
On Computing Fixpoints in Well-Structured Regular
Model Checking, with Applications to Lossy Channel

Systems�

Christel Baier1, Nathalie Bertrand2, and Philippe Schnoebelen2

1 Universität Bonn, Institut für Informatik I, Germany
2 LSV, ENS de Cachan & CNRS, France

Abstract. We prove a general finite convergence theorem for “upward-guarded”
fixpoint expressions over a well-quasi-ordered set. This has immediate applica-
tions in regular model checking of well-structured systems, where a main issue is
the eventual convergence of fixpoint computations. In particular, we are able to
directly obtain several new decidability results on lossy channel systems.

1 Introduction

Regular model checking [19,11] is a popular paradigm for the symbolic verification of
models with infinite state space. It has been applied to varied families of systems rang-
ing from distributed algorithms and channel systems to hybrid systems and programs
handling dynamic data structures.

In regular model checking, one works with regular sets of states and handles them
via finite descriptions, e.g., finite-state automata or regular expressions. Models amen-
able to regular model checking are such that, when S⊆Conf is regular, then Post(S) (or
Pre(S)), the set of 1-step successors (resp., predecessors), is again a regular set that can
be computed effectively from S. Since regular sets are closed under Boolean operations,
one can1 try to compute the reachability set Post∗(Init), as the limit of the sequence

S0 := Init; S1 := S0∪Post(S0); . . . Sn+1 := Sn∪Post(Sn); . . . (*)

Since equality of regular sets is decidable, the computation of (*) can contain a test that
detects if the limit is reached in finite time, i.e., if Sn+1 = Sn for some n ∈ N,

With infinite-state models, the main difficulty is convergence. It is very rare that a
fixpoint computation like (*) converges in finite time [10].

Well-structured transition systems (WSTS) are a generic family of models for which
the co-reachability set Pre∗(Final) can be computed symbolically with a backward-
chaining version of (*) [3,16]. For WSTS’s, convergence of the fixpoint computation
is ensured by WQO theory: one handles upward-closed sets, and increasing sequences

� The first author is supported by the DFG-NWO project VOSS II and the DFG-project PROB-
POR. The last two authors were supported by the ACI Sécurité & Informatique project Persée.

1 Actually, such symbolic computations are possible with any class of representation closed
under, and providing algorithms for, Pre or Post, Boolean operations, vacuity [19,18].

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 347–361, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

348 C. Baier, N. Bertrand, and P. Schnoebelen

of upward-closed sets always converge in finite time when the underlying ordering is a
well-quasi-ordering (a WQO), as is the case with WSTS’s.

Computing Pre∗(Final) for reachability analysis is just a special case of fixpoint
computation. When dealing with richer temporal properties, one is interested in more
complex fixpoints. E.g., the set of states satisfying the CTL formula ∃[CondUGoal]
is definable via a least-fixpoint expression: µX .Goal∪ (Cond ∩ Pre(X)). For game-
theoretic properties, similar fixpoints are involved. E.g., the states from which one can
enforce reaching a goal in a turn-based game is given by µX .Goal∪Pre(Pre(X)).

Our Contribution. In this paper, we define a notion of µ-expressions where recursion
is guarded by upward-closure operators, and give a general finite convergence theorem
for all such expressions. The consequence is that these fixpoint expressions can be eval-
uated symbolically by an iterative procedure. The guarded fragment we isolate is very
relevant for the verification of well-structured transition systems as we demonstrate by
providing several new decidability results on channel systems.

Related Work. Henzinger et al. give general conditions for the convergence of fix-
points computations for temporal [18] or game-theoretic [14] properties, but the un-
derlying framework (finite quotients) is different and has different applications (timed
and hybrid systems). Our applications to well-structured transition systems generalize
results from [2,27,28,21] that rely on more ad-hoc finite convergence lemmas.

2 A Guarded Mu-Calculus

We assume basic understanding of µ-calculi techniques (otherwise see [7]) and of well-
quasi-ordering (WQO) theory (otherwise see [24,20], or simply [16, sect. 2.1]).

Let (W,) be a well-quasi-ordered set. A subset V of W is upward-closed if w ∈ V
whenever v	 w for some v ∈V . From WQO theory, we mostly need the following:

Fact 2.1 (Finite convergence). If V0⊆V1 ⊆V2 ⊆ ·· · is an infinite increasing sequence
of upward-closed subsets of W , then for some index k ∈ N,

⋃
i∈NVi = Vk.

The upward-closure of V ⊆W , denoted C↑(V), is the smallest upward-closed set that
contains V . The upward-kernel of V , denoted K↑(V), is the largest upward-closed set in-
cluded in V . There are symmetric notions of downward-closed subset of W , of
downward-closure, C↓(V), and of downward-kernel, K↓(V), of V . The complement of
an upward-closed subset is downward-closed. Observe that C↑(V) = V = K↑(V) iff V
is upward-closed, and that C↑ and K↓ (resp., C↓ and K↑) are dual:

W � K↑(V) = C↓(W �V), W � K↓(V) = C↑(W �V). (1)

Monotonic Region Algebra. In symbolic model-checking, a region algebra is a family
of sets of states (subsets of W) that is closed under Boolean and other relevant operators
like Pre and Post [18].

Here we consider regions generated by a family O = {o1,o2, . . .} of (monotonic)
operators. By a k-ary operator, we mean a monotonic mapping o : (2W)k→ 2W that as-
sociates a subset o(V1, . . . ,Vk) ⊆W with any k subsets V1, . . . ,Vk. Monotonicity means

On Computing Fixpoints in Well-Structured Regular Model Checking 349

that o(V1, . . . ,Vk)⊆ o(V ′1, . . . ,V
′
k) when Vi ⊆ V ′i for i = 1, . . . ,k. We allow nullary oper-

ators, i.e., fixed subsets of W . Finally, we require that O contains at least four special
unary operators: C↑, C↓, K↑, K↓, and two special nullary operators: /0 and W .

The region algebra generated by O, denoted with RO, or simply R , is the set of all
the subsets of W , called regions, that can be obtained by applying operators from O on
already constructed regions, starting with nullary operators. Equivalently, R is the least
subset of 2W that is closed under O.

We say the region algebra generated by O is effective if there are algorithms im-
plementing the operators in O and an effective membership algorithm saying whether
w ∈ R for some w ∈W and some region R ∈ RO. Such effectiveness assumptions pre-
suppose a finitary encoding of regions and elements of W : if there are several possible
encodings for a same region, we assume an effective equality test.

Extending the Region Algebra with Fixpoints. Let χ = {X1,X2, · · · } be a countable
set of variables. Lµ(W,	,O), or shortly Lµ when (W,) and O are understood, is the
set of O-terms with least and greatest fixpoints given by the following abstract syntax:

Lµ � ϕ,ψ ::= o(ϕ1, . . . ,ϕk)
∣
∣ X

∣
∣ µX .ϕ

∣
∣ νX .ϕ

∣
∣ C↑(ϕ)

∣
∣ C↓(ϕ)

∣
∣ K↑(ϕ)

∣
∣ K↓(ϕ)

where X runs over variables from χ, and o over operators from O. µX .ϕ and νX .ϕ are
fixpoint expressions. Free and bound occurrences of variables are defined as usual. We
assume that no variable has both bound and free occurrences in some ϕ, and that no
two fixpoint subterms bind the same variable: this can always be ensured by renaming
bound variables. (The abstract syntax for Lµ could be shorter but we wanted to stress
that C↑, C↓, K↑, and K↓ are required to be present in O.)

The meaning of Lµ terms is as expected: an environment is a mapping env : χ→ 2W

that interprets each variable X ∈ χ as a subset of W . Given env, a term ϕ ∈ Lµ denotes a
subset of W , written �ϕ�env and defined by induction on the structure of ϕ:

�X�env
def= env(X) �o(ϕ1, . . . ,ϕk)�env

def= o(�ϕ1�env, . . . ,�ϕk�env)

�C↑(ϕ)�env
def= C↑

(
�ϕ�env

)
�C↓(ϕ)�env

def= C↓(�ϕ�env)

�K↑(ϕ)�env
def= K↑(�ϕ�env) �K↓(ϕ)�env

def= K↓
(
�ϕ�env

)

�µX .ϕ�env
def= lfp

(
Ω[ϕ,X ,env]

)
�νX .ϕ�env

def= gfp
(
Ω[ϕ,X ,env]

)

where, for all ϕ, X , and env, Ω[ϕ,X ,env] : 2W → 2W is a unary operator defined by

Ω[ϕ,X ,env](V) def= �ϕ�env[X :=V], using the standard variant notation “env[X := V]” for
the environment that agrees with env everywhere except on X where it returns V . As
usual, �ϕ�env does not depend on env(X) if X is not free in ϕ, so that we may shortly
write �ϕ� when ϕ is a closed term, i.e., a term with no free variables.

We recall that the semantics of the fixpoint terms is well-defined since, for every ϕ, X
and env, Ω[ϕ,X ,env] is monotonic (and since (2W ,⊆) is a complete lattice). Moreover,
if env and env′ are such that env(X)⊆ env′(X) for all X ∈ χ, shortly written env⊆ env′,
then lfp(Ω[ϕ,X ,env])⊆ lfp(Ω[ϕ,X ,env′]) and gfp(Ω[ϕ,X ,env])⊆ gfp(Ω[ϕ,X ,env′]).

350 C. Baier, N. Bertrand, and P. Schnoebelen

Definition 2.2 (Upward- and downward-guardedness)

1. A variable X is upward-guarded in ϕ if all free occurrences of X in ϕ are in the
scope of either a C↑ or a K↑ operator, i.e., appear in a subterm of the form C↑(ψ)
or K↑(ψ).

2. Dually, X is downward-guarded in ϕ if all its free occurrences are in the scope of a
C↓ or a K↓ operator.

3. A term ϕ is guarded if all its least-fixpoint subterms µX .ψ have X upward-guarded
in ψ, and all its greatest-fixpoint subterms νX .ψ have X downward-guarded in ψ.

Given some ϕ, X and env, the approximants of lfp(Ω[ϕ,X ,env]) are given by the se-
quence (Mi)i∈N of subsets of W defined inductively by M0 = /0 and Mi+1 = �ϕ�env[X :=Mi].
Monotonicity yields

M0 ⊆M1 ⊆M2 ⊆ ·· · ⊆ lfp(Ω[ϕ,X ,env]). (2)

Similarly we define (Ni)i∈N by N0 = W and Ni+1 = �ϕ�env[X :=Ni], so that

N0 ⊇ N1 ⊇ N2 ⊇ ·· · ⊇ gfp(Ω[ϕ,X ,env]). (3)

Lemma 2.3 (Finite convergence of approximants). If X is upward-guarded in ϕ, then
there exists an index k ∈ N such that

�µX .ϕ�env = Mk = Mk+1 = Mk+2 = . . . (4)

Dually, if X is downward-guarded in ϕ, then there exists a k′ ∈ N such that

�νX .ϕ�env = Nk′ = Nk′+1 = Nk′+2 = . . . (5)

Proof. We only prove the first half since the other half is dual. Let ψ1, . . . ,ψm be the
maximal subterms of ϕ that are immediately under the scope of a C↑ or a K↑ operator.
Then ϕ can be decomposed under the form

ϕ ≡ Φ(⇑ ψ1, . . . ,⇑ ψm)

where the context Φ(Y1, . . . ,Ym) uses fresh variables Y1, . . . ,Ym to be substituted in, and
where ⇑ψi is either C↑(ψi) or K↑(ψi), depending on how ψi appears in ϕ. In either case,
and for any environment env′, the set �⇑ ψi�env′ is upward-closed.

For V1, . . . ,Vm⊆W we shortly write �Φ�(V1, . . . ,Vm) for �Φ�env[Y1:=V1,...,Ym:=Vm]. Since
X is upward-guarded in ϕ, it has no occurrence in Φ, only in the ψi’s, so that

Mi+1 = �ϕ�env[X :=Mi] = �Φ�(�⇑ ψ1�env[X :=Mi], . . . ,�⇑ ψm�env[X :=Mi])

= �Φ�(Li,1, . . . ,Li,m)

writing Li, j for �⇑ ψ j�env[X :=Mi]. From M0 ⊆M1 ⊆M2 ⊆ ·· · , we deduce L0, j ⊆ L1, j ⊆
L2, j ⊆ ·· · Since K↑ and C↑ return upward-closed sets, the Li, j’s are upward-closed sub-
sets of W . For all j = 1, . . . ,m, Fact 2.1 implies that there is an index k j such that
Li, j = Lkj , j for all i≥ k j. Picking K = max(k1, . . . ,k j) gives for any i≥ K

Mi+1 = �Φ�(Li,1, . . . ,Li,m) = �Φ�(Lk1 ,1, . . . ,Lkm,m) = �Φ�(LK,1, . . . ,LK,m) = MK+1.

Thus,
⋃

i∈N Mi = MK+1 = MK+2 and MK+1 is a fixpoint of Ω[ϕ,X ,env], hence the least
one thanks to (2). Picking k = K + 1 satisfies (4). ��

On Computing Fixpoints in Well-Structured Regular Model Checking 351

Regions with Guarded Fixpoints. We can now prove our main result: subsets de-
fined by Lµ terms are regions (and can be computed effectively if the underlying region
algebra is effective).

By a region-environment we mean an environment env : χ→ R that associates re-
gions with variables. If env is a region-environment, and ϕ has only free variables, i.e.,
has no fixpoint subterms, then �ϕ�env is a region.

Theorem 2.4. If ϕ ∈ Lµ is guarded and env is a region-environment then �ϕ�env is a
region. Furthermore, if the region algebra is effective, then �ϕ�env can be computed
effectively from ϕ and env.

Proof. By structural induction on the structure of ϕ. If ϕ = o() is a nullary operator, the
result holds by definition of the region algebra. If ϕ = o(ϕ1, · · · ,ϕk), the �ϕi�env’s are
(effectively) regions by induction hypothesis, so that �ϕ�env is an (effective) region too
by definition. In particular, this argument applies when o is a nullary operator, or is one
of the unary operators we singled out: C↑, C↓, K↑, and K↓.

If ϕ = µX .ψ, we can apply Lemma 2.3 after we have proved that each one of the
approximants M0,M1,M2, . . ., of �ϕ�env are regions. In particular, M0 = /0 is a region,
and if Mi is a region, then Mi+1 = �ψ�env[X :=Mi] is one too, since env′ = env[X := Mi] is
a region-environment, and since by induction hypothesis �ψ�env′ is a region when env′
is a region-environment. When RO is effective, the Mi can be computed effectively, and
one can detect when Mk = Mk+1 since region equality is decidable by definition. Then
�ϕ�env = Mk can be computed effectively. Finally, the case where ϕ = νX .ψ is dual. ��
Corollary 2.5 (Decidability for guarded Lµ properties). The following problems are
decidable for effective monotonic region algebras:

Model-checking: “Does w ∈ �ϕ�?” for a w ∈W and a closed and guarded ϕ ∈ Lµ.
Satisfiability: “Is �ϕ� non-empty?” for a closed and guarded ϕ ∈ Lµ.
Universality: “Does �ϕ� = W?” for a closed and guarded ϕ ∈ Lµ.

A Region Algebra of Regular Languages. Consider W = Σ∗, the set of finite words
over some finite alphabet Σ. The subword ordering, defined by “u 	 v iff u can be
obtained by erasing some letters from v”, is a WQO (Higman’s Lemma). Regular lan-
guages over Σ are a natural choice for regions: observe that the closure operators C↑ and
C↓ preserve regularity and have effective implementations.2 Natural operators to be con-
sidered in O are ∪ (union) and ∩ (intersection). However, any operation on languages
that is monotonic, preserve regularity, and has an effective implementation on regu-
lar languages can be added. This includes concatenation (denoted R.R′), star-closure

(denote R∗), left- and right-residuals (R−1R′ def= {v | ∃u ∈ R,uv ∈ R′}), shuffle product

(denoted R ‖ R′), reverse (denoted
←−
R), conjugacy (R̃

def= {vu | uv ∈ R}), homomorphic
and inverse-homomorphic images, and many more [26]. Complementation is not al-
lowed in O (it is not monotonic) but the duals of all above-mentioned operators can be

2 From a FSA for R, one obtains a FSA for C↑(R) simply by adding loops q
a−→ q on all states

q of the FSA and for all letters a ∈ Σ. A FSA for C↓(R) is obtained by adding ε-transitions

q
ε−→ q′ whenever there is a q

a−→ q′. From this, K↑ and K↓ can be implemented using (1).

352 C. Baier, N. Bertrand, and P. Schnoebelen

included in O (without compromising effectiveness) so that, for all practical purposes,
complement can be used with the restriction that bound variables in Lµ terms are under
an even number of complementations.

An application of Theorem 2.4 is that, if R1 and R2 are regular languages, then the
language defined as µX .νY.

(
K↑

[
R1 ‖ (X∗∩C↓(Y−1←−X ∩X−1R2))

])
is regular and a finite

representation for it (e.g., a regular expression or a minimal DFA) can be constructed
from R1 and R2.

3 Verification of Lossy Channel Systems

Theorem 2.4 has several applications for regular model checking of lossy channel sys-
tems [5] (LCS) and other families of well-structured systems [3,16]. In the rest of this
paper we concentrate on LCS’s.

3.1 Channel Systems, Perfect and Lossy

A channel system is a tuple L = (Q,C,M,Δ) consisting of a finite set Q = {p,q, . . .} of
locations, a finite set C = {c, . . .} of channels, a finite message alphabet M = {m, . . .}
and a finite set Δ = {δ, . . .} of transition rules. Each transition rule has the form q

op−→ p
where op is an operation: c!m (sending message m ∈ M along channel c ∈ C), c?m
(receiving message m from channel c), or

√
(an internal action to some process, no

I/O-operation).

Operational Semantics. Let L = (Q,C,M,Δ) be a channel system. A configuration
(also, a state) is a pair σ = (q,w) where q∈Q is a location and w : C→M∗ is a channel
valuation that associates with any channel its content (a sequence of messages). The set
Q×M∗C of all configurations is denoted by Conf = {σ,ρ, . . .}. For a subset V of Conf ,

we let V
def= Conf �V .

Steps between configurations are as expected. Formally, σ = (q,w) leads to σ′ =
(q′,w′) by firing δ = p

op−→ r, denoted σ δ−→perf σ′, if and only if q = p, q′ = r and w′ is
obtained from w by the effect of op (the “perf” subscripts emphasizes that the step is
perfect: without losses). Precisely

w′(c) =

{
w(c)m if op = c!m,

m−1w(c) if op = c?m,

where the notation “w(c)m” (for concatenation) and “m−1w(c)” (for left-residuals) are
as in section 2. Furthermore, w′(c) = w(c) for all channels c that are not touched upon
by op.

Thus, when op = c?m, w′ is only defined if w(c) starts with m and indeed this is the

intended condition for firing δ. Whenever σ δ−→ ρ for some ρ, we say that δ is enabled
in σ, written δ ∈ Δ(σ).

Below we restrict our attention to LCS’s where from each q ∈ Q there is at least one
rule q

op−→ p in Δ where op is not a receiving action: this ensures that the LCS has no
deadlock states and simplifies many technical details without losing any generality.

On Computing Fixpoints in Well-Structured Regular Model Checking 353

Lossy Systems. In lossy channel systems, losing messages is formalized via the sub-
word ordering, extended from M∗ to Conf : (q,w)	 (q′,w′) if q = q′ and w(c) 	 w′(c)
for all channels c ∈ C.

A (possibly lossy) step in the LCS is made of a perfect step followed by arbitrary

losses:3 formally, we write σ δ−→ ρ whenever there is a perfect step σ δ−→perf σ′ such that

ρ	 σ′. This gives rise to a labeled transition system LTSL
def= (Conf ,Δ,→).

Remark 3.1. Our choice of operational semantics has the consequence that LTSL is not
turned into a WSTS by 	 because message losses only occur after a step. However, the

WSTS structure is recovered with the following relation: σ � ρ def⇔ σ 	 ρ ∧ Δ(σ) =
Δ(ρ). Both 	 and � turns Conf into a WQO. From now on we assume, for the sake of
simplicity, that (Conf ,) is the WQO on which Lµ is defined. ��
Following standard notations for transition systems (Conf ,Δ,→) labeled over some

Δ, we write Pre[δ](σ) def= {ρ ∈ Conf | ρ δ−→ σ} for the set of predecessors via δ of σ
in L . Then Pre(σ) def=

⋃
δ∈Δ Pre[δ](σ) has all 1-step predecessors of σ, and Pre(V) =

⋃
σ∈V Pre(σ) has all 1-step predecessors of states in V . The dual P̃re of Pre is defined

by P̃re(V) = Pre(V). Thus σ ∈ P̃re(V) iff all 1-step successors of σ are in V (this
includes the case where σ is a deadlock state).

Seen as unary operators on 2Conf , both Pre and P̃re are monotonic and even contin-
uous for all transition systems [30]. For LCS’s, the following lemma states that Pre is
compatible with the WQO on states, which will play a crucial role later when we want
to show that some Lµ term is guarded.

Lemma 3.2. Let V ⊆ Conf in the transition system LTSL associated with a LCS L .
Then Pre(V) = Pre(C↑(V)) and P̃re(V) = P̃re(K↓(V)).

Proof. V ⊆ C↑(V) implies Pre(V) ⊆ Pre(C↑(V)). Now σ ∈ Pre(C↑(V)) implies that
σ−→ ρ� ρ′ for some ρ′ ∈V . But then σ−→ ρ′ by definition of lossy steps and σ∈Pre(V).
The second equality is dual. ��

An Effective Region Algebra for LCS’s. We are now ready to apply the framework of
section 2 to regular model checking of lossy channel systems. Assume L = (Q,C,M,Δ)
is a given LCS. A region R ∈ R is any “regular” subset of Conf . More formally, it is
any set R⊆ Conf that can be written under the form

R = ∑
i∈I

(qi,R
1
i , . . . ,R

|C|
i)

3 Note that, with this definition, message losses only occur after steps (thus, not in the initial
configuration). The usual definition allows arbitrary losses before and after a step [5]. There
is no essential semantical difference between these two ways of grouping atomic events into
single “steps”, except for the first step. The definition from [5] is technically smoother when
LCS’s are viewed as nondeterministic systems, but becomes unnatural in situations where
several adversarial processes compete, e.g., in probabilistic LCS’s [9] or the game-theoretical
settings we explore in sections 4 and 5.

354 C. Baier, N. Bertrand, and P. Schnoebelen

where I is a finite index set, the qi’s are locations from Q, and each R j
i is a regular

language on alphabet M. The notation has obvious interpretation, with summation de-
noting set union (the empty sum is denoted /0). We are not more precise on how such
regions could be effectively represented (see [6]), but they could be handled as, e.g.,
regular expressions or FSAs over the extended alphabet M∪Q∪{′(′, ′)′, ′,′}.

The set O of operators includes union, intersection, C↑, C↓, K↑, K↓: these are mono-
tonic, regularity-preserving, and effective operators as explained in our example at the
end of section 2. Operators specific to regular model-checking are Pre and P̃re. That
they are regularity-preserving and effective is better seen by first looking at the special
case of perfect steps. We use

Preperf[p
ci?m−−→ q](q,R1

p, · · · ,R|C|p) = (p,R1
p, . . . ,R

i−1
p ,mRi

p,R
i+1
p , . . . ,R|C|p),

Preperf[p
ci!m−−→ q](q,R1

p, · · · ,R|C|p) = (p,R1
p, . . . ,R

i−1
p ,Ri

pm−1,Ri+1
p , . . . ,R|C|p)

completed with the obvious

Preperf[p
op−→ q](r,R1

p, · · · ,R|C|p) = /0 when r �= q,

Preperf

(

∑
i∈I

(qi,R
1
i , . . . ,R

|C|
i)

)
= ∑

i∈I
∑
δ∈Δ

Preperf[δ](qi,R
1
i , . . . ,R

|C|
i).

Then lossy steps are handled with Pre(R) = Preperf(C↑(R)).
Clearly, both Preperf and Pre are effective operators on regions.

3.2 Regular Model-Checking for Lossy Channel Systems

Surprising decidability results for lossy channel systems is what launched the study of
this model [15,5,12]. We reformulate several of these results as a direct consequence
of Theorem 2.4, before moving to new problems and new decidability results in the
next sections. Note that our technique is applied here to a slightly different operational
semantics (cf. footnote 3) but it would clearly apply as directly to the simpler semantics.

Reachability Analysis. Thanks to Lemma 3.2, the co-reachability set can be expressed
as a guarded Lµ term:

Pre∗(V) = µX .V ∪Pre(X) = µX .V ∪Pre(C↑(X)). (6)

Corollary 3.3. For regular V ⊆ Conf , Pre∗(V) is regular and effectively computable.

Safety Properties. More generally, safety properties can be handled. In CTL, they can
be written ∀(V1RV2). Recall that R, the Release modality, is dual to Until: a state σ
satisfies ∀(V1RV2) if and only if along all paths issuing from σ, V2 always holds until
maybe V1 is visited. Using Lemma 3.2, �∀(V1RV2)�, the set of states where the safety
property holds, can be defined as a guarded Lµ term:

�∀(V1RV2)� = νX .
(
V2∩ (P̃re(X)∪V1)

)
= νX .

(
V2∩ (P̃re(K↓(X))∪V1)

)
. (7)

On Computing Fixpoints in Well-Structured Regular Model Checking 355

Corollary 3.4. For regular V1,V2 ⊆ Conf , �∀(V1RV2)� is regular and effectively com-
putable.

Another formulation is based on the duality between the “∀R” and the “∃U” modalities.

Theorem 3.5. [21, sect. 5] If f is a temporal formula in the TL(∃U,∃X,∧,¬) frag-
ment of CTL (using regions for atomic propositions), then � f � is regular and effectively
computable.

Proof. By induction on the structure of f , using �∃X f �
def= Pre(� f �), and the fact that

regions are (effectively) closed under complementation. ��

Beyond Safety. Inevitability properties, and recurrent reachability can be stated in Lµ.
With temporal logic notation, this yields

�∀♦V � = µX .
(
V ∪ (Pre(Conf)∩ P̃re(X))

)
,

�∃�♦V � = νX .
(
µY.((V ∪Pre(Y))∩Pre(X))

)
.

These two terms are not guarded and Lemma 3.2 is of no help here. However this is
not surprising: firstly, σ |= ∃�♦V is undecidable [4]; secondly, and while σ |= �∀♦V �
is decidable, the set �∀♦V � cannot be computed effectively [23].

3.3 Generalized Lossy Channel Systems

Transition rules in LCS’s do not carry guards, aka preconditions, beyond the implicit
condition that a reading action c?m is only enabled when w(c) starts with m. This bare-
bone definition is for simplification purpose, but actual protocols sometimes use guards
that probe the contents of the channel before taking this or that transition. The simplest

such guards are emptiness tests, like “p
c=ε?−−→ q” that only allows a transition from p to

q if w(c) is empty.
We now introduce LCS’s with regular guards (GLCS’s), an extension of the barebone

model where any regular set of channel contents can be used to guard a transition rule.
This generalizes emptiness tests, occurrence tests (as in [25]), etc., and allows express-
ing priority between rules since whether given rules are enabled is a regular condition.

Formally, we assume rules in Δ now have the form p
G:op−−→ q with p,q,op as before,

and where G, the guard, can be any regular region. The operational semantics is a ex-

pected: when δ = p
G:op−−→ q, there is a perfect step σ δ−→perf θ iff σ ∈ G and θ is obtained

from σ by the rule p
G:op−−→ q (without any guard). Then, general steps σ δ−→ ρ are obtained

from perfect steps σ δ−→perf σ′ by message losses ρ	 σ′.

Verification of GLCS’s. For GLCS’s, Pre and Post are effective monotonic regularity-
preserving operators as in the LCS case since

Pre[p
G:op−−→ q](R) = G ∩ Pre[p

op−→ q](R),

Post[p
G:op−−→ q](R) = Post[p

op−→ q](G∩R).

Observe that Lemma 3.2 holds for GLCS’s as well, so that Equations (6) and (7) entail
a generalized version of Theorem 3.5:

356 C. Baier, N. Bertrand, and P. Schnoebelen

Theorem 3.6. For all GLCS’s L and formulae f in the TL(∃U,∃X,∧,¬) fragment, � f �
is regular and effectively computable.

4 Solving Games on Lossy Channel Systems

In this section, we consider turn-based games on GLCS’s where two players, A and
B, alternate their moves. Games play a growing role in verification where they address
situations in which different agents have different, competing goals. We assume a basic
understanding of the associated concepts: arena, play, strategy, etc. (otherwise see [17]).

Games on well-structured systems have already been investigated in [2,27,28]. The
positive results in these three papers rely on ad-hoc finite convergence lemmas that are
special cases of our Theorem 2.4.

4.1 Symmetric LCS-Games with Controllable Message Losses

We start with the simplest kind of games on a GLCS: A and B play in turn, choosing the
next configuration, i.e., picking what rule δ ∈ Δ is fired, and what messages are lost.

Formally, a symmetric LCS-game is a GLCS L = (QA,QB,C,M,Δ) where the set
of locations Q = QA ∪QB is partitioned into two sets, one for each player, and where

the rules ensure strict alternation: for all p
G:op−−→ q ∈ Δ, p ∈ QA iff q ∈ QB. Below, we

shortly write Conf A for QA×M∗|C|, the regular region where it is A’s turn to play. Conf B
is defined similarly. Strict alternation means that the arena, LTSL , is a bipartite graph
partitioned in Conf A and Conf B.

Reachability Games. Reachability and invariance are among the simplest objectives
for games. In a reachability game, A tries to reach a state in some set V , no matter how
B behaves. This goal is denoted ♦V . It is known that such games are determined and
that memoryless strategies are sufficient [17]. The set of winning configurations for A
is denoted with 〈〈A〉〉♦V , and can be defined in Lµ:

〈〈A〉〉♦V = µX .
[
V ∪ [

Conf A∩Pre(X)
]∪ [

Conf B∩ P̃re(X)
]]

. (8)

The first occurrence of X can be made upward-guarded by replacing Pre(X) with
Pre(C↑(X)) (Lemma 3.2). For the second occurrence, we can unfold the term, relying
on the fixpoint equation �µX .ϕ(X)� = �µX .ϕ(ϕ(X))�. This will replace Conf B∩ P̃re(X)
in (8) with

Conf B∩ P̃re
(

V ∪ [
Conf A∩Pre(X)

]∪ [
Conf B∩ P̃re(X)

])
. (+)

Now, the strict alternation between Conf A and Conf B lets us simplify (+) into

Conf B∩ P̃re
(

V ∪Pre(X)
)
. (9)

Hence (8) can be rewritten into

〈〈A〉〉♦V = µX .
[
V ∪ [

Conf A∩Pre(C↑(X))
]∪ [

Conf B∩ P̃re(V ∪Pre(C↑(X)))
]]

. (8’)

On Computing Fixpoints in Well-Structured Regular Model Checking 357

Invariance Games. In invariance games, A’s goal is to never leave some set V ⊆Conf ,
no matter how B behaves. Invariance games are dual to reachability games, and the set
of winning configurations 〈〈A〉〉�V is exactly 〈〈B〉〉♦V .

Repeated Reachability Games. Here A’s goal is to visit V infinitely many times, no
matter how B behaves. The set of winning configurations is given by the following Lµ

term:
〈〈A〉〉�♦V = νY.〈〈A〉〉♦

[
V ∩ (ϕA(Y)∪ϕB(Y))

]
, (10)

where

ϕA(Y) def= Conf A∩Pre
(
C↑(P̃re(K↓(Y)))

)
,

ϕB(Y) def= Conf B∩ P̃re(K↓(Y)).

and where we reuse (8’) for 〈〈A〉〉♦[. . .].

Persistence Games. In a persistence game, A aims at remaining inside V from some
moment on, no matter how B behaves. Dually, this can be seen as a repeated reachability
game for B. Note that 〈〈A〉〉♦�V �= 〈〈A〉〉♦(〈〈A〉〉�V).

Theorem 4.1 (Decidability of symmetric LCS-games). For symmetric LCS-games L
and regular regions V , the four sets 〈〈A〉〉♦V , 〈〈A〉〉�V, 〈〈A〉〉♦�V, and 〈〈A〉〉�♦V, are (ef-
fective) regions. Hence reachability, invariance, repeated reachability, and persistence
symmetric games are decidable on GLCS’s.

Proof (Sketch). The winning sets can be defined by guarded Lµ terms.

Remark 4.2. There is no contradiction between the undecidability of ∃�♦V and the
decidability of 〈〈A〉〉�♦V . In the latter case, B does not cooperate with A, making the
goal harder to reach for A (and the property easier to decide for us). ��

4.2 Asymmetric LCS-Games with 1-Sided Controlled Loss of Messages

Here we adopt the setting considered in [2]. It varies from the symmetric setting of
section 4.1 in that only player B can lose messages (and can control what is lost), while
player A can only make perfect steps. Note that this generalizes games where A plays
moves in the channel system, and B is an adversarial environment responsible for mes-
sage losses. We use the same syntax as for symmetric LCS-games.

Reachability and Invariance Games. Let us first consider games where one player
tries to reach a regular region V (goal ♦V), no matter how the other player behaves.

The configurations where B can win a reachability game are given by:

〈〈B〉〉♦V = µX .V ∪
(

Conf B∩Pre(X)
)
∪

(
Conf A∩ P̃reperf(X)

)

= µX .V ∪
(

Conf B∩Pre(C↑(X))
)
∪

(
Conf A∩ P̃reperf(V ∪Pre(C↑(X)))

)

where guardedness is obtained via Lemma 3.2 and unfolding.

358 C. Baier, N. Bertrand, and P. Schnoebelen

When we consider a reachability game for A, the situation is not so clear:

〈〈A〉〉♦V = µX .V ∪
(

Conf A∩Preperf(X)
)
∪

(
Conf B∩ P̃re(X)

)
.

Neither Lemma 3.2 nor unfolding techniques can turn this into a guarded term. This
should be expected since the set 〈〈A〉〉♦V cannot be computed effectively [2].

Theorem 4.3 (Decidability of asymmetric LCS-games [2]). For asymmetric LCS-
games L and regular regions V , the sets 〈〈B〉〉♦V and 〈〈A〉〉�V are (effective) regions.
Hence reachability games for B, and invariance games for A are decidable on GLCS’s.

Proof (Sketch). Invariance games are dual to reachability games, and the winning set
〈〈B〉〉♦V is defined by a guarded Lµ term.

5 Channel Systems with Probabilistic Losses

LCS’s where messages losses follow probabilistic rules have been investigated as a less
pessimistic model of protocols with unreliable channels (see [29,1,9] and the references
therein).

In [9], we present decidability results for LCS’s seen as combining nondeterministic
choice of transition rules with probabilistic message losses. The semantics is in term of
Markovian decision processes, or 1 1

2 -player games, whose solutions can be defined in
Lµ. Indeed, we found the inspiration for Lµ and our Theorem 2.4 while extending our
results in the MDP approach to richer sets of regions.

In this section, rather than rephrasing our results on 1 1
2 -player games on LCS’s, we

show how to deal with 2 1
2 -player games [13] on LCS’s, i.e., games opposing players A

and B (as in section 4) but where message losses are probabilistic. This relies on new
characterizations, like equations (11) or (12) below, for which the proof will be found
in the full version of this paper.

Formally, a symmetric probabilistic LCS-game L = (QA,QB,C,M,Δ) is exactly like
a symmetric LCS-game but with an altered semantics: in state σ ∈ Conf A, player A
selects a fireable rule δ ∈ Δ (B picks the rule if σ ∈ Conf B) and the system moves to a

successor state ρ where σ δ−→perf σ′ � ρ and ρ is chosen probabilistically in C↓({σ′}).
The definition of the probability distribution P(σ,δ,ρ) can be found in [29,9] where it is

called the local-fault model. It satisfies P(σ,δ,ρ) > 0 iff ρ	 σ′ (assuming σ δ−→perf σ′).
Additionally it guarantees a finite-attractor property: the set of states where all channels
are empty will be visited infinitely many times almost surely [1,8].

Reachability Games. Assume A tries to reach region V (goal ♦V) with probability 1
no matter how B behaves. The set 〈〈A〉〉[♦V]=1 of states in which A has an almost-sure
winning strategy is given by

〈〈A〉〉[♦V]=1 = νY.µX .

⎛

⎝
V∪

[
Conf A∩Preperf(C↑(X)∩K↓(Y))

]

∪
[
Conf B∩ P̃reperf(C↑(X)∩K↓(Y))

]

⎞

⎠ . (11)

On Computing Fixpoints in Well-Structured Regular Model Checking 359

Remark 5.1. Justifying (11) is outside the scope of this paper, but we can try to give
an intuition of why it works: the inner fixpoint “µX .V ∪·· ·” define the largest set from
which A has a strategy to reach V no matter what B does if the message losses are
favorable. However, whatever messages are lost, A’s strategy also guarantees that the
system will remain in Y , from which it will be possible to retry the strategy for ♦V
as many times as necessary. This will eventually succeed almost surely thanks to the
finite-attractor property. ��

Invariance Games. Assume now A tries to stay in V almost surely (goal [�V]=1), no
matter how B behaves. Then A must ensure �V surely and we are considering a 2-player
game where message losses are adversarial and could as well be controlled by B. This
leads to

〈〈A〉〉[�V]=1 = νX .V ∩
([

Conf A∩Preperf(K↓(X))
]∪ [

Conf B∩ P̃re(X)
])

= νX .V ∩
([

Conf A∩Preperf(K↓(X))
]∪ [

Conf B∩ P̃re(K↓(X))
])

.
(12)

In (12), the subterm Preperf(K↓(X)) accounts for states in which A can choose a perfect
move that will end in K↓(X), i.e., that can be followed by any adversarial message losses
and still remain in X . The subterm P̃re(X) accounts for states in which B cannot avoid
going to X , even with message losses under his control. P̃re(X) can be rewritten into
P̃re(K↓(X)) thanks to Lemma 3.2, so that we end up with a guarded term.

Goals to be Satisfied with Positive Probability. In 2 1
2 -player games, it may happen that

a given goal can only be attained with some non-zero probability [13]. Observe that,
since the games we consider are determined [22], the goals [♦V]>0 or [�V]>0 are the
opposite of goals asking for probability 1:

〈〈A〉〉[♦V]>0 = 〈〈B〉〉[�V]=1, 〈〈A〉〉[�V]>0 = 〈〈B〉〉[♦V]=1.

Theorem 5.2 (Decidability of qualitative symmetric probabilistic LCS-games). For
symmetric probabilistic LCS-games L and regular regions V , the sets 〈〈A〉〉[♦V]=1,
〈〈A〉〉[♦V]>0, 〈〈A〉〉[�V]=1, and 〈〈A〉〉[�V]>0 are (effective) regions. Hence qualitative
reachability and invariance games are decidable on GLCS’s.

Proof (Sketch). These sets can be defined by guarded Lµ terms. ��

6 Conclusion

We defined a notion of upward/downward-guarded fixpoint expressions that define sub-
sets of a well-quasi-ordered set. For these guarded fixpoint expressions, a finite conver-
gence theorem is proved, that shows how the fixpoints can be evaluated with a finite
number of operations. This has a number of applications, in particular in the symbolic
verification of well-structured systems, our original motivation. We illustrate this in the
second part of the paper, with lossy channel systems as a target. For these systems, we
derive in an easy and uniform way, a number of decidability theorems that extend or

360 C. Baier, N. Bertrand, and P. Schnoebelen

generalize the main existing results in the verification of temporal properties or game-
theoretical properties.

These techniques can be applied to other well-structured systems, with a region al-
gebra built on, e.g., upward-closed sets. Such regions are not closed by complemen-
tation, hence fewer properties can be written in Lµ. Admittedly, many examples of
well-structured systems do not enjoy closure properties as nice as our Lemma 3.2
for LCS’s, which will make it more difficult to express interesting properties in the
guarded fragment of Lµ. But this can still be done, as witnessed by [27,28] where the
authors introduced a concept of B-games and BB-games that captures some essential
closure assumptions allowing the kind of rewritings and unfoldings we have justified
with Lemma 3.2.

References

1. P. A. Abdulla, N. Bertrand, A. Rabinovich, and Ph Schnoebelen. Verification of probabilistic
systems with faulty communication. Information and Computation, 202(2):141–165, 2005.

2. P. A. Abdulla, A. Bouajjani, and J. d’Orso. Deciding monotonic games. In Proc. 17th
Int. Workshop Computer Science Logic (CSL 2003) and 8th Kurt Gödel Coll. (KGL 2003),
Vienna, Austria, Aug. 2003, volume 2803 of Lecture Notes in Computer Science, pages 1–14.
Springer, 2003.

3. P. A. Abdulla, K. Čerāns, B. Jonsson, and Yih-Kuen Tsay. Algorithmic analysis of programs
with well quasi-ordered domains. Information and Computation, 160(1/2):109–127, 2000.

4. P. A. Abdulla and B. Jonsson. Undecidable verification problems for programs with unreli-
able channels. Information and Computation, 130(1):71–90, 1996.

5. P. A. Abdulla and B. Jonsson. Verifying programs with unreliable channels. Information and
Computation, 127(2):91–101, 1996.

6. P. A. Abdulla and B. Jonsson. Channel representation in protocol verification. In Proc. 12th
Int. Conf. Concurrency Theory (CONCUR 2001), Aalborg, Denmark, Aug. 2001, volume
2154 of Lecture Notes in Computer Science, pages 1–15. Springer, 2001.

7. A. Arnold and D. Niwiński. Rudiments of µ-Calculus, volume 146 of Studies in Logic and
the Foundations of Mathematics. Elsevier Science, 2001.

8. C. Baier, N. Bertrand, and Ph. Schnoebelen. A note on the attractor-property of infinite-state
Markov chains. Information Processing Letters, 97(2):58–63, 2006.

9. C. Baier, N. Bertrand, and Ph. Schnoebelen. Verifying nondeterministic probabilistic chan-
nel systems against ω-regular linear-time properties. ACM Transactions on Computational
Logic, 2006. To appear, available at http://arxiv.org/abs/cs.LO/0511023.

10. S. Bardin, A. Finkel, J. Leroux, and Ph. Schnoebelen. Flat acceleration in symbolic model
checking. In Proc. 3rd Int. Symp. Automated Technology for Verification and Analysis (ATVA
2005), Taipei, Taiwan, Oct. 2005, volume 3707 of Lecture Notes in Computer Science, pages
474–488. Springer, 2005.

11. A. Bouajjani, B. Jonsson, M. Nilsson, and T. Touili. Regular model checking. In Proc. 12th
Int. Conf. Computer Aided Verification (CAV 2000), Chicago, IL, USA, July 2000, volume
1855 of Lecture Notes in Computer Science, pages 403–418. Springer, 2000.

12. G. Cécé, A. Finkel, and S. Purushothaman Iyer. Unreliable channels are easier to verify than
perfect channels. Information and Computation, 124(1):20–31, 1996.

13. K. Chatterjee, L. de Alfaro, and T. A. Henzinger. The complexity of stochastic Rabin and
Streett games. In Proc. 32nd Int. Coll. Automata, Languages, and Programming (ICALP
2005), Lisbon, Portugal, July 2005, volume 3580 of Lecture Notes in Computer Science,
pages 878–890. Springer, 2005.

http://arxiv.org/abs/cs.LO/0511023

On Computing Fixpoints in Well-Structured Regular Model Checking 361

14. L. de Alfaro, T. A. Henzinger, and R. Majumdar. Symbolic algorithms for infinite-state
games. In Proc. 12th Int. Conf. Concurrency Theory (CONCUR 2001), Aalborg, Denmark,
Aug. 2001, volume 2154 of Lecture Notes in Computer Science, pages 536–550. Springer,
2001.

15. A. Finkel. Decidability of the termination problem for completely specificied protocols.
Distributed Computing, 7(3):129–135, 1994.

16. A. Finkel and Ph. Schnoebelen. Well-structured transition systems everywhere! Theoretical
Computer Science, 256(1–2):63–92, 2001.

17. E. Grädel, W. Thomas, and T. Wilke, editors. Automata, Logics, and Infinite Games: A Guide
to Current Research, volume 2500 of Lecture Notes in Computer Science. Springer, 2002.

18. T. A. Henzinger, R. Majumdar, and J.-F. Raskin. A classification of symbolic transition
systems. ACM Trans. Computational Logic, 6(1):1–32, 2005.

19. Y. Kesten, O. Maler, M. Marcus, A. Pnueli, and E. Shahar. Symbolic model checking with
rich assertional languages. Theoretical Computer Science, 256(1–2):93–112, 2001.

20. J. B. Kruskal. The theory of well-quasi-ordering: A frequently discovered concept. Journal
of Combinatorial Theory, Series A, 13(3):297–305, 1972.

21. A. Kučera and Ph. Schnoebelen. A general approach to comparing infinite-state systems with
their finite-state specifications. Theoretical Computer Science, 358(2-3):315–333, 2006.

22. D. A. Martin. The determinacy of Blackwell games. The Journal of Symbolic Logic,
63(4):1565–1581, 1998.

23. R. Mayr. Undecidable problems in unreliable computations. Theoretical Computer Science,
297(1–3):337–354, 2003.

24. E. C. Milner. Basic WQO- and BQO-theory. In I. Rival, editor, Graphs and Order. The Role
of Graphs in the Theory of Ordered Sets and Its Applications, pages 487–502. D. Reidel
Publishing, 1985.

25. J. Ouaknine and J. Worrell. On metric temporal logic and faulty Turing machines. In
Proc. 9th Int. Conf. Foundations of Software Science and Computation Structures (FOSSACS
2006), Vienna, Austria, Mar. 2006, volume 3921 of Lecture Notes in Computer Science, pages
217–230. Springer, 2006.

26. D. Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer
Science, volume B, chapter 1, pages 1–57. Elsevier Science, 1990.

27. J.-F. Raskin, M. Samuelides, and L. Van Begin. Petri games are monotonic but diffi-
cult to decide. Tech. Report 2003.21, Centre Fédéré en Vérification, 2003. Available at
http://www.ulb.ac.be/di/ssd/cfv/TechReps.

28. J.-F. Raskin, M. Samuelides, and L. Van Begin. Games for counting abstractions. In Proc.
4th Int. Workshop on Automated Verification of Critical Systems (AVoCS 2004), London, UK,
Sep. 2004, volume 128(6) of Electronic Notes in Theor. Comp. Sci., pages 69–85. Elsevier
Science, 2005.

29. Ph. Schnoebelen. The verification of probabilistic lossy channel systems. In Validation
of Stochastic Systems – A Guide to Current Research, volume 2925 of Lecture Notes in
Computer Science, pages 445–465. Springer, 2004.

30. J. Sifakis. A unified approach for studying the properties of transitions systems. Theoretical
Computer Science, 18:227–258, 1982.

http://www.ulb.ac.be/di/ssd/cfv/TechReps

	Introduction
	A Guarded Mu-Calculus
	Verification of Lossy Channel Systems
	Channel Systems, Perfect and Lossy
	Regular Model-Checking for Lossy Channel Systems
	Generalized Lossy Channel Systems

	Solving Games on Lossy Channel Systems
	Symmetric LCS-Games with Controllable Message Losses
	Asymmetric LCS-Games with 1-Sided Controlled Loss of Messages

	Channel Systems with Probabilistic Losses
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

