundations of Distributed Artificial Intelligence,
London, Wiley (1990) 187-210.

26. Bresciani, P. et al.: Agent Patterns for Ambient Intelligence. In: Atzeni, P., Chu, W., Lu,
H., Zhou, Z., Wang Ling, T. (eds.): Conceptual Modeling – ER 2004: 23rd International
Conference on Conceptual Modeling, Shanghai, China, November 8-12, 2004. Proceed-
ings. Lecture Notes in Computer Science, Vol. 3288. Springer-Verlag, Berlin Heidelberg
New York (2004) Chapter: p. 682.

27. Lind, J.: Patterns in Agent-Oriented Software Engineering. In: Lecture Notes in Computer
Science, Vol. 2585. Berlin Heidelberg: Springer-Verlag (2003) 47-58.

28. Russell, S. and Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice-Hall
(1995).

29. Bernon, C. et al.: ADELFE: a Methodology for Adaptive Multi-Agent Systems Engineer-
ing. In: Lecture Notes in Computer Science, Vol. 2577. Springer-Verlag, Berlin Heidel-
berg New York (2003) 156-169.

30. Falbo, R. A., G. Guizzardi, and Duarte, K. C.: An Ontological Approach to Domain Engi-
neering. In: Proceedings of the XIV International Conference on Software Engineering and
Knowledge Engineering, ACM Press (2002) 351-358.

31. Girardi, R. and Lindoso, A.: An Ontology-based Knowledge Base for the Representation
and Reuse of Software Patterns. ACM SIGSOFT Software Engineering Notes, Vol. 31, N.
1 (2006) 1-6.

32. Drumond, L., Lindoso, A. and Girardi, R.: INFONORMA: a Recommender System based
on the technologies of the Semantic Web. INFOCOMP Journal, vol. 5, n. 3 (2006).

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 140 – 153, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Ontology Support for Semantic Aware Agents

Michele Tomaiuolo, Paola Turci, Federico Bergenti, and Agostino Poggi

Università degli Studi di Parma
Dipartimento di Ingegneria dell’Informazione
Viale delle Scienze, 181A – 43100 – Parma

{tomamic, turci, bergenti, poggi}@ce.unipr.it

Abstract. The work presented in this paper is an attempt to bridge two
co-existing realties: Semantic Web and Multi-Agent Systems. Semantic aware
agents will be able to interoperate in a semantic way as well as to produce and
consume semantically annotated information and services. Agents should be
enhanced with tools and mechanisms in order to autonomously achieve these
strategic and ambitious objectives. In this paper, we focus on what we consider
the central issue when moving towards the vision of semantic multi-agent
systems: the ontology management support. Due to the heterogeneity of
resources available and roles played by different agents of a system, a one-level
approach with the aim of being omni comprehensive seems to be seldom
feasible. In our opinion, a good compromise is represented by a two-level
approach: a light ontology management support embedded in each agent and
one or more ontology servers, providing a more expressive and powerful
support.

Keywords: Semantic web, multi-agent systems.

1 Introduction

One of the most important challenges in agent research is the realization of truly
semantic aware agents, i.e. agents that are able to interoperate in a semantic way as
well as to produce and consume semantically annotated information and services,
supporting automated business transactions. To achieve this goal, researchers can take
advantage of semantic Web technologies and, in particular, of OWL and its related
software tools.

In this paper, we concentrate on what we consider the central theme when moving
towards the vision of semantic multi-agent systems: the management and exploitation
of OWL ontologies. We present a two-level approach, coping with the issues of
managing complex ontologies and providing ontology management support to
lightweight agents.

In the next section, we examine the rationale of embedding a light ontology
support in each agent of a multi-agent system. Agents refer to this ontology support
when they express the content of ACL messages, e.g. the domain concepts and the
relationships that hold among them. Section 3 describes the implemented library
providing agents with the aforementioned two-level ontology management support.

 An Ontology Support for Semantic Aware Agents 141

Finally, Section 4 gives some concluding remarks and presents our future research
directions on ontology management in multi-agent systems.

2 A Perspective on Object-Oriented vs. OWL DL Model

The scenario in which our research is situated is characterized by different domain
knowledge modelling techniques and by different needs. On the one hand, there is the
semantic Web and OWL [1], the most recent development in standard ontology
languages. On the other hand, the popularity of the Java language for the development
of multi-agent systems pushes the need for having an ontology representation more in
line with the object-oriented model.

The idea behind our two-level approach originates from the awareness that agents
seldom need to deal with the whole complexity of a semantically annotated Web. Our
objective is hence to cut off this complexity and provide each agent with simple
artefacts to access structured information. These simple artefacts are based on Java
technology.

At this point a crucial question arises: are the semantics implied by the object-
oriented paradigm powerful enough? A comparison between the two models (object-
oriented model, e.g. the Java data model, and OWL DL) is compelling in order to
understand similarities and differences, and furthermore to evaluate the feasibility of
using an object-oriented representation of the ontology. As a matter of fact, the
language used to build an ontology influences the kind of details that one can express
or takes into consideration.

Restricting only to the semantics of the object-oriented model, i.e. without
considering the possibility of defining a meta-model, what we are able to express is a
taxonomy among classes1.

Briefly, we can rephrase the object-oriented model as follows. An instance of a
class refers to an object of the corresponding class. Attributes are part of a class
declaration. Objects are associated with attribute values describing properties of the
object. An attribute has a name and a type specifying the domain of attribute values.
All attributes of a class have distinct names. Attributes with the same name may,
however, appear in different classes that are not related by generalization. Methods
are part of a class definition and they are used to specify the behaviour and evolution
of objects2. A generalization is a taxonomic relationship between two classes. This
relationship specializes a general class into a more specific class. Generalization
relationships form a hierarchy over the set of classes.

As far as OWL is concerned, it provides three increasingly expressive
sublanguages designed for use by specific communities of implementers and users.
Here we focus mainly on OWL DL (called simply OWL in the following), based on
SHIQ Description Logics. OWL benefits from years of DL research and can rely on a
well defined semantics, known reasoning algorithms and highly optimized
implemented reasoners.

1 We focus on the semantics of the so called “class based” model.
2 The dynamic properties of the model are not dealt with in this paper, focussed on the

structural aspects, even if they constitute an important part of the model.

142 M. Tomaiuolo et al.

OWL, as the majority of conceptual models, relies on an object centred view of the
world. It allows three types of entities: concepts, which describe general concepts of
things in the domain and are usually represented as sets; individuals, which are
objects in the domain, and properties, which are relations between individuals.

At first glance OWL looks like an object-oriented model. Indeed, they are both
based on the notion of class: in the object-oriented model, a class provides a common
description for a set of objects sharing the same properties; in OWL, the extent of a
class is a set of individuals.

Behind this resemblance, there is however a fundamental and significant difference
between the two approaches, centred on the notion of property.

Individual attributes and relationships among individuals in OWL are called
properties. The property notion appears superficially to be the same as the
attribute/component in the object-oriented model. But, looking deeply to the DL
semantics on which OWL DL is based, we can see that the two notions are fairly
different. Formally [2], considering an interpretation Ι that consist of a set ΔI (the
domain of the interpretation) that is not empty and an interpretation function .I, to
every atomic concept A is assigned a set A I⊆ΔI and to every atomic role R a binary
relation R⊆ΔI×ΔI. By means of the semantics of terminological axioms, we can make
statements about how concepts and even roles are related to each other (e.g. RI⊆SI
inclusion relationship between two roles). What is clear is that roles in DL, and
therefore OWL DL properties, are first-class modelling elements. Most of the
information about the state of the world is captured in OWL by the interrelations
between individuals. In other words, data are grouped around properties. For instance,
all data regarding a given individual would usually be spread among different
relations, each describing different properties of the same individual.

Differently, the object-oriented representation relies on the intentional notion of
class, as an abstract data type (partially or fully) implemented [3], and on the
extensional notion of object identifier. An object is strictly related and characterized
by its own features including attributes and methods. In other words, data are grouped
around objects, thought of as a collection of attributes/components.

As a consequence, in OWL it is possible to state assertions on properties that have
no equivalent in the object-oriented semantics. Properties represent without any doubt
one of the most problematic differences between OWL and object-oriented models.

To conclude, we can say that grounding the conceptual space of the ontological
domain to a programming language such as Java has several obvious advantages but
also some limitations. What we intend to do in next sub-section is an analysis of the
weaknesses of the object-oriented representation compared to OWL, and to verify if
its expressive power is powerful enough to capture the semantics of the agent
knowledge base. In this study, we take into consideration that agents do not often
need to face the computational complexity of performing inferences on large,
distributed information sources; rather, they often simply need to produce and
validate messages that refer to concepts of a given ontology.

2.1 Mapping OWL to Java

During the past years, much research work has been devoted to deal with the
comparison between OWL and UML [4-5]. Among these, some considered the

 An Ontology Support for Semantic Aware Agents 143

mapping related to a particular object-oriented programming language: Java.
Focussing on these, we can essentially identify two major directions followed by the
research community in order to express the OWL semantics using the Java language.

1. The definition of a meta-model that closely reflect the OWL syntax and semantics.

Examples are the modelling APIs of Jena [6-7] and OWL API [8-9]. The latter
consists of a high-level programmatic interface for accessing and manipulating
OWL ontologies. Its aim is to implement a highly reusable component suitable for
applications like editors, annotation tools and query agents.

2. The use of the Java Beans API [10] to realize a complete mapping between the two
meta-models. In particular, to cope with the central issue, i.e. the property-
preserving transformation, [10] defines suitable PropertyChecker classes in order
to support the semantics of the property axioms and restrictions. However, in our
opinion, this approach lacks an explicit meta-model and therefore the
corresponding explicit information. Moreover, it cannot be supported by a reasoner
because of the impracticality of implementing one.

Our approach differs from those listed above since it aims at offering a two-level

support: the most powerful one is based on Jena; the other is based on the object-
oriented semantics.

When establishing a correspondence between two models, it is important to
understand what the purpose of the mapping is. For example, the aim of having a full
mapping and preserving the semantics is satisfied when using the Jena toolkit,
whereas it is too strong in the case of the lightweight support. In the latter case, we
decided to relax this constraint and consider a partial mapping, required only to be
consistent (in the sense that it does not preserve semantics but only semantic
equivalence [4]). This means that there is a one-to-one correspondence between
instances of one model and the instances of the other model that preserves
relationships between instances. This lets us use, for example, renaming and
redundancy in order to achieve this goal, as in the use of interfaces in Java in order to
express multiple inheritance.

For the sake of clarity and in order to avoid a lengthy dissertation, in the following
we consider only the more salient aspects of the mapping, analysing commonalities as
well as dissimilarities, and ending, in the successive sub-section, by delineating the
application sphere of our approach.

Every OWL class is mapped into a Java interface containing the accessor method
declarations (getters and setters) for properties of that class (properties whose domain
is specified as this class). Then, for each interface, a Java class is generated,
implementing the interface. Creating an interface and then separately implementing a
Java class for each ontology class is necessary to overcome the single-inheritance
limitation that applies to Java classes. In OWL, there is a distinction between named
classes (i.e. primitive concepts), for which instances can only be declared explicitly,
and defined classes (i.e. defined concepts), which specify necessary and sufficient
conditions for membership. Java does not support this semantics and so only primitive
concepts can be defined. In the following we refer only to named classes.

Individuals in OWL may be an instance of multiple classes, without one being
necessarily a subclass of another. This is in contrast with the object-oriented model:

144 M. Tomaiuolo et al.

an object could get the properties of two classes only by means of a third one which
has both of them in its ancestors. A workaround is thus to create a special subclass for
this notion.

Considering the terminological axioms used to express how classes are related to
each other, the only one that has an equivalent semantics in Java is the OWL synopsis
intersectionOf (mapped as an interface which implements two interfaces). The
unionOf OWL synopsis can be mapped in Java defining an interface as a super-
interface of two interfaces but, in order to ensure the semantic equivalence, it is
compulsory to prevent the implementation of the super-interface.

The constructs asserting completeness or disjointness of classes are those which
characterized more OWL, from the point of view of the “open-world” assumption, i.e.
modelling the state of the world with partial information. In OWL, classes are
overlapping until disjointness axioms are entered. Moreover, generalization can be
mutually exclusive, meaning that all the specific classes are mutually disjoint and/or
complete, meaning that the union of the more specific classes completely covers the
more general class. In Java, there is no way of expressing it and other similar
properties (e.g. equivalentClass); the representation of the world that we can state
using this model can only refer to a “closed-world” assumption. This obviously
constitutes a limitation when one cannot assume that the knowledge in the knowledge
base is complete.

Regards properties, since they are not first-class modelling elements in Java, it is
not possible to create property hierarchies and to state that a property is symmetric,
transitive, equivalent or the inverse of another property. Properties can be used to
state relationships between individuals (ObjectProperty) or from individuals to data
values (DatatypeProperty). DatatypeProperties can be directly mapped into Java
attributes of the corresponding data type and ObjectProperties to Java attributes
whose type is the class specified in the property’s range. In OWL there are constraints
that can be enforced on properties:

1. Cardinality constraints state the minimum and maximum number of objects that
can be related;

2. The “domain” constraint limits the individuals to which the properties can be
applied;

3. The “range” constraint limits the individuals that the property may have as its
value.

Java accessor methods could ensure that cardinality constraints be satisfied. This
information, however, is implicit and embedded in the class source code and it would
not become known to a possible reasoner and therefore it would be most likely of no use.

Concerning the domain restriction, if the property domain is specified as a single
class, the corresponding Java interface contains declarations of accessor methods for
the property. In the case of a multiple domain property, there are two possible
alternatives:

1. The domain is an intersection-of all the classes specified as the domain; to cope

with this we create an intersection interface (see above).
2. Multiple alternative domains are defined using the unionOf operator; we can cope

with this creating a union interface but with the limitations expressed above.

 An Ontology Support for Semantic Aware Agents 145

Finally, in relation to the range restriction, our approach fails to account for multi-
range properties, since variables in Java can be only of one type.

It clearly emerges, from the previous analysis, that the Java language
expressiveness is lower even than OWL Lite but, despite this, in our view, it is still
valuable with respect to the common agent needs.

2.2 Reasoning About Knowledge

Although DLs (and hence OWL DL) and object-oriented models have a common root
in class-based models, they were developed by different communities and for
different purposes. The different target applications significantly affect the
expressiveness of the languages and consequently the reasoning services that can be
performed on the corresponding knowledge base.

The object model only permits the specification of necessary conditions for the
class (i.e. the definition of the properties that must be owned by objects belonging to a
specific class) that are not sufficient to identify a member of the class. The only way
to associate an instance to a class is therefore to explicit assert its membership. As a
consequence some basic reasoning services lose their importance and significance
(e.g. knowledge base consistency, subsumption and instance checking). A fairly
common complex reasoning service, i.e. classification, also plays a marginal role in
an object-oriented model. In fact, in DL, the terminological classification consists in
making explicit the taxonomy entailed by the knowledge base. Whereas the
classification of individuals has its role in DL, since individuals can be defined giving
a set of their properties and therefore objects’ classes, membership can be
dynamically inherited.

The previous remarks lead us to consider the aspect that differentiates even more
between the two models, that is the divergent assumption on the knowledge about the
domain being represented - open vs. closed world assumption. Indeed while a DL-
based system contains implicit knowledge that can be made explicit through
inference, a system based on an object-oriented model exhibits a limited use of
entailment. Inheritance may represent a simple way of expressing implicit knowledge
(a class inherits all the properties of its parents without explicit specifying it). Another
way is to represent part of the information within methods (e.g. initialization
methods), but this implicit information is not (or hard) available to a potential
reasoner.

If we consider the knowledge base as a means of storing information about
individuals, an interesting complex reasoning task is represented by retrieval.
Retrieval (or query answering) consists in finding all the individuals in the knowledge
base in a concept expression. The information retrieval task plays a leading role in a
knowledge base centred on an object-oriented representation.

3 System Architecture

The concrete implementation of the proposed system is a direct result of the
evaluations set out in the previous sections. The proposed two-level approach to

146 M. Tomaiuolo et al.

ontology management is implemented as a framework providing the following
functionality:
1. Light support: to import OWL ontologies as an object-oriented hierarchy of

classes;
2. Ontology Server: to provide the centralized management of shared ontologies.

3.1 OWLBeans

The OWLBeans framework, which is going to be presented in this section, does not
deal with the whole complexity of a semantically annotated Web. Instead, its purpose
is precisely to cut off this complexity, and to provide simple artefacts to access
structured information.

In general, interfacing agents with the Semantic Web implies the deployment of an
inference engine or of a theorem prover. In fact, this is the approach we are currently
following to implement an agent-based server to manage OWL ontologies. Instead, in
many cases, autonomous agents cannot (or do not need to) face the computational
complexity of performing inferences on large, distributed information sources. The
OWLBeans framework is mainly thought for these agents, for which an object-
oriented view of the application domain is enough to complete their tasks.

The software artefacts produced by the framework, i.e. mainly JavaBeans and
simple metadata representations used by JADE [11], are not so expressive as OWL-
DL. But in some context this is not required. Conversely, especially if software and
hardware resources are very limited, it is often preferable to deal only with common
Java interfaces, classes, attributes and objects. Its main functionality is to extract a
subset of the relations expressed in an OWL document for generating a hierarchy of
JavaBeans, and possibly for creating a corresponding JADE ontology to represent
metadata. However, given its modular architecture, it also provides other
functionality, e.g. to save a JADE ontology into an OWL file or to generate a package
of JavaBeans from the description provided by a JADE ontology.

Intermediate ontology model. In order to keep the code maintainable and modular,
we decided to base the framework on an internal, intermediate representation of the
ontology. This intermediate model can be alternatively used to generate the sources of
some Java classes, a JADE ontology or an OWL file. The intermediate model itself
can be filled with data obtained, e.g. by reading an OWL file or by inspecting a JADE
ontology.

The main design goals of the internal ontology representation were:

1. Simplicity: it had to include only few simple classes to allow a fast and easy
introspection of the ontology. The model had to be simple enough to be managed
in scripts and templates; in fact, one of the main design goals was to have a model
be directly used by a template engine to generate the code.

2. Expressiveness: it had to include the information needed to generate JavaBeans and
all other desired artefacts. The main guideline was to avoid limiting the translation
process. The intermediate model had to be as simple as possible, though not
creating a metadata bottleneck in the translation of an OWL ontology to
JavaBeans.

 An Ontology Support for Semantic Aware Agents 147

3. Primitive data-types: it had to handle not only classes, but even primitive data-
types, since both Java and OWL classes can have properties using primitive data-
types as their range.

4. External references: ontologies are often built extending more general
classifications and taxonomies. For example, an ontology can detail the description
of some products in the context of a more general trade ontology. We wanted our
model not to be limited to single ontologies, but to allow the representation of
external entities too: classes may extend other classes, defined locally or in other
ontologies, and property ranges may allow not only primitive data-types and
internal classes, but also classes defined in external ontologies.

One of the main issues related to properties, since they are handled in different

ways in description logics and in object-oriented systems (see the previous section).
For the particular aims and scope of OWLBeans, property names must be unique only
in the scope of their own class in object-oriented systems, while they have global
scope in description logics. Our choice, in the internal model design, was to have
properties “owned” by classes. This allows an easier manipulation of the meta-objects
while generating the code for the JavaBeans, and a more immediate mapping of
internal description of classes to the desired output artefacts.

The intermediate model designed for the OWLBeans framework is made of just a
few, very simple classes. The simple UML class diagram shown in Fig. 1 describes
the main classes of the intermediate model package.

The root class is OwlResource, which is extended by all the others. It has just two
fields: a local name and a namespace, which are intended to store the same data as
resources defined in OWL files. All the resources of the model – refernces,
ontologies, classes and properties – are implicitly OwlResource objects.

OwlReference is used as a simple reference, to point to super-classes, range and
domain types, and does not add anything to the OwlResource class definition. It is
defined to underline the fact that classes cannot be used directly as ranges, domain or
parents.

OwlOntology is nothing more than a container for classes. It owns a list of
OwlClass objects. It inherits from OwlResource the name and namespace fields. In
this case the namespace is mandatory and is supposed to be the namespace of all local
resources, for which it is optional.

OwlClass represents OWL classes. It points to a list of parents, or super-classes,
and owns a list of properties. Each parent in the list is an OwlReference object, i.e. a
name and a namespace, and not an OwlClass object. Its name must be searched in the
owner ontology to get the real OwlClass object. Properties instead are owned by the
OwlClass object, and are stored in the properties list as instances of the OwlProperty
class.

OwlProperty is the class representing OWL properties. As in UML, their name is
supposed to be unique only in the scope of their “owner” class. Each property points
to a domain class and to a range class or data-type. Both these fields are simple
OwlReference objects: while the first contains the name of the owner class, the latter
can indicate an OwlClass, or an XML data-type, according to the namespace. Two
more fields are present in this class: minCardinality and maxCardinality. They are

148 M. Tomaiuolo et al.

OWLResource

namespace : String
name : String

OWLOntology

OWLReference

OWLProperty

minCardinality : int
maxCardinality : int

+domain
+range

OWLClass

1..*1..*
1..*

+parent

1..*

1..*1..*

Fig. 1. Class diagram of the intermediate model

used to store respectively the minimum and maximum allowed cardinality for the
property values. A minCardinality = 0 has the implicit meaning of an optional
property, while maxCardinality = 1 has the implicit meaning of a functional property.

It is worth pointing the unusual treatment of indirect references to OwlClass objects.
This decision has two main advantages over direct Java references to final objects.
Parsing an OWL file is a bit simpler, since references can point to classes that are not
yet defined. Furthermore, in this way, super-classes, domain and ranges are not forced
to be local classes, but can be references to resources defined somewhere else.

In our framework, the intermediate model is used as the glue to put together the
various components needed to perform the desired, customizable task. These
components are classes implementing the OwlReader or the OwlWriter interface,
representing ontology readers and writers, respectively. While readers can read an
intermediate representation of the ontology, acquiring metadata from different kinds
of sources, writers, instead, can use this model to produce the desired artefacts.

The current version of the framework provides readers to inspect OWL files and
JADE ontologies, and writers to generate OWL files, source files of JavaBeans and
JADE ontologies.

Reading OWL Ontologies. Two classes are provided to manage OWL files.
OwlFileReader allows reading an intermediate model from an OWL file, while
OwlFileWriter allows saving an intermediate model to an OWL file. These two
classes respectively implement the OwlReader and OwlWriter interfaces and are
defined in the package confining all the dependencies from the Jena toolkit.

The direct process, i.e. converting an OWL ontology into the intermediate
representation, is possible only under quite restrictive limitations, mainly caused by

 An Ontology Support for Semantic Aware Agents 149

the rather strong differences between the OWL data model and the object-oriented
model. In fact, only few, basic features of the OWL language are supported.

Basically, the OWL ontology is first read into a Jena OntModel object and then all
classes are analysed. In this step, all anonymous classes are just discarded. For each
one of the remaining classes, a corresponding OwlClass object is created in the
internal representation. Then, all properties listing the class directly in their domain
are added to the intermediate model as OwlProperty objects. Here, each defined
property points to a single class as domain and to a single class or data-type as range.
Set of classes are not actually supported. Data-type properties are distinguished in our
model by the namespace of their range: http://www.w3.org/2001/XMLSchema#. The
only handled restrictions are owl:cardinality, owl:minCardinality and
owl:maxCardinality, which are used to set the minCardinality and maxCardinality
fields of the new OwlProperty object. The rdfs:subClassOf element is handled in a
similar way: only parents being simple classes are taken into consideration and added
to the model.

All remaining information in the OWL file is lost in the translation, as it does not
fit into the desired object-oriented model.

Generating JavaBeans. Rather than generating the source files of the desired
JavaBeans directly from the application code, we decided to integrate a template
engine in our project. This helped to keep the templates out of the application code,
and centralized in specific files, where they can be analysed and debugged much more
easily. Moreover, new templates can be added and existing ones can be customized
without modifying the application code.

The chosen template engine was Velocity [12], distributed under LGPL licence by
the Apache Group. It is an open source project with a widespread group of users.
While its fame mainly comes from being integrated into the Turbine Web framework,
where it is often preferred to other available technologies, as JSP pages, it can be
effortlessly integrated in custom applications, too.

Currently, the OWLBeans framework provides templates to generate the source
file for JavaBeans and JADE ontologies. JavaBeans are generated according to the
mapping between classes and concepts that we described in the previous sections. In
particular, all JavaBeans are organized in a common package where, first of all, some
interfaces mapping the classes defined in the ontology are written. Then, for each
interface, a Java class is generated, implementing the interface and all accessor
methods needed to get or set properties.

As stated in Section 2, creating an interface and then a separate implementing Java
class for each ontology class is necessary to overcome the single-inheritance
limitation that applies to Java classes.

The generated JADE ontology file can be compiled and used to import an OWL
ontology into JADE, thus allowing agents to communicate about the concepts defined
in the ontology. The JavaBeans will be automatically marshalled and un-marshalled
from ACL messages in a completely transparent way.

Additional components. Additional components are provided to read and write
ontologies in different formats.

150 M. Tomaiuolo et al.

For example, the JadeReader class allows the loading of a JADE ontology and
saving it in OWL format or generating the corresponding JavaBeans.

Another component is provided to instantiate an empty JADE ontology at run time,
and to populate it with classes and properties read from an OWL file or from other
supported sources. This proves useful when the agent does not really need JavaBeans
but can use the internal ontology model of JADE to manage the content of
semantically annotated messages.

Finally, the OwlWriter class allows an ontology to be converted from its
intermediate representation to an OWL model. This is quite straightforward, since all
the information stored in the intermediate model can easily fit into an OWL ontology,
in particular into a Jena OntModel object. One particular point deserves attention.
While the property names in the OWLBeans model are defined in the scope of their
owner class, all OWL properties are instead first level elements and share the same
namespace. This poses serious problems if two or more classes own properties with
the same name and, above all, if these properties have different ranges or cardinality
restrictions.

In the first version of the OWLBeans framework, this issue is faced in two ways: if
a property is defined by two or more classes, then a complex domain is created in the
OWL ontology for it; in particular, the domain is defined as the union of all the
classes that share the property, using an owl:UnionClass element. Cardinality
restrictions are specific to classes in both models and are not an issue. Currently, the
range is assigned to the property by the first class that defines it and is kept constant
for the other classes in the domain. Obviously this could be incorrect in some cases.
Using some class-scoped owl:allValuesFrom restrictions could solve most of the
problems, but difficulties would arise in the case of a property defined in some classes
as a data-type property and somewhere else as an object property.

Another mechanism allows the optional use of the class name as a prefix for the
names of all its properties, hence automatically enforcing different names for
properties defined in different classes. This solution is appropriate only for ontologies
where property names can be decided arbitrarily. Moreover, it is appropriate when
resulting OWL ontologies are used only to generate JavaBeans and JADE ontologies,
since in this case the leading class name would be automatically stripped off by the
OwlFileReader class.

Scripting Engine. The possibilities opened by embedding a scripting engine into an
agent system are various. For example, agents for e-commerce often need to trade
goods and services described by a number of different, custom ontologies. This
happens in the Agentcities network [13], where different basic services can be
composed dynamically to create new compound services.

To increase adaptability, these agents should be able to load needed classes and
code at runtime. The OWLBeans package allows them to load into the Java Virtual
Machine some JavaBeans directly from an OWL file, together with the ontology-
specific code needed to reason about the new concepts.

This is achieved by embedding Janino [14], a Java scripting engine, into the
framework. Janino can be used as a special class loader capable of loading classes
directly from Java source files without first compiling them into bytecode.

 An Ontology Support for Semantic Aware Agents 151

Obviously, pre-compiled application code cannot access newly loaded classes,
which are not supposed to be known at compile time. However, the same embedded
scripting engine can be used to interpret some ontology specific code, which could be
loaded at run time from the same trusted source of the OWL ontology file, for
example, or provided to the application in other ways.

3.2 Ontology Server

The OWLBeans framework allows agents to import taxonomies and classifications
from OWL ontologies, in the form of an hierarchy of Java classes. Clearly, a more
general solution must be provided for all those cases where a simplified, object-
oriented view of the ontology is not enough.

For all those applications, that need a complete support of OWL ontologies, we are
developing an Ontology Server. It is an agent-based application providing ontology
knowledge and reasoning facilities for a community of agents. The main rationale for
building on Ontology Server is to endow a community of agents with the ability to
automatically process semantically annotated documents and messages. The Ontology
server shares a common knowledge base about some application domains with this
community of agents.

The first functionality is related to loading, importing, removing ontologies. Apart
from loading ontologies at agent startup, specific actions are defined in terms of ACL
requests to add ontologies to the agent knowledge base, and to remove them.
Ontologies that are linked through import statements can be loaded automatically with
a single request. Moreover, new relations among ontologies can be dynamically
created, and existing ones can be destroyed. This import mechanism can be used to
build a distributed knowledge base hierarchy; in this way, a new ontology can be
plugged in easily and inherit the needed general knowledge base, instead of building
it totally from scratch.

After the initial set-up, through a number of potentially related ontologies, this
knowledge base can be queried from other agents. A set of predicates is defined, to
check the existence of specific relations among entities. For example the Ontology
Server can be asked about the equivalence of two classes or about their hierarchical
relationships.

Apart from checking the existence of specific relations, the knowledge base can
also be used to search for the entities satisfying certain constraints. For example, the
list of all the super-classes, or of all the sub-classes, of a given class can be obtained.

Finally, client agents may be allowed to modify an ontology managed by the
Ontology Server. Agents can ask to add new classes, individuals and properties to the
ontology or to remove defined entities. Moreover, relations among ontology entities
can also be added and removed at runtime.

Our current implementation is built as a JADE agent, using the Jena toolkit to load
and manage OWL ontologies. An inference engine can be plugged into the
application to reason on the knowledge base. An ontology is defined, to allow
the management of the internal knowledge base. ACL requests, to access and query
the Ontology Server about its knowledge base, can use this meta-ontology to
represent their semantic content.

152 M. Tomaiuolo et al.

As a final point, for the Ontology Server to be really useful in an open
environment, we are adding proper authorization mechanisms. In particular, we are
leveraging the underlying JADE security support to implement a certificate-based
access control. Only authenticated and authorized users will be granted access to
managed ontologies. The delegation mechanisms of JADE allow the creation of
communities of trusted users, which can share a common ontology, centrally managed
by the Ontology Server.

Finally, we are developing a graphical user interface to allow the interaction with
the Ontology Server through Web pages. It allows both the introspection of the
existing knowledge base, as well as its modification by human users.

4 Conclusion

In this paper, we have presented a software implementation intended to provide an
OWL ontology management support for multi-agent systems implemented by using
JADE. The key feature that distinguishes our approach from others is the fact that
lightweight agents have the possibility of directly managing ontologies that can be
mapped in JavaBeans, while they can take advantage of special agents, called
Ontology Servers, when they need to use more complex. Well aware of the need to
clearly define the weakness of our approach in comparison to a fully-fledged OWL
support, we have carried out a meticulous analysis of its expressiveness.

Our current activities are related to the experimentation of the implemented
software in the realization of a multi-agent system for the remote assistance of
software programmers. Furthermore, we are working on its improvement by trying
alternative solutions to the use of the Jena software tool.

References

1. Word Wide Web Consortium (W3C). OWL. Web Ontology Language. http://www.
w3.org/TR/owl-ref.

2. The Description Logic Handbook: Theory, Implementation and Applications. Cambridge
University Press (2002)

3. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall, 2nd edition (1997)
4. Baclawski, K., Kokar, M.K., Kogut, P., Hart, L., Smith, J.E., Letkowski, J., Emery, P.:

Extending the Unified Modeling Language for ontology development. International
Journal Software and Systems Modeling (SoSyM) 1(2) (2002) 142-156

5. Hart, L., Emery, P., Colomb, B., Raymond, K., Taraporewalla, S., Chang, D., Ye, Y.,
Kendall, E., Dutra, M.: OWL Full and UML 2.0 Compared (2004). http://www.omg.org/
docs/ontology/04-03-01.pdf.

6. Carroll, J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A., Wilkinson, K.: Jena:
Implementing the Semantic Web Recommendations. In Proc 13th Int World Wide Web
Conference, New York, NY (2004) 74-83

7. Jena, HP Labs Semantic Web Toolkit software and documentation. http://jena.
sourceforge. net/.

8. Bechhofer, Volz, R., Lord, P.: Cooking the Semantic Web with the OWL API. In Proc. Intl
Semantic Web Conference, Sanibel Island, FL, USA (2003) 659-675

 An Ontology Support for Semantic Aware Agents 153

9. OWL API software and documentation. http://owl.man.ac.uk/api.shtml.
10. Kalyanpur, A., Pastor, D., Battle, S., Padget, J.: Automatic Mapping of Owl Ontologies

into Java. In Proceedings of Software Engineering .and Knowledge Engineering
Conference. (SEKE) 2004, Banff, Canada (2004)

11. JADE software and documentation. Available at http://jade.tilab.com.
12. Velocity software and documentation. Available at http://jakarta.apache.org/velocity.
13. The Agentcities Network project home page. http://www.agentcities.net.
14. Janino software and documentation. Available at http://janino.net.

AOSE and Organic Computing -

How Can They Benefit from Each Other?

Position Paper

Bernhard Bauer and Holger Kasinger

University of Augsburg, 86135 Augsburg, Germany
{bauer, kasinger}@informatik.uni-augsburg.de

Abstract. Organic Computing (OC) is an upcoming research area with
strong relationships to the ideas and concepts of agent-based systems.
Therefore, in this paper we will have a closer look at agent systems,
organic computing systems (as well as autonomic computing systems)
and state commonalities and examine divergences between them. We
then propose a common view on these technologies and show how they
can benefit from each other with regard to software engineering (SE).

1 Introduction

Over the past few years technical systems such as aeroplanes, vehicles, telecom-
munication networks and manufacturing installations have become more and
more complex. This is not only a result of the continuing evolution in micro-
electronics but also of the immense embedding of huge hardware and software
complexes into these systems. But the producers’ painful experiences show that
these systems today are already very difficult to manage. Thus, with respect to
future evolution, new advanced management principles have to be developed. A
feasible principle is an autonomic behaviour of the systems, addressed by two
research directions: namely agent technology and Organic / Autonomic Com-
puting (AC).

Agent technology is believed to be able to play a key role in this “revolution”,
e.g. by automating daily processes, enriching higher level communication or en-
abling intelligent service provision. An intelligent agent is “a computer system,
situated in some environment that is capable of flexible autonomous actions in
order to meet its design objectives” [1]. The real strength of agents is based on
the community of a multi-agent system (MAS) and negotiation mechanisms and
coordination facilities (see [2] for more details). An MAS is “a dynamic feder-
ation of software agents that are coupled through shared environments, goals
or plans and that cooperate and coordinate their actions” [3]. It is this abil-
ity to migrate, communicate, coordinate and cooperate that makes agents and
multi-agent systems a worthwhile metaphor in computing and that makes them
attractive when it comes to tackling some of the requirements in next-generation
systems.

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 154–167, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

AOSE and Organic Computing - How Can They Benefit from Each Other? 155

Another worthwhile metaphor is provided by OC systems [4] that can be con-
sidered as an extension to AC systems [5]. The latter — driven by IBM since
2001 — draw analogies from the human body, in particular from the autonomic
nervous system, where all reactions occur without explicit override by the human
brain — so to say autonomous. By embedding this behaviour into technical sys-
tems, the administrative complexity of next-generation systems can be left to the
systems themselves. IBM refers to this autonomy as “self-management”, which
includes four so-called “self-* properties”, namely self-configuration (configu-
ration and reconfiguration according to policies), self-optimization (permanent
improvement of performance and efficiency), self-healing (reactive and proac-
tive detection, diagnostics and reparation of localized SW/HW-problems) and
self-protection (defence of the system as a whole). Furthermore, AC systems are
self-aware, context-sensitive, non-proprietary, anticipative and adaptive. OC sys-
tems instead draw analogies from the biological world and try to use perceptions
about the functionality of living systems for the development and management of
artificial and technical systems respectively. In addition to the properties of AC
systems they are defined as being self-organizing (hence they do not necessarily
have to be self-aware).

As OC systems basically have the same objectives and concepts as AC sys-
tems, we will treat them mostly as one single technology for the rest of this
paper, which is organized as follows: In Section 2 we present the concepts of
agents as well as AC/OC and the existing SE approaches for these technologies.
Section 3 relates the technologies and presents a common view on them. Based
on this view, in Section 4, we present a development process, which helps to
benefit agent-oriented software engineering (AOSE) and OC from each other.
Section 5 presents a short case study that exemplifies a couple of process activ-
ities before we conclude with open issues and an outlook for further research in
Section 6.

2 Concepts

In this section we give an overview on agent technology as well as on AC/OC
and consider the associated software engineering methodologies.

2.1 Agents

Software agents are software components characterized by autonomy (to act
on their own), reactiveness (to process external events), proactiveness (to
reach goals), cooperation (to efficiently and effectively solve in common tasks),
adaptation (to learn by experience) and mobility (migration to new places).
For further details on agent technology see e.g. [6] or [7].

Often, agents are subdivided into three functional sections (see Fig. 1): The
agent body wraps a software component (e.g. a database, a calendar or an
external service) and controls it through the software API. Connected to external
software, the agent acts as an application agent by transforming the application
API into agent communication language (ACL) and vice versa. Messages of

156 B. Bauer and H. Kasinger

Fig. 1. Logical structure of an agent

such ACLs are highly structured and must satisfy standardized communicative
(speech) acts which define the type and the content of the messages (like FIPA-
ACL [8] or KQML [9]). The order of exchanged messages is fixed in protocols
according to the relation of agents or the intention of the communication.

The agent head is responsible for the agent’s intelligence. It is connected
to the agent body on one side and to the agent communicator on the other.
The agent head contains knowledge bases storing knowledge of certain types like
facts, beliefs, goals or intentions, preferences, motivations and desires concerning
the agent itself or associated ones. Furthermore, it contains a world model as
an abstraction of relevant states of the real world. It is updated by information
from other agents or through real world interfaces, e.g. sensors. The agent head
is able to evaluate incoming messages with respect to its goals, plans, tasks,
preferences and to the world model.

The agent communicator converts logical agent addresses into physical
addresses and delivers messages on behalf of the agent head through appropriate
channels to the receivers. Furthermore, the communicator listens for incoming
messages (e.g. by running an event loop) and forwards them to the agent head.
The agent behaviour should be benevolent, which means that an agent at least
understands the interaction protocols and reacts accordingly.

Beyond these mobile and cooperating agents in the literature additional kinds
of agents can be found: Search agents are, e. g., search engines which scan the
WWW to store the information in local databases in order to allow efficient
keyword search. User agents are, e. g., Microsoft Office agents supporting the
user during work with the product and give some predefined information to the
user according to his/her interaction.

2.2 Autonomic/Organic Computing

According to [10], AC systems are composed of four levels: on the lowest level
managed resources (MR), e.g. HW/SW-components as servers, databases

AOSE and Organic Computing - How Can They Benefit from Each Other? 157

or business applications, are located, together making up the complete IT in-
frastructure. So-called touchpoints on the next level provide a manageability
interface — similar to an API — for each MR by mapping standard sensor and
effector interfaces on the sensor and effector mechanisms (e.g. commands, con-
figuration files, events or log files) of a specific MR. The next level is composed
of so-called touchpoint autonomic managers (TAM) directly collaborating
with the MRs and managing them through their touchpoints.

Generally, an autonomic manager (AM) implements an intelligent control
loop (closed feedback loop) called a MAPE loop. The latter is composed of the
components monitor (collects, aggregates, filters and reports the MR’s details),
analyse (correlates and models complex situations), plan (constructs actions
needed to achieve goals) and execute (controls execution of a plan). Addition-
ally, a knowledge component provides the data used by the four components,
including policies, historical logs and metrics. Together with one or more MRs,
an AM represents an autonomic element (AE) (see Fig. 2). A TAM also
provides a sensor and an effector to orchestrating autonomic managers
(OAM) residing on the top level. The latter achieve system-wide autonomic
behaviour, since TAMs are only able to achieve autonomic behaviour for their
controlled MRs.

Fig. 2. Logical structure of an autonomic element

As (strong) self-organizing systems (like OC systems) are defined as systems
“that change their organization without any explicit — internal or external —
central control” [11], there can be no single instance within an OC system that
is aware of all system’s components or states. From our point of view, system-
wide autonomic behaviour in OC systems is in contrast to AC systems lead-
ing to emergent behaviour of the system’s component interactions and not the
achievement of a single OAM. This issue has significant impact on software en-
gineering but not on the concepts mentioned above, which are also used in OC
systems.

158 B. Bauer and H. Kasinger

2.3 Software Engineering Methodologies

Agent-oriented Software Engineering Methodologies An extensive num-
ber of AOSE methodologies and tools are available today (see our work in [12] or
[13] for a more detailed survey), and the agent community is facing the problem
of identifying a common vocabulary to support them.

The knowledge engineering community inspired most early approaches sup-
porting the SE of agent-based systems: CommonKADS [14] was developed to
support knowledge engineers in modelling expert knowledge and developing de-
sign specifications in textual or diagrammatic form. To consider agent-specific
aspects CoMoMAS [15] and MAS-CommonKADS [16] were developed.

Gaia [17] is a methodology designed to deal with coarse-grained computa-
tional systems, having static organization structures and agents with static abil-
ities and services. ROADMAP [18] extends Gaia by adding elements to deal
with requirements analysis in more detail by using use cases, handling open sys-
tem environments and specification of interactions. SODA [19] addresses aspects
like open systems or self-interested agents, based on the analysis and design of
agent societies (exhibiting global (emergent) behaviour not deducible from the
behaviour of the individual agents) and agent environments.

One of the first methodologies for the development of BDI agents based on
OO technologies was presented in [14] and [20]. The methodology distinguishes
between the external viewpoint — the system is decomposed into agents, mod-
elled as complex objects characterized by their purpose, their responsibilities,
the services they perform, the information they require and maintain, and their
external interactions — and the internal viewpoint — the elements required by
a particular agent architecture must be modelled for each agent, i.e. an agent’s
beliefs, goals and plans.

MESSAGE [21] is a methodology that extends UML by agent-related con-
cepts (inspired e.g. by Gaia). TROPOS [22] uses UML for the development of
BDI agents. Prometheus [23] it is an iterative methodology covering the com-
plete SE process and aiming at the development of intelligent agents using goals,
beliefs, plans and events, resulting in a specification that can, for example, be
implemented with JACK [24]. MaSE [25] has been developed to support the com-
plete software development life cycle. PASSI [26] is an agent-oriented iterative
requirement-to-code methodology for the design of multi-agent systems mainly
driven from experiments in robotics.

Autonomic / Organic Computing Methodologies. Continuous and
consistent SE methodologies for AC/OC systems are more or less unavailable
nowadays, since most of the research activities are in the area of algorithms,
middleware, hardware concepts as well as application areas. Nevertheless, the
objective in particular of OC has to be on the control of such systems by engi-
neering methods. Traditional SE methods are strictly hierarchical and follow a
top-down approach by transforming the entire specification into detailed mod-
ules. For emergent and self-organizing systems, this strict approach is abandoned.
System states have to be reached that are not imagined beforehand. This is a

AOSE and Organic Computing - How Can They Benefit from Each Other? 159

fundamental contradiction between a top-down-control and a creative bottom-
up-behaviour.

Today it is not clear how to combine these opposite tendencies. However,
there are some approaches (see e. g. [27]) based on an industry-ready software
engineering process (Unified Process) as well as approaches based on constraint
propagation, the use of assertions and so-called observer/controller architectures.
Assertions can be used for monitoring values of special variables. Yet, the lim-
itation of emergent behaviour of OC systems will be crucial for their technical
application. Thus, constraints play an important role to the limitation of learning
in self-organizing systems as constraint violations result in warnings.

3 Relating Agents and Organic Computing

Based on the presented concepts we try to relate agents and OC in this section
and propose a common view on these technologies.

Both technologies incorporate managed objects, either software components
wrapped in the agent body or managed resources on the OC-side. In addition,
both technologies have an institution for intelligent and autonomic behaviour,
namely the agent head and the autonomic manager respectively. Moreover, an
agent communicator is in some sense comparable to a touchpoint in OC.

Thus, in order to bring the technologies together, we consider an autonomic
element from now on as the combination of agents and organic computing with
the following properties: having a BDI mental model about other autonomic
elements; using a MAPE loop similar to the control loop of agents, with moni-
toring and analyzing the environment and messages, consulting the knowledge
base, planning and execution; managing the internal behaviour automatically,
like OC does it, without interaction with the environment; interacting with its
environment, not only via direct messages but also via e.g. stigmergy — there-
fore the environment has to be modelled explicitly, as for swarm intelligence or
ant algorithms. Moreover, an autonomic element community consists of coop-
erating autonomic elements explicitly communicating based on speech acts and
interaction protocols or implicitly via the environment. Additionally these coop-
erating elements have to satisfy global system rules such that no unintentional
behaviour of the system takes place.

Having this in mind, we propose a metamodel for both an MAS with OC
properties and OC systems as MASs (see Fig. 3). Therefore, we have combined
different proven concepts of existing agent architectures and their SE method-
ologies as well as AC/OC concepts.

Similar to many existing agent methodologies, a role is the central architec-
tural concept. The complete set of roles builds up the environment. The life
cycle of a role is traditionally described as follows. A role or rather the enacting
agent recognizes a situation, makes a decision based upon it and executes ap-
propriate activities. The recognition of situations is based on events. Regular
events are familiar to a role, e.g. by design or by adaption, whereas irregu-
lar events are new to a role, e.g. by failure appearance. Norms regulate the

160 B. Bauer and H. Kasinger

behaviour of a role and are a generalization of either a permission, an obliga-
tion or a prohibition and consist of a goal and activation as well as deactivation
events. The decision making is based on plans that fire certain events at the end
(as notification of being in a certain state), which may correspond to a norm’s
goal or event respectively. A plan consists of actions (internal activities of a
role) and interactions (external activities between different roles) and are chosen
accordingly to a goal of an activated norm. Interactions are implemented by
specific interaction protocols. The relation between interactions and inter-
action protocols is the same as between interfaces and their implementations.
Thus, according to diverse requirements, an interaction may be implemented
by different kinds of protocols for direct (e.g. by auctions) or indirect (e.g. by
stigmergy) communication. Interactions and actions are both implemented by
services with different visibilities.

Fig. 3. The metamodel for organic computing systems

Roles are logically divided into managed roles (MR) and autonomic roles
(AR) (similar to the AC concepts). MRs are responsible for the business logic
of a system and reside on versatile resources. They are controlled by one or
more ARs that are responsible for the self-management of a system. ARs do
not necessarily have to be located at the same resource as its MRs. In contrast
to MRs, the ARs are able to generate new plans based on the received data of
their MRs. The latter do not have to generate new plans as they communicate
the occurrence of irregular events to their monitoring ARs and mostly are not
in possession of further required information. Both roles are taken over dynam-
ically by managed agents and autonomic agents respectively. Autonomic
elements contain one or more autonomic agents and managed agents at the
same time.

AOSE and Organic Computing - How Can They Benefit from Each Other? 161

4 Software Engineering for OC and AO Systems

As a result of the common view presented in the previous section, we propose a
development process in this section which can be used for both AOSE and OC.
Although the process is in early stages and more details will be forthcoming,
the general way of development already becomes clear. The process is based on
the Model Driven Architecture (MDA), a framework for software development
driven by the Object Management Group (OMG). It comprises a Computa-
tion Independent Model (CIM) (model of a system that abstracts from any
computation), a Platform Independent Model (PIM) (model of a system
that abstracts from any specific platform) and a Platform Specific Model
(PSM) (model of a system that is tailored to one or more specific implementa-
tion platforms). For a more detailed description see [28].

The process consists of 19 activities and encompasses an analysis phase (activ-
ities 1-5) and a design phase (activities 6-19). Each activity results in a specific
model either in the CIM (analysis phase) or the PIM (design phase) (see Fig.
4). An implementation phase is not considered yet, but can be added smoothly
in the future. Notice, the process does not prescribe a process model.

The analysis phase consists of the activities (1) ‘Definition of the business con-
text’, (2) ‘Definition of business processes being supported’, (3) ‘Characterization
of the environment’, (4) ‘Assembly of potential use cases’ and (5) ‘Assembly of
common vocabulary’. The resulting models are: Business Context Model:
As a result of (1) the business context of the future system is modelled by a
UML activity diagram. This model only considers higher level correlations and
abstracts from concrete business processes; Business Process Model: As a re-
sult of (2) the business processes supported by the latter system are modelled by
a UML activity diagram; Environment Model: As a result of (3) important
environment objects of all types are modelled by a UML class diagram; Use
Case Model: As a result of (4) the system application is declared abstractly in
a UML use case diagram. The model is supported by a UML sequence diagram
to explain the message flow of the system clearly; Ontology Model: As a result
of (5) all important knowledge blocks and common vocabulary are categorized
in a UML class model.

The design phase consists of the activities (6) ‘Identification of MRs’, (7)
‘Specification of norms for MRs’, (8) ‘Development of plans for MRs’, (9) ‘Deriva-
tion of interactions between MRs’, (10) ‘Specification of services of MRs’, (11)
‘Identification of ARs’, (12) ‘Specification of norms for ARs’, (13) ‘Development
of an analysis for ARs’, (14) ‘Development of plans for ARs’, (15) ‘Derivation of
interactions between ARs’, (16) ‘Specification of services of ARs’, (17) ‘Develop-
ment of interaction protocols’, (18) ‘Identification of AE’ and (19) ‘Deployment
of AE’. The resulting models of this phase are: Managed Role Model: As a
result of (6) the MRs are identified and modelled similar to a class in a UML
composition structure diagram; MR Norm Model: As a result of (7) the norms
(containing goals, activation and deactivation events) of MRs are specified and
modelled similar to a class in a UML class model; MR Plan Model: As a
result of (8) the plans (containing input and output parameters, actions and

162 B. Bauer and H. Kasinger

interactions, and events) of MRs are modelled in a UML activity diagram; MR
Interaction Model: As a result of (9) the interactions between MRs are de-
rived and the exchanged objects (information carriers) are modelled in a UML
sequence diagram; MR Service Model: As a result of (10) the signature of
provided services (containing visibility, input and output parameters) of a MR
are specified and modelled similar to a class in a UML class diagram again.

The results of activities (11), (14), (15) and (16), the Autonomic Role
Model, the AR Plan Model, the AR Interaction Model and the AR
Service Model are similar to the corresponding MR models. Further resulting
models are: AR Norm Model: As a result of (12) and parallel to (11) the norms
for ARs are specified according to desired self-* properties. Notice, a norm of an
AR realizes a part of a certain self-* property of a system; AR Analysis Model:
As a result of (13) the monitoring and analysis of events and data by an AR is
modelled in a UML activity diagram as a premise for the right choice of a plan;
Interaction Protocol Model: As a result of (17) the interaction protocols
for the (direct/indirect) interactions between all types of roles are specified in
a UML sequence diagram; Autonomic Element Model: As a result of (18)
MRs and ARs are combined into AEs that are modelled similar to a class in
a UML composition structure diagram again; Autonomic Element Instance
Model: As a result of (19) the deployment of the AEs on to resources is defined
similar to a UML deployment diagram. Note, activities (11)-(16) are logically
separated and represent the way of self-* property development.

Fig. 4. MDA-based development process models for agent and OC systems

5 Case Study: Manufacturing Control

In order to evaluate the development process we have redesigned an existing MAS
and added different self-* properties according to the proposed methodology
to obtain an OCS. We will only illustrate activities (12), (13) and (14) by a
short example to show in what way an existing MAS can be extended with
self-optimization.

AOSE and Organic Computing - How Can They Benefit from Each Other? 163

5.1 A MAS Production Planning System

Todays manufacturing industry is facing a major shift from a supplier’s to a
customer’s market. Thus, the requirements on the manufacturing process itself
increase permanently: Instant demand satisfaction, higher product variety and
cost reducing are just some of them. Thus, Valckenaers et al. [29] developed a
multi-agent coordination and control system based on stigmergy (coordination
mechanism based on indirect communication, e.g. used by food foraging ants).

The system consists of three different types of agents: Resource agents, each
assigned to a machine or switch in the manufacturing plant, order agents, each
routing a product instance through the plant while reserving processing time on
appropriatemachines, andproductagents, each containing the constructionplan
for a specific product. In addition, resource and order agents can make use of in-
telligent ant agents propagating and collecting information throughout the plant.

The coordination mechanism works as follows: resource agents assigned to
machines permanently send ant agents opposite to the production line through
the plant. These ants deposit the processing capabilities of their sending resource
agent/machine as so called pheromones on every switch they cross. Order agents
also create ant agents in a certain interval and send them down the production
line. Based on the deposited pheromones on a switch, the ants decide to which
machine they will travel next. When they arrive at this machine, they request
an offer for a specific process step (e.g. duration, earliest start) and, as soon as
they receive the offer, they continue travelling. If the end of the plant is reached,
the ants return to their order agents and report their chosen route. An order
agent decides which of its ants has found the best way and routes its product
instance accordingly.

5.2 Adding Self-optimization

The existing system already copes with unforeseen machine breaks and short-
termed changes. Nevertheless, the system can be improved by certain self-* prop-
erties, e.g. self-optimization.

Consider a single resource agent simultaneously responding to a multitude of
offer requests of present ant agents, the response time can exceed in a way that

Fig. 5. Norm for self-optimization

164 B. Bauer and H. Kasinger

Fig. 6. Monitoring and analysis of events

the performance of the complete production system may slow down. In order to
prevent this situation we added an autonomic role AR-resource to the managed
role MR-resource which measures the response time and, if needed, informs the
order agents to reduce their ant agent generation interval to minimize the amount
of concurrent offer requests. For the measurement, the norm “offer request re-
sponse time optimization” (see Fig. 5) has been specified for the AR-resource as
result of (12). This “obligation” forces the AR to achieve the goal “offer request
response time in bounds”, is activated by the event “offer request response time
out of bounds” and deactivated by the event homonymous to the goal.

To provide the AR-resource with the ability to analyse if this norm is activated
or not, the monitoring and analysis (see Fig. 6) of specified events is modelled as

Fig. 7. Plans for Autonomic Roles

AOSE and Organic Computing - How Can They Benefit from Each Other? 165

result of (13). The AR-resource listens to offer request events and offer sent
events fired by the MR-resource. Within the analysis action, the response time
is determined according to given rules (not modelled in this figure) and - depend-
ing on the result - a corresponding event is fired. By catching this event the AR-
resource can determine whether or not the above norm is activated or deactivated.

If the analysis marks the norm as activated, the AR-resource has to choose a
plan for informing the order agents to reduce their generation interval. Such a
plan is modelled within an action (see Fig. 7) as result of (14). The AR-resource
generates an offer request adjustment desire and sends it to every order
agent or rather to every autonomic role AR-order (similar to a broadcast),
possibly propagated by ant agents again. Such an AR in turn generates an offer
request adjustment instruction for its controlled managed role MR-order
which on its part slows down the generation interval (not modelled in this figure).

6 Conclusion, Open Issues and Outlook

As described in this paper, agent systems and OC systems have many conceptual
commonalities that result in benefits for both AOSE and OC. On the one hand,
open agent systems can be developed that exhibit OC properties; on the other,
OC can make use of the experiences in AOSE and adopt existing concepts.

The open issues in this context for us are: Where are the borders between
an autonomic element, an agent and a multi-agent system? How to deal with
the emergent behaviour of the system such that no unintentional behaviour of
the system occurs? How to define emergency strategies if the system is out of
control, with regard to the emergent behaviour? Should we have an hierarchi-
cal composition, like grouping autonomic elements to autonomic communities,
view these communities as autonomic elements and grouping them to autonomic
communities, etc.? How to model self-* properties in the local as well as in the
global sense and how does the local behaviours result in a global behaviour?
How to integrate interaction (communication protocols) in such OC systems?
What is the appropriate middleware/platform for OC systems (web services,
grid computing middleware, agent platforms, . . .)?

In this context our vision is to combine different but related technologies,
like grid computing, semantic web, (semantic) web services and web service
composition, P2P, business processes and OC with its self-* properties, since
these technologies deal with similar aspects (service provisioning, service access,
service and data distribution, service and resource work loading, processes in
distributed environments) and use similar standards. Finally, the methodology
has to be evaluated, validated and compared against other software engineering
methodologies in the areas of AOSE and OC.

References

1. Jennings, N.R., Sycara, K., Wooldridge, M.J.: A Roadmap of Agent Research and
Development. Autonomous Agents and Multi-Agent Systems, 1(1) (1998) 7–38

2. Wooldridge, M.: An Introduction to MultiAgent Systems. John Wiley & Sons,
Chichester, England, 2002.

166 B. Bauer and H. Kasinger

3. Huhns, M.N.: Multiagent Systems. Tutorial at the European Agent Systems Sum-
mer School (EASSS 99) (1999)

4. Organic Computing website: http://www.organic-computing.org
5. Horn, P.: Autonomic Computing: IBM’s Perspective on the State of Infor-

mation Technology. http://www.research.ibm.com/autonomic/manifesto/ auto-
nomic computing.pdf (2001)

6. Müller, J. P.: The design of intelligent agents. A layered approach. Lecture Notes
of Artificial Intelligence, Volume 1177. Springer-Verlag (1996)

7. Huhns, M.N., Singh, M.P.: Agents and Multiagent Systems: Themes, Approaches,
and Challenges. Readings in Agents, Morgan-Kaufmann (1998), 1–24

8. FIPA: http://www.fipa.org
9. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an Agent Communica-

tion Language. Proceedings of the Third International Conference on Information
and Knowledge Management (CIKM’94). ACM Press (1994) 456–463

10. IBM: An architectural blueprint for autonomic computing. http://www-
03.ibm.com/autonomic/pdfs/ACBP2 2004-10-04.pdf (2004)

11. Di Marzo Serugendo, G., Gleizes, M.-P., Karageorgos, A.: Self-Organisation in
Multi-Agent Systems. AgentLink News (16) (2004) 23–24

12. Bauer, B., Müller, J.P.: Methodologies and Modeling Languages. In: Luck M.,
Ashri R. D’Inverno M. (eds.): Agent-Based Software Development. Artech House
Publishers, Boston, London (2004)

13. Iglesias, C.A., Garijo, M., Centeno-González, J.: A Survey of Agent-Oriented
Methodologies. In Proceedings of Fifth International Workshop on Agent Theo-
ries, Architectures, and Languages (ATAL 98) (1998) 317–330

14. Kinny, D., Georgeff, M., Rao, A.: A Methodology and Modeling Technique for
Systems of BDI Agents. 7th European Workshop on Modelling Autonomous Agents
in a Multi-Agent World (MAAMAW 96), LNAI 1038, Springer (1996) 56–71

15. Glaser, N.: Contribution to Knowledge Modelling in a Multi-Agent Framework
(the Co-MoMAS Approach). PhD thesis, L’Universtité Henri Poincaré, Nancy I,
France (1996)

16. Iglesias, C.A., Garijo, M., Centeno-González, J., Velasco, J.R.: A methodological
proposal for multiagent systems development extending CommonKADS. In Pro-
ceedings of 10th Knowledge Acquisition for Knowledge-Based Systems Workshop
(KAW 96), Banoe, Canada (1996)

17. Wooldridge, M., Jennings, N.R., Kinny, D.: The Gaia Methodology for Agent-
Oriented Analysis and Design. Journal of Autonomous Agents and Multi-Agent
Systems, 3 (3) (2000) 285–312

18. Juan, Th., Pearce, A., Sterling, L.: ROADMAP: Extending the Gaia Methodology
for Complex Open Systems. In Proc. of the First Int. Joint Conf. on Autonomous
Agents and Multiagent Aystems (AAMAS 02), ACM Press (2002) 3–10

19. Omicini, A.: SODA: Societies and Infrastructures in the Analysis and Design Of
Agent-based Systems. In Proceedings of Agent Oriented Software Engineering
(AOSE 00), LNCS 1957, Springer (2000) 185–193

20. Kinny, D., Georgeff, M: Modelling and Design of Multi-Agent Systems. Intelli-
gent Agents III: Proceedings of Third International Workshop on Agent Theories,
Architectures, and Languages (ATAL 96), LNAI 1193, Springer (1996)

21. Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Massonet, P., Leal, F.,
Chainho, P., Kearney, P., Stark, J., Evans, R.: Agent Oriented Analysis using
MESSAGE/UML. In Proceedings of the Second International Workshop on Agent-
Oriented Software Engineering II (AOSE 01), Springer (2002) 119–135

AOSE and Organic Computing - How Can They Benefit from Each Other? 167

22. Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J., Perini, A.: Tropos:
An Agent-Oriented Software Development Methodology. Journal of Autonomous
Agent and Multi-Agent Systems, 8 (3) (2004) 203–236

23. Padgham, L., Winikoff, M.: Developing Intelligent Agent Systems: A Practical
Guide. John Wiley & Sons (2004)

24. Busetta, P., Rönnquist, R., Hodgson, A., Lucas, A.: JACK Intelligent Agents -
Components for Intelligent Agents in Java. AgentLink News (2) (1999) 2–5

25. DeLoach, S.A., Wood, M.F., Sparkman, C.H.: Multiagent Systems Engineering.
The International Journal of Software Engineering and Knowledge Engineering, 11
(3) (2001) 231–258

26. Cossentino, M., Potts, C.: A CASE tool supported methodology for the design
of multi-agent systems. In Proceedings of the 2002 International Conference on
Software Engineering Research and Practice (SERP’02), Las Vegas, USA (2002)

27. De Wolf, T., Holvoet, T.: Towards a Methodology for Engineering Self-Organising
Emergent Systems. In Self-Organization and Autonomic Informatics (I), Volume
135 of Frontiers in Artificial Intelligence and Applications. H. Czap, R. Unland,
C. Branki and H. Tianfield (editors), pp 18 - 34. Proceedings of the International
Conference on Self-Organization and Adaptation of Multi-agent and Grid Systems
(SOAS 2005), Glasgow, Scotland, UK.

28. Model Driven Architecture website: http://www.omg.org/mda
29. Valckenaers, P., Van Brussel, H., Kollingbaum, M., and Bochmann, O.: Multiagent

coordination and control using stigmergy applied to manufacturing control. Multi-
Agent Systems and Applications, LNAI 2086, Springer (2001) 317–334

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 168 – 183, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Agent-Oriented Model
of a Dynamic Engineering Design Process

Vadim Ermolayev3, Eyck Jentzsch1, Oleg Karsayev2, Natalya Keberle3,
Wolf-Ekkehard Matzke1, Vladimir Samoylov2, and Richard Sohnius1

1 Cadence Design Systems, GmbH, Feldkirchen, Germany
{wolf, jentzsch, rsohnius}@cadence.com

2 SPII RAS, Saint Petersburg, Russia
{ok, samovl}@iias.spb.su

3 Zaporozhye National Univ., Zaporozhye, Ukraine
vadim@ermolayev.com, kenga@zsu.zp.ua

Abstract. One way to make engineering design effective and efficient is to
make its processes flexible i.e. self-adjusting, self-configuring, and self-
optimizing at run time. This paper presents the descriptive part of the Dynamic
Engineering Design Process (DEDP) modelling framework developed in the
PSI1 project. The project aims to build a software tool to assist managers to
analyse and enhance the productivity of the DEDPs through process
simulations. The framework incorporates the models of teams and actors, tasks
and activities as well as design artefacts as the major interrelated parts. DEDPs
are modelled as weakly defined flows of tasks and atomic activities that may
only “become apparent” at run time because of several presented dynamic
factors. The processes are self-formed through the mechanisms of collaboration
in the dynamic team of actors. These mechanisms are based on contracting
negotiations. DEDP productivity is assessed by the Units of Welfare collected
by the multi-agent system that models the design team. The models of the
framework are formalized in the family of PSI ontologies.

1 Introduction

It is widely accepted that the processes of engineering design differ from
manufacturing processes by the fact that they “… are frequently chaotic and non-
linear, and have not been well served by project management or workflow tools” (cf.
[1]). The primary reason is that the ability to design is one of the signatures of human
intelligence that can hardly be framed by the rigid and static bounds of pre-defined
business processes. Therefore, one of the promising ways to make engineering design
effective and efficient is to manage its processes in a flexible manner i.e. make them
self-adjusting, self-configuring and self-optimizing at run time. By doing so, we may
enhance the degree of coherence among the interrelated activities and make them
better coordinated and therefore more productive. Hence, the model of a DEDP

1 Performance Simulation Initiative (PSI) is an R&D project of Cadence Design Systems

GmbH.

 An Agent-Oriented Model of a Dynamic Engineering Design Process 169

should be at least capable of accounting for the many factors that make a DEDP
“chaotic and non-linear” and, at most, to eliminate them as much as possible. Using
software agents for optimizing DEDPs at runtime in dynamics is natural. Indeed, an
agent by definition is capable of acting autonomously, pro-actively and rationally in
pursuit of the desired state of affairs. Therefore, it may be used as the locus of self-
configuration and self-optimization in a DEDP. Provided that we have built such a
fine-grained, agent-oriented DEDP modelling framework, we may implement
software tools allowing to assess a process and, ultimately, to optimize DEDPs in
terms of engineering design productivity.

Improving DEDPs in terms of engineering design productivity is the focus of the
PSI project. The project has prototyped a software tool that provides for the
assessment of accomplished DEDPs and the prediction of the characteristics of
planned DEDPs through their simulation. This simulation prototype has been
implemented as a multi-agent system [2]2 which models: designers’ teams working on
projects by dynamically formed teams of software agents; DEDPs performed by these
teams by tasks; the results of these processes by design artefacts. The knowledge
about the performed processes is formalized and stored in the PSI testbed in terms of
the PSI family of ontologies presented in this paper. Thus, we obtain an incremental
collection of the actors’ experience, which is further on re-used to make simulation
results more reliable.

The paper is structured as follows: Section 2 discusses modelling requirements
justifying the necessity of coping with the dynamic character of DEDPs. Section 3
outlines our approach to assessing the productivity of DEDPs. Section 4 presents the
ontological model of a DEDP designed as a family of ontologies. Section 5 deals with
the epistemological and usage aspects of PSI ontologies. It also briefly reports on the
evaluation of the presented ontologies. Section 6 surveys the related work and
analyses the contributions of the presented DEDP model. Section 7 concludes the
work.

This is a substantially revised version of ourworkshop paper [3]. The revision has
been undertaken to present the advancement we have achieved in the development of
PSI ontologies and is based on their specification version 1.5 [4]. The negotiation part
of this framework uses PSI Generic Negotiation Ontology [5].

2 Modelling Principles

A DEDP is understood as a weakly defined engineering design workflow. It aims to
achieve its goal (the design artefact comprising a certain set of its representations) in
an optimal way in the terms of result quality and gained productivity. It is therefore
clear that the following entities are involved in the process: actors, who form design
teams and collaboratively do the work in the flow; activities, which are the atomic
parts of a workflow defined by the technology used in the house; tasks, which are the
representations of hierarchical clusters of activities; and design artefacts, which are
the results of engineering design activities. Hence, activities are defined by the design

2 In this paper we omit the description of this important part of our research due to space

limitations.

170 V. Ermolayev et al.

Actor
? ? …

Task

Generic Activities

Task Task

Actor

Design
Artifact

Mechanism

assesses allocates

manages

commitsTo

executes
transforms

dependsOn

Software
Tool

Resource Shared
Static

Subjectively
Static

DynamicTeam
joins

Generic Tasks

…

…

Activity

Fig. 1. Static and dynamic components of the modeling framework

technology and are well known before a DEDP starts. They form the “basket” of
activities (Fig. 1), are uniformly understood and used by any actor and, therefore, may
be considered generic. Another static shared “basket” is the one of generic tasks –
please refer to the description below. Other elements may only “become apparent” at
run time because:

− A generic activity may be executed only if it is assigned to an actor and is applied
to a certain design artefact. Such an activity differs from a generic one by having
particular associations to an actor and a design artefact. Task – Activity Ontology
contains two separate concepts for a generic activity and an activity.

− Tasks are also distinguished as generic and as actually performed in the presented
ontologies. A generic task is a shared static template defining a typical
transformation of a design artefact from an initial set of representations to the
target state. This transformation can be achieved by different combinations of
generic activities. A task is subjectively dynamic because of its relationship to the
specific actor who performs the task. This relationship is resolved as the result of
the task assignment to an actor which happens at run time, when the DEDP is
performed. Task – Activity Ontology contains two separate concepts for a generic
task and a task.

− A task is the model of the emerging hierarchical structure of a DEDP or the part of
a DEDP. It may contain tasks and activities as its integral parts. The main purpose
of a task is to arrange the assignment of its sub-tasks and activities. This
arrangement is done by the actor (having the function of the task manager) who
performs the task. The assigned sub-tasks may be consequently arranged in the
similar manner by their task managers until the “leaves” of the hierarchical
structure (the activities) are reached. These activities are assigned to and executed
by the actors. By formalizing the above, we define the model of the cascade
decomposition of tasks and, ultimately, a DEDP at run time.

− The number of activity loops is not defined in advance. It depends on the quality
checks at intermediate steps. Changing the number of activity loops may cause
changes in activity duration. In turn, it may cause delays of the dependent tasks and
activities with associated penalties for deadline violation, for example.

 An Agent-Oriented Model of a Dynamic Engineering Design Process 171

− The duration of activity execution is not defined in advance. Different actors are
able to spend different capacities to execute the same activity at a certain time.
Actors may perform the same activity with different efficiencies (productivities –
Section 3). An activity may remain idle while waiting until the pre-conditions have
been triggered. Idle state duration can’t be computed in advance because the
preconditions may be formed by other activities executed by other actors.

− An actor is chosen by the task manager when s/he decides to assign the activity. In
the PSI framework contracting negotiations are the means of optimally choosing
the actors to perform the tasks. For the planning phase it means “optimally” from
the point of view of the project manager. The DEDP model incorporates the actor
model and the means to arrange actors’ collaboration through peer assessment and
negotiations.

The abovementioned factors provide certain degrees of freedom3 in DEDP
planning, re-planning, scheduling, re-scheduling and execution. In PSI a DEDP is
never rigidly planned before it starts. The decisions of how to continue its execution
are made each time it reaches a certain state in the state space. These decisions are
made by the design team members who manage the tasks that continue the process.
According to the aforementioned properties of a DEDP, different paths through the
state space may be more productive or less.

As shown in Fig. 1, a DEDP has components that differ along the dimensions of
their variability. The first dimension is the dynamic character ranging from static, i.e.
pre-defined for all possible DEDPs, to dynamic, i.e. subjected to changes in a DEDP.
Another dimension is the sphere of visibility or commitment. This dimension ranges
from shared, i.e. having the same meaning and instances for all DEDP participants, to
subjective, i.e. having specific instances for different actors (though in the terms of a
common ontology). Static shared DEDP components are generic activities, associated
software tools and resources. The model of a DEDP assumes that the processes are
assembled (ultimately) of atomic activities, which are the pieces of the design
technology used by the company. The technology normally provided by a design
support unit often suggests the usage of a specific software tool to perform an activity.
The execution of a given activity consumes certain resource instances in given
quantities. The model of a design process is based on the following assumptions: a
DEDP is initiated by an external influence providing a goal to a certain actor. This
goal is subjectively transformed to a task according to the knowledge of this actor.
The actor uses his subjective knowledge about sub-tasks and activities to decompose
a task. The actor may decide to perform a sub-task or to execute an activity of a
decomposed task themselves or to hire another actor for a price in Units of Welfare
(Section 3) using the available collaboration mechanism (contract net negotiations in
PSI). In the latter case, the sub-task becomes the goal of another peer-actor who
commits to performing the corresponding task by striking the contract deal. Hence,
the appearance of actor-task combinations in a DEDP is subjectively dynamic. The
mechanism of incorporating new actors to the process and the model of the design
team are subjectively dynamic as well, since they depend on the decisions and choices

3 It should be noted here that this freedom implies more complications in planning, scheduling

and the necessity to deal with a finer grained DEDP model.

172 V. Ermolayev et al.

taken at run time by the actors the state of which can change in the process. The rules
of encounter of the mentioned mechanism are shared static and provide the horizontal
laws for the system [6, 7].

A design artefact is a subjectively dynamic outcome of the process since it is
formed out by a subjectively dynamic collaborative team of actors. However, the
proposed layering allows reaching this effect through applying shared static atomic
activities, though in subjectively dynamic combinations. For an activity, a design
artefact is both the material input and the result of its execution.

The actors who perform a task and initiate collaboration are Task Managers. Their
rational goal with respect to the performed task is to choose the next step on the
process path as productively as possible. Of course, for that, an actor needs a sort of
productivity assessment model.

3 Assessing Productivity by the Earned Units of Welfare

Productivity by its very nature is one of the most important economic metrics and is
defined by the ratio of the produced output (value) to the consumed input (value). As
such, it is an integral characteristic of any transformation process, e.g. a DEDP. This
neo-classical definition of productivity imposes rigid requirements on the process
under consideration. The homogeneity of inputs and outputs is the most severe one
with respect to engineering design. Known productivity measurement methodologies
in engineering design ground themselves on the assessment of design complexity
characteristics in the creation of homogeneous input- and output-measures. They do it
by applying heuristic weights to compared parameters (e.g. the normalized transistor
count4 in Semiconductor and Electronic Systems (SES) design, FP, KSLOC counts5
in software design etc.). But the fundamental problem of this approach is that the
complexity characteristics need to be invariant both to the type of a process and to the
transformed design artefact. If those characteristics are not invariant, measurement
scales tend to lack well-defined units. Consequently, the properties of the
measurement scale, the labelling of the units and the interpretation of the values
derived are of very limited practical use. Furthermore, in non-deterministic
environments such measures are not very reliable. It is therefore important to build a
measure that addresses the homogeneity requirement with respect to inputs and
outputs and that is invariant to the dynamic characteristics of a process (Section 2).
Such a measure may be based on the integral process success indicators like, for
example, the ratio of the Earned Value to the Planned Value or to the Actual Cost at a
Sign-off Stage of the process. This implies that productivity of a DEDP may be
assessed by the value produced and accumulated by designers in a team. The more
value produced by a designer, the more relatively productive s/he is. It is also true in
the longer term if several DEDPs are taken into consideration. Hence, more
productive designers are characterized by the higher volume of accumulated Units of
Welfare (UoW). It is assumed in PSI that designers receive incentive which is
adequate to their produced value. The characteristic of UoW assets is invariant to all

4 Measuring IC and ASIC Design Productivity. White Paper. Numetrics Management Systems,

5201 Great America Parkway, Suite 320 Santa Clara, CA 95054, 2000.
5 FP stands for Functional Point, KSLOC – for kilo lines of source code.

 An Agent-Oriented Model of a Dynamic Engineering Design Process 173

Fig. 2. High-level structure of the family of PSI ontologies

aforementioned dynamic features of an engineering design process. It is a normalized
scalar measure, which, by its semantics, is similar to the notion of Utility that is used
in Distributed Rational Decision Making. UoW earning and spending mechanisms in
PSI are based on contracting deals struck in several types of negotiations [7].

4 Overview of PSI Ontologies

If we intend to model an arbitrary process of doing something (for example, a design
process), the basic building blocks for such a model would be: a goal – the state of
affairs to be reached; an action; an object to apply actions to; a subject who applies
actions to objects; an instrument to be used by a subject to execute actions; and an
environment in which the process occurs. The structure of the PSI ontologies family
reflects this approach (Fig. 2). It comprises five tightly linked major ontologies which
in UML representation are grouped in separate packages: the Actor Ontology (a
subject), the Project Ontology (an environment), the Task-Activity Ontology (an
action), the Software Tool Ontology (an instrument) and the Design Artefact
Ontology (a goal and an object). The classes shown within the packages in Fig. 2
identify the major concepts of the respective ontologies.

This grouping of course reflects the principles of the modelling approach
(Section 2). Indeed, the outline given in Fig. 1 and the high-level picture of the family
of PSI ontologies have many features in common.

4.1 Actors, Beliefs, Collaboration, Design Teams

Actors are the models of designers who form Design Teams to perform design
Projects (Fig. 36). As the members of a Design Team they have certain Commitments
with respect to the Design Team and to the Project under performance. Actors
perform (i.e. manage) Tasks and execute Activities, which transform certain Design

6 Yellow UML packages in Fig. 3, 4, 5 represent the ontologies that are external to the

described one.

174 V. Ermolayev et al.

Artefacts. Actors use Software Tools to execute Activities and have certain Attitudes
to these Software Tools. Actors consume Resources to execute Activities. One of the
important aspects of the Actor model is the representation of Actor’s Ability to
perform Tasks, execute Activities and perform organizational Roles (like Front-End
Designer, Back-End Designer etc.). With respect to an abstract Generic Activity, a
Generic Task and a Role, we are also interested if an Actor is able (and to what
extent) to execute the atomic action, or to perform a task or a role. The association
concepts of an AbilityWrtActivity, an AbilityWrtTask and an Ability provide the
means for the answers. The Actor ontology also describes Communication Channels
that emerge among different Actors who collaboratively work on different parts of the
specific Design Artefact. The reason for such collaboration is the peculiarity of the
structure of the Design Artefact. Collaboration occurs among the Actors who work on
parts of the Design Artefact having common Interfaces. Another kind of collaboration
among the members of a Design Team is their coordinated performance of Tasks and
execution of Activities. This teamwork is arranged via contracting negotiations. An
actor playing the Role of a task manager intends to outsource a Task to one of his or
her peers. The following two aspects constrain the set of peer-Actors to the sub-set of
the believed performers: a task manager believes that the believed performers are (i)
capable to perform the Task and (ii) credible enough to trust the performance of the
Task to them. These Beliefs are modelled by the Belief concept of the Actor ontology.
Beliefs are the important part of the negotiation mechanisms and are related to the
concepts of Negotiation Outcomes and Negotiation Strategies of the Generic
Negotiation ontology [5]. The Beliefs of the negotiation participants are updated
according to the outcome of the negotiation. Beliefs are used by Actors to adjust their
negotiation strategies providing the assessments of the peers’ capabilities and
credibility [6]. An Actor becomes the contractor for the negotiated generic task or
generic activity in result of such a negotiation. He is the only one of believed
performers who receives the negotiated Task (Activity) and commits to performing
(executing) it as a member of the Design Team. A Design Team is the bridge
providing the relationship of a DEDP to the Project, which is implemented
performing this DEDP.

Fig. 3. Outline of the PSI Actor ontology

 An Agent-Oriented Model of a Dynamic Engineering Design Process 175

4.2 A Project as the Environment of a DEDP

The Project ontology describes the environment of a DEDP: an organizational
structure around its performance. This ontology at the high level resembles the
traditional project planning perspective, which states that a process is performed by a
team (of Actors) and has a collection of Resources associated with it. A Process is
viewed as a sequence of transformations of the target Design Artefact. These
transformations may be viewed as the transitions between the States of a Design
Artefact. The objective of each transformation is to develop the increment of a Design
Artefact in a certain Representation. The States in this transformation process are
therefore characterized by the addition of the certain Design Artefact Representations
to the Design Artefact under transformation. In the process of this transformation, a
Design Artefact receives its incremental “slices” at particular States. One such “slice”
bijectively corresponds to one instance of a Design Artefact Representation.
Representations are booked to the Project Memory. Please see also Section 4.4.

4.3 Tasks, Activities, Co-execution, and Dependencies

The purpose of the Task-Activity ontology (Fig. 4) is to provide the descriptive
framework for modelling the emerging dynamic hierarchical structure of a design
process.

As outlined in the description of the modelling approach, only Activities are
executed. An Activity is understood as the atomic purposeful action thatis applied to a
certain Design Artefact and results in its transformation from one State to another
State adding a Representation “slice” to it. For example, the RTL7-Design Activity
uses a Design Artefact in the specification representation and transforms this Design
Artefact by adding the RTL representation. However, an Activity applied to different
Design Artefacts results in different outcomes. Indeed, the RTL-Design Activity
applied to FB1 or to FB2 – instances of a Design Artefact – will have FB1 in the
target representation of RTL or FB2 in the target representation of RTL respectively as
its outcomes. On the other hand, the same activity, even applied to the same FB1 but
executed by different Actors, may require different efforts to be spent to achieve its
outcome. That is why the ontology introduces the concept of an Activity assuming its
particular association with an Actor and a Design Artefact.

A Generic Activity is the more abstract concept that denotes or “shapes-out”, as the
relationship name suggests, a purposeful, atomic action. This action is actually the
transformation that is configured by the State Pattern of an (intended) Design
Artefact. This State Pattern is the template that configures the inputs and outputs of
the related Generic Activity. These abstract inputs and outputs may receive physical
materialization as the particular instances of a Design Artefact (or its sub-concepts)
only when the Activity corresponding to the configured Generic Activity is executed.
The action specified by the Generic Activity may be performed using a Software Tool
– either one specific, or several alternative ones. One more important aspect captured
by the context of a Generic Activity is the relationship to co-executed activities.
The model provided by the ontology allows specifying that a pair of activities may be

7 RTL stands for Register Transfer Level.

176 V. Ermolayev et al.

Fig. 4. Outline of the PSI Task-Activity ontology

executed in an arbitrary sequence or should be executed in parallel. For example, the
RTL Debug and RTL Verification activities are to be executed in parallel because
executing only one of them makes no sense according to the design technology. This
part of the model is used in resolving the decomposition of Generic Tasks to Generic
Activities at the Work Breakdown Structure generation phase of project planning.

The concept of an Activity refines the concept of a Generic Activity by providing
the new knowledge about the assigned Actor and the transformed Design Artefact
through its relationships. A Generic Activity in contrast to an Activity is the abstract
specification of an atomic action. These atomic actions are executed by Actors as
Activities aimed to transform Design Artefacts in source representations into Design
Artefacts in target representations.

The concepts of a Generic Task and a Task have the similar relationship to each
other. A Task is performed (managed) by the certain assigned Actor. However, the
semantics of this pair of concepts is different from the ones describing activities. A
Task is the concept that (i) describes the dynamic hierarchical nature of a design
process; (ii) may contain sub-tasks of lower granularity as its integral parts; (iii) may
wrap a single or a set of Activities under the umbrella of the single Actor who is the
task manager. A Task refines the concept of an (abstract) Generic Task by being
related to an Activity and an Actor. A Generic Task is the abstract template of a
composite action (in difference to the atomic abstract action modelled by a Generic
Activity). Tasks may also be viewed as the abstract descriptions of capabilities used
to form Roles.

The presented Task-Activity model handles the dependencies among Tasks and
among Activities assuming that these dependencies are strong [3]. These depen-
dencies are resolved by using the knowledge about the initial and target states of the

 An Agent-Oriented Model of a Dynamic Engineering Design Process 177

associated Design Artefacts (Section 4.4). A representation of the Design Artefact
reached in a particular state (by the execution of certain Activities) is required by the
dependent Activity. This state also triggers the Precondition of the dependent Task if
the dependencies among Tasks are analysed. A Task results in certain Post-Effects. A
Post-Effect is the event of reaching the particular state by the processed Design
Artefact (DA). A similar model is used for capturing the dependencies among Generic
tasks or Generic Activities. The difference is in the semantics of the corresponding
concepts. For example, a DAStatePattern does not denote the state(s) of a Design
Artefact, but is rather the template used for the configuration of the intended inputs
and outputs of a Generic Activity.

As described in Section 4.1, Generic Tasks and Generic Activities are used as
Negotiation Issues in the negotiations on the assignment of Tasks and Activities to
certain Actors.

4.4 Design Artefacts

The central concept of the Design Artefact ontology (Fig. 5) is Design Artefact – the
goal and the object of a design process. At a high level, the ontology focusses on
the following aspects of this model: (i) a Design Artefact as the object of the
transformation process is related to the executed actions i.e. to the concept of an
Activity; (ii) a Design Artefact (more exactly the Functional Block of the topmost
level) as the goal of the process is materialized in a Chip8 – the terminal state of
affairs to be achieved; (iii) a Design Artefact as a complex structure comprising
different integral parts in different representations may induce collaboration of
different Actors by indicating common Interfaces of its integral parts; (iv) the trace of
Design Artefact transformations and the related states are recorded into the Project
Memory. A Project Memory, therefore, provides a link of a Design Artefact
transformation trace to the design process environment.

From the point of view of domain grounding, the ontology specifies that a Design
Artefact comprises the hierarchy of Functional Blocks as the structural elements of
designed functionality. Functional Blocks are generally viewed as “grey boxes” with
functional subdivision defined by the taxonomy of Design Artefact Types. The top-
level examples of these types are: digital, analog, mixed-signal. The taxonomy of
types also configures the Applicability of Generic Tasks and Generic Activities to a
Design Artefact. The reason is that the technology and, therefore, the subsets of
applicable tasks and activities are different for different types of design artefacts.

The instances of a Functional Block are complemented by the instances of the
other subclasses of a Design Artefact – Documentations, TestBenches and
Verification Runsets – the means to document, test and verify designs according to
the provided engineering design technology.

8 Design Artefacts may not be materialized in a Chip in some design processes. For example, a

process having the goal to design Soft IP will have a different Design Artefact Representation
(GDS2 or NetList) as the terminal one. Such Soft IPs are often released in Libraries for
further re-use in different design processes and projects. However, Design Artefacts in
Semiconductor and Electronic Systems domain are designed to be sooner (in the current
process) or later (in another process) materialized in a Chip.

178 V. Ermolayev et al.

Fig. 5. Outline of the PSI Design Artefact ontology

Design Artefacts are used as Negotiation Issues in a DEDP. The typical cases are:
(i) an Actor looks for a Soft IP to be re-used in his current design and negotiates the
terms of usage with the owners of this IP; (ii) a Design Artefact is one of the issues in
the multi-issue negotiation on the assignment of a Task to an Actor.

4.5 Software Tools

The Software Tool ontology focusses on the description of the two aspects of an
instrument used by Actors to execute Activities. The first aspect is the instrument
itself. A Software Tool is used by an Actor to execute an Activity. The second aspect
is the usefulness of a Software Tool. Different Actors while using the same Software
Tool may be somewhat productive. Therefore, Actors may have different Attitudes to
a certain Software Tool. Though these subjective attitudes are important they, if
analysed separately, do not provide a reliable judgment. Therefore the average
impression provided by a Design Team may be more useful for Evaluation purposes.
A Software Tool has these relationships to the concepts of an Actor and a Design
Team.

5 PSI Ontologies: Epistemology, Usage and Evaluation

The descriptive part of the DEDP modelling framework has been initially designed as
a family of ontologies and coded in a set of UML class diagrams. Further
formalization and implementation work has been performed in the way aligned with
scenarios of ontology usage identified by Uschold and Jasper [10]. PSI ontologies are
used [2] for authoring DEDP logs recorded to the PSI testbed, for specifying the
design of the DEDP-PMS simulator software and as shared ontologies for agent
communication at run-time. Ontology usage aspects influenced the choice of the

 An Agent-Oriented Model of a Dynamic Engineering Design Process 179

formal languages for coding the ontologies. The ontologies were coded in OWL-DL9.
This language was chosen because it is one of the de-facto ontology specification
standards. The second reason for choosing OWL-DL was that its expressive power is
similar to that of the internal mental model specification language (MMSL) of
MASDK [11], which has been used for specifying the design and prototyping of the
PSI prototype – DEDP-PMS. From an epistemological viewpoint, the transformation
of the PSI ontologies to OWL-DL representation required the change of UML
associations to constructs with binary relationships with restrictions. This
transformation has been performed manually with the help of the Protégé 3.010
ontology editor as described in [4].

DEDP-PMS11 has been implemented to evaluate the modelling framework, to
experiment with several planning and scheduling algorithms, and to assess the
feasibility of building a software tool for DEDP optimization using their productivity
assessment. Two rounds of evaluation experiments have been performed. The first
round has been done over the two simplified test cases (the DEDPs for the Digital and
the Analog DAs) and used version 1.0 of the PSI family of ontologies. The second
round used version 1.4 of the PSI family of ontologies and has been applied to a real
world case study [8]. In the first round of evaluation experiments [2], the simulator
has been used in two application modes: playback and predictive simulation. In
playback mode, the simulation is used to assess the performance of DEDPs that have
been accomplished in the past. The purpose of the predictive simulation is to support
project managers in planning and dynamic re-planning of running design projects in
the cases the occurrence of several kinds of events that are out of their control: late
changes to the design objective, sudden unavailability of team members, changes in
the workload of the designers according to the influence of other independent projects
etc. In the first round of evaluation experiments, only the availability of the actors has
been altered by random “screwing” of the corresponding simulation parameters. The
second round has been focussed on the evaluation of the dynamic planning
capabilities. The goal of the experiments was to compare the Work Breakdown
Structure automatically generated by the DEDP-PMS with the one created manually
by the project manager. The details of these experiments are described in [8].

Evaluation experiments with the available DEDP records stored to the PSI testbed
demonstrated that the simulator develops DEDP plans very closely to what happened
in reality i.e. the plans developed by human project managers. Observed fluctuations
were caused by the changes in the parameters of the availability of team members in
the course of the simulation experiments by “screwing” their available capacities.
This fact confirms the adequacy of the developed framework to the industrial
requirements in Semiconductor and Electronic Systems Domain.

6 Related Work and Discussion

The projects that pioneered R&D in agent-based engineering design process
modelling, support and automation appeared about a decade ago e.g. [12, 13, 14].

 9 OWL Web Ontology Language Reference. http://www.w3.org/TR/owl-ref/
10 Protégé ontology editor and knowledge acquisition system http://protege.stanford.edu/
11 DEDP-PMS has been presented at the 17th European Conference on Artificial Intelligence,

ECAI 2006 [27].

180 V. Ermolayev et al.

Some projects of the “second wave” [15, 16] helped to specify the focus of PSI in
automating the near-optimal arrangement of DEDPs in terms of their productivity. In
contrast to e.g. [26], the objective of PSI is not to automate the design process itself
but to automate the arrangement of its activities in the most productive way. In PSI,
the activities resulting in the elaboration of design artefacts are performed manually
by human designers.

The DEDP modelling framework in its part of organizational and actor-related
knowledge representation is based on the frameworks [17, 18, 5, 9]. PSI contribution
in this part is the incorporation of roles and actors, teams of actors, negotiation
context in one coherent family of ontologies and the binding of these ontologies to the
engineering design domain by incorporating Design Artefact and Software Tool
ontologies. The main contribution of the PSI family of ontologies is the model of a
dynamic team of designers that is formed through contracting negotiations and
performs dynamically orchestrated processes. Hence, DEDPs in PSI are understood as
socially performed processes in the sense close to [19]. For example, the notion of a
Role of PSI Actor ontology is semantically close to that of the normative multi-agent
framework.

In the part of process modelling, PSI bases its approach on [20, 6, 21]. In the
family of PSI ontologies, engineering design processes are modelled as tasks
composed of sub-tasks and atomic activities. Similarly to [22], subtasks and
activities may have strong dependencies. However, in PSI, the knowledge about
these dependencies is presented in a different way. The means for that are DA State
Patterns and Execution Relations. DA State Patterns are the patterns of DA States.
These are the concepts to configure the inputs, the outputs and the dependencies
caused by the usage of the outputs as inputs. By that, the dependencies among
activities are also aligned with the corresponding DA States. Execution Relations
are used to represent concurrency among the activities in a pair. This concurrency
may be caused by the specifics of the DA structure. Similarly to [21], tasks
have pre-conditions and post-effects. However, the Task-Activity ontology
constrains the semantics of pre-conditions and post-effects by making them sub-
classes of an event concept. Material inputs and outputs [3] are modelled in frame
of DA States.

Examples of theoretical frameworks for solving planning tasks are Decision
Theoretic Planning (DTP) [23] and Hierarchical Task Networks (HTN) [24]. The PSI
framework is built upon the conceptual denotation of the planning task shared by the
previously mentioned frameworks. Planning is understood as the process of cascade
decomposition of the goal, transformation of the sub-goals to Generic Tasks, Generic
Activities and committing Actors to Tasks and Activities. However, the PSI
framework extends the capabilities of the classical AI approaches to planning by
accounting for the dynamic character of the process and by the capability to
collaborative distributed planning through negotiation mechanisms. The latter feature
also distinguishes our descriptive framework from the plan-task ontology of KMI
[25]. Moreover, the family of PSI ontologies provides conceptual means for dynamic
re-scheduling based on the concepts of self-beliefs and beliefs.

 An Agent-Oriented Model of a Dynamic Engineering Design Process 181

7 Conclusions

This paper has presented the descriptive part of the DEDP modelling framework
developed in the PSI project. The project is aimed to build a software tool assisting in
analysis and optimization of DEDPs’ productivity through agent-based simulations.
The framework incorporates the models of projects, teams and actors, tasks and
activities, design artefacts, and software tools as the major interrelated parts. DEDPs
are modelled as weakly defined flows of tasks and atomic activities. These flows are
transformation processes. They transform design artefacts passing through the
sequence of their states. DEDPs may “become apparent” only at run time because of
several factors that are beyond the control of the design team members. The processes
are self-formed through the mechanisms of collaboration in the dynamic team of
actors. These mechanisms are based on several types of negotiations. DEDP
productivity is assessed by the Units of Welfare collected by the multi-agent system
that models the design team. The models of the framework are formalized in the
family of PSI ontologies. These ontologies are used in the implemented simulator
software prototype. Evaluation experiments have been performed using the PSI
testbed [2, 8]. These experiments showed that DEDP planning performed using the
DEDP-PMS software prototype reflects reality. Generated DEDP plans are very close
to that developed by human project managers.

References

1. Neal, D., Smith, H. and Butler, D.: The evolution of business processes from description to
data to smart executable code – is this the future of systems integration and collaborative
commerce? Research Services Journal, 3 (2001) 39–49

2. Gorodetsky, V., Ermolayev, V., Matzke, W.-E., Jentzsch, E., Karsayev, O., Keberle, N.
and Samoylov, V.: Agent-Based Framework for Simulation and Support of Dynamic
Engineering Design Processes in PSI. In: Pechouchek, M., Petta, P., Varga, L. Z. (eds.):
Proc. 4th Int. Central and Eastern European Conf. on Multi-Agent Systems (CEEMAS'05),
Sept. 15-17, Budapest, Hungary, LNAI Vol. 3690. Springer-Verlag, Berlin Heidelberg
New York (2005) 511–520

3. Ermolayev, V., Jentzsch, E., Karsayev, O., Keberle, N., Matzke, W.-E. and Samoylov, V.:
Modeling Dynamic Engineering Design Processes in PSI. In: Akoka, J. et al. (eds.): ER
Workshops 2005, Proc. 7th Int. Bi-Conf. Workshop on Agent-Oriented Information
Systems (AOIS-2005), Oct. 24-28, Klagenfurt, Austria, LNCS Vol. 3770. Springer-
Verlag, Berlin Heidelberg New York (2005) 119–130

4. Ermolayev, V., Jentzsch, E., Keberle, N., Samoylov, V. and Sohnius, R.: The Family of
PSI Ontologies V.1.5. Reference Specification. Technical Report PSI-ONTO-TR-2006-2,
14.04.2006, Cadence Design Systems, GmbH (2006) 56 pp.

5. Ermolayev, V. and Keberle, N.: A Generic Ontology of Rational Negotiation.
In: Karagiannis, D., Mayr, H.C. (eds.): Information Systems Technology and its
Applications. 5th Int. Conf. ISTA'2006, May 30-31, Klagenfurt, Austria, LNI Vol. 84.
Gesellschaft für Informatik, Bonn (2006) 51–66

6. Ermolayev, V., Keberle, N., Kononenko, O., Plaksin, S. and Terziyan, V.: Towards a
framework for agent-enabled semantic web service composition. Int. J. of Web Services
Research, 1(3) (2004) 63–87

182 V. Ermolayev et al.

7. Ermolayev, V., Jentzsch, E., Matzke, W.-E., Schmidt, J., Schroeder, G., Weber, S. and
Werner, J.: Agent-Based Dynamic Engineering Design Process Modeling Framework.
Technical Report. Cadence Design Systems, GmbH (2004) 29 pp

8. Sohnius, R., Ermolayev, V., Jentzsch, E., Keberle, N., Matzke, W.-E. and Samoylov, V.:
Managing Concurrent Engineering Design Processes and Associated Knowledge. To
appear in: Proc 13th ISPE Int. Conf. on Concurrent Engineering: Research and
Applications, Sept. 18-22, Les Antibes, France, available at:
http://ermolayev.com/eva_personal/evapubs.htm

9. Ermolayev, V. Keberle, N. and Tolok, V.: OIL Ontologies for Collaborative Task
Performance in Coalitions of Self-Interested Actors. In: Arisawa, H. et al (eds.):
Conceptual Modeling for New Information Systems Technologies. ER 2001 Workshops,
Nov. 27-30, Yokohama, Japan. LNCS Vol. 2465. Springer-Verlag, Berlin Heidelberg New
York (2002) 390–402

10. Uschold, M. and Jasper, R.: A Framework for Understanding and Classifying Ontology
Applications. In: 12th Workshop on Knowledge Acquisition, Modeling and Management
(KAW’99), Oct. 16-21, Banff, Alberta, CA (1999)

11. Gorodetski, V., Karsaev, O., Samoilov, V., Konushy, V., Mankov, E. and Malyshev, A.:
Multi Agent System Development Kit: MAS software tool implementing GAIA
Methodology. In: Shi, Z., He, Q. (eds.): Int. Conf. on Intelligent Information Processing
(IIP’2004), Beijing, China Springer Press (2004) 69–78

12. Cutkosky, M.R., Englemore, R.S., Fikes, R.E. Genesereth, M.R. Gruber, T.R., Mark,
W.S., Tenenbaum, J.M. and Weber, J.C.: PACT: An Experiment in Integrating Concurrent
Engineering Systems. IEEE Computer, 26(1) (1993) 28–38

13. Darr, T. P. and Birmingham, W. P.: An Attribute-Space Representation and Algorithm for
Concurrent Engineering. CSE-TR-221-94, University of Michigan, Department of
Electrical Engineering and Computer Science, Ann Arbor, Michigan (1994)

14. Balasubramanian, S. and Norrie, D. H.: A Multi-Agent Intelligent Design System
Integrating Manufacturing and Shop-Floor Control. In: Proc. 1st Int. Conf. on Multi-Agent
Systems (ICMAS’95), San Francisco. The MIT Press, Cambridge (1995) 3–9

15. Parunak, H.V.D., Ward, A.C., Fleischer, M. and Sauter, J. A.: The RAPPID Project:
Symbiosis between Industrial Requirements and MAS Research. Autonomous Agents and
Multi-Agent Systems, 2(2) (1999) 111–140

16. Danesh, M. R. and Jin, Y.: An Agent-Based Decision Network for Concurrent Engineering
Design. CERA, 9(1) (2001) 37–47

17. Fox, M.C. and Gruninger, M.: Enterprise Modelling. AI Magazine, 19(3): 109 – 121, 1998
18. Uschold, M. King, M., Moralee, S. and Zorgios, Y.: The Enterprise Ontology. The

Knowledge Engineering Review, 13(1) (1998) 31–89
19. Boella, G. and van der Torre, L.: An Agent Oriented Ontology of Social Reality. In:

Varzi, A., Vieu, L. (eds.): Proc. 3rd Int. Conf on Formal Ontology in Information Systems
(FOIS’04), Torino, Italy, Nov. 3-6. IOS Press (2004) 199–209

20. Buhler, P. and Vidal, J.M.: Enacting BPEL4WS Specified Workflows with Multiagent
Systems. In: Proc. of AAMAS’04 Workshop on Web Services and Agent-Based
Engineering (WSABE) (2004)

21. Fensel, D. and Bussler, C.: The Web Service Modeling Framework WSMF. Electronic
Commerce Research and Applications, 1(2) (2002) 113–137

22. Nagendra Prasad, M. V. and Lesser, V. R.: Learning Situation-Specific Coordination in
Cooperative Multi-Agent Systems. Autonomous Agents and Multi-Agent Systems, 2(2)
(1999) 173–207

23. Blythe, J.: Decision-Theoretic Planning. AI Magazine, 20(2) (1999) 37–54

 An Agent-Oriented Model of a Dynamic Engineering Design Process 183

24. Erol, K., Hendler, J. and Nau, D. S.: Semantics for Hierarchical Task-Network Planning.
Technical report CS-TR-3239, University of Maryland at College Park (1994)

25. Rajpathak, D. and Motta, E.: An Ontological Formalization of the Planning Task. In:
Varzi, A., Vieu, L. (eds.): Proc. 3rd Int. Conf on Formal Ontology in Information Systems
(FOIS’04), Torino, Italy, Nov. 3-6. IOS Press (2004) 305–316

26. Capera, D., Picard, G. and Gleizes, M.-P.: Applying ADELFE Methodology to a
Mechanism Design Problem. In: Proc. 3rd Int. Joint Conf. AAMAS'04, Aug. 19-23, New
York, NY, USA. IEEE Computer Society (2004) 1508–1509

27. Samoylov, V., Gorodetsky, V., Ermolayev, V., Jentzsch, E., Karsayev, O., Keberle, N.,
Matzke, W.-E. and Sohnius, R.: Agent-based Prototype of the Dynamic Engineering
Design Process Performance Management System (DEDP-PMS). Presentation at ECAI
2006, Aug.28 - Sept.1, Riva del Garda, Italy, 2006. Abstract is available from:
http://ermolayev.com/eva_personal/evapubs.htm

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 184 – 199, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Formalizing Agent-Oriented Enterprise Models

Ivan Jureta1, Stéphane Faulkner1, and Manuel Kolp2

1 Information Management Research Unit, University of Namur,
8 Rempart de la vierge, B-5000 Namur, Belgium

{ivan.jureta, stephane.faulkner}@fundp.ac.be
2 Information System Research Unit, University catholic of Louvain,

1 Place des doyens, B-1348 Louvain-la-Neuve, Belgium
kolp@isys.ucl.ac.be

Abstract. This paper proposes an agent-oriented metamodel that provides
rigorous concepts for conducting enterprise modelling. The aim is to allow
analysts to produce an enterprise model that precisely captures the knowledge
of an organization and of its business processes so that an agent-oriented
requirements specification of the system-to-be and its operational corporate
environment can be derived from it. To this end, the model identifies constructs
that permit capturing the intrinsic characteristics of an agent system such as
autonomy, intentionality, sociality, identity and boundary, or rational self-
interest; an agent being an organizational actor and/or a software component.
Such an approach of the concept of agent allows the analyst to have a holistic
perspective integrating human and organizational aspects to gain better
understanding of business system inner and outer modelling issues. The
metamodel has roots in both management theory and requirements engineering.
It helps to bridge the gap between enterprise and requirements models
proposing an integrated framework, comprehensive and expressive to both
managers and software (requirements) engineers.

1 Introduction

Business analysts and IT managers have advocated these last fifteen years the use of
enterprise models to specify the organizational and operational environment (outer
aspects of the system) in which a corporate software will be deployed (inner aspects
of the system) [1]. Such a model is a representation of the knowledge an organization
has about itself or of what it would like this knowledge to be. This covers knowledge
about functional aspects of operations that describe what and how business processes
are to be carried out and in what order; informational aspects that describe what
objects are to be processed; resource aspects that describe what or who performs these
processes according to what policy; organizational aspects that describe the
organizational architecture within which processes are to be carried out; and, finally,
strategic aspects that describe why processes must be carried out. The specification
of these key aspects of the core business of an enterprise is an effective tool to
consider for gathering and eliciting software requirements. It may be used to [2, 3]:

 Formalizing Agent-Oriented Enterprise Models 185

− analyse the current organizational structure and business processes in order to
reveal problems and opportunities;

− evaluate and compare alternative processes and structures;
− achieve a common understanding and agreement between stakeholders (e.g.

managers, owners, workers) about different aspects of the organization;
− reuse knowledge available in the organization.

This paper proposes an integrated agent-oriented metamodel for enterprise
modelling. The agent paradigm is a recent approach in software engineering that
allows developers to handle the lifecycle of complex distributed and open systems
required to offer open and dynamic capabilities in the latest generation enterprise
software (see e.g. [4]).

The proposed metamodel takes inspiration from research works in requirements
engineering frameworks (see e.g. [5-6]), management theory concepts found to be
relevant for enterprise modelling (see e.g. [7-9]) and agent-oriented software
engineering (see e.g. [4]). It leads to the reduction of the semantic gap between
enterprise and requirements representations, providing a modelling tool that integrates
the outer specification of the system together with its inner specification. Our
proposal implicitly suggests a holistic approach to integrate human and organizational
issues and gain better understanding of the representation of business processes and
organizations representation. To this end, we introduce new concepts to enterprise
modelling, related to authority, power and interest.

The rest of this paper is organized as follows. Section 2 describes the main
concepts of our metamodel. Sections 3 and 4 detail some elements of the metamodel
using the Z specification langage and discuss their relevance for enterprise modelling.
Section 5 gives an overview of related works and Section 6 summarizes the results
and points to further work.

2 An Agent-Oriented Enterprise Metamodel

The motivation of our proposal is to understand precisely the semantics of the
organizational environment of the system and to produce an agent-oriented
requirements specification for the software to build. The framework described in this
section provides modelling constructs that permit the representation of the autonomy,
intentionality, sociality, identity and boundary, as well as the rational self-interest of
actors, i.e. agents in the real world and/or software agents. Actors are autonomous as
their behaviour is not prescribed and varies according to their dependencies, personal
goals and capabilities. They are intentional since they base their actions and plans on
beliefs about the environment, as well as on goals they have to achieve. Being
autonomous, actors can exhibit cooperative behaviour, resulting from similar goals
and/or reciprocal dependencies concerning organizational roles they assume. The
dependencies can either be direct or mediated by other organizational roles. Actors
can have competing goals, which lead to conflicts that may result from competing use
of resources. Actors have varying power and interest in the ways in which
organizational goals contribute to their personal ones. Boundary and identity are
closely related to power and interest of actors. We model variations in boundary and

186 I. Jureta, S. Faulkner, and M. Kolp

identity as resulting from changes in power and interest since these vary with respect
to the modifications in the roles an actor assumes and the dependencies involving
these roles. Actors can act according to their self-interest, as they have personal goals
to achieve. They have varying degrees of motivation to assume organizational roles,
according to the degree of contribution to personal goals these roles have in achieving
organizational ones. Actors apply plans according to the rationale described in terms
of personal, organizational goals and capabilities. The rationale of our actors is not
perfect, but bounded [10-11], since they can act based on beliefs that are incomplete
and/or inconsistent with reality. We provide constructs such as AndOr relationships,
non-functional requirements [4] etc. to evaluate alternative deployments of the
software in the organizational environment.

Actor
Cooperate

with

0:N

0:N

Belief

Follow

Object

IsA

Organizational
Role

Occupy

1:N

1:N

0:N

0:N

CapabilityPossess

Authority on

1:N

1:N

1:N 1:N

Require

Dependum

Organizational
Goal

 ResponsibleControl

1:N

1:N

0:N

1:N

IsA

Depend

1:N

0:N

Resource

Assign to

IsA

0:N

1:1

Legal Entity

IsA

Software Agent

IsA

Personal Goal

Pursue

1:N

1:N

Plan
1:N

Action

1:N

Output

Input
1:N 1:N

1:N 1:N

Event

Is
A

Operational
Goal

Softgoal

Fulfil Contribute

0:N

0:N
0:N

0:N

Goal

Is
A

IsA

IsA

IsA

Refine

0:N

0:N

IsA

IsA

Requirement Expectation

IsA

Is
A

Conflict

Concern

0:N
0:N

0:N

0:N

Authorization

IsA
Resolve

0:N

0:N

Concern

: Binary relationship

: IsA relationship

: AndOr relationship

Legend

: Composition relationship

Fig. 1. The agent-oriented metamodel

 Formalizing Agent-Oriented Enterprise Models 187

Fig. 1 introduces the main entities and relationships of our metamodel. For clarity,
we have subdivided it into five sub-models:

• Organizational sub-model, describing the actors of the organization, their
organizational roles, responsibilities and capabilities.

• Goals sub-model, describing enterprise and business process purposes, i.e. what the
actors are trying to achieve and why.

• Conflict sub-model, indicating inconsistencies in the business process.
• Process sub-model, describing how actors achieve or intend to achieve goals.
• Objects sub-model, describing non-intentional entities and assumptions about the

environment of the organization and the business processes.

Due to a lack of space, the paper only details the organizational and goal sub-
models, their integration and discusses their relevance for enterprise modelling. We
first sketch the metamodel from the point of view of system developers and of
organization managers.

2.1 Information System Development Perspective

The metamodel provides widely-used constructs for specifying the architecture of an
agent-oriented information system: Actors are agents of the system. They possess
Capabilities composed of Plans, each Plan representing a sequence of atomic
Actions. When applying Plans, Actors fulfil or contribute to system Goals. Actors
follow Beliefs which represent assertions about aspects of the organization and/or its
environment. Actions can take Objects as input from the system or its environment.
New Objects can be produced or existing ones modified by carrying out Actions, i.e.
they can be output from Actions. Objects represent any thing of interest for the
system: Resources, Beliefs, Authorizations or Events.

2.2 Management Perspective

The metamodel provides common terms used to describe an organization.
Organizational Roles are responsible of Organizational Goals, which may be either
Operational (i.e. can be actually fulfilled) or Softgoals (such as e.g. broadly specified
business objectives). Organizational Roles can depend on one another for the
provision of Dependums - Actions, Objects, or Organizational Goals. An Actor, being
a Human Actor or a Software Agent, can occupy Organizational Roles, as long as it
possesses the required Capabilities to do so. Actors exhibit intentional behaviour
since they act according to Goals and Beliefs about their environment. Since Beliefs
may be incoherent, and as they pursue Personal Goals, Actors can exhibit competitive
behaviour. They will exhibit cooperative behaviour when they are responsible of
identical Organizational Goals. Actors execute Plans, composed of Actions, in order
to fulfil and contribute to Goals. By doing so, they comply with the responsibilities of
Organizational Roles they occupy. As a matter of organizational policy, Resources in
the organization are assigned to Organizational Roles. The allocation of Resources is
determined by both authority among Organizational Roles and Authorizations that
may be input or output of specific Actions.

188 I. Jureta, S. Faulkner, and M. Kolp

Common ground between both points of view resides in the sense that the
information system can be developed to automate some (part of) business processes
(e.g. administrative tasks) or to radically modify ways in which Goals are fulfilled
(e.g. reorganizing customer relationship management by deploying e-commerce
facilities). The model provides an unambiguous representation serving both software
staff and organization strategic management.

Primitives of our framework are of different types: meta-concepts (Goal, Actor,
Object etc.), meta-relationships (possess, require, pursue etc.), meta-attributes
(Power, Interest, Motivation etc.) and meta-constraints (e.g. “an actor occupies a
position if that actor possesses all the capabilities required to occupy it”).

All meta-concepts, meta-relationships and meta-constraints have the following
mandatory meta-attributes:

− Name, which allows unambiguous reference to the instance of the meta-concept
(e.g. “European Commission” for the Actor meta-concept).

− Description, which is a precise and unambiguous description of the corresponding
instance of the meta-concept. The description should contain sufficient information
so that a formal specification can be derived for use in requirements specifications
for a future information system.

Fig.1 shows only meta-concepts and meta-relationships. Meta-attributes and meta-
constraints are specified in the next sections using the Z state-based specification
language [12, 13]. We use Z since it provides sufficient modularity, abstraction and
expressiveness to describe in a consistent, unified and structured way an agent-
oriented IS and the wider context in which it is used. It has a pragmatic approach to
specifications by allowing a clear transition between specification and implementation
of software [13]. In addition, it is widely accepted in the software development
industry and has been used in large-scale projects.

3 Organizational Sub-model

The Organizational sub-model is used to identify the relevant Actors of the
organization, the Organizational Roles they occupy, the Capabilities they possess and
the Dependum for which Actors depend on one another.

3.1 Actor

Fig. 2 shows the Z formal specification of the Actor concept. The first part of the
specification represents the definition of types. A given type defines a finite set of
items. The Actor specification first defines the type Name (which represents the Name
attribute) by writing [Name]. Such a declaration introduces the set of all names,
without making assumptions about the type (i.e. whether the name is a string of
characters and numbers, or only characters, etc.). Note that the type Actor_Type is
defined as being either a Human_Actor or a Software_Agent. Defining types in such way
indicates either that further detail about the type would not add significant descriptive
power to the specification or that a more elaborate internal representation is not
required.

 Formalizing Agent-Oriented Enterprise Models 189

More complex and structured types are defined with schemata. A schema groups a
collection of related declarations and predicates into a separate namespace or scope.
The schema in Fig. 2 is entitled Actor and is partitioned by a horizontal line into two
sections: the declaration section above and the predicate section below the line. The
declaration section introduces a set of named, typed variable declarations. The
predicate section provides predicates that constrain values of the variables, i.e.
predicates are used to represent constraints. In order to clarify the Z formal
specifications of the concepts, we will refer in the text to specific Z schema predicates
by using identifiers placed left of the schema in the form e.g. “(c1)” to refer to
predicate, i.e. constraint (c1) of the schema.

 [Name]
[Informal_Definition]
[Actor_Type]:= Human_Actor | Software_Agent
[Organizational_Role]
[Goal]
[Interest_Value]
[Power_Value]

Actor

 name : Name

description : Informal_Definition
isa : Actor_Type
occupy : set Organizational_Role
possess : set Capability
has : set Belief
own : set Resource
pursue : set Goal
interest : Interest_Value
power : Power_Value

(c1)

(c2)

(occupy ≠ ∅) ∧ (possess ≠ ∅) ∧ (pursue ≠ ∅)

(∀ act: Actor) act.isa = Human_Actor act.interest ≠ ∅ ∧ act.power ≠ ∅

Fig. 2. Formal specification of the Actor concept

An Actor applies Plans (which are part of his Capabilities) to fulfil and/or
contribute to Organizational Goals for which the Organizational Role he/she
occupies is responsible and Personal Goals he/she pursues (i.e. wishes to achieve).
As the Actor exists in a changing environment, it follows Beliefs about the
environment in order to adapt its behaviour to environmental circumstances.

An Actor is either a Human Actor or a Software Agent. A Human Actor is used to
represent any person, group of people, organizational units or other organizations that
are significant to the organization we are modelling, i.e. that have an influence on its
resources, its goals etc. A Software Agent is used to represent a software component

190 I. Jureta, S. Faulkner, and M. Kolp

of an information system(-to-be). An Actor can cooperate with another Actor to fulfil
and/or contribute to Organizational Goals common to the Organizational Roles that
each of these Actors occupies.

Besides standard meta-attributes, a Human Actor is characterized with two specific
meta-attributes: Interest and Power. Interest is the degree of satisfaction of an actor to
see Organizational Goals positively contributing to its Personal Goals. Power is the
degree to which the actor is able to modify the objectives of the organization or its
business processes through its Capabilities. For instance, when automating a business
process, the values of Interest and Power meta-attributes of Human Actors change: in
the new configuration of the process, some actors will gain decision power while
maintaining the same level of interest; others that previously benefitted from high
power in the initial process structure might become less powerful. It is crucial to take
these changes into account when eliciting software requirements. It may lead
otherwise to introducing Goals not identified during the initial requirements analysis,
and/or changing Priority of already specified Goals. Interest and Power help to find
Human Actors that will play a crucial role in the software-to-be. For example, focus
in some business process might shift to Human Actors that were not considered very
significant during the inception phase and whose needs were not specified in depth.
This would result in that these now crucial processes would not be fully exploited and
would lead to the overall failure of the requirements specification efforts.

3.2 Organizational Role

An Organizational Role is an abstract characterization of expected behaviour of an
Actor within some specified context of the organization. An Actor can occupy
multiple roles and a role can be occupied by multiple Actors.

From an agent orientation perspective, Organizational Roles provide the building
blocks for agent social systems and the requirements by which agents interact. The
concept of Organizational Role is important to abstractly model the agents in multi-
agent systems and helpful to manage its complexity without considering the concrete
details of agents (e.g. implementation architectures and technologies).

Fig. 3 shows the Z formal specification of the Organizational Role concept. Each
Organizational Role requires a set of Capabilities to fulfil or contribute to
Organizational Goals for which it is responsible. An Actor can occupy the
Organizational Role only if it possesses the required Capabilities (c4)1. In addition to
entering Organizational Roles, Actors should be able to leave roles at runtime. The
attribute Leave Condition is used to specify the Belief that has to be true in order for
the Actor to leave the Organizational Role (c5).

Organizational Roles are responsible for Organizational Goals (c6) and can
control their fulfilment. In case an Organizational Goal has been fulfilled, the Actor,
occupying the Organizational Role that controls that Goal, executes a Plan in which
an Action outputs a new Belief to mark the goal fulfilment (c7). This control
procedure requires that a single Actor can never occupy distinct Organizational Roles
that are responsible of and control the fulfilment of the Organizational Goal (c8).

1 To clarify the formal specifications, we embed the comments on predicates between two “//”

signs.

 Formalizing Agent-Oriented Enterprise Models 191

 [Goal_Control_Status]:= Fulfilled | Unfulfilled
[Belief]

 Organizational Role

 name : Name

description : Informal_Definition
require : set Capability
leave_condition: set Belief
responsible : set Goal
control : set (Organizational_Goal, Goal_Control_Status)
authority_on : set Organizational_Role

(c3)

 (c4)

(c5)

(c6)

 (c7)

 (c8)

 (require ≠ ∅) ∧ (leave_condition ≠ ∅) ∧ (responsible ≠ ∅)

(∀ act: Actor; r: Organizational_Role)
r ∈ act.occupy r.require ⊂ act.possess

//An Actor act that occupies the Organizational Role r possesses the Capabilities
required by the Organizational Role r.//

(∀ act: Actor ; r: Organizational_Role)

act.has ⊂ r.leave_condition r ∉ act.occupy
//If the Leave Condition is true, than the Actor act no longer occupies the
Organizational Role r.//

(∀ r: Organizational_Role ; g: Goal)

 g ∈ r.responsible g.sec_isa = Organizational_Goal
//If Organizational Role r is responsible of Goal g, then g is an Organizational
Goal.//

(∀ r: Organizational_Role; g: Goal)
(g.prim_isa = Operational_Goal ∧ g.sec_isa = Organizational_Goal
∧ g ∈ r.control ∧ g.status = Fulfilled)

 (∃ b!: Belief) (g.status = Fulfilled) ∈ b.term ∧ (g, Fulfilled) ∈ r.control)
//If an Organizational Operational Goal g is fulfilled, then the Organizational Role r
which controls the fulfilment of g outputs a new Belief b which indicates that the
Goal g has been fulfilled.//

(∀ r1, r2: Organizational_Role ; g: Goal ; a1, a2: Actor)
(g.sec_isa = Organizational_Goal ∧ g ∈ r1.responsible ∧ g ∈ r2.control ∧ r1 ≠
r2 ∧ r1 ∈ act.occupy ∧ r2 ∈ act.occupy) a1,≠ a2
//There can be no Actor a which occupies both the Organizational Role r1 which is
responsible for Organizational Goal g, and the Organizational Role r2 which controls
the fulfilment of Organizational Goal g.//

Fig. 3. Formal specification of the Organizational Role concept

Organizational Roles can have different levels of authority. Consequently, an
Organizational Role can have authority on other Organizational Roles. The authority
on relationship specifies the hierarchical structure of the organization. For instance, in
the context of multi-agent systems, it can be used to define security policies that differ
according to authority attributed to software agents.

192 I. Jureta, S. Faulkner, and M. Kolp

3.3 Capability

A Capability specifies the behaviours that Organizational Roles should have in order
to be responsible for or to control their Organizational Goals. An Actor possesses
Capabilities. The formal specification in Fig. 4 shows that a Capability can be
structured as a set of Plans and/or other Capabilities. This increases system
modularity since libraries of capabilities can be built up and then combined to provide
complex functionalities.

When exploring possible alternative business processes or organizational
structures, newly identified Organizational Roles can require Capabilities that no
Actor possesses. These Capabilities have to be confronted to those available in the
organization (Capabilities that the Actors possess, see (c10)), in order to evaluate the
proposed alternatives with respect to the current Roles and the way they use existing
Capabilities. This is significant to determine which and how the proposed Capabilities
and Roles will be finally introduced through the system-to-be. The availability of a
Capability is formally expressed through the availability attribute, as indicated in the
Capability schema.

 [Cap_Atom]:= Plan | Capability
[Cap_Availability]:= Available | Unavailable

 Capability

 name : Name

description : Informal_Definition
composed_of : set Cap_Atom
availability : Cap_Availability

(c9)

 (c10)

 composed_of ≠ ∅

(∀ cap: Capability)
∃ act: Actor ; cap ∈ act.possess cap.availability = available
//If there is some Actor act that possesses Capability cap, then cap is available.//

Fig. 4. Formal specification of the Capability concept

3.4 Dependum

An Organizational Role depends on another Organizational Role for a Dependum, so
that the latter may provide the Dependum to the former. A Dependum can be an
Organizational Goal, an Object or an Action. In the depend meta-relationship, the
Organizational Role that depends on is called the depender and the Organizational
Role being depended upon is called the dependee.

We define the following dependency types:

• Organizatonal Goal-dependency: the depender depends on the dependee to fulfil
and/or contribute to an Organizational Goal. The dependee is given the possibility
to choose Plans through which it will fulfil and/or contribute to the Organizational
Goal.

 Formalizing Agent-Oriented Enterprise Models 193

• Action-dependency: The depender depends on the dependee to accomplish some
specific Action.

• Object-dependency: The depender depends on the dependee for the availability of
an Object.

 [Dependum_Type]:= Organizational_Goal | Object | Action

 Dependum

 name : Name

description : Informal_Definition
type : Dependum_Type
depender : set Organizational_Role
dependee : set Organizational_Role

(c11)

 (c12)

(c13)

(c14)

 (type ≠ ∅) ∧ (depender ≠ ∅) ∧ (dependee ≠ ∅)

(∀ d: Dependency ; dpd: Dependum ; r1, r2: Organizational_Role)
r1≠ r2 ∧ (d ≡ r1 × dpd × r2) (depender = r2 ∧ dependee = r1)

(∀ d: Dependency ; dpd: Dependum ; r1, r2: Organizational_Role) r1≠ r2 ∧
(d ≡ r1 × dpd × r2) ∧ (dpd.type = Authorization) r1 ∈ r2.authority_on
//If the Dependum is an Authorization, then Dependee r2 has authority on Depender
r1.//

(∀ obj: Object ; a1, a2: Actor ; cap1, cap2: Capability ; pl1, pl2: Plan ; actn1,
actn2: Action ; r1,r2: Organizational_Role)
(a1 ≠ a2 ∧ cap1 ≠ cap2 ∧ pl1 ≠ pl2 ∧ actn1 ≠ actn2 ∧ (actn1 ∈ pl1.composed_of
∧ pl1 ∈ cap1.composed_of ∧ cap1 ∈ a1.possess) ∧ (actn2 ∈ pl2.composed_of
∧ pl2 ∈ cap2.composed_of ∧ cap2 ∈ a2.possess) ∧ obj ∈ actn1.postcondition
∧ obj ∈ actn2.input ∧ r1 ∈ a1.occupy ∧ r2 ∈ a2.occupy ∧ {r1,r2} ∉ {a1.occupy ∩
a2.occupy}) ⇔ (∃ dm: Dependum ∧ dm.type = Object ∧ dm.name =
obj.name ∧ dm.depender = r2 ∧ dm.dependee = r1)
//Suppose that there are two different Actors a1 and a2 that respectively occupy two
different Organizational Roles r1 and r2. These Actors possess respectively two
different Capabilities cap1 and cap2, which respectively contain distinct Plans pl1
and pl2. These plans enable them to execute respectively the distinct Actions actn1
and actn2. If Action actn1 has Object obj in its postcondition, and Action actn2
outputs obj, then Organizational Role r2 depends on the Organizational Role r1 to
provide the Object obj.//

Fig. 5. Formal specification of the Dependum concept

Object dependency allows us to represent any specialization of the Object concept as
a Dependum. For example, an Organizational Role r1 might depend on another
Organizational Role r2 for an Authorization. This has implications on the authority on
relationship, as this dependency means that r2 must have authority on r1 (c13).

The constraint (c14) in Fig. 5 shows that the existence of an Object Dependum
among Organizational Roles has implications on the Input and Postcondition of
Actions accomplished by Actors that occupy these Organizational Roles. This

194 I. Jureta, S. Faulkner, and M. Kolp

constraint provides a mapping rule between depend and input/output relationships. Its
interest (c14) is twofold:

• If we know Object dependencies existing among several organizational roles, we
can derive the activity diagram and the collaboration diagram (such as the ones in
UML) without difficulties: actions that are related by dependencies (through their
respective inputs/outputs) can be either sequential or parallel, which is sufficient
to define the activity diagram. In addition, we know the actors that need to execute
actions, as we know the organizational roles involved in dependencies.

• If we know the sequence of activities in a process, we can derive the dependencies
among roles that participate in the realization of the process. Dependencies can
then be analysed for vulnerabilities and alternative process structures can be
evaluated.

This is an important difference of our approach compared to i* [5]: we can use the
link established between dependencies and actions in e.g. analyzing simultaneously
the dependencies among organizational roles and the behavioural aspects of the
process being analysed in terms of sequence of actions that compose it. This
constraint makes it possible to combine the strengths of the i* dependency
representation, notably in terms of strategic dependency analysis among the process’
organizational roles, with the analysis of the realization of the process as a series of
sequential and/or parallel actions, that can be realized using e.g. UML activity and
collaboration diagrams or scenario-based approaches.

4 Goals Sub-model

A Goal describes a desired or undesired state of the environment. The environment is
the context in which actors live and interact with other actors. A state of the
environment is described through the states of Objects (Beliefs, Resources etc.).

In addition to standard attributes, a Goal is characterized by the optional Priority
attribute [14], which specifies the extent to which the goal is optional or mandatory.
The values and the measurement of priority are domain specific.

To support qualitative and formal reasoning about goals, we classify them along
two axes: Operational Goals vs. Softgoals and Organizational Goals vs. Personal
Goals. In addition, we use patterns to specify the temporal behaviour of Goals. These
classifications are treated in more detail below.

Operational Goal vs. Softgoal. An Operational Goal describes a desired or undesired
state of the environment that can be achieved by applying Plans. An Operational Goal
has been fulfilled if the state of the environment described by the Operational Goal has
been achieved by a Plan. An Operational Goal has State and Status optional attributes
(see Fig. 6). State describes the state of the environment in which the Operational Goal
is fulfilled (c15). Status indicates whether the State of the Operational Goal has been
achieved, i.e. whether the Goal has been fulfilled or not (c16).

A Softgoal also describes a desired or undesired state of environment, but its
fulfilment criteria (i.e. how to achieve the desired state) may not be formally
specified. A consequence of this is that Plans that are otherwise applied to fulfil

 Formalizing Agent-Oriented Enterprise Models 195

 [Primary_Goal_Type]:= Operational_Goal | Softgoal
[Secondary_Goal_Type]:= Organizational_Goal | Personal_Goal
[Org_Goal_Type]:= Requirement | Expectation
[Goal_Pattern]:= Achieve | Cease | Maintain | Avoid
[Object]:= Resource | Authorization | Belief | Event
[Goal_Status]:= Fulfilled | Unfulfilled
[Refinment_Alternative]
[Priority_Value]

 [Conflict]

 Goal

 name : Name

description : Informal_Definition
prim_isa : Primary_Goal_Type
sec_isa : Secondary_Goal_Type
org_isa : Org_Goal_Type
pattern : Goal_Pattern
state : set Object
status : Goal_Status
refined_by : set Refinement_Alternative
priority : Priority_Value
resolve : set Conflict

(c15)

(c16)

(c17)

(c18)

 (c19)

(c20)

(∀ g: Goal) g.prim_isa = Operational_Goal g.state ≠ ∅
//If Goal g is an Operational Goal, then g must have a specified state, i.e. the
environment in which g is fulfilled must be specified as a set of Objects.//

(∀ g: Goal) g.prim_isa = Operational_Goal ∧ ∃ oset = {ob1,…,obn : Object} ∧
g.state ⊆ oset g.status = Fulfilled
//If there is a set of Objects oset, such that the state of Goal g is a subset of oset,
then g is fulfilled.//

(∀ g: Goal) g.sec_isa = Organizational_Goal ⇔ g.org_isa ≠ ∅
//If the Goal g that is an Organizational Goal, then g must be either a Requirement
or an Expectation.//

(∀ g: Goal; r: Organizational_Role ; act: Actor)
(g.sec_isa = Organizational_Goal ∧ r ∈ act.occupy ∧ g ∈ r.responsible ∧
act.isa = Software_Agent) g.org_isa = Requirement
//An Organizational Goal g is a Requirement if there is some Software Agent Actor
act which occupies the Organizational Role r which in turn is responsible for g.//

(∀ g: Goal; r: Organizational_Role ; act: Actor)
(g.sec_isa = Organizational_Goal ∧ r ∈ act.occupy ∧ g ∈ r.responsible ∧
act.isa = Human_Actor) g.org_isa = Expectation
//An Organizational Goal g is an Expectation, if there is a Human Actor act which
occupies an Organizational Role r which in turn is responsible for g.//

(∀ g: Goal) g.sec_isa ≠ Organizational_Goal g.resolve = ∅
//If Goal g is not an Organizational Goal, then g cannot resolve Conflicts.//

Fig. 6. Formal specification of the Goal concept

196 I. Jureta, S. Faulkner, and M. Kolp

Operational Goals can only contribute (positively or negatively) to Softgoals. For
example, “increase customer satisfaction” and “improve productivity of the
workforce” are Softgoals.

Organizational Goal vs. Personal Goal. An Organizational Goal describes the state
of the environment that should be achieved by cooperative and coordinated behaviour
of Actors. An Organizational Goal is either a Requirement or an Expectation (c17). A
Requirement is an Organizational Goal under the responsibility of an Organizational
Role occupied by a Software Agent (c18). An Expectation is an Organizational Goal
under the responsibility of an Organizational Role occupied by a Human Actor (c18).
This distinction between a requirement of the information system and the expectation
of its human users contributes to the successful accomplishment of a process that
generally involves interaction among them. Organizational Goals can solve Conflicts
(c20) by specifying the state of the environment in which the Conflicts cannot be true.

A Personal Goal describes the state of the environment that an Actor pursues
individually (i.e. without cooperative and coordinated behaviour). It can require
competitive behaviour with other Actors.

We distinguish what is expected from the participation of the Actor in the process
(through the Organizational Role it occupies) from what the Actor expects from its
participation in the process (fulfilment of or contribution to its Personal Goals). In
reality, consistency between the Organizational Goals and Personal Goals is not
necessarily ensured. Consequently, it is important to reason about Conflicts that may
arise between Personal and Organizational Goals, as well as about the degree to
which an Organizational Goal assists in the pursuit of Personal Goals.

Temporal Behaviour of Goals. A behavioural pattern is associated with each Goal.
The possible patterns are: achieve, cease, maintain and avoid [6]. For example,
organizations tend to avoid “conflict of interest” (Softgoal) and achieve “replenish
stock” (Operational Goal). When we associate a pattern to a Goal, we restrict the
possible behaviour of the Actors concerning the Goal: achieve and cease generate
behaviour, whereas maintain and avoid restrict behaviour.

5 Related Works

Process-oriented approaches such as Activity Diagrams, DFDs, IDEF0, workflows
(see e.g. [11, 15-17]) describe an enterprise’s business processes as sets of activities.
Strong emphasis is put on the activities that take place, the order of activity
invocation, invocation conditions, activity synchronization and information flows.
Among these approaches, workflows have received considerable attention in the
literature. In such a process-oriented approaches, agents have been treated as a
computational paradigm, with a focus on the design and implementation of agent
systems, not on the analysis of enterprise models.

Actor-oriented approaches emphasize the analysis and specification of the role of
the actors that participate in the process [18]. The i* modelling framework [5] has
been proposed for business process modelling and reengineering. Processes, in which
information systems are used, are viewed as social systems populated by intentional

 Formalizing Agent-Oriented Enterprise Models 197

actors that cooperate to achieve goals. The framework provides two types of
dependency models: a strategic dependency model used for describing processes as
networks of strategic dependencies among actors and the strategic rationale model
used to describe each actor’s reasoning in the process, as well as to explore alternative
process structures. The diagrammatic notation of i* is semi-formal and has proved
useful in requirements elicitation (see e.g. [8, 19-20]). In this context, actor-oriented
approaches provide significant advantages over other approaches: agents are
autonomous, intentional, social etc. [4], which is of particular importance for the
development of open distributed information systems in which change is ongoing.
However, actors have served mostly as requirements engineering modelling
constructs for real-world agents, without assuming the use of agent software as the
implementation technology nor the use of organizational actors for enterprise
modelling.

Goal-oriented approaches focus on goals that the information system or a business
process should achieve. Frameworks like KAOS [6, 21] provides a formal
specification language for requirements engineering, an elaboration method and meta-
level knowledge used for guidance while the method is applied [22]. The KAOS
specification language provides constructs for capturing the various types of concepts
that appear during requirements elaboration. The elaboration method describes steps
(i.e. goal elaboration, object capture, operation capture etc. [22]) that may be followed
to systematically elaborate KAOS specifications. Finally, the meta-level knowledge
provides domain-independent concepts that can be used for guidance and validation in
the elaboration process.

Enterprise Knowledge Development (EKD) [18] is used primarily in modelling of
business processes of an enterprise. Through goal-orientation, it advocates a closer
alignment between intentional and operational aspects of the organization and links
re-engineering efforts to strategic business objectives. EKD describes a business
enterprise as a network of related business processes, which collaboratively realize
business goals. This is achieved through several sub-models: an enterprise goal sub-
model (expressing the causal structure of the enterprise), an enterprise process sub-
model (representing the organizational and behavioural aspects of the enterprise) and
an information system component sub-model (showing information system
components that support the enterprise processes) [18]. Agents appear in the EKD
methodology but without explicit treatment of their autonomy and sociality [4]. In
KAOS, agents interact with each other non-intentionally, which reduces the benefits
of using agents as modelling constructs.

6 Conclusion

Modelling the organizational and operational context within which a software system
will eventually operate has been recognized as an important element of the
engineering process (e.g. [1]). Such models are usually founded on primitive concepts
such as those of actor and goal. Unfortunately, no specific enterprise modelling
framework really exists for engineering modern corporate IS. This paper proposes an
integrated agent-oriented metamodel for enterprise modelling. Moreover, our
approach differs primarily in the fact that it is founded on ideas from in requirements

198 I. Jureta, S. Faulkner, and M. Kolp

engineering frameworks, management theory concepts found to be relevant for
enterprise modelling and agent oriented software engineering.

We have only discussed here the concepts that we consider the most relevant at this
stage of our research. Further classification of, for instance, goals is possible and can
be introduced optionally into the metamodel. For example, goals could be classified
into further goal categories such as Accuracy, Security and Performance. We also
intend to define a strategy to guide enterprise modelling using our metamodel as well
as to define a modelling tool à la Rational Rose to visually represent the concepts.

References

1. Castro J., Kolp M. and Mylopoulos J.: Towards Requirements-Driven Information
Systems Engineering: The Tropos Project. In Information Systems (27), Elsevier,
Amsterdam (2002)

2. Koubarakis M., Plexousakis D.: A formal framework for business process modelling and
design. Information Systems 27 (2002). 299-319

3. Bernus P.: Enterprise models for enterprise architecture and ISO9000:2000. Annual
Reviews in Control 27 (2003) 211–220

4. Yu E.: Agent-Oriented Modelling: Software Versus the World. Proceedings of the Agent-
Oriented Software Engineering AOSE-2001 Workshop, Springer Verlag (2001)

5. Yu E.: Modelling Strategic Relationships for Process Reengineering. Ph.D. thesis, Dept. of
Computer Science, University of Toronto (1994)

6. Dardenne A., van Lamsweerde A., Ficklas S.: Goal-directed requirements acquisition. Sci.
Comput. Programming 20 (1993) 3-50

7. Brickley J.A., Smith C.W., Zimmerman J.L.: Managerial Economics and Organization
Architecture. McGraw-Hill Irwin 2nd ed. (2001)

8. Faulkner S., Kolp M., Coyette A., Tung Do T.: Agent-Oriented Design of E-Commerce
System Architecture. Proceedings of the 6th International Conference in Enterprise
Information Systems Engineering, Porto (2004)

9. Simon H. A.: Rational Decision Making in Business Organizations. The American
Economic Review, 69(4) (1979), 493-513

10. Johnson G., Scholes K.: Exploring Corporate Strategy, Text and Cases. Prentice Hall
(2002)

11. Mentzas G., Halaris C., Kavadias S.: Modelling business processes with workflow
systems: an evaluation of alternative approaches. International Journal of Information
Management, 21 (2001) 123-135

12. Spivey J. M.: The Z Notation: A Reference Manual. 2nd Edition, Prentice Hall
International (1992)

13. Bowen J.: Formal Specification and Documentation using Z: A Case Study Approach
(1994)

14. Simon H.A.: Administrative Behavior : A Study of Decision-Making Processes in
Administrative Organization. New York: The Free Press 3rd ed. (1976)

15. Kamath M., Dalal N.P., Chaugule A., Sivaraman E., Kolarik W.J.: A Review of Enterprise
Process Modelling Techniques. In Prabhu V., Kumara S., Kamath M.: Scalable Enterprise
Systems: An Introduction to Recent Advances. Kluwer Academic Publishers, Boston
(2003)

 Formalizing Agent-Oriented Enterprise Models 199

16. Elmagarmid A., Du W.: Workflow Management: State of the Art Versus State of the
Products. In Dogac A., Kalinichenko L., Tamer Ozsu M., Sheth A.: Workflow
Management Systems and Interoperability. NATO ASI Series, Series F: Computer and
Systems Sciences, 164, Springer Heidelberg (1998)

17. Sheth A.P., van der Aalst W., Arpinar I.B.: Processes Driving the Networked Economy.
IEEE Concurrency, 7, (1999) 18-31

18. Kavakli V., Loucopoulos P.: Goal-Driven Business Process Analysis Application in
Electricity Deregulation, Information Systems, 24 (1999) 187-207

19. Liu L., Yu E.: Designing information systems in social context: a goal and scenario
modelling approach. Information Systems, 29 (2004) 187–203

20. Briand L., Melo W., Seaman C., Basili V.: Characterizing and Assessing a Large-Scale
Software Maintenance Organization. In Procedings of the 17th International Conference
on Software Engineering, Seattle, WA (1995)

21. van Lamsweerde A., Darimont R., Letier E.: Managing Conflicts in Goal-Oriented
Requirements Engineering. IEEE Transactions on Software Engineering, Special Issue on
Managing Inconsistency in Software Development (1998)

22. van Lamsweerde A.: The KAOS Metamodel –Ten Years After. Technical report, (2003).

Fragmented Workflows Supported by an Agent
Based Architecture

C. Reese, J. Ortmann, S. Offermann, D. Moldt, K. Markwardt, and T. Carl

Department of Informatics, University of Hamburg
http://www.informatik.uni-hamburg.de/TGI

Abstract. Within the distributed systems area, specific software solu-
tions are required due to the distribution of systems and their users in
time and space. A key role can be seen in the coordination of processes
in this context. Applications that support the work of people and enter-
prises within such settings need to support requirements such as flexi-
bility, autonomy, coordination and synchronization. An example is the
coordination of distributed interorganizational workflows. The dynamic
adaptation of workflows is of particular importance in this area, since
enterprises need to dynamically adapt to changes in market and to new
demands. Another example for such a setting, where a workflow needs to
be constantly adopted are virtual enterprises e.g. production workflows,
where changing partnerships lead to changing requirements. Based on the
formal modelling technique of high-level Petri nets we use workflow nets
and an agent framework, both tool supported. This leads directly to an
innovative architecture in this field combining several former approaches
with respect to their advantages.

Keywords: Distributed workflows, agents, distributed workflow enact-
ment service, high-level Petri nets, Capa, Renew.

1 Introduction

New business areas like interorganizational cooperations and virtual enterprises
require new solutions due to the increasing interactions across organizational
boundaries and the high dynamics in their interrelations. In these areas, workflow
technology can help to coordinate the cooperation processes. Due to the differ-
ent and additional requirements of interorganizational workflows, conventional
workflow technology cannot be directly applied. To support interorganizational
workflows, a workflow management system (WFMS) must support e.g. the pri-
vacy of internal subprocesses, security issues or the assignment and distribution
of subworkflows.

Since the process perspective has been within the centre of interest, workflow
management systems (WFMS) have had a revival in the context of the devel-
opment of distributed applications. From a conceptual perspective, workflows
can be enhanced through the agent concept. Agents offer a natural way to deal
with open environments and are therefore of particular benefit for distributed
systems as stated e.g. by Jennings [1]. Purvis [2], Blake [3] and others, as well

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 200–215, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

Fragmented Workflows Supported by an Agent Based Architecture 201

as former work of our group [4] wjp treated the combination of workflows and
agents. Interorganizational workflows are treated by van der Aalst [5]. Here the
concept of interorganizational workflows is discussed and illustrated in detail.
Our approach focusses and stresses the possible autonomy of workflows, which
is required when autonomous enterprises are involved in a common business
process. This is of high relevance and can be achieved by using agents to encap-
sulate each autonomous part (fragment) of a workflow. Due to the autonomy
of a fragment, other properties of agents, such as flexibility, adaptability, mo-
bility, intelligence (social interaction, autonomous decision of internal decision
problems with respect to the environment etc.) can be assigned to the workflow
fragments. This is one of the particular strengths of our system, and distinguishes
ours from other approaches for interorganizational workflow management sys-
tems (WFMS). This kind of systems allows for the development of distributed,
concurrent, decentralized and flexible (business) applications.

The main contribution of this work is the presentation of an agent based
workflow management system architecture for the distributed execution of work-
flows. The presented workflow management system architecture is of particular
strength due to its agent orientation, its formal basis provided by Petri nets and
its partial tool support. The distributed execution of workflows requires their
splitting into deployable workflow fragments. The act of splitting complex work-
flows manually into suitable fragments could be an exhausting and error-prone
task. For this reason, we introduce in this work a semi-automated approach to
determine such workflow fragments.

These fragments, encapsulated by agents, are treated again as workflows and
can be executed at different locations using different workflow enactment sys-
tems, which are the platforms of the agents. Therefore, we provide a concept
for a distributed and concurrent workflow management system as well as a
prototypical implementation based on the FIPA compliant agent framework
Capa.

The paper is organized as follows. Each section covers both conceptual and
technical issues. Section 2 introduces the underlying concepts, techniques and
tools. The fragmentation algorithm for workflows is detailed in Section 3. The
overall agent based architecture and distribution issues are explained in Sec-
tion 4. The paper ends with a summary of the achieved results and a discussion
about possibilities for further extension.

2 Conceptual and Technical Background

To obtain an overview, Fig. 1 shows the basic architecture of the system de-
scribed here. It consists of a runtime environment established by Java and ref-
erence nets, a workflow (WF) engine and an agent environment. On top of this,
we develop workflow agents based on the specifications of the WfMC (Workflow
Management Coalition, see [6]). These agents provide the functionality of dis-
tributed agent based workflows to any application. In the following, the layers
are described in more detail.

202 C. Reese et al.

Reference Nets

WF

WF-Agents

Application

Java

Agents

Fig. 1. Simple Architecture Overview

2.1 Reference Nets and Renew

For an introduction to reference nets, see [7,8]. Reference nets are an extension
of the Coloured Petri net (CPN) formalism (for extensive introduction, see [9])
adding both the concept of nets-within-nets introduced by Valk [10] and the
concept of synchronous channels (as first introduced in [11]). Additionally, ref-
erence nets allow to have multiple dynamically created net instances. Through
an inscription language, reference nets allow for the execution of Java code from
within a net when executed in the simulator.

Reference nets can be drawn, simulated and executed in the Renew tool
(available at [12]), which is entirely implemented in Java. Offering true concur-
rency, different transitions of a Petri net can fire at the same time. While one
task is executed, other parts of the application can continue. Along with the
general expressive power of Petri nets, e.g. for concurrency, this makes reference
nets a good choice for modelling and executing workflows.

2.2 Workflow Nets

The use of Petri nets in the workflow area has been thoroughly investigated (see
[13]). Workflow patterns can be expressed by Petri nets (see [14]). Reference
nets are especially suitable for defining a workflow due to their highly expressive
power. Through the inscriptions on a transition, e.g. a legacy application can
be called or a client can be asked to do something. Based on reference nets,
an existing workflow plug-in for Renew by Jacob [15] is used as a basis to
implement the concepts discussed here. This plug-in provides roles and several
security features besides the general features of a workflow enactment service.
It is based on a proposal for a concurrent, Petri net based workflow execution
engine [16] and on the persistent Petri net execution engine presented in [17].

2.3 Agents

The technical agent framework Capa (Concurrent Agent Platform Architecture,
see [18]) is based on the conceptual framework Mulan (Multi-agent nets). Capa
is a special agent platform: The platform itself is implemented as an agent con-
taining all agents residing on the platform, e.g. the FIPA compliant AMS and

Fragmented Workflows Supported by an Agent Based Architecture 203

DF agents (for FIPA, see [19]). This concept will be used to design WF agents
in Section 4.2.

Capa introduces the concept of net agents as an extensible architecture for
agents. Such an abstract Petri net agent provides basic functionality such as
sending and receiving messages. The behaviour is defined using protocol nets.
Protocol nets are workflow-like nets. The interface to the containing agent en-
ables explicit start and end points, incoming and outgoing information and access
to the agent’s knowledge base. The knowledge base provides adding, deleting,
modifying and searching for entries in a key-value manner.

To describe agent interactions, we use AUML interaction protocol diagrams.
The Renew diagram plug-in provides tools for drawing of AUML interaction
protocol diagrams. Skeletons of protocol nets for Capa agents can be generated
from those interaction diagrams. Interaction diagrams and the generation of
protocol nets are discussed in detail by Cabac et al. [20].

2.4 The WfMC Components of a WFMS Within Our System

The structure model for workflow systems of the Workflow Management Coali-
tion (WfMC, see [21]) defines six basic components of a WFMS, not repeated
here (see [6]). We describe how we realize these in our system:

A Process Definition Tool is part of the existing Renew workflow plug-in
mentioned above. This is now extended to provide the possibility to define cut-off
points for distribution within a workflow definition (this is detailed in Section 3).

A Workflow Client Application is also included into the existing plug-in and
wrapped by an agent. Invoked Applications are wrapped by agents. Together
with the concept of a task agent (defined in Section 4.2), this makes the dis-
tinction between client interactions, invoked applications and automatic tasks
transparent to the workflow agent.

The Workflow Enactment Service is provided in our architecture by the ex-
isting workflow plug-in (see Section 2.2). This is wrapped by an agent as an
agent platform (analogously to the Capa architecture mentioned above) that
communicates with the workflow engine agents components as contained agents.
This makes the whole workflow enactment service encapsulated, gaining security,
autonomy and mobility concepts.

The workflow engines are also wrapped by agents residing on the platform
provided by the workflow enactment service. These coordinate the execution of
workflow fragments on their platform.

Administration and monitoring is done by agents that gather information from
components concerning running and finished tasks or problems. This provides a
view to the system state as far as possible within distributed systems.

All agents are contained within a WFMS agent as a platform agent that
provides the overall workflow management service.

2.5 Relation Between Workflows and Agents

For the simplest case, there is one workflow to be executed at one WFMS,
locally. In this case, the agent that wraps that workflow is an interface to the

204 C. Reese et al.

execution environment. In the next step, each workflow and workflow fragment is
wrapped by an agent to transport it in an encapsulated way. As soon as it arrives
at a location, it is executed using the same message interface. The conceptual
advantages of agents, such as flexibility and autonomy, are only needed in an even
more complex scenario, where a workflow or workflow fragment tries to reach its
goals by interacting, negotiating, and by examining and judging the results. In
case this does not satisfy its requirements, the workflow or workflow fragment
can decide to autonomously change the circumstances, e.g. by trying another
provider to produce a somehow “better” result. We provide the infrastructure
for such a scenario by the design of workflows and workflow fragments as agents
on their own.

Conceptually, through this design, two viewpoints on one application are com-
bined by providing explicitly correspondent parts. Looking at an application as a
workflow system, emphasizes some aspects like verifiability and structure control.
Looking at the same application as a multi-agent system, emphasizes character-
istics like autonomy, encapsulation and flexibility. So a certain application can
be designed using both viewpoints at different stages of the process, but one
technique, one architecture that represents both.

The technical realization of these concepts is easy because agents in Capa
behave according to protocol nets that they instantiate according to their knowl-
edge and goals. These are reference nets that provide the interface for a protocol
net. Usually protocol nets have workflow-like structure. From the other side,
workflows are represented through workflow nets, i.e. reference nets using spe-
cial transitions and places for the special needs of a WFMS. Now a workflow
or workflow fragment agent would instantiate a workflow net that also provides
the interface as a protocol net. Access to the workflow definition would happen
exclusively through the message interface of the agent and so gain security is-
sues (at least conceptually, since we do not address security issues in the agent
communication field). Mobility is provided by Capa.

2.6 Further Procedure

The overall way to our solution is now (see Fig. 2): firstly, we enable the defini-
tion of cut-off points within a workflow specification and with that we enable the
distribution of workflow fragments; secondly, we map agent types to the WFMS
components identified by WfMC and enrich these; finally, a workflow gets exe-
cuted using the combined services of a workflow enactment service and a specific
workflow agent.

3 Fragmentation of Workflow Nets

Within Petri nets, dependencies between net elements are locally defined by
arcs. Only the neighbouring elements need to be examined and synchronized.
The requirements for a workflow fragmentation are:

Fragmented Workflows Supported by an Agent Based Architecture 205

Step 2

Step 1

Step 3

In
te

rfa
c

e
 4

Monitoring Tools
Administration &

Engine(s)

Process
Definition

Workflow

Enactment ServiceWorkflow Enactment Service

Workflow API and Interchange

Other Workflow

Interface 3Interface 2

In
te

rfa
c

e
 5

Interface 1

Workflow
Engine(s)

Invoked
ApplicationsApplication

Workflow
Client

Fig. 2. Fragmentation and distribution of workflows

(1) Workflow fragments shall be independent except for synchronization at the
borders.
(2) The fragmentation shall be arbitrary, in particular a XOR-split shall be pos-
sible and consequentially all major workflow patterns as described in [14].
(3) Each fragment shall have an arbitrary complex border, i.e. an arbitrary num-
ber of input and output arcs. Loops shall be possible.
(4) The semantics of the distributed workflow shall be the same as the seman-
tics of the whole workflow, i.e. no additional elements shall be required to be
drawn. This can be avoided by adding automatically some hidden refinements
at fragment borders to implement synchronization functionality.

3.1 Border of Fragments

Basically three different types of border definitions are possible: split arcs, border
places or border transitions. Split arcs do not limit the design and distribution
of workflows, but the coordination costs are quite high, because synchroniza-
tion and data transfer must be carried out with each search for bindings. The
fragmentation at border places can be realized through a refinement of such a
place where the synchronizing code is put. The border place can be seen as a
distributed place with copies in each fragment. The change of the marking needs
to be indivisible to prevent inconsistency. To define the border at transitions
is the most intuitive definition of a border, because the transition is the active
element within a net where data transfer happens anyway. In this case, there is
no conflict possible and thus no distributed transaction is necessary. Once the
firing is initiated, the action is completely isolated and may run concurrently

206 C. Reese et al.

with other actions. The border transition would be a coarsening like the border
place. Some workflow patterns, especially XOR, are not realizable with a tran-
sition split. Also, the same drawback as the split arcs holds here: the search for
bindings would require costly remote communication. This is why we decide to
use place bordered fragments.

3.2 Dividing a Workflow into Fragments

The designer needs to mark the intended border places in the workflow net. These
operate as cutting points, where the transfers between fragments happen. Each
workflow has one unambiguous starting point and one or more explicit endings.
Using these fix-points, a fragmentation for the workflow can automatically be
searched.

Each border place must satisfy the condition that at least a connection to
two different fragments exists. If a border place connects only one fragment with
itself, this should produce a warning because the intention of the programmer
to generate fragments cannot be satisfied.

The following algorithm can be used for fragmentation and for a consistency
check. It is implemented within the WF Agents plug-in. The algorithm is illus-
trated in Fig. 3: an example net and the resultant nets are shown. Transitions
with bold borders are task transitions (task1, 2, and 3), places with arrows are
distributed places (dp_1, 2, and 3).

Input: A workflow net with predefined border places.
(1) Transitions with start or end inscription may not have incoming or outgoing
arcs, respectively. Otherwise the net is inconsistent.
(2) Transitions with start or end must be connected each to exactly one border
place. Otherwise, the net is inconsistent.
(3) Regard all directed arcs as undirected and all transitions and places as un-
named nodes so border places become border nodes. Individually name all border
nodes (no name conflicts in the example). Multiply border nodes according to
the number of connected arcs and connect exactly one copy to each arc (In Fig.
3, this results in two instances of dp_1 and three instances of dp_2 and dp_3).
(4) For each unvisited border node search all connected border nodes in the
undirected graph. Create a list with the names of connected nodes for each frag-
ment (in the example, this results in five fragments, one of them containing node
start and node dp_1).
(5) When no unvisited border nodes exist anymore, search for double border
node entries in the list of each fragment. If a name occurs in one list and not at
all in the other lists, this border node is inconsistent.
(6) Join the fragments containing the start and end nodes of the workflow and
add a synchronized copy of each border node to obtain the control net.
(7) Regard nodes as places and transitions again. Put the fragments into individ-
ual nets and merge border places with common names across these nets: Mark
the initial border place in the control net and give each concerned fragment a
synchronized copy (a fragment is concerned if it contains a border place with
the same name).

Fragmented Workflows Supported by an Agent Based Architecture 207

result

:start(input) :end(result)

["task 1",input,output]

["task 2",input,output]

["task 3",input,output]

outputinputinput
input

input

output

output

result

:start(input) :end(result)

input

passive_wff active_wff

dp_1 dp_3 dp_2

Generated control net

Workflow to fragment

net net

activate(net)

["task 2",input,output]

input output

Generated fragment (1)

:start() :end()

dp_3 dp_2

["task 1",input,output]

outputinput

:start() :end()

dp_1 dp_3

["task 3",input,output]

input output

Generated fragment (3)

Generated fragment (2)

:start() :end() dp_3 dp_2

Fig. 3. Example workflow fragmentation

208 C. Reese et al.

Result: An error message if the net is inconsistent, otherwise disjoint fragments
(apart from border places), which, taken together, build the original net plus a
control net. The control net holds start and end points of the workflow and all
border places and their coordination. As soon as a token is put in one border
place, all concerned workflow-fragments are activated, if they have a connected
input arc. When the end-transition within the control net is activated, the work-
flow is considered finished.

3.3 Activation of Fragments and Termination of Workflows

Generally a workflow terminates once it has reached an explicitly defined end
node.

For Petri nets, it basically holds that a transition is activated if all precon-
ditions (markings, colors, guards...) are satisfied and a Petri net is activated if
at least one transition is activated. Within Renew, a net instance is passive
if there is no reference to it anymore, no transition is firing and no transition
is activated. Otherwise, a garbage collector removes the net instance from the
memory as soon as the space is needed. In the distributed case, it is conceptually
not easy to keep track of references. Other than in the local case, an instantiated
net can only be stopped explicitly by activating a special end transition. So a
workflow fragment net is activated by the Workflow Fragment (WFF) agent and
instantiated as a protocol net the first time one of its border places gets a token.
It is deactivated only when the end transition in the control net is activated.
The WF agent containing that control net informs all WFF agents, which, in
turn, activate the end transitions of the WFF net instances.

Workflow nets should therefore be designed in such a way that nothing hap-
pens once the end transition was activated. In any case, this is part of the
soundness-characteristic of a workflow net. Probably it is possible to prove this
characteristic on generated workflow fragments.

4 Architecture for Agent Based Workflows

Our main motivation for a distributed workflow engine lies in the idea of coop-
erative work coordinated by distributed workflows [22]. Other approaches were
motivated by load-balancing issues as in [23], such that workflows can be re-
distributed to other servers according to their load. The coordination of Web
services is addressed in [3].

Furthermore, we focussed on the development of a FIPA-compliant frame-
work, which is closely related to the standards proposed by the WfMC on the
one hand and the use of reference nets as a formal executable basis for the mod-
elling of the system on the other. Reference nets are used for the modelling of the
system as well as for the modelling of the workflows. One major advantage of ref-
erence nets is their ability to directly execute Java code, which makes it possible
to easily interact with a GUI or a program written in Java. Although other Petri
net based architectures exist [2], to our knowledge, our architecture is the only
one entirely based on reference nets with the benefits of easy Java integration,

Fragmented Workflows Supported by an Agent Based Architecture 209

a uniform architecture based on Mulan and a formalisms based on Petri nets
enabling us to investigate issues such as fragmentation and distribution on an
abstract level.

Our design of workflow agents building upon agent and workflow technology
is depicted in Fig. 1, and is described in the following sections.

4.1 Plug-In Dependencies

The presented work makes use of several plug-ins for Renew. The dependen-
cies of the different plug-ins are shown in Fig. 4. Renew provides a runtime
environment and a GUI Plug-in. Capa and the Workflow Plug-in depend on the
Renew simulator. Capa provides optional GUI access (i.e. it can be used in a
non-graphical environment).

The WF Agents Plug-in described in this paper depends on Capa and on
the WF Plug-in. Optional GUI access is provided. The direct dependency on
the Renew simulator results from the fragmentation of workflow nets, which
requires extensions to basic net elements (i.e. the places including code for syn-
chronization, as discussed in Section 3).

An Application using the system would depend on the WF Agents Plug-in
and probably also on the Capa Plug-in and the GUI Plug-in. These would form
the runtime environment for that application.

4.2 Infrastructure

Each component of a WFMS can be mapped to an agent type (implementing
this component) to form an agent based WFMS. We add a deployment agent
and workflow agents that can hold a workflow as such.

Most of the defined agent types provide parts of the WF platform services.
The task agents are domain specific service providers (cf. Fig. 5).

WFMS agent. The Workflow Management Service agent forms the platform
of the WFMS containing all workflow specific agents. It provides the overall
interface to the service of a WFMS by its contained agents.

WFES agent. The Workflow Enactment Service agent holds the main func-
tionality of enacting workflows. It instantiates and contains workflow engine
agents.

WFE agent. The execution of workflows is coordinated by Workflow Engine
agents residing on the platform provided by the WFES agent. When a work-
flow is to be executed, this agent calls the service of a WF agent. All necessary
communication for the execution is handled here.

WF-Cl agent. The Workflow Client agent replaces the client application from
the underlying WFMS by shifting the communication level from Java to
reference nets and from reference nets to agent messages. A participating
user registers using this interface and receives task descriptions and work
items according to his role. This is the workflow client application in the
classical sense.

210 C. Reese et al.

CAPA
Plug-in

Workflow
Plug-in

WF Agents
Plug-in

CAPA-Platform Workflow-Environment

WF Agents Platform

Renew
Simulator

Plug-in

GUI
Plug-in

(Soft dependencies)

Renew

Fig. 4. Dependencies among Renew plug-ins

ADA agent. Within the Administration Agent the users of the system and
their rights are managed.

Monitoring agent. This agent gathers information explicitly provided by the
other agents concerning the execution state of the system. This agent can
summarize gathered data and can act autonomously in exceptional situa-
tions.

Task agent. Task agents correspond to the “invoked application” in the WfMC
model. They are arbitrary agents that can be provided by an application.
Their supplied services are called by a task if this is required by a workflow.
A Task agent is created by the WFES platform agent using application
specific descriptions; it travels to its intended location, then executes its
task by invoking some application.

WF and WFF agents. The workflows themselves reside as Workflow and
Workflow Fragment agents on the platform provided by the WFES agent.
The WF agent coordinates the WFF agents that are local or remote parts
of the executed workflow.

Deployment agent. This agent realizes the configuration of the system. New
workflows and roles can be configured here. It is not contained in the WFES
agent platform.

Fig. 5 shows an exemplary infrastructure of the platform. The layers from
which the platform is built are: the communication layer on HTTP basis at the
bottom, which is provided by Capa. Above, the platform agents from Capa
which provide basic services of a FIPA compliant platform are shown. These are
the agents Directory Facilitator (DF), Agent Management System (AMS) and

Fragmented Workflows Supported by an Agent Based Architecture 211

Deployment WFMS

WFE WF-Cl

Task WFF

AMSDF

Platform

WF-Cl
WFE

Monitoring

WFMS

WFF

Task

AMSDF

Platform

CAPA

WF-Agents

Application

HTTP

WF

WFES
WFES

Server A Server B

Fig. 5. Example infrastructure of WF platforms

the platform itself which is implemented as an agent in Capa. Again above are
the agents of the WF agent platform. The Workflow Management System agent
holds other agents analogous to the platform agent of Capa.

The agents are connected via the communication layer of Capa so that the
platform components are loosely coupled. This gets us the advantage that com-
ponents can independently be updated and started without affecting the whole
system.

5 The Running System

In the following, some aspects of the running system are discussed.

Distribution and Execution. After the fragmentation, each fragment is en-
capsulated within one WFF (Workflow Fragment) agent. In terms of the agent
framework Capa this means that the WFF agent runs a net instance of a work-
flow fragment net as a protocol net. The WFF agents are transferred to their
execution platform (WFES agent), either through external channels or migrating
or, third possibility, by starting the agents remotely. If a workflow is executed,
the fragments must be located through a directory service but the WFF agents
should provide their service to the associated WF agent only. To reach this, the
involved agents must know each other. To make recognition possible, each frag-
ment is signed and this signature is registered. Additionally, the WFF agents
hold the signature of the original workflow to ensure authorization.

A workflow is started by calling the service of a WFES (workflow enactment
service) agent which provides the services of contained WF agents. The WF agent
searches for service providers for all fragments of the workflow. More than one
provider for a certain fragment is possible in the case when more than one WF

212 C. Reese et al.

agent was started for this workflow. The fragments are instantiated and activated
according to the control net contained in the WF agent. As long as a fragment is
not yet activated, it is possible to exchange the service provider. Within the control
net the workflow is actually started and the first fragment is activated.

Synchronization between fragments is needed only at the border places. This
is realized with a distributed lock i.e. a mechanism that ensures a consistent state
for shared resources. Only the current owner of a lock may perform changes.

ok

ok

WFF-Agent 1 WF-Agent
lock
management

unlocked

representing
arbitrary number
of fragments

WFF-Agent

remove (id)
remove (id)

fail

lock

locked

unlock

ok

ok

Fig. 6. Synchronization protocol for a border place

The coordination and conflict solving is done by the WF agent, which also
manages the lock. The resulting topology has a star shape, so the fragments do
not need to know each other. Fig. 6 illustrates this. Further details are described
in [24].

Starting and ending workflows or parts of workflows happens through message
exchange: a workflow cannot be explicitly stopped, as explained in Section 3.3.
The responsibility for an unambiguous termination of a workflow remains with
the designer of the workflow itself. After the activation of the end transition in
the control net the requesting agent is informed about the result of the workflow.

Load Distribution and Redundancy. An agent architecture according to
FIPA is useful to implement redundancy by several agents that provide the same
service. They can reside on several agent platforms. The selection mechanism
used to choose a service provider realizes the desired effect like load distribution.
The agents that use services of other agents must realize their services in an
adaptive way to enable this scenario, i.e. they have to search for alternative
services autonomously.

Fragmented Workflows Supported by an Agent Based Architecture 213

In the architecture proposed here, the WFMS agent is the only agent that is
central to one WF agent platform. If this agent also should work more than once
on one platform, one needs to ensure that they synchronize their state carefully.

Directory Service. Because the components of the WFMS are only loosely
coupled, the system needs a directory service for discovery and coupling of com-
ponents. Entries in a directory service should have a validity time and describe
services and their providers using globally unique names, they should be search-
able across platforms and they should be reliable: only authorized registration
and manipulation allowed, and unambiguous service descriptions and a reliable
relation to the service provider ensured. The FIPA Directory Facilitator (DF)
meets most of these requirements. The missing security features are not ad-
dressed in this paper. Probably some agreement will be made for the security of
the FIPA DF service. Another possibility is implementing a proprietary secure
workflow directory service, e.g. provided by the WFES agent. In both cases, all
participating agents need to use the provided security functions.

With the Capa network connection plug-in Ace (see [25]), agents can search
and publish services worldwide, e.g. within the open agent network openNet
(see [26]).

6 Conclusion

The main result is to provide a powerful architecture for flexible workflow sys-
tems along with an approach to distribute workflows on different locations
through fragmentation. By using high-level Petri nets, i.e. reference nets, a pre-
cise modelling technique is applied to describe workflows and to generate arbi-
trary fragments that can be distributed within a set of workflow management
systems. Thus different organizations are allowed to cooperate, based on a pre-
cise process model. The concept of agents allows for a flexible, dynamic and
autonomous configuration of each workflow and platform. Since workflows are
encapsulated by agents, these advantages can be transfered. The disadvantage is
the higher complexity of the infrastructure. However, this is inherent to the re-
quirements on distributed workflow organization. The more possibilities are pro-
vided in a workflow management, the more infrastructure has to be provided.
Agents as the basis of workflows have the potential to fulfil all requirements
for a certain implementation and usage price. What should be noted here are
the increasing requirements with respect to distribution and the resulting true
concurrency (which is more complex than the usual interleaving (round-robin)
semantics of other modelling formalisms). Here the use of reference nets and a
tool set that really supports such concurrency is of high value.

6.1 Outlook

There are several possibilities to extend our work so far. We will integrate Re-
new, Mulan, Capa, the agent network connection plug-in Ace and the work-
flow management system with our Web service tools to provide a Collaborative

214 C. Reese et al.

Integrated Development Environment (Cide). First steps are realized in a pro-
totype and are published in [27]. The workload to really meet the technological /
practical requirements for an interorganizational workflow management system
allows only for prototypical evaluation. Due to our tight conceptual integration
of Web Services and agents our workflow concepts can easily be merged with
Web Service environments.

References

1. Jennings, N.R.: On agent-based software engineering. Artificial Intelligence 117(2)
(2000) 277–296

2. Purvis, M., Savarimuthu, B.T.R., Purvis, M.K.: Evaluation of a multi-agent based
workflow management system modelled using coloured petri nets. In Barley, M.,
Kasabov, N.K., eds.: PRIMA. Volume 3371 of LNCS., Springer (2004) 206–216

3. Blake, M.B., Gomaa, H.: Object-oriented modelling approaches to agent-based
workflow services. In de Lucena, C.J.P., Garcia, A.F., Romanovsky, A.B., Cas-
tro, J., Alencar, P.S.C., eds.: SELMAS. Volume 2940 of LNCS., Springer (2003)
111–128

4. Reese, C., Offermann, S., Moldt, D.: Architektur für verteilte, agentenbasierte
Workflows. In Schoop, M., Huemer, C., Rebstock, M., Bichler, M., eds.: Service-
oriented Electronic Commerce in the context of the Multikonferenz Wirtschaftsin-
formatik 2006 (MKWI 2006). Volume P-80 of Lecture Notes in Informatics (LNI)
- Proceedings., Bonn, Gesellschaft für Informatik, Köllen Druck+Verlag GmbH
(2006) 73–87

5. Aalst, W.v.d.: Inheritance of interorganizational workflows to enable business-to-
business. Electronic Commerce Research 2(3) (2002) 195–231

6. Workflow Management Coalition: WfMC workflow reference model. URL
http://www.wfmc.org/standards/model.htm (2005)

7. Kummer, O.: Introduction to Petri nets and reference nets. Sozionik Aktuell 1
(2001) 1–9 ISSN 1617-2477.

8. Kummer, O.: Referenznetze. Logos, Berlin (2002)
9. Jensen, K.: Coloured Petri Nets: Volume 1; Basic Concepts, Analysis Methods and

Practical Use. EATCS Monographs on Theoretical Computer Science. Springer-
Verlag, Berlin (1992)

10. Valk, R.: Petri Nets as Token Objects: An Introduction to Elementary Object
Nets. In Desel, J., ed.: 19th ICATPN. Number 1420 in LNCS, Berlin, Springer
(1998)

11. Christensen, S., Hansen, N.D.: Coloured Petri Nets Extended with Channels for
Synchronous communication. Technical Report DAIMI PB–390, Computer Science
Department, Aarhus University (1992)

12. Renew: The reference net workshop homepage. (URL http://www.renew.de/)
13. Aalst, W.v.d.: Verification of workflow nets. In Azéma, P., Balbo, G., eds.: Ap-

plication and Theory of Petri Nets 1997. Number 1248 in LNCS, Berlin, Springer
(1997) 407–426

14. Aalst, W.v.d., Hofstede, A.t., Kiepuszewski, B., Barros, A.P.: Workflow patterns.
Distributed and Parallel Databases 14(3) (2003) 5–51

15. Jacob, T.: Implementierung einer sicheren und rollenbasierten Workflowmanage-
ment-Komponente für ein Petrinetzwerkzeug. Diploma thesis, University of Ham-
burg (2002)

Fragmented Workflows Supported by an Agent Based Architecture 215

16. Aalst, W.v.d., Moldt, D., Valk, R., Wienberg, F.: Enacting Interorganizational
Workflows Using Nets in Nets. In: Proceedings of the 1999 Workflow Management
Conference. Volume 70., University of Münster (1999) 117–136

17. Jacob, T., Kummer, O., Moldt, D.: Persistent Petri Net Execution. Petri Net
Newsletter 61 (2001) 18–26

18. Duvigneau, M., Moldt, D., Rölke, H.: Concurrent architecture for a multi-agent
platform. In Giunchiglia, F., Odell, J., Weiß, G., eds.: AOSE 2002, Revised Papers
and Invited Contributions. Volume 2585 of LNCS., Berlin, Springer (2003)

19. Foundation for Intelligent Physical Agents: FIPA Agent Management Specification.
(2004) http://www.fipa.org/specs/fipa00023/.

20. Cabac, L., Moldt, D., Rölke, H.: A Proposal for Structuring Petri Net-Based Agent
Interaction Protocols. In van der Aalst, W., Best, E., eds.: 24nd ICATPN 2003,
Eindhoven, NL. Volume 2679., Berlin, Springer (2003) 102 – 120

21. Workflow Management Coalition (WfMC). URL http://www.wfmc.de/ (2005)
22. Lehmann, K., Markwardt, V.: Proposal of an Agent-based System for Distributed

Software Development. In Moldt, D., ed.: Proc of MOCA 2004, Aarhus, Denmark
(2004) 65–70

23. Bauer, T., Reichert, M., Dadam, P.: Intra-subnet load balancing in distributed
workflow management systems. Int. J. Cooperative Inf. Syst. 12(3) (2003) 295–
324

24. Carl, T.: Entwicklung eines agentenbasierten verteilten Workflow-Management-
Systems mit Referenznetzen. Diploma thesis, University of Hamburg (2004)

25. Reese, C., Duvigneau, M., Köhler, M., Moldt, D., Rölke, H.: Agent–based settler
game. In: Agentcities Agent Technology Competition, Barcelona, Spain. (2003)

26. OpenNet: Project website. http://www.x-opennet.org/ (2004)
27. Markwardt, K., Moldt, D., Offermann, S., Reese, C.: Using multi-agent systems

for change management processes in the context of distributed software develop-
ment processes. In Sadiq, S., Reichert, M., Schulz, K., eds.: The 1st International
Workshop on Technologies for Collaborative Business Processes (TCoB-2006) in
the context of the 8th International Conference on Enterprise Information Systems
(ICEIS-2006). (2006) accepted contribution.

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 216 – 230, 2006.
© Springer-Verlag Berlin Heidelberg 2006

An Agent-Based Meta-level Architecture for Strategic
Reasoning in Naval Planning

Mark Hoogendoorn1, Catholijn M. Jonker3, Peter-Paul van Maanen1,2, and Jan Treur1

1 Vrije Universiteit Amsterdam, Dept. of Artificial Intelligence,
De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands

{mhoogen, treur}@cs.vu.nl
http://www.cs.vu.nl/~{mhoogen, treur}

2 TNO Human Factors, Dept. of Information Processing,
P.O. Box 23, 3769 ZG Soesterberg, The Netherlands

peter-paul.vanmaanen@tno.nl
http://www.cs.vu.nl/~pp

3 Radboud University Nijmegen, Nijmegen Institute for Cognition and Information,
Montessorilaan 3, 6525 HR Nijmegen, The Netherlands

c.jonker@nici.ru.nl
http://www.nici.ru.nl/~catholj

Abstract. The management of naval organizations aims at the maximization of
mission success by means of monitoring, planning and strategic reasoning. This
paper presents an agent-based meta-level architecture for the improvement of
automated strategic reasoning in naval planning. The architecture is instantiated
with decision knowledge acquired from naval domain experts and is formed
into an executable agent-based model, which is used to perform a number of
simulation runs. To evaluate the simulation results, relevant properties for the
planning decision are identified and formalized. These important properties are
validated for the simulation traces.

Keywords: Meta-reasoning, planning, intelligent agent systems.

1 Introduction

The management of naval organizations aims at the maximization of mission success
by means of monitoring, planning and strategic reasoning. In this domain, strategic
reasoning more in particular helps in determining in resource-bounded situations if a
go or no go should be given to, or to shift attention to, a certain evaluation of possible
plans after an incident. An incident is an unexpected event that results in an unmeant
chain of events if left alone. Strategic reasoning in a planning context can occur both
in plan generation strategies (cf. [1]) and plan selection strategies.

The above context gives rise to two important questions. Firstly, what possible
plans are first to be considered? And secondly, what criteria are important for
selecting a certain plan for execution? In resource-bounded situations, first generated
plans should have a high probability to result in a mission success, and the criteria to
determine this should be as sound as possible.

In this paper, a generic agent-based meta-level architecture (cf. [2]) is presented for
planning, extended with a strategic reasoning level. Besides the introduction of an

 An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning 217

agent-based meta-level architecture, expert knowledge is used in this paper to
formally specify executable properties for each of the components of the agent
architecture. In contrast to other approaches, this can be done on a conceptual level.
These properties can be used for simulation and facilitate formal validation by means
of verification of the simulation results. Furthermore, specific evaluation criteria for
plans are introduced and formalized in this paper that are appropriate for the naval
domain. These include mission success, troop morale and safety of the ships and
troops.

The agent architecture and its components are described in Section 2. Section 3
presents the method used to formalize the architecture. Section 4 presents each of the
individual components on a more detailed level and instantiates them with knowledge
from the naval domain. Section 5 describes a case study and discusses simulation
results. In Section 6, a number of properties of the model’s behaviour are identified
and formalized. A formal tool TTL Checker is used to check the validity of these
properties in the simulated traces. Section 7 is a discussion.

2 An Agent-Based Meta-level Architecture for Naval Planning

The agent-based architecture has been specified using the DESIRE framework [3]. For a
comparison of DESIRE with other agent-based modelling techniques, such as GAIA,
ADEPT, and MetateM, see [4, 5]. The top-level of the system is shown in
Fig. 1 and consists of the ExternalWorld and the Agent. Note that this architecture
concerns a multi-agent system. This paper however only describes the architecture of a
single agent. The ExternalWorld generates observations which are forwarded to the Agent,
and executes the actions that have been determined by the Agent. The composition of the
Agent is based on the generic agent model described in [6] of which two components are
used: WorldInteractionManagement and OwnProcessControl, as shown in Fig. 2.
WorldInteractionManagement takes care of monitoring the observations that are received
from the ExternalWorld. In the case when these observations are consistent with the
current plan, the actions which are specified in the plan are executed by means of

Agent

ExternalWorld

observation_results

actions_to_be_performed

Fig. 1. Top-level architecture

218 M. Hoogendoorn et al.

forwarding them to the top-level. Otherwise, evaluation information is generated and
forwarded to the OwnProcessControl component. Once OwnProcessControl receives such
an evaluation, it determines whether the current plan needs to be changed and, in the
case that it does, forwards this new plan to WorldInteractionManagement.

WorldInteractionManagement can be decomposed into two components, namely
Monitoring and PlanExecution which take care of the tasks as previously presented (i.e.
monitoring the observations and executing the plan). For the sake of brevity, the
figure regarding these components has been omitted.

OwnProcessControl can also be decomposed, which is shown in Fig. 3. Three
components are present within OwnProcessControl: StrategyDetermination, PlanGeneration,
and PlanSelection. The PlanGeneration component determines which plans are suitable,
given the evaluation information received in the form of beliefs from
WorldInteractionManagement, and the conditional rules given by StrategyDetermination.
The candidate plans are forwarded to PlanSelection where the most appropriate plan is
selected. In the case that no plan can be selected in PlanSelection, this information is
forwarded to the StrategyDetermination component. StrategyDetermination reasons on a

OwnProcessControl
1
in

OwnProcessControl
2
in

OwnProcessControl
1

out

OwnProcessControl
2

out

StrategyDetermination

PlanGeneration PlanSelection

reflected_beliefs_to_SD

belief_info_to_PG

plans_to_be_considered_to_PG

possible_plans_to_PS

evaluation_info_to_SD

selected_plan_from_PS

evaluation_criteria_to_PS

Fig. 3. Components within OwnProcessControl

Agent
1
in

Agent
2
in

Agent
1

out

Agent
2

out

OwnProcessControl

WorldInteractionManagement

observation_results_to_WIM

beliefs_to_OPC

actions_and_plan_to_WIM

actions_from_WIM

Fig. 2. Agent architecture

 An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning 219

meta-level (the input is located on a higher level as well as the output as shown in
Fig. 3), getting input by translating beliefs into reflected beliefs and by means of
receiving the status of the plan selection process from PlanSelection. The component
has the possibility to generate more conditional rules and pass them to PlanGeneration,
or can change the evaluation criteria in PlanSelection by forwarding these criteria.

The model has some similarities with the model presented in [7]. A major
difference is that an additional meta-level is present in the architecture presented here
for the StrategyDetermination component. The advantage of having such an additional
level is that the reasoning process will be more efficient, as the initial number of
options are limited but are required to be the most straightforward ones.

3 Formalization Method

In this section, the method used for the formalization of the model presented in
Section 2 is explained in more detail. To formally specify dynamic properties that are
essential in naval strategic planning processes and therefore essential for the
components within the agent, an expressive language is needed. To this end, the
Temporal Trace Language (TTL) is used as a tool cf. [8]. In this section of the paper,
both an informal and formal representation of the properties are given.

A state ontology is a specification (in order-sorted logic) of a vocabulary. A state
for ontology Ont is an assignment of truth-values {true, false} to the set At(Ont) of
ground atoms expressed in terms of Ont. The set of all possible states for state
ontology Ont is denoted by STATES(Ont). The set of state properties STATPROP(Ont)
for state ontology Ont is the set of all propositions over ground atoms from At(Ont). A
fixed timeframe T is assumed that is linearly ordered. A trace or trajectory γ over a
state ontology Ont and timeframe T is a mapping γ : T → STATES(Ont), i.e. a sequence
of states γt (t ∈ T) in STATES(Ont). The set of all traces over state ontology Ont is
denoted by TRACES(Ont). Depending on the application, the timeframe T may be
dense (e.g. the real numbers), or discrete (e.g. the set of integers or natural numbers or
a finite initial segment of the natural numbers) or any other form, as long as it has a
linear ordering. The set of dynamic properties DYNPROP() is the set of temporal
statements that can be formulated with respect to traces based on the state ontology
Ont in the following manner.

Given a trace γ over state ontology Ont, the input state of a component c within the
agent (e.g. PlanGeneration, or PlanSelection) at time point t is denoted by state(γ, t,
input(c)). Analogously state(γ, t, output(c)) and state(γ, t, internal(c)) denote the output state,
internal state and external world state.

These states can be related to state properties via the formally defined satisfaction
relation |=, comparable to the Holds-predicate in the Situation Calculus: state(γ, t,

output(c)) |= p denotes that state property p holds in trace γ at time t in the output state
of agent-component c. Based on these statements, dynamic properties can be
formulated in a formal manner in a sorted first-order predicate logic with sorts T for
time points, Traces for traces and F for state formulae, using quantifiers over time and
the usual first-order logical connectives such as ¬, ∧, ∨, , ∀, ∃. In trace
descriptions, notations such as state(γ, t, output(c))|= p are shortened to output(c)|p.

220 M. Hoogendoorn et al.

To model direct temporal dependencies between two state properties, the simpler
leads to format is used. This is an executable format defined as follows. Let α and β
be state properties of the form ‘conjunction of literals’ (where a literal is an atom or
the negation of an atom), and e, f, g, h are non-negative real numbers. In the leads to
language α →→e, f, g, h β, means:

if state property α holds for a certain time interval with duration g, then after some delay (between e and
f) state property β will hold for a certain time interval of length h.

For a precise definition of the leads to format in terms of the language TTL, see
[9]. A specification of dynamic properties in leads to format has as advantages that it
is executable and that it can easily be depicted graphically.

4 Component Specification for Naval Planning

This section introduces each of the components within the strategic planning process
in more detail. The components presented in this section are only those parts of
OwnProcessControl within the agent since they are most relevant for the planning
process. A partial specification of executable properties in semi-formal format is also
presented for each of these components. The properties introduced in this section are
generic for naval (re)planning and can easily be instantiated with mission-specific
knowledge. All of these properties are the result of interviews with officers of the
Royal Netherlands Navy.

4.1 Plan Generation

The rules for generation of a plan can be stated very generally as the knowledge about
plans. Conditions for those plans are stored in the StrategyDetermination component,
which is treated later. Basically, in this domain, the component contains one rule:

if belief(S:oSITUATION, pos)

 and conditionally_allowed(S:SITUATION, P:PLAN)

then candidate_plan(P:PLAN)

stating that in the case that Monitoring evaluated the current situation as being situation
S and the PlanGeneration has received an input that situation S allows for plan P, then it
is a candidate plan. This information is passed to the PlanSelection component.

4.2 Plan Selection

Plan selection is the next step in the process and for this domain there are three
important criteria that determine whether a plan is appropriate or not: (1) Mission
success, (2) safety and (3) a fleet morale criterion. In this scenario, it is assumed that a
weighted sum can be calculated and used in order to make a decision between
candidate plans. The exact weight of each criterion is determined by the
StrategyDetermination component. The value for the criteria can be derived from
observations in the world and, for example, a weighted sum can be taken over time.
To obtain the observations, for each candidate plan the consequent events of the plan

 An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning 221

are determined and formed into an observation. Thereafter, the consequences of these
observations for the criteria can be determined. In the examples shown below, the
bridge between changes of the criteria after an observation and the overall value of
the criteria are not shown in a formal form for the sake of brevity.

Mission Success. An important criterion is of course the mission success. Within this
criterion, the objective of the mission plays a central role. In the case that a certain
decision needs to be made, the influence this decision has for the mission success
needs to be determined. The criterion involves taking into account several factors.
First of all, the probability that the deadline is reachable. Besides that, the probability
that the mission succeeds with a specific fleet configuration. The value of the mission
success probability is a real number between 0 and 1. A naval domain expert has
labelled certain events with an impact value on mission success. This can entail a
positive effect or a negative effect. The mission starts with an initial value for success,
taking into consideration the assignment and the enemy. In the case that the situation
changes this can lead to a change of the success value. An example of an observation
with a negative influence is shown below.

if current_success_value(S:REAL)

 and belief(ship_left_behind, pos)

then new_succes_value(S:REAL * 0.8)

Safety. Safety is an important criterion as well. When a ship loses propulsion, the
probability of survival decreases dramatically if left alone. Basically, the probability
of survival depends on three factors: (1) the speed with which the task group is
sailing, (2) the configuration of own ships, which includes the amount and type of
ships, and their relative positions and (3) the threat caused by the enemy, the kind of
ships the enemy has, the probability of them attacking the task group etc.

The safety value influences the evaluation value of possible plans. The duration of
a certain safety value determines its weight in the average risk value, so a weighted
sum based on time duration is taken. The value during a certain period in time is again
derived by means of an initial safety value and events in the external world causing
the safety value to increase or decrease. An example rule:

if current_safety_value(S:REAL)

 and belief(speed_change_from_to(full, slow), pos)

then new_safety_value(0.5 * S:REAL)

Fleet morale. The morale of the men on board of the ships is also important as a
criterion. Morale is important in the considerations as troops with a good morale are
much more likely to win compared to those whose morale is low. Troop morale is
represented by a real number with a value between 0 and 1 and is determined by
events in the world observed by the men. Basically, the men start with a certain
morale value and observations of events in the world can cause the level to go up or
down, similar to the mission success criterion. One of the negative experiences for
morale is the observation of being left behind without protection or seeing others
solely left behind:

if current_morale_value(M:REAL)

 and belief(ship_left_behind, pos)

then new_morale_value(M:REAL * 0.2)

222 M. Hoogendoorn et al.

An observation increasing the morale is that of sinking an enemy ship:

if current_morale_value(M:REAL)

and belief(enemy_ship_eliminated, pos)

and min(1, M:REAL * 1.6, MIN:REAL)

then new_morale_value(MIN:REAL)

4.3 Strategy Determination

The StrategyDetermination component within the model has two functions: first of all, it
determines the conditional plans that are to be used given the current state, secondly,
it provides a strategy for the selection of these plans.

In general, naval plans are generated according to a preferred plan library or in
exceptional cases outside of this preferred plan library. The StrategyDetermination
component within the model determines which plans are to be used and thereafter
forwards these plans to the PlanGeneration component. The StrategyDetermination
component determines one of three modes of operation on which conditional rules are
to be used in this situation:

1. Limited action demand. This mode is used as an initial setting and is a subset of
the preferred plan library. It includes the more common actions within the
preferred plan library;

2. Full preferred plan library. Generate all conditional rules that are allowed
according to the preferred plan library. This mode is taken when the limited action
mode did not provide a satisfactory solution;

3. Exceptional action demand. This strategy is used in exceptional cases, and only
in case the two other modes did not result in an appropriate candidate plan.

Note that the plans within the first mode of operation occur much more frequently
than the ones in the second mode. A similar relation holds between the second and the
third mode of operation. The idea is that the result of this frequency difference while
using a strategy determination component is a significant improvement of the
reasoning process.

Next to determining which plans should be evaluated, the StrategyDetermination
component also determines how these plans should be evaluated. In Section 4.3, it
was stated that the plan selection depends on mission success, safety and fleet morale.
All three factors determine the overall evaluation of a plan to a certain degree. Plans
can be evaluated by means of an evaluation formula, which is described by a
weighted sum. Differences in weights determine differences in plan evaluation
strategy. The plan evaluation formula is as follows (in short):

evaluation_value(P:PLAN) =

α * mission_success_value(P:PLAN) + β * safety_value(P:PLAN) + γ * fleet_morale_value(P:PLAN)

where all values and degrees are in the interval [0,1] and + + = 1. + + = 1. + = 1. = 1. The degrees
depend on the type of mission and the current state of the process. For instance, if a
mission is supposed to be executed safely at all cost or the situation shows that
already many ships have been lost, the degree should be re should be relatively high.

 An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning 223

In this case the following rules hold:

if problem_type(mission_success_important)

 and problem_type(safety_important)

 and problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.33 * R1:REAL + 0.33 * R2:REAL + 0.33 *R3:REAL)

In case two criteria are most important the following rule holds:

if problem_type(mission_success_important)

 and problem_type(safety_important)

 and not problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.45 * R1:REAL + 0.45 * R2:REAL + 0.1 *R3:REAL)

This holds for each of the problem type combinations where two criteria are
important: A weight of 0.45 in case the criterion is important for the problem type and
0.1 otherwise. Finally, only one criterion can be important:

if problem_type(mission_success_important)

 and not problem_type(safety_important)

 and not problem_type(fleet_morale_important)

 and candidate_plan(P:PLAN)

 and mission_success_value(P:PLAN, R1:REAL)

 and safety_value(P:PLAN, R2:REAL)

 and fleet_morale_value(P:PLAN, R3:REAL)

then evaluation_value(no_propulsion(ship), 0.6 * R1:REAL + 0.2 * R2:REAL + 0.2 *R3:REAL)

The plan generation modes and plan selection degrees presented above can be
specified by formal rules which have been omitted for the sake of brevity.

5 Case-Study: Total Steam Failure

This section presents a case study which has been formalized using the agent-based
model presented in Section 2 and 4. This case study is again based upon interviews
with expert navy officers of the Royal Netherlands Navy. The formalization of this
process follows the methodology presented in Section 3.

5.1 Scenario Description

The scenario used as an example is the first phase within a total steam failure
scenario. A fleet consisting of 6 frigates (denoted by F1 – F6) and 6 helicopters
(denoted by H1 – H6) are protecting a specific area called Zulu Zulu (denoted by ZZ).
For optimal protection of valuable assets that need to be transported to a certain
location and need to arrive before a certain deadline, the ships carrying these assets

224 M. Hoogendoorn et al.

Fig. 4. Scenario for meta-reasoning

are located in ZZ. These ships should always maintain their position in ZZ to
guarantee optimal protection. The formation at time T0 is shown in Fig. 4. On that
same time-point the following incident occurs: an amphibious transport ship that is
part of ZZ loses its propulsion and cannot start the engines within a few minutes.
When a mission is assigned to a commander of the task group (CTG), he receives a
preferred plan library from the higher echelon. This library gives an exhaustive list of
situations and plans that are allowed to be executed within that situation. Therefore
the CTG has to make a decision: what to do with the ship and the rest of the fleet. In
the situation occurring in the example scenario, the preferred plan library consists of
four plans:

1. Continue sailing. Leave the ship behind. The safety of the main fleet will therefore
be maximal, althiough the risk for the ship is high. The morale of all the men
within the fleet will drop.

2. Stop the entire fleet. Stopping the fleet ensures that the ship is not left behind and
lost, although the risks for the other ships increase rapidly as an attack is more
likely to be successful when not moving.

3. Return home without the ship. Rescue the majority of the men from the ship,
return home, but leave a minimal crew on the ship that will still be able to fix the
ship. The ship will remain in danger until it is repaired and the mission is surely
not going to succeed. The morale of the men will drop to a minimal level. This
option is purely hypothetical according to the experts.

4. Form a screen around the ship. This option means that part of the screen of the
main fleet is allocated to form a screen around the ship. Therefore the ship is
protected and the risks for the rest of the fleet stay acceptable.

Option 4 involves a lot more organizational change compared to the other options and
is therefore considered after the first three options. The CTG decides to form a screen
around the ship.

 An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning 225

internal(StrategyDetermination)|operation_mode(limited_action_demand)
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship))

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship))
output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet))

input(Monitoring)|observation_result(no_propulsion(ship), pos)
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), stop_fleet)

input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), continue_without_ship)
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), return_home_without_ship)

output(Monitoring)|evaluation_is_current(has_problem(no_propulsion, ship), pos)
output(Monitoring)|belief(no_propulsion(ship), pos)

output(PlanSelection)|current_plan(continue_without_ship)
input(PlanGeneration)|evaluation_is_current(has_problem(no_propulsion, ship), pos)

input(PlanSelection)|belief(no_propulsion(ship), pos)
input(PlanExecution)|belief(no_propulsion(ship), pos)

input(StrategyDetermination)|true(belief(no_propulsion(ship), pos))
output(PlanGeneration)|candidate_plan(stop_fleet)

output(PlanGeneration)|candidate_plan(continue_without_ship)
output(PlanGeneration)|candidate_plan(return_home_without_ship)

input(PlanSelection)|candidate_plan(stop_fleet)
input(PlanSelection)|candidate_plan(continue_without_ship)

input(PlanSelection)|candidate_plan(return_home_without_ship)
internal(PlanSelection)|plan_evaluation(stop_fleet, 0.3)

internal(PlanSelection)|plan_evaluated(stop_fleet)
internal(PlanSelection)|plan_evaluation(continue_without_ship, 0.2)

internal(PlanSelection)|plan_evaluated(continue_without_ship)
internal(PlanSelection)|plan_evaluation(return_home_without_ship, 0.1)

internal(PlanSelection)|plan_evaluated(return_home_without_ship)
internal(PlanSelection)|best_plan(stop_fleet, 0.3)

output(PlanSelection)|selection_info(selection_failed)
input(StrategyDetermination)|true(selection_info(selection_failed))
internal(StrategyDetermination)|operation_mode(full_plan_library)

output(StrategyDetermination)|to_be_assumed(conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship))
input(PlanGeneration)|conditionally_allowed(has_problem(no_propulsion, ship), form_screen_around_ship)

output(PlanGeneration)|candidate_plan(form_screen_around_ship)
input(PlanSelection)|candidate_plan(form_screen_around_ship)

internal(PlanSelection)|plan_evaluation(form_screen_around_ship, 0.6)
internal(PlanSelection)|plan_evaluated(form_screen_around_ship)
internal(PlanSelection)|best_plan(form_screen_around_ship, 0.6)

internal(PlanSelection)|plan_change
output(PlanSelection)|current_plan(form_screen_around_ship)

time 0 5 10 15 20

Fig. 5. Trace of the total steam failure simulation

5.2 Simulation Results

The most interesting results of the simulation using the architecture and properties
described in Section 2 and 4, and instantiated with the case-study specific knowledge
from Section 5.1, are shown in Fig. 5. The trace, a temporal description of chains of
events, describes the decision making process of the agent that plays the role of
Commander Task Group (CTG). The atoms on the left side denote the information
between and within the components of the agents. To keep the figure clear, only the
atoms of the components on the lowest level of the agent architecture are shown. The
right side of the figure shows when these atoms are true. In the case of a black box the
atom is true during that period, in other cases the atom is false (closed world
assumption). The atoms used are according to the model presented in Section 2. For
example, internal(PlanGeneration) denotes that the atom is internal within the
PlanGeneration component. More specifically, the trace shows that at time-point 1 the
Monitoring component receives an input that the ship has no propulsion

input(Monitoring)|observation_result(no_propulsion(ship), pos)

226 M. Hoogendoorn et al.

The current plan is to continue without the ship, as the fleet continues to sail without
any further instructions:

output(PlanSelection)|current_plan(continue_without_ship)

As the StrategyDetermination component always outputs the options currently available
for all sorts of situations (in this case only a problem with the propulsion of a ship), it
continuously outputs the conditionally allowed information in the limited action
mode, for example:

output(StrategyDetermination)|to_be_assumed(
conditionally_allowed(has_problem(no_propulsion, ship),continue_without_ship))

The information becomes an input through downward reflection, a translation from a
meta-level to a lower meta-level:

input(PlanGeneration)|conditionally_allowed(
has_problem(no_propulsion, ship), continue_without_ship)

The Monitoring component forwards the information about the observation to the
components on the same level as beliefs. The StrategyDetermination component also
receives this information but, instead of a belief, it arrives as a reflected belief through
upward reflection that is a translation of information at a meta-level to a higher meta-
level:

input(StrategyDetermination)| true(belief(no_propulsion(ship), pos))

Besides deriving the beliefs on the observations, the Monitoring component also
evaluates the situation and passes this as evaluation information to the PlanGenerator.

 input(PlanGenerator)|evaluation(has_problem(no_propulsion, ship), pos)

This information acts as a basis for the PlanGenerator to generate candidate plans,
which are sent to the PlanSelection, for example.

input(PlanSelection)|candidate_plan(continue_without_ship)

Internally the PlanSelection component determines the evaluation value of the different
plans, compares them and derives the best plan out of the candidate plans:

internal(PlanSelection)|best_plan(stop_fleet, 0.3)

This value is below the threshold evaluation value and therefore the PlanSelection
component informs the StrategyDetermination component that no plan has been
selected:

output(PlanSelection)|selection_info(selection_failed)

Thereafter the StrategyDetermination component switches to the full preferred plan
library and informs PlanGeneration of the new options. PlanGeneration again generates
all possible plans and forwards them to PlanSelection. PlanSelection now finds a plan
that is evaluated above the threshold and makes that the new current plan.

output(PlanSelection)|current_plan(form_screen_around_ship)

This plan is forwarded to the PlanExecution and Monitoring components (not shown in
the trace) and is executed and monitored.

 An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning 227

6 Validation by Verification

After that a formalized trace has been obtained in the previous section, either by
formalization of an empirical trace or by means of simulation, in this section it is
validated whether the application of the model complies to certain desired properties
of this trace. The verification of these properties in the trace is shown below. The
properties are independent from the specific scenario and should hold for every
scenario for which the agent-based meta-level architecture presented in Sections 2 and
4 is applied. The properties are formalized using Temporal Trace Language as
described in Section 3.

P1: Upward reflection. This property states that information generated at the level of
the Monitoring and PlanSelection components should always be reflected upwards to the
level of the StrategyDetermination component. Of course, since this translation is being
performed automatically, this property is rather straightforward but checking such a
property can be useful to see whether the system indeed functions correctly. In semi-
formal notation, the property is specified as follows:

At any point in time t,
if Monitoring outputs a belief about the world at time t
then at a later point in time t2 StrategyDetermination receives this information through upward reflection
At any point in time t,
if PlanSelection outputs selection info at time t
then at a later point in time t2 StrategyDetermination receives this information through upward reflection.

In formal form, the property is as follows:

∀t [[∀O:OBS, S:SIGN [state(γ, t, output(Monitoring)) |= belief(O, S)
 ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(belief(O,S))]]

& [∀SI:SEL_INFO [state(γ, t, output(PlanSelection)) |= selection_info(SI)
 ∃t2 ≥ t state(γ, t2, input(StrategyDetermination)) |= true(selection_info(SI))]]]

This property has been automatically checked and thus shown to be satisfied within
the trace.

P2: Downward reflection. Property P2 verifies that all information generated by the
StrategyDetermination component for a lower meta-level is made available at that level
through downward reflection. In formal form:

∀t, S:SITUATION, P:PLAN [state(γ, t, output(StrategyDetermination))
|= to_be_assumed(conditionally_allowed(S, P))

 ∃t2 ≥ t state(γ, t2, input(PlanGeneration)) |= conditionally_allowed(S, P)]

This property is also satisfied for the given trace.

P3: Extreme measures. This property states that measures that are not part of the
preferred plan library (extreme measures) are only taken in case some other options
failed. In formal form:

∀t, t2 > t, S:SITUATION, P1:PLAN, P2:PLAN
[[state(γ, t, output(Monitoring)) |= evaluation(exception(S), pos) & state(γ, t, output(PlanSelection)) |=
current_plan(P1) & state(γ, t2, output(PlanSelection)) |= current_plan(P2) & P1 ≠ P2
& ¬state(γ, t2, internal(StrategyDetermination)) |= to_be_assumed(preferred_plan(S, P2)]

 ∃t’ [t’ ≥ t & t’ ≤ t2 & state(γ, t’, output(PlanSelection)) |= selection_info(selection_failed)]]

The property is satisfied for the given trace.

228 M. Hoogendoorn et al.

P4: Plans are changed only if an exception was encountered. Property P4 formally
describes that a plan is only changed in case there has been an exception that triggered
this change. Formally:

∀t, t2 ≥ t, P:PLAN [[state(γ, t, output(PlanSelection)) |= current_plan(P) &
¬state(γ, t2, output(PlanSelection)) |= current_plan(P)] ∃t’, S:SITUATION [t’ ≥ t & t’ ≤ t2 &
state(γ, t’, output(Monitoring)) |= evaluation(exception(S), pos)]]

This property is again satisfied for the given trace.

7 Discussion

This paper presents an agent-based architecture for strategic planning (cf. [1]) for
naval domains. The architecture was designed as a meta-level architecture (cf. [2])
with three levels. The interaction between the levels in this paper is modelled by
reflection principles (e.g. [10]). The dynamics of the architecture is based on a multi-
level trace approach as an extension of that described in [11]. The architecture has
been instantiated with naval strategic planning knowledge. The resulting executable
model has been used to perform a number of simulation runs. To evaluate the
simulation results, desired properties for the planning decision process have been
identified, formalized and then validated for the simulation traces. The framework
that was presented was illustrated by means of a case study in the navel domain. A
more domain independent architecture and its application in other domains will be
addressed in future work.

A meta-level architecture for strategic reasoning in another area, namely that of
design processes, is described in [12]. This architecture has been used as a source of
inspiration for the current architecture for strategic planning. In other architectures,
such as in PRS [13], meta-level knowledge is also part of the system, although this
knowledge is not explicitly part of the architecture (it is part of the Knowledge Areas)
as is the case in the architecture presented in this paper.

Agent models of military decision making have been investigated before. In [14],
for example, an agent-based model is presented that mimics the decision process of an
experienced military decision maker. Potential decisions are evaluated by checking if
they are good for the current goals. A case study of decisions to be made at an
amphibian landing mission is used. The outcome of the evaluations of the decisions
that can be made in the case-study are compared to the decisions made by real
military commanders. The approach presented is different from the approach taken in
this paper as a more formal approach is taken here to evaluate the model created. Also
the focus in this paper is more on the model of the decision maker itself and not on
the correctness of the decisions, which is the case in [14]. The main advantage of the
approach taken is that the system is specified and can be simulated on a conceptual
level contrary to other approaches. Furthermore, for knowledge intensive domains,
such as the naval domain, there is the problem of scalability. This is acknowledged by
the authors and suggest further research for different domains and variants. It is
possible for instance to add or change the described criteria or apply particular
planning algorithms. Finally, this paper addressed resource-bounded situations.

 An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning 229

In [15] an overview is presented of models for human behaviour that can be used for
simulations. Similar to research done in other agent-based systems using the DESIRE
framework [3], future research in simulation and the validation of relevant properties
for the resulting simulation traces is expected to give key insight for the
implementation of future complex resource-bounded agent-based planning support
systems used by commanders on naval platforms.

Acknowledgments

CAMS-Force Vision, a software development company associated with the Royal
Netherlands Navy, funded this research and provided domain knowledge. The authors
especially want to thank Jaap de Boer (CAMS-Force Vision) for his expert
knowledge. Finally, the authors would like to thank the anonymous reviewers for
their useful comments.

References

1. Wilkins, D.E.: Domain-independent planning Representation and plan generation.
Artificial Intelligence 22 (1984) 269-301

2. Maes, P, Nardi, D. (eds): Meta-level architectures and reflection, Elsevier Science
Publishers (1988)

3. Brazier, F.M.T., Dunin Keplicz, B., Jennings, N., Treur, J.: DESIRE: Modelling Multi-
Agent Systems in a Compositional Formal Framework. International Journal of
Cooperative Information Systems, 6 (1997) 67-94

4. Shehory, O., Sturm, A.: Evaluation of modeling techniques for agent-based systems, In:
Proceedings of the fifth international conference on Autonomous agents, Montreal, Canada
(2001) 624-631

5. Mulder, M, Treur, J., Fisher, M.: Agent Modelling in MetateM and DESIRE. In: M.P.
Singh, A.S. Rao, M.J. Wooldridge (eds.), Intelligent Agents IV, Proc. Fourth International
Workshop on Agent Theories, Architectures and Languages, ATAL'97. Lecture Notes in
AI, vol. 1365, Springer Verlag (1998) 193-207

6. Brazier, F.M.T., Jonker, C.M., Treur, J.: Compositional Design and Reuse of a Generic
Agent Model. Applied Artificial Intelligence Journal, 14 (2000) 491-538

7. Jonker, C.M., Treur, J.: A Compositional Process Control Model and its Application to
Biochemical Processes. Applied Artificial Intelligence Journal, 16 (2002) 51-71

8. Jonker, C.M., Treur, J.: Compositional verification of multi-agent systems: a formal
analysis of pro-activeness and reactiveness. International. Journal of Cooperative
Information Systems, 11 (2002) 51-92

9. Jonker, C.M., Treur, J., Wijngaards, W.C.A.: A Temporal Modelling Environment for
Internally Grounded Beliefs, Desires and Intentions. Cognitive Systems Research Journal,
4 (2003) 191-210

10. Bowen, K., Kowalski, R.: Amalgamating language and meta-language in logic program-
ming. In: K. Clark, S. Tarnlund (eds.), Logic programming. Academic Press (1982)

11. Hoek, W. van der, Meyer, J.-J.Ch., Treur, J.: Formal Semantics of Meta-Level
Architectures: Temporal Epistemic Reflection. International Journal of Intelligent Systems,
18 (2003) 1293-1318

230 M. Hoogendoorn et al.

12. Brazier, F.M.T., Langen, P.H.G. van, Treur, J.: Strategic Knowledge in Design: a
Compositional Approach. Knowledge-based Systems, 11 Special Issue on Strategic
Knowledge and Concept Formation, K. Hori, ed.) (1998) 405-416

13. Georgeff, M. P., Ingrand, F. F.: Decision-making in an embedded reasoning system. In
Proceedings of the Eleventh International Joint Conference on Artificial Intelligence
(IJCAI-89), Detroit, MI (1989) 972-978,

14. Sokolowski, J., Enhanced Military Decision Modeling Using a MultiAgent System
Approach, In Proceedings of the Twelfth Conference on Behavior Representation in
Modeling and Simulation, Scottsdale, AZ., May 12-15 (2003) 179-186

15. Pew, R.W., Mavor, A.S.: Modeling Human and Organizational Behavior, National
Academy Press, Washington, D.C. (1999)

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 231 – 242, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Coordination Efficiency in Rational Choice Theory,
Norm and Rights Based Multi-agent Systems

Peter Kristoffersson and Eduardo Alonso

Department of Computing, City University, London EC1V 0HB, United Kingdom
Tel.: +44 (0)20 7040 8552; Fax: +44 (0)20 7040 0244

{dn184, eduardo}@soi.city.ac.uk

Abstract. As utility calculus cannot account for an important part of agents'
behaviour in Multi-Agent Systems, researchers have progressively adopted a
more normative approach. Unfortunately, social laws have turned out to be
too restrictive in real-life domains where autonomous agents' activity cannot be
completely specified in advance and the complexity of the system is ever
changing. The idea of Rights is a halfway concept between anarchic and off-
line constrained interaction. Rights improve coordination and facilitate social
action in Multi-Agent domains through adjusting the coordination mechanisms
to the complexity of the system. So far rights have not been tested or proven
experimentally. We are comparing experimentally the three mentioned interac-
tion architectures in the domain of agent-based traffic simulation.

1 Introduction

The Rational Choice Theory (RCT) has been the most influential theory for designing
agents in Artificial Intelligence and Distributed Artificial Intelligence. According to
this approach to rationality, agents with complete knowledge make their decisions in
order to maximize their own utilities. In this non-constrained approach, agents are
assumed to be “free”. They act of their own accord and are not subject to any set of
(social) rules. However fruitful this approach has been, there have been pointed out
(e.g. [1]) some drawbacks in RCT:

• In real dynamic domains, agents do not have enough information or time to
perform complex, optimal utility calculus.

• The utilitarian approach fails to explain cooperation and social action.

In order to cope with these problems, the MAS community has adopted a more
constrained approach to rationality including conventions, norms and/or social laws.
It is well-known that agents working under norms do not need to calculate continu-
ously their utilities and, consequently, do not need complete information. Agents are
supposed to act in a somehow predetermined way according to the principle of “mu-
tual expectation”. Besides, norms imply that the agents respect certain social con-
straints that deter them from breaking agreements. Unfortunately, research in this
field has fallen into two extreme positions:

232 P. Kristoffersson and E. Alonso

1. Shoham and Tennenholtz [2] have studied off-line social laws, with which
agents must comply automatically. Here, the agents are assumed to follow
rules just because they are designed to do so. Following this line of argumen-
tation, agents are not seen as autonomous any more. Proposals so formulated
are thus closer to Distributed Problem Solving than to MAS.

2. Alternatively, conventions [3] have been introduced as rules emerging during

repeated encounters in open normative systems. The problem here is that no
notion of sanction is considered. Consequently, if the agents have the chance
to calculate their utility each time they interact, conventions are continually
under consideration. In other words, following a convention is not always a
stable strategy.

A further dimension to this is the fact that, in most agent systems, the dynamics

and thus complexity of the environment will be ever-changing. It is well known that
an RCT architecture will perform well in situations with complete or near-complete
knowledge. It is also well known that off-line designed social laws are very efficient
in complex systems. Little work has been done on studying how the changing com-
plexity of an environment affects successful coordination. Excelente-Toledo and
Jennings [4] are tackling a similar problem by introducing a system where the coordi-
nation mechanism is selected by agents at runtime through reasoning about the task at
hand and its importance. Although novel and interesting, this approach has a few
weaknesses. Firstly, in situations where the dynamics change back and forth between
static and highly dynamic, it might not be feasible to use it and, secondly, it requires
an evaluation set of each possible scenario and coordination mechanism used in that
instance. It seems, therefore, that we need a concept that:

a) Allows agents to reason and make decisions

b) Implies enforcement at the same time and

c) Can adjust itself to varying complexity levels

The idea of “right” has been proposed by Alonso [5] as a coordination mechanism

that deals with a) and b). Rights have been further explained and axiomatically repre-
sented in [6]. We believe that rights through their automatic adjustment can also solve
c). A theoretical comparison of the three methods can be seen in Table 1.

So far it has still not been experimentally proven whether rights work and how well
this mechanism performs in real life situations. We will therefore explore and com-
pare experimentally off-line designed rights with off-line designed social laws (focus-
sing on obligations and prohibitions) and the RCT architecture. Due to space
constraints, we will not explain RTC or social norms in much detail. The reader is
assumed to be familiar with game theoretic and normative approaches to MAS coor-
dination. Neither will we discuss other alternatives (such as bounded rationality etc.)
to RCT since Rights are more related to Norms than other solutions. The reminder of
the paper is structured as follows. In the second section we present the concept of
rights in more detail and what we gain by introducing them. Section 3 present the

 Coordination Efficiency in Rational Choice Theory 233

system in which we test the architectures while Section 4 describes how these archi-
tectures were implemented. Section 5 defines the experiment parameters while in
Sections 6 and 7 we show the results and analyse them. We finish with some conclu-
sions and suggestions for further research.

Table 1. Theoretical comparison of Norms, Rights and RCT

 RCT Norms Rights
Complexity High Low Low/Medium
Efficiency Low High High
Stability High High High
Flexibility High Low High

2 Rights

Roughly stated, a right is considered as a set of restrictions on the agents' activities
that allows them enough freedom, but at the same time constrains them. Not surpris-
ingly, some authors (e.g. [7]) have expressed the same idea from a RCT perspective,
by introducing some constraints in the set of strategies available to the agents. In so
doing, agents are free to converge on “stable social laws” (qualitative equilibrium).
However interesting this approach may be, it presents a serious handicap: to make
sure that the agents choose a stable and efficient strategy, the designer decides be-
forehand which strategies should be eliminated. The designer, therefore, manipulates
the process and creates an “illusion of freedom”.

Generally speaking, if an agent has the right to execute a set of actions then (a)
he/she is permitted to perform it (under certain constraints or obligations), (b) the rest
of the group is not allowed to execute any action inhibiting the agent from exercising
his right, and (c) the group is obliged to prevent this inhibitory action.

Rights can be modelled as norms but to do so is very difficult. A rights-based sys-
tem can be seen as a normative system at the instance the decision is being made. The
difference is that not all agents will have to obey the norms and that every agent will
have a different set of norms in the situation. The set of norms that governs each agent
will also be different from one instance to another.

The idea of using rights is worthy of consideration because it makes it easier to
have agents coordinated. This has already been described and showed qualitatively by
Alonso [6]. As it has been repeatedly pointed out (e.g. [8, 9, 10]), coordination is
mainly concerned with complexity, efficiency, stability and flexibility. Rights aid all
of these. Coordination based on rights is more efficient. The more complex a situation
is, the more will the rights be used thus coordinating different agents. In situations
where coordination is unnecessary, the rights will not be executed. This flexibility
means that a rights-based coordination mechanism adjust itself to the situation.

For a more comprehensive description and a formal characterization of rights using
the language L and the axiomatic proof, the reader is referred to Alonso’s [6] work.

234 P. Kristoffersson and E. Alonso

2.1 Evaluating Gains

To prove experimentally that rights give good and efficient coordination in systems
with different complexity levels, we have decided to create traffic MAS simulation
and to test the three mentioned coordination mechanisms in this environment. We
have set up two different experiment sets where we are interested in testing the stabil-
ity and efficiency of the system with regards to agent survival rate and average speed.
In the first set, we have an experiment with lanes and no junctions and agent architec-
tures based on each other to ensure that it’s not the programming that decides the
results. In the second setup, we are looking at junctions. This time the architectures
are not based on each other. Even though we will be comparing the outcomes of the
three mechanisms, it is important to understand that the results in themselves can
always be challenged. Therefore, even though we are evaluating the results, we are
more interested in the result patterns rather than the results themselves. The reason for
this is that it is very difficult if not impossible to evaluate the mechanisms against
each other. There is always a chance that one could design a better architecture that
could outperform the others. If we however look at it as finding patterns in behaviour
of the coordinated system, we will gain a better understanding of the coordination
methods and how they function.

3 Experimental Environment

The reason for using traffic simulation is that this domain is intuitively easy to under-
stand. The created system is based on a microscopic traffic simulation system devel-
oped by Tom Fotherby in Java. Our redesign changed most of the internal working of
the system with the exception of the time engine, graphics and road design ability.
The agent architecture, information provided by the system to the agents and users,
data saving, statistics and interaction between the agents (crashes) have been created
by us. The internal engine of the system is based on two main methods, a “pretick”
and a “tick” in each agent. The system alternates invoking the “pretick” and the “tick”
methods in all registered agents. Firstly, all “pretick” methods are run, after which all
the “ticks” are run, this going in a loop. This allows the agent to firstly calculate what
to do next (in the “pretick”) without any risk that the environment will change before
the actions can be implemented. Then, in the “tick” all these actions can be imple-
mented so that they happen simultaneously from the agents’ perspective. The time
measurement in the system is done through steps where one time step is defined as
one loop of “preticks” and “ticks”.

The system allows agents to perceive their environment forward, backwards and to
the sides back and forth. It gives full information about the distance to other agents as
long as the other agent is on the same stretch of the road. It also gives their speeds and
direction. In a lane, the agent can only see one agent ahead meaning that if we have
three agent-cars driving in a row in front of us, we will only see the closest one. In the
junction, it can see the three closes agents in front, 3 behind and 3 on each side. The
system also generates traffic lights (green, orange and red), which are visible to the
agents. The agents can change their speed and position on the road (lane) and direction
in a junction in order to go past obstacles. Each car’s maximum speed is set randomly
with a minimum of 44 and a maximum of 82. The system permits the definition of the

 Coordination Efficiency in Rational Choice Theory 235

rate of new incoming agents, where new agents enter (are created) the system every N
time steps (one car every N time units => 1/N) at the spot where the lane touches the
border of the simulation window and are removed from the system when they crash
(after 10 time units) or when they reach the end of the lane. The entry per time unit is
connected to each lane (so two lanes in the same direction will have 2* 1 entries every
N time units). Every car that crashes will be immovable for 10 time steps after which
it will disappear.

4 Agent Architecture

In our experiments, the agent plays the role of a car that wants to survive (not crash)
the trip and get through the system as fast as possible. The agents are homogenous.
The main goal for the agents is obviously survival. In order to ensure that it was the
architecture and not the coding that created better performance in the first experimen-
tal setup, the normative architecture is an enhanced free rider architecture and the
rights architecture is an enhanced normative architecture. In the second setup, the
agents’ decision systems are not based on each other anymore. The aim is to show
that it’s not an improvement of the predecessor that creates the results (as one could
argue in scenario one) but rather the architecture itself.

4.1 RCT (Free Rider) Architecture

The free rider (RCT) architecture is a simple deliberative architecture. It allows the
choice of the best action for any given situation by evaluating which would allow the
agent to perform best (drive faster and not crash) by assigning them numbers between
0 and 4 depending on the suitability of the action. At each time step, the agents are re-
evaluating their choices. The agent can only perform one action at a time. The actions
are arranged in a hierarchy. The possible actions are (according to their hierarchy):
accelerate, do nothing, switch to left lane (turn left in the junction), switch to right
lane (turn right in the junction), decelerate. This architecture was selected as it is
simple to implement, easy to understand, easy to extend with new choices and allows
prioritization between actions when two actions have the same utility figure. The free
agents are using this to decide what to do next from their own selfish perspective and
are allowed to do whatever they want. They will drive in the wrong lane and through
a red light in the junction if it suits their goals. They are only concerned with their
own safety.

In summary, for each time step the agent will:
Evaluate all possible actions and assign them utility values

 Discover the highest obtained utility value for this time step
Perform the action with highest value and hierarchy

4.2 Normative Architecture

In the first experimental setup, normative agents use the selfish agent architecture
with an added filter. The filter evaluates whether performing (or not performing) an
action would violate the norms. If that is the case, the method then changes the utility
value of the affected action to either 0 or to the highest possible +1 depending on the

236 P. Kristoffersson and E. Alonso

violation and the norm. In the experiment, we are using three norms: (a) cars are not
allowed to drive on the wrong side (lane in the wrong direction), (b) cars must drive
on the left lane unless they are overtaking and (c) the maximum allowed speed is 55.

These were selected from the norms governing English roads. There was no par-
ticular norm analysis or selection process involved. It was, however, intuitively felt
that these would minimize the number of crashed cars. The maximum speed norm
was introduced after some preliminary experiments showed that this minimizes the
number of crashed agents. In the second setup, the norms are: (a) if the light is not
green do not enter junction, (b) from the left lane, the agent can choose to go left or
straight ahead, (c) from the right lane, the agent can choose to go right and straight
ahead. These norms ensure the smooth functioning of the system by removing any
possibility of clashes in the junction.

For each time step

Evaluate all possible actions and assign them functionality values
 Adjust the functionality values according to the norms

Discover the highest obtained functionality value for this time step
Perform the action with highest value and hierarchy

4.3 Rights Architecture

In setup one, rights-based agents use normative architecture as a base. Here, however,
we are now using rights instead of norms. Looking at this as a right- hierarchy we
have: (1) Right to live – do not do anything that could put you or others in danger, (2)
Right to drive on your side – an agent on the correct side has the right not to be ob-
structed by agents going in the opposite direction, (3) Right to overtake – if the agent
in front is slower than this agent then this agent has the right to overtake, (4) Right to
use full speed – if this is not in conflict with previous rights, (5) Right to drive on the
road – if this is not in conflict with previous rights. These rights (except the first one)
correspond to the norms defined earlier although not perfectly as it is not possible to
make a perfect translation. Right 1 is the most important one as it states that safety is
paramount and thus allows or disallows invocation of any other rights. It will also
force the slowing down or accelerating in dangerous situations (sometimes driving
away from a dangerous situation is the safest way out). The agents use rights by
evaluating what rights apply to them and to their neighbours in the current situation
and then selecting an allowed action.

As stated earlier, in setup one, we wanted the systems to be based on the same ba-
sic architecture. We achieved this by extending the normative architecture with a
method that evaluates the situation and from the agent rights’ perspective (with safety
as the main right) and either allows or disallows certain actions (depending on the
rights in the situation). The second experimental setup uses two sets of rights that
work independently of each other. The first set describes the rights with regards to
entering the junction, the second one describes the rights with regard to the direction
the car can take in junction. Even here the agent will evaluate the rights of itself and
its neighbours and makes a decision on its next action depending on the evaluation.
The first set of rights is: (1a) right to live, (2a) right to enter junction if the light is
green and (3a) right to drive in the junction. The second set is (1b) if first right lane –
the agent has the Right to go straight and right and, (2b) if first left lane – the agent
has the Right to go straight and left.

 Coordination Efficiency in Rational Choice Theory 237

For each time step
Evaluate all possible actions and assign them functionality values

 Adjust the functionality values according to the norms
Evaluate each adjusted action and change the value according to rights
Discover the highest obtained functionality value for this time step
Perform the action with highest value and hierarchy

5 Experimental Parameters

All the experimental results are based on 100k time steps for each experiment, where
the data for each 10 steps is averaged and saved for analysis, making 10k data points
for each experiment. In total, we have 8 experimental scenarios for each experimental
setup. Each experimental scenario is tested three times. Table 2 shows how the pa-
rameters (entry rate) change in each scenario. If the data for each experiment (in a
single scenario) are consistent with the remaining two, the experimental results are
then averaged into one set. In a situation where the results would not be consistent,
more experiments would have been run. In the first experimental setup, the lanes run
in both directions. In the second setup, the junction is connected to 4 roads, each with
lanes in both directions. To compare the three methods, we decided to work with two
different parameters:

• The number of lanes in each direction. This parameter was chosen since the num-

ber of lanes affects both behaviour and throughflow (efficiency) in a traffic system.

• The rate of incoming agents. The number of entering cars obviously affects traffic

flow (complexity). The same architecture might perform differently depending on the
complexity of the situation. Having more agents is testing the stability of the system.

Table 2. Experiment Layout for each Architecture

Entry Rate 500 300 100 50
Single Lane 3 exp 3 exp 3 exp 3 exp
Double Lane 3 exp 3 exp 3 exp 3 exp

The parameters were selected after considering real life traffic scenarios. What of-
ten changes is the number of lanes and the number of incoming cars. In order to ana-
lyse the results, we have decided to measure the following facts about the system:
average speeds and number of crashed cars. Both of these figures describe the system
and how it is performing in a specific situation. As in any scenario, we want to avoid
the crashes as much as possible while maintaining as high speed as possible. Our
main goal is to survive! In situations where survival rates are comparable, we will
compare the agents’ average speeds.

6 Results

The following are the results. Tables 3-6 give basic information about the system
performance. Entry rate states than an agent will enter the system every 500, 300, 100

238 P. Kristoffersson and E. Alonso

etc time steps depending on the experiment. The graphs show the average speeds for
the systems and are used to show system behaviour graphically.

Table 3. Single Lane Experiments. AS=Average speed, CC-Crashed Cars, GL=Grid Lock

Entry Rate 500 300 100 50 10
AS CC AS CC AS CC AS CC AS CC

RCT 53 112 53 364 GL GL GL GL GL GL
Normative 44 0 44 0 43 0 41 0
Rights 52 0 50 0 44 0 41 0

Table 4. Double Lane Experiments. AS-Average speed, CC=Crashed Cars, GL=Grid Lock

Entry Rate 500 300 100 50 10

AS CC AS CC AS CC AS CC AS CC

RCT 54 79 53 224 51 2335 49 7048 GL GL
Normative 48 0 47 70 47 1560 45 4545
Rights 51 0 49 28 47 1210 47 4707

Table 5. Single lane entry to Junction, 4 roads connected to junction. AS=Average speed, CC-
Crashed Cars, GL=Grid Lock

Entry Rate 500 300 100 50 10

AS CC AS CC AS CC AS CC AS CC

RCT 29 55 21 67 6 296 GL GL GL GL
Normative 12 0 5 0 0 0 0 0 0 0
Rights 39 0 11 0 0 0 0 0 0 0

Table 6. Double lane entry to Junction, 4 roads connected to junction. AS=Average speed, CC-
Crashed Cars, GL=Grid Lock

Entry Rate 500 300 100 50 10
AS CC AS CC AS CC AS CC AS CC

RCT 19 210 10 298 2 2366 0 8514 GL GL
Normative 4 10 2 15 0 37 0 37 0
Rights 7 6 2 4 0 30 0 45 0

Fig. 1. Agent performance in experiment setup 1. In the experiments, agents are driving on a
road with lanes in both directions. In the single lane scenario there is only 1 lane in each direc-
tion, in double there are 2.

Setup 1a. Single lane experiments

0
10

20
30
40

50
60

0100200300400500600

Entry Rate

A
ve

ra
g

e
S

p
ee

d

Normative Rights RCT

Setup 1b. Double lane experiments

44
46

48
50
52

54
56

0100200300400500600

Entry Rate

A
ve

ra
g

e
S

p
ee

d

Normative Rights RCT

 Coordination Efficiency in Rational Choice Theory 239

Fig. 2. Agent performance in experimental setup 2. In the experiments, a single lane entry
means that for each of the four roads connecting to the junction there is only one lane that goes
to the direction of the junction, in the double lane scenario there are two.

7 Analysis

The results show that both Normative and Rights based architectures outperform the
Free-rider in each case. Even though the average speed of the Free-rider system is
higher than the corresponding Rights and Normative systems, we can clearly see that
when it comes to efficiency these systems still outperform the RCT since the number
of crashed agents is a lot smaller.

In a single lane 1/500 experiment (Table 3), the number of entering cars is 400
(200 from each side). Using RCT, the number of crashed cars makes 20% of the total
number of entered cars. One fifth of all the agents will not accomplish their goal
meaning that, even though the average speed is higher than in the other two systems,
the efficiency is 1/5 lower. At the same time, neither the Normative or the Rights
system’s have any crashed cars. The Rights systems average speed is almost 20%
more than the Normative agents and very close to the RCT. In the next scenario, sin-
gle lane 1/300, the number of entered cars is 667. In the RCT system over 50% of the
agents crash. The Normative and Rights systems have again 0 crashes. Even in this
case, the average speed of the Rights system is well above the speed of the Normative
system. In the third single lane scenario, 1/100, we see a smaller difference between
the Normative and Right based systems. The RCT agent based system cannot handle
the number of agents and ends up in a grid lock situation.

The final single lane scenario shows no difference between Rights and Normative
systems. In the Free rider scenario, we see again grid locks blocking the whole system.

In the double lane scenarios (Table 4) we again see similar results. In 1/500 ex-
periments the RCT system is faster than both Normative and Rights system. However,
approximately 10% of all Free rider agents crash whereas both other architectures
have no crashes.

The next double lane scenario, 1/300, sees the rise of dead agents to 16% for the
RCT system. At the same time, we also notice agents crashing in the Normative and
the Rights systems. 5% Normative agents never reach their destination while only 2%
of Right based agents crash. This is still outperforming the free-rider agents as we are
interested in stability and efficiency and having 16% crashes is a lot more than 5% or
2%. In the third double lane scenario, 1/100, we continue to see similar trends to the
previous two situations. The RCT system has now over 60% failure rate while the

Setup 2b. Junction with double lane entry

0

5

10

15

20

0100200300400500600

Entry Rate

A
ve

ra
g

e
sp

ee
d

Normative Rights RCT

Setup 2a. Junction with single lane entry

0

10

20

30

40

50

0100200300400500600

Entry Rate

A
ve

ra
g

e
S

p
ee

d

Normative Rights RCT

240 P. Kristoffersson and E. Alonso

Normative system has a failure rate of 39% and the Rights system 30%. RCT fails
twice as often as the Rights system! Speed wise Norm based and Right based systems
are doing the same (Fig. 2). When it comes to failure rate, Right system exceeds
Norms by 25%.

In the final scenario, 1/50, the vast majority (88%, calculated from the total number
of cars that enter) of RCT agents crash while the same figures for Normative architec-
ture is 57% and 59% for the Rights system. This rather unexpected result will have to
be looked into in more detail.

As we are looking for efficient and stable results, any experiments with a large
number of crashed agents will automatically be assumed to be underperforming.
When we compare the three architectures, we can clearly see that in most cases the
Rights system is the best with regards to efficiency and stability. The free agent sys-
tem is faster only because many agents crash. However, since we are interested is the
survival of as many agents as possible, the average speed of the system becomes less
interesting and is only used for comparison when agent failure rates are the same.

In single lane scenarios at levels of 1/100 the RCT agents end up in situations that
cannot be resolved and the whole system locks with throughput 0. This obviously
leads to the conclusion that the stability and efficiency is a lot more difficult to obtain
in RCT systems. At the same time, both the normative and rights system continue
functioning. As the failure rates are the same (0) we then compare the average speeds.

In the beginning the difference between the two is quite large (up to 20%, average
speeds 44 and 52, Fig. 1 and table 3) in favour of the Rights system. As the number of
cars entered per time unit increases, the rights agent results (the average speed) are
converging toward the results of normative system. This is expected and explained by
the fact that when the environment becomes more hostile (more cars using the road
simultaneously) the right to “not being obstructed by other agents” is used a lot more.

The fact remains however that the Rights system is more, and in the worst case
scenario just as, efficient as Normative system. In double lane scenarios, we see this
even more clearly since the failure rate for the Rights system is significantly lower
than in the Normative one. In dynamic MA Systems, we want autonomous agents to
obtain the best stable results using as few resources as possible. Any agent that fails is
a waste of resources. We are therefore interested in as high a survival rate as possible.
The results clearly state that in most scenarios the Rights system will be the most
successful one.

8 Discussion and Insights

So what do these results mean? We have already established earlier that a resulting
comparison should not be taken as it is but rather a behaviour pattern needs to be
discovered. If we look at the graphs and the behaviour of the systems, we can clearly
see some patterns emerging. In the RCT system, the more complex the scenario be-
comes the worse the system performs. In non-complex scenarios the RCT system will
on average perform better that the normative one, the reason being that RCT does not
have to follow any behaviour constraining rules. In a situation with only one agent
there is no risk for crashes and the agent does not have to take into account anything
else. It can therefore use its full potential. In a complex situation, however, the free

 Coordination Efficiency in Rational Choice Theory 241

choice means that agents cannot have full knowledge of how others will behave. This
results in crashes. For non-complex systems, RCT will perform extremely well. On
the other hand, in a normative system, we see little difference between very complex
and non-complex scenarios. The system performance worsens only marginally when
the complexity becomes higher. In a non-complex scenario, the agents will not per-
form at the peak of their capabilities and the system efficiency will not be utilized to
its maximum. The norms ensure that the agents always perform the same. The rights-
based system behaves differently to the other two. In non-complex situations, it be-
haves like a RCT system and in very complex situations it behaves like a normative
one. As complexity increases, the behaviour of a rights system converges towards a
normative one. This can be illustrated with a single car driving on a road. When there
is no one else that could be affected by a car’s actions, the car will drive as fast as
possible. In a more complex system, the rights of others might outweigh the rights of
this agent. It will therefore adjust its behaviour to others just as agents do in norma-
tive systems with the difference that for each time step the particular norm set might
be different. In the rights system, the rights are flexible. Different rights will be ap-
plied depending on the complexity of the situation. The more complex a situation is,
the higher hierarchy rights will be used. This means that the system as a whole
changes its behaviour depending on what is best for it. A rights-based system can
behave like a RCT or a normative system depending on the circumstances and what is
most effective. If we generalize, a RCT agent needs to have a complete knowledge of
all other agents and what they plan to do, in order to decide what to do next. A rights-
based agent only needs to evaluate what rights the agents in its immediate neighbour-
hood have. A normative agent does not need to evaluate anything as its actions and
everyone else’s are predetermined. This means that the design complexity of a Rights
system is somewhat higher than originally expected in [5], [6] and [11] and is in line
with [12] (Table 7). It would be interesting to investigate further design and decision
making complexity and map out how complexity of the environment affects the deci-
sion making complexity for different architectures.

Table 7. Reviewed comparison of RCT, Norms and Rights

 RCT Norms Rights
Complexity High Low Low/Medium
Efficiency Low High High
Stability High High High
Flexibility High Low High

9 Conclusions and Further Work

We have presented an empirical comparison of free, normative and rights-based agent
coordination mechanisms in a simple car traffic simulation scenario. Rights give a
system flexibility to perform more efficiently. In non-complex situation it allows the
agent to behave like RCT and in very complex scenarios the agent will behave like a
normative one. This flexibility between the two extremes and a range of in between

242 P. Kristoffersson and E. Alonso

stages and the fact that the system adjusts itself make Rights a very promising alterna-
tive to RCT and norms. Further work will focus on more complex scenarios with
better defined behaviours, more norms and more rights as well as other types of social
norms.

References

1. Reiner R.: Arguments against the possibility of perfect rationality. Minds and Machines, 5,
(1995) 373-389

2. Shoham, Y., Tennenholtz, M.: On the synthesis of useful social laws for artificial agents
societies. In: Proceedings of the Tenth National Conference on Artificial Intelligence,
AAAI-92, AAAI Press. Menlo Park, CA (1992) 276-281

3. Walker, A., Wooldridge, M.: Understanding the emergence of conventions in multi-agent
systems. In: Proceedings of the First International Conference on Multi-Agent Systems,
ICMAS-95. MIT Press. Cambridge, MA (1995) 384-389

4. Excelente-Toledo, C.B., Jennings, N.R.: The dynamic Selection of Coordination Mecha-
nisms in Autonomous Agents. In: Multi Agent Systems, Vol. 9 (2004) 55-85

5. Alonso E.: Rights and Argumentation in Open Multi-Agent Systems. In: Artificial Intelli-
gence Review 21(1) (2004) 3-24

6. Alonso E.: A Formal Theory of Rights and Argumentation. In: Open Normative Multi-
Agent Systems. In W. Zhang and V. Sorge, (Eds.), Distributed Constraint Problem Solving
and Reasoning in Multi-Agent Systems, Frontiers in Artificial Intelligence and Applica-
tions 112, IOS Press (2004) 153-167

7. Tennenholtz, M.: On stable social laws and qualitative equilibria. Artificial Intelligence.
102 (1998) 1-20

8. O’Hare G.M.P., Jennings, N.R. (Eds.): Foundations of Distributed Artificial Intelligence.
John Wiley and Sons. New York, (1996)

9. Sycara K.P.: Multiagent Systems. AI Magazine, Vol. 19 (1998) 79-92
10. Weiss G.: Multiagent Systems: A Modern Approach to Distributed Artificial Intelligence.

MIT press, Cambridge, MA (1999)
11. Kristoffersson, P., Alonso, E.: Experimental Comparison of Rational Choice Theory,

Norm and Rights based Multi Agent Systems. In: Proceedings of the Agent-Oriented In-
formation Systems, AOIS-2005 (2005)

12. Kristoffersson, P., Alonso, E.: Rights for coordination in MAS: an experimental approach.
In: proceeding of the 11th Conference of the Spanish Association for Artificial Intelligence,
CAEPIA’11 (2005)

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 243 – 258, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Adapted Information Retrieval in Web Information
Systems Using PUMAS

Angela Carrillo-Ramos, Jérôme Gensel, Marlène Villanova-Oliver,
and Hervé Martin

Laboratory LSR-IMAG. B.P. 72
38402 Saint Martin D’Hères Cedex, France

{carrillo, gensel, villanov, martin}@imag.fr

Abstract. In this paper, we describe how PUMAS, a framework based on
Ubiquitous Agents for accessing Web Information Systems (WIS) through
Mobile Devices (MD), can help to provide nomadic users with adapted
information. Using PUMAS, the information delivered to a nomadic user is
adapted according to, on the one hand, her/his preferences, intentions and
history in the system and, on the other hand, the limited capacities of her/his
MD. The adaptation performed by PUMAS relies on pieces of knowledge (we
call "facts"), which are stored in Knowledge Bases managed by PUMAS agents.
We focus here on the facts exploited to achieve adaptation by two of the four
Multi-Agent Systems (MAS) that constitute the architecture of PUMAS (the
Information and the Adaptation MAS). We also present an example which
illustrates how PUMAS works and considers these facts when processing a
query.

Keywords: PUMAS, Adaptation, Web Information System, Mobile Devices,
Information Retrieval, Agent, Knowledge, Fact.

1 Introduction

Web-based Information Systems (WIS) are systems that permit collection, structuring,
storage, management and diffusion of information, like traditional Information Systems
(IS) do, but over a Web infrastructure. A WIS provides users with complex
functionalities that are activated through a Web browser in a hypermedium interface.
Nowadays, Mobile Devices (MD) can be used as devices for accessing a distant WIS but
also as storage devices for (simple) WIS or applications. Thus, a WIS which executes on
MD allows access, search and storage of resources (files) located on these MD.

However, having to cope with the limited capacities of MD (e.g. size of screen,
memory, hard disk), WIS designers must use mechanisms and architectures in order to
efficiently store, retrieve and deliver data using these devices. The underlying
challenge is to provide WIS users with useful information based on an intelligent
search and a suitable display of delivered information. In order to reach this goal, a
Multi-Agent System (MAS) constitutes an interesting approach. The W3C [1] defines
an agent as “a concrete piece of software or hardware that sends and receives
messages”. These messages can be used to access a WIS and to exchange information.
A MAS can be a useful tool for modelling a WIS due to the inherent properties of

244 A. Carrillo-Ramos et al.

agents like the defined, owned and acquired knowledge they manage, their ability to
communicate with users or other agents, etc. Carabelea et al. [2] have defined a MAS
as “a federation of software agents interacting in a shared environment that
cooperate and coordinate their actions given their own goals and plans”. Moreover,
agents can be executed on the MD and/or migrate through the net, searching for
information on different servers (or MD) in order to satisfy user’s queries. This is the
underlying idea of the Mobile Agent concept [3].

Rahwan et al. [4] recommend the use of agent technology in MD applications
because agents that execute on the user’s MD can inform the systems accessed by the
user about her/his contextual information. However, in the case of a mobile user, the
agent must consider the fact that the changing location could produce changes in user
tasks and information needs. Then, the agent also has to be proactive, and has to
reason about user goals and the way they can be achieved.

Applications running on the MD (and their agents) must allow users to consult data
at any time from any place. This is the underlying idea of Ubiquitous Computing
(UC) [1]. Shizuka et al. [5] have stressed the fact that Peer to Peer (P2P) computing
is one of the potential communicative architectures and technologies for supporting
ubiquitous/pervasive computing. We can consider a MAS as a P2P System, since an
agent is an inherent peer, because it can perform its tasks independently from the
server and other agents. P2P systems [6] are characterized by i) a direct
communication between peers with no communication needed through a specific
server, and ii) the autonomy a peer gets for accomplishing some assigned tasks.

Concerning adaptation, special attention is paid to user’s location in her/his profile.
In order to provide the nomadic user only with relevant information (i.e. “the right
information in the right place at the right time"), Thilliez et al. [7] have proposed
“location dependent” queries, which are evaluated according to the user’s current
physical location (e.g. “which are the restaurants located in the street where the user
is?”). Our work focusses also on this kind of queries.

Regarding adaptation to the reduced capacities of the MD, one objective is to
anticipate the fact that some retrieved information cannot eventually be properly
displayed (e.g. MD may not support a cumbersome format file). It is necessary to
anticipate such situations at design time in order to decide which solution to
implement. For instance, considering a query whose result contains video data, the
corresponding result may not be delivered if the user accesses the WIS through a
mobile phone that cannot display videos. In that case, the Negotiation vocabulary
proposed by Lemlouma [8] can be used for adaptation purposes. It permits description
of the user’s MD, considering constraints in terms of network, software and hardware.

Many technical and functional aspects have to be considered when designing a WIS
accessed through MD, especially when addressing the issue of adaptation of delivered
information to the nomadic user [6, 7]. The goal of our work is to provide nomadic
users who access a WIS through a MD with the most relevant information according
to their preferences, but also according to their contextual characteristics and to the
features of their MD. In [9], we have defined PUMAS, a framework for retrieving
information distributed among several WIS and/or accessed through different types of
MD. The architecture of PUMAS is composed of four MASs (a Connection MAS, a
Communication MAS, an Information MAS and an Adaptation MAS), each one
encompassing several ubiquitous agents which cooperate in order to achieve the

 Adapted Information Retrieval in Web Information Systems Using PUMAS 245

different tasks handled by PUMAS (MD connection/disconnection, information
storage and retrieval etc.). In PUMAS, data representation, agent roles and data
exchange are ultimately based on XML files (using OWL1). Through PUMAS, our
final objective is to propose and build a framework which is, beyond the management
of accesses to WIS through MD, also in charge of performing some adaptation
processing over information. Users equipped with MD can use the PUMAS central
platform in order to communicate together by means of agents that execute on their
MD, or in order to exchange information (user’s contextual information). In our case,
users communicate through an Hybrid P2P system.

This paper is structured as follows. We first describe in Section 2 the architecture
of PUMAS. The main contributions of this paper are, on the one hand, the definition
of pieces of knowledge (that we call facts) used for adaptation purposes by PUMAS
agents, especially those belonging to the Information and to the Adaptation MAS, and,
on the other hand, the data representation based on XML files. In Section 3, we
present a scenario that shows how PUMAS processes a query submitted to the system.
An example that illustrates our proposition is given in Section 4. We discuss works
related to PUMAS in Section 5 before we conclude in Section 6.

2 The PUMAS Framework

In this section, we present the architecture of PUMAS, its four MASs, their relations
and, the data exchange and communications they perform in order to achieve
adaptation of information for the user.

2.1 An Overview of the PUMAS Architecture

The architecture of PUMAS is composed of four MASs (see Fig. 1 for the logical
structure of PUMAS). Firstly, the Connection MAS provides mechanisms for
facilitating connection from different types of MD to the system. Secondly, the
Communication MAS ensures a transparent communication between MD and the
system, and applies a Display Filter to display the information in an adapted way
according to technical constraints of the user’s MD. To achieve this, it is helped by
agents of the Adaptation MAS. Thirdly, the Information MAS receives users’ queries,
redirects them to the “right” WIS (e.g. the nearest WIS, the more consulted one),
applies a Content Filter (with the help of the Adaptation MAS agents) according to the
user’s profile in the system and returns results to the Communication MAS. Finally,
the Adaptation MAS communicates with agents of the three other MAS in order to
provide them with information about the user, connection and communication
features, MD characteristics etc. The services and tasks of its agents essentially
consist of managing specific XML files that contain information about the user and the
device. These agents also have some knowledge, which allows them to select and to
filter information for users. This knowledge comes from analysis of the user’s history
in the system (e.g. last connections, queries, preferences).

1 OWL: Ontology Web Language builds on RDF and RDF Schema and adds more vocabulary

for describing properties and classes (relations between classes, cardinality, equality, richer
typing of properties, characteristics of properties and enumerated classes). http://www.
w3.org/2004/OWL/

246 A. Carrillo-Ramos et al.

Fig. 1. The PUMAS Architecture

The inherent mobility of nomadic users is supported by ubiquitous agents: the
Mobile Device Agents executed on the user’s MD and the ISAgents executed on the
same device than the WIS to which they belong. Such ubiquitous agents retrieve some
needed information and can communicate with other agents to perform tasks. The
Hybrid P2P Architecture of PUMAS copes with the following issues: security in
applications (security problems inherent to agent mobility), communication between
agents in a point to point or in a broadcast way, management of the status of the agent
(e.g. connected, disconnected and killed) and its services. In the following
subsections, we describe the tasks achieved by each MAS of PUMAS.

2.2 The Connection MAS

This MAS includes several Mobile Device Agents (MDA) and one Connection
Controller Agent (CCA).

The Mobile Device Agent is executed on the user’s MD. Its knowledge is
composed of general rules of behaviour and characteristics related to the type of MD
used (e.g. PDA) as well as some specific roles defined according to the application
(e.g. this agent is used for transmitting a file). The Mobile Device Agent manages a
XML file (Device Profile XML file, located on the user’s MD), which describes MD
features and shares this information with the Display Filter Agent (belonging to the
Adaptation MAS) through the Connection Controller Agent (the Mobile Device Agent
sends this file to the Connection Controller Agent – executing on the central platform
of PUMA – and the latter exchanges this information with the Display Filter Agent).
This file contains some information about the requirements of the application,
network status, hypermedia files supported by the MD, conditions for disconnecting:
inactive session for more than X minutes, disconnection type (e.g. willingly,
automatic), etc. One Mobile Device Agent also manages another XML file, which
describes characteristics of the user’s session (using OWL, see Fig. 2): who is the user

 Adapted Information Retrieval in Web Information Systems Using PUMAS 247

connected (user ID), when the session began and what is the MD connected
(beginning time, CurrentMD). This file will be sent to the UserAgent (belonging to
the Adaptation MAS):

<?xml version="1.0"?>
<rdf:RDF… …

 <owl:Ontology rdf:about=""/>
 <owl:Class rdf:ID="SessionProfile"/>
 <owl:Class rdf:ID="CurrentUser">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>
 <owl:Class rdf:ID="BeginningTime">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>
 <owl:Class rdf:ID="CurrentDevice">
 <rdfs:subClassOf rdf:resource="#SessionProfile"/></owl:Class>

</rdf:RDF>

Fig. 2. Code excerpt of the User’s Session XML file

The Connection Controller Agent executes on the central platform of PUMAS and
gets the user’s location and MD type (e.g. PDA) from the User Location XML file
(which contains the physical and logical user’s location features; this file is also
defined using OWL) and from the Device Profile XML file (which describes the
features of the MD), respectively. Both files are provided by the Mobile Device Agent
and locally managed by the Connection Controller Agent. The latter serves as an
intermediary between the Connection MAS and the Communication MAS. It also
checks connections established by users and the status of agents (e.g. connected,
disconnected, killed), and links each Mobile Device Agent to its corresponding Proxy
Agent in the Communication MAS (see next section).

The XML files (User Location, Session and Device Profile XML files) managed by
the Mobile Device Agent and the Connection Controller Agent have been defined
using extensions introduced by Indulska et al. [10] to CC/PP [1]. These extensions
include some user’s characteristics like her/his location, application requirements,
session features (e.g. user, device, application) and the profile of the MD in order to
provide a complete description of the user and her/his MD.

2.3 The Communication MAS

This MAS has an interface that makes communication between users transparent and
activates the mechanism for displaying the information according to the features of
the MD. It is composed by several Proxy Agents (PA), one MDProfile Agent (MDPA)
and one Coordinator Agent (CA). These agents execute on the central platform of
PUMAS.

There is one Proxy Agent for the connection of each Mobile Device Agent. Two
different users can connect themselves to the system through the same MD, which
leads to two different Proxy Agents and two different sessions. The main task of a
Proxy Agent is to represent a Mobile Device Agent within the system. In this case,
there are two agents: one Mobile Device Agent in the MD and one Proxy Agent in the
central platform of PUMAS.

248 A. Carrillo-Ramos et al.

The MDProfile Agent has to check the user’s profile (according to her/his MD)
and her/his information needs. In addition, this agent together with the Coordinator
Agent defines and checks the mechanism that sends, for example, hypermedia data to
the user. If the user’s request has, as a result, several images, these agents define the
order and number of images to be shown by the screen according to the capabilities of
the user’s MD. The MDProfile Agent also shares information about specific MD
features for the user’s session with the Display Filter Agent (belonging to the
Adaptation MAS).

The Coordinator Agent is in permanent communication with the Connection
Controller Agent in order to verify the connection status of the agent that searches for
information. The Coordinator Agent knows all the agents connected in the system
thanks to XML files managed by the Mobile Device Agent (through its Proxy Agent). If
there are some problems with the Connection Controller Agent (e.g. if the Connection
Controller Agent fails or if there is a lot of connections), the Coordinator Agent can
play the role of the Connection Controller Agent until the problems are fixed. At that
moment, the Connection Controller Agent and the Coordinator Agent must
synchronize the information about connected agents and check current connections.

A more detailed description of the Connection and the Communication MAS can be
found in [9]. The main contribution of this paper, described in the next section, deals
with the description of the knowledge managed by the Information and the
Adaptation MAS agents in order to support the adaptation capabilities of PUMAS.

2.4 The Information MAS

The Information MAS is composed of one or several Receptor/Provider Agents
(R/PA), one or several Router Agents (RA) and one or several ISAgents (ISA).

A Receptor/Provider Agent that is located in the central platform of PUMAS owns
a general view of the whole system. It knows agents of both the Communication and
the Information MAS. The Receptor/Provider Agent receives all requests that are
transmitted from the Communication MAS and redirects them to the Router Agent,
which is in charge of finding the “right” WIS in order to execute the query. Once a
query has been processed by the ISAgents, the Receptor/Provider Agent checks
whether query results consider the user’s profile (i.e. preferences, user’s history) by
means of the Content Filter Agent (belonging to the Adaptation MAS).

In order to redirect a query to the “right” WIS, a Router Agent (which executes on
the central platform of PUMAS) applies a strategy that depends on one or several
criteria: user’s location, peer similarity, time constraints, user’s preferences etc. The
strategy can lead to sending the query to a specific WIS, to sending the query using
broadcast and/or to the division of the query in sub-queries, each being sent to one or
several WIS. A Router Agent is also in charge of compiling results returned by the
WIS and of analyzing them (according to the defined criteria) to decide whether the
whole set of results or only a part has to be sent to a Receptor/Provider Agent.

The Router Agent stores in its Knowledge Base pieces of knowledge (that we call
facts and describe below using JESS2) for each WIS. One fact is made up of the

2 JESS is a rule engine and scripting environment that enables building Java applications that

have the capacity of "reasoning" using knowledge supplied in the form of declarative rules.
http://herzberg.ca.sandia.gov/jess/

 Adapted Information Retrieval in Web Information Systems Using PUMAS 249

characteristics of the WIS, like its name, its managed information, the type of device
on which it is executed (e.g. server, MD) and the agent (ISAgent) associated with this
WIS and which can be asked for information. When the Router Agent has to redirect a
user’s query, it exploits these facts in order to select the WIS, especially, the ISAgents
(which execute on the same device that the WIS) to which sub-queries have to be
redirected. The following fact defines a WIS and is represented by a JESS template3:

(deftemplate WIS (slot name)
(slot agentID) (slot device)
(multislot information_items))

For instance, the following fact defines the Pharmacy WIS of a hospital. The WIS is
called PharmacyWIS and it executes on a server. PharmacyISA is the ISAgent which
executes on this WIS. The PharmacyWIS contains information about medicines and
patient prescriptions:

(assert (WIS (name PharmacyWIS)
(agentID PharmacyISA) (device server)
(information_items “medicines” “patient’s_prescription”)))

The location of the WIS could change, especially if this WIS runs on a MD. The
Router Agent can be informed about the changes in the location of the WIS by means
of the ISAgents that execute on these WIS.

In order to send (sub-) queries and analyse their results, the Router Agent must
check the user’s preferences (information provided by the Content Filter Agent via
the Receptor/Provider Agent). The user’s preferences are represented as facts defined
as follows:

(deftemplate User_Preference (slot userID)
(slot required_info)
(multislot complementary_info)
(multislot actionD) ; actions for doing
(slot problem)
(multislot actionR)) ; actions for recovering

An ISAgent associated with a WIS (and which executes on the same device that the
WIS) receives the user’s query from the Router Agent and is in charge of searching for
information. Once a result for the query is obtained, the ISAgent returns it to the
Router Agent. An ISAgent can execute a query by itself or delegate this task to the
adequate WIS component. This depends notably on the nature of the WIS. Our
approach addresses complex and possibly a distributed WIS located on server(s) but
also a very simple WIS that only relies on some files located on a MD. In this last
case, one ISAgent may be sufficient to ensure the right functioning of the Information
MAS. It is worth noting that, in this case, what we call an “ISAgent” is in fact the
Mobile Device Agent of a MD that can play the role of an ISAgent since it has the
knowledge required for executing a query on files stored in the MD. In a complex
WIS, the ISAgent can collaborate with other ISAgents (if the WIS has been developed

3 We define our pieces of knowledge using the syntax of the JESS unordered facts. We declare

each unordered fact by means of the primitive “deftemplate”. To define an instance of an
unordered fact in JESS and store it into the JESS Knowledge Base, we use the primitive
“assert”.

250 A. Carrillo-Ramos et al.

following the MAS paradigm) or with any other WIS component to perform a query.
In the case of a non MAS based WIS, our approach only requires that an ISAgent is
developed in order to ensure the communication between PUMAS and the WIS.

2.5 The PUMAS Adaptation MAS

The adaptation capabilities of PUMAS rely on a two step filter process that aims at
providing a user with adapted information according to both the user and her/his MD.
First, the Content Filter allows selection of the most relevant information according to
the user’s profile defined. Second, the Display Filter is applied on the results of the
first filter and considers characteristics and technical constraints of the user’s MD.

The Adaptation MAS is composed of several UserAgents (UA), one Display Filter
Agent (DFA) and one Content Filter Agent (CFA). These agents execute on the
central platform of PUMAS.

<rdf:RDF …
<owl:Ontology rdf:about=""/>

 <owl:Class rdf:ID="UserProfile"/> <owl:Class rdf:ID="Beliefs">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="Intentions">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="User">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 <owl:Class rdf:ID="Preferences">
 <rdfs:subClassOf rdf:resource="#UserProfile"/></owl:Class>
 </rdf:RDF>

Fig. 3. Code excerpt of the User Profile XML file

Each UserAgent manages a XML file (User Profile XML file, see Fig. 3) that
contains personal characteristics of the user (e.g. user ID, location) and her/his
preferences (e.g. the user wants only video files). This file is obtained by means of the
Mobile Device Agent (this file is managed by the UserAgent and updated by the
Mobile Device Agent). There is only one UserAgent that represents a user at the same
time (even though the user has two sessions at the same time through the same or
different MD). Since a user can access the system through several MDs, the
UserAgent communicates with the Mobile Device Agents and the Proxy Agents
(which respectively belong to the Connection and the Communication MAS) to
analyse and centralize all the characteristics of the same user. The UserAgent
communicates with the Content Filter Agent to send the User Profile XML file. When
the Content Filter Agent receives this file, it stores this information as facts in its
Knowledge Base (this agent manages a registry of user’s preferences). When the
Receptor/Provider Agent (belonging to the Information MAS) asks the Content Filter
Agent for the user’s preferences, the latter sends it the latest XML file received from
the UserAgent. If the UserAgent does not send this file (e.g. there are no user
preferences for the current session), the Content Filter Agent considers the
preferences from previous sessions.

 Adapted Information Retrieval in Web Information Systems Using PUMAS 251

We can establish that queries depend on one or several criteria for adaptation
purposes: the user’s location, her/his history in the system, activities developed during
a time period, movement orientation, privacy preferences, etc. An Adaptation_
Criterion could be defined as:

(deftemplate Adaptation_Criterion
(slot userID) (multislot criteria) (multislot attributes))

An example of Adaptation_Criterion that expresses that all of Doctor Smith’s queries
depend on his location, especially when he is at the North Hospital could be:

(assert (Adaptation_Criterion
(userID “Doctor Smith”) (criteria location) (attributes “North_Hospital”)))

The Display Filter Agent manages a Knowledge Base that contains general
information about features of different types of MD (e.g. format files supported) and
acquired knowledge from previous connections (e.g. problems and capabilities of
networks according to data transmissions). Each MDFeature is defined as a fact and
represented as follows:

(deftemplate MDFeature (slot MDtype) (multislot feature))

where each feature is represented as a fact as follows:

(deftemplate feature (slot type) (multislot causes))

An example of a fact for a MDFeature which corresponds to file formats that are
supported by a Pocket PC hp IPAQ h5550 in different network types is shown as
follows. We assume that it cannot support video sent on a Wi-Fi Network but it does
support several images using either Bluetooth or a Classical Network:

(deffacts MDFeature (MDType “PocketPC hpIPAQ h5550”)
(feature (type “video_not_supported”) (causes “Wi-Fi Network”))
(feature (type “several_images”) (causes “Bluetooth” “Classical Network”)))

The Content Filter Agent manages a Knowledge Base that contains preferences,
intentions and characteristics of users. The User_Preference fact is composed of a
userID (which identifies the owner of this preference), required information
(required_info) and complementary information (complementary_info). The last is
added to the User_Preference definition by the Content Filter Agent, which analyses
queries of previous sessions (e.g. information frequently asked). This fact is also
composed of information describing what and how user would like answers from the
system (to be presented to her/him) and in case there are any problems, what and how
the system must answer (list of actions for recovering). In order to do this, each action
is defined as a fact and represented as follows:

(deftemplate action (slot name) (multislot attribute))

In this definition, name refers to an action chosen between a defined list (e.g. “show”,
“save”, “transfer file”, “cancel”) and each action has a list of attributes. For instance,
the fact which represents the action “show” has for its properties the order, format and
type of the file, is:

(assert (action (name show) (attributes “order” ” format” “file_type”)))

252 A. Carrillo-Ramos et al.

Since an attribute can be complex, we define it as a fact:

(deftemplate attribute (slot name) (multislot list))

An example of attribute that defines the order in which information is displayed,
could be:

(assert (attribute (name order)
(list “patient’s_tests” “patient’s_diet” “patient’s_prescribed_medicines”)))

We define a problem as an event that is not desirable during the execution of an
action or that is the cause of a failure (e.g. the MD cannot show an image). Each
problem is defined as a fact and represented as follows:

(deftemplate problem (slot name) (slot type) (multislot causes))

where name corresponds to a description of the problem, the type can be chosen from
a defined list (e.g. incompatibility, unable IS, unable agent) and the causes
correspond to a list of causes of this problem (e.g. MD cannot support a specific
format file, network problems). A fact, which defines the problem related to a specific
user’s location that is out of range of a wireless network and disables her/him from
accessing the Internet, is:

(assert (problem (name “out_range_connection”) (type “lack_of_access”)
(causes “user_located_out_of_range” “ network_out_of_service”)))

3 PUMAS Scenario

In this section, we present a scenario in order to show the interactions that take place
between PUMAS agents when a query is submitted to the system.

When a user sends an information query Q (see Fig. 4), the Mobile Device Agent
sends it to the Connection Controller Agent. Whenever this query is location and time
dependent, the Connection Controller Agent introduces the time of connection, the
user’s location and the characteristics of the user’s MD connection (these latter
characteristics are exchanged with the Display Filter Agent) in query Q which leads to
the production of a new query Q’ (in Fig. 4, Q’=Q + user’s ST) that is then sent to the
Proxy Agent. The query passes by the Coordinator Agent and then by the MDProfile
Agent. The latter adds to query Q’ some features related to the MD; these features are
provided by the Display Filter Agent which has previously learned them from
previous queries or retrieved them from its Knowledge Base. The new query Q” (in
the Fig. 4, Q”= Q’ + MD features) is sent by the MDProfile Agent to the
Receptor/Provider Agent. The Receptor/Provider Agent complements the query Q”
with specific characteristics of the user in the system by requesting the Content Filter
Agent (in Fig. 4, Q’’’=Q” + user’s preferences, intentions, history). The
Receptor/Provider Agent sends the query Q’’’ to the Router Agent, which decides
(according to the query, the system rules and the facts in its Knowledge Base) which
are the ISAgents able to answer. It can send the query to a specific ISAgent or to
several ISAgents (e.g. waiting for the first to answer) or, it can divide the query into
sub-queries, which are sent to one or several ISAgents. The scenario in Fig. 4, shows
for instance that query Q’’’ is divided into Q’’’ – 1.1, Q’’’ – 1.2, Q’’’ – 1.3 and Q’’’ – 1.4, which are
sent to the ISAgents executed on a server and different MD.

 Adapted Information Retrieval in Web Information Systems Using PUMAS 253

Fig. 4. Scenario of sending a query

When a user U1 has an information query for another user U2, both equipped with
MD, the query is propagated from the Mobile Device Agent executed on the U1’s MD
towards the Router Agent, which redirects it to the Mobile Device Agent executed on
the U2’s MD. This U2’s Mobile Device Agent changes its role to become an ISAgent,
i.e. the agent in charge of answering information queries. This change of role is
possible because a Mobile Device Agent has knowledge for managing information
stored in the MD on which it executes and it has the capability of answering
information queries.

4 Example

In this section, we illustrate processes performed by PUMAS agents using the
example of a hospital WIS.

Let us suppose that doctors equipped with MD (e.g. PDA) access the information
system of a hospital that is distributed between several MD and/or one or several WIS
(see Fig. 5). Doctors can also receive information according to their location,
preferences, technical characteristics of their MD and considerations about their
connection time. For instance, when visiting a patient, doctors with MD can consult
information about her/his clinical history, medical tests, prescriptions etc. By
indicating the location of the patient (e.g. room, bed) and the current date (extracted
from the system), the doctor can identify the patient and get her/his personal
information. To do this, the application on her/his MD must consult different WIS of
the hospital (e.g. pharmacy, doctors). Doctors could also communicate with other
doctors (peers), through their MD, in order to get some advice or help (e.g. questions
which can only be answered by the specialist doctor who has previously examined
this patient).

When a doctor comes into the patient’s room, she/he enters information about the
location of the patient while the application gets the date of the system (information
about the time). The Mobile Device Agent that executes on the doctor’s MD sends the

254 A. Carrillo-Ramos et al.

Fig. 5. Sending a query in the hospital WIS

query (who is the patient?). The query is propagated through the PUMAS core: it is
first transmitted through the Connection Controller Agent, then to the Communication
MAS agents (Proxy Agent, Coordinator Agent and MDProfile Agent). The MDProfile
Agent can include, in the query, information according to the MD (e.g. this kind of
MD cannot support graphical format but only text files. Then, if the doctor asks for
the results of the test, she/he only could get them in a text format). For example, if the
doctor has been connected through a Palm Tungsten C, the MDProfile Agent asks the
Display Filter Agent for information about this MD. The MDProfile Agent could
receive from Display Filter Agent facts defined as follows:

(deffacts MDFeature (MDType “Palm Tungsten C”)
(feature (type “video_not_supported”)(causes “Wi-Fi_Network”))
(feature (type “several_images”)(causes “Wi-Fi_Network”)
(feature (type “text”)(causes “Wi-Fi_Network” “Classical_Network Bluetooth”))) ;

Then, the MDProfile Agent sends the query to the Receptor/Provider Agent, which
can include in the query preferences previously expressed by the doctor. Those
preferences are expressed in the User Profile XML file (see Section 2.5) and are
translated as facts by the UserAgent and the Content Filter Agent. The following
example corresponds to a doctor’s preference: when a doctor says “when asking for a
blood tests, the system must also provide me with the patient’s diet and the prescribed
medicines. I do prefer graphical results but if my MD cannot support this format, I
would like receive the results in text format”, this can be translated into the following
fact of the UserAgent:

(deffacts User_Preference
(userID “Doctor Smith”)(required_info “blood tests”)
(complementary_info “patient’s_diet” “prescribed_medicines”)
(action show) (attribute (name order)
(list “patient’s_tests” “patient’s_diet” “patient’s_prescribed_medicines”))
(attribute (name graphical_format) (list “JPEG”))
(problem (name “HyperMediaNotSupportedByMD”)
(type “incompatibility”) (causes “OnlyTextFileSupported”)) (attribute (name order)
(list “patient’s_tests” “patient’s_diet” “patient’s_prescribed_medicines”))
(attribute (name text_format) (list “XML” “txt”)))

 Adapted Information Retrieval in Web Information Systems Using PUMAS 255

The UserAgent transfers this information to the Content Filter Agent, which stores
this fact and sends it to the Receptor/Provider Agent. The Receptor/Provider Agent
adds this preference to the query and sends it to the Router Agent. The Router Agent
receives the complete query and, with the information about the WIS, the Router
Agent can split the query in sub-queries and redirect each one towards the
appropriated WIS. The following facts are exploited in this example by the Router
Agent in order redirect the queries to the ISAgents of the hospital’s WIS:

(assert (WIS (name LaboratoryWIS)
(agentID LaboratoryISA) (device server)
(information_items “ test” “ patient’s_ test” “reactive”)))

(assert (WIS (name PatientDietWIS)
(agentID DietISA) (device MD)
(information_items “patient’s_diet” “nutritionist’s_appointments”)))

The Router Agent redirects the query to the ISAgent located in the WIS, which
manages information about patients in the hospital. All queries follow the same path
from the Mobile Device Agent towards the Router Agent. If the doctor wants to know
the last medicines prescribed to this patient, the Router Agent redirects the query to
the ISAgent located in the PharmacyWIS. If the query concerns another doctor (peer),
the Router Agent redirects the query to the ISAgent located in the peer’s MD. A doctor
can also ask for information about a specific patient to several of her/his peers. In this
case, the Router Agent could send the query using broadcast or it could split the query
according to the receiver peer (e.g. queries related to heart conditions for the
cardiologist) or according to the defined criteria in the User Profile XML file (e.g. if
the criterion of adaptation of the query is the location, queries must only be redirected
to doctors at the same or closed location of the sender). Retrieved information is
organized by the Router Agent (e.g. the last prescribed medicines, peer answers about
this patient) and is returned to the doctor who has sent the query following the inverse
path. The different agents have to check results because, for instance, the doctor may
have been disconnected from the system (due to some network problems), and
recovered her/his session in a new connection whose characteristics are different from
the previous ones: it could be that she/he can now consult the system using another
kind of MD that supports some graphical format (which constitutes a doctor’s
preference that can now be satisfied).

Through this example, we can observe the behaviour of the Hybrid P2P
Architecture of PUMAS. The core of PUMAS centralizes queries: i) it is in charge of
obtaining the most relevant information and, ii) it is in charge of applying the Content
and Display Filters to adapt answers. The main peer characteristics of PUMAS agents
are illustrated by the fact that, firstly, agents have the autonomy of connecting to and
disconnecting from the system. Secondly, a MD can ask for a communication with a
specific WIS (located on a server or on a MD) passing this information as a parameter
of the query; the Router Agent transmits the query to this specific WIS which
exemplifies an agent to agent communication (e.g. when doctors exchange
information about a patient using their MD).

Another advantage offered by PUMAS is that it helps a user who does not know
which specific WIS to ask for information to find the most appropriate one(s). The
Router Agent redirects a query by means of an intelligent analysis of the query and the

256 A. Carrillo-Ramos et al.

help of the ISAgents that achieve an intelligent search inside the different WIS
(pharmacy, laboratory, patients etc. in our example).

5 Related Works

In this section, we present some agent-based architectures or frameworks for adapting
information to users.

Berhe et al. [11] proposes an architectural framework that exploits four profiles for
adapting information content to a user: content or media (type, format, size, location
where media is stored), user (preferences), device (hardware and software
capabilities), network and service (supported media formats, network connection,
bandwidth, latency performance). However, unlike PUMAS, this proposal does not
consider information retrieval from different types of devices (servers and MD).

Sashima et al. [6] proposes an agent-based coordination framework for ubiquitous
computing. It coordinates services and devices to assist a particular user in receiving a
particular service in order to maximize her/his satisfaction. This framework assists
users in accessing resources in ubiquitous environments. These authors consider
contextual features of nomadic user, especially location. Unlike PUMAS, this
framework does not consider the adaptation of information according to the access
devices or the possible distribution of data among different devices.

The work of Gandon et al. [12] proposes a Semantic Web architecture for context-
awareness and privacy. This architecture supports automated discovery and access of
a user’s personal resources subject to user-specified privacy preferences. Service
invocation rules along with services ontologies and services profiles allow
identification of the most relevant resources available to answer a query. However, it
does not consider the information that can answer a query can be distributed between
different sources.

CONSORTS Architecture [13] is based on ubiquitous agents and designed for a
massive support of MD. It detects user’s location and defines the user’s profile to
adapt the information to her/him. The CONSORTS architecture proposes a mechanism
for defining relations that hold between agents (e.g. communication, hierarchy, role
definition), with the purpose of satisfying user’s requests. However, it does not
consider the distribution of information between MD (which could improve response
time) nor user’s preferences.

PIA-System [14] is an agent-based personal information system for collecting,
filtering and integrating information at a common point, offering access to
information by WWW, e-mail, SMS, MMS and J2ME clients. It allows the user on the
one hand, to search explicitly for specific information and, on the other hand, to be
informed automatically about relevant information divided into slots (user specifies
her/his working time and this divided the day in pre, work and recreation). A
personal agent manages the individual information provisioning, tailored to user’s
needs according to her/his profile and current situation. However, a PIA-System only
searches information in text format (e.g. documents). It does not take into account
either the adaptation of different kinds of media to different MD or the user’s
location.

 Adapted Information Retrieval in Web Information Systems Using PUMAS 257

6 Conclusion

In this paper, we have presented PUMAS, a framework based on agents and the P2P
approach. Peer characteristics of PUMAS appear in the cooperation developed by
agents in order to store and retrieve information and in the possibility that two users,
equipped with MD, communicate through the central platform offered by PUMAS. Its
architecture relies on four Multi-Agents Systems (MAS) for the Connection, the
Communication, the Information and the Adaptation MAS. PUMAS also benefits from
the P2P characteristics of an Hybrid P2P architecture. PUMAS provides each agent
with a mechanism for identifying, authenticating and recognizing its peers. This paper
has focussed on the representation of the pieces of knowledge (called facts), stored in
Knowledge Bases and used by PUMAS agents in order to perform their assigned
tasks. We can highlight the intelligent and adaptive information search achieved by
means of PUMAS agents. The search is intelligent because it is based on the
knowledge of an agent and its capability of reasoning. It is also adaptive because it
considers nomadic user’s profiles, characteristics of her/his MD and features of the
ubiquitous context.

Our future work concerns the implementation of each component (MAS) of
PUMAS. We also need to define an extension of the current ACL that considers
spatial-temporal (contextual) features and a strategy description language, as well as
Query Routing mechanisms and algorithms [15] for the Router Agent in order to
propagate queries towards the “right” WIS and to compile answers. Moreover, the
mechanisms and strategies applied by the PUMAS agents (especially those belonging
to the Adaptation MAS) in order to achieve the Content and the Display Filters also
have to be precisely defined.

Acknowledgments. The author Angela Carrillo-Ramos is partially supported by
Universidad de los Andes (Bogotá, Colombia).

References

1. http://www.w3.org/TR/webont-req/ (L.A.: August 2006).
2. Carabelea, C., Boissier, O., Ramparany, F.: Benefits and Requirements of Using Multi-

agent Systems on Smart Devices. In: Kosch, H., Böszörményi, L., Hellwagner, H. (eds.):
Proc. of the European Conference on Parallel Processing. Lecture Notes in Computer
Science, Vol. 2790, Springer-Verlag, Berlin Heidelberg New York (2003) 1091-1098.

3. Lin, F.C., Liu, H.H.: MASPF: Searching the Shortest Communication Path with the
Guarantee of the Message Delivery between Manager and Mobile Agent. In: Yang, L.T.,
Guo, M., Gao, G.R., Jha, N.K. (eds.): Proc. of the Conference on Embedded and
Ubiquitous Computing. Lecture Notes in Computer Science, Vol. 3207, Springer-Verlag,
Berlin Heidelberg New York (2004) 755-764.

4. Rahwan, T., Rahwan, T., Rahwan, I., Ashri, R.: Agent-Based Support for Mobile Users
Using AgentSpeak(L). In: Giorgini, P., Henderson-Sellers, B., Winikoff, M. (eds.): Proc.
of the 5th International Bi-Conference Workshop on Agent-Oriented Information Systems.
Lecture Notes in Artificial Intelligence, Vol. 3030, Springer-Verlag, Berlin Heidelberg
New York (2004) 45-60.

258 A. Carrillo-Ramos et al.

5. Shizuka, M., Ma, J., Lee, J., Miyoshi, Y., Takata, K.: A P2P Ubiquitous System for
Testing Network Programs. In: Yang, L.T., Guo, M., Gao, G.R., Jha, N.K. (eds.): Proc. of
the Conference on Embedded and Ubiquitous Computing. Lecture Notes in Computer
Science, Vol. 3207, Springer-Verlag, Berlin Heidelberg New York (2004) 1004-1013.

6. Sashima, A., Izumi, N., Kurumatani, K.: Bridging Coordination Gaps between Devices,
Services, and Humans in Ubiquitous computing. In: Proc. of the Workshop on Agents for
Ubiquitous Computing. http://www.ift.ulaval.ca/~mellouli/ubiagents04/. (L.A.: July 2006)

7. Thilliez M., Delot T.: Evaluating Location Dependent Queries Using ISLANDS. In:
Ramos, F.F., Unger, H., Larios, V. (eds.): Proc. of the Symposium on Advanced
Distributed Systems. Lecture Notes in Computer Science, Vol. 3061, Springer-Verlag,
Berlin Heidelberg New York (2004) 126-136.

8. Lemlouma, T.: Architecture de Négociation et d’Adaptation de Services Multimédia dans
des Environnements Hétérogènes. PhD Thesis, Institut National Polytechnique de
Grenoble, Grenoble, June 2004 (in French).

9. Carrillo-Ramos, A., Gensel, J., Villanova-Oliver, M., Martin, H.: PUMAS: a Framework
based on Ubiquitous Agents for Accessing Web Information Systems through Mobile
Devices. In: Haddad, H., Liebrock, L.M., Omicini, A., Wainwright, R.L. (eds.): Proc. of
the 20th ACM Symposium on Applied Computing. ACM Press, New York (2005)
1003-1008.

10. Indulska, J., Robinson, R., Rakotonirainy, A., Henricksen, K.: Experiences in Using CC/PP
in Context-Aware Systems. In: Chen, M.S., Chrysanthis, P.K., Sloman, M., Zaslavsky, A.B.
(eds.): Proc. of the 4th International Conference on Mobile Data Management. Lecture Notes
in Computer Science, Vol. 2574, Springer-Verlag, Berlin Heidelberg N.Y. (2003) 247-261.

11. Berhe, G., Brunie, L., Pierson, J.M.: Modeling Service-Based Multimedia Content
Adaptation in Pervasive Computing. In: Vassiliadis, S., Gaudiot, J., Piuri, V. (eds.): Proc.
of the 1st Conference on Computing Frontiers. ACM Press, New York (2004) 60-69.

12. Gandon, F., Sadeh, N.: Semantic Web Technologies to Reconcile Privacy and Context
Awareness. In: Journal of Web Semantics 1(3) (2004). http://www.websemanticsjournal.
org/ps/pub/2004-17 (L.A.: August 2006).

13. Kurumatani, K.: Mass User Support by Social Coordination among Citizen in a Real
Environment. In: Kurumatani, K., Chen, S., Ohuchi, A. (eds.): Proc. of the International
Workshop on Multi-Agent for Mass User Support. Lecture Notes in Artificial Intelligence,
Vol. 3012, Springer-Verlag, Berlin Heidelberg New York (2004) 1-16.

14. Albayrak, S., Wollny, S., Varone, N., Lommatzsch, A., Milosevic, D.: Agent Technology
for Personalized Information Filtering: The PIA-System. In: Haddad, H., Liebrock, L.M.,
Omicini, A., Wainwright, R.L. (eds.): Proc. of the 20th ACM Symposium on Applied.
ACM Press, New York (2005) 54-59.

15. Xu, J., Lim, E., Ng, W.K.: Cluster-Based Database Selection Techniques for Routing
Bibliographic Queries. In: Bench-Capon, T.J.M., Soda, G., Tjoa, A.M. (eds.): Proc. of the
Workshop on Database and Expert Systems Applications. Lecture Notes in Computer
Science, Vol. 1677, Springer-Verlag, Berlin Heidelberg New York (1999) 100-109.

Design Options for Subscription Managers

Aloys Mbala, Lin Padgham, and Michael Winikoff

RMIT University
Melbourne, Australia

{aloys, linpa, winikoff}@cs.rmit.edu.au

Abstract. An important issue in open agent systems such as the Internet is the
discovery of service providers by potential consumers (requesters). This paper is
concerned with services that involve the ongoing provision of up-to-date
information to requesters. We explore three separate issues: subscription to an in-
formation provider for ongoing provision of information; monitoring for new
information providers; and maintaining awareness of when providers disappear
from the system. We explore several models for how this functionality may best
be provided, with emphasis on the ways in which certain choices affect the over-
all system; and provide an analysis of preferred design options for environments
with different characteristics.

1 Introduction

An important issue in open agent systems such as the Internet is the discovery of service
providers by potential consumers (requesters). There is a broad range of work in this
area, including work on web service description languages, such as WSDL1 and OWL-S
[1], as well as work on distributed search algorithms and architectures such as peer-to-
peer systems [2]. A common approach, even in peer-to-peer systems, is to have some
specialized agents (or services) that assist providers and requesters to find one another.
These are variously called yellow page agents [3], directory facilitators2, brokers [4] and
match-makers [5] with the term middle-agent being used to characterize these kinds of
agents. UDDI (Universal Description, Discovery and Integration) directories3 are one
standard instantiation of such a facility while FIPA (Foundation for Intelligent Physical
Agents) Directory Facilitators are another.

In many application areas, a large number of the services that are required from
other entities in the system are services that provide information. In many cases what
is required is not just information at a given point in time but rather ongoing updates of
information as the situation changes. For example, in an intelligent alerting system that
we are working on with the Australian Bureau of Meteorology [6], if the fire monitoring
agent within the system discovers a new fire, it will then want to be informed of any
weather events that may affect the fire, such as nearby storms. It is clearly preferable for
the relevant agent to set up subscriptions and to be notified immediately when relevant

1 http://www.w3.org/TR/wsdl
2 http://www.fipa.org/specs/fipa00023/SC00023K.html
3 http://www.uddi.org

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 259–274, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

260 A. Mbala, L. Padgham, and M. Winikoff

new information becomes available, rather than to make regular requests to determine
whether new information is available. This notion of subscription is well known and it
is supported by standard protocols4.

However, an additional facility is needed. If the subscriptions are long-lived then it
is quite likely that there will be changes in the available information providers. The
subscribing agent may well need to be made aware of new information providers that
join the system, and of any information providers that it has subscribed to that leave
the system. Again, rather than have the subscribing agent make periodic requests, it is
preferable for it to subscribe to this information. This subscription is to changes in the
available (relevant) information providers rather than to information, and is made with
the middle-agent. This requires the middle-agent to provide a monitoring capability, in
addition to the more commonly discussed matchmaking (or brokering) functionality [7].

By providing information on changes in available information providers, we allow
additional flexibility and intelligence in the requesters. For example, in the meteorol-
ogy application, two kinds of weather information sources are used in reasoning about
whether there is an alertable situation with respect to a particular fire. If the storm
observations from radar become unavailable, then storm likelihood forecasts from the
atmospheric model are accessed instead. The provision of information on available rele-
vant providers to requesters is a key difference between our work and event notification
systems such as Siena [8] or NaradaBrokering [9], which do not provide requesters with
information on changes to available providers5.

In this paper, we explore design options for “Subscription Manager” middle-agents
that support subscriptions to changes in available relevant information providers. There
are three issues that we concentrate on. Firstly, the mechanism that allows an informa-
tion requester to be continually updated regarding new information sources. Secondly,
the details of how subscriptions are created and cancelled. Thirdly, how the departure
of agents from the system is detected and what is done in response to detecting a “dead”
agent. With each of these issues we will explore what functionality can potentially re-
side with the middle-agent, and the costs and benefits of the alternative approaches.

The contribution of this paper is the detailed analysis of these three issues, identify-
ing tradeoffs and leading to recommendations regarding design choices in Subscription
Manager middle-agents. We believe that these recommendations would be useful to the
designer of a system that is to use a Subscription Manager middle-agent. Since our con-
cern is with key design decisions — such as whether subscriptions should be made by
the middle-agent or by requester agents — we do not provide a complete design for the
Subscription Manager.

The issues discussed in this paper are only a part of a complete solution. In order
to implement a system, one must also define a language for describing services and
requests and a matching mechanism between these. However, these issues have been
explored in previous work and a wide range of options exist for service/request descrip-
tion and matching including standards around web service, FIPA standards, KQML
[10], and others such as LARKS [11] and Infosleuth [12].

4 e.g. http://www.fipa.org/specs/fipa00035/
5 What they provide corresponds to the design option where decision making is delegated to the

middle-agent, i.e. what we call subscribe-all in Section 4.

Design Options for Subscription Managers 261

The need for subscription and monitoring services vary from application to appli-
cation, but we would suggest that they are quite broadly applicable. For example, in a
travel and tourism services network, it would be likely that there was a need to subscribe
to information on schedule updates for planes, buses and trains. Similarly, a tourism
operator in a particular region is likely to want to monitor for any new providers of
services such as accommodation, tours and car rentals in the region of interest. Simi-
larly in an e-business domain, subscription to catalogues of items available from known
providers may well make sense, and monitoring of providers of certain kinds of items
is also motivated. Consequently, we argue that subscription support, and monitoring for
providers of certain kinds of services joining and leaving the system, are infrastructure
facilities that are required in a dynamic and open domain of services. These capabili-
ties should be provided by middle-agents. In the rest of this paper we explore several
models for how this functionality may best be provided, with emphasis on the ways in
which certain choices affect the overall system.

2 The Interaction Models

Service Discovery frameworks can be categorized in two groups. The first group in-
cludes peer-to-peer dissemination models where a peer propagates its requests through
the network it belongs to and expects a list of relevant providers from its peers. A peer
can act as a provider, a requester or simply be a kind of proxy that just redirects a given
message to others. An alternative framework uses middle-agents where requesters and
providers register to a middle-agent that provides some kind of connection service to
assist the agents to find other relevant agents. Some systems propose a peer-to-peer
structure amongst the middle-agents [13] in order to distribute the functionality of reg-
istering and servicing the client agents.

In this work, we do not consider the structure of the middle-agents. Although we as-
sume that in a large system this functionality would be distributed in some manner, this
is left as future work, building on a range of existing work e.g. [9,8,2,13]. What we con-
sider here is the relationship between the middle-agent (or network of middle-agents)
and what we call the end-agents, namely the service requesters or service providers.6

Previous work [4,7,5,14] has compared different styles of middle-agents and con-
cluded that Matchmakers that provide a list of providers matching a request are the
most appropriate type of middle-agent for large open systems. Middle-agents such as
broadcasters and blackboards, which simply pass on all connections, un-filtered, re-
sult in unnecessarily large lists of agents being provided and also require end-agents to
have individual matchmaking capabilities. Brokers, which manage all interactions with
a provider on behalf of a requester, have the disadvantage that they are a bottleneck in
large systems. In this work, we assume a basic matchmaking capability and then add to
this a Subscription Management function, which we explore in further detail.

There are three different processes that we explore as part of this work. The first is
the mechanism to allow an information requester to be continually updated regarding
the existence of new information sources of a particular kind. The second is the basic

6 A single agent can be both a provider and a requester, but for the purpose of this work we
consider them separately.

262 A. Mbala, L. Padgham, and M. Winikoff

subscription mechanism to support an information requester being able to subscribe to
provider agents and cancel subscriptions. The third is an ability to be aware of agents
that disappear from the system. With each of these aspects, we will explore what func-
tionality can potentially reside with the middle-agent, and the costs and benefits of the
alternative approaches.

2.1 Monitoring for New Arrivals

As indicated previously, a common need in dynamic systems is for agents to be aware of
new services arising in the system that may be of interest to them. One way to achieve
this is to have middle-agents maintain information about requester needs and update
the requesters as new providers register. However, this ability does not appear to be
common in the various kinds of middle-agents that exist or are discussed in detail in
the literature. Retsina [5] mentions a monitoring capability, although very little detail is
given7. The notion of facilitator defined by Finin et al. [10] is broad and encompasses
monitoring of both information and information providers, but little detail is given (for
example, the issue of detecting “dead” agents is not discussed), and there is no explo-
ration of the design options and associated tradeoffs.

Fig. 1 indicates the type of mechanism we are suggesting. Providers and requesters
send their profiles to the middle-agent, which maintains information about both. When
requesters request monitoring for a particular type of information, they are first sent an
initial list of matches (message 3) and, subsequently, if any new matching providers ad-
vertise with the middle-agent (message 4), the requester is sent an update (message 5).

Requester Middle Provider 1

1. Advertise

2. Request Monitor

3. List of Matches

Provider 2

4. Advertise

5. Update

Fig. 1. The discovery mechanism

However, this figure is incomplete as it focusses only on the monitoring capability.
It does not consider aspects of the subscription life-cycle such as who sets up a sub-
scription? Who cancels a subscription? Or, once a subscription has been established,
who ensures that the agents involved in the subscription are still alive? These aspects

7 The notion of “monitor” vs. “single shot” match-making is mentioned on page 42 of [5].

Design Options for Subscription Managers 263

are considered below. Of course, the monitoring capability must also include a mecha-
nism for cancelling monitoring when it is no longer required or cancelling an advertised
profile.

2.2 Subscription Management

In order to handle subscriptions, information providers need to be able to provide a
subscription facility, sending information to their subscribers either at regular intervals
or when relevant changes occur. Hence, there must be a mechanism to set up and cancel
such subscriptions.

From the point of view of the information requester wishing to subscribe to a certain
kind of information, they may wish to subscribe to all sources of information of a certain
type, or a single source. The initial action would be a request to the middle-agent with
a query describing the information need (attached to either a monitoring request or a
one-off request). At that point, it would be possible either for the middle-agent to return
a list of matching providers, as in Fig. 1, or for the middle-agent to simply set up the
subscription(s). If the latter was done, presumably it would be necessary to have two
forms of the request: one for subscribe to all and one for subscribe to one8.

The possible value in having the middle-agent set up the subscription would be that
fewer messages are needed in the system as a whole. On receiving the request, the
middle-agent could simply send the subscription message to the relevant information
provider(s), and the requester would begin to receive information. Subscription cancel-
lations could be sent either to the middle-agent, or directly to the information provider,
if we assume that the identity of the provider(s) is known to the requester once infor-
mation begins to arrive.

2.3 Monitoring for Disappearances

If an agent has a subscription to an information source, it is expecting that information
will be sent whenever relevant. However, it is possible that the information provider
disappears from the system, in which case it may be important for the information
subscriber to know of this. This fact may affect reasoning done or it may result in
subscribing to other information sources.

For example, in the meteorology application we are working with, two kinds of
weather information sources are used in reasoning about whether there is an alertable
situation with respect to a particular fire. If the storm observations from radar become
unavailable, then storm likelihood forecasts from the atmospheric model are accessed
instead.

The only reliable way to be sure of knowing when an agent disappears is for some
process to check liveness regularly. It is possible for this to be done by all interested
subscribers. However, assuming there are likely to be multiple subscribers to any given
information source, this is creating more message traffic than necessary. Another op-
tion would be for this to be done by the middle-agent and for the information about a
provider’s disappearance to be passed on to the relevant agents.

8 An additional form would be subscribe to N .

264 A. Mbala, L. Padgham, and M. Winikoff

3 Analysis

In this section, we analyse the alternative design choices for a Subscription Manager
middle-agent. The analysis makes certain simplifying assumptions but is nonetheless
valuable. The analysis focusses primarily on the message traffic and looks specifically
at the number of messages, the total size of the messages and at bottlenecks in the
system.

The number of messages circulating in the system is a natural and important param-
eter for the evaluation of service discovery frameworks since it is a reasonable approx-
imate measure of the workload of the system, and an analysis of the message traffic
received and sent by a given agent can be used to detect potential bottlenecks. How-
ever, using only the number of messages isn’t sufficient because it ignores the size of
the messages. Therefore we also use the size of the messages to estimate the amount of
network traffic.

The analysis in this section uses the terms below. Since the analysis is done at design-
time, we do not need to concern ourselves with whether the terms can be measured at
run-time in a real agent system: these terms are not used at run-time.

– R: the number of requester agents in the system.
– P : the number of provider agents in the system.
– α: the probability of a random capability and a random interest matching (0 ≤

α ≤ 1). This is a measure of the matching precision and can be expected to be well
below 0.5.

– RF : the (average) number of requesters whose interests match a given provider’s
capabilities RF = α × R.

– PF : the (average) number of providers whose capabilities match a given requester’s
interests PF = α × P .

– S: the number of subscriptions in the system. If each requester agent subscribes to
all relevant providers (PF) then the number of subscriptions is S = R × PF . If
each requester agent subscribes to PS providers then S = R × PS .

– PS : the (average) number of providers that a requester agent subscribes to. This can
be all relevant providers (PF), a single provider or an arbitrary number
(1 ≤ PS ≤ PF).

– RS : the (average) number of requesters that are subscribed to a given provider
(0 ≤ RS ≤ RF). The value of RS depends on whether requesters subscribe to
one provider, all providers or PS providers, and can be calculated by dividing the
number of subscriptions in the system (S) by the number of providers. If each
requester agent subscribes to all relevant providers (PF) then S = R × PF and
RS = (R ×PF)÷P = (R ×α ×P)÷P = R ×α = RF . If each requester agent
subscribes to PS providers then S = R × PS and RS = R × PS ÷ P , which is just
PS if there are equal numbers of providers and requesters.

– PD: the number of provider agents that have left the system since the last liveness
monitoring check (0 ≤ PD ≤ P).

– k: the size of a description of an agent’s capabilities or interests relative to the size
of its name (k > 1). This is used in computing the size of messages.

Design Options for Subscription Managers 265

We assign a message containing a simple request (e.g. a single name of another
agent) a size of 1 and a message containing a description of the interests or capa-
bilities of an agent a size of k. A message that contains a list has a size that is com-
puted by multiplying the contents of the list by its length. For example, a message
containing a list of PF relevant provider names has size PF , whereas a message
containing a list of the capabilities of PF relevant providers has size k × PF .

Our presentation of the analysis is structured according to the life-cycle of the sys-
tem: we consider the metrics associated with adding an agent (requester or provider)
with cancelling subscriptions and with monitoring the liveness of provider agents. In
order to help make the analysis more concrete, we will include actual numbers, com-
puted by assuming fairly arbitrary — but, we hope, reasonable — figures for the terms
above. These assumed values are given in table 1, where brackets are used to indicate
numbers that are derived from other values. For example, RF is derived from R and α
(since RF = α × R). Two of these assumed values need explanation. Firstly, the value
for PS (and hence the value of RS) depends on whether requester agents ask to be sub-
scribed to one relevant provider, some constant number of relevant providers or all rele-
vant providers. This will obviously vary depending on the requirements of the requester
agents. If we arbitrarily assume that half of the requester agents ask to be subscribed to
one provider, a quarter of requester agents ask to be subscribed to 5 providers and the re-
maining quarter of requester agents ask to be subscribed to all (in this case, on average,
10 providers), then we have that PS = (0.5×1)+(0.25×5)+(0.25×10) = 4.25 ≈ 4.
Secondly, the value for PD assumes that over the course of a polling period 0.5% of
provider agents will disappear. Since we have 200 provider agents, this gives one agent
that will disappear in a polling period, on average.

Table 1. Example values for terms

term: R P α RF PF S PS RS PD

value: 200 200 0.05 (10) (10) (800) ≈ 4 (≈ 4) 1

3.1 Adding an Agent

Adding a Requester Agent: The sequence of messages associated with adding a re-
quester agent depends on whether subscription is done by the middle-agent or the re-
quester.

If subscription is done by the middle-agent then the sequence of messages is: (1)
the requester registers its interests with the middle-agent, (2) the middle-agent sends
messages to all relevant providers asking them to subscribe the requester, (3) the middle-
agent optionally sends a message informing the requester of its subscriptions. The num-
ber of messages involved is 1+PF if the third (optional) notification message isn’t sent
and 2 + PF if it is sent.

If we assume that each requester wants to subscribe to PS relevant providers and that
the decision of which providers can be made on its behalf by the middle-agent, then the
number of messages is 1 + PS .

266 A. Mbala, L. Padgham, and M. Winikoff

If subscription is done by the requester, then the sequence of messages is: (1) the
requester registers its interests with the middle-agent, (2) the middle-agent responds
with a list of relevant providers, (3) the requester selects some (PS) or all (PF) of the
providers in the list and sends each of the selected providers a subscription request. If
the requester selects a subset of the available relevant providers and the middle-agent
needs to track subscriptions, then it must be notified by the requester of its choice of
providers, unless it is assumed that requesters always subscribe to all relevant available
providers or to some easily predicted subset such as only the first provider in the list.
The number of messages involved is 2 + PS (if the middle-agent needs to be informed
then the number of messages goes up by one).

We now consider the message size and begin with the first case where subscription
is done by the middle-agent. If we assume for the moment that requesters subscribe to
all relevant providers (PF), then the size of the three messages is respectively k for the
first step, 1 for each of the messages involved in the second step and (optionally) PF

for the third step giving a total size of k +PF (or k + 2PF if requesters are informed of
their subscriptions). If we assume that each requester subscribes to PS providers, then
the total size if k + PS (or k + 2PS if requesters are informed of their subscriptions).

Consider now the second case, where subscription is done by the requester. If we
assume for the moment that requesters subscribe to all relevant providers, then the size
of the three messages is respectively k, PF , and 1 for each of the PF messages from
requester to providers, giving a total of k+2PF (and k+3PF if the middle-agent needs
to be informed). If we assume that requesters will only subscribe to PS providers, then
the message to the requester containing the list of relevant providers will need to contain
the provider’s capabilities, as well as their names (so that the requester can decide to
which providers to subscribe). Therefore, the size of the messages is k + kPF + PS (or
k + kPF + 2PS if the middle-agent needs to be informed).

These cases are summarized in Table 2. In all cases, informing the other agent takes a
single additional message of size equal to the number of desired providers. The numbers
in the table give the actual number of messages, computed using the assumed values in
Table 1.

Table 2. Adding a requester (message size analysis is in brackets)

Middle Subscribes Requester Subscribes
All 1 + PF 2 + PF

providers (k + PF) (k + 2PF)
11 12

PS 1 + PS 2 + PS

providers (k + PS) (k + kPF + PS)
5 6

In summary, having the middle-agent subscribe saves a single (potentially large)
message and, if the middle-agent needs to track subscriptions, then a second message
is also saved (assuming that requesters don’t need to be notified of their subscriptions).
However, having the middle-agent subscribe prevents a requester from being able to

Design Options for Subscription Managers 267

directly select its provider(s) and, if requesters need to subscribe to something other
than all providers, then there is additional complexity in specifying how many providers
are desired (e.g. one, all or some constant number PS).

Adding a Provider Agent: The sequence of messages associated with adding a pro-
vider agent depends on whether subscription is done by the middle-agent or the re-
quester.

For the moment, let us assume that requesters subscribe to all relevant providers.
If subscription is done by the middle-agent, then the sequence of messages is: (1) the
provider registers its capabilities with the middle-agent, (2) the middle-agent sends a
message back to the provider with all relevant requesters that it should subscribe (pos-
sible none) and (3) the requesters are (optionally) informed of their new subscriptions.
The number of messages involved is 2 if the third (optional) notification message isn’t
sent and 2+RF if it is. The messages informing the requesters (step 3) could be sent by
either the middle-agent or the provider. In the interests of trying to avoid overloading
the middle-agent, it is preferable to have the provider inform the requesters.

If subscription is done by requesters then the sequence is: (1) the provider registers
with the middle-agent, (2) the middle-agent sends a message to each relevant requester
with the identity of the provider, (3) each requester sends a subscription request message
to the new provider. The number of messages involved is 1 + 2RF . Note that there is
a bottleneck issue here: the provider will, during a short time period, be sent messages
from a number of requesters, potentially overloading it.

Considering the size of the messages, in the first case, where subscription is done by
the middle-agent, the size of the three messages is respectively k, RF and (optionally)
1 for each of the RF messages giving a total size of k + RF (or k + 2RF if requesters
are informed of their subscriptions). Considering the second case, where subscription
is done by the requester, the size of the three messages is respectively k for the first
message, 1 for each of the RF messages, and 1 for each of the RF messages from
requesters to the provider, giving a total of k + 2RF .

These cases are summarized in the top row of Table 3. Informing the requester (if
the Subscription Manager subscribes) takes an additional RF messages of size 1. The
numbers in the table give the actual number of messages, computed using the assumed
values in Table 1.

Table 3. Adding a provider (message size analysis is in brackets)

Middle Subscribes Requester Subscribes
All 2 1 + 2RF

providers (k + RF) (k + 2RF)
21

typical PS 1 1
providers (k) (k)
max. PS 2 1 + RF + RS

providers (k + RS) (k + RF + RS)
15

268 A. Mbala, L. Padgham, and M. Winikoff

The bottom two rows of Table 3 assume that requesters only want to be subscribed to
a fixed number of providers. In this case when a provider joins an existing multi-agent
system, most or all requesters will already have the desired number of subscriptions.
This is because requesters subscribe when they join the system and departing providers
are detected and replaced. Therefore, the only situation where a requester will not have
its desired number of subscriptions is where there are not enough relevant providers in
the system. In this case, the typical number of messages generated by a new provider
joining an existing system is one (of size k) but it is possible for this to be higher: up to
the (unlikely) maximum shown in the third row of Table 3. Informing the other agent
takes an additional RS messages of size 1.

In summary, if requesters subscribe to all relevant providers then having the middle-
agent subscribe saves a significant number of messages and also has a saving in terms
of the size of messages. Additionally, if the requesters subscribe then there are potential
bottleneck issues. If requesters subscribe to a fixed number of providers then the saving
is much smaller.

3.2 Cancelling Subscriptions

Cancelling a subscription can be done directly, by having the requester send a message
to the provider (or vice versa if the provider is the one cancelling the subscription). Al-
ternatively, cancelling a subscription can be done via the middle-agent. In the first case,
cancelling a subscription involves a single message, with an optional second message
informing the middle-agent. Both messages have size 1. In the second case, cancelling
a subscription involves two messages each with size 1. Thus, the difference in terms of
messages involved between direct and indirect cancellation of subscriptions is minor,
and is non-existent if the middle-agent needs to be informed of the cancellation.

If a provider wishes to cancel all of its subscriptions, then there are a number of
cases: (1) If requesters don’t need to be kept informed of their subscriptions then a
single message (of size 1) to the middle-agent is all that is required. (2) If requesters
need to be told, but the middle-agent doesn’t need to be told, then there are RS messages
from the provider to the requesters that are subscribed to it. (3) If both middle-agent
and requester agents need to be informed, then there is one message from the provider
to the middle-agent and RS messages from the provider to the requesters. Although
it is possible to have the middle-agent inform the requesters, this increases the load
on the middle-agent, requires that the provider specify explicitly the list of subscribed
requesters (unless the middle-agent has a record of subscriptions) and doesn’t give any
benefit.

Thus if a provider wishes to cancel all of its subscriptions, then it is most efficient to
not inform the requesters but only inform the middle-agent. However, if the requesters
do need to be informed then the cost of also informing the middle-agent is low.

The analysis for a requester cancelling all of its subscriptions is similar. If the re-
quester agent does not know who it is subscribed to then it needs to first obtain the list
from the middle-agent (which also has the side effect of informing the middle-agent of
the cancelled subscriptions). In this case, cancelling all subscriptions requires 2 + PS

messages with total size 1 + 2PS. If the requester agent does know who it is subscribed

Design Options for Subscription Managers 269

to, then informing the providers takes PS messages of size 1 and informing the middle-
agent is a single additional (size 1) message.

3.3 Monitoring Liveness

Providers need to be monitored, so that a provider disappearing is detected and ap-
propriate action taken. Monitoring liveness of requesters by providers doesn’t seem to
make sense: if the providers have information to send, then that transmission acts as
a ping9. If they don’t have information to send, then they don’t really care about the
requester being alive! If monitoring of requesters is desired, then it makes sense to have
the middle-agent do this.

Monitoring of providers can be done either by the middle-agent or by the requesters.
Consider the first possibility. In this case, the cost for checking each provider for live-
ness can be worked out as follows10. Firstly, there are P messages to the providers.
Secondly, there are PD responses, one for each departed agent11, where PD is the num-
ber of departed agents found in this check (we assume that live agents do not respond).
If subscriptions are done by the requester agents, then the middle-agent will need to
inform the requesters (PD×RF messages12); otherwise informing the requester agents
is optional.

Consider now the second possibility, where monitoring the providers is done by the
requester agents. This is considerably less efficient because each provider will be mon-
itored (redundantly!) by each requester agent that is subscribed to it. More precisely,
each provider will be monitored by RS agents. Thus P×RS messages are sent, and
PD×RS responses received. If the middle-agent needs to be informed, then it will
(eventually) receive messages from each of the RS requester agents that are monitoring
the departed provider (an additional RS × PD messages).

An alternative is for the first requester agent that detects a departed provider to inform
the other requester agents that are subscribed to that provider, rather than allowing
them to independently realize that the provider is departed. This involves the following
sequence of messages: (1) a message from a requester to the departed provider, (2) a
message from the departed provider’s platform to the requester, (3) a message from the
requester to the middle-agent and (4) RS−1 messages from the middle-agent to the other
requesters. The total number of messages for pinging a single departed provider then is
3+(RS −1) = 2+RS and the message size is also2+RS. The total number of messages
for pinging all providers is this multiplied by the number of departed providers, plus RS

messages to each live provider, i.e. (P −PD)×RS +PD × (2+RS) = P ×RS +2PD.
Note that this slightly more efficient, but more complex, approach requires that the

middle-agent has a record of subscriptions (otherwise it is more expensive: replace RS

9 That is, we assume that the provider will detect a departed requester when it attempts to send
the requester information.

10 Note that a reasonable design decision is to spread this monitoring over a time period by
gradually traversing a list of providers.

11 The responses are sent by either the relevant agent platform (saying that the agent is unknown),
or from the middleware (saying that the agent platform is unknown).

12 If the middle-agent has an up-to-date record of the subscriptions then this can be tightened to
PD × RS .

270 A. Mbala, L. Padgham, and M. Winikoff

by RF). This approach also avoids a bottleneck issue: the middle-agent is only informed
of a departed provider agent once, rather than RS times.

A much more significant potential saving in having liveness monitoring done by
requesters is that it becomes possible to exploit “implicit” pings: if a provider sends
data to a requester, then this is evidence that the provider is alive and it can be assumed
to have been pinged. If a provider agent is sending data frequently enough, then it
will never need to be explicitly pinged as long as it is alive. If this is the case, and
assuming that the optimization described above is not used, then the number of ping
messages that are sent goes down from P × RS to PD × RS , giving 2 × PD × RS

messages overall and 3 × PD × RS if the middle-agent needs to be informed. If the
optimization described above is included, then the effect of implicit pings is, in the best
case, to eliminate the pinging of live agents, i.e. the term (P − PD) × RS , leaving
PD × (2 + RS) = 2PD + PDRS messages. However, it is not clear that this best
case will hold, so the significant reductions promised by exploiting ‘implicit’ pings is
perhaps exaggerated by the numbers in Table 4.

This analysis is summarized in Table 4. The bracketed formulae include informing
the requesters (if the middle-agent pings) or middle-agent (if requesters ping). The third
row (“Improved”) is when requesters ping, but includes informing both the middle-
agent and other (relevant) requester agents of a departed provider. The numbers in the
table give the actual number of messages, computed using the assumed values in Ta-
ble 1; the numbers in brackets include informing the requesters.

Table 4. Monitoring provider liveness (bracketed formulae include informing)

Who pings? Number of + Implicit
messages pings

Middle P + PD N/A
agent (P + PD + PDRS)

201 (205)
Requester PRS + PDRS 2PDRS

agents (PRS + 2PDRS) (3PDRS)
804 (808) 8 (12)

Improved PRS + 2PD 2PD + PDRS

802 6

The analysis above only considers monitoring and detecting departed agents. What
is done in response to detecting a departed agent depends on the subscription policy of
the requester agents that were subscribed to the departed agent. If a requester is sub-
scribed to all relevant providers, then there is nothing further to be done – there are
no other relevant providers that could be added, because the requester is already sub-
scribed to them. However, this doesn’t mean that monitoring liveness is not important
– for instance, there is a difference between receiving no information because there
is no information, and receiving no information because there is no available source
for the information. On the other hand, if a requester is subscribed to one provider (or,
more generally, PS providers), then a replacement provider needs to be found. How this

Design Options for Subscription Managers 271

is done, and the number of messages involved, depends on whether subscriptions are
done by the requester or by the middle-agent. The analysis is similar to that presented
in Section 3.1.

4 Subscription Manager Specification

Based on the analysis in the previous section, we now specify a Subscription Man-
ager middle-agent. The most difficult issue is regarding whether or not the Subscription
manager should actually set up subscriptions on behalf of a requester. On the one hand,
there is a reasonable savings in doing this and it assists with bottleneck issues at the
provider. On the other hand, it removes flexibility from the requester, which may need
or prefer to make its own choices. If requesters subscribe to all providers, then there is
no issue with flexibility, and the savings are significant; so, in this case, it makes sense
to have the Subscription Manager subscribe. On the other hand, if requesters subscribe
to a fixed number of providers (and especially if this fixed number is low), then the
savings are lower, and allowing the requester to select its providers becomes more im-
portant. In this case it may make more sense to have requesters subscribe themselves.
Consequently, we recommend that the Subscription Manager allow both options.

In addition to supporting subscription being done by either requesters or the Sub-
scription Manager, there is also a need to allow for both one-off and ongoing matching,
as well as subscription to one or subscription to all13. This requires that the interface
allows four14 kind of requests: single-match (requester subscribes), ongoing-match (re-
quester subscribes), subscribe-one (Subscription Manager subscribes the requester, and
replaces if provider disappears), and subscribe-all (Subscription Manager subscribes
requester, and subscribes to new providers as they arrive). Additionally, the Subscrip-
tion Manager’s interface needs to allow for a requester to cancel the ongoing-match,
subscribe-one or subscribe-all, and for a provider to cancel its registration.

It is slightly more efficient for end-agents to manage cancellations directly, if the
Subscription Manager does not need to be updated. If the Subscription Manager is up-
dated, the overhead is little. Consequently, we recommend that cancellations be done
directly between end-agents, since this relieves the Subscription Manager of a central-
ized responsibility that carries no real benefit. Requesters with an ongoing subscribe-
one request will need to notify the Subscription Manager of the cancellation so that they
can be subscribed to a new provider.

Monitoring of provider liveness can be done by either requesters or by the Subscrip-
tion Manager. If we use the improved version of requester monitoring and
assume that “implicit” pings completely eliminate pinging of live agents, then requester-
based liveness monitoring requires fewer messages (2PD + PDRS compared with
P + PD + PDRS , given the assumptions of Table 1 these are respectively 6 and 205).
However, this requires a more complex mechanism, shifts the responsibility for a cru-
cial infrastructure task on to the requesters (which is not practical in an open system),
and assumes that implicit pings completely eliminate pinging of live agents and that

13 We assume that subscription to some other number must be handled by the requester.
14 If the requester subscribes then it doesn’t make sense to distinguish between subscribe-to-one

and subscribe-to-all. If the middle-agent subscribes then an ongoing match is assumed.

272 A. Mbala, L. Padgham, and M. Winikoff

Provider 1 SubManager Requester

AdvertiseProfile

SubscribeAll

Subscribe[r1]

Data

Ping

PingResponse

Data Provider 2

AdvertiseProfile

Subscribe [r1]

Data

RemoveProfile

NotifyVanished[p1]

AdvertiseProfile
Ping

NotifyVanished[p2]
timeout

Fig. 2. An example interaction

requester agents need to be informed of departed providers15. Therefore, we recom-
mend that monitoring of provider liveness be done by the Subscription Manager.

Fig. 2 shows an example interaction. In this example, a Requester has asked to be
subscribed to all relevant providers (SubscribeAll). Provider 1 is relevant, and so the
requester is subscribed (by the Subscription Manager) to Provider 1. The Provider then
begins providing the requester with regular information (Data). The Subscription Man-
ager also periodically checks that the provider is still available by sending Ping mes-
sages. A little later a second provider joins the system, and since it is also relevant to
the requester, the requester is subscribed to this provider as well. The first provider then
changes its service specification (RemoveProfile followed by a new AdvertiseProfile).
The requester is notified that provider 1 is no longer relevant. Finally in this example,
provider 2 disappears, and the Subscription Manager realizes this when it attempts to
Ping the provider, at which point the requester is notified that provider 2 is no longer
available.

15 If requesters are not required to be informed of departed providers, then having middle-agents
monitor providers requires P + PD messages. In this case having requesters monitor is more
efficient if PD(1 + RS) < P .

Design Options for Subscription Managers 273

5 Conclusion

We have presented a new type of middle-agent, the Subscription Manager, and moti-
vated its use in systems that involve ongoing information provision to requesters. An
analysis of different design options for the Subscription Manager was presented, lead-
ing to recommendations for the design of Subscription Managers. To summarize, the
key recommendations are:

– that the Subscription Manager provide support for setting up subscriptions to be
done either by itself or by requester agents.

– that the Subscription Manager provider a number of ways of requesting
information:
1. single-match, which returns a list of matching providers at the current time,

but will not inform the requester of additional (relevant) providers that subse-
quently join the system.

2. ongoing-match, which returns a list of matching providers and also asks the
Subscription Manager to inform the requester should new relevant providers
become available.

3. subscribe-one, which asks the Subscription Manager to maintain a subscrip-
tion by the requester to exactly one relevant provider (which is selected by the
Subscription Manager).

4. subscribe-all, which asks the Subscription Manager to maintain subscriptions
by the requester to all relevant providers.

– that cancellations of subscriptions be done directly between end-agents.
– that monitoring of provider liveness be done by the Subscription Manager agent.

For a given application, some of the flexibility recommended may not be needed. For
example, in a domain where requester agents always subscribe to all available informa-
tion sources, there is no need for the Subscription Manager to support subscription to a
single provider.

Areas for future work include investigating ways of structuring a network of middle-
agents, carrying out experimental evaluation of the analysis presented and looking at
how often agents should be ‘pinged’ given a particular rate of agent departure.

Acknowledgments

We would like to acknowledge the support of the Australian Research Council, the
Australian Bureau of Meteorology and Agent Oriented Software Pty. Ltd. under grant
LP0347925.

References

1. Paolucci, M., Soudry, J., Srinivasan, N., Sycara, K.: A broker for OWL-S web services. In:
First International Semantic Web Services Symposium. (2004)

2. Schmidt, C., Parashar, M.: A peer-to-peer approach to web service discovery. World Wide
Web Journal 7(2) (2004) 211–229

274 A. Mbala, L. Padgham, and M. Winikoff

3. Alonso, G., Casati, F., Kuno, H., Machiraju, V.: Web Services: Concepts, Architectures and
Applications. Springer-Verlag, Berlin, Germany (2004)

4. Decker, K., Sycara, K., Williamson, M.: Middle-agents for the internet. In: Fifteenth Inter-
national Joint Conference on Artificial Intelligence, Morgan Kaufmann (1997) 578–583

5. Sycara, K.: Multi-agent infrastructure, agent discovery, middle agents for web services and
interoperation. In: Multi-Agent Systems and Applications, LNAI 2086, Springer-Verlag
(2001) 17–49

6. Mathieson, I., Dance, S., Padgham, L., Gorman, M., Winikoff, M.: An open meteorological
alerting system: Issues and solutions. In Estivill-Castro, V., ed.: Proceedings of the 27th
Australasian Computer Science Conference, Dunedin, New Zealand (2004) 351–358

7. Decker, K., Williamson, M., Sycara, K.: Matchmaking and brokering. In: 2nd International
Conference on Multi-Agent Systems (ICMAS 1996), MIT Press (1996)

8. Carzaniga, A., Rosenblum, D.S., Wolf, A.L.: Design of a scalable event notification ser-
vice: Interface and architecture. Technical Report CU-CS-863-98, University of Colorado,
Department of Computer Science (1998)

9. Fox, G., Pallickara, S.: The Narada event brokering system: Overview and extensions. In:
Proceedings of the 2002 International Conference on Parallel and Distributed Processing
Techniques and Applications (PDPTA’02). (2002) 353–359

10. Finin, T., Fritzson, R., McKay, D., McEntire, R.: KQML as an agent communication lan-
guage. In: CIKM ’94: Proceedings of the third international conference on Information and
knowledge management, ACM Press (1994) 456–463

11. Sycara, K., Widoff, S., Klusch, M., Lu, J.: Larks: Dynamic matchmaking among heteroge-
neous software agents in cyberspace. Autonomous Agents and Multi-Agent Systems 5(2)
(2002) 173–203

12. Cassandra, A., Chandrasekara, D., Nodine, M.: Capability-based agent matchmaking. In:
AGENTS ’00: Proceedings of the fourth international conference on Autonomous agents,
ACM Press (2000) 201–202

13. Gibbins, N., Hall, W.: Scalability issues for query routing service discovery. In: Proceedings
of the 2nd International Workshop on Infrastructure for Agents, MAS, and Scalable MAS.
(2001) 209–217

14. Wong, H.C., Sycara, K.: A taxonomy of middle-agents for the internet. In: 4th International
Conference on Multi-Agent Systems (ICMAS 2000), IEEE Press (2000) 465–466

Supporting Program Indexing and Querying in

Source Code Digital Libraries

Yuhanis Yusof and Omer F. Rana

School of Computer Science, Cardiff University, Wales, UK
{y.yusof, o.f.rana}@cs.cardiff.ac.uk

Abstract. As a greater number of software developers make their source
code available, there is a need to store such open-source applications in
a library and facilitate searching over this digital library. To achieve
this, we propose the usage of agents in indexing and querying program
source code. This paper describes agent roles in building index files for
Java programs and users queries based on program structure and design
patterns. Precision and recall analysis is then undertaken to evaluate the
retrieval performance. We believe that such a digital library will permit
better sharing of experience amongst developers and facilitate reuse of
code segments.

1 Introduction

Software repositories contain a wealth of valuable information for empirical stud-
ies in software engineering: source control systems store changes to the source
code as development progresses, defect tracking systems follow the resolution of
software bugs, and archived communications between project personnel record
the rationale for decisions throughout the lifetime of a project. Until recently,
data from these repositories were used primarily for historical record — sup-
porting activities such as retrieving old versions of the source code or examining
the status of a defect. Several studies have emerged that use these data to study
various aspects of software development such as software design/architecture,
development process, software reuse and developer motivation.

A key motivation for our work is to facilitate software reuse through informa-
tion extraction, whereby a software engineer or software developer could make
use of existing software packages to create new programs. Software reuse has
been shown through empirical studies to improve both the quality and produc-
tivity of software development. Our thesis is that software reuse should not just
be restricted to reusing software libraries in their entirety, but should also enable
software developers to understand the process associated with solving a prob-
lem encoded in the software library. A software developer may be interested in
understanding how a particular feature has been coded in a particular language
— rather than perhaps making full use of code that has been implemented by
someone else. Despite much work in retrieving text or image documents from
the Internet, less effort has been put into generating information from program

M. Kolp et al. (Eds.): AOIS 2005, LNAI 3529, pp. 275–290, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

276 Y. Yusof and O.F. Rana

source code made available from open source projects. As the number of source
code archives available on the Internet has been growing rapidly, we propose
a multi-agent system for supporting program indexing and querying in source
code digital libraries.

Software reuse is an approach to developing systems where artefacts that al-
ready exist are used again. Software artefacts vary from software components to
analysis models. A major problem in software development today occurs when
different artefacts of a software system evolve at different rates. For example,
program source code is updated to include all the necessary changes, but the
software models and/or formal documentations are often not modified to re-
flect these changes. Therefore, as the source code of systems may be the only
source of information that is complete and up to date, this artefact has been
widely used by software developers in program comprehension. In this paper,
we concentrate exclusively on reusing such useful software artefacts — program
source code. Source code can be defined as any series of statements written
in some human-readable computer programming language. An important pur-
pose of source code is for the description of software, particularly how a certain
function is being undertaken. Also, source code can be used as a learning tool;
beginning programmers often find it helpful to review existing source code to
learn about programming techniques and methodology. It is also used as a com-
munication tool between experienced programmers, due to its (ideally) concise
and unambiguous nature. The sharing of source code between developers is fre-
quently cited as a contributing factor to the maturation of their programming
skills.

1.1 Related Work

Despite the importance of generating information from program source code,
most of the research done in the area of understanding source code is focussed on
categorizing the programming language used or source code achieve [1]. Ugurel
et al. [2] classified source code into appropriate application domains and also
programming languages using three components, namely the feature extractor,
vectorizer and Support Vector Machine classifier. Paul and Prakash [3] have
produced a framework that uses pattern languages to specify interesting code
features. Therefore, a user needs to identify either the desired programming
language or application domain in order to look for the desired parts of source
code.

Most of the software reuse research, however, focusses on the retrieval of soft-
ware components. In Wikipedia, a software component is defined as a system
element offering a predefined service and able to communicate with other com-
ponents. Ostertag et al. [4] classified component retrieval approaches into three
types: 1) free-text keywords, 2) faceted index, and 3) semantic net based. Free-
text keyword based approaches basically use information retrieval and index-
ing technology to automatically extract keywords from software documentation
and index items with the keywords. Dongarra and Grosse [5] demonstrate the
retrieval of particular numerical algorithms via email with reference to their

Supporting Program Indexing and Querying 277

Netlib digital library. Many such approaches are restricted to particular types
of applications (numerical algorithms in this case) and are therefore restricted
in their scope. The free-text keyword approach is simple and it is an automatic
process. But this approach is limited by lack of semantic information associated
with keywords; thus it is not a precise approach. For faceted index approaches,
experts extract keywords from program descriptions and documentation, and
arrange the keywords by facets into a classification scheme, which is used as a
standard descriptor for software components. To solve ambiguities, a thesaurus
is derived for each facet to make sure the keyword matched can only be within
the facet context. Faceted classification and retrieval has proven to be very ef-
fective in retrieving suitable components from repositories, but the approach is
labour intensive. The faceted classification scheme for software reuse proposed by
Prieto-Daz [6] relies on facets that are extracted by experts to describe features
about components. Features serve as component descriptors, such as the compo-
nents functionality, how to run the component and implementation details. To
determine similarity between query and software components, a weighted con-
ceptual graph is used to measure closeness by the conceptual distance among
terms in a facet. Semantic-net based approaches usually need a large knowledge
base, a natural language processor and a semantic retrieval algorithm to seman-
tically classify and retrieve software reuse components. The semantic-net based
approach is also labour intensive and often intended for use in a specific appli-
cation domain. Sugumaran and Storey [7] present a semantic-based solution to
component retrieval. The approach employs a domain ontology to provide se-
mantics in refining user queries expressed in natural language and in matching
between a user query and components in a reusable repository. The approach
includes a natural language interface, a domain model and a reusable repository.

In motivating software component reuse, researchers have also been investi-
gating component retrieval based on formal specifications [8,9,10,11]. Mili et al.
[11] designed a software library in which software components are described in
a formal specification: a specification is represented by a pair (S, R), where S is
a set of specifications, and R is a relation on S. The approach is classified as a
keyword-based retrieval system, while matching recall is enhanced with sufficient
precision: a match is considered as long as a specification key can refine a search
argument. There are two retrieval operations: exact and approximate retrieval.
If there is no exact retrieval, approximate retrieval can give programs that need
minimal modification to satisfy the specification. In measuring similarities among
components, both work done by Mili [11] and Schumann [9] use automated theo-
rem provers. Despite various techniques used in retrieving software components,
there is generally no tool provided to take an existing program (i.e. written
in Java) and convert it into formal specification. Existing approaches therefore
require a programmer to write his/her software in a particular representation
format (based on a formal specification). We see this as a severe restriction of
such approaches in the context of existing source code archives.

There have been several initiatives that use agents in digital libraries, the
most relevant being the University of Michigan Digital Library(UMDL) [12], The

278 Y. Yusof and O.F. Rana

Multimedia Electronic Documents (MeDoc) system [13] and the ZUNO Digital
Library (ZUNODL) [14] — a commercial framework to build digital libraries.
However, the architecture of such digital libraries is different from our approach,
as virtually all of them operate on text documents. To support code retrieval,
it is first necessary to remove Java language keywords, such as println and
bufferedreader. Collaborative filtering may then be used to provide integration
of code segments. We assume that a given source code digital library contains
components written in a single programming language. Communication between
agents operating on this digital library would be based on the grammar of this
particular programming language. An agent may be used to inform users who
have retrieved program source code from the digital library so that users are
kept informed with latest information related to the retrieved program. Hence,
to manage the dynamic changes in such a digital library, we propose the use
of a multi-agent system, such as reported in previous work dealing with the
Internet [15,16,17,12].

1.2 Our Approach

Our approach differs from existing work in that we are interested in search
and retrieval techniques for program source code. We see the limited use of
existing search engines for this particular problem, since search engines such
as Google.com or Altavista.com only provide support for formulating a query
based on keywords and phrases. The search process utilized in SourceForge.net
makes use of keywords and is based on general descriptions given to each of the
stored packages. Our intention is to extend the search process supported by such
public domain software repositories and, in this work, we propose to retrieve
programs based on program structure and design pattern. Such an approach is
designed for developers having the intention of developing reusable software. In
this work, reusable software is defined as segments of code or combinations of
classes that offers code and design scavenging through concept reuse. Concept
reuse, which is an alternative to software component reuse, offers a more abstract
reused entity and is designed to be configured and adapted for a range of situ-
ations. Such an approach can be illustrated through various modes of problem
solving, one of which can be derived by examining source code program — design
patterns [18]. As design patterns abstract the key aspects of a common design
structure, they overcome the inevitable constraints such as a specific interface or
algorithms to be followed faced by developers in reusing software components.

Similar to indexing journal articles (author, title and year representing im-
portant features of an article), Java program structure is used to represent im-
portant features of each program stored in the program repository. We include
classes, comments, identifiers, packages and import statements as components
of the program structure. Each of these components plays a significant role in
defining the functionality of a program. For example, a term registry identified
as class name indicates that the instance of the program is a registry object. As
it is a sound practice to name programs or function modules according to their
functionality [19], meaningful identifiers are used to represent object behaviours

Supporting Program Indexing and Querying 279

and attributes in a program. Using Java program structure as the basis to define
our design pattern rules, we identify the general design implemented in each of
the stored programs. Such an approach would benefit users in identifying the
participating classes and instances, their roles and responsibilities in collaborat-
ing with each other. With a design pattern, both the problem and solution are
generic enough to be independent of implementation language. Therefore, given
a pertinent problem, rather than only cutting and pasting selected code seg-
ments, developers retrieving programs from our source code digital libraries are
provided with design solutions relating to the problem. Hence, the same design
solution can be applied in implementing similar problems that might occur in
the future.

In this research, each program submitted to the digital library whether as a
program to be stored or as a search query, is represented by an index file con-
taining selected terms based on Java program structure. We then classify these
programs according to the implemented design patterns. Three patterns are to
be identified: Singleton, Composite and Observer. In order to search and retrieve
source code from our digital library, a similarity measurement is undertaken be-
tween a users query and the index files build upon all of the stored programs.
As the construction of an index file for both program submission and the user’s
query requires various actions, decomposing the process into smaller and more
manageable chunks would be very helpful. Each of these sub-systems can then
be dealt with in relative isolation. However, to present users with the optimum
result, the relation between these sub-systems has to be identified. For example,
the source code retrieval system might retrieve different sets of program when
retrieval is carried out using program template such as in [20] or when source
code retrieval is undertaken based solely on design patterns. We believe that
by having different agents to extract different information, a similarity measure-
ment between search queries and programs in the repository can be expanded,
hence improving the performance of the retrieval system. Therefore, we focus on
building a retrieval system that is capable of retrieving relevant program source
code by cooperating results from different agents (sub-systems).

2 Agent-Based Architecture

Similar to the work done in RETSINA [15], we classify our agents into three
types: User Interface agent, Task agent and Information agent. Agents classi-
fication depicted in Table 1 is undertaken based on the notion that interface
agents are tied closely to an individual human’s goals (i.e. assisting users in
representing the queries). Task agents are involved in the processes associated
with various problem-solving tasks (i.e. decomposing the plan (if necessary) and
coordinating with other task agent or information agents for plan execution and
result composition) and information agents are closely tied to data sources (i.e.
retrieve required files from data source). Detailed descriptions of the agents il-
lustrated in Table 1 are discussed further below in this section.

280 Y. Yusof and O.F. Rana

Table 1. Classification of Agents

User Interface Agent(UIA) Information Agent(IA) Task Agent(TA)

Program Representation Agent(PRA) Registry Agent(RA) Index Builder Agent(IBA)
Index Representation Agent(IRA) Program Agent(PA) Index Creation Agent(ICA)

Query Representation Agent(QRA) Program Management Agent(PMA)
Report Representation Agent(RRA) Stemming Agent(STEMA)

The software digital library is based on the cooperation of the interface, task
and information agents. In Fig. 1, we illustrate the general multi-agent system
architecture for program indexing and querying in our source code digital library.
As the main focus of our system is to retrieve and index Java programs, cur-
rently we are using three task agents in supporting the process of creating suit-
able metadata for Java programs. Upon combining all indices generated by these
agents, the index file will be created and stored in the registry by the information
agents. We then use this file as the main source of our comparison mechanism.

Fig. 1. The Proposed Multi-agent System Architecture for Program Indexing and
Querying

The User Interface Agent (UIA) has two different roles in this architecture.
From the developers view, it is responsible for accepting programs or a project
folder to be submitted to the program repository. A project folder may contain
a number of Java programs organized as a Java package or may just include
a single Java file. Nevertheless, if a developer is using the system to retrieve
program source code, UIA will act as a medium to accept search queries. All of
the submitted input received by UIA are given an ID to differentiate whether
it is a program submission or a search query. This ID is important in order to
determine if the index to be generated should be stored in the index registry
or only used by Program Matcher Agent(PMA). Users who intend to retrieve
programs from the software digital library are given the flexibility of submitting
two types of queries: phrase (Query 1) and program (Query 2). Examples of
these are provided below:

Supporting Program Indexing and Querying 281

Query 1:
registry class implementing Singleton

Query 2:
public class Registry {
private static Registry registry = null;
private static final Object classlock = Registry.class;
private int connectionCount;
private Registry (){ }
public void addToCount() {
connectionCount++; }
public static Registry getRegistry() {
synchronized(classlock){
if (registry == null) {
registry = new Registry(); }
return registry;
} } }

The Program Representation Agent (PRA) represents any document posted
by the programmer — for instance a folder containing several Java program files
or a single Java program.

The Registry Agent (RA) is an information agent responsible for managing the
index registry. All program index files (including programs full path name) are
stored in this registry and these files are used during the matching process. The
Program Agent (PA) manages the program repository by storing and retrieving
the required Java files, for example retrieving the selected program source code
as required by users.

The most important agent in this program source code retrieval system is The
Index Creation Agent (ICA) which consists of three agents: a Keyword agent
(KEMA), a Design Pattern agent (DEPA) and a Java Template agent (TEMA).

– Similar to text mining, in KEMA each word of the Java program will be
analysed separately as an individual token. A complete lexicon of terms ex-
cluding those terms defined in the stop list will be undertaken. The stop list
contains all words that do not provide any meaningful information in the re-
trieval process such as the, a, an, void, and etc.. Upon removing these words,
the selected words (after word stemming [21] by STEMA) may then be used
as the metadata for the particular Java file. However, only identifiers written
as class, package or method name and words in comment statements are
included in the analysis. An index built based on the processed Java file will
then consists of: (1) term, (2) type of the term, and (3) absolute pathname
Based on Query 2, three terms are extracted from the query program: reg-
istry, addtocount and getregistry. Therefore the index file for the query con-
tains the following:

282 Y. Yusof and O.F. Rana

C:\project1registry.java
registry, class
addtocount, method
getregistry, method

– TEMA is responsible for extracting information based on program structure
[20]: (1) class name(s), (2) absolute pathname, (3) method name and signa-
tures, (4) superclass, (5) abstract class, (6) interface class. This information
is then used to generate alternative indices, which can be used to retrieve
similar programs based on the search query. Example of indices generated
by this agent based on Query 2 are as following:

C:\project1registry.java
method addtocount - parameters: null; return: null
getregistry - parameters:null; return: registry

Method named addtocount as illustrated, does not receive any argument as
well as not returning any data. Hence, to provide flexibility in matching
search queries and programs in the repository, TEMA generates alternative
data such as providing data type integer as the method parameter. Such an
approach would benefit users in retrieving similar programs since program
matching is not bound to the exact program structure.

– DEPA is accountable for identifying three design patterns that are imple-
mented in a Java program. This agent determines the existence of design
patterns based on several rules. The outcome of this identification is the
percentage of rules obeyed in determining the design patterns. To summa-
rize, a program is identified to be implementing a Singleton if: (1) it only
allows a single creation of an instance and (2) access to private class variables
is implemented in a public method. To identify the existence of a Composite
design pattern, DEPA: (1) identifies classes implementing at least one in-
terface and (2) determines whether the identified classes provide a method
that receives an interface class as its argument. For a class to be identified as
implementing the Observer pattern, it must have the following: (1) private
variable(s) which allows the value that it holds to be updated, (2) inheri-
tance of any abstract classes — where an abstract class defines the identity
of its descendants, (3) method overriding between a class and its superclass
(abstract class) and (4) a constructor that receives at least one element from
rule (1) as its method argument.

These three agents cooperate between each other in order to fulfil each others
goals. For example, given a Java program as the search query, QRA will invoke
TEMA to analyse the Java program. For TEMA to produce its template in-
dices, it requests KEMA to identify lexical terms. With these terms, TEMA will
then generate further indices for the query program. DEPA is then invoked to
determine the existence of any defined design patterns.

The Index Builder Agent (IBA) combines indices generated by ICA. Based on
the data received from ICA, it generates a general index to represent each of the

Supporting Program Indexing and Querying 283

processed Java file. The data structure of the index consist of: (1) the absolute
pathname; (2) a vector of objects containing terms and type of the terms. Types
of terms are determined based on the program structure - class name, method
name, package name and comments; (3) a vector of objects storing particulars
about a class - class name, superclass name, method signatures, abstract class
and interface class(s); (4) the percentage of the existence of design patterns.

The Index Representation Agent (IRA) is responsible for indices generated
by the IBA to be presented to the user. It creates a report containing all of the
generated indices from the particular program file. This report is then presented
to the person who submits the program. Based on the example in Query 2, the
generated report contains the following:

File name : C:\project1registry.java
Class name = registry
No.of selected terms = 3
Design Pattern= Singleton(100%)

The Query Representation Agent (QRA) is responsible for formatting users
queries into an appropriate form. For example, if a user submits a folder of Java
programs, QRA allows users to specify their query using two different modes: a
description of what they are searching for in human language (English) and a
Java template of the query.

The Program Matcher Agent (PMA) is in charge of finding suitable Java pro-
grams based on users queries. The similarity comparison is undertaken between
two index files: a query index file and an index file for all programs stored in
a registry. Indices in the query index file are mapped against all indices in the
registry index file using two similarity measurements: string and design patterns.
String and substring matching is undertaken based on the Levenshtein distance
function [21]. A threshold value is to be requested from the user in order for
PMA to find similar Java programs that contain terms that produce the mini-
mum value of the distance function. Similarities in terms of design patterns is
obtained by comparing the percentage value of the existence of design patterns
contained in both of the programs index file and query index file. Selected Java
files are then ranked according to their sum of distance function values and per-
centage of design pattern existence. The program with the lowest and highest
value, respectively, are presented as the most suitable programs.

Upon having a list of relevant Java files (undertaken by the PMA), related
Java files references are passed to the Result Representation Agent (RRA). This
agent plays the role of presenting the results to the users by generating a report
describing the selected Java programs. This report nevertheless contain informa-
tion on similar terms and design patterns found between the search query and
the program. It is also responsible for fetching any selected programs(from the
result report) required by the users. This is achieved with the cooperation of the
program agent(PA).

The majority of interactions of interface agents are with the human user, the
most frequent interactions of information agents are with information sources,
whereas task agents interact with other task and information agents. When a

284 Y. Yusof and O.F. Rana

task agent receives a task from an interface agent, or from another task agent, it
decomposes the task based on the domain knowledge it has and then delegates
the sub-tasks to other task agents or directly to information agents. The task
agent will take responsibility for collecting data, coordinating among the related
agents (i.e. agents which accept the sub-task) and report back to whomever initi-
ated the task. The agent who is responsible for the assigned sub-tasks will either
decompose these sub-tasks further or perform data retrieval. Upon receiving a
task, an agent starts planning using its own operator and behaviour. If it re-
quires other operator that does not exist in its domain knowledge, it must find
and request another agent that has the capabilities to complete the remainder
of the task. This process will continue until an agent can achieve the goal of the
received request by itself. In Fig. 2, we illustrate a portion of the plan library
containing general descriptions of action decomposition methods expressed in
the form Decompose(a,b). This says that an action a can be decomposed into
the plan b, which is represented as a partial-order plan.

Action(BuildTerm, PRECOND:Program,
EFFECT:TermList)
Action(BuildDP, PRECOND: Singleton ∧ Composite
∧ Observer, EFFECT:DPList)
Action(Construction, PRECOND:TermList ∧
DPList, EFFECT:Index)

Decompose(BuildIndex,
Plan(Steps:{S1:BuildTerm, S2: BuildDP,
S3:Construction}
Orderings:{Start ≺ S1 ≺ S3 ≺ Finish, Start ≺
S2 ≺ S3 }
Links:{Start −→ S1, Start −→ S2, S1 −→ S3,
S2 −→ S3, S3 −→ Finish})

Fig. 2. Action Descriptions for the Index Building of a Program

3 Agent Interaction for Program Submission and
Program Retrieval

We classify our users into two categories: developers who intend to submit their
Java application into the repository and users who requires Java programs from
the repository.

3.1 Program Submission

In Fig. 3, we depict communication that occurred between agents during the
process of program submission through a sequence diagram. Using the same
program illustrated in Query 2, we demonstrate how the index file for a program
is generated and stored in the repository.

Supporting Program Indexing and Querying 285

Fig. 3. Sequence Diagram for Program Submission to Repository

UIA sends a request to IBA to build an index file for Registry.java. Upon re-
ceiving this request, IBA notifies the message sender using one of the four ACL
performatives: agree, refuse, not understood or failure. If IBA agrees to
build an index file for Registry.java, it requests PA (responsible for managing
program repository) of type information agent, to check whether Registry.java
exists in the repository. If Registry.java has been submitted to the system, PA
then informs IBA of the current address of the related project, or else it stores
Registry.java in the repository and informs the reference address to IBA. Upon
receiving this reference, IBA sends a request performative to all Index Cre-
ation Agents (ICA) asking each of them to build indices for the given reference
(Registry.java). If these agents agree to perform the task, each of the ICAs re-
quest STEMA to perform stemming towards the Java file. They will then inform
IBA about the indices that they have generated after analyzing Registry.java.
Upon receiving these indices, IBA builts an index file to represent Registry.java
— all of the indices are combined into a single data structure and passed to
RA (responsible for managing registry) of type information agent. This agent
then updates the index registry with the file that it has just received. IBA then
returns back to UIA, providing a Web reference for the generated index file.

286 Y. Yusof and O.F. Rana

3.2 Program Retrieval

Two different modes of queries are currently supported: (i) keyword or phrase
(natural language) describing user requirements and (ii) Java program or tem-
plate, In Fig. 4, we describe how agents perform their task of retrieving relevant
Java programs based on a text phrase as the search query.

Fig. 4. Sequence Diagram for Program Retrieval from Repository

If a user submits a description of their search requirements as follows: registry
class implementing Singleton, the UIA requests the IBA to build an index to
represent this query. To perform this task, the agent IBA requests the ICA to
build indices for the query. In order to do this, ICA requests STEMA to perform
stemming towards the query. If STEMA understood the message and agrees to
perform the task, it sends a message back to ICA containing the result. As a
text query only involves lexicon terms, ICA then passes these terms to IBA in
order for IBA to generate an index for the users’ query (query index). Upon
receiving the query index file from IBA, UIA then requests PMA to deliver Java
programs that are relevant to the users query. To fulfil this task, PMA requests
the information agent (RA) to sequentially retrieve index files stored in the pro-
gram registry. It is then PMA’s responsible to perform similarity measurements
between the query index and program index files and store the reference(s) for
the matched Java file(s). Upon completing the search, PMA informs UIA of the
list of relevant files.

On the other hand, if a user employ a Java program as his/her search query, all
of the ICA (KEMA, DEPA and TEMA) are invoked to evaluate the program.

Supporting Program Indexing and Querying 287

Before this happens, UIA requests IBA to build an index file for the query.
To fulfil this task, IBA then requests all of ICA to generate indices for the
submitted program. Upon sending an agreement performative to IBA, each of
the ICA requests STEMA to stem the content of the Java file. As IBA receives
results from the requested agents, it combines the generated indices into one
query index file. The UIA then requests PMA to search for Java programs that
are similar to the search query, and this process continues as described in the
above paragraph.

4 Case Study and Discussion of Results

Similar to search engines, our program source code retrieval system returns a
list of documents (the hitlist) for a query. Typically, there are some good doc-
uments in the list and some bad ones. The quality of a search retrieval system
is measured in terms of the proportion of good hits in the list, the positions of
good hits relative to bad ones, and the proportion of good documents missing
from the list. To illustrate how program structure and concept reuse can be
adopted in source code retrieval system, we perform a relevant experiment using
7 applications (477 files) representing the mathematical domain, obtained from
the SourceForge.net repository. Queries posted to the retrieval system mainly
involve programs that exemplify the three identified design patterns - Singleton,
Composite and Observer. In order to evaluate the retrieval performance, prior
to the experiment, we manually identify relevant Java files to be used as the
retrieval answer set.

Table 2. Precision and Recall Analysis

Design Patterns Precision Recall

Singleton 4% 100%
Composite 56% 37.84%
Observer 88% 81.48%

In Table 2, we summarize the traditional measures of retrieval performance:
Recall and Precision [21] based on the top 50 Java files included in the hitlist by
our retrieval system. We learn that the system has performed well by retrieving
74 out of 130 relevant files, which results in a 56.92% success rate. Both detection
of programs illustrating Composite and Observer design patterns produced more
than 50% precision. On the other hand, 4% has been obtained for retrieving
programs implementing the Singleton design pattern. Nevertheless, such results
can be improved by manipulating the retrieval cut-off point. For example, if we
change the default retrieval cut-off point from 50 to 10, the precision of retrieving
files implementing the Singleton design pattern is increased from 4% to 10%.

A better description of the source code retrieval performance is given based
on the precision and recall graph as depicted in Fig. 5. Successfully, our retrieval
system has been able to achieve a complete recall in retrieving programs that

288 Y. Yusof and O.F. Rana

Fig. 5. Precision vs. Recall

illustrates the use of the Singleton design pattern. Based on the retrieval answer
set, the first Java file in the retrieval hitlist generated a precision of 100% at 50%
recall while the second Singleton file which was positioned as the 50th file in the
hitlist produced a precision of 4% at 100% recall. In retrieving Java files that are
relevant to implementing the Composite design pattern, we learn that the first
file in the hitlist is ranked as the top file in the Composite retrieval answer set,
hence producing 1 as the precision value. The retrieval precision value dropped
before it raised to the value of 0.67 when we examined the 10th retrieved file.
However, this value is then permanently decreased as we evaluate more relevant
files in the retrieval hitlist, hence producing an increment in recall. The recall
value obtained for the 50th Java file in the hitlist is approximately one third
of the complete recall while its precision remained at roughly 0.5. Based on the
graph depicted in Fig. 5, using 50 as the retrieval cut-off point, the precision
at levels of recall higher than 0.4 dropped to 0 because not all relevant files
have been retrieved. On the other hand, the optimal result throughout this code
retrieval experiment is obtained through the trial of retrieving Java files that
demonstrate the Observer design pattern. The retrieval system performed con-
vincingly by retrieving almost 82% of files in the answer set, hence generating
only a small portion of relevant Java files missing from the list. Even though, as
illustrated in Fig. 5, the system did not obtain a complete recall for both Ob-
server and Composite design pattern, we believe that such a goal can be achieved
by increasing the retrieval cut-off point. Nevertheless, the retrieval system might
be returning more non relevant files.

Even though we did not achieve complete recall for all queries submitted
to the system, we illustrate that our retrieval system is capable of motivating
developers in software reuse particularly in concept reuse. This is attained by
configuring our matching mechanism to present users with Java programs that

Supporting Program Indexing and Querying 289

not only illustrate an identical match between query programs and programs in
the repository but also to retrieve files that exemplify portions of design patterns
as occurred in the query programs.

5 Conclusion

With the emerging interest in making source code available, and the significant
emphasis being placed on this by many software architects, digital libraries that
support the searching of source code have become necessary. We show that pro-
gram indexing can improve scientific communication by revealing hidden knowl-
edge such as design patterns in programs. By utilizing a multi-agent system
where all agents undertake specific roles within the system, we facilitate the pro-
cess of indexing and searching Java source code in a source code digital library.
As demonstrated, using agent technology we not only can increase the percent-
age of retrieving relevant documents in a source code digital library but also
assist developers in identifying general designs that address a recurring design
problem in object-oriented systems. As most of the programmers and developers
learn by studying available code, being presented by various programs (which
are relevant to the queries) is believed to motivate code and concept reuse.

References

1. Ruben, P., Peter, F.: Classifying software reuse. IEEE Software 4(1) (1987) 616
2. Ugurel, S., Krovetz, R., Giles, C.L.: What’s the code?: automatic classification of

source code archives. In: Proceedings of the eighth ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM Press (2002) 632–638

3. Santanul, P., Atul, P.: A framework for source code search using program patterns.
IEEE Transaction on Software Engineering 20(6) (1994) 463–475

4. Ostertag, E., Hendler, J., Daz, R.P., Braun, C.: Computing similarity in a reuse
system: An al-based approach. ACM Transactions on Software Engineering and
Methodology (TOSEM) 1(3) (1992) 205–228

5. Dongarra, J.J., Grosse, E.: Distribution of mathematical software via electronic
mail. Communications of the ACM 30(5) (1987) 403–407

6. Prieto-Diaz, R.: A Software Classification Scheme. Phd thesis, Department of
Information and Computer Science, University of California (1985)

7. Sugumaran, V., Storey, V.C.: A semantic-based approach to component retrieval.
The DATA BASE for Advances in Information Systems 34(3) (2003) 8–24

8. Penix, J., Alexander, P.: Using formal specifications for component retrieval and
reuse. In: Proceedings of the 31st Hawaii International Conference on System
Sciences. (1998) 356–365

9. Schumann, J., Fischer, B.: Nora/hammr: Making deduction-based software com-
ponent retrieval practical. In: Proceedings of the 1997 International Conference on
Automated Software Engineering(ASE’97), Lake Tahoe, CA (1997) 246–254

10. Nakkrasae, S., Sophatsathit, P.: A formal approach for specification and classifica-
tion of software components. In: Proceedings of the 14th international conference
on Software engineering and knowledge engineering, ACM Press, New York (2002)
773–780

290 Y. Yusof and O.F. Rana

11. Mili, A., Mili, R., Mittermeir, R.T.: Storing and retrieving software components:
A refinement based system. IEEE Transactions on Software Engineering 23(7)
(1994) 445–460

12. Birmingham, W.P., Durfee, E.H., Mullen, T., Wellman, M.P.: The distributed
agent architecture of the university of michigan digital library (extended abstract).
In: (AAAI) Spring Symposium on Information Gathering. (1995)

13. Barth, A., Breu, M., Endres, A., de Kemp, A., eds.: Digital Libraries in Computer
Science: The MeDoc Approach. Springer-Verlag Heidelberg (1998)

14. Derbyshire, D., Ferguson, I.A., Muller, J.P., Pischel, M., Wooldridge, M.: Agent-
based digital libraries: Driving the information economy. In: Proceedings of the
Sixth IEEE Workshops on Enabling Technologies: Infrastructure for Collaborative
Enterprises. (1997) 82–86

15. Sycara, K., Decker, K., Pannu, A., Williamson, M., Zeng, D.: Distributed intelligent
agents. IEEE Expert 11(6) (1996) 36–46

16. Linn, C.N.: A multi-agent system for cooperative document indexing and query in
distributed networked environments. In: Proceedings of the International Work-
shop on Parallel Processing, Japan (1999) 400–405

17. Kusumura, Y., Hijikata, Y., Nishida, S.: Text mining agent for net auction. In:
ACM Symposium on Applied Computing, Nicosia, Cyprus (2004) 1095–1102

18. Sommerville, I.: Software Engineering. 7th edn. Addison-Wesley (2004)
19. Rodriguez, H.: Good programming practice. (http://www.start-linux.com/

articles/article 75.php)
20. Yusof, Y., Rana, O.F.: Template mining in source code digital libraries. In: Pro-

ceedings of the International Workshop on Mining Software Repositories, 26th
International Conference on Software Engineering, Edinburgh, UK (2004) 122–126

21. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley
(1999).

Author Index

Agerri, Rodrigo 16
Alonso, Eduardo 16, 231

Barber, K. Suzanne 1
Bauer, Bernhard 154
Bergenti, Federico 140
Beydoun, Ghassan 111
Bosse, Tibor 48

Carl, T. 200
Carrillo-Ramos, Angela 243
Chopra, Amit K. 79
Cossentino, Massimo 95

Debenham, John 95
Desai, Nirmit 79

Ermolayev, Vadim 168

Faulkner, Stéphane 184

Gensel, Jérôme 243
Giovannucci, Andrea 64
Girardi, Rosario 124

Henderson-Sellers, Brian 95, 111
Hoogendoorn, Mark 216
Huhns, Michael N. 32

Jentzsch, Eyck 168
Jiang, Hong 32
Jonker, Catholijn M. 48, 216
Jureta, Ivan 184

Karsayev, Oleg 168
Kasinger, Holger 154
Keberle, Natalya 168

Kolp, Manuel 184
Kristoffersson, Peter 231

Lam, Dung N. 1
Lindoso, Alisson Neres 124
Low, Graham 95, 111

Mallya, Ashok U. 79
Markwardt, Kolja 200
Martin, Hervé 243
Matzke, Wolf-Ekkehard 168
Mbala, Aloys 259
Moldt, Daniel 200

Offermann, Sven 200
Ortmann, Jan 200

Padgham, Lin 259
Poggi, Agostino 140

Rana, Omer F. 275
Reese, Christine 200
Rodŕıguez-Aguilar, Juan A. 64

Samoylov, Vladimir 168
Singh, Munindar P. 79
Sohnius, Richard 168

Tomaiuolo, Michele 140
Tran, Quynh-Nhu Numi 95, 111
Treur, Jan 48, 216
Turci, Paola 140

van Maanen, Peter-Paul 216
Villanova-Oliver, Marlène 243

Winikoff, Michael 259

Yusof, Yuhanis 275

	Frontmatter
	Agent Behavior, Communications and Reasoning
	Automated Interpretation of Agent Behaviour
	A Semantic and Pragmatic Framework for the Specification of Agent Communication Languages: Motivational Attitudes and Norms
	Broadening the Semantic Coverage of Agent Communicative Acts
	Requirements Analysis of an Agent's Reasoning Capability
	On the Cost of Agent-Awareness for Negotiation Services
	OWL-P: A Methodology for Business Process Development

	Methodologies and Ontologies
	Identification of Reusable Method Fragments from the PASSI Agent-Oriented Methodology
	Foundations of Ontology-Based MAS Methodologies
	An Ontology-Driven Technique for the Architectural and Detailed Design of Multi-agent Frameworks
	An Ontology Support for Semantic Aware Agents

	Agent-Oriented Software Engineering
	AOSE and Organic Computing -- How Can They Benefit from Each Other?
	An Agent-Oriented Model of a Dynamic Engineering Design Process
	Formalizing Agent-Oriented Enterprise Models
	Fragmented Workflows Supported by an Agent Based Architecture

	Applications
	An Agent-Based Meta-level Architecture for Strategic Reasoning in Naval Planning
	Coordination Efficiency in Rational Choice Theory, Norm and Rights Based Multi-agent Systems
	Adapted Information Retrieval in Web Information Systems Using PUMAS
	Design Options for Subscription Managers
	Supporting Program Indexing and Querying in Source Code Digital Libraries

	Backmatter

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

