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Preface

This volume contains the papers presented at the 13th International Conference
on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), held
during November 13–17, 2006, in Phnom Penh, Cambodia, together with the
2nd International Workshop on Analytic Proof Systems (organized by Christian
Fermüller and Matthias Baaz) and the 6th International Workshop on the Im-
plementation or Logics (organized by Christoph Benzmüller, Bernd Fischer, and
Geoff Sutcliffe).

The call for papers attracted 96 paper submissions, each of which was re-
viewed by at least three expert reviewers. The final decisions on the papers were
taken during an electronic Program Committee meeting held on the Internet.
The Internet-based submission, reviewing, and discussion software EasyChair,
provided by the second PC Co-chair, supported each stage of the reviewing pro-
cess. Nevertheless, the most important work was, of course, done by the 35 PC
members and their external reviewers, who provided high-quality reviews. Af-
ter intense discussions to resolve conflicts among the reviewers, the Program
Committee decided to accept 38 papers.

The conference program also included an invited talk by Jean-Pierre Jouan-
naud, documented by an additional paper in these proceedings.

Apart from the authors, invited speaker, Program Committee members, and
external reviewers, we would like to thank other people and organizations that
made this LPAR conference a success: the Local Organization Chair, Sopheap
Seng, and all the other people involved in the local organization; the Department
of Information and Communication Technology Engineering at the Institut de
Technologie du Cambodge in Phnom Penh, and the Kurt Gödel Society, which
provided partial funding and support.

September 2006 Miki Hermann
Andrei Voronkov
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Sébastien Limet, Pierre Pillot

SAT Solving for Argument Filterings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Michael Codish, Peter Schneider-Kamp, Vitaly Lagoon,
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Álvaro Cortés-Calabuig, Marc Denecker, Ofer Arieli,
Maurice Bruynooghe

Sequential, Parallel, and Quantified Updates of First-Order Structures . . . 422
Philipp Rümmer
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Ján Maňuch, Xiaohong Zhao, Arvind Gupta

Automata for Positive Core XPath Queries on Compressed
Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 467

Barbara Fila, Siva Anantharaman

Boolean Rings for Intersection-Based Satisfiability . . . . . . . . . . . . . . . . . . . . 482
Nachum Dershowitz, Jieh Hsiang, Guan-Shieng Huang, Daher Kaiss

Theory Instantiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Harald Ganzinger, Konstantin Korovin

Splitting on Demand in SAT Modulo Theories . . . . . . . . . . . . . . . . . . . . . . . 512
Clark Barrett, Robert Nieuwenhuis, Albert Oliveras, Cesare Tinelli

Delayed Theory Combination vs. Nelson-Oppen for Satisfiability
Modulo Theories: A Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 527

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén,
Alberto Griggio, Roberto Sebastiani

Automatic Combinability of Rewriting-Based Satisfiability
Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Hélène Kirchner, Silvio Ranise, Christophe Ringeissen,
Duc-Khanh Tran

To Ackermann-ize or Not to Ackermann-ize? On Efficiently Handling
Uninterpreted Function Symbols in SMT(EUF ∪T ) . . . . . . . . . . . . . . . . . . . 557

Roberto Bruttomesso, Alessandro Cimatti, Anders Franzén,
Alberto Griggio, Alessandro Santuari, Roberto Sebastiani

Lemma Learning in the Model Evolution Calculus . . . . . . . . . . . . . . . . . . . . 572
Peter Baumgartner, Alexander Fuchs, Cesare Tinelli

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587



Higher-Order Termination:
From Kruskal to Computability

Frédéric Blanqui1, Jean-Pierre Jouannaud2,�, and Albert Rubio3

1 INRIA & LORIA, BP 101, 54602 Villiers-lés-Nancy CEDEX, France
2 LIX, École Polytechnique, 91400 Palaiseau, France

3 Technical University of Catalonia, Pau Gargallo 5, 08028 Barcelona, Spain

1 Introduction

Termination is a major question in both logic and computer science. In logic, termina-
tion is at the heart of proof theory where it is usually called strong normalization (of cut
elimination). In computer science, termination has always been an important issue for
showing programs correct. In the early days of logic, strong normalization was usually
shown by assigning ordinals to expressions in such a way that eliminating a cut would
yield an expression with a smaller ordinal. In the early days of verification, computer
scientists used similar ideas, interpreting the arguments of a program call by a natu-
ral number, such as their size. Showing the size of the arguments to decrease for each
recursive call gives a termination proof of the program, which is however rather weak
since it can only yield quite small ordinals. In the sixties, Tait invented a new method
for showing cut elimination of natural deduction, based on a predicate over the set of
terms, such that the membership of an expression to the predicate implied the strong
normalization property for that expression. The predicate being defined by induction on
types, or even as a fixpoint, this method could yield much larger ordinals. Later gener-
alized by Girard under the name of reducibility or computability candidates, it showed
very effective in proving the strong normalization property of typed lambda-calculi
with polymorphic types, dependent types, inductive types, and finally a cumulative hi-
erarchy of universes. On the programming side, research on termination shifted from
programming to executable specification languages based on rewriting, and concen-
trated on automatable methods based on the construction on well-founded orderings of
the set of terms. The milestone here is Dershowitz’s recursive path ordering (RPO), in
the late seventies, whose well-foundedness proof is based on a powerful combinatorial
argument, Kruskal’s tree theorem, which also yields rather large ordinals. While the
computability predicates must be defined for each particular case, and their properties
proved by hand, the recursive path ordering can be effectively automated.

These two methods are completely different. Computability arguments show ter-
mination, that is, infinite decreasing sequences of expressions e0 � e1 � . . . en �
en+1 . . . do not exist. Kruskal’s based arguments show well-orderedness: for any infi-
nite sequence of expressions {ei}i, there is a pair j < k such that ej � ek. It is easy to
see that well-orderedness implies termination, but the converse is not true.

� Project LogiCal, Pôle Commun de Recherche en Informatique du Plateau de Saclay, CNRS,
École Polytechnique, INRIA, Université Paris-Sud.

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 1–14, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Inthelateeighties,anewquestionarose: terminationofasimply-typedlambda-calculus
language in which beta-reduction would be supplemented with terminating first-order
rewrite rules. Breazu-Tannen and Gallier on the one hand [12], and Okada [23] on the
other hand, showed that termination was satisfied by the combination by using com-
putability arguments. Indeed, when rewriting operates at basic types and is generated
by first-order rewrite rules, beta-reduction and rewriting do not interfere. Their result,
proved for a polymorphic λ-calculus, was later generalized to the calculus of construc-
tions [1]. The situation becomes radically different with higher-order rewriting gener-
ated by rules operating on arrow-types, or involving lambda-bindings or higher-order
variables. Such an example is provided by Gödel’s system T , in which higher-order
primitive recursion for natural numbers generated by Peano’s constructors 0 and s is
described by the following two higher-order rules:

rec(0, U, V ) → U

rec(s(X), U, V ) → @(V,X, rec(X,U, V ))

where rec is a function symbol of type N → T → (N → T → T ) → T , U is a higher-
order variable of type T and V a higher-order variable of type N → T → T , for all type
T . Jouannaud and Okada invented the so-called general-schema [17], a powerful gener-
alization of Gödel’s higher-order primitive recursion of higher types. Following the path
initiated by Breazu-Tannen and Gallier on the one hand, and Okada on the other hand,
termination of calculi based on the general schema was proved by using computability
arguments as well [17,18,2]. The general schema was then reformulated by Blanqui,
Jouannaud and Okada [3,4] in order to incorporate computability arguments directly in
its definition, opening the way to new generalizations. Gödel’s system T can be gen-
eralized in two ways, by introducing type constructors and dependent types, yielding
the Calculus of Constructions, and by introducing strictly positive inductive types. Both
together yield the Calculus of Inductive Constructions [24], the theory underlying the
Coq system [14], in which rewrite rules like strong elimination operate on types, raising
new difficulties. Blanqui gave a generalization of the general schema which includes the
Calculus of Inductive Constructions as a particular case under the name of Calculus of
Algebraic Constructions [6,7].

The general schema, however, is too simple to analyze complex calculi defined by
higher-order rewrite rules such as encodings of logics. For that purpose, Jouannaud
and Rubio generalized the recursive path ordering to the higher-order case, yielding
the higher-order recursive path ordering (HORPO) [19]. The RPO well-foundedness
proof follows from Kruskal’s tree theorem, but no such theorem exists in presence of
a binding construct, and it is not at all clear that such a theorem may exist. What is
remarkable is that computability arguments fit with RPO’s recursive structure. When
applied to RPO, these arguments result in a new, simple, well-foundedness proof of
RPO. One could even argue that this is the first well-foundedness proof of RPO, since
Dershowitz showed more: well-orderedness.

Combining the general schema and the HORPO is indeed easy because their termi-
nation properties are both based on computability arguments. The resulting relation,
HORPO with closure, combines an ordering relation with a membership predicate. In
this paper, we reformulate and improve a recent idea of Blanqui [9] by defining a new
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version of the HORPO with closure which integrates smoothly the idea of the general
schema into HORPO in the form of a new ordering definition.

So far, we have considered the kind of higher-order rewriting defined by using first-
order pattern matching as in the calculus of constructions. These orderings need to
contain β- and η-reductions. Showing termination of higher-order rewrite rules based on
higher-order pattern matching, that is, rewriting modulo β and η now used as equalities,
turns out to require simple modifications of HORPO [20]. We will therefore concentrate
here on higher-order orderings containing β- and η-reductions.

Weintroducehigher-orderalgebrasinSection2.InSection3,werecallthecomputability
argument for this variation of the simply typed lambda calculus. Using a computability
argument again, we show in Section 4that RPO is well-founded. We introduce the general
schema in section 5, and the HORPO in Section 6 before to combine both in Section 7.
We end up with related work and open problems in the last two sections.

2 Higher-Order Algebras

The notion of a higher-order algebra given here is the monomorphic version of the
notion of polymorphic higher-order algebra defined in [21]. Polymorphism has been
ruled out for simplicity.

2.1 Types, Signatures and Terms

Given a set S of sort symbols of a fixed arity, denoted by s : ∗n ⇒ ∗, the set TS of types
is generated from these sets by the arrow constructor:

TS := s(T n
S ) | (TS → TS)

for s : ∗n ⇒ ∗ ∈ S

Types headed by → are arrow types while the others are basic types. Type declarations
are expressions of the form σ1 × · · · × σn → σ, where n is the arity of the type
declaration, and σ1, . . . , σn, σ are types. A type declaration is first-order if it uses only
sorts, otherwise higher-order.

We assume given a set of function symbols which are meant to be algebraic opera-
tors. Each function symbol f is equipped with a type declaration f :σ1 ×· · ·×σn → σ.
We use Fn for the set of function symbols of arity n. F is a first-order signature if all
its type declarations are first-order, and a higher-order signature otherwise.

The set of raw terms is generated from the signature F and a denumerable set X of
variables according to the grammar:

T := X | (λX .T ) | @(T , T ) | F(T , . . . , T ).

Terms generated by the first two grammar rules are called algebraic. Terms of the form
λx.u are called abstractions while terms of the form @(u, v) are called applications.
The term @(u, v) is called a (partial) left-flattening of @(. . .@(@(u, v1), v2), . . . , vn),
with u being possibly an application itself. Terms other than abstractions are said to be
neutral. We denote by Var(t) (BVar(t)) the set of free (bound) variables of t. We may
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assume for convenience (and without further notice) that bound variables in a term are
all different, and are different from the free ones.

Terms are identified with finite labeled trees by considering λx., for each variable x,
as a unary function symbol. Positions are strings of positive integers, the empty string
Λ denoting the root position. The subterm of t at position p is denoted by t|p, and by
t[u]p the result of replacing t|p at position p in t by u. We write s � u if u is a strict
subterm of s. We use t[ ]p for a term with a hole, called a context. The notation s will
be ambiguously used to denote a list, a multiset, or a set of terms s1, . . . , sn.

2.2 Typing Rules

Typing rules restrict the set of terms by constraining them to follow a precise discipline.
Environments are sets of pairs written x : σ, where x is a variable and σ is a type. Let
Dom(Γ ) = {x | x : σ ∈ Γ for some type σ}. We assume there is a unique pair of
the form x : σ for every variable x ∈ Dom(Γ ). Our typing judgments are written as
Γ 	 M : σ if the term M can be proved to have the type σ in the environment Γ . A
term M has type σ in the environment Γ if Γ 	 M : σ is provable in the inference
system of Figure 1. A term M is typable in the environment Γ if there exists a type
σ such that M has type σ in the environment Γ . A term M is typable if it is typable
in some environment Γ . Note that function symbols are uncurried, hence must come
along with all their arguments.

Variables:
x : σ ∈ Γ

Γ � x : σ

Functions:
f : σ1 × . . . × σn → σ

Γ � t1 : σ1 . . . Γ � tn : σn

Γ � f(t1, . . . , tn) : σ

Abstraction:
Γ ∪ {x : σ} � t : τ

Γ � (λx : σ.t) : σ → τ

Application:
Γ ∪ {x : σ} � s : σ → τ Γ � t : σ

Γ � @(s, t) : τ

Fig. 1. Typing judgments in higher-order algebras

2.3 Higher-Order Rewrite Rules

Substitutions are written as in {x1 : σ1 
→ (Γ1, t1), . . . , xn : σn 
→ (Γn, tn)} where,
for every i ∈ [1..n], ti is assumed different from xi and Γi 	 ti : σi. We also assume
that
⋃

i Γi is an environment. We often write x 
→ t instead of x : σ 
→ (Γ, t), in
particular when t is ground. We use the letter γ for substitutions and postfix notation
for their application. Substitutions behave as endomorphisms defined on free variables.
A (possibly higher-order) term rewriting system is a set of rewrite rulesR={Γi 	 li →
ri : σi}i, where li and ri are higher-order terms such that li and ri have the same type
σi in the environment Γi. Given a term rewriting system R, a term s rewrites to a term
t at position p with the rule l → r and the substitution γ, written s

p−→
l→r

t, or simply

s→R t, if s|p = lγ and t = s[rγ]p.
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A term s such that s
p−→
R
t is called R-reducible. The subterm s|p is a redex in s, and

t is the reduct of s. Irreducible terms are said to be in R-normal form. A substitution γ
is inR-normal form if xγ is inR-normal form for all x. We denote by

∗−→
R

the reflexive,

transitive closure of the rewrite relation −→
R

.

Given a rewrite relation −→, a term s is strongly normalizing if there is no infinite
sequence of rewrites issuing from s. The rewrite relation itself is strongly normaliz-
ing, or terminating, if all terms are strongly normalizing, in which case it is called a
reduction.

Three particular higher-order equation schemas originate from the λ-calculus, α-, β-
and η-equality:

λx.v =α λy.v{x 
→ y} if y �∈ BVar(v) ∪ (Var(v) \ {x})
@(λx.v, u) −→β v{x 
→ u}
λx.@(u, x) −→η u if x �∈ Var(u)

As usual, we do not distinguish α-convertible terms. β- and η-equalities are used as
reductions, which is indicated by the long-arrow symbol instead of the equality symbol.
The above rule-schemas define a rewrite system which is known to be terminating, a
result proved in Section 3.

2.4 Higher-Order Reduction Orderings

We will make intensive use of well-founded orderings, using the vocabulary of rewrite
systems for orderings, for proving strong normalization properties. For our purpose, an
ordering, usually denoted by ≥, is a reflexive, symmetric, transitive relation compatible
with α-conversion, that is, s =α t ≥ u =α v implies s ≥ v, whose strict part> is itself
compatible. We will essentially use strict orderings, and hence, the word ordering for
them too. We will also make use of order-preserving operations on relations, namely
multiset and lexicographic extensions, see [15].

Rewrite orderings are monotonic and stable orderings, reduction orderings are in
addition well-founded, while higher-order reduction orderings must also contain β-
and η-reductions. Monotonicity of > is defined as u > v implies s[u]p > s[v]p for all
contexts s[ ]p. Stability of > is defined as u > v implies sγ > tγ for all substitutions
γ. Higher-order reduction orderings are used to prove termination of rewrite systems
including β- and η-reductions by simply comparing the left hand and right hand sides
of the remaining rules.

3 Computability

Simply minded arguments do not work for showing the strong normalization property
of the simply typed lambda-calculus, for β-reduction increases the size of terms, which
precludes an induction on their size, and preserves their types, which seems to preclude
an induction on types.

Tait’s idea is to generalize the strong normalization property in order to enable an
induction on types. To each type σ, we associate a subset [[σ]] of the set of terms, called
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the computability predicate of type σ, or set of computable terms of type σ. Whether
[[σ]] contains only typable terms of type σ is not really important, although it can help
intuition. What is essential are the properties that the family of predicates should satisfy:

(i) computable terms are strongly normalizing;
(ii) reducts of computable terms are computable;

(iii) a neutral term u is computable iff all its reducts are computable;
(iv) u : σ → τ is computable iff so is @(u, v) for all computable v.

A (non-trivial) consequence of all these properties can be added to smooth the proof
of the coming Main Lemma:

(v) λx.u is computable iff so is u{x 
→ v} for all computable v.
Apart from (v), the above properties refer to β-reduction via the notions of reduct

and strong normalization only. Indeed, various computability predicates found in the
literature use the same definition parametrized by the considered reduction relation.

There are several ways to define a computability predicate by taking as its definition
some of the properties that it should satisfy. For example, a simple definition by induc-
tion on types is this:

s : σ ∈ [[σ]] for σ basic iff s is strongly normalizing;
s : θ → τ ∈ [[σ → τ ]] iff @(s, u) : τ ∈ [[τ ]] for every u : θ ∈ [[θ]].

An alternative for the case of basic type is:

s : σ ∈ [[σ]] iff ∀t : τ . s−→ t then t ∈ [[τ ]].

This formulation defines the predicate as a fixpoint of a monotonic functional. Once
the predicate is defined, it becomes necessary to show the computability properties.
This uses an induction on types in the first case or an induction on the definition of the
predicate in the fixpoint case.

Tait’s strong normalization proof is based on the following key lemma:

Lemma 1 (Main Lemma). Let s be an arbitrary term and γ be an arbitrary com-
putable substitution. Then sγ is computable.

Proof. By induction on the structure of terms.

1. s is a variable: sγ is computable by assumption on γ.
2. s = @(u, v). Since uγ and vγ are computable by induction hypothesis, sγ =

@(uγ, vγ) is computable by computability property (iv).
3. s = λx.u. By computability property (v), sγ = λx.uγ is computable iff uγ{x 
→
v} is computable for an arbitrary computable v. Let now γ′ = γ ∪ {x 
→ v}. By
definition of substitutions for abstractions, uγ{x 
→ v} = uγ′, which is usually
ensured by α-conversion. By assumptions on γ and v, γ′ is computable, and uγ′ is
therefore computable by the main induction hypothesis. ��

Since an arbitrary term s can be seen as its own instance by the identity substitution,
which is computable by computability property (iii), all terms are computable by the
Main Lemma, hence strongly normalizing by computability property (i).
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4 The Recursive Path Ordering and Computability

In this section, we restrict ourselves to first-order algebraic terms. Assuming that the set
of function symbols is equipped with an ordering relation ≥F , called precedence, and a
status function stat, writing statf for stat(f), we recall the definition of the recursive
path ordering:

Definition 1. s�rpo t iff

1. s = f(s) with f ∈ F , and u�
rpo
t for some u ∈ s

2. s = f(s) with f ∈ F , and t = g(t) with f >F g, and A
3. s = f(s) and t = g(t) with f =F g ∈Mul, and s ( �

rpo
)mul t

4. s = f(s) and t = g(t) with f =F g ∈ Lex, and s ( �
rpo

)lex t and A

where A = ∀v ∈ t. s �
rpo
v and s �

rpo
t iff s �

rpo
t or s = t

We now show the well-foundedness of �rpo by using Tait’s method. Computability is
defined here as strong normalization, implying computability property (i). We prove the
computability property:

(vii) Let f ∈ Fn and s be computable terms. Then f(s) is computable.

Proof. The restriction of �rpo to terms smaller than or equal to the terms in sw.r.t. �rpo

is a well-founded ordering which we use for building an outer induction on the pairs
(f, s) ordered by (>F , (�rpo)statf

)lex. This ordering is well-founded, since it is built
from well-founded orderings by using mappings that preserve well-founded orderings.

We now show that f(s) is computable by proving that t is computable for all t such
that f(s) �rpo t. This property is itself proved by an (inner) induction on |t|, and by
case analysis upon the proof that f(s) �rpo t.

1. subterm case: ∃u ∈ s such that u �rpo t. By assumption, u is computable, hence
so is its reduct t.

2. precedence case: t = g(t), f >F g, and ∀v ∈ t, s �rpo v. By inner induction, v is
computable, hence so is t. By outer induction, g(t) = t is computable.

3. multiset case: t = f(t) with f ∈ Mul, and s(�rpo)mult. By definition of the
multiset extension, ∀v ∈ t, ∃u ∈ s such that u �rpo v. Since s is a vector of com-
putable terms by assumption, so is t. We conclude by outer induction that f(t) = t
is computable.

4. lexicographic case: t = f(t) with f ∈ Lex, s(�rpo)lext, and ∀v ∈ t, s �rpo v. By
inner induction, t is strongly normalizing, and by outer induction, so is f(t) = t.

��

The well-foundedness of �rpo follows from computability property (vii).

5 The General Schema and Computability

As in the previous section, we assume that the set of function symbols is equipped with
a precedence relation ≥F and a status function stat.
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Definition 2. The computability closure CC(t = f(t)), with f ∈F , is the set CC(t, ∅),
s.t. CC(t,V), with V ∩ Var(t) = ∅, is the smallest set of typable terms containing all
variables in V and terms in t, closed under:

1. subterm of basic type: let s ∈ CC(t,V), and u be a subterm of s of basic type σ
such that Var(u) ⊆ Var(t); then u ∈ CC(t,V);

2. precedence: let f >F g, and s ∈ CC(t,V); then g(s) ∈ CC(t,V);
3. recursive call: let f(s) be a term such that terms in s belong to CC(t,V) and
t(−→β ∪�)statf

s; then g(s) ∈ CC(t,V) for every g =F f ;
4. application: let s : σ1 → . . . → σn → σ ∈ CC(t,V) and ui : σi ∈ CC(t,V) for

every i ∈ [1..n]; then @(s, u1, . . . , un) ∈ CC(t,V);
5. abstraction: let s ∈ CC(t,V∪{x}) for some x /∈ Var(t)∪V; then λx.s ∈ CC(t,V);
6. reduction: let u ∈ CC(t,V), and u−→β∪� v; then v ∈ CC(t,V).

We say that a rewrite system R satisfies the general schema iff

r ∈ CC(f(l)) for all f(l) → r ∈ R

We now consider computability with respect to the rewrite relation −→R ∪−→β ,
and add the computability property (vii) whose proof can be easily adapted from the
previous one. We can then add a new case in Tait’s Main Lemma, for terms headed by
an algebraic function symbol. As a consequence, the relation −→β ∪−→R is strongly
normalizing.

Example 1 (System T). We show the strong normalization of Gödel’s system T by
showing that its rules satisfy the general schema. This is clear for the first rule by the
base Case of the definition. For the second rule, we have: V ∈ CC(rec(s(X), U, V ))
by base Case; s(X) ∈ CC(rec(s(X), U, V )) by base Case again, and by Case 2 we
have X ∈ CC(rec(s(X), U, V )), assuming rec >F s; U ∈ CC(rec(s(X), U, V )) by
base Case, hence all arguments of the recursive call are in CC(rec(s(X), U, V )). Since
s(X) � X holds, we have rec(X,U, V ) ∈ CC(rec(s(X), U, V )). Therefore, we con-
clude with @(V,X, rec(X,U, V )) ∈ CC(rec(s(X), U, V )) by Case 4.

6 The Higher-Order Recursive Path Ordering

6.1 The Ingredients

– A quasi-ordering on types ≥TS called the type ordering satisfying the following
properties:
1. Well-foundedness:>TS is well-founded;
2. Arrow preservation: τ → σ =TS α iff α = τ ′ → σ′, τ ′ =TS τ and σ =TS σ

′;
3. Arrow decreasingness: τ → σ >TS α implies σ ≥TS α or α = τ ′ →
σ′, τ ′ =TS τ and σ >TS σ

′;
4. Arrow monotonicity: τ ≥TS σ implies α → τ ≥TS α → σ and τ → α ≥TS

σ → α;
A convenient type ordering is obtained by restricting the subterm property for the
arrow in the RPO definition.
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– A quasi-ordering ≥F on F , called the precedence, such that >F is well-founded.
– A status statf ∈ {Mul, Lex} for every symbol f ∈ F .

The higher-order recursive path ordering (HORPO) operates on typing judgments.
To ease the reading, we will however forget the environment and type unless necessary.
Let

A = ∀v ∈ t s �
horpo

v or u �
horpo

v for some u ∈ s

Definition 3. Given two judgments Γ 	Σ s : σ and Σ 	Σ t : τ ,

s �
horpo

t iff σ ≥TS τ and

1. s = f(s) with f ∈ F , and u �
horpo

t for some u ∈ s

2. s = f(s) with f ∈ F , and t = g(t) with f >F g, and A
3. s = f(s) and t = g(t) with f =F g ∈Mul, and s ( �

horpo
)mul t

4. s = f(s) and t = g(t) with f =F g ∈ Lex, and s ( �
horpo

)lex t and A

5. s = @(s1, s2), and s1 �
horpo

t or s2 �
horpo

t

6. s = λx : α.u with x �∈ Var(t), and u �
horpo

t

7. s = f(s) with f ∈ F , t = @(t) is a partial left-flattening of t, and A
8. s = f(s) with f ∈ F , t = λx : α.v with x �∈ Var(v) and s �

horpo
v

9. s = @(s1, s2), t = @(t), and {s1, s2}( �
horpo

)mul t

10. s = λx : α.u, t = λx : β.v, α =TS β, and u �
horpo

v

11. s = @(λx : α.u, v) and u{x 
→ v} �
horpo

t

12. s = λx : α.@(u, x), x �∈ Var(u) and u �
horpo

t

Example 2 (System T). The new proof of strong normalization of System T is even
simpler. For the first rule, we apply Case 1. For the second, we apply Case 7, and show
recursively that rec(s(X), U, V )�horpo V by Case 1, rec(s(X), U, V )�horpoX by
Case 1 applied twice, and rec(s(X), U, V )�horpo rec(X,U, V ) by Case 3, assuming a
multiset status for rec, which follows from the comparison s(X)�horpoX by Case 1.

The strong normalization proof of HORPO is in the same style as the previous strong
normalization proofs, although technically more complex [21]. This proof shows that
HORPO and the general schema can be combined by replacing the membership u ∈ s
used in case 1 by the more general membership u ∈ CC(f(s)). It follows that the
HORPO mechanism is inherently more expressive than the closure mechanism.

Because of Cases 11 and 12, HORPO is not transitive. Indeed, there are examples for
which the proof of s�+

horpo t requires guessing a middle term u such that s�horpo u
and u�horpo t. Guessing a middle term when necessary is automated in the implemen-
tations of HORPO and HORPO with closure available from the web page of the first
two authors.
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7 Unifying HORPO and the Computability Closure

A major advantage of HORPO over the general schema is its recursive structure. In
contrast, the membership to the computability closure is undecidable due to its Case 3,
but does not involve any type comparison. To combine the advantages of both, we now
incorporate the closure construction into the HORPO as an ordering. Besides, we also
incorporate the property that arguments of a type constructor are computable when the
positivity condition is satisfied as it is the case for inductive types in the Calculus of
Inductive Constructions [24,7].

s : σ �
horpo

t : τ iff

Var(t) ⊆ Var(s) and

1. s = f(s) and s
∅
�

comp
t

2. s = f(s) and σ ≥TS τ and
(a) t = g(t), f >F g and A
(b) t = g(t), f =F g,
s( �

horpo
)statf

t and A

(c) t = @(t1, t2) and A
3. s = @(s1, s2), σ ≥TS τ and

(a) t = @(t1, t2) and
{s1, s2}( �

horpo
)mul{t1, t2}

(b) s1 �
horpo

t or s2 �
horpo

t

(c) s1 = λx.u and
u{x 
→ s2} �

horpo
t

4. s = λx : α.u, σ ≥TS τ and
(a) t = λx : β.v, α =TS β

and u �
horpo

v

(b) x �∈ Var(t) and u �
horpo

t

(c) u = @(v, x), x �∈ Var(v)
and v �

horpo
t

where A = ∀v ∈ t :
s �

horpo
v or ∃u ∈ s : u �

horpo
v

s = f(s)
X
�

comp
t iff

1. t ∈ X
2. ∃si ∈ Acc(s) : si �X

comp t
3. t = g(t), f >TS g and

∀v ∈ t : s
X
�

comp
v

4. t = g(t), f =TS g,

∀v ∈ t : s
X
�

comp
v and

Acc(s)( �
horpo

)statf
λX.t

5. t = @(u, v),

s
X
�

comp
u and s

X
�

comp
v

6. t = λx : α.u and

s
X·{x:α}

�
comp

u

where si ∈ Acc(f(s))
(si is accessible in s)

iff
1. s is the left hand side of

an ancestor goal s�horpo u
2. s is the left hand side of the

current goal s�comp u, and,
eitherf : σ → σ and
σ occurs only positively in σi.

Example 3. We consider now the type of Brouwer’s ordinals defined from the type N

by the equationOrd = 0 � s(Ord) � lim(N → Ord). Note thatOrd occurs positively
in the type N → Ord, and that N must be smaller or equal to Ord. The recursor for the
type Ord is defined as:



Higher-Order Termination: From Kruskal to Computability 11

rec(0, U, V,W ) → U

rec(s(X), U, V,W ) → @(V,X, rec(X,U, V,W ))
rec(lim(F ), U, V,W ) → @(W,F, λn.rec(@(F, n), U, V,W ))

We skip the first two rules and concentrate on the third:

1. rec(lim(F ), U, V,W )�horpo @(W,F, λn.rec(@(F, n), U, V,W ))
which, by Case 1 of �horpo is replaced by the new goal:

2. rec(lim(F ), U, V,W )�∅
comp @(W,F, λn.rec(@(F, n), U, V,W ))

By Case 5 of �comp, these three goals become:
3. rec(lim(F ), U, V,W )�∅

compW

4. rec(lim(F ), U, V,W )�∅
comp F

5. rec(lim(F ), U, V,W )�∅
comp λn.rec(@(F, n), U, V,W )

Since rec(lim(F ), U, V,W ) originates from Goal 1,
Goal 3 disappears by Case 2, while Goal 4 becomes:

6. lim(F )�∅
comp F

which disappears by the same Case since F is accessible in lim(F ).
thanks to the positivity condition. By Case 6, Goal 5 becomes:

7. rec(lim(F ), U, V,W )�{n}
comp rec(@(F, n), U, V,W )

Case 4 applies with a lexicographic status for rec, yielding 5 goals:
8. rec(lim(F ), U, V,W )�{n}

comp @(F, n)
9. rec(lim(F ), U, V,W )�{n}

compU

10. rec(lim(F ), U, V,W )�{n}
comp V

11. rec(lim(F ), U, V,W )�{n}
compW

12. {lim(F ), U, V,W}(�horpo)lex{λn.@(F, n), λn.U, λn.V, λn.W}
Goals 9, 10, 11 disappear by Case 2, while, by Case 5
Goal 8 generates (a variation of) the solved Goal 4 and the new sub-goal:

13. rec(lim(F ), U, V,W )�{n}
comp n

which disappears by Case 1. We are left with Goal 12, which reduces to:
14. lim(F )�horpo λn.@(F, n)

which, by Case 1 of �horpo, then 6 and 5 of �comp yields successively:
15. lim(F )�∅

comp λn.@(F, n)

16. lim(F )�{n}
comp @(F, n)

which, by Case 5, generates (a variation of) the Goal 6 and the last goal:
17. lim(F )�{n}

comp n
which succeeds by Case 1, ending the computation.

To show the strong normalization property of this new definition of �horpo, we need
a more sophisticated predicate combining the predicates used for showing the strong
normalization of HORPO [21] and CAC [6]. We have not done any proof yet, but we
believe that it is well-founded.

It is worth noting that the ordering �horpo defined here is in one way less powerful
than the one defined in Section 6 using the closure definition of Section 5 because it
does not accumulate computable terms for later use anymore. Instead, it deconstructs
its left hand side as usual with rpo, and remembers very few computable terms: the
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accessible ones only. On the other hand, it is more powerful since the recursive case 4
of the closure uses now the full power of �horpo for its last comparison instead of
simply β-reduction (see [21]). Besides, there is no more type comparison in Case 1 of
the definition of �horpo, a key improvement which remains to be justified formally.

8 Related Work

Termination of higher-order calculi has recently attracted quite a lot of attention. The
area is building up, and mostly, although not entirely, based on reducibility techniques.

The case of conditional rewriting has been recently investigated by Blanqui [8]. His
results are presented in this conference.

Giesl’s dependency pairs method has been generalized to higher-order calculi by
using reducibility techniques as described here [25,10]. The potential of this line of
work is probably important, but more work in this direction is needed to support this
claim.

Giesl [22] has achieved impressive progress for the case of combinator based calculi,
such as Haskell programs, by transforming all definitions into a first-order framework,
and then proving termination by using first-order tools. Such transformations do not
accept explicit binding constructs, and therefore, do not apply to rich λ-calculi such as
those considered here. On the other hand, the relationship of these results with com-
putability deserves investigation.

An original, interesting work is Jones’s analysis of the flux of redexes in pure lambda-
calculus [16], and its use for proving termination properties of functional programs.
Whether this method can yield a direct proof of finite developments in pure λ-calculus
should be investigated. We also believe that his method can be incorporated to the
HORPO by using an interpretation on terms instead of a type comparison, as mentioned
in Conclusion.

Byron Cook, Andreas Podelski and Andrey Ribalchenko [13] have developed a quite
different and impressive method based on abstract interpretations to show termination
of large imperative programs. Their claim is that large programs are more likely to be
shown terminating by approximating them before to make an analysis. Note that the use
of a well-founded ordering can be seen as a particular analysis. Although impressive,
this work is indeed quite far from our objectives.

9 Conclusion

We give here a list of open problems which we consider important. We are ourselves
working on some of these. The higher-order recursive path ordering should be seen as
a firm step to undergo further developments in different directions, some of which are
listed below.

– Twoof themhavebeen investigatedin thefirstorderframework: thecaseofassociative
commutativeoperators,andtheuseofinterpretationsasasortofelaboratedprecedence
operating on function symbols. The first extension has been carried out for the general
schema [5], and the second for a weak form of HORPO [11]. Both should have an
important impact for applications, hence deserve immediate attention.
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– Enriching the type system with dependent types, a problem considered by Wału-
kiewicz [26] for the original version of HORPO in which types were compared by
a congruence. Replacing the congruence by HORPO recursively called on types as
done in [21] for a simpler type discipline raises technical difficulties. The ultimate
goal here is to generalize the most recent versions of the ordering including the
present one, for applications to the Calculus of Inductive Constructions.

– HORPO does not contain and is not a well-order for the subterm relationship. How-
ever, its definition shows that it satisfies a weak subterm property, namely property
A. It would be theoretically interesting to investigate whether some Kruskal-like
theorem holds for higher-order terms with respect to the weak subterm property.
This could yield an alternative, more abstract way of hiding away computability
arguments.
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Abstract. This paper deals with a class of second order formulae where
the only predicate is joinability modulo a conditional term rewrite sys-
tem, first order variables range over ground terms and second order vari-
ables are interpreted as relations on ground terms (i.e. sets of tuples of
ground terms). We define a generic algorithm that decides the satisfia-
bility of positive second order joinability formulae when an algorithm is
known to finitely represent solutions of first order formulae. When the
answer is positive, the algorithm computes one particular instance for the
second order variables. We apply this technique to the class of positive
second order pseudo-regular formulae. The result is then a logic program
that represents the instance of the second order variables. We define a
transformation to translate this instance into a CTRS. This result can
be used to automatically synthesize a program that defines a relation
from its specification.

1 Introduction

Second order theories have been widely studied for a long time because of their
practical applications in several fields of computer sciences. The most studied
class is monadic second order logic. Many variants of this logic have been proved
decidable using automata techniques (see [16] for a survey). The solutions of
formulae in such a logic are represented by automata on strings or trees e.g.
weak second order logic with k successors WSkS is solved using finite tree au-
tomata [15] that defines regular relations. Applications of monadic second order
logic are numerous from circuit verification [5] which is the historical use, to
program verification [7].

In this paper, we study a class of formulae based on the predicate ↓?
R (i.e.

joinability modulo a term rewrite system). In the first order case, a solution of
an equation s ↓?

R t is a substitution σ such that sσ and tσ rewrite into the same
term. The term rewrite systems we consider are conditional term rewrite systems
(CTRS for short). A CTRS defines a relation on terms by means of conditional
rewrite rules of the form l → r ⇐ C (e.g. the CTRS of Example 1 below defines
the relation + on positive integers). In the second order formulae studied in the
present paper, second order variables represent such a relation. For example, a
solution of the formula ∀xX(x) ↓?

R x + x where x is a first order variable and
X a second order one, is a relation (t1, t2) such that t2 = 2 × t1. Our aim is to
automatically build the rewrite rules that define this relation.

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 15–29, 2006.
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The first contribution of this paper is the definition of a general algorithm to
decide the satisfiability of positive second order joinability formulae for classes
where there exists an algorithm that produces a decidable finite representation
of the solutions of first order joinability formulae. The output of the algorithm is
the empty set when the second order formula is not satisfiable and a particular
instance of the second order variables otherwise.

In a previous paper [9], we defined the class of first order pseudo-regular
formulae and showed that the solutions of such a formula can be represented by
a regular relation. Some restrictions are imposed on the rewrite system to ensure
that the relations it defines are regular relations (those rewrite systems are called
pseudo-regular TRS). The closure properties of regular relations are used to
prove first that the solutions of a single equation are a regular relation, and then
that the solutions of a formula are also regular. The technique used to represent
and manipulate relations in that paper is based on logic programs and comes
from [11]. The general algorithm is then used to show the decidability of the
satisfiability of positive second order pseudo-regular formulae. When a formula
is satisfiable, we obtain a logic program from which we compute a CTRS that
defines one possible instance for the second order variables. This result can be
used to automatically generate a CTRS (which can be considered as a program)
from the specification of the intended results.

Example 1. The followingCTRS is a pseudo-regular one. It represents the addition
for positive integers represented by binary digit strings. In our encoding, the least
significant bits are leftmost. For example the term 0(1(⊥)) represents the binary
number 10 i.e. the number 2. + is addition and ⊕ addition with carry. The rules
with n1 or n2 represent several rules where n1 and n2 can be replaced by 0 or 1.

⊥ + n1(y) → n1(y) n1(y) + ⊥ → n1(y)
0(x) + 0(y) → 0(x+ y) 1(x) + 1(y) → 0(x⊕ y)
n1(x) + n2(y) → 1(x+ y) if n1 �= n2 ⊥ + ⊥ → ⊥
s(⊥) → 1(⊥) s(0(x)) → 1(x)
s(1(x)) → 0(s(x))
⊥ ⊕ 0(y) → 1(y) ⊥ ⊕ 1(y) → 0(s(y))
0(y) ⊕ ⊥ → 1(y) 1(y) ⊕ ⊥ → 0(s(y))
0(x) ⊕ 0(y) → 1(x+ y) 1(x) ⊕ 1(y) → 1(x⊕ y)
n1(x) ⊕ n2(y) → 0(x⊕ y) if n1 �= n2 ⊥ ⊕ ⊥ → 1(⊥)

This CTRS is not really conditional since there are no conditions in the rewrite
rules. Let us consider the two following rules that define the elementwise sub-
straction of two lists of integers.

sl(⊥,⊥) → ⊥
sl(c(x1, y1), c(x2, y2)) → c(x3, sl(y1, y2)) ⇐ x2 + x3 ↓R x1

In the context of TRS without condition, the function sl would need the
explicit definition of subtraction between two integers.

∀xX(x) = x+x is a positive second order formula. Our procedure constructs
automatically the following CTRS that defines the only possible instance for X .
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fX(⊥) → ⊥ f ′X(⊥) → 1(⊥)
fX(0(x)) → 0(fX(x)) f ′X(0(x)) → 1(fX(x))
fX(1(x)) → 0(f ′X(x)) f ′X(1(x)) → 1(f ′X(x))

Notice that fX introduces a 0 in the units and shift the digits of the number
which corresponds to doubling an integer represented by binary digits.

2 Preliminaries

We recall some basic notions and notation concerning terms, conditional term
rewrite systems and logic programming; for details see [2,13].

First Order Terms and Relations. Let Σ be a finite set of symbols with arity,
Var be an infinite set of variables, and T (Σ,Var) be the first-order term algebra
over Σ ∪ Var . A term is linear if no variable occurs more than once in it and a
term without variables is called a ground term. In this paper, Σ consists of three
disjoint subsets: the set F of defined function symbols, the set C of constructor
symbols and the set Pr of predicate symbols. The terms of T (C,Var) are called
data-terms and those of the form P (�t) where P is a predicate symbol of arity n
and �t is a vector of T (F ∪ C,Var)n are called atoms.

A position p is a string of integers whose length is denoted by |p|. For a term t,
Pos(t) denotes the set of positions in t, and t|u the subterm of t at position u.
The term t[u←s] is obtained from t by replacing the subterm at position u by s.
Var(t) is the set of variables occurring in t. The set ΣPos(t) ⊆ Pos(t) denotes
the set of non-variable positions, i.e., t|u �∈ Var for u ∈ ΣPos(t) and t|u ∈ Var
for u ∈ Pos(t) \ ΣPos(t). The depth of a term t ∈ T (F ∪ C,Var) denoted
Depth(t) is 0 if t ∈ Var and max({ |p| | p ∈ ΣPos(t) } otherwise. A term of
depth 1 is said to be flat. The depth of an atom P (�t) denoted Depth(P (�t)) is
max({Depth(s) | s ∈ �t }). An atom of depth 0 is said to be flat.

A substitution is a mapping from Var to T (Σ,Var) where xσ �= x for a finite
set of variables. The domain of a substitution σ, Dom(σ), is the set { x ∈ Var |
xσ �= x }. For V ⊆ Var , σ|V denotes the restriction of σ to the variables in V ,
i.e., xσ|V = xσ for x ∈ V and xσ|V = x otherwise. If for all x ∈ Dom(σ), xσ is
a data-term then σ is called a data substitution. If a term t is an instance of a
term s, i.e. t = sσ, we say that t matches s and s subsumes t.

Let CVar = {�i | i ≥ 1 } be the set of context variables distinct from Var .
An n-context is a term t in T (Σ,Var ∪ CVar) such that each �i 1 ≤ i ≤ n
occurs once and only once in t and no other element of CVar occurs in t. �1

(also denoted �) is called the trivial context ; if C a term in T (C,Var ∪ CVar)
then C is a constructor context. For an n-context C, the expression C[t1, . . . , tn]
denotes the term C{�i 
→ ti | 1 ≤ i ≤ n }.

This paper mainly deals with relations on ground data-terms. A data-relation
r̃ of arity n is a subset of T n+1(C). Notice that what we call arity for a relation
is its number of components minus 1 because in our context, a relation r̃ with
n components models in fact a relation from T n−1(C) to T (C). The notation
r̃(t1, . . . , tn−1) denotes the set { tn | (t1, . . . , tn−1, tn) ∈ r̃ } of ground data-terms.
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The set of all possible data-relations is recursively enumerable, so we associate
to each data-relation of arity n a unique relation symbol of arity n different from
(Σ ∪ Var) and call it the name of the relation. We denote the set of relation
names R.

Logic programs. If H,A1, . . . , An are atoms then H ⇐ A1, . . . , An is a Horn
clause; H is said to be the head of the clause and A1, . . . , An is said to be the
body. The elements of Var(A1, . . . , An)\Var (H) are called existential variables.
A logic program is a set of Horn clauses. The Herbrand domain is the set of
all ground atoms. The body of the clause H ⇐ B is said to be linear iff every
variable occurs at most once in B. A clause is said to be linear if both the
head and the body are linear. A set of ground atoms S is an Herbrand model
of the clause H ⇐ B iff for all σ such that Hσ ⇐ Bσ is ground and Bσ ⊆ S,
we have Hσ ∈ S. S is a Herbrand model of the logic program P if it is a
model of all clauses of P . For a logic program P and a ground atom A we write
P |= A if A belongs to the least Herbrand model of P (denoted M(P)). The
language described by an n-ary predicate symbol P w.r.t. a program P is the
set { (t1, . . . , tn) | P |= P (t1, . . . , tn) } of n-tuples of ground terms.

Conditional Term Rewrite Systems. A term rewrite system (TRS) is a set of
oriented equations built over T (F ∪C,Var) and called rewrite rules. Lhs and rhs
are shorthands for the left-hand and right-hand side of a rule, respectively. For
a TRS R, the rewrite relation is denoted by →R and is defined by t →R s iff
there exists a rule l → r in R, a non-variable position u in t, and a substitution
σ, such that t|u = lσ and s = t[u←rσ]. Such a step is written as t→[u,l→r] s. If
σ is a data-substitution then the step is called a data-step. If a term t cannot be
reduced by any rewriting rule, it is said to be irreducible. The reflexive-transitive
closure of →R is denoted by →∗

R. The joinability relation ↓R is defined by t ↓R s
iff t →∗

R u and s →∗
R u for some term u. Notice that R-joinability is equivalent

to R-unifiability for confluent rewrite systems.
A conditional term rewrite system, CTRS for short, is a finite set of rewrite

rules of the form l → r ⇐ B where B is a finite conjunction of conditions that
must be checked before rewriting. There is a rewrite step, t →R s iff there
exists a conditional rule l → r ⇐ B in R, a non-variable position u in t, and a
substitution σ, such that t|u = lσ and s = t[u←rσ] and Bσ is true. The notion
of data-step extends trivially to the conditional case.

In this paper, we consider join CTRS’s i.e. the conditions are pairs of terms
s ↓R t which are verified for a substitution σ if sσ and tσ are R-joinable. More-
over, we focus on constructor based CTRS, i.e. CTRS where the lhs of rewrite
rules are of the form f(t1, . . . , tn) where f is defined function symbol and each
ti (1 ≤ i ≤ n) is a data-term.

In the context of constructor based CTRS, a data-solution of a joinability
equation s ↓?

R t is a data-substitution σ such that sσ →∗
R u and tσ →∗

R u where
u is a data term and all rewriting steps are data-steps. For a CTRS R and
a defined function f , we denote by f̃ the data-relation f̃ = { (t1, . . . , tn, t) ∈
T n+1(C) | f(t1, . . . , tn) →∗

R t with data-steps only }.
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3 Positive Second Order Joinability Formulae

In this section, we present the kind of formulae we deal with and the way we
solve them. We first define the second order algebra we consider.

3.1 Second Order Definitions

Let X be a set of second order variables with arity, different from Σ ∪ Var ∪ R.
The set of second order terms built over the signature T (Σ,Var ,R,X ) is the
smallest set such that

– Var is included in this set,
– if t1, . . . , tn are second order terms and f is either a symbol of arity n of
Σ or a variable of arity n of X or a relation symbol of arity n of R, then
f(t1, . . . , tn) is a second order term.

For a second order term Var(t) denotes the set of first order and second order
variables of t. A second order term t is said to be ground if Var(t) is empty. Let
R be a CTRS, t be a ground second order term, then the model of t is denoted by
MR(t) and is the set of ground data terms inductively defined on the structure
of the term 1

– { c(t1, . . . , tn) | ∀1 ≤ i ≤ n, ti ∈ MR(si) } if t = c(s1, . . . , sn) and c ∈ C,
– { f̃(t1, . . . , tn) | ∀1 ≤ i ≤ n, ti ∈ MR(si) } if t = f(s1, . . . , sn) and f ∈ F ,
– { r̃(t1, . . . , tn) | ∀1 ≤ i ≤ n, ti ∈ MR(si) } if t = r̃(s1, . . . , sn) and r̃ ∈ R.

Notice that for a first order ground term t, MR(t) is the set of ground data
terms s such that t→∗

R s with a data-derivation. This is easily proved by induc-
tion on the height of the term t.

A second order substitution σ is a mapping from Var ∪X to T (F ∪C,Var)∪
R ∪ X such that xσ �= x only for a finite subset of Var ∪ X and

– if x ∈ Var , xσ ∈ T (F ∪ C,Var)
– if x ∈ X and x is of arity n, xσ is either a symbol of F ∪ R of arity n or is
x itself.

The domain of σ is the set of variables such that xσ �= x. A second order
substitution is called data ground if for all x ∈ Dom(σ) ∩ Var , xσ is a ground
data term. We extend σ to T (Σ,Var ,R,X ) homomorphically.

Example 2. Let us consider the CTRS of Example 1, the relation r̃={(t1, 0(t1))},
t the second order term X(x) + y and the substitution σ = {X 
→ r̃, x 
→
1(⊥), y 
→ 1(0(⊥))}. Var(t) = Dom(σ) = {X,x, y}. σ is data-ground. tσ =
r̃(1(⊥))+1(0(⊥)) is a ground term and MR(tσ) = {0(0(1(⊥)))} since MR(xσ) =
{1(⊥)} so MR(r̃(xσ)) = {0(1(⊥))} and finally MR(tσ) is the set { +̃(t1, t2) |
t1 ∈ MR(r̃(xσ)) and t2 ∈ MR(yσ) } i.e. it is the set {+̃(0(1(⊥)), 1(0(⊥)))} =
{1(1(⊥))}.

Notice that the model of the ground term c(⊥,⊥) + 0(⊥) is empty since the
first component of +̃ is never headed by the constructor symbol c.
1 By convention, for a symbol s of arity 0 the notation s(t1, . . . , tn) (i.e. when n equals

0) denotes s itself.
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3.2 Joinability Equations and Formulae

Definition 1. Let R be a CTRS. A second order joinability equation s ↓?
R t is

an equation such that s and t are second order terms. A first order joinability
equation is an equation s ↓?

R t such that neither s nor t contains second order
variables.

Definition 2. Let R be a CTRS, and s ↓?
R t be a second order joinability equa-

tion. A ground data substitution σ is a solution of s ↓?
R t iff sσ and tσ are ground

terms and MR(sσ) ∩ MR(tσ) �= ∅.
Let R be a CTRS, second order R-joinability formulae are defined by the fol-
lowing grammar:

e ::= s ↓?
R t | ¬e | e ∨ e | e ∧ e | ∀xe | ∃xe

where s ↓?
R t is a second order joinability equation and x is a first order variable.

Definition 3. An R-joinability formula such that a second order variable does
not occur within a negation is called a positive second orderR-joinability formula

The set of solutions of an R-joinability formula is defined as follows

– SOL(s ↓?
R t) = { σ | Dom(σ) = Var(s ↓?

R t),MR(sσ) ∩ MR(tσ) �= ∅ }
– SOL(¬e) = { σ | Dom(σ) = Var(e), σ �∈ SOL(e) }
– SOL(e1 ∧ e2) = { σ | Dom(σ) = Var(e1 ∧ e2), σ|Var(e1) ∈ SOL(e1),

σ|Var(e2) ∈ SOL(e2) }
– SOL(e1 ∨ e2) = { σ | Dom(σ) = Var(e1 ∨ e2), σ|Var(e1) ∈ SOL(e1) or

σ|Var(e2) ∈ SOL(e2) }
– SOL(∃xe) = { σ | Dom(σ) = Var(e)\{x}, ∃σ′ ∈ SOL(e), σ = σ′|Var(e)\{x} }
– SOL(∀xe) = { σ | Dom(σ) = Var(e) \ {x}, ∀t ∈ T (C), σ ∪ {x 
→ t} ∈

SOL(e), σ = σ′|Var(e)\{x} }
Example 3. Let us consider once more the CTRS of Example 1 and the following
second order joinability formula ∀x∃y ¬(y + y ↓?

R x) ∨X(x) ↓?
R true.

This formula is a positive one. A solution of this formula instantiates the
variable X to the relation ẽ = { (n, true) | n is an even number }. Notice that
any relation ẽ′ such that ẽ′ ⊇ ẽ is also a solution of the formula since it is an
implication and not an equivalence.

The set of solutions for the second order variables may be infinite, as in the previ-
ous example, and in the general case these solutions may be incomparable. This
happens when the same second order variable occurs in both side of the connec-
tor ∨ like in the formula ∀x∃y ¬(y + y ↓?

R x) ∨ (X(x) ↓?
R true ∨X(x) ↓?

R 0). ẽ of
Example 3 is a solution as well as ẽ′′ = { (n, 0) | n is an even number } but ẽ and
ẽ′′ cannot be compared. Therefore solving second order joinability in the general
case would need to finitely represent infinite sets of relations in other words infi-
nite sets of infinite sets. The cases where such a representation can be obtained
are extremely rare and would need very strong restrictions on the CTRS. This
is why we restrict ourselves to positive second order joinability formulae on the
one hand, and on the other hand, we describe a decision algorithm that returns
one solution if the formulae is satisfiable and the empty set otherwise.
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3.3 Deciding Positive Second Order Formulae

The algorithm relies on the following idea: a positive second order formula is
satisfiable iff its first order part is satisfiable. So the algorithm aims at separating
the first order and second order equation, then solving the first order part of the
formula and then computing an instance for the second order variables from the
solutions of the first order part. The algorithm consists of two main steps. The
first step flattens the equations of the formula. The second one transforms the
result into its prenex disjunctive normal form.

The rules of Table 1 are used to transform any second order joinability equa-
tion to an equivalent formula whose equations are of the form f(�x) ↓?

R y where
f ∈ F ∪ C ∪ X and �x, y are first order variables. Such equations are called flat
equations. A formula containing only flat equations is called a flat formula.

Table 1. Flattening second order equations

�
δ(y) = 〈x, x ↓?

R y〉 if x, y ∈ Var and x 
= y

δ(t1) = 〈x1, e1〉 · · · δ(tn) = 〈xn, en〉
δ(f(t1, . . . , tn)) = 〈x,∃x1 . . . xn(f(x1, . . . , xn) ↓?

R x ∧∧1≤i≤n ei)〉
if f ∈ F ∪ X and x 
∈ ⋃1≤i≤n Var(ei) and the xi’s are pairwise different

δ(s) = 〈xs, es〉 δ(t) = 〈xt, et〉
δ(s ↓?

R t) = ∃xs, xt xs ↓?
R xt ∧ es ∧ et

if xs, xt ∈ Var and xs 
= xt

Notice that for a second order term t, δ(t) is unique up to a renaming of first
order variables, therefore the side condition of the second rule on the xi’s is not
a restriction. Moreover each ei contains the corresponding xi thus x is different
from all the xi’s.
δ can be extended to flatten arbitrary second order formulae in the following

way δ(¬e) = ¬δ(e), δ(e1∧e2) = δ(e1)∧δ(e2), δ(e1∨e2) = δ(e1)∨δ(e2), δ(∃x e) =
∃x δ(e) and δ(∀x e) = ∀x δ(e).

Lemma 1. Let R be a CTRS and s a second order term such that δ(s) = 〈x, e〉
and σ a ground data substitution sσ is a ground term. If t ∈ M(sσ) then σ∪{x 
→
t} ∈ SOL(e).

The proof of this lemma is done by structural induction on the term s.

Lemma 2. Let R be a CTRS and F a second order joinability formula. Then
we have SOL(F ) = SOL(δ(F )).

Proof. Let us consider a formula consisting of a single equation s ↓?
R t. δ(s ↓?

R

t) = 〈∃xs, xt, s ↓?
R xs∧t ↓?

R xt∧xs ↓?
R xt〉. If σ ∈ SOL(s ↓?

R t), there exists a term
u such that u ∈ M(sσ) ∩ M(tσ). From Lemma 1 we know that σ ∪ {xs 
→ s} ∈
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SOL(es) and σ ∪ {xt 
→ t} ∈ SOL(et) thus σ ∪ {xs 
→ s, xt 
→ t} ∈ SOL(s ↓?
R

xs ∧ t ↓?
R xt ∧ xs ↓?

R xt) which implies that σ ∈ SOL(δ(e)).
Now if σ ∈ SOL(δ(e)) then there exists σ′ = σ ∪ {xs 
→ us, xt 
→ ut} which

is a solution of s ↓?
R xs ∧ t ↓?

R xt ∧ xs ↓?
R xt. We have us ∈ M(sσ′) and

ut ∈ M(tσ′). Since neither s nor t contain xs and xt, we have sσ′ = sσ and
tσ′ = tσ. Moreover xsσ

′ ↓?
R xtσ

′, so we have us = ut, from which we can conclude
that us ∈ M(sσ) ∩ M(tσ) so σ ∈ SOL(s ↓?

R t).
By an easy induction on the structure of the formula F we prove that

SOL(F ) = SOL(δ(F )). ��

We study now the properties of unquantified conjunctive flat formulae since the
algorithm works on prenex disjunctive normal form.

Let us consider a conjunctive formula F , of the form fo(�y) ∧X1(�x1) ↓?
R x1 ∧

. . . ∧Xm(�xm) ↓?
R xm where fo(�y) is a conjunction of first order equations and �y

the vector of the variables occurring in those equations.
In order to simplify the notations, we suppose that the set of solutions of the

first order formula fo(�y) is represented by a logic program Pfo(�y) which defines
the predicate Pfo(�y) of arity |�y| such that Pfo(�y) |= Pfo(�y)(�t) iff the substitution
{ �y|i 
→ �t|i | 1 ≤ i ≤ |�y| } ∈ SOL(fo(�y)). Let SO(F ) be the following set of
clauses {PXi(�xi, xi) ⇐ Pfo(�y) | 1 ≤ i ≤ m } and σSO(F ) = {Xi 
→ r̃FXi

} where
r̃FXi

= { (�t, t) | SO(F ) ∪ Pfo(�y) |= PXi (�t, t) }.

Lemma 3. Let F be a positive second order flat conjunctive formula. F is sat-
isfiable iff FσSO(F ) is satisfiable.

Proof. It is obvious that if FσSO(F ) is satisfiable then F is satisfiable. Now sup-
pose that F is satisfiable. This means that fo(�y) is satisfiable, therefore the model
of Pfo(�y) is not empty. Hence SO(F ) instantiates each second order variable of F
by a non-empty relation, thus FσSO(F ) is satisfiable since second order variables
occur in trivial equations X(�x) ↓?

R x. ��

The following lemma helps to characterize the instances of the second order
variables we compute. It is used to prove that our algorithm gives a solution iff
the whole formula is satisfiable. It is also important when one wants to synthesize
a CTRS from a positive second order formula.

Lemma 4. Let F = fo(�y) ∧X1(�x1) ↓?
R x1 ∧ . . . ∧Xm(�xm) ↓?

R xm be a conjunc-
tive formula. Then σSO(F ) is the smallest solution of the following second order
formula ∀�zfo(�y) ⇒ X1(�x1) ↓?

R x1 ∧ . . . ∧ Xm(�xm) ↓?
R xm where �z is a vector

composed of the union of the variables of �y, of �xi and xi (1 ≤ i ≤ m).

Proof. The proof of this lemma is obvious since σSO(F ) is computed from the
set of clauses PXi(�xi, xi) ⇐ Pfo(�y) (1 ≤ i ≤ n). ��

We are now ready to describe the algorithm that decides the satisfiability of a
positive second order formula and gives one instance of the second order variables
and the set of corresponding solutions for the first order variables when the
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formula is satisfiable. This algorithm relies on the existence of an algorithm that
solves first order joinability formulae and gives a finite representation of their
solutions.

Algorithm 1. Let A be an algorithm to solve first order joinability equations,
R a CTRS and F a positive second-order formula.

1. Compute δ(F ) the flattened form of F
2. Compute F ′ equivalent to δ(F ) and in prenex disjunctive normal form. Let
C1, . . . , Cn be the conjunctive factors of F ′.

3. For each Ci (1 ≤ i ≤ n), use A to solve the first order part of Ci from which
σSO(Ci) is deduced.

4. Let σSO(F ′) = {Xj 
→ r̃′Xj | Xj ∈ V ar(F ′), r̃′Xj =
⋃

1≤i≤n r̃
Ci

Xj
}. Use

A to solve F ′σSO(F ′) considering second order variable symbols as defined
function symbols 2.

5. If SOL(F ′σSO(F ′)) �= ∅ return σSO(F ′) and the solutions of F ′σSO(F ′) else
return ∅.

Theorem 1. Let A be an algorithm to solve first order joinability equations, R
a CTRS and F a positive second-order formula. F is satisfiable iff the output of
Algorithm 1 is not empty.

Proof. From Lemma 2, we know that SOL(F ) = SOL(δ(F )) and therefore
SOL(F ) = SOL(F ′).

Let C1, . . . , Cn be the conjunctive factors of F ′. Each Ci is of the form foi(�yi)∧
soi(�xi, �Xi) where foi(�yi) is a conjunction of first order joinability equations whose
variables are those of �yi and soi(�xi, �Xi) is a conjunction of flat second order
joinability equations of the form X(�x) ↓?

R x where X ∈ Xi and the variables of
�x and x occur in �xi.

The algorithm A can compute a finite representation of the solutions of foi(�yi)
which gives the definition of σSO(Ci). From Lemma 4, we know that σSO(Ci) is the
smallest model of the formula ∀�zi, foi(�yi) ⇒ soi(�xi, �Xi). By definition of σSO(F ′),
we have XσSO(F ′) ⊇ XσSO(Ci) for any second order variable of F ′ and any Ci

1 ≤ i ≤ n. Hence, σSO(F ′) is a model of the formulae ∀�zi, foi(�yi) ⇒ soi(�xi, �Xi)
which means that ∀�zi, foi(�yi) ⇒ soi(�xi, �Xi)σSO(F ′) and of course ∀�zi, foi(�yi) ⇒
foi(�yi) ∧ soi(�xi, �Xi)σSO(F ′).

So we can deduce that any model of fo1(�y1)∨. . . fon(�yn) is a model of (fo1(�y1)∧
so1(�x1, �X1)σSO(F ′)) ∨ . . . ∨ (fon(�yn) ∧ son(�xn, �Xn)σSO(F ′)). Let us suppose that
F ′ = QC1 ∨ . . . ∨ Cn where Q represents the quantifications of the formula.
If F is satisfiable, F ′ is also satisfiable as well as Q fo1(�y1) ∨ . . . fon(�yn). From
the remark above we can deduce that Q (fo1(�y1) ∧ so1(�x1, �X1)σSO(F ′)) ∨ . . . ∨
(fon(�yn) ∧ son(�xn, �Xn)σSO(F ′)) is also satisfiable and therefore the algorithm A
computes a non empty set of solutions.
2 Formally, a CTRS R′ that defines the functions fXj which model are the corre-

sponding r̃′, should be synthesized from the result of algorithm A, and the input of
A should be F ′{Xj → fXj | Xj ∈ Var(F ′) } and the CTRS R ∪ R′.
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On the other hand, if A computes a non empty set of solutions for F ′σSO(F ′),
this means that F ′σSO(F ′) is satisfiable thus F ′ and F are also satisfiable. ��

Example 4. Let us consider again the formula of Example 3, i.e. ∀x∃y ¬(y+ y ↓?
R

x) ∨ X(x) ↓?
R true. The flattened form of this formula is ∀x∃y ¬(y + y ↓?

R x) ∨
∃z X(x) ↓?

R z∧true ↓?
R z. Its prenex disjunctive normal form is ∀x∃y∃z ¬(y+y ↓?

R

x) ∨ X(x) ↓?
R z ∧ true ↓?

R z where C1 = ¬(y + y ↓?
R x) and C2 = X(x) ↓?

R

z∧true ↓?
R z. The solutions of C1 are the sets { (y 
→ n, x 
→ m) | 2×n �= m } and

the unique solution of true ↓?
R z is {z 
→ true} which can be represented by the

logic programconsisting of the clauseP (true) ⇐. ThereforeSOC2
X = {PX(x, z) ⇐

P (z)} which means that r̃C2
X = { t, true | t ∈ T (C) }. The output of the algorithm

is then X 
→ r̃C2
X since all first order variables are quantified.

This solution is not the smallest one but the instance for X guarantees that
each model of true ↓?

R z are models of X(x) ↓?
R z which is needed for the

correctness of the algorithm.
To synthesize the even function, one can use the property stated by Lemma 4

and put the formula ∀x∀y y + y ↓?
R x ∧X(x) ↓?

R true as input of the algorithm.
Indeed this lemma states that the instance computed for X by the algorithm is
the smallest solution of ∀x,∀y + y ↓?

R x⇒ X(x) ↓?
R true.

4 Pseudo-regular Formulae

In this section, we present a class of positive second order joinability equations
which can be decided by Algorithm 1. The class of CTRS we consider is an
extension to the conditional case of the class studied in [12]

Definition 4. A conditional constructor based CTRS R is said to be pseudo-
regular if all its rewrite rules are of the form
f(t1, . . . , tn) → C[f1(�x1), . . . , fm(�xm)] ⇐ f ′1(�x

′
1) ↓R x

′
1 . . . f

′
k(�x′k) ↓R x

′
k where

– C is a constructor context, f, f1, . . . , fm, f ′1, . . . , f
′
k are defined function sym-

bols
–
⋃

1≤i≤m(�xi) ∪
⋃

1≤i≤k(�x′i) ∪
⋃

1≤i≤k(x′k) ⊆ Var(f(t1, . . . , tn)) ∪ Var(C)
– there exists a mapping π:Var 
→ IN+, such that π(x) = u implies that all

occurrences of x in t1, . . . , tn and in C are at position u,
– all the variables of �x′i have the same image by π as x′i (1 ≤ i ≤ k).
– the image by π of all the variables of �xi is u, the position of fi(�xi) in
C[f1(�x1), . . . , fm(�xm)] (1 ≤ i ≤ m).

C is said to be the irreducible part of C[f1(�x1), . . . , fm(�xm)], the terms fi(�xi)
are called possible redexes and the positions of the fi in C the possible redex
positions of C[f1(�x1), . . . , fm(�xm)]

Example 5. R = {f(s(c(x, y)), s(c(x, z))) → s(c(g(x), f(y, y))) ⇐ g(z) ↓R y,
f(s(0), s(0)) → 0, g(s(x)) → s(x)} is pseudo-regular. The irreducible part of the
lhs of the first rule is s(c(�1,�2)) and it contains two possible redex positions
namely 1.1 and 1.2 corresponding to the possible redexes g(x) and f(y, y). Notice
that Definition 4 does not forbid duplicated variables in a single possible redex.
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Definition 5. Let R be a pseudo-regular CTRS, a pseudo-regular second order
formula is a second order joinability formula that does not contain any construc-
tor symbol.

The formula of Example 3 is not a pseudo-regular second order formula since
it contains the constructor symbol true. It can be easily transformed into a
pseudo-regular one by introducing the new defined function symbol t and the
pseudo regular rule t → true in the CTRS. Then the formula ∀x∃y ¬(y + y ↓?

R

x) ∨X(x) ↓?
R t is pseudo-regular.

In [9], an algorithm for solving first order pseudo-regular formulae is given.
This algorithm is defined in the non conditional case but relies on the fact that
defined functions of a pseudo-regular TRS define regular relations (also called
recognizable relations in [4]). For lack of space, we do not describe the algo-
rithm, but we just show that defined function of pseudo-regular CTRS define
also regular relations. For that we introduce the class of non-Greibach shared
logic programs whose predicates define regular relations. The algorithms to de-
cide membership and emptiness as well as the ones to compute set operations
on regular relations represented by logic programs are described in [11] and [9].

Definition 6. A Horn clause H ⇐ B is called non-Greibach shared pseudo-
regular (NGSPR for short) iff it contains no existential variables, B contains no
function symbols, none of the arguments of H is a variable and there exists a
mapping π:Var 
→ IN+ such that π(x) = u implies that all occurrences of x in
the arguments of H are at position u and such that π(x) = π(y) for all variables
x and y occurring in the same body atom. A program is NGSPR if all its clauses
are NGSPR.

Example 6. The clause P (d(y1, x1), c(x1, y2)) ⇐P1(x1), P2(y1, y2) is not NGSPR
since x1 is at position 2 in the first argument of the clause head and at position
1 in the second argument.

The clause P (d(x1, y1), c(x1, y2)) ⇐ P1(y1), P2(x1, y2) is also not NGSPR
since x1 and y2 occur in the same body atom but they do not occur at the same
position in the head of the clause.

The clause P (c(s(x), y), s(s(z))) ⇐ P (x, z), Q(y) is NGSPR since x and z
both occur at occurrence 1.1 in the arguments of the head.

We extend the technique presented in [12] that encodes the rewrite relation by a
logic program in order to be able to deal with CTRS’s. This translation intends
to obtain logic programs that preserve as best as possible syntactic properties
of the TRS. The obtained logic program encodes the rewrite relation with data-
steps. The aim is to obtain an NGSPR program from a pseudo-regular CTRS.

Table 2 specifies the rules that transform terms and conditional rewrite rules
to Horn clauses. Pid is a pseudo-regular predicate that defines the equality be-
tween data terms. Its set of clauses is denoted by Pid and is

Pid = {Pid(c(x1, . . . , xn), c(y1, . . . , yn)) ⇐ Pid(x1, y1), . . . , Pid(xn, yn) | c ∈ C }

For a CTRS R, let LP(R) denote the logic program consisting of Pid and the
set of clauses obtained by applying the fifth rule to all rewrite rules in R.
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Table 2. Converting CTRS rules to Horn clauses

�
v � 〈v, ∅〉 if v ∈ Var

s1 � 〈t1,G1〉 . . . sn � 〈tn,Gn〉
f(s1, . . . , sn) � 〈f(t1, . . . , tn),

⋃
i Gi〉

if f ∈ C

s1 � 〈t1,G1〉 . . . sn � 〈tn,Gn〉
f(s1, . . . , sn) � 〈x,

⋃
i Gi

⋃{Pf (t1, . . . , tn, x)}〉 if f ∈ F

s1 � 〈t1,G1〉 s2 � 〈t2,G2〉
s1 ↓R s2 � 〈ε,G1 ∪ G2 ∪ Pid(t1, t2)〉

s � 〈t,G〉 c1 � 〈ε,G1〉 . . . ck � 〈ε,Gk〉
f(s1, . . . , sn) → s ⇐ c1 . . . ck � Pf (s1, . . . , sn, t) ⇐ G ∪ G1 ∪ . . . ∪ Gk

Note that the variables x introduced by the third rule are new fresh variables.

Remark 1. In the context of pseudo-regular CTRS, the conditions are of the
form f(x1, . . . , xn) ↓R y. The transformation gives Pf (x1, . . . , xn, z), Pid(y, z)
which we simplify by Pf (x1, . . . , xn, y).

For example, the first rewrite rule of Example 5 is transformed into
Pf (s(c(x, y)), s(c(x, z)), s(c(x1 , x2))) ⇐ Pg(x, x1), Pf (y, y, x2), Pg(z, y).
The following theorem states the relation between a constructor based CTRS

R and LP(R).

Theorem 2. Let R be a CTRS, s a term such that s� 〈s′,G〉. s→∗ t and t is
a data-term holds iff LP(R) |= Gμ and t = s′μ where μ is a data substitution.

The proof of this theorem as well as the proof of the following lemma are es-
sentially the same as the equivalent ones for pseudo-regular TRS. They can be
found in [10].

Lemma 5. If R is a pseudo-regular CTRS, LP(R) is a NGSPR logic program.

Theorem 2 and Lemma 5 are sufficient to re-use the algorithm described in [9]
to solve first order pseudo-regular formulae in the conditional case. This leads
to the following result

Theorem 3. Satisfiability of positive second order pseudo-regular formulae can
be decided.

Proof. Let us call A the algorithm to solve first order pseudo-regular formulae.
From Theorem 1, we know that Algorithm 1 with A, a pseudo-regular CTRS
R and a positive second order pseudo-regular formula F as input, produces the
empty set iff F is not satisfiable. ��

The algorithm A produces an NGSPR logic program when the formula is satisfi-
able. It would be interesting to be able to give the corresponding CTRS so that



Deciding Satisfiability of Positive Second Order Joinability Formulae 27

the instance of second order variables are expressed in the same formalism as the
relation defined by function symbols of the input CTRS. This transformation
may be used to synthesize programs from second order pseudo-regular formulae.

For each flat atom A of the form P (x1, . . . , xn−1, xn) we define term(A) =
fP (x1, . . . , xn−1) and equat(A) = fP (x1, . . . , xn−1) ↓R xn. We extend equat to
a set of flat atoms G in the natural way i.e. equat(G) = { equat(A) | A ∈ G }.

Definition 7. Let C = P (t1, . . . , tn−1, C[x1, . . . , xm]) ⇐ G,G′ be an NGSPR
clause where G = {P (�x, x) | x ∈ {x1, . . . , xm} and x occurs once in G,G′ }

RR(C) = fP (t1, . . . , tn−1) → C[x1, . . . , xm]σ ⇐ equat(G′) where σ = { x 
→
term(P (�x, x)) | P (�x, x) ∈ G }.

For an NGSPR logic program P, let RR(P) denote the CTRS consisting of
the rules {RR(H ⇐ G) | H ⇐ G ∈ P }.

For example, Pf (s(x1, y), s(x2, y), s(z1, z2)) ⇐ Pf (x2, x1, z1), Pf (x1, x1, x2) is
transformed into f(s(x1, y), s(x2, y)) → s(f(x2, x1), z2) ⇐ f(x1, x1) ↓R x2.

Lemma 6. If P be an NGSPR logic program then RR(P) is a pseudo-regular
CTRS.

The proof of this lemma is mainly done by making a correspondence between
body atoms of NGSPR clauses and function positions in the rhs of corresponding
conditional rule.

Lemma 7. If P be an NGSPR logic program then LP(RR(P)) = P modulo
renaming of the introduced variables and the auxiliary predicate symbols.

Proof. In this proof we consider that PfP is a notation for the predicate symbol
P . Let P be an NGSPR logic program and C be a clause of P . C is of the form
P (t1, . . . , tn−1, C[x1, . . . , xm]) ⇐ G,G′.

RR(C) = fP (t1, . . . , tn−1) → C[x1, . . . , xm]σ ⇐ equat(G′) where σ = { x 
→
term(P (�x, x)) | P (�x, x) ∈ G }. For each atom P (�x, x) of G′, equat(P (�x, x)) =
fP (�x) ↓R x. From Remark 1, each equation fP (�x) ↓R x is transformed into
PfP (�x, x) (i.e P (�x, x)).

Each atom P (�x, x) of G is transformed into the term fP (�x). From Table 2
fP (�x) � 〈x, PfP (�x, x)〉, therefore C[x1, . . . , xm]σ � 〈C[x1, . . . , xm],G〉. Hence
fP (t1, . . . , tn−1) → C[x1, . . . , xm]σ ⇐ equat(G′) � C. ��

Theorem 4. Let P be an NGSPR logic program and P (�t, t) be a ground atom.
P |= P (�t, t) iff fP (�t) →∗ t.

Proof. From Lemma 7, we know that LP(RR(P)) = P . The term fP (�t) is
transformed by � to 〈x, P (�t, x)〉 because all the terms of �t are ground data
terms and we consider PfP as a notation for P . From Theorem 2 we know that
fP (�t) →∗ t iff t is a ground data-term, LP(RR(P)) |= P (�t, x)μ and t = xμ, in
other words iff P |= P (�t, t). ��
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5 Conclusion

In this paper, we describe an algorithm to decide positive second order joinability
formulae when an algorithm to compute a decidable representation of first order
formulae exists. We have applied this algorithm to the class of pseudo-regular
formulae by extending some of the results of [9] to conditional term rewrite
systems. When the formula is satisfiable, the algorithm expresses the instances
of second order variables by a CTRS. This result provides a mechanism for
synthesizing CTRS which can be considered as functional logic programs.

Second order theories with second order variables occurring in the terms have
been studied in the context of second order unification (see e.g. [8,14]). Our join-
ability equations are unifiability equations when the CTRS is confluent therefore
solving pseudo-regular second order equations requires solving second order uni-
fication modulo a CTRS.

The synthesis of programs from a specification has been already investigated.
In the context of functional programs for example [6,1] use term rewrite systems
to provide a computational model for functional programming. The specifica-
tion of the function to be synthesized is a set of equations that can be viewed
as a positive conjunctive formula. Higher order logic has been used in [3] for
specification in order to synthesize logic programs but some heuristics are used
and the result is partially correct whereas our method is exact (i.e. we obtain
a correct instance for second order variables). In most of the cases synthesis
of programs (functional or not) uses induction with deductive methods to find
partially correct results. As a consequence such methods generate more general
programs than ours. In our framework, such partial solutions may be generated
using some approximations during the computation of the operations on the
regular relations.

Acknowledgements. We would like to thank the referees for their substantial
comments and valuable suggestions.
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Abstract. This paper introduces a propositional encoding for lexico-
graphic path orders in connection with dependency pairs. This facilitates
the application of SAT solvers for termination analysis of term rewrite
systems based on the dependency pair method. We address two main
inter-related issues and encode them as satisfiability problems of propo-
sitional formulas that can be efficiently handled by SAT solving: (1) the
combined search for a lexicographic path order together with an argu-
ment filtering to orient a set of inequalities; and (2) how the choice of the
argument filtering influences the set of inequalities that have to be ori-
ented. We have implemented our contributions in the termination prover
AProVE. Extensive experiments show that by our encoding and the ap-
plication of SAT solvers one obtains speedups in orders of magnitude as
well as increased termination proving power.

1 Introduction

In recent work [5], Codish et al. introduce a propositional encoding of lexico-
graphic path orders (LPO) and demonstrate that SAT solving can drastically
speed up the solving of LPO termination problems. The key idea is that the
encoding of a term rewrite system (TRS) R is satisfiable if and only if R is
LPO-terminating and that each model of the encoding indicates a particular
LPO which orients the rules in R. However, lexicographic path orders on their
own are too weak for many interesting termination problems and hence LPO
is typically combined with more sophisticated termination proving techniques.
One of the most popular and powerful such techniques is the dependency pair
(DP) method [2]. Essentially, for any TRS the DP method generates a set of
inequalities between terms. If one can find a well-founded order satisfying these
inequalities, then termination is proved. A main advantage of the DP method is
that it permits the use of orders which need not be monotonic. This allows the
application of lexicographic path orders combined with argument filterings.

For every function symbol f , an argument filtering π specifies which parts
of a term f(. . .) may be eliminated before comparing terms. As stated in [17],
� Supported by the Deutsche Forschungsgemeinschaft DFG under grant GI 274/5-1.

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 30–44, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



SAT Solving for Argument Filterings 31

“the dependency pairs method derives much of its power from the ability to
use argument filterings to simplify constraints”. However, argument filterings
represent a severe bottleneck for the automation of dependency pairs, as the
search space for argument filterings is enormous. In recent refinements of the
DP method [11,23], the choice of π also influences the set of usable rules which
contribute to the inequalities that have to be oriented.

This paper extends the approach of [5] by providing a propositional encoding
which combines the search for an LPO with the search for an argument filtering.
This extension is non-trivial as the choice of an argument filtering π influences
the structure of the terms in the rules as well as the set of rules which contribute
to the inequalities that need to be oriented. The key idea is to combine all of the
constraints on π which influence the definition of the LPO and the definition of
the usable rules and to encode these constraints in SAT. This encoding captures
the synergy between precedences on function symbols and argument filterings. In
our approach there exist an argument filtering π and an LPO which orient a set of
inequalities if and only if the encoding of the inequalities is satisfiable. Moreover,
each model of the encoding corresponds to a suitable argument filtering and a
suitable LPO which orient the inequalities.

After the necessary preliminaries on LPO and on the DP method in Sect. 2,
Sect. 3 extends the approach of [5] to consider argument filterings. Sect. 4 shows
how to extend this encoding to account for the influence of an argument filtering
on the set of usable rules. In Sect. 5 we describe the implementation of our
results in the termination prover AProVE [14] and provide extensive experimental
evidence indicating speedups in orders of magnitude. We conclude in Sect. 6.

2 Preliminaries

This section briefly describes the starting points for the rest of the paper: propo-
sitional encodings for lexicographic path orders [5,20] and the dependency pair
framework [2,12,17]. We refer to [3] for further details on term rewriting.

We assume an algebra of terms constructed over given sets of symbols F and
variables V . Let >F denote a (strict or non-strict) partial order on F (a so-called
precedence) and let ≈F denote the corresponding equivalence relation. We denote
by ∼ the equality of terms up to equivalence of symbols. Observe that if >F is
strict then ≈F and ∼ are the identity of symbols and terms respectively. Each
precedence >F on the symbols induces a lexicographic path order on terms.

Definition 1 (LPO [19]). The lexicographic path order �LPO on terms in-
duced by the partial order >F is defined as s = f(s1, . . . , sn) �LPO t if and only
if one of the following holds:

1. t = g(t1, . . . , tm) and s �LPO tj for all 1 ≤ j ≤ m and either
(i) f >F g or (ii) f ≈F g and 〈s1, . . . , sn〉 �lex

LPO 〈t1, . . . , tm〉; or
2. si �LPO t for some 1 ≤ i ≤ n.

Here �lex
LPO is the lexicographic extension of �LPO to tuples of terms and �LPO

is the union of �LPO and ∼.
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The classical approach to prove termination of a TRS R is to find a reduction
order � which orients all rules � → r in R (i.e., � �LPO r). A reduction order
is an order which is well founded, monotonic, and stable (closed under contexts
and substitutions). In practice, most reduction orders amenable to automation
are simplification orders [7], i.e., they contain the embedding relation �emb.

The LPO is one of the most prominent simplification orders and raises the
associated decision problem: For terms s and t, is there a precedence >F such
that s �LPO t holds? This decision problem comes in two flavors: “strict-LPO”
and “quasi-LPO” depending on whether >F is required to be strict or not.
Finding >F such that s �LPO t is tantamount to solving a constraint obtained
by unfolding the definition of s �LPO t, cf. [6,15].

As an example, let F = {−,+, ∗}. Then there exists a strict precedence such
that −(x + y) �LPO (−x) ∗ (−y) if and only if the partial order constraint
(− >F ∗)∨ ((+ >F ∗)∧ (+ >F −)) has a solution. In [20] the authors show how
such constraints can be encoded into propositional formulas. These formulas are
satisfiable if and only if there exists a suitable partial order >F . A substan-
tially improved encoding from such partial order constraints into propositional
formulas is presented in [5].

It is well known that lexicographic path orders on their own are not very
powerful for proving termination.

Example 2. Consider the following TRS R for division on natural numbers [2].

minus(x, 0) → x (1)
minus(s(x), s(y)) → minus(x, y) (2)

quot(0, s(y)) → 0 (3)
quot(s(x), s(y)) → s(quot(minus(x, y), s(y))) (4)

Rules (1) - (3) can easily be oriented using an LPO, but rule (4) cannot. To see
this, observe that if we instantiate y by s(x), we obtain quot(s(x), s(s(x))) ≺emb

s(quot(minus(x, s(x)), s(s(x)))). Thus, no simplification order can show termina-
tion of R. This drawback was the reason for developing more powerful approaches
like the dependency pair method.

The dependency pair framework [12] is a modular reformulation and improve-
ment of Arts and Giesl’s dependency pair approach [2] which was also inspired by
related work in [4,17]. To ease readability, the following presentation is slightly
simplified yet sufficient to state the contributions of this paper. For further de-
tails on the dependency pair framework see [12].

For a term rewrite system R over the symbols F , the set of defined symbols
DR ⊆ F is the set of all root symbols of left-hand sides of R. With each defined
symbol f ∈ DR we extend the signature F by a fresh tuple symbol F . For
each rule f(s1, . . . , sn) → r in a term rewrite system R and for each subterm
g(t1, . . . , tm) of r with g ∈ DR, F (s1, . . . , sn) → G(t1, . . . , tm) is a dependency
pair, intuitively indicating that a function call to f may lead to a function call
to g. The set of dependency pairs of R is denoted DP (R).

Example 3. Recall the term rewrite system from Ex. 2. The defined symbols are
minus and quot and there are three dependency pairs:
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MINUS(s(x), s(y)) → MINUS(x, y) (5)
QUOT(s(x), s(y)) → MINUS(x, y) (6)
QUOT(s(x), s(y)) → QUOT(minus(x, y), s(y)) (7)

The main result underlying the dependency pair method states that a term
rewrite system R is terminating if and only if there is no infinite (minimal)
R-chain of its dependency pairs DP (R) [2]. In other words, there is no infinite
sequence of dependency pairs s1 → t1, s2 → t2, . . . fromDP (R) such that for all i
there is a substitution σi where tiσi is terminating with respect to R and tiσi →∗

R
si+1σi+1. To prove absence of such infinite chains automatically, we consider so-
called dependency pair problems. A dependency pair problem (P ,R) is a pair
of term rewrite systems P and R and poses the question: “Is there an infinite
R-chain of dependency pairs from P?” The goal is to solve the dependency pair
problem (DP (R),R) in order to determine termination of R.

Termination techniques now operate on dependency pair problems and are
called DP processors. Formally, a DP processor Proc takes a dependency pair
problem as input and returns a new dependency pair problem which then has to
be solved instead. A processor Proc is sound if for all dependency pair problems
(P ,R) where Proc(P ,R) = (P ′,R), there is an infinite R-chain of pairs from
P ′ whenever there is an infinite R-chain of pairs from P . Soundness of a DP
processor is required to prove termination and in particular, to conclude that
there is no infinite R-chain if Proc(P ,R) = (∅,R).

So termination proofs in the DP framework start with the initial DP problem
(DP (R),R). Then the DP problem is simplified repeatedly by sound DP pro-
cessors. If one reaches the DP problem (∅,R), then termination is proved. In the
following, we present one of the most important processors of the framework, the
so-called reduction pair processor. Additional processors are described in [12].

For a DP problem (P ,R), the reduction pair processor generates inequality
constraints which should be satisfied by a reduction pair (�,�) [21] where � is
reflexive, transitive, monotonic, and stable and � is a stable well-founded order
compatible with � (i.e., � ◦ � ⊆ � or � ◦ � ⊆ �). However, � need not be
monotonic. A typical choice for a reduction pair (�,�) is to use simplification
orders in combination with argument filterings [2] (we adopt notation of [21]).

Definition 4 (Argument Filtering). An argument filtering π maps every n-
ary function symbol to an argument position i ∈ {1, . . . , n} or to a (possibly
empty) list [i1, . . . , ip] with 1 ≤ i1 < · · · < ip ≤ n. An argument filtering π
induces a mapping from terms to terms:

π(t) =

⎧⎨⎩ t if t is a variable
π(ti) if t = f(t1, . . . , tn) and π(f) = i
f(π(ti1 ), . . . , π(tip)) if t = f(t1, . . . , tn) and π(f) = [i1, . . . , ip]

For a relation � on terms, let �π be the relation where s �π t holds if and only
if π(s) � π(t). An argument filtering with π(f) = i is called collapsing on f .

Arts and Giesl show in [2] that if (�,�) is a reduction pair and π is an argu-
ment filtering then (�π,�π) is also a reduction pair. In particular, we focus on
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reduction pairs of the form (�π
LPO, �π

LPO) to prove termination of examples like
Ex. 2 where the direct application of simplification orders fails.

The constraints generated by the reduction pair processor require that (a) all
dependency pairs in P are weakly or strictly decreasing and, (b) all usable rules
U(P ,R) are weakly decreasing. Here, a rule f(. . .) → r from R is usable if f
occurs in the right-hand side of a dependency pair from P or of a usable rule. In
Ex. 2, the symbols occurring in the right-hand sides of the dependency pairs (5)
- (7) are MINUS, QUOT, s, and minus. Therefore the minus-rules (1) and (2) are
usable. Since the right-hand sides of the minus-rules do not contain additional
symbols, these are in fact all of the usable rules. Hence, the quot-rules (3) and
(4) are not usable.

As shown in [16,23], under certain conditions on the reduction pair, Restric-
tion (b) ensures that in chains s1 → t1, s2 → t2, . . . with tiσi →∗

R si+1σi+1,
we have tiσi � si+1σi+1. The required conditions hold in particular for any re-
duction pair constructed using simplification orders and argument filterings and
specifically for (�π

LPO,�π
LPO). Hence, the strictly decreasing pairs of P cannot

occur infinitely often in chains. This enables the processor to delete such pairs
from P . In the following, for any term rewrite system Q and relation �, we
denote Q	 = {s→ t ∈ Q | s � t}.

Theorem 5 (Reduction Pair Processor). Let (�,�) be a reduction pair for
a simplification order � and let π be an argument filtering. Then the following
DP processor Proc is sound.

Proc(P ,R) =
{

(P \ P	π ,R) if P	π ∪ P�π = P and R�π ⊇ U(P ,R)
(P ,R) otherwise

Example 6. For the term rewrite system of Ex. 2, according to Thm. 5 we search
for a reduction pair solving the following inequality constraints.

minus(x, 0) � x
minus(s(x), s(y)) � minus(x, y)

MINUS(s(x), s(y)) (�) MINUS(x, y) (8)

QUOT(s(x), s(y)) (�) MINUS(x, y) (9)

QUOT(s(x), s(y)) (�) QUOT(minus(x, y), s(y)) (10)

By Thm. 5, all dependency pairs corresponding to strictly decreasing inequalities
(8) - (10) can be removed. To solve the inequalities we may take (�π

LPO, �π
LPO)

where π(minus)=1, π(s)=π(MINUS)=π(QUOT)=[1], and where �LPO and �LPO

are induced by the partial order QUOT >F MINUS. For this choice, inequalities
(8) - (10) are all strict and hence removed by the reduction pair processor. This
results in the new DP problem (∅,R) which proves termination of Ex. 2.

We conclude this brief description of the dependency pair framework with a
statement of the central decision problem associated with argument filterings,
LPO, and dependency pairs:

For a given dependency pair problem (P ,R), does there exist a reduction
pair (�π

LPO, �π
LPO) for some argument filtering π and lexicographic path

order induced by some partial order >F such that all rules in P and in
R are weakly decreasing and at least one rule in P is strictly decreasing?
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In the following section we show how to encode constraints like “s �π
LPO t” and

“s �π
LPO t” as propositional formulas. Such an encoding enables us to encode the

decision problem stated above as a SAT problem. Based on the solution of the SAT
problem one can then identify the dependency pairs which can be removed fromP .

3 Encoding LPO and Argument Filtering

In this section we consider lexicographic path orders with argument filterings and
the corresponding decision problem. Consider first a naive brute force approach.
For any given argument filtering π we generate the formula∧

	→r∈U(P,R)

π(�) �LPO π(r) ∧
∧

s→t∈P
π(s) �LPO π(t) ∧

∨
s→t∈P

π(s) �LPO π(t) (11)

The constraints “π(s) �LPO π(t)” and “π(s) �LPO π(t)” can be encoded as
described in Sect. 2. Then SAT solving can search for an LPO satisfying (11) for
the given filtering π. However, this approach is hopelessly inefficient, potentially
calling the SAT solver for each of the exponentially many argument filterings.
Even if one considers the less naive enumeration algorithms implemented in [14]
and [18], for many examples the SAT solver would be called exponentially often.

A contribution of this paper is to show instead how to encode the argument
filterings into the propositional formula and delegate the search for an argument
filtering to the SAT solver. In this way, the SAT solver is only called once with
an encoding of Formula (11) and it can search for an argument filtering and for
a precedence at the same time. This is clearly advantageous, since the filtering
and the precedence highly influence each other.

So our goal is to encode constraints like “s �π
LPO t” (or “s �π

LPO t”) into
propositional formulas such that every model of the encoding corresponds to a
concrete filtering π and precedence >F which satisfy “s �π

LPO t” (or “s �π
LPO

t”). We first provide an explicit definition which then provides the basis for
specifying partial order and argument filtering constraints, satisfaction of which
give “s �π

LPO t” (or “s �π
LPO t”). The essential differences with Definition 1

are two: each of the two cases of Definition 1 is refined to consider the effect of
π; and we define the weak version �π

LPO of the order explicitly instead of just
defining it via the equivalence on terms.

Definition 7 (LPO modulo π). Let >F be a (strict or non-strict) precedence
and let π be an argument filtering on F . Let x denote a variable.

(I) The induced lexicographic path order �π
LPO on terms is defined as follows:

s = f(s1, . . . , sn) �π
LPO t if and only if one of the following holds:

1. t = g(t1, . . . , tm) and
(a) π(g) = j and s �π

LPO tj; or
(b) π(f) = [i1, ..., ip], π(g) = [j1, ..., jq], s �π

LPO tj for all j ∈ [j1, . . . , jq],
and either (i) f >F g or

(ii) f ≈F g and 〈si1 , . . . , sip〉 �π,lex
LPO 〈tj1 , . . . , tjq〉; or
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2. (a) π(f) = i and si �π
LPO t; or

(b) π(f) = [i1, . . . , ip] and for some i ∈ [i1, . . . , ip], (si �π
LPO t).

(II) For tuples of terms we define 〈s1, . . . , sn〉 �π,lex
LPO 〈t1, . . . , tm〉 iff n > 0 and

(a) m = 0 or
(b) m>0 and ((s1 �π

LPO t1)∨((s1 �π
LPO t1)∧〈s2, ..., sn〉 �π,lex

LPO 〈t2, ..., tm〉)).
(III) �π

LPO and �π,lex
LPO are defined in an analogous way to �π

LPO and �π,lex
LPO:

(a) replacing �π
LPO by �π

LPO in (I) 1(a) and 2(a); and
(b) adding the case x �π

LPO g(t1, . . . , tm) iff π(g) = j and x �π
LPO tj, and

the case x �π
LPO x to (I); and

(c) replacing �π,lex
LPO by �π,lex

LPO in (I),(II) and adding 〈 〉 �π,lex
LPO 〈 〉 to (II).

It follows directly from Definitions 1, 4, and 7 that for all terms s and t we have
s �π

LPO t⇔ π(s) �LPO π(t) and s �π
LPO t⇔ π(s) �LPO π(t).

The decision problem associated with Def. 7 is stated as follows: For terms s
and t, does there exist a partial order >F and an argument filtering π such that
s �π

LPO t resp. s �π
LPO t holds. This problem again comes in two flavors:“strict-

LPO” and “quasi-LPO” depending on whether >F is required to be strict or
not. Our aim is to encode these decision problems as constraints on >F and π,
similar to the encoding of s �LPO t as a partial order constraint in Sect. 2. The
difference is that now we have two types of constraints: constraints on the partial
order >F and constraints on the argument filtering π. To express constraints on
argument filterings we use atoms of the following forms: “π(f) = i” to constrain
π to map f to the value i; “π(f) &− i” to constrain π to map f either to a list
containing i or to i itself; and “list(π(f))” to constrain π to map f to a list. So
“list(π(f))” means that π is not collapsing on f .

Each of the definitions (I) - (III) in Def. 7 induces an encoding to constraints
on partial orders and argument filterings. In the following definition, we illustrate
the encoding of s �π

LPO t for the case of strict-LPO with argument filterings.
The encoding for s �π

LPO t and the encodings for quasi-LPO are defined in
a similar way. In the following definition, τ1a, τ1b and τ2 are the parts of the
encoding corresponding to cases 1(a), 1(b) and 2(a-b) in Def. 7 (I).

Definition 8 (Encoding strict-LPO with Argument Filterings). The
strict-LPO encoding of s �π

LPO t is a mapping τ from pairs of terms s and t
to constraints defined by the rules depicted in Fig. 1 (where x denotes a variable).

Example 9. Consider the first arguments of QUOT in dependency pair (7). Using
Def. 8, after simplification of conjunctions, disjunctions, and implications with
true and false we obtain:

τ(s(x) �π
LPO minus(x, y)) = (π(minus)=1 ∧ list(π(s)) ∧ π(s) &− 1)

∨(list(π(s)) ∧ list(π(minus)) ∧ (s >F minus) ∧
(π(minus) &− 1 → list(π(s)) ∧ π(s) &− 1) ∧ ¬(π(minus) &− 2))

Thus, s(x) �π
LPO minus(x, y) holds if and only if minus is collapsed to its first

argument and s is not filtered or if s and minus are not collapsed, s is greater than
minus in the precedence, the second argument of minus is filtered, and whenever
minus keeps the first argument then s keeps the first argument, too.
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Encoding I:

τ (s �π
LPO t) = τ1a(s �π

LPO t)
∨

τ1b(s �π
LPO t)

∨
τ2(s �π

LPO t)

τ1a(x �π
LPO t)=τ1b(x �π

LPO t)=τ2(x �π
LPO t)=τ1a(s �π

LPO x)=τ1b(s �π
LPO x)=false

τ1a(s �π
LPO g(t1, . . . , tm)) =

∨
1≤j≤m

(
(π(g) = j)

∧
τ (s �π

LPO tj)
)

for non-variable s

τ1b(f(s1, . . . , sn) �π
LPO g(t1, . . . , tm)) = list(π(f))

∧
list(π(g))

∧
(f >F g)

∧∧
1≤j≤m

(π(g) �− j) → τ (f(s1, . . . , sn) �π
LPO tj) for f 
= g

τ1b(f(s1, . . . , sn) �π
LPO f(t1, . . . , tn) = list(π(f))

∧
τ (〈s1, . . . , sn〉 �π,lex

LPO,f 〈t1, . . . , tn〉)∧∧
1≤j≤n

(π(f) �− j) → τ (f(s1, . . . , sn) �π
LPO tj)

τ2(f(s1, . . . , sn) �π
LPO t) =

∨
1≤i≤n

(
(π(f) = i)

∧
τ (si �π

LPO t)
)

∨⎛⎝list(π(f)) ∧
∨

1≤i≤n

(π(f) �− i) ∧ τ (si �π
LPO t)

⎞⎠
Encoding II:

τ (〈si, . . . , sn〉 �π,lex
LPO,f 〈ti, . . . , tn〉) = false if n = 0 else

((π(f) �− i)
∧

τ (si �π
LPO ti))

∨(
( (π(f) �− i) → τ (si �π

LPO ti) )
∧

τ (〈si+1, . . . , sn〉 �π,lex
LPO,f 〈ti+1, . . . , tn〉)

)
Fig. 1. Encoding LPO with Argument Filterings

We proceed to describe how partial order and argument filtering constraints are
transformed into propositional logic. The propositional encoding of partial order
constraints is presented in more detail in [5].

Let |F| = m. The basic idea is to interpret the symbols in F as indices in a
partial order taking finite domain values from the set {1, . . . ,m}. Each symbol
f ∈ F is thus modeled as 〈fk, . . . , f1〉 with fk the most significant bit and
k = 'log2m(. The binary value of 〈fk, . . . , f1〉 represents the position of f in
the partial order. Of course, fk, . . . , f1 may be equal to gk, . . . , g1 for f �= g, if a
(possibly strict) partial order imposes no order between f and g, or if a non-strict
partial order imposes f ≈F g. Constraints of the form (f >F g) or (f ≈F g) on F
are interpreted as constraints on indices and it is straightforward to encode them
in k-bit arithmetic: A constraint of the form (f ≈F g) is encoded in k bits by

‖(f ≈F g)‖k =
∧

1≤i≤k

(fi ↔ gi).

A constraint of the form (f >F g) is encoded in k bits by

‖(f >F g)‖k =
{

(f1 ∧ ¬g1) if k = 1
(fk ∧ ¬gk) ∨ ((fk ↔ gk) ∧ ‖(f > g)‖k−1) if k > 1
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To encode argument filtering constraints, we associate with each symbol f ∈ F
of arity n the propositional variables listf (which is true if and only if π is
not collapsing on f) and arg1f , . . . , arg

n
f (which indicate which arguments of f

remain after filtering by π). We impose for each f ∈ F of arity n a constraint
of the form ¬listf →

⊕
1≤i≤n arg

i
f where

⊕
1≤i≤n arg

i
f specifies that exactly

one of the variables argi
f is true and the rest are false . The argument filtering

constraints are then encoded as follows: ‖list(π(f))‖ = listf ; ‖π(f) &− i‖ = argi
f ;

and ‖π(f) = i‖ = ¬listf ∧ argi
f .

Example 10. Consider the encoding in Ex. 9 which contains partial order con-
straints and argument filtering constraints. Using the above encoding for these
constraints, we obtain the following propositional formula. Since there are only
m = 2 symbols s and minus, we choose k = 1 and encode the partial order
constraint (s >F minus) as (s1 ∧ ¬minus1).

‖τ(s(x) �π
LPO minus(x, y))‖ = (¬listminus ∧ arg1minus ∧ lists ∧ arg1s )

∨(lists ∧ listminus ∧ (s1 ∧ ¬minus1) ∧
(arg1minus → lists ∧ arg1s ) ∧ ¬arg2minus)

4 Argument Filterings and Usable Rules

Recent improvements of the DP method [11,23] significantly reduce the number
of rules required to be weakly decreasing in the reduction pair processor of
Thm. 5. We first recapitulate the improved reduction pair processor and then
adapt our propositional encoding accordingly.

The idea is that one can restrict the set of usable rules by taking the argu-
ment filtering into account: in right-hand sides of dependency pairs or rules, an
occurrence of f in the i-th argument of g will never be the cause to introduce
a usable f -rule if the argument filtering eliminates g’s i-th argument. For in-
stance, when taking π(QUOT) = [2] in Ex. 2, the right-hand side of the filtered
dependency pairs do not contain minus anymore. Thus, no rule is considered
usable. In Def. 11, we define these restricted usable rules for a term t (initially
corresponding to the right-hand side of a dependency pair). Here, we make the
TRS R explicit to facilitate a straightforward encoding in Def. 14 afterwards.

Definition 11 (Usable Rules modulo π [11,23]). Let R be a TRS and π
an argument filtering. For any function symbol f , let RlsR(f) = {� → r ∈ R |
root(�) = f}. For any term t, the usable rules Uπ(t,R) modulo π are given by:

Uπ(x,R) = ∅ for all variables x
Uπ(f(t1, . . . , tn),R) = RlsR(f) ∪⋃

	→r∈RlsR(f) Uπ(r,R \RlsR(f)) ∪⋃
π(f)�−i Uπ(ti,R \RlsR(f))

For a set of dependency pairs P, let Uπ(P ,R) =
⋃

s→t∈P Uπ(t,R).

We now refine the reduction pair processor of Thm. 5 to consider usable rules
modulo π.
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Theorem 12 (Reduction Pair Processor modulo π [23]). Let (�,�) be a
reduction pair for a simplification order � and let π be an argument filtering.
Then the following DP processor Proc is sound.

Proc(P ,R) =
{

(P \ P	π ,R) if P	π ∪ P�π = P and R�π ⊇ Uπ(P ,R)
(P ,R) otherwise

Example 13. Consider the following TRS (together with the minus-rules (1), (2))
ge(x, 0) → true (12)

ge(0, s(y)) → false (13)
ge(s(x), s(y)) → ge(x, y) (14)

div(x, y) → if(ge(x, y), x, y) (15)
if(true, s(x), s(y)) → s(div(minus(x, y), s(y))) (16)

if(false, x, s(y)) → 0 (17)

The usable rules are the minus- and ge-rules since minus occurs in the right-hand
side of the dependency pair IF(true, s(x), s(y)) → DIV(minus(x, y), s(y)) resulting
from rule (16) and ge occurs in the dependency pair DIV(x, y) → IF(ge(x, y), x, y)
resulting from rule (15). However, if one chooses an argument filtering with
π(DIV) = [1] and π(IF) = [2], then the ge-rules are no longer usable since ge does
not occur in the right-hand side of the filtered dependency pair DIV(x) → IF(x).
Now Thm. 12 only requires the filtered minus-rules and the dependency pairs to
be decreasing.

As demonstrated in [11,23] and confirmed by the experiments described in
Sect. 5, introducing argument filterings to the specification of usable rules re-
sults in a significant gain of termination proving power. However, Thm. 12 is not
straightforward to automate using SAT solvers. The technique of Sect. 3 assumes
a given set of inequalities which is then encoded to a propositional formula. The
problem with Thm. 12 is that that the set of inequalities to be oriented depends
on the chosen argument filtering. Hence, the search for an argument filtering
should be combined with the computation of the usable rules. As discussed be-
fore, an enumeration of argument filterings is hopelessly inefficient. Therefore,
we modify the encoding of the inequalities in Formula (11) to consider for every
rule � → r ∈ R, the condition under which � → r is usable. Only under this
condition one has to require the inequality π(�) �LPO π(r). To this end, instead
of encoding formula (11) we encode the following formula.∧

	→r∈Uπ(P,R)

� �π
LPO r︸ ︷︷ ︸

(a)

∧
∧

s→t∈P
s �π

LPO t︸ ︷︷ ︸
(b)

∧
∨

s→t∈P
s �π

LPO t︸ ︷︷ ︸
(c)

(11′)

The subformulas (b) and (c) are identical to those in Formula (11) and are en-
coded as a conjunction and disjunction of encodings of the forms τ(s �π

LPO t)
and τ(s �π

LPO t) using Def. 8. The definition of the usable rules in Def. 11
now induces the following encoding of subformula (a) as a propositional for-
mula ω(P ,R).1 As in Sect. 3, we use argument filtering constraints of the form
“π(f)&− i”. Moreover, we introduce a new propositional variable uf for every de-
fined function symbol f of U(P ,R) which indicates whether f ’s rules are usable.
1 The definition of ω can easily be adapted to more advanced definitions of usable rules

as well, cf. e.g. [2,11,13].
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Definition 14 (Encoding Usable Rules modulo Argument Filtering).
For a term t and a TRS R the formula ω(t,R) is defined as follows:

ω(x,R) = true for x ∈ V
ω(f(t1, . . . , tn),R) =

∧
1≤i≤n (π(f) &− i→ ω(ti,R)) for f �∈ DR

ω(f(t1, . . . , tn),R) = uf ∧ for f ∈ DR∧
	→r∈RlsR(f) ω(r,R \RlsR(f)) ∧∧
1≤i≤n (π(f) &− i→ ω(ti,R \RlsR(f)))

For a set of dependency pairs P, let

ω(P ,R) =

( ∧
s→t∈P

ω(t,R)

)
∧

⎛⎝ ∧
f∈DU(P,R)

uf →

⎛⎝ ∧
	→r∈RlsR(f)

τ(� �π
LPO r)

⎞⎠⎞⎠ .
For a DP problem (P ,R) we encode the formula (11′). Every model of this
encoding corresponds to a precedence >F and an argument filtering π satisfying
the constraints of the improved reduction pair processor from Thm. 12. Thus,
we can now use SAT solving to automate Thm. 12 as well.

Example 15. Consider the TRS R from Ex. 13. Using the encoding of Def. 14,
for P = DP (R) we obtain:

ω(P ,R) = (π(DIV) &− 1 → uminus) ∧ (π(IF) &− 1 → uge) ∧
(uminus → (τ(minus(x, 0) �π

LPO x) ∧ τ(minus(s(x), s(y)) �π
LPO minus(x, y)))) ∧

(uge → (τ(ge(x, 0) �π
LPO true) ∧ τ(ge(0, s(y)) �π

LPO false) ∧
τ(ge(s(x), s(y)) �π

LPO ge(x, y))))

5 Implementation and Experiments

The propositional encodings for LPO with argument filterings and for the reduc-
tion pair processors described in Sect. 3 and 4 are implemented and integrated
in the termination prover AProVE available from [9]. This Java implementation
consists of the following main components: (a) An encoder from DP problems
to formulas with partial order and argument filtering constraints (approx. 1700
lines). (b) A propositional encoder for partial order constraints following [5] and
for argument filtering constraints (approx. 300 lines). (c) Interfaces to several
SAT solvers (approx. 300 lines). In our experiments to evaluate the contributions
of this paper, we applied the MiniSAT solver [8]. For the translation to conjunc-
tive normal form (CNF) we used the implementation of Tseitin’s algorithm [24]
offered by SAT4J [22] - a freely available Java implementation of MiniSAT. Our
implementation uses several optimizations to minimize encoding size:

1. We apply basic simplification axioms for true and false as well as standard
Boolean simplifications to flatten nested conjunctions and disjunctions.

2. When building the formulas top-down, at each point we maintain the sets of
atomic constraints (partial order and argument filtering) that must be true
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and false from this point on. This information is then applied to simplify
all constraints generated below (in the top-down process) and to prune the
encoding process.

3. We memo and identify identical subformulas in the propositional encodings
and represent formulas as directed acyclic graphs (or Boolean circuits) in-
stead of trees. This decreases the size of the representation considerably.
(The usefulness of sharing when solving LPO constraints was already dis-
cussed in [10].) For instance, consider the constraint from Ex. 9. Already in
this tiny example, the subformula list(π(s))∧ π(s) &− 1 occurs twice, since it
results from the encoding of both s(x) �π

LPO x and s(x) �π
LPO y.

Optimization (2) typically reduces the number of propositional variables in
the resulting CNF by a factor of at least 2. Optimizations (1) and (3) together
further reduce the number of propositional variables by a typical factor of 10.

To evaluate our new SAT-based implementation, we performed extensive ex-
periments to compare it with the corresponding methods in the current non-
SAT-based implementations of AProVE [14] and of the Tyrolean Termination Tool
(TTT) [18]. In the annual International Competition of Termination Tools 2004
and 2005 [1], AProVE and TTT were the two most powerful tools for termina-
tion analysis of term rewriting. For our experiments, both AProVE and TTT
were configured to consider all argument filterings.2

We ran the three tools on all 773 TRSs from the Termination Problem Data
Base 2005. This is the collection of examples from the annual competition of ter-
mination tools. It contains 99 TRSs that are known to be non-terminating and
which serve as an error-checking mechanism. As expected, all three implemen-
tations fail to show termination of these TRSs. For the experiments, the TTT
analyzer was applied via its web interface and ran on a Xeon 2.24GHz dual-CPU
platform. The AProVE analyzer and our new SAT-based analyzer were run on
an AMD Athlon 64 at 2.2 GHz.

Apart from the reduction pair processor, we also used the dependency graph
processor [2,12,17], which is the other main processor of the dependency pair
framework. This processor is used to split up dependency pair problems into
smaller ones. As AProVE and TTT use slightly different techniques for estimat-
ing dependency graphs in the dependency graph processor and as they run on
different machines, their performance is not directly comparable.

For a fair comparison of the three different implementations, we did not use
any of the many other termination analysis techniques available in AProVE and
TTT. In particular we did not use any techniques to preprocess the TRSs and
we did not apply any other DP processors.

Tables 1 and 2 summarize the results using the DP processors based on
Thm. 5 and 12 respectively. The tools are indicated as: TTT, APR (AProVE)
and SAT (AProVE with our SAT-based encoding). For each of the experiments
we considered reduction pairs based on strict - and quasi-LPO. Each of the ex-
periments was performed with a time-out of 60 seconds (corresponding to the
2 TTT offers two algorithms to search for argument filterings. We used the “divide-

and-conquer”-algorithm, since it is usually the more efficient one.
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way tools are evaluated in the annual competition) and with a time-out of 10
minutes. We indicate by “Yes”, “Fail”, and “RL” the number of TRSs for which
proving termination with the given technique succeeds, fails, or encounters a re-
source limit (time-out or exhausts memory). Finally, we give the total time in
seconds for analyzing all 773 examples. Individual runtimes and proof details
are available from our empirical evaluation web site [9].

Table 1. Strict–LPO (left) and Quasi-LPO (right) with the DP processor of Thm. 5

LPO - 60sec t/o LPO - 10min t/o

Tool Yes Fail RL Time Yes Fail RL Time

TTT 268 448 57 4202 269 465 39 28030
APR 310 358 105 6936 310 365 98 60402
SAT 327 446 0 82 327 446 0 82

QLPO - 60sec t/o QLPO - 10min t/o

Yes Fail RL Time Yes Fail RL Time

297 395 81 6241 297 408 68 43540
320 331 122 7913 326 341 106 67764
359 414 0 183 359 414 0 183

Table 2. Strict-LPO (left) and Quasi-LPO (right) with the DP processor of Thm. 12

LPO - 60sec t/o LPO - 10min t/o

Tool Yes Fail RL Time Yes Fail RL Time

APR 338 368 67 4777 341 383 49 33329
SAT 348 425 0 82 348 425 0 82

QLPO - 60sec t/o QLPO - 10min t/o

Yes Fail RL Time Yes Fail RL Time

357 323 93 6100 359 336 78 49934
380 393 0 193 380 393 0 193

The comparison of the corresponding SAT-based and non-SAT-based config-
urations in Table 1 shows that the analyzers based on SAT solving with our
proposed encoding are faster by orders of magnitude. Moreover, the power (i.e.,
the number of examples where termination can be proved) also increases sub-
stantially in the SAT-based configurations. It is also interesting to note that there
are no time-outs in the SAT-based configurations, whereas the non-SAT-based
configurations have many time-outs.3

Table 2 provides results using the improved reduction pair processor of Thm. 12.
Again, the SAT-based configuration is much faster than the corresponding non-
SAT-based one. The comparison with Table 1 shows that replacing the processor
of Thm. 5 by the one of Thm. 12 increases power significantly and has no negative
influence on runtimes.

In both tables, the comparison between strict- and quasi-LPO (of correspond-
ing configurations) shows that quasi-LPO is more powerful but also slower than
strict-LPO. However, for the SAT-based analyses, the overall runtimes are still
extremely fast in comparison to the non-SAT-based configurations.

Table 3 highlights 5 examples which could not be solved by any tool in the termi-
nation competition 2005,whereas the SAT-based configurationproves termination
for all 5 in a total of 4.3 seconds. In fact, except for the second example, neither
TTT nor AProVE are able to prove termination within 10 minutes in their fully
3 To evaluate the optimizations on p. 40, we also tested the SAT-based configuration

with strict-LPO and the 10-minute time-out in a version where optimizations (2)
and (3) are switched off. Here, the total runtime increases from 82 to 1968 seconds.
Thus, optimizations (2) and (3) decrease total runtime by a factor of more than 20.
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automatic mode (which uses many other termination techniques in addition to
LPO and argument filtering). This demonstrates that our encoding advances the
state of the art of automated termination analysis. The third example could be
proven terminating by TTT or AProVE if they employed a strategy which applies
LPO earlier. But due to efficiency considerations, both tools did not do this yet in
their fully automatic mode. However, with the speed of our new SAT-based ap-
proach one can now develop strategies which try LPO and argument filtering as
one of the first termination techniques. Since failure of LPO is now detected very
quickly, one can still use other termination techniques afterwards.

The columns TTT, APR, and SAT indicate for the 3 tools the analysis times
in seconds (including parsing, producing proofs, computing dependency graphs,
etc.) and “t/o” indicates a 10 minute timeout. For each of the examples and tools,
the time indicated is for the fastest configuration from those described in Tables 1
and 2. For the second and third example, TTT’s “divide-and-conquer”-algorithm
times out, but its “enumeration”-algorithm (which is usually less efficient) finds
a solution within 10 minutes. Therefore, here the runtimes are given in brackets.
The last four columns give details for the largest CNF which occurred during
the termination proof with SAT (ranging over all dependency pair problems
encountered). Columns 4 and 5 indicate the number of clauses and the number
of literals of this CNF while Columns 6 and 7 indicate the time (in milliseconds)
for encoding to propositional logic and for SAT solving.

Table 3. Five hard examples: SAT solving increases termination proving power

Example TTT APR SAT # clauses # literals encod. time SAT time

Ex26 Luc03b Z t/o t/o 1.15 12462 32027 90 48
Ex2 Luc02a C (476.8) t/o 0.69 8478 21200 137 20
Ex49 GM04 C ( 25.8) 44.4 0.81 7040 17638 212 16
ExSec11 1 Luc02a C t/o t/o 0.78 10968 28265 145 12
ExSec11 1 Luc02a GM t/o t/o 0.87 19782 50608 155 72

6 Conclusion

In [5] the authors demonstrate the power of propositional encoding and ap-
plication of SAT solving to LPO termination analysis. This paper extends the
SAT-based approach to consider the more realistic setting of dependency pair
problems with LPO and argument filtering. The main challenge derives from
the strong dependencies between the notions of LPO, argument filterings, and
the set of rules which need to be oriented. The key to a solution is to intro-
duce and encode in SAT all of the constraints originating from these notions
into a single search process. We introduce such an encoding and through im-
plementation and experimentation prove that it meets the challenge yielding
speedups in orders of magnitude over existing termination tools as well as in-
creasing termination proving power. To experiment with our SAT-based imple-
mentation and for further details on our experiments please visit our web page
at http://aprove.informatik.rwth-aachen.de/eval/SATLPO [9].
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Abstract. Decision procedures are widely used in automated reasoning
tools in order to reason about data structures. In applications, many
conjectures fall outside the theory handled by a decision procedure. Of-
ten, reasoning about user-defined functions on those data structures is
needed. For this, inductive reasoning has to be employed. In this work,
classes of function definitions and conjectures are identified for which
inductive validity can be automatically decided using implicit induction
methods and decision procedures for an underlying theory. The class
of equational conjectures considered in this paper significantly extends
the results of Kapur & Subramaniam (CADE, 2000) [15], which were
obtained using explicit induction schemes. Firstly, nonlinear conjectures
can be decided automatically. Secondly, function definitions can use other
defined functions in their definitions, thus allowing mutually recursive
functions and decidable conjectures about them. Thirdly, conjectures
can have general terms from the decidable theory on inductive positions.
These contributions are crucial for successfully integrating inductive rea-
soning into decision procedures, thus enabling their use in push-button
mode in applications including verification and program analysis.

1 Introduction

Inductive reasoning about recursively defined data structures and recursive func-
tions defined on such data structures is often needed for verifying properties of
computational descriptions, both in hardware and software. Decision procedures
about commonly used data structures including numbers and data structures
generated using free constructors (such as lists and trees) are being widely used
in software and hardware verification. Push-button tools for program analysis
and verification based on decision procedures have been explored. However, most
tools based on decision procedures, including BLAST [9] and SLAM [3], are lim-
ited in their capabilities because of their inability to reason about recursively
defined functions.

One of the major challenges is to integrate inductive reasoning with deci-
sion procedures and, in particular, to identify a subclass of inductive conjectures
about recursively defined functions whose validity can be decided automati-
cally. This line of research was initiated by Kapur, Giesl, and Subramaniam
[15,7,8,12]. The aim of identifying inductive conjectures whose validity is decid-
able is achieved by imposing restrictions on the structure of function definitions,
� Partially supported by NSF grants ITR CCR-0113611 and CCR-0203051.

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 45–59, 2006.
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as well as on the conjectures about these functions. Kapur et al. use the frame-
work of explicit inductive reasoning based on the cover set method proposed in
[20].

This paper uses the framework of implicit induction for automating inductive
reasoning in order to extend the results given in [15]. Implicit induction methods,
while less widely applicable, are considered to be more amenable to automation.
A benefit of the implicit induction methods is that conjectures requiring mutual
induction can be handled more easily than in the explicit induction framework.

In [15], the concept of theory-based functions is introduced. In the definition
of a theory-based function, the only recursive calls permitted are to the same
function again. The conjectures whose validity is shown decidable in [15] are
equational conjectures r1 ≈ r2, where r2 is a term in the decidable theory and
r1 contains theory-based functions. The arguments to those theory-based func-
tions are required to be distinct variables. In [7], Boolean combinations of those
conjectures are considered. In [8], the class of conjectures is extended to linear
equational conjectures containing theory-based functions on both sides.

In this paper, we substantially extend the results from [15] in three ways that
are orthogonal to the extensions of [7,8]. Firstly, the permitted conjectures are
generalized to include nonlinear conjectures and conjectures with general terms
from the decidable theory on inductive positions, such as gcd(x, x) ≈ x and
x ≤ s(x) ≈ true, whose validity can be decided automatically. For handling such
nonlinear conjectures, conditions on function definitions are identified which can
easily be checked a priori using a decision procedure (Section 4). The second
generalization is to allow the definition of a theory-based function to use theory-
based functions other than the function being defined. A group of theory-based
function symbols can thus be viewed as being defined jointly together. This ex-
tension allows for mutually recursive theory-based definitions (Section 5). As
in [15], conjectures about these groups of function symbols can have nested
function calls (Section 6). For each of these classes, a decision procedure based
on implicit induction methods is given. The considered classes of conjectures
are highly relevant in practice and can readily be handled using implicit in-
duction methods. They are quite challenging for explicit inductive reasoning
techniques.

Due to lack of space, almost all proofs are omitted. They may be found in the
extended version of this paper [5], together with more details on the examples.

2 Background

We generally assume familiarity with the concepts of term rewriting [1]. We
use many-sorted first-order logic where “≈” is the only predicate symbol and
“≈” is reflexive, symmetric, transitive, and congruent. For a signature F and an
infinite set of variables V , we denote the set of (well-typed) terms over F and V
by Terms(F ,V) and the set of ground terms by Terms(F). We often write x∗ to
denote a tuple of (not necessarily pairwise distinct) variables, and denote by xi

the ith element of this tuple. Analogously, s∗ denotes a tuple of terms si.
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A theory T is given by a finite signature FT and a set of axioms (i.e., closed
formulas) AX T over the signature FT . The (quantifier-free) theory T is defined
to be the set of all quantifier-free formulas ϕ over FT such that AX T |= ∀∗. ϕ,
where ∀∗. ϕ is the universal closure of ϕ. In this case we also say that ϕ is valid.
We often write s ≈T t as a shorthand for AX T |= ∀∗. s ≈ t and s �≈T t as a
shorthand for AX T �|= ∀∗. s ≈ t.

For the theory TC of free constructors, AX TC consists of the universal closures
of the following formulas:

¬(c(x1, . . . , xn) ≈ c′(y1, . . . .ym)) for all c, c′ ∈ FTC where c �= c′

c(x1, . . . , xn) ≈ c(y1, . . . , yn) =⇒x1 ≈ y1 ∧ . . . ∧ xn ≈ yn for all c ∈ FTC∨
c∈FTC

∃y1, . . . , yn. x ≈ c(y1, . . . , yn)
¬(c1(. . . c2(. . . cn(. . . x . . .) . . .) . . .) ≈ x) for all sequences c1 . . . cn ∈ F∗

TC
, n > 0

Note that the last type of axioms usually results in infinitely many formulas.
Here, “. . . ” in the arguments of ci stands for pairwise distinct variables.

We use the following definition for the equational sub-theory TPA of Presburger
arithmetic on natural numbers: FTPA = {0, 1,+} and AX TPA consists of the
universal closures of the following formulas:

(x+ y) + z ≈ x+ (y + z) ¬(1 + x ≈ 0)
x+ y ≈ y + x x+ y ≈ x+ z =⇒ y ≈ z
0 + y ≈ y x ≈ 0 ∨ ∃y. x ≈ y + 1

We often write flattened terms since “+” is associative and commutative. For
t ∈ Terms(FTPA ,V) with V(t) = {x1, . . . , xn}, there exist ai ∈ N such that
t ≈TPA a0 + a1 · x1 + . . .+ an · xn. Here, “a · x” denotes the term x+ . . .+ x (a
times) and “a0” denotes 1 + . . .+ 1 (a0 times).

Instead of validity, we are usually interested in inductive validity. The formula
ϕ is inductively valid in a theory T (denoted AX T |=ind ϕ) iff AX T |= ϕσ for all
ground substitutions σ, i.e., σ substitutes all variables of ϕ by ground terms from
Terms(FT ). In general, validity implies inductive validity, but not vice versa. We
restrict ourselves to theories like TC and TPA which are decidable and inductively
complete, i.e., inductive validity of an equation r1 ≈ r2 over FT also implies its
validity.

We assume that for all sets U = {s1 ≈?
T t1, . . . , sn ≈?

T tn} with si, ti ∈
Terms(FT ,V) for all 1 ≤ i ≤ n, a finite minimal complete set CUT (U) of T -
unifiers is computable. If U = {s ≈?

T t} we also write CUT (s, t).
We use term rewrite systems (TRSs) over a signature F ⊇ FT as our speci-

fication language and require that all left sides of rules have the form f(s∗) for
a tuple s∗ of terms from Terms(FT ,V) and f �∈ FT . Let Fd = F \ FT denote
the set of defined symbols. We use the concept of rewriting modulo a theory
(→R/T ), where →R/T must be decidable. We restrict ourselves to terminating,
confluent, and sufficiently complete TRSs R, where R is terminating if →R/T is
well-founded, it is confluent if →R/T is confluent, and it is sufficiently complete
if for all (well-typed) ground terms t ∈ Terms(F) there exists a ground term
q ∈ Terms(FT ) such that t →∗

R/T q. When regarding →∗
R/T , we usually do not

distinguish between terms that are equal w.r.t. ≈T .
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A reduction order is a strict, well-founded order � on Terms(F ,V) that is
closed under contexts (C[s] � C[t] whenever s � t) and substitutions (sσ � tσ
whenever s � t). We say that � is compatible with T if ≈T ◦ � ◦ ≈T ⊆ �, i.e.,
� does not distinguish between terms that are equal w.r.t. ≈T .

The rules in R are considered as equational axioms extending the underlying
theory T . This results in a new theory with the signature F and the axioms
AX T ∪ {l ≈ r | l → r ∈ R}. To ease readability, we write AX T ∪ R instead
of AX T ∪ {l ≈ r | l → r ∈ R}. This extension is conservative, i.e., it does not
change inductive validity of equations over FT [8]. If AX T ∪ R |=ind r1 ≈ r2 we
say that the equation r1 ≈ r2 is an inductive consequence of AX T ∪ R.

3 Implicit Induction Methods and T -Based Functions

Implicit induction is a proof method that was derived in [18] from the Knuth-
Bendix completion procedure. Since its initial formulation, various improvements
have been made to the basic method, see, e.g., [10,13,11,6,14,17,2,19,4].

In this paper, we follow the presentation in [19]. The results, however, are
largely independent of this presentation and extend to other proposed methods
like the ones in [14,2,4].

Here, as in [19], the implicit induction method is given by an inference system.
The system IT shown in Figure 1 is parameterized by a TRS R and a reduction
order � which is compatible with T and orients R. It operates on two sets of
equations:

1. E , containing the set of equations to be proven, and
2. H, containing the equations (oriented as rewrite rules by �) which can be

used as inductive hypotheses.

Here, CP(R, l → r) is the set of critical pairs of R on l → r, i.e, CP(R, l → r) =⋃
p∈FPos(l) CP ′(R, l → r, p), where FPos(l) denotes the non-variable positions

in l and CP ′(R, l → r, p) = {rσ ≈ lσ[r′σ]p | l′ → r′ ∈ R, σ ∈ CUT (l|p, l′)}.
For this, the variables in l′ → r′ are suitably renamed to be disjoint from the
variables in l. Notice that we use T -unification in order to compute the critical
pairs. We use r1 ≈̇ r2 to stand for either r1 ≈ r2 or r2 ≈ r1. The inference rules
Theory1 and Theory2 are replaced by a decision procedure for T in practice.

The following theorem is obtained by extending [19, Proposition 18].

Theorem 1. If there is a successful IT -derivation (E0, ∅) 	IT (E1,H1) 	IT

. . . 	IT (∅,Hn), then all equations in E0 are inductive consequences of AX T ∪R.
If there is a refuting IT -derivation (E0, ∅) 	IT (E1,H1) 	IT . . . 	IT ⊥, then
some equation in E0 is not an inductive consequence of AX T ∪R.

In [15], the concept of a T -based function is introduced: in the rewrite rules
defining a function f, all arguments to f are terms from Terms(FT ,V), and the
right side becomes a term in Terms(FT ,V) after subterms of the form f(t∗), if
any, are abstracted using new variables.
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Expand
E ∪ {r1 ≈̇ r2},H

E ∪ E ′,H ∪ {r1 → r2}
if r1 � r2 and E ′ = CP(R, r1 → r2)

Simplify
E ∪ {r1 ≈̇ r2},H
E ∪ {r′1 ≈ r2},H

if r1 →R∪H/T r′1

Theory1

E ∪ {r1 ≈ r2},H
E ,H Theory2

E ∪ {r1 ≈ r2},H
⊥

if r1 ≈T r2 if r1 
≈T r2

Fig. 1. The inference system IT

Definition 2 (T -based Functions [15]). A function f ∈ Fd is T -based if all
rules l → r ∈ R with l(Λ) = f have the form f(s∗) → C[f(t∗1), . . . , f(t

∗
n)], where

s∗, t∗1, . . . , t
∗
n ∈ Terms(FT ,V), and C is a context over FT .

The inductive positions of a function f are those positions such that subterms
on those positions change by applying the rules defining f.

Definition 3 (Inductive Positions). For a T -based f, position i with 1 ≤ i ≤
arity(f) is non-inductive if for all rules f(s1, . . . , sm) → C[f(t1,1, . . . , t1,m), . . . ,
f(tn,1, . . . , tn,m)] where C is a context over FT , we have si ∈ V, tk,i = si, and
si �∈ V(sj) ∪ V(tk,j) for all j �= i and all 1 ≤ k ≤ n. Otherwise, the position is
inductive.

We generally assume that the first n positions of any function f are inductive,
while the remaining positions are non-inductive, for some 0 ≤ n ≤ arity(f).

Example 4. Let R be the TRS defining “−” on natural numbers over TC .

1 : x− 0 → x 2 : 0 − s(y) → 0 3 : s(x) − s(y) → x− y
Then both position 1 and position 2 of “−” are inductive positions. ♦

4 Nonlinear Simple Conjectures

In [15], a class of conjectures about theory-based functions of the form f(x∗, s∗) ≈
r, where all variables in x∗ are pairwise distinct and do not occur in s∗, is defined.
This rules out nonlinear conjectures like x′ − x′ ≈ 0. The restrictions were
imposed to ensure that the inductive hypothesis is applicable. Below, we show
how the restriction on linearity in the left side can be relaxed, thus substantially
expanding the class of conjectures which can be decided automatically.

Example 5. Continuing Example 4, we want to prove x′ − x′ ≈ 0. Indeed,

({x′ − x′ ≈ 0}, ∅) 	Expand ({0 ≈ 0, 0 ≈ x− x}, {x′ − x′ → 0})
	Simplify ({0 ≈ 0}, {x′ − x′ → 0})
	Theory1 (∅, {x′ − x′ → 0})

is a successful derivation. ♦
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The reason this derivation is successful is that whenever the terms on the induc-
tive positions in the left side of a rule have a relationship (in this case, equality),
the terms on those positions of the recursive calls in the right side have the same
relationship, which is needed to apply the inductive hypothesis. This observation
is formalized using the set ImpEq(f).

Definition 6 (ImpEq(f)). Let f be T -based and defined by the rules f(s∗i ) →
Ci[f(t∗i,1), . . . , f(t

∗
i,ni

)] for 1 ≤ i ≤ n. Then we define 〈l1, l2, C〉 ∈ ImpEq(f) iff
C = {〈kj,1, kj,2〉 | 1 ≤ j ≤ m} for some m such that 1 ≤ l1 < l2 ≤ arity(f),
1 ≤ kj,1 < kj,2 ≤ arity(f) for all 1 ≤ j ≤ m,

m∧
j=1

si,kj,1 ≈ si,kj,2 =⇒
ni∧

j=1

ti,j,l1 ≈ ti,j,l2

is T -valid for all 1 ≤ i ≤ n, and there is no C′ � C with this property.

Hence, if a term of the form f(s∗i )σ is simplified using the rule f(s∗i ) → Ci[f(t∗i,1),
. . . , f(t∗i,ni

)], then ti,k,l1σ ≈T ti,k,l2σ for all 1 ≤ k ≤ ni if si,kj,1σ ≈T si,kj,2σ for
all 1 ≤ j ≤ m.

Example 7. Continuing Example 5, we get ImpEq(−) = {〈1, 2, {〈1, 2〉}〉}. For
rule 1, x ≈ 0 =⇒ true is obviously TC -valid. Also, 0 ≈ s(y) =⇒ true obtained
from rule 2 is TC -valid. For rule 3, s(x) ≈ s(y) =⇒ x ≈ y is TC -valid as well. ♦

Clearly, the set ImpEq(f) can be computed at compile-time from the rules defin-
ing f with the help of a decision procedure for T .

Below, we extend the definition of simple conjectures in [15] to consider nonlin-
ear conjectures by relaxing the requirement that variables on inductive positions
need to be pairwise distinct.

Definition 8 (Simple Conjectures). A simple conjecture is a conjecture of
the form f(x∗, s∗) ≈ r such that1 f(x∗, s∗) � r, the function f is T -based, s∗, r ∈
Terms(FT ,V), the xi are on f’s inductive positions and do not appear in the sj,
and if xl1 = xl2 then there exists 〈l1, l2, C〉 ∈ ImpEq(f) such that xk1 = xk2 for
all 〈k1, k2〉 ∈ C.

The following theorem gives a decision procedure based on the implicit induction
framework for the class of simple conjectures which includes nonlinear as well as
linear conjectures.

Theorem 9. The inductive validity of a simple conjecture is decidable using the
strategy2 Expand · Simplify∗ · (Theory1 ∪ Theory2)∗.

Proof. Let f(x∗, s∗) ≈ r be a simple conjecture, and let

1 Here, � is the same reduction order used to orient R. In practice this means that
R∪ {f(x∗, s∗) → r} is terminating.

2 Here, ·∗ means that the inference rule is applied exhaustively.
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R′ = { f(s∗1, y
∗) → C1[f(t∗1,1, y

∗), . . . , f(t∗1,n1
, y∗)],

. . .,
f(s∗m, y

∗) → Cm[f(t∗m,1, y
∗), . . . , f(t∗m,nm

, y∗)] }

be the definition of the T -based function f.
Applying Expand to ({f(x∗, s∗) ≈ r}, ∅), we obtain the state

E = { Ci1 [f(t∗i1,1, y
∗), . . . , f(t∗i1,ni1

, y∗)]σi1 ≈ rσi1 ,
. . .,
Cil

[f(t∗il ,1
, y∗), . . . , f(t∗il,nil

, y∗)]σil
≈ rσil

},
H = { f(x∗, s∗) → r }

for some i1, . . . , il ∈ {1, . . . ,m}, where σij ∈ CUT ({x∗ ≈?
T s

∗
ij
, y∗ ≈?

T s
∗}). The

ij are such that the arguments of f(x∗, s∗) and f(s∗ij
, y∗) are T -unifiable. To ease

readability, we assume that every complete set of unifiers has cardinality 1.
If nij = 0, then Cij [f(t∗ij ,1, y

∗), . . . , f(t∗ij ,nij
, y∗)]σij = Cijσij ∈ Terms(FT ,V).

Hence, either Theory1 or Theory2 applies to Cijσij ≈ rσij .
If nij > 0, then

Cij [f(t∗ij ,1, y
∗), . . . , f(t∗ij ,nij

, y∗)]σij

= Cijσij [f(t∗ij ,1σij , s
∗), . . . , f(t∗ij ,nij

σij , s
∗)].

Now, if xl1 = xl2 , then there exists 〈l1, l2, C〉 ∈ ImpEq(f) such that xk1 = xk2 for
all 〈k1, k2〉 ∈ C. But since the arguments of f(x∗, s∗) and f(s∗ij

, y∗) are T -unifiable
by σij , this means sij ,k1σij ≈T sij ,k2σij for all 〈k1, k2〉 ∈ C. Now, the definition
of ImpEq(f) implies tij ,k,l1σij ≈T tij ,k,l2σij for all 1 ≤ k ≤ nij .

Hence, Simplify applies nij times to Cijσij [f(t∗ij ,1σij , s
∗), . . . , f(t∗ij ,nij

σij , s
∗)]

using the rule f(x∗, s∗) → r ∈ H, to get Cijσij [rτij ,1, . . . , rτij ,nij
] ≈ rσij , where

τij ,k = {x∗ 
→ t∗ij ,kσij }. Since both sides are in Terms(FT ,V), either Theory1 or
Theory2 applies. ��

With this theorem many conjectures can be handled which did not fall in the
class of simple conjectures in [15].

Example 10. Consider this TRS over TC .

max(0, y) → y max(s(x), 0) → s(x) max(s(x), s(y)) → s(max(x, y))
min(0, y) → 0 min(s(x), 0) → 0 min(s(x), s(y)) → s(min(x, y))
x < 0 → false 0 < s(y) → true s(x) < s(y) → x < y
0 ≤ y → true s(x) ≤ 0 → false s(x) ≤ s(y) → x ≤ y

Then, the following conjectures can be decided using Theorem 9:

min(x, x) ≈ x max(x, x) ≈ x
x < x ≈ false x ≤ x ≈ true
x < x ≈ true x ≤ x ≈ false

For this, we notice that ImpEq(f) = {〈1, 2, {〈1, 2〉}〉} for f ∈ {min,max, <,≤}. ♦
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4.1 Relaxing ImpEq

In some cases, the conditions of Definition 8 can be relaxed. Firstly, there can
be conjectures for which the inductive hypotheses need not be applied if the
recursive calls already rewrite to terms in the decidable theory using R.

Example 11. Consider the TRS defining gcd over TPA.

1 : gcd(x, 0) → x 3 : gcd(x+ y + 1, y + 1) → gcd(x, y + 1)
2 : gcd(0, y + 1) → y + 1 4 : gcd(x+ 1, x+ y + 1) → gcd(x+ 1, y)

Assume the conjecture gcd(x′, x′) ≈ x′ is to be proven. Theorem 9 cannot be
used, since 〈1, 2, {1, 2}〉 �∈ ImpEq(gcd) because x+ y + 1 ≈ y + 1 =⇒ x ≈ y + 1,
which is obtained from rule 3, is not TPA-valid.

However, there is a successful derivation.

({gcd(x′, x′) ≈ x′}, ∅)
�Expand ({0 ≈ 0, y + 1 ≈ gcd(0, y + 1), x + 1 ≈ gcd(x + 1, 0)}, {gcd(x′, x′) → x′})
�Simplify ({0 ≈ 0, y + 1 ≈ y + 1, x + 1 ≈ gcd(x + 1, 0)}, {gcd(x′, x′) → x′})
�Simplify ({0 ≈ 0, y + 1 ≈ y + 1, x + 1 ≈ x + 1}, {gcd(x′, x′) → x})
�3

Theory1
(∅, {gcd(x′, x′) → x′})

The key observation is that the recursive calls that are generated by Expand
simplify to terms in Terms(FTPA ,V) using just rewrite rules in R, without using
the inductive hypothesis. ♦

Secondly, general terms from a decidable theory can be allowed on inductive
positions in a conjecture if it can be ensured that the hypotheses will be appli-
cable if they are needed. Notice that applicability of a hypothesis means that it
T -matches the recursive call generated by Expand.

Example 12. Continuing Example 10, we attempt to prove the conjecture x′ <
s(x′) ≈ true, which is nonlinear and has the term s(x′) on an inductive position.
The proof attempt is as follows:

({x′ < s(x′) ≈ true}, ∅) �Expand ({true ≈ true, true ≈ x < s(x)}, {x′ < s(x′) → true})
�Simplify ({true ≈ true}, {x′ < s(x′) → true})
�Theory1 (∅, {x′ < s(x′) → true}).

The key observation is that the recursive call generated by Expand has the “right”
form for the inductive hypothesis to apply, i.e., (x < y)σ has the form z < s(z)
where σ is the substitution generated by Expand from the third rule defining
“<”, i.e, σ = {y 
→ s(x), x′ 
→ s(x)}. ♦

For formalizing these observations, we define the set T Pat(f). In the following, we
identify two tuples p∗, q∗ of the same length containing terms from Terms(FT ,V)
if q∗ can be obtained from p∗ by means of a variable renaming.
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Definition 13 (T Pat(f)). Let f be T -based and defined by the rules f(s∗i ) →
Ci[f(t∗i,1), . . . , f(t

∗
i,ni

)] for 1 ≤ i ≤ n. Then we define p∗ ∈ T Pat(f) for p∗ ∈
Terms(FT ,V) iff for all 1 ≤ i ≤ n, all σ ∈ CUT (s∗i ≈?

T p
∗)3 and all 1 ≤ k ≤ ni

either

1. p∗ T -matches t∗i,kσ, or
2. f(t∗i,k)σ →∗

R/T q for some q ∈ Terms(FT ,V).

Condition (1.) ensures that the inductive hypothesis is applicable, as demon-
strated in Example 12. Condition (2.) is for cases like Example 11 where the
inductive hypothesis is not needed. Also, notice that condition (1.) subsumes
ImpEq(f).

The set T Pat(f) is in general infinite. However, it does not have to be com-
puted at compile-time. Instead, it can be generated lazily as needed and cached
for later reuse.

Definition 14 (Generalized Simple Conjectures). A generalized simple
conjecture is a conjecture of the form f(p∗) ≈ r such that f(p∗) � r, the function
f is T -based, r ∈ Terms(FT ,V), and p∗ ∈ T Pat(f).

Example 15. Continuing Example 11, the conjecture gcd(x′, x′) ≈ x′ is gener-
alized simple since (x′, x′) ∈ T Pat(gcd). Indeed, for rule 3, CUTPA({x′ ≈?

TPA

x + y + 1, x′ ≈?
TPA

y + 1}) = {σ} where σ = {x 
→ 0, x′ 
→ y + 1}, and for this
σ we have gcd(x, y + 1)σ = gcd(0, y + 1) →R/TPA

y + 1 ∈ Terms(FTPA ,V), i.e.,
(2.) in Definition 13 applies. For rule 4, we get σ = {y 
→ 0, x′ 
→ x + 1} and
gcd(x+ 1, y)σ = gcd(x+ 1, 0) →R/T x+ 1 ∈ Terms(FTPA ,V). ♦
The following theorem gives a decision procedure for generalized simple conjec-
tures, a substantially expanded class compared to the class of simple conjectures
in [15], which allows nonlinear conjectures as well as conjectures in which general
terms from a decidable theory can appear on inductive positions.

Theorem 16. The inductive validity of a generalized simple conjecture is de-
cidable using the strategy Expand · Simplify∗ · (Theory1 ∪ Theory2)∗.

Example 17. Continuing Example 12, the conjecture x′ < s(x′) ≈ true is general-
ized simple since (x′, s(x′)) ∈ T Pat(<). Indeed, for s(x) < s(y) → x < y, we get
CUTC ({s(x) ≈?

TC
x′, s(y) ≈?

TC
s(x′)}) = {σ} where σ = {x′ 
→ s(x), y 
→ s(x)},

and (x < y)σ = x < s(x), where (x, s(x)) is TC -matched by (x′, s(x′)). ♦
Example 18. Continuing Example 11, we consider the conjecture gcd(2·x′, 2) ≈ 2
about gcd. We show that (2 · x′, 2) ∈ T Pat(gcd). For rules 1 and 2, there are no
recursive calls on the right sides. For rule 3, CUTPA({2 ·x′ ≈?

TPA
x+ y+ 1, 2 ≈?

TPA

y + 1}) = {σ}, where σ = {x′ 
→ z + 1, y 
→ 1, x 
→ 2 · z} for a fresh variable z.
Now, gcd(x, y + 1)σ = gcd(2 · z, 2), where (2 · z, 2) is TPA-matched by (2 · x′, 2).
Rule 4 yields CUTPA({2 ·x′ ≈?

TPA
x+1, 2 ≈?

TPA
x+ y+1}) = {σ}, with σ = {x′ 
→

1, x 
→ 1, y 
→ 0}. Now, gcd(x + 1, y)σ = gcd(2, 0) →R/T 2 ∈ Terms(FTPA ,V).
Thus, the conjecture gcd(2 · x′, 2) ≈ 2 is generalized simple. ♦
3 The variables in p∗ are suitably renamed to be disjoint from the variables in s∗i .
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5 Jointly T -Based Functions

The class of T -based functions is quite restrictive in the sense that a T -based
function f can only make recursive calls to f, but not to any other function g.
This restriction is imposed to ensure that the strategy Expand · Simplify∗ leads
to conjectures in T . Below, we generalize the definition of a T -based function
by allowing a finite number of T -based functions to be defined together as a
group, where a function in the group may call other functions in the group in its
definition. This generalization allows for mutually recursive functions and classes
of conjectures about them that can be decided automatically.

Example 19. We define maxlist using the function max from Example 10.

maxlist(x, nil) → nil maxlist(nil, cons(x′, y′)) → nil
maxlist(cons(x, y), cons(x′, y′)) → cons(max(x, x′),maxlist(y, y′))

While max is TC -based, maxlist is not TC -based since it calls max. Hence, the
conjecture maxlist(x′′, x′′) ≈ x′′ is not simple. Indeed, an attempt to prove this
conjecture gets stuck since one ends up with cons(x, y) ≈ cons(max(x, x), y),
which cannot be simplified without knowing max(x, x) ≈ x in conjunction with
the original conjecture. ♦
Below, we relax the restriction on T -based functions by introducing the notion
of a jointly T -based set of functions. A set F of functions is jointly T -based if
the rules defining F make recursive calls only to functions in F again. It is now
possible for a recursive definition to use other functions in the group as well.

Definition 20 (Jointly T -based Functions). The set F = {f1, . . . , fn} of
functions fi ∈ Fd is jointly T -based if all rules l → r ∈ R with l(Λ) ∈ F have
the form fi(s∗) → C[fi1 (t∗1), . . . , fin(t∗n)], where s∗, t∗j ∈ Terms(FT ,V), fij ∈ F for
all 1 ≤ j ≤ n, and C is a context over FT .

In particular, this definition allows for, but is not limited to, mutually recursive
functions. Clearly, f is T -based iff {f} is jointly T -based, hence Definition 20
subsumes Definition 2.

To handle nonlinear conjectures for jointly T -based functions, ImpEq(f) does
not suffice in order to guarantee that the inductive hypotheses are applicable.
Instead, the whole set F of jointly T -based functions has to be taken into consid-
eration. The set ImpEq(F) generalizes the set ImpEq(f) by carrying the function
symbols along with the positions l1, l2, kj,1, kj,2 from Definition 6. A formal def-
inition of the set ImpEq(F) can be found in [5, Definition 17]. If F = {f}, we
identify ImpEq(F) and ImpEq(f). The set ImpEq(F) can be computed from R
with the help of a decision procedure for T . See [5, Appendix A] for details.
T Pat(f) can similarly be extended to T Pat(F).

Example 21. Considering the jointly T -based set F = {max,maxlist} from Exam-
ple 19, we get ImpEq(F) = {〈max, 1, 2, {〈max, 1, 2〉, 〈maxlist, 1, 2〉}〉, 〈maxlist, 1, 2,
{〈maxlist, 1, 2〉}〉} since all of s(x) ≈ s(y) =⇒ x ≈ y, cons(x, y) ≈ cons(x′, y′) =⇒
x ≈ x′ (for max), and cons(x, y) ≈ cons(x′, y′) =⇒ y ≈ y′ (for maxlist) are
TC -valid. ♦
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Now, a conjunctive simple conjecture has to make a conjecture about each func-
tion in a set F of jointly T -based functions.

Definition 22 (Conjunctive Simple Conjectures). A conjunctive simple
conjecture is a conjecture of the form f1(x∗1) ≈ r1 ∧ . . . ∧ fn(x∗n) ≈ rn such
that fi(x∗i ) � ri for all 1 ≤ i ≤ n, the set F = {f1, . . . , fn} is jointly T -based,
ri ∈ Terms(FT ,V) for all 1 ≤ i ≤ n, and if xi,l1 = xi,l2 then exists 〈fi, l1, l2, C〉 ∈
ImpEq(F) such that xj,k1 = xj,k2 for all 〈fj , k1, k2〉 ∈ C.

Example 23. Continuing Example 21, maxlist(x′′, x′′) ≈ x′′ ∧ max(y′′, y′′) ≈ y′′

is a conjunctive simple conjectures. ♦

The following theorem generalizes Theorem 9 and gives a decision procedure
for conjunctive simple conjectures. An analogous theorem can be obtained for
conjunctive generalized simple conjectures which use T Pat instead of ImpEq [5].

Theorem 24. The inductive validity of a conjunctive simple conjecture is de-
cidable using the strategy Expand∗ ·Simplify∗ ·(Theory1∪Theory2)∗, where Expand
is applied once to each equation of the conjecture.

Example 25. Consider the following TRS over TC , where mix takes two lists l1, l2
and constructs a new list by taking elements on odd numbered positions from l1
and elements on even numbered positions from l2.

mix(x, nil) → nil mix(nil, cons(x′, y′)) → nil
mix(cons(x, y), cons(x′, y′)) → cons(x,mix′(y, y′))
mix′(x, nil) → nil mix′(nil, cons(x′, y′)) → nil
mix′(cons(x, y), cons(x′, y′)) → cons(x′,mix(y, y′))

〈mix, 1, 2, {〈mix′, 1, 2〉}〉 and 〈mix′, 1, 2, {〈mix, 1, 2〉}〉 are in ImpEq({mix,mix′}).
Thus, mix(x′′, x′′) ≈ x′′ ∧ mix′(y′′, y′′) ≈ y′′ is a conjunctive simple conjecture.♦

6 Nonlinear Complex Conjectures

So far, we have considered conjectures in which only a single defined function
symbol appears in the left side of each equation within a conjecture. Similar to
[15,8], conjectures in which the left side has nested T -based functions can also
be decided automatically provided their definitions are compatible. Furthermore,
the results from the previous two sections extend to such complex conjectures
under the same conditions as in [15]. Below, we show this with a particular
emphasis on illustrating our ideas with examples. More technical details and
proofs can be found in [5].

Since a complex conjecture with nested function symbols can have many non-
variable subterm positions where Expand is applicable we make use of inductively
complete positions, which are a special case of the general definition in [6]. This
enables us to select a position in a nested term to which the computation of
critical pairs can be restricted. This notion is not needed for simple conjectures
since for them there is only one position on which critical pairs can be computed.
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Definition 26 (Inductively Complete Positions). A position p in a term t
is inductively complete if t|p = f(q∗), where f ∈ Fd and q∗ ∈ Terms(FT ,V).

From now on, the inference rule Expand is replaced by the inference rule Expand’
given in Figure 2.

Expand’
E ∪ {r1 ≈̇ r2},H

E ∪ E ′,H∪ {r1 → r2}
if r1 � r2 and E ′ = CP ′(R, r1 → r2, p)
for an inductively complete position p in r1

Fig. 2. The inference rule Expand’

A function g is jointly compatible with a set of functions F on argument j if
in any term g(. . . , f(. . .), . . .), where f(. . .) is on the jth argument of g and f ∈ F,
every context created by rewriting f will move outside the term by rewriting g.

Definition 27 (Jointly Compatible Functions). Let F = {f1, . . . , fn} be
jointly T -based, let g be T -based, let 1 ≤ j ≤ m = arity(g). Then g is jointly
compatible with F on argument j if all rules fi(s∗) → C[fi1 (t∗1), . . . , fin(t∗n)] satisfy

g(x1, . . . , xj−1, C[z1, . . . , zn], xj+1, . . . , xm) →∗
R/T

D[g(x1, . . . , xj−1, zi1 , xj+1, . . . , xm), . . . , g(x1, . . . , xj−1, zik
, xj+1, . . . , xm)]

for a context D over FT , i1, . . . , ik ∈ {1, . . . , n}, and zi �∈ V(D) for all 1 ≤ i ≤ n.

The notion of compatibility in [8] is a special case of this definition. If F = {f}
we also say that g is compatible with f.

Example 28. Consider this TRS over TC .

1 : zip(x, nil) → pnil 2 : zip(nil, cons(x′, y′)) → pnil
3 : zip(cons(x, y), cons(x′, y′))→pcons(pair(x, x′), zip(y, y′))
4 : fst(pnil) → nil 5 : fst(pcons(pair(x, x′), y)) → cons(x, fst(y))

Then, fst is compatible with zip on argument 1. For rules 1 and 2, C is pnil (a
context without holes), and fst(pnil) rewrites to nil using rule 4, i.e., D = nil.
For rule 3, C is pcons(pair(x, x′),�) and fst(pcons(pair(x, x′), z1)) rewrites to
cons(x, fst(z1)) by rule 5, i.e., D = cons(x,�). ♦

As in [15,8], the concept of compatibility can be extended to arbitrarily deep
nestings. To this end, we define the notion of a compatibility sequence.

Definition 29 (Joint Compatibility Sequences). Let L = {l1, . . . , ln} be a
set of terms in Terms(F ,V), let g1, . . . , gd be T -based for some d ≥ 0, and let
the set of function symbols F = {f1, . . . , fn} be jointly T -based. The sequence
〈g1, . . . , gd,F〉 is a joint compatibility sequence on arguments 〈j1, . . . , jd〉 and
the set L = {l1, . . . , ln} of terms has this joint compatibility sequence if

1. gi is compatible with gi+1 on argument ji for all 1 ≤ i ≤ d − 1, and gd is
jointly compatible with F, and
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2. lk = g1(p∗1, g2(p∗2, . . . gd(p∗d, fk(x∗k), q∗d) . . . , q∗2), q∗1), where the xk,i do not oc-
cur elsewhere in lk, all p∗i , q

∗
i ∈ Terms(FT ,V), and gi(p∗i , gi+1(. . .), q∗i )|ji

= gi+1(. . .) for all 1 ≤ i ≤ d− 1, as well as gd(p∗d, fk(x∗k), q∗d)|jd
= fk(x∗k).

Informally, this definition ensures that the li are constructed using (jointly)
compatible functions in the appropriate positions.

Again, the compatibility sequences of [8] are a special case of this definition.
If L = {l} (and thus F = {f}) we also say that l has a compatibility sequence
where we write f instead of F in the last component.

If li is as in the definition, then the position p = j1.j2. · · · .jd is an inductively
complete position in li.

Definition 30 (Conjunctive Complex Conjectures). A conjunctive com-
plex conjecture is a conjecture of the form l1 ≈ r1∧ . . .∧ ln ≈ rn such that li � ri
for all 1 ≤ i ≤ n, where the ri are in Terms(FT ,V), the li = D[fi(x∗i )] have a
joint compatibility sequence, the set F = {f1, . . . , fn} is jointly T -based, and if
xi,l1 = xi,l2 then exists 〈fi, l1, l2, C〉 ∈ ImpEq(F) such that xj,k1 = xj,k2 for all
〈fj , k1, k2〉 ∈ C.

If the group of joint T -based functions consists of a single function, then we call a
conjecture as defined above complex, but in contrast to the complex conjectures
of [15] we allow for nonlinear complex conjectures.

The following theorem extends the results from the previous two sections to
conjunctive complex conjectures and gives a decision procedure for this class.

Theorem 31. The inductive validity of a conjunctive complex conjecture is de-
cidable using the strategy Expand’∗ ·Simplify∗ ·(Theory1∪Theory2)∗, where Expand’
is applied once to each equation of the conjecture at the innermost position, i.e.,
at the fi for all 1 ≤ i ≤ n.

Example 32. Continuing Example 28, the term fst(zip(x′′, x′′)) has the compati-
bility sequence 〈fst, zip〉 on arguments 〈1〉. Furthermore we have 〈1, 2, {〈1, 2〉}〉 ∈
ImpEq(zip). Thus, fst(zip(x′′, x′′)) ≈ x′′ is a complex conjecture. Due to the
nonlinearity, it is not permitted in [15]. ♦

Example 33. We consider mutually recursive functions in this example. Take the
function fst defined in Example 28, and add the following rules defining stitch,
where pair is a new constructor.

stitch(x, nil) → pnil stitch(nil, cons(x′, y′)) → pnil
stitch(cons(x, y), cons(x′, y′)) → pcons(pair(x, x′), stitch′(y, y′))
stitch′(x, nil) → pnil stitch′(nil, cons(x′, y′)) → pnil
stitch′(cons(x, y), cons(x′, y′)) → pcons(pair(x′, x), stitch(y, y′))

Then F = {stitch, stitch′} is jointly T -based and fst is jointly compatible with
F, since for the third stitch-rule, the term fst(pcons(pair(x, x′), z1)) rewrites to
cons(x, fst(z1)), and similarly for the third stitch′-rule. Furthermore, the set
L = {fst(stitch(x′′, x′′)), fst(stitch′(y′′, y′′))} has the joint compatibility sequence



58 S. Falke and D. Kapur

〈fst, {stitch, stitch′}〉 on arguments 〈1〉. Thus, the conjecture fst(stitch(x′′, x′′)) ≈
x′′ ∧ fst(stitch′(y′′, y′′)) ≈ y′′ is a conjunctive complex conjecture since also both
〈stitch, 1, 2, {〈stitch′, 1, 2〉}〉 and 〈stitch′, 1, 2, {〈stitch, 1, 2〉}〉 are in ImpEq(F). ♦

For a conjunctive complex conjectures, T Pat(F) can only be used if condition
(2.) in Definition 13 is not needed. The class of conjunctive generalized complex
conjectures is obtained from Definition 30 by replacing ImpEq with T Pat using
this restriction.

Example 34. Consider the TRS defining zip and fst from Example 28 and the
conjecture fst(zip(y′′, cons(x′′, y′′))) ≈ y′′. Firstly, (y′′, cons(x′′, y′′)) ∈ T Pat(zip).
For rule 3, we get CUTC ({y′′ ≈?

TC
cons(x, y), cons(x′′, y′) ≈?

TC
cons(x′, y′)}) =

{σ}, where σ = {x′ 
→ x′′, y′ 
→ cons(x, y), y′′ 
→ cons(x, y)}. Now, zip(y, y′)σ =
zip(y, cons(x, y)), and (y, cons(x, y)) is TC -matched by (y′′, cons(x′′, y′′)). Thus,
the conjecture is generalized complex. ♦

7 Conclusion and Further Work

This paper shows how implicit induction methods can be used to integrate in-
ductive reasoning into decision procedures without losing automation. We have
given decision procedures based on implicit induction methods for the induc-
tive validity of large classes of simple and complex conjectures about recursively
defined theory-based functions, satisfying certain conditions that are checkable
syntactically or using the decision procedure for the underlying theory.

We have broadened the class of decidable inductive conjectures permitted in
[15] significantly by allowing nonlinear conjectures as well as general terms from
the decidable theory on inductive positions. We have extended the notion of
theory-based functions to allow for recursive calls to other function symbols as
long as all the functions are being defined together. This extension allows us to
decide inductive properties of mutually recursive functions automatically.

In [8], the class of conjectures whose inductive validity can be decided is
expanded to linear conjectures having defined function symbols on both sides.
We believe that this class can be decided using implicit induction methods as
well (if the conjecture can be oriented). However, this possibility needs to be
investigated further. Then it should also be possible to extend the class in [8] to
non-linear conjectures and jointly theory-based functions.

It is shown in this paper that a conjunction of conjectures about all jointly
theory-based definitions has to be considered simultaneously. We are confident
that it is possible to decide a conjecture about a single function in a set of jointly
defined functions by automatically generating conjectures about other functions
in the set which are needed in a proof attempt. This might require techniques
similar to the ones in [16]. We are planning to examine this idea further.

A preliminary implementation and evaluation of the results given in this pa-
per for TC is available at http://www.cs.unm.edu/∼spf/sail/. On average,
checking whether a conjecture satisfies the conditions that make it decidable
takes half the time of the actual proof attempt.
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Abstract. To perform higher-order matching, we need to decide the
βη-equivalence on λ-terms. The first way to do it is to use simply typed
λ-calculus and this is the usual framework where higher-order match-
ing is performed. Another approach consists in deciding a restricted
equivalence based on finite superdevelopments. We consider higher-order
matching modulo this equivalence over untyped λ-terms for which we
propose a terminating, sound and complete matching algorithm.

This is in particular of interest since all second-order β-matches are
matches modulo superdevelopments. We further propose a restriction to
second-order matching that gives exactly all second-order matches.

Introduction

Higher-order matching and unification are two operations fundamental in var-
ious fields such as higher-order logic programming [Mil90] and logical frame-
works [Pfe01], computational linguistics [DSP91], program transformation
[HL78, Shi94, Vis05], higher-order rewriting [vOvR93, MN98, NP98], proof the-
ory etc.

Higher-order matching is usually defined as the following problem: given a
set of equations si = ti between typed λ-terms where the ti do not contain free
variables, is there a substitution σ such that for all i siσ is equal to ti modulo
the usual β(η) relation.

In [dMS01] O. De Moor and G. Sittampalam introduced a new approach
to higher-order matching for automatic program transformation in an untyped
setting. Matching equations are solved modulo a one-step reduction for an ap-
propriate parallel β-reduction notion that does not coincide with the standard
one of Tait and Martin-Löf. As the authors suggest in the paper, this operation,
that always terminates even in an untyped context, represents in a certain sense
an approximation of the β-normalization process.

The standard approximation of β-normal forms is given by complete devel-
opments [Bar84]. But the parallel β-normal forms used in [dMS01] provide a
more precise approximation than the complete developments. Actually, the lat-
ter parallel β-reduction was introduced first by P. Aczel in [Acz78] and the corre-
sponding approximation was introduced by F. van Raamsdonk [vR93] under the
name of superdevelopments. They are an extended notion of finite developments

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 60–74, 2006.
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that were introduced to prove the confluence of a general class of reduction sys-
tems containing λ-calculus and term rewrite systems. A superdevelopment is a
reduction sequence that may reduce the redexes of the term, its residuals and
some created redexes but not those created by the substitution of a variable in
functional position by a λ-abstraction. The approximation given by superdevel-
opments coincides with β-normal forms when considering second-order terms.

In this paper, we consider matching equations built over untyped λ-terms and
solve them modulo superdevelopments. The matching problems are of interest
particularly because the set of matches modulo superdevelopments contains, but
is not restricted to, second-order β-matches.

The one-step reduction modulo which one considers matching equations in
[dMS01] “may be a little difficult to understand” as the authors of the orig-
inal paper said. In this paper, we shed light on this reduction by giving a
clear relationship with superdevelopments (and quoting the original definition
of P. Aczel). The original algorithm is presented using transformation rules as
suggested in [GS89]. This method provides an abstract and elegant way to give
a clear separation between the operational and logical issues.

The main goal of this paper is convince that superdevelopments constitute a
right tool for tackling the matching problems. We also claim that the background
theory of superdevelopments provides nice intuitions and simplifications of the
different proofs (w.r.t. [dMS01, Sit01]) especially w.r.t. the application to second-
order matching.

In fact, the general approach of solving equations modulo a restricted notion of
reduction can be useful to deal with higher-order matching in calculi for which
a simple type system that ensures termination is difficult to find. This is for
example the case of simply typed ρ-calculus [CLW03] which is not terminating.
Higher-order matching in the ρ-calculus or in pure pattern calculus [JK06] are
useful in the transformation of pattern-matching programs or in proof theory
that handles rich proof-terms in the generalized deduction modulo [Wac06].

Road-map. The paper is organized as follows. The first section introduces the
syntax and the superdevelopments. The second section is devoted to the presen-
tation of matching modulo superdevelopments and its link with usual higher-
order matching (second-order matching, third-order matching and matching of
patterns à la Miller). Section 3 presents and studies1 an algorithm to perform
matching modulo superdevelopements in the λ-calculus. Section 4 explicitly an-
alyzes the optional role of the η rule in the matching process. Throughout the
paper, many examples are taken.

1 Preliminaries

In this section, we first recall some basic definitions and set some notations
related to the λ-calculus. Then we define in two different ways superdevelopments
as a restriction of the β-reduction. We refer the reader to [Bar84] or [Dow01] for
the fundamental definitions and results on the λ-calculus.
1 The proofs not given in the paper will be available in a journal paper.
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1.1 Typed λ-Calculus and β-Reduction

Given a set of base types T0, we define the set of types T inductively as the
smallest set containing T0 and such that if α, β ∈ T then (α → β) ∈ T. The
order of a type α denoted o(α) is equal to 1, if α ∈ T0. The order of a type
α→ β is equal to max(o(α) + 1, o(β)).

Definition 1 (Typed λ-terms). Let K be a set of constants, having a unique
type. For each type α ∈ T, we assume given two countably infinite and disjoint
sets of that type, denoted Xα and Vα. Let X = ∪α∈TXα be the set of variables
and let V = ∪α∈TVα be the set of matching variables. The set Tt of typed λ-terms
is inductively defined as the smallest set containing all variables, all matching
variables and all constants, and closed under the following rules:
— If A,B ∈ Tt with type resp. α→ β and α then (AB) ∈ Tt with type β.
— If A ∈ Tt with type β, and x ∈ Xα then λx .A ∈ Tt with type α→ β.

There are two different sets of “variables”: the variables belonging to X on
which we abstract and the matching variables belonging to V sometimes called
unknowns. We justify the use of the two sets in Section 3.

The symbols A,B,C, . . . range over the set Tt of terms, the symbols x, y, z, . . .
range over the set X of variables (X ⊆ Tt), the symbols a, b, c, . . . , f, g, h range
over a set K of term constants (K ⊆ Tt). The symbols X,Y, . . . range over the
set V of matching variables. Finally, the symbol ε ranges over the set of atoms,
which consists of variables, matching variables and constants. All symbols can
be indexed. Positions in λ-terms are denoted by p1, ..., pn . We denote by � the
canonical order on positions. The subterm of A at position p1 is denoted by A|p1 .

The order of a constant or a matching variable is defined as the order of its
type. The order of a redex (λx .A) B is defined as the order of the abstraction
λx .A. We consider the usual notion of free and bound variables that concerns
the variables (matching variables cannot be bound). A term is said to be closed
if it contains no matching variables and no free variables. We denote by FV(A)
the set of the free variables of A.

The substitution of variables is defined as usual and avoids variable capture
using α-conversion when needed. The substitution of the variable x by A in B
is denoted by B{A/x}.

As in any calculus involving binders, we work modulo the α-conversion of
Church, and modulo the hygiene-convention of Barendregt [Bar84], i.e., free
and bound variables have different names.

We denote a β-reduction step by →β, by 
→
→β its reflexive and transitive closure
and by =β its reflexive, symmetric and transitive closure. A λ-term is said to be
β-normal or simply normal if it is in normal form for →β .

1.2 Untyped Labelled λ-Calculus and βl-Reduction

When no ambiguity is possible, we use the same notation for both typed and
untyped (labelled) terms. Labels are simply elements of .



Matching Modulo Superdevelopments 63

Definition 2 (Labelled λ-terms). Let K be a set of constants. Let X and V
be two countably infinite and disjoint sets respectively for variables and matching
variables. The set Tl of labelled λ-terms is defined as the smallest set containing
all variables, matching variables, constants and closed under the following rules:
— If A ∈ Tl and p ∈ , then λpx.A ∈ Tl.
— If M,N ∈ Tl and p ∈ , then (MN)p ∈ Tl.

We define βl-reduction on the set of labelled λ-terms as follows:

((λpx.A)B)p →βl
A{B/x}

In order to define superdevelopements we will restrict attention to terms that
are labelled such that the label of an application cannot be equal to the label of
a λ-abstraction that is not in its scope.

Definition 3 (Well-labelled and initially labelled terms). A labelled term
A ∈ Tl is said to be well-labelled if for all positions such that A|p1 = (B0B1)p and
A|p2 = λpx.C then p1 � p2. It is is initially labelled if moreover for all positions
such that A|p1 = λpx.C and A|p2 = λpx

′.C′ then p1 = p2.

In the following, we will suppose that all labelled terms are well-labelled. We
can remark that the set of well-labelled terms is closed by βl-reduction.

1.3 Untyped λ-Calculus and Superdevelopments

The untyped λ-calculus is defined as the labelled λ-calculus by simply erasing
all labels (both in terms and reduction). The set of untyped λ-terms is denoted
by T . We introduce a generalization of (finite) developments [Bar84] called su-
perdevelopments. This notion, initially introduced in [vR93], is related to the
three ways to create redexes in the λ-calculus [Lév78]:

1. ((λx . λy .A)B) C →β (λy .A{B/x})C
2. ((λx . x) (λy .A))B →β (λy .A)B
3. (λx .A)(λy .B) →β A{λy .B/x}

if there is a position p1 such that A|p1 = xA0

For the first two ways of creating a β-redex, one can say that the creation
is “upwards”, whereas in the last case it can be said to be “downwards”. By
restricting to well-labelled terms we exactly restrict to upwards creations.

A superdevelopment is a β-rewrite sequence that may reduce both the redexes
that are residuals of redex occurrences in the initial term (like in developments)
and the redex occurrences that are created in the first or second way.

In the λ-calculus, superdevelopments are, as developments, finite.

Definition 4 (Superdevelopments). A β-rewrite sequence ς of the λ-calculus
is a β-superdevelopment if it exists a βl-rewrite sequence σ in the labelled λ-calculus
that starts with an initially labelled term and stops on a term in βl-normal form
and such that Υ (σ) = ς, where Υ is the canonical mapping from labelled λ-terms to
λ-terms and from βl-reduction to β-reduction that simply erases labels.
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For example, the β-rewrite sequence (λx . λy . xy)zz′ →β (λy . zy)z′ →β zz′ is a
superdevelopment since it corresponds to the βl-rewrite sequence
(((λ1x.λ2y.xy)z)1)z′)2 →βl

((λ2y.zy)z′)2 →βl
zz′ .

However, the rewrite sequence (λx . xx)(λx . xx) →β (λx . xx)(λx . xx) →β . . .
is not a superdevelopment.

Given a λ-term, we can “label” this term (and thus obtaining a labelled λ-
term) in order to βl-reduce redexes created in the first or in the second way but
not in the third way. This is exactly why we restrict ourselves to well-labelled
terms.

The corresponding βl-rewrite sequence associated to a superdevelopment is
no more given in the following (this a good exercise left to the reader). We now
give four examples of β-reductions that are superdeveloppements.

[Finite development] Residuals of
redexes present in the initial term can
be contracted:

(λx . f(x, x)) ((λy . y) a)
→β f((λy . y) a, (λy . y) a)
→β f(a, (λy . y) a)
→β f(a, a)

[Redex creation of type 1] In the
following superdevelopment, the new
redex obtained after one β-rewrite step
is reduced:

((λx . λy . f(x, y))a)b
→β (λy . f(a, y))b
→β f(a, b)

[Redex creation of type 2] As in
the previous example, a redex is cre-
ated and reduced during reduction, but
in a different way: ((λx . x)(λy . y))a

→β (λy . y)a
→β a

[Redex creation of type 3] There
is no superdevelopment from the term
(λx . xa)(λy . y) to the term a:

(λx . xa)(λy . y)
→β (λy . y)a

1.4 Another Characterization of Superdevelopments

As finite developments coincide with the classical parallel reduction of Tait
and Martin-Löf, finite superdevelopments coincide with Aczel’s parallel reduc-
tion [Acz78] called in the following strong parallel β-reduction. It is denoted
by =⇒βsd

and we say that a term A βsd-reduces to a term B if A =⇒βsd
B. It

is defined inductively in Figure 1.
The only difference with the parallel reduction of Tait and Martin-Löf is the

rule (Red− βs) that replaces the rule (Red− β) of the parallel reduction given
by

λx .A1 =⇒β λx .A2 B1 =⇒β B2

(λx .A1)B1 =⇒β A2{B2/x}
(Red− β)

The following result states that superdevelopments coincide with strong parallel
β-reduction. This characterization is the essence of the matching algorithm.

Theorem 1. There exists a superdevelopment from A to B iff A =⇒βsd
B.
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ε =⇒βsd
ε (Red − ε)

A1 =⇒βsd
A2

λx . A1 =⇒βsd
λx . A2

(Red − λ)

A1 =⇒βsd
A2 B1 =⇒βsd

B2

A1B1 =⇒βsd
A2B2

(Red − @)

A1 =⇒βsd
λx . A2 B1 =⇒βsd

B2

A1B1 =⇒βsd
A2{B2/x} (Red − βs)

Fig. 1. Strong parallel β-reduction

2 Matching Modulo Superdevelopments

In this section, we first define matching modulo superdevelopments, also called
βsd-matching. We then relate it with second and third order matching.

2.1 Definition of βsd-Matching

Definition 5 (Substitution). A matching substitution or simply a substitu-
tion ϕ : V → T is a function from matching variables to terms. If ϕ = {A1/X1,
. . . , An/Xn} then the domain of ϕ is the set {Xi}n

i=1. We overload the notation
used for substitutions of variables and we denote by B{A/X} the substitution of
A for the matching variable X in B. In this work, we only consider closed and
normal substitutions that are substitutions of closed normal terms.

Since we consider classes of terms modulo α-conversion, when applying a sub-
stitution the appropriate representatives are always chosen in order to avoid
potential variable captures.

Definition 6 (Union). Two substitutions coincide if their images coincide on
the intersection of their domains. We then straightforwardly define the union of
two substitutions σ and ϕ that coincide and denote it by σ ∪ ϕ.
Definition 7 (Matching equation–System). A βsd-matching equation or
simply a matching equation is a pair of terms denoted A �βsd

B such that B
is normal and does not contain matching variables. A matching system is a
multiset of matching equations.

For example, XY �βsd
λx . x and (λx . x)X �βsd

a are βsd-matching equations
whereas XY �βsd

(λx . x)a is not.
Every solution of a matching equation is supposed to be a closed substitution.

We say that a matching variable belongs to a system and we note X ∈ if X
occurs in one equation of .

Definition 8 (βsd-match). A substitution ϕ on matching variables is a βsd-
match or simply a match for the matching equation A �βsd

B if and only if
Aϕ =⇒βsd

B. A substitution is a match of a system if it matches each equation.
The set of all matches of a system is denoted ( ).
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For example, {λxy . y/X} and {λy . y/X, λx . x/Y } are βsd-matches for the equa-
tion XY �βsd

λx . x. The substitution {λz . z(λx . x)/X, λy . y/Y } is not a βsd-
match because (λz . z(λx . x))(λy . y) does not βsd-reduce to λx . x. (although it
β-reduces).

The application of a substitution to a matching equation B �βsd
C is the

equation Bϕ �βsd
C. The application of a substitution ϕ to a system, denoted

ϕ consists in the application of the substitution ϕ to each matching equation
of .

Definition 9 (Solved form). A matching equation X �βsd
A is in solved

form if A contain no free variables. The corresponding substitution is defined by
{ }AX. A system is in solved form if all its equations are in solved form and
if the left-hand sides are pairwise disjoint. The corresponding susbtitutution of
such a system is the union of the corresponding substitutions of each equation
(of the system). It is denoted by σ .

Definition 10 (Complete match set). Let be a matching system. A com-
plete match set of is a set of substitutions such that:

1. Soundness For all ϕ ∈ , ϕ is a βsd-match of .
2. Completeness For all ϕ such that ϕ is a βsd-match of there exists ψ ∈

such that ψ ≤ ϕ, i.e., there exists a substitution ξ such that ϕ = ξ ◦ψ where
◦ denotes substitution composition.

The following lemma gives the relevance of solved forms:

Lemma 1. If is a system in solved form then {σ } is a complete match set
of .

2.2 Comparison with Usual Higher-Order Matching

Comparison with Second-Order Matching. First, we relate βsd-matching
with second-order matching (i.e., typed higher-order β-matching where all match-
ing variables are second-order and where constants are third-order). We show that
all solutions of a given second-order system are βsd-matches. In this section, all
terms are supposed to be typable, i.e., belong to Tt.

We simply recall the definition of β-matching and we refer to [GS89] for a
more complete and self-contained presentation.

Definition 11 (β-matching equation and β-match). A β-matching equa-
tion is a pair of β-normal typed λ-terms of the same type denoted A �β B such
that B does not contain matching variables. A substitution ϕ, that preserves
types, is a β-match for the matching equation A �β B if and only if Aϕ=βB.
We generalize the definition to matching systems as in Def. 8.

If we erase the types, then all β-matching equations are βsd-matching equations.
We will switch from the former to the latter without explicit mentions.
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The following results were already proved in [dMS01]. Nevertheless, the for-
malization using superdevelopments (and not only strong β-parallel reduction)
introduced in this paper gives quite simple and clear proofs.

First, a technical result on the creation of redexes.

Lemma 2. For all terms A1, . . . , An such that there exists a superdevelopment
A1 →β . . .→β An and An contains a redex of third order order (or more), then
A1 contains also a redex of third order (or more).

Proof. We prove the result by induction on n. We look at the induction case. By
induction hypothesis, we know that A2 contains a redex of a least third order
that we call in the following R = (λx .C) D. First, if R is a residual of a redex
of A1 then the result is obvious. Secondly, if not, and if R is created during the
reduction from A1 to A2 in the first way mentioned before then A1 must contain
a subterm of the form (((λz . λx . C′) E) D with C = C′{E/z}. Then the order
of the redex (λz . λx . C′)E is greater or equal to the of order R. This concludes
the case. Finally, if not, and if R is created during the reduction from A1 to A2

in the second way mentioned before then A1 must contain a subterm of the form
(λy . y) (λx .C)D. The order of the redex (λy . y) (λx .C) is strictly greater than
the one of R. This concludes the case. ��

Proposition 1. Consider a second-order β-matching equation. If a substitution
ϕ is a β-match then it is a βsd-match.

Proof. The proof is by contradiction. Let ϕ be a β-match of the β-matching
equation A �β B that is not a βsd-match. Then we have Aϕ=βB, that A does
not contain any β-redex, that ϕ does not contain any term of order greater
than 2. Finally, Aϕ �=⇒βsd

B and Aϕ=βB. Thus there exist (Ai)i such that
Aϕ →β A1 →β · · · →βsd

An is a superdevelopments and An contains a β-redex
(λx .C)D which is not reduced by superdevelopments. This means that this
redex is a residual of a redex created when reducing Ai0 . Since the redex is not
reduced by superdevelopments then this creation is of type 3 and thus induces a
redex of order at least 3. Lemma 2 implies that Aϕ contains a redex of order at
least three. Since both A and ϕ range in the set of β-normal forms, then there
exists a position p1 and a term E such that A|p1 = XE where X is mapped by
ϕ to a λ-abstraction of at least third order. This contradicts the hypothesis on
the order of the initial matching problem. ��

This proposition for second-order β-equations can be easily generalised to second-
order β-systems.

Creations of redexes in the third way induce intrinsically redexes of at least
third order. This intuitively explains why second-order matches modulo β are
βsd-matches. The reader familiar with the second-order matching algorithm of
G. Huet and B. Lang may notice that during this matching process, we can
restrict β-normalization to βsd-normalization.

Comparison with Third-Order Matching. As soon as we consider third-
order matching problems, the set of minimal solutions may be infinite. Since



68 G. Faure

matching modulo superdevelopments generates finitely many minimal solutions,
we remark that matching modulo superdevelopments cannot be complete w.r.t.
third-order matching.

Example 1. The substitution {λx . λf . fx/X} is a β-match for the matching
equation λz . (X z (λy . y)) � λz . z whereas it is not a βsd-match. In fact,
λz . ((λx . λf . fx) z (λy . y)) βsd-reduces to λz . (λy . y)z but not to λz . z.

The last example is classical and taken from [Dow01]. The third-order matching
equation has an infinite number of (minimal) solutions of type ι→ (ι→ ι) → ι
that are given by the Church numbers λx . λf . (f . . . (f x) . . .).

Comparison with Patterns à la Miller. In the case of matching of patterns
à la Miller [Mil91, Qia96], the restriction of the β-reduction given by superde-
velopments is powerful enough:

Proposition 2. Let ϕ be a match of an equation P �β A where P is a pattern
à la Miller. Then there exists a superdevelopment Pϕ 
→
→β A.

3 An Algorithm for Matching Modulo Superdevelopments

In this section, we first present an algorithm for matching modulo superdevelop-
ments. We illustrate it on several examples and finally state its main properties.

3.1 Presentation of the Algorithm

We propose in Figure 2 an algorithmic description of matching modulo superde-
velopments using transformation rules [GS89]:

— A system is transformed by successively applying the rules until we get to
a normal form (it always exists since the rules terminate) that gives a solution
(the algorithm is sound).
— By exploring all possible reductions (the rule are non-deterministic in the
sense that at each step there are possibly several rules that can applied) and
collecting all solved forms we get a complete match set (since the algorithm is
sound and complete).

We write → ′ if there exists a transformation rule that can be applied to
transform into ′ and 
→
→ ′ if there exist n ≥ 0 systems 1, . . . , n such that

→ 1 → . . . n → ′. The matching algorithm follows the definition of strong
β-parallel reduction:

The ε rules: deal with atoms. The rules (εc) and (εv) are trivial rules dealing
with variables and constants. The rule (εX) substitutes a matching variable by its
corresponding value. Remark first that we do not substitute by terms containing
free variables and then that we do not normalize when applying a substitution
(otherwise the rule (εX) would not be sound ; see the long version for further
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(x �βsd
x), →εv

(a �βsd
a), →εc

(X �βsd
A), →εX X �βsd

A, {A/X}
if FV(A) = ∅ and X ∈

(λx . A �βsd
λx . B), →λλ

(A �βsd
B),

(A1B1 �βsd
A2B2), →@@

(A1 �βsd
A2), (B1 �βsd

B2),

(A1B1 �βsd
C), →@π

(A1 �βsd
λx . C),

where x fresh

(A1B1 �βsd
C), →@β

(A1 �βsd
λx . A2), (B1 �βsd

B2),

where A2{B2/x} = C
and x fresh, x ∈ FV(A2)
and A2, B2 normal forms

Fig. 2. Matching algorithm for higher-order matching modulo superdevelopments

details). In the rule (εX), we compel that the substituted term contains no free
variables. This is not a stricly needed condition but if the condition is not verified
there is no interest to apply the rule since the system will never lead to a solved
form (precisely because of the condition is not verified).

The λ rule: deals with abstraction by mimicking the (Red− λ) rule (thanks to
the implicit α-renaming, we can suppose that the two bound variables are the
same). This rule illustrates the use of two different sets of “variables”: we can
“unbind”a variable safely without possible confusion with a matching variable
(recall that we only consider closed substitutions). Many algorithms use a single
set of variables. In this case, since matching variables are the free variables of
the left-hand side of the equation, we have to remember the variables that were
bound in the initial equation. The two choices are relevant.

A similar rule is used in the works on unification in the λ-calculus with explicit
substitutions and de Bruijn indices [DHK00].

The @ rules: deal with application. The (@@) rule is in one-to-one correspon-
dance with the rule (Red− @) and thus does not need further comments. The
rules (@π) and (@β) are both related to the rule (Red− βs). We try to express
the right-hand side C of the equation as the result of a β-reduction let us say
A2{B2/x}. Depending on the presence of x in A2, we obtain the rule (@π) or
(@β). If x does not belong to A2, then we obtain the rule (@π): the left-hand side
of the application is mapped to an abstraction that ignores its argument and
returns the right-hand side of the matching equation. Otherwise (if x belongs to
A2), we obtain the rule (@β) by mimicking the (Red− βs) for all terms such that
A2{B2/x} = C where x belongs to A2 and A2, B2 are normal. To find the terms
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A2 and B2 we first remark that B2 must be a subterm of C (since x belongs
to A2). We can thus choose one of them. Then, choose a subset of the set of
positions on which B2 appears in C. Then A2 is obtained from C by putting
x at every position of the chosen set. Notice that there are finitely many pairs
(A2, B2) satisfying the conditions.

Notice that the matching algorithm does not introduce new matching variables
(this is not the case in [HL78]). This is for example pertinent in [Ali05].

Example 2. We consider the matching equation XY �βsd
ab. Since the left and

right-hand sides of the matching equation are applications, we can apply the
rules (@π), (@@) or (@β).

1. Rule (@π): XY �βsd
ab→ X �βsd

λx . ab.
2. Rule (@@): XY �βsd

ab→ X �βsd
a , Y �βsd

b.
3. Rule (@β): to find A1 and A2 such that A1{A2/x} = ab first we choose A2

as one of the subterm of “ab”: a, b and ab. There is only one subset of the
set of positions on which A2 appears in ab (since each subterm of ab appears
once). Then we can apply the rule (@β) in different ways corresponding to
the three subterms of the right-hand side of the equation:
(a) XY �βsd

ab→ X �βsd
λx . xb , Y �βsd

a.
(b) XY �βsd

ab→ X �βsd
λx . ax , Y �βsd

b.
(c) XY �βsd

ab→ X �βsd
λx . x , Y �βsd

ab.

Example 3. We consider the equation X(Y X) �βsd
a. We can apply either the

rule (@π) or (@β).

1. Rule (@π): X(Y X) �βsd
a→ X �βsd

λx . a.
2. Rule (@β): X(Y X) �βsd

a→ X �βsd
λx . x, Y X �βsd

a.
To simplify Y X �βsd

a we can apply either the rule (@π) or the rule (@β).
(a) Rule (@π): X �βsd

λx . x, Y X �βsd
a→ X �βsd

λx . x, Y �βsd
λx . a.

(b) Rule (@β)
X �βsd

λx . x, Y X �βsd
a→ X �βsd

λx . x, Y �βsd
λx . x,X �βsd

a
→ X �βsd

λx . x, Y �βsd
λx . x,

λx . x �βsd
a.

In the last case, the system is not in solved form (although no transformation
rules can be applied) and thus it gives no solutions. The initial matching equation
has only two solutions.

3.2 Properties

Proposition 3 (Termination). The set of transformation rules of Figure 2
is terminating.

Proposition 4 (Correctness). For all systems and ′ such that 
→
→ ′ and
′ is in solved form, we have σ ′ ∈ ( ).
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Proposition 5 (Completeness). For any system , if ϕ ∈ ( ) then there
exists a sequence of transformations starting from and ending on a system n

such that n is in solved form and σ n ≤ ϕ.

Proof. By induction on the appropriate extension of the =⇒βsd
on multisets.

Theorem 2 (Finite complete match set). Let A �βsd
B be a matching

equation and = {σ | A �βsd
B 
→
→ and is in solved form }. Then the set

is a complete match set for the equation A �βsd
B. It is always finite.

We can remark that there are some second-order β-match equations that have
no solutions but that the corresponding βsd-equation has a solution2:

Example 4. Let g(XY,XZ) �β g(fa, fb) be a β-match equation with types
a : ι2, b : ι2, f : ι2 → ι1, g : ι1 → ι1 → ι1, X : ι3 → ι1, Y : ι3 and Z : ι3.

We consider the solutions of the βsd-equations XY �βsd
fa and XZ �βsd

fb

XY �βsd
fa XZ �βsd

fb

X �βsd
f, Y �βsd

a X �βsd
f, Z �βsd

b
X �βsd

λx . fa X �βsd
λx . fb

X �βsd
λx . fx, Y �βsd

a X �βsd
λx . fx, Z �βsd

b
X �βsd

λx . xa, Y �βsd
f X �βsd

λx . xb, Z �βsd
f

X �βsd
λx . x, Y �βsd

fa X �βsd
λx . x, Z �βsd

fb

The only two well-typed solutions (that is, solutions such that the term associ-
ated to a matching variable has the same type than this matching variable) are
respectively X �βsd

λx . fa and X �βsd
λx . fb. Of course, they do not lead to a

substitution for g(XY,XZ) �βsd
g(fa, fb). Thus, we have found a second-order

β-match equation that has no solution3 even if the βsd-equation has.

We now work in the framework of the typed λ-calculus to solve second-order
matching equations. As in any higher-order matching algorithm for typed λ-
calculi, we only consider well-typed equations that are pairs of typed terms of
the same type. In particular, transformation rules are applied only if the resulting
systems is well typed (that is, each equation is well-typed). In this context, we
have the following result.

Theorem 3 (Second-order matching algorithm). The rules given in Fig. 2
applied in the context of the typed λ-calculus gives a sound and complete matching
algorithm for second-order matching.

2 Thus we cannot deduce from the NP-completeness of the second-order matching, the
NP-completeness of the matching modulo superdeveloppements.

3 Since there is no well-typed substitutions modulo superdevelopments, there are no
second-order substitution for g(XY,XZ) �β g(fa, fb) (applying prop. 1).
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4 Matching Modulo Superdevelopments and η

The gap between higher-order matching modulo β and higher-order matching
modulo βη is mainly explained by the fundamental use of η-long normal forms
when matching is performed modulo βη. In the context of higher-order matching
modulo superdevelopments, the use of η-equivalence does not strongly influence
our algorithm, as explained below.

A βsdη-matching equation is a pair (A,B) of terms such that B is βη-normal
and contains no matching variable. It is denoted by A �η

βsd
B. A substitution

ϕ is a βsdη-match if there exists a term C such that Aϕ =⇒βsd
C →∗

η B. The
algorithm described in Section 3 has to be adapted w.r.t. two aspects:

First, η-expansion is performed on demand by adding a rule to the matching
algorithm:

(λx .A �η
βsd
B), →λ (A �η

βsd
Bx),

if B is not a λ-abstraction and x is fresh

In one step, this rule first replaces the right hand side B by λy . (By) and then
performs λ-abstraction elimination as in the rule (λλ).

Secondly, we must add a side condition in the rule (@β) so that λx .A2 and
A1 are in βη-normal form (and not only in β-normal form).

The algorithm enjoys the same properties (termination, soundness and com-
pleteness) as before. Moreover, if we apply this algorithm to an equation whose
first term is a pattern à la Miller then we obtain a complete match set consisting
exactly of the more general match.

Example 5. If we consider the match-equation of Ex. 2 we can remark that
solving the equation modulo βsdη we get only 4 solutions. In fact, the rule
(@β) applies now only twice. The following two solutions found in Ex. 2 are
η-equivalent: X �βsd

a , Y �βsd
b and X �βsd

λx . ax , Y �βsd
b .

Example 6. Consider the equation (λx .X(Y x), a). It has no βsd-solution whereas
it has two βsdη-matches given by {a/X, λz . z/Y } and {λz . z/X, a/Y }.

λx .X(Y x) �η
βsd
a → X(Y x) �η

βsd
ax

→ X �η
βsd
a, Y x �η

βsd
x

→ X �η
βsd
a, Y �η

βsd
λz . z

λx .X(Y x) �η
βsd
a → X(Y x) �η

βsd
ax

→ X �η
βsd
λz . z, Y x �η

βsd
ax

→ X �η
βsd
λz . z, Y �η

βsd
a

5 Conclusion

We proposed a new approach to study higher-order matching following [dMS01]:
instead of working in the typed λ-calculus modulo full β-reduction we propose
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to work in the untyped λ-calculus modulo a restriction of β-equivalence, namely
superdevelopments. The essence of the restriction induces that all second-order
β-matches are matches modulo superdevelopments. The algorithms are described
in a mathematically elegant way that allow us to write intuitive proofs (termi-
nation, soundness and completeness). Since we consider untyped frameworks
the use of the η-equivalence does not influence the behavior and design of our
algorithms.

An implementation of the algorithm of matching modulo superdevelopments
was done in the TOM language [MRV03].

Higher-order formalisms and especially higher-order rewriting generally choose
the typed λ-calculus modulo β (or βη) as a meta-language. In the case of
CRS [KvOvR93], the meta-language is the untyped λ-calculus with develop-
ments. The next step is thus to study higher-order rewriting with the untyped
λ-calculus modulo superdevelopments as a meta-language (in other words to
consider higher-order rewriting with the untyped λ-calculus with superdevelop-
ments as a substitution calculus in the sense of [Oos94]).

As far as it concerns the transformations of pattern-matching programs, the
work of [dMS01] motivates by several examples higher-order matching in pattern-
calculi such as the ρ-calculus [CLW03] or pure pattern calculi [JK06]. Since a
simple type system that ensures termination is difficult to find in this context,
this paper should give useful guidelines.
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Abstract. We study the derivational complexity of rewrite systems R
compatible with KBO, if the signature of R is infinite. We show that the
known bounds on the derivation height are preserved, if R fulfils some
mild conditions. This allows us to obtain bounds on the derivational
height of non simply terminating TRSs. Furthermore, we re-establish the
2-recursive upper-bound on the derivational complexity of finite rewrite
systems R compatible with KBO.

1 Introduction

One of the main themes in rewriting is termination. Over the years powerful
methods have been introduced to establish termination of a given term rewriting
system (TRS) R. Earlier research mainly concentrated on inventing suitable
reduction orders—for example simplification orders, see Chapter 6, authored
by Zantema in [1]—capable of proving termination directly. In recent years the
emphasis shifted towards transformation techniques like the dependency pair
method or semantic labelling, see [1]. The dependency pair method is easily
automatable and lies at the heart of many successful termination provers like
TTT [2] or AProVE [3]. Semantic labelling with infinitely labels was conceived
to be unsuitable for automation. Hence, only the variant with finitely many
elements was incorporated (for example in AProVE [3] or TORPA [4]). Very
recently this belief was proven wrong. TPA [5] implements semantic labelling with
natural numbers, in combination with recursive path orders (RPOs) efficiently.
As remarked in [6] a sensible extension of this implementation is the combination
of semantic labelling with Knuth–Bendix orders (KBOs).

In order to assess the power and weaknesses of different termination tech-
niques it is natural to look at the length of derivation sequences, induced by
different techniques. This program has been suggested in [7]. The best known
result is that for finite rewrite systems, RPOs induce primitive recursive deriva-
tional complexity. This bound is essentially optimal, see [8,9]. Similar optimal
results have been obtained for lexicographic path orders (LPOs) and KBOs.
Weiermann [10] showed that LPOs induce multiply recursive derivational com-
plexity. In [11] Lepper showed that for term rewriting systems (TRSs) compatible
with KBOs, the derivational complexity is bounded by the Ackermann function.
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These results not only assess different proof techniques for termination, but
constitute an a priori complexity analysis for term rewriting systems provably
terminating by RPOs, LPOs, or KBOs. The application of termination provers
as basis for the termination analysis of logic or functional programs is currently
a very hot topic. Applicability of an a priori complexity analysis for TRSs in
this direction seems likely.

While the aforementioned program has spawned a number of impressive re-
sults, not much is known about the derivational complexity induced by the
dependency pair method or semantic labelling (for fixed base orders, obviously).
We indicate the situation with an example.

Example 1. Consider the TRS (F ,R) [12] consisting of the following rewrite
rules:

f(h(x)) → f(i(x)) h(a) → b

g(i(x)) → g(h(x)) i(a) → b .

It is not difficult to see that termination of R cannot be established directly with
path orders or KBOs. On the other hand, termination is easily shown via the
dependency pair method or via semantic labelling. For the sake of the argument
we show termination via semantic labelling with KBOs.

We use natural numbers as semantics and as labels. As interpretation for
the function symbols we use aN = bN = gN(n) = fN(n) = 1, iN(n) = n, and
hN(n) = n + 1. The resulting algebra (N, >) is a quasi-model for R. It suffices
to label the symbol f . We define the labelling function �f : N → N as �f (n) = n.
Replacing

f(h(x)) → f(i(x)) ,

by the infinitely many rules

fn+1(h(x)) → fn(i(x)) ,

we obtain the labelled TRS, (Flab,Rlab). Further the TRS (Flab,Dec) consists
of all rules

fn+1(x) → fn(x) .

Now we can show termination of R′ := Rlab∪Dec by an instance �kbo of Knuth-
Bendix order (KBO). We set the weight for all occurring function symbols to 1.
Further, the precedence is defined as

fn+1 � fn � · · · � f0 � i � h � g � a � b .

It is easy to see that R′ ⊆�kbo. Thus termination of R is guaranteed.
As the rewrite system R′ is infinite we cannot directly apply the aforementioned

result on the derivational complexity induced by Knuth-Bendix order. A careful
study of [11] reveals that the crucial problem is not that R′ is infinite, but that
the signature Flab is infinite, as Lepper’s proof makes explicit use of the finiteness
of the signature: To establish an upper-bound on the derivational complexity of a
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TRS R, compatible with KBO, an interpretation function I is defined, where the
cardinality of the underlying signature is hard-coded into I, cf. [11].

We study the situation by giving an alternative proof of Lepper’s result com-
pare [11]. The outcome of this study is that the assumption of finiteness of the
rewrite system can be weakened. By enforcing conditions that are still weak
enough to treat interesting rewrite systems, we show that for (possibly infinite)
TRSs R over infinite signatures, compatible with KBO, the derivation height of
R can be bounded by the Ackermann function. Using an example that stems
from [8] we show that this upper-bound is essentially optimal.

Specialised to Example 1, our results provide an upper bound on the derivation
height function with respect to R: For every t ∈ T (F) there exists a constant
c (depending only on t, R′, and �kbo) such that the derivation height dhR(t)
with respect to R is ≤ Ack(cn, 0). As the constant c can be made precise, the
method is capable of automation.

This paper is organised as follows: In Section 2 and 3 some basic facts on
rewriting, set theory and KBOs are recalled. In Section 4 we define an embed-
ding from �kbo into >lex, the lexicographic comparison of sequences of natural
numbers. This embedding renders an alternative description of the derivation
height of a term, based on the partial order >lex. This description is discussed
in Section 5 and linked to the Ackermann function in Section 6. The above men-
tioned central result is contained in Section 7. Moreover in Section 7 we apply our
result to a non simply terminating TRS, whose derivational complexity cannot
be primitive recursively bounded.

2 Preliminaries

We assume familiarity with term rewriting. For further details see [1]. Let V
denote a countably infinite set of variables and F a signature. We assume that
F contains at least one constant. The set of terms over F and V is denoted as
T (F ,V), while the set of ground terms is written as T (F). The set of variables
occurring in a term t is denoted as Var(t). The set of function symbols occurring
in t is denoted as FS(t). The size of a term t, written as Size(t), is the number
of variables and functions symbols in it. The number of occurrences of a symbol
a ∈ F ∪ V in t is denoted as |t|a. A TRS (F ,R) over T (F ,V) is a set of
rewrite rules. The smallest rewrite relation that contains R is denoted as →R.
The transitive closure of →R is denoted by →+

R, and its transitive and reflexive
closure by →∗

R. A TRS (F ,R) is called terminating if there is no infinite rewrite
sequence. As usual, we frequently drop the reference to the signature F .

A partial order � is an irreflexive and transitive relation. The converse of �
is written as ≺. A partial order � on a set A is well-founded if there exists no
infinite descending sequence a1 � a2 � · · · of elements of A. A rewrite relation
that is also a partial order is called rewrite order. A well-founded rewrite order is
called reduction order. A TRS R and a partial order � are compatible if R ⊆�.
We also say that R is compatible with � or vice versa. A TRS R is terminating
iff it is compatible with a reduction order �.
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Let (A, >) denote a well-founded weakly monotone F -algebra. (A, >) consists
of a carrier A, interpretations fA for each function symbol in F , and a well-
founded partial order > on A such that every fA is weakly monotone in all
arguments. We define a quasi-order �A: s �A t if for all assignments α : V → A
[α]A(s) � [α]A(t). Here � denotes the reflexive closure of >. The algebra (A, >)
is a quasi-model of a TRS R, if R ⊆�A.

A labelling � for A consists of a set of labels Lf together with mappings
�f : An → Lf for every f ∈ F , f n-ary. A labelling is called weakly monotone
if all labelling functions �f are weakly monotone in all arguments. The labelled
signature Flab consists of n-ary functions symbols fa for every f ∈ F , a ∈ Lf ,
together with all f ∈ F , such that Lf = ∅. The TRS Dec consists of all rules

fa+1(x1, . . . , xn) → fa(x1, . . . , xn) ,

for all f ∈ F . The xi denote pairwise different variables. Our definition of Dec
is motivated by a similar definition in [6]. Note that the rewrite relation →∗

Dec is
not changed by this modification of Dec. For every assignment α, we inductively
define a mapping labα : T (F ,V) → T (Flab,V):

labα(t) :=

⎧⎪⎨⎪⎩
t if t ∈ V ,
f(labα(t1), . . . , labα(tn)) if t = f(t1, . . . , tn) and Lf = ∅ ,
fa(labα(t1), . . . , labα(tn)) otherwise .

The label a in the last case is defined as lf ([α]A(t1), . . . , [α]A(tn)). The labelled
TRS Rlab over Flab is defined as

{labα(l) → labα(r) | l → r ∈ R and α an assignment} .

Theorem 1 (Zantema [13]). Let R be a TRS, (A, >) a well-founded weakly
monotone quasi-model for R, and � a weakly monotone labelling for (A, >). Then
R is terminating iff Rlab ∪ Dec is terminating.

The proof of the theorem uses the following lemma.

Lemma 1. Let R be a TRS, (A, >) a quasi-model of R, and � a weakly mono-
tone labelling for (A, >). If s →R t, then labα(s) →∗

Dec · →Rlab labα(t) for all
assignments α.

We briefly review a few basic concepts from set-theory in particular ordinals,
see [14]. We write > to denote the well-ordering of ordinals. Any ordinal α �= 0,
smaller than ε0, can uniquely be represented by its Cantor Normal Form (CNF):

ωα1n1 + . . . ωαknk with α1 > · · · > αk .

To each well-founded partial order � on a set A we can associate a (set-theoretic)
ordinal, its order type. First we associate an ordinal to each element a of A by
setting otype	(a) := sup{otype	(b) + 1: b ∈ A and b � a}. The order type of
�, denoted by otype(�), is the supremum of otype	(a) + 1 with a ∈ A. For two
partial orders � and �′ on A and A′, respectively, a mapping o : A→ A′ embeds
� into �′ if for all p, q ∈ A, p � q implies o(p) �′ o(q). Such a mapping is an
order-isomorphism if it is bijective and the partial orders � and �′ are linear .
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3 The Knuth Bendix Orders

A weight function for F is a pair (w, w0) consisting of a function w: F → N

and a minimal weight w0 ∈ N, w0 > 0 such that w(c) ≥ w0 if c is a constant.
A weight function (w, w0) is called admissible for a precedence � if f � g for
all g ∈ F different from f , when f is unary with w(f) = 0. The function
symbol f (if present) is called special. The weight of a term t, denoted as w(t)
is defined inductively. Assume t is a variable, then set w(t) := w0, otherwise if
t = g(t1, . . . , tn), we define w(t) := w(g) + w(t1) + · · · + w(tn).

The following definition of KBO is tailored to our purposes. It is taken from [11].
We write s = fas′ if s = fa(s′) and the root symbol of s′ is distinct from the
special symbol f . Let � be a precedence. The rank of a function symbol is
defined as: rk(f) := max{rk(g) + 1 | f � g}. (To assert well-definedness we
stipulate max(∅) = 0.)

Definition 1. Let (w, w0) denote an admissible weight function for F and let �
denote a precedence on F . We write f for the special symbol. The Knuth Bendix
order �kbo2 on T (F ,V) is inductively defined as follows: s �kbo2 t if |s|x ≥ |t|x
for all x ∈ V and

1. w(s) > w(t), or
2. w(s) = w(t), s = fas′, t = f bt′, where s′ = g(s1, . . . , sn), t′ = h(t1, . . . , tm),

and one of the following cases holds.
(a) a > b, or
(b) a = b and g � h, or
(c) a = b, g = h, and (s1, . . . , sn) �lex

kbo2 (t1, . . . , tn).

Let �kbo denote the KBO on terms in its usual definition, see [1]. The following
lemma, taken from [11], states that both orders are interchangeable.

Lemma 2 (Lepper [11]). The orders �kbo and �kbo2 coincide.

In the literature real-valued KBOs and other generalisations of KBOs are studied
as well, cf. [15,16]. However, as established in [17] any TRS shown to be termi-
nating by a real-valued KBO can be shown to be terminating by a integer-valued
KBO.

4 Exploiting the Order-Type of KBOs

We write N∗ to denote the set of finite sequences of natural numbers. Let p ∈ N∗,
we write |p| for the length of p, i.e. the number of positions in the sequence p.
The ith element of the sequence a is denoted as (p)i−1. We write p�q to denote
the concatenation of the sequences p and q. The next definition is standard but
included here, for sake of completeness.

Definition 2. We define the lexicographic order on N∗. If p, q ∈ N∗, then p >lex

q if,



80 G. Moser

– |p| > |q|, or
– |p| = |q| = n and there exists i ∈ [0, n − 1], such that for all j ∈ [0, i − 1]

(p)j = (q)j and (p)i > (q)i.

It is not difficult to see that otype(>lex) = ωω, moreover in [11] it is shown that
otype(�kbo) = ωω. Hence otype(>lex) = otype(�kbo), a fact we exploit below.
However, to make this work, we have to restrict our attention to signatures F
with bounded arities. The maximal arity of F is denoted as Ar(F).

Definition 3. Let the signature F and a weight function (w, w0) for F be fixed.
We define an embedding tw : T (F ,V) → N∗. Set b := max{Ar(F), 3} + 1.

tw(t) :=

{
(w0, a, 0)�0m if t = fax, x ∈ V ,
(w(t), a, rk(g))� tw(t1)� · · ·� tw(tn)�0m if t = fag(t1, . . . , tn) .

The number m is set suitably, so that |tw(t)| = bw(t)+1.

The mapping tw flattens a term t by transforming it into a concatenation of
triples. Each triple holds the weight of the considered subterm r, the number of
leading special symbols and the rank of the first non-special function symbol of
r. In this way all the information necessary to compare two terms via �kbo is
expressed as a very simple data structure: a list of natural numbers.

Lemma 3. tw embeds �kbo into >lex: If s �kbo t, then tw(s) >lex tw(t).

Proof. The proof follows the pattern of the proof of Lemma 9 in [11].
Firstly, we make sure that the mapping tw is well-defined, i.e., we show that

the length restriction can be met. We proceed by induction on t; let t = fat′.
We consider two cases (i) t′ ∈ V or (ii) t′ = g(t1, . . . , tn). Suppose the former:

|(w0, a, 0)| = 3 ≤ bw(t)+1 .

Now suppose case (ii): Let j = rk(g), we obtain

|(w(t), a, j)� tw(t1)� · · ·� tw(tn)| = 3 + bw(t1)+1 + · · · + bw(tn)+1

≤ 3 + n · bw(t) ≤ bw(t)+1 .

Secondly, we show the following, slight generalisation of the lemma:

s �kbo t ∧ |tw(s)�r| = |tw(t)�r′| =⇒ tw(s)�r >lex tw(t)�r′ . (1)

To prove (1) we proceed by induction on s �kbo t. Set p = tw(s)�r, q = tw(t)�
r′.

Case w(s) > w(t): By definition of the mapping tw, we have: If w(s) > w(t),
then (tw(s))0 > (tw(t))0. Thus p >lex q follows.

Case w(s) = w(t): We only consider the sub-case where s = fag(s1, . . . , sn) and
t = fag(t1, . . . , tn) and there exists i ∈ [1, n] such that s1 = t1, . . . , si−1 = ti−1,
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and si �kbo ti. (The other cases are treated as in the case above.) The induction
hypotheses (IH) expresses that if |tw(si)�v| = |tw(ti)�v′|, then tw(si)�v >lex

tw(ti)�v′. For j = rk(g), we obtain

p =

w︷ ︸︸ ︷
(w(s), a, j)� tw(s1)� · · ·� tw(si−1)� tw(si)� · · ·� tw(sn)�r ,

q = (w(s), a, j)� tw(s1)� · · ·� tw(si−1)︸ ︷︷ ︸
w

� tw(ti)� · · ·� tw(tn)�r′ .

Due to |p| = |q|, we conclude

|tw(si)� · · ·� tw(sn)�r| = |tw(ti)� · · ·� tw(tn)�r′| .

Hence IH is applicable and we obtain

tw(si)� · · ·� tw(sn)�r >lex tw(ti)� · · ·� tw(tn)�r′ ,

which yields p >lex q. This completes the proof of (1).
Finally, to establish the lemma, we assume s �kbo t. By definition either

w(s) > w(t) or w(s) = w(t). In the latter case tw(s) >lex tw(t) follows by (1).
While in the former tw(s) >lex tw(t) follows as w(s) > w(t) implies |tw(s)| >
|tw(t)|. ��

5 Derivation Height of Knuth-Bendix Orders

Let R be a TRS and �kbo a KBO such that �kbo is compatible with R. The
TRS R and the KBO �kbo are fixed for the remainder of the paper. We want to
extract an upper-bound on the length of derivations in R. We recall the central
definitions. Note that we can restrict the definition to the set ground terms. The
derivation height function dhR (with respect to R on T (F)) is defined as follows.

dhR(t) := max({n | ∃(t0, . . . , tn) t = t0 →R t1 →R . . .→R tn}) .

We introduce a couple of measure functions for term and sequence complex-
ities, respectively. The first measure sp : T (F ,V) → N bounds the maximal
nesting of special symbols in the term:

sp(t) :=

{
a if t = fax, x ∈ V ,
max({a} ∪ {sp(tj) | j ∈ [1, n]}) if t = fag(t1, . . . , tn) .

The second and third measure rk : T (F ,V) → N and mrk : T (F ,V) → N collect
information on the ranks of non special function symbols occurring:

rk(t) :=

{
0 if t = fax, x ∈ V ,
j if t = fag(t1, . . . , tn) and rk(g) = j ,

mrk(t) :=

{
0 if t = fax, x ∈ V ,
max({j} ∪ {mrk(ti) | i ∈ [1, n]}) if t = fag(t1, . . . , tn), rk(g) = j .
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The fourth measure max : N∗ → N considers sequences p and bounds the
maximal number occurring in p:

max(p) := max({(p)i | i ∈ [0, |p| − 1]}) .

It is immediate from the definitions that for any term t: sp(t), rk(t),mrk(t) ≤
max(tw(t)). We write r � t to denote the fact that r is a subterm of t.

Lemma 4. If r � t, then max(tw(t)) ≥ max(tw(r)).

We informally argue for the correctness of the lemma. Suppose r is a subterm of
t. Then clearly w(r) ≤ w(t). The maximal occurring nesting of special symbols
in r is smaller (or equal) than in t. And the maximal rank of a symbol in r
is smaller (or equal) than in t. The mapping tw transforms r to a sequence p
whose coefficients are less than w(t), less than the maximal nesting of special
symbols and less than the maximal rank of non-special function symbol in r .
Hence max(tw(t)) ≥ max(tw(r)) holds.

Lemma 5. If p = tw(t) and q = tw(fat), then max(p) + a ≥ max(q).

Proof. The proof of the lemma proceeds by a case distinction on t. ��
Lemma 6. We write m ·− n to denote max({m− n, 0}). Assume s �kbo t with
sp(t) ≤ K and (mrk(t) ·− rk(s)) ≤ K. Let σ be a substitution and set p = tw(sσ),
q = tw(tσ). Then p >lex q and max(p) +K ≥ max(q).

Proof. It suffices to show max(p) + K ≥ max(q) as p >lex q follows from
Lemma 3. We proceed by induction on t; let t = fat′.

Case t′ ∈ V : Set t′ = x. We consider two sub-cases: Either (i) xσ = f by, y ∈ V
or (ii) xσ = f bg(u1, . . . , um). It suffices to consider sub-case (ii), as sub-case (i)
is treated in a similar way. From s �kbo t, we know that for all y ∈ V , |s|y ≥
|t|y, hence x ∈ Var(s) and xσ � sσ. Let l := rk(g); by Lemma 4 we conclude
max(tw(xσ)) ≤ max(p). I.e. b, l,max(tw(u1)), . . . ,max(tw(um)) ≤ max(p).
We obtain

max(q) = max({w0, a+ b, l} ∪ {max(tw(uj)) | i ∈ [1,m]})
≤ max({w(sσ), sp(t) + max(p),max(p)} ∪ {max(p)})
≤ max({w(sσ),max(p) +K} ∪ {max(p)}) = max(p) +K .

Case t′ = g(t1, . . . , tn): Let j = rk(g). By Definition 1 we obtain s �kbo ti.
Moreover sp(ti) ≤ sp(t) ≤ K and mrk(ti) ≤ mrk(t). Hence for all i: sp(ti) ≤ K
and (mrk(ti) ·−rk(s)) ≤ K holds. Thus IH is applicable: For all i: max(tw(tiσ)) ≤
max(p) +K. By using the assumption (mrk(t) ·− rk(s)) ≤ K we obtain:

max(q) = max({w(tσ), a, j} ∪ {max(tw(tiσ)) | i ∈ [1, n]})
≤ max({w(tσ), sp(t), rk(s) +K} ∪ {max(p) +K})
≤ max({w(sσ), sp(t), rk(sσ) +K} ∪ {max(p) +K})
≤ max({w(sσ),K,max(p) +K} ∪ {max(p) +K}) = max(p) +K .

��
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In the following, we assume that the set

M := {sp(r) | l→ r ∈ R} ∪ {(mrk(r) ·− rk(l)) | l → r ∈ R} (2)

is finite. We set K := max(M) and let K be fixed for the remainder.

Example 2. With respect to the TRS R′ := Rlab ∪ Dec from Example 1, we
haveM = {(mrk(r) ·− rk(l)) | l → r ∈ R′}. Note that the signature of R′ doesn’t
contain a special symbol.

Clearly M is finite and it is easy to see that max(M) = 1. Exemplary, we
consider the rule schemata fn+1(h(x)) → fn(i(x)). Note that the rank of i equals
4, the rank of h is 3, and the rank of fn is given by n+5. Hence mrk(fn(i(x))) =
n+ 5 and rk(fn+1(h(x))) = n+ 6. Clearly (n+ 5 ·− n+ 6) ≤ 1.

Lemma 7. If s→R t, p = tw(s), q = tw(t), then p >lex q and u(max(p),K) ≥
max(q), where u denotes a monotone polynomial such that u(n,m) ≥ 2n+m.

Proof. By definition of the rewrite relation there exists a context C, a substi-
tution σ and a rule l → r ∈ R such that s = C[lσ] and t = C[rσ]. We prove
max(q) ≤ u(max(p),K) by induction on C. Note that C can only have the
form (i) C = fa[�] or (ii) C = fag(u1, . . . , C

′[�], . . . , un).

Case C = fa[�]: By Lemma 6 we see max(tw(rσ)) ≤ max(tw(lσ)) +K. Em-
ploying in addition Lemma 5 and Lemma 4, we obtain:

max(q) = max(tw(farσ)) ≤ max(tw(rσ)) + a
≤ max(tw(lσ)) +K + a
≤ max(p) +K + max(p) ≤ u(max(p),K) .

Case C = fag(u1, . . . , C
′[�], . . . , un): As C′[lσ] →R C

′[rσ], IH is applicable: Let
p′ = tw(C′[lσ]), q′ = tw(C′[rσ]). Then max(q′) ≤ u(max(p′),K). For rk(g) = l,
we obtain by application of IH and Lemma 4:

max(q) = max({w(t), a, l} ∪ {max(tw(u1)), . . . ,max(q′), . . . ,max(tw(un))})
≤ max({w(s), a, l} ∪

∪{max(tw(u1)), . . . , u(max(p′),K), . . . ,max(tw(un))})
≤ max({w(s), a, l} ∪ {max(p), u(max(p),K)}) = u(max(p),K) . ��

We define approximations of the partial order >lex.

p >lex
n q iff p >lex q and u(max(p), n) ≥ max(q) ,

where u is defined as in Lemma 7. Now Lemma 6 can be concisely expressed as
follows, for K as above.

Proposition 1. If s→R t, then tw(s) >lex
K tw(t).
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In the spirit of the definition of derivation height, we define a family of func-
tions Ahn : N → N:

Ahn(p) := max({m | ∃(p0, . . . , pm) p = p0 >lex
n p1 >

lex
n · · · >lex

n pm}) .

The following proposition is an easy consequence of the definitions and
Proposition 1.

Theorem 2. Let (F ,R) be a TRS, compatible with KBO. Assume the set M :=
{sp(r) | l→ r ∈ R}∪{(mrk(r) ·− rk(l)) | l→ r ∈ R} is finite and the arities in of
the symbols in F are bounded; set K := max(M). Then dhR(t) ≤ AhK(tw(t)).

In the next section we show that Ahn is bounded by the Ackermann function
Ack. Thus providing the sought upper-bound on the derivation height of R.

6 Bounding the Growth of Ahn

Instead of directly relating the functions Ahn to the Ackermann function, we
make use of the fast-growing Hardy functions, cf. [18]. The Hardy functions
form a hierarchy of unary functions Hα : N → N indexed by ordinals. We will
only be interested in a small part of this hierarchy, namely in the set of functions
{Hα | α < ωω}.
Definition 4. We define the embedding o : N∗ → ωω as follows:

o(p) := ω	−1(p)0 + . . . ω(p)	−2 + (p)	−1 ,

where � = |p|.
The next lemma follows directly from the definitions.

Lemma 8. If p >lex q, then o(p) > o(q).

We associate with every α < ωω in CNF an ordinal αn, where n ∈ N. The
sequence (αn)n is called fundamental sequence of α. (For the connection between
rewriting and fundamental sequences see e.g. [19].)

αn :=

⎧⎪⎨⎪⎩
0 if α = 0 ,
β if α = β + 1 ,
β + ωγ+1 · (k − 1) + ωγ · (n+ 1) if α = β + ωγ+1 · k .

Based on the definition of αn, we define Hα : N → N, for α < ωω by transfinite
induction on α:

H0(n) := n Hα(n) := Hαn(n+ 1) .

Let >(n) denote the transitive closure of (.)n, i.e. α >(n) β iff αn >(n) β or αn =
β. Suppose α, β < ωω. Let α = ωα1n1 + . . . ωαknk and β = ωβ1m1 + . . . ωβlml.
Recall that any ordinal α �= 0 can be uniquely written in CNF, hence we can
assume that α1 > · · · > αk and β1 > · · · > βl. Furthermore by our assumption
that α, β < ωω, we have αi, βj ∈ N. We write NF(α, β) if αk ≥ β1.

Before we proceed in our estimation of the functions Ahn, we state some simple
facts that help us to calculate with the function Hα.
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Lemma 9. 1. If α >(n) β, then α >(n+1) β + 1 or α = β + 1.
2. If α >(n) β and n ≥ m, then Hα(n) > Hβ(m).
3. If n > m, then Hα(n) > Hα(m).
4. If NF(α, β), then Hα+β(n) = Hα ◦ Hβ(n); ◦ denotes function composition.

We relate the Hardy functions with the Ackermann function. The stated upper-
bound is a gross one, but a more careful estimation is not necessary here.

Lemma 10. For n ≥ 1: Hωn(m) ≤ Ack(2n,m).

Proof. We recall the definition of the Ackermann function:

Ack(0,m) = m+ 1
Ack(n+ 1, 0) = Ack(n, 1)

Ack(n+ 1,m+ 1) = Ack(n,Ack(n+ 1,m))

In the following we sometimes denote the Ackermann function as a unary func-
tion, indexed by its first argument: Ack(n,m) = Ackn(m). To prove the lemma,
we proceed by induction on the lexicographic comparison of n and m. We only
present the case, where n and m are greater than 0. As preparation note that
m + 1 ≤ Hωn(m) holds for any n and Ack2

n(m + 1) ≤ Ackn+1(m + 1) holds for
any n,m.

Hωn+1(m+ 1) = Hωn(m+2)(m+ 2)
≤ Hωn(m+2)+ωn(m+ 1) Lemma 9(3,4)

= H2
ωnHωn(m+1)(m+ 1) Lemma 9(4)

= H2
ωnHωn+1(m)

≤ Ack2
2nAck2(n+1)(m) IH

≤ Ack2n+1Ack2(n+1)(m)
= Ack(2(n+ 1),m+ 1) . ��

Lemma 11. Assume u(m,n) ≤ 2m+ n and set � = |p|. For all n ∈ N:

Ahn(p) ≤ Hω2·o(p)(u(max(p), n) + 1) < Hω4+�(max(p) + n) . (3)

Proof. To prove the first half of (3) , we make use of the following fact:

p >lex q ∧ n ≥ max(q) =⇒ o(p) >(n) o(q) . (4)

To prove (4), one proceeds by induction on >lex and uses that the embedding
o : N∗ → ωω is essentially an order-isomorphism. We omit the details.

By definition, we have Ahn(p) = max({Ahn(q) + 1 | p >lex
n q}). Hence it

suffices to prove

p >lex q∧u(max(p), n) ≥ max(q) =⇒ Ahn(q) < Hω2·o(p)(u(max(p), n)+1) (5)

We fix p fulfilling the assumptions in (5); letα = o(p), β = o(q), v = u(max(q), n).
We use (4) to obtain α >(v) β. We proceed by induction on p.
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Consider the case αv = β. As p >lex q, we can employ IH to conclude Ahn(q) ≤
Hω2·o(q)(u(max(q), n)+1). It is not difficult to see that for any p ∈ N∗ and n ∈ N,
4max(p) + 2n+ 1 ≤ Hω2(u(max(p), n)). In sum, we obtain:

Ahn(q) ≤ Hω2·o(q)(u(max(q), n) + 1)
≤ Hω2·αv

(u(u(max(p), n), n) + 1) max(q) ≤ u(max(p), n)
≤ Hω2·αv

(4max(p) + 2n+ 1) Definition of u
≤ Hω2·αv

Hω2(u(max(p), n))
= Hω2·(αv+1)(u(max(p), n)) Lemma 9(4)
< Hω2·(αv+1)(u(max(p), n) + 1) Lemma 9(3)
≤ Hω2·α(u(max(p), n) + 1) Lemma 9(2)

The application of Lemma 9(2) in the last step is feasible as by definition α >(v)

αv. An application of Lemma 9(1) yields αv +1 ≤(v+1) α. From which we deduce
ω2 · (αv + 1) ≤(v+1) ω

2 · α.
Secondly, consider the case αv >(v) β. In this case the proof follows the pattern

of the above proof, but an additional application of Lemma 9(4) is required. This
completes the proof of(5).

To prove the second part of (3), we proceed as follows: The fact that ω	 > o(p)
is immediate from the definitions. Induction on p reveals that even ω	 >(max(p))

o(p) holds. Thus in conjunction with the first part of (3), we obtain:

Ahn(p) ≤ Hω2·o(p)(u(max(p), n) + 1) ≤ Hω2+�(u(max(p), n) + 1)
≤ Hω4+�(max(p) + n) .

The last step follows as 2 max(p) + n+ 1 ≤ Hω2(max(p) + n). ��

As a consequence of Lemma 10 and 11, we obtain the following proposition.

Theorem 3. For all n ≥ 1: If � = |p|, then Ahn(p) ≤ Ack(2�+ 8,max(p) + n).

7 Derivation Height of TRSs over Infinite Signatures
Compatible with KBOs

Based on Theorem 2 and 3 we obtain that the derivation height of t ∈ T (F) is
bounded in the Ackermann function.

Theorem 4. Let (F ,R) be a TRS, compatible with KBO. Assume the set M :=
{sp(r) | l→ r ∈ R}∪{(mrk(r) ·−rk(l)) | l→ r ∈ R} is finite and the arities of the
symbols in F are bounded; set K := max(M). Then dhR(t) ≤ Ack(O(|tw(t)|) +
max(tw(t)) +K, 0).

Proof. We set u(n,m) = 2n + m and keep the polynomial u fixed for the
remainder. Let p = tw(t) and � = |p|. Due to Theorem 2 we conclude that
dhR(t) ≤ AhK(p). It is easy to see that Ack(n,m) ≤ Ack(n +m, 0). Using this
fact and Theorem 3 we obtain: AhK(p) ≤ Ack(O(�),max(p)+K) ≤ Ack(O(�)+
max(p) +K, 0). Thus the theorem follows. ��
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For fixed t ∈ T (F) we can bound the argument of the Ackermann function in
the above theorem in terms of the size of t. We define

rmax := mrk(t) wmax := max({w(u) | u ∈ FS(t) ∪ Var(t)} .

Lemma 12. For t∈ T (F), let rmax, wmax be as above. Let b := max{Ar(F), 3}+
1, and set n := Size(t). Then w(t) ≤ wmax · n, sp(t) ≤ n, mrk(t) ≤ rmax. Hence
|tw(t)| ≤ bwmax(n)·n+1 and max(tw(t)) ≤ wmax(n) · n+ rmax.

Proof. The proof proceeds by induction on t. ��

Corollary 1. Let (F ,R) be a TRS, compatible with a KBO �kbo. Assume the
set {sp(r) | l → r ∈ R} ∪ {(mrk(r) ·− rk(l)) | l → r ∈ R} is finite and the arites
of the symbols in F are bounded. Then for t ∈ T (F), there exists a constant
c—depending on t, (F ,R), and �kbo—such that dhR(t) ≤ Ack(cn, 0).

Proof. The corollary is a direct consequence of Theorem 4 and Lemma 12. ��

Remark 1. Note that it is not straight-forward to apply Theorem 4 to classify
the derivational complexity of R, over infinite signature, compatible with KBO.
This is only possible in the (unlikely) case that for every term t the maximal
rank mrk(t) and the weight w(t) of t can be bounded uniformly, i.e. independent
of the size of t.

We apply Corollary 1 to the motivating example introduced in Section 1.

Example 3. Recall the definition of R and R′ := Rlab ∪ Dec from Example 1
and 2 respectively. Let s ∈ T (Flab) be fixed and set n := Size(s).

Clearly the arities of the symbols in Flab are bounded. In Example 2 we
indicated that the set M = {(mrk(r) ·− rk(l)) | l → r ∈ R′} is finite. Hence,
Corollary 1 is applicable to conclude the existence of c ∈ N with dhR′(s) ≤
Ack(cn, 0). In order to bound the derivation height of R, we employ Lemma 1
to observe that for all t ∈ T (F): dhR(t) ≤ dhR′(labα(t)), for arbitrary α. As
Size(t) = Size(labα(t)) the above calculation yields

dhR(t) ≤ dhR′(labα(t)) ≤ Ack(cn, 0) .

Note that c depends only on t, R′ and the KBO �kbo employed.

The main motivation of this work was to provide an alternative proof of Lep-
per’s result that the derivational complexity of any finite TRS, compatible with
KBO, is bounded by the Ackermann function, see [11]. We recall the definition
of the derivational complexity:

dcR(n) := max({dhR(t) | Size(t) ≤ n}) .

Corollary 2. Let (F ,R) be a TRS, compatible with KBO, such that F is finite.
Then dhR(n) ≤ Ack(2O(n), 0).
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Proof. As F is finite, the K = max({(mrk(r) ·− rk(l)) | l → r ∈ R′}) and Ar(F)
are obviously well-defined. Theorem 4 yields that dhR(t) ≤ Ack(O(|tw(t)|) +
max(tw(t)) +K, 0). Again due to the finiteness of F , for any t ∈ T (F), mrk(t)
and w(t) can be estimated independent of t. A similar argument calculation as in
Lemma 12 thus yields dhR(t) ≤ Ack(2O(Size(t)), 0). Hence the result follows. ��

Remark 2. Note that if we compare the above corollary to Corollary 19 in [11], we
see that Lepper could even show that dcR(n) ≤ Ack(O(n), 0). On the other hand,
as already remarked above, Lepper’s result is not admissible if the signature is
infinite.

In concluding, we want to stress that the method is also applicable to obtain
bounds on the derivational height of non simply terminating TRSs, a feature
only shared by Hofbauer’s approach to utilise context-dependent interpretations,
cf. [20].

Example 4. Consider the TRS consisting of the following rules:

f(x) ◦ (y ◦ z) → x ◦ (f2(y) ◦ z) a(a(x)) → a(b(a(x)))
f(x) ◦ (y ◦ (z ◦ w)) → x ◦ (z ◦ (y ◦ w))
f(x) → x

Let us call this TRS R in the following. Due to the rule a(a(x)) → a(b(a(x))),
R is not simply terminating. And due to the three rules, presented on the left,
the derivational complexity of R cannot be bounded by a primitive recursive
function, compare [8].

Termination can be shown by semantic labelling, where the natural numbers
are used as semantics and as labels. The interpretations aN(n) = n+ 1, bN(n) =
max({0, n−1}), fN(n) = n, andm◦Nn = m+n give rise to a quasi-model. Using
the labelling function �a(n) = n, termination of R′ := Rlab ∪ Dec can be shown
by an instance �kbo of KBO with weight function (w, 1): w(◦) = w(f) = 0,
w(b) = 1, and w(an) = n and precedence: f � ◦ � . . . an+1 � an � · · · � a0 � b.
The symbol f is special. Clearly the arities of the symbols in Flab are bounded.
Further, it is not difficult to see that the set M = {sp(r) | l → r ∈ R′} ∪
{(mrk(r) ·− rk(l)) | l→ r ∈ R′} is finite and K := max(M) = 2.

Proceeding as in Example 3, we see that for each t ∈ T (F), there exists a
constant c (depending on t, R′ and �kbo) such that dhR(t) ≤ Ack(cn, 0).
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Abstract. We a give an intrinsic characterization of the class of func-
tions which are computable in NC1 that is by a uniform, logarithmic
depth and polynomial size family circuit. Recall that the class of func-
tions in ALogTime, that is in logarithmic time on an Alternating Tur-
ing Machine, is NC1. Our characterization is in terms of first order
functional programming languages. We define measure-tools called Sup-
interpretations, which allow to give space and time bounds and allow also
to capture a lot of program schemas. This study is part of a research on
static analysis in order to predict program resources. It is related to
the notion of Quasi-interpretations and belongs to the implicit compu-
tational complexity line of research.

1 Introduction

This study concerns interpretation methods for proving complexity bounds of
first order functional programs. Such methods provide machine independent
characterization of functional complexity classes, that Cobham [15] initiated.
They also provide static analysis of the computational resources, which are nec-
essary to run a program. Such an analysis should guarantee the amount of mem-
ory, time or processors which are necessary to execute a program on all inputs.

Implicit computational complexity (ICC) proposes syntactic characterizations
of complexity classes, which lean on a data ramification principle like safe re-
cursion [7], lambda-calculus [26] or data tiering [24]. We mention this line of
works because they are inherently fundamentals, in the sense that one has to
introduce such characterizations before one can proceed with the development
of further studies and applications. Here, the term ICC is use as a name for
characterizations of complexity classes which are syntactic and do not explicitly
refer to computational resources.

It bears stressing to discuss on the two main difficulties that we have to face
in order to provide a compelling resource static analysis. The first is that the
method should capture a broad class of programs in order to be useful. From a
theoretical perspective, this means that we are trying to characterize a large class
of programs, which represents functions in some complexity classes. Traditional
results focus on capturing all functions of a complexity class and we should
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call this approach extensional whereas our approach is rather intentional. This
change of point of view is difficult because we have to keep in mind that the set
of polynomial time programs is Σ2-complete. The second difficulty is related to
the complexity of the static analysis suggested. The resource analysis procedure
should be decidable and easily checkable. But inversely, a too “easy” resource
analysis procedure won’t, certainly, delineate a meaningful class of programs.

There are at least four directions inspired by ICC approaches which are re-
lated with our topic and that we briefly review. The first direction deals with
linear type disciplines in order to restrict computational time and began with
the seminal work of Girard [20] which defined Light Linear Logic. The second
direction is due to Hofmann [21], which introduced a resource atomic type, the
diamond type, into the linear type system for higher order functional program-
ming. Unlike the two former approaches and the next one, the third one considers
imperative programming language and is developed by Kristiansen-Jones [22],
Niggl-Wunderlich [31], and Marion-Moyen [30].

Lastly, the fourth approach is the one on which we focus in this paper. It
concerns term rewriting systems and interpretation methods for proving com-
plexity bounds. This method consists in giving an interpretation to computed
functions, which provides an upper bound on function output sizes. The method
analyses the program data flow in order to measure the program complexity. We
have developed two kinds of interpretation methods for proving complexity. The
first method concerns Quasi-interpretations, which is surveyed in [10]. The sec-
ond method, which concerns this paper, is the sup-interpretation method, that
we introduced in [29]. The main features of interpretation methods for proving
complexity bounds are the following.

1. The analysis include broad classes of algorithms, like greedy algorithms,
dynamic programming [28] and deal with non-terminating programs [29].

2. Resource verification of bytecode programs is obtained by compiling first
order functional and reactive programs. See for example [3,2,18].

3. There are heuristics to determine program complexity. See [1,11]

1.1 Backgrounds on ALogTime and NC1

We write log(n) to mean 'log2(n+ 1)(. Recall that the floor function +x, is the
greatest integer ≤ x, and the ceiling function 'x( is least integer ≥ x.

We refer to Random Access Alternating Turing Machine of [13], called ATM.
An ATM has random access read only input tapes as well as work tapes. The
states of the ATM are classified as either conjunctive, disjunctive or reading.
The computation of an ATM proceeds in two stages. The first stage consists
in spawning two successor configurations from a root configuration. The second
stage consists in evaluating backward the configuration tree generated in the
first stage. An ATM outputs a single bit. A function F : {0, 1}∗ → {0, 1}∗ is
bitwise computable in ALogTime if the function Fbit : {0, 1}∗ × {0, 1}∗ → {0, 1}
is computable by an ATM in time O(log(n)). The function Fbit is defined by
Fbit(x, u) is equal to the i’th bit of F (x), where i is the integer that u represents
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in binary. Following Cook [17], we say that a function F : {0, 1}∗ → {0, 1}∗
is computed in ALogTime if φ is bitwise computable in ALogTime and φ is
polynomially bounded.

A circuit Cn is a directed acyclic graph built up from Boolean gates And, Or
and Not. Each gate has an in-degree less or equal to two. A circuit has n input
nodes and g(n) output nodes, where g(n) = O(nc) for some constant c ≥ 1.
Thus, a circuit Cn computes a function fn : {0, 1}n → {0, 1}g(n). A circuit
family is a sequence of Boolean circuits C = (Cn)n, which computes a family of
finite functions (fn) over {0, 1}∗. Inversely a function f is computed by a circuit
family (Cn)n if the restriction of f to inputs of size n is computed by Cn. The
complexity of a circuit depends on its height (that is the longest path from an
input to an output gate) and its size (that is the number of gates).

The class of NC1 functions is the set of functions which are computed by UE∗-
uniform circuit families of polynomial size (i.e. bounded O(nd) for some degree
d) and of depth O(log(n)) where n is the circuit input length.

NC1 contains functions associated with binary addition, subtraction, and more
generally prefix sum of associative operators. Buss [12] showed that the evalua-
tion of Boolean formulae is a complete problem for NC1. The class NC1 contains
functions which are computed by very fast parallel algorithms.

Uniformity condition ensures that there is a procedure which, given n, pro-
duces a description of the circuit Cn. All along, we shall consider UE∗-uniform
family of circuits, which is sufficient one to establish the equivalent Theorem 1.
Barrington, Immerman and Straubing [6] studied other equivalent uniform con-
ditions. The UE∗-uniformity condition is the following. The extended connection
language LEC of C = (Cn)n is a set of quadruplets (n, g, p, y) where the gate
indicated by the path p from the gate numbered g is of type y in Cn. For NC1,
knowing whether an element is in the extended connection language LEC for C
is decidable in time O(log(n)) by an ATM.

In [32], Ruzzo demonstrated the following equivalence.

Theorem 1. A function φ : {0, 1}∗ → {0, 1}∗ is in NC1 if and only if φ is
computed in ALogTime.

The class NC1 is included in the class Logspace, and so in the Ptime. Furst,
Saxe and Spiser [19] and Atjai [5] established that AC0 is strictly included in
NC1. Following [6] opinion, NC1 is at the frontier where we begin to have some
separation results, which is a motivation to study NC1.

1.2 Results and Related Works

We consider a first order functional programming language over constructor
term algebra. We define a class of programs that we call explicitly additive arbo-
real programs. We demonstrate that functions, which are computable by these
programs, are exactly the functions computed in ALogTime. That is, they are
computable in NC1. To our knowledge, this is the first result, which connects a
small class of parallel functions and term rewriting systems.
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There are various characterizations of ALogTime, which are surveyed in [14]
based on bounded recursion schema. Compton and Laflamme [16] give a charac-
terization of ALogTime based on finite global functions. These results are clearly
a guideline for us. However, there are only a few characterizations of ALogTime
from which a resource static analysis is conceivable. Bloch [8] gives a charac-
terization of ALogTime using a divide and conquer ramified recursion schema.
Leivant and Marion [27] propose another characterization based on linear rami-
fied recursion with substitutions. It is also worth mentioning [25,9] which capture
NC. These purely syntactic characterizations capture a few algorithmic patterns.
On the contrary, this work tries to delineate a broad class of algorithms. Parallel
algorithms are difficult to design. Employing the sup-interpretation method leads
to delineate efficient parallel programs amenable to circuit computing. Designing
parallel implementations of first order functional programs with interpretation
methods for proving complexity bounds, might be thus viable in the near future.

2 First Order Functional Programming

2.1 Syntax of Programs

We define a generic first order functional programming language. The vocabulary
Σ = 〈Cns,Op,Fct〉 is composed of three disjoint domains of symbols. The arity
of a symbol is the number n of arguments that it takes. The program grammar
is the following.

(Constructor terms) T (Cns) & v ::= c | c(v1, · · · , vn)
(terms/Expressions) T (Cns,Fct,Var) & t ::= c | x | c(t1, · · · , tn)

| op(t1, · · · , tn) | f(t1, · · · , tn)
(patterns) Patterns & p ::= c | x | c(p1, · · · , pn)
(rules) R & r ::= f(p1, · · · , pn) → ef

where c ∈ Cns is a constructor, op ∈ Op is an operator, f ∈ Fct is a function
symbol. The set of variables Var is disjoint from Σ and x ∈ Var. In a rule, a
variable of ef occurs in the patterns p1, · · · , pn of the definition of f. A program p
is a list of rules. The program’s main function symbol is the first function symbol
in the program’s list of rules. Throughout, we consider only orthogonal programs,
that is, rule patterns are disjoint and linear. So each program is confluent.

Throughout, we write e to mean a sequence of expressions, that is e =
e1, . . . , en, for some n clearly determined by the context.

2.2 Semantics

The domain of computation of a program p is the constructor algebra Values =
T (Cns). Put Values∗ = Values∪{Err} where Err is the value associated when
an error occurs. An operator op of arity n is interpreted by a function �op�
from Valuesn to Values∗. Operators are essentially basic partial functions like
destructors or characteristic functions of predicates like =.
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The language has a usual closure-based call-by-value semantics which is dis-
played in Figure 1. The computational domain is Values# = Values∪{Err,⊥}
where ⊥ means that a program is non-terminating. A program p computes a
partial function �p� : Valuesn → Values# defined as follows. For all vi ∈
Values, �p�(v1, · · · , vn) = w iff p(v1, · · · , vn) ↓ w. Otherwise �p�(v1, · · · , vn) =
⊥. The meaning of e↓w is that e evaluates to the value w of Values. By defini-
tion, if no rule is applicable, then an error occurs and e↓Err.

A substitution σ is a finite function from variables to Values. The application
of a substitution σ to a term e is noted eσ.

t1 ↓ w1 . . . tn ↓ wn

c ∈ Cns and ∀i, wi 
= Err
c(t1, · · · , tn) ↓ c(w1, · · · , wn)

t1 ↓ w1 . . . tn ↓ wn

op ∈ Op
op(t1, · · · , tn) ↓ �op�(w1, · · · , wn)

t1 ↓ w1 . . . tn ↓ wn f(p1, · · · , pn) → e eσ ↓ w
where σ(xi) = wi

f(t1, · · · , tn) ↓ w
∀i = 1, . . . , n

Fig. 1. Call by value semantics of ground terms wrt a program p

3 Sup-interpretations

Let us now turn our attention to the sup-interpretation method which is the
main tool to analyze a program complexity. For this purpose, we define a special
kind of program interpretation called sup-interpretation, which is associated to
a lightweight, to provide a complexity measure.

3.1 Partial Assignments

A partial assignment I is a partial mapping from a vocabulary Σ such that
for each symbol f of arity n, in the domain of I, it yields a partial function
I(f) : (R+)n 
−→ R+, where R+ is the set of non-negative real numbers. The
domain of a partial assignment I is noted dom(I). Because it is convenient, we
shall always assume that partial assignments that we consider, are defined on
constructors and operators. That is Cns ∪ Op ⊆ dom(I).

An expression e is defined over dom(I) if each symbol belongs to dom(I)
or is a variable of Var. Assume that an expression e is defined over dom(I)
and has n variables. Take a denumerable sequence X1, . . . , Xn, . . .. The partial
assignment of e wrt I is the homomorphic extension that we write I∗(e). It
denotes a function from Rn

+ to R+ and is defined as follows:
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1. If xi is a variable of Var, let I∗(xi) = Xi

2. If b is a 0-ary symbol of Σ, then I∗(b) = I(b).
3. If f is a symbol of arity n > 0 and e1, · · · , en are expressions, then

I∗(f(e1, · · · , en)) = I(f)(I∗(e1), . . . , I∗(en))

3.2 Sup-interpretations and Lightweights

Definition 1 (Sup-interpretation). A sup-interpretation is a partial assign-
ment θ which verifies the three conditions below :

1. The assignment θ is weakly monotonic. That is, for each symbol f ∈ dom(θ),
the function θ(f) satisfies for every i = 1, . . . , n

Xi ≥ Yi ⇒ θ(f)(X1, · · · , Xn) ≥ θ(f)(Y1, · · · , Yn)

2. For each v ∈ Values,

θ∗(v) ≥ |v|

The size of an expression e is noted |e| and is defined by |c| = 0 where c is
a 0-ary symbol and |b(e1, . . . , en)| = 1 +

∑
i |ei| where b is a n-ary symbol.

3. For each symbol f ∈ dom(θ) of arity n and for each value v1, . . . , vn of
Values, if �f�(v1, . . . , vn) is defined, that is �f�(v1, . . . , vn) ∈ Values, then

θ∗(f(v1, . . . , vn)) ≥ θ∗(�f�(v1, . . . , vn))

An expression e admits a sup-interpretation θ∗(e), wrt θ, if e is defined over
dom(θ). Intuitively, the sup-interpretation is a special program interpretation.
Instead of yielding the program denotation, a sup-interpretation provides an
approximation from above of the size of the outputs of the function denoted by
the program.

Lemma 1. Let e be an expression with no variable and which admits a sup-
interpretation θ. Assume that �e� is defined, that is �e� ∈ Values. We then have
(i) θ∗(�e�) ≤ θ∗(e) and (ii) |�e�| ≤ θ∗(e).
Example 1. We illustrate the notion of sup-interpretation by a function, which
divides by two a number. For this, we define the set of tally numbers thus,

Uint = 0 | S(Uint)

We note n = Sn(0). Next, we define the function �half� such that �half� = +n
2 ,

by the program below.

half(0) → 0 half(S(0)) → 0 half(S(S(y))) → S(half(y))

Now, a sup-interpretation of 0 is θ(0) = 0 and a sup-interpretation of S is
θ(S)(X) = X+1. Clearly, for any n, θ∗(n) ≥ |n| = n. Then, we set θ(half)(X) =
+X

2 ,, which is a monotonic function. We check that condition (3) of Definition 1
is satisfied because θ∗(half(n)) = +n

2 ,. Notice that such a sup-interpretation is
not a quasi-interpretation (a fortiori not an interpretation for proof termination)
since it violates the subterm property.
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We end by defining lightweights which are used to control the depth of recursive
data-flows.

Definition 2 (Lightweight). A lightweight ω is a partial assignment which
ranges over Fct. To a given function symbol f of arity n it assigns a total function
ωf from Rn

+ to R+ which is weakly monotonic.

3.3 Additive Assignments

Definition 3. A partial assignment I is additive if

1. For each symbol f of arity n in dom(I), I(f) is bounded by a polynomial of
R+[X1, · · · , Xn].

2. For each constructor c ∈ dom(θ) of arity > 0,

θ(c)(X1, · · · , Xn) =
n∑

i=1

Xi + αc αc ≥ 1

Lemma 2. Assume that I is an additive assignment. There is a constant α
such that for each value u of Values, the following inequality is satisfied : |u| ≤
θ∗(u) ≤ α× |u|

Throughout the following paper we consider sup-interpretations and lightwei-
ghts, which are additive assignments.

4 Arboreal Programs

4.1 Fraternities

Given a program p, we define precedence ≥Fct on function symbols. Set f ≥Fct g
if there is a p-rule f(p1, · · · , pn) → e and g is in e. Then, take the reflexive
and transitive closure of ≥Fct, also noted ≥Fct. Next, we define f ≈Fct g and
f >Fct g as usual. We define a rank function rk as a morphism from (Fct,≥Fct)
into (N,≥), so satisfying : rk(g) < rk(f), if f ≥Fct g, and rk(f) = rk(g), if
f ≈Fct g.

A context is an expression C[-1, · · · , -r] containing one occurrence of each -i.
Here, we suppose that the -i’s are new symbols which are neither in Σ nor in
Var. The substitution of each -i by an expression di is noted C[d1, · · · , dr].

Definition 4. Given a program p, a term C[g1(t1), . . . , gr(tr)] is a fraternity
activated by f(p1, · · · , pn) iff

1. There is a rule f(p1, · · · , pn) → C[g1(t1), . . . , gr(tr)].
2. For each i ∈ {1, r}, gi ≈Fct f.
3. For every function symbol h in the context C[-1, · · · , -r], f >Fct h.
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4.2 Arboreal Programs

Definition 5 (Arboreal). A program p admits an arboreal sup-interpretation
iff there is a sup-interpretation θ, a lightweight ω and a constant K > 1 such
that for every fraternity C[g1(t1), . . . , gr(tr)] activated by f(p1, · · · , pn), and any
substitutions σ, both conditions are satisfied:

ωf(θ∗(p1σ), . . . , θ∗(pnσ)) > 1 (1)
ωf(θ∗(p1σ), . . . , θ∗(pnσ)) ≥ K × ωgi

(θ∗(ti,1σ), . . . , θ∗(ti,mσ)) ∀1 ≤ i ≤ r (2)

The constant K is called the arboreal coefficient of p.

Example 2. We show how to compute prefix sum, which is one of the canonical
examples of an efficient parallel circuit computation. Suppose that

⊙
is a binary

associative operation over A. The prefix sum of a list [x1, . . . , xn] of elements of
A, is x1

⊙
. . .
⊙
xn. Lists over A are defined as usual

List(A) = [ ] | [A, List(A)]

We take two operators Left and Right, which cut a list in two half.

Left([ ]) = [ ] Left([x1, . . . , xn]) = [x1, . . . , xn
2 �]

Right([ ]) = [ ] Right([x1, . . . , xn]) = [xn
2 �+1, . . . , xn]

We write [x1, . . . , xn] instead of [x1, [x2, . . . , xn]]. Now, the prefix sum of a list
is computed as follows.

sum([x]) = x

sum([x, y, L]) = sum(Left([x, y, L]))
⊙

sum(Right([x, y, L]))

Here, we consider
⊙

as an infix operator using familiar conventions. Actually,
the pattern [x, y, L] captures a list of length at least 2.

The constructors and the operators admit the following sup-interpretations.

θ([ ]) = 0 θ([X,L]) = X + L+ 1

θ(Left)(N) = +N
2

, θ(Right)(N) = 'N
2

(

Indeed, since the size of a list is the number of its elements, we see that for any
list L, we have |L| = θ(L). We might also check that |�Left(L)�| ≤ θ(Left(L))
and |�Right(L)�| ≤ θ(Right(L)). Next, sum satisfies the arboreal condition by
taking ωsum(L) = L and K = 3

2 (Hint : L ≥ 2). Lastly, we shall see in a short
while that sum is an example of an explicitly additive arboreal program.

We shall now show that a program admitting an arboreal sup-interpretation
is terminating. Actually, the termination of an arboreal program may be estab-
lished by the dependency pair method of Arts and Giesl [4], or by the size change
principle for program termination of Lee, Jones and Ben-Amram [23]. However,
it is worth to have a direct demonstration in order to establish an upper bound
on derivation lengths.
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4.3 Weighted Call-Trees

We now describe the notion of call-trees which is a representation of a pro-
gram state transition sequences. Next, we show that, when we consider arboreal
programs, we can assign weights to state transitions in such way that a state
transition sequence is associated to a sequence of strictly decreasing weights.
Lastly, weights provide a measure which gives us an upper bound on derivation
lengths.

Call-Trees. Suppose that we have a program p. A state 〈f,u1, · · · ,un〉 of p
is a tuple where f is a function symbol of arity n and u1, · · · ,un are values of
Values∗.

A state transition of p is a triplet η1 	 η2 between two states η1 = 〈f,u1, . . . ,
un〉 and η2 = 〈g,v1, · · · ,vm〉 where

1. f(p1, · · · , pn) → e is a rule of p
2. there is a substitution σ such that piσ ↓ ui for any 1 ≤ i ≤ n,
3. e = C[g(d1, · · · , dm)] and for any 1 ≤ i ≤ m, diσ ↓ vi

We write ∗	 to mean the transitive closure of 	. We define the 〈f,u1, · · · ,un〉
call-tree as a tree where (i) the set of nodes are labeled by states of {η |
〈f,u1, · · · ,un〉

∗	 η}, (ii) there is an edge between two nodes if there is a transi-
tion between both states, which labels the nodes. (iii) the root is a node labeled
by the state 〈f,u1, · · · ,un〉.

A 〈f,u1, · · · ,un〉 call-tree may be an infinite tree. In this case, König’s Lemma
implies that there is a reduction strategy which leads to a infinite sequence of
reductions.

Weighted Call-Trees. Throughout, it is convenient to use θ∗(vj) to abbreviate
θ∗(vj,1), . . . , θ∗(vj,n). Given a sup-interpretation θ and a lightweight ω of a pro-
gram, we assign to each state transition a weight, which is a pair (p, q) in N∪{⊥
} × N ∪ {⊥} as follows. We have η1 = 〈f,u1, · · · ,un〉

(p, q)	 η2 = 〈g,v1, · · · ,vm〉
iff

– If f >Fct g, then (p, q) = (rk(f), 0).
– If f ≈Fct g and ωf(θ∗(u)) ≥ 1, then (p, q) = (rk(f), 'logK(ωf(θ∗(u)))()
– Otherwise, (p, q) = (⊥,⊥).

In the two first cases above, the weight is said to be defined,

Lemma 3. Assume that p admits an arboreal sup-interpretation. The weight
which is assigned to each state transition of p is defined.

Proof. It suffices to prove that when f ≈Fct g, we have ωf(θ∗(u1), . . . , θ∗(un)) ≥
1. Since p admits an arboreal sup-interpretation, the situation is the following.
f(u1, · · · ,un) matches a unique rule f(p1, · · · , pn) → e because p is orthogonal.
By definition of a state transition, g is in e. Since f ≈Fct g, e is a fraternity acti-
vated by f(p1, · · · , pn) such that e = C[. . . , g(. . .), . . .]. Therefore, the condition
(1) of Definition 5 holds, which completes the proof.
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Intuitively, the weight associated to a transition indicates what is decreasing.
In fact, there is two possibilities. In the first one, the function rank is strictly
decreasing. In the second one, it is the lightweight which is strictly decreasing.

Theorem 2. Assume that the program p admits an arboreal sup-interpretation.
Then p is terminating. That is, for every function symbol f and for any values
u1, · · · ,un in Values, �f�(u1, · · · ,un) is in Values∗.

Proof. Let 〈f,u1, · · · ,un〉 be a state of p. Take a branch of the 〈f,u1, · · · ,un〉
call-tree η0

(p0, q0)	 η1
(p1, q1)	 η2

(p2, q2)	 . . . where ηj = 〈fj , vj〉.
We define an ordering on N × N by (n,m) < (p, q) if n < p or n = p and

m < q. We show that for any i such that ηi
(pi, qi)	 ηi+1

(pi+1, qi+1)	 ηi+2, we have
(pi, qi) > (pi+1, qi+1). There are three cases to examine.

1. Suppose that fi >Fct fi+1. Then, we have pi = rk(fi) > pi+1 = rk(fi+1).
2. Suppose that fi ≈Fct fi+1 and fi+1 >Fct fi+2. We have pi = rk(fi) = pi+1 =

rk(fi+1) and qi = 'logK(ωfi(θ∗(vi)))( > qi+1 = 0, since ωfi(θ∗(vi)) > 1
3. Suppose that fi ≈Fct fi+1 and fi+1 ≈Fct fi+2. As in the previous case,

we have pi = pi+1. Now, we also have qi = 'logK(ωfi
(θ∗(vi)))( > qi+1 =

'logK(ωfi+1(θ
∗(vi+1)))(. Indeed intuitively, each recursive state corresponds

to the division of its lightweight by the arboreal constant K > 1. Formally,
Condition (2) of Definition 5 claims that

ωfi
(θ∗(vi)) ≥ K × ωfi+1(θ

∗(vi+1))
'logK(ωfi

(θ∗(vi)))( ≥ 'logK(ωfi+1(θ
∗(vi+1)))( + 1

In the three cases above, we have established that (pi, qi) > (pi+1, qi+1). Since
the ordering < is well-founded, the weight sequence is finite, which completes
the proof.

5 Main Result

5.1 Explicitly Defined Functions

Given a program p, a function symbol f is explicitly defined iff for each rule
like f(p1, · · · , pn) → e, the expression e is built from variables, constructors,
operators and explicitly defined function symbols whose precedence is strictly
less than f. An expression e is explicit in p iff each function symbol occurring
in e is explicitly defined in p.

An explicit function is a function which is defined by a program in which any
function symbols are explicitly defined.

Definition 6. A program p is explicitly fraternal if and only if for each frater-
nity C[g1(t1), . . . , gr(tr)] of p, the context C[-1, · · · , -r] and each ti are explicitly
defined in p.
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5.2 Characterization of Alogtime

We encode the elements of Values∗ by binary words of {0, 1}∗ using a mapping
code : Values∗ → {0, 1}∗ such that (i) code is computed in ALogTime, and (ii)
each constructor of Cns is computed by an UE∗-uniform, polynomial size, and
constant depth circuit family wrt the encoding code.

A program p has flat operators if every operator of Op is computed by an
UE∗-uniform, polynomial size, and constant depth circuit family using the same
encoding code.

A program p admits an additive arboreal sup-interpretation if it admits an ar-
boreal sup-interpretation for which the sup-interpretation θ and the lightweight
ω are additive assignments.

Definition 7. A program p is explicitly additive arboreal if p admits an ad-
ditive arboreal sup-interpretation, which is explicitly fraternal and all operators
are flat.

Given a function φ : Valuesk → Values, we associate a function φ̃ : {0, 1}∗ →
{0, 1}, which is defined by φ(u) = φ̃(code(u)), for any u ∈ Values. A function
φ over Values is computed in ALogTime if the function φ̃ is also computed in
ALogTime.

Theorem 3. A function φ over Values is computed by a explicitly additive
arboreal program if and only if φ is computed in ALogTime.

Proof. It is a consequence of Lemma 7 and Lemma 9.

6 Circuit Evaluation of Exp. Add. Arboreal Programs

We now move toward an implementation of programs by uniform family of cir-
cuits. It will be appropriate to do this in several steps that we shall describe
in more or less intuitive fashion. Indeed implementation details are not difficult
but tedious, and will be written in the full forthcoming paper. Actually, the
demonstration of Theorem 3 leans essentially on Lemmas 5 and 6.

6.1 Explicit Functions Are Constant Depth Computable

In the first step, we show that an explicit functions are computed in constant
parallel time.

Lemma 4. Assume that φ : Valuesk → Values∗ is an explicit function from
flat operators. Then, φ is computed by an UE∗-uniform, polynomial size, and
constant depth circuit family.

Proof. An explicit function φ is defined by composition from constructors and
operators. So, we complete the construction by a straightforward induction on
the definition length, and by using a circuit implementation of constructors and
destructors. The program which defines φ provides the UE∗-uniformity.
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6.2 Upper Bounds on Height and Size

In the second step, we establish a logarithmic upper bound on derivation lengths.
Then, we show that computed values are polynomially bounded.

The height of a weighted call tree is the length of the longest branch.

Lemma 5. Let p be an explicitly additive arboreal program. Let 〈f,u1, · · · ,un〉
be a state of p. The height of the 〈f,u1, · · · ,un〉 call tree is bounded by d ×
log(max(|u1|, . . . , |un|)) for some constant d.

Proof. Put n = maxi(|ui|). We refine the demonstration of Theorem 2 by looking
more carefully to a finite strictly decreasing sequence (p0, q0) > . . . > (p	, q	) of
a branch of the 〈f,u1, · · · ,un〉 call-tree.

By definition of the partial ordering < on N×N, we have � ≤ (p0+1)×(q0+1).
Since, p0 ≤ maxf(rk(f)) and q0 ≤ 'logK(maxf(ωf(θ∗(u))))(, we see that � ≤
maxf(rk(f)) × 'logK(maxf(ωf(θ∗(u))))(.

The fact that p admits an additive assignment implies that there is a polyno-
mial P such that maxf(ωf(θ∗(u)) ≤ P (α× n), where the constant α is given by
Lemma 2. Putting altogether, there is a constant d such that � ≤ d× log2(n).

Lemma 6. Assume that p is an explicitly additive arboreal program. Then, there
is a polynomial P such that for any values u1, · · · ,un and function symbol f,
we have

|�f�(u1, · · · ,un)| ≤ P (max
i

(|ui|))

Proof (Sketch of proof). Suppose that f is recursively defined, and so its compu-
tation implies fraternities. Each fraternity is explicitly defined, which means that
the output size is linearly bounded by a×m+b where a and b are some constants,
m is the input size, because of Lemma 4. The computation of 〈f,u1, · · · ,un〉 is
made by iterating � times the computation of explicit fraternity. So the output
size is bounded by a	m + b × �. The length � is bounded by the height of the
〈f,u1, · · · ,un〉 call-tree. By lemma 5, � ≤ d× log(max(|u1|, . . . , |un|)), for some
constant d. Therefore, there is a polynomial P whose degree depends on the
arboreal coefficient K and a such that |�f�(u1, · · · ,un)| ≤ P (maxi(|ui|)).

6.3 Programs Are in NC1

In the third step, we construct an UE∗ -uniform, polynomial size, and constant
depth circuit family which computes an explicitly additive arboreal program.

Lemma 7. Suppose that a function φ : Valuesk → Values is defined by an
explicitly additive arboreal program p. Then, an UE∗-uniform, polynomial size,
and logarithmic depth circuit family computes φ̃.

Proof. Given an upper bound m on the input size, we construct a circuit Cm

by induction on function symbol rank of p. Actually, the depth of a circuit is
bounded by d× log(n) for some constant d because of Lemma 5. Lemma 6 states
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that the size of the inputs and the outputs of each circuit layer is bounded by a
polynomial. We see that circuits have a logarithmic depth and polynomial size.
The UE∗-uniformity condition is not too difficult to check, because the extended
connection language is based on p, which is given and on the upper-bounds
obtained in the previous section.

7 Simulation of ALogTime Computable Functions

In this section, we prove that a function in ALogTime is computed by an explic-
itly additive arboreal program.

For this purpose, we consider the characterization [27] of ALogTime instead
of dealing directly with ATM. There are at least two reasons to proceed in this
way. The first is that it simplifies proofs which otherwise would require a lot
of encodings. The second is that, as we say in the introduction, there is closed
connection between ramified recursion used in implicit computational complexity
and our approach.

In [27], the characterization is based on linear ramified recursion with substi-
tution, called LRRS , using well-balanced trees as internal data structures.

LRRS functions compute over binary tree algebra T. Initial functions consist
of constructors, conditionals and destructors over T. LRRS functions use one
ramified recursion over 2 tiers, and is defined as follows.

f(c, u;x) = gc(u;x) c = 0,1,⊥
f(t*t′, u;x) = g(; f(t, u; h1(;x)), . . . , f(t′, u; hk(;x)), x)

where g, gc and the substitution functions h1, . . . , hk are previously defined func-
tions. We separate tiers by a semicolon. A flat function is a function whose
domain and range are at the same tier. A crucial point is that g and the sub-
stitution functions h1, . . . , hk are flat functions. Indeed, it was proved that flat
functions are definable by composition of initial functions.

A function φ over the algebra of words W = {0,1}* is said to be representable
in LRRS if it is representable by some function f definable in LRRS and whose
inputs represent the shortest (in the height) encoding of words by full binary trees.

Theorem 4 (Marion and Leivant). A function f over {0, 1}∗ is representable
in LRRS if and only if it is bitwise in ALogTime and its growth is bounded by a
polynomial in the size of the inputs.

Now we are going to use this result in order to establish the completeness of our
characterization:

Lemma 8. A function φ which is representable in LRRS, is computed by an
explicitly additive arboreal program p.

Proof (Sketch of proof). The simulation of LRRS functions is based on three
points. The first point concerns the encoding of well balanced trees. In the sim-
ulation, we reduce LRRS trees into a list like in Example 2. The operator Left
and Right allow to simulate well-balanced tree.
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The second point is to see that a flat function of LRRS is explicitly defined.
The third point is to replace the linear ramified recursion scheme with pa-

rameter substitutions over binary trees by the following scheme:

f([c], u, x) → gc(u, x) c = 0,1,⊥
f([c,b, l], u, x) → g(f(Left([c,b, l]), u, h1(x)), .., f(Right([c,b, l]), u, hk(x)), x)

The program defined by the previous rules is explicitly fraternal, because g,
gc, and (hi)i are flat functions.

The above Lemma entails the following one:

Lemma 9. Every function φ in ALogTime is computable by an explicitly addi-
tive arboreal program p.
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Abstract. In a previous work, the first author extended to higher-order
rewriting and dependent types the use of size annotations in types, a
termination proof technique called type or size based termination and
initially developed for ML-like programs. Here, we go one step further
by considering conditional rewriting and explicit quantifications and con-
straints on size annotations. This allows to describe more precisely how
the size of the output of a function depends on the size of its inputs.
Hence, we can check the termination of more functions. We first give a
general type-checking algorithm based on constraint solving. Then, we
give a termination criterion with constraints in Presburger arithmetic.
To our knowledge, this is the first termination criterion for higher-order
conditional rewriting taking into account the conditions in termination.

1 Introduction

We are interested in automatically checking the termination of the combina-
tion of β-reduction and higher-order conditional rewrite rules. There are two
important approaches to higher-order rewriting: rewriting on βη-normal forms
[17], and the combination of β-reduction and term rewriting [16]. The relation
between both has been studied in [20]. The second approach is more atomic
since a rewrite step in the first approach can be directly encoded by a rewrite
step together with β-steps in the second approach. In this paper, we consider
the second approach, restricted to first-order pattern-matching (we do not allow
abstractions in rule left-hand side). Following [7], our results could perhaps be
extended to higher-order pattern-matching.

The combination of β-reduction and rewriting is naturally used in proof as-
sistants implementing the proposition-as-type and proof-as-object paradigm. In
these systems, two propositions equivalent modulo β-reduction and rewriting
are identified (e.g. P (2 + 2) and P (4)). This is essential for enabling users to
formalize large proofs with many computations, as recently shown by Gonthier
and Werner’s proof of the Four Color Theorem in the Coq proof assistant. How-
ever, for the system to be able to check the correctness of user proofs, it must
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at least be able to check the equivalence of two terms. Hence, the necessity to
have termination criteria for the combination of β-reduction and rewriting.

In Coq, rewriting is restricted to the reductions associated to inductive types
like in functional programming languages with pattern-matching. Such reduc-
tions correspond to constructor-based rewriting. This is the kind of rewrite sys-
tems we are going to consider in this paper. A more general form of rewriting is
studied in [9,6] (matching on defined symbols and matching modulo).

Currently, Coq accepts only functions in the definition of which recursive calls
are made on arguments that are structurally smaller. For first-order functions,
this corresponds to restrict rewrite systems to simply terminating ones, that
is, to the ones that can be proved terminating by an ordering containing the
subterm relation. However, many interesting systems are not simply terminating.
Consider for instance the following definition of division on natural numbers:

minus 0 x → 0
minusx 0 → x

minus (s x) (s y) → minusx y
div 0 y → 0

div (s x) y → s (div (minusx y) y)

Considering that minus is applied to strongly normalizing arguments and
that the size of a term is the height of its normal form, one can easily prove, by
induction on the size of t, that the size of v = (minus t u) is less than or equal to
the size of t, hence that this definition of minus terminates:

– If v matches the first rule, then t = 0 and the normal form of v, which is 0,
has the same size as t.

– If v matches the second rule, then v has the same normal form as t.
– If v matches the third rule, then t = st′, u = su′ and, by induction hypothesis,

the normal form of v has a size smaller than t′, hence smaller than t.

The idea of size or type based termination, initiated in [15] and developed by
various authors for ML-like definitions [11,22,1,2,3,4] and rewriting and depen-
dent types [8,5], consists in extending the underlying type system by replacing a
base type B by an infinite family of base types (Ba)a∈N, a term of type Ba being
by construction of size smaller than or equal to a (except in [22], see later). Then,
for ensuring termination, one can restrict in function definitions recursive calls
to arguments whose size, by typing, is smaller.

For instance, in all these systems, one can easily (type-)check that minus has
for type something similar to ∀αβNα ⇒ Nβ ⇒ Nα. Hence, assuming that x : Nα

and y : Nβ , one can easily (type-)check that minus x y : Nα while sx : Nα+1.
Thus, the recursive call to div in the last rule can be allowed.

Note that higher-order inductive types, i.e. types having constructors with
recursive arguments of higher-order type, require families indexed by ordinals.
In the present paper, we restrict our attention to first-order inductive types since
higher-order inductive types have already been studied in previous works. Note
also that interpreting Ba by the set of terms of size smaller than or equal to a
requires subtyping since t : Bb whenever t : Ba and a ≤ b.
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However, without explicit existential quantifications and constraints over size
annotations, one cannot (type-)check that the following function has type N ⇒
∀αLα ⇒ ∃βγ(α = β + γ)Lβ × Lγ :

pivotx nil → (nil , nil )
pivotx (cons y l) → let z = pivotx l in

if (le y x) then (cons y (fst z), snd z)
else (fst z, cons y (snd z))

Such a type is necessary for proving that some sorting functions are size
preserving, i.e. have type ∀αLα ⇒ Lα. To the best of our knowledge, only Xi
considers such explicit quantifications and constraints [22]. In this work, Ba is
interpreted as the set of terms of size a. Note that, with this interpretation,
the type of terms of size smaller than a can be represented by ∃α(α ≤ a)Bα.
However, we cannot apply Xi’s results on the problem we are interested in for
the following reasons:

– Xi considers ML-like function definitions based on letrec/match construc-
tions while we are interested in definitions based on rewrite rules.

– Xi is interested in the termination of closed terms with call-by-value eval-
uation strategy while we are interested in the strong normalization of open
terms.

– Xi has a two-level approach. He considers an intermediate system where not
only types but also terms are annotated by size informations, and proves that
terms typable in this system are terminating. Then, for proving the termina-
tion of an unannotated term, he must infer the necessary size annotations,
which may not be possible. This elaboration process is described in [21].

In the present paper, we extend the simply typed part of [8] with conditional
rewriting and explicit quantifications and constraints over size annotations, with-
out using an intermediate system. As Xi and in contrast with [8], we do not
consider higher-order inductive types and interpret Ba as the set of terms of size
a. The integration of both works should not create too much difficulties. Hence,
we get a powerful termination criterion for the combination of β-reduction and
higher-order conditional rewriting, based on type-checking and constraint solv-
ing. To our knowledge, this is the first termination criterion for higher-order
conditional rewriting taking into account the conditions in termination.

In Section 2, we define a system with constrained types. In Section 3, we
give a general type-checking algorithm based on constraint solving. In Section
4, we present a general termination proof technique based on Tait’s method
for proving the termination of β-reduction. In Section 5, we give a termination
criterion based on type-checking with constraints in Presburger arithmetic.

2 A System with Constrained Types

Terms. The set T of terms is inductively defined as follows:

t ∈ T ::= x | c | f | λxt | tt | (t, t) | fst t | snd t | let x = t in t | if t then t else t
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where x ∈ X is a term variable, c ∈ C is a constructor symbol and f ∈ F is a
function symbol. We assume that C contains true and false. As usual, terms are
considered up to renaming of bound variables. By t, we denote a sequence of
terms t1, . . . , tn of length |t| = n ≥ 0. Term substitutions are denoted by σ, θ, . . .
or their explicit mappings (t

x). By σ + θ, we denote the substitution equal to θ
on dom(θ) and to σ on dom(σ) \ dom(θ). The set P of (constructor) patterns is
inductively defined by p ∈ P ::= x | c p.

Size annotations. Let S = {nat, bool} be the set of size sorts. We assume
given a S-sorted first-order term algebra A for size expressions a, b, . . . whose
variables are denoted by α, β, . . .We assume that A at least contains the symbols
0 : nat, 1 : nat, + : nat×nat ⇒ nat, max : nat×nat ⇒ nat, t : bool and f : bool.
For each sort s, we assume given a well-founded interpretation domain (Ds, >Ds).
For bool, we take Dbool = {t, f}. In the following, let true∗ = t and false∗ = f;
t∗ = t and f∗ = f; t∗ = true and f∗ = false. Elements of Ds are denoted by a, b, . . .
Valuations are denoted by μ, ν, . . . Size substitutions are denoted by ϕ, ψ, . . .

Constraints. Let a constraint be a first-order formula over A, C be a class
of constraints containing . and FV(C) be the variables free in C. We denote
by μ |= C the fact that a valuation μ satisfies C; by 	 C the fact that, for all
valuation μ such that FV(C) ⊆ dom(μ), μ |= C, and by C ≡ D the fact that
	 C ⇔ D. We consider constraints up to the logical equivalence ≡.

Types. We assume given a set B of type names containing bool. Let κbool =
bool and, for all B �= bool, κB = nat (except bool that is annotated by booleans,
types are annotated by natural numbers). Types are defined as follows:

types T ∈ T ::= Ba | T ⇒ T | T × T | ∀αPT | ∃αPT
simple types S ∈ S ::= ∃αBα | S ⇒ S | S × S
basic types B ∈ B ::= Ba | B × B

∃-basic types E ∈ E ::= B | ∃αPE with 	 ∃αP

where B ∈ B is a type name, a ∈ A is a size expression of sort κB and P ∈ C is
a constraint. In the following, we use the following abbreviations: ∀αT = ∀α.T
and B = ∃αBα. There is a natural transformation from T to S: let Ba = ∃αBα,
∃αPT = ∀αPT = T , T ⇒ U = T ⇒ U and T × U = T × U .

Subtyping. We define a constraint-based subtyping relation. Let C 	 T ≤ U
iff 	 C ⊃ (|T ≤ U |) where (|T ≤ U |) is inductively defined as follows:

– (|Ba ≤ Bb|) = (a = b)
– (|T ⇒ U ≤ T ′ ⇒ U ′|) = (|T ′ ≤ T |) ∧ (|U ≤ U ′|)
– (|T × U ≤ T ′ × U ′|) = (|T ≤ T ′|) ∧ (|U ≤ U ′|)
– (|T ≤ ∃αPU |) = ∃α(P ∧ (|T ≤ U |)) (α /∈ T , T �= ∃βQV )
– (|∃αPU ≤ T |) = ∀α(P ⊃ (|U ≤ T |)) (α /∈ T )
– (|T ≤ ∀αPU |) = ∀α(P ⊃ (|T ≤ U |)) (α /∈ T )
– (|∀αPU ≤ T |) = ∃α(P ∧ (|U ≤ T |)) (α /∈ T , T �= ∀βQV )

Typing. An environment is a finite mapping Γ from X to T. Let Γ, x : T be
the environment Δ such that xΔ = T and yΔ = yΓ if y �= x. Two environments
Γ1 and Γ2 are compatible if, for all x, xΓ1 = xΓ2.
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x ∈ dom(Γ )

C; Γ �τ x : xΓ

s ∈ C ∪ F

C; Γ �τ s : τs

C; Γ, x : T �τ u : U x /∈ Γ

C; Γ �τ λxu : T ⇒ U

C; Γ �τ t : U ⇒ V C; Γ �τ u : U

C; Γ �τ tu : V

C; Γ �τ u : U C; Γ �τ v : V

C; Γ �τ (u, v) : U × V

C; Γ �τ t : U × V

C; Γ �τ fst t : U

C; Γ �τ t : U × V

C; Γ �τ snd t : V

C; Γ �τ t : bool C; Γ �τ u : T C; Γ �τ v : T T ∃

C; Γ �τ if t thenu else v : T

C; Γ �τ t : T C; Γ, x : T �τ u : U x /∈ Γ

C; Γ �τ let x = t in u : U

∀
C ∧ P ; Γ �τ t : T � C ⊃ ∃αP α /∈ C, Γ

C; Γ �τ t : ∀αPT

∀
C; Γ �τ t : ∀αPT � C ⊃ P a

α

C; Γ �τ t : T a
α

∃
C; Γ �τ t : T a

α � C ⊃ P a
α

C; Γ �τ t : ∃αPT

∃
C; Γ �τ t : ∃αPT C ∧ P ; Γ, x : T �τ u : U � C ⊃ ∃αP α, x /∈ C, Γ, U

C; Γ �τ let x = t in u : U

C; Γ �τ t : T C � T ≤ T ′

C; Γ �τ t : T ′

Fig. 1. Typing rules

A type assignment is a function τ : C ∪ F → T such that τtrue = boolt,
τfalse = boolf and, for all s ∈ C ∪ F , τs is closed. To every type assignment τ , we
associate a typing relation 	τ defined in Figure 1. Note that, in contrast with [22],
the typing of u and v in (if) does not depend on t. This is because we consider
strong normalization instead of weak normalization. This does not reduce the
expressive power of the system since we consider conditional rewriting.

A term t is typable wrt τ if there are C, Γ, T such that 	 C and C; Γ 	τ t : T .
Let Λ(τ) be the set of terms typable wrt τ . A term t is simply typable if there are
Γ, T simple such that .; Γ 	τ t : T without (∃intro), (∀intro), (∃elim), (∀elim),
(sub). Let Λ(τ ) be the set of terms simply typable wrt τ .

Example 1. Consider the symbols append : ∀βγLβ ⇒ Lγ ⇒ Lβ+γ and pivot :
N ⇒ ∀αLα ⇒ ∃βγ(α = β + γ)Lβ × Lγ . Let Γ = x : N, l : Lα, u = (let z = t in v),
t = pivotx l and v = append (fst z)(snd z). Then, .; Γ 	 t : ∃βγ(α = β+γ)Lβ×Lγ

and α = β + γ; Γ, z : Lβ × Lγ 	 v : Lα. Thus, by (∃elim), Γ 	 u : Lα.



110 F. Blanqui and C. Riba

Rewriting. Let →β be the smallest relation stable by context containing the
head-β-reduction relation →βh defined as follows:

(λxu)t →βh ut
x

letx = t in u →βh ut
x

fst (u, v) →βh u
snd (u, v) →βh v

if true thenu else v →βh u
if false thenu else v →βh v

A conditional rewrite rule is an expression of the form t = c ⊃ l → r such
that l is of the form fl, l are patterns, c ∈ {true, false} and FV(r, t) ⊆ FV(l). A
rule t = c ⊃ l → r defines f ∈ F if l is of the form fl. In the following, we assume
given a set R of rules. The associated rewrite relation is the smallest relation
→R stable by context and substitution such that, for all t = c ⊃ l → r ∈ R,
lσ →R rσ whenever tσ →∗ c, where →∗ is the reflexive and transitive closure of
→=→β ∪ →R.

Our goal is to prove the strong normalization of →=→β ∪ →R on the set of
simply typable terms Λ(τ ).

Assumption: We assume that → is locally confluent.

Hence, any strongly normalizing term t has a unique normal form t↓. Note that
→ is locally confluent whenever →R so is. See [10] for general conditions on the
confluence of β-reduction and higher-order conditional rewriting.

It should be noted that (∃elim) makes subject reduction fail. For instance, with
Γ = x : ∃αNα, y : ∀αNα ⇒ ∃βNβ , we have .; Γ 	 let z = x in yz : ∃βNβ while
yx is not typable in .; Γ . It could be fixed by replacing in (∃elim) let x = t inu
by ut

x. It does not matter since our termination proof technique does not need
subject reduction. Note however that subject reduction holds on simply typed
terms.

An example of higher-order conditional rule is given by the following definition
of filter : (N ⇒ N) ⇒ ∀αLα ⇒ ∃β(β ≤ α)Lβ :

filter f nil → nil
f x = true ⊃ filter f(consx l) → cons (f x) (filter f l)
f x = false ⊃ filter f(consx l) → filter f l

3 Type-Checking Algorithm

Type-checking is the following problem: given τ , C, Γ , t and T , do we have C
satisfiable and C; Γ 	τ t : T ?

Because of the rules (∃elim) and (conv), type-checking does not seem to be
decidable. Similarly, in [22], the elaboration process is not complete. It is however
possible to give an algorithm that either succeed or fails, a failure meaning that
we don’t know. To this end, we inductively define in Figure 2 two relations in
the style of bi-directional type inference [12,2]. In the type inference relation
C; Γ 	 t ↑ T , C and T are produced according to Γ and t. In the type checking
relation C; Γ 	 t ↓ T , C is produced according to Γ , t and T . An actual algorithm
is a strategy for applying the rules defining these relations.
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(type-check)
D; Γ � t ↓ T � C ⊃ D C satisfiable

C; Γ �? t : T

(↑var)
x ∈ dom(Γ )

; Γ � x ↑ xΓ
(↑symb) ; Γ � s ↑ τs

(↑app)
C; Γ � t ↑ U ⇒ V D; Γ � u ↓ U

C ∧ D; Γ � tu ↑ V

(↑pair)
C; Γ � u ↑ U D; Γ � v ↑ V

C ∧ D; Γ � (u, v) ↑ U × V

(↑fst)
C; Γ � t ↑ U × V

C; Γ � fst t ↑ U
(↑snd)

C; Γ � t ↑ U × V

C; Γ � snd t ↑ V

(↑let)
C; Γ � t ↑ T D; Γ, x : T � u ↑ U

C ∧ D; Γ � let x = t inu ↑ U

(↑∀elim)
C; Γ � t ↑ ∀αPT α /∈ C, Γ

C ∧ P ; Γ � t ↑ T

(↑∃elim)
C; Γ � t ↑ ∃αPT D; Γ, x : T � u ↑ U x /∈ Γ α /∈ C, Γ

C ∧ ∃αP ∧ ∀α(P ⊃ D); Γ � let x = t in u ↑ ∃αPU

(↓abs)
C; Γ, x : T � u ↓ U x /∈ Γ

C; Γ � λxu ↓ T ⇒ U

(↓if)
C; Γ � t ↓ ∃αboolα D; Γ � u ↓ T E; Γ � v ↓ T T ∃-basic

C ∧ D ∧ E; Γ � if t thenu else v ↓ T

(↓∀intro)
C; Γ � t ↓ T α /∈ Γ

∃αP ∧ ∀α(P ⊃ C); Γ � t ↓ ∀αPT

(↓∀elim)
C; Γ � t ↑ ∀αPT

C ∧ P a
α ; Γ � t ↓ T a

α

(↓∃intro)
C; Γ � t ↓ T α /∈ Γ

∃α(C ∧ P ); Γ � t ↓ ∃αPT

(↓∃elim)
C; Γ � t ↑ ∃αPT D; Γ, x : T � u ↓ U α /∈ C, Γ, U

C ∧ ∃αP ∧ ∀α(P ⊃ D); Γ � let x = t in u ↓ U

(↓sub)
C; Γ � t ↑ T ′

C ∧ (|T ′ ≤ T |); Γ � t ↓ T

Fig. 2. Rules for deciding type-checking

Let C be the closure of C by conjunction, implication, existential and universal
quantification. If one starts with C ∈ C, then the constraints generated by such
an algorithm are in C too. Hence, if C only contains linear inequalities, then C
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are formulas of Presburger arithmetic which is known to be decidable [18] and
whose complexity is doubly exponential in the size of the formula [13]. This high
complexity is not so important in our case since the terms we intend to consider
are small (rule right-hand sides). It would be however interesting to study in
more details the complexity of type-checking wrt C.

For proving the correctness of the rule (↓∃intro), we need to assume that the
size expression language A is complete wrt the interpretation domains Ds, that
is, to every a ∈ Ds corresponds a closed term a ∈ A whose denotation in Ds is
a. Note that this is indeed the case when Ds = N and A contains 0, 1 and +.

See Example 3 at the end of the paper for an example of derivation.

Theorem 1. Consider the rules of Figure 2. If C; Γ 	? t : T , then C is satisfi-
able and C; Γ 	 t : T .

Proof. First, one can easily check that, for every rule, if the constraint in the
conclusion is satisfiable, then the constraints in the premises are satisfiable too.
Then, we prove that, if C is satisfiable and C; Γ 	 t ↑ T or C; Γ 	 t ↓ T , then
C; Γ 	 t : T . We only detail some cases.

(↑∃elim) Let E = C ∧ ∃αP ∧ ∀α(P ⊃ D). Since E ⊃ C and (E ∧ P ) ⊃ D, by
induction hypothesis and weakening, E; Γ 	 t : ∃αPT and E ∧P ; Γ 	 u : U .
Since (E ∧ P ) ⊃ P , by (∃intro), E ∧ P ; Γ 	 u : ∃αPU . Since E ⊃ ∃αP and
α /∈ ∃αPU , by (∃elim), E; Γ 	 let x = t in u : ∃αPU .

(↓∀intro) Let E = ∃αP ∧ ∀α(P ⊃ C). Since (E ∧ P ) ⊃ C, by induction
hypothesis and weakening, E∧P ; Γ 	 t : T . Since E ⊃ ∃αP , we can conclude
by (∀intro).

(↓∀elim) Let E = C ∧ Pa
α . By induction hypothesis and weakening, E; Γ 	 t :

∀αPT . Since E ⊃ Pa
α , we can conclude by (∀elim).

(↓∃intro) Let E = ∃α(C ∧ P ). Since E is satisfiable, C is satisfiable too. By
completeness, there is a such that F = Ca

α ∧ Pa
α is satisfiable. By induction

hypothesis, C; Γ 	 t : T . By substitution and weakening, F ; Γ 	 t : T a
α.

Since F ⊃ Pa
α , by (∃intro), F ; Γ 	 t : ∃αPT . Since E ⊃ F , we can conclude

by weakening.
(↓∃elim) Let E = C ∧ ∃αP ∧ ∀α(P ⊃ D). Since E ⊃ C and (E ∧ P ) ⊃ D, by

induction hypothesis and weakening, E; Γ 	 t : ∃αPT and E ∧P ; Γ 	 u : U .
Since E ⊃ ∃αP and α /∈ U , by (∃elim), E; Γ 	 let x = t inu : U . ��

4 Termination Proof Technique

In this section, we present a general method for proving the strong normal-
ization of β-reduction and rewriting on well-typed terms. It is based on Tait’s
method for proving the strong normalization of β-reduction [19]. The idea is
to interpret types by particular sets of strongly normalizing terms, called satu-
rated, and prove that every well-typed term belongs to the interpretation of its
type.
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Following [2], we define the weak-head-β-reduction relation →βwh as the re-
lation such that E[t] →βwh E[u] iff t →βh u and E ∈ E , where the set of
elimination contexts E is inductively defined as follows:

E ∈ E ::= [] | E t | fst E | snd E

Definition 1 (Saturated sets). The set SAT of saturated sets is the set of
all the sets of terms S such that:
(1) If t ∈ S, then t ∈ SN.
(2) If t ∈ S and t → t′, then t′ ∈ S.
(3) If E[x] ∈ SN, then E[x] ∈ S.
(4) If t ∈ SN, t →βh t′ and E[t′] ∈ S, then E[t] ∈ S.
We also define the following operations on sets of terms:

– S1 ⇒ S2 = {t ∈ T | ∀u ∈ S1, tu ∈ S2}
– S1 × S2 = {t ∈ T | fst t ∈ S1 ∧ snd t ∈ S2}

Let N be the set of terms of the form ft, if t thenu else v, fst t or snd t. A saturated
set S has the neutral term property if s ∈ S whenever s ∈ N and →(s) ⊆ S.

Lemma 1. SAT is a complete lattice for inclusion with
⋃

as lub,
⋂

as glb and
SN as greatest element. It is also stable by ⇒ and ×.

All this is more or less well known. See for instance [2]. The key difference with
the first author work [8] is that we use saturated sets instead of reducibility
candidates. See [14] for a comparison between the two kinds of sets. With re-
ducibility candidates, (4) is replaced by the neutral term property.

Reducibility candidates are saturated but the converse does not hold since
candidates are not stable by union. Hence, with candidates, ∃αPT cannot be
interpreted as an union, which is essential if one wants to interpret Ba as the set
of terms of size a in order to give precise types to function symbols.

However, reducibility candidates extend well to rewriting and polymorphism
since, for proving that ft ∈ S, it suffices to prove that →(ft) ⊆ S. In Lemma 2,
we prove that this property still holds with saturated sets when S is the inter-
pretation of an existentially quantified basic type.

Definition 2 (Interpretation of types). A base type interpretation is a func-
tion I which, to every pair (B, a) with B �= bool, associates a set Ia

B ∈ SAT. We
extend I to bool by taking Ia

bool = {t ∈ SN | t↓ �= a∗}. Given such an interpreta-
tion, types are interpreted by saturated sets as follows:

– [[Ba]]Iμ = Iaμ
B

– [[U × V ]]Iμ = [[U ]]Iμ × [[V ]]Iμ
– [[U ⇒ V ]]Iμ = [[U ]]Iμ ⇒ [[V ]]Iμ
– [[∀αPT ]]Iμ =

⋂
μ+a

α|=P [[T ]]Iμ+a
α

if 	∃αP , [[∀αPT ]]Iμ = SN otherwise
– [[∃αPT ]]Iμ =

⋃
μ+a

α|=P [[T ]]Iμ+a
α

if 	∃αP , [[∃αPT ]]Iμ =
⋂

SAT otherwise
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Let Iω
B = [[∃αBα]]. A symbol s ∈ C ∪ F is computable if s ∈ [[τs]]I . A pair (μ, σ)

is valid for C; Γ , written (μ, σ) |= C; Γ , if μ |= C and, for all x ∈ dom(Γ ), xσ ∈
[[xΓ ]]Iμ. A base type interpretation I is valid if every constructor is computable
and, for every ∃-basic type T , [[T ]]Iμ has the neutral term property.

Note that Ia
bool ∈ SAT has the neutral term property and [[Tϕ]]Iμ = [[T ]]Iϕμ.

Theorem 2. Assume that I is a valid base type interpretation and every f ∈ F
is computable. If C; Γ 	 t : T and (μ, σ) |= C; Γ , then tσ ∈ [[T ]]Iμ.

Proof. By induction on C; Γ 	 t : T . We only detail some cases.

(abs) We must prove that s = (λxu)σ ∈ [[T ⇒ U ]]Iμ. Wlog, we can assume that
x /∈ σ. Then, s = λx(uσ). Let t ∈ [[T ]]Iμ. We must prove that st ∈ [[U ]]Iμ.
By induction hypothesis, uσ ∈ [[U ]]Iμ. Let now σ′ = σ+t

x. Since (μ, σ′) |=
C; Γ, x : T , by induction hypothesis, uσ′ ∈ [[U ]]Iμ. Hence, st ∈ SN since,
by induction on (uσ, t) with →lex as well-founded ordering, →(st) ⊆ SN.
Therefore, st ∈ [[U ]]Iμ since st →βh uσ′ ∈ [[U ]]Iμ and st ∈ SN.

(if) Let s = (if t thenu else v)σ. By induction hypothesis, tσ ∈ Iω
bool and tiσ ∈

[[T ]]Iμ. Since s ∈ N and T is an ∃-basic type, by the neutral term property, it
suffices to prove that →(s) ⊆ [[T ]]Iμ. This follows by induction on (tσ, uσ, vσ)
with →lex as well-founded ordering.

(∃elim) We must prove that s = (let x = t inu)σ ∈ [[U ]]Iμ. Wlog, we can assume
that x /∈ σ. Then, s = let x = tσ in uσ. Let σ′ = σtσ

x . By induction hypothesis,
tσ ∈ [[∃αPT ]]Iμ. Since 	 C ⊃ ∃αP , there is a such that μ+a

α |= P and
tσ ∈ [[T ]]Iμ+a

α
. Therefore, by induction hypothesis, uσ′ ∈ [[U ]]Iμ+a

α
= [[U ]]Iμ.

(sub) By induction on T and T ′, one can easily prove that [[T ]]Iμ ⊆ [[U ]]Iμ when-
ever μ |= (|T ≤ U |). ��

Corollary 1. Assume that I is a valid base type interpretation and every f ∈ F
is computable. Then, → is strongly normalizing on Λ(τ).

Corollary 2. Assume that, for all s ∈ C ∪F , τs is of the form T ⇒ ∀αBα ⇒ T
with T simple, B basic and T an ∃-basic type. If every symbol is computable,
then → is strongly normalizing on Λ(τ ).

Proof. It suffices to prove that, for all s, s ∈ [[τs]]I . We have τs = T ⇒ B ⇒ B.
Let t ∈ [[T ]]I and u ∈ Iω

B . We must prove that ftu ∈ [[B]]I . There is αμ such that
u ∈ Iαμ

B . Assume that T = ∀δPB. Since f : T ⇒ ∀αBα ⇒ T is computable,
ftu ∈ [[T ]]Iμ =

⋃
μ+d

δ
|=P [[B]]Iμ+d

δ
. Let ν = μ+d

δ |= P . We are left to prove that
[[B]]Iν ⊆ [[B]]I . We proceed by induction on B. ��

5 Termination Criterion

We now provide conditions to obtain the computability of defined symbols.
A precedence is a quasi-ordering ≥ whose strict part > = ≥ \ ≤ is well-

founded. Let 2 = ≥ ∩ ≤ be its associated equivalence relation. We assume given
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a precedence ≥B on B and a precedence ≥F on F . We are going to define some
base type interpretation and prove that every function symbol is computable by
induction on these precedences.

Assumption: For all c ∈ C, we assume that τc is of the form1 C ⇒ ∀αBα ⇒ Ba

with C <B B, B 2B B, a = 0 if |α| = 0, and a = 1 + max(α) if |α| > 0.

Example 2. The type N of natural numbers has constructors 0 : N0 and s :
∀αNα ⇒ Nα+1. The type L of lists has constructors nil : L0 and cons : N ⇒
∀αLα ⇒ Lα+1. The type T of binary trees has constructors leaf : N ⇒ T0 and
node : ∀αβTα ⇒ Tβ ⇒ T1+max(α,β).

We define the base type interpretation as follows:

– I0
B = {t ∈ SN | ∀c : C ⇒ ∀αBα ⇒ Ba, ∀tu, |t| = |C| ∧ |u| = |α| ∧

t →∗ ctu ⇒ t ∈ Iω
C ∧ |α| = a = 0}

– Ia+1
B = {t ∈ SN | ∀c : C ⇒ ∀αBα ⇒ Ba, ∀tu, |t| = |C| ∧ |u| = |α| ∧

t →∗ ctu ⇒ t ∈ Iω
C ∧ a = 1 + max(α) ∧ (∃b) a = max(b) ∧ u ∈ Ib

B}

Lemma 2. I is a valid base type interpretation.

Proof. One can easily check that Ia
b is saturated and that every constructor is

computable. We now prove that [[T ]]Iμ has the neutral term property whenever
T is ∃-basic.

We first remark that, if t ∈ SN and t →∗ t′ ∈ Ia
B, then t ∈ Ia

B. We prove it
by induction on (B, a) with (>B, >DκB

)lex as well-founded ordering. Let c : C ⇒
∀αBα ⇒ Ba, t and u such that |t| = |C|, |u| = |α| and t →∗ ctu. By confluence,
t′ →∗ ct′u′ with tu →∗ t′u′. We proceed by case on a.

– a = t. Then, t′ �→∗ false. Hence, t �→∗ false and t ∈ Ia
B.

– a = f. Idem.
– a = 0. Since t′ ∈ Ia

B, t′ ∈ Iω
C and |α| = a = 0. Since C <B B, by induction

hypothesis, t ∈ Iω
C . Thus, t ∈ Ia

B.
– a > 0. Since t′ ∈ Ia

B, t′ ∈ Iω
C , a = 1 + max(α) and there are b such that

a = 1 + max(b) and u′ ∈ Ib
B . Since C <B B and b < a, by induction

hypothesis, t ∈ Iω
C and u ∈ Ib

B . Thus, t ∈ Ia
B.

Let now T = ∃αPB be an ∃-basic type. We have S =
⋃

μ+a
α|=P [[B]]Iμ+a

α
. We

first prove that there are a such that ν = μ+a
α |= P and →(s) ⊆ S′ = [[B]]Iν .

If →(s) = ∅, this is immediate. So, assume that there is t ∈ →(s). Since t ∈ S,
there are a such that ν = μ+a

α |= P and t ∈ S′ = [[B]]Iν . Let now u ∈ →(s). By
confluence, there is v such that t, u →∗ v. Since t ∈ S′, we have v ∈ S′. Thus,
u ∈ S′ too. Hence, →(s) ⊆ S′.

We now prove that s ∈ S′ whenever →(s) ⊆ S′ by induction on B. ��

Lemma 3. We assume given an injection ε from term variables to size variables.
Consider the rules of Figure 3. If α = a; Γ � t : Bα and tσ ∈ Iαμ

B , then there is
ν such that (μ + ν, σ) |= α = a; Γ .
1 The order of types is not relevant. We take this order for the sake of simplicity.
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(1) α = εx; x : Bεx � x : Bα

(2)
c : T ⇒ B0 B �= bool

α = 0; x : T � cx : Bα
(2’)

c : boolc
∗

α = c∗; ∅ � c : boolα

(3)

c : T ⇒ ∀αBα ⇒ B1+max(α) α = a; Γ � u : Bα α /∈ α
x : T , Γ are compatible

α = 1 + max(a); x : T , Γ � cxu : Bα

Fig. 3. Matching constraints

Proof. We say that a is minimal for t ∈ [[B]]ω if t ∈ [[B]]a and, for all b < a,
t /∈ [[B]]b. We prove the lemma by induction on α = a; Γ � t : Bα with the
additional requirement that ν is minimal whenever μ so is.

(1) It suffices to take εxν = αμ.
(2) and (2’) It suffices to take ν = ∅.
(3) We have tσ = cxσuσ. Thus, μ is minimal, xσ ∈ [[T ]] and there is μ′ minimal

such that uσ ∈ Iαμ′

B and αμ = 1+max(αμ′). Now, by induction hypothesis,
there are ν minimal such that (μ′ + ν, σ) |= α = a; Γ . Since ν are minimal,
if xσ ∈ Iεxνi

Bi
∩ I

εxνj

Bj
, then εxνi = εxνj . Thus, we can define ν = Σν. Since ν

is minimal, we are left to prove that (μ + ν, σ) |= α = 1 + max(a); Γ . First,
we have μ + ν |= α = 1 + max(a) since αμ = 1 + max(αμ′) = 1 + max(aν).
Second, let x ∈ ui. Then, xσ ∈ [[xΓ ]]Iνi

= [[xΓ ]]Ixν . ��

Theorem 3 (Termination criterion). Assume that, for every f ∈ F :
(1) τf is of the form T ⇒ ∀αBα ⇒ T with T an ∃-basic type;
(2) there is a constraint (β <f α) such that the ordering �f defined by αμ �f βμ

iff μ |= β <f α is well-founded;
(3) for every g 2F f, τg is of the form U ⇒ ∀αBα ⇒ U and <f=<g;
and, for every rule t = c ⊃ l → r defining f:
(4) l is of the form fxl with |x| = |T | and |l| = |α|;
(5) there are Γ compatible and a such that α = a; Γ � l : Bα;
(6) every symbol occurring in r is ≤F f ;
(7) α = a; x : T , Γ 	τ< t : boolb;
(8) b = c∗; α = a; x : T , Γ 	τ< r : T .
where:
(9) for every g <F f, τ<

g = τg;
(10) for every g 2F f, τ<

g = U ⇒ ∀α′(α′ <f α)Bα′ ⇒ U with α′ /∈ α whenever
τg = U ⇒ ∀α′Bα′ ⇒ U .

Then, → is strongly normalizing on Λ(τ) and Λ(τ ).

Proof. We must prove that, for all f : T ⇒ ∀αBα ⇒ T , t ∈ [[T ]], μ and u ∈ Iαμ
B ,

ftu ∈ [[T ]]Iμ. We proceed by induction on (f, αμ, tu) with (>F ,�f , →lex)lex as
well-founded ordering. By Lemma 2, it suffices to prove that →(s) ⊆ S. If the
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reduction takes place in tu, we conclude by induction hypothesis. Assume now
that there are fxl → r ∈ R and σ such that xσ = t and lσ = u. We must
prove that rσ ∈ [[T ]]Iμ. After Lemma 3, since Γ are compatible, there is ν such
that (μ + ν, σ) |= α = a; Γ . By induction hypothesis, for all g ≤F f , g ∈ [[τ<

g ]]
(considering α as constants interpreted by αμ). Thus, letting η = μ + ν, by
Theorem 2, we have tσ ∈ Ibη

bool. Since tσ →∗ c ∈ Ic∗∗

bool, we have bη = c∗∗. Thus,
η |= b = c∗ and, by Theorem 2 again, rσ ∈ [[T ]]Iη = [[T ]]Iμ. ��
The size variables α in the type of f (1) represents the sizes of the recursive argu-
ments of f. The user-defined predicate <f in (2) expresses the measure that must
decrease in recursive calls. One can for instance take lexicographic or multiset
comparisons together with linear combinations of the arguments. The condition
(5) provides the constraints on α when a term matches the rule left hand-side
l = fxl. The condition (7) implies that the terms t are terminating whenever
the arguments of the left hand-side so are. The condition (8) implies that the
right hand-side is terminating whenever the arguments of the left hand-side so
are and t →∗ c. The fact that t →∗ c is expressed by the additional constraint
b = c∗. Termination is ensured by doing type-checking in the system 	τ< where,
by condition (10), function symbols equivalent to f can only be applied to ar-
guments smaller than α in <f . This is in contrast with [8] where a new type
system (called the computability closure) restricting the use of (app) must be
introduced.

Example 3. We detail the criterion with the second rule of pivot given in the
introduction. Let r be the right-hand side of the rule and u (resp. v) be the first
(resp. second) branch of if in r.

We take pivot : N ⇒ ∀αLα ⇒ T (α) with T (α) = ∃βγ(α = β + γ)Lβ × Lγ ,
<f = <, �f = >N and le : N ⇒ N ⇒ bool. Let Γ = y : N, l : Lδ and Δ = x : N, Γ .

Matching constraint: α = δ + 1; Γ � cons y l : Lα (we take εl = δ).
We must check that α = δ + 1;Δ 	 r : T (α) with pivot : N ⇒ ∀α′(α′ <

α)Lα′ ⇒ T (α′). Let Δ = Γ, z : Lβ × Lγ .
One can easily check that δ < α; Γ 	 pivotx l ↑ T (δ), .;Δ 	 le y x ↑ bool,

.;Δ 	 u ↑ Lβ+1 × Lγ , .;Δ 	 v ↑ Lβ × Lγ+1.
Thus, by (↓sub), β + 1 = β′ ∧ γ = γ′;Δ 	 u ↓ Lβ′ × Lγ′

and β = β′ ∧ γ + 1 =
γ′;Δ 	 u ↓ Lβ′ × Lγ′

.
By (↓∃intro), D;Δ 	 u ↓ T (α) where D = ∃β′γ′(β + 1 = β′ ∧ γ = γ′ ∧ α =

β′+γ′), and E;Δ 	 v ↓ T (α) where E = ∃β′γ′(β = β′∧γ+1 = γ′∧α = β′+γ′).
Note that D ≡ E ≡ (α = β + γ + 1).

By (↓if), α = β + γ + 1;Δ 	 if (le y x) then u else v : T (α).
By (↓∃elim), F ; Γ 	 r ↓ T (α) where F = δ < α∧(∃βγ(α = β +γ))∧(∀βγ(δ =

β + γ ⊃ α = β + γ + 1)).
Therefore, α = δ + 1;Δ 	 r : T (α) if 	 α = δ + 1 ⊃ F , which is true.

Example 4. Consider the following definition of Mc Carthy’s 91 function:

lex 100 = true ⊃ f x → f (f (plus x 11))
lex 100 = false ⊃ f x → minusx 10

We assume that A contains le : nat × nat ⇒ bool interpreted as expected.
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We assume that le : ∀αβNα ⇒ Nβ ⇒ boolle(α,β), plus : ∀αβNα ⇒ Nβ ⇒
Nα+β , minus : ∀αβNα ⇒ Nβ ⇒ ∃γPNγ with P = (α ≤ β ∧ γ = 0) ∨ (α > β ∧
α = β + γ), and f : ∀αNα ⇒ ∃βQNβ with Q = (α ≤ 100 ∧ β = 91) ∨ (α > 100 ∧
α = β + 10). Taking Γ = x : Nα, we get that .; Γ 	 le x 100 : boolle(α,100). The
condition le(α, 100) = t is equivalent to α ≤ 100, hence the termination.

6 Conclusion and Future Work

We extended the simply typed part of [8] with conditional rewriting and explicit
quantifications and constraints over size annotations. This allows to precisely
describe the relation between the size of the output of a function and the size of
its inputs. This also provides a powerful termination criterion for the combination
of β-reduction and higher-order conditional rewriting, based on type-checking
and constraint solving. To our knowledge, this is the first termination criterion for
higher-order conditional rewriting taking into account conditions in termination.
We plan to extend this work in various directions:

– As in [22], we did not consider constructors with recursive arguments of
higher-order type since this is already studied in [8]. The integration of both
works should not create too much difficulties. We already have preliminary
results in this direction.

– The complexity of Presburger arithmetic is high. Although it is not so impor-
tant in our case since the constraints we consider are small (rule right-hand
sides are generally not very big terms), it would be interesting to study the
complexity in more details, depending on the allowed size annotations.

– Our long term goal is to extend the present work to polymorphic and de-
pendent type systems that serve as basis for proof assistants like Coq, e.g.
the Calculus of Algebraic Constructions [9].

– We assume that constrained types of function symbols are given and check
that they imply termination. It would be very interesting to infer these
constraints automatically.
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Abstract. In this paper we investigate, for intuitionistic implicational
logic, the relationship between normalization in natural deduction and
cut-elimination in a standard sequent calculus. First we identify a subset
of proofs in the sequent calculus that correspond to proofs in natural de-
duction. Then we define a reduction relation on those proofs that exactly
corresponds to normalization in natural deduction. The reduction rela-
tion is simulated soundly and completely by a cut-elimination procedure
which consists of local proof transformations. It follows that the sequent
calculus with our cut-elimination procedure is a proper extension that is
conservative over natural deduction with normalization.

1 Introduction

In his seminal paper [6], Gentzen introduced natural deduction systems and se-
quent calculi for intuitionistic and classical logics, and proved the logical equiv-
alence of the systems for each logic as well as the cut-elimination theorems for
sequent calculi. In [10], Prawitz systematically studied normalization processes
in natural deduction, and gave a construction of a cut-free proof from a normal
proof for the purpose of proving the cut-elimination theorems through normal-
ization results in natural deduction (Appendix A.3 of [10]). The construction by
Prawitz differs from Gentzen’s in that it assigns a cut-free proof to each normal
proof in natural deduction. Under the Curry-Howard correspondence [8], the
computational meaning of the cut-free proofs can be considered as the simply
typed λ-terms corresponding to the normal proofs in natural deduction.

To obtain a meaningful Curry-Howard correspondence for sequent calculus,
we therefore need to define a mapping from non-normal proofs in natural de-
duction to some proofs in sequent calculus, and investigate the relationship be-
tween normalization and cut-elimination processes. In particular, it is crucial to
identify the cut-elimination procedure that corresponds to β-reduction in the
simply typed λ-calculus. This would also open the way for understanding the
computational or constructive meaning of various logics, including those logics
which allow natural cut-elimination procedures in their sequent calculi but do
not have an appropriate natural deduction system and normalization in it (e.g.
modal logics and substructural logics).
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In this paper, we define a mapping from proofs in natural deduction to a
subset of proofs in a standard sequent calculus for intuitionistic logic. We syn-
tactically characterize the image of the mapping, and show that it is a bijection
between proofs in natural deduction and the subset of proofs in the sequent cal-
culus. We also define a reduction relation on the subset of proofs, and show that
it coincides with the β-reduction relation under the bijection. Thus the iden-
tification of β-reduction in the sequent calculus is achieved. The problem then
reduces to investigating the relationship between the image of β-reduction and
cut-elimination in the sequent calculus. In this paper we introduce a fairly stan-
dard cut-elimination procedure, except that in some circumstances it allows a
cut to pass over another cut. Then the image of β-reduction is shown to be simu-
lated by the cut-elimination procedure. It is also shown that the cut-elimination
procedure is sound in regard to β-reduction, i.e., it does not break β-reducibility
in the isomorphic image of natural deduction.

Allowing cuts to pass over other cuts is one of the criteria stated in [12,13].
(It was also noted in [7,2] for Herbelin’s sequent calculus). Using the strong
normalization result of a cut-elimination procedure that satisfies the criteria,
Urban [12] proved strong normalization of the simply typed λ-calculus. Note
however that inferring strong normalization of β-reduction and identifying β-
reduction in a sequent calculus are different, and the latter is more appropriate
to obtain a relevant Curry-Howard correspondence for sequent calculus. In [12],
Urban also defined another cut-elimination procedure which consists of local
proof transformations. For the cut-elimination procedure to satisfy the criteria,
he introduced labelled cut-rules whose instances are allowed to pass over usual
cuts. The cut-elimination procedure we introduce in this paper also consists of
local proof transformations, but uses only one cut-rule. Instead of introducing
labelled cut-rules and allowing any labelled cuts to pass over usual cuts, we derive
minimal requirements on permutation of cuts for the simulation of β-reduction
from a thorough analysis of our proof of the simulation.

For Herbelin-style sequent calculi (i.e., sequent calculi with stoup), it is known
that there is an isomorphism between natural deduction and a fragment of those
sequent calculi [4,3,5]. In such a system, one can distinguish cuts according to
information on the stoups of sequents, and know in which case a cut should be
allowed to pass over another cut. This is analogous to the situation using the
labelled cuts mentioned above. Also, the proof terms for Herbelin-style sequent
calculi are constructed involving an additional syntactic category called applica-
tive context. In contrast, we establish an isomorphism using only proof terms
for the standard sequent calculus, as found in [9].

The organization of the paper is as follows. In Section 2 we introduce sequent
calculus and our cut-elimination procedure. In Section 3 we establish an iso-
morphism between a fragment of the sequent calculus and natural deduction. In
Section 4 we discuss simulation of β-reduction by our cut-elimination procedure.
In Section 5 we conclude and give suggestions for further work.

To save space we omit some of the details, but a full version with all the
details is available at http://www.nue.riec.tohoku.ac.jp/user/kentaro/ .
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2 Sequent Calculus

In this section we introduce a term notation for proofs in a standard sequent
calculus for intuitionistic implicational logic. Our cut-elimination procedure is
represented as reduction rules for those terms. For proof terms and normalization
in natural deduction, we use the ordinary simply typed λ-calculus.

First, the set of raw terms for sequent proofs is defined by the grammar:
t ::= x | λx.t | 〈xt/x〉t | [t/x]t where x ranges over a denumerable set of variables.
〈 / 〉 and [ / ] are 4-ary and 3-ary function symbols, respectively, and may
be regarded as two kinds of explicit substitutions. We use letters x, y, z, w for
variables and t, s, r, u for terms. The notions of free and bound variables are
defined as usual, with an additional clause that the variable x in 〈ys/x〉t or
[s/x]t binds the free occurrences of x in t. The set of free variables of a term
t is denoted by FV (t). We often use the notation 〈xs/y〉t to denote 〈xs/y〉t if
x /∈ FV (s) ∪ FV (t). For such terms and variables, we define the notion of fresh
head variable as follows: FHV (x) = x and FHV (〈xs/y〉t) = x. The symbol ≡
denotes syntactic equality modulo α-conversion.

Table 1. Sequent calculus

Ax
Γ, x : A � x : A

L ⊃ Γ � s : A Γ, y : B � t : C

Γ, x : A ⊃ B � 〈xs/y〉t : C
y /∈ Γ

R ⊃ Γ, x : A � t : B

Γ � λx.t : A ⊃ B
x /∈ Γ Cut

Γ � s : A Γ, x : A � t : B

Γ � [s/x]t : B
x /∈ Γ

〈xs/y〉t is used for 〈xs/y〉t when x /∈ FV (s) ∪ FV (t). In that case we assume x /∈ Γ
in the rule L ⊃.

(1) [t/x]y → y (y 	≡ x)

(2) [t/x]x → t

(3) [s/x](λy.t) → λy.[s/x]t

(4) [r/z]〈xs/y〉t → 〈x([r/z]s)/y〉[r/z]t (x 	≡ z)

(5) [r/x]〈xs/y〉t → [r/x]〈x([r/x]s)/y〉[r/x]t if x ∈ FV (s) ∪ FV (t)

(6) [z/x]〈xs/y〉t → 〈zs/y〉t
(7) [〈xs/y〉t/z]r → 〈xs/y〉[t/z]r

(Beta) [λz.r/x]〈xs/y〉t → [[s/z]r/y]t

(Perm1) [[r/x]〈xs/y〉t/z]〈zs′/w〉t′ → [r/x][〈xs/y〉t/z]〈zs′/w〉t′
(Perm2) [u/w][λz.r/x]〈xs/y〉t → [[u/w](λz.r)/x][u/w]〈xs/y〉t
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The term assignment for sequent proofs of intuitionistic implicational logic is
given in Table 1. We define a context, ranged over by Γ , as a finite set of pairs
{x1 : A1, . . . , xn : An} where the variables are pairwise distinct. The context
Γ, x : A denotes the union Γ ∪{x : A}, and x /∈ Γ means that x does not appear
in Γ . For precise representation of proofs by terms, we should specify formulas
on binders, but we will omit them for brevity. If x /∈ FV (s)∪FV (t) in the term
〈xs/y〉t, we assume x /∈ Γ in the rule L ⊃, which means the formula A ⊃ B is
introduced without implicit contraction.

The reduction rules in Table 1 define a cut-elimination procedure for sequent
proofs. The notion of cut-reduction is defined by the contextual closures of these
reduction rules. We use →cut for one-step reduction, +→cut for its transitive clo-
sure, and ∗→cut for its reflexive transitive closure. These kinds of notations are
also used for the notions of other reductions in this paper.

The reduction rules (1) through (5) correspond to cut-elimination steps that
permute a cut upwards through its right subproof. Similarly, the rules (6) and
(7) correspond to steps permuting a cut upwards through its left subproof. The
rule (Beta) corresponds to the key-case which breaks a cut on an implication
into two cuts on its subformulas. The rules (Perm1) and (Perm2) are the new
rules introduced in this paper. They permute two cuts with some restrictions.
In (Perm1), the left rule over the lower cut is another cut, and the right rules
over both cuts must be L ⊃ that introduces the cut-formula without implicit
contraction. In (Perm2), the right rule over the lower cut is another cut, which
must construct a proof corresponding to a redex of the rule (Beta).

3 Pure Terms

Table 2 presents the syntax of pure terms, which are the subset of proof terms
for sequent calculus that correspond to simply typed λ-terms, i.e., proof terms
for natural deduction. We use letters l, l′, . . . for variables or pure terms of the
form 〈y1s1/y2〉 . . . 〈yn−1sn−1/yn〉yn. The intuitive idea behind the syntax is that
we translate a λ-term xM1M2 . . .Mn to 〈xs1/y1〉〈y1s2/y2〉 . . . 〈yn−1sn/yn〉yn,
and (λz.N)M1M2 . . .Mn to [λz.r/x]〈xs1/y1〉〈y1s2/y2〉 . . . 〈yn−1sn/yn〉yn, where
N,M1,M2, . . . ,Mn are translated to r, s1, s2, . . . , sn (n � 1). So a non-normal
proof corresponding to (λz.N)M1M2 . . .Mn is translated to a cut of the form:

Γ, z : A 	 r : B
Γ 	 λz.r : A ⊃ B R ⊃

Γ 	 s1 : A Γ, y1 : B 	 l : C
Γ, x : A ⊃ B 	 〈xs1/y1〉l : C

L ⊃

Γ 	 [λz.r/x]〈xs1/y1〉l : C
Cut

where l ≡ 〈y1s2/y2〉 . . . 〈yn−1sn/yn〉yn. We refer to this kind of cut as a β-cut.
For the definition of β-reduction on pure terms, we need a meta-substitution

{ / } . Since we cannot in general replace the free variable w in 〈ws/y〉l by a
pure term, we need a further meta-operation 〈{{ }} / 〉 . The term 〈{{u}}s/y〉l
may be seen as an abbreviation for {u/w}〈ws/y〉l, and defined by induction on
the structure of the pure term u. Note that if FHV (l) = y then FHV ({u/w}l) =
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Table 2. Pure terms

t, s, r ::= x | λx.t | 〈xs/y〉l | [λz.r/x]〈xs/y〉l
l ::= x | 〈xs/y〉l
where FHV (l) = y in the right hand sides.

(β) [λz.r/x]〈xs/y〉l → {{s/z}r/y}l
where

{u/w}x =def x (x 	≡ w)

{u/w}w =def u

{u/w}(λx.t) =def λx.{u/w}t
{u/w}〈xs/y〉l =def 〈x({u/w}s)/y〉{u/w}l (x 	≡ w)

{u/w}〈ws/y〉l =def 〈{{u}}({u/w}s)/y〉{u/w}l
{u/w}[λz.r/x]〈xs/y〉l =def [λz.{u/w}r/x]〈x({u/w}s)/y〉{u/w}l

〈{{x}}s′/y〉l′ =def 〈xs′/y〉l′
〈{{λx.t}}s′/y〉l′ =def [λx.t/w]〈ws′/y〉l′

〈{{〈xs/w〉l}}s′/y〉l′ =def 〈xs/w〉〈{{l}}s′/y〉l′
〈{{[λz.r/x]〈xs/w〉l}}s′/y〉l′ =def [λz.r/x]〈xs/w〉〈{{l}}s′/y〉l′

y (w �≡ y) and FHV (〈{{l}}s′/w〉l′) = y, so the meta-operations are well-defined on
pure terms. The operation 〈{{ }} / 〉 corresponds to the cut-elimination process
where the right rule over the cut is L ⊃ introducing the cut-formula without
implicit contraction, and the cut is permuted upwards through its left subproof.
(Meta-operations based on similar ideas are found in [12,13,4,3], but not for the
pure terms we defined above.)

In the rest of this section we establish an isomorphism between pure terms
and λ-terms. For this we define the translations ρ and ϕ as shown in Table 3. (It
can be shown that these translations preserve the types of terms.) For normal
proofs, the translation ρ agrees with Prawitz’s translation [10]. While Prawitz
defined his translation by induction on the structure of normal proofs, we define
the translation ρ by induction on the usual syntax of λ-terms, since we need to
show that the same translation also preserves β-reduction which is based on the
meta-substitution defined along with the usual syntax of λ-terms.

Now we consider bijection and preservation of β-reduction in order.

3.1 ρ and ϕ Are Bijective

Lemma 1. Let t, u be pure terms. If x /∈ FV (t), then {u/x}t ≡ t.

Proof. By induction on the structure of t. ��
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Table 3. Translations ρ and ϕ

ρ(x) =def x
ρ(MN) =def 〈{{ρ(M)}}ρ(N)/x〉x

ρ(λx.M) =def λx.ρ(M)

ϕ(x) =def x
ϕ(λx.t) =def λx.ϕ(t)

ϕ(〈xs/y〉l) =def {xϕ(s)/y}ϕ(l)
ϕ([λz.r/x]〈xs/y〉l) =def {(λz.ϕ(r))ϕ(s)/y}ϕ(l)

Lemma 2. Let u, s, l, s′, l′ be pure terms with FHV (l) = w and FHV (l′) = y.
Then 〈{{〈{{u}}s/w〉l}}s′/y〉l′ ≡ 〈{{u}}s/w〉〈{{l}}s′/y〉l′.

Proof. By induction on the structure of u. We treat some cases.

(a) u ≡ 〈xr/z〉l′′. Then

〈{{〈{{〈xr/z〉l′′}}s/w〉l}}s′/y〉l′ ≡ 〈{{〈xr/z〉〈{{l′′}}s/w〉l}}s′/y〉l′

≡ 〈xr/z〉〈{{〈{{l′′}}s/w〉l}}s′/y〉l′

≡ 〈xr/z〉〈{{l′′}}s/w〉〈{{l}}s′/y〉l′ (by IH)
≡ 〈{{〈xr/z〉l′′}}s/w〉〈{{l}}s′/y〉l′

(b) u ≡ [λz.r/x]〈xt/y′〉l′′. Then

〈{{〈{{[λz.r/x]〈xt/y′〉l′′}}s/w〉l}}s′/y〉l′

≡ 〈{{[λz.r/x]〈xt/y′〉〈{{l′′}}s/w〉l}}s′/y〉l′

≡ [λz.r/x]〈xt/y′〉〈{{〈{{l′′}}s/w〉l}}s′/y〉l′

≡ [λz.r/x]〈xt/y′〉〈{{l′′}}s/w〉〈{{l}}s′/y〉l′ (by IH)
≡ 〈{{[λz.r/x]〈xt/y′〉l′′}}s/w〉〈{{l}}s′/y〉l′

��

Lemma 3. Let u, t, s′, l′ be pure terms with FHV (l′) = y and x �≡ y. Then
{u/x}〈{{t}}s′/y〉l′ ≡ 〈{{{u/x}t}}{u/x}s′/y〉{u/x}l′.

Proof. By induction on the structure of t. We treat some cases.

(a) t ≡ 〈x′s/w〉l (x′ �≡ x). Then

{u/x}〈{{〈x′s/w〉l}}s′/y〉l′

≡ {u/x}〈x′s/w〉〈{{l}}s′/y〉l′

≡ 〈x′{u/x}s/w〉{u/x}〈{{l}}s′/y〉l′

≡ 〈x′{u/x}s/w〉〈{{{u/x}l}}{u/x}s′/y〉{u/x}l′ (by IH)
≡ 〈{{〈x′{u/x}s/w〉{u/x}l}}{u/x}s′/y〉{u/x}l′

≡ 〈{{{u/x}〈x′s/w〉l}}{u/x}s′/y〉{u/x}l′
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(b) t ≡ 〈xs/w〉l. Then

{u/x}〈{{〈xs/w〉l}}s′/y〉l′

≡ {u/x}〈xs/w〉〈{{l}}s′/y〉l′

≡ 〈{{u}}{u/x}s/w〉{u/x}〈{{l}}s′/y〉l′

≡ 〈{{u}}{u/x}s/w〉〈{{{u/x}l}}{u/x}s′/y〉{u/x}l′ (by IH)
≡ 〈{{〈{{u}}{u/x}s/w〉{u/x}l}}{u/x}s′/y〉{u/x}l′ (by Lemma 2)
≡ 〈{{{u/x}〈xs/w〉l}}{u/x}s′/y〉{u/x}l′

(c) t ≡ [λz.r/y′]〈y′s/w〉l. Then

{u/x}〈{{[λz.r/y′]〈y′s/w〉l}}s′/y〉l′

≡ {u/x}[λz.r/y′]〈y′s/w〉〈{{l}}s′/y〉l′

≡ [λz.{u/x}r/y′]〈y′{u/x}s/w〉{u/x}〈{{l}}s′/y〉l′

≡ [λz.{u/x}r/y′]〈y′{u/x}s/w〉〈{{{u/x}l}}{u/x}s′/y〉{u/x}l′ (by IH)

≡ 〈{{[λz.{u/x}r/y′]〈y′{u/x}s/w〉{u/x}l}}{u/x}s′/y〉{u/x}l′

≡ 〈{{{u/x}[λz.r/y′]〈y′s/w〉l}}{u/x}s′/y〉{u/x}l′

��
Lemma 4. Let N,M be λ-terms. Then ρ({N/x}M) ≡ {ρ(N)/x}ρ(M).

Proof. By induction on the structure ofM . We treat the caseM ≡M0M1. Then

ρ({N/x}(M0M1)) ≡ ρ({N/x}M0{N/x}M1)
≡ 〈{{ρ({N/x}M0)}}ρ({N/x}M1)/y〉y
≡ 〈{{{ρ(N)/x}ρ(M0)}}{ρ(N)/x}ρ(M1)/y〉y (by IH)
≡ 〈{{{ρ(N)/x}ρ(M0)}}{ρ(N)/x}ρ(M1)/y〉{ρ(N)/x}y
≡ {ρ(N)/x}〈{{ρ(M0)}}ρ(M1)/y〉y (by Lemma 3)
≡ {ρ(N)/x}ρ(M0M1)

��
Lemma 5. Let u, s′, l′ be pure terms with FHV (l′) = y. Then ϕ(〈{{u}}s′/y〉l′) ≡
{ϕ(u)ϕ(s′)/y}ϕ(l′).

Proof. By induction on the structure of u. We treat some cases.

(a) u ≡ 〈xs/w〉l. Then

ϕ(〈{{〈xs/w〉l}}s′/y〉l′) ≡ ϕ(〈xs/w〉〈{{l}}s′/y〉l′)
≡ {xϕ(s)/w}ϕ(〈{{l}}s′/y〉l′)
≡ {xϕ(s)/w}{ϕ(l)ϕ(s′)/y}ϕ(l′) (by IH)
≡ {{xϕ(s)/w}ϕ(l)ϕ(s′)/y}ϕ(l′) (∗)
≡ {ϕ(〈xs/w〉l)ϕ(s′)/y}ϕ(l′)

where the step (∗) is established since we can assume w /∈ FV (s′) ∪ FV (l′)
and so w /∈ FV (ϕ(s′)) ∪ FV (ϕ(l′)).
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(b) u ≡ [λz.r/x]〈xs/w〉l. Then

ϕ(〈{{[λz.r/x]〈xs/w〉l}}s′/y〉l′)
≡ ϕ([λz.r/x]〈xs/w〉〈{{l}}s′/y〉l′)
≡ {λz.ϕ(r)ϕ(s)/w}ϕ(〈{{l}}s′/y〉l′)
≡ {λz.ϕ(r)ϕ(s)/w}{ϕ(l)ϕ(s′)/y}ϕ(l′) (by IH)
≡ {{λz.ϕ(r)ϕ(s)/w}ϕ(l)ϕ(s′)/y}ϕ(l′) (∗)
≡ {ϕ([λz.r/x]〈xs/w〉l)ϕ(s′)/y}ϕ(l′)

where the step (∗) is established since we can assume w /∈ FV (s′) ∪ FV (l′)
and so w /∈ FV (ϕ(s′)) ∪ FV (ϕ(l′)). ��

Lemma 6. Let s, r, l be pure terms with FHV (l) = y. Then

1. {〈xs/w〉w/y}l ≡ 〈xs/y〉l,
2. {[λz.r/x]〈xs/w〉w/y}l ≡ [λz.r/x]〈xs/y〉l.

Proof. By cases on l. ��

Proposition 1. ϕ ◦ ρ = id and ρ ◦ ϕ = id.

Proof. The first part is by induction on the structure of λ-terms. We treat the
case M ≡M0M1. Then

(ϕ ◦ ρ)(M0M1) ≡ ϕ(〈{{ρ(M0)}}ρ(M1)/x〉x)
≡ {ϕ(ρ(M0))ϕ(ρ(M1))/x}ϕ(x) (by Lemma 5)
≡ {M0M1/x}x (by IH)
≡ M0M1

The second part is by induction on the structure of pure terms. We treat some
cases.

(a) t ≡ 〈xs/y〉l. Then

(ρ ◦ ϕ)(〈xs/y〉l) ≡ ρ({xϕ(s)/y}ϕ(l))
≡ {ρ(xϕ(s))/y}ρ(ϕ(l)) (by Lemma 4)
≡ {ρ(xϕ(s))/y}l (by IH)
≡ {〈{{ρ(x)}}ρ(ϕ(s))/w〉w/y}l
≡ {〈{{ρ(x)}}s/w〉w/y}l (by IH)
≡ {〈{{x}}s)/w〉w/y}l
≡ {〈xs/w〉w/y}l
≡ 〈xs/y〉l (by Lemma 6 (1))
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(b) t ≡ [λz.r/x]〈xs/y〉l. Then

(ρ ◦ ϕ)([λz.r/x]〈xs/y〉l) ≡ ρ({(λz.ϕ(r))ϕ(s)/y}ϕ(l))
≡ {ρ((λz.ϕ(r))ϕ(s))/y}ρ(ϕ(l)) (by Lemma 4)
≡ {ρ((λz.ϕ(r))ϕ(s))/y}l (by IH)
≡ {〈{{ρ(λz.ϕ(r))}}ρ(ϕ(s))/w〉w/y}l
≡ {〈{{ρ(λz.ϕ(r))}}s/w〉w/y}l (by IH)
≡ {〈{{λz.ρ(ϕ(r))}}s/w〉w/y}l
≡ {〈{{λz.r}}s/w〉w/y}l (by IH)
≡ {[λz.r/x]〈xs/w〉w/y}l
≡ [λz.r/x]〈xs/y〉l (by Lemma 6 (2))

��

3.2 ρ and ϕ Preserve β-Reduction

Lemma 7. Let u, t be pure terms. Then ϕ({u/x}t) ≡ {ϕ(u)/x}ϕ(t).

Proof.

ϕ({u/x}t) ≡ ϕ({ρ(ϕ(u))/x}ρ(ϕ(t))) (by Proposition 1)
≡ ϕ(ρ({ϕ(u)/x}ϕ(t))) (by Lemma 4)
≡ {ϕ(u)/x}ϕ(t) (by Proposition 1)

��
Lemma 8. Let u, u′, s, s′, l be pure terms with FHV (l) = y.
1. If u→β u

′ then 〈{{u}}s/y〉l→β 〈{{u′}}s/y〉l.
2. If s→β s

′ then 〈{{u}}s/y〉l→β 〈{{u}}s′/y〉l.
Proof. 1. By induction on the structure of u. We treat some cases where u ≡

[λz.r/x]〈xs0/w〉l0.
(a) The β-reduction is at the root, i.e., u′ ≡ {{s0/z}r/w}l0. Then

〈{{[λz.r/x]〈xs0/w〉l0}}s/y〉l
≡ [λz.r/x]〈xs0/w〉〈{{l0}}s/y〉l
→β {{s0/z}r/w}〈{{l0}}s/y〉l
≡ 〈{{{{s0/z}r/w}l0}}{{s0/z}r/w}s/y〉{{s0/z}r/w}l (by Lemma 3)
≡ 〈{{{{s0/z}r/w}l0}}s/y〉l (by Lemma 1)

(b) The β-reduction is internal, e.g., l0 →β l
′
0. Then

〈{{[λz.r/x]〈xs0/w〉l0}}s/y〉l
≡ [λz.r/x]〈xs0/w〉〈{{l0}}s/y〉l
→β [λz.r/x]〈xs0/w〉〈{{l′0}}s/y〉l (by IH)
≡ 〈{{[λz.r/x]〈xs0/w〉l′0}}s/y〉l

2. By induction on the structure of u, similarly to 1. ��
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Lemma 9. Let l be a pure term with FHV (l) = y. Then y occurs exactly once
in ϕ(l).

Proof. By induction on the structure of l. ��

Theorem 1.

1. For any λ-terms M,M ′, if M →β M
′ then ρ(M) →β ρ(M ′).

2. For any pure terms t, t′, if t→β t
′ then ϕ(t) →β ϕ(t′).

Proof. 1. By induction on the structure of M .
(a) M ≡ (λx.M0)M1 →β {M1/x}M0 ≡M ′. Then

ρ((λx.M0)M1) ≡ 〈{{ρ(λx.M0)}}ρ(M1)/y〉y
≡ 〈{{λx.ρ(M0)}}ρ(M1)/y〉y
≡ [λx.ρ(M0)/w]〈wρ(M1)/y〉y
→β {{ρ(M1)/x}ρ(M0)/y}y
≡ {ρ(M1)/x}ρ(M0)
≡ ρ({M1/x}M0) (by Lemma 4)

(b) M ≡ M0M1 and M0 →β M
′
0. By the induction hypothesis, ρ(M0) →β

ρ(M ′
0). Hence

ρ(M0M1) ≡ 〈{{ρ(M0)}}ρ(M1)/y〉y
→β 〈{{ρ(M ′

0)}}ρ(M1)/y〉y (by Lemma 8 (1))
≡ ρ(M ′

0M1)

(c) M ≡M0M1 and M1 →β M
′
1. Similar, using Lemma 8 (2).

(d) M ≡ λx.M0 and M0 →β M
′
0. By the induction hypothesis, ρ(M0) →β

ρ(M ′
0). Hence ρ(λx.M0) ≡ λx.ρ(M0) →β λx.ρ(M ′

0) ≡ ρ(λx.M ′
0).

2. By induction on the structure of t.
(a) t ≡ λx.t0 and t0 →β t

′
0. By the induction hypothesis, ϕ(t0) →β ϕ(t′0).

Hence ϕ(λx.t0) ≡ λx.ϕ(t0) →β λx.ϕ(t′0) ≡ ϕ(λx.t′0).
(b) t ≡ 〈xs/y〉l and s →β s

′. By the induction hypothesis, ϕ(s) →β ϕ(s′).
By Lemma 9, y has exactly one occurrence in ϕ(l). Hence ϕ(〈xs/y〉l) ≡
{xϕ(s)/y}ϕ(l) →β {xϕ(s′)/y}ϕ(l) ≡ ϕ(〈xs′/y〉l).

(c) t ≡ 〈xs/y〉l and l →β l
′. Similar, using the induction hypothesis.

(d) t ≡ [λz.r/x]〈xs/y〉l.
i. The β-reduction is at the root, i.e., t′ ≡ {{s/z}r/y}l. Then

ϕ([λz.r/x]〈xs/y〉l) ≡ {(λz.ϕ(r))ϕ(s)/y}ϕ(l)
→β {{ϕ(s)/z}ϕ(r)/y}ϕ(l)
≡ {ϕ({s/z}r)/y}ϕ(l) (by Lemma 7)
≡ ϕ({{s/z}r/y}l) (by Lemma 7)
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ii. The β-reduction is internal, e.g., r →β r
′. By the induction hypoth-

esis, ϕ(r) →β ϕ(r′). Hence

ϕ([λz.r/x]〈xs/y〉l) ≡ {(λz.ϕ(r))ϕ(s)/y}ϕ(l)
→β {(λz.ϕ(r′))ϕ(s)/y}ϕ(l)
≡ ϕ([λz.r′/x]〈xs/y〉l)

The other cases are similar, using the induction hypothesis. ��

4 Simulation of β-Reduction

In this section we investigate the relation between →cut and →β on pure terms.
This relates normalization in natural deduction and our cut-elimination proce-
dure in the sequent calculus, since pure terms are the isomorphic image of proof
terms for natural deduction, as shown in the previous section. It is important
that on the one hand, the cut-reduction simulates β-reduction, and on the other
hand, the cut-reduction is sound in regard to β-reduction (i.e., a pure term t
reaches another pure term t′ by the cut-reduction only if t is β-reducible to t′).

The following lemmas show that the cut-reduction correctly simulates the
meta-operations on pure terms.

Lemma 10. Let u, s, l be pure terms with FHV (l) = w.
Then [u/y]〈ys/w〉l ∗→cut 〈{{u}}s/w〉l.

Proof. By induction on the structure of u.

(a) u ≡ x. Then [x/y]〈ys/w〉l →cut 〈xs/w〉l ≡ 〈{{x}}s/w〉l.
(b) u ≡ λx.t. Then [λx.t/y]〈ys/w〉l ≡ 〈{{λx.t}}s/w〉l.
(c) u ≡ 〈xs′/w′〉l′. Then

[〈xs′/w′〉l′/y]〈ys/w〉l →cut 〈xs′/w′〉[l′/y]〈ys/w〉l
∗→cut 〈xs′/w′〉〈{{l′}}s/w〉l (by IH)
≡ 〈{{〈xs′/w′〉l′}}s/w〉l

(d) u ≡ [λz.r/x]〈xs′/w′〉l′. Then

[[λz.r/x]〈xs′/w′〉l′/y]〈ys/w〉l →cut [λz.r/x][〈xs′/w′〉l′/y]〈ys/w〉l
→cut [λz.r/x]〈xs′/w′〉[l′/y]〈ys/w〉l
∗→cut [λz.r/x]〈xs′/w′〉〈{{l′}}s/w〉l (by IH)
≡ 〈{{[λz.r/x]〈xs′/w′〉l′}}s/w〉l

��

Lemma 11. Let u, t be pure terms. Then [u/y]t ∗→cut {u/y}t.

Proof. By induction on the structure of t.
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(a) t ≡ x (x �≡ y). Then [u/y]x→cut x ≡ {u/y}x.
(b) t ≡ y. Then [u/y]y→cut u ≡ {u/y}y.
(c) t ≡ λz.r. Then [u/y](λz.r) →cut λz.[u/y]r

IH∗→cut λz.{u/y}r ≡ {u/y}(λz.r).
(d) t ≡ 〈xs/w〉l (x �≡ y). Then

[u/y]〈xs/w〉l →cut 〈x([u/y]s)/w〉[u/y]l
∗→cut 〈x({u/y}s)/w〉{u/y}l (by IH)
≡ {u/y}〈xs/w〉l

(e) t ≡ 〈ys/w〉l (y ∈ FV (s) ∪ FV (l)). Then

[u/y]〈ys/w〉l →cut [u/y]〈y([u/y]s)/w〉[u/y]l
∗→cut [u/y]〈y({u/y}s)/w〉{u/y}l (by IH)
∗→cut 〈{{u}}({u/y}s)/w〉{u/y}l (by Lemma 10)
≡ {u/y}〈ys/w〉l

(f) t ≡ 〈ys/w〉l. Then

[u/y]〈ys/w〉l ∗→cut 〈{{u}}s/w〉l (by Lemma 10)

≡ 〈{{u}}({u/y}s)/w〉{u/y}l (by Lemma 1)
≡ {u/y}〈ys/w〉l

(g) t ≡ [λz.r/x]〈xs/w〉l. Then

[u/y][λz.r/x]〈xs/w〉l →cut [[u/y](λz.r)/x][u/y]〈xs/w〉l
→cut [λz.[u/y]r/x][u/y]〈xs/w〉l
→cut [λz.[u/y]r/x]〈x([u/y]s)/w〉[u/y]l
∗→cut [λz.{u/y}r/x]〈x({u/y}s)/w〉{u/y}l (by IH)
≡ {u/y}[λz.r/x]〈xs/w〉l

��

Now we are ready to show that the cut-reduction simulates β-reduction.

Theorem 2. For any pure terms t, t′, if t→β t
′ then t +→cut t

′.

Proof. By induction on the structure of t. We treat the case t ≡ [λz.r/x]〈xs/y〉l,
t′ ≡ {{s/z}r/y}l. Then use →Beta to create [[s/z]r/y]l, and use Lemma 11 to
reach {{s/z}r/y}l. ��

The proof of Theorem 2 indicates how to simulate normalization in natural
deduction by our cut-elimination procedure in the sequent calculus. Specifically,
a redex in natural deduction is translated into a β-cut corresponding to a Beta-
redex [λz.r/x]〈xs/y〉l. Then the transformation corresponding to the rule (Beta)
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Table 4. Translation ϕ̂

ϕ̂(x) =def x
ϕ̂(λx.t) =def λx.ϕ̂(t)

ϕ̂(〈xs/y〉t) =def {xϕ̂(s)/y}ϕ̂(t)
ϕ̂([s/x]t) =def {ϕ̂(s)/x}ϕ̂(t)

is performed to create the proof corresponding to [[s/z]r/y]l, followed by cut-
elimination steps to reach the proof corresponding to {{s/z}r/y}l.

From the above proofs of Lemmas 10 and 11, we see that for simulation of β-
reduction, the reduction rules (7) and (Perm1) can be restricted to the following
forms:

(7′) [〈xs/y〉t/z]〈zs′/w〉t′ → 〈xs/y〉[t/z]〈zs′/w〉t′

(Perm ′
1) [[λz.r/x]〈xs/y〉t/z]〈zs′/w〉t′ → [λz.r/x][〈xs/y〉t/z]〈zs′/w〉t′

These reduction rules specify some strategies for cut-elimination. The rule (7′)
makes the cut-elimination procedure first permute a cut upwards through its
right subproof and then through its left subproof. The rule (Perm ′

1) restricts
the cut-elimination procedure so that permutation of two cuts is allowed only
when the upper cut corresponds to a Beta-redex.

Next we show that the cut-reduction is sound in regard to β-reduction. For
this we define a translation ϕ̂ of all terms for sequent proofs into λ-terms, as
shown in Table 4.

Proposition 2. For any pure term t, ϕ̂(t) ≡ ϕ(t).

Proof. By induction on the structure of t. We treat the case t ≡ [λz.r/x]〈xs/y〉l.
Then

ϕ̂([λz.r/x]〈xs/y〉l) ≡ {ϕ̂(λz.r)/x}ϕ̂(〈xs/y〉l)
≡ {λz.ϕ̂(r)/x}{xϕ̂(s)/y}ϕ̂(l)
≡ {(λz.ϕ̂(r))ϕ̂(s)/y}ϕ̂(l) (∗)
≡ {(λz.ϕ(r))ϕ(s)/y}ϕ(l) (by IH)
≡ ϕ([λz.r/x]〈xs/y〉l)

where the step (∗) is established since x /∈ FV (s)∪FV (l) and so x /∈ FV (ϕ̂(s))∪
FV (ϕ̂(l)). ��

Now we show that the cut-reduction projects onto β-reduction.

Lemma 12 (Projection). If u→cut u
′, then ϕ̂(u) ∗→β ϕ̂(u′).

Proof. By induction on the structure of u. If the cut-reduction is not at the
root then the lemma easily follows from the induction hypothesis. If the cut-
reduction is at the root, for example, if u ≡ [[r/x]〈xs/y〉t/z]〈zs′/w〉t′ →cut

[r/x][〈xs/y〉t/z]〈zs′/w〉t′ ≡ u′ then
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ϕ̂([[r/x]〈xs/y〉t/z]〈zs′/w〉t′) ≡ ϕ̂([[r/x]〈xs/y〉t/z]〈zs′/w〉t′)
≡ {ϕ̂([r/x]〈xs/y〉t)/z}ϕ̂(〈zs′/w〉t′)
≡ {{ϕ̂(r)/x}ϕ̂(〈xs/y〉t)/z}ϕ̂(〈zs′/w〉t′)
≡ {ϕ̂(r)/x}{ϕ̂(〈xs/y〉t)/z}ϕ̂(〈zs′/w〉t′) (∗)
≡ {ϕ̂(r)/x}ϕ̂([〈xs/y〉t/z]〈zs′/w〉t′)
≡ ϕ̂([r/x][〈xs/y〉t/z]〈zs′/w〉t′)

where the step (∗) is established since we can assume x /∈ FV (〈zs′/w〉t′) and so
x /∈ FV (ϕ̂(〈zs′/w〉t′)). ��

As a result, we have that →cut is a sound refinement of →β.

Corollary 1. For any pure terms t, t′, if t ∗→cut t
′ then t ∗→β t

′.

Proof. Suppose that t ∗→cut t
′. Then by Lemma 12, ϕ̂(t) ∗→β ϕ̂(t′), so by Propo-

sition 2, ϕ(t) ∗→β ϕ(t′). Now by Theorem 1 (1), ρ(ϕ(t)) ∗→β ρ(ϕ(t′)), and so by
Proposition 1, we have t ∗→β t

′. ��

5 Conclusion and Further Work

We have investigated the relationship between normalization in natural deduc-
tion and cut-elimination in a standard sequent calculus, using term notations for
both systems. We have identified a subset of sequent proofs that correspond to
simply typed λ-terms, and showed that the isomorphic image of β-reduction is
simulated by our cut-elimination procedure. Since the cut-elimination procedure
is also sound in regard to β-reduction, the sequent calculus can be considered
as a conservative extension of natural deduction in both proofs and reduction
relation. Moreover, we have derived minimal requirements for simulation of β-
reduction by a local-step cut-elimination procedure, analyzing our proof of the
simulation.

It is expected that our cut-elimination procedure satisfies the strong normal-
ization property. However, unlike in the case using labelled cuts [12], a standard
method for inferring strong normalization of explicit substitution calculus [1] is
not directly applied to our case. One of the reasons is that the subcalculus (i.e.,
the reduction system without the rule (Beta)) is not confluent (e.g., the critical
pair w ← [〈xs/y〉t/z]w→ 〈xs/y〉[t/z]w is not joinable). So we might need more
powerful methods for proving strong normalization, which will be investigated
in future work.
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Abstract. Modular cut-elimination is a particular notion of ”cut-elimination
in the presence of non-logical axioms” that is preserved under the addition of
suitable rules. We introduce syntactic necessary and sufficient conditions for
modular cut-elimination for standard calculi, a wide class of (possibly) multiple-
conclusion sequent calculi with generalized quantifiers. We provide a ”universal”
modular cut-elimination procedure that works uniformly for any standard calcu-
lus satisfying our conditions. The failure of these conditions generates counterex-
amples for modular cut-elimination and, in certain cases, for cut-elimination.

1 Introduction

Cut-elimination is one of the most important techniques in proof theory. The removal of
cuts corresponds to the elimination of intermediate statements (lemmas) from proofs,
resulting in calculi in which proofs are analytic in the sense that all statements in the
proofs are subformulae of the result.

A great many different cut-elimination proofs for various sequent calculi have been
published since Gentzen’s proofs for LK and LJ (sequent calculi for classical and intu-
itionistic first-order logic, respectively), most using heavy syntactic arguments and based
on case distinctions, usually written without filling in the details1. However since it is
often the case that “the devil is in the details” (this also explains why so many wrong
cut-elimination proofs appear in the literature, e.g. [5]), it is natural to investigate general
criteria that a sequent calculus should satisfy in order to admit cut-elimination. Such cri-
teria should support a modular view of cut-elimination in sequent calculi (i.e. decompos-
ability of the whole calculus into local components when proving cut-elimination), and
also provide useful information in the negative case, where a particular cut-elimination
method cannot be applied or a cut-elimination proof cannot be found at all.

Necessary and sufficient conditions for cut-elimination were defined in [14] for
canonical calculi, which are sequent calculi containing identity axioms, the usual struc-
tural rules (weakening, exchange and contraction) and possibly ”standard” rules for
connectives and quantifiers. Canonical calculi extended with (k, n)-ary connectives

� Research supported by FWF Project P18731.
�� Partially supported by Grant-in-Aid for Scientific Research, MEXT, Japan.

1 Notable exceptions are the cut-elimination proofs for classical and intuitionistic logic of [7].

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 135–149, 2006.
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which bind k variables and connect n formulas were investigated in [15] where suf-
ficient conditions for cut-elimination have been introduced in the case k = 0, 1. In the
context of substructural logics, syntactic and semantic criteria for (additive) structural
rules to preserve cut-elimination when added to full Lambek calculus were introduced
in [12]. Terui’s work was generalized in [3] to provide necessary and sufficient condi-
tions for a large class of propositional single-conclusion sequent calculi to admit reduc-
tive cut-elimination, a naturally strengthened version of Buss’ free-cut elimination [1]
which additionally aims to shift non-eliminable cuts upwards as much as possible. The
proposed criteria have two equivalent forms: syntactic (reductivity and weak substitu-
tivity) and semantic (coherence and propagation). The former arises by weakening the
sufficient conditions in [2] while the latter generalize the results in [12].

In this paper we focus on the syntactic aspects of cut-elimination. We refine and
extend the (syntactic) results of [3] to standard calculi, i.e. commutative (not neces-
sarily single-conclusion) sequent calculi possibly containing (fancy) structural rules
and rules for (k, n)-ary connectives, for all k and n. Examples of standard calculi are
Maehara’s calculus LJ’ for intuitionistic predicate logic, the calculus GD for the logic
of constant domains [5], the multiplicative additive fragment of linear logic extended
with any structural rule, or the calculi investigated in [15]. We investigate modular cut-
elimination in standard calculi, a particular notion of ”cut-elimination in the presence
of non-logical axioms,” that is preserved under the addition of suitable rules. Weak
substitutivity and reductivity, the syntactic conditions of [3], are adapted to standard
sequent calculi (Section 4), and shown to be necessary and sufficient for modular cut-
elimination (the former holds when logical rules satisfy some additional properties,
see Section 5). The necessity result is used for counterexamples generation: given a
standard sequent calculus for which our criteria fail, counterexamples for modular cut-
elimination are automatically generated and, in certain cases, lead to counterexamples
for cut-elimination. The sufficient result is shown by providing a constructive proof of
modular cut-elimination, from which a concrete cut-elimination procedure can be read
off (Section 6). Remarkably enough this procedure is ”universal” in the sense that when
a standard sequent calculus admits modular cut-elimination, then our procedure always
transforms derivations with cuts into cut-free derivations (Corollary 3).

Our results also support a modular view of cut-elimination. Indeed when adding a
new connective and/or a new structural rule to a standard calculus for which modular
cut-elimination has been already established, it is enough to show that the newly added
rules are reductive and weakly substitutive. Moreover the task of proving modular cut-
elimination for a standard calculus can be decomposed into the sub-tasks of proving cut-
elimination for appropriate sub-calculi. In particular, in analogy with Toyama’s Lemma2

in term rewriting theory, modular cut-elimination is preserved by taking the disjoint
union of two (sets of rules of) standard sequent calculi (Corollary 2).

2 Standard Calculi

We start by formalizing the notion of a standard sequent calculus. In the following we
consider formulas built over a vocabulary V consisting of (countably many): (term)

2 It states that the disjoint union of two confluent term rewriting systems is also confluent.
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variables x, y, z, . . . , for each n ≥ 0, n-ary function and predicate symbols, as well
as (m,n)-ary connectives �1, �2, . . . for each m,n ≥ 0. As usual, terms t, u, v, . . .
(in the vocabulary V) are built up from variables using function symbols while atomic
formulae are built up from terms using predicate symbols. A formula (in the vocabulary
V) is either an atomic formula or a compound formula of the form �ix(A) with �i an
(m,n)-ary connective, which binds x ≡ x1, . . . , xm distinct variables, and connect
formulas A ≡ A1, . . . , An. Given a formula, its free and bound variables are defined in
the standard way. As usual, we identify formulas only differing in the names of bound
variables (i.e. formulas are considered up to α-equivalence).

Example 1.

1. The standard quantifiers ∀ and ∃ can be seen as (1, 1)-ary connectives, while propo-
sitional connectives as (0, n)-ary connectives, for some n ≥ 1.

2. The Henkin quantifierQH (see e.g. [15]) can be seen as a (4, 1)-ary connective.
3. Bounded quantified formulae ∀x ≤ t.A, ∃x ≤ t.A can be built with (1, 2)-ary

connectives ∀bx(X,Y ), ∃bx(X,Y ) with the proviso that the meta-variable X is
always instantiated by an inequation of the form x ≤ t.

We indicate with Γ,Δ, Π,Σ, . . . multisets of formulae. When λ ≥ 0, Γ λ denotes
Γ, . . . , Γ (λ times). A sequent Γ ⇒ Δ (Γ said to be antecedent and Δ consequent)
is atomic if all formulae in Γ and Δ are atomic. Γ ⇒ Δ is single-conclusion if Δ
contains at most one formula, otherwise it is multiple-conclusion.

To specify inference rules we use meta-variablesX,Y, Z,X [t/x] . . . (t≡ t1, . . . , tm
and x ≡ x1, . . . , xm) standing for arbitrary formulae and Θ,Ξ,Φ, Ψ, Υ, . . . for (possi-
bly empty) multisets of meta-variables.

Definition 1. A standard sequent calculus L consists of:

– identity axiom of the form X ⇒ X

– the multiplicative version of the cut rule, i.e.

Θ ⇒ Ξ,X X,Θ′ ⇒ Ξ ′

Θ,Θ′ ⇒ Ξ ′, Ξ
(CUT )

– structural inference rules of the form (n > 0):

Θ1 ⇒ Ξ1 · · · Θn ⇒ Ξn

Θ⇒ Ξ
(Ri)

satisfying the conditions

(str0) Θ and Ξ are disjoint.
(str1) any meta-variable occurring in Θ1, . . . , Θn occurs in Θ and any meta-

variable occurring in Ξ1, . . . , Ξn occurs in Ξ .

(Note that since Θ,Ξ, . . . are multisets, we implicitly assume that permutation
rule(s) always belong to L)



138 A. Ciabattoni and K. Terui

– left logical rules {(�, l,y)i}i∈Λ and right logical rules {(�, r, z)j}j∈Λ′ (Λ and Λ′

could be empty) for each (k, l)-ary connective �, with k, l,m, n ≥ 0:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

�x(X), Θ ⇒ Ξ
(�, l,y)i

Υ ′
1 ⇒ Ψ ′

1 · · · Υ ′
m ⇒ Ψ ′

m

Θ⇒ Ξ, �x(X)
(�, r, z)j

where x ≡ x1, . . . xk, X ≡ X1, . . . , Xl and for each i = 1, . . . l, Xi[t/x] (t ≡
t1, . . . , tk, where each ti is a term) may appear in Υj ⇒ Ψj , Υ

′
j′ ⇒ Ψj′ with

j = 1, . . . , n and j′ = 1, . . . ,m. y and z are the eigenvariables of the rules.
(�, l,y)i must satisfy the following conditions
(log0) Θ, Ξ and {X} are mutually disjoint.
(log1) Any meta-variable occurring in Υ1, . . . , Υn occurs in Θ or it is of the form

Xi[t/x] where Xi ∈ X . Any meta-variable occurring in Ψ1, . . . , Ψn occurs in
Ξ or it is of the form Xi[t/x] whereXi ∈ X .

The corresponding conditions hold for (�, r, z)j .

Remark 1. Conditions (str1) and (log1) ensure that rules satisfy the subformula prop-
erty and do not allow meta-variables inΘ andΞ to move from antecedent to consequent
of sequents and vice versa.

We identify rules up to the renaming of meta-variables and logical rules up to the re-
naming of (term) variables.

Definition 2. Instances (resp. atomic instances) of identity axiom, (CUT ), and struc-
tural rules are obtained by substituting arbitrary formulae (resp. atomic formulae)
for meta-variables. An instance (resp. atomic instance) of a logical rule (�, l,y)i or
(�, r,y)j is obtained

1. by replacing each meta-variable Y with a formula (resp. atomic formula) that does
not contain y as free variables.

2. when a meta-variable Xi (∈ X) in its conclusion is replaced by a formula (resp.
atomic formula) A (that does not contain y as free variables), then each meta-
variableXi[t/x] in its premises is replaced with the formula (resp. atomic formula)
A in which all free occurrences of the variable xj (if any) are replaced by the term
tj , for j = 1, . . . , k.

A derivation in L is obtained by composing instances of axioms and rules of L.

Condition 1. above ensures that the eigenvariable condition is satisfied.

Definition 3. In logical and structural rules (or their instances) the meta-variables
(formulae) inΘ are called left context meta-variables (left context formulae), those inΞ
right context meta-variables (right context formulae), and (in the former rules) the meta-
variables (formulae) of the form Xi, Xi[t/x] active meta-variables (active formulae).

In a logical rule (or its instance) the introduced �x(X) (or the formula of the form
�x(A1, . . . , Al)) is called principal formula. Moreover, the two occurrences of the for-
mula instantiating the meta-variableX in (CUT) are called left and right cut formulae
(and the corresponding premises of (CUT) are called left and right premises).
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Example 2.

1. Simple sequent calculi with permutation (see [3]) are particular standard calculi in
which each sequent is single-conclusion and whose connectives are of type (0, n).

2. The ordinary rules for quantifiers fit into our framework. For instance, the left and
right rules for ∀ are represented by the following rules:

X [t/x], Θ ⇒ Ξ

∀x(X), Θ ⇒ Ξ
(∀, l, ∅)

Θ⇒ Ξ,X [y/x]
Θ ⇒ Ξ, ∀x(X)

(∀, r, y)

where t is an arbitrary term and Θ, Ξ are arbitrary multisets of meta-variables.
3. Canonical calculi with (n, k)-ary connectives (see [15]) are particular standard cal-

culi that contain all the structural rules (weakening, contraction and exchange).

3 Modular Cut-Elimination

Generalizations of cut-elimination with extra (non-logical) axioms have been consid-
ered e.g. in [13,1,11]. They play an important role in the proof theory of formalized
mathematical theories such as fragments of arithmetic. Given a deduction in LK of a
sequentS0 from a set S of non-logical axioms closed under substitutions, free-cut elimi-
nation described in [1] aims at finding a deduction of S0 containing only anchored-cuts,
i.e. cuts whose premises (at least one, for cuts with compound cut-formulas) derive
from sequents in S. If S consist of atomic sequents closed under mix (and substitu-
tions) then Gentzen’s cut-elimination method generates a cut-free LK-derivation of S0,
see e.g. [13]. To characterize the ”stepwise process of local transformations to eliminate
cuts” in a large class of propositional single-conclusion sequent calculi we introduced
in [3] reductive cut-elimination, a naturally strengthened version of free-cut elimina-
tion which in addition aims to shift upward anchored-cuts in these calculi as much as
possible.

Here below we rework the above notions of cut-elimination in the presence of ax-
ioms to define a ”modular” cut-elimination for standard calculi, namely if such calculi
enjoy it, they also do when extended by any rule satisfying suitable conditions (weak
substitutivity and reductivity, see Section 4).

Definition 4. A set S of sequents (non-logical axioms) is called elementary if

1. all formulae in S are atomic.
2. S is closed under substitutions: whenever S(x) ∈ S and t is any term, the sequent
S(t), obtained by substituting in S the term t for all free occurrences of x, is in S.

3. S is closed under cuts: whenever Γ1 ⇒ Δ1, A and A,Γ2 ⇒ Δ2 belong to S, so
does Γ1, Γ2 ⇒ Δ1,Δ2.

4. it is not the case that sequents of the forms Γ ⇒ Δ, A,A and A,A,Σ ⇒ Π , both
belong to S.

Definition 5. A standard sequent calculus L admits modular cut-elimination if when-
ever a sequent S0 is derivable in L from an elementary set S of sequents in L, S0 has a
cut-free derivation in L from S.
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Remark 2. Modular cut-elimination implies the ordinary cut-elimination (set S = ∅).

Notice that if we remove condition 4 from Def. 4, the resulting notion of cut-elimination
is not admitted e.g. by LK: indeed S ≡ {A,A⇒ ; ⇒ A,A ; A⇒ A} with A atomic
satisfies the conditions 1-3 of Def. 4. It is easy to check that the empty sequent ⇒ is
derivable from S in LK only using (CUT).

4 Syntactic Criteria

In this section we introduce the notions of reductive logical rules and weakly substi-
tutive rules for standard calculi. Intuitively, a logical rule is reductive if it allows the
replacement of cuts by ”smaller” cuts, and a rule is weakly substitutive when any cut
can be permuted upward. Reductivity and weak substitutivity are obtained by suitably
modifying the homonymous conditions of [3] defined for simple calculi (see Ex. 2.1).

Let S be a sequent, A a formula, T1 ≡ A,Σ ⇒ Π and T2 ≡ Σ ⇒ Π,A. We define

[S ←↩rA T1] = {Γ,Σλ ⇒ Δ, Πλ | S ≡ Γ ⇒ Δ, Aλ with λ ≥ 0}
[S ←↩lA T2] = {Γ,Σλ ⇒ Δ, Πλ | S ≡ Aλ, Γ ⇒ Δ with λ ≥ 0}

Namely, each U ∈ [S ←↩rA T1] is obtained by applying (CUT) possibly several times
between S and (several copies of) T1 with cut formulaA. [S ←↩lA T2] is dually defined.
In case T does not contain any occurrence of A in the antecedent (resp. consequent),
we define [S ←↩rA T ] = {S} (resp. [S ←↩lA T ] = {S}).

Definition 6. Let L be a standard sequent calculus. A rule (R) is said to be weakly
substitutive in L if for each instance of (R) with premises S1, . . . , Sn and conclusion
S0 the following condition holds:

(*) for any c ∈ {r, l}, context formula A and any sequent T of L (which does not
contain any eigenvariable of (R)), every U ∈ [S0 ←↩cA T ] has a derivation from⋃n

i=1[Si ←↩cA T ] only using structural rules and, when (R) is a left (resp. right)
logical rule with principal formula B, left (resp. right) logical rules with principal
formula B.

Remark 3. The above condition was defined (in fact, using rule schemas instead of rule
instances) in [3] only for structural rules. Indeed, the logical rules considered there
satisfy a condition stronger than (*), namely: for any c ∈ {r, l}, context formula A
(right or left context formula, depending on c) and single-conclusion sequent T , every
U ∈ [S0 ←↩cA T ] is derivable from

⋃n
i=1[Si ←↩cA T ] with an application of (R).

Example 3. The rules of LJ (resp. LK) are weakly substitutive in LJ (resp. LK). Con-
sider now:

1. Maehara’s calculus LJ’ for intuitionistic logic, that is an equivalent version of
Gentzen’s LJ where the intuitionistic restriction (i.e. consequent of sequents con-
tain at most one formula) applies not generally but only in the case of the right rules
for →,¬ and ∀, see e.g. [11].



Modular Cut-Elimination: Finding Proofs or Counterexamples 141

2. The calculus GD for the logic of constant domains3. GD was defined in [5] by
modifying LK as follows: (1) the sequents of GD have at most two formulas in
their consequents and (2) the rules (→, r, ∅) and (¬, r, ∅) obey the intuitionistic
restriction.

It is easy to see that e.g. the rule (→, r, ∅) is weakly substitutive neither in LJ’ nor in
GD. Indeed, take any instance of (→, r, ∅), say

S1

S0
≡ Γ,C,A⇒ B

Γ,C ⇒ A→ B
(→, r, ∅)

and T ≡ Σ ⇒ Π,C, where Π contains at least one formula. Then Γ,Σ ⇒ A →
B,Π ∈ [S0 ←↩lC T ] is in general not cut-free derivable from [S1 ←↩lC T ] in LJ’ or GD.

Although Definition 6 refers to all instances of any rule, in practice to check that a
particular rule is weakly substitutive it is enough to consider certain atomic instances.

Definition 7. Let (R0) be any instance of a structural rule. The associated atomic in-
stance 〈R0〉 is defined by replacing each context formula occurrence A with a new
atomic formula 〈A, c〉 with no free variables (c is either l or r according to whether the
formula occurrence appears in the antecedent or consequent of sequents in (R0)).

When (R0) is an instance of a logical rule with the principal formula �x(A) with
x ≡ x1, . . . , xk and A ≡ A1, . . . , Al, the associated atomic instance 〈R0〉 is defined
by replacing

– each context formula A with 〈A, c〉 as above,
– its principal formula �x(A) with �x(〈A1, 1〉(x), . . . 〈Al, l〉(x)), where for each
i = 1, . . . , l 〈Ai, i〉 is a new k-ary predicate symbol

– each Ai[t/x] with 〈Ai, i〉(t).

Note that 〈R0〉 strictly distinguishes active, left and right context formulae.

Lemma 1. (1) If (R0) is an instance of a rule (R), so is 〈R0〉. (2) If condition (*) of
Def. 6 holds for 〈R0〉 then the same condition holds for (R0).

Proof. (1) Follows by conditions (str0), (str1), (log0) and (log1). (2) Easy.

To introduce reductivity we need some additional notation and terminology. Given a
set S of sequents (resp. a set A of formulae), we denote by Ss (resp. As) the least set
containing S (resp. A) and closed under substitutions. We call any instance of (CUT )
with cut-formula in A an A-cut.

Definition 8. Let L be a standard sequent calculus. We call its logical rules {(�, r,
y)j}j∈Λ and {(�, l, z)k}k∈Λ′ for introducing a (k, l)-ary connective � reductive in L if

1. either Λ or Λ′ is empty or
2. for any pair of instances of left and right logical rules with principal formula
�x(A):

3 A Hilbert calculus for this logic is obtained by adding to that of intuitionistic logic the shifting
law of universal quantifiers w.r.t. ∨, i.e. ∀x(A(x) ∨ B) → ∀xA(x) ∨ B, where x does not
appear free in B.
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S1 . . . Sn

Γ ⇒ Δ, �x(A)
T1 · · · Tm

�x(A), Σ ⇒ Π

(�) Γ,Σ ⇒ Δ, Π is derivable from {S1, . . . , Sn, T1, . . . , Tm}s only using {A}s-
cuts and structural rules.

Remark 4. The above definition generalizes the reductivity condition of [3] and the
principal formula condition of [8], both defined for propositional calculi (single-conclu-
sion, in case of the former). Reductivity is also related to the coherence criterion of [6].

Lemma 2. If condition (�) of Def. 8 holds for 〈R0〉 then it holds for (R0).

Example 4. Consider the (1, 1)-ary logical connectives &, ' defined by the following
rules:

X [t/x], Θ⇒ Ξ

&x(X), Θ ⇒ Ξ
(&, l, ∅)

Θ ⇒ Ξ,X [t/x]
Θ⇒ Ξ, &x(X)

(&, r, ∅)

X [y/x], Θ⇒ Ξ

'x(X), Θ ⇒ Ξ
(', l, y)

Θ ⇒ Ξ,X [y/x]
Θ ⇒ Ξ, 'x(X)

(', r, y)

The rules for ' are reductive in LK while those for & are not.

Example 5. Let L1 be the standard calculus that consists of the following rules intro-
ducing the (0, 2)-ary connective� (together with permutation rules and identity axioms)

Θ⇒ X,Ξ Θ ⇒ Y,Ξ

Θ ⇒ X � Y,Ξ (�, r, ∅) Θ,X, Y ⇒ Ξ

Θ,X � Y ⇒ Ξ
(�, l, ∅)

(�, r, ∅) and (�, l, ∅) are not reductive in L1.

5 Necessary Conditions

We show that reductivity and weak substitutivity are necessary conditions for modular
cut-elimination in standard sequent calculi whose logical rules satisfy certain additional
conditions. Specifically, for each logical rule (�, l,y)i and (�, r, z)j we define the fol-
lowing conditions:

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

�x(X), Θ ⇒ Ξ
(�, l,y)i

Υ1 ⇒ Ψ1 · · · Υn ⇒ Ψn

Θ⇒ Ξ, �x(X)
(�, r, z)j

(log2) if any active meta-variable X [t/x] occurs in Υ1, . . . , Υn, then no X [t
′
/x′ ] (for

any t′,x′) occurs in Ψ1, . . . , Ψn, and vice versa.
(log3) each active meta-variable Xi (1 ≤ i ≤ l) occurs at most once in each premise

Υj ⇒ Ψj (1 ≤ j ≤ n).

Theorem 1. Let L be a standard sequent calculus. If L admits modular
cut-elimination, (i) its structural rules are weakly substitutive and (if in addition each
logical rule of L satisfies (log2)) (ii) its logical rules are weakly substitutive.
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Proof. We prove (ii) since (i) is similar. Let (R0) be any instance of a logical rule with
principal formula B. By Lemma 1 it is enough to prove condition (*) of Definition 6
for the associated atomic instance 〈R0〉 with premises S1, . . . Sn and conclusion S0.
Let c ∈ {l, r}, T an atomic sequent without free variables and A any atomic formula.
W.l.o.g. we may assume that T does not share any atomic formula other thanAwith S0.
Let S be the least set that contains {S1, . . . , Sn, T } and is closed under substitutions
and cuts. By condition (log2) and the definition of 〈R0〉 and T , S is elementary and is
equivalent to

⋃
i=1,...,n[Si ←↩cA T ].

Then, any U ∈ [S0 ←↩cA T ] is derivable from S using 〈R0〉 and (CUT ). Hence
by modular cut-elimination, U has a cut-free derivation d from

⋃
i=1,...,n[Si ←↩cA T ].

Since B is the only compound formula in U , d uses only structural rules and logical
rules introducingB. ��

Theorem 2. Let L be any standard sequent calculus whose logical rules satisfy (log2)
and (log3). If L admits modular cut-elimination, then its logical rules are reductive.

Proof. Let (�, r,y)k and (�, l, z)j be a pair of instances of right and left logical rules
for � in L and 〈�, r,y〉k and 〈�, l, z〉j be the associated atomic instances (see Def. 7):

S1 . . . Sn

Γ ⇒ Δ, �[x](A)
〈�, r,y〉k

T1 · · · Tm

�[x](A), Σ ⇒ Π
〈�, l, z〉j

Without loss of generality, we may assume that (†) the context formulae of 〈�, r,y〉k are
distinct from those of 〈�, l, z〉j . Thus the active formulae (in {A}s) are the only formu-
lae that occur both in the antecedent of a premise and in the consequent of another. Let
S be the least set that contains {S1, . . . , Sn, T1, . . . , Tm} and is closed under substitu-
tions and cuts. S is elementary due to conditions (log2) and (log3) and the definition of
〈�, r,y〉k and 〈�, l, z〉j . By modular cut-elimination Γ,Σ ⇒ Δ, Π is cut-free derivable
from S. Hence it is derivable from {S1, . . . , Sn, T1, . . . , Tm}s only using {A}s-cuts
and structural rules. The claim follows by Lemma 2. ��

6 Sufficient Conditions

Weak substitutivity and reductivity are sufficient conditions for a standard sequent cal-
culus to admit modular cut-elimination (and hence cut-elimination). Here below we
give a constructive proof of this result.

In the sequel, L denotes a standard calculus whose rules are weakly substitutive and
whose logical rules are reductive while S0 any elementary set of non-logical axioms.

Definition 9. The length |d| of a derivation d is the maximal number of inference rules
+ 1 occurring on any branch of d. The complexity |A| of a formula A is defined as
the number of occurrences of its (n, k)-ary connectives. The cut rank ρ(d) of d is (the
maximal complexity of the cut-formulae in d) + 1 (ρ(d) = 0 if d has no cuts). Given
a compound formula B and c ∈ {l, r}, (cB(d) is the maximal number of c-side (left or
right) logical rules with principal formula B on any branch of d.
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To prove modular cut-elimination for L, we proceed by removing cuts which are top-
most among all cuts with cut rank equal to the rank of the whole deduction. Let, e.g.

S0··· d1

Γ ⇒ Δ, A

S0··· d2

A, Σ ⇒ Π
(CUT)

Γ, Σ ⇒ Δ, Π

be a subderivation ending in such a cut. Roughly speaking our strategy is as follows:
If the cut-formula A is a compound formula, using the fact that rules are weakly sub-
stitutive, we shift up this cut over d2 as much as possible until we meet (a) an identity
axiom or (b) a logical rule introducing the cut formula A (Lemma 5). In the first case
the cut is easily eliminated while in case (b) is replaced by cuts with smaller complexity.
The latter can be done being logical rules reductive (Lemma 4 and Lemma 5). If A is
atomic, the cut is shifted upward over d2 or d1 (according to whether the elementary
set S0 contains a sequent of the form Φ⇒ Ψ,A,A or Φ,A,A⇒ Ψ , respectively) until
we meet (a) an identity axiom or (b) a non-logical axiom in S0 (Lemma 6.(ii)). In both
cases the cut can be easily eliminated (for case (b) see Lemma 6.(i)).

Henceforth we write d,S 	L S if d is a derivation in L of S from a set S of sequents.

Lemma 3 (Substitution). Let S be any set of sequents closed under substitutions and
d,S 	L S(x). Then for any term t there is a derivation d′ with |d′| = |d| and ρ(d′) =
ρ(d) such that d′,S 	L S(t). Moreover, for any compound formula A which contains
neither x nor an eigenvariable of a rule in d and for any c ∈ {l, r}, (cA(d′) = (cA(d).

Proof. By induction on |d|. The crucial case is when the last inference (R) in d is a
logical rule with eigenvariables y and with premises S1(x,y), . . . , Sn(x,y). The term
t might contain eigenvariables y. So, take fresh variables z. Then each Si(t, z) (i =
1, . . . , n) has derivations with the required properties. We can now apply (R) and obtain
S(t). Since A contains neither x nor y, (cA(d) remains unchanged. ��

The following lemma shows how to reduce a cut on a compound formulaB (i.e. replace
it by cuts with cut-formula smaller than B) in case one of its premises is the conclusion
of a logical rule introducing B on the left hand side and with atomic context formulae.
This lemma is needed when proving the general case: reducing any cut on a compound
formula (Lemma 5).

Lemma 4. Let
T1 . . . Tm

T ≡ B,Σ ⇒ Π

be an instance of a left logical rule with principal formula B and in which all context
formulae are atomic. If d1,S0 ∪ {T1, . . . , Tm}s 	L S with ρ(d1) < |B| then each
U ∈ [S ←↩rB T ] has a derivation d,S0 ∪ {T1, . . . , Tm}s 	L U with ρ(d) < |B| and
(rB(d) ≤ (rB(d1).

Of course, one could derive U by applying (CUT ), but the resulting derivation would
have cut rank |B| + 1.
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Proof. Proceeds by a double induction on ((rB(d1), |d1|). Let T = {T1, . . . , Tm}s.
Base case: |d1| = 1. Then S is either an identity axiom or belongs to S0 ∪ T . In the

former case U ∈ [S ←↩rB T ] is S or T , while in the latter case U is S (since S does not
contain B). Hence the claim is trivial.

Inductive case: |d1| > 1. If U ≡ S the claim is trivial. Otherwise, suppose that d1
ends in a rule (R) with premises S1, . . . , Sn and conclusion S. Two cases can arise:

(Case 1) (R) is not a right logical rule with principal formula B. Since (R) is weakly
substitutive, (previously applying Lemma 3, if needed) U ∈ [S ←↩rB T ]
has a derivation d′ from U1, . . . , Uk ∈

⋃n
i=1[Si ←↩rB T ], in which neither

(CUT ) nor a rule introducing B in the consequent is used. By the inductive
hypothesis, we can find derivations d′i,S0 ∪ T 	L Ui with ρ(d′i) < |B| and
(rB(d′i) ≤ (rB(d1) for 1 ≤ i ≤ k. Therefore the required derivation for U can
be obtained by plugging d′1, . . . , d

′
k into d′.

(Case 2) Otherwise, S can be written as Γ ⇒ Δ, B. Let U0 be Γ,Σ ⇒ Δ, Π . Then,
(1) U ∈ [U0 ←↩rB T ],
(2) U0 has a derivation d′0 from U1, . . . , Uk ∈ {S1, . . . , Sn, T1, . . . , Tm}s

only using structural rules and {A}s-cuts, being (R) reductive. In partic-
ular, no rule introducingB in the consequent is used in d′0.

By hypothesis, each Si (i = 1, . . . , n) has a derivation δi from S0∪T with cut-
rank< |B| and and (rB(δi) < (rB(d1). By Lemma 3, each Ui has a derivation
d′i,S0 ∪ T 	L Ui with ρ(d′i) < |B| and (rB(d′i) < (

r
B(d1) for 1 ≤ i ≤ k.

Therefore by plugging d′1, . . . , d
′
k into d′0, we obtain a derivation d′,S0∪T 	L

U0 with ρ(d′) < |B| and (rB(d′) < (rB(d1). The required derivation for U can
be obtained by (1) and the inductive hypothesis. ��

To reduce any cut on a compound formula we use a similar argument as in the previous
lemma. Here we need more care of the parameter on which the induction proceeds. To
this aim we consider the marking (or decoration, see [2]) of some formulae occurring in
a derivation. Let us fix a formulaB ≡ �x(A). A marked sequent is a sequent with some
(possibly zero) underlined occurrences of B in the antecedent. A marked derivation d
consists of marked sequents, with the following proviso:

(!) for any instance of a rule (R) used in d and any occurrence of B in the conclusion
of (R) which instantiates a meta-variableX , if that occurrence is marked, so are all
occurrences of B in the premises which instantiateX .

Given a not marked sequent S ≡ Γ ⇒ Δ, B and a marked sequent T , [T ←↩lB S]
stands for {Γ λ, Σ ⇒ Δλ, Π | T ≡ Bλ, Σ ⇒ Π with λ ≥ 0}. (Notice that Σ may
contain other occurrences of B.) Finally, let (lB(d) be the maximal number of logical
rules introducing marked occurrences of B on the left side on any branch of d.

Lemma 5 (Compound formulae). Let B be any compound formula, T be a marked
sequent in which some occurrences of B in the antecedent are marked and d2,S0 	L
T be a marked derivation. Assume d1,S0 	L S (d1 and S are not marked) where
ρ(d1), ρ(d2) < |B|. Then, each U ∈ [T ←↩lB S] has a marked derivation d,S0 	L U

with ρ(d) < |B| and (lB(d) ≤ (lB(d2).
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Proof. Proceed by a double induction on ((lB(d2), |d2|).
Base case: |d2| = 1. T is either an identity axiom or (B �∈ T and) T ∈ S0. Then U

is either S or T , and the required derivation d is either d1 or just consists of T . In both
cases, we have ρ(d) < |B| and (lB(d1) = 0. Hence our claim holds.

Inductive case: |d2| > 1. If U ≡ T , the claim is trivial. Otherwise, assume that d2
ends with an instance of a rule (R) with premises T1, . . . , Tm and conclusion T . Two
cases can arise:

(Case 1) (R) is not a left logical rule introducing a marked occurrence of B. This case
is similar to (Case 1) in the proof of Lemma 4.

(Case 2) Otherwise, we may assume that T is of the form B,Σ ⇒ Π and S of the
form Γ ⇒ Δ, B. Let U0 be Γ,Σ ⇒ Δ, Π . Then any U ∈ [T ←↩lB S] other
than T also belongs to [U0 ←↩lB S]. Hence it is enough to find a derivation

d,S0 	L U0 with ρ(d) < |B| and (lB(d) < (lB(d2). The claim will then be
established by the inductive hypothesis.

Let us replace the principal formula B by B and each context formula
C(y) (resp. marked context formula C(y)) in T, T1, . . . , Tm with free vari-
ables y by a fresh atomic formula 〈C〉(y) (resp. 〈C〉(y)) to obtain sequents
〈T 〉, 〈T1〉, . . . , 〈Tm〉. In particular, 〈T 〉 is of the form B, 〈Σ〉 ⇒ 〈Π〉 and
〈T1〉, . . . , 〈Tm〉/〈T 〉 is an instance of (R) in which context formulas are
atomic. Since 〈U0〉 ≡ Γ, 〈Σ〉 ⇒ Δ, 〈Π〉 ∈ [S ←↩rB 〈T 〉], Lemma 4 implies
that there is a derivation d0,S0∪{〈T1〉, . . . , 〈Tm〉}s 	 〈U0〉 with ρ(d0) < |B|
and (lB(d0) = 0 (since d0 does not contain any B). From this, we can easily
obtain a derivation d′0,S0 ∪{T1, . . . , Tm}s 	L U0 with the same property. On
the other hand, by hypothesis and Lemma 3 any U ′ ∈ {T1, . . . , Tm}s has a
derivation d′,S0 	L U

′ with ρ(d′) < |B| and (lB(d′) < (lB(d2). Hence by
plugging them into d′0, we obtain the required derivation d for U0. ��

Lemma 6 (Atomic formulae). (i) Suppose that a sequent S has a cut-free derivation
d1 from S0 and T ∈ S0. Then, for any atomic formula A and any c ∈ {l, r}, each
U ∈ [S ←↩cA T ] has a cut-free derivation from S0.

(ii) Let d1 and d2 be cut-free derivations of d1,S0 	L S and d2,S0 	L T and A
be an atomic formula. Then, each U ∈ [T ←↩lA S] (resp. each U ∈ [S ←↩rA T ]) has
a cut-free derivation d,S0 	L U provided that no sequent of the form A,A,Σ ⇒ Π
(resp. Γ ⇒ Δ, A,A) belongs to S0.

Proof. (i) Proceeds by induction on |d1|, similarly as (Case 1) in the proof of Lemma
4. (ii) Proceeds by induction on |d2| (resp. |d1|). When |d2| = 1, then T is an identity
axiom or T ∈ S0. If U ≡ T or U ≡ S the claim is trivial. Otherwise, since T does not
contain more than one occurrence of A in the antecedent, U ∈ [T ←↩lA S] also belongs
to [S ←↩rA T ]. Hence the claim follows by (i). The case |d2| > 1 is as before. ��

Theorem 3 (Modular Cut-Elimination). Any standard sequent calculus L whose
rules are weakly substitutive and whose logical rules are reductive admits modular
cut-elimination.

Proof. Let S0 be an elementary set of non-logical axioms in L, d a derivation in L from
S0 with ρ(d) > 0. The proof proceeds by a double induction on (ρ(d), nρ(d)), where
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nρ(d) is the number of cuts in d with cut rank ρ(d). Let us take in d an uppermost cut
with cut rank ρ(d). Let d1,S0 	L Γ ⇒ Δ, A and d2,S0 	L A,Σ ⇒ Π its premises.

When A is not atomic, let d′2 be a marking of d2 in which the indicatedA is marked,
and apply Lemma 5 to d1 and d′2. WhenA is atomic, apply Lemma 6 (ii) to d1 and d2 (by
Definition 4, multiple copies of A cannot occur both in the antecedent and consequent
positions of any sequent in S0). In any case, either ρ(d) or nρ(d) decreases. ��

When a standard sequent calculus satisfies some additional properties, weak substitu-
tivity and reductivity characterize modular cut-elimination:

Corollary 1. Let L be a standard sequent calculus satisfying (log2) and (log3). Then
L admits modular cut-elimination if and only if all rules are weakly substitutive and all
logical rules are reductive.

Theorem 3 allows us to prove cut-elimination for a given standard sequent calculus in
an “incremental” way:

Corollary 2 (Modularity). Let L and L′ be standard calculi with disjoint sets of log-
ical connectives (and the same cut rule). Suppose that their logical rules satisfy (log2)
and (log3). If both L and L′ admit modular cut elimination, so does L ∪ L′, obtained
by taking the union of logical connectives and rules in L and L′.

Remark 5. The same result does not hold for cut-elimination. E.g. let L′
1 be the cal-

culus containing exchange and the rules for implication in linear logic. L′
1 admits cut-

elimination and so does (trivially) the calculus L1 of Example 5 (the only sequents
provable in L1 are instances of identity axioms) while L1 ∪ L′

1 does not anymore.

Our modular cut-elimination procedure is ‘universal’ for standard sequent calculi with
additional conditions in the following sense:

Corollary 3. Let L be a standard sequent calculus satisfying (log2) and (log3). If L ad-
mits modular cut-elimination and 	L S, the procedure described in this section always
provides a cut-free derivation in L for S.

Remark 6. The same does not hold for cut-elimination and e.g. the procedures of
Gentzen [4] and Schütte-Tait [10,9]. Indeed, Gentzen’s cut-elimination method can be
applied only when suitable “ad hoc” (derivable) generalizations of the cut rule (e.g.
Gentzen’s mix) are found. These generalizations, needed to cope with rules duplicating
formulas (e.g. contraction), are not needed for the Schütte-Tait method whose applica-
bility relies on the inversion of (at least) one of the premises of the cut. This cannot
always be done in calculi that admit cut-elimination. For example let L2 be the calculus
consisting of weakening, exchange and the following rules:

Θ ⇒ X1 Θ′ ⇒ X2

Θ, Θ′ ⇒ X1 ∧ X2

(∧, r)
Θ, Xi ⇒ Y

Θ, X1 ∧ X2 ⇒ Y
(∧, l)i=1,2

L2 admits cut-elimination (e.g. using our method: it is easy to check that these rules
are reductive and weakly substitutive) although neither of the premises of a cut with cut
formula A ∧ B can be inverted in the usual way and hence the Schütte-Tait procedure
does not apply.
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7 Counterexamples to (Modular) Cut-Elimination

We have introduced syntactic criteria (weak substitutivity and reductivity) that when
met by a standard sequent calculus L, L admits modular cut-elimination. If the logical
rules of L satisfy (log2) and (log3) our conditions are also necessary and hence a coun-
terexample for modular cut-elimination (i.e. a derivation in L from an elementary set
of sequents in which cuts cannot be eliminated) can be extracted from their failure.

Now, what can we say about plain cut-elimination? The failure of weak substitu-
tivity or reductivity for a standard calculus L is not enough to conclude that L does
not admit cut-elimination, being modular cut-elimination a notion strictly stronger than
cut-elimination (e.g. both LJ’ and L1 admit cut-elimination although they do not admit
modular cut-elimination, see Examples 3, 5 and Remark 5).

Our conditions are however useful for pinning down the difficulty of (dis)proving
cut-elimination and reduce the search space when finding counterexamples for cut-
elimination (or cut-admissibility). Indeed

Definition 10. Let L be a standard sequent calculus. The following derivations d in L
are called candidates of counterexamples for L.

– Let (R) be an instance of a rule in L which is not weakly substitutive. Let S0 be its
conclusion and S1, . . . , Sn its premises. Take a sequent T , a formula A, c ∈ {l, r}
and U ∈ [S0 ←↩cA T ] which violates condition (*) of Def. 6. Then let d be the
following:

T

S1 · · · Sn

S0

U
(CUT )

– Let � be a connective in L whose rules are not reductive. Take a pair of instances of
left and right logical rules with conclusions Γ ⇒ Δ, �x(A) and �x(A), Σ ⇒ Π
which violates the condition (�) of Def. 8. Then let d be the following:

S1 · · · Sn

Γ ⇒ Δ, �x(A)
T1 · · · Tm

�x(A), Σ ⇒ Π

Γ,Σ ⇒ Δ, Π
(CUT )

A candidate of counterexamples d, U1, . . . , Un 	L U0 is resolvable if wheneverU1, . . . ,
Un are provable in L, U0 is cut-free provable in L.

Example 6. The rule (→, r, ∅) is weakly substitutive neither in Maehara’s LJ’ nor in
GD (see Example 3). A candidate of counterexamples for LJ’ and GD, that is also a
counterexample for modular cut-elimination is then provided by any cut-free derivable
sequent with one implicative formula on its right end side, e.g. D ⇒ C → D and any
set of non-logical axioms containing the sequent Γ ⇒ D,Δ, for any Δ that contains
at least one formula. This counterexample for modular cut-elimination can be easily
turned into a counterexample for cut-elimination in GD by suitably choosing Γ , Δ and
D such that 	GD Γ ⇒ D,Δ while 	GD Γ ⇒ C → D,Δ only using (CUT ). E.g.
take Γ ≡ ∀x(P (x) ∨ B), D ≡ ∀xP (x) and Δ ≡ B, it is easy to see that the sequent
∀x(P (x) ∨ B) ⇒ C → ∀xP (x), B is not cut-free derivable in GD while a derivation
with (CUT) is as follows:
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P (a) ⇒ P (a) B ⇒ B
(∨,l)

P (a) ∨ B ⇒ P (a),B
(∀,l)

∀x(P (x)∨ B) ⇒ P (a), B
(∀,r)

∀x(P (x) ∨ B) ⇒ ∀xP (x),B

∀xP (x) ⇒ ∀xP (x)
(w,l)

∀xP (x),C ⇒ ∀xP (x)
(→,r)

∀xP (x) ⇒ C → ∀xP (x)
(CUT)

∀x(P (x)∨ B) ⇒ C → ∀xP (x),B

This proves that GD does not admit cut-elimination (in contrast with the claim in [5]).

Notice that all candidates of counterexamples are resolvable in LJ’. Indeed, a careful
inspection of the modular cut-elimination proof shows:

Theorem 4. Let L be a standard sequent calculus for which either weak substitutiv-
ity or reductivity fails. Then L admits cut-elimination if and only if all candidates of
counterexamples for L are resolvable.

To conclude, although our conditions do not directly yield a counterexample for cut-
elimination, they do provide the class of candidates among which, if a standard calculus
does not admit cut-elimination, such a counterexample can be found.
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Abstract. Howe’s HOL/Nuprl connection is an interesting example of a
translation between two fundamentally different logics, namely a typed
higher-order logic and a polymorphic extensional type theory. In ear-
lier work we have established a proof-theoretic correctness result of the
translation in a way that complements Howe’s semantics-based justifica-
tion and furthermore goes beyond the original HOL/Nuprl connection
by providing the foundation for a proof translator. Using the Twelf log-
ical framework, the present paper goes one step further. It presents the
first rigorous formalization of this treatment in a logical framework, and
hence provides a safe alternative to the translation of proofs.

1 Introduction

Doug Howe’s HOL/Nuprl connnection [7,10] establishes a link between two very
different logics, namely the classical logic of the HOL system [5] and a classical
variant of the Nuprl type theory [4], so that formal developments in Nuprl can
integrate theorems or entire libraries developed in HOL.

Based on a proof-theoretic understanding of the HOL/Nuprl connection ob-
tained in earlier work [20], we present a rigorous formalization of the relevant
parts of HOL and Nuprl as deductive systems, and a foundational transforma-
tion between the two in the logical framework Twelf [16]. Both encodings of the
deductive systems are adequate, the transformation is executable and machine-
verified, using Twelf’s termination [17], coverage [18], and uniquness checker [2].

According to [20], the HOL/Nuprl connection as it was originally implemented
in [11] proceeds in two stages:

1. The first stage is a translation of an axiomatic HOL theory into an axiomatic
Nuprl theory. The use of the term “axiomatic” emphasizes the fact that the
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theories are not necessarily only definitional extensions of the base logic. The
translation is, by its very nature, metalogical, in the sense that, by relating
two different logics, it is semantically beyond the scope of each of them.1 It
is a critical stage whose correctness has not been reduced to that of the two
theorem provers involved and requires careful analysis.

2. The second stage is the interpretation of an axiomatic Nuprl theory inside
Nuprl. In this way we can often obtain a computationally meaningful theory,
which is closer to the spirit of Nuprl, that favors definitional extensions. As
in Howe’s extension of Nuprl, this interpretation stage can take place inside
the Nuprl system in a formally rigorous way.

The key correctness property established in [20] is the soundness of the trans-
lation. If L and L′ are the source and target logics, respectively, and α is the map-
ping of L into L′ then soundness is the property that Γ 	L P implies α(Γ ) 	L′

α(P ) for any set Γ of axioms and any formula P . Hence, a proof of soundness
would demonstrate that for each proof of P from Γ in L there is a corresponding
proof of α(P ) from α(Γ ) in L′. Although soundness is a necessary requirement for
the correctness of the translator, it is noteworthy that soundness can always be
achieved by extending the target system by additional axioms and inference rules.
Of course, such an extension could make the target system inconsistent, which is
why the soundness proof is meaningful only in the presence of a consistency proof
for the target system extension, which for the classical variant of Nuprl has been
achieved by Howe’s hybrid computational/set-theoretic semantics [8,9].

It has been recognized in [20] that, since the soundness proof is conducted in
a constructive way, it implicitly contains an algorithm for proof translation. In
fact, a proof translator based on our earlier study has been developed by Pavel
Naumov as an extension of the Nuprl system [13]. In spite of the high degree
of safety achieved by translating proofs, we have found that, computationally,
proof translation can be very expensive if the proofs are large and unstructured.

An unexplored alternative, which guarantees absolute assurance, is formal
verification. This paper can be seen as a first step in that direction by giving
a fully formal account of the translation and its correctness proof in the log-
ical framework of Twelf. The translation is completely independent of tactics;
one translates concrete and efficient encodings of HOL derivations into Nuprl
derivations instead of heuristic recipes or methods. The resulting Twelf speci-
fication is executable, and hence constitutes a uniform certified translator that
can translate theories as well as proofs.

In summary we present in this paper a lightweight formalization of [20] with a
few simplifications: (1) We do not make explicit the categorical structure, e.g. the
fact that the translation constitutes a natural transformation. (2) We use higher-
order abstract syntax to represent terms in the object logics HOL and Nuprl.
(3) We use signatures of the metalogical framework Twelf to uniformly represent
1 Syntactially, however, the formal systems and the translation can be represented

using a metalogic, which could be a metalogical framework like Twelf in this paper
or even one of the object logics, Nuprl or HOL. In the latter case one would speak
of a reflective approach (see e.g. [3] for some recent advances on reflection in Nuprl).
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signatures and theories of the object logics. (4) Without loss of generality we
work with a simplified notion of sentences that are obtained from sequents by a
universal closure. (5) We confine ourselves to a fixed HOL theory (namely the
logical theory of HOL) and represent the composition of theory translation and
the subsequent theory interpretation by a single function.

The paper is organized as follows. After a brief introduction to Twelf we
give representations of the objects logics HOL and Nuprl in Sections 3 and 4,
respectively. Then, in Section 5, we present the translation as formalized in
Twelf, followed by Section 6, which establishes its correctness. Details about the
formalization of Nuprl and selected Twelf proofs can be found in [19].

2 The Twelf Logical Framework

The Twelf logical framework is an implementation of LF [6] designed as a meta-
language for the representation of deductive systems and used in this work for
representing the relevant rules of HOL and Nuprl. Judgments are represented
as types, and derivations as objects leading to the three standard syntactical
categories of the Twelf system.

Kinds: K ::= type | Πx:A. K | A → K
Types: A,B ::= a | A M | Πx:A. B | A → B
Objects: M ::= c | x | λx:A. M | M1 M2

We write a for type level constants (also called type families), and c for object
level constants. Type-level constants and object-level constants declarations form
signatures in Twelf, and thus, the entire formal development of the HOL-Nuprl
connection can be thought of as one signature that we explain piece by piece.
Type constants are declared in form of declarations “a : K.”, and object level
constant are either declared “c : A.”, or defined “c : A = M .” Constants c
may be be used infix.

Among the many algorithms that Twelf offers, we comment only on the most
important that are directly relevant to the formalization of the HOL-Nuprl con-
nection. The type inference algorithm [15] permits inferable arguments to remain
implicitly Π-quantified indicated by logic variables that start with an uppercase
letter. The logic programming engine Elf [15] as part of Twelf defines an opera-
tional interpration of the Twelf signature. For example, a type a M1 X defines
a query, whose execution results in an object M and an instantiation M2 of X,
such thatM : a M1 M2 holds. Twelf’s mode system [17] assigns input/output
roles to arguments of type familes. For example a declaration %mode a +X -Y
indicates that the first argument to a plays the role of an input, and the second
the role of an output. Furthermore, once modes are declared, the logic program
can be checked for termination, coverage and totality properties [17,18].

3 The Logic of HOL

HOL [5] is a proof development system based on higher-order logic. It uses a
Hindley-Milner-style polymorphic λ-calculus together with an axiomatization of
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the logic using polymorphic equality, implication, and Hilbert’s choice operator
as basic ingredients. As most higher-order logics it is a logic of total functions.
The HOL system favors conservative theory extensions (to introduce new con-
stants and/or new data types) but axiomatic extensions are also supported. The
following higher-order abstract syntax representation of HOL in Twelf is close
to the informal presentation of [5].

3.1 Syntax

We introduce a Twelf type tp to represent the set of HOL types σ with o repre-
senting the type of HOL formulas and infix operator --> the HOL function type
constructor.

tp : type. --> : tp → tp → tp. o : tp.

A dependent Twelf type tm σ is used to represent the set of HOL terms
(including HOL formulas) over a given HOL type σ with => representing logical
implication, == representing polymorphic equality, @ representing polymorhic
function application, and \ representing polymorphic λ-abstraction. Since =>
and == represent HOL constants, we also introduce convenience functions ==>
and === that can be directly applied as infix operators to HOL formulas/terms.

tm : tp → type.

=> : tm (o --> o --> o).

== : tm (A --> A --> o).

@ : tm (A --> B) → tm A → tm B.
\ : (tm A → tm B) → tm (A --> B).
==> : tm o → tm o → tm o

= λH:tm o. λG:tm o. => @ H @ G.

=== : tm A → tm A → tm o

= λH:tm A. λG:tm A. == @ H @ G.

HOL theories, more precisely their signatures, provide a way to extend the
syntax of HOL by additional constants. We define an HOL type constant declara-
tion as a Twelf declaration of the form c : tp → tp → . . . → tp. An HOL con-
stant declaration is a Twelf declaration of the form c : Πα1 : tp. . . .Παn : tp. σ,
where σ is an HOL type over α1 . . . αn and where each type variable αi occurs
in σ. An HOL signature Σ is a Twelf signature consisting of HOL type constant
declarations and HOL constant declarations. The categoy of HOL signatures
equipped with the standard notion of signature morphism (see [20]) will be de-
noted by HolSign.

An HOL sentence over Σ has the form Πα1 : tp. . . .Παn : tp. A with an
HOL formula A over α1 . . . αn. The set of sentences over a given HOL signature
Σ is denoted by HolSen(Σ). This notion of an HOL sentence is less general than
that of an HOL sequent used in [5], but it is sufficient for our purposes, because
each HOL sequent can be converted into an equivalent HOL sentence of the form
above by means of a universal closure.
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3.2 Deduction in HOL

In this section we inductively define the HOL derivability predicate that char-
acterizes all derivable HOL sentences. Using the propositions-as-types interpre-
tation (sometimes called judgements-as-types interpretation in this setting) this
predicate is formalized in Twelf as follows.

|- : tm o → type.

Each HOL deduction rule is then represented as a function in Twelf that
operates on proofs of derivability. The function allows us to construct a proof of
the conclusion if we provide a proof for each premise.

mp : |- H → |- H ==> G → |- G.

disch : (|- H → |- G) → |- H ==> G.

refl : |- H === H.

beta : |- \ (λx:tm A2. H x) @ G === H G.

sub : ΠG:tm A → tm o. |- H1 === H2 → |- G H1 → |- G H2.

abs : (Πx:tm A1. |- H x === G x)
→ |- \ (λx:tm A1. H x) === \ (λx:tm A1. G x).

We do not need an explicit representation of HOL’s assumption and type
instantiation rules, because they are inherited from the logical framework. The
latter is a special case of Twelf’s substitution rule.

Given a signature Σ, the HOL entailment relation (	Hol
Σ ) ⊆ Pfin(HolSen(Σ))

× HolSen(Σ) is defined as follows: {φ1, ..., φn} 	Hol
Σ φ holds iff a proof of |-φ

can be constructed from proofs of |-φ1 . . .|-φn in Twelf. Using the terminology
of [12], the structure (HolSign,HolSen ,	Hol) constitutes an entailment system.
We call it the entailment system of HOL.

3.3 Theories

An (axiomatic) HOL theory (Σ,Γ ) consists of a signature Σ together with a set
Γ of sentences over Σ called axioms. A signature morphism H : Σ → Σ′ is said
to be a theory morphism H : (Σ,Γ ) → (Σ′, Γ ′) iff Γ ′ 	Hol

Σ′ HolSen(H)(φ) for all
φ ∈ Γ . This gives a category of theories that will be denoted by HolTh.

All mathematical developments in HOL take place in standard theories ex-
tending the logical theory bool. Therefore, for the remainder of this paper we
define bool as o, and we use bool to emphasize that we are working with classi-
cal extensional logic. The logical theory bool has a signature Σ which contains
the standard type constant bool (i.e. o) and the standard constants == and =>.
The remaining constants of Σ together with their definitional axioms in Γ are:

true : tm bool = \ (λx:tm bool. x) === \ (λx:tm bool. x).
all| : tm ((A --> bool) --> bool)

= \ (λP:tm (A --> bool). P === \ (λx:tm A. true)).

all = λP:tm (A --> bool). all| @ P.
false : tm bool = all (\ (λP:tm bool. P)).
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neg : tm (bool --> bool) = \ (λP:tm bool. P ==> false).

/|\ : tm (bool --> bool --> bool)

= \ (λP. \ (λQ. all (\ (λR. (P ==> Q ==> R) ==> R)))).

/\ = λP:tm bool. λQ:tm bool. /|\ @ P @ Q.

\|/ : tm (bool --> bool --> bool)

= \ (λP. \ (λQ. all (\ (λR. (P ==> R) ==> (Q ==> R) ==> R)))).

\/ = λP:tm bool. λQ:tm bool. \|/ @ P @ Q.

the| : tm ((A --> bool) --> A).

the = λP:tm (A --> bool). the| @ P.
ex| : tm ((A --> bool) --> bool)

= \ (λP:tm (A --> bool). P @ the (\ (λx:tm A. P @ x))).
ex = λP:tm (A --> bool). ex| @ P.

We use the symbols /|\ and \|/ to represent the HOL constants for conjuction
and disjunction, respectively, and we introduce corresponding convenience infix
operators /\ and \/ in Twelf. Similarly, we have HOL constants all|, ex|, and
the| for universal and existential quantification, and Hilbert’s ε-operator, again
with their corresponding convenience functions all, ex, and the.

Moreover, there are some nondefinitional axioms in Γ , namely

bool-cases-ax : |- all (\ (λx:tm bool. x === true \/ x === false)).

imp-antisym-ax : |- all (\ (λx:tm bool. all (\ (λy:tm bool.

(x ==> y) ==> (y ==> x) ==> x === y)))).
eta-ax : |- \ (λx:tm A. F @ x) === F.
select-ax : |- all (\ (λP:tm (A --> o). all (\ (λx:tm A.

P @ x ==> P @ the P)))).

Some HOL contants and axioms have been omitted, because they are unnec-
essary for the core fragment of the translation. These are: (1) an atomic type
constant ind together with an axiom stating that ind has an infinite number of
elements; and (2) some additional constants with definitional axioms facilitating
the introduction of new data types in a conservative way.

Our encoding of HOL in Twelf is adequate. This means that every derivation of
a sentence φ in HOL corresponds bijectively to an object in β-normal η-long form
of type |- 
φ�, where 
φ� stands for the representation of the sentence φ in Twelf.
The reverse direction also holds. Furthermore, the encoding is compositional, in
the sense, that the substitution property of HOL is captured by Twelf’s built-in
β-rule.

4 The Type Theory of Nuprl

Nuprl’s type theory [4] is a variant of Martin-Löf’s 1982 polymorphic, exten-
sional type theory (the version contained in [14] with extensional equality). Al-
though Nuprl has very advanced features (e.g. subset types, subtyping, quotient
types, recursive types, intersection types, partial functions, and direct compu-
tation, which make these type theories rather different), semantically Nuprl can
be viewed as an extension of Martin-Löf’s type theory, in the sense that it has a
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richer variety of types and more flexible rules which give rise to a richer collection
of well-typed terms.2

In constrast to HOL, terms in Nuprl are neither explicitly nor implicitly
equipped with types. Instead types are ordinary terms, and the judgement that
a type can be assigned to a term is a sentence in the logical language which
is not decidable in general. Indeed, since Nuprl is polymorphic, a term may be
associated with different types.

Even though the advanced features of Nuprl provide an important motivation
for the HOL/Nuprl connection, the connection itself does not rely on features
that go beyond Martin-Löf’s type theory as presented in [14]. Hence, we have
selected a set of rules as the basis of our formalization that can be derived in
both Martin-Löf’s type theory as well as in Nuprl. We do not attempt to give a
complete presentation of these type theories, but we rather show that the given
rules are sufficient to establish the connection to HOL. In the following we give
a simplified presentation of Nuprl based on [4]. As for HOL we use a Twelf
representaton based on higher-order abstract syntax.

4.1 Syntax

We introduce a Twelf type n-tm to represent the set of Nuprl terms which as
discussed above also includes all potential Nuprl types. The subsets of well-typed
Nuprl terms and types are determined by the deduction rules of Nuprl given in
the next subsection.

Nuprl has the following term or type constructors. We begin with the term
uni K representing the predicative Nuprl universe at level K. Levels are encoded
by Twelf’s integer constraint domain, which provides the usual arithmetical
operations.

n-tm : type. uni : integer → n-tm.

We use eq M N T to represent Nuprl’s typed equality, that is M and N
are equal at type T. Membership, written N #T, is a derived notion in Nuprl
and stands for eq N N T. The constant axiom is an element that denotes an
anonymous proof in Nuprl, e.g. a proof by means of a computation or decision
procedure.

eq : n-tm → n-tm → n-tm → n-tm.

# : n-tm → n-tm → n-tm = λN:n-tm. λT:n-tm. eq N N T
axiom : n-tm.

In the following, pi represents the Nuprl dependent function type constructor
with the infix operator ->> representing the special case of ordinary function
types. The constants app and lam represent function application and the untyped
λ-abstraction of Nuprl. For instance, we represent Nuprl’s dependent function
type x : S → T as 
x : S → T� = pi 
S� (λx : n-tm.
T �), where 
x� = x,
where 
·� denotes the representation function into Twelf.
2 For some subtle differences between Martin-Löf’s type theory and Nuprl see [1].
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pi : n-tm → (n-tm → n-tm) → n-tm.

->> : n-tm → n-tm → n-tm = λS:n-tm. λT:n-tm. pi S (λx:n-tm. T).
app : n-tm → n-tm → n-tm.

lam : (n-tm → n-tm) → n-tm.

Nuprl has strong existential types (also called strong Σ-types) represented by
the function sigma with an element constructor pair and projections fst and
snd.

sigma : n-tm → (n-tm → n-tm) → n-tm. fst : n-tm → n-tm.

pair : n-tm → n-tm → n-tm. snd : n-tm → n-tm.

The function + represents the disjoint sum type constructor. It comes with
left and right injections inl and inr, and a function decide to perform case
analysis.

+ : n-tm → n-tm → n-tm. inl : n-tm → n-tm. inr : n-tm → n-tm.

decide : n-tm → (n-tm → n-tm) → (n-tm → n-tm) → n-tm.

Finally, we have Nuprl’s singleton type unit with bullet as its only element,
and the empty type void with a function any for the elimination principle.

void : n-tm. any : n-tm → n-tm. unit : n-tm. bullet : n-tm.

Finally, the HOL/Nuprl connection makes use of Nuprl’s subset types, here
represented by the type constructor —set—. A set {x : T | P} in Nuprl is then
represented as 
{x : T | P}� = set 
T � (λx : n-tm.
P�) where 
x� = x.

set : n-tm → (n-tm → n-tm) → n-tm.

Similar to HOL, the Nuprl syntax can be extended by additional (untyped)
constants. A Nuprl signature Σ is a Twelf signature consisting of Nuprl constant
declaration of the form c : n− tm. The category of Nuprl signatures equipped
with the standard notion of signature morphism (see [20]) will be denoted by
NuprlSign. Given a signature Σ, we define Nuprl sentences simply as Nuprl
terms over Σ (in practice these will be Nuprl types interpreted as propositions).
Although this is more restrictive that the Nuprl sequents of [4], there is no loss of
generality, because by universal closure each sequent can be converted to a Nuprl
sentence of this form. The set of sentences over Σ is denoted by NuprlSen(Σ).

It is worthwhile mentioning that there is another reason why the notion of
Nuprl sentence is a proper specialization of the judgements admitted in [4],
which (disregarding the left-hand side) take the form 	 T [extP ], the pragmatic
intention being that the extraction term P is usually hidden from the user, but
it can be extracted from a completed proof. In this paper we are not interested
in the extraction term P . Therefore we will only use abstract judgements of the
form 	 T . We define such an abstract judgement to be derivable iff 	 T [extP ]
is derivable for some P .
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4.2 Deduction in Nuprl

In this section we inductively define the Nuprl derivability predicate. We consider
derivability in the fragment of Classical Nuprl given by the inference rules below,
which are either basic inference rules or trivially derivable in Nuprl. Similar to
derivability in HOL we formalize the derivability predicate of Nuprl as follows:

!- : n-tm → type.

There is no need to formalize the basic Nuprl assumption, weakening, and cut
rules, because they are inherited from Twelf. We begin with the representation
of the rules for Nuprl’s hierarchy of universes. There is a formation rule for each
universe and a rule stating that the hierarchy is cummulative.

uni-form : J - 1 >= I → !- uni I # uni J.
uni-culm : !- T # uni I → J - 1 >= I → !- T # uni J.

For Nuprl’s equality we have a formation rule, and rules for symmetry, transi-
tivity and substitution. Reflexivity is a trivial consequence of the fact that mem-
bership N # T is defined as a special case of equality eq, namely as eq N N T.

equality-form : !- N # T → !- M # T → !- T # uni K
→ !- eq M N T # uni K.

equality-symm : !- eq M N T → !- eq N M T.
equality-trans : !- eq M M’ T → !- eq M’ M” T → !- eq M M” T.
subst : (Πx:n-tm. !- x # T → !- P x # uni K) → !- eq N N’ T

→ !- eq M M’ (P N’) → !- eq M M’ (P N).

The following rule ax-intro implies that axiom serves as an anonymous proof
of every membership. The next rule ax-elim allows us to abstract from a proof.

ax-intro : !- M # T → !- axiom # (M # T).
ax-elim : !- M # T → !- T.

Dependent function types are at the core of Nuprl’s type theory. We follow the
standard scheme to first give a formation rule, which introduces the type, and
then introduction and elimination rules for the elements of this type, followed
by equational/computation rules.3

fun-form : !- S # uni K → (Πx:n-tm. !- x # S → !- T x # uni K)

→ !- pi S (λx:n-tm. T x) # uni K.

fun-intro : !- S # uni K → (Πx:n-tm. !- x # S → !- M x # T x)
→ !- lam (λx:n-tm. M x) # pi S (λx:n-tm. T x).

fun-elim : !- M # pi S (λx:n-tm. T x) → !- N # S
→ !- app M N # T N.

fun-xi : (Πx:n-tm. !- x # S → !- eq (M x) (N x) (T x))
→ !- S # uni K
→ !- eq (lam (λx:n-tm. M x)) (lam (λx:n-tm. N x))

(pi S (λx:n-tm. T x)).

3 Instead of Nuprl’s untyped computation rules, we use the weaker typed computation
rules to cover Martin-Löf’s type theory as well.
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fun-beta : (Πx:n-tm. !- x # S → !- M x # T x) → !- N # S
→ !- eq (app (lam (λx:n-tm. M x)) N) (M N) (T N).

fun-ext : (Πx:n-tm. !- x # S → !- eq (app M x) (app N x) (T x))
→ !- N # pi S (λx:n-tm. T x)
→ !- M # pi S (λx:n-tm. T x)
→ !- eq M N (pi S (λx:n-tm. T x)).

For sake of brevity we have omitted the rules concerned with Σ-types and
subset types, but the interested reader can find them in [19].

Nuprl has a singleton type unit with one element bullet.

unit-form : !- unit # uni 1. unit-intro : !- bullet # unit.

unit-eq : !- N # unit → !- M # unit → !- eq M N unit.

Finally, we have the rules for the empty type void that does not have any
introduction rules, but an elimination rule that allows us to prove anything from
the existence of an element in void.

void-form : !- void # uni 1.

void-elim : !- T # uni K → !- N # void → !- any N # T.

The heavily used Nuprl type boolean is defined as a disjoint union in Nuprl:

boolean : n-tm = unit + unit. tt = inl bullet. ff = inr bullet.

if = λM:n-tm.λM1:n-tm.λM2:n-tm. decide M (λz:n-tm. M1) (λz:n-tm. M2).

The propositions-as-types interpretation is made explicit using the following
logical abbreviations. We also introduce the abbreviation nP K for uni K to
emphasize that we are interpreting types in this universe in a logical way. n/\,
n\/, =n=>, and n<=> are used in infix notation.

nP = λk:integer. uni k. ntrue = unit. nfalse = void.

n/\ = λT:n-tm. λS:n-tm. sigma T (λx:n-tm. S).
n\/ = λT:n-tm. λS:n-tm. T + S.
nall = λT:n-tm. λS:n-tm → n-tm. pi T (λx:n-tm. S x).
nex = λT:n-tm. λS:n-tm → n-tm. sigma T (λx:n-tm. S x).
=n=> = λT:n-tm. λS:n-tm. pi T (λx:n-tm. S).
n~ = λT:n-tm. T =n=> nfalse.

n<=> = λT:n-tm. λS:n-tm. (T =n=> S) n/\ (T =n=> S).

4.3 Classical Extension

The translation described in the next section makes use of Nuprl’s operator

^ = λM:n-tm. if M ntrue nfalse.

^-form : ΠM:n-tm. !- M # boolean → !- ^ M # uni 1

which converts an element of boolean into a (propositional) type. The following
properties have been proved using Twelf:

fact5 : !- N # nall boolean (λx:n-tm. ^ x # nP 1).

fact4 : !- N # nall boolean (λx:n-tm. eq x tt boolean =n=> ^ x).
fact6 : !- N # nall boolean (λx:n-tm. ^ x =n=> eq x tt boolean).
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For the translation of HOL’s equality we wish to define a boolean polymorphic
equality using Nuprl’s propositional equality, but so far we do not have any means
for converting a proposition into a boolean, which amounts to deciding whether
a propositional type is inhabited. So we add a standard constant inhabited and
we assume the following family of axioms stating that inhabited T decides if
its argument, a type T in uni K, is inhabited, and that it returns an element of
T if this is the case. Under the logical reading this assumption is known as the
axiom of the excluded middle.

inhabited : n-tm.

inh-intro : !- inhabited # pi (uni K) (λx:n-tm. x + (x ->> void)).

Equipped with this axiom we can easily define an operator v casting a propo-
sitional type into a boolean value deciding the proposition:

v = λP:n-tm. decide (app inhabited P) (λx:n-tm. tt) (λy:n-tm. ff).

Recall that decide performs case analysis for elements of a disjoint union type.
The following casting lemmas have been verified using Twelf:

v-form : !- N # uni K → !- v N # boolean.

law4 : !- N # nall (nP K) (λp:n-tm. v p # boolean).

law5 : !- N # nall (nP K) (λp:n-tm. ^ v p =n=> p).
law6 : !- N # nall (nP K) (λp:n-tm. p =n=> ^ v p).

In complete analogy to the entailment relation of HOL we now define the
Nuprl entailment relation (	Nuprl

Σ ) ⊆ Pfin(NuprlSen(Σ)) × NuprlSen(Σ) where
{φ1, ..., φn} 	Nuprl

Σ φ holds iff a proof of !-φ can be constructed from proofs
of !-φ1 . . . !-φn in Twelf. The structure (NuprlSign,NuprlSen,	Nuprl) consti-
tutes an entailment system. We call it the entailment system of Nuprl.

4.4 Theories

An (axiomatic) Nuprl theory (Σ,Γ ) consists of a signature Σ together with a set
Γ of sentences over Σ called axioms. A signature morphism H : Σ → Σ′ is said
to be a theory morphism H : (Σ,Γ ) → (Σ′, Γ ′) iff Γ ′ 	Nuprl

Σ′ NuprlSen(H)(φ)
for all φ ∈ Γ . This gives a category of theories that will be denoted by NuprlTh.

Our encoding of Nuprl and its classical extension in Twelf are adequate. As
in the case of HOL, this means that every derivation of a sentence φ in Nuprl
corresponds bijectively to an object in β-normal η-long form of type !- φ, where
φ stands for the representation of the sentence φ in Twelf. The reverse direction
also holds. Again, the encoding is compositional, in the sense, that the substi-
tution property of Nurpl is captured by Twelf’s built-in β-rule.

5 Theory Translation

In [13] the translation from HOL theories to Nuprl theories is given by a functor
Φ : HolSign → NuprlTh which translates HOL signatures into Nuprl theo-
ries together with a natural transformation α : HolSen → NuprlSen ◦ Φ which
translates HOL sentences into Nuprl sentences.
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Since signatures of the object logics do not have a formal status in our Twelf
formalization beyond being represented as Twelf signatures, we cannot express
a function like Φ in our current formalization. Instead, we will show in Section
5.1 how to translate a concrete signature using the logical theory of HOL as an
example. In the following, we focus on the formalization of the core translation
function α, which has three main components. In the logic-programming-style
of Twelf functions are represented as predicates, and uniqueness and totality are
established independently.

The first component is the translation of HOL types into Nuprl types. Notice
that the above HOL type o of propositions is translated classically as the Nuprl
data type boolean. The %mode assigns + position the role of input arguments,
and - positions the role of output arguments.

transtp : tp → n-tm → type. %mode transtp +A -N.

transtp--> : transtp A T → transtp B S
→ transtp (A --> B) (pi T (λx:n-tm. S)).

transtpo : transtp o boolean.

The second component of the translation function α is the translation of HOL
terms into Nuprl terms:

transtm : tm A → n-tm → type. %mode transtm +H -N.

trans=> : transtm => =p=>.

trans== : transtp A N → transtm == (=p= N).

trans@ : transtm H T → transtm G S → transtm (H @ G) (app T S).
trans\ : transtp A N1

→ (Πx:tm A. Πy:n-tm. transtm x y → transtm (H x) (M y))
→ transtm (\ (λx:tm A. H x)) (lam (λx:n-tm. M x)).

where we have employed the abbreviations (where =b=> is an infix operator)

=p=> = lam (λx:n-tm. lam (λy:n-tm. if x y tt)).

=b=> = λM:n-tm. λN:n-tm. app (app =p=> M) N.

=p= = λT:n-tm. lam (λx:n-tm. lam (λy:n-tm. v (eq x y T))).
=b= = λT:n-tm. λM:n-tm. λN:n-tm. app (app (=p= T) M) N.

The final component of α is the translation of HOL sentences into Nuprl sen-
tences. Here, a Nuprl term is obtained from the translation of an HOL formula,
and hence we only need to cast it into a propositional type to obtain a meaningful
Nuprl sentence.

transsen : tm o → n-tm → type.

t-base : transtm H M → transsen H (^ M).

5.1 Interpreting the Logical Theory

It might be surprising that the logical HOL theory bool is a theory like every
other HOL theory, but that is simply the way it is implemented in the HOL
system and presented in [5]. In practice, all HOL theories are extensions of bool,
because together with the HOL inference rules this makes HOL a higher-order
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classical logic. In contrast to most other theories used in practice, it is noteworthy
that bool is not a purely definitional theory in HOL. We follow [11] where the
proof obligations have been verified inside Nuprl using the interpretation given
below, but first we recall the general concept of a theory interpretation.

Given Nuprl theories (Σ,Γ ) and (Σ′, Γ ′), we say that (Σ,Γ ) is interpreted
in (Σ′, Γ ′) by I iff I : (Σ,Γ ) → (Σ′, Γ ′) is a theory morphism in the category
NuprlTh. Notice that these morphisms are not necessarily axiom-preserving,
since it is typically the point of such an interpretation to get rid of axioms.
Instead, we have to verify Γ ′ 	Nuprl

Σ′ NuprlSen(I)(φ) for all φ ∈ Γ , the sentences
NuprlSen(I)(φ) are called proof obligations. As explained in the introduction of
this paper, the activity of setting up a theory morphism and verifying the proof
obligations characterizes the second stage of the HOL/Nuprl connection which
requires user interaction in general.

In [20] each HOL constant is translated into a Nuprl constant with the same
name. If the HOL constant is polymorphic the resulting Nuprl constant is a func-
tion representing a family of constants indexed by types. In the interpretation
stage this Nuprl constant is then interpreted. In most cases the interpretation is
the same constant but with an associated definitional axiom which equates the
constant to a Nuprl term.

To accomplish this in Twelf for the concrete logical HOL theory bool we sim-
ply extend transtm by the composition of: (1) the translation of HOL constants
into Nuprl contants and (2) the interpretation of Nuprl constants by their as-
sociated Nuprl terms. As a result, transtm represents the composition of the
translation and the interpretation function in our formalization.

tc-true : transtm true tt. tc-false : transtm false ff.

tc-neg : transtm neg (lam (λx:n-tm. if x ff tt)).

tc-/|\ : transtm /|\ (lam (λx:n-tm. lam (λy:n-tm. if x y ff))).

tc-\|/ : transtm \|/ (lam (λx:n-tm. lam (λy:n-tm. if x tt y))).
tc-all| : transtp A T

→ transtm all| (lam (λp:n-tm. v (pi T (λx:n-tm. ^ app p x)))).
tc-ex| : transtp A T

→ transtm ex| (lam (λp:n-tm. v (sigma T (λx:n-tm. ^ app p x)))).

As abbreviations we introduce inh T to express that a type T is nonempty
and arb T, which picks an arbitrary element inhabiting a nonempty type T.

inh = λT:n-tm. nex T (λy:n-tm. ntrue).

arb = λT:n-tm. decide (app inhabited T) (λx:n-tm. x) (λx:n-tm. bullet).

arb-intro : ΠM:n-tm. !- M # (S # uni 1) n/\ inh S → !- arb S # S

Hilbert’s choice operator the P, where P is a boolean predicate on some type
A, picks an element of the subset of A specified by P if this subset is nonempty,
or yields an arbitrary element of A otherwise.

tc-the| : transtp A T
→ transtm the| (lam (λp:n-tm. decide (app inhabited

(set T (λx:n-tm. ^ app p x))) (λx:n-tm. x) (λx:n-tm. arb T))).

Using this interpretation, all the proof obligations, i.e. the translated axioms
of the HOL theory bool, can be derived in Classial Nuprl. The fact that HOL
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types are nonempty is critical to verify the proof obligation corresponding to the
declaration of Hilbert’s ε-operator.

6 Correctness of the Translation

The key property of a map of entailment systems [12] is soundness, i.e. the
preservation of entailment. In our lightweight formalization in Twelf this boils
down to lemma5, which is given at the end of this section. Its proof closely follows
the informal proof given in [20], but instead of using the Nuprl system to prove
some intermediate lemmas, all parts of the proof have been uniformly conducted
in Twelf. We begin with a number of simple Nuprl lemmas:

refl lemma : !- N # nall (uni 1) (λt:n-tm. nall t (λx:n-tm.
^ app (app (=p= t) x) x))

disch lemma: !- N # nall boolean (λp:n-tm. nall boolean (λq:n-tm.
(^ p =n=> ^ q) =n=> ^ (p =b=> q)))

mp lemma : !- N # nall boolean (λp:n-tm. nall boolean (λq:n-tm.
^ (p =b=> q) =n=> ^ p =n=> ^ q))

beta lemma : !- N # nall (uni 1) (λt:n-tm.
nall t (λx:n-tm. nall t (λy:n-tm. eq x y t =n=> ^ =b= t x y)))

beta inv : !- N # nall (uni 1) (λt:n-tm.
nall t (λx:n-tm. nall t (λy:n-tm. ^ =b= t x y =n=> eq x y t)))

To prove soundness as expressed by lemma5, it remains to show that the
translation of each HOL rule can be derived in Nuprl. Most of the translated
inference rules have surprisingly short proofs (see [19]) in Nuprl if we use the
lemmas above together with the following well-formedness lemmas for translated
HOL types and HOL terms, which have been proved in Twelf by induction over
HOL types and HOL terms, respectively.

lemma1 : ΠA:tp. transtp A T → type.

lemma2 : ΠH:tm A. ΠM:n-tm. transtm H M → type.

lemma3 : transtp A T → !- N # (T # uni 1) n/\ inh T → type.

lemma4 : transtm H N → transtp A T → !- N # T → type.

theorem5 : |- H → transsen H T → !- N # T → type.

Informally, theorem5 states that the translation T of each derivable HOL
sentence H is inhabited in Nuprl by some term N. The proof goes by induction
on the structure of the HOL derivation. In the case that the derivation ends in
|- G ==> H by the disch rule, the premiss D1 (of type |- G → |- H) is given as
well. Two appeals to lemma2 yields translations TTM1 for H to Nuprl term T1

and TTM2 for G to Nuprl term T2. Since H and G are both HOL formulas, they
are of type o, and consequently, transtpo provides the evidence that o translates
to boolean necessary to justify two applications to lemma4, which yields in turn
two Nuprl proofs ND1, ND2 of !- N1 # T1 and !- N2 # T2, respectively, for
some Nuprl terms N1 and N2. Next, we introduce an HOL assumption u: |- H
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and the corresponding Nuprl assumption v:!- y # ^ T1 for a fresh Nuprl term
y, and appeal to the induction hypothesis on D1 u and the proof that sentence
G translates to T2. The result is a hypothetical Nuprl derivation ND y v, which
proves !- N’ y # T2 in Nuprl. By cleverly combining the derivations TTM1 and
TTM2, and ND1, ND2, and ND we provide evidence for the translation of G ==>
H and a proof of its derivability in Nuprl.

case52 :

theorem5 (disch (λu:|- H. D1 u))
(t-base (trans@ (trans@ trans=> TTM1) TTM2))

(=n=>-elim (nall-elim (nall-elim disch lemma ND1) ND2)

(=n=>-intro

(boolean-if (uni-form (+>= 1 0>=0)) ND1 ntrue-form nfalse-form)

(λx:n-tm. λu:!- x # if T1 unit void. ND x u)))
← lemma2 H T1 TTM1 ← lemma2 G T2 TTM2

← lemma4 TTM1 transtpo ND1 ← lemma4 TTM2 transtpo ND2

← (Πu:|- H. Πy:n-tm. Πv:!- y # ^ T1.

theorem5 u (t-base TTM1) v
→ theorem5 (D1 u) (t-base TTM2) (ND y v)).

All lemmas and theorem5 have been mechanically checked for termination,
coverage, and totality. In two cases we were forced to manually verify the totality
due to an incompleteness in Twelf’s totality checker. The Twelf implementation
is constructive, executable and by a realizability interpretation illustrates the
soundness of the HOL/Nuprl connection.

7 Final Remarks

We have presented a lightweight formalization of earlier work [20] complement-
ing Howe’s semantics-based justification of the HOL/Nuprl connection with a
proof-theoretic counterpart. Our correctness result does not only provide a for-
mal proof-theoretic justification for translating theories, but it simultaneously
provides a formalization of proof translation that was beyond the scope of the
original HOL/Nuprl connection. A noteworthy point is that the translation does
not rely on the more advanced features of Nuprl that go beyond Martin-Löf’s
extensional polymorphic type theory as presented in [14]. Therefore, the trans-
lation can also be regarded as a translation between HOL and a classical variant
of Martin-Löf’s type theory. This paper makes use of a few simplifications, but
on the other hand it goes beyond [20] in the sense that is precisely spells out
the rules that are sufficient to establish the logical connection. Furthermore, the
entire development including some verifications that were delegated to Nuprl in
[20] has been uniformly verified in Twelf. In addition to the translation, there
is the logical theory interpretation stage, which seems less critical, because the
associated proof obligations have been verified by Howe inside the Nuprl system.
We still plan to extend our formalization to include a detailed verification of the
interpretation stage in Twelf.
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The feasibility of proof translation has been demonstrated by the proof trans-
lator presented in [13], but a remaining practical problem is that proof transla-
tion can be computationally very expensive, especially in view of the large size
of HOL proofs generated by some HOL tactics. The approach taken in this pa-
per is a rigorously formal certification of the translator by formalizing not only
the translation function but also the deductive system of the logics involved and
the soundness proof in a metalogical framework like Twelf. So instead of verify-
ing the correctness of each single translated HOL proof in Nuprl, so to say at
runtime, we have formalized our general soundness result, which enhances our
confidence in the correctness of our earlier informal mathematical treatment,
and hence can be regarded as a resonable safe alternative to proof translation.

One the other hand, if the high assurance of proof translation is needed,
the Twelf specification can serve as a certified proof translator. However, the
practical feasibility of translating actual HOL proofs in this way has not been
investigated yet and is left as a possible direction for future work. Other items
for future work include the explicit representation of theories as objects in Twelf
as well as a more modular development that separates the two stages of theory
translation and theory interpretation.

The complete formal development of the HOL/Nuprl connection in Twelf can
be found at www.logosphere.org.
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296–310, Linköping, Sweden, April 1996. Springer-Verlag.
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Abstract. Deduction modulo is a theoretical framework designed to
introduce computational steps in deductive systems. This approach is
well suited to automated theorem proving and a tableau method for first-
order classical deduction modulo has been developed. We reformulate
this method and give an (almost constructive) semantic completeness
proof. This new proof allows us to extend the completeness theorem to
several classes of rewrite systems used for computations in deduction
modulo. We are then able to build a counter-model when a proof fails
for these systems.

1 Introduction

Efficient treatment of equality and equational theories is still a challenging prob-
lem to tackle in the domain of automated theorem proving. The proof of as simple
a statement as (a+ b) + ((c+ d) + e) = a+ ((b+ c) + (d+ e)) might take a long
time within a theory with the usual associativity and identity axioms if one uses
an ineffective strategy. The resolving process should eventually be a determin-
istic and terminating method where we only have to check if the two terms are
indeed the same modulo our theory. We would like to use computation (blind
execution) instead of deduction (non-deterministic search), thus expressing the
associativity axiom as a rewrite rule on terms.

Orienting equational theories through rewriting is not unusual, but rewrite
rules on propositions are almost never considered. However it can be useful to
allow them. One framework to handle such rewrite rules is deduction modulo
[9]. The axiom ∀x ∀y (x ∗ y = 0 ⇐⇒ (x = 0 ∨ y = 0)) yields by orientation
the rewrite rule x ∗ y = 0 → x = 0 ∨ y = 0 , which is useful to prove ∃z(a ∗ a =
z ⇒ a = z) by adapted automated deduction methods (see [2, 9]) which handle
propositional rewriting by extended narrowing.

The use of both propositional and term rewrite rules in deduction modulo
instead of unoriented axioms should result in a speed up in the proof search.
However, deduction modulo has other interesting consequences: propositional
rewrite rules like P (a) → ∀xP (x) can be used to restart the deductive process.
The deduction modulo is powerful enough to express axiomatic theories such
as arithmetic [11] or HOL [10] as sets of rewrite rules. Deduction modulo also
produces shorter (regarding the size of the proof tree), more readable, proofs
containing only purely deductive steps (the “important” ones to humans) and
no computational details anymore.
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In [2], a syntactic completeness proof of a tableau method for deduction mod-
ulo (TaMeD) is given. Our semantic completeness proof sheds.

– We first recall in Sec. 2 the sequent calculus modulo as the setting of our
proof-search procedure.

– Then we define in Sec. 3 a new free-variable tableau calculus with constraints
as a basis for a systematic tableau construction algorithm upon which we
build a completeness proof. The need for a model construction forced us to
give this proof-search algorithm. This is an improvement over [2].

– Section 4 eventually presents this new semantic completeness proof. The use
of general semantic methods allows us to precisely give some categories of
rewrite systems for which the completeness theorem holds. It is an improve-
ment over both [2, 9] and [19]. The completeness proofs of the first two papers
assume that certain properties such as cut elimination in the sequent calculus
modulo are enjoyed by the considered rewrite systems, without describing
any possible candidate. More precise conditions than just cut elimination are
given in this paper. The classes of rewrite systems described in Sec. 4 also
subsumes those generated by the order condition of the completeness proof
of [19].

– We finally illustrate our systematic tableau procedure on an example in Sec.
5 and discuss further (mainly practical) improvements.

2 Deduction Modulo for First-Order Classical Logic

We present the sequent calculus modulo we use as a basis for the tableau method.
We consider first-order classical logic without equality where formulas are built
using atoms, connectors (∧,∨,¬,⇒) and quantifiers (∀, ∃). In the rest of the
paper, formulas are denoted by capital letters such as A,B, P,Q, ..., (multi)sets
of formulas by Γ,Δ, constants by a, b, c, ..., function symbols by f, g, h, ..., terms
by t, u, v, ..., variables by x, y, z, .., free variables by X,Y, Z, ... ; the usual sub-
stitution avoiding capture of x by t in P is denoted P [x := t]. A constraint is an
equation t ≈ u where t and u are terms to unify. An immediate subformula is
defined as usual : P (t) is an immediate subformula of ∀xP (x) for any t. Similarly,
A is an immediate subformula of A∧B, and so on. We consider confluent rewrite
systems (R) formed by term rewrite rules and propositional rewrite rules where
left members are atomic propositions. We use the single arrow for rewriting:
−→R is a single step, −→n

R n steps, −→�
R is the reflexive and transitive closure

of −→R. A↓R represents the normal form of A by a rewrite system R. P ≡R Q
if they have a common reduct.

A similar sequent calculus is presented in [9]. Therefore we will only exhibit a
representative fragment of the rules (see Fig. 1). Extending the transformations
(i.e. adding side conditions) to the whole set of rules of LK is not more difficult
than what we have in Fig. 1. Notice that the side condition is not a constraint:
it liberalizes the corresponding rule of LK.
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axiom if P ≡R Q
P �R Q

Γ, P �R Δ Γ �R Q, Δ
cut if P ≡R Q

Γ �R Δ

Γ, Q[t/x] �R Δ
∀-l if P ≡R ∀x Q

Γ, P �R Δ

Γ, P �R Δ Γ, Q �R Δ
∨-l if R ≡R P ∨ Q

Γ, R �R Δ

Fig. 1. Some inference rules of sequent calculus modulo

3 Tableaux Modulo Revisited

We introduce in this section a new version of the tableaux modulo of [2]. We
use constrained a form of constrained tableaux which borrows ideas from those
of [5, 6, 7, 13]. We represent tableaux as multisets of branches. A branch is thus
a multiset of formulas written Γ,Δ.... Γ, P denotes the multiset Γ ∪ {P}; T |Γ
stands for T ∪ {Γ}. A constrained tableau is a pair T · C of a tableau T and
a set of unification constraints C. A branch can be closed when two opposite
unifiable formulas can be found on it (the base case consists in having P and
¬P ). A tableau is closed when all its branches can be (simultaneously) closed,
i.e. there is a unifier closing all branches simultaneously.

Tableaux for Deduction Modulo. We present tableaux for deduction mod-
ulo as an extension of first-order classical tableaux. We define an alternate non-
destructive version which combines the usual tableau expansion rules (see [12, 18]
for details) on formulas — called α (conjunction), β (disjunction), γ (universal)
and δ (existential) — with a rule handling explicitly rewriting on terms and
propositions.. Our tableau calculus works more precisely on constrained labelled
formulas: every formula has an added label storing variables used in δ-rule for
skolemization and a local constraint store which keeps track of unification con-
straints produced by rewriting steps. Hence formulas are written P l

c where c is
the constraint and l is the label. Note that there are two type of constraints:
local constraints (attached to formulas) and global ones (attached to a tableau)
which interfere only in the case of the closure rule. We also assume that variables
of input formulas are renamed in order to avoid unification problems between
syntactically equal but semantically independent variables.

In a γ-rule, a globally fresh free variable is substituted for the universally
quantified variable x. This free variable is also added to the label of the formula.

In a δ-rule, the skolemization is done as follows: sko is a fresh Skolem function
symbol whose arguments are the variables in the label of the formula. This δ-rule
guarantees for example if we have the rewrite rule x∗0 −→R 0, the two equivalent
(with respect to the rewrite rules) formulas ∀x∃yP (0, y) and ∀x∃yP (x∗ 0, y) are
skolemized in the same way.

In the rw rule, we add a constraint to formulas resulting of rewriting steps. It
keeps track of the needed unification between the originating occurrence ω of a
rewritable formula in P (P|ω) and the left part of the applied rewrite rule (l) if
we are to use the rewritten formula (P [r]|ω) later in our tableau. There is still



170 R. Bonichon and O. Hermant

Γ1, β(P, Q)l

c
| ... | Γn

Γ1, β(P, Q)l

c
, P l

c
| Γ1, β(P, Q)l

c
, Ql

c
| ... | Γn

β
Γ1, α(P, Q)l

c
| ... | Γn

Γ1, α(P, Q)l

c
, P l

c
, Ql

c
| ... | Γn

α

Γ1, γ(x,P )l

c
| ... | Γn

Γ1, P (x := X)
l∪{X}

c , γ(x, P )l

c
| ... | Γn

γ
Γ1, δ(x, P )l

c
| ... | Γn

Γ1, P
l

c
[x:=sko(l)], δ(x, P )l

c
| ... | Γn

δ

Γ1, P
l

c
| ... | Γn · C

Γ1, P
l

c
, P l

K
[r]ω | ... | Γn · C

rw if l −→R r, and K = (c ∪ {P|ω ≈ l}

Γ1, P
l1
c1 ,¬P l2

c2 | ... | Γn · C

(Γ2 | ... | Γn) · C ∪ c1 ∪ c2 ∪ {P l1 ≈ P l2}
closure (	)

Fig. 2. Tableau modulo expansion and closure rules

no need to put the constraints globally as we are unable to guess if the formula
will be used in a closure rule. Note that no new variables are created during
rewriting in deduction modulo, so there is no risk of capture.

The closure rule erases the closable branch provided its constraints are unifi-
able. It is the usual binary closure rule. Note that the labels of P and ¬P need
not be same (this would be the case of P (X) and ¬P (a)), therefore we must unify
some subterms of the two formulas (this is denoted by P l1 ≈ P l2) and apply the
substitution to the whole tableau. The local formula constraints are transferred
to the global store in closure. In the global constraint store, syntactically equal
variables are semantically the same: what looked like possible separate branch
closure might be non unifiable globally due to rigid free-variables introduced in
the calculus.

There are some differences between TaMeD in [2] and these tableaux: TaMeD
combines in effect a normalization procedure (yielding a kind of disjunctive
normal form) of the formula which occurs before any application of extended
narrowing and branch closure rules. Our tableau calculus here mixes formula
decomposition (α, β, γ and δ rules) with closure and rewriting steps — and this
allows non-atomic closure. The extended closure rule with RE-unification of[2]
constraints is now a binary closure with first-order unification constraints as
R-unification is encoded in the application of rw. The rw rule rewriting propo-
sitions do not necessitate an immediate post-decomposition of the branch it is
applied on : for example, if we use P −→R Q ∧ R on the branch Γ, P , we keep
the rewritten form Γ,Q ∧R instead of requiring to immediately have Γ,Q,R .

The soundness theorem holds for the following notion of model, that is a
natural extension of the usual boolean model definition to deduction modulo:

Definition 1. A boolean model is said to be a model of a rewrite system R if
and only if for any propositions P ≡R Q, |P | = |Q|. |.| is then noted |.|R.

As usual, a boolean model is mainly a total interpretation function from propo-
sitions into {0, 1} satisfying the conditions of Def. 2. In the later, the term model
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will always mean a boolean model of the considered rewrite system R (clear
from context).
Theorem 1 (Soundness). If Γ has a model, then we can not derive the closed
tableau 3 from Γ using the rules of Fig. 2.

Proof. The proof is standard: we check by induction on the tableau derivation
that any tableau rooted at Γ , at least one branch remains true in the model. ��

Systematic Tableau Generation. We now define a systematic tableau proce-
dure which resembles the incremental closure of [13] as the first step towards our
semantic completeness proof. We must ensure that our strategy is fair, which is
now more complicated due to the addition of rewriting steps. We construct step
by step an approximation of a complete tableau (if Γ is not provable).

First, attach a boolean (of value true) to the input branch. Its value will
be used to alternatively use γ-rules or rw: ensuring completeness forces us to
use them infinitely many times while remaining fair. Two orderings are used
to select the formula to expand: on branches, B1 �B B2 if size(B1) ≤ size(B2)
where size(B) returns the number of formulas on B and on formulas on a given
branch B, �f is defined as α ≺f δ ≺f β ≺f rw ≺f γ if boolean(B) =true, and
α ≺f δ ≺f β ≺f γ ≺f rw otherwise. Now proceed as follows:
1. Tag every formula of the input branch as unused. If we apply α, β, δ: the

considered formula becomes used — to forbid the same expansion again
as in a destructive method — and the branch boolean is inherited by the
produced branch(es). In the case of rw for a given rewrite rule r ∈ R used on
formula P on branch B, P is tagged as used(r) to forbid applying twice the
same rewrite rule to it. Name b the boolean of the expanded branch, then
b← ¬boolean(B). In any case, produced formulas are unused.

2. (a) On each branch, generate from unifiable formulas on it the set of con-
straints which can close it. Take the intersection of these local sets to
get the global set of constraints which could simultaneously close the
tableau. If a unifier exist for the global store then return ’unsatisfiable’.
Otherwise if a branch can be closed without unification, remove it from
the tableau as in the closure rule (and its set of constraints is also
removed from the global set).

(b) Then select the smallest expandable branch (according to ≺B) and its
set S of smallest formulas according to ≺f. Apply the related expansion
rule on every unused (or unused(r) if we apply rw with r) formulas of S.
If we could not apply any expansion return ’satisfiable’, else go to 2a.

We do not rewrite formulas when we know (we check it) that we cannot unify
them with the left part of the rewrite rule. More generally we do not add in the
constraint stores provably non-unifiable terms.

4 Semantic Completeness

In this section, we prove that the systematic tableau procedure of Sec. 3 is
complete with respect to the models of Def. 1.
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We will need to define a model interpretation for all propositions, even those
that do not appear in the tableau. We also will need some conditions on R, since
the method cannot be complete for all confluent terminating rewrite systems, as
shown in [10, 16]. Two of them are presented in Sec. 4.6.

4.1 Preliminaries

Semi-valuations have first been defined by Schütte, and correspond to Hintikka
sets. The idea is that they correspond to open branches of the systematic tableau,
and this is the first step toward a model. Partial valuations are a bottom-up
extension of them. They differ from model interpretations by the fact that both
are partial functions.

Definition 2 (Semi-valuation(Partial valuation)). An interpretation is a
partial function V : P 
→ {0, 1}. It is called semi- (resp. partial) valuation iff:

– if V (¬P ) = 0 then (resp. iff) V (P ) = 1
– if V (¬P ) = 1 then (resp. iff) V (P ) = 0
– if V (P ∨Q) = 0 then (resp. iff) V (P ) = V (Q) = 0
– if V (P ∨Q) = 1 then (resp. iff) V (P ) = 1 or V (Q) = 1
– if V (P ∧Q) = 0 then (resp. iff) V (P ) = 0 or V (Q) = 0
– if V (P ∧Q) = 1 then (resp. iff) V (P ) = V (Q) = 1
– if V (P ⇒ Q) = 0 then (resp. iff) V (P ) = 1 and V (Q) = 0
– if V (P ⇒ Q) = 1 then (resp. iff) V (P ) = 0 or V (Q) = 1
– if V (∀xP ) = 0 then (resp. iff) for some ground term t, V (P [x := t]) = 0
– if V (∀xP ) = 1 then (resp. iff) for any ground term t, V (P [x := t]) = 1
– if V (∃xP ) = 0 then (resp. iff) for any ground term t, V (P [x := t]) = 0
– if V (∃xP ) = 1 then (resp. iff) for some ground term t, V (P [x := t]) = 1

Definition 3 (Semi-valuation in deduction modulo). A semi-valuation
(resp. partial valuation) V is said to be compatible with a rewrite system R
iff when P ≡R Q and V (P ) is defined, we have V (Q) = V (P ).

This definition is a natural extension to deduction modulo of the previous one.
The next four sections deal with the construction of a partial valuation in the
sense of Def. 3.

4.2 Defining a Semi-valuation from a Complete Branch of a Tableau

Because of the free variables, the construction of a semi-valuation from an open
complete branch is not so easy: their meaning is not determined once and for all,
and an open branch might be closed by some unifier θ. A tableau is non closable
when at any step n of our tableau construction no (finite) unifier θ can be found
such that all branches can be closed at the same time.

We have to generate a σ, that enumerates all γ-terms. Remark that if a
γ-formula P appears in a non closed branch of a complete tableau, then for
infinitely many fresh variables Xn, P [x := Xn] appears (the γ rule is infinitely
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repeated). Since in the open branch γ-formulas are countable, and free variables
are new when introduced, we define an enumeration of 〈γi, X

i
j〉, the couples of a

γ-formula (indexed by i) and its corresponding free variables (indexed by j). We
fix also an enumeration of the terms of the full language (including the Skolem
symbols introduced). Then, we define successive approximations of the needed
substitution σ:

– σ0 is the empty substitution.
– σn+1 = σn + 〈X in

jn
:= tjn〉

Section 3 describes a process to construct T0, ..., Tn, ... that represent succes-
sive approximations to a complete tableau, that is a tableau where all possible
rules have been applied. We supposed it non closable: hence for any n, there
exists some open branch B of Tn under σn. Moreover, we can choose this branch
such that for any further step of the systematic tableau procedure, it is never
closed by any σp.

Given a formula γ, a term t, for some step n of the systematic tableau gen-
eration, γ(t) appears on this branch, since it is also open under σn with n such
that t = tjn and γ = γin (from the enumeration).

We obtain a complete open branch under σ that possesses all the needed
properties, and we define our semi-valuation V :

– if a proposition Pc with free variables and constraints c appears on the
branch, and if σ satisfies c, set V (Pσ) = 1.

– if ¬Pc appear with constraints c, and if σ satisfies c, set V (Pσ) = 0.
– if the constraints are not satisfiable, drop the proposition.

It is easy to prove that all properties of Def. 2 for a semi-valuation hold: the
constraints are not modified by the application of any of the α-, β-, γ-, δ-rules so
if, say, an α-formula is interpreted by V , so are its two immediate subformulas.
The semi-valuation hereby defined is well defined. Forcing a proposition to have
two different interpretations, means that σ closes the branch: we cannot have
V (Pσ) �= V (P ′σ) for Pσ = P ′σ.

4.3 Basic Results on V

We must have that V is a semi-valuation for the rewrite system R. This is not
yet the case (think about A→ B, V (B) defined although V (A) is not defined),
so it has to be extended. We first need to prove some technical properties of V .

Our starting point is: the systematic tableau generation of Sec. 3 ensures that
for any atomic proposition, if P = Rσ appears, then each of its one-step reduct
Q = R′σ appear, since we exhaustively try to apply rewrite rules to any atomic
proposition, and if P → Q, σ unifies the constraints of R′.

Lemma 1. Let P0, Pn atomic formulas such that V (P0) is defined and P0 →1

P1 →1 . . . →1 Pn →1 Pn+1 (Pn+1 atomic or not), with →1 the one-step reduct
relation. For any i ≤ n+ 1, V (Pi) is defined.
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Proof. By induction on n. We first show that the one-step reduct P1 is inter-
preted under V . The process of Sec. 3 tries to one-step rewrite any literal with all
possible rewrite rules. So if P0 = Rσ →1 P1, with Rc appearing on the tableau,
there exists by construction a R′

c′ such that P ′ = R′σ and the associated con-
straints c′ are satisfied by σ (since σ satisfies c and P → P ′).

Hence V (P1) is defined. If n = 0 we are done, else we apply the induction
hypothesis on P1 →1 ...→1 Pn →1 Pn+1. ��
Lemma 2. Let P,Q be two propositions such that P ≡R Q. V (P ) = V (Q) if
they are defined.

Proof. By confluence there exists a proposition R such that P →n R m ← Q.
We prove Lemma 2 by induction on the pair 〈n+m,min(#P,#Q)〉, where #P
stands for P ’s number of logical connectors.

If n = m = 0, Q = P = R and the result is trivial.
If P or Q is an atomic proposition (suppose it is P , without loss of generality),

then P →p P ′ →1 R′ →q R with P ′ atomic. By Lemma 1, V (R′) is defined. We
use induction hypothesis on R′ and Q, since p2 < n.

If both P and Q are compound propositions, remember that V is a semi-
valuation and apply induction hypothesis.

For instance, if P = ∀xS, confluence implies Q = ∀xS′, and R = ∀xS′′.
Suppose that V (P ) = 1 and V (Q) = 0. Then there exists a t such that V (S′[x :=
t]) = 0. But V (S[x := t]) = 1 by definition 2. We find a contradiction by applying
induction hypothesis on S[x := t] →n S′′[x := t]m ← S′[x := t] ��

4.4 Extending V into a Semi-valuation for R
Lemma 2 is not sufficient: to fit with Def. 3 we need to ensure that V (Q) is defined
whenever V (P ) is. So we extend the semi-valuation V into a semi-valuation V
for R. Fix an enumeration Pn of the propositions of the language, such that a
proposition Q is seen infinitely many times (it boils down to an enumeration of
〈Q,n〉 where Q describes the propositions and n describes N).

Set V0 = V . Set Vn+1 = Vn and extend it with Pn if Vn(Pn) is not defined:

1. set Vn+1(Pn) = Vn(Q) if for some Q, Q ≡R Pn and Vn(Q) is defined.
2. if Pn is a compound proposition, look at the interpretation under Vn of its

immediate subformulas. If we have enough information, then set Vn+1(Pn)
accordingly. For instance, if Pn = ∀xR and for any t, Vn(R[x := t]) = 1, set
Vn+1(Pn) = 1. Conversely if there is at least one t such that Vn(R[x := t]) =
0, set Vn+1(Pn) = 0. Even if for some t′,Vn(R[x := t′]) is not defined.

We set V as the limit of the Vn. V(P ) = Vn(P ), if it is defined for some n. We do
not know anything yet about V (a compound proposition can be defined by the
first rule). That’s why we need the following technical lemmas, where we adopt
the convention n− 1 = n if n = 0.

Lemma 3. Let n an integer, P an atomic formula, suppose Vn(P ) defined. Then
there exist Q such that P ≡R Q and either V (Q) is defined, or Q is compound
and Vn−1(Q) is defined. In any case all interpretations are equal.
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Proof. By induction on n. If n = 0, V0 = V and we are done. If Vn−1(P ) is
defined, apply induction hypothesis. Else, since P is atomic, Vn(P ) is equal to
Vn−1(P ′) for some P ′ ≡R P . If P ′ is a compound proposition, take Q = P ′. If it
is an atomic formula, then apply the induction hypothesis on Vn−1(P ′), we find
a fitting Q ≡R P

′ ≡R P . ��
Corollary 1. Let P an atomic formula, such that Vn(P ) is defined, and that
there exists a compound formula Q such that P ≡R Q.

Then there exists a compound formula R such that P ≡R R and Vn−1(R) is
defined and equal to Vn(P ).

Proof. Apply Lemma 3. If we obtain an atomic S ≡R P such that V (S) is
defined, we use confluence and apply Lemma 1 on the following reduction chain,
obtained by confluence:

S →∗ Sq →1 R→∗ Q↓
such that R is the first non-atomic proposition (Q ↓ is not atomic). From
Lemma 3, Lemma 2, and since every Vp+1 is a conservative extension of Vp,
we get:

Vn(P ) = V (S) = V (R) = Vn−1(R)

Else, S is already compound and all interpretations are equal. ��
Lemma 4. Let P ≡R Q be two propositions. Suppose that V(P ) is defined.
Then V(Q) = V(P ).

Proof. Letm the least integer for which Vm(P ) or Vm(Q) is defined, and suppose
without loss of generality that Vm(Q) is defined.

If m = 0 and V0(P ) is also defined, the result comes from Lemma 2.
Else, since the enumeration has infinite repetition, P is considered at some

later step n. And Vn(P ) is defined by the first extension rule, since the conditions
for its application hold. Therefore, V(P ) = Vn(P ) = Vm(Q) = V(Q). ��
Lemma 5. V is a semi-valuation.

Proof. We prove by induction that if a (compound) proposition P is defined at
step n, then enough of its immediate subformulas are interpreted in V so as to
ensure that V is a semi-valuation.

If n = 0, then this is because V is a semi-valuation.
If P is defined at step n by the second extension rule: it is immediate.
If P is defined at step n by the first rule, let Q be the proposition such that

P ≡R Q and Vn(P ) is defined equal to Vn−1(Q). Corollary 1 allows us to choose
Q non-atomic. By confluence they have the same main connector. By induction
hypothesis, enough immediate subformulas of Q receive an interpretation under
V . Let Ri those subformulas and R′

i their counterparts in P . We have Ri ≡R R
′
i.

Applying Lemma 4, we get V(Ri) = V(R′
i), and therefore enough subformulas

of P are interpreted in V . ��
Lemma 6. V is a semi-valuation for the rewrite system R.

Proof. This is the combination of Lemmas 4 and 5. ��
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4.5 Extending a Semi-valuation into a Partial Valuation

V is not a partial valuation for R. Indeed, suppose V (∀x (A(x) ∧ B(x))) is not
defined and that for any t, V (A(t)) = V (B(t)) = 1. We would like to have
V(∀x Q) = 1, since V(A(t) ∧ B(t)) = 1 for any t. But we can find no n such
that Vn(A(t)∧B(t)) = 1 for any t, therefore we can never have Vn+1(∀x (A(x)∧
B(x))) = 1. So we need to extend V as in section 4.4. But no finite step of this
process is sufficient.

We define Ṽ as the least fixpoint of this semi-valuation extension operation:
this is possible, since we can define a partial order on the semi-valuations: V ≺ V ′

if V interprets less formulas than V ′, and if V ′ is conservative over V .
It is then immediate to prove the following lemma:

Lemma 7. Ṽ is a partial valuation for R and agrees with V .

Proof. Ṽ is a semi-valuation for R by construction (the extension operation
respects those properties). It is also a partial valuation: if we know enough
information about the subformulas of Q, then the extension operation sets the
interpretation of Q. Since Ṽ is its own extension, Ṽ (Q) is defined. ��

4.6 Transforming a Partial Valuation into a Model for R
We prove the following theorem:

Theorem 2 (Completeness). Let R a terminating confluent rewrite system,
and Γ a set of propositions. If the systematic tableau procedure of Sec. 3 rooted
at Γ does not terminate, then Γ has a model, under both conditions below.

In usual first-order logic, once one has a semi-valuation, one ends the complete-
ness proof very easily: we extend the semi-valuation into a model by defining
randomly the truth value of uninterpreted atoms by V . This is no more the case
in deduction modulo, since we have to ensure that the model we construct is a
model of R. At this point, we must introduce some more conditions on R, since
model construction differ with respect to those conditions.

An Order Condition. has been introduced by Stuber in [19] and used in
[15, 16] for proving semantic completeness theorems (of the resolution ENAR
and the cut-free sequent calculus). We consider a confluent rewrite system and
a well-founded order ≺ such that:

– if P → Q then Q ≺ P .
– if A is a subformula of B then A ≺ B.

The domain of the model is the set of the ground terms appearing in the partial
valuation Ṽ constructed in the previous section. And we construct the interpre-
tation by induction on the order:

– if A is a normal atom, set |A|R = Ṽ (A), if defined. Else set |A|R arbitrarily.
– if A is not a normal atom, set |A|R = |A↓ |R.
– if P is a compound proposition, set |P |R from the interpretation of its im-

mediate subformulas.
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This definition is well-founded. We prove as in [15] the following results (in this
order):

– P 
→ |P |R defines a model interpretation.
– |P |R = |P↓ |R.
– P 
→ |P |R defines a model of R.
– P 
→ |P |R is a conservative extension of Ṽ .

Turning back to the proof of Theorem 2, in the model defined, |P |R = 1, for
any P ∈ Γ . The tableau method is thus proved complete for all rewrite systems
R that verifies this order condition.

A Positivity Condition. We now suppose that the rewrite system R, besides
confluence and termination, verifies a positivity condition: all propositional
rewrite rules l → r ∈ R are such that all atoms occurring in r occur positively:
they occur under an even times of negations and as left member of an implica-
tion. r will be called a positive formula. For instance, the following rewrite rule
respects the positivity condition: P (0) → ∀xP (x)

The domain of the model is the ground terms. We define the interpretation
rather differently:

– if A is an atom, and if Ṽ (A) is defined, set |A|R = Ṽ (A).
– if A is an atom, and if Ṽ (A) is not defined, set |A|R = 1.
– if P is a compound proposition, set |P |R accordingly to Def. 2.

Notice that we defined the interpretation of even non-normal atoms, disregarding
rewrite rules (for now).

Lemma 8. P 
→ |P |R defines a model interpretation. Let P be a proposition. If
Ṽ (P ), is defined, then |P |R = Ṽ (P ).

Proof. The first part of the lemma is by construction of the interpretation. The
second part is proved by induction on the structure of P , using the fact that Ṽ
is a partial valuation (Def. 2). ��

So if any tableau rooted at Γ cannot be closed, Γ has a boolean model. But we
have not yet spoken about a needed property of the interpretation | |R: it has
to be a model of R.

If P ≡R Q, and Ṽ (P ) is defined, Ṽ being a partial valuation, and by Lemma 8:

|P |R = Ṽ (P ) = Ṽ (Q) = |Q|R

The problem arises from the propositions that are not defined by the partial
valuation Ṽ . We do not know anything, a priori.

We can restrain ourselves to a simpler subcase: consider only P → Q instead
of its full reflexive-transitive-symmetric closure ≡R. Also, considering P atomic
is not harmful since the rewriting steps proceed always on atoms.

Now, remember that R is a positive rewrite system. Hence Q is a positive
proposition (noted Q+). The crucial point was to define the interpretation |A|R
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of an non-valued atom under Ṽ to be the same for all atoms (whatever: we could
have set 0 or 1). Since Q+ is positive, the intuition is that since its atoms will
also be interpreted by 1, Q+ itself will be interpreted by 1.

We however have to be very careful: first, it could have been that Ṽ (Q+) is
defined, and set to 0. Fortunately, Ṽ is a partial valuation, hence if Ṽ (Q) is
defined, so should be Ṽ (P ). But it still might be that some subformulas of Q
are interpreted under Ṽ . We have to generalize a bit the result, in order to be
able to prove it:

Lemma 9. Let P+ a positive and Q− a negative (¬Q− is positive) proposition
that does not receive an interpretation under Ṽ . Then |P+|R = 1 and |Q−|R = 0.

Proof. By induction over the proposition structure. The base case (P atomic) is
immediate from the definition of P 
→ |P |R. There is no base case for Q− since
an atom is positive.

We detail the case of an universally quantified proposition. If P+ = ∀xR+. Let
t be a term. Since Ṽ is a partial valuation, it can not be that Ṽ (R+[x := t]) = 0,
else Ṽ (P ) would have been defined. Hence, |R+[x := t]|R = 1 either by Lemma
8 (if Ṽ (R+[x := t]) = 1), or by induction hypothesis (if Ṽ (R+[x := t]) is not
defined). Since it is true for any term t, we conclude that |P |R = 1.

If Q− = ∀xR−. Since Ṽ is a partial valuation, it can not be that Ṽ (R−[x :=
t]) = 1 for any ground term t. By hypothesis we can find no t such that
Ṽ (R−[x := t]) = 0. Hence, there is a t0 such that Ṽ (R−[x := t0]) is not de-
fined, and we conclude by induction hypothesis that |R−[x := t0]|R = 0. Hence
|Q−|R = 0. ��

We then can easily prove the lemma:

Lemma 10. The interpretation P 
→ |P |R defines a model for R.

Proof. Let A →1 P . Either Ṽ (A) is defined, and we conclude by Lemma 8, or
it is not, and by the preceding lemma we have that |A|R = |P |R = 1. We then
extend it to compound propositions by structural induction. At last, we extend
it by induction on the number of rewrite steps to the relation ≡R. ��

The tableau method is then proved complete for the positive rewrite systems.

5 Example

We prove 2 = 2 ⇒ ∃x (x+ x = 2) where = has no special property. Insignificant
formulas are omitted but we list every applied inference. Let R be the following
fragment of Peano’s arithmetic (see [11] for arithmetic as a theory modulo):

x+ 0 −→R 0 (1)
x+ s(y) −→R s(x+ y) (2)

Notice that in the first rewrite step, rule 1 is not applied, since 0 trivially does
not unify with 2 = s(s(0)). Notice also that after that rewrite step, we could
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have replaced X1 by s(Y1) yielding a faster solution. As a side comment, the two
formulas under the fourth horizontal bar are produced from the formula over it
using respectively rw(1) and rw(2).

2 = 2, ∀x(x+ x �= 2)
γ

X +X �= 2
rw(2)

s(X1 + Y1) �= 2 · C := {X ≈ X1, X ≈ s(Y1)} γ
X ′ +X ′ �= 2

rw(1),rw(2)
s(X2) �= 2 · C′ := C ∪ {X1 ≈ X2,Y1 ≈ 0}

s(s(X3 + Y3)) �= 2 · C′′ := C ∪ {X1 ≈ X3, Y1 ≈ s(Y3)}
closure(C′)3 · {X ≈ 1}

6 Conclusion and Further Work

We have given a new (more liberal) formulation of tableaux for deduction mod-
ulo which is better suited to automated theorem proving. For example, it does
not force atomic closure anymore, which was done in [2] where branches were
fully expanded before eventually applying closure. Moreover, rewriting is not a
separated process anymore and can now occur after any tableau expansion (and
not after all expansions have been done). We have shown its semantic complete-
ness through a systematic generation and detailed the model construction for
specific classes of rewrite systems.

Our systematic tableau construction can be seen as the first step towards an
effective (but not efficient) implementation of the method. Many improvements
are to be made for it to be effective.

For example, labels are an explicit way to store arguments for Skolem func-
tions, but they may contain variables which are not present in the formula we
skolemize. Moreover, if an existential quantifier is inside a universal one (as in
the formula ∀x ∃y P (x, y)), we generate a new Skolem symbol each time we use
δ after a new γ although we could simply use the same one over and over. This
inefficiency could be solved either by removing the rule and preskolemizing the
input formula or by using one of the improved δ-rules: δ+([14]) (or better δ+

+

([1]) or one of the other ones surveyed in [4]. Our completeness proof should not
be changed by the use of one the two δ+ rules.

Then, the δ-rule in a calculus with free-variables complicates any syntactic
soundness proofs with respect to sequent calculus modulo, especially cut-free.
Indeed, we can no more ensure the freshness condition. So, we are not able to
translate δ-rules into deduction steps in cut-free sequent calculus modulo. The
workaround should be a Skolem theorem for cut-free sequent calculus modulo,
that is yet to be investigated. The link between ground tableaux and a construc-
tive cut elimination theorem is well-known in classical logic, and studied in the
intuitionistic frame in [3].

The completeness proof is not constructive at only one point: we need König’s
lemma to identify an infinite branch. Such a branch is useful only because we



180 R. Bonichon and O. Hermant

consider boolean models, where truth and falsity are split by construction. The
workaround is well-known ([17]): we should consider models base only on truth:
¬P is true means that if P is true, then every proposition is true in the model.
So, reconsidering the semi-valuation definition from this point of view, we believe
that this work could be shifted in a perfectly constructive framework.

Adding rewrite rules to the tableau already complicates the completeness
proof even with such conditions as confluence or termination of the rewrite sys-
tem. We proved this for an order condition and a positivity condition. In [3, 15]
some more conditions are studied from the point of view of semantic complete-
ness (of cut-free sequent calculus and intuitionistic tableaux) such as a mix of the
two previous conditions or the formulation of HOL in first-order logic modulo
given in [10]. Those results should be easily extendable to the study of tableau
completeness, since we already have a partial valuation.

Concerning deduction modulo, the restriction to atomicity of the left-hand
side of propositional rewrite rules can sometimes be relaxed as shown in [8]
where the (first-order) sequent calculus is presented as (non-atomic) proposi-
tional rewrite rules: the system obtained is similar to a tableau calculus (no
surprise here) and it exhibits the fact that the real deductive process lies within
the quantifiers. Sadly, no criterion exists regarding the safe introduction of non-
atomic propositional rewrite rules: this remains yet another area to be explored,
which could be interesting regarding the implementation of proof-search proce-
dures modulo.
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Abstract. We discuss an adaptation of the technique of saturation up
to redundancy, as introduced by Bachmair and Ganzinger [1], to tableau
and sequent calculi for classical first-order logic. This technique can be
used to easily show the completeness of optimized calculi that contain de-
structive rules e.g. for simplification, rewriting with equalities, etc., which
is not easily done with a standard Hintikka-style completeness proof. The
notions are first introduced for Smullyan-style ground tableaux, and then
extended to constrained formula free-variable tableaux.

1 Introduction

The usual Hintikka-style completeness proof for tableau or sequent calculi re-
quires branches to be saturated. This means that for any formula appearing on
a branch and any inference possible on that formula, all formulae introduced by
that inference on at least one of the created branches also appear on the branch.

While this condition poses no problem in the standard calculi for classical
logic, more complicated calculi might allow several different inferences on the
same formula. In that case, none of these inferences may in general delete the
original formula, since it has to remain available for the other inferences to
achieve saturation.

In many cases, destructive rules would make a calculus more efficient. Exam-
ples are rewriting with equalities [5], type reasoning [7], as well as various domain
specific calculi, see e.g. [3], which all use non-destructive rules. The completeness
of destructive variants of these calculi cannot be shown using a Hintikka-style
proof. Sometimes, proof transformation techniques can be used to cope with
destructiveness, see e.g. [6], but these require plenty of creativity and are very
specific to the calculus at hand.

In the context of resolution theorem proving, Bachmair and Ganzinger have
established the admirable framework of saturation up to redundancy, see e.g. [1].
The idea is that a clause can be deleted from a clause set if it is redundant with
respect to the other clauses. Precise definitions are given for what constitutes
a valid redundancy criterion, and then completeness is shown for all inference
systems that obey certain restrictions.

In this paper, the results of Bachmair and Ganzinger are transferred to the
setting of tableau and sequent calculi for classical first-order logic. After intro-
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ducing in Sect. 2 some basic notions about the type of calculi we are going to
consider, Sect. 3 presents notions of redundancy and a generic completeness the-
orem for tableaux. In the next two sections, the technique is demonstrated on
two simple calculi. We then extend our notions to free variable calculi in Sect. 6.
This is again followed by a case study, before we conclude the paper in Sect. 8.

2 Semi-sequent Calculi

We simplify our presentation by considering only semi-sequent calculi. A semi-
sequent calculus is like a sequent calculus in which the right hand side, the
succedent, of every sequent is empty. Such calculi are also known as block tableau
[8] calculi.

Definition 1. A semi-sequent is a set of formulae written φ1, . . . , φn 	. With
the notation φ1, . . . , φn, Γ 	, we mean a semi-sequent that consists of the set of
formulae {φ1, . . . , φn} ∪ Γ .

Definition 2. A tableau for a semi-sequent calculus is a tree where each node
is labeled with a semi-sequent.

A derivation consists of a sequence of tableaux, each of which is constructed
from the previous one through the application of an inference on one of the
leaves. The first tableau consists of only the root node, which is labeled with the
initial semi-sequent. A derivation for a formula φ is a derivation with initial
semi-sequent φ 	.

A semi-sequent is called closed if it contains ⊥, the false formula, otherwise
it is called open. A tableau is called closed, if the semi-sequents in all leaves are
closed.

The general form of an inference in a semi-sequent calculus is

φ11, . . . , φ1m1 , Γ 	 · · · φn1, . . . , φnmn , Γ 	
φ01, . . . , φ0m0 , Γ 	

We refer to the upper semi-sequents as premises and the lower one as conclusion
of the inference. One of the formulae in the conclusion of every inference is
identified and called the main formula of the conclusion, the others are the side
formulae.

Application of such an inference requires all formulae φ01, . . . , φ0m0 of the
conclusion to be present in a leaf semi-sequent. The tree is then expanded by
appending n children to the leaf containing the modified sequents given by the
premises.1

Given a finite or infinite derivation (Ti)i∈N, we can easily define its limit T ∞,
which may in general be an infinite tree. This possibly infinite tree consists of
1 It may be a bit confusing that proof construction starts from the conclusion and adds

more premises, but this is the common terminology in sequent calculi. A possible
reading is “to conclude that Γ0 is unsatisfiable, we have to show that Γ1 to Γn are
unsatisfiable.”
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possibly infinitely many possibly infinite branches, which again are sequences
(Γi)i∈N of semi-sequents. While each tableau in the derivation is contained in
each of its successors, this is not necessarily the case for the semi-sequents on a
tableau branch: inferences might remove formulae from semi-sequents. Still, one
can form a limit semi-sequent,

Γ∞ :=
⋃
i∈N

⋂
j≥i

Γj

consisting of all persistent formulae on the branch.

3 Redundancy

The definitions, lemmas and proofs in this section follow those of [1] very closely.
The main difference is that tableaux and sequent proofs can split into several
branches, which adds a quantifier to most of the notions and requires deciding
whether something should hold for all formulae in one of the new goals or for one
formula in each of the goals, etc. The other difference is that the presentation
is adapted to better fit the style in which tableau/sequent calculi are usually
presented.

We start with a very general notion of redundancy criterion:

Definition 3. A redundancy criterion is a pair (RF ,RI) of mappings from sets
of formulae to sets of formulae, resp. sets of inferences, such that for all sets of
formulae Γ and Γ ′:

(R1) if Γ ⊆ Γ ′ then RF (Γ ) ⊆ RF (Γ ′), and RI(Γ ) ⊆ RI(Γ ′).
(R2) if Γ ′ ⊆ RF (Γ ) then RF (Γ ) ⊆ RF (Γ \ Γ ′), and RI(Γ ) ⊆ RI(Γ \ Γ ′).
(R3) if Γ is unsatisfiable, then so is Γ \ RF (Γ ).

The criterion is called effective if, in addition,

(R4) an inference is in RI(Γ ), whenever it has at least one premise introducing
only formulae P = {φk1, . . . φkmk

} with P ⊆ Γ ∪ RF (Γ ).

The formulae, resp. inferences in RF (Γ ) resp. RI(Γ ) are called redundant with
respect to Γ .

For an effective redundancy criterion, any inference is redundant that has at least
one premise where no new formula is introduced. This means that inferences that
destroy regularity are redundant.

In contrast to resolution calculi, sequent calculi are usually written in such
a way that an inference can simultaneously add new formulae and remove old
ones that have become redundant. We therefore introduce the following notion:

Definition 4. A calculus conforms to a redundancy criterion, if its inferences
remove formulae from a branch only if they are redundant with respect to the
formulae in the resulting semi-sequent.
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The following two Lemmas are taken almost verbatim from [1], where their proofs
can be found.

Lemma 1. Let (Γi)i∈N be a branch of some limit derivation in a conforming
calculus. Then RF (

⋃
i Γi) ⊆ RF (Γ∞), and RI(

⋃
i Γi) ⊆ RI(Γ∞).

The next lemma is slightly different from the resolution setting, in that the im-
plication holds in only one direction, due to the splitting into several branches.

Lemma 2. Let (Γi)i∈N be a branch of some limit derivation in a conforming
calculus. If Γ∞ is satisfiable, then also Γ0 is satisfiable.

We now define saturation up to redundancy which is what a derivation should
approach on each branch.

Definition 5. A set of formulae Γ is saturated up to redundancy with respect
to a given calculus and redundancy criterion, if all inferences from formulae in
Γ \ RF (Γ ) are in RI(Γ ).

A tableau T is saturated up to redundancy with respect to a given calculus
and redundancy criterion if all its limit branches Γ∞ are saturated.

While saturation is desired for limit tableaux, the following notion gives a better
idea of how a theorem prover might achieve it.

Definition 6. A derivation (Ti)i∈N in a calculus that conforms to an effective
redundancy criterion is called fair if for every limit branch (Γi)i∈N of T ∞, and
any non-redundant inference possible on non-redundant formulae in Γ∞, all for-
mulae of at least one of the premises of the inference are either in

⋃
i Γi or

redundant in
⋃

i Γi.

Theorem 1. If a derivation in a calculus that conforms to an effective redun-
dancy criterion is fair, then the limit tableau it produces is saturated.

Proof. Let γ be an inference from non-redundant formulae of some limit-branch
Γ∞ of a fair derivation. Due to fairness, for at least one premise produced by γ,
P ⊆
⋃

i Γi ∪RF (
⋃

i Γi), where P are the formulae γ introduces on that premise.
According to (R4), γ is redundant in

⋃
i Γi, and due to Lemma 1 also in Γ∞. ��

We will now make our discussion more concrete by defining a standard redun-
dancy criterion which is sufficient to prove completeness of most calculi. We will
prove in Theorems 2 and 3 that this standard redundancy criterion is indeed an
effective redundancy criterion according to Def. 3 under certain conditions. To
define the criterion, we require a fixed Noetherian order � on formulae. We place
the restriction on this ordering that ⊥ must be smaller than all other formulae.

Definition 7. The standard redundancy criterion is defined as follows: A for-
mula φ is redundant with respect to a set of formulae Γ , iff there are formulae
φ1, . . . , φn ∈ Γ , such that φ1, . . . , φn |= φ and φ � φi for i = 1, . . . , n.

An inference with main formula φ and side formulae φ1, . . . φn is redundant
w.r.t. a set of formulae Γ , iff it has one premise such that for all formulae
ξ introduced in that premise, there are formulae ψ1, . . . , ψm ∈ Γ , such that
ψ1, . . . , ψm, φ1, . . . , φn |= ξ and φ � ψi for i = 1, . . . ,m.



186 M. Giese

Theorem 2. The standard redundancy criterion of Def. 7 is indeed a redun-
dancy criterion according to Def. 3.

Proof. Property (R1) follows directly from Def. 7. For property (R2), if φ ∈
RF (Γ ), consider all finite sets Γ0 ⊆ Γ of formulae smaller than φ which imply
φ. Every finite set can be considered a multiset, so they can be ordered according
to the multiset extension of �. Take a minimal such set. No element of Γ0 can be
redundant in Γ , since otherwise it could be replaced by some even smaller ele-
ments of Γ , contradicting the minimality of Γ0. Therefore Γ0 ⊆ Γ \RF(Γ ), which
means that φ ∈ RF (Γ \RF(Γ )), and since this holds for arbitrary redundant φ,

RF (Γ ) ⊆ RF (Γ \ RF (Γ )) (∗)

To show the RF part of (R2), let Γ ′ ⊆ RF (Γ ). This implies that Γ \ RF(Γ ) ⊆
Γ \Γ ′. From (R1) we get RF (Γ \RF (Γ )) ⊆ RF (Γ \Γ ′), and together with (∗),
RF (Γ ) ⊆ RF (Γ \ Γ ′). For the RI part of (R2), we consider a premise where
every new formula ξ is implied by the side formulae and some formulae smaller
than φ. The same argument as for RF can be applied to each of these ξ.

For (R3), we just showed that every redundant formula φ ∈ RF (Γ ) is implied
by some non-redundant ones. Therefore Γ \ RF (Γ ) |= RF (Γ ), from which (R3)
follows. ��
No inference in a calculus conforming to this redundancy criterion can remove
⊥ from a semi-sequent, since ⊥, as the smallest formula, is not redundant with
respect to any set of formulae. In other words, the literal ⊥ is always persistent.
Under the following restriction, the standard redundancy criterion is effective:

Definition 8. A calculus is called reductive if all new formulae introduced by
an inference are smaller than the main formula of the inference.

Theorem 3. The standard redundancy criterion is an effective redundancy cri-
terion for any reductive calculus.

Proof. Let an inference with main formula φ introduce a formula ξ ∈ Γ ∪RF (Γ )
on some premise. In a reductive calculus, φ � ξ. If ξ ∈ Γ , then ξ is itself a
formula smaller than φ which implies ξ. If ξ ∈ RF (Γ ), then ξ is implied by
formulae in Γ which are smaller than ξ and therefore also smaller than φ. If
this is the case for all formulae introduced in one premise of the inference, that
inference is redundant according to Def. 7. ��
For the following concept, we assume a fixed model functor I, which maps any
saturated2 set of formulae Γ that does not contain ⊥ to a model I(Γ ), as well
as a fixed Noetherian order � on formulae.

Definition 9. Let Γ be saturated up to redundancy with respect to some re-
dundancy criterion. A counterexample for I(Γ ) in Γ is a formula φ ∈ Γ with
I(Γ ) �|= φ. Since � is Noetherian, if there is a counterexample for I(Γ ) in Γ ,
then there is also a minimal one.
2 This is a slight enhancement to the presentation of Bachmair and Ganzinger, who

require the model functor to be defined on any (multi-)set. Knowing that the set is
saturated can make it easier to define a suitable model in some cases.
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A calculus has the counterexample reduction property, if for any saturated
Γ not containing ⊥ and minimal counterexample φ, the calculus permits an
inference

φ11, . . . , φ1m1 , Γ0 	 · · · φn1, . . . , φnmn , Γ0 	
φ, φ01, . . . , φ0m0 , Γ0 	

with main formula φ where Γ = {φ, φ01, . . . , φ0m0} ∪ Γ0 such that I(Γ ) satisfies
all side formulae, i.e. I(Γ ) |= φ01, . . . , φ0m0 , and each of the premises contains
an even smaller counterexample φiki , i.e. I(Γ ) �|= φiki and φ � φiki .

The following lemma is similar in purpose to the usual ‘model lemma’ in a
Hintikka-style completeness proof.

Lemma 3. Given a calculus that

– conforms to the standard redundancy criterion, and
– is reductive, and
– has the counterexample reduction property,

any set of formulae Γ that is saturated up to redundancy w.r.t. that calculus and
the standard redundancy criterion, and that does not contain ⊥, is satisfiable,
specifically, I(Γ ) |= Γ .

Proof. If the model I(Γ ) is not a model for Γ , then Γ contains a minimal coun-
terexample φ. This φ cannot be redundant w.r.t. Γ since it would otherwise have
to be a logical consequence of formulae smaller than φ in Γ , and all such formu-
lae are satisfied by I(Γ ). Since the calculus has the counterexample reduction
property, there is an inference with main formula φ, and I(Γ ) satisfying all side
formulae φ1, . . . , φn, which produces a smaller counterexample φ′ on each new
premise. Since Γ is saturated, this inference must be redundant. This means
that the inference has one premise, such that for the smaller counterexample
φ′ in that premise (like for all other introduced formulae), there are formulae
ψ1, . . . , ψm ∈ Γ , all smaller than φ, with ψ1, . . . , ψm, φ1, . . . , φn |= φ′. Since the
ψi are smaller than φ, they too are valid in I(Γ ), and so I(Γ ) |= φ′, so φ′ cannot
be a counterexample after all. We conclude that I(Γ ) is a model for Γ . ��

Theorem 4. If a calculus

– conforms to the standard redundancy criterion, and
– is reductive, and
– has the counterexample reduction property, then

any fair derivation for an unsatisfiable formula φ contains a closed tableau.

Proof. Assume that there is a fair derivation T0, T1, T2, . . . with a limit T ∞,
where none of the Ti is closed. T ∞ has at least one branch (Γi)i∈N that does
not contain ⊥. For assume that all limit branches contain ⊥. These persistent
formulae were introduced by some inferences in the sequence (Ti). Make a new
tableau T ′ by cutting off every branch below the introduction of a ⊥ literal.
Then T ′ has only branches of finite length and is finitely branching. Thus, by
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König’s Lemma, T ′ must be a finite closed tableau for φ. One of the tableaux Ti

must contain T ′ as initial sub-tableau, and thus Ti is closed, contradicting the
assumption that there is no closed tableau in the derivation.

Now consider such an open limit branch (Γi)i∈N with persistent formulae
Γ∞ �& ⊥. Due to fairness, Γ∞ is saturated. Lemma 3 tells us that Γ∞ is satisfi-
able, and due to Lemma 2, also the initial sequent Γ0 and with it φ is satisfiable,
contradicting our assumptions. ��

4 Case Study: Smullyan Style NNF Tableaux

We will start by studying a familiar calculus, namely a semi-sequent calculus
for first-order formulae in negation normal form (NNF). Completeness of this
calculus can easily be shown with a Hintikka-style proof, but it is also a good
introductory example for our new technique.

α
φ, ψ, Γ 	
φ ∧ ψ, Γ 	

β
φ, Γ 	 ψ, Γ 	
φ ∨ ψ, Γ 	

γ
[x/t]φ, ∀x.φ, Γ 	

∀x.φ, Γ 	
for any ground term t

δ
[x/c]φ, Γ 	
∃x.φ, Γ 	

for some new constant c

close
⊥ 	

L,¬L, Γ 	
In the close rule, we consider ¬L to be the main formula, and L a side

formula, since ¬L is always larger than ⊥. For the model functor, we take the
set of all ground terms as domain, and we define that I(Γ ) |= L exactly for
positive literals L ∈ Γ . We let � order formulae by the number of boolean
connectives and quantifiers appearing.

The calculus conforms to the standard redundancy criterion, since for each
of the rules, the formulae deleted from the semi-sequent are clearly implied by
the remaining ones. In particular for the close rule, the false formula ⊥ implies
any other formula. For the γ rule, the new formula [x/t]φ does not imply the
original ∀x.φ, but this is not required, since the original formula is kept.

The calculus is also reductive, since all rules introduce only formulae smaller
than the respective main formula. Moreover, the calculus has the counterexample
reduction property. For assume that I(Γ ) �|= φ for some φ ∈ Γ . If φ = φ1 ∧ φ2

is a conjunction, this means that I(Γ ) does not satisfy one of the conjuncts,
w.l.o.g. φ1. An α inference on φ is possible which produces φ1, which is smaller
than φ.

If φ = φ1 ∨ φ2 is a disjunction, then I(Γ ) fails to satisfy both disjuncts,
and therefore each of the premises produced by the β rule contains a smaller
counterexample.

In the case of a universally quantified formula, φ = ∀x.φ1, there has to be some
term t such that I(Γ ) �|= [x/t]φ1. The γ rule can be used to introduce [x/t]φ1,
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and clearly ∀x.φ1 � [x/t]φ1, so we have reduced the counterexample. For an
existentially quantified formula, I(Γ ) �|= ∃x.φ1, in particular I(Γ ) �|= [x/c]φ1, so
[x/c]φ1 is a smaller counterexample.
φ cannot be a positive literal, since I(Γ ) is defined to satisfy all positive

literals. Finally, if φ = ¬L is a negative literal, then I(Γ ) |= L, and therefore
L ∈ Γ . This allows an application of the close rule, which produces the smaller
counterexample ⊥. Note that I(Γ ) does indeed satisfy the side formula L.

Thus, Theorem 4 allows us to conclude that this calculus is complete for first
order formulae in negation normal form.

5 Case Study: NNF Hyper-tableaux

We now consider a negation normal form (NNF) version of the hyper-tableaux
calculus. See [6] for an explanation of how this calculus relates to the clausal
hyper-tableau calculus.

We will use the concept of disjunctive paths (d-paths) through formulae. The
set of d-paths of a formula φ, denoted dp(φ), is defined by induction over the
structure of φ as follows.

– If φ is a literal or a quantified formula ∀x.φ1 or ∃x.φ1, then dp(φ) := {〈φ〉}.
– If φ = φ1 ∧ φ2 is a conjunction, then dp(φ) := dp(φ1) ∪ dp(φ2).
– If φ = φ1 ∨ φ2 is a disjunction, then dp(φ) := {uv | u ∈ dp(φ1), v ∈ dp(φ2)},

where uv is the concatenation of two paths u and v.

For instance, for the formula φ = (p ∧ ¬p) ∨ (q ∧ ¬q), this definition gives:

dp(p ∧ ¬p) = {〈p〉 , 〈¬p〉}
dp(q ∧ ¬q) = {〈q〉 , 〈¬q〉}

dp(φ) = {〈p, q〉 , 〈p,¬q〉 , 〈¬p, q〉 , 〈¬p,¬q〉}

Note that we do not consider paths below quantifiers, in order to keep our
discussion as simple as possible. A positive d-path is a d-path that contains no
negated literal. In the example, 〈p, q〉 is the only positive d-path. Any d-path
that is not positive must contain at least one negated literal, and in particular a
left-most one. Let lmn(φ) be the set of left-most negated literals of the d-paths
of φ. In the example, lmn(φ) = {¬q,¬p}.

Consider the following semi-sequent calculus for NNF formulae:

α
φ, ψ, Γ 	
φ ∧ ψ, Γ 	

close
⊥ 	

L,¬L, Γ 	

γ
[x/t]φ, ∀x.φ, Γ 	

∀x.φ, Γ 	
for any ground term t

δ
[x/c]φ, Γ 	
∃x.φ, Γ 	

for some new constant c

β
φ, Γ 	 ψ, Γ 	
φ ∨ ψ, Γ 	

where φ ∨ ψ has at least one positive d-path.
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simp
L, φ[L], Γ 	
L, φ, Γ 	

where ¬L ∈ lmn(φ).
In the close rule and the simp rule, L is a side formula. By φ[L] we denote the
result of replacing the negative literal ¬L by the falsum ⊥, and then simplifying
the formula by repeated application of the transformations φ ∧ ⊥ ⇒ ⊥ and
φ ∨ ⊥ ⇒ φ. For instance, ((¬p ∧ q) ∨ r)[p] ⇒ (⊥ ∧ q) ∨ r ⇒ ⊥ ∨ r ⇒ r.

We again define the model functor, such that the domain of I(Γ ) consists of
all ground terms, and I(Γ ) |= L for a positive literal L, exactly if L ∈ Γ . We
will also use the same ordering as in the previous section.

The α, β, γ, δ, and close rules conform to the standard redundancy criterion
as before. In the simp rule, the formula φ is dropped. Since ¬L ∈ lmn(φ), the
simplification to φ[L] is indeed going to reduce the size of the formula, and an
induction over the transformation steps leading to φ[L] easily convinces us that
indeed L, φ[L] |= φ, so φ is redundant in the new sequent.

Also, the calculus is clearly still reductive, since if ¬L ∈ lmn(φ), then φ �
φ[L]. As for the counterexample reduction property, the arguments are the same
as in the previous section for literals, conjunctions, and quantified formulae. For
disjunctions, there are two cases. If φ = φ1 ∨φ2 has at least one positive d-path,
a β inference will reduce the counterexample as before. Otherwise, every d-path
of φ contains some negative literal. Then, there are again two cases: In the first
case, Γ contains some L with ¬L ∈ lmn(φ). In particular, L is then smaller than
φ, and therefore I(Γ ) |= L. Similarly as before, we can convince ourselves that
then I(Γ ) �|= φ[L], so the simp rule produces a smaller counterexample. In the
second case, there is no L ∈ Γ with ¬L ∈ lmn(φ). Due to our definition of I this
means that every left-most negative literal is satisfied by I(Γ ), and therefore
every d-path of φ contains at least one satisfied literal. Now a simple induction
on the structure of φ, taking into account the definition of d-paths, tells us that
also I(Γ ) |= φ contradicting the assumption that φ is a counterexample.

Theorem 4 now tells us that also this calculus is complete.

6 Free Variable Tableaux

In this section, we shall lift the presented technique to a certain type of free
variable tableaux, namely constrained formula free variable tableaux.They differ
from the tableaux we have considered until now in two ways:

First, the formulae in the semi-sequents may contain free variables, although
the formulae in the initial Γ0 shouldn’t. Free variables are used as placeholders
for instantiations that a theorem prover would otherwise have to guess.

Second, semi-sequents actually contain constrained formulae φ4 C consisting
of a formula φ and a constraint C. For our purposes, the constraint is a formula
of a subset of first order logic that will be interpreted over the domain of ground
terms, using fixed interpretations for any predicate symbols. For instance in some
calculi, the constraint language might be restricted to conjunctions of equations,
written s ≡ t denoting the syntactic equality of terms, in other cases, disjunction



Saturation Up to Redundancy for Tableau and Sequent Calculi 191

and negation or even quantifiers may be allowed in the constraint language, or
ordering constraints s > t may be available to compare terms with respect to
some term ordering. For us, it is only important that there is a function Sat
which for any constraint produces the set of ground substitutions that satisfy
the constraint. For instance, one will usually have3

Sat(s ≡ t) = {σ ∈ G | σs = σt}
Sat(C &D) = Sat(C) ∩ Sat(D)

Sat(!C) = G \ Sat(C)

(†)

etc., so & denotes conjunction of constraints, ! negation of constraints, where G
is the set of all ground substitutions.

A constrained formula φ 4 C in a semi-sequent means that the formula
has resulted from some sequence of inferences that are only sound (or more
generally desired) in cases where the free variables get instantiated as described
by C. Ultimately, the constraints will get propagated until they reach ⊥ 4 C, of
which a suitable combination has to be found to close all branches of the proof.

Definition 10. A tableau of a constrained formula tableau calculus is closed
under σ, where σ is a ground substitution for the occurring free variables, iff
every leaf sequent of the tableau contains a constrained formula φ 4 C with
σ ∈ Sat(C). A tableau is closable if there exists a σ under which it is closed.

The following definition describes how to apply a substitution to a semi-sequent
or to a whole tableau, while discarding any formulae which carry a constraint
that is not satisfied by that substitution.

Definition 11. Let Γ be a set of constrained formulae. We define

σΓ := {σφ | φ4 C ∈ Γ with σ ∈ Sat(C)} .

Let T be a tableau. We construct σT by replacing the semi-sequent Γ in each
node of T by σΓ .

The next definition uses these notions of substitution to establish a tight corre-
spondence between constrained variable calculi and the non-free-variable, non-
constrained calculi described in the previous sections. The correspondence is ac-
tually the same as that between Smullyan-style first order tableaux and Fitting-
style [4] free variable tableaux.

Definition 12. Let
Γ1 	 · · · Γn 	

Γ0

be an inference of a constrained formula tableau calculus. The corresponding
ground inference under σ for some ground substitution σ is

σΓ1 	 · · · σΓn 	
σΓ0

.

3 We use the prenex notation “σt”, etc., for the application of substitutions.
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The corresponding ground calculus is the calculus consisting of all correspond-
ing ground inferences under any σ of any inferences in the constrained formula
calculus.

We use the word ‘ground’ for notions without free variables. There might well be
quantifiers in the formulae involved. Any given inference of the constrained for-
mula calculus can in general have infinitely many different corresponding ground
inferences for different σ, but each of them is an ordinary, finite ground inference.

Using the correspondence to a ground calculus, we can define the same prop-
erties as before for constrained formula tableaux:

Definition 13. A constrained formula calculus conforms to a given redundancy
criterion, has the counterexample reduction property, or is reductive iff the
corresponding ground calculus has that property.

Note that a constrained formula calculus can always discard a formula with an
unsatisfiable constraint, since it disappears under any substitution. Therefore, a
ground inference corresponding to the deletion of a formula with unsatisfiable
constraint does not change the semi-sequent, so it trivially conforms to any
redundancy criterion.

Finally, a notion of fairness is needed. Again this definition is heavily based
on the ‘ground’ notion. We will discuss its implications after Theorem 5.

Definition 14. A constrained formula tableau derivation (Ti)i∈N in a calculus
that conforms to an effective redundancy criterion is called fair if there is a
ground substitution σ for the free variables, such that (σTi)i∈N is a fair derivation
of the corresponding ground calculus. We call such a σ a fair instantiation for
the constrained formula tableau derivation.

It is now easy to show completeness for well-behaved calculi:

Theorem 5. If a constrained formula calculus

– conforms to the standard redundancy criterion and
– is reductive
– has the counterexample reduction property, then

a fair derivation for an unsatisfiable formula φ contains a closable tableau.

Proof. Let σ be a fair instantiation for (Ti)i∈N. Then (σTi)i∈N is a fair derivation
of the corresponding ground calculus and σT0 = T0, since the initial formula φ
does not contain free variables. Theorem 4 ensures that some σTi is closed.
Therefore, Ti is closed under σ. ��

The big question is of course whether a constrained formula calculus actually
admits fair derivations, and how these can be constructed algorithmically. There
are two issues to be discussed here.

The first is that a series of inferences on a branch might ‘change’ the constraint
of a formula φ, successively deriving φ4 C0, φ4 C1,. . . . None of these formulae
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is persistent in the usual sense of the word. Still, there can be a substitution
σ ∈ Sat(C0) ∩ Sat(C1) ∩ · · · . The instantiation σφ is therefore persistent, and
a fair derivation must eventually perform inferences that correspond to ground
inferences on σφ.

Consider for instance a calculus with the following hypothetical rules:

step
p(t) 4 A, p(f(t)) 4 A,Γ 	

p(t) 4 A,Γ 	
for any term t

close
⊥ 4 A 	

r(t) 4 A,Γ 	
for any term t

reduce
q(s) 4 A&B & s ≡ t, r(s) 4 A& !(B & s ≡ t), p(t) 4 B,Γ 	

r(s) 4 A, p(t) 4 B,Γ 	
for any terms s, t

where & is conjunction and ! is negation of constraints, and ≡ denotes syntactic
equality, as described by the equations (†). From a sequent

r(X), p(a) 	

we can derive, using reduce

q(X) 4 X ≡ a, r(X) 4 !X ≡ a, p(a) 	

and then, with step,

q(X) 4 X ≡ a, r(X) 4 !X ≡ a, p(a), p(f(a)) 	 .

Now we apply reduce again:

q(X) 4 X ≡ f(a), q(X) 4 X ≡ a, r(X) 4 !X ≡ a&!X ≡ f(a), p(a), p(f(a) 	

and so on. The constraint on r(X) gets more and more complicated, and none
of the constrained formulae is persistent. But for fairness, we must eventually
apply close, since this will not become redundant whatever the instantiation
for X (unless there are other rules which eventually close the branch).

For some calculi, like standard free variable tableaux without constraints, such
situations simply cannot occur. If they can however, a possible solution is to use
a theorem proving procedure that achieves fairness not by managing a queue
of formulae that remain to be processed, but a queue of rule applications: Any
new constrained formula introduced to a branch should be checked for possible
inferences in combination with other present formulae. All possible inferences
should eventually be considered in a fair manner, even if the original constrained
formula gets deleted or changed. When an inference’s turn has come, it should
be checked whether there are now formulae in the semi-sequent on which it can
be applied.
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The second issue is that of the fair instantiation of free variables. In many
calculi, free variables are only introduced by a γ rule like4

γ
[x/X ]φ, ∀x.φ, Γ 	

∀x.φ, Γ 	
with a new free variable X .

The corresponding ground inferences are

[x/t]φ, ∀x.φ, Γ 	
∀x.φ, Γ 	

for any term t. In general, if a formula ∀x.φ is persistent on some branch of a fair
ground derivation, this rule needs to be applied for all ground terms t, with the
possible exception of terms for which [x/t]φ happens to be redundant. Therefore,
in the calculus with free variables, a fair instantiation can in general only exist
if infinitely many copies of [x/Xi]φ with different free variables are introduced
on the branch. Therefore, the theorem proving procedure has to apply the γ
rule again and again. The fair instantiation can then be defined by taking for
instance an enumeration (ti)i∈N of all ground terms and requiring that σXi = ti.

This is not necessarily the case for every rule that introduces a free variable.
For instance, in Sect. 6 of [5], a constrained formula tableau version of the
basic ordered paramodulation rule [2] is given, in which the new free variable is
constrained to only one possible instantiation. Therefore, this rule needs to be
applied only once.

Although these observations about fairness should cover the most common
cases, in the framework given so far, the question ultimately has to be con-
sidered for each calculus. It will be an interesting topic for future research to
find sensible restrictions of the given framework that permit general statements
about fairness.

Another general remark is in order concerning our ‘lifting’, i.e. the relation
between our free variable calculi to ground calculi. In particular for equality
handling by rewriting, it is important to restrict the application of equalities to
non-variable positions. This means that an inference that acts only on the instan-
tiation of some free variables should not be needed. The framework presented so
far does not help in excluding such inferences. A corresponding refinement is a
further topic for future research.

7 Case Study: Free Variable NNF Hyper-tableaux

We will now study a constrained formula version of the NNF hyper-tableaux
calculus of Sect. 5. Completeness of such a calculus has previously been shown
using proof transformation arguments [6], but the proof using saturation up to

4 When we don’t write constraints, we mean the trivial constraint that is satisfied by
all instantiations of the free variables.
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redundancy will be a lot simpler. We will start from pre-skolemized formulae
that contain no existential quantifiers, to avoid discussing the soundness issues
that arise in connection with free variables in δ rules.

The rules of our calculus are as follows:

α
φ4 A, ψ 4 A,Γ 	
φ ∧ ψ 4 A,Γ 	

β
φ4 A,Γ 	 ψ 4 A,Γ 	

φ ∨ ψ 4 A,Γ 	
where φ ∨ ψ has at least one positive d-path.

γ
[x/X ]φ4 A, ∀x.φ4 A,Γ 	

∀x.φ4 A,Γ 	
for a new free variable X

close
⊥ 4 L ≡M &A& B 	
L4 A, ¬M 4 B,Γ 	

simp
μφ[μL] 4 L ≡M &A&B, φ4 A& !(L ≡M &B), L4 B,Γ 	

φ4 A, L4 B,Γ 	
where ¬M ∈ lmn(φ) and μ is a most general unifier of L and M .

It is not hard to see that the ground instances corresponding to the α, β, γ,
and close rules are exactly the inferences of the respective rules in Sect. 4.
For the simp rule, the corresponding ground inference under some instantiation
σ ∈ Sat(L ≡M &A&B) is

σφ[σL], σL, Γ 	
σφ, σL, Γ 	

which is just the simp rule of Sect. 5. For all σ �∈ Sat(L ≡ M & A & B), the
constraints ensure that the corresponding ground inference under σ does not
change the sequent. It follows that apart from the missing δ rule, the corre-
sponding ground calculus is exactly the one from Sect. 5.

We conclude that any proof procedure that produces fair derivations in this
calculus is complete. Let us analyze what is needed for fairness: free variables can
only be introduced by the γ rule, so as discussed before, it needs to be applied
infinitely often on each branch for any persistent occurrence of a constrained
formula ∀x.φ 4 C, producing formulae [x/Xi]φ with distinct variables. Since
there are no rules that could delete such an occurrence, all occurrences of uni-
versally quantified formulae are persistent. The corresponding fair instantiation
σ needs to make sure that if σ ∈ Sat(C), then there is an Xi with σXi = t for
every ground term t. This is of course a well-known ingredient in many tableau
completeness proofs.

Do we have the fairness problem of persistent ground instances σφ of non-
persistent formulae φ 4 C described in the previous section? Yes, we do! The
simp rule can lead to similar chains of inferences as the reduce rule. Consider
a formula φ = (¬p(X) ∧ ¬p(b)) ∨ q(X) in the place of the r(X) in the reduce
example. From a series of literals p(a), p(f(a)), . . ., the simp rule allows to derive
q(a), q(f(a)), . . ., constantly changing the constraint on φ, although a simp on
the other left-most negative literal ¬p(b) might be possible all the time and
necessary for completeness.
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In this calculus, there is an easier way of coping with this problem than the
one we hinted at in Sect. 6: Theorem 3 of [6] establishes the interesting fact
that under certain sensible restrictions, our calculus always permits only a finite
number of inferences without intervening γ inferences. This means that we can
obtain fairness simply by requiring derivations to be built in such a way that γ
inferences may only be applied when there are no more possible simp inferences.

This illustrates that the fairness question can be quite subtle, depending on
the particular calculus at hand.

8 Conclusion

We have introduced a notion of saturation up to redundancy for tableau and
sequent calculi, closely following the work of Bachmair and Ganzinger [1] for
resolution calculi. We have shown a generic completeness theorem that makes it
easy to show completeness of calculi with destructive rules. Notions and proofs
were lifted to the case of free variable tableaux with constrained formulae. Some
examples were given to illustrate the method.

Future work includes finding a generic way of achieving fairness for free vari-
able calculi. A method of lifting that does not require inferences below variable
positions would be needed to apply our technique to equality reasoning. One
might also consider defining when whole branches are redundant with respect
to the rest of a tableau, to allow redundancy elimination on the branch level. It
might also be interesting to adapt the idea of ‘histories’ used in [5] instead of
constraints with negations to our framework.
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Abstract. Recently, LTL extended with atomic formulas built over a constraint
language interpreting variables in Z has been shown to have a decidable sat-
isfiability and model-checking problem. This language allows to compare the
variables at different states of the model and include periodicity constraints, com-
parison constraints, and a restricted form of quantification. On the other hand, the
CTL counterpart of this logic (and hence also its CTL∗ counterpart which sub-
sumes both LTL and CTL) has an undecidable model-checking problem. In this
paper, we substantially extend the decidability border, by considering a meaning-
ful fragment of CTL∗ extended with such constraints (which subsumes both the
universal and existential fragments, as well as the EF-like fragment) and show
that satisfiability and model-checking over relational automata that are abstrac-
tion of counter machines are decidable. The correctness and the termination of
our algorithm rely on a suitable well quasi-ordering defined over the set of vari-
able valuations.

1 Introduction

Model-checking of infinite-state counter systems. The formal verification of infinite-
state systems has benefited from numerous decidable model-checking problems. This
is the case for instance of timed automata [AD94], or subclasses of counter systems,
see e.g. [CJ98]. Counter systems are finite state machines operating on a finite set of
variables (counters or registers) interpreted as integers. Though simple problems like
reachability are already undecidable for 2-counter Minsky machines [Min67], many in-
teresting restrictions of counter systems have been studied, for which reachability and
richer temporal properties have been shown to be decidable. For instance, Petri nets
represent the subclass of counter systems obtained by removing the ability to test a
counter for zero. Other examples include reversal-bounded counter machines [Iba78],
flat counter systems [Boi98,BFLP03,LS04] and constraint automata with qualitative
constraints on Z between the states of variables at different steps of the execution
[DG05]. “Qualitative” means that the relationship between the constrained variables
is not sharp, like x < y. This last class of systems can be seen as an abstraction
of counter systems where increments and decrements are abstracted by comparisons
and congruence relations modulo some integer. For example, x = y + 1 can be ab-
stracted by x > y ∧ x ≡2k y + 1. This is very common in various programming
languages performing arithmetic operations modulo some integer, typically modulo
232 or 264 (see [MOS05]). Periodicity constraints have also found applications in for-
malisms dealing with calendars [LM01] and temporal reasoning in database access con-
trol [BBFS98].
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Temporal logics extended with Presburger constraints. Classical problems studied on
counter systems often reduce to the reachability of some control state. Recently, richer
temporal properties have been investigated and formalized by introducing fragments
of Presburger constraints in temporal logics. In this setting, atomic formulas are Pres-
burger arithmetic constraints over variables (counters) taking values in Z. Furthermore,
these formalisms involve an hybrid of temporal logic and constraints, with varying de-
grees of interaction. For instance, one may be allowed to refer to the value of a vari-
able x on the next time instant, leading to constraints of the form x > Ox. More
generously, one may be permitted to refer to a future value of a variable x a certain
number n of steps further. We denote this value by O . . .Ox where x is prefixed by
n times the symbol O (in the following such an expression is abbreviated by Onx).
For linear-time temporal logics, such extensions can be found in numerous works, see
for instance [BEH95,CC00,DD03]. However, full Presburger LTL is undecidable, and
to regain decidability, one can either restrict the underlying constraint language, see
e.g. [DD03,DG05], or restrict the logical language, see e.g. [BEH95,CC00]. In [DG05],
full LTL extended with a wide set of qualitative constraints, including comparison
and periodicity constraints, has been shown to have PSPACE-complete satisfiability
and model-checking problems (over constraint automata mentioned above). Similar
extensions have also been considered for description logics where models are Kripke
structures, see for instance [Lut04]. On the other hand, to the best of our knowledge,
very few works deal with decidable fragments of branching-time temporal logics en-
hanced with Presburger constraints. Actually, we can only refer to the work [Čer93],
in which CTL∗ extended with only comparison constraints is shown to have an un-
decidable model checking problem for Integral Relational Automata (undecidability
already holds for the CTL-like fragment). However, model-checking for the existen-
tial and universal fragments are shown to be decidable. Note that the logic proposed in
[Čer93] does not exhibit any form of interaction between the temporal operators and
the comparison constraints (in particular, atomic formulas of the form x < Oy are not
considered).

Our contribution. In this paper, we introduce the logic CCTL∗ as an extension of the
branching–time temporal logic CTL∗ with a wide set of qualitative constraints includ-
ing periodicity constraints of the form x ≡k y + c, comparison constraints of the form
x < y and a restricted form of quantification. This logic is the branching–time coun-
terpart of the constraint LTL defined in [DG05] and extends the logic from [Čer93]
by introducing richer constraints and the possibility to compare counters at different
states of the model. The operational models on which we check temporal properties
expressed in this logic are extensions of Integral Relational Automata (IRA, for short)
[BBK77,Čer93,ACJT96] introduced in [BBK77] as a model for studying possibilities
of automated complete test set generation for data processing programs. Our extension
is obtained by adding periodicity constraints and makes the new formalism an equiv-
alent variant of the constraint automata with qualitative constrains mentioned above.
However, IRA provide a representation that is more intuitive and closer to the opera-
tional semantics of programs manipulating integers.

Model-checking this extension of IRA against full CCTL∗ is undecidable (also for
the CTL-like fragment) as a consequence of [Čer93]. Thus, in this paper we investigate
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a meaningful fragment, which subsume both the existential and universal fragments as
well as the EF-like fragment. For instance, the formula A�E�(x = Ox) is in this
fragment and states that for any reachable state, there is a computation starting from
it in which the value of counter x remains constant. For this fragment, we show that
both satisfiability and model checking of the proposed extension of IRA are decidable.
The existential and universal fragments of CCTL∗ are strictly more expressive than the
constraint LTL defined in [DG05]. Moreover, the symbolic algorithm we describe builds
a finite representation of the set of states satisfying a given formula, a very substantial
information compared to the symbolic representation used in [DG05].

IRA belong to the class of well–structured transition systems which have been inten-
sively studied, see e.g. [ACJT96,FS01]. Hence, one can define a decidable well-quasi
ordering on the set of states, which is also a simulation. This property is sufficient to
guarantee decidability of simple problems such as coverability, but not to decide richer
properties like liveness properties1 which can be expressed in our logical framework.
Thus, we need to use a more sophisticated approach, which is a technical non-trivial
generalization and refinement of the one used in [Čer93] combining automata-based
techniques, theory of well quasi-ordering, and the theory of a specific class of linear
inequality systems (used to represent upward closed sets of states). The correctness and
the termination of the algorithm rely on a suitable well quasi-ordering defined over these
inequality systems. Another major contribution consists in extending to a larger frame-
work the original and difficult proof from [Čer93] and in clarifying all the technical
lemmas needed in the last part of the algorithm, which are omitted in [Čer93].

Due to lack of space, many proofs are omitted and can be found in [BG06].

2 Preliminaries

2.1 Language of Constraints

Let VAR be a countable set of variables. For D ⊆ VAR, a valuation over D is a map
v : D → Z. For all x ∈ D, we denote by v.x the value assigned to x in v.

The language of constraints p, denoted by IPC∗ [DG05], is defined as follows: 2

p ::= t | x ∼ y | p ∧ p | ¬p
t ::= x ≡k [c1, c2] | x ≡k y + [c1, c2] | x = y | x ∼ c | t ∧ t | ¬t | ∃x t

where ∼∈ {<,≤, >,≥,=}, x, y ∈ VAR, k ∈ N \ {0}, and c1, c2, c ∈ Z. For a
constraint p and a valuation v over VAR, the satisfaction relation v |= p is defined as
follows (we omit the standard clauses for negation, conjunction, and inequalities):

− v |= x ≡k [c1, c2]
def⇔ ∃ c1 ≤ c ≤ c2 andm ∈ Z. v.x = c+m · k;

− v |= x ≡k y + [c1, c2]
def⇔ ∃ c1 ≤ c ≤ c2 andm ∈ Z. v.x = v.y + c+m · k;

− v |= ∃x t def⇔ ∃ c ∈ Z. v[x← c] |= t
1 For instance, liveness properties in lossy channel systems are undecidable [AJ94].
2 Note that constraints of the form ∃x, x < y are not allowed since they leads to the undecid-

ability already for the corresponding LTL extension (see [DG05]).
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where v[x ← c].x′ = v.x′ if x �= x′ and v[x ← c].x = c. A constraint p is atomic if it
has one of the following forms: x ≡k c | x ∼ y | x ∼ c , where ∼∈ {<,≤, >,≥,=}
and x ≡k c is an abbreviation for x ≡k [c, c]. Evidently, for a constraint p, whether a
valuation v satisfies p depends only on the values of v over the finite set V ars(p) of
free variables occurring in p. Thus, in the following as interpretations of a constraint p
we consider the set of valuations over finite supersets of V ars(p).

Lemma 1 ([DG05]). Any IPC∗ constraint can be effectively converted into an equiva-
lent positive boolean combination of atomic IPC∗ constraints.

The translation implies an exponential blowup of the size of the formula w.r.t the con-
stants used. However, the results in the following do not refer to complexity issues.

2.2 The Constrained Branching-Time Temporal Logic (CCTL∗)

We introduce the constrained branching-time temporal logic (CCTL∗) as an exten-
sion of the standard propositional logic CTL∗ [EH86] where atomic propositions are
replaced by IPC∗ constraints between terms representing the value of variables at differ-
ent sates of the model. We denote these atomic formulae by p[x1 ← Oi1xj1 , . . . , xr ←
Oirxjr ], where p is an IPC∗ constraint with free variables x1, . . . , xr and we substitute
each occurrence of variable xl with Oilxjl

(corresponding to variable xjl
preceded by

il “next” symbols). The expression Oix represents the value of the variable x at the ith

next state. For example, Oy ≡2 x+ 1 and x < Oy are atomic formulae of CCTL∗.
As for standard CTL∗, there are two types of formulas in CCTL∗: state formulas ξ

whose satisfaction is related to a specific state, and path formulas ψ, whose satisfaction
is related to a specific path. Their syntax is inductively defined as follows:

ξ := . | ξ ∨ ξ | ξ ∧ ξ | A ψ | E ψ
ψ := ξ | p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr ] | ψ ∨ ψ | ψ ∧ ψ | Oψ | �ψ | ψUψ

where . denotes “true”,E (“for some path”) andA (“for all paths”) are path quantifiers,
and O (“next”), U (“until”), and � (“always”) are the usual linear temporal operators.3

The set of state formulas ξ forms the language CCTL∗. For a setX of state formulas, the
set of path formulas ψ defined only from state formulas in X is denoted by PLF (X).

For a CCTL∗ formula ξ, let V al(ξ) be the set of valuations over finite setsD ⊆ VAR
such that D contains the variables occurring in ξ. The interpretations for the formula ξ
are labelled graphs G = 〈S,→, μ〉, where S is a (possible infinite) set of vertices (here,
called states), →⊆ S × S is the edge relation, which is total (i.e., for every s ∈ S,
s → s′ for some s′ ∈ S), and μ : S → V al(ξ) maps each state s ∈ S to a valuation
in V al(ξ). A path is a sequence of states π = s0, s1, . . . such that si−1 → si for any
1 ≤ i < |π|. We denote the suffix si, si+1, . . . of π by πi, and the i-th state of π by π(i).
Let s ∈ S and π be a infinite path of G. For a state (resp., path) formula ξ (resp. ψ), the
satisfaction relation (G, s) |= ξ (resp., (G, π) |= ψ), meaning that ξ (resp., ψ) holds at
state s (resp., holds along π) in G, is defined by induction. The clauses for conjunction
and disjunction are standard. For the other clauses we have:

3 We have defined a positive normal form of the logic CCTL∗, i.e. negation is used only in atomic
formulae. Moreover, the given syntax is complete since the dual Ũ of the until operator can be
expressed in terms of the until and always operator: ψ1Ũψ2 ≡ �ψ2 ∨ (ψ2U(ψ1 ∧ ψ2)

)
.
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– (G, s) |= A ψ def⇔ for each infinite path π from s, (G, π) |= ψ;
– (G, s) |= E ψ def⇔ there exists an infinite path π from s such that (G, π) |= ψ;
– (G, π) |= ξ def⇔ (G, π(0)) |= ξ;
– (G, π) |= p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr ] def⇔

μ(π(0))[x1 ← μ(π(i1)).xj1 , . . . , xr ← μ(π(ir)).xjr ] |= p;
– (G, π) |= Oψ

def⇔ (G, π1) |= ψ;
– (G, π) |= �ψ def⇔ for all i ≥ 0, (G, πi) |= ψ;
– (G, π) |= ψ1Uψ2

def⇔ ∃i ≥ 0. (G, πi) |= ψ2 and ∀j < i. (G, πj) |= ψ1.

G is a model of ξ, written G |= ξ iff (G, s) |= ξ for some state s. We denote by [[ξ]]SAT

the set of valuations v over V ars(ξ) such that (G, s) |= ξ for some model G and state s
of G with μ(s) = v. A CCTL∗ formula ξ is satisfiable iff there exists a model of ξ.

Assumption: By Lemma 1, we can assume w.l.o.g. that the IPC∗ constraints p associ-
ated with atomic formulas p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr ] are atomic.

The existential fragment E–CCTL∗ and the dual universal fragment A–CCTL∗ of CCTL∗

are obtained by disallowing respectively the universal and the existential path quantifier.
In order to consider a fragment as large as possible, we also introduce CEF+ which sub-
sumes E–CCTL∗, A–CCTL∗ and the IPC∗-constrained counterpart of EF logic, a well-
know fragment of standard CTL closed under boolean connectives (see e.g., [May01]).
CEF+ is defined as follows (where ξE is an E–CCTL∗ formula):

ξ := ξE | ¬ξ | ξ ∨ ξ | E(ξEUξ) | EOξ

2.3 Integral Relational Automata

In this section we recall the framework of Integral Relational Automata (IRA) intro-
duced in [BBK77]. An IRA consists of a finite-state machine enhanced with a finite
number of counters. The operation repertoire of IRA includes assignment, input/output
operations and guards of the form x ∼ y or x ∼ c with ∼∈ {<,≤, >,≥,=}. We ex-
tend this operational model by allowing periodicity constraints as guards. Note that if
we also allow guards of the form x ≤ y + c, then the resulting formalism is Turing-
complete (since we can easily simulate unrestricted counter machines). Let OP be the
set of operations defined as follows:

p | ?x | !x | !c | x← y | x← c | NOP

where p is an atomic IPC∗ constraint, x, y ∈ VAR and c ∈ Z. Informally, ?x assigns a
new integral value to the variable x, !x (resp !c) outputs the value of variable x (resp.,
constant c), x← y (resp. x← c) assigns the value of variable y (resp., constant c) to x,
and NOP is the dummy operation. The atomic IPC∗ constraints are used as guards.

An Integral Relational Automaton (IRA) is a tuple P = 〈V (P ), E(P ), �V , �E〉,
where V (P ) is the finite set of vertices, E(P ) ⊆ V (P ) × V (P ) is the set of edges,
�V : V (P ) → OP associates an operation to every vertex, and �E : E(P ) → {+,−}
is a labelling of the edges (used for tests).
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Let V ars(P ) be the set of all P variables (used in the operations of P ) andCons(P )
⊆ Z be the least set containing all the P constants and such that 0 ∈ Cons(P ) and for
all c1, c2 ∈ Cons(P ), c1 ≤ c ≤ c2 implies c ∈ Cons(P ). Moreover, let Mod(P ) be
the set of the modulo constants k used in the periodicity constrains x ≡k c of P .

Notation: For convenience, we define v.c = c for any valuation v and constant c ∈ Z.

The semantics of an IRA P is described by a labelled graph G(P ) = 〈S(P ),→, μ〉,
where the set of states S(P ) is the set of pairs 〈n, v〉 such that n ∈ V (P ) is a vertex
and v is a valuation over V ars(P ), μ(〈n, v〉) = v for all 〈n, v〉 ∈ S(P ), and 〈n, v〉 →
〈n′, v′〉 if and only if e = (n, n′) ∈ E(P ) and one of the following conditions holds:

– �V (n) =?x and v′.y = v.y for every y ∈ V ars(P ) \ {x},
– �V (n) =!x or �V (n) =!c or �V (n) = NOP and v′ = v,
– �V (n) = x← a, v′.x = v.a, and v′.y = v.y for every y ∈ V ars(P ) \ {x},
– �V (n) = p, v′ = v, and either �E(e) = + and v |= p, or �E(e) = − and v �|= p.

Note that G(P ) is infinitely-branching because of input operations. An history of P
is a path of G(P ). An infinite history is also called a computation. A path n of P is
a path in the finite–state graph 〈V (P ), E(P )〉. For a finite path n of P , two tuples
N = 〈n1, . . . , nk〉 and N ′ = 〈n′1, . . . , n′h〉 of P -vertices, we say that n is a path from
N to N ′ iff |n| ≥ h+k and n1, . . . , nh (resp., n′1, . . . , n

′
h) is a prefix (resp., suffix) ofP .

The notion of path n from a tuple of vertices is similar. These notions can be extended
to histories of P in a natural way. Let n1 be a P path from N1 to N and n2 be a P
path from N . We denote by [n1 + n2]N the P path obtained by concatenating n1 with
the path obtained from n2 by eliminating the prefix corresponding to N . This notion of
concatenation can be extended to histories in a natural way. In the following, a k-tuple
〈〈n1, v1〉, . . . , 〈nk, vk〉〉 of P states is also denoted by 〈〈n1, . . . , nk〉, 〈v1, . . . , , vk〉〉.

We say that an IRA P is complete if the edge relation E(P ) is total and for each ver-
tex n labelled by an IPC∗ constraint and each flag f ∈ {+,−}, there is an edge labelled
by f and having n as source. W.l.o.g. we assume that the IRA under our consideration
are complete (this implies that the edge relation in G(P ) is total).

Extended Integral Relational Automata: for technical reasons, we introduce Ex-
tended IRA (EIRA). An EIRA is a pair 〈P, �EXT 〉 where P is an IRA and �EXT is an
additionalP -vertex-labelling, mapping each vertexn ∈ V (P ) to a finite set (interpreted
as conjunction) of CCTL∗ atomic formulas p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr ] (where
p is an atomic IPC∗ constraint). This labelling induces constraints between the variables
of the current state and the variables of succeeding states (along a computation).

For a (finite or infinite) P -history π = 〈n1, v1〉, 〈n2, v2〉, . . ., we say that π is fair if
π is consistent with the �EXT –labelling. Formally, we require that for all 1 ≤ k ≤ |π|
and p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr ] ∈ �EXT (nk), the following holds:
if k + ip ≤ |π| for all 1 ≤ p ≤ r, then vk[x1 ← vk+i1 .xj1 , . . . , xr ← vk+ir .xjr ] |= p.

In this paper we are interested in the following problem:

Model Checking Problem of IRA Against CCTL∗ : given an IRA P , a state s0 of P ,
and a CCTL∗ formula ξ with V ars(ξ) ⊆ V ars(P ), does (G(P ), s0) |= ξ hold?

In the following, we denote by [[ξ]]P the set of P states s such that (G(P ), s) |= ξ.
Model checking IRA against full CCTL∗ is undecidable (also for the CTL-like fragment)
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as a consequence of [Čer93]. Thus, in the following, we analyze the fragment CEF+.
consider the satisfiability problem for CEF+. We start by giving a symbolic model
checking algorithm for IRA against E–CCTL∗.

3 Symbolic Model Checking of IRA Against E–CCTL∗

In this section we show that given an IRAP and an E–CCTL∗ formula ξ with V ars(ξ) ⊆
V ars(P ), we can compute a finite representation of [[ξ]]P . In the following, we can
assume w.l.o.g. that Cons(ξ) ⊆ Cons(P ) and Mod(ξ) ⊆ Mod(P ), where Cons(ξ)
(resp.,Mod(ξ)) denote the set of constants (resp., modulo constants) occurring in ξ.

First, we recall some basic notions. For a set S, a quasi-ordering (qo, for short) �
over S is a reflexive and transitive (binary) relation on S. Given such a qo, we say that
U ⊆ S is an upward closed set if for all x ∈ S and y ∈ U , y � x implies x ∈ U . We say
that � is a partial-order (po, for short) iff x � y and y � x imply x = y. Finally, we
say that the qo � is a well quasi-ordering (wqo, for short) if for every infinite sequence
x0, x1, x2, . . . of elements of S there exist indices i < j such that xi � xj .

Following [Čer93], we define a wqo on the set S(P ) of P states (that is also a po).
Then, in order to solve the model-checking problem, we will show that: (1) [[ξ]]P is an
upward closed set; (2) we can compute a finite representation R([[ξ]]P ) of this set; (3)
we can check whether a given a state s belongs to R([[ξ]]P ).

We start by defining such a wqo. Let κ be the least common multiple of the constants
inMod(P )∪{1}. We define a po � over tuples of valuations over V ars(P ) as follows:
〈v1, . . . , vh〉 � 〈v′1, . . . , v′k〉 iff h = k and for all 1 ≤ i, j ≤ h and a, b ∈ Cons(P ) ∪
V ars(P ), the following holds: (1) vi.a ≥ vj .b iff v′i.a ≥ v′j .b, (2) vi.a ≡κ v

′
i.a, and (3)

if vi.a ≥ vj .b, then v′i.a− v′j .b ≥ vi.a− vj .b.4 We write simply v1 � v′1 if h = 1. Note
that vi � v′i for all 1 ≤ i ≤ h does not imply that 〈v1, . . . , vh〉 � 〈v′1, . . . , v′h〉. Finally,
for two h-tuples of states 〈N ,V〉, 〈N ′,V ′〉, we write 〈N ,V〉 � 〈N ′,V ′〉 to mean that
N = N ′ and V � V ′. The proofs of the following two results are given in [BG06].

Proposition 1. For every h ≥ 1, the partial order � is a wqo over the set of h-tuples
of valuations over V ars(P ).

Lemma 2 (Simulation Lemma)

1. Let π = 〈n1, v1〉, . . . , 〈nh, vh〉 be an history and v′1 � v1. Then, there is an history
π′ = 〈n1, v

′
1〉, . . . , 〈nh, v

′
h〉 such that 〈v′1, . . . , v′h〉 � 〈v1, . . . , vh〉;

2. Let π = 〈n1, v1〉, 〈n2, v2〉, . . . be a computation and v′1 � v1. Then, there is a com-
putation π′ = 〈n1, v

′
1〉, 〈n2, v

′
2〉, . . . s.t. for all h ≥ 1, 〈v′1, . . . , v′h〉 � 〈v1, . . . , vh〉.

Thanks to the Simulation Lemma, we can prove the first important result.

Proposition 2. [[ξ]]P is an upward closed set with respect to �.

Proof. The proof is by structural induction on ξ. The cases ξ = ., ξ = ξ1 ∨ ξ2, and
ξ = ξ1 ∧ξ2 are obvious since [[.]]P = S(P ), [[ξ1 ∨ξ2]]P = [[ξ1]]P ∪ [[ξ2]]P , [[ξ1 ∧ξ2]]P =
[[ξ1]]P ∩ [[ξ2]]P , and upward closed sets are closed under union and intersection.

4 So, the relation � depends on parameters V ars(P ), Cons(P ), and κ.
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Now, assume that ξ = Eψ for some path formula ψ. Then, there is a set X of state
sub-formulas of ξ such that ψ ∈ PLF (X). Let s1 ∈ [[Eψ]]P and s1 � s1. We claim
that s1 ∈ [[Eψ]]P . Since s1 ∈ [[Eψ]]P , there is a computation π = s1, s2, . . . such that
(G(P ), π) |= ψ. Since s1 � s1, by Property 2 of Simulation Lemma and definition
of �, it easily follows that there is a computation π = s1, s2, . . . such that for all
i ≥ 1 and atomic formula ψat = p[x1 ← Oi1xj1 , . . . , xr ← Oirxjr ] with constants in
Cons(P ) and modulo constants inMod(P ): si � si and (G(P ), πi) |= ψat if and only
if (G(P ), πi) |= ψat. Moreover, for all i ≥ 1 and ξ′ ∈ X , by the induction hypothesis
and the fact that si � si, we have that si ∈ [[ξ′]]P implies si ∈ [[ξ′]]P . These properties
evidently imply (G(P ), π) |= ψ, i.e. s1 ∈ [[Eψ]]P . Therefore, the claim holds. ��

In the following subsection, we introduce the framework of modulo–κ Graphose in-
equality Systems (κ–GS, for short) as a finite representation of upward closed sets of P
states (w.r.t. �). In Subsection 3.2, we show some technical results on extended IRA and
finally, in Subsection 3.3, we describe an algorithm to compute a κ-GS representation
of the upward closed set [[ξ]]P .

3.1 Modulo–κ Graphose Inequality Systems

κ-GS extend Graphose inequality Systems introduced in [Čer93] by allowing to specify
periodicity constraints on the set of solutions. Formally, for κ ≥ 1, a κ–GS is a tuple
G = 〈D,C,w,mod〉, whereD ⊆ VAR is a finite set of variables, C ⊆ Z is a finite set
of integral constants, w : A × A → Z− for A = D ∪ C and Z− = Z ∪ {−∞} is a
weight function, and mod is a map mod : A→ {0, . . . ,κ − 1}.

The semantics of a κ–GS G is given by specifying the set Sol(G) of its solutions. A
valuation v overD is said to be a solution of G iff for all a, b ∈ A,

v.a− v.b ≥ w(a, b) and v.a ≡κ mod(a)

where by definition for c ∈ C, mod(c) ≡κ c. The κ–GSG can be interpreted as a graph
with set of verticesA and such that there is an edge from a ∈ A to b ∈ Awith the weight
w(a, b) whenever w(a, b) �= −∞. Finding a solution of G means assigning integral
values to the variable vertices so that the constraints imposed by mod are satisfied and
for every edge inG, the difference between its source and target vertex values is at least
the weight associated with the edge.

A κ-GS G = 〈D,C,w,mod 〉 is called consistent if it has a solution. Furthermore,
we say that G is positive if for all a, b ∈ D ∪ C, either w(a, b) = −∞ or w(a, b) ≥ 0.
A positive κ-GS is also denoted by κ-PGS. A κ-GSG = 〈D,C,w,mod 〉 is normalized
iff for all a, b, c ∈ D ∪ C, (1) w(a, b) ≥ w(a, c) + w(c, b) and (2) w(a, b) �= −∞
implies w(a, b) ≡κ mod(a) −mod(b).

Proposition 3 (Effectiveness of the κ-GS representation). We can decide whether
a κ-GS G = 〈D,C,w,mod〉 is consistent. In this case we can build effectively an
equivalent normalized κ-GS |G| = 〈D,C, |w|,mod 〉, called normal form of G, such
that: (1) Sol(|G|) = Sol(G), (2) |G| is positive if G is positive, (3) every solution of
the restriction of |G| to a subset ofD can be extended to a complete solution of |G|.
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Given an IRA P , let κ be the least common multiple of the integers inMod(P )∪{1}. A
κ-GSH = 〈D,C,w,mod 〉 is called local for P iffD = V ars(P ) and C = Cons(P ).
A set of states Y ⊆ S(P ) is said to be κ-GS-represented by a family of finite sets
(Hn)n∈V (P ) of local κ-GS if for every state 〈n, v〉 ∈ Y we have v ∈ Sol(H) for
some H ∈ Hn. By definition of wqo �, it easily follows that local positive κ-GS
constitute an effective representation of upward closed sets of states in S(P ) (see details
in [BG06]).

Proposition 4. κ-GS representations are effectively closed under complementation.

Proposition 5. For every set of states U ⊆ S(P ), U is κ-PGS-representable iff U is an
upward closed set.

Definition 1 (Intersection of κ-GS). Given two κ-GS G1 = 〈D1, C1, w1,mod1〉 and
G2 = 〈D2, C2, w2,mod2〉, their intersectionG1

⊗
G2 = 〈D1∪D2, C1∪C2, w,mod〉

is defined by:

– G1

⊗
G2 = nil5 if there is a ∈ D1 ∩D2 such thatmod1(a) �= mod2(a);

– otherwise for all a, b ∈ D1 ∪D2 ∪C1 ∪C2,mod(a) = max{mod′1(a),mod′2(a)}
and w(a, b) = max{w′

1(a, b), w′
2(a, b)} where (for i = 1, 2)

• if a ∈ Di ∪ Ci thenmod′i(a) = modi(a), elsemod′i(a) = −∞
• if a, b ∈ Di ∪ Ci then w′

i(a, b) = wi(a, b), else w′
i(a, b) = −∞.

Note that intersection of κ-GS preserves positiveness. Moreover, the following holds.

Proposition 6. Let G = 〈D,C,w,mod 〉 and G′ = 〈D′, C′, w′,mod ′〉 be two κ-GS.
Then, for v : D ∪D′ → Z, v ∈ Sol(G

⊗
G′) iff v|D ∈ Sol(G) and v|D′ ∈ Sol(G′).

In particular, forD = D′, Sol(G
⊗
G′) = Sol(G) ∩ Sol(G′).

3.2 Symbolic Characterization of Fair Computations in EIRA

In this section, we essentially show that given an EIRA, we can compute a PGS-represen-
tation of the set of states s such that there is a fair computation starting from s. This
technical result non-trivially generalizes [Čer93, Lemma 5.11] and is used in the fol-
lowing to solve model-checking of IRA against E–CCTL∗.

Let 〈P, �EXT 〉 be an EIRA and K the maximal natural number i such that a term of
the form Oix occurs in 〈P, �EXT 〉 for some variable x. W.l.o.g., we can assume that
K ≥ 1 and all the constants (resp., modulo constants) occurring in the atomic formulas
of 〈P, �EXT 〉 are in Cons(P ) (resp. Mod(P )). We denote by κ the least common
multiple of the integers inMod(P )∪{1} and S(P )† be the set of tuples of P states. In
the following we consider only κ-PGS or κ-GS but we write simply PGS or GS.

Assume that U ⊆ S(P ) is an upward closed set given by a PGS-representation.
For a set F ⊆ V (P ) of P vertices, we denote by [[E�FU ]]P the set of P states s
such that there is a fair computation from s that only visits states of U and contains
infinite occurrences of states 〈n, v〉 with n ∈ F . The main result of this subsection is
the following:

5 nil denotes some inconsistent κ-PGS over D1 ∪ D2 and C1 ∪ C2.
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Theorem 1. Given a set F ⊆ V (P ) of P vertices, one can build a PGS representation
of the set [[E�FU ]]P .

To prove this result, we show two important preliminary results (Theorems 2 and 3).
For two tuples 〈N ,V〉 and 〈N ′,V ′〉 of P states, a P path n from N to N ′, we write:

– 〈N ,V〉 K	U 〈N ′,V ′〉 to mean that there is a fair history π from 〈N ,V〉 to 〈N ′,V ′〉
visiting only states in U , where |π| = m ·K withm ≥ 2 (fair reachability relation);

– 〈N ,V〉 	U
n 〈N ′,V ′〉 to mean that 〈N ,V〉 K	U 〈N ′,V ′〉 by a fair history π whose

projection on V (P ) is the path n.

For all i ≥ 1, let V arsi be a fresh copy of V ars(P ) (we need this notation to formal-
ize access to several copies of P variables), KV ars =

⋃i=K
i=1 V arsi = {y1 . . . , yp}

and KV ars′ = {y′1, . . . , y′p}. Given a K–tuple V = 〈v1, . . . , vK〉 of valuations over
V ars(P ), for all x ∈ KV ars such that x ∈ V arsi (for some 1 ≤ i ≤ K) is a copy of
variable y ∈ V ars(P ), V .x denotes the value of the component y of vi.

A GS G = 〈D,C,w,mod〉 is called K–local for P iff D = KV ars and C =
Cons(P ). We denote by Sat(G) the set of K–tuples V of valuations over V ars(P )
that satisfyG, where V satisfiesG iff the mapping v : D → Z defined as v.x = V .x is a
solution ofG. We use K–local GS to represent sets of K-tuples of P states. Intuitively, a
K–local GS contains all the informations needed to evaluate an atomic constraint where
all the terms of the form Oix are such that i ≤ K. A set X ⊆ S(P )K of K-tuples of
P states is GS-represented by a family of finite sets (GN )N∈V (P )K of K–local GS if
〈N ,V〉 ∈ X iff V ∈ Sat(G) for some GS G ∈ GN .

A PGS G = 〈D,C,w,mod〉 is called K–transitional for P iff D = KV ars ∪
KV ars′ and C = Cons(P ). A pair 〈V ,V ′〉 of K–tuples of valuations over V ars(P )
satisfies G iff the mapping v : D → Z defined as v.x = V .x and v.x′ = V ′.x, for
each x ∈ KV ars, is a solution of G. We denote by Sat(G) the set of pairs of K–
tuples of valuations over V ars(P ) that satisfy G. We also extend the operator Sat to
sets of K–transitional PGS as follows: for a set G of K–transitional PGS, Sat(G) =⋃

G∈G Sat(G). Given a relation 	0⊆ S(P )† × S(P )†, a pair 〈N ,N ′〉 of K-tuples of
P vertices and a finite set G of K–transitional PGS, we say that G characterizes 	0

with respect to the pair 〈N ,N ′〉 iff Sat(G) = {〈V ,V ′〉 | 〈N ,V〉 	0 〈N ′,V ′〉}.

Remark 1. Let π1 be a fair history from 〈N1,V1〉 to 〈N ,V〉 and π2 be a fair history
from 〈N ,V〉 with 〈N ,V〉 ∈ S(P )K. Then, [π1 + π2]〈N ,V〉 is a fair history.

As first result, we show that the fair reachability relation
K	U can be PGS-characterized.

Theorem 2. For each pair 〈N ,N ′〉 of K–tuples of P vertices, one can build effectively
a finite set GU (N ,N ′) of K–transitional PGS that characterizes the fair reachability

relation
K	U w.r.t. the pair 〈N ,N ′〉. Moreover, for each G ∈ GU (N ,N ′), {G} char-

acterizes the fair reachability relation 	U
n for some path n from N to N ′.

The algorithm we propose relies on Remark 1, properties of normalized PGS (see
Proposition 3), and its termination is guaranteed by a suitable decidable wqo, which
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is defined over the set of PGS 6 (for a fixed set of variables and constants). More details
are given in [BG06].

For a set X ⊆ S(P )K, let us define reU (X) = {〈n, v〉 ∈ S(P ) | ∃〈N ,V〉 ∈ X.
〈n, v〉 K	U 〈N ,V〉}. By Proposition 3 and Theorem 2, we easily obtain the following
important corollary.

Corollary 1. Given a family of K–local GS (resp., PGS ) representing a set X ⊆
S(P )K, we can construct a GS (resp., PGS ) representation of reU (X).

The second preliminary result for the proof of Theorem 1 essentially relies on properties
of PGS. Its proof is highly technical (full details are given in [BG06]). For a K-tuple N
of vertices and a P path h from N to N , we define the following sets of K-tuples of
valuations over V ars(P ):

– Sp(h) := {V | ∃V ′. 〈N ,V〉 	U
h 〈N ,V ′〉 and V ′ � V};

– Rea∞(h) := {V | 〈N ,V〉 	U
h∞}.

where 〈N ,V〉 	U
h∞ means that there is a fair U -computation π starting from 〈N ,V〉

whose projection on V (P ) is the path h∞ (h∞ is the infinite path h, h1, h1, . . ., where
h1 is obtained from h by eliminating the prefix corresponding to N ). By Simulation
Lemma Sp(h) ⊆ Rea∞(h).

Theorem 3. Let N be a K-tuple of vertices, h be a path from N to N , and G(h) be a
K–transitional PGS such that {G(h)} characterizes the fair reachability relation 	U

h .
Then, we can construct a K–local PGS Hh such that Sp(h) ⊆ Sat(Hh) ⊆ Rea∞(h).

The idea behind this result is that we can build a PGS-representation Hh having the
properties needed to prove Theorem 1 instead of considering Sp(h) andRea∞(h) (see
the following proof). Now, we can prove the main result of this subsection.

Proof of Theorem 1. Let FK be the set of K–tuples N of vertices such that some
component of N is in F . By Theorem 2, for each N ∈ FK, we can construct a finite set

GU (N ,N ) of K-transitional PGS characterizing
K	U w.r.t. the pair (N ,N ). Moreover,

there is finite set of representative paths h from N to N , denoted byRepr(N ), such that
GU (N ,N ) =

⋃
h∈Repr(N ){G(h)}, where {G(h)} characterizes 	U

h . By Theorem 3,

for every N ∈ FK, we can compute a family {Hh
N}h∈Repr(N ) of K–local PGS such

that Sp(h) ⊆ Sat(Hh
N ) ⊆ Rea∞(h) for every h ∈ Repr(N ). Let us consider the set

X of K-tuples of P states defined as follows:

X = {〈N ,V〉 | N ∈ FK, ∃h ∈ Repr(N ) : V ∈ Sat(Hh
N )}

Note that X is PGS-represented by the family {HN }N∈FK
of K-local PGS, where

HN =
⋃

h∈Repr(N ){Hh
N}. Therefore, by Corollary 1, Theorem 1 directly follows from

the following claim: reU (X) = [[E�FU ]]P . It remains to prove this claim.

reU (X) ⊆ [[E�FU ]]P : let 〈n, v〉 ∈ reU (X). Then, there is N ∈ FK, h ∈ Repr(N ),

and V ∈ Sat(Hh
N ) such that 〈n, v〉 K	U 〈N ,V〉. Since Sat(Hh

N ) ⊆ Rea∞(h), it

6 The hypothesis of positiveness is crucial.
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holds that 〈N ,V〉 	U
h∞ . Since h∞ contains infinite occurrences of accepting ver-

tices, by Remark 1 we deduce that 〈n, v〉 ∈ [[E�FU ]]P . [[E�FU ]]P ⊆ reU (X): let
〈n, v〉 ∈ [[E�FU ]]P . Then, there is a fair U -computation π starting from 〈n, v〉 that
visits some vertex in F infinitely many times. Hence, we deduce the existence of an
infinite sequence

〈n, v〉 K	U 〈N0,V0〉
K	U 〈N1,V1〉

K	U 〈N2,V2〉 . . .

with Ni ∈ FK for each i ≥ 0. Due to well quasi-ordering of �, there are i < j such

that Ni = Nj and Vi � Vj . Since 〈Ni,Vi〉
K	U 〈Ni,Vj〉, by Properties of GU (Ni,Ni),

there is h ∈ Repr(Ni) such that 〈Ni,Vi〉 	U
h 〈Ni,Vj〉. Since Vi � Vj , it follows that

Vi ∈ Sp(h) ⊆ Sat(Hh
N ). As 〈n, v〉 K	U 〈Ni,Vi〉, it holds that 〈n, v〉 ∈ reU (X). ��

3.3 Symbolic Model-Checking Algorithm

We fix an IRA P and an E–CCTL∗ formula ξ such that V ars(ξ) ⊆ V ars(P ), Cons(ξ)
⊆ Cons(P ), andMod(ξ) ⊆Mod(P ). Let κ be the least common multiple of the con-
stants inMod(P ) ∪ {1}. In the following, by using Theorem 1 and a generalization of
the standard tableau-based construction for LTL model-checking, we show that we can
construct a κ-PGS representation of the set of states [[ξ]]P . Hence, model-checking IRA
against E–CCTL∗ is decidable (note that the membership problem for κ-PGS represen-
tations is trivially decidable).

Let ψ ∈ PLF (X) be a path E–CCTL∗ formula withX = {ξ1, . . . , ξk}. The closure
of ψ, denoted by cl(ψ), is the smallest set containing ξ1, . . . , ξk, each subformula of ψ
(considering ξ1, . . . , ξk as atomic propositions), and satisfying: (1) if ψ1Uψ2 ∈ cl(ψ),
then O(ψ1Uψ2) ∈ cl(ψ), (2) if �ψ1 ∈ cl(ψ), then O�ψ1 ∈ cl(ψ). An LTL-atom of ψ
is a set A ⊆ cl(ψ) satisfying the following properties:

– for ψ1 ∨ ψ2 ∈ cl(ψ), ψ1 ∨ ψ2 ∈ A iff either ψ1 ∈ A or ψ2 ∈ A;
– for ψ1 ∧ ψ2 ∈ cl(ψ), ψ1 ∧ ψ2 ∈ A iff ψ1 ∈ A and ψ2 ∈ A;
– for ψ1Uψ2 ∈ cl(ψ), ψ1Uψ2 ∈ A iff either ψ2 ∈ A or {ψ1,O(ψ1Uψ2)} ⊆ A;
– for �ψ1 ∈ cl(ψ), �ψ1 ∈ A iff {ψ1,O�ψ1} ⊆ A.

Let Atoms(ψ) be the set of LTL-atoms of ψ. When an until-formula ψ1Uψ2 is asserted
at a state along a computation, we must make sure that the liveness requirement ψ2 is
eventually satisfied. This is done (as for LTL) using a generalized Büchi condition, one
for each until formula. Formally, we denote by F(ψ) the family of subsets ofAtoms(ψ)
defined as: for any until formula ψ1Uψ2 ∈ cl(ψ), there is a component F ∈ F(ψ) that
contains all and only the LTL-atoms A such that either ψ2 ∈ A or ψ1Uψ2 /∈ A.

The main step of the proposed algorithm is represented by the following result.

Lemma 3. Let ψ ∈ PLF (X) be a path sub-formula of ξ such that X = {ξ1, . . . , ξk}
and for each 1 ≤ i ≤ k, [[ξi]]P is given by a family (Hξi

n )n∈V (P ) of local κ-PGS. Then,
we can construct a κ-PGS representation of [[Eψ]]P .

Proof (Sketch). We build an EIRA 〈P ′, �EXT 〉, a set F ⊆ V (P ′), and a family H =
(Hn′)n′∈V (P ′) of sets of local κ-PGS (w.r.t. P ′) such that V ars(P ′) = V ars(P ),
Cons(P ′) = Cons(P ), Mod(P ′) = Mod(P ), V (P ′) = V (P ) × Atoms(ψ) ×
{0, . . . , |F(ψ)|}, and
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Claim 1. for all 〈n, v〉 ∈ S(P ), 〈n, v〉 ∈ [[Eψ]]P if and only if 〈〈n,A, 0〉, v〉 ∈
[[E�F 
H�]]P ′ for some LTL-atom A ∈ Atoms(ψ) such that ψ ∈ A (where 
H�
denotes the upward closed subset of S(P ′) that is κ–PGS represented by H).

Evidently, the current Lemma directly follows from the claim above and Theorem 1.
The EIRA 〈P ′, �EXT 〉 and F ⊆ V (P ′) are defined as (where F(ψ) = {F1, . . . , Fm}):

– V (P ′) = V (P )×Atoms(ψ)×{0, . . . ,m}. A P ′ vertex is a triple 〈n,A, i〉, where
n is a P vertex, A is an atom that intuitively represents the set of formulas that
hold at n (along the current computation), and i is a finite counter used to check the
fulfillment of the generalized Büchi condition F(ψ);

– 〈〈n,A, i〉, 〈n′, A′, j〉〉 ∈ E(P ′) if and only if (1) 〈n, n′〉 ∈ E(P ), (2) for all Oψ′ ∈
cl(ψ), Oψ′ ∈ A iff ψ′ ∈ A′ (i.e., the next-requirements in A are met in A′), and (3)
j = i if i < m and A′ /∈ Fi+1, and j = (i+ 1)mod (m+ 1) otherwise;

– the labelling �′V and �′E of P ′ are consistent with those of P , i.e. �′V (〈n,A, i〉) =
�V (n) and �′E(〈〈n,A, i〉, 〈n′, A′, i′〉〉) = �E(〈n, n′〉); �EXT (〈n,A, i〉) is the set of
atomic formulas p[x1 ← Oi1x

j1
, . . . , xr ← Oiqxjq ] in A;

– F = {〈n,A,m〉 ∈ V (P ′)}.

It remains to define the family H = (Hn′)n′∈V (P ′) of sets of local κ-PGS. Let n′ =
〈n,A, i〉 withA∩X = {ξj1 , . . . , ξjr}. Intuitively,A∩X represents the set of “atomic”
state formulas asserted at n along the current computation. Thus, we have to require that
Sat(Hn′) = {v | 〈n, v〉 ∈

⋂i=r
i=1[[ξji ]]P }. Formally, Hn′ = {H | H = H1 ⊗ . . .⊗Hr

withHh ∈ Hξjh
n for all 1 ≤ h ≤ r}. A full proof of Claim 1 is given in [BG06]. ��

Now, we can prove the desired result.

Theorem 4. We can construct a κ-PGS representation (Hξ
n)n∈V (P ) of [[ξ]]P .

Proof. By structural induction on ξ. The case ξ = . is obvious. If ξ = ξ1 ∨ ξ2 (resp.,
ξ = ξ1 ∧ ξ2), then for all n ∈ V (P ), Hξ

n = Hξ1
n ∪Hξ2

n (resp., Hξ
n = {H1 ⊗H2 | Hi ∈

Hξi
n , i = 1, 2}), where (Hξi

n )n∈V (P ) is the κ-PGS representation of ξi with i = 1, 2.
Finally, the case ξ = Eψ follows from the induction hypothesis and Lemma 3. ��

4 Satisfiability and Model-Checking for CEF+

In this section we show the main result of this paper, i.e. satisfiability and model-
checking for CEF+ are decidable. We need the following preliminary result.

Lemma 4. For an E–CCTL∗ formula ξ, we can construct in polynomial time an IRA
P with a distinguished vertex n0 and a new E–CCTL∗ formula ξ′ such that [[ξ]]SAT =
{v | 〈n0, v

′〉 ∈ [[ξ′]]P where v′.x = v.x for every x ∈ V ars(ξ)}.

Proof. Let V ar(ξ) = {x1, . . . , xk}. The IRA P is defined as follows:

�n0
aux ← 1 � aux ← 0 � ?x1

� � ?xk

�
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This IRA essentially consists of a sequence of inputs operations and we use an auxil-
iary variable aux to distinguish the state where all the values of the variables have been
updated, which correspond to a new valuation.

Now consider the map f over E–CCTL∗ formulas defined as: f(Oix ∼ Ojy) =
Oi(k+2)x ∼ Oj(k+2)y, f(Oix ≡k c) = f(Oi(k+2)x) ≡k c, f is homomorphic w.r.t.
the positive boolean operators, f(Oψ) = O(k+2)f(ψ), f(ψUψ′) =

(
(aux = 1) ⇒

f(ψ)
)
U
(
(aux = 1) ∧ f(ψ′)

)
, f(�ψ) = �

(
(aux = 1) ⇒ f(ψ)

)
, f(Eψ) = Ef(ψ).

We can check that v ∈ [[ξ]]SAT iff there is a valuation v′ over V ars(ξ) ∪ {aux} such
that v′.x = v.x for every x ∈ V ars(ξ) and 〈n0, v

′〉 ∈ [[f(ξ)]]P . ��
Theorem 5

(1) The model checking problem of IRA against CEF+ is decidable.
(2) Satisfiability of CEF+ is decidable.

Proof (1) For given IRA P and CEF+ formula ξ, we prove by structural induction on
ξ that we can build a κ-GS representation of [[ξ]]P (where κ is defined as in Section 3).
The cases in which ξ is a E–CCTL∗ formula or a disjunction of formulas directly follow
from Theorem 4, while the case ξ = ¬ξ′ follows from Proposition 4. For the case ξ =
E(ξ1Uξ2) where ξ1 is an E–CCTL∗ formula, we observe that [[ξ]]P = re[[ξ1]]P ([[ξ2]]P ),
and the result follows from Theorem 4 and Corollary 1 (setting K = 1). Finally, the
case ξ = EOξ′ follows from a simple variant of Corollary 1.
(2) For a CEF+ formula ξ, we construct a κ-GS representation of [[ξ]]SAT (where κ and
κ-GS representation have an obvious meaning). For the boolean connectives we pro-
ceed as above. The case in which ξ is an E–CCTL∗ formula easily follows from Propo-
sition 3, Lemma 4, and Theorem 4. Finally, we observe that (1) [[E(ξ1Uξ2)]]SAT = ∅
if [[ξ2]]SAT = ∅, and [[E(ξ1Uξ2)]]SAT = [[ξ1]]SAT ∪ [[ξ2]]SAT otherwise, (2) [[EOξ]]SAT

contains all valuations over V ars(ξ) if [[ξ]]SAT �= ∅, and [[EOξ]]SAT = ∅ otherwise.
��

5 Conclusion

We have considered an extension of standard CTL∗, called CCTL∗, whose atomic for-
mulas are constraints from IPC∗ with comparison of variables at different states. For
this logic, we have addressed two problems: satisfiability and model checking of Inte-
gral Relational Automata [BBK77,Čer93] extended with periodicity constraints. Since
model checking IRA against full CCTL∗ is undecidable (also for the CTL-like fragment),
we have considered a meaningful fragment of CCTL∗, namely CEF+ (which subsumes
both the existential and universal fragment of CCTL∗ and the EF-like fragment) show-
ing that for this fragment both satisfiability and model checking of IRA are decidable.
Furthermore, using a symbolic approach based on theory of κ-GS, the theory of well
quasi-ordering, and automata-theoretic techniques, we have shown that it is possible to
compute a finite representation of the set of states of the given IRA that satisfy a given
formula. There are still interesting and non-trivial open questions such as the decidabil-
ity status of satisfiability of full CCTL∗ and the complexity for the considered decidable
fragment (termination of our algorithm (see Theorem 2) is guaranteed by a wqo defined
over the set of κ-PGS for a fixed set of variables and constants).
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Combining Supervaluation and Degree Based
Reasoning Under Vagueness

Christian G. Fermüller and Robert Kosik

Technische Universität Wien, Austria

Abstract. Two popular approaches to formalize adequate reasoning with vague
propositions are usually deemed incompatible: On the one hand, there is supervalu-
ation with respect to precisification spaces, which consist in collections of classical
interpretations that represent admissible ways of making vague atomic statements
precise. On the other hand, t-norm based fuzzy logics model truth functional rea-
soning, where reals in the unit interval [0,1] are interpreted as degrees of truth. We
show that both types of reasoning can be combined within a single logic SŁ, that
extends both: Łukasiewicz logic Ł and (classical) S5, where the modality corre-
sponds to ‘. . . is true in all complete precisifications’. Our main result consists in a
game theoretic interpretation of SŁ, building on ideas already introduced by Robin
Giles in the 1970s to obtain a characterization of Ł in terms of a Lorenzen style
dialogue game combined with bets on the results of binary experiments that may
show dispersion. In our case the experiments are replaced by random evaluations
with respect to a given probability distribution over permissible precisifications.

1 Introduction

Providing adequate logical calculi for systematic reasoning about vague information is
a major challenge in the intersection of logic, AI, and computer science. Many differ-
ent models of reasoning with vague notions are on the market. In fact, the literature on
so-called theories of vagueness is almost unsurmountable large and still fast growing.
(We refer to the book [20], the reader [21], and the more recent collection [1] for fur-
ther references.) Still, one can single out two quite different approaches as particularly
popular—albeit popular in different communities. On the one hand, there is fuzzy logic
‘in Zadeh’s narrow sense’ (see, e.g., [15,17]) focusing on the study of truth functional
logics, based on a (potential) continuum of degrees of truth, usually identified with the
real closed unit interval [0,1]. On the other hand, there is the concept of supervaluation
(see, e.g., [11,20,27]), which maintains that vague statements have to be evaluated with
respect to all their admissible precisifications. The slogan ‘truth is supertruth’ in the
latter context entails the thesis that a logical formula built up from vague atomic propo-
sitions is true if and only if it is true in each of its (classical) precisifications. Whereas
this is often understood as a vindication of classical logic (even) in contexts of vague in-
formation1, all degree based fuzzy logics agree upon the rejection of the logical validity

1 One should mention that the extent to which supervaluation leads to classical validity and
consequence relations is hotly debated. See, in particular [22] for proofs that compactness,
upwards and downwards Löwenheim-Skolem, and recursive axiomatizability fail for ‘natural’
supervaluation based consequence relations.

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 212–226, 2006.
© Springer-Verlag Berlin Heidelberg 2006
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of tertium non datur (A∨¬A). Consequently it is not surprising that supervaluation and
degree based reasoning, respectively, are deemed fundamentally incompatible.

We think that a formal assessment, relating the scope and limits of both types of logi-
cal reasoning with each other, is essential for judging their adequateness for applications
in information processing (as argued in [9]). As a first step towards such an evaluation
we seek to identify a common formal framework for degree based logics and superval-
uation. The main purpose of this paper is to show that supervaluation as well as t-norm
based fuzzy logics can be interpreted as referring to classical precisifications at different
levels of formula evaluation. The resulting semantic framework allows to combine both
forms of reasoning within a single logic. The main tool for achieving an appropriate
mathematical analysis of corresponding analytic reasoning is borrowed from the dia-
logue based characterization of infinite-valued Łukasiewicz logic developed by Robin
Giles in the 1970s [13,14]. In particular, our extension of Giles’s game for Ł will lead
us to a tableau style calculus for the evaluation of formulas over precisification spaces.

We like to emphasize that it is not the purpose of this work to (just) introduce yet
another modal extension of a particular fuzzy logic. Rather we seek to derive an ad-
equate logic for the combination of supervaluation and degree based reasoning from
first principles about the formalization of vague notions and propositions. Still, a short
comparison with similar extensions of fuzzy logics will be presented in Section 5.

We also point out that throughout the paper we only deal with propositional logics.

2 Supervaluation, Sorites, and t-Norm Based Fuzzy Logics

The use of supervaluation to obtain a semantics for languages that accommodate (also)
vague propositions was introduced by Kit Fine in [11] and has remained an impor-
tant point of reference for investigations into logic and vagueness ever since (see, e.g.,
[20,27,28,9]. The main idea is to evaluate propositions not simply with respect to clas-
sical interpretations—i.e., assignments of the truth values 0 (‘false’) and 1 (‘true’) to
atomic statements—but rather with respect to a whole space Π of (possibly) partial
interpretations. For every partial interpretation I in Π , Π is required to contain also a
classical interpretation I′ that extends I. I′ is called an admissible (complete) precisifi-
cation of I. A proposition is called supertrue in Π if it evaluates to 1 in all admissible
precisifications, i.e., in all classical (i.e., complete) interpretations contained in Π .

Example 1. To illustrate supervaluation let us briefly describe how the famous Sorites
paradox (see, e.g, [20,28,3]) is solved in this context. Suppose that hi stands for the
proposition “i (properly arranged) sand-corns make a heap of sand”. Let us further agree
that h1 is false (i.e., a single sand-corn is not a heap of sand) but that h10000 is true. The
paradox consists in the fact that also the proposition hi ⊃ hi−1—read: “If i sand-corns
make a heap then also i−1 sand-corns make a heap”—seems to be true for each i> 1.
However, from these implicative propositions and h10000 we can derive h1 using modus
ponens only. In other words, classical logic is at variance with the above mentioned,
seemingly innocent intuitions. Using supervaluation we can easily accommodate the
intuition that h1 is definitely false while h10000 is definitely true by assigning 0 to h1 and
1 to h10000 in each admissible precisification in a corresponding space Π . On the other
hand, at least one statement hi, where 1 < i < 10000 is taken to be vague, i.e., neither
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definitely false nor definitely true. This means that for some i the space Π contains ad-
missible precisifications I and I′ such that hi evaluates to 0 in I, but to 1 in I′. Assuming
further that h j is true in an admissible precisification, whenever already hi is true there
for some i< j, we obtain that there is an i such that hi ⊃ hi−1 is not true in all interpre-
tations contained in Π . In other words: while h10000 is supertrue and h1 is superfalse, at
least one statement of the form hi ⊃ hi−1 is neither supertrue nor superfalse.

Note that the inference from h10000 to h1 is blocked since the conclusion of modus
ponens is guaranteed to be supertrue only if both premises are supertrue. In fact, super-
valuationists like to identify truth with supertruth and thus feel justified in claiming to
have ‘saved’ classical logic also in context of vague propositions. (See, e.g., [20].)

Note, that no reference to (strictly) partial interpretations is needed to determine which
propositions are supertrue. The partial interpretations represent additional information
that is used to model the semantics of modal operators like ‘definitely’ or ‘indefinitely’.
However, we will not investigate such operators here and thus may simplify the notion
of a space Π by assuming that Π contains admissible complete precisifications, i.e.,
classical interpretations only. We will use the term ‘precisification space’ henceforth
for such structures.

One complaint about the above analysis of the Sorites paradox focuses on the fact
that we seem to have good reasons to insist that ‘taking away one sand-corn from a
heap does not result in a non-heap’ formalized as hi ⊃ hi−1 is, if not simply true, at least
almost true for all i > 1. Supervaluation itself does not accommodate this intuition. In
contrast, fuzzy logics ‘in Zadeh’s narrow sense’ are often claimed to solve the Sorites
paradox while respecting all mentioned intuitions. Indeed, in fuzzy logics one may as-
sign an intermediary truth value, close to 1 to all instances of hi ⊃ hi−1. Using a properly
generalized (from {0,1} to [0,1]) truth function for implication and generalized modus
ponens, respectively, one may still block the inference from h10000 to h1, even if h10000

is interpreted as definitely true (1) and h0 as as definitely false 0. (For a detailed analysis
of Sorites in the context of t-norm based fuzzy logics we refer to [18].)

Supervaluation and fuzzy logics can be viewed as capturing contrasting, but indi-
vidually coherent intuitions about the role of logical connectives in vague statements.
Consider a sentence like

(*) “The sky is blue and is not blue”.

When formalized as b&¬b, (*) is superfalse in all precisification spaces, since either b
or ¬b is evaluated to 0 in each precisification. This fits Kit Fine’s motivation in [11] to
capture ‘penumbral connections’ that prevent any mono-colored object from having two
colors at the same time. According to Fine’s intuition the statement “The sky is blue”
absolutely contradicts the statement “The sky is not blue”, even if neither statement is
definitely true or definitely false. Consequently (*) is judged as definitely false, although
admittedly composed of vague sub-statements. On the other hand, by asserting (*) one
may intend to convey the information that both component statements are true only to
some degree, different from 1 but also from 0. Under this reading and certain ‘natural’
choices of truth functions for & and ¬ the statement b&¬b is not definitely false, but
receives some intermediary truth value.

We are motivated by the fact that, although supervaluation is usually deemed in-
compatible with fuzzy logics, one may (and should) uncover a substantial amount of
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common ground between both approaches to reasoning under vagueness. This common
ground becomes visible if one relates the (in general intermediary) truth value of an
atomic proposition p as stipulated in fuzzy logics to the ‘density’ of those interpreta-
tions in a precisification space Π that assign 1 to p.

Example 2. Let h1, . . . ,h10000 be as in Example 1 and let these hi be the only
atomic propositions taken into consideration. We define a corresponding precisification
space Π as follows: Π consists in the set of all classical interpretations I, that fulfill the
following conditions, which model ‘penumbral connections’ in the sense of [11]. (We
write I(p) for the value ∈ {0,1} that is assigned to proposition p in I).

1. I(h1) = 0 and I(h10000) = 1
2. i ≤ j implies I(hi) ≤ I(h j) for all i, j ∈ {1, . . . ,10000}

The first condition makes h1 superfalse and h10000 supertrue in Π . The second condition
captures the assumption that, if some precisification declares i sand-corns to form a
heap, then, for all j ≥ i, j sand-corns also form a heap under the same precisification.
Note that supervaluation leaves the semantic status of all statements hi ⊃ hi−1, where
1< i ≤ 10000, undecided. However, we can observe that I(hi ⊃ hi−1) = 1 in all but one
of the, in total, 99999 interpretations I in Π , whenever 1< i ≤ 10000. It is thus tempting
to say that Π itself (but not supervaluation!) respects the intuition that hi ⊃ hi−1—
informally read as “taking away one sand-corn from a heap still leaves a heap”—is (at
least) ‘almost true’. Once one accepts the idea that truth may come in degrees, it seems
natural to identify what could be called the ‘global truth value of hi with respect to Π ’
with the fraction of admissible precisifications I ∈ S where I(hi) = 1. We thus obtain

i−1
99999 as global truth value of hi, here.

Following this example we will use global truth values ∈ [0,1] to make information ex-
plicit that is implicit in precisification spaces, but is not used in supervaluation. A simple
way to extract a global truth value for an atomic proposition p from a given precisifica-
tion space Π is suggested by Example 2: just divide the number of interpretations I in
Π that assign 1 to p by the total number of interpretations in Π . This is feasible if Π
is represented by a finite set or multiset of interpretations. (For related ideas underlying
the so-called ‘voting semantics’ of fuzzy logics, we refer to [26,12].) More generally,
since we view the interpretations in Π as corresponding to different ways of making
all atomic propositions precise, it seems natural not just to count those precisifications,
but to endow Π with a probability measure μ on the σ -algebra formed by all sub-
sets of precisifications in Π , where μ is intended to represent the relative plausibility
(or ‘frequency in non-deterministic evaluations’) of different precisifications. Suppose,
e.g., that in refining Example 2 we want to model the intuition that a ‘cut-off’ point n
between heaps and non-heaps—i.e., an n where I(hn) �= I(hn+1)—is more plausibly
assumed to be near n = 100 than near n = 9500. Then we may take μ(J∼100) to be
higher than μ(J∼9500), where J∼n denotes the set of all interpretations I where the
‘cut-off’ point is near n, in the sense that I(hn−c) = 0 but I(hn+c) = 1 for some fixed
smallish c, say c = 10.

Note that if we insist on truth functional semantics, then we cannot simply extend the
above method for extracting truth values from Π from atomic propositions to logically
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complex propositions. E.g., in general, the fraction of interpretations I in a finite pre-
cisification space Π for which I(p&q) = 1 is not uniquely determined by the fractions
of interpretations that assign 1 to p and q, respectively.

Obviously, the question arises which truth functions should be used for the basic
logical connectives. For this we follow Hájek (and many others) in making the following
‘design choices’ (see, e.g., [15,17]):

1. The truth function for conjunction is a continuous, commutative, associative, and
monotonically non-decreasing function ∗ : [0,1]2 
→ [0,1], where 0 ∗ x = 0 as well
as 1 ∗ x = x. In other words: ∗ is a continuous t-norm.

2. The residuum ⇒∗ of the t-norm ∗—i.e., the unique function ⇒∗: [0,1]2 
→ [0,1]
satisfying x ⇒∗ y = sup{z | x∗ z ≤ y}—serves as the truth function for implication.

3. The truth function for negation is defined as λ x[x ⇒∗ 0].

Given a continuous t-norm ∗ with residuum ⇒∗, one obtains a fuzzy logic L(∗) based
on a language with binary connectives ⊃ (implication), & (strong conjunction), con-
stant ⊥ (falsum), and defined connectives ¬A =def A ⊃ ⊥, A ∧ B =def A&(A ⊃ B),
A ∨ B =def ((A ⊃ B) ⊃ B)∧ ((B ⊃ A) ⊃ A) (negation, weak conjunction and disjunc-
tion, respectively) as follows. A valuation for L(∗) is a function v assigning to each
propositional variable a truth value from the real unit interval [0,1], uniquely extended
to v∗ for formulas by:

v∗(A&B) = v∗(A)∗ v∗(B), v∗(A ⊃ B) = v∗(A) ⇒∗ v∗(B), v∗(⊥) = 0

Formula F is valid in L(∗) iff v∗(F) = 1 for all valuations v∗ pertaining to the t-norm ∗.
Three fundamental continuous t-norms and their residua are:

t-norm associated residuum
Łukasiewicz x∗Ł y = sup{0,x + y−1} x ⇒Ł y = inf{1,1− x + y}

Gödel x∗G y = inf{x,y} x ⇒G y =
{

1 if x ≤ y
y otherwise

Product x∗P y = x · y x ⇒P y =
{

1 if x ≤ y
y/x otherwise

Any continuous t-norm is obtained by an ordinal sum construction based on these three
(see, [25,15]). The logics L(∗Ł), L(∗G), and L(∗P), are called Łukasiewicz logic Ł,
Gödel logic G, and Product logic P, respectively.

The mentioned logics have different features that render them adequate for different
forms of applications. E.g., Gödel logic G, is the only t-norm based logic, where the
truth value of every formula A only depends on the relative order of truth values of
atomic subformulas of A, but not on the absolute values of these subformulas. However,
Example 2 suggests another desideratum, that we formulate as an additional design
choice:

4. Small changes in v∗(A) or v∗(B) result in, at most, small changes in v∗(A ⊃ B).
More precisely: the truth function ⇒∗ for implication is continuous.
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Design choices 1-4 jointly determine a unique logic:

Proposition 1. Ł is the only logic of type L(∗), where ⇒∗ is continuous.

Proof. Let x,y,u ∈ [0,1]. For any continuous t-norm ∗ we have (see [16]):

– If x< u ≤ y and u = u ∗ u is idempotent then (y ⇒∗ x) = x .
– If y ≤ x then (y ⇒∗ x) = 1.

Putting y = u in these inequalities we get for idempotent u:

– (u ⇒∗ x) = x for x< u
– (u ⇒∗ x) = 1 for x ≥ u

It follows that ⇒∗ is not continuous at (u,u) if u is idempotent and 0< u < 1. By the
ordinal sum representation of [25] each continuous t-norm is the generalized sum of
order isomorphic copies of the Łukasiewicz and product t-norms. In this construction
boundaries of an interval are mapped to idempotent elements. It follows that the only
continuous t-norms with no idempotent elements except 0 and 1 are given by a single
interval whose boundaries are mapped to 0 and 1. The corresponding t-norms are order
isomorphic to Łukasiewicz or product t-norm respectively.

The residuum x ⇒∗ y of product t-norm is not continuous at (0,0). Hence the
only continuous t-norms with continuous implication are order isomorphic to the
Lukasiewicz t-norm. The unique corresponding logic is Łukasiewicz logic Ł. �

Note that we have used the same symbols for classical conjunction, negation, and impli-
cation as for their respective counterparts in t-norm based fuzzy logics. In principle, one
might keep the classical logical vocabulary apart from the logical vocabulary for fuzzy
logics in defining a logic that combines supervaluation with t-norm based valuations.
However, the results in Section 3, below, can be seen as a justification of our choice of a
unified logical syntax for the logic SŁ that extends Łukasiewicz logic, but incorporates
also classical logic. The crucial link between classical and ∗Ł- based valuation over pre-
cisification spaces is obtained by making the concept of supertruth explicit also in our
language. For this we introduce the (unary) connective S—read: “It is supertrue that
. . . ”—which will play the role of an S5-like modal operator. Modal extensions of fuzzy
logics have already been studied in other contexts; see, e.g., chapter 8 of [15] and [8].
However SŁ is different from the modal extensions of Ł studied by Hájek, Godo, Es-
teva, Montagna, and others, since it combines classical reasoning with many-valued
reasoning in a different way, as will get clear below. (See also Section 5.)

Formulas of SŁ are built up from the propositional variables p ∈ V = {p1, p2, . . .}
and the constant ⊥ using the connectives & and ⊃. The additional connectives ¬,
∧, and ∨ are defined as explained above. In accordance with our earlier (informal)
semantic considerations, a precisification space is formalized as a triple 〈W,e,μ〉,
where W = {π1,π2, . . .} is a non-empty (countable) set, whose elements πi are called
precisification points, e is a mapping W ×V 
→ {0,1}, and μ is a probability measure on
the σ -algebra formed by all subsets of W . Given a precisification space Π = 〈W,e,μ〉 a
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local truth value ‖A‖π is defined for every formula A and every precisification point
π ∈ W inductively by

‖p‖π = e(π , p), for p ∈ V (1)

‖⊥‖π = 0 (2)

‖A&B‖π =
{

1 if ‖A‖π = 1 and ‖B‖π = 1
0 otherwise

(3)

‖A ⊃ B‖π =
{

1 if ‖A‖π = 1 and ‖B‖π = 0
0 otherwise

(4)

‖SA‖π =
{

1 if ∀σ ∈ W : ‖A‖σ = 1
0 otherwise

(5)

Local truth values are classical and do not depend on the underlying t-norm ∗Ł. In
contrast, the global truth value ‖A‖Π of a formula A is defined by

‖p‖Π = μ({π ∈ W |e(π , p) = 1}), for p ∈ V (6)

‖⊥‖Π = 0 (7)

‖A&B‖Π = ‖A‖Π ∗Ł ‖B‖Π (8)

‖A ⊃ B‖Π = ‖A‖Π ⇒Ł ‖B‖Π (9)

‖SA‖Π = ‖SA‖π for any π ∈ W (10)

Note that ‖SA‖π is the same value (either 0 or 1) for all π ∈ W . In other words: ‘local’
supertruth is in fact already global; which justifies the above clause for ‖SA‖Π . Also
observe that we could have used clauses 8 and 9 also to define ‖A&B‖π and ‖A ⊃ B‖π
since the (global) t-norm based truth functions coincide with the (local) classical ones,
when restricted to {0,1}. (However that might have obscured their intended meaning.)

A formula A is called valid in SŁ if ‖A‖Π = 1 for all precisification spaces Π . In
stating the following proposition we identify not only SŁ, but also Łukasiewicz logic Ł
and the (classical) modal logic S5 with their respective sets of valid formulas.

Proposition 2. SŁ restricted to formulas without occurrences of S coincides with Ł.
On the other hand, {A | SA ∈ SŁ} coincides with S5.

Proof. The first part of the claim follows immediately from clauses 7, 8 and 9, above;
and the fact that all values v(pi) ∈ [0,1] for some propositional variable pi ∈ {p1, . . . pn}
can be obtained as μ({π ∈W |e(π , p) = 1}) for a suitable precisification space 〈W,e,μ〉
where W and e correspond to all 2n assignments of 0 or 1 to the pi.

The second part follows from clauses 1-5 and 10 using the well known fact that
in any Kripke model 〈W,R,e〉 for S5—where W is the set of possible worlds, R is
the accessibility relation, and e the mapping that assigns 0 or 1 to each propositional
variable in each world—R can be assumed to be the total relation W ×W . �

We have the following finite model property.

Proposition 3. A formula F is valid in SŁ if and only if F is valid in all those precisi-
fication spaces 〈W,e,μ〉 where W is finite.
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Proof. Let Π = 〈W,e,μ〉 and let VF = {p1, . . . , pn} be the propositional variables oc-
curring in F . Moreover, let BF be the set of all classical truth value assignments
I : VF 
→ {0,1}. We write I = e(π) if ∀p ∈ VF : I(p) = e(π , p) and define a new precisi-
fication space Π f = 〈W f ,e′,μ ′〉 as follows:

– Wf = {I ∈ BF | ∃π ∈ W : I = e(π)}
– e′(I, p) = e(π , p), where I = e(π)
– μ ′({I}) = μ({π | I = e(π)}), which uniquely extends to all subsets of Wf .

It is straightforward to check that ‖F‖Π = ‖F‖Π f . Thus we have shown that in evalu-
ating F it suffices to consider precisification spaces with at most 2p(F) precisification
points, where p(F) is the number of different propositional variables occurring in F . �

3 Reasoning Via Dialogue Games

We have defined the logic SŁ in an attempt to relate supervaluation and ‘fuzzy valu-
ation’ in a common framework based on precisification spaces. But we have not yet
said anything about proof systems or—more generally—about formal reasoning in this
context. We claim that a Hilbert-style calculus for SŁ can be obtained by extending any
system for Ł with the following axioms

A1 : S(A∨¬A) A2 : SA∨¬SA
A3 : S(A ⊃ B) ⊃ (SA ⊃ SB) A4 : SA ⊃ A
A5 : SA ⊃ SSA A6 : ¬SA ⊃ S¬SA

and the Necessitation Rule
A

SA for supertruth. However, mainly due to space constraints,
we defer a corresponding soundness and completeness proof to an extended version of
this paper and concentrate on an analysis of SŁ that seems more revealing with respect
to its intended semantics and also more important from a computational point of view.
Building on an extension of (a variant of) Robin Giles’s dialogue and betting game for Ł
(see [13,14,10]) we provide a game based characterization of SŁ. Our game will be seen
to correspond to a tableau style system for analytic reasoning over given precisification
spaces. It consists of two largely independent building blocks:

(1) Betting for Random Verifications. Assume that two players—let’s say me and
you—agree to pay 1C to the opponent player for each assertion of an atomic statement,
which is false according to a randomly chosen admissible precisification. More for-
mally, given a precisification space Π = 〈W,e,μ〉 the risk value 〈p〉Π associated with
a propositional variable p is defined as 〈p〉Π = μ({π ∈ W |e(π , p) = 0}); moreover we
define 〈⊥〉Π = 1. Note that 〈p〉Π corresponds to the probability (as determined by μ)
of having to pay 1C, when asserting p.

Let p1, p2, . . ., q1,q2, . . . denote atomic statements, i.e., propositional variables or ⊥.
By [p1, . . . , pm q1, . . . ,qn] we denote an elementary state in the game, where I assert
each of the qi in the multiset {q1, . . . ,qn} of atomic statements and you, likewise, assert
each atomic statement pi ∈ {p1, . . . , pm}. To illustrate this notions consider the elemen-
tary state [p q,q]. According to the outlined arrangement, we have to evaluate p once,
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and q twice in randomly chosen precisifications. If, e.g., all three evaluations result in 0
then I owe you 2C and you owe me 1C, implying a total loss of 1C for me.

The risk associated with a multiset P = {p1, . . . , pm} of atomic formulas is defined
as 〈p1, . . . , pm〉Π = ∑m

i=1〈pi〉Π . The risk 〈〉Π associated with the empty multiset is 0.
Note that 〈P〉Π thus denotes the average amount of money that I expect to have to pay
to you according to the above arrangements if I have asserted the atomic formulas in P.
The risk associated with an elementary state [p1, . . . , pm q1, . . . ,qn] is calculated from
my point of view. Therefore the condition 〈p1, . . . , pm〉Π ≥ 〈q1, . . . ,qn〉Π , which we will
call success condition, expresses that I do not expect any loss (but possibly some gain)
when betting on the truth of atomic statements as explained above. Returning to our
example of the elementary state [p q,q], I expect an average loss of 0.5C with respect
to Π = 〈W,e,μ〉, where μ is the uniform contribution over a finite set of precisification
points W with |{π ∈ W | e(π ,r) = 1}| = |{π ∈ W | e(π ,r) = 0}| for r = p and r = q,
implying 〈p〉Π = 〈q〉Π = 0.5. If for some alternative precisification space Π ′ we have
〈p〉Π ′ = 0.8 and 〈q〉Π ′ = 0.3 then my average loss is negative; more precisely, I can
expect a gain of 0.2C in average.

(2) A Dialogue Game for the Analysis of Complex Formulas. We follow Giles and
Paul Lorenzen (see, e.g., [23]) in constraining the meaning of connectives by reference
to rules of a dialogue game that proceeds by systematically reducing arguments about
compound formulas to arguments about their subformulas.

For the sake of clarity, we first assume that formulas are built up from propositional
variables and ⊥ using the connectives ⊃ and S only. (Note that in Ł, and therefore also
in SŁ, one can define strong conjunction and consequently also all other connectives
using A&B =def (A ⊃ (B ⊃ ⊥)) ⊃ ⊥). However, we will present a more direct analysis
of conjunction and disjunction, below.)

The dialogue rule for implication can be stated as follows (cf. [13,14]):

(R⊃) If I assert A ⊃ B then, whenever you choose to attack this statement by asserting
A, I have to assert also B. (And vice versa, i.e., for the roles of me and you switched.)

Note that a player may also choose not to attack the opponent’s assertions of A ⊃ B.
This rule reflects the idea that the meaning of implication entails the principle that an
assertion of “If A then B.” obliges one to assert also B if the opponent in a dialogue
grants (i.e., asserts) A.

The dialogue rule for the supertruth modality involves a relativization to specific
precisification points:

(RS) If I assert SA then I also have to assert that A holds at any precisification point π
that you may choose. (And vice versa, i.e., for the roles of me and you switched.)

Let us henceforth use Aπ as shorthand for ‘A holds at the precisification point π’ and
speak of A as a formula indexed by π , accordingly. Note that using rule (RS) entails
that we have to deal with indexed formulas also in rule (R⊃). However, we don’t have
to change the rule itself, which will turn out to be adequate independently of the kind
of evaluation—degree based or supervaluation based—that we aim at in a particular
context. Rather, we only need to stipulate that in applying (R⊃) the precisification point
index of A ⊃ B (if there is any) is inherited by the subformulas A and B. If, on the
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other hand, we apply rule (RS) to an already indexed formula (SA)ρ then the index ρ
is overwritten by whatever index π is chosen by the opponent player; i.e., we have
to continue with the assertion Aπ . Of course, we also have to account for indices of
formulas in elementary states. This is achieved in the obvious way: we simply augment
the definition of risk (with respect to Π = 〈W,e,μ〉) by 〈pπ〉Π = 1 − e(π , p). In other
words, the probability of having to pay 1C for claiming that p holds at the precisification
point π is 0 if p is true at π and 1 if p is false at π .

To simplify notations we will use the special global index ε (�∈ W ) to indicate that
a formula is not referring to a particular precisification point. Thus every formula is
indexed now, but Aε means that A is asserted ‘globally’, i.e., without reference to a
particular precisification.

We use [Aπ1
1 , . . . ,A

πm
m Bρ1

1 , . . . ,B
ρn
n ] to denote an arbitrary (not necessarily elemen-

tary) state of the game, where {Aπ1
1 , . . . ,A

πm
m } is the multiset of formulas that are cur-

rently asserted by you, and {Bρ1
1 , . . . ,B

ρn
n } is the multiset of formulas that are currently

asserted by me. (Note that this implies, that we don’t care about the order in which
formulas are asserted.)

A move initiated by me (m-move) in state [Γ Δ ] consists in my picking of some
non-atomic formula Aπ from the multiset Γ and proceeding as follows:

– If Aπ = (A1 ⊃ A2)π then I may either attack by asserting Aπ
1 in order to force you

to assert Aπ
2 in accordance with (R⊃), or admit Aπ . In the first case the successor

state is [Γ ′,Aπ
2 Δ ,Aπ

1 ], in the second case it is [Γ ′ Δ ], where Γ ′ = Γ −{Aπ}.
– If Aπ = SBπ then I choose an arbitrary σ ∈ W thus forcing you to assert Bσ . The

successor state is [Γ ′,Bσ Δ ], where Γ ′ = Γ −{Aπ}.

A move intiated by you (y-move) is symmetric, i.e., with the roles of me and you
interchanged. A run of the game consists in a sequence of states, each resulting
from a move in the immediately preceding state, and ending in an elementary state
[pπ1

1 , . . . , p
πm
m qρ1

1 , . . . ,q
ρn
n ]. I succeed in this run if this final state fulfills the success

condition, i.e., if

n

∑
j=1

〈qρ j
j 〉Π −

m

∑
i=1

〈pπi
i 〉Π ≤ 0. (11)

The term at the left hand side of inequality 11 is my expected loss at this state. In other
words, I succeed if my expected loss is 0 or even negative, i.e., in fact a gain.

As mentioned above, other connectives can be reduced to implication and falsum.
However, using the corresponding definitions directly hardly results in dialogue rules
that are as natural as (R⊃). In the following we will formulate dialogue rules only from
my point of view, with the implicit understanding that the corresponding rule for you is
completely symmetric. For conjunction two candidate rules seem natural:

(R∧) If I assert A1 ∧A2 then I have to assert also Ai for any i ∈ {1,2} that you may
choose.

(R∧′) If I assert A1 ∧′ A2 then I have to assert also A1 as well as A2.
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Rule (R∧) is dual to the following natural candidate for a disjunction rule:

(R∨) If I assert A1 ∨A2 then I have to assert also Ai for some i ∈ {1,2} that I myself
may choose.

Moreover it is clear how (R∧) generalizes to a rule for universal quantification. Note
that the modality S can be seen as a kind of universal quantifier over corresponding
classical propositions at all precisification points; which is reflected in the form of the
rules (R∧) and (RS), respectively.

It follows already from results in [13,14] that rules (R∧) and (R∨) are adequate for
weak conjunction and disjunction in Ł, respectively. ∧ and ∨ are also called ‘lattice
connectives’ in the context of fuzzy logics, since their truth functions are given by

v∗(A∧B) = inf{v∗(A),v∗(B)} and v∗(A∨B) = sup{v∗(A),v∗(B)}.

The question arises, whether we can use the remaining rule (R∧′) to characterize strong
disjunction (&). However, rule (R∧′) is inadequate in the context of our betting scheme
for random evaluation in a precisification space. The reason for this is that we have to
make sure that for any (not necessarily atomic) assertion we make, we risk a maximal
loss of 1C. It is easy to see that rules (R⊃), (R∧), (R∨), and (RS) comply with this
constraint; however if I assert p ∧′ q and we play according to (R∧′), then I end up
with an expected loss of 2C, in case both p and q are superfalse. There is a simply
way to redress this situation to obtain a rule that is adequate for (&): Allow any player
who asserts A1&A2 to hedge her possible loss by asserting ⊥ instead; which of course
corresponds to the obligation to pay 1C (but not more) in the resulting final state. We
thus obtain:

(R&) If I assert A1&A2 then I either have to assert also A1 as well as A2, or else I have
to assert ⊥.

All discussed rules induce definitions of corresponding moves in the game, analo-
gously to the case of (R⊃) and (RS), illustrated above.

4 Adequacy of the Game

To prove that the game presented in Section 3 indeed characterizes logic SŁ, we have
to analyse all possible runs of the game starting with some arbitrarily complex assertion
by myself. A strategy for me will be a tree-like structure, where a branch represents a
possible run resulting from particular choices made by myself, taking into account all
of your possible choices in (y- or m-moves) that are compatible with the rules. We will
only have to look at strategies for me and thus call a strategy winning if I succeed in all
corresponding runs (according to condition 11).

Remember that by Proposition 3 we can assume that the set W of the underlying
precisification space Π = 〈W,e,μ〉 is finite. The construction of strategies can be
viewed as systematic proof search in an analytic tableau calculus with the following
rules:
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[Γ Δ ,(A1 ⊃ A2)π ]
[Γ ,Aπ

1 Δ ,Aπ
2 ] [Γ Δ ]

(⊃y)
[Γ ,(A1 ⊃ A2)π Δ ]

[Γ ,Aπ
2 Δ ,Aπ

1 ]
(⊃1

m)
[Γ ,(A1 ⊃ A2)π Δ ]

[Γ Δ ]
(⊃2

m)

[Γ Δ ,(A1&A2)π ]
[Γ Δ ,Aπ

1 ,A
π
2 ]

(&1
y)

[Γ Δ ,(A1&A2)π ]
[Γ Δ ,⊥π ]

(&2
y)

[Γ ,(A1&A2)π Δ ]
[Γ ,Aπ

1 ,A
π
2 Δ ] [Γ ,⊥π Δ ]

(&m)

[Γ Δ ,(A1 ∧A2)π ]
[Γ Δ ,Aπ

1 ] [Γ Δ ,Aπ
2 ]

(∧y)
[Γ ,(A1 ∧A2)π Δ ]

[Γ ,Aπ
1 Δ ]

(∧1
m)

[Γ ,(A1 ∧A2)π Δ ]
[Γ ,Aπ

2 Δ ]
(∧2

m)

[Γ Δ ,(A1 ∨A2)π ]
[Γ Δ ,Aπ

1 ]
(∨1

y)
[Γ Δ ,(A1 ∨A2)π ]

[Γ Δ ,Aπ
2 ]

(∨2
y)

[Γ ,(A1 ∨A2)π Δ ]
[Γ ,Aπ

1 Δ ] [Γ ,Aπ
2 Δ ]

(∨m)

[Γ Δ ,(SA)π ]
[Γ Δ ,Aπ1 ] . . . [Γ Δ ,Aπn ]

(Sy)
[Γ ,(SA)π Δ ]

[Γ ,Aρ Δ ]
(Sm)

In all rules π can denote any index, including the global index ε . In rule (Sy) we assume
that W = {π1, . . . ,πm} and in rule (Sm) the index ρ can be any element of W . Note that,
in accordance with the definition of a strategy for me, your choices in the moves induce
branching, whereas for my choices a single successor state that is compatible with the
dialogue rules is chosen.

The finiteness assumption for W is not needed in proving the following theorem.

Theorem 1. A formula F is valid in SŁ if and only if for every precisification space Π
I have a winning strategy for the game starting in state [ F ].

Proof. Note that every run of the game is finite. For every final elementary state
[pπ1

1 , . . . , p
πm
m qρ1

1 , . . . ,q
ρn
n ] the success condition says that we have to compute the

risk ∑n
j=1〈q

ρ j
j 〉Π − ∑m

i=1〈pπi
i 〉Π , where 〈rπ 〉Π = μ({ρ ∈ W |e(ρ ,r) = 0}) if π = ε and

〈rπ〉Π = 1− e(π ,r) otherwise, and check whether the resulting value (in the following
denoted by 〈pπ1

1 , . . . , p
πm
m qρ1

1 , . . . ,q
ρn
n 〉Π ) is ≤ 0 to determine whether I ‘win’ the game.

To obtain my minimal final risk (i.e., my minimal expected loss) that I can enforce in
any given state S by playing according to an optimal strategy, we have to take into ac-
count the supremum over all risks associated with the successor states to S that you can
enforce by a choice that you may have in a (y- or m-)move S. On the other hand, for
any of my choices I can enforce the infimum of risks of corresponding successor states.
In other words, we prove that we can extend the definition of my expected loss from
elementary states to arbitrary states such that the following conditions are satisfied:

〈Γ ,(A ⊃ B)π Δ〉Π = inf{〈Γ Δ〉Π ,〈Γ ,Bπ Aπ ,Δ〉Π} (12)

〈Γ ,(A&B)π Δ〉Π = sup{〈Γ ,Aπ ,Bπ Δ〉Π ,〈Γ ,⊥π Δ〉Π} (13)

〈Γ ,(A∧B)π Δ〉Π = inf{〈Γ ,Aπ Δ〉Π ,〈Γ ,Bπ Δ〉Π} (14)

〈Γ ,(A∨B)π Δ〉Π = sup{〈Γ ,Aπ Δ〉Π ,〈Γ ,Bπ Δ〉Π} (15)

for assertions by you and, for my own assertions:

〈Γ (A ⊃ B)π ,Δ〉Π = sup{〈Γ ,Aπ Bπ ,Δ〉Π ,〈Γ Δ〉Π} (16)

〈Γ (A&B)π ,Δ〉Π = inf{〈Γ Aπ ,Bπ ,Δ〉Π ,〈Γ ⊥,Δ〉Π} (17)

〈Γ (A∧B)π ,Δ〉Π = sup{〈Γ Aπ ,Δ〉Π ,〈Γ Bπ ,Δ〉Π} (18)

〈Γ (A∨B)π ,Δ〉Π = inf{〈Γ Aπ ,Δ〉Π ,〈Γ Bπ ,Δ〉Π} (19)
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Furthermore we have

〈Γ (SA)π ,Δ〉Π = sup
ρ∈W

{〈Γ Aρ ,Δ〉Π } (20)

〈Γ ,(SA)π Δ〉Π = inf
ρ∈W

{〈Γ ,Aρ Δ〉Π} (21)

We have to check that 〈· ·〉Π is well-defined; i.e., that conditions 12-21 together with the
definition of my expected loss (risk) for elementary states indeed can be simultaneously
fulfilled and guarantee uniqueness. To this aim consider the following generalisation of
the truth function for SŁ to multisets Γ of indexed formulas:

‖Γ ‖Π =def ∑
Aπ∈Γ ,π �=ε

‖A‖π + ∑
Aε∈Γ

‖A‖Π .

Note that
‖A‖Π = ‖{Aε}‖Π = 1 iff 〈 Aε〉Π ≤ 0.

In words: A is valid in SŁ iff my risk in the game starting with my assertion of A is
non-positive. Moreover, for elementary states we have

〈pπ1
1 , . . . , p

πm
m qρ1

1 , . . . ,q
ρn
n 〉Π = n−m+‖pπ1

1 , . . . , p
πm
m ‖Π −‖qρ1

1 , . . . ,q
ρn
n ‖Π .

We generalize the risk function to arbitrary states by

〈Γ Δ〉∗Π =def |Δ |− |Γ |+‖Γ‖Π −‖Δ‖Π

and check that it satisfies conditions 12-21. We only spell out two cases. To avoid case
distinctions let ‖A‖ε =def ‖A‖Π . For condition 12 we have

〈Γ ,(A ⊃ B)π Δ〉∗Π = |Δ |− |Γ |−1 +‖Γ‖Π +‖(A ⊃ B)‖π −‖Δ‖Π
= 〈Γ Δ〉∗Π −1 +‖(A ⊃ B)‖π = 〈Γ Δ〉∗Π −1 +(‖A‖π ⇒Ł ‖B‖π)
= 〈Γ Δ〉∗Π −1 + inf{1,1−‖A‖π +‖B‖π} = 〈Γ Δ〉∗Π −1 + inf{1,1 + 〈Bπ Aπ〉∗Π}
= 〈Γ Δ〉∗Π + inf{0,〈Bπ Aπ〉∗Π} = inf{〈Γ Δ〉∗Π ,〈Γ ,Bπ Aπ ,Δ〉∗Π}

For condition 20 we have

〈Γ (SA)π ,Δ〉∗Π = |Δ |+ 1−|Γ |+‖Γ‖Π −‖Δ‖Π −‖SA‖π
= 〈Γ Δ〉∗Π + 1−‖SA‖π = 〈Γ Δ〉∗Π + 1− infρ∈W{‖A‖ρ}
= 〈Γ Δ〉∗Π + supρ∈W{‖A‖ρ} = supρ∈W{〈Γ ,Aρ Δ〉∗Π} �

Remark 1. It already follows from a well known general theorem (‘saddle point theo-
rem’) about finite games with perfect information that conditions 12-21 uniquely extend
any given risk assignment from final states to arbitrary states. However, our proof above
yields more information, namely that the extended risk function indeed matches the se-
mantics of logic SŁ, as defined in Section 2.

By a regulation we mean an assignment of game states to labels ‘you move next’ and ‘I
move next’ that constrain the possible runs of the game in the obvious way. A regulation
is consistent if the label ‘you (I) move next’ is only assigned to states where such a move
is possible, i.e., where I (you) have asserted a non-atomic formula. As a simple but nice
corollary to our proof of Theorem 1, we obtain:
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Corollary 1. The total expected loss 〈Γ Δ〉∗Π that I can enforce in a game over Π
starting in state [Γ Δ ] only depends on Γ , Δ , and Π . In particular, it is the same for
every consistent regulation that may be imposed on the game.

5 Remarks on Related Work

Various kinds of modal extensions of fuzzy logics have been considered in the literature.
E.g., chapter 8 of the central monograph [15] presents the family S5(L) for t-norm
based fuzzy logics L by letting the truth value e(w, p) assigned to a proposition p at a
world w ∈W of a Kripke model range over [0,1] instead of {0,1}. The truth function for
the modality � is given by ‖�A‖w = infv∈W ‖A‖v. Of course, �, thus defined, behaves
quite differently from supertruth S. In particular �A ∨¬�A is not valid. On the other
hand, 8A∨¬8A is valid for the widely used ‘definiteness’ operator 8 as axiomatized
in [2]. However also 8 over Ł is quite different from S in SŁ, as can be seen by
considering the distribution axiom 8(A ∨B) ⊃ (8A ∨8B) of [2]: Replacing 8 by S
yields a formula that is not valid in SŁ. For the same reason the modal extensions of
logic MTL considered in [5] are not able to express ‘supertruth’.

Yet another type of natural extension of fuzzy logics arises when one considers the
propositional operator Pr for ‘It is probable that . . . ’. In [15,19,8] model structures that
are essentially like our precisification spaces are used to specify the semantics of Pr.
More exactly, one defines ‖Pr(A)‖w = μ({w ∈W | e(w,A) = 1}), which implies that, for
atomic propositions p, Pr(p) is treated like p itself in SŁ. However, supertruth S cannot
be expressed using Pr, already for the simple reason that the syntax of the mentioned
‘fuzzy probability logics’ does not allow for nesting of Pr. Moreover, classical and
degree based connectives are separated at the syntactic level; whereas our dialogue
game based analysis justifies the syntactic identification of both types of connectives in
the context of precisification spaces.

Our way to define evaluation over a precisification space is also related to ideas of
Dorothy Egdington [7]. However, while Edgington also refers to ‘truth on proportions
of precisifications’, she insists on evaluations that are not truth functional.

Finally we mention that some of the ideas underlying our presentation of SŁ are
already—at least implicitly—present in [10]. However no corresponding formal defini-
tions or results have been presented there.

6 Conclusion and Future Work

We have presented an analysis of logical reasoning with vague propositions that in-
corporates two seemingly different approaches to semantics: supervaluation and degree
based valuation. The resulting logic SŁ has been characterized as the set of those for-
mulas which a player can assert in a natural dialogue+betting game over precisification
spaces, without having to expect a loss of money.

The agenda for related future work includes the ‘lifting’ of our tableau style evalua-
tion system to a hypersequent calculus, that abstracts away from particular underlying
precisification spaces. This will lead to a proof system related to the calculi in [24] and
in [4], and should be a good basis for exploring also other t-norm based evaluations
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over precisification spaces. Moreover we want to investigate the extension of SŁ by
further modal operators that seem relevant in modelling propositional attitudes arising
in contexts of vagueness.
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Abstract. Many modern applications of description logics (DLs) re-
quire answering queries over large data quantities, structured accord-
ing to relatively simple ontologies. For such applications, we conjectured
that reusing ideas of deductive databases might improve scalability of
DL systems. Hence, in our previous work, we developed an algorithm
for reducing a DL knowledge base to a disjunctive datalog program. To
test our conjecture, we implemented our algorithm in a new DL rea-
soner KAON2, which we describe in this paper. Furthermore, we created
a comprehensive test suite and used it to conduct a performance eval-
uation. Our results show that, on knowledge bases with large ABoxes
but with simple TBoxes, our technique indeed shows good performance;
in contrast, on knowledge bases with large and complex TBoxes, exist-
ing techniques still perform better. This allowed us to gain important
insights into strengths and weaknesses of both approaches.

1 Introduction

Description logics (DLs) are a family of knowledge representation formalisms
with applications in numerous areas of computer science. They have long been
used in information integration [1, Chapter 16], and they provide a logical foun-
dation for OWL—a standardized language for ontology modeling in the Semantic
Web [10]. A DL knowledge base is typically partitioned into a terminological (or
schema) part, called a TBox, and an assertional (or data) part, called an ABox.
Whereas some applications rely on reasoning over large TBoxes, many DL ap-
plications involve answering queries over knowledge bases with small and simple
TBoxes, but with large ABoxes. For example, the documents in the Semantic
Web are likely to be annotated using simple ontologies; however, the number of
annotations is likely to be large. Similarly, the data sources in an information
integration system can often be described using simple schemata; however, the
data contained in the sources is usually very large.

Reasoning with large data sets was extensively studied in the field of deduc-
tive databases, resulting in several techniques that have proven themselves in
practice. Motivated by the prospect of applying these techniques to query an-
swering in description logics, in our previous work we described a novel reasoning
algorithm [12] that reduces a SHIQ knowledge base KB to a disjunctive dat-
alog program DD(KB) while preserving the set of relevant consequences. This
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algorithm is quite different from tableau algorithms [1, Chapter 2] and their opti-
mizations [9], used in state-of-the-art DL reasoners such as RACER [8], FaCT++
[22], or Pellet [17].

We conjectured that our algorithm will scale well to knowledge bases with
large ABoxes and simple TBoxes. In particular, we expected great benefits from
techniques such as magic sets [4] or join-order optimizations. Furthermore, we
identified a Horn fragment of SHIQ [13], for which our algorithm exhibits poly-
nomial data complexity (that is, the complexity measured in the size of the
ABox, assuming the TBox is fixed in size).

To test our conjecture, we implemented the reduction algorithm in a new DL
reasoner KAON2.1 To obtain an efficient system, we developed several optimiza-
tions of the initial algorithm and of known implementation techniques. In this
paper we outline the design of the system and overview the employed techniques.
Due to lack of space, we are unable to present all optimizations in full detail; for
more information, please refer to [15].

Providing an objective account of the performance of our approach proved
to be difficult because there are no widely recognized benchmarks for query
answering. To fill this gap, we created a benchmark suite consisting of several
ontologies with TBoxes of varying size and complexity, and with large ABoxes.
In this paper, we discuss the guidelines we followed in selecting the test data.
Our benchmarks are freely available on the Web,2 and we hope that they can
provide a starting point for a standard DL test suite.

Finally, we conducted extensive performance tests with KAON2, RACER, and
Pellet. To obtain a complete picture of the performance of our algorithms, apart
from ABox reasoning tests, we also performed several TBox reasoning tests. The
results were twofold, and were roughly in line with our expectations. Namely, on
ontologies with a small TBox but a large ABox, our algorithm outperformed its
tableau counterparts; however, on ontologies with a complex TBox but a small
ABox, existing algorithms exhibited superior performance. We discuss these re-
sults, and provide insight into strengths and weaknesses of either algorithm. This
may provide useful guidance to developers of future DL systems.

Summing up, our reasoning algorithm provides good performance for knowl-
edge bases which do not rely too heavily on modal reasoning, but are more akin
to logic programs. However, the boundary between the two extreme use-cases
is not clear-cut. As a consequence, we now have a more comprehensive set of
reasoning techniques for expressive DLs, allowing the users to choose the one
that best suits the needs of their application.

2 Preliminaries

We now present the syntax and the semantics of the DL SHIQ [11]—the for-
malism underlying KAON2. Given a set of role names NR, a SHIQ role is either
some R ∈ NR or an inverse role R− for R ∈ NR. A SHIQ RBox KBR is a
1 http://kaon2.semanticweb.org/
2 http://kaon2.semanticweb.org/download/test ontologies.zip
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Table 1. Semantics of SHIQ by Mapping to FOL

Translating Concepts to FOL
πy(A, X) = A(X) πy(C � D, X) = πy(C, X) ∧ πy(D, X)

πy(¬C, X) = ¬πy(C, X) πy(∀R.C, X) = ∀y : R(X, y) → πx(C, y)
πy(≥ n S.C, X) = ∃y1, . . . , yn :

∧
S(X, yi) ∧

∧
πx(C, yi) ∧

∧
yi 	≈ yj

Translating Axioms to FOL
π(C � D) = ∀x : πy(C, x) → πy(D, x) π(C(a)) = πy(C, a)
π(R � S) = ∀x, y : R(x, y) → S(x, y) π(R(a, b)) = R(a, b)

π(a ◦ b) = a ◦ b for ◦ ∈ {≈, 	≈}
π(Trans(R)) = ∀x, y, z : R(x, y) ∧ R(y, z) → R(x, z)

Translating KB to FOL
π(R) = ∀x, y : R(x, y) ↔ R−(y, x)

π(KB) =
∧

R∈NR
π(R) ∧∧α∈KBT ∪KBR∪KBA

π(α)

X is a meta variable and is substituted by the actual variable. πx is obtained from
πy by simultaneously substituting x(i) for all y(i), respectively, and πy for πx.

finite set of role inclusion axioms R 9 S and transitivity axioms Trans(R), for
R and S SHIQ roles. For R ∈ NR, we set Inv(R) = R− and Inv(R−) = R, and
assume that R 9 S ∈ KBR (Trans(R) ∈ KBR) implies Inv(R) 9 Inv(S) ∈ KBR
(Trans(Inv(R)) ∈ KBR). A role R is said to be simple if Trans(S) /∈ KBR for
each S 9∗ R, where 9∗ is the reflexive-transitive closure of 9.

Given a set of concept names NC , the set of SHIQ concepts is the minimal set
such that each A ∈ NC is a SHIQ concept and, for C and D SHIQ concepts,
R a role, S a simple role, and n a positive integer, ¬C, C � D, ∀R.C, and
≥ nS.C are also SHIQ concepts. We use ., ⊥, C1 �C2, ∃R.C, and ≤ nS.C as
abbreviations for A�¬A, A�¬A, ¬(¬C1�¬C2), ¬∀R.¬C, and ¬(≥ (n+ 1)S.C),
respectively. A TBox KBT is a finite set of concept inclusion axioms of the form
C 9 D. An ABox KBA is a finite set of axioms C(a), R(a, b), and (in)equalities
a ≈ b and a �≈ b. A knowledge base KB is a triple (KBR,KBT ,KBA). The
semantics of KB is given by translating it into first-order logic by the operator
π from Table 1.

A query Q over KB is a conjunction of literals A(s) and R(s, t), where s and
t are variables or constants, R is a role, and A is an atomic concept. In our
work, we assume that all variables in a query should be mapped to individuals
explicitly introduced in the ABox. Then, a mapping θ of the free variables of Q
to constants is an answer of Q over KB if π(KB) |= Qθ.

3 KAON2 Architecture

KAON2 is a DL reasoner developed at the University of Manchester and the
University of Karlsruhe. The system can handle SHIQ knowledge bases ex-
tended with DL-safe rules—first-order clauses syntactically restricted in a way
that makes the clauses applicable only to individuals mentioned in the ABox,
thus ensuring decidability. KAON2 implements the following reasoning tasks:
deciding knowledge base and concept satisfiability, computing the subsumption
hierarchy, and answering conjunctive queries withoutdistinguished variables (i.e.,
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Fig. 1. KAON2 Architecture

all variables of a query can be bound only to explicit ABox individuals, and not
to individuals introduced by existential quantification). It has been implemented
in Java 1.5.

Figure 1 describes the technical architecture of KAON2. The Ontology API
provides ontology manipulation services, such as adding and retrieving axioms.
The API fully supports OWL and the Semantic Web Rule Language (SWRL) at
the syntactic level. Several similar APIs already exist, such as the OWL API [3]
or Jena.3 However, to obtain an efficient system, we needed complete control over
the internals of the API, and could thus not reuse an existing implementation.
Ontologies can be saved in files, using either OWL RDF4 or OWL XML5 syntax.
Alternatively, ABox assertions can be stored in a relational database (RDBMS):
by mapping ontology entities to database tables, KAON2 will query the database
on the fly during reasoning.

The Reasoning API allows one to invoke various reasoning tasks, and to
retrieve their results.

All APIs can be be invoked either locally, using KAON2 as a dynamic library,
or remotely, for example, through the DL Implementors Group (DIG) interface.

The central component of KAON2 is the Reasoning Engine, which is based
on the algorithm for reducing a SHIQ knowledge base KB to a disjunctive dat-
alog program DD(KB) [12]. To understand the intuition behind this algorithm,
considering the knowledge base KB = {C 9 ∃R.E1, E1 9 E2, ∃R.E2 9 D}.
For an individual x in C, the first axiom implies existence of an R-successor y
in E1. By the second axiom, y is also in E2. Hence, x has an R-successor y in
E2, so, by the third axiom, x is in D. The program DD(KB) contains the rules
E2(x) ← E1(x) and D(x) ← R(x, y), E2(x), corresponding to the second and
the third axiom, respectively. However, the first axiom of KB is not represented
in DD(KB); instead, DD(KB) contains the rule D(x) ← C(x). The latter rule
can be seen as a “macro”: it combines into one step the effects of all mentioned
inference steps, without expanding the R-successors explicitly.
3 http://jena.sourceforge.net/
4 http://www.w3.org/TR/owl-semantics/
5 http://www.w3.org/TR/owl-xmlsyntax/
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Computing all relevant “macro” rules is performed by saturating the TBox of
KB using basic superposition (BS) [2,16] (a clausal refutation calculus), which
is implemented in the Theorem Prover subcomponent of the Reasoning Engine.
Although there are several efficient theorem provers for first-order logic (e.g.,
Vampire [19], E [20], or Otter [14]), we decided to implement our own theorem
prover, due to the following reasons. First, we are unaware of an existing imple-
mentation of basic superposition. Second, existing systems usually do not come
with a comprehensive API, which makes their integration into other systems
difficult. Third, our theorem prover is not used primarily to check TBox incon-
sistency (an inconsistent TBox is usually a modeling error); rather, it is used
to compute all “macro” rules that logically follow from a TBox. Hence, whereas
most theorem provers are geared towards unsatisfiable problems, ours is geared
towards satisfiable problems. This allows us to make several simplifying assump-
tions. For example, unlike most existing theorem provers, ours spends very little
time in deciding which clause to work on next (in most cases, all clauses must
be considered anyway). Fourth, we were not interested in building a general
theorem prover; rather, we wanted a prover that implements our algorithm effi-
ciently. This allowed the implementation to be further simplified. In particular,
our algorithm must handle only unary and binary literals containing shallow
terms, for which unification can be implemented in constant time. Furthermore,
clauses can be efficiently indexed using a variant of feature vector indexing [21].

The Ontology Clausification subcomponent of the Reasoning Engine is re-
sponsible for translating the TBox of a SHIQ knowledge base KB into a set of
first-order clauses. As our experiments confirm, it is very important to reduce the
number of clauses produced in the translation. To this purpose, we use several
simple optimizations of the clausification algorithm. In particular, if several ax-
ioms contain the same nested subconcept, we replace all their occurrences with
a new atomic concept. For example, in axioms C 9 ∃R.∃S.D and E 9 ∀T.∃S.D
the concept ∃S.D occurs twice, so we replace all its occurrences with a new con-
cept Q. We thus obtain the set of equisatisfiable axioms C 9 ∃R.Q, E 9 ∀T.Q,
and Q 9 ∃S.D, which produces fewer clauses than the original one. Another op-
timization involves functional roles: if R is functional, the existential quantifier
in each occurrence of a formula ∃y : [R(x, y) ∧ C(y)] (stemming from a concept
∃R.C) can be skolemized using the same function symbol.

The Disjunctive Datalog Engine subcomponent of the Reasoning Engine is
used for answering queries in the disjunctive datalog program obtained by the
reduction. Although several disjunctive datalog engines exist (e.g., DLV [5]), we
decided to implement our own engine, due to the following reasons. First, existing
engines do not come with a comprehensive API, which makes their integration
into other systems difficult. Second, our reduction produces only positive data-
log programs—that is, programs without negation-as-failure. We also do not rely
on the minimal model semantics of disjunctive datalog. Thus, we can eliminate
the minimality test from our implementation and avoid unnecessary overhead.
Third, model building is an important aspect of reasoning in disjunctive dat-
alog. To compute the models, disjunctive datalog engines usually ground the
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disjunctive program. Although this process has been optimized using intelligent
grounding [6], grounding can be very expensive on large data sets. In contrast,
the models of our programs are of no interest. To avoid grounding, we answer
queries using hyperresolution with answer literals. Fourth, disjunctive datalog
engines typically do not provide for the first-order equality predicate, which we
use to correctly support number restrictions.

Due to space constraints, we cannot present the implementation techniques
used in KAON2 in more detail; for more information, please see [15].

4 Benchmarks for ABox and TBox Reasoning

Comparing the performance of DL reasoning systems objectively is difficult be-
cause there are no widely accepted benchmarks. Certain ontologies have estab-
lished themselves as standards for testing TBox reasoning; however, to the best
of our knowledge, there are no such standard tests for ABox reasoning. Hence,
we constructed our own data set, which we present in this section. The data set
is freely available from the KAON2 Web site,6 and we hope it can be used as a
foundation for an extensive DL benchmark suite.

4.1 Selecting Test Data

We wanted to base our tests as much as possible on ontologies created and used in
real projects; our intuition was that such ontologies reflect the relevant use cases
more accurately than the synthetically generated ones. However, most ontologies
currently used in practice seem to fall into two categories: they either have a
complex TBox, but no ABox, or they have a large ABox, but a very simple TBox.
To obtain tests with interesting TBoxes, we used synthetic ontologies as well.
Furthermore, to obtain ABoxes of sufficient size, we applied replication—copying
an ABox several times with appropriate renaming of individuals in axioms.

One of our goals was to study the impact of various DL constructors on the
reasoning performance. In particular, we expected that the presence of equality
(stemming from number restrictions), existential quantifiers, and disjunctions
will have adverse effects on the performance of reasoning. Therefore, we selected
test ontologies that specifically use (a combination of) these constructors.

For some ontologies, the authors also supplied us with the queries used in their
projects, which we then reused in our tests. Namely, these queries were usually
sent to us because they caused performance problems in practice, so there is
reason to believe that they are “hard.” Moreover, we expect these queries to
better reflect the practical use cases of their respective ontologies.

4.2 Test Ontologies and Queries

VICODI 7 is an ontology about European history, manually created in the EU-
funded project VICODI. The TBox is relatively small and simple: it consists of
6 http://kaon2.semanticweb.org/download/test ontologies.zip
7 http://www.vicodi.org/
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role and concept inclusion axioms, and of domain and range specifications; fur-
thermore, it does not contain disjunctions, existential quantification, or number
restrictions. However, the ABox is relatively large and it contains many intercon-
nected individuals. Because the TBox does not contain existential quantifiers,
equality, or disjunctions, it can be converted into a nondisjunctive equality-
free datalog program directly, without invoking the reduction algorithm. Hence,
query answering for VICODI can be realized using a deductive database only;
furthermore, it is possible to deterministically compute the canonical model of
the ontology.

With vicodi 0 we denote the ontology from the project, and with vicodi n the
one obtained by replicating n times the ABox of vicodi 0.

From the ontology author we received the following two queries, which are
characteristic of the queries used in the project. The first one is a simple concept
retrieval, and the second one is a more complex conjunctive query.

QV1(x) ≡ Individual (x)
QV2(x, y, z) ≡ Military-Person(x), hasRole(y, x), related(x, z)

SEMINTEC is an ontology about financial services, created in the SEM-
INTEC project8 at the University of Poznan. Like VICODI, this ontology is
relatively simple: it does not use existential quantifiers or disjunctions; it does,
however, contain functionality assertions and disjointness constraints. Therefore,
it requires equality reasoning, which is known to be hard for deductive databases.

With semintec 0 we denote the ontology from the project, and with semintec n
the one obtained by replicating n times the ABox of semintec 0.

From the ontology author, we obtained the following two queries, which are
characteristic of the queries used in the project.

QS1(x) ≡ Person(x)
QS2(x, y, z) ≡ Man(x), isCreditCardOf (y, x),Gold(y), livesIn(x, z),Region(z)

LUBM 9 is a benchmark developed at the Lehigh University for testing per-
formance of ontology management and reasoning systems [7]. The ontology de-
scribes organizational structure of universities and it is relatively simple: it does
not use disjunctions or number restrictions, but it does use existential quanti-
fiers, so our reduction algorithm must be used to eliminate function symbols.
Due to the absence of disjunctions and equality, the reduction algorithm pro-
duces an equality-free Horn program. In other words, query answering on LUBM
can be performed deterministically.

LUBM comes with a generator, which we used instead of ABox replication
to obtain the test data. With lubm n de denote the ontology obtained from the
generator by setting the number of universities to n. The test generator creates
many small files; to make these ontologies easier to handle, we merged them into
a single file.
8 http://www.cs.put.poznan.pl/alawrynowicz/semintec.htm
9 http://swat.cse.lehigh.edu/projects/lubm/index.htm
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The LUBM Web site provides 14 queries for use with the ontology, from which
we selected the following three. With QL1 we test the performance of concept
retrieval, with QL2 we test how the performance changes if QL1 is extended with
additional atoms, and with QL3 we make sure that our results are not skewed
by the particular choice of concepts.

QL1(x) ≡ Chair (x)
QL2(x, y) ≡ Chair (x),worksFor (x, y),Department(y),

subOrganizationOf (y, “http://www.University0.edu′′)
QL3(x, y, z) ≡ Student(x),Faculty(y),Course(z), advisor (x, y),

takesCourse(x, z), teacherOf (y, z)

Wine10 is an ontology containing a classification of wines. It uses nominals,
which our algorithms cannot handle, so we apply a sound but an incomplete
approximation: we replace each enumerated concept {i1, . . . , in} with a new
concept O and add assertions O(ik). This approximation of nominals is incom-
plete for query answering: for completeness one should further add a clause
¬O(x) ∨ x ≈ i1 ∨ . . . ∨ x ≈ in; however, doing this would destroy the termina-
tion property of our algorithms. The resulting ontology is relatively complex: it
contains functional roles, disjunctions, and existential quantifiers.

With wine 0, we denote the original ontology, and with wine n the one ob-
tained by replicating 2n times the ABox of wine 0.

Elimination of nominals changes the semantics of most concepts in the knowl-
edge base. Hence, we ran only the following query, which involved computing
several nontrivial answers:

QW1(x) ≡ AmericanWine(x)

It is justified to question whether the Wine ontology is suitable for our tests.
However, as we already mentioned, we were unable to find an ontology with a
complex TBox and an interesting ABox. The approximated Wine ontology was
the only one that, at least partially, fulfilled our criteria.

DOLCE11 is a foundational ontology developed at the Laboratory for Applied
Ontology of the Italian National Research Council. It is very complex, and no
reasoner currently available can handle it. Therefore, the ontology has been
factored into several modules. We used the DOLCE OWL version 397, up to the
Common module (this includes the DOLCE-Lite, ExtDnS, Modal and Common
modules). Because the ontology does not have an ABox, we used it only for
TBox testing.

We have observed that the performance of KAON2 on DOLCE significantly
depends on the presence of transitivity axioms. Hence, we included in our bench-
marks a version of DOLCE obtained by removing all transitivity axioms.
10 http://www.schemaweb.info/schema/SchemaDetails.aspx?id=62
11 http://www.loa-cnr.it/DOLCE.html
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Table 2. Statistics of Test Ontologies

KB C � D C ≡ D C � D � ⊥ functional domain range R � S C(a) R(a, b)
vicodi 0 16942 36711
vicodi 1 33884 73422
vicodi 2 193 0 0 0 10 10 10 50826 110133
vicodi 3 67768 146844
vicodi 4 84710 183555

semintec 0 17941 47248
semintec 1 35882 94496
semintec 2 55 0 113 16 16 16 6 53823 141744
semintec 3 71764 188992
semintec 4 89705 236240

lubm 1 18128 49336
lubm 2 36 6 0 0 25 18 9 40508 113463
lubm 3 58897 166682
lubm 4 83200 236514
wine 0 247 246
wine 1 741 738
wine 2 1235 1230
wine 3 1729 1722
wine 4 2223 2214
wine 5 126 61 1 6 6 9 9 2717 2706
wine 6 5187 5166
wine 7 10127 10086
wine 8 20007 19926
wine 9 39767 39606
wine 10 79287 78966
dolce 203 27 42 2 253 253 522 0 0
galen 3237 699 0 133 0 0 287 0 0

GALEN 12 is a medical terminology developed in the GALEN project [18]. It
has a very large and complex TBox and no ABox, and has traditionally been
used as a benchmark for terminological reasoning.

Table 2 shows the number of axioms for each ontology.

5 Performance Evaluation

The main goal of our performance evaluation was to test the scalability of our
algorithm—that is, to see how performance of query answering depends on the
amount of data and on the complexity of different ontologies. This should give
us an idea about the kinds of ontologies that can be efficiently handled us-
ing our algorithm. Additionally, we wanted to compare our reasoning algorithm
with its tableau counterparts. This goal turned out to be somewhat difficult
to achieve. Namely, we are only able to compare implementations, and not the
algorithms themselves. DL algorithms are complex, and overheads in maintain-
ing data structures or memory management can easily dominate the run time;
furthermore, the implementation language itself can introduce limitations that
12 We obtained GALEN through private communication with Ian Horrocks.
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become evident when dealing with large data sets. Therefore, the results we
present in this section should be taken qualitatively, rather than quantitatively.

5.1 Test Setting

We compared the performance of KAON2 with RACER and Pellet. To the best
of our knowledge, these are the only reasoners that provide sound and complete
algorithms for SHIQ with ABoxes.

RACER13 [8] was developed at the Concordia University and the Hamburg
University of Technology, and is written in Common Lisp. We used the ver-
sion 1.8.2, to which we connected using the JRacer library. RACER provides
an optimized reasoning mode (so-called nRQL mode 1), which provides signif-
icant performance improvements, but which is complete only for certain types
of knowledge bases. When we conducted the evaluation, RACER did not au-
tomatically recognize whether the optimized mode is applicable to a particular
knowledge base, so we used RACER in the mode which guarantees complete-
ness (so-called nRQL mode 3). Namely, determining whether optimizations are
applicable is a form of reasoning which, we believe, should be taken into account
in a fair comparison.

Pellet14 [17] was developed at the University of Maryland, and was the first
system to fully support OWL-DL, taking into account all the nuances of the
specification. It is implemented in Java, and is freely available with the source
code. We used the version 1.3 beta.

We asked the authors of each tool for an appropriate sequence of API calls for
running tests. For each reasoning task, we started a fresh instance of the reasoner
and loaded the test knowledge base. Then, we measured the time required to
execute the task. We made sure that all systems return the same answers.

Many optimizations of tableau algorithms involve caching computation re-
sults, so the performance of query answering should increase with each sub-
sequent query. Furthermore, both RACER and Pellet check ABox consistency
before answering the first query, which typically takes much longer than com-
puting query results. Hence, starting a new instance of the reasoner for each
query might seem unfair. However, we did not yet consider caching for KAON2;
furthermore, materialized views were extensively studied in deductive databases,
and were successfully applied to ontology reasoning [23]. Also, KAON2 does not
perform a separate ABox consistency test because ABox inconsistency is discov-
ered automatically during query evaluation; we consider this to be an advantage
of our approach.

Due to these reasons, we decided to measure only the performance of the ac-
tual reasoning algorithm, and to leave a study of possible materialization and
caching strategies for future work. Since ABox consistency checking is a signifi-
cant source of overhead for tableau systems, we measured the time required to
execute it separately. Hence, in our tables, we distinguish the one-time setup
13 http://www.racer-systems.com/
14 http://www.mindswap.org/2003/pellet/index.shtml
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time (S) from the query processing time (Q) for Pellet and RACER. This some-
what compensates for the lack of caching: most caches are computed during
setup time, so one can expect that subsequent queries will be answered in time
similar to the one required for the first query after setup.

The time for computing the datalog program in KAON2 was comparatively
small to the time required to evaluate the program. Therefore, in our test results,
we simply included the reduction time into the total query time.

All tests were performed on a laptop computer with a 2 GHz Intel processor,
1 GB of RAM, running Windows XP Service Pack 2. For Java-based tools, we
used Sun’s Java 1.5.0 Update 5. The virtual memory of the Java virtual machine
was limited to 800 MB, and each test was allowed to run for at most 5 minutes.

The results of all tests are shown in Figure 2. Tests which ran either out of
memory or out of time are denoted with a value of 10000.

5.2 Querying Large ABoxes

VICODI. The results show that Pellet and RACER spend the bulk of their time
in checking ABox consistency by computing a completion of the ABox. Because
the ontology is simple, no branch splits are performed, so the process yields a
single completion representing a model. Query answering is then very fast in
Pellet, as it just requires model lookup. Note that, other than for vicodi 0, the
time KAON2 takes to answer queries depends very little on the data size.

It may seem odd that KAON2 takes longer to answer QV1 on vicodi 0 than on
vicodi 1. Repeated tests produced results consistent with the ones reported here.
After further analysis, we discovered that this is caused by choosing a suboptimal
sideways information passing strategy in the magic sets transformation. We shall
try to address this problem in our future research.

SEMINTEC. The SEMINTEC ontology is roughly of the same size as the VI-
CODI ontology; however, the time that KAON2 takes to answer a query on
SEMINTEC is one order of magnitude larger than for the VICODI ontology.
This is mainly due to equality, which is difficult for deductive databases. Namely,
since any part of the knowledge base can imply two individuals to be equal, tech-
niques such as magic sets that localize reasoning to a portion of the ABox are less
effective. Also, notice that all three tools exhibit roughly the same dependency
on the size of the data set.

LUBM. As our results show, LUBM does not pose significant problems for
KAON2; namely, the translation produces an equality-free Horn program, which
KAON2 evaluates in polynomial time. Hence, the time required to answer a
query for KAON2 grows moderately with the size of the data set.

Although LUBM is roughly of the same size as VICODI, both Pellet and
RACER performed better on the latter; namely, Pellet was not able to answer
any of the LUBM queries within the given resource constraints, and RACER
performed significantly better on VICODI than on LUBM. We were surprised
by this result: the ontology is still Horn, so an ABox completion can be computed
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Note: (S) — one-time setup time (including ABox consistency check)
(Q) — time required to process the query

Fig. 2. Test Results

in advance and used as a cache for query answering. By analyzing a run of Pellet
on lubm 1 in a debugger, we observed that the system performs disjunctive
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Fig. 2. Test Results (continued)

reasoning (i.e., it performs branch splits). Further investigation showed that this
is due to absorption [9]—a well-known optimization technique used by all tableau
reasoners. Namely, an axiom of the form C 9 D, where C is a complex concept,
increases the amount of don’t-know nondeterminism in a tableau because it
yields a disjunction ¬C �D in the label of each node. If possible, such an axiom
is transformed into an equivalent definition axiom A 9 C′ (where A is an atomic
concept), which can be handled in a deterministic way. The LUBM ontology
contains several axioms that are equivalent to A 9 B�∃R.C and B�∃R.C 9 A.
Now the latter axiom contains a complex concept on the left-hand side of 9, so it
is absorbed into an equivalent axiomB 9 A�∀R.¬C. Whereas this is a definition
axiom, it contains a disjunction on the right-hand side, and thus causes branch
splits. This could perhaps be improved by extending the tableau calculus with
an inference rule similar to hyperresolution. Namely, an axiom B � ∃R.C 9 A
is equivalent to the clause B(x) ∧R(x, y) ∧C(y) → A(x). In resolution, one can
select the literals on the left-hand side of the implication, which allows the clause
to “fire” only if all three literals can be resolved simultaneously. It remains to
see whether this is possible in a tableau setting without affecting the correctness
and the termination of the calculus.

Wine. The results show that the ontology complexity affects the performance:
the ontology wine 0 is significantly smaller than, say, lubm 1, but the times for
KAON2 are roughly the same in the two cases. In fact, KAON2 exhibits roughly
the same performance as RACER on this test. The degradation of performance
in KAON2 is mainly due to disjunctions. On the theoretical side, disjunctions
increase the data complexity of our algorithm from P to NP [13]. On the practical
side, the technique for answering queries in disjunctive programs used in KAON2
should be further optimized.

5.3 TBox Reasoning

Our TBox reasoning tests clearly show that the performance of KAON2 lags
behind the performance of the tableau reasoners. This should not come as a
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surprise: in the past decade, many optimization techniques for TBox reasoning
were developed for tableau algorithms, and these techniques are not directly
applicable to the resolution setting. Still, KAON2 can classify DOLCE without
transitivity axioms, which is known to be a fairly complex ontology. Hence, we
believe that developing additional optimization techniques for resolution algo-
rithms might yield some interesting and practically useful results.

We analyzed the problems which KAON2 failed to solve. Roughly speaking,
all these problems contained many concepts of the form ∃R.C and ∀R.D involv-
ing the same role R. The first type of concepts produces clauses with a literal
R(x, f(x)), whereas the second type of clauses produces clauses with a literal
¬R(x, y). Obviously, these clauses can participate in a quadratic number of res-
olution inferences in the beginning of a saturation, which eventually leads to an
exponential blowup. This explains why KAON2 is not able to classify the original
DOLCE ontology, but why it works well if the transitivity axioms are removed:
the approach for dealing with transitivity in KAON2 introduces axioms that,
when clausified, produce many clauses with such literals.

6 Conclusion

In this paper, we described KAON2—a DL reasoner based on a novel reason-
ing algorithm that allows for the application of optimization techniques from
deductive databases to DL reasoning. To verify our conjecture that such algo-
rithms will scale well in practice, we created a set of benchmarks and conducted
a thorough performance evaluation. The results were roughly in line with our
expectations: for ontologies with rather simple TBoxes, but large ABoxes, our
algorithm indeed provides good performance; however, for ontologies with large
and complex TBoxes, existing algorithms still provide superior performance.

For our future work, the main challenge is to extend the reduction algorithm
to handle nominals. Furthermore, we believe that optimizations based on ABox
statistics will provide further significant improvements. Finally, we shall investi-
gate further optimizations of TBox reasoning.
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A Local System for Intuitionistic Logic

Alwen Tiu
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Abstract. This paper presents systems for first-order intuitionistic logic
and several of its extensions in which all the propositional rules are local,
in the sense that, in applying the rules of the system, one needs only
a fixed amount of information about the logical expressions involved.
The main source of non-locality is the contraction rules. We show that
the contraction rules can be restricted to the atomic ones, provided we
employ deep-inference, i.e., to allow rules to apply anywhere inside log-
ical expressions. We further show that the use of deep inference allows
for modular extensions of intuitionistic logic to Dummett’s intermedi-
ate logic LC, Gödel logic and classical logic. We present the systems in
the calculus of structures, a proof theoretic formalism which supports
deep-inference. Cut elimination for these systems are proved indirectly
by simulating the cut-free sequent systems, or the hypersequent systems
in the cases of Dummett’s LC and Gödel logic, in the cut free systems
in the calculus of structures.

Keywords: proof theory, intuitionistic logic, intermediate logics, deep
inference, calculus of structures, locality.

1 Introduction

This paper presents systems for intuitionistic logic and its extensions, which are
properly included in classical logic, in which all the propositional rules are local,
in the sense of [4]. That is, in applying the rules of the system, one needs only a
fixed amount of information about the logical expressions involved. For example,
the usual contraction rule in sequent calculus, i.e.,

B,B, Γ 	 C
cL

B, Γ 	 C

is non-local, since in order to apply the rule one has to check that two formulae
are syntactically equal, and since B can be arbitrary formula, the “cost” of this
checking varies with the size of B. Other examples include the (non-atomic)
identity and cut rules, and the promotion rule in linear logic [11]. In [7], it is
shown that it is possible to give a system for classical logic in which all the
rules are local. This means in particular that the contraction, weakening, the
cut and the identity rules are restricted to atomic forms. As it is shown in [5],
this is difficult to achieve without some form of deep inference, i.e., to allow rules
to apply anywhere inside logical expressions. The classical system in [7], called

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 242–256, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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, is presented in the calculus of structures [13], a formalism which allows
deep inference in a way which preserves interesting proof theoretical notions and
properties. We shall use the same formalism to present the intuitionistic systems
to follow.

Deep inference and locality have been shown to allow for finer analyses on
proofs, in particular, proofs in the deep-inference presentation of classical logic,
i.e., the system , have been shown to admit non-trivial categorical [18]
and geometric interpretations [14]. Classical logic is among a number of logi-
cal systems that have been presented in the calculus of structures, e.g., non-
commutative extension of linear logic [13], linear logic [21] and modal logics [20].
In these systems, the above notion of locality has been consistently exhibited.
However, the logical systems in the calculus of structures studied so far have
been those which are symmetric, in the sense that they have involutive nega-
tions and can be presented in one-sided sequent systems. The work presented in
this paper is an attempt to find “good” presentations of asymmetric (two-sided)
sequent systems in the calculus of structures, where locality is one important
criteria. This will hopefully lead to further categorical or geometric models for
two-sided sequent proofs for intuitionistic and intermediate logics. Another ad-
vantage of adopting deep inference is that it allows for modular presentations
of several extensions of intuitionistic logic, e.g., intermediate logics and classical
logic: different logical systems can be obtained by adding rules which are derived
straightforwardly from the axiomatic definitions of the extended systems. Our
work can hopefully serve as a basis to give a uniform presentation for various
intermediate logics.

We adopt the presentation of intuitionistic logic in the calculus of structures
using positive and negative contexts, due to Kai Bruennler [6] and Phillipe de
Groote1. Negative context corresponds to the left-hand side of a sequent and
positive context corresponds to the right-hand side. In this presentation, rules
are divided into negative rules, which apply under negative context, naturally,
and positive rules which apply under positive context. Note that however since
applying a rule would require checking for negative/positive context, the rules
formalized this way are no longer local in the sense of [4]. But we can still
achieve a weaker form of locality, that is, all rules that duplicate structures can
be restricted to atomic forms. This system is then refined to a fully local one by
exploiting the fact that all rule schemes in the system preserve polarities (see
Section 6).

In Brünnler’s intuitionistic system [6], it seems difficult, if not impossible,
to reduce contraction to its atomic form. This is partly due to the fact that
the contraction rule in this system (as it is the case with most sequent sys-
tems for intuitionistic logic) is asymmetric, i.e., contraction is allowed on the
left (or negative context) but not on the right (positive context), while reduc-
ing contraction to its atomic form seems to require a symmetric contraction.
The solution proposed here for reducing contraction to atomic is inspired by
the multiple-conclusion intuitionistic system in sequent calculus [9,23]. In this

1 The author thanks Lutz Strassburger for pointing out the contribution of de Groote.
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system, contraction and weakening are allowed on both sides of the sequent. The
asymmetry of intuitionistic logic is captured by the implication rule:

Γ,A 	 B
⊃R

Γ 	 A⊃B,Δ

One can see for instance that the classical theorem of excluded middle, i.e.,
A ∨ (A ⊃ ⊥), is not provable. In the calculus of structures, this is reflected by
the absence of certain “logical rules” under disjunctive context (see Section 2).

There exist numerous systems for intuitionistic and intermediate logics in the
literature. These systems can be roughly divided into two categories: systems
which are designed with decidability and proof search in mind, e.g., contraction-
free sequent systems [16,10], and those which are mainly concerned with gen-
erality of the formalisms, such as labelled deduction systems [3], hypersequents
[1] and display calculi [12]. Our work is more in the latter category. In terms of
expressivity, the calculus of structures is certainly at least as expressive as the
non-standard sequent systems (display, hypersequents, and labelled systems), as
one can simulate these systems inside cut-free systems in the calculus of struc-
tures. A common feature to these extended sequent systems is that they all
employ some sort of structural extensions to sequents in order to capture var-
ious extensions of intuitionistic logic. In contrast, in the calculus of structures,
there is no additional structural elements added to the proof system: one simply
introduces more rules to get the extended logics. Moreover, these extended rules
are derived straightforwardly from their axiomatic formulations (i.e., in Hilbert’s
systems). However, one of the drawbacks of the formulation of deep inference sys-
tems in our work is that we currently have no “internal” proof of cut-elimination.
Our cut-elimination proof is indirect via translations to other systems, notably,
sequent and hypersequent systems. Methodology for proof search in deep in-
ference systems is not yet fully developed, although there is some work in this
direction [17].

The rest of the paper is organized as follows. In Section 2, we present an
intuitionistic system with the general (non-local) contraction rules, called .
This is then followed by the soundness and completeness proof of with
respect to a multiple-conclusion sequent system for intuitionistic logic and the
cut elimination proof in Section 3. Section 4 shows how to extend to cover
Dummett’s LC, Gödel logic and classical logic. Cut elimination for LC and Gödel
logic are proved indirectly by simulating the corresponding hypersequent systems
for these logics [1,2]. In Section 5, the system and its extensions are refined
to systems in which the contraction rules are restricted to their atomic forms,
but with additional medial rules. In Section 6 we show how to remove the context
dependency in the propositional rules in all of the above logical systems, resulting
in purely local systems for the propositional fragments, by introducing polarities
into logical expressions. Section 7 discusses future work. Detailed proofs of the
lemmas and the theorems in this paper can be found in an extended version of
the paper.
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2 An Intuitionistic System in the Calculus of Structures

Inference rules in the calculus of structures can be seen as rewrite rules on
formulae, i.e., the rules are of the form

F{B}
ρ
F{C}

where ρ is the name of the rule, F{} is a formula-context and B and C are
formulae. Basically, any sound implication B ⊃ C can be turned into a rule.
The question is of course whether doing so would result in a good proof theory.
The design philosophy of the calculus of structures has been centered around
the concept of interaction and symmetry in inference rules. Just as the left and
right rules in sequent calculus and introduction and elimination rules in natural
deduction, a rule in the calculus of structures always has its dual, called its
co-rule, which is obtained from the rule by taking the contrapositive of the
implication defining the rule. The concept of interaction replaces the notion of
identity and cut in sequent calculus. In classical logic [4], the interaction rules
are (using the standard notation for classical formulae)

S{.}
↓
S{A ∨ ¬A}

S{A ∧ ¬A}
↑

S{⊥}

In intuitionistic logic, we shall have a slightly different notation for the interac-
tion rules, but the idea is essentially the same: the ↓-rule creates a dual pair of
formulas (reading the rule top-down) while the ↑ rule destructs them.

In formulating the rules in the calculus of structures, one encounters certain
rules which correspond to some logical equivalences in the logic being formalized.
Some of the trivial equivalences, e.g., commutativity and associativity of con-
junction, are more appropriately represented as equations rather than rules. We
thus consider formulae modulo these equivalences. In the terms of the calculus
of structures, these equivalent classes of formulae are referred to as structures.
We shall be concerned with the following language of structures

S := p(t) | | | 〈S;S〉 | [S, S ] | (S, S) | ∀xR | ∃xR

where p is a predicate symbol, t is a term and the rest correspond to true, false,
implication, disjunction, conjunction, universal and existential quantifications.
For simplicity of presentation, we consider only unary predicates, but general-
ization to predicates of arbitrary arities is straightforward.

Note that we opt to use the above bracketing notations instead of the more
traditional ones of connectives to simplify the presentation of the inference rules
and derivations. Structures are ranged over by R, T, U, V,W and atomic struc-
tures are ranged over by a, b, c, d. A structure context, or context for short, is a
structure with a hole, denoted by S{ }. Given a structure R and a context S{ },
we write S{R} to denote the structure that results from replacing the hole { }
in S{ } with R. In presenting a structure R in a context S{ }, we often omit
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Units: [ , ] = ( , ) = 〈 ; 〉 = 〈 ; 〉 =
[ , R] = R ( , R) = R 〈 ; R〉 = R

Associativity: [R, [T, U ] ] = [ [R,T ], U ] (R, (T, U)) = ((R,T ), U)
Commutativity: [R, T ] = [T, R] (R,T ) = (T, R)
Currying: 〈(R, T ); U〉 = 〈R; 〈T ;U〉〉
Quantifiers: ∀x.R = ∃x.R = R, if x is not free in R.

∀x.R = ∀y.R[y/x],∃x.R = ∃y.R[y/x], y is not free in ∀x.R.
Congruence: S{R} = S{T}, if R = T .

Fig. 1. Syntactic equality of structures

S+{ }↓
S+〈R; R〉

S+ [R, R]↓
S+{R}

S−(R, R)↓
S−{R}

S+{ }↓
S+{R}

S−{ }↓
S−{R}

S+([R,T ], U)↓
S+ [R, (T, U)]

S+(〈R;T 〉, U)↓
S+〈R; (T, U)〉

S+(〈R; T 〉, 〈U ; V 〉)↓
S+〈[R, U ]; [T, V ]〉

S+ [〈R; T 〉, U ]↓
S+〈R; [T, U ]〉

S+(R, 〈T ; U〉)↓
S+〈〈R; T 〉; U〉

S+(∀xR,∀xT )↓
S+{∀x(R, T )}

S+{∀x〈R; T 〉}↓
S+〈R;∀xT 〉

S+{∀x〈R; T 〉}↓
S+〈∃xR;T 〉

S+{R[t/x]}↓
S+{∃xR}

S−{R[t/x]}↓
S−{∀xR}

Fig. 2. System : an intuitionistic system in the calculus of structures. The rules
↓ and ↓ have the provisos that x is not free in R and T , respectively.

the curly braces surrounding the R, if R is composed with a binary relation, e.g.,
we shall write S [U, V ] instead of S{[U, V ]}. Structures are considered modulo
the syntactic equivalence given in Figure 1. Note that we assume the domain
of the quantification is non-empty. This is reflected in the equations concerning
quantifiers.

We distinguish between positive contexts and negative contexts. Positive and
negative contexts are defined inductively as follows.

1. { } is a positive context,
2. if S{ } is a positive context then (S{ }, R), (R,S{ }), [S{ }, R], [R,S{ }],

∀x{ }, ∃x{ } and 〈R;S{ }〉 are positive contexts, otherwise they are nega-
tive contexts,

3. if S{ } is a positive context then 〈S{ };R〉 is a negative context, otherwise
it is a positive context.

Given a positive context S{ }, we often write it as S+{ } to emphasize that
it is a positive context. Similarly we write S−{ } to emphasize that S{ } is a
negative context.

The inference rules for the general system (non-local) for intuitionistic logic is
given in Figure 2. We refer to this system as . As we have noted previously,
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S−〈R;R〉↑
S−{ }

S−{R}↑
S− [R, R]

S+{R}↑
S+(R, R)

S−{R}↑
S−{ }

S+{R}↑
S+{ }

S− [R, (T, U)]↑
S−([R, T ], U)

S−〈R; (T, U)〉↑
S−(〈R; T 〉, U)

S−〈[R, U ]; [T, V ]〉↑
S−(〈R; T 〉, 〈U ; V 〉)

S−〈R; [T, U ]〉↑
S− [〈R;T 〉, U ]

S−〈〈R; T 〉; U〉↑
S−(R, 〈T ; U〉)

S−{∀x(R,T )}↑
S−(∀xR,∀xT )

S−〈R;∀xT 〉↑
S−{∀x〈R; T 〉}

S−〈∃xR;T 〉↑
S−{∀x〈R; T 〉}

S−{∃xR}↑
S−{R[t/x]}

S+{∀xR}↑
S+{R[t/x]}

Fig. 3. System : the dual of

each rule in the calculus of structures has its co-rule. In the case of , the co-
rule of a rule ρ is obtained from ρ by exchanging the premise with the conclusion
and reversing the condition on the context of the rule (i.e., positive to negative
and vice versa). The name of a rule is usually suffixed with an up or a down
arrow, and its co-rule has the same name but with the arrow reversed. We use
the term up-rules to denote rules with up-arrow in their names and down-rules if
their names contain down-arrow. The rule ↓ corresponds to the identity rule in
sequent calculus. Its co-rule, ↑ (see Figure 3), corresponds to cut. Together they
are referred to as the interaction rules. The rules ↓ and ↓ are the contraction
left and right rules, and ↓ and ↓ are the weakening left and right rules.
The rules prefixed with the letter are the switch rules, using the terminology
of [13]. The notation [t/x] in the ↓ and ↓ rules denotes capture-avoiding
substitutions.

Notice that if we take the dual of the rules of , we obtain another, “dual”
system of intuitionistic logic. This system, called , is shown in Figure 3.
Each of the systems and is incomplete in its own, since either cut
or identity is missing. The fully symmetric system for intuitionistic logic is thus
obtained by combining the two, and is referred to as . naturally
corresponds to first-order LJ and either one of or corresponds to
the cut-free fragment of first-order LJ . Note that either system can be chosen
to represent the cut-free LJ ; it is just a matter of convention that we fix our
choice to . We refer to the propositional fragment of ( ) as
(respectively, ).

Definition 1. A derivation Δ in a system in the calculus of structures is a finite
chain of instances of inference rules in the system. A derivation can consist of
just one structure. The topmost structure in a derivation is called the premise of
the derivation, and the structure at the bottom is called its conclusion. A proof
Π in the calculus of structures is a derivation whose premise is . A rule ρ is

derivable in a system S if ρ /∈ S and for every instance of
T
ρ
R

there is a
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derivation with premise R and conclusion T in S . Two systems are equivalent
if they have the same set of provable structures.

3 Soundness, Completeness and Cut Elimination

We shall now prove that the system is sound and complete with respect to
intuitionistic logic and that it has cut-elimination. The notion of cut-elimination
in the calculus of structures is more general than that of sequent calculus, that
is, not only the cut rule (the ↑) is admissible, but the entire up-rules are also
admissible. We prove the soundness and completeness of with respect to
a multiple-conclusion sequent system for intuitionistic logic [9]. We refer to
this system as LJm. Its rules are those of Gentzen’s LK, except for the right
introduction rules for universal quantifier and implication:

Γ,A 	 B
⊃ R

Γ 	 A ⊃ B,Ψ
Γ 	 A[y/x]

∀R
Γ 	 ∀xA, Ψ

where y in the ∀R rule is not free in the lower sequent. Cut-elimination for
is obtained indirectly via the cut-elimination theorem in sequent calculus,

by observing that all the rules in LJm, except the cut, are derivable in ,
i.e., the fragment of without the up-rules.

The formulae of LJm are given by the following grammar:

F ::= p(t) | . | ⊥ | F ⊃ F | F ∨ F | F ∧ F | ∀xF | ∃xF.

As in structures, p here denotes a unary predicate, and the rest of the constants
correspond to true, false, implication, disjunction, conjunction, universal and
existential quantifiers.

Definition 2. The functions . and . given below transform formulae in
LJm into structures and vice versa:

. = ⊥ =
p(t) = p(t) A ∧B = (A ,B )
A ∨B = [A ,B ] A ⊃ B = 〈A ;B 〉
∀xA = ∀xA ∃xA = ∃xA

= . = ⊥
p(t) = p(t) (R, T ) = R ∧R
[R, T ] = R ∨ T 〈R;T 〉 = R ⊃ T
∀xR = ∀xR ∃xR = ∃xR

The function . is generalized to sequents as follows:

A1, . . . , An 	 B = ∀x1 . . .∀xn〈(A1 , . . . , An );B 〉

where x1, . . . , xn are the eigenvariables of the sequent, and empty conjunction is
interpreted as the constant .

The key to proving soundness is to show that each instance of a rule in
corresponds to an implication in LJm and that equivalent structures map to log-
ically equivalent formulas. For instance, the soundness of the ↓ rule is demon-
strated by the left derivation in Figure 4.
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id
R � R

id
T � T⊃L

R ⊃ T, R � T
id

U � U∧R
R ⊃ T, U, R � T ∧ U∧L

(R ⊃ T ) ∧ U, R � T ∧ U⊃R
(R ⊃ T ) ∧ U � R ⊃ (T ∧ U)

(〈Γ1; [A, Ψ2 ]〉, 〈(B, Γ2); Ψ1〉)↓ 〈Γ1; ([A, Ψ2 ], 〈(B, Γ2); Ψ1〉)〉
= 〈Γ1; (〈Γ2; 〈B; Ψ1〉〉, [A, Ψ2 ])〉↓ 〈Γ1; 〈Γ2; (〈B; Ψ1〉, [A, Ψ2 ])〉〉
= 〈(Γ1, Γ2); ([A, Ψ2 ], 〈B; Ψ1〉)〉↓ 〈(Γ1, Γ2); [(A, 〈B; Ψ1〉), Ψ2 ]〉↓ 〈(Γ1, Γ2); [〈〈A; B〉; Ψ1〉, Ψ2 ]〉↓ 〈(Γ1, Γ2); 〈〈A; B〉; [Ψ1, Ψ2 ]〉〉
= 〈(Γ1, Γ2, 〈A;B〉); [Ψ1, Ψ2 ]〉

Fig. 4. A correspondence between and LJm

Theorem 3. For every structure R, R is provable in if and only if R is
provable in LJm.

To prove completeness, and cut-elimination, we show that can simulate
all the sequent rules of LJm. For instance, we show in the right derivation in
Figure 4 a simulation of the left introduction rule for implication:

Γ1 	 A,Ψ1 B,Γ2 	 Ψ2⊃ L
Γ1, Γ2, A ⊃ B 	 Ψ1, Ψ2

Notice that the branching in the rule is mapped to the conjunctive structural
relation in .

Theorem 4. For every structure R, R is provable in if and only if it is
provable in .

4 Intermediate and Classical Logics

We now consider three extensions of intuitionistic logic: Dummett’s LC [8],
Gödel logic [22] and classical logic. Dummett’s LC is obtained by adding the
following axiom A ⊃ B ∨ B ⊃ A to the propositional fragment of intuitionistic
logic. Gödel logic is obtained by adding to LC the axiom ∀x(A∨B)⊃∀xA∨B,
where x is not free in B. Classical logic is obtained, obviously, by dropping the
restriction on the contexts in the introduction rules for implication and universal
quantifiers. We discuss each of these extension in the following.

4.1 Dummett’s LC

Dummett’s LC can be formalized in the calculus of structures by adding the
following rules to (i.e., the propositional fragment of ).

S+(〈R;T 〉, 〈U ;V 〉)
↓
S+ [〈R;V 〉, 〈U ;T 〉]

S− [〈R;V 〉, 〈U ;T 〉]
↑
S−(〈R;T 〉, 〈U ;V 〉)
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These rules are called the communication rules, and are inspired by the corre-
sponding rules in the hypersequent formulation of LC [1,2]. With the ↓ rule,
we can derive the axiom A⊃B ∨B ⊃A as follows:

=
( , )

↓
( , 〈B;B〉)

↓
(〈A;A〉, 〈B;B〉)

↓
[〈A;B〉, 〈B;A〉]

We refer to the system extended with both rules as . We call the down
fragment of , i.e., plus the ↓ rule, the system . As we will see,
it is enough to consider since it is equivalent to .

Both ↓ and ↑ rules correspond to the formula

(R⊃ T ) ∧ (U ⊃ V ) ⊃ (R⊃ V ) ∨ (U ⊃ T ).

This formula can be easily shown to be provable from the following three for-
mulas:

1. (T ⊃ V ) ∨ (V ⊃ T ),
2. (R⊃ T ) ∧ (T ⊃ V ) ⊃ (R ⊃ V ),
3. (U ⊃ V ) ∧ (V ⊃ T ) ⊃ (U ⊃ T ).

The first formula is an axiom of LC, the second and the third are intuitionistic
theorems. Therefore the ↓ and ↑ rules are sound with respect to LC. The
completeness proof of (and ) is more involved; it uses a translation from
a hypersequent system for LC to . We state the result here and refer the
interested reader to the extended version of the paper for the detailed proofs.

Theorem 5. For every structure R, R is provable in if and only if R is
provable in LC.

4.2 Gödel Logic

Gödel logic is obtained by adding ↓, ↑ and the following rules to :

S+{∀x[R, T ]}
↓
S+ [∀xR, T ]

S− [∀xR, T ]
↑
S−{∀x[R, T ]}

We refer to the formulation of this logic as . The down fragment, i.e.,
plus the ↓ rule, is referred to as .

The rules ↓ and ↑ are obviously sound since they correspond directly to
the axiom ∀x(R ∨ T ) ⊃ ∀xR ∨ T. To prove completeness and cut-elimination,
we encode a hypersequent system for Gödel logic, i.e., the system HIF [2] (also
known as first-order intuitionistic fuzzy logic) in . The details of the encoding
can be found in the appendix.

Theorem 6. For every structure R, R is provable in if and only if R is
provable in HIF .
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4.3 Classical Logic

Classical logic is obtained by adding ↓, ↑ and the following rules

S+〈R; [T, U ]〉
↓
S+ [〈R;T 〉, U ]

S− [〈R;T 〉, U ]
↑
S−〈R; [T, U ]〉

to . These rules allow one to simulate the right-introduction rules for im-
plication and universal quantifier in LK:

Γ,A 	 B,Ψ
⊃ R

Γ 	 A ⊃ B,Ψ
Γ 	 A[y/x], Ψ

∀R
Γ 	 ∀xA, Ψ

More precisely, these rules are derived as follows:

〈(Γ,A); [B,Ψ ]〉
=

〈Γ ; 〈A; [B,Ψ ]〉〉
↓
〈Γ ; [〈A;B〉, Ψ ]〉

∀y〈Γ ; [A[y/x], Ψ ]〉
↓
〈Γ ; ∀y [A[y/x], Ψ ]〉

↓
〈Γ ; [∀y.A[y/x], Ψ ]〉

=
〈Γ ; [∀xA, Ψ ]〉

We refer to the system extended with ↓, ↑, ↓ and ↑ as 2 . The
down fragment, i.e., extended with ↓ and ↓, is referred to as 2 .

Theorem 7. For every structure R, R is provable in 2 if and only if R is
provable in LK.

5 Atomic Contraction

We shall now refine the system and its extensions to systems in which
the interaction rules (i.e., the ↓ and ↑ rules), contraction and weakening are
restricted to atomic propositions. The transformations required to reduce the
interaction, weakening and contraction rules to their atomic forms are indepen-
dent of the particular extensions to , so without loss of generality we shall
work only with the system in this section. The main challenge in reducing
contraction to its atomic form is in finding the right medial rules, just like those
in [4]. They are basically some form of distributivity among the connectives.
In order to reduce contraction in negative context to atomic ones, it is crucial
that we allow contraction on positive context as well. This is due to the reversal
of polarity introduced by the implication connective.

The atomic versions of the interaction, contraction and weakening rules are
as follows:

S+{ }
↓
S+〈a; a〉

S+ [a, a]
↓
S+{a}

S−(a, a)
↓
S−{a}

S+{ }
↓
S+{a}

S−{ }
↓
S−{a}

and their respective duals, obtained by exchanging the premise and the conclu-
sion, with the polarity of the context reversed. Here we denote with a an atomic
formula.
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S−([R, T ], [U, V ])

S− [(R, U), (T, V )]

S+ [(R,U), (T, V )]

S+([R,T ], [U, V ])

S−(〈R;U〉, 〈T ; V 〉)↓
S−〈[R, T ]; (U, V )〉

S+ [〈R; U〉, 〈T ; V 〉]↓
S+〈(R, T ); [U, V ]〉

S−(∀xR,∀xT )↓
S−{∀x(R,T )}

S+ [∀xR,∀xT ]↓
S+{∀x[R,T ]}

S−(∃xR,∃xT )↓
S−{∃x(R, T )}

S+ [∃xR,∃xT ]↓
S+{∃x[R, T ]}

Fig. 5. The medial rules for reducing contraction to atomic

The medial rules for intuitionistic logic are given in Figure 5. The classical
medial rule of [7] splits into two rules: the (right) medial rule and the
(left) medial rule . This is because we have contraction on both the positive
and negative contexts. Notice that and are dual to each other, that is,
is the up-version of and vice versa. There are extra medial rules that deal with
implication and quantifiers. All those rules are derivable from the contraction and
weakening rules in , and hence their soundness follows from the soundness of

. By taking the duals of the medial rules in Figure 5, we obtain the co-medial
rules, which by symmetry, are needed to reduce the co-contraction (i.e., the up-
version of the contraction rules) to atomic. The co-medial rules are denoted by
the same name but with the arrows reversed.

The general interaction rules ↓ and the weakening rule ↓ can be shown
reducible to their atomic versions, and the contraction rule ↓ can be reduced
to the atomic one with the medial rules. We illustrate here a step in the reduction
of the contraction rule; more details can be found in the appendix. Consider for
instance, contractions on an implication structure, on both the positive and
negative context:

S+ [〈R;T 〉, 〈R;T 〉]
↓

S+〈R;T 〉
S−(〈R;T 〉, 〈R;T 〉)

↓
S−〈R;T 〉

These instances of contractions can be replaced by the following derivations:

S+ [〈R;T 〉, 〈R;T 〉]
↓
S+〈(R,R); [T, T ]〉

↓
S+〈(R,R);T 〉

↓
S+〈R;T 〉

S− [〈R;T 〉, 〈R;T 〉]
↓
S−〈[R,R]; (T, T )〉

↓
S−〈[R,R];T 〉

↓
S−〈R;T 〉

Notice that in the above derivations, contractions are applied to a subformula
of the original formula. Repeating this process, we eventually end up with con-
tractions on atomic formulas only.

Definition 8. System is obtained from by replacing the interaction
rule ↓ with ↓, the weakening rules ↓ and ↓ with ↓ and ↓, the
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Units: [ +, + ]+ = + ( +, +)+ = + 〈 −; +〉+ = + 〈 −; +〉+ = +

[ +, R+ ]+ = R+ ( +, R+)+ = R+ 〈 −; R+〉+ = R+

Associativity: [R, [T, U ]+ ]+ = [[R, T ]+, U ]+ (R, (T, U)+)+ = ((R, T )+, U)+

Commutativity: [R, T ]+ = [T, R]+ (R,T )+ = (T, R)+

Currying: 〈(R, T )−; U〉+ = 〈R; 〈T ; U〉+〉+
Orthogonality: R = T , if R = T .
Congruence: S{R} = S{T}, if R = T .

Fig. 6. Syntactic equality for polarized structures

contraction rules ↓ and ↓ with ↓, ↓ and the medial rules in Figure 5.
System is obtained by adding to its own dual rules. The propositional
fragment of and are referred to as and , respectively.

Theorem 9. The systems , , and are equivalent.

6 A Local System for Propositional Intuitionistic Logic

The rules in both and are non-local since in order to apply the
rules, one has to check whether the redex is in a positive or negative context.
However, if one carefully observes the rules, one notices a certain conservation
of polarities in the rules. That is to say there is never the case where a structure
in a positive context is moved to a negative context and vice versa. For example,
in the rule ↓ in Figure 2, the substructures R, T , U and V have the same
polarities in both the premise and the conclusion of the rule. That is R is in
negative context in both premise and conclusion, T is in positive context, and
so on. This observation leads to the following idea: When proving a structure,
we first label each substructure with either a ‘+’ or a ‘−’ depending on whether
the substructure is in a positive or a negative context respectively. Each time a
structure is modified by a rule, the premise of the rule is relabelled consistently,
that is, substructures are labelled depending on which context they reside in.
The polarity-preserving property of the rules guarantees that there is no need of
relabelling of substructures which are not affected by the rule. For the ↓ rule,
the labelled version would be:

S(〈R;T 〉+, U)+
↓
S〈R; (T, U)+〉+

This modified rule of ↓ is local since we need only to check for polarity of
three substructures in the rule, instead of checking the entire context. We shall
give a fully local system for the propositional fragment of by introducing
polarities into structures.
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S{ +}↓
S〈a−; a+〉+

S [a+, a+ ]+↓
S{a+}

S(a−, a−)−↓
S{a−}

S{ +}↓
S{a+}

S{ −}↓
S{a−}

S([R, T ]+, U)+↓
S [R, (T, U)+ ]+

S(〈R; T 〉+, U)+↓
S〈R; (T, U)+〉+

S(〈R; T 〉+, 〈U ; V 〉+)+↓
S〈[R,U ]−; [T, V ]+〉+

S [〈R; T 〉+, U ]+↓
S〈R; [T, U ]+〉+

S(R, 〈T ; U〉+)+↓
S〈〈R;T 〉+; U〉+

S([R, T ]−, [U, V ]−)−

S [(R, U)−, (T, V )− ]−
S [(R, U)+, (T, V )+ ]+

S([R, T ]+, [U, V ]+)+

S(〈R;U〉−, 〈T ;V 〉−)−↓
S〈[R,T ]+; (U, V )−〉−

S [〈R;U〉+, 〈T ; V 〉+ ]+↓
S〈(R, T )−; [U, V ]+〉+

Fig. 7. System

Definition 10. Polarized structures are expressions generated from the follow-
ing grammar:

S ::= P | N
P ::= a+ | + | + | (P, P )+ | [P, P ]+ | 〈N ;P 〉+
N ::= a− | − | − | (N,N)− | [N,N ]− | 〈P ;N〉−

A positive polarized structure, or positive structure for short, is a polarized struc-
ture labelled with ‘+’, and a negative polarized structure, or negative structure,
is a polarized structure labelled with ‘−’. Positive structures are often denoted
by R+ and negative structures by R−. The orthogonal of a structure R, denoted
by R, is the structure obtained from R by exchanging the labels ‘+’ with ‘−’ and
vice versa. A polarized context is a polarized structure with a hole { }. Given
a polarized context S{ } and a polarized structure R, the placement of R in
S{ }, i.e., S{R}, is allowed only if doing so results in a well-formed polarized
structure. Polarized structures are considered modulo the equality in Figure 6.

The propositional intuitionistic system with polarized structures is given in
Figure 7. We refer to this system as . Each polarized rule has a dual ver-
sion which is obtained by exchanging the premise and the conclusion and ex-
changing the polarities. The system obtained by adding to its own duals
is is referred to as . Both the inference rules and the structural equality
are derived straightforwardly from the inference rules and structural equality of

, that is, by giving appropriate labels to the structures. Care has to be taken
to ensure that the rules and the equality between polarized structures preserve
polarity. We shall now proceed to prove formally that , , and
are all equivalent in terms of provability.

The notion of derivations in is the same as that in . The notion of
proof is slightly different.
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Definition 11. A proof of a polarized structure R in S is a derivation in S
with premise + and conclusion R.

By this definition, it is obvious that all provable polarized structures are positive
structures since all rules in preserve polarities.

The key idea to proving the correspondence between and the proposi-
tional fragment of is the following: the polarity of any substructure R
in S{R} should determine the polarity of the context. In particular, positive
structures R and S{R} are translated to some structures T and S′{T } such
that S′{ } corresponds to S{ } and T corresponds to R, and most importantly,
S′{ } is a positive context. In this way, rules that apply to positive substructures
in translate to the same rules that apply under positive context in ,
and a simple observation on the inference rules of and shows that
they co-incide. The same observation holds for negative structures and negative
contexts. In the following theorems, we denote with R , where R is a polarized
structure, the structure obtained from R by dropping all the polarity signs.

Theorem 12. For every polarized structure R, R is provable in if and only
if R is provable in .

7 Future Work

Properties of proofs and derivations in the systems and its extensions re-
main to be studied. An immediate future works would be to find direct proofs
(i.e., without the detour through sequent calculus or hypersequent) of cut-
elimination. It would also be interesting to investigate various substructural
logics that arise from either restricting or extending the base system .
For instance, it would be interesting to see what sort of logic we get from drop-
ping the atomic contraction rules but keeping the medial rules. Another open
problem is to come up with a fully local first-order intuitionistic system. The
rules which instantiate quantifiers, i.e., ↓ and ↓, involve substitutions which
are non-local. This can probably be made local by giving rules which effectively
“implement” explicit substitutions. On the more general problem of formalizing
asymmetric systems, it would be intereting to see if the methodology presented
here can be generalized to formalize non-standard asymmetric systems such as
Bunched Logic [19]. Some preliminary result in this direction can be found in
[15]. The current work focusses mainly on the proof theoretic aspects. It would
be interesting to see if the analyses on the deep inference systems, in particular
the notions of locality and atomicity, will be useful for implementing proof search
for these logics.
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Abstract. Sized types provides a type-based mechanism to enforce termination
of recursive definitions in typed λ-calculi. Previous work has provided strong
indications that type-based termination provides an appropriate foundation for
proof assistants based on type theory; however, most work to date has been con-
fined to non-dependent type systems. In this article, we introduce a variant of
the Calculus of Inductive Constructions with sized types and study its meta the-
oretical properties: subject reduction, normalization, and thus consistency and
decidability of type-checking and of size-inference. A prototype implementation
has been developed alongside case studies.

1 Introduction

Proof assistants based on dependent type theory rely on termination of typable programs
to guarantee decidability of convertibility and hence decidability of typing. In order to
enforce termination of programs, proof assistants typically require that recursive calls
in a function definition are always performed on structurally smaller arguments; in the
Coq proof assistant, which forms the focus of this article, the requirement is captured by
a guard predicate G on expressions, that is applied to the body of recursive definitions
for deciding whether or not the function should be accepted. Providing a liberal yet
intuitive and correct syntactic guard criterion to guarantee termination is problematic.

Type-based termination is an alternative approach to enforce termination of recursive
definitions through an extended type system that manipulates sized types, i.e. types that
convey information about the size of their inhabitants. In a nutshell, the key ingredients
of type-based termination are the explicit representation of the successive approxima-
tions of datatypes in the type system, a subtyping relation to reflect inclusion of the
successive approximations and the adoption of appropriate rules for constructors, case
expressions, and fixpoints.

Previous work by the authors [6,7] and by others (see Section 2) has shown that
type-based termination is an intuitive and robust mechanism, and a good candidate for
enforcing termination in proof assistants based on dependent type theories. However,
these works were concerned with non-dependent type systems. The contribution of the

� More details on difficulties with Coq, case studies, remaining issues and proofs and an imple-
mentation are available from the second author’s web page.

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 257–271, 2006.
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paper is an extension of these results to dependent type theories, and more precisely
to the Calculus of Inductive Constructions; concretely, we introduce CIĈ , a variant
of the Calculus of Inductive Constructions that enforces termination of recursive def-
initions through sized types. Besides, we show that the system CIĈ enjoys essential
properties required for proof assistants, in particular logical consistency and decidabil-
ity of type-checking, and decidability of size-inference. We have developed a prototype
implementation of CIĈ and used it to prove the correctness of quicksort.

2 Related Work

The idea of ensuring termination and productivity of fixpoint definitions by typing can
be traced back to early work by Mendler [21] on recursion schemes, and to work by
Hughes, Pareto and Sabry [18] on the use of sized types to ensure productivity of pro-
grams manipulating infinite objects. We refer the reader to [2,6] for a review of related
work, and focus on work that deals with dependent types or with size inference.

Inference. Chin and Khoo [14] were among the first to study size inference in a non-
dependent setting; they provided an algorithm that generates formulae of Presburger
arithmetic to witness termination for a class of strongly normalizing terms typable in a
(standard) simply typed λ-calculus with recursive definitions.

Type-checking algorithms for systems that enforce type-based termination were de-
veloped by Xi [25] for a system with restricted dependent types and by Abel [1,2] for a
higher order polymorphicλ-calculus. More recently, Blanqui and Riba [12] have shown
(termination and) decidability of type checking for a simply typed λ-calculus extended
with higher-order rewriting and based on constraint-based termination, a generalization
of type-based termination inspired from [14].

Dependent types. Giménez [17] was the first to consider a dependent type theory that
uses type-based termination: concretely, he defined a variant of the Calculus of In-
ductive Constructions with type-based termination, and stated strong normalization for
his system. The paper does not contain proofs and does not deal with size inference;
besides, Giménez does not use an explicit representation of stages, which makes the
system impractical for mutually recursive definitions. This work was pursued by Bar-
ras [4], who considered a variant of Giménez system with an explicit representation of
stages, and proved in Coq decidability of type-checking assuming strong normalization.

Blanqui [10,11] has defined a type-based variant of the Calculus of Algebraic Con-
structions (CAC) [9], an extension of the Calculus of Constructions with higher-order
rewriting à la Jouannaud-Okada [19], and showed termination and decidability of type-
checking. It is likely that strong normalization for CIĈ (which we conjecture) can be
derived from [10], in the same way that strong normalization of CIC can be derived
from strong normalization of CAC [9]. On the other hand, our inference result is more
powerful than [11]. Indeed, our system only requires terms to carry a minimal amount
of size annotations, and uses a size inference algorithm to compute these annotations,
whereas size annotations are pervasive in Blanqui’s system, and merely checked. We
believe that size inference has a significant impact on the usability of the system, and is
a requirement for a practical use of type-based termination in a proof-assistant.
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3 A Primer on Type-Based Termination

The object of this section is to provide a (necessarily) brief introduction to type-based
termination. For more information (including a justification of some choices for the
syntax of non-dependent systems and inherited here), we refer the reader to [6,7].

Consider for example the datatype of lists; in our system, the user declares the
datatype with a declaration

List [A : Set] : Set := nil : List | cons : A→ List → List

Lists are then represented by an infinite set of approximations Lists A, where s is a size
(or stage) expression taken from the following grammar:

s ::= ı | ŝ | ∞

where ·̂ denotes the successor function on stage expressions, and where we adopt the
convention that ∞̂ = ∞. Intuitively, Lists A denotes the type of A-lists of size at
most s, and in particular, List∞ A denotes the usual type of A-lists. In order to reflect
inclusion between successive approximations of lists, we introduce a subtyping relation
with the rules

Lists A ≤ Listŝ A Lists A ≤ List∞ A

together with the usual rules for reflexivity, transitivity, and function space.
The typing rules for constructors confirm the intuitive meaning that the size of a

constructor term is one plus the maximum size of its subterms:

Γ 	A : ω

Γ 	nil |A| : List̂ı A

Γ 	A : ω Γ 	a : A Γ 	 l : Lists A

Γ 	cons |A| a l : Listŝ A

Note that the empty list cannot be of type Listı because it would break normalization.
Furthermore, note that parameters in constructors do not carry any size annotations
(they are removed by the erasure function |.|), both to ensure subject reduction and
to guarantee that we do not have multiple canonical inhabitants for parametrized types:
e.g. in this way we guarantee that nil Nat is the only empty list in List Nat∞; otherwise
we would have for each stage s an empty list nil Nats of type List Nat∞.

Then, the typing rule for fixpoints ensures that recursive function calls are always
performed on arguments smaller than the input:

Γ, f : Listı A→ B	e : List̂ı A→ B[ı := ı̂]
Γ 	(fix f : |Listı A→ B|ı := e) : Lists A→ B[ı := s]

where ı occurs positively in B and does not occur in Γ, A. Note that the tag of f in the
recursive definition does not carry size annotations (we use the erasure function |.|ı2);
instead, it simply carries position annotations in some places, to indicate which recur-
sive arguments have a size related to the decreasing argument. The purpose of position
annotations is to guarantee the existence of compact most general typings (without po-
sition annotations we would need union types), see [7].
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In the conclusion, the stage s is arbitrary, so the system features some implicit stage
polymorphism. Further, the substitution in the conclusion is useful to compute so-called
precise typings. For example, CIĈ allows the precise typings for map and filter:

map : ΠA : Set. ΠB : Set. (A→ B) → (listı A) → (listı B)
filter : ΠA : Set. (A→ bool) → (listı A) → (listı A)

to reflect that the map and filter function outputs a list whose length is smaller or equal
to the length of the list that they take as arguments. In turn, the precise typing of filter is
used to type functions that are rejected by many syntactic criteria of termination, such
as the quicksort function. Wahlstedt[23] presents a size-change principle that accepts
many recursion schemes that escape our type system but is unable to gain expressive-
ness from size preserving functions.

4 System CIĈ

The system CIĈ is a type-based termination version of the Calculus of Inductive Con-
structions (CIC) [24]. The latter is an extension of the Calculus of Constructions with
(co-)inductive types, and the foundation of the Coq proof assistant. In this paper, we
omit co-inductive types. On the other hand, we present CIĈ as an instance of a Sized
Inductive Type System, which is an extension of Pure Type Systems [3] with inductive
types using size-based termination.

Specifications. The type system is implicitly parametrized by a specification that is a
quadruple of sorts S, axioms Axioms, product rules Rules, and elimination rules Elim.
Sorts are the universes of the type system; typically, there is one sort Prop of proposi-
tions and a sort Set of types. Axioms establish typing relations between sorts, product
rules determine which dependent products may be formed and in which sort they live,
and elimination rules determine which case analysis may be performed. The specifica-
tion for CIĈ is that of CIC [22].

Terms. Following F̂ [7], CIĈ features three families of expressions to ensure subject
reduction and efficient type inference. The first family is made of bare expressions that
do not carry any size information: bare expressions are used in the tags of λ-abstractions
and case expressions and as parameters in inductive definitions/constructors. The sec-
ond family is made of positions expressions that are used in the tags of recursive defi-
nitions and rely on a mark � to denote (in a recursive definition) which positions have a
size related to that of the recursive argument. Finally, the third family is made of sized
expressions that carry annotations (except in their tags).

Definition 1 (Stages and expressions)

1. The set S of stage expressions is given by the abstract syntax: s, r ::= ı | ∞ | ŝ.
Stage substitution is defined in the obvious way, and we write s[ı := s′] to denote
the stage obtained by replacing ı by s′ in s. Furthermore, the base stage of a stage
expression is defined by the clauses +ı, = ı and +ŝ, = +s, (the function is not
defined on stages that contain ∞).
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WF([])
empty

WF(Γ ) Γ �T : ω

WF(Γ (x : T ))
cons

WF(Γ ) (ω,ω′) ∈ Axioms

Γ �ω : ω′ sort

WF(Γ ) Γ (x) = T

Γ �x : T
var

Γ �T : ω1 Γ (x : T )�U : ω2 (ω1, ω2, ω3) ∈ Rules

Γ �Πx :T. U : ω3
prod

Γ �Πx :T. U : ω Γ (x : T )�u : U

Γ �λx : |T |. u : Πx :T. U
abs

Γ �u : Πx :T. U Γ � t : T

Γ �u t : U [x := t]
app

Γ � t : T Γ �U : ω T � U

Γ � t : U
conv

WF(Γ ) I ∈ Σ

Γ �Is : TypeInd(I)
ind

I ∈ Σ Γ (x : TypeConstr(c, s))�x p a : U
params(c) = #p args(c) = #a x fresh in Γ, p, a

Γ �c(|p|, a) : U
constr

Γ � t : I ŝ p a I ∈ Σ Γ �P : TypePred(I, s, p, ω′)
(I.ω, ω′) ∈ Elim params(I) = #p Γ �bi : TypeBranch(ci, s, P, p)

Γ �case|P | t of {ci ⇒ bi} : P a t
case

T = ΠΔ. Πx :Iı u. U ı pos U #Δ = n − 1
ı does not occur in Δ, u, Γ, t Γ �T : ω Γ (f : T )� t : T [ı := ı̂]

Γ � (fixn f : |T |ı := t) : T [ı := s]
fix

Fig. 1. Typing rules

2. The set of P size positions is defined as {�, ε}.
3. The generic set of terms over the set a is defined by the abstract syntax:

T[a] ::= Ω | X | λX :T◦. T[a] | T[a] T[a] | ΠX :T[a]. T[a] | C(T◦,T[a]) | Ia

| caseT◦ T[a] of {C ⇒ T[a]} | fixn X :T� := T[a]

where Ω, X, I and C range over sorts, variables, datatypes and constructors.
4. The set of bare expressions, position expressions, and sized expressions are defined

by the clauses T◦ ::= T[ε] and T� ::= T[P] and T ::= T[S].

Note that we require that constructors are fully applied; as mentioned above, we also
separate arguments of constructors into parameters that do not carry any size infor-
mation and arguments that may carry size information. Besides, the fixpoint definition
carries an index n that determines the recursive argument of the function. Finally, ob-
serve that case expressions are tagged with a function that gives the type of each branch,
as required in a dependently typed setting.

Reduction and Conversion. The computational behavior of expressions is given by the
usual rules for β-reduction (function application), ı-reduction (pattern matching) and
μ-reduction (unfolding of recursive definitions). The definition of these rules relies on
substitution, whose formalization must be adapted to deal with the different categories
of expressions.
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Definition 2 (Erasure and substitution)

1. The function |.| : T� ∪T → T◦ is defined as the obvious erasure function from sized
terms (resp. position terms) to bare terms.

2. The function |.|ı : T → T� is defined as the function that replaces stage annotations
s with � if the base stage of s is ı (+s, = ı) and by ε otherwise.

3. The substitution of x by N into M is written as M [x := N ]. (In fact we need
three substitution operators, one for each category of terms; all are defined in the
obvious way, and use the erasure functions when required.)

4. The substitution of stage variable ı by stage expression s is defined asM [ı := s].

We are now in position to define the reduction rules.

Definition 3 (Reduction rules and conversion)

– The reduction relation → is defined as the compatible closure of the rules:

(λx :T ◦. M) N → M [x := N ] (β)

caseT◦ cj(p
◦, a) of {ci ⇒ ti} → tj a (ı)

(fixn f :T � := M) b c(p◦ , a) → M [f := (fixn f :T � := M)] b c(p◦ , a) (μ)

where b is of length n− 1.
– We write

∗→ and ≈ respectively for the reflexive-transitive and reflexive-symmetric-
transitive closure of →.

Both reduction and conversion are closed under substitution. Moreover, reduction is
Church-Rosser.

Lemma 1 (Church-Rosser). For every expressions u and v such that u ≈ v there
exists t such that u

∗→ t and v
∗→ t.

In particular normal forms are unique, hence we write NF(A) for the normal form ofA
(if it exists) w.r.t. →.

Subtyping. In order to increase its expressiveness, the type system features a subtyping
relation that is derived from a partial order on stages. The partial order reflects two
intuitions: first, that an approximation Is is contained in its successor approximation
Iŝ; second, that I∞ is closed under constructors, and the fixpoint of the monotonic
operator attached to inductive types.

Definition 4 (Substage). The relation s is a substage of s′, written s 9 s′, is defined
by the rules:

s 9 s
s 9 r r 9 p
s 9 p s 9 ŝ s 9 ∞

The substage relation defines a subtyping relation between types, using for each induc-
tive type a declaration that indicate the polarity of its parameters.



CIĈ : Type-Based Termination of Recursive Definitions 263

Definition 5 (Polarity declaration). We assume that each inductive type I comes with
a vector I.ν of polarity declarations, where each element of a polarity declaration can
be positive, negative or invariant:

ν ::= + | − | ◦

Subtyping is then defined in the expected way, using an auxiliary relation that defines
subtyping between vectors of expressions relative to a vector of positivity declarations.

Definition 6 (Subtyping)

– Let R be an equivalence relation stable under substitution of terms and stages. The
subtyping relations �R and �ν

R are simultaneously defined by the rules:

t1 R t2

t1 �R t2

T2 �R T1 U1 �R U2

Πx :T1. U1 �R Πx :T2. U2

s 9 s′ t1 �I.ν
R t2

Is t1 �R I
s′

t2

t1 R u1 t �ν
R u

t1.t �◦.ν
R u1.u

t1 �R u1 t �ν
R u

t1.t �+.ν
R u1.u

u1 �R t1 t �ν
R u

t1.t �−.ν
R u1.u

t R u

t �∅
R u

– We define � as the transitive closure of �≈. (Note that � is reflexive and allows
redex elimination through ≈.)

– We define ≤ as �=. (Note that ≤ is reflexive and transitive.)

The subtyping relation � shall be used to define the type system of CIĈ , whereas
the subtyping relation ≤ shall be used by the inference algorithm. The two subtyping
relations are related by the following lemma.

Lemma 2. If A and A′ are normalizing, then A � A′ iff NF(A) ≤ NF(A′).

Positivity. In order to formulate the type system and to specify which inductive def-
initions are correct and supported by CIĈ , we need several notions of positivity and
strict positivity. Strict positivity is used to guarantee termination of recursive functions,
whereas positivity is used to verify that polarity declarations are correct and in the rule
for fixpoints. We begin by defining positivity of stage variables. In contrast to simple
type systems, positivity cannot be defined syntactically, and we are forced to use a se-
mantic definition.

Definition 7 (Positivity of stage variables). ı is positive in T , written ı pos T , iff
T [ı := s1] � T [ı := s2] for all s1, s2 such that s1 9 s2.

The above definition involves a universal quantification and thus is not practical for
algorithmic purposes. We provide an equivalent definition that can be used for type
checking.

Lemma 3 (Redefinition of positivity). If T is normalizing then

ı pos T ⇔ T � T [ı := ı̂] ⇔ NF(T ) ≤ NF(T [ı := ı̂])

We can generalize the notion of positivity to term variables.
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Definition 8 (Positivity of term variables)

– x is positive in T , written x pos T , iff T [x := t1] � T [x := t2] for all t1, t2 such
that t1 � t2.

– x is negative in T , written x neg T , iff T [x := t2] � T [x := t1] for all t1, t2 such
that t1 � t2.

We conclude this section with a definition of strict positivity. Indeed, contrary to earlier
work with non-dependent type systems, we cannot allow positive inductive types in our
system, because it would lead to an inconsistency [15].

Definition 9 (Strictly positive). A variable x is strictly positive in T , written x POS T ,
if x does not appear in T or if T ≈ ΠΔ. x t and x does not appear in Δ and t.

Inductive Types. Inductive definitions are declared in a signature Σ; each inductive
definition is introduced with a declaration of the form

Ind(I[Δp]ν : ΠΔa. ω :=
−−−−−−−−−→
ci : ΠΔi. δ ti)

where I is the name of the inductive type, Δp is a context defining its parameters and
their type, Δa is a context defining its arguments and their type, ω is a sort and ν is
its polarity declaration. To the right of the := symbol, we find a list of constructors
with their types: ci represents the name of the i-th constructor, and Δi is the context
for its arguments, and δ ti represents the type of the resulting constructor term—for
technical reasons, we use a special variable δ representing the current inductive type.
In the sequel, we shall use some notations to deal with inductive definitions. First, we
write I ∈ Σ for Ind(I[Δp]ν : ΠΔa. ω :=

−−−−−−−−−→
ci : ΠΔi. δ ti) ∈ Σ. Figure 2 introduces

further notations referring to inductive definitions : I.ω and TypeInd(I) are respectively
the sort and the type of I; params(I) = params(c) indicates the number of parameters
of the inductive type and of its constructors. Then, we define the type of a constructor
(TypeConstr(c, s)), of the case predicate (TypePred(I, s,p, ω′)) and the type of case
branches TypeBranch(ci, s, P,p).

As usual, we separate between parameters and arguments of inductive types—they
are handled differently in the syntax and shall be handled differently in the conversion
rule—and assume that inductive types do not share constructors. Furthermore, contexts
of inductive definitions are subject to well-formedness constraints; some constraints
rely on the type system defined in the next paragraph. A context of inductive definitions
is well-formed if it is empty [] or if it is of the formΣ; Ind(...) where Σ is well formed
and all of the following hold:

1. the inductive definition is well-typed, i.e.	ΠΔp. ΠΔa. ω : ω′ for some ω′ is a
valid typing judgment with signature Σ;

2. the constructors are well-typed, i.e. Δp (δ : ΠΔa. ω)	ΠΔi. δ ti : ωi for some ωi

is a valid typing judgment with signatureΣ;
3. variable δ is strictly positive in the type of every constructor argument (δ pos Δi).
4. each occurrence of inductive types in Δp,Δa,Δi is annotated with ∞;
5. each variable in Δp satisfies the polarity condition in the type of each constructor.

This means dom(Δp) pos I.νΔp and for every constructor ci, dom(Δp) pos I.νΔi.
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I.ω := ω
TypeInd(I) := ΠΔp. ΠΔa. ω
params(I) := #Δp

params(c) := #Δp

args(c) := #Δi

TypeConstr(ci, s) := ΠΔp. Π(Δi[δ := Is dom(Δp)]). I ŝ dom(Δp) ti

TypePred(I, s, p, ω′) := ΠΔa[dom(Δp) := p]. Πx :I ŝ p dom(Δa). ω′

TypeBranch(ci, s, P, p) := (ΠΔi. P ti ci(|p|, dom(Δi))) [dom(Δp) := p][δ := Is p]

Fig. 2. Definitions over inductive constructions

6. positive and negative variables in Δp do not appear in arguments ti that appear in
the types of constructors.

7. from subtyping rules, we have that p1 �I.ν p2 implies I p1a � I p2a. We require
dom(Δp) pos I.νΔa to guarantee that if I p1a and all the components of p2 are
well typed, then I p2a will be well typed.

Clause 3 ensures termination, whereas Clause 4 ensures that constructors use previ-
ously defined datatypes, but not approximations of previously defined datatypes—it is
not clear whether lifting such a restriction would make the system more useful and how
much the theory would be impacted. Clauses 5 and 6 reflect the subtyping rules for in-
ductive types, and are used in the proof of subject reduction. Lastly, clause 7 is required
to guarantee the completeness of type inference.

Typing. Typing judgments are defined in the usual way. They are implicitly parame-
terized by a signature of inductive declarations, and by a specification that consists of
a set of axioms, product rules, and elimination rules. Axioms establish typing relations
between sorts, product rules determine which dependent products may be formed and
in which sort they live, and elimination rules determine which case analysis may be
performed. For example, Coq does not allow Elim(Prop,Set).

Definition 10 (Contexts and judgments)

– A context is a finite list of declarations Γ := (x1 : T1) . . . (xn : Tn) where
x1, . . . , xn are pairwise disjoint variables and T1, . . . , Tn are expressions.

– A typing judgment is a tuple of the form Γ 	 t : T , where Γ is a context, t and T
are expressions.

– A judgment is derivable iff it can be obtained using the rules of Figure 1.

5 Meta-theory

This section states the main properties that CIĈ inherits from its non-dependent an-
cestors, and that justifies it as a foundation for proof assistants. Once the distinction
between terms and types is reestablished for CIĈ , the algorithm and most proofs may
be adapted with only minor modifications inherent to the complexity of CIC. All prop-
erties are proved for arbitrary specifications, and rely on the assumption of
normalization.
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Check(V, Γ, e◦, T ) = Ve, Ce ∪ Te � T, e
where (Ve, Ce, e, Te) := Infer(V, Γ, e◦)

Infer(V, Γ, ω) = V, ∅, ω, axioms(ω)

Infer(V, Γ, x) = V, ∅, x, Γ (x)

Infer(V, Γ, λx :T ◦
1 . e◦) = Ve, C1 ∪ Ce, λx :T ◦

1 . e, Πx :T1. T2

where (V1, C1, T1, W1) := Infer(V, Γ, T ◦
1 ) and whnf(W1) = ω1

(Ve, Ce, e, T2) := Infer(V1, Γ ; x :T1, e
◦)

Infer(V, Γ, Πx :T ◦
1 . T ◦

2 ) =
V2, C1 ∪ C2, Πx :T1. T2, rules(ω1, ω2)

where (V1, C1, T1, W1) := Infer(V, Γ, T ◦
1 ) and whnf(W1) = ω1

(V2, C2, T2, W2) := Infer(V1, Γ ;x :T1, T
◦
2 )

and whnf(W2) = ω2

Infer(V, Γ, e◦1 e◦2) = V2, C1 ∪ C2, e1 e2, T [x := e2]
where (V1, C1, e1, T1) := Infer(V, Γ, e◦1)

whnf(T1) = Πx :T2. T
(V2, C2, e2) := Check(V1, Γ, e◦2, T2)

Infer(V, Γ, I) = V ∪ {α}, ∅, Iα, TypeInd(I) with α �∈ V

Infer(V, Γ, c(p◦ , a◦)) = Vc, C, c(p◦ , a), T
where Tc := TypeConstr(c, α) with α �∈ V

params(c) = #p◦ and args(c) = #a◦ and x free in Γ, p, a
(Vc, C, x p a, T ) = Infer(V ∪ {α}, Γ (x : Tc), x p◦ a◦)

Infer(V, Γ, caseP◦ e◦c of {ci ⇒ e◦i }) =
Vn, Cc ∪ Cp ∪⋃n

i=0 Ci, caseP◦ ec of {ci ⇒ ei}, P a ec

where (Vc, Cc, ec, Tc) := Infer(V, Γ, e◦c)
whnf(Tc) = Ir p a and params(I) = #p and α �∈ Vc

(VP , CP , P, TP ) := Infer(Vc ∪ {α}, Γ, P ◦) and TP0 := TP

∀i = 1 . . . args(I) + 1, Πxi :Ti. TPi := whnf(TPi−1)
ω′ := whnf(TPargs(I)+1) and elim(I.ω, ω′)

C0 := r � α̂ ∪ TP � TypePred(I, α, p, ω′)) and V0 := VP

∀i = 1 . . . n, (Vi, Ci, ei) :=
Check(Vi−1, Γ, e◦i , TypeBranch(ci, α, P, p))

given T � ≡ ΠΔ◦. Πx :I� u◦. U� with #Δ◦ = n − 1
Infer(V, Γ, fixn f :T � := e◦B) =

VB , Cf , fixn f :T � := eB, ΠΔ. Πx :Iα u. U
where (VT , CT , ΠΔ. Πx :Iα u. U, W ) := Infer(V, Γ, |T �|)
and whnf(W ) = ω

(V �, Û) := shift(U, U�) and T ′ := ΠΔ. Πx :Iα u. U
(VB, CB, eB) :=

Check(VT , Γ (f : T ′), e◦B, ΠΔ. Πx :I α̂ u. Û)

Cf := RecCheck(α, V �, VB\V �, CT ∪ CB ∪ U � Û)

Fig. 3. Inference Algorithm
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Subject Reduction and Consistency. In order to prove subject reduction, we must first
establish substitution lemmas, generation lemmas, correctness of types and inversion of
products.

Lemma 4

– Correctness of types: If Γ 	 t : T then there exists ω ∈ S such that T = ω or
Γ 	T : ω

– Inversion of product If Πx :A. B � Πx :C. D then C � A and also B � D
– Subject reduction If Γ 	M : T andM →M ′ then Γ 	M ′ : T

The proof of subject reduction is in most parts analogous to the one for CIC. The dif-
ficulty posed by fixpoint reduction is dealt with thanks to a lemma stating preservation
of typing under stage substitution[6].

As usual, subject reduction and confluence allow to deduce consistency from
normalization.

Size Inference. Proof assistants based on dependent type theory rely on the Curry-
Howard isomorphism to reduce proof-checking to type-checking. In this context, it is
important to be able to decide whether a term is typable or not. Furthermore, it is im-
portant for usability that size annotations should not be provided by users, for whom
sized types should be as transparent as possible. Thus, we want to device a procedure
that takes as input a context and a bare expression and returns a decoration of the bare
expression and a most general typing if it exists, or an error if no decoration of the
expression is typable.

There are two fundamental steps in designing a type-checking algorithm for depen-
dent types—without subtyping and inductive types. The first step is to give a syntax-
directed formulation of the typing rules, with conversion used only in specific places;
the second step is to give a procedure to decide the convertibility of two terms. The
syntax-directed algorithm always calls convertibility checking on typable terms, which
are thus known to be normalizing, and convertibility is decidable in this case— thanks
to confluence and normalization, one can compute both normal forms and check the
equality.

In our setting, convertibility is replaced by subtyping T � U , but we can adopt
the strategy for testing convertibility for well typed terms (that are strongly normal-
izing): compute both normal forms and check whether they are related by subtyp-
ing ≤, see Lemma 2. However, termination is enforced with size information, which
must be inferred during type-checking. Although it would be tempting to perform type-
checking using erased types and perform termination checking afterwards, this is not
possible with dependent types because it would entail not knowing termination at type-
checking, which itself results in undecidability. Thus, we must check termination during
type-checking, and more concretely when checking recursive definitions. Informally,
we achieve the desired effect by creating and propagating constraints between stages
while checking expressions, and resolving the constraints while checking a recursive
definition.

Formally, our algorithm returns for every context Γ and unannotated expression e◦

either an error if no annotation e of e◦ is typable in Γ or else a most general annotation e
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of e◦ and typing of the form C ⇒ T where C is a set of constraints (stage inequalities),
and T is an annotated type subject to the following properties:

Soundness: for every stage substitution ρ satisfying C, we have ρΓ 	ρe : ρT .
Completeness: for every stage substitution ρ′ and annotation e′ of e◦ such that ρ′Γ 	

e′ : T ′, there exists ρ, a stage substitution such that ρ satisfies C and ρΓ = ρ′Γ and
ρe = e′ and ρT � T ′.

The notion of constraint system and satisfaction are defined formally as follows.

Definition 11 (Constraint and constraint systems)

1. A stage constraint is a pair of stages, written s1 9 s2.
2. A constraint system is a finite set of stage constraints.
3. A stage substitution ρ satisfies a constraint system C, written ρ |= C, if for every

constraint s1 9 s2 in C, we have ρ(s1) 9 ρ(s2).

Note that the stage substitution that maps all stage variables to ∞ is a solution of all
constraint systems.

We now turn to the formal description of the algorithm, which is adapted from [7].
The inference algorithm Infer(V, Γ, e◦) takes as input a context Γ , an unannotated ex-
pression e◦ and an auxiliary parameter V that represents the stage variables that have
been previously used during inference (we need the latter to guarantee that we only
introduce fresh variables). It returns a tuple (V ′, C, e, T ) where e is an annotated ver-
sion of e◦, T is a sized type, C is a constraint system, and V ′ is an extended set of
stage variables that has been used by the algorithm. The invariants are FV(Γ ) ⊆ V and
V ⊆ V ′ and FV(C, e, T ) ⊆ V ′. For practical reasons, we also use a second algorithm
Check(V, Γ, e◦, T ) which returns a tuple (V ′, C, e), where e is an annotated version of
e◦ such that e has type T in environmentΓ (and fails if no such e exists). The invariants
are FV(Γ, T ) ⊆ V and V ⊆ V ′ and FV(C, e) ⊆ V ′.

Definition 12. The algorithms Infer and Check are defined in Figure 3.

The algorithms rely on several auxiliary functions. First, there are functions axioms ,
rules , elim that verify compatibility with the specification—here we assume Axioms
and Rules to be functional. Then, there is an auxiliary function whnf that computes the
weak head normal form of an expression—here we assume that the type system is nor-
malizing, and use the fact that the function will only be called on typable expressions.
As mentioned above, we also need an auxiliary function that generates constraints from
subtyping judgments—the function is used in Check and the rule for fixpoints. Be-
sides, there are auxiliary functions for fixpoints.

The algorithm is close to the usual type checking algorithm of CIC. The most dif-
ficult part is the case of fixpoints. First, the algorithm type checks the type annotation
T � = ΠΔ◦. Πx : I� u◦. U� and gets, as part of the result, an annotated term T
that corresponds to the final type of the recursive definition, as well as it’s sort, W .
Here, we identify the stage variable α annotating the decreasing inductive argument.
Next, we compute from U and U�, the expected return type, Û , for the body of the
recursive definition using the shift function, which replaces all stage annotations s in
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recursive positions by ŝ; in addition, shift returns the set V � of replaced variables.
Once done, we check that the body e◦ can be decorated into an expression e of type
T̂ = ΠΔ. Πx : Iα̂ u. Û . Finally, we call the auxiliary function RecCheck to guaran-
tee termination. The function RecCheck takes as input:

– the stage variable α which corresponds to the recursive argument, and which must
be mapped to a fresh base stage ı;

– a set of stage variables V � that must be mapped to a stage expression with the same
base stage as α. The set V � is determined by the position types in the tag of the
recursive definition. In particular, we have α ∈ V �;

– a set of stage variables V �= that must be mapped to a stage expression with a base
stage different from ı;

– a set of constraints C′;

and returns an error or a set of constraints subject to some conditions. In [7], we pro-
vide an implementation of RecCheck and a proof of some soundness and completeness
conditions. We use these results in the proof of the proposition below.

Proposition 1. Assume that typable terms and normalizing and that the specification
is functional.

– Check and Infer are sound:

Check(V, Γ, e◦, T ) = (V ′, C, e) ⇒ ∀ρ |= C. ρΓ 	ρe : ρT
Infer(V, Γ, e◦) = (V ′, C, e, T ) ⇒ ∀ρ |= C. ρΓ 	ρe : ρT

– Check and Infer terminate and are complete:
1. If ρΓ 	 e : ρT and FV(Γ, T ) ⊆ V then there exist V ′, C, e′, ρ′ such that
ρ′ |= C and ρ =V ρ

′ and ρ′e′ = e and Check(V, Γ, |e|, T ) = (V ′, C, e′).
2. If ρΓ 	e : T and FV(Γ ) ⊆ V there exist V ′, C, e′, T ′, ρ′ such that ρ′ |= C and
ρ′T ′ � T and ρ′ =V ρ and ρ′e′ = e and Infer(V, Γ, |e|) = (V ′, C, e′, T ′).

Proof. By simultaneous induction on the structure of e◦ for soundness and on the typing
derivation for completeness.

Normalization. Both consistency and decidability of type checking and size inference
rely on normalization.

Conjecture 1. If Γ 	M : A taking as specification that of CIC [22] thenM is strongly
normalizing.

Our earlier work on non-dependent systems demonstrates that it is rather direct to adapt
existing model constructions to type-based termination, and that the resulting model
is in fact easier to justify than for systems that use a syntactic guard predicate to en-
force termination. Thus we strongly believe—but have not checked details—that ex-
isting model constructions for CIC, e.g. [16,24], can be adapted immediately to CIĈ ,
using the construction of [6] for inductive definitions. As discussed in Section 2, it is
likely that the conjecture can also be deduced from [10].
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6 Implementation and Case Studies

We have developed a prototype implementation of the type checker and size infer-
ence algorithm for a fragment of CIĈ , and used it to program quicksort and prove its
correctness.

We have also used CIĈ to define general recursive functions, following the ap-
proach developed by Bove and Capretta [13] for Martin-Löf’s type theory—we have
not carried this work with the prototype because it currently does not support induc-
tive families. In a nutshell, the approach consists in defining an inductive predicate
that characterizes the domain of the function to be defined, and to define the function
by induction on the proof that the argument is in the domain. One difficulty with this
approach is that it requires to prove some inversion lemmas in a very contrived way,
not using Coq standard tactics for inversion [5,8]. In a type-based setting, the problem
disappears, i.e. there is no restriction on the way the lemmas are proved, because the
statements make it clear that the recursive call will be performed on a smaller proof.
The example illustrates that type-based termination makes it easier to define general
recursive definitions, and suggests that CIĈ is a more appropriate setting than CIC to
pursue the program of [5] to support general recursive definitions via tools that generate
termination proofs for functions that are shown terminating with e.g. the size-change
principle [20].

7 Concluding Remarks

We have defined CIĈ , a variant of the Calculus of Inductive Constructions that en-
forces termination of recursive definitions via sized types, and shown that it enjoys the
required meta-theoretical properties to serve as a basis for proof assistants. A prototype
implementation has been developed and applied on medium size case studies.

The immediate objective for further work is to resolve outstanding issues that CIĈ
inherited from F ,̂ and that must be solved prior to integrating type-based termination
in Coq, namely mutually recursive types and global definitions. Our longer term goal
is to integrate type-based termination in Coq. We believe that it shall result in a more
robust and flexible system that is easier for users to understand and for developers to
evolve.
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Department of Computing, Imperial College London, UK
ozank@doc.ic.ac.uk

Abstract. The calculus of structures is a proof theoretical formalism
which generalizes the sequent calculus with the feature of deep infer-
ence: In contrast to the sequent calculus, inference rules can be applied
at any depth inside a formula, bringing shorter proofs than any other
formalisms supporting analytical proofs. However, deep applicability of
the inference rules causes greater nondeterminism than in the sequent
calculus regarding proof search. In this paper, we introduce a new tech-
nique which reduces nondeterminism without breaking proof theoretical
properties and provides a more immediate access to shorter proofs. We
present this technique on system BV, the smallest technically non-trivial
system in the calculus of structures, extending multiplicative linear logic
with the rules mix, nullary mix, and a self-dual non-commutative log-
ical operator. Because our technique exploits a scheme common to all
the systems in the calculus of structures, we argue that it generalizes to
these systems for classical logic, linear logic, and modal logics.

1 Introduction

Developing new representations of logics, which address properties that are cen-
tral to computer science applications, has been one of the challenging goals of
proof theory. In this regard, a proof theoretical formalism must be able to pro-
vide a rich combinatorial analysis of proofs while being able to address properties
such as modularity and locality that are important for applications.

The calculus of structures [6,8] is a proof theoretical formalism, like natural
deduction, the sequent calculus and proof nets, for specifying logical systems
while keeping the above mentioned computational aspects in focus (see, e.g.,
[3,19]). The calculus of structures is a generalization of the sequent calculus.
Structures are expressions intermediate between formulae and sequents which
unify these two latter entities. This way, they provide a greater control over the
mutual dependencies of logical relations. The main feature that distinguishes
this formalism is deep inference: In contrast to the sequent calculus, the calculus
of structures does not rely on the notion of main connective and permits the
application of the inference rules at any depth inside a structure. Derivations
are not trees like in the sequent calculus, but chains of inferences.

The calculus of structures was originally conceived to introduce the logical
system BV which admits a self-dual non-commutative logical operator resem-
bling sequential composition in process algebras: System BV is an extension of
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multiplicative linear logic with the rules mix, nullary mix, and a self-dual non-
commutative logical operator. Bruscoli showed in [4] that this operator captures
precisely the sequential composition of the process algebra CCS. System BV can-
not be designed in any standard sequent calculus, as it was shown by Tiu in [23],
because deep inference is crucial for deriving the provable structures of system
BV. System BV is NP-complete [13].

The calculus of structures also provides systems which bring new insights to
proof theory of other logics: In [2], Brünnler presents systems in the calculus of
structures for classical logic; in [20], Straßburger presents systems for different
fragments of linear logic. In [18], Stewart and Stouppa give systems for a class of
modal logics. Tiu presents, in [22], a local system for intuitionistic logic. All these
systems follow a scheme in which two of the three rules of system BV, namely
atomic interaction and switch rule (i.e., rules ai↓ and s in Figure 2), are common
to all these systems. For instance, these two rules give the multiplicative linear
logic, whereas a system for classical logic is obtained by adding the contraction
and weakening rules to these two rules (see Definition 9). Furthermore, the third
rule in system BV (i.e., rule q↓ in Figure 2), which is responsible for the non-
commutative context management, is also common to the Turing-complete [21]
extension of system BV, presented in [9].

Availability of deep inference does not only provide a richer combinatorial
analysis of the logic being studied, but also provides shorter proofs than in the
sequent calculus [7]: Applicability of the inference rules at any depth inside a
structure makes it possible to start the construction of a proof by manipulating
and annihilating substructures. This provides many more different proofs of a
structure, some of which are shorter than in the sequent calculus. However, deep
inference causes a greater nondeterminism: Because the inference rules can be
applied at many more positions than in the sequent calculus, the breadth of the
search space increases rather quickly.

Reducing nondeterminism in proof search without losing the completeness of
the subject system requires combinatorial techniques which work in harmony
with the proof theoretical formalism. Because the rules of the sequent calculus
act on the main connective and the notion of main connective resolves in the
systems with deep inference, it is not possible to use the techniques of the sequent
calculus, e.g., focusing [1] (see Section 7), in the systems with deep inference.

In this paper, we introduce a new technique in the calculus of structures
that reduces nondeterminism in proof search and makes the shorter proofs more
immediately accessible. For this purpose, we employ system BV that exposes the
core of our problem, and argue that these ideas generalize to other systems in the
calculus of structures. By exploiting an interaction schema on the structures, we
redesign the inference rules by means of restrictions such that the inference rules
act on the structures only in those ways which promote the interactions between
dual atoms and reduce the interaction between atoms which are not duals of
each other. These restrictions on the inference rules reduce the breadth of the
search space drastically while preserving the shorter proofs, that are available
due to deep inference.
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Although this technique is quite intuitive, the completeness argument turned
out to be difficult. In order to prove the completeness of these systems, we exploit
the strong relation between cut elimination and completeness: We resort to a
technique, called splitting, introduced in [6] for proving cut elimination for system
BV. This technique was used also in [20] and [2] for proving cut elimination for
linear logic and classical logic, respectively. Because splitting is closely related
with cut elimination, it also justifies the cleanness of our technique. Because our
technique exploits a scheme which is common to all the systems in the calculus
of structures, we argue that it generalizes to other systems for other logics such
as classical logic and linear logic. As evidence, we demonstrate this technique on
system KSg, a system for classical logic in the calculus of structures.

The present paper extends our previous work in [13], where we have shown
that system BV is NP-complete, and in [10,14], where we have have presented
implementations of system BV. We applied the technique presented in this paper
to these implementations, and observed a performance improvement in various
amounts depending on the structure being proved.

The rest of the paper is organized as follows: In Section 2, we re-collect the
notions and notations of the calculus of structures and system BV. Then in the
sections 3, 4, and 5 we introduce our technique for reducing nondeterminism
at different levels and provide experimental results. In Section 6, we show this
technique on a calculus of structures system for classical logic, i.e., system KSg.
Section 7 concludes the paper. Space restrictions did not allow us to give the
complete proofs of the results. We refer to technical report [12].

2 The Calculus of Structures and System BV

In this section, we collect some notions and definitions of the calculus of struc-
tures and system BV, following [6].

In the language of BV atoms are denoted by a, b, c, . . . Structures are denoted
by R,S, T, . . . and generated by

S ::= ◦ | a | 〈S; . . . ;S︸ ︷︷ ︸
>0

〉 | [ S, . . . , S︸ ︷︷ ︸
>0

] | (S, . . . , S︸ ︷︷ ︸
>0

) | S ,

where ◦, the unit, is not an atom. 〈S; . . . ;S〉 is called a seq structure, [S, . . . , S ] is
called a par structure, and (S, . . . , S) is called a copar structure, S is the negation
of the structure S. A structure R is called a proper par structure if R = [R1, R2 ]
where R1 �= ◦ and R2 �= ◦. Structures are considered equivalent modulo the
relation ≈, which is the smallest congruence relation induced by the equations
shown in Figure 1. A structure context, denoted as in S{ }, is a structure with
a hole that does not appear in the scope of negation. The structure R is a
substructure of S{R} and S{ } is its context. Context braces are omitted if no
ambiguity is possible: For instance S [R, T ] stands for S{[R, T ]}. A structure,
or a structure context, is in normal form when the only negated structures
appearing in it are atoms and no unit ◦ appears in it. The BV structures whose
normal forms do not contain seq structures are called flat.
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Associativity

〈〈R;T 〉; U〉 ≈ 〈R; 〈T ;U〉〉
[ [R, T ], U ] ≈ [R, [T, U ] ]

((R, T ), U) ≈ (R, (T, U))

Context Closure

if R ≈ T then S{R} ≈ S{T}
and R̄ ≈ T̄

Commutativity

[R, T ] ≈ [T, R]

(R, T ) ≈ (T, R)

Units

〈◦; R〉 ≈ 〈R; ◦〉 ≈ 〈R〉
[◦, R] ≈ [R]

(◦, R) ≈ (R)

Negation

◦ ≈ ◦
〈R; T 〉 ≈ 〈R; T 〉
[R, T ] ≈ (R, T )

(R, T ) ≈ [R, T ]

R ≈ R

Fig. 1. Equivalence relations underlying BV

In the calculus of structures, an inference rule is a scheme of the kind
S{T }

ρ
S{R}

where ρ is the name of the rule, S{T } is its premise and S{R} is its conclusion.
Such an inference rules specifies the implication T ⇒ R inside a generic context
S{ }, which is the implication being modeled in the system. An inference rule
is called an axiom if its premise is empty. Rules with empty contexts correspond
to the case of the sequent calculus.

A (formal) system S is a set of inference rules. A derivation Δ in a certain
formal system is a finite chain of instances of inference rules in the system. A
derivation can consist of just one structure. The topmost structure in a deriva-
tion, if present, is called the premise of the derivation, and the bottommost
structure is called its conclusion. A derivation Δ whose premise is T , conclusion

is R, and inference rules are in S will be written as
T

R
SΔ . Similarly,

R

SΠ will

denote a proof Π which is a finite derivation whose topmost inference rule is an
axiom. The length of a derivation (proof) is the number of instances of inference
rules appearing in it.

We say that two systems S and S ′ are strongly equivalent if for every deriva-

tion
T

R

SΔ there exists a derivation
T

R

S ′Δ and vice versa. Two systems S and

S ′ are (weakly) equivalent if for every proof of a structure T in system S , there
exists a proof of T in system S ′ and vice versa.

The system {◦↓, ai↓, s, q↓}, shown in Figure 2, is denoted by BV, and called
basic system V. The rules of the system are called unit (◦↓), atomic interaction
(ai↓), switch (s), and seq (q↓). The system {◦↓, ai↓, s} is called flat system BV,
and denoted by FBV.

Guglielmi proves the following result in [6].

Proposition 1. System BV is a conservative extension of system FBV, that is,
if a flat structure R is provable in BV, then it is also provable in FBV.



276 O. Kahramanoğulları

◦↓ ◦
S{◦}

ai↓
S [a, ā]

S([R, T ], U)
s

S [(R, U), T ]

S〈[R, U ]; [T, V ]〉
q↓

S [〈R; T 〉, 〈U ; V 〉]

Fig. 2. System BV

There is a straightforward correspondence between flat BV structures and for-
mulae of multiplicative linear logic (MLL) which do not contain the units 1 and
⊥. For example [(a, b), c̄, d̄] corresponds to ( (a� b) � c⊥ � d⊥), and vice versa.
Units 1 and ⊥ are mapped into ◦, since 1 ≡ ⊥, when the rules mix and mix0 are
added to MLL (see, e.g., [6]). In fact, system FBV proves those structures, which
are syntactic variations of the formulae that are provable in MLL + mix + mix0.
However, as Tiu showed in [23], system BV cannot be designed in a standard se-
quent calculus, because a notion of deep rewriting is necessary in order to derive
all the provable structures of system BV. For a more detailed discussion on the
proof theory of BV and the precise relation between BV and MLL, the reader is
referred to [6].

3 The Switch Rule

In this section, we redesign the switch rule such that this rule can be applied only
in those ways which promote a specific mutual relation between dual atoms in
the structure to which it is applied.1 Below definition puts this mutual relation
between atoms formally.

Definition 1. Given a structure S, the notation atS indicates the set of all the
atoms appearing in S. We talk about atom occurrences when considering all the
atoms appearing in S as distinct (for example, by indexing them so that two
atoms which are equal get different indices). The notation occS indicates the set
of all the atom occurrences appearing in S. The size of S is the cardinality of the
set occS. Given a structure S in normal form, we define the structural relation
↓⊆ (occS)2 as follows: for every S′{ }, U , and V and for every a in U and
b in V , if S = S′ [U, V ] then a ↓S b. To a structure that is not in normal form
we associate the structural relation obtained from any of its normal forms, since
they yield the same relation ↓S.

In order to see the above definition at work, consider the following structure:
S = [a, b, (b̄, [〈ā; c〉, c̄])]. We have atS = occS = {a, ā, b, b̄, c, c̄}. Then, we have
a ↓ b, a ↓ b̄, a ↓ ā, a ↓ c, a ↓ c̄, b ↓ b̄, b ↓ ā, b ↓ c, b ↓ c̄, ā ↓ c̄, c ↓ c̄ (we omit the
symmetric relations, e.g., b ↓ a).
1 These relations emerge from a graphic representation of structures, called relation

webs, justified by the equivalence relations in Figure 1. However, in this paper we
give a partial exposure to relation webs, referring the reader to [6].
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Intuitively, one can consider the relation ↓S as a notion of interaction: The
atoms which are related by ↓S are interacting atoms, whereas others are non-
interacting. Proofs are constructed by isolating the atoms, by breaking the inter-
action between some atoms, and this way promoting the interaction between dual
atoms, till dual atoms establish a closer interaction in which they can annihilate
each other at an application of the atomic interaction rule. During a bottom-up
proof search episode, while acting on structures, inference rules perform such
an isolation of atoms: In an instance of an inference rule with the conclusion S,
a subset of ↓S holds in the premise. For example, consider the following three
instances of the switch rule with the same structure at the conclusion:

([ā, a, b], b̄)
(i.) s

[(ā, b̄), a, b]

[([ā, b], b̄), a]
(ii.) s

[(ā, b̄), a, b]

[(ā, b̄, a), b]
(iii.) s

[(ā, b̄), a, b]

While going up, from conclusion to premise, in (i.) a ↓ b and b ↓ b̄; in (ii.) b ↓ b̄;
in (iii.) a ↓ ā and a ↓ b̄ cease to hold. However, none of these derivations can
lead to a proof. Following proposition expresses the intuition behind this.

Proposition 2. If a structure R has a proof in BV then, for all the atoms a
that appear in R, there is an atom ā in R such that a ↓R ā.

Often, inference rules can be applied to a structure in many different ways,
however only few of these applications can lead to a proof. For example, to the
structure [(ā, b̄), a, b] switch rule can be applied bottom-up in twelve different
ways, three of them which are given above, but only two of these twelve instances
can lead to a proof. With the below definition, we will redesign the switch rule
such that only these applications will be possible.

Definition 2. Let interaction switch be the rule
S([R,W ], T )

is
S [(R, T ),W ]

,

where atW ∩ atR �= ∅.
Definition 3. Let system BV with interaction switch, or system BVs be the
system {◦↓ , ai↓ , is , q↓}. Let system BV with lazy interaction switch, or system
BVsl be the system resulting from replacing the rule is in BVs with its instance,
called lazy interaction switch, or lis, where the structure W is not a proper par
structure.

The switch rule can be safely replaced with the lazy interaction switch rule in
system BV without losing completeness. In the following, we will collect some
definitions and lemmas which are necessary to prove this result.

Definition 4. Let R, T be BV structures such that R �= ◦ �= T . R and T are
independent iff, for S ∈ {BV,BVs,BVsl},

[R, T ]
S

implies
R

S and
T

S .

Otherwise, they are dependent.
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Proposition 3. For any BV structures R and T , if at R̄ ∩ atT = ∅ then R
and T are independent.

Lemma 1. For any BV structures R, P , and U ,

if
[P,U ]

BVslΠ
then there is a derivation

R

[(R,P ), U ]
BVsl .

Sketch of Proof: If U is not a proper par structure Lemma is proved. Otherwise,
by consequent application of the rule lis bring the partition of the structure U
which is dependent with P into the same par context as P . ��

Proposition 4. In BV (BVs, BVsl), 〈R;T 〉 is provable if and only if R and T
are provable and (R, T ) is provable if and only if R and T are provable.

The following theorem is a specialization of the shallow splitting theorem which
was introduced in [6] for proving cut elimination for system BV. Exploiting the
fact that systems in the calculus of structures follow a scheme, in which the rules
atomic interaction and switch are common to all these systems, this technique
was used also to prove cut elimination for classical logic [2], linear logic [20], and
system NEL [9,21] (Turing-complete extension of BV with the exponentials of
linear logic). As the name suggests, this theorem splits the context of a struc-
ture so that the proof of the structure can be partitioned into smaller pieces
in a systematic way. Below we show that splitting theorem can be specialized
to system BVsl where the switch rule in system BV is replaced with the lazy
interaction switch rule.

Theorem 1. (Shallow Splitting for BVsl) For all structures R, T and P :

1. if [〈R;T 〉, P ] is provable in BVsl then there exists P1, P2 and
〈P1;P2〉

P
BVslΔ such

that [R,P1 ] and [T, P2 ] are provable in BVsl.

2. if [(R, T ), P ] is provable in BVsl then there exists P1, P2 and
[P1, P2 ]

P
BVslΔ such

that [R,P1 ] and [T, P2 ] are provable in BVsl.

Sketch of Proof: Proof by induction, with Lemma 1, similar to the proof of
shallow splitting for system BV in [6]: Single out the bottom-most rule instance
ρ in the given proof, and do case analysis on ρ. ��
Because inference rules can be applied at any depth inside a structure, we need
the following theorem for accessing the deeper structures.

Theorem 2. (Context Reduction for BVsl) For all structures R and for all
contexts S{ } such that S{R} is provable in BVsl, there exists a structure U
such that for all structures X there exist derivations:
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[X,U ]

S{X}
BVsl and

[R,U ]
BVsl

.

Sketch of Proof: Proof by induction, with Proposition 4 and Lemma 1, similar
to the proof of context reduction for system BV in [6]: Do case analysis on the
context S{ }. ��
We can now prove the following two results:

Theorem 3. Systems BV, BVsl, and BVs are equivalent.

Sketch of Proof: Observe that every proof in BVsl is also a proof in BVs and every
proof in BVs is a proof in BV. For the other direction, single out the upper-most
instance of the switch rule in the BV proof which is not an instance of the lazy
interaction switch rule. Apply Theorem 2 to reduce the context of the premise.
Construct a proof in BVsl with Lemma 1 by partitioning the resulting proof by
Theorem 1. Repeat the above procedure inductively until all the instances of the
switch rule that are not instances of lazy interaction switch rule are removed. ��
Let us now consider the rule lis on some examples: In the proof search space
of [(ā, b̄), a, b] there are 12 instances of the switch rule. In system FBV, these
instances result in 358 different derivations. However, only 6 of these derivations
are proofs. Let FBVi denote the system obtained from system FBV by replacing
the switch rule with the rule lis. In system FBVi, we observe that we have only
the following instances, which lead to 6 proofs mentioned above.

[([ā, a], b̄), b]
lis

[(ā, b̄), a, b]

[([b̄, b], ā), a]
lis

[(ā, b̄), a, b]

When we consider deeply nested structures, we observe that the switch rule
can be applied in many more ways due to the deep inference feature. For in-
stance, consider the structure [([ā1, (ā2, b̄2), a2, b2 ], b̄1), a1, b1 ] which is obtained
by nesting the structure [(ā, b̄), a, b] in itself. To this structure switch rule can
be applied in 51 different ways, but only 4 of these instances provide a proof.
These 4 instances are the only possible instances of the rule lis. In particular,
the deeper instances of the rule lis (marked above) provide shorter proofs which
are not possible in the sequent calculus.

We have implemented the systems above in Maude [5] as described in [10,11].
In these implementations, inference rules are expressed as (conditional) term
rewriting rules. For proof search, we use the built-in breadth-first search func-
tion. Some representative examples of our experiments for comparing the per-
formance of systems FBV and FBVi are as follows: (All the experiments below
are performed on an Intel Core Duo 1.83 GHz processor.)

1. [a, b, (ā, c̄), (b̄, c)] 2. [a, b, (ā, b̄, [a, b, (ā, b̄)])]

3. [a, b, (ā, b̄, [c, d, (c̄, d̄)])] 4. [a, b, (ā, b̄, [c, d, (c̄, d̄, [e, f, (ē, f̄)])])]
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Query System# states
explored

finds a proof
in # ms (cpu)

1. FBV 342 60

FBVi 34 10

3. FBV 1671 310

FBVi 140 0

Query System# states
explored

finds a proof
in # ms (cpu)

2. FBV 1041 100

FBVi 264 0

4. FBV (∗)
FBVi 6595 1370

(∗) On this query, search halted by running out of memory after having spent
approximately 3GB memory and 80 minutes (cpu).

4 The Seq Rule

At a first glance, the rules switch and seq appear to be different in nature due
to the different logical operators they work on. However, at a closer inspection
of these rules, one can observe that both of these rules manage the context of
the structures they are applied at: While the switch rule reduces the interaction
in the structures involving a copar structure in a bottom-up application, the seq
rule does the same with the structures involving seq structures. In this section,
exploiting this observation, we will carry the ideas from the previous section to
the seq rule.

Definition 5. Let the system consisting of the rules

S〈[R, T ]; [U, V ]〉
q1↓

S [〈R;U〉, 〈T ;V 〉]
S〈R;T 〉

q2↓
S [R, T ]

S〈[R,W ];T 〉
lq3↓

S [W, 〈R;T 〉]
S〈R; [T,W ]〉

lq4↓
S [W, 〈R;T 〉]

where W is not a proper par structure, and none of the structures R, T , U , V ,
W is the unit ◦, be the lazy seq system V, or QVl.

In the above definition, we partition the seq rule, making its instances with
respect to the unit specific. This way, one can also observe the similarity between
the switch rule and seq rule, in particular the rules lq3↓ and lq4↓. In fact, Retoré
gives similar rules for Pomset Logic in [17], which is conjectured to be equivalent
to BV in [6]. However he does not provide a cut-elimination proof. The following
proposition, that we proved in [11], shows that in any system the seq rule can
be safely replaced with the system QVl.

Proposition 5. System QVl and system {q↓} are strongly equivalent.

Proposition 6. Let S ∈ {BV,BVs,BVsl}. The system resulting from replacing
the rule q↓ in S with system QVl and system BV are equivalent.

Below, we will carry the ideas of the previous section to the seq rule.
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Definition 6. The following rules are called interaction seq rule 1, lazy inter-
action seq rule 3, and lazy interaction seq rule 4, respectively,

S〈[R, T ]; [U, V ]〉
iq1↓

S [〈R;U〉, 〈T ;V 〉]
S〈[R,W ];T 〉

liq3↓
S [W, 〈R;T 〉]

S〈T ; [R,W ]〉
liq4↓

S [W, 〈T ;R〉]

where in iq1↓ we have atR ∩ atT �= ∅ and atU ∩ atV �= ∅; in liq3↓ and in
liq4↓ we have atR ∩ atW �= ∅ and W is not a proper par structure. The system
resulting from replacing the seq rule in system BVsl with the rules iq1↓, q2↓,
liq3↓, and liq4↓ is called interaction system BV, or BVi.

Definition 7. The following rules are called non-interaction seq rule 1, non-
interaction seq rule 3 and non-interaction seq rule 4, respectively,

S〈[R, T ]; [U, V ]〉
niq1↓

S [〈R;U〉, 〈T ;V 〉]
S〈[R,W ];T 〉

niq3↓
S [W, 〈R;T 〉]

S〈T ; [R,W ]〉
niq4↓

S [W, 〈T ;R〉]

where in niq1↓ we have atR ∩ atT = ∅ or atU ∩ atV = ∅; in niq3↓ and in niq4↓
we have atR ∩ atW = ∅.
Remark 1. Every instance of the rule q↓ is an instance of one of the rules iq1↓,
niq1↓, q2↓, liq3↓, niq3↓, liq4↓, niq4↓.
Below, we will see that system BV and BVi are equivalent. However, using the
splitting technique, in the form it was used in the previous section, will not be
possible for proving this argument. In order to see the reason for this consider
the structure [〈[a, b, c]; [d, e]〉, ā, 〈b̄; d̄〉, 〈c̄; ē〉 ] which is provable in BVsl (and also
in system BVi). By applying Theorem 1, we can obtain the derivation

〈[ā, b̄, c̄]; [d̄, ē]〉
q3↓ [ā, 〈[b̄, c̄]; [d̄, ē]〉]
q1↓ [ā, 〈b̄; d̄〉, 〈c̄; ē〉]

such that
[ā, b̄, c̄, a, b, c]

BVslΠ
and

[d̄, ē, d, e]
BVslΠ

.

However, the derivation on the left-hand side above is not possible in system
BVi. For this reason, in the following, we will introduce a generalization of the
splitting Theorem for system BVi.

Theorem 4. (Shallow Splitting for BVi) For all structures R, T , and P : if
the structure [〈L;R〉, U ] or the structure [(L,R), U ] has a proof Π in BVsl,
then there are structures L1, . . . , Lm, P1,1, . . . , Ps,2, R1, . . . , Rn and there exist
a derivation

[L1, . . . , Lm, 〈P1,1;P1,2〉, . . . , 〈Ps,1;Ps,2〉, R1, . . . , Rn ]

U
BVi

and proofs

[L,L1, . . . , Lm, P1,1, . . . , Ps,1 ]
BVi

and
[R,P1,2, . . . , Ps,2, R1, . . . , Rn ]

BVi
.
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Sketch of Proof: Proof by induction: Apply Theorem 1 to the proof Π . This
delivers a derivation Δ and two proofs Π1 and Π2 in BVsl. Take the derivation
Δ and permute down all the instances of niq1↓, niq3↓, and niq4↓ in Δ and apply
the induction hypothesis to the proofs Π1 and Π2. ��

Corollary 1. Systems BV and BVi are equivalent.

Sketch of Proof: Observe that every proof in BVi is also a proof in BV. For the
other direction, first construct proof in BVsl by Theorem 3, and then construct
a proof in BVi by Theorem 4. ��
Let us now consider system BV and BVi with respect to our Maude implementa-
tions. Some representative examples for comparing the performance of systems
BV and BVi are as follows:

1. [〈a; [b, c]〉, 〈[ā, b̄]; c̄〉] 2. [〈([d, d̄], 〈a; b〉); c〉, 〈ā; (〈b̄; c̄〉, [e, ē])〉]
3. [〈(b, c); [d, e]〉, 〈[b̄, c̄]; (d̄, ē)〉] 4 [ā, (a, 〈d; b̄〉), (b, c), 〈d̄; c̄〉]

Query System# states
explored

finds a proof
in # millisec.

1. BV 1263 630

BVi 995 480

3. BV 11191 1740

BVi 3696 560

Query System# states
explored

finds a proof
in # millisec.

2. BV 8069 890

BVi 2138 620

4. BV 123154 5010

BVi 20371 1050

The restrictions that are imposed on the inference rules of system BVi succeed
in eliminating unsuccessful branches in the proof search space of BV structures.
However, the rule q2↓ causes still a huge amount of redundant nondeterminism
in proof search: For instance, consider the BV structure [a, ā, b, b̄] which can
be trivially proved by applying the rule ai↓ twice. To this structure, the rule
q2↓ can be applied in 50 different ways, but removing this rule from system
BVi results in an incomplete system, because some provable BV structures, e.g.,
[〈a; [b, c]〉, 〈[ā, b̄]; c̄〉], are not provable without this rule.

5 Cautious Rules

In a bottom-up application of the rules switch and seq in proof construction, be-
sides promoting interactions between some atoms, the interaction between some
atoms are broken (for instance, consider the example derivations (i.), (ii.), and
(iii.) in Section 3.). However, if the structure being proved consists of pairwise
distinct atoms, breaking the interaction between dual atoms, in a bottom-up
inference step delivers a structure which cannot be proved. The following defini-
tion introduces a further restriction on these inference rules, which exploits this
observation and allows only cautious instances of the inference rules which do
not break the interaction between dual atoms.
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Definition 8. Let pruned switch be the rule ps below where atT ∩atW = ∅, and
let pruned seq be the rule pq↓ below where atT ∩ atU = ∅ and atR ∩ atV = ∅:

S([R,W ], T )
ps
S [(R, T ),W ]

S〈[R, T ]; [U, V ]〉
pq↓

S [〈R;U〉, 〈T ;V 〉]
,

Let pruned system BV, or system BVp be the system {◦↓ , ai↓ , ps , pq↓}.
Proposition 7. Let P be a BV structure that consists of pairwise distinct atoms
and Π be a proof of P in BV (BVs, BVsl, respectively). In Π, all the instances of
the rule s (is, lis, respectively) are instances of the rule ps; and all the instances
of the rule q↓ are instances of the rule pq↓.
Sketch of Proof: It suffices to show that, by Proposition 2, a bottom-up appli-
cation of the inference rules without respecting the above restrictions result in
a structure which is not provable in BV. ��
Proposition 8. Let P be a BV structure that consists of pairwise distinct atoms
and Π be a proof of P in BVi. In Π, all the instances of the rule s are instances
of the rule ps; and all the instances of the rule iq1↓,q2↓, liq3↓, and liq4↓ are
instances of the rule pq↓.
Sketch of Proof: Follows immediately from Remark 1 and Proposition 7. ��

6 Nondeterminism in Classical Logic

Systems in the calculus of structures follow a common scheme where the context
management of the commutative operators is performed by the switch rule.
System KSg for classical logic [2] is no exception to this. In this section, we
will see that, similar to system BV, the switch rule of system KSg can be safely
replaced with the lazy interaction switch rule in order to reduce nondeterminism
in proof search.

Definition 9. The system KSg is the system consisting of the rules

tt↓ ,
tt

S{tt}
ai↓ ,
S [a, ā]

S([R,U ], T )
s ,
S [(R, T ), U ]

S{ff}
w↓ , and
S{R}

S [R,R]
c↓ .

S{R}

The rules of the system KSg are called axiom, atomic interaction, switch,
weakening, and contratction, respectively. KSg structures are defined as FBV
structures with the difference that ff is the unit for the disjunction [ , ] and tt
is the unit for the conjunction ( , ) and we also impose the equalities [tt, tt] ≈ tt
and (ff, ff) ≈ ff. The system KSgi is the system obtained from system KSg by
replacing the rule s with the rule lis.

Theorem 5. A structure R has a proof in KSg if and only if there is a structure

R′ and there is a proof of the form R′
{ s,ai↓}

R
{w↓,c↓}

.
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Sketch of Proof: If R is provable in KSg, then we can construct the conjunctive
normal form of R while going up in the derivation by first applying only the
rule c↓ and then only the rule s. Then a proof of conjunctive normal form of R
can be constructed by applying first only the rule w↓ and then the rule ai↓. By
permuting all the instances of w↓ under the instances of s, we get the desired
proof. ��
The reader might realize that there is a significant similarity between the systems
{ai↓, lis} and the system FBVi (FBV) (the system for multiplicative linear logic
extended by the rules mix and nullary mix). Indeed, these two systems are the
same up to the inference rules. However, the treatment of the units in these
systems is quite different: In system FBV there is a single unit, which is shared
by all the connectives. On the other hand, in system {ai↓, lis}, there are two
different units, tt and ff, which are units for different operators. We can now
state the main result of this section:

Theorem 6. System KSg and KSgi are equivalent.

Sketch of Proof: Observe that every proof in KSgi is a proof in system KSg. For
the other direction, replace the proof Π in {s, ai↓}, delivered from Theorem 5
with a proof Π ′ in {lis, ai↓} similar to the proof of Theorem 3. ��

7 Discussion

We presented a novel technique for reducing nondeterminism in proof search
by restricting the application of the inference rules. This resulted in a class of
equivalent systems to system BV where nondeterminism is reduced at different
levels. We have also seen that this technique generalizes to system KSg for clas-
sical logic. In these systems, inference rules can be applied only in certain ways
that promote the interaction, in the sense of a specific mutual relation, between
dual atoms. Because of the splitting argument that we use in our completeness
proof, which is strongly related to cut elimination, our rules remain clean from
a proof theoretic point of view. Because proofs are constructed by annihilating
dual atoms, these restrictions reduce the breadth of the search space drastically
and preserve the shorter proofs that are available due to deep inference.

We have implemented the proof search for the systems BV and BVi in the lines
of [10]. These implementations makes use of the simple high level language, the
term rewriting features, and the built-in breadth-first function of the language
Maude [5]. In [14], we have presented another implementation of system BV in
Java, where different search strategies can be easily employed. This implementa-
tion uses the pattern matching preprocessor TOM [16] that makes it possible to
integrate term rewriting features into Java. The Maude modules2 together with
representative proof search queries, the source code of the Java implementation3,
and a proof search applet4 are available online.
2 http://www.iccl.tu-dresden.de/∼ozan/maude cos.html
3 http://tom.loria.fr
4 http://tom.loria.fr/examples/structures/BV.html
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In our approach, in order to prove the completeness of the restricted systems,
we use the splitting technique which was introduced and used by Guglielmi
in [6] for proving cut elimination in system BV. In [20], Straßburger used the
splitting technique to prove cut elimination in the calculus of structures systems
for different fragments of linear logic. All the systems in the calculus of structures
follow a scheme where the context management is performed by the switch rule.
Because splitting technique is common to these other systems, our technique
should generalize to other systems for linear logic. In Section 6, we have seen
that for the case of classical logic, switch rule can be replaced with the lazy
interaction switch rule in system KSg. In the light of this result, we conjecture
that this technique generalizes to the calculus of structures systems for a class
of modal logics [18] that extend system KSg with the modal rules.

Although our technique attacks the same problem as Miller’s Forum [15] where
Andreoli’s focusing technique [1] is used for reducing nondeterminism in linear
logic proofs, our approach is different, in essence, than uniform proofs: Focus-
ing technique is based on permuting different phases of a proof by distinguishing
between asynchronous (deterministic) and synchronous (nondeterministic) parts
of a proof. This approach depends on the fact that in the sequent calculus asyn-
chronous connectives, e.g., par, and synchronous connectives, e.g., copar, can be
treated in isolation. However, in the calculus of structures connectives are never
in isolation: Asynchronous connectives are always matched to a synchronous
connective at each inference step. Furthermore, asynchronous parts of a proof
normally spread the object level, given by the logical operators, onto the meta-
level. For instance, par operators are mapped to commas. In the systems with
deep inference, because what is meta-level in the sequent calculus is brought to
the object level, thus there is no meta-level, this is a superfluous operation.
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Ciudad Politécnica de la Innovación

Campus de Vera, edificio 8G
E-46071 Valencia, Spain

hendrik@iti.es
2 Free University of Bozen/Bolzano

Computer Science Department
Piazza Domenicani, 3
I-39100 Bolzano, Italy

martinenghi@inf.unibz.it

Abstract. We demonstrate that many, though not all integrity checking
methods are able to tolerate inconsistency, without having been aware of
it. We show that it is possible to use them to beneficial effect and without
further ado, not only for preserving integrity in consistent databases, but
also in databases that violate their constraints. This apparently relaxed
attitude toward integrity and inconsistency stands in contrast to ap-
proaches that are much more cautious wrt the prevention, identification,
removal, repair and tolerance of inconsistent data that violate integrity.
We assess several well-known methods in terms of inconsistency tolerance
and give examples and counter-examples thereof.

1 Introduction

Integrity constraints are conditions meant to always be satisfied during the life-
time of a database. They are imposed for ensuring that no data may be entered
or deleted that would render the information semantically inconsistent. For in-
stance, in a civil registry database containing information about citizens includ-
ing their marital status, entering the tuple married(john, mary) will violate a
constraint forbidding bigamy if the tuple married(john, susan) is already stored.
Also, in the presence of this tuple, a constraint requiring an entry for each spouse
of each married couple in the person table of the database will signal violation
upon an attempt to delete the entry about susan.

Semantic inconsistency in databases is supposed to be prevented by methods
for checking integrity constraints for satisfaction or violation. Some prominent
methods in the literature are [22,20,25,14,7]. Despite the precautions taken by
running integrity checking methods, data that violate integrity may sneak into
the database in various ways, and usually do so in practice. For instance, the
tuples married(john, mary) and married(john, emily) may both be present in
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the database because the second couple divorced in a foreign country which was
therefore not acknowledged at home and the more recent marriage has been
entered when the integrity checking module was switched off due to a migration
of the database to a new machine, or the second tuple was deleted but reappeared
after a faulty backup reload.

Several cautionary ways of dealing with inconsistent data have been discussed
in the literature, e.g., [4,9]. These may involve actions of identifying, undoing
or repairing inconsistency. However, experience shows that, in general, there is
hardly a feasible way to guarantee completely consistency all the time, and even
less so in very large databases. Thus, cautious approaches to live with violated
integrity constraints have been developed for database query answering. These
approaches are able to compute answers to queries in inconsistent databases that
are correct in all possible repaired and consistent states that would differ from
the given one in some minimal way (in [2] and several works to follow).

As opposed to the cautious measures taken by various approaches to prevent,
rectify or tolerate integrity violation, as mentioned above, we propose a much
more relaxed manner to tolerate manifest database inconsistencies while pre-
serving consistent cases of integrity. Surprisingly, it turns out that conventional
integrity checking methods can be used for that without further ado.

An unquestioned assumption made by all methods for integrity checking in
the literature so far has been that constraints are satisfied before each update.
This has been deemed necessary for improving the efficiency of determining in-
tegrity satisfaction or violation after the update. For several methods, we are
going to show what happens, when this assumption is abandoned. Intuitively
speaking, we define an integrity checking method to be inconsistency-tolerant
if it can guarantee that each instance of any satisfied constraint will remain
satisfied after each update attempt, including the rejection of updates that
would cause new integrity violations. Importantly, it also includes that (pos-
sibly unnoticed) instances of violated constraints may remain so after updates.
We demonstrate the usefulness of our definitions by showing that several well-
known approaches to database integrity can indeed afford to abandon the consis-
tency assumption without losing their efficiency, while their applicability is vastly
increased.

The main contributions of this paper are as follows. (i) We capture with a
very general definition the essence of integrity checking methods and soundness
and completeness thereof. (ii) We introduce the notion of inconsistency tolerance
with respect to integrity checking. (iii) We prove inconsistency (in)tolerance of
several well-known integrity checking methods.

After some preliminaries including an abstract definition of the soundness
and completeness of integrity checking in section 2, we define and discuss in-
consistency tolerance in section 3, where we also specify, independently of any
method, a general sufficient condition for inconsistency tolerance. We then verify
this property for several methods in section 4. More related work and concluding
remarks are addressed in section 5, with an outlook on a broader notion of in-
consistency tolerance. Longer proofs have been omitted due to space constraints.
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2 A General View of Integrity Checking

Throughout we assume the usual terminological and notational conventions for
relational and deductive databases, as known from the standard literature (e.g.,
[1]). In particular, we refer to the notion of clause, i.e., a formula A← L1∧· · ·∧Ln

where A is an atom and L1, . . . , Ln are literals, with the usual understanding
of variables being implicitly universally quantified; A is called the head and
L1 ∧ · · · ∧Ln the body of the clause. If the head is missing (understood as false)
the clause is called a denial. A rule is a clause whose head is intensional, and a
fact is a clause whose head is extensional and ground and whose body is empty
(understood as true). A database is a finite set of facts and rules.

With regard to approaches to database integrity, we refer to [22,8,20,25,7]
and others as surveyed in [21]. However, the definitions we provide in the fol-
lowing do not rely on any concrete approach. We only point out that integrity
constraints are usually conceived as closed well-formed formulae of first-order
predicate calculus in the underlying language of the database. Two standard
representations of integrity constraints are used in this paper: prenex normal
form (where all quantifiers are outermost and all negation symbols are inner-
most) and denial form. An integrity theory is a finite set of integrity constraints.
We write D(IC) = sat to indicate that an integrity theory IC is satisfied in a
database D, and D(IC) = vio when it is violated.

Different methods employ different notions (commonly the stable models [1]
or other semantic notions) to define integrity satisfaction and violation, and use
different criteria to determine these properties. In fact, each method M can be
identified with its criteria, which in turn can be formalized as a function that
takes as input a database (i.e., a set of database facts and rules), a finite set
of integrity constraints, and an update (i.e., a bipartite finite set of database
clauses to be deleted and inserted, resp.), and outputs upon termination one of
the values {sat , vio}. For a database D and an update U , let DU denote the
updated database (D and DU are also usually referred to as the old and the new
state, respectively). Thus, soundness and completeness of an integrity checking
method M can be stated as follows.

Definition 1 (Integrity checking)
An integrity checking method M is sound iff, for any database D, any integrity
theory IC such that D(IC) = sat and any update U , the following holds.

If M(D, IC,U) = sat then DU (IC) = sat. (1)

An integrity checking method M is complete iff, for any database D, any in-
tegrity theory IC such that D(IC) = sat and any update U , the following holds.

If DU (IC) = sat then M(D, IC,U) = sat. (2)

It is easy to see that this general definition can be applied to virtually any given
concrete method of integrity checking known in the literature, as will also be
discussed in the next section.
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For several significant classes of logic databases including relational ones, com-
pleteness has been shown to hold for the methods in [22,20,25,7] and others in
the respective original papers. In particular, the methods discussed here also
assume each integrity constraint to be range-restricted, i.e., any variable in an
integrity constraint must occur at least in a positive literal in the body. Other
methods (e.g., [18,15]) are only shown to be sound and thus provide sufficient
conditions that guarantee integrity of the updated database.

We note here that some methods conform to a so-called compiled approach,
i.e., they do not take into account the input database D, but rather provide an
integrity checking condition parametric wrt the database, that is calculated on
the integrity theory and the update only. Such condition, referred to as simpli-
fication (in [22]), is then checked against a specific database.

Example 1. Let b(ISBN,TITLE) be a relation storing information about books
andW the integrity constraint ← b(X,Y )∧b(X,Z)∧Y �= Z stating that no two
books with the same ISBN may have different titles. Suppose U is the addition
of tuple b(i, t). The method of [22] (and virtually all methods to follow based on
a compiled approach) provides the simplified formula W ′ =← b(i, Y ) ∧ Y �= t to
be tested on the database whose integrity is to be checked. For any database D,
the updated database DU is guaranteed to have integrity iff DU (W ′) = sat .

The advantages of such simplifications have amply been appraised in the litera-
ture and mainly consist in major gains in efficiency (compare the complexity of
W with that of W ′ in example 1) and in the fact that they can be generated so
to speak statically (without knowing the actual database, but only its integrity
theory and the update), thus without burdening run time database performance
with potentially heavy optimizations. One may object that the update is known
only at run time, but, as recognized in later approaches (e.g., [15,12,7]), simpli-
fications can be generated for parameterized patterns of updates conceived by
the database designer; when an actual update is executed, the parameters in the
simplification are replaced by the actual values and tested against the database.
For example, i and t in example 1 may well be considered as placeholders for
actual ISBNs and titles, so when book 4 with ISBN 5 is inserted, these values
should replace t and i, respectively, in W ′ and the resulting formula be checked
against the database.

Among the methods based on a compiled approach, it is worthwhile to dis-
tinguish between simplifications to be checked in the new state (henceforth
called post-tests and considered, e.g., in [22,20,12,23,19]) and simplifications to
be checked in the old state (studied, e.g., in [24,7] and henceforth called pre-
tests). The advantage of pre-tests is that updates are executed only if known to
lead to a consistent database, whereas with a post-test, one needs to execute the
update anyway, and then roll it back if the reached database is inconsistent.

Definition 2. Let IC, IC′ be integrity theories and U an update. Consider:

D(IC′) = sat iff DU (IC) = sat (3)

DU (IC′) = sat iff DU (IC) = sat (4)
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IC′ is a pre-test of IC for U if (3) holds for every database D s.t. D(IC) = sat.
IC′ is a post-test of IC for U if (4) holds for every database D s.t. D(IC) = sat.
IC′ is a plain pre-test (resp., plain post-test) if (3) (resp. (4)) holds for every
database D.

The notion of plain test intuitively indicates a simplification that does not exploit
satisfaction of IC in the old state. Indeed, the assumption of integrity in the old
state, common to virtually all integrity checking methods, is a key factor for the
generation of simplifications that are indeed easier than the original integrity
constraints. Simplifications returned by actual methods are therefore expected
to be at least as “good” as plain tests, which can thus be used for benchmarking
purposes. Next, we show how the integrity assumption may be relaxed.

3 Inconsistency Tolerance of Integrity Checking

In this section we formally define the notion of inconsistency tolerance. As in-
dicated above, the intuition of inconsistency tolerance of an approach M to
integrity checking is that we want to tolerate (or, rather, be able to live with)
cases of violated constraints as long as we can ensure that no new cases of
integrity violation are introduced. In this way, the cases of integrity that are
satisfied before the update will remain satisfied afterwards. To clarify what we
mean by “case”, we employ the notion of substitution, i.e., a mapping from vari-
ables to terms (for compactness, vector notation is used to indicate sequences
of terms). A substitution σ may also be written as { �X/�t} to indicate that the
variables in �X are orderly mapped to the terms in �t; the notation Rng(σ) refers
to the set of variables in �X, Img(σ) to the set of variables in �t. Whenever E is a
term (resp. formula) and σ is a substitution { �X/�t}, the notation Eσ denotes the
term (resp. formula) that arises from E when each free occurrence of a variable
in �X is simultaneously replaced by the corresponding term in �t; Eσ is called an
instance of E. A formula or term which contains no variables is called ground. A
substitution { �X/�Y } is called a renaming iff �Y is a permutation of �X. Formulas
F , G are variants of one another if F = Gρ for some renaming ρ.

Furthermore, a variable x occurring in an integrity constraint W is a global
variable in W if it is ∀-quantified but not dominated by any ∃ quantifier (i.e., ∃
does not occur left of the quantifier of x in W ) in the prenex normal form of W ;
Glb(W ) denotes the set of global variables in W .

Definition 3 (Case). Let W be an integrity constraint. Then Wσ is called a
case ofW if σ is a substitution s. t. Rng(σ)⊆Glb(W ) and Img(σ)∩Glb(W ) = ∅.
Clearly, each variable in a constraint W represented in denial form is a global
variable ofW . Note that cases of an integrity constraint need not be ground, and
that each constraintW as well as each variant ofW is a case ofW . Inconsistency
tolerance of an integrity checking method M can be defined as follows.

Definition 4 (Inconsistency tolerance). An integrity checking method M is
inconsistency-tolerant if, for any database D, any update U , any integrity theory
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IC, any finite set IC′ of cases of constraints in IC such that D(IC′) = sat, the
following holds.

If M(D, IC,U) = sat then DU (IC′) = sat. (5)

Note that, even though there may well be an infinity of cases of constraints in
IC, the finiteness requirement for IC′ entails no loss of generality: (5) guarantees
satisfaction of any number of cases, if M returns sat . Note that (5) is a “sound-
ness” condition wrt. inconsistency tolerance. Its dual would define a notion of
completeness wrt. inconsistency tolerance, which, however, is hopelessly com-
plied with by any method, since a method returning sat for an empty integrity
theory (which it should, as an empty theory is always satisfied), should then also
return sat for any integrity theory, the empty theory being just an empty set of
cases. We therefore only concentrate on soundness wrt. inconsistency tolerance.

Clearly, for checking integrity with an inconsistency-tolerant method M, (5)
suggests to compute the very same function as in the traditional case, where
satisfaction of all of IC in D is required. Hence, with this relaxation, no ef-
ficiency is lost, whereas the gains are immense: with an inconsistency-tolerant
method, it is possible to continue database operations even in the presence of
(obvious or hidden, known or unknown) violations of integrity (which is rather
the rule than the exception in practice), while maintaining the integrity of all
cases which comply with the constraints. Whenever M is employed, no new
cases of integrity violation will be introduced, while existing “bad” cases may
disappear (by intention or even accidentally) by executing given updates which
have passed the integrity test of M. With the strict requirement of integrity
satisfaction in the old state, not the least bit of integrity violation was toler-
able; hence, the results of virtually all approaches to database integrity would
remain nearly useless in practice, unless they can be shown to be inconsistency-
tolerant. Fortunately, most known approaches to database integrity are indeed
inconsistency-tolerant.

Example 2. [1 continued] Suppose the facts b(1, 2) and b(1, 3) are in D. Clearly,
D(W ) = vio. However, if the fact b(4, 5) is added to D, this is not going to
introduce new violations as long as the test ← b(4, Y ) ∧ Y �= 5 obtained in
example 1 succeeds. In other words, the method that returned the test tolerates
inconsistency in D and can be used to guarantee that all the cases of W that
were satisfied in D will still be satisfied in the new state.

It is easily verified that a method based on a compiled approach always returning
a plain test is inconsistency-tolerant. To this end, we overload our terminology
by applying the notion of inconsistency tolerance to (pre- or post-) tests.

Definition 5. A pre-test (resp., post-test) IC′ of an integrity theory IC for an
update U is inconsistency-tolerant whenever, for any case W of a constraint in
IC, DU (W ) = sat if D(IC′) = sat (resp., DU (IC′) = sat) for every database D
s.t. D(W ) = sat.

Theorem 1. Let IC be an integrity theory and U an update. Then, any plain
(pre- or post-) test of IC for U is inconsistency-tolerant.
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Proof. Assume that IC′ is a plain pre-test of IC for U . By definition of plain pre-
test, we have DU (IC) = sat iff D(IC′) = sat for every D. Since W is a case of
a constraint in IC and, hence, entailed by IC, then DU (W ) = sat if DU (IC) =
sat . By transitivity, we have DU (W ) = sat if D(IC′) = sat for every D and,
hence, a fortiori, for every D consistent with W . The proof is analogous if IC′

is a plain post-test of IC for U . ��

Clearly, a method M that, for any input D, IC, and U , always calculates a plain
test of IC for U and then evaluates it in D is inconsistency-tolerant.

3.1 A Sufficient Condition for Proving Inconsistency Tolerance

For any given method M, it is easy to see that its inconsistency tolerance as
expressed by (5) directly follows from soundness of integrity checking if condition
(6) below is satisfied for each database D, each integrity theory IC, each finite
set IC′ of cases of constraints in IC s. t. D(IC′) = sat , and each update U :

If M(D, IC,U) = sat then M(D, IC′, U) = sat (6)

i.e., if satisfaction of M for an integrity theory entails satisfaction of M for any
set of cases thereof. Hence, we immediately have the following result.

Theorem 2. Let M be a sound method for integrity checking. Then, M is
inconsistency-tolerant if (6) holds.

Proof. For a database D, an update U and a finite set IC′ of cases of constraints
in IC such that IC′ is satisfied in D, a special case of (1) obviously is

If M(D, IC′, U) = sat then DU (IC′) = sat (7)

By transitivity between (6), which is assumed to hold, and (7) we obtain (5). ��

Condition (6) is verified for the approaches in [22,20] in section 4. Such methods
generate simplified forms of constraints, such that, roughly speaking, the truth
value of the simplified form of any case of a constraintW is implied by the truth
value of the simplified form of W itself, from which (6) follows. The condition
is also verified for methods that are not based on a compiled approach, e.g.,
[25]. However, it would be wrong to think that inconsistency tolerance came for
free with any sound approach to integrity whatsoever, and section 4 also shows
examples of methods that are not inconsistency-tolerant.

4 Inconsistency Tolerance of Known Methods

4.1 The Method of Nicolas

We show here that the well-known simplification method for integrity checking
in [22], henceforth denoted MN , is inconsistency-tolerant. We do so by a di-
rect generalization of the “if” half of the equivalence statement of its central
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Theorem 1. All preparatory results in [22] straightforwardly hold also in our
framework, once we assume that each integrity constraint is range-restricted
and a sufficiently large underlying language which remains fixed across updates
is used.

For a database D, an integrity constraint W in prenex conjunctive normal
form and a tuple r to be inserted into some relational table R, Nicolas’ simplifi-
cation method automatically generates a simplification Γ+

r,W = Wγ1∧. . .∧Wγm,
m ≥ 0, where the γi are unifiers of r and m different occurrences of negated
atoms in W that unify with r. The simplification is denoted by Γ+

R in [22]; for
convenience, we make the updated tuple r and the constraint W explicit. (Sym-
metrically, for a tuple s to be deleted, a simplification consisting of conjuncts
obtained by instantiating W with unifiers of s and non-negated occurrences of
matches of s is generated; for simplicity, we only deal with the insertion theorem
here; the result about deletions and its proof are completely symmetrical.)

The simplification theorem in [22] states that, ifW is known to hold inD, then
W holds in the updated state DU iff Γ+

r,W holds in DU . We now state formally
that checking the simplification of W obtained from the update is sufficient for
verifying that those cases ofW that were satisfied in the old state remain satisfied
in the new, updated state, independently of any violations of other cases of W
and other constraints.

Theorem 3. Let D be a database, W an integrity constraint in prenex normal
form, W ′ its matrix, r a tuple to be inserted, and Γ+

r,W the simplification of W
for r as generated by MN . For a substitution ζ of some of variables in Glb(W ),
let W ∗ = ∀(W ′ζ) be a case of W such that D(W ∗) = sat. Then, DU (W ∗) = sat
if DU (Γ+

r,W ) = sat.

Proof. According to condition (6), it suffices to show, under the premise that
DU (W ∗) = sat, the following.

If DU (Γ+
r,W ) = sat then DU (Γ+

r,W∗) = sat

where Γ+
r,W∗ is the simplification of W ∗ for the insertion of r as generated by

MN .
For each negated literal ∼riζ in W ∗ such that riζ unifies with r, we have a

fortiori that also ri unifies with r, since riζ is more specific than ri. In par-
ticular, we have riζβi = riγi = r, where βi and γi are the substitutions used
to compute Γ+

r,W∗ and Γ+
r,W , respectively. So, we have that, for each conjunct

W ∗βi in Γ+
r,W∗ , there is an identical conjunct Wγi in Γ+

r,W . Since there may
be some ri that unifies with r whereas the corresponding riζ does not, Γ+

r,W

may have some extra conjuncts that have no counterpart in Γ+
r,Wζ . Hence Γ+

r,W

entails Γ+
r,W∗ .

��

4.2 The Method of Lloyd, Sonenberg and Topor

LetW =∀W ′ be an integrity constraint in prenex normal form andW ∗ =∀(W ′ζ)
a case of W . In this section, we show that the integrity checking method by
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Lloyd, Sonenberg and Topor [20], here denoted MLST , is inconsistency-tolerant.
We do so by following the structure of corresponding statements of results and
proofs in [20], which actually generalize the basic result in [22] and its proof step
by step. In particular, we assume that sets posD,D′ and negD,D′ for capturing
the difference between two databases D and D′ such that D ⊆ D′ be defined
precisely as in [20]. The two sets consist of atoms that either are the head
of some clause in U = D′ \ D or the head of a database clause in D that
is possibly affected by reasoning forward from clauses in U . It is easy to see
by their original definition that these sets capture a superset of facts that are
actually inserted (pos(D,D′)), i.e., provable after the update but not before, or
deleted (neg(D,D′)), i.e., provable before but not after the update. Note that,
due to negative literals in the body of clauses that are affeced by an update U ,
explicit insertions in U may lead to implicit but provable deletions, and explicit
deletions in U may lead to implicit but provable insertions.

Let D be a stratified database and U an update which preserves stratification
and is partitioned into a set of deletions U1 and a set of insertions U2 such that
executing the deletions first leads to an intermediate state D” =DU1 . Applying
U2 toD” then leads to the updated stateDU =(D”)U2 . ForDU , we also writeD′

as in [20]. It is shown in [20] that the sets pos(D”, D′), neg(D”, D′), pos(D”, D),
neg(D”, D) capture a superset of facts that are actually inserted (pos(D”, D′)
and neg(D”, D)) or deleted (neg(D”, D′) and pos(D”, D)) by U . Recall that
the pos and neg sets are defined only for pairs (D1, D2) of databases such that
D1 ⊆ D2, but U may contain any finite amount of clauses to be inserted in
or deleted from D. This is why facts actually inserted by the deletions leading
from D to D” are captured in neg(D”, D) as if they were actually deleted by an
inverse update leading from D” to D; and conversely, facts actually deleted by
the deletions from D to D” are captured in pos(D”, D) as it they were actually
inserted by an inverse update from D” to D.

Thus, the following rules for identifying relevant constraints that are po-
tentially violated by an update, as established in [22] for relational databases
and generalized to deductive databases in [8], apply as follows. Only those
atoms in pos(D”, D′)∪neg(D”, D) that unify with the atom of a negative lit-
eral in W by some mgu φ capture a possibly inserted fact that may violate
integrity, which is then checked by evaluating Wφ. And only those atoms in
neg(D”, D′)∪ pos(D”, D) that unify with the atom of a positive literal in W by
some mgu φ′ capture a possibly deleted fact that may violate integrity, which is
then checked by evaluating Wφ′. Let Φ(W ) be the set of all such substitutions
φ and φ′. In [20], Φ(W ) is obtained as the union of two sets Θ and Ψ of substi-
tutions, which both depend on W . However, this and other details in the proof
of 4 in [20], are not relevant in the proof of theorem 5 below.

We now can re-state the simplification theorem in [20] as follows. Part (a)
expresses the soundness of the method MLST . Part (b) says that it can be com-
puted with sldnf. Thereafter, we state that MLST is inconsistency-tolerant.

Theorem 4 ([20] Lloyd et al.’s simplification theorem)
Suppose D(W ) = sat. Then we have the following:
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(a) DU (W ) = sat if DU (∀(W ′φ)) = sat for all φ in Φ(W ).
(b) If DU ∪ {← ∀(W ′φ)} has an sldnf refutation for all φ in Φ(W ), then

DU (W ) = sat.

Theorem 5 (Inconsistency tolerance of Lloyd et al.’s simplification)
Suppose D(W ∗) = sat. Then the following holds.
(a) DU (W ∗) = sat if DU (∀(W ′φ)) = sat for all φ in Φ(W,D,U).
(b) If DU ∪ {← ∀(W ′φ)} has an sldnf refutation for all φ in Φ(W ), then

DU (W ∗) = sat.

We finally remark that inconsistency-tolerant versions of the two corollaries of
Theorem 4 in [20] for single clause insertions or deletions can be obtained as
straightforwardly as the original results.

4.3 The Method of Sadri and Kowalski

In this subsection, we are going to verify condition (6) for the integrity checking
method in [25], henceforth referred to as MSK .

We first note that none of the proofs of the theorems and corollaries in [25]
effectively makes use of the assumption that integrity is satisfied in the old state,
except the completeness results following from theorems numbered 4 and 5 in
[25]. This already provides a certain form of tolerance of MSK with regard to
integrity violation, in the following sense: whenever MSK(D, IC,U) = vio, then
the correctly indicated violation of integrity is independent of the integrity sta-
tus before the update. However, rather than integrity violation, we are after
inconsistency tolerance wrt. integrity satisfaction, as expressed in (5). The in-
dependence of detecting integrity violation via MSK from the integrity status
before the update is trivial, and was addressed above only to be precise about
what we are dealing with. The main result of this subsection is the following.

Theorem 6. The integrity checking method MSK is inconsistency-tolerant.

The function MSK(D, IC,U) determines integrity violation and satisfaction by
the existence or, respectively, absence of a refutation in the search space of
the theorem-prover defined in [25] with an element from U as top clause. We
illustrate its inconsistency tolerance by an example adapted from [17].

Example 3. Consider a databaseD consisting of clauses C1–C5 shown in figure 1
for unary relations r (regular residence), c (citizen), d (deported) and binary rela-
tion w (works for) and the integrity constraintW , expressing that it is impossible
to both have a regular residence status and be registered as a deported person
at the same time. The given update U inserts a new rule asserting that people
working for a registered citizen also have regular residence status.

Clearly, W is not satisfied in D, since r(jo) is derivable via C1 and C3, and
d(jo) is a fact (C4). However, W ′ =← r(tom) ∧ d(tom) is a case of W that is
satisfied in D since d(tom) does not hold in D.

If W were satisfied in D, the approach of [25] would traverse the search space
given by the tree shown in figure 1 (selected literals are underlined), with U
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C1 : r(X) ← c(X)
C2 : c(tom)
C3 : c(jo)
C4 : d(jo)
C5 : w(al, tom)
W : ← r(X) ∧ d(X)
U : r(X) ← c(Y ) ∧ w(X, Y )

r(X) ← c(Y ) ∧ w(X, Y )

C2

r(X) ← w(X, tom) r(X) ← w(X, jo)

C3

fail

C5

W

r(al)

← d(al)

fail

��������

Fig. 1. Clauses and derivation tree of example 3

as top clause. Since this tree is finitely failed, we can conclude that U will not
introduce new cases of inconsistency: all cases of integrity constraints that were
satisfied in D remain satisfied in DU . In particular, W ′ is also satisfied in DU .

4.4 The Method of Gupta et al.

As we anticipated, not all methods comply with the requirements of definition 5.
The well-known method by Gupta et al. [14], henceforth referred to as MGSUW ,
is indeed not inconsistency-tolerant. The integrity constraints considered by their
method are of the form

← L ∧R1 ∧ . . . ∧Rn ∧ C1 ∧ . . . ∧ Ck (8)

in which L is a literal referring to a local (and thus accessible) predicate, the
Ri’s are literals referring to remote predicates that cannot be accessed to check
the integrity status of the database, while the Cj ’s are arithmetic comparisons
such that the variables occurring in them also occur in L or one of the Ri’s1; an
update, for MGSUW , is an insertion of a tuple in L’s relation.

Their main result (theorem 5.2 in [14]) is based on the notion of reduction of
a constraint W of the form (8): the reduction of W by tuple t inserted in L’s lo-
cal predicate, written RED(t, L,W ), is obtained by substituting the components
of t for the corresponding variables in L, and then eliminating L. Then to check
whetherW is satisfied after the insertion of t, and assumingW was satisfied before
the insertion, it suffices to check whether RED(t, L,W ) ⊆ ∪s in LRED(s, L,W ),
where ⊆ denotes query containment.

For example,W =← l(X,Y )∧r(Z)∧X ≤ Z ≤ Y indicates that no Z in r may
occur in an interval whose ends are specified by l. Suppose D = {l(3, 6), l(5, 10)}
and U is the insertion of l(4, 8); then one concludes that DU (W ) = sat , since

1 We omit other restrictions, not relevant for the present discussion, included in [14]
for technical reasons.
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r(Z) ∧ 4 ≤ Z ≤ 8 ⊆ (r(Z) ∧ 3 ≤ Z ≤ 6) ∪ (r(Z) ∧ 5 ≤ Z ≤ 10),

which holds basically because [4, 8] ⊆ [3, 10].
To show that here we do not have inconsistency tolerance, consider a case

W ′ =← l(4, 8) ∧ r(Z) ∧ 4 ≤ Z ≤ 8 of W , a database D = {l(3, 6), l(5, 10), r(7)}
and the same update U as before. Clearly,W is violated inD whereasW ′ is satis-
fied. Again, the method guarantees that U cannot violate integrity provided that
D has integrity (for the same containment as before), i.e., MGSUW (D,W,U) =
sat . However, satisfaction of W ′ is not preserved in DU , therefore MGSUW is
not inconsistency-tolerant.

4.5 The Method of Christiansen and Martinenghi

The method of [6,7] is based on the generation of pre-tests. Given an integrity
theory IC and an update U , it consists of the following two steps:

– first, a specific plain pre-test of IC for U is obtained, denoted AfterU (IC),
as described in definition 6 below;

– second, AfterU (IC) is reduced in size (”optimized”) by removing from it all
denials and literals that can be proved to be redundant in it by assuming that
IC holds. The result is denoted OptimizeIC(AfterU (IC)) and the Optimize
transformation is described in definition 7.

The After operator takes as input an integrity theory and an update and is
proved in [7] to return a plain pre-test thereof.

Definition 6. Let IC be an integrity theory2 and U an update. The notation
AfterU (IC) refers to a copy of IC in which all atoms of the form p(�t) have been
simultaneously replaced by (p(�t) ∧ �t �= �b1 ∧ · · · ∧ �t �= �bm) ∨ �t .= �a1 ∨ · · · ∨ �t .= �an,
where p(�a1), . . . , p(�an) are all facts that U adds to p and p(�b1), . . . , p(�bm) are all
facts that U deletes from p.

It is assumed that AfterU (IC) is represented as a set of denials, which can
be obtained by straightforward application of De Morgan’s laws. This is then
optimized via a terminating proof procedure (	) based on resolution and sub-
sumption. We do not delve into the details here and just assume 	 to be sound.

Definition 7. Let Σ, Δ be integrity theories; OptimizeΔ(Σ) is the result of ap-
plying on Σ the following rewrite rules as long as possible

1. {← C ∧ L} ∪Σ′ ⇒ {← C} ∪Σ′ if Δ ∪Σ′ ∪ {← C} 	← C ∧ L
2. {σ} �Σ′ ⇒ Σ′ if Δ ∪Σ′ 	 σ

where Σ′ is an integrity theory, C a conjunction of literals, L a literal, σ an in-
tegrity constraint, and 	 a sound and terminating implementation of provability.
2 Assumed here, for simplicity, to refer to extensional predicates only. The full defini-

tion is found in [7,6].
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An application of the method, denoted here MCM (D, IC,U), consists then of
evaluating in D the expression OptimizeIC(AfterU (IC)), which is proved in [7]
to be a pre-test of IC for U . Although one can easily derive from theorem 1 that
AfterU (IC) is an inconsistency-tolerant pre-test of IC for U , step 2 of Optimize
may destroy inconsistency tolerance. In fact, examples can be found where the
method does not behave tolerantly with respect to inconsistency.

Example 4. Consider IC = {← t ∧ p,← t ∧ ∼p,← t ∧ q(X) ∧ r(X)}. Let U be
the addition of q(a). The pre-test IC′ of IC for U returned by MCM is ∅ (the
update cannot violate integrity if the database before the update has integrity),
since ← t can be derived from IC, which subsumes all denials belonging to
AfterU (IC) = {← t ∧ p,← t ∧ ∼p,← t ∧ q(X) ∧ r(X),← t ∧ r(a)}.

Now, let D = {t, r(a)} and consider a caseW =← t∧q(a)∧r(a) of a constraint
in IC. We have: D(IC) = vio, D(W ) = sat and D(IC′) = sat . However,
DU (W ) = vio, which shows that MCM is not inconsistency-tolerant.

One may object that IC above had redundancies, since it is equivalent to ← t
and, if it had been expressed like that, there will be no discussion about satis-
faction of a case ← t ∧ q(a) ∧ r(a) simply because ← t ∧ q(a) ∧ r(a) would not
have been a case. This indicates that inconsistency tolerance by case was lost
because the method optimized “too much”. It can be shown with a similar ex-
ample that MCM is not unsatisfiability-tolerant either (indeed, IC in example
4 is unsatisfiable if t is in D). However, excessive optimizations coming from
the interplay between different constraints are avoided if IC contains a single
constraint (or constraints that, pairwise, have no predicate in common, which is
a likely circumstance).

Theorem 7. Let IC = {W} be an integrity theory, W a denial, U an update.
Then the pre-test IC′ of IC for U obtained by MCM is inconsistency-tolerant.

5 Discussion

Efficient integrity checking has been recognized by a large body of research
as a fundamental database topic for more than two decades. As mentioned,
methods exist in which the checking phase proper is preceded by a compilation
phase that generates either a pre-test [16,24,7] or a post-test [22,19] for integrity.
Other methods regard integrity checking as an instance of query answering and
modify the behavior of the query engine for this purpose [8,25]. Indeed, integrity
checking can be regarded as a special case of materialized view maintenance:
integrity constraints are defined as views that must always remain empty for the
database to be consistent [13,10].

Intuitively, it seems unrealistic to assume that integrity in databases is always
completely satisfied. This, however, is exactly the premise for virtually all known
approaches to integrity checking. The unease about this intuitive conflict has
motivated our relaxation of the consistency requirement on the basis of the
notion of satisfaction by “cases” of an integrity constraint.
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One of the main purposes of integrity checking and enforcement is to make
data comply with their semantic requirements and thus to have trustable query
answers. The results shown in this paper provide us with tools that pave the way
towards better data semantics: in this sense, one may “measure” the amount of
inconsistency in a database, in a sense that can be defined, e.g., as in [11], and
show that such measure cannot increase as long as an inconsistency-tolerant
approach is used. In turn, this guarantees, at least in a probabilistic sense,
that query answers will tend to be more trustable. For example, in a relational
database, the percentage of the data that participate in inconsistencies will nec-
essarily decrease in the new state if the update consists only of insertions.

Methods based on logic programming such as [25] do not take into account
irrelevant clauses for refuting denial constraints, and thus, in a procedural sense,
do not show the explosive behavior predicted by first-order logic in the pres-
ence of inconsistency. However, to the best of our knowledge, the declarative
inconsistency tolerance of integrity checking has never been studied nor even
defined before. Yet, we reckon that all the mentioned approaches can be recon-
sidered in terms of this declarative understanding of inconsistency tolerance and
most of them can actually be characterized as inconsistency-tolerant. We also
observe that all of the performance gains obtained by such integrity checking
methods are inherited by their inconsistency-tolerant counterparts, while their
applicability is greatly extended. Indeed, in some contexts, certain violations of
integrity constraints may be considered acceptable or even unavoidable, e.g., in
distributed or federated systems or when data come from unverified sources.

We remark that the inconsistency intolerance of the methods analyzed in this
paper may be understood as an indication that approaches to integrity which
implement special treatment for certain cases (as MGSUW ) or that optimize
beyond the scope of a single constraint (as MCM ) tend to be less inconsistency-
tolerant than other methods. To this end, it should be interesting to study other
definitions of inconsistency tolerance that are not based on the notion of case.

The related problems of restoring integrity once inconsistencies are detected
(tackled since [2] with the notion of repair) and of using active rules for much
the same purpose [4], certainly give way to inconsistency tolerance, but cannot
be directly used to detect inconsistencies for integrity checking purposes.

Future work will investigate in which sense also other integrity checking meth-
ods are inconsistency-tolerant (the literature in this field is indeed immense, as
witnessed by, e.g., [21]). To this end, it will be interesting to study how the
notion of inconsistency tolerance can be extended to query evaluation and how
this relates to consistent query answering in inconsistent databases (e.g., [3]). We
also intend to investigate the feasibility of implementing inconsistency-tolerant
integrity checking in replicated databases.
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1 Introduction

It is generally acknowledged that one of the main obstacles to the development of
complex computerized systems lies in the process of system verification. In system
verification we try to ensure that a model of the system satisfies some specification.
Common specification formalisms are based on temporal logic [14] and automata
on infinite words [12,19]. Such formalisms are very expressive, for example au-
tomata over infinite objects can specify all ω-regular properties. Expressiveness,
however, comes at a cost, as verifying a general ω-regular property is sometimes
very costly in terms of the resources needed for the verification. As a result, an
effort is being made to identify and study less expressive formalisms that allow
for an easier verification process. An example of a class of properties that gain
a lot of attention is the class of safety properties [2,16]. Safety properties require
the system to always stay within some allowed region, and their verification can
be reduced to invariant checking [10]. A large portion of the properties actually
checked in the industry are safety properties. As a result, specialized algorithms
for safety properties were developed and are successfully used in practice [5].

Even a larger effect on industrial verification was made by the introduction
of bounded model-checking (BMC) [6]. In BMC, only a bounded interval of time
at the beginning of the computation is checked. While BMC techniques can be
applied to general temporal logic properties, they correspond the class of bounded
properties – properties that regard only an interval of length k, for some k ≥ 0,
in the beginning of the computation [11]. In practice, it is possible to apply BMC
to significantly large systems. Thus, focusing on a bounded interval of interest
at the beginning of the computation is extremely fruitful in practice.

While BMC techniques check bounded properties, and thus computations are
evaluated from their initial state, it is possible to check bounded properties also
from an arbitrary state of the computation. This is done in symbolic trajec-
tory evaluation (GTE) [15,1]. In this work we study properties that are similar
to properties checked by STE: while still focusing our interest on intervals of
a bounded length k ≥ 0, we would like to regard every k-long time interval
throughout the computation.

Let us start with an example: a classical no-starvation specification has the
form “throughout the computation, whenever a req signal is raised, it is followed
by an ack signal raised sometime in the future”. Such a specification can be seen
as characterizing “events” of an unbounded length. The event begins when a req
signal is raised, and ends when an ack signal is raised. In real systems, one can
often bound the time frame within which the event should occur. The user may
expect, for example, that the following bounded version of the no-starvation spec-
ification holds: “throughout the computation, whenever a req signal is raised, it
is followed by an ack signal raised within seven computation cycles”.

We introduce in this paper the novel concept of checkability. A language L ⊆
Σω is k-checkable if there exists a finite language R ⊆ Σk such that for every
word w ∈ Σω it holds that w ∈ L iff all the k-long subwords of w are elements of
R. In such a case, we say that L is induced by R. A language is locally checkable
(or simply checkable) if it is k-checkable for some k. Note that our bounded
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version of “no starvation” can be characterized by an 8-checkable language. For
example, a language in which all 8-long subwords are permissible except those
in which a req was raised in the first cycle but no ack was raised later.

Intuitively, checkable languages are languages that can be verified by a verifier
with a bounded memory – one that has access only to the last k-computation
cycles. The practical importance of this distinction lies the context of runtime
verification [8,4,7]. Run-time verification of a property amounts to executing a
monitor together with the system allowing the detection of errors in run time.
Run-time monitors for checkable specifications have low memory demand. Fur-
thermore, in the case of general ω-regular properties, when several properties
are checked, we need a monitor for each property, and since the properties are
independent of each other, so are the state spaces of the monitors. Thus, the
memory demand (as well as the resources needed to maintain the memory) grow
linearly with the number of properties monitored. Such a memory demand is a
real problem in practice. In contrast, we show that a monitor for a k-checkable
property needs only a record of the last k computation cycles. Furthermore, even
if a large number of k-checkable properties are monitored, the monitors can share
their memory, resulting in memory demand that do not depend on the number
of properties monitored. This advantage of checkable languages make them par-
ticularly suited to be used as specification formalism for run-time verification.

An extensively studied family of languages related to checkable languages is
that of locally testable languages [13,20]. A language L is locally testable if the
answer to the question “is the word w in L?” is determined by a bounded prefix
of w and by the set of subwords of w of some bounded length k. Thus, check-
able languages are a special case of testable languages: in the case of checkable
languages, the only question one might ask of the set of subwords of length k is
about their containment in a set R. Note that the bounded-memory advantage
that holds for checkable languages does not hold for general testable languages.
Indeed, in the case of testable languages, one must maintain the set of all sub-
swords of length k seen so far in order to establish membership, and this involves
remembering which subwords were seen at the beginning of the computation. In
fact, we prove that locally testable languages constitute a much more expressive
formalism. In particular, there are locally testable properties that are not locally
checkable at all, and for an arbitrarily large k, there are 2-testable properties
that are k-checkable but not (k − 1)-checkable.

In this paper we define k-checkable and locally checkable languages and study
their properties. We provide some basic constructions and observations, and
study the relation between locally checkable languages and other fragments of
ω-regular properties such as safety properties, bounded properties, uninitialized
properties, and testable properties. In addition, we study the problem of deciding
whether a specification is locally checkable, or k-checkable, and the relation
between the size of the smallest Büchi automaton or LTL formula for a checkable
specification and the smallest k for which the specification is k-checkable.

Due to space limitations, some of the proofs appear only in the full version of
this paper, available at the authors’ web sites.
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2 Preliminaries

Consider an alphabet Σ. For a word w = w1w2w3 . . . over Σ, we denote the
length of w by |w|. Note that |w| is either a natural number (in case w ∈ Σ∗), or
the first infinite ordinal ω (in case w ∈ Σω). For i, j ∈ N such that i ≤ j ≤ |w|,
we denote by wi = wiwi+1 . . . the suffix of w starting at the ith letter and
denote by w[i..j] = wiwi+1 . . . wj the subword between the ith and jth letters.
For w ∈ Σω, we denote by suff (w) the set of suffixes of w, i.e. suff (w) =
{wi | i ≥ 0}. For a word w ∈ Σω, we denote by sub(w) the set of finite subwords
of w, formally, sub(w) = {y ∈ Σ∗ | ∃x ∈ Σ∗, z ∈ Σω such that w = xyz}.
For k ≥ 0, we denote by sub(w, k) the set of subwords of w of length k, i.e.,
sub(w, k) = sub(w) ∩Σk.

A language L ⊆ Σω is k-checkable if there exists a finite language R ⊆ Σk

such that w ∈ L iff all the k-long subwords of w are elements of R. That is,
L = {w ∈ Σω | sub(w, k) ⊆ R}. In such a case, we say that L is induced by R.
A language is locally checkable (or simply checkable) if it is k-checkable for some
k. A language L ⊆ Σω is k-co-checkable if there exists a finite language R ⊆ Σk

such that w ∈ L iff there exists a k-long subword of w that is a an element of R.
That is, L = {w ∈ Σω | sub(w, k) ∩ R �= ∅}. A language is locally co-checkable
(or simply co-checkable) if it is k-co-checkable for some k.

We assume the reader is familiar with nondeterministic Büchi word automata
(NBWs) [17]. We describe an NBW by a tuple A = 〈Σ,Q,Q0, δ, F 〉, where
Σ is the alphabet, Q is the set of states, Q0 ⊆ Q is the set of initial states,
δ : Q × Σ → 2Q is the transition function, and F ⊆ Q is the set of accepting
states. When |Q0| = 1 and |δ(q, σ)| = 1 for all q ∈ Q and σ ∈ Σ, we say
that A is a deterministic Büchi automaton (DBW). For S ⊆ Q, we denote
by AS the NBW obtained from A by changing the set of initial states to S;
i.e. AS = 〈Σ,Q, S, δ, F 〉. For s ∈ Q we use As to denote A{s}. We denote
the language of A by L(A). For a fragment of the ω-regular languages (e.g.,
k-checkable) and an NBW A, we say that A is in the fragment (e.g., A is a
k-checkable NBW) iff L(A) is in the fragment.

Example 1. Let Σ = {0, 1, 2}. The DBW A below recognizes the language L of
all the words that contain 10, 120 or 220 as subwords. Note that L is the 3-co-
checkable language L co-induced by R = {010, 110, 210, 100, 101, 102, 120, 220}.
Indeed, a word w is in L iff sub(w, 3) ∩R �= ∅.
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0
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1,2
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The DFA in Example 1 exhibits some of the subtlety to be found in co-checkable
languages. At first glance, one would assume that the traversal through a min-
imal sub-word of the inducing set should not contain a cycle. This impression,
however, is misleading, as demonstrated in the DBW above, where a traversal
through the subword 120 contains a cycle.

Consider a language R ⊆ Σk of words of length k. We denote by check(R) the
checkable language induced by R. Formally, check(R) = {w ∈ Σω|sub(w, k) ⊆
R}. Similarly, we denote by co-check(R) the language {w ∈ Σω|sub(w, k) ∩
R �= ∅}. For a checkable (co-checkable) language L, we denote by width(L)
the smallest natural number k for which there exists a set R ⊆ Σk such that
L = check(R) (resp. L = co-check(R)).

Note that a checkable language L may be induced by more than one language
of words of length width(L). For example, let Σ = {a, b, c} and L = aω +a∗cω +
cω. Both R1 = {aa, ac, cc} and R2 = {aa, ac, cc, ab} induce L. In this case,
however, R2 clearly contains a redundant word.

Proposition 2

1. For each checkable language L there exists a unique minimal inducing set,
denoted induce(L).

2. For each co-checkable language L there exists a unique maximal inducing
set, denoted co-induce(L).

3. For every checkable language L, it holds that check(induce(L)) = L. For
every co-checkable language L, it holds that co-check(co-induce(L)) = L.

3 Basic Observations

In this section we study some basic properties of checkable (and co-checkable)
languages. We begin with the closure of checkable languages with respect to
set operations. For a language R ⊆ Σ∗, the complement of R is the language
Σ∗ \R. For a language L ⊆ Σω the complement of L is the language Σω \L. In
either case, we denote the complement of L by comp(L). It is easy to see that
checkable languages are not closed under complementation. For example, the
language {aω} over the alphabet {a, b} is 1-checkable whereas its complement
{a, b}ω \ {aω} is not checkable. As we now show, however, checkable and co-
checkable languages complement each other.

Proposition 3. Checkable and co-checkable languages complement each other
in the following ways:

1. The complement of a k-checkable language is k-co-checkable and vice-versa.
2. A finite language R ⊆ Σk induces the k-checkable language L iff Σk \ R

co-induces the k-co-checkable language comp(L).
3. For a co-checkable language L, co-induce(L) = Σwidth(L)\induce(comp(L)).

Note that in the context of verification, we expect specifications of the type
“whenever a req signal is raised, it is followed by an ack signal raised within
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seven computation cycles”, rather then specifications of the type “there exists
time window in which a req signal is raised, and it is followed by an ack signal
raised within seven computation cycles”. Thus, checkable specifications are more
suitable for verification then co-checkable specifications1.

Proposition 4. Let L1 and L2 be k-checkable languages. Then, L1 ∩ L2 is k-
checkable, but L1 ∪ L2 need not be checkable.

As we discuss further in the sequel, the closure of checkable properties under
intersection is crucial for efficient run-time verification.

We now proceed with generic constructions of automata for checkable and
co-checkable languages.

Theorem 5

1. For every R ⊆ Σk there exists a DBW A, with at most O(|Σ|k) states, such
that L(A) = check(R). Similarly, there exists a DBW A′, with the same
parameters, for which L(A′) = co-check(R). Furthermore, both A and A′

can be constructed using polynomial space.
2. For every R ⊆ Σk, there exists an NBW A, with at most O(k|R|) states, such

that L(A) = co-check(R). Furthermore, A can be constructed in polynomial
time.

Intuitively, the DBW construction is based on maintaining the last k− 1 letters
read. The NBW construction is based on guessing where a subword from co-
check(R) appears, and verifying the guess. In addition, there exists R ⊆ Σk for
which the smallest NBW for check(R) has at least |Σ|k−1 states. Thus, applying
nondeterminism in order to get an improved construction is possible only for co-
checkable languages.

The basic observations made so far suggest that locally checkable specifica-
tions have properties that are desirable in the context of verification. The closure
of checkable properties under intersection is crucial for the fact, discussed in Sec-
tion 1, that run-time verification of several checkable properties requires bounded
memory, which does not depend on the number of properties checked. Indeed,
combining the monitors of several k-checkable properties, one gets a new single
monitor, with the same state space as each of the single monitors. Indeed, if
the languages L1, L2, . . . , Ln, for n different k-checkable properties, are induced
by R1, R2, . . . , Rn, respectively, then the intersection R = R1 ∩ R2 ∩ · · · ∩ Rn

induces L1 ∩ L2 ∩ · · · ∩ Ln. A DBW for check(R), described in Theorem 5, can
then serve as a monitor for all the properties: the DBW is run in parallel to
the verified system, and once it moves to the rejecting sink (note that all other
states are accepting) an error is reported. Note also that while the number of
states of the single monitor is exponential in k, the memory demand is linear
in k.
1 This is the case since checkable specifications are safety while co-checkable specifica-

tions are co-safety (see Proposition 6).
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Finally, in the context of model checking we enjoy both the fact that we do not
need our monitors to be deterministic, and the fact that we work with comple-
mented specifications, which are co-checkable. Therefore, in the context of model
checking, the smaller nondeterministic monitors for co-checkable specifications
can be used.

4 Deciding Checkability

In this section we study decision problems related to checkability. We start by
investigating the relations between checkable and co-checkable languages and
other restricted fragments of ω-regular languages. We then use these observations
in order to decide checkability of languages.

4.1 Relation to Other Families of Languages

We first consider safety, co-safety, and bounded languages. Let L be a language
of infinite words over Σ. A finite word x ∈ Σ∗ is a bad prefix for L if for all
infinite words y ∈ Σω, the concatenation x ·y of x and y is not in L. Thus, a bad
prefix for L is a finite word that cannot be extended into an infinite word in L.
In a similar fashion, a finite word x ∈ Σ∗ is a good prefix for L, if for all infinite
words y ∈ Σω, the concatenation x · y of x and y is in L. A language L is a
safety language if every word not in L has a finite bad prefix. A language L is a
co-safety language if every word in L has a finite good prefix [2]. For a co-safety
language L we denote by good(L) the set of good prefixes for L. For k ≥ 0, a
language L is bounded with bound k if every k-long word x ∈ Σk is either a good
prefix, or a bad prefix for L. A language L is bounded if there exists k ≥ 0 for
which the language is bounded with bound k. A language is bounded iff it is
both safety and co-safety [11].

Two other related families of languages we study are uninitialized [9] (also
called suffix closed) and liveness [2] languages. A language is uninitialized if
for every word w in L, every suffix of w is also in L. Thus, a language L is
uninitialized iff suff (L) ⊆ L. A language L is liveness if for every word w in L
and every word v ∈ Σω, if w is a suffix of v, then v ∈ L. Thus, L is liveness iff
Σ∗ · L ⊆ L. Note that a language L is uninitialized iff comp(L) is liveness

Proposition 6

1. Checkable languages are both safety and uninitialized. Co-checkable languages
are both co-safety and liveness.

2. There exists a safety uninitialized language that is not checkable. There exists
a co-safety liveness language that is not co-checkable.

3. No language, other then ∅ and Σω, is both bounded and checkable (or co-
checkable).

As discussed in Section 1, checkable languages are a special case of testable
languages. A language L is k-testable [13,20] if for every two words w1, w2 ∈ Σω,
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if w1[0..k − 1] = w2[0..k − 1] and sub(w1, k) = sub(w2, k) then w1 ∈ L iff
w2 ∈ L. A language is locally testable (or simply testable) if it is k-testable for
some k ≥ 0. Every checkable (or co-checkable) language is trivially testable. The
other direction, however, does not hold. As discussed in Section 1, the expressive
power of testable languages has a computational price, as the memory demand
for a general k-testable property is exponential in k. Indeed, while a monitor for
a k-checkable language only has to remember the last k letters, a monitor for a
k-testable language has to remember all the subwords of length k seen so far.

Proposition 7

1. There are testable languages that are neither checkable nor co-checkable.
2. For every k ≥ 0, there exists a 2-testable language that is k-checkable but

not (k − 1)-checkable.
3. For every k-testable property there is an NBW with at most 2|Σ|O(k)

states.
4. There are k-testable properties for which every NBW has at least 2|Σ|Ω(k)

states.

4.2 Decision Problems

We now turn to the problem of deciding whether a property is checkable or co-
checkable. We consider properties given as NBWs. We first need to study some
more properties of checkable languages.

Consider a language L. A word x ∈ Σ∗ is a minimal good prefix for L if
it is a good prefix, and no strict prefix or strict suffix of x are good prefixes.
Consider for example the language L = aΣω ∪bc∗aΣω. It is easy to see that L is
a co-safety language and that the good prefixes of L are the words in aΣ∗ and
bc∗aΣ∗. Note that a is a good prefix, and since ε is not a good prefix, clearly a is
a minimal good prefix. On the other hand, a appears as a subword in any good
prefix, and therefore a is the only minimal good prefix. The set of minimal good
prefixes of L is denoted min(L). For an automaton A, we denote by min(A) the
set min(L(A)).

The decision criteria is based on the intuition that a co-checkable language
has a finite set of minimal good prefixes. We would have liked to argue that this
is a sufficient condition for a language to be co-checkable. This, however, is not
true as can be seen by the previous example. Indeed L = aΣω ∪ bc∗aΣω has a
finite set of minimal good prefixes (namely {a}), but is not co-checkable.

Theorem 8. A language L is co-k-checkable iff L is co-safety, liveness, and
min(L) is contained in Σk. Dually, a language L is k-checkable iff L is safety,
uninitialized, and min(comp(L)) is contained in Σk.

Proof. We prove the characterization for co-k-checkable languages. The one for
k-checkable languages is dual. Assume first that L is co-k-checkable. Then, by
Theorem 6, L is co-safety and liveness. We prove that min(L) is is contained
in Σk. Let R = co-induce(L), and let sub(R) denote all the subwords of words
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in R. In the full version, we prove that min(L) ⊆ sub(R). Since R ⊆ Σk, so is
sub(R), implying that min(L) ⊆ Σk.

For the other direction, let L be a co-safety and liveness language with
min(L) ⊆ Σk. Let R be the set of k-long words that contain minimal good
prefixes as subwords. In the full version, we prove that L = co-check(R). ��

Corollary 9. A language L is co-checkable iff L is co-safety, liveness, and
min(L) is finite. Dually, a language L is checkable iff L is safety, uninitialized,
and min(comp(L)) is finite.

We can now use the criteria from Corollary 9 in order to decide whether a given
NBW A is checkable or co-checkable. The most challenging part is the test for
the finiteness of the set of minimal good prefixes. For the proof of the next
claim we need the following definition: an NBW A is co-looping if it has a single
accepting state that is a sink.

Theorem 10

1. For a co-safety DBW A, deciding whether min(A) is finite is in nlogspace.
2. For a co-safety NBW A, deciding whether min(A) is finite is in pspace.

Proof. The NBW case reduces to the DBW case by using the determinization
of safety and co-safety NBWs [10]. As the test described below for DBW uses
only nondeterministic logarithmic space, we get a polyspace test for NBW.

Given a DBW A, our strategy is to construct a DFW A′ whose language is
min(A), and decide whether L(A′) is finite. We now show how to construct A′.

Let A be an n-states co-safety DBW with language L ⊆ Σω. As a first step we
construct a co-looping DFW Ag withO(n) states such that L(Ag) = good(L(A)).

Let nonmin(L) = good(L) \ min(L) be the set of non-minimal good prefixes
of L. Given a word w = w1 · · ·wl ∈ good(L), the word w is in nonmin(L) iff
either of the following holds.

1. w[2..l] ∈ good(L) (we classify such words as words of type 1), or
2. w[1..l − 1] ∈ good(L) (we classify such words as words of type 2).

We can construct a DFW A1, for words of type 1, by adding to Ag a new
state q1in, making it the initial state, and adding to the transition function of Ag

a transition from q1in to the original initial state of Ag, labeled by all the letters
in Σ. We denote the set of states of A1 by Q1, and its accepting sink by q1ac.

We can also construct a DFW A2, for words of type 2, by adding a new
accepting sink state q2ac2 to Ag, making the former accepting state q2ac non-
accepting, and adding to the transition function of A2 a transition from q2ac to
q2ac2 labeled by all the letters in Σ. Note that a word w is in good(L) iff a run of
A2 on w ends in either q2ac or q2ac2.

We denote by Amin the cross product of A1 and A2, where the accepting
states set is (Q1 \ {q1ac}) × {q2ac}. The words accepted by Amin are exactly
good(L) \ nonmin(L) as needed. The number of state of Amin is quadratic in
the number of states of the DBW A. Since deciding DFW finiteness amounts
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to deciding if there exists a cycle on a path between the initial state and an
accepting state, deciding finiteness of DFW is in nlogspace and the complexity
result follows. ��

We can now combine the tests as suggested in Corollary 9.

Theorem 11. The problem of deciding checkability is nlogspace-complete for
DBWs and pspace-complete for NBWs.

Proof. For the upper bounds, we follow the characterization in Corollary 9
and check whether L(A) is safety [3], uninitialized [9], and min(comp(L)) is
finite. In order to check the latter, we construct a deterministic DBW Ãg for
good(comp(L(A))). In case A is an NBW, we construct a DBW Ã for comp(A)
in polynomial space [10], and can proceed as in Theorem 10.

In case A is DBW, we proceed as follows: We say that a state q of A is useless
if L(Aq) = ∅. Since A is deterministic, after reading a bad prefix A must be in a
useless state. Thus, replacing all the useless states by a single sink, marking the
new sink accepting, and the rest of the states non-accepting, results in a DFW
Ag for the bad prefixes of L(A) which are the good prefixes of comp(A).

Note that deciding whether a state is not useless amounts to searching for a
cycle with an accepting state reachable from it. Therefore, deciding uselessness
in can be done in nondeterministic logarithmic space.

Once we constructed Ag, we proceed by checking the finiteness of min(Ag)
as in Theorem 10.

The lower bound for NBWs is proven by a standard reduction from NBW
universality. The same argument applied to DBW implies nlogspace-hardness.

��

For the dual case, where we want to test an automaton for being co-checkable,
we again use the characterization in Corollary 9:

Theorem 12. Deciding co-checkability is nlogspace-complete for DBWs and
pspace-complete for NBWs.

Proof. For the upper bounds, we apply the criteria of Corollary 9. We have to
check co-safety, liveness and finiteness of min(L). We start with the NBW case.
To check whether L(A) is co-safety we apply the procedure of [16]2. Checking
for liveness can be done as in [3]; note that the procedure suggested in [3] can
be done in polynomial space. Checking the finiteness of min(L) can be done as
in Theorem 10.

As for DBWs, checking for both properties liveness and co-safety can be
done in nlogspace. Checking for finiteness of min(L(A)) can be done as in
Theorem 10.
2 [16] suggests a procedure for deciding and automaton is safety. We can check for co-

safety by complementing A and checking comp(A) for safety. While complementing A
has an exponential blow-up, this blow-up does not increase the complexity of the deci-
sion procedure, since the decision procedure in [16] already involves complementation.
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The lower bound for deciding NBWs co-checkability is proven by a reduc-
tion from NBW universality, using the same argument as in Theorem 13. For
DBW, nlogspace hardness can be proven by a reduction from graph non
reachability. ��
We now turn to study the problem of deciding whether L is k-checkable or k-co-
checkable for a given k. We describe the reasoning for the case of co-checkability.
The considerations in the case of k-checkability are dual.

From Theorem 8 we know that finding the width of a co-checkable language
L can be reduced to finding the length of its longest minimal good prefix, and
deciding whether L is k-co-checkable can be reduced to checking that L is check-
able yet no minimal good prefix of it is of length k′ > k. In Theorem 10, we
constructed a DFW Amin that accepts exactly all the minimal good prefixes of
L. Recall that when L is co-checkable, the language of Amin is finite, so Amin

contains no cycles. Hence, checking a bound on the length of accepting paths in
Amin can be done nondeterministically in space that is logarithmic in the size
of Amin (a longer path can be guessed). Accordingly, we have the following.

Theorem 13

1. Given a DBW A and an integer k, deciding whether A is k-checkable (or
co-k-checkable) is nlogspace-complete.

2. Given an DBW A and an integer k, deciding whether A is k-checkable (or
co-k-checkable) is pspace-complete.

By translating LTL formulas to NBWs, the results above imply an expspace
upper bound to the problem of deciding whether an LTL formula is checkable
or k-checkable, for a given k. We leave open the question of the tightness of
this bound. As we shall see in Section 5, the fact LTL formulas can be easily
complemented leads, in the case of width bound, to an upper bound that is
tighter than the one obtained by going through NBWs.

5 Bounding the Width

In this section we study the relations between the width of a checkable (or co-
checkable) language, and the size of automata or LTL formulas for the language.

5.1 Width vs. Automata Size

We start with Büchi automata. At first sight, it seems that the width of a lan-
guage of a checkable language can be bounded by the diameter of the smallest
DBW recognizing the language. Indeed, it appears that in an accepting run,
the traversal through the minimal good prefix should not contain a cycle. This
impression, however, is misleading, as demonstrated in the DBW A from Exam-
ple 1, where a traversal through the subword 120 contains a cycle. The diameter
of the DBW A is 3, so a bound by the diameter is still possible, but remains
open. As detailed below, our bound depends on the size of A and not only in its
diameter. We start with an upper bound:
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Theorem 14

1. For a checkable (or co-checkable) DBW A with n states, the width of L(A)
is bounded by O(n2).

2. For a checkable (or co-checkable) NBW A with n states, the width of L(A)
is bounded by 2O(n).

The proof is based on an analysis of Amin from Theorem 10.
We now prove an exponential lower bounds on the gap between width and size

of automata by presenting small NBWs that accept checkable and co-checkable
languages of large width. The crucial observation is that an NBW with n states
can “characterize” a word w of length exponential in n, in the sense it accepts
all strings but w.

For natural numbers i, n ≥ 0, we denote by mn(i) ∈ {0, 1}n the n-bit binary
string encoding of i mod 2n (e.g. m4(5) = 0101). We denote by counter(n)
the string mn(0) · # ·mn(1) · · ·# ·mn(2n − 1) · #. For example, counter(3) =
000#001#010#011#100#101#110#111#. Note that the length of counter(n)
is (n+ 1)2n. The word counter(n) is characterized by its first n+ 1 letters (i.e.
00 · · ·0#), and by the fact that when a letter σ is read, the letter σ′ at distance
n + 1 from σ is fixed by simple rules: if σ is #, then so is σ′. If σ is 0, then σ′

is 1 if all the letters between σ and the next # are 1 and is 0 otherwise. Similar
rules hold if σ is 1. We refer to these rules as the (n+ 1)-distance rules.

Each of the (n+ 1)-distance rules, as well as the contents of the first (n+ 1)
letters, can be easily checked. Therefore, we can construct an NBW that accepts
words that violate one of those rules (simply by guessing which rule is violated
and where).

Theorem 15. There exists an NBW A with O(n) states such that L(A) is k-
checkable but not (k − 1)-checkable, for k = (n+ 1)2n + 2.

Proof. Let Σ be {0, 1,#, b, e}. For n ≥ 0, let xn be the word b · counter(n) · e,
and let L be the language of all words that do not contain xn as a subword.
Thus, L = check(Σ|xn| \ {xn}) and therefore L is (|xn|)-checkable. On the other
hand, every word of length |xn| − 1 can be extended to a word in L, so L is not
|xn| − 1 checkable. (Details as to see why L can be accepted by an NBW A of
size O(n) can be found in the full version). ��

Theorem 16. There exists an NBW A with O(n2) states such that L(A) is
k-co-checkable but not (k − 1)-co-checkable, for k = 2(n+ 1)2n .

Proof. We prove the theorem in two steps. First, we describe a language (based
on the word counter(n)) that is (n + 1)-co-checkable and has an NBW of size
O(n). Next, we examine a small variation of the language, one that still has a
small NBW accepting it, but is only k-co-checkable for k exponential in n.

For n ≥ 0, we denote by L the language suff (counter(n)ω) of all the suffixes
of the word counter(n)ω. Like counter(n), all the words in L follow the (n+ 1)-
distance rules. Furthermore, every word that begins with an (n+1)-long subword
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of counter(n) and follows the (n + 1)-distance rules, is in L. Since the (n+ 1)-
distance rules specify a letter by its preceding (n+ 1) letters, these rules can be
seen as a set of permissible subwords of length (n+ 2). Therefore, L is (n+ 2)-
checkable, and comp(L) is (n + 2)-co-checkable. It is also not hard to see that
comp(L) is accepted by an NBW of size O(n) that looks for a violation of the
(n+ 1)-distance rules, or a flaw in the first n+ 1 letters

We now look at a variation of counter(n). Let $ be a new letter. For n ≥ 0, we
denote by counter$(n) the wordmn(0)·#·mn(1) · · ·#·mn(2n−1)·$ which differs
from counter(n) only in the last letter. The word counter$(n) is characterized
by rules slightly different from the (n+ 1)-distance rules: the rules now allow $
to appear at distance n + 1 from #, but require that $ is preceded by a block
of n 1’s. We refer to these rules as the (n + 1)-$-distance rules. As in the case
of counter(n), there exists an NFW of size O(n) that detects (n+ 1)-$-distance
rules violations.

Consider now the language L′ = suff (counter(n)ω)) ∪ suff (counter$(n)ω),
i.e., the language of all words that are either a suffix of counter(n)ω or a suffix
of counter$(n)ω. The crucial point is that the word is of one of these types, and
therefore the letter after a block of n 1’s is either always #, or always $. In
the full version, we show that while L′ is 2|counter(n)|-checkable and comp(L′)
is 2|counter(n)|-co-checkable, L′ is not (2|counter(n)| − 1)-checkable. Also, an
NBW A for comp(L′) has O(n2) states. Thus, A is a checkable NBW with O(n2)
states whose language is of width 2(n+ 1)2n. ��

5.2 Width vs. Formula Size

We now turn to consider bounds on the width of a language in terms of an
LTL formula defining the language. The main technical tool used in the proof
of Theorem 16 is the fact that there is a small NBW detecting violations of the
(d+1)-distance rules. Since these rules can be easily specified by an LTL formula
of size O(d), a lower bound on the width of languages of LTL formulas follows:

Theorem 17

(1) There is an LTL formula ϕ such that L(ϕ) is checkable of width 2Ω(|ϕ|).
(2) There is an LTL formula ϕ such that L(ϕ) is co-checkable of width 2Ω(|ϕ|).

Note that since LTL has a negation operand, Claim (2) above follows trivially
from Claim (1).

It follows that the gap between the size of an LTL formula defining a checkable
language and its width might be exponential. In fact, since LTL formulas are
exponentially more succinct than NBWs, Theorems 15 and 16 hint that the gap
may be even doubly exponential. Nevertheless, we now show that the gap cannot
be larger then an exponential.

Theorem 18. For a checkable (or co-checkable) LTL formula ϕ, the width of
L(ϕ) is bounded by 2|ϕ|3+2.
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Proof. Let ϕ be a checkable LTL formula, and let L be its language. We denote
the of width of L by k. Let A be an n states NBW for L, and let Ã be an ñ
states NBW for comp(L). The crux of the proof is the observation that while
k may depend exponentially on n, it depends polynomially on max(n, ñ). Since
complementation in LTL is trivial, the exponential construction of an NBW for
the language of an LTL formula bounds both n and ñ [18]. We prove, by a
pumping-lemma type argument, that k is bounded by n2ñ+ 3.

By Theorem 3, we have that comp(L) is co-induced by Σk \ induce(L). We
first claim that there is a word w ∈ Σk−2 such that there are σ, τ ∈ Σ, for which
the following hold. (1) σ ·w · τ ∈ Σk \ induce(L), (2) there is σ′ ∈ Σ such that
σ′ · w · τ ∈ induce(L), and (3) there is τ ′ ∈ Σ such that σ · w · τ ′ ∈ induce(L).

The existence of w that satisfies Conditions 1-3 follows from the minimality
of k. Since induce(L) contains no redundancies, we also know that (4) there is
t′ ∈ Σω such that σ′ ·w ·τ ·t′ ∈ L and (5) there is t ∈ Σω such that σ ·w ·τ ′ ·t ∈ L.

Assume by way of contradiction that k ≥ n2ñ+3. Consider the infinite words
u = σ · w · τ · t′, v = σ′ · w · τ · t′, and p = σ · w · τ ′ · t. The word u contains the
subword σ · w · τ , which is (Condition 1) in Σk \ induce(L). Therefore, u �∈ L.
By Conditions 4 and 5, the words v and p are in L.

Let ru be an accepting run of Ã on u, and let rv and rp be accepting runs of
A on v and p, respectively. Since k ≥ n2ñ + 3, we also have k − 2 ≥ n2ñ + 1,
thus there is a triple of states su, sv, and sp, of Ã, A, and A respectively, and
there is a partition of w to x · y · z, with y �= ε, such that the run ru visits su
after reading σ′ · x and after reading σ′ · x · y, the run rv visits sv after reading
σ · x and after reading σ · x · y, and the run rp visits sp after reading σ · x and
after reading σ · x · y,

It follows that for all i ≥ 0, we have the following: σ · x · yi · z · τ · t′ �∈ L,
σ′ · x · yi · z · τ · t′ ∈ L, and σ · x · yi · z · τ ′ · t ∈ L. From the last two facts, all
subwords of length k of σ′ ·x ·y2 ·z · τ · t′ and of σ ·x ·y2 ·z · τ ′ · t are in induce(L).
Hence, so are all the subwords of length k of σ · x · y2 · z · τ · t′, contradicting the
fact it is not in L. ��

6 Conclusions

We defined k-checkable and locally checkable languages and studied their prop-
erties. We showed that memory demand for monitoring k-checkable properties
is independent of the number of properties checked. This advantage of checkable
languages make them particularly suited to be used as specification formalism
for run-time verification.

We studied the relation between locally checkable languages and other frag-
ments of ω-regular properties and showed that safety properties, uninitialized
properties, and testable properties, all strictly contain checkable properties. We
considered the problem of deciding whether a specification is locally checkable, or
k-checkable for a given k, and showed that both problems are pspace-complete.
Finally, we studied the relation between the width of a checkable language and
the size of an NBW or LTL formula for the language, and showed that NBWs
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and LTL formulas can define checkable languages with an exponentially larger
width. An interesting problem that remains open is the relation between the
width of a co-checkable language and the size of a DBW for it.
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Deciding Key Cycles for Security Protocols	
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Abstract. Many recent results are concerned with interpreting proofs of security
done in symbolic models in the more detailed models of computational cryptog-
raphy. In the case of symmetric encryption, these results stringently demand that
no key cycle (e.g. {k}k) can be produced during the execution of protocols. While
security properties like secrecy or authentication have been proved decidable for
many interesting classes of protocols, the automatic detection of key cycles has
not been studied so far.

In this paper, we prove that deciding the existence of key-cycles is NP-complete
for a bounded number of sessions. Next, we observe that the techniques that we
use are of more general interest and apply them to reprove the decidability of a
significant existing fragment of protocols with timestamps.

1 Introduction

Security protocols are small programs that aim at securing communications over a pub-
lic network like Internet. The design of such protocols is difficult and error-prone; many
attacks are discovered even several years after the publication of a protocol. Two dis-
tinct approaches for the rigorous design and analysis of cryptographic protocols have
been pursued in the literature: the so-called Dolev-Yao, symbolic, or formal approach
on the one hand and the cryptographic, computational, or concrete approach on the
other hand. In the symbolic approach, messages are modeled as formal terms that the
adversary can manipulate using a fixed set of operations. The main advantage of this
approach is its relative simplicity which makes it amenable to automated analysis tools
(see, e.g., [7,3,22]). In the cryptographic approach, messages are bit strings and the ad-
versary is an arbitrary probabilistic polynomial-time Turing machine. While results in
this model yield strong security guarantees, the proofs are often quite involved and only
rarely suitable for automation (see, e.g., [16,6]).

Starting with the seminal work of Abadi and Rogaway [1], recent results investigate
the possibility of bridging the gap between the two approaches. The goal is to obtain the
best of both worlds: simple, automated security proofs that entail strong security guar-
antees. The approach usually consists in proving that the abstraction of cryptographic
primitives made in the Dolev-Yao model is correct as soon as strong enough primitives
are used in the implementation. For example, in the case of asymmetric encryption,
it has been shown [21] that the perfect encryption assumption is a sound abstraction
for IND-CCA2, which corresponds to a well-established security level. The perfect en-
cryption assumption intuitively states that encryption is a black-box that can be opened
only when one has the inverse key. Otherwise, no information can be learned from a
ciphertext about the underlying plaintext.
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However, it is not always sufficient to find the right cryptographic hypotheses. For-
mal models may need to be amended in order to be correct abstractions of the crypto-
graphic models. This is in particular the case for symmetric encryption. For example,
in [4], the authors consider extra-rules for the formal intruder in order to reflect the
ability of a real intruder to choose its own keys in a particular manner.

A more widely used requirement is to control how keys can encrypt other keys.
In a passive setting, soundness results [1,18] require that no key cycles can be gen-
erated during the execution of a protocol. Key cycles are messages like enc(k, k) or
enc(k1, k2), enc(k2, k1) where a key encrypts itself or more generally when the en-
cryption relation between keys contains a cycle. Such key cycles have to be disallowed
simply because usual security definitions for encryption schemes do not provide any
guarantees when such key cycles occur. In the active setting, the typical hypotheses are
even stronger. For instance, in [4,17] the authors require that a key k1 never encrypts a
key k2 generated before k1.

Some authors circumvent the problem of key cycles by providing new security defini-
tions for encryption that allow key cycles [2,5]. However, the standard security notions
do not imply these new definitions and ad-hoc encryption schemes have to be con-
structed in order to satisfy the definitions. These constructions use the random oracle
model which is provably non implementable. As a consequence, it is not known how to
implement encryption schemes that satisfy the new definitions. In particular, none of the
usual, implemented encryption schemes have been proved to satisfy the requirements.

Our main contribution is an NP-complete decision procedure for detecting the gener-
ation of key cycles during the execution of a protocol, in the presence of an intruder, for
a bounded number of sessions. To the best of our knowledge, this problem has not been
addressed before. We therefore provide a necessary component for automated tools
used in proving strong, cryptographical security properties, using existing soundness
results. Our result has been obtained following the classical approach of Rusinowitch-
Turuani [25], revisited by Comon-Lundh [11,13], where protocols are represented by
constraint systems. Since this initial procedure is already implemented in Avispa [3]
for deciding secrecy and authentication properties, we believe that our algorithm can be
easily implemented since it can be adapted from the existing procedure.

Our second contribution is to provide a generic approach derived from [11,13] to de-
cide general security properties. Comon-Lundh showed that any constraint system can
be transformed in (possibly several) much simpler constraint systems that are called
solved forms. We show using (almost) the same transformation rules that, in order to
verify a property on a constraint system, it is always sufficient to verify the property on
the solved forms obtained after transformation. Compared to [11,13], the framework is
slightly extended since we consider sorted terms, symmetric and asymmetric encryp-
tion, pairing and signatures. We use this approach to first prove NP-completeness of the
key-cycle problem but also to show co-NP-completeness of secrecy for protocols with
timestamps. We actually retrieve a significant fragment of the decidable class identified
by Bozga et al [9]. We believe our result can lead more easily to an implementation
since, again, we only need to adapt the procedure implemented in Avispa [3] while
Bozga et al have designed a completely new decision procedure, which de facto has not
been implemented.
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The messages and the intruder capabilities are modeled in Section 2. In Section 3.1,
we define constraint systems and show how they can be used to express protocol ex-
ecutions. In Section 3.2, we define security properties and the notion of satisfiability
of constraint systems. In 3.3, we explain how the satisfiability problem of any secu-
rity property can be reduced to the satisfiability of the same problem but on simpler
constraint systems. We show in Section 4.1 how this approach can be used to obtain
our main result of NP-completeness of the generation of key cycles and in Section 4.2
how it can be used to derive NP-completeness for protocols with timestamps. Some
concluding remarks about further work can be found in Section 5.

2 Messages and Intruder Capabilities

2.1 Syntax

Cryptographic primitives are represented by function symbols. More specifically, we
consider the signature (S,F) made of a set of sorts S = {s, s1 . . .} and a set of sym-
bols F = {enc, enca, sign, 〈 〉, pub, priv} together with arities of the form ar(f) =
s1 × s2 → s for the four first symbols and ar(f) = s → s′ for the two last ones.
The symbol 〈 〉 represents the pairing function. The terms enc(m, k) and enca(m, k)
represent respectively the messagem encrypted with the symmetric (resp. asymmetric)
key k. The term sign(m, k) represents the message m signed by the key k. The terms
pub(a) and priv(a) represent respectively the public and private keys of an agent a.

We fix an infinite set of names N = {a, b . . .} and an infinite set of variables X =
{x, y . . .}. We assume that names and variables are given with sorts. The set of terms of
sort s is defined inductively by

t ::= term of sort s
| x variable x of sort s
| a name a of sort s
| f(t1, . . . , tk) application of symbol f ∈ F

where for the last case, we further require that ti is a term of some sort si and ar(f) =
s1 × . . .× sk → s. We assume a special sort Msg that subsumes all the other sorts and
such that any term is of sort Msg.

As usual, we write V(t) for the set of variables occurring in t. A term is ground or
closed if and only if it has no variables. The size of a term t, denoted |t|, is defined
inductively as usual: |t| = 1 if t is a variable or a name and t = 1 +

∑n
i=1 |ti| if

t = f(t1, . . . , tn) for f ∈ F . If T is a set of terms then |T | denotes the sum of the sizes
of its elements. We denote by St(t) the set of subterms of t.

Substitutions are written σ = {x1 = t1, . . . , xn = tn} with dom(σ) = {x1, . . . , xn}.
We only consider well-sorted substitutions, that is substitutions for which xi and ti
have the same sort. σ is closed if and only if all of the ti are closed. The application of
a substitution σ to a term t is written σ(t) = tσ.

Sorts are mostly left unspecified in this paper. They can be used in applications to
express that certain operators can be applied only to some restricted terms. For example,
sorts can be used to require that messages are encrypted only by atomic keys.
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S � x S � y

S � 〈x, y〉
S � x S � y

S � enc(x, y)

S � x S � y

S � enca(x, y)

S � x S � y

S � sign(x, y)

S � 〈x, y〉
S � x

S � 〈x, y〉
S � y

S � enc(x, y) S � y

S � x

S � enca(x, pub(y)) S � priv(y)

S � x

S � sign(x, priv(y))
(optional)

S � x

x ∈ S
S � x

Fig. 1. Intruder deduction system

2.2 Intruder Capabilities

The ability of the intruder is modeled by a deduction system described in Figure 1
and corresponds to the usual Dolev-Yao rules. The first line describes the composition
rules, the two last lines describe the decomposition rules and the axiom. Intuitively,
these deduction rules say that an intruder can compose messages by pairing, encrypting
and signing messages provided he has the corresponding keys and conversely, it can
decompose messages by projecting or decrypting provided it has the decryption keys.
For signatures, the intruder is also able to verify whether a signature sign(m, k) and a
messagem match (provided she has the verification key), but this does not give her any
new message. That is why this capability is not represented in the deduction system.
We also consider an optional rule S � sign(x, priv(y))

S � x
that expresses that an intruder can

retrieve the whole message from its signature. This property may or may not hold de-
pending on the signature scheme, and that is why this rule is optional. Note that this rule
is necessary for obtaining soundness properties w.r.t. cryptographic digital signatures.
Our results hold in both cases (that is, when the deduction relation 	 is defined with or
without this rule).

A term u is deducible from a set of terms S, denoted by S 	 u if there exists a
proof i.e. a tree such that the root is S 	 u, the leaves are of the form S 	 v with
v ∈ S (axiom rule) and every intermediate node is an instance of one of the rules of the
deduction system.

Example 1. The term 〈k1, k2〉 is deducible from the set S1 = {enc(k1, k2), k2}. A
proof of S1 	 〈k1, k2〉 is:

S1 	 enc(k1, k2) S1 	 k2
S1 	 k1 S1 	 k2

S1 	 〈k1, k2〉

3 Constraint Systems and Security Properties

Constraint systems are quite common (see e.g. [13,25]) in modeling security protocols.
We recall here their formalism and show how they can be used to specify general se-
curity properties. Then we prove that any constraint system can be transformed into a
simpler constraint system.
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3.1 Constraint Systems

Definition 1. A constraint system C is a finite set of expressions Ti � tt or Ti � ui,
where Ti is a non empty set of terms, tt is a special symbol that represents an always
deducible term, and ui is a term, 1 ≤ i ≤ n, such that:

- Ti ⊆ Ti+1, for all 1 ≤ i ≤ n− 1;
- if x ∈ V(Ti) then ∃j < i such that Tj = min{T | (T � u) ∈ C, x ∈ V(u)} (for

the inclusion relation) and Tj � Ti.

The left-hand side (right-hand side) of a constraint T � u is T (respectivelyu). The left-
hand side of a constraint system C, denoted by lhs(C), is the maximal set of messages
Tn. The right-hand side of a constraint system C, denoted by rhs(C), is the set of
right-hand sides of its constraints. V(C) denotes the set of variables occurring in C. ⊥
denotes the unsatisfiable system. The size of a constraint system is defined as |C| def=
|lhs(C)| + |rhs(C)|.

A constraint system is denoted as a conjunction of expressions. The left-hand side of
a constraint system C usually represents the messages sent on the network.

Example 2. Consider the famous Needham-Schroeder asymmetric key authentication
protocol [23] designed for mutual authentication.

A→ B : enca(〈NA, A〉, pub(B))
B → A : enca(〈NA, NB〉, pub(A))
A→ B : enca(NB, pub(B))

The agent A sends to B his name and a fresh nonce (a randomly generated value)
encrypted with the public key of B. The agent B answers by copying A’s nonce and
adds a fresh nonce NB , encrypted by A’s public key. The agent A acknowledges by
forwardingB’s nonce encrypted by B’s public key. We assume that a potential intruder
has a complete control of the network: he may intercept, block and send new messages
to arbitrary agents.

Let T0 = {a, b, i,pub(a), pub(b), pub(i), priv(i)} be the initial knowledge of the
intruder. The following constraint system C1 models a scenario whereA starts a session
with a corrupted agent I (whose private key is known to the intruder) and B is willing
to answer to A. We consider this scenario for simplicity, but of course we could also
consider for example A talking to B and B responding to I .

T1
def= T0 ∪ {enca(〈na, a〉, pub(i))} � enca(〈x, a〉, pub(b)) (1)

T2
def= T1 ∪ {enca(〈x, nb〉, pub(a))} � enca(〈na, y〉, pub(a)) (2)

T3
def= T2 ∪ {enca(y, pub(i))} � enca(nb, pub(b)) (3)

where na and nb are names of sort Msg and x and y are variables of sort Msg. The
set T1 represents the messages known to the intruder once A has contacted the cor-
rupted agent I . Then the equations 1 and 2 can be read as follows: if a message of the
form enca(〈x, a〉, pub(b)) can be sent on the network, then B would answer to this
message by enca(〈x, nb〉, pub(a)), which is added to T1. Subsequently, if a message
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of the form enca(〈na, y〉, pub(a)) can be sent on the network, then A would answer
by enca(y, pub(i)) since A believes she is talking to I . The run is successful if B can
finish his session by receiving the message enca(nb, pub(b)). Then B believes he has
talked to A while A actually talked to I . If the protocol was secure, such a constraint
system should not have a solution. The variables represent those parts of messages that
are a priori unknown to the agents.

3.2 Security Properties

A security property is modeled by a predicate on (lists of) terms. The terms represent
some information about the execution of the protocol, for example the messages that
are sent on the network.

Definition 2. A security property is a predicate on lists of messages. For a list L we
denote by Ls the set of messages of the list L.

Let C be a constraint system, L a list of terms such that V(Ls) ⊆ V(C) and P a
security property. A solution of C for P w.r.t. L is a closed substitution θ such that
∀(T � u) ∈ C, Tθ 	 uθ and P (Lθ) holds. Every substitution satisfies T � tt and none
satisfies ⊥.

Example 3. If the predicate P is simply the true predicate (which holds for any list
of terms) and the only sort is Msg then we simply retrieve the usual constraint system
deduction problem, which is known to be NP-complete [11,25].

Example 4. Secrecy can be easily expressed by requiring that the secret data is not
deducible from the messages sent on the network. We consider again the constraint
system C1 defined in Example 2. Let L1 be a list of the messages in lhs(C1). We define
the predicate P1 to hold on a list of messages if and only if nb is deducible from it.
That is, P1(L) = true iff Ls 	 nb. Then the substitution σ1 = {x = na, y = nb} is
a solution of C1 for the property P1 w.r.t. L1 and corresponds to the attack found by
G. Lowe [19]. Note that such a deduction-based property can be directly encoded in the
constraint system by adding a constraint T � nb where T = lhs(C1).

Example 5. Authentication can also be defined using a predicate P2 on lists of mes-
sages. For this purpose we use corresponding assertions and we introduce, following
the syntax of Avispa [3], two new function symbols witness and request of arity 4
with the following intution: request(a, b, id,m) says that the agent a (id being simply
a constant identifying the request since there might be several requests in one execution
of a protocol) now believes that it is really agent b who sent the message m (that is, a
authenticates b onm), and witness(b, a, id,m) says that b has just sent the messagem
to a. The predicate P2 holds on a list L of messages if whenever request(a, b, id,m)
appears in the list there is a corresponding occurrence witness(b, a, id,m) (defining an
injection) appearing before it in the list (that is, at a smaller position), for any agents a,
b different from the intruder. Choosing L2 to be a list of the messages in lhs(C) follow-
ing the order induced by the constraints (that is m appears before m′ in L2 whenever
m ∈ Ti, m /∈ Tj , m′ ∈ Tj , Ti ⊆ Tj) we obtain Lowe’s definition of injective agree-
ment [20]. Formally, a protocol has an attack on the authentication property iff the
constraint system C has a solution for P2 w.r.t. L2, where P2 is the negation of P2.
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R1 C ∧ T � u 	 C ∧ T � tt if T ∪ {x | (T ′ � x) ∈ C, T ′ � T}�u

R2 C ∧ T � u 	σ Cσ ∧ Tσ � uσ if σ = mgu(t, u), t ∈ St(T ),
t �= u, t, u not variables

R3 C ∧ T � u 	σ Cσ ∧ Tσ � uσ if σ = mgu(t1, t2), t1, t2 ∈ St(T ),
t1 �= t2, t1, t2 not variables

R4 C ∧ T � u 	 ⊥ if V(T, u) = ∅ and T �� u

Rf C ∧ T � f(u, v) 	 C ∧ T � u ∧ T � v for f ∈ { 〈 〉, enc, enca, sign}

Fig. 2. Simplification rules

Consider again the constraint system C1 defined in Example 2 where T0 is replaced
by T ′

0 = T0 ∪ {enca(〈n′a, a〉, pub(b))}: the agent A also initiates a session with B, and
T ′

1 = T ′
0 ∪ T1 ∪ {witness(b, a, 1, x), request(b, a, 2, nb)}: B asserts that A should rely

on the value of x for his authentication to A, and now B believes he talked with A. The
substitution σ1 defined in Example 4 is a solution of C1 for the property P2 w.r.t. L2,
since there is no corresponding witness assertion for request(b, a, 2, nb) in L2.

In Section 4, we provide other examples of predicates which encode time constraints or
express that no key cycles are allowed.

3.3 General Approach

Using some simplification rules, solving general constraint systems can be reduced to
solving simpler constraint systems that we called solved. We say that a constraint sys-
tem is solved if it is different from ⊥ and each of its constraints are of the form T � tt
or T � x, where x is a variable. This corresponds to the notion of solved form in [13].

Solved constraint systems with the single sort Msg are particularly simple in the case
of the true predicate since they always have a solution, as noticed in [11]. Indeed, let
T1 be the smallest (w.r.t. inclusion) left hand side of a constraint. From the definition of
a constraint system we have that T1 is non empty and has no variables. Let t ∈ T1. Then
the substitution θ defined by xθ = t for every variable x is a solution since T 	 xθ = t
for any constraint T � x of the solved system.

The simplification rules we consider are defined in Figure 2. All the rules are in
fact indexed by a substitution: when there is no index then the identity substitution
is implicitly considered. We write C 	n

σ C
′ if there are C1, . . . , Cn with n ≥ 1,

C′ = Cn, C 	σ1 C1 	σ2 · · · 	σn Cn and σ = σ1σ2 . . . σn. We write C 	∗
σ C

′ if
C 	n

σ C
′ for some n ≥ 1, or if C′ = C and σ is the empty substitution.

The simplification rules are correct, complete and terminating in polynomial time.

Theorem 1. Let C be a constraint system, θ a substitution, P a security property and
L a list of messages such that V(Ls) ⊆ V(C).

1. (Correctness) If C 	∗
σ C

′ for some constraint system C′ and some substitution σ
and if θ is a solution of C′ for the property P w.r.t. Lσ then σθ is a solution of C
for the property P w.r.t. L.
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2. (Completeness) If θ is a solution of C for the property P w.r.t. L, then there exist a
constraint system C′ and substitutions σ, θ′ such that θ = σθ′, C 	∗

σ C
′ and θ′ is

a solution of C′ for the property P w.r.t. Lσ.
3. (Termination) If C 	n

σ C
′ for some constraint system C′ and some substitution σ

then n is polynomially bounded in the size of C.

Theorem 1 extends the result of [11] to sorted messages and general security properties.
This last point simply relies on the fact that whenever C 	∗

σ C
′ then L(σθ) = (Lσ)θ

for any substitution θ. We introduced explicit sorts since soundness results are usually
obtained for models with atomic sorts for keys and nonces for example. The proof is
actually a simple extension of [11] and all the details can be found in [14].

The following corollary is easily obtained from the previous theorem by observing
that we can guess the simplification rules which lead to a solved form.

Corollary 1. Any property P that can be decided in polynomial time on solved con-
straint systems can be decided in non-deterministic polynomial time on arbitrary con-
straint systems.

4 Decidability of Some Specialized Security Properties

Using the general approach presented in the previous section, verifying particular prop-
erties like the existence of key cycles or the conformation to an a priori given order re-
lation on keys can be reduced to deciding these properties on solved constraint systems.
We deduce a new decidability result, useful in models designed for proving crypto-
graphic properties. This approach also allows us to retrieve a significant fragment of [9]
for protocols with timestamps.

4.1 Encryption Cycles

To show that formal models (like the one presented in this article) are sound with respect
to cryptographical ones, the authors usually assume that no key cycle can be produced
during the execution of a protocol or, even stronger, assume that the “encrypts” relation
on keys follows an a priori given order.

In this section we restrict our attention to key cycles and key order on symmetric
keys since there are very few papers constraining the key relations in an asymmetric
setting. We consider atomic keys for symmetric encryption since soundness results are
only obtained in this setting. In particular, there exists no general definition (with a
cryptographic interpretation) of key cycles in the case of arbitrary composed keys. More
precisely, we assume a sort Key ⊂ Msg and we assume that the sort of enc is Msg ×
Key → Msg. All the other symbols are of sort Msg × · · · × Msg → Msg. Hence only
names and variables can be of sort Key.

Key Cycles. Many definitions of key cycles are available in the literature. They are
defined by considering cycles in the encrypts relation between keys. But this relation
differs from one article to another. For example, the early definition proposed by Abadi
and Rogaway [1] says that k encrypts k′ as soon as there exists a term enc(m, k) such
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that k′ is a subterm of m. For example, both enc(k, k) and enc(enc(a, k), k) contain
key cycles. However, in the definition proposed by Laud [18], enc(enc(a, k), k) does
not contain a key cycle since the relation “k encrypts k′” is restricted to keys k′ that
occur in plaintext. We consider the two variants for the notion of key cycles.

We write s <st t if and only if s is a subterm of t. We define recursively the least
reflexive and transitive relation 9 satisfying: s1 9 (s1, s2), s2 9 (s1, s2), and if s 9 t
then s 9 enc(t, t′). Intuitively, s 9 t if s is a subterm of t that occurs (at least once) in
a plaintext position.

Definition 3. Let ρ1 be a relation chosen in {<st,9}. Let S be a set of messages and
k, k′ two terms of sort Key. We say that k encrypts k′ in S (denoted k ρS

e k
′) if there

existm ∈ S and a termm′ such that

k′ ρ1m
′ and enc(m′, k) 9 m.

With ρ1 =<st, we retrieve the definition of Abadi and Rogaway. With ρ1 =9 we
retrieve the definition of Laud. For simplicity, we may write ρe instead of ρS

e if S is
clear from the context.

We say that a set of messages S contains a key cycle if there is a cycle in the relation
ρS

e . If m is a message we denote by ρm
e the relation ρ{m}

e and say that m contains a
cycle if {m} contains a cycle.

Definition 4. Let K be a set of names of sort Key. We define the predicate PK
kc as

follows: PK
kc holds on a list of messages L if and only if S = Ls ∪ {m | Ls 	 m}

contains a key cycle (k1, . . . , kn), with n ≥ 1 and ki ∈ K for all 1 ≤ i ≤ n.

Definition of Key Order. In order to establish soundness of formal models in a sym-
metric encryption setting, the requirements on the encrypts relation can be even stronger,
in particular in the case of an active intruder. In [4] and [17], the authors require that a
key never encrypts a younger key. More precisely, the encrypts relation has to be com-
patible with the order in which the keys are generated. Hence we also want to check
whether there exist executions of the protocol for which the encrypts relation is incom-
patible with an a priori given order on keys.

Definition 5. Let ≤ be a partial order on a set of names K of sort Key. We define the
predicate PK

≤ as follows: PK
≤ holds on a list of messages L if and only if the encrypts

relation ρS
e (restricted to K ×K), where S = Ls ∪ {m | Ls 	 m}, is compatible with

≤, that is
k ρm

e k
′ ⇒ k′ �≤ k, for all k, k′ ∈ K.

For example, in [4,17] the authors choose ≤ to be the order in which the keys are

generated: k ≤ k′ if k has been generated before k′. We denote by P
K

≤ the negation of
PK
≤ . Indeed, an attack in this context is an execution such that the encrypts relation is

incompatible with ≤, that is the predicate P
K

≤ holds.
The following proposition states that in the passive case a key cycle can be deduced

from a set S only if it already appears in S.
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Proposition 1. Let L be a list of messages, K a set of names of sort Key and ≤ a

partial order onK . The predicate PK
kc (resp. P

K

≤ ) holds on L if and only if

– there is k ∈ K such that k is deducible from Ls, that is Ls 	 k, or
– Ls contains a key cycle (resp. the encrypts relation onLs is not compatible with ≤).

Indeed if k is deducible from Ls then enc(k, k) is deducible from Ls. Hence there is
a deducible message containing a key cycle and for which the encrypts relation is not
compatible with the order ≤. If there are no deducible keys then it can be easily shown
that the encrypts relation on any deducible message is included in the encrypts relation
on Ls, hence the equivalences in the proposition.

Decidability. In what follows, a solution of C for the true predicate w.r.t. an arbitrary
list is said to be a partial solution to C. A key is a term of sort Key.

We show how to decide the existence of key cycles or the conformation to an order
in polynomial time for solved constraint systems without variables of sort Key. Indeed,
the instantiation of key variables can be guessed in advance (see the next section). Note
that the set of messages on which our two predicates are applied usually contains all
messages sent on the network and possibly some additional intruder knowledge.

Proposition 2. Let C be a solved constraint system without variables of sort Key and
L be a list of messages such that V(Ls) ⊆ V(C) and lhs(C) ⊆ Ls. Let K be a set of
names of sort Key such that Lsθ �	 k for any θ partial solution of C and for any k ∈ K .
Let ≤ be a partial order onK .

– Deciding whether C has a solution for PK
kc w.r.t. L can be done in O(|L|+|K|2).

– Deciding whether C has a solution for P
K

≤ w.r.t. L can be done in O(|L|+|K|2).

Since the keys of K are not deducible from Lsθ, for any θ partial solution of C, we
know by Proposition 1 that it is sufficient to look at the encrypts relation only on Lsθ
(and not on every deducible term).

Since C is solved, any constraint of C is of the form T � x or T � tt. For each
variable x of C we denote Tx = min{T | T � x ∈ C}. Let tx be the term obtained by
pairing all terms of Tx (in some arbitrary order). We construct the following substitution
τ = τ1 . . . τq, where q is the number of variables in C, and τj is defined inductively as
follows:

- dom(τ1) = {x1} and x1τ1 = tx1

- τj+1 = τj ∪ {txi
τj/xi}, where i = min{i′ | xi′ /∈ dom(τj)}.

The construction is correct by the definition of a constraint system. It is clear that τ is a
partial solution of C.

We construct the following directed graph G = (K,A) as follows: if k encrypts k′

in Ls then (k, k′) ∈ A; and, if k encrypts x in Ls (where x ∈ V(Ls)) then (k, k′) ∈ A
for all k′ ρ1 xτ . The graph captures exactly the encrypts relation induced by τ on C and
any possible encrypts relation is contained in the graph.

Lemma 1. Let θ be a partial solution of C and k, k′ ∈ K be two non deducible keys,
that is Lsθ �	 k, k′. If k ρLsθ

e k′, that is k encrypts k′ in Lsθ then (k, k′) ∈ A. Con-
versely, if (k, k′) ∈ A then k ρLsτ

e k′, that is k encrypts k′ in Lsτ .
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We deduce that deciding whether C has a solution for PK
kc w.r.t. L can be done simply

by deciding whether the graph G has cycles. Indeed, if there is a solution θ such that
there is a cycle (k1, . . . , kn) in Lsθ, that is, for each i we have kiρ

Lsθ
e ki+1, then (by

Lemma 1) (ki, ki+1) ∈ A for each i, that is (k1, . . . , kn) is a cycle in the graph G.
Conversely, if (k1, . . . , kn) is a cycle in G then, again by Lemma 1, τ is a solution of
C for PK

kc w.r.t. L.

Deciding whether C has a solution for P
K

≤ w.r.t. L can be done by deciding whether
the graph G has the following property PG: there is (k, k′) ∈ A such that k ≤ k′. And

indeed, if there is a solution θ such that P
K

≤ holds on Lθ, that is PK
≤ does not hold on

Lθ, then there are k, k′ ∈ K such that kρLsθ
e k′ and k ≤ k′. Hence (k, k′) ∈ A and

k ≤ k′. That is the property PG on the graph G holds. Conversely, if the property PG

holds then there are k, k′ ∈ K such that k encrypts k′ in Lτ and k ≤ k′, that is τ is a

solution of C for P
K

≤ w.r.t. L.
The graph can be constructed in O(|Ls|+ |K|2). Testing for cycles and verifying

property PG can be simply done by traversing the graph in O(|K|2).

NP-Completeness. Consider a constraint system C, a set K of names of sort Key and
a list of messages L such that V(Ls) ⊆ V(C) and lhs(C) ⊆ Ls. We want to decide
the existence of a solution of C for PK

kc (resp. PK
≤ ) w.r.t. L. By Proposition 1, there is a

solution if and only if

1. either there exists k∈K such that there exists a partial solution toCk
def= C∧Ls � k,

2. or no key from k ∈ K is deducible (that is Lsθ � k, for all θ partial solution of C)
and C has a solution for PK

kc (resp. PK
≤ ) w.r.t. L.

We guess whether we are in case 1 or 2 and in case 1 we also guess which key is de-
ducible. In the first case, we check whetherCk has a partial solution in non-deterministic
polynomial time using Corollary 1. In the second case, we guess an instantiation θ of
variables of sort Key and of codomain the set of keys appearing in L (a finite set). Then
we check whether Cθ has a solution for PK

kc (resp. PK
≤ ) w.r.t. Lθ using Theorem 1 and

Proposition 2.
NP-hardness is obtained by adapting the construction for NP-hardness provided

in [25]. More precisely, we consider the reduction of the 3SAT problem to our prob-
lem. For any 3SAT boolean formula we construct a protocol such that the intruder can
deduce a key cycle if and only if the formula is satisfiable. The construction is the same
as in [25] (pages 15 and 16) except that, in the last rule, the participant responds with
the term enc(k, k), for some fresh key k (initially secret), instead of Secret. Then it
is easy to see that the only way to produce a key cycle on a secret key is to play this
last rule which is equivalent, using [25], to the satisfiability of the corresponding 3SAT
formula.

4.2 Timestamps

For modeling timestamps, we introduce a new sort Time ⊆ Msg for time and we as-
sume an infinite number of names of sort Time, represented by rational numbers or in-
tegers. We assume that the only two sorts are Time and Msg. Any value of time should
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be known to an intruder, that is why we add to the deduction system the rule
S � a

for any name a of sort Time. All the previous results can be easily extended to such a
deduction system since ground deducibility remains decidable in polynomial time.

To express relations between timestamps, we use timed constraints. An integer timed
constraint or a rational timed constraint T is a conjunction of formulas of the form

Σk
i=1αixi � β,

where the αi and β are rational numbers, � ∈ {<,≤}, and the xi are variables of sort
Time. A solution of a rational (resp. integer) timed constraint T is a closed substitution
σ = {x1 = c1, . . . , xk = ck}, where the ci are rationals (resp. integers), that satisfies
the constraint.

Timed constraints between the variables of sort Time are expressed through satisfia-
bility of security properties.

Definition 6. A predicate P is a timed property if P is generated by some (rational or
integer) timed constraint T , that is if T has variables x1, . . . , xk then for any list L of
messages P (L) holds if and only if

– L contains exactly k messages t1, . . . , tk of sort Time that appear in this order in
the list, and

– T (t1, . . . , tk) is true.

Such timed properties can be used for example to say that a timestamp x1 must be
fresher than a timestamp x2 (x1 ≥ x2) or that x1 must be at least 30 seconds fresher
than x2 (x1 ≥ x2 + 30).

Example 6. We consider the Wide Mouthed Frog Protocol [10].

A→ S : A, enc(〈Ta, B,Kab〉,Kas)
S → B : enc(〈Ts, A,Kab〉,Kbs)

A sends to a server S a fresh key Kab intended for B. If the timestamp Ta is fresh
enough, the server answers by forwarding the key to B, adding its own timestamps. B
simply checks whether this timestamp is older than any other message he has received
from S. As explained in [10], this protocol is flawed because an attacker can use the
server to keep a session alive as long as he wants by replaying the answers of the server.

This protocol can be modeled by the following constraint system:

S1
def= {a, b, 〈a, enc(〈0, b, kab〉, kas)〉} � 〈a, enc(〈xt1 , b, y1〉, kas)〉, xt2 (4)

S2
def= S1 ∪ {enc(〈xt2 , a, y1〉, kbs)} � 〈b, enc(〈xt3 , a, y2〉, kbs)〉, xt4 (5)

S3
def= S2 ∪ {enc(〈xt4 , b, y2〉, kas)} � 〈a, enc(〈xt5 , b, y3〉, kas)〉, xt6 (6)

S4
def= S3 ∪ {enc(〈xt6 , a, y3〉, kbs)} � enc(〈xt7 , a, kab〉, kbs) (7)

where y1, y2, y3 are variables of sort Msg and xt1 , . . . , xt7 are variables of sort Time.
We add explicitly the timestamps emitted by the agents on the right hand side of the
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constraints (that is in the messages expected by the participants) since the intruder can
schedule the message transmission whenever he wants.

Initially, the intruder simply knows the names of the agents and A’s message at
time 0. Then S answers alternatively to requests from A and B. Since the intruder
controls the network, the messages can be scheduled as slow (or fast) as the intruder
needs it. The server S should not answer if A’s timestamp is too old (let’s say older
than 30 seconds) thus S’s timestamp cannot be too much delayed (no more than 30
seconds). This means that we should have xt2 ≤ xt1 + 30. Similarly, we should have
xt4 ≤ xt3 + 30 and xt6 ≤ xt5 + 30. The last rule corresponds to B’s reception. In this
scenario, B does not perform any check on the timestamp since it is the first message
he receives.

We say that there is an attack if there is a solution to the constraint system that
satisfies the previously mentioned time constraints and such that the timestamp received
by B is too fresh to come from A: xt7 ≥ 30. Formally, we consider the timed property
generated by the following timed constraint: xt2 ≤ xt1 +30 ∧ xt4 ≤ xt3 +30 ∧ xt6 ≤
xt5 + 30 ∧ xt7 ≥ 30. Then the substitution corresponding to the attack is σ = {y1 =
y2 = y3 = y4 = kab, xt1 = 0, xt2 = xt3 = 30, xt4 = xt5 = 60, xt6 = xt7 = 90}.

Proposition 3. Any timed property can be decided in non-deterministic polynomial
time on solved constraints.

Proof (sketch). Let C be a solved constraint, P a timed property and T a timed con-
straint generating P . Let y1, . . . , yn be the variables of sort Msg in C and x1, . . . , xk

the variables of sort Time in C. Clearly, any substitution σ of the form σ(yi) = ui

where ui ∈ Si for some Si � yi ∈ C and σ(xi) = ti for ti any constant of sort Time
is a solution of C for the true property. Let σ′ be a the restriction of σ to the timed
variables x1, . . . , xk.

Clearly, σ is a solution ofC forP if and only if σ′ is a solution to T . Thus there exists
a solution of C for P if and only if T is satisfiable. The satisfiability of T is solved by
usual linear programming [26]. It is polynomial in the case of rational timed constraints
and it is NP-complete in the case of integer timed constraints, thus the result.

NP-Completeness. We deduce by combining Theorem 1 and Proposition 2 that the
problem of deciding timed properties on arbitrary constraint systems is in NP.

NP-hardness directly follows from the NP-hardness of constraint system solving by
considering a predicate corresponding to an empty timed constraint.

5 Further Work

We have shown how the generic approach we have derived from [11,13,25] can be used
to retrieve two NP-completeness results. The first one enables us to detect key cycles
while the second one enables us to solve constraint systems with timed constraints. In
both cases, we had to provide a decision procedure only for a simple class of constraint
systems. Since the constraint-based approach [11,13,25] has already been implemented
in Avispa [3], we plan, using our results, to adapt this implementation to the case of key
cycles and timestamps.
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More generally, taking advantage of our generic approach, we would like to explore
how decision procedures of distinct security properties can be combined on solved con-
straint systems. In addition, in our two cases, decidability on solved constraints systems
was quite simple. It would be interesting to understand which classes of properties can
be decided in the same manner.

Regarding key cycles, our approach is valid for a bounded number of sessions only.
Secrecy is undecidable in general [15] for an unbounded number of sessions. Such an
undecidability result could be easily adapted to the problem of detecting key cycles.
Several decidable fragments have been designed [24,12,8,27] for secrecy and an un-
bounded number of sessions. We plan to investigate how such fragments could be used
to decide key cycles.

Acknowledgment. We are particularly grateful to Michaël Rusinowitch and Bogdan
Warinschi for their very helpful suggestions.
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the automated validation of internet security protocols and applications. In Proc. of Computer
Aided Verification (CAV’05), volume 3576 of LNCS, 2005.

4. M. Backes and B. Pfitzmann. Symmetric encryption in a simulatable Dolev-Yao style cryp-
tographic library. In Proc. 17th IEEE Computer Science Foundations Workshop (CSFW’04),
pages 204–218, 2004.

5. M. Backes, B. Pfitzmann, and A. Scedrov. Key-dependent message security under active
attacks. Cryptology ePrint Archive, Report 2005/421, 2005.

6. M. Bellare and P. Rogaway. Entity authentication and key distribution. In Advances in
Cryptology – Crypto ’93, 13th Annual International Cryptology Conference, volume 773 of
LNCS, pages 232–249, 1993.

7. B. Blanchet. An efficient cryptographic protocol verifier based on Prolog rules. In Proc. 14th
IEEE Computer Security Foundations Workshop (CSFW’01), pages 82–96, 2001.

8. B. Blanchet and A. Podelski. Verification of cryptographic protocols: Tagging enforces ter-
mination. In Andrew Gordon, editor, Foundations of Software Science and Computation
Structures (FoSSaCS’03), volume 2620 of LNCS, April 2003.

9. L. Bozga, C. Ene, and Y. Lakhnech. A symbolic decision procedure for cryptographic pro-
tocols with time stamps. In Proc. 15th International Conference on Concurrency Theory
(CONCUR’04), LNCS, pages 177–192, London, England, 2004. Springer-Verlag.

10. J. Clark and J. Jacob. A survey of authentication protocol literature. Available at
http://www.cs.york.ac.uk/∼jac/papers/drareviewps.ps, 1997.

11. H. Comon-Lundh. Résolution de contraintes et recherche d’attaques pour un nombre borné
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14. V. Cortier and E. Zălinescu. Deciding key cycles for security protocols, extended version.
Available at http://www.loria.fr/∼zalinesc/papers/cz keycycles.ps.

15. N. Durgin, P. Lincoln, J. Mitchell, and A. Scedrov. Undecidability of bounded security
protocols. In Proc. of the Workshop on Formal Methods and Security Protocols, 1999.

16. S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer and System
Sciences, 28:270–299, 1984.

17. R. Janvier, Y. Lakhnech, and L. Mazare. (De)Compositions of Cryptographic Schemes and
their Applications to Protocols. Cryptology ePrint Archive, Report 2005/020, 2005.

18. P. Laud. Encryption cycles and two views of cryptography. In Nordic Workshop on Secure
IT Systems (NORDSEC’02), 2002.

19. G. Lowe. Breaking and fixing the Needham-Schroeder public-key protocol using FDR. In
Tools and Algorithms for the Construction and Analysis of Systems (TACAS’96), volume
1055 of LNCS, pages 147–166. Springer-Verlag, March 1996.

20. G. Lowe. A hierarchy of authentication specification. In 10th Computer Security Foundations
Workshop (CSFW ’97), pages 31–44, 1997.

21. D. Micciancio and B. Warinschi. Soundness of formal encryption in the presence of active
adversaries. In Proc. 1st Theory of Cryptography Conference (TCC’04), volume 2951 of
LNCS, pages 133–151, 2004.

22. J. K. Millen and V. Shmatikov. Constraint solving for bounded-process cryptographic pro-
tocol analysis. In Proc. 8th ACM Conference on Computer and Communications Security
(CCS’01), pages 166–175, 2001.

23. R. M. Needham and M. D. Schroeder. Using encryption for authentication in large networks
of computers. Commun. ACM, 21(12):993–999, 1978.

24. R. Ramanujam and S. P. Suresh. Tagging makes secrecy decidable for unbounded nonces as
well. In Proc. of the 23rd Conference on Foundations of Software Technology and Theoretical
Computer Science (FSTTCS’03), Mumbai, 2003.

25. M. Rusinowitch and M. Turuani. Protocol insecurity with finite number of sessions and
composed keys is NP-complete. Theoretical Computer Science, 299:451–475, 2003.

26. A. Schrijver. Theory of Linear and Integer Programming. Wiley, 1998.
27. K. N. Verma, H. Seidl, and T. Schwentick. On the complexity of equational Horn clauses. In

Proc. of the 22th International Conference on Automated Deduction (CADE 2005), Lecture
Notes in Computer Science, pages 337–352. Springer-Verlag, 2005.



Automating Verification of Loops by Parallelization�

Tobias Gedell and Reiner Hähnle
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Abstract. Loops are a major bottleneck in formal software verification, because
they generally require user interaction: typically, induction hypotheses or invari-
ants must be found or modified by hand. This involves expert knowledge of the
underlying calculus and proof engine. We show that one can replace interactive
proof techniques, such as induction, with automated first-order reasoning in or-
der to deal with parallelizable loops, where a loop can be parallelized whenever
it avoids dependence of the loop iterations from each other. We develop a depen-
dence analysis that ensures parallelizability. It guarantees soundness of a proof
rule that transforms a loop into a universally quantified update of the state change
information represented by the loop body. This makes it possible to use auto-
matic first order reasoning techniques to deal with loops. The method has been
implemented in the KeY verification tool. We evaluated it with representative case
studies from the JAVA CARD domain.

1 Introduction

It is generally agreed that loops and recursive calls are the main bottleneck in formal
software verification. The source of the problem is that loops and recursion are proof
theoretically handled either with invariant rules or with induction. In both cases, it is
necessary in general to strengthen invariants and induction hypotheses in order to make
proofs go through. There are also many technicalities with those rules that make their
application difficult. A number of heuristic techniques have been developed to guide
induction proofs and to find appropriate induction hypotheses (for example, [6,8]).

The context of the present work is formal verification of functional properties of se-
quential JAVA programs [1]. Here the situation is aggravated by the fact that the above
mentioned techniques have been developed for relatively simple functional program-
ming languages and are not readily applicable to a complex, imperative, object-based
language such as JAVA (similar comments apply to C, C++, or C#). Hence, not only is
there a lack of heuristic techniques that help to automate proofs about loops in JAVA, but
due to the complexity of loop rules in imperative languages [5] user interaction involves
a high amount of technical knowledge and is extremely expensive.

A recent divide-and-conquer technique for decomposition of induction proofs [15]
works for imperative programs, but it is targeted at simplifying user interaction rather
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than eliminating it. In order to deal automatically with loops in verification of JAVA-like
languages there are not too many options at present: abstraction [13] and approximation
[10] are incomplete and in some scenarios even unsound. They also impose limits on
what can be expressed in specifications. If the number of loop iterations is known and
small then it is possible to use symbolic execution with finite unwinding [11]. The state
of the art in JAVA verification is, however, that complex user interaction is unavoidable
for almost all loops [7].

In this paper we present an automatic deductive verification technique that is applica-
ble to many loops occurring in practically relevant JAVA programs. Like any automatic
method it cannot handle all loops, but it is seamlessly integrated with a complete in-
teractive verification system. In addition, it computes useful information even when it
fails. To make things concrete, we look at an example (where e(i) is an expression with
an occurrence of i): for (int i = 0; i < a.length; i++)a[i] = e(i);

The effect of this piece of code is simply to initialize all elements of the array a
with the expression e(i) at index i. Since the length of a is in general unknown, it is
not possible to deal with this loop by finite unwinding. An abstraction of this program
has difficulties to record that the value a.length depends on a. On the other hand, in
most cases it is overkill to use induction on such a simple problem. In order to describe
the effect of such loops it is usually sufficient to be able to quantify universally over
state update expressions that are performed in parallel. From a proof theoretic point
of view, quantified state modifiers can be handled by skolemization and simplification
[17], hence, they are amenable to automated proof search.

In general, the initialization, guard and step expressions, as well as the loop body
could be more complicated than in the example above. We are looking for a technique
that does not rely on the target program being in a particular syntactic form. Of course,
we need to make certain assumptions to ensure that the effect of a loop is expressible
as a quantified update. This problem is closely related to loop vectorization and par-
allelization and it is possible to use notions developed in these fields. The main issue
is to exclude certain data dependencies. For example, in the case of e(i) ≡ a[i - 1]
the code above cannot be transformed into a quantified state update, because there exist
dependencies between the updates.

The contribution of this paper is a deductive verification method for treating loops1

based on the ideas just sketched. Its main properties are:

Robustness. The target program needs not to be in a particular syntactic form. This is
achieved by computing the accumulated effect of the expressions and statements
occurring in the loop by symbolic execution before checking the dependencies in
the loop body (Section 4 and Section 5).

Soundness. There is an automatic dependence analysis that guarantees sound applica-
bility (Section 6).

Automation. Proof theoretic treatment of the effect of loops is not by induction but by
universally quantified state modification and is automatic (Section 7).

1 The technique is applicable both to for- and while-loops. In this presentation we concentrate
on the former to make the presentation more concise, and because for-loops are much more
common in our application domain JAVA CARD.
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Relevance. The method applies not only to a few academic examples, but to a substan-
tial number of loops in realistic programs. An experimental evaluation of a number
of realistic JAVA CARD programs confirms this (Section 9).

2 Basic Definitions

The platform for our experiments is the KeY tool [1], which features an interactive
theorem prover for formal verification of sequential JAVA programs.

2.1 Dynamic Logic for JAVA CARD

In KeY the target program to be verified and its specification are both modeled in an
instance of a dynamic logic (DL) [12] calculus called JAVA DL [3]. JAVA DL extends
other variants of DL used for theoretical investigations or verification purposes, because
it handles such phenomena as side effects, aliasing, object types, exceptions, and finite
integer types. JAVA DL axiomatizes full JAVA minus multi-threading, floating point
types, and dynamic class loading.

Deduction in the JAVA DL calculus is based on symbolic program execution and
simple program transformations and so is close to a programmer’s understanding of
JAVA. It can be seen as a modal logic with a modality 〈p〉 for every program p, where
〈p〉 refers to the final state (if p terminates normally) that is reached after executing p.

The program formula 〈p〉φ expresses that the program p terminates in a state in
which φ holds without throwing an exception. A formula φ → 〈p〉ψ is valid if for
every state S satisfying precondition φ a run of the program p starting in S terminates
normally, and in the terminating state the postcondition ψ holds.

The programs in JAVA DL formulas are basically JAVA code. Each rule of the JAVA

DL calculus specifies how to execute symbolically one particular statement, possibly
with additional restrictions. When a loop or a recursive method call is encountered, it
is in general necessary to perform induction over a suitable data structure. In this paper
we show how induction can be avoided in the case of parallelizable loops.

2.2 State Updates

In JAVA (as in other object-oriented programming languages), different object type vari-
ables may refer to the same object. This phenomenon, called aliasing, causes difficulties
for the handling of assignments in a calculus for JAVA DL. For example, whether or not
the formula o1.f

.= 1, where
.= denotes equality, holds after (symbolic) execution of the

assignment o2.f = 2;, depends on whether o1 and o2 refer to the same object. There-
fore, JAVA assignments cannot be symbolically executed by syntactic substitution. In
the JAVA DL calculus a different solution is used, based on the notion of (state) up-
dates.

Definition 1. Atomic updates are of the form loc :=val, where val is a logical term
without side effects and loc is either (i) a program variable v, or (ii) a field access o.f,
or (iii) an array access a[i]. Updates may appear in front of any formula, where they
are surrounded by curly brackets for easy parsing. The semantics of {loc :=val}φ is
the same as that of 〈loc=val;〉φ.
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Definition 2. General updates are defined inductively based on atomic updates. If U
and U′ are updates then so are: (i) U, U′ (parallel composition), (ii) U; U′ (sequential
composition), (iii) UU′ (applied on update), (iv) \if (b) {U}, where b is a quantifier-
free formula (conditional execution), (v) \for T s; U(s), where s is a variable over a
well-ordered type T and U(s) is an update with occurrences of s (quantification).

The semantics of sequential updates, conditional updates and updates applied on
updates is obvious; the meaning of a parallel update is the simultaneous application of
all its constituent updates except when two left hand sides refer to the same location:
in this case the syntactically later update wins. This models natural program execu-
tion flow. The semantics of \for T s; U(s) is the parallel execution of all updates in⋃

x∈T{s :=x;U(s)}. As for parallel updates, a last-win clash-semantics is in place: the
maximal update with respect to the well-order on T and the syntactic order within each
U(s) wins.

The restriction that right-hand sides of updates must be side effect-free is not limiting:
by introducing fresh local variables and symbolic execution of complex expressions the
JAVA DL calculus rules normalize arbitrary assignments so that they meet the restric-
tions of updates. A full formal treatment of updates is in [17].

3 Outline of the Approach

Let us look at the following example:

f o r ( i n t i = 1; i < a.length; i++)
i f (c != 0) a[i] = b[i+1];
e l s e a[i] = b[i-1];

In a first step the loop initialization expression is transformed out of the loop and sym-
bolically executed. The reason is that the initialization expression might be complex
and have side effects. This results in a state S = {i :=1}. The remaining loop now has
the form: for (; i < a.length; i++)...

We proceed to symbolically execute the loop body, the step expression and the guard
for a generic value of i. In order to do this correctly, we must eliminate from the cur-
rent state all locations that can potentially be modified in the body, step, or guard. In
Section 4 we describe an algorithm that approximates such a set of locations rather pre-
cisely. Applied to the present example we obtain i and a[i] as modifiable locations.
Consequently, generic execution of the loop body, step, and guard starts in the empty
state. Note that the set of modifiable locations does not include, for example, c. This is
important, because if S contains, say, c :=1, we would start the execution in the state
{c :=1} and the resulting state would be much simplified.

In our example, symbolic execution of one loop iteration starting in the empty state
gives S ′ = {i :=i+ 1, \if (c � .= 0) {a[i] :=b[i+1]}, \if (c .= 0) {a[i] :=b[i-1]}},
where the step and guard expressions were executed as well.

The next step is to check whether the state update S ′ resulting from the execution
of the generic iteration contains dependencies that make it impossible to represent the
effect of the loop as a quantified update. For S ′ this is the case if and only if c is 0 and a
and b are the same array. In this case, the body amounts to the statement a[i] = a[i-1]
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which contains a data dependence that cannot be parallelized. All other dependencies
can be captured by parallel execution of updates with last-win clash-semantics. The
details of the dependence analysis are explained in Section 6. In the example it results
in a logical constraint C that, among other things, contains the disjunction of c � .= 0 and
a � .= b. A further logical constraint D strengthening C is computed which, in addition,
ensures that the loop terminates normally. In the example, normal termination is ensured
by a and b not being null and b having enough elements, that is, b.length > a.length.

At this point the proof is split into two cases using cut formula D. Under the assump-
tion D the loop can be transformed into a quantified update. If D is not provable, then
the loop must be also tackled with a conventional induction rule, but one may use the
additional assumption ¬D, which may well simplify the proof.

For the sake of illustration assume now S and S ′ both contain {c :=1} and the
termination constraint in D holds. In this case, we can additionally simplify S ′ to
{c :=1, i :=i+ 1, a[i] :=b[i+1]}.

In the final step we synthesize from (i) the initial state S , (ii) the effect of a generic
execution of an iteration S ′ and (iii) the guard, a state update, where the loop variable i
is universally quantified. The details are explained in Section 7. The result for the ex-
ample is:

\for int I; {i := I}{\if (i ≥ 1∧ i< a.length) {c :=1, i :=i+ 1, a[i] :=b[i+1]}}

The for-expression is a universal first order quantifier whose scope is an update that
contains occurrences of the variable i (see Def. 2 and [17]). Subexpressions are first
order terms that are simplified eagerly while symbolic execution proceeds. First order
quantifier elimination rules based on skolemization and instantiation are applicable,
for example, for any positive value j such that j < a.length we obtain immediately
the update a[ j] :=b[ j+1] by instantiation. Proof search is performed by the usual first
order strategies without user interaction.

4 Computing State Modifications

In this section we describe how we compute the state modifications performed by a
generic loop iteration. As a preliminary step we move the initialization out of the loop
and execute it symbolically, because the initialization expression may contain side-
effects. We are left with a loop consisting of a guard, a step expression and a body:

f o r (; guard; step) body (1)

We want to compute the state modifications performed by a generic iteration of the
loop. A single loop iteration consists of executing the body, evaluating the step ex-
pression, and testing the guard expression. This behavior is captured in the follow-
ing compound statement where dummy is needed, because JAVA expressions are not
statements.

body; step; boolean dummy = guard; (2)
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We proceed to symbolically execute the compound statement (2) for a generic value
of the loop variable. This is quite similar to computing the strongest post condition of a
given program. Platzer [16] has worked out the details of how to compute the strongest
post condition in the specific JAVA program logic that we use and our methods are based
on the same principles. Our method handles the fragment of JAVA that the symbolic
execution machinery of KeY handles, which is JAVA CARD.

Let p be the code in (2). The main idea is to try to prove validity of the program for-
mula S〈p〉 F, where F is an arbitrary but unspecified non-rigid predicate that signifies
when to stop symbolic execution. Symbolic execution of p starting in state S eventually
yields a proof tree whose open leaves are of the form Γ → U F for some update ex-
pression U. The predicate F cannot be shown to be true or false in the program logic.
Therefore, after all instructions in p have been executed, symbolic execution is stuck.
At this stage we extract two vectors�Γ and �U consisting of corresponding Γ and U from
all open leaf nodes. Different leaves correspond to different computation branches in
the loop body.

Example 1. Consider the following statement p:

i f (i > 2) a[i] = 0 e l s e a[i] = 1; i = i + 1;

After the attempt to prove 〈p〉 F becomes stuck, i.e. all instructions have been symboli-
cally executed, there are two open leaves:

V ∧ i> 2 → {a[i] :=0, i :=i+ 1}F
V ∧ i �> 2 → {a[i] :=1, i :=i+ 1}F

where V stands for ¬(a = null) ∧ i ≥ 0 ∧ i < a.length. From these we extract the
following vectors:

�Γ ≡ 〈V ∧ i> 2,V ∧ i �> 2〉
�U ≡ 〈{a[i] :=0, i :=i+ 1}, {a[i] :=1, i :=i+ 1}〉

��

If the loop iteration throws an exception, abruptly terminates the loop, or when the
automatic strategies are not strong enough to execute all instructions in p to completion,
some open leaf will contain unhandled instructions and be of a form different from
Γ → U F. We call these failed leaves in contrast to leaves of the form Γ → U F that are
called successful.

If a failed leaf can be reached from the initial state, our method cannot handle the
loop. We must, therefore, make sure that our method is only applied to loops for which
we have proven that no failed leaf can be reached. In order to do this we create a vector
�F consisting of the Γ extracted from all failed leaves and let the negation of �F become
a condition that needs to be proven when applying our method.

Example 2. In Example 1 only the successful leaves are shown. When all instructions
have been symbolically executed, there are in addition failed leaves of following form:

a
.= null → . . . F

a � .= null ∧ i< 0 → . . . F
a � .= null ∧ i �< a.length → . . . F
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From these we extract the following vector:

�F ≡ 〈a .= null, a � .= null ∧ i< 0, a � .= null ∧ i �< a.length〉 ��

Note that symbolic execution discards any code that cannot be reached. As a conse-
quence, an exception that occurs at a code location that cannot be reached from the
initial state will not occur in the leaves of the proof tree. This means that our method is
not restricted to code that cannot throw any exception, which would be very restrictive.

So far we said nothing about the state in which we start a generic loop iteration.
Choosing a suitable state requires some care, as the following example shows.

Example 3. Consider the following code:

c = 1;
i = 0;
f o r (; i < a.length; i++) {

i f (c != 0) a[i] = 0;
b[i] = 0; }

At the beginning of the loop we are in state S = {c :=1, i :=0}. It is tempting, but
wrong, to start the generic loop iteration in this state. The reason is that i has a specific
value, so one iteration would yield {a[0] :=0, b[0] :=0, i :=1}, which is the result
after the first iteration, not a generic one. The problem is that S contains information
that is not invariant during the loop. Starting the loop iteration in the empty state is
sound, but suboptimal. In the example, we get {\if (c � .= 0) {a[i] :=0}, b[i] :=0,
i :=i+1}, which is unnecessarily imprecise, since we know that c is equal to 1 during
the entire execution of the loop. ��

We want to use as much information as possible from the state Sinit at the beginning of
the loop and only remove those parts that are not invariant during all iterations of the
loop. Executing the loop in the largest possible state corresponds to performing dead
code elimination. When we reach a loop of the form (1) in state Sinit we proceed as
follows:

1. Execute boolean dummy = guard; in state Sinit and obtain S . We need to evaluate
the guard since it may have side effects. Evaluation of the guard might cause the
proof to branch, in which case we apply the following steps to each branch. If our
method cannot be applied to at least one of the branches we backtrack to state Sinit

and use the standard rules to prove the loop.
2. Compute the vectors�Γ, �U and �F from (2) starting in state S .
3. Obtain S ′ by removing from S all those locations that are modified in a successful

leaf, more formally: S ′ = {(� :=e) ∈ S | � �∈ mod(�U)}, where mod(�U) is the set of
locations whose value in �U differs from its value in S .

4. If S = S ′ then stop; otherwise let S become S ′ and goto step 2.

The algorithm terminates since the number of locations that can be removed from the
initial state is bound both by the textual size of the loop and all methods called by
the loop. and, in case the state does not contain any quantified update, the size of the
state itself. The final state of this algorithm is a greatest fixpoint containing as much
information as possible from the initial state S . Let us call this final state Siter.
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Example 4. Example 3 yields the following sequence of states:

Round Start state State modifications New state Remark
1 {c :=1, i :=0} {a[0] :=0, b[0] :=0, i :=1} {c :=1}
2 {c :=1} {a[i] :=0, b[i] :=0, i :=i+1} {c :=1} Fixpoint ��

Computing the set mod(�U) can be difficult. Assume S contains a[c] :=0 and �U con-
tains a[i] :=1. If i and c can have the same value then a[c] should be removed from
S , otherwise it is safe to keep it. In general it is undecidable whether two variables can
assume the same value. One can use a simplified version of the dependence analysis
described in Section 6 (modified to yield always a boolean answer) to obtain an ap-
proximation of location collision. The dependence analysis always terminates so this
does not change the overall termination behavior.

A similar situation occurs when S contains a.f :=0 and �U contains b.f :=1. If a and
b are references to the same object then a.f must be removed from the new state. Here
we make a safe approximation and remove a.f unless we can show that a and b refer to
different objects.

5 Loop Variable and Loop Range

For the dependence analysis and for creating the quantified state update later we need to
identify the loop variable and the loop range. In addition, we need to know the value that
the loop variable has in each iteration of the loop, that is, the function from the iteration
number to the value of the loop variable in that iteration. This is a hard problem in
general, but whenever the loop variable is incremented or decremented with a constant
value in each iteration, it is easy to construct this function. At present we impose this as
a restriction: the update of the loop variable must have the form l := l op e, where l

is the loop variable and e is invariant during loop execution. It would be possible to let
the user provide this function at the price of making the method less automatic.

To identify the loop variable we compute a set of candidate pairs (l, e) where l

is a location that is assigned the expression e, satisfying the above restriction, in all
successful leaf nodes of the generic iteration. Formally, this set is defined as {(l, e) |∧

U∈�U{l :=e} ∈ U}. The loop variable is supposed to have an effect on the loop range;
therefore, we remove all those locations from the candidate set that do not occur in the
guard. If the resulting set consists of more than one location, we arbitrarily choose one.

The remaining candidates should be eliminated, because they will all cause data
flow-dependence. A candidate is eliminated by transforming its expression into one
which is not dependent on the candidate location. For example, the candidate l, intro-
duced by the assignment l = l + c;, can be eliminated by transforming the assignment
into l = init + I * c;, where init is the initial value of l and I the iteration number.

Example 5. Consider the code in Example 1 which gives the following vector �U of
updates occurring in successful leaves:

�U ≡ 〈{a[i] :=0, i :=i+ 1}, {a[i] :=1, i :=i+ 1}〉
We identify the location i as the loop variable, assuming that i occurs in the guard. ��
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To determine the loop range we begin by computing the specification of the guard in a
similar way as we computed the state modifications of a generic iteration in the previous
section. We attempt to prove 〈boolean dummy = guard;〉 F. From the open leaves of
the form Γ → {dummy :=e, . . .}F, we create the formula GS which characterizes when
the guard is true. Formally, GS is defined as

∨
Γ∈�Γ(Γ ∧ e

.= true). The formula GF
characterizes when the guard is not successfully evaluated. We let GF be the disjunction
of all Γ from the open leaves that are not of the form above.

Example 6. Consider the following guard g ≡ i < a.length. When all instructions in
the formula 〈boolean dummy = g;〉 F have been symbolically executed, there are two
successful leaves:

a � .= null ∧ i< a.length → {dummy := true}F
a � .= null ∧ i �< a.length → {dummy := false}F

From these we extract the following formula GS (before simplification):

(a � .= null ∧ i< a.length ∧ true
.= true) ∨

(a � .= null ∧ i �< a.length ∧ false
.= true)

When the instructions have been executed, there is also the failed leaf a
.= null → . . . F.

From it we extract the following formula GF ≡ a
.= null. ��

After having computed the specification of the guard and identified the loop variable
we determine the initial value start of the loop variable from the initial state Sinit. If
an initial value cannot be found we let it be unknown. We try to determine the final
value end of the loop variable from the successful leaves of the guard specification.
Currently, we restrict this to guards of the form l op e. If we cannot determine the
final value, we let it be unknown. We had already computed the step value during loop
variable identification.

The formula LR characterizes when the value of i is within the loop range. It is
defined as follows, which expresses that there exists an iteration with the particular
value of the loop variable and that the iteration can be reached:

LR ≡ GS ∧ ∃n.

(
n ≥ 0 ∧ i

.= start + n∗ step ∧
∀m. 0 ≤ m< n → {i :=start + m∗ step}GS

)
It is important that the loop terminates, otherwise, our method is unsound. We, there-

fore, create a termination constraint LT that needs to be proven when applying our
method. The termination constraint says that there exists a number of iterations, n, after
which the guard formula evaluates to false. The constraint LT is defined as:

LT ≡ ∃n. n ≥ 0∧{i:=start + n∗ step}¬GS

6 Dependence Analysis

Transforming a loop into a quantified state update is only possible when the iterations
of the loop are independent of each other. Two loop iterations are independent of each
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other if the execution of one iteration does not affect the execution of the other. Accord-
ing to this definition, the loop variable clearly causes dependence, because each iteration
both reads its current value and updates it. We will, however, handle the loop variable by
quantification. Therefore, it is removed from the update before the dependence analysis
is begun. The problem of loop dependencies was intensely studied in loop vectoriza-
tion and parallelization for program optimization on parallel architectures. Some of our
concepts are based on results in this field [2,18].

6.1 Classification of Dependencies

In our setting we encounter three different kinds of dependence; data flow-dependence,
data anti-dependence, and data output-dependence.

Example 7. It is tempting to assume that it is sufficient for independence of loop itera-
tions that the final state after executing a loop is independent of the order of execution,
but the following example shows this to be wrong:

f o r ( i n t i = 0, sum = 0; i < a.length; i++) sum += a[i];

The loop computes the sum of all elements in the array a which is independent of the
order of execution, however, running all iterations in parallel gives the wrong result,
because reading and writing of sum collide. ��

Definition 3. Let SJ be the final state after executing a generic loop iteration over
variable i during which it has value J and let < be the order on the type of i.

There is a data input-dependence between iterations K �= L iff SK writes to a location
(i.e., appears on the left-hand side of an update) that is read (appears on the right hand
side or in a guard of an update) in SL. We speak of data flow-dependence when K < L
and of data anti-dependence, when K > L. There is data output-dependence between
iterations K �= L iff SK writes to a location that is overwritten in SL.

Example 8. When executing the second iteration of the following loop, the location
a[1], modified by the first iteration, is read, indicating data flow-dependence:

f o r ( i n t i = 1; i < a.length; i++) a[i] = a[i - 1];

The following loop exhibits data output-dependence:

f o r ( i n t i = 1; i < a.length; i++) last = a[i];

Each iteration assigns a new value to last. When the loop terminates, last has the value
assigned to it by the last iteration. ��

Loops with data flow-dependencies cannot be parallelized, because each iteration must
wait for a preceding one to finish before it can perform its computation.

In the presence of data anti-dependence swapping two iterations is unsound, but
parallel execution is possible provided that the generic iteration acts on the original state
before loop execution begins. In our translation of loops into quantified state updates
in Section 7 below, this is ensured by simultaneous execution of all updates. Thus,
we can handle loops that exhibit data anti-dependence. The final state of such loops
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depends on the order of execution, so independence of the order of executions is not
only insufficient (Example 7) but even unnecessary for parallelization.

Even loops with data output-dependence can be parallelized by assigning an ordinal
to each iteration. An iteration that wants to write to a location first ensures that no
iteration with higher ordinal has already written to it. This requires a total order on the
iterations. As we know the step expression of the loop variable, this order can easily
be constructed. The order is used in the quantified state update together with a last-win
clash-semantics to obtain the desired behavior.

6.2 Comparison to Traditional Dependence Analysis

Our dependence analysis is different from most existing analyses for loop paralleliza-
tion in compilers [2,18]. The major difference is that these analyses must not be ex-
pensive in terms of computation time, because the user waits for the compiler to finish.
Traditionally, precision is traded off for cost. Here we use dependence information to
avoid using induction which comes with an extremely high cost, because it typically
requires user interaction. In consequence, we strive to make the dependence analysis as
precise as possible as long as it is still fully automatic. In particular, our analysis can
afford to try several algorithms that work well for different classes of loops.

A second difference to traditional dependence analysis is that we do not require a
definite answer. When used during compilation to a parallel architecture, a dependence
analysis must give a Boolean answer as to whether a given loop is parallelizable or not.
In our setting it is useful to know that a loop is parallelizable relative to satisfaction of a
symbolic constraint. Then we can let a theorem prover validate or refute this constraint,
which typically is a much easier problem than proving the original loop.

6.3 Implementation

Our dependence analysis consists of two parts. The first part analyzes the loop and
symbolically computes a constraint that characterizes when the loop is free of depen-
dencies. The advantage of the constraint-based approach is that we can avoid to deal
with a number of very hard problems such as aliasing: for example, locations a[i] and
b[i] are the same iff a and b are references to the same array, which can be difficult
to determine. Our analysis side-steps the aliasing problem simply by generating a con-
straint saying that if a is not the same array as b then there is no dependence. The
second part of the dependence analysis is a tailor-made theorem prover that simplifies
the integer equations occurring in the resulting constraints as much as possible.

The computation of the dependence constraints uses the vectors �Γ and �U that rep-
resent successful leaves in the symbolic execution of the loop body and were obtained
as the result of a generic loop iteration in Section 4. Let Γk and Uk be the precondi-
tion, respectively, the resulting update in the k-th leaf. If the preconditions of two leaves
are true for different values in the loop range we need to ensure that the updates of the
leaves are independent of each other (Def. 3). Formally, if there exist two distinct values
K and L in the loop range and (possibly identical) leaves r and s, for which {i :=K}Γr

and {i :=L}Γs are true, then we need to ensure independence of Ur and Us. We run
our dependence analysis on Ur and Us to compute the dependence constraint Cr,s.
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We do this for all pairs of leaves and define the dependence constraint for the entire
loop as follows where LR is the loop range predicate:

C ≡
∧
r,s

((∃K,L. (K � .= L∧{i :=K}(LR∧Γr)∧{i :=L}(LR∧Γs))) → Cr,s)

Example 9. Consider the following loop that reverses the elements of the array a:

i n t half = a.length / 2 - 1;
f o r ( i n t i = 0; i <= half; i++) {

i n t tmp = a[i];
a[i] = a[a.length - 1 - i];
a[a.length - 1 - i] = tmp; }

When running the dependence analysis we get the following constraint:

C0,0 ≡ a.length < 2 ∨ half∗2< a.length

For this loop, the state Siter contains half :=a.length / 2 - 1 and the constraint is,
therefore, simplified to a.length < 2 ∨ (a.length/2)∗2< a.length+ 2. This is sim-
plified to true which makes C true and means that the loop does not contain any depen-
dencies that cannot be handled by our method. ��

7 Constructing the State Update

If we can show that the iterations of a loop are independent of each other (i.e., the con-
straint C defined in the previous section holds), we can capture all state modifications
of the loop in one update (Def. 2). Concretely, we use the following quantified update
(T is the type of the loop variable i; LR, Γr, Ur were defined in Sections 4 and 5):

Uloop ≡ \for T I; {i := I}{\if (LR) {
⋃
r

\if (Γr) {Ur}}} (3)

The conditional update inside (3) corresponds to one loop iteration, where i has the
value I. In each state only one Γ can be true so we do not need to ensure any particular
order of the updates �U.

The guard LR ensures that i is within the loop range. We must take care when using
last-win clash-semantics to handle data output-dependence. When the step is positive,
the iteration with the highest value of the loop variable should have priority over all
other iterations. This is ensured by the standard well-order on the JAVA integer types.

A complication arises when the step is negative. Then we need to reverse the order so
that the iteration with the lowest value of the loop variable has priority. Since each type
has a fixed order we need to change the state update instead: it is sufficient to replace
in (3) the update i := I with i := − I.

8 Using the Analysis in a Correctness Proof

When we encounter a loop during symbolic execution we analyze it for parallelizability
as described above and compute the dependence constraint. We replace the loop by (3)
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if no failed leaves for the iteration statement or the guard expression can be reached
(see Section 4), the loop terminates (formula LT , see Section 5), and the dependence
constraint C in Section 6.3 is valid. Taken together, this yields:

D ≡ ¬(∃I. {i := I}(LR∧
∨

i

Fi))∧¬GF ∧LT ∧C

If D does not hold, we fall back to the standard rules to verify the loop (usually
induction). In many cases it is not trivial to immediately validate or refute D. Then we
perform a cut on D in the proof and replace the loop by the quantified state update
Uloop (3) in the proof branch where D is assumed to hold. The general outline of a
proof using a cut on D is as follows:

If not Γ ⇒ D,
use standard induction

Γ ⇒ U〈for ... ; ...〉φ,D
Γ, D ⇒ UUloop〈...〉φ

Γ, D ⇒ U〈for ... ; ...〉φ
Γ ⇒ U〈for ... ; ...〉φ

cut

...

If we can validate or refute D we can close one of the two branches. Typically,
this involves to show that there is no aliasing between the variables occurring in the
dependence constraint. Even when it is not possible to prove or to refute D our analysis
is useful, because D in succedent of the left branch can make it easier to close.

9 Evaluation

We evaluated our method with three representative JAVA CARD programs [14]: De-
Money, SafeApplet and IButtonAPI that together consist of ca. 2200 lines of code (not
counting comments). In these programs there exist 17 loops. Out of these, our method
can be applied to five (sometimes, a simple code transformation like v += e to v = v0 +

i * e is required). Additionally, four loops can be handled if we allow object creation
in the quantified updates (which is currently not realized). The remaining eight loops
cannot be handled because they contain abrupt termination and irregular step functions.
The results are summarized in the following table:

DeMoney SafeApplet IButtonAPI Total
LoC 1633 514 102 2249
Size (kB) 182 22 3 207
# loops 10 6 1 17
handled 4 0 1 5
with ext. 3 1 0 4
remaining 3 5 0 8

All loops in the row “handled” are detected automatically as parallelizable and are trans-
formed into quantified updates. The evaluation shows that a considerable number of
loops in realistic legacy programs can be formally verified without resorting to interac-
tive and, therefore, expensive techniques such as induction. Interestingly, the percentage
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of loops that can be handled differs drastically among the three programs. A closer in-
spection reveals that the reason is not that, for example, all the loops in SafeApplet
are inherently not parallelizable. Some of them could be rewritten so that they become
parallelizable. This suggests to develop programming guidelines (just as they exist for
compilation on parallel architectures) that ensure parallelizability of loops.

10 Conclusion

We presented a method for formal verification of loops that works by transforming
loops into automizable first order constructs (quantified updates) instead of interactive
methods such as invariants or induction. The approach is restricted to loops that can be
parallelized, but an analysis of representative programs from the JAVA CARD domain
shows that such loops occur frequently. The method can be applied to most initialization
and array copy loops but also to more complex loops as shown by Example 9.

The method relies on the capability to represent state change information effecting
from symbolic execution of imperative programs explicitly in the form of syntactic up-
dates [3,17]. With the help of updates the effect of a generic loop iteration is represented
so that it can be analyzed for the presence of data dependencies. Ideas for the depen-
dency analysis are taken from compiler optimization for parallel architectures, but the
analysis is not merely static. Loops that are found to be parallelizable are transformed
into first order quantified updates to be passed on to an automated theorem prover.

A main advantage of our method is its robustness in the presence of syntactic vari-
ability in the target programs. This is achieved by performing symbolic execution be-
fore doing the dependence analysis. The method is also fully automatic whenever it is
applicable and gives useful results in the form of symbolic constraints even if it fails.

Future Work. The analysis can be improved in various ways. One example is the func-
tion from iteration number to value of the loop variable (see Section 5). In addition,
straightforward automatic program transformations that reduce the amount of depen-
dencies (for example, v += e; into v = vInit + i * e;) could be derived by looking
at the updates from a generic loop iteration. We also intend to develop general pro-
gramming guidelines that ensure parallelizability of loops. Recent work on automatic
termination analysis [9] could be adapted to the present setting for proving the termina-
tion constraint in Section 5.

Critical dependencies exhibited during the analysis are likely to cause problems as
well in a proof attempt based on invariants or induction, so one could try to use the
obtained information on dependencies to guide the generalization of loop invariants.

At the moment we observe JAVA integer semantics only by checking for overflow.
The integer model could be made more precise by computing all integer operators mod-
ulo the the size of the underlying integer type. This would require changes in the de-
pendence analysis; the JAVA DL calculus covers full JAVA integer semantic already [4].

Finally, the discussion in this paper stops after a loop has been transformed into
a quantified update. So far, our theorem prover has limited capabilities for automatic
reasoning over first order quantified updates. Since quantified updates occur in many
other scenarios it is worth to spend more effort on that front.
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Abstract. We prove a general finite convergence theorem for “upward-guarded”
fixpoint expressions over a well-quasi-ordered set. This has immediate applica-
tions in regular model checking of well-structured systems, where a main issue is
the eventual convergence of fixpoint computations. In particular, we are able to
directly obtain several new decidability results on lossy channel systems.

1 Introduction

Regular model checking [19,11] is a popular paradigm for the symbolic verification of
models with infinite state space. It has been applied to varied families of systems rang-
ing from distributed algorithms and channel systems to hybrid systems and programs
handling dynamic data structures.

In regular model checking, one works with regular sets of states and handles them
via finite descriptions, e.g., finite-state automata or regular expressions. Models amen-
able to regular model checking are such that, when S ⊆ Conf is regular, then Post(S) (or
Pre(S)), the set of 1-step successors (resp., predecessors), is again a regular set that can
be computed effectively from S. Since regular sets are closed under Boolean operations,
one can1 try to compute the reachability set Post∗(Init), as the limit of the sequence

S0 := Init; S1 := S0 ∪Post(S0); . . . Sn+1 := Sn ∪Post(Sn); . . . (*)

Since equality of regular sets is decidable, the computation of (*) can contain a test that
detects if the limit is reached in finite time, i.e., if Sn+1 = Sn for some n ∈ N,

With infinite-state models, the main difficulty is convergence. It is very rare that a
fixpoint computation like (*) converges in finite time [10].

Well-structured transition systems (WSTS) are a generic family of models for which
the co-reachability set Pre∗(Final) can be computed symbolically with a backward-
chaining version of (*) [3,16]. For WSTS’s, convergence of the fixpoint computation
is ensured by WQO theory: one handles upward-closed sets, and increasing sequences

� The first author is supported by the DFG-NWO project VOSS II and the DFG-project PROB-
POR. The last two authors were supported by the ACI Sécurité & Informatique project Persée.

1 Actually, such symbolic computations are possible with any class of representation closed
under, and providing algorithms for, Pre or Post, Boolean operations, vacuity [19,18].
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of upward-closed sets always converge in finite time when the underlying ordering is a
well-quasi-ordering (a WQO), as is the case with WSTS’s.

Computing Pre∗(Final) for reachability analysis is just a special case of fixpoint
computation. When dealing with richer temporal properties, one is interested in more
complex fixpoints. E.g., the set of states satisfying the CTL formula ∃[CondUGoal]
is definable via a least-fixpoint expression: μX .Goal ∪ (Cond ∩ Pre(X)). For game-
theoretic properties, similar fixpoints are involved. E.g., the states from which one can
enforce reaching a goal in a turn-based game is given by μX .Goal∪Pre(Pre(X)).

Our Contribution. In this paper, we define a notion of μ-expressions where recursion
is guarded by upward-closure operators, and give a general finite convergence theorem
for all such expressions. The consequence is that these fixpoint expressions can be eval-
uated symbolically by an iterative procedure. The guarded fragment we isolate is very
relevant for the verification of well-structured transition systems as we demonstrate by
providing several new decidability results on channel systems.

Related Work. Henzinger et al. give general conditions for the convergence of fix-
points computations for temporal [18] or game-theoretic [14] properties, but the un-
derlying framework (finite quotients) is different and has different applications (timed
and hybrid systems). Our applications to well-structured transition systems generalize
results from [2,27,28,21] that rely on more ad-hoc finite convergence lemmas.

2 A Guarded Mu-Calculus

We assume basic understanding of μ-calculi techniques (otherwise see [7]) and of well-
quasi-ordering (WQO) theory (otherwise see [24,20], or simply [16, sect. 2.1]).

Let (W,9) be a well-quasi-ordered set. A subset V of W is upward-closed if w ∈ V
whenever v 9 w for some v ∈ V . From WQO theory, we mostly need the following:

Fact 2.1 (Finite convergence). If V0 ⊆ V1 ⊆V2 ⊆ ·· · is an infinite increasing sequence
of upward-closed subsets of W , then for some index k ∈ N,

⋃
i∈NVi = Vk.

The upward-closure of V ⊆ W , denoted C↑(V ), is the smallest upward-closed set that
contains V . The upward-kernel of V , denoted K↑(V ), is the largest upward-closed set in-
cluded in V . There are symmetric notions of downward-closed subset of W , of
downward-closure, C↓(V ), and of downward-kernel, K↓(V ), of V . The complement of
an upward-closed subset is downward-closed. Observe that C↑(V ) = V = K↑(V ) iff V
is upward-closed, and that C↑ and K↓ (resp., C↓ and K↑) are dual:

W � K↑(V ) = C↓(W �V), W � K↓(V ) = C↑(W �V). (1)

Monotonic Region Algebra. In symbolic model-checking, a region algebra is a family
of sets of states (subsets of W ) that is closed under Boolean and other relevant operators
like Pre and Post [18].

Here we consider regions generated by a family O = {o1,o2, . . .} of (monotonic)
operators. By a k-ary operator, we mean a monotonic mapping o : (2W )k → 2W that as-
sociates a subset o(V1, . . . ,Vk) ⊆ W with any k subsets V1, . . . ,Vk. Monotonicity means
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that o(V1, . . . ,Vk) ⊆ o(V ′
1, . . . ,V

′
k) when Vi ⊆ V ′

i for i = 1, . . . ,k. We allow nullary oper-
ators, i.e., fixed subsets of W . Finally, we require that O contains at least four special
unary operators: C↑, C↓, K↑, K↓, and two special nullary operators: /0 and W .

The region algebra generated by O, denoted with RO, or simply R , is the set of all
the subsets of W , called regions, that can be obtained by applying operators from O on
already constructed regions, starting with nullary operators. Equivalently, R is the least
subset of 2W that is closed under O.

We say the region algebra generated by O is effective if there are algorithms im-
plementing the operators in O and an effective membership algorithm saying whether
w ∈ R for some w ∈ W and some region R ∈ RO. Such effectiveness assumptions pre-
suppose a finitary encoding of regions and elements of W : if there are several possible
encodings for a same region, we assume an effective equality test.

Extending the Region Algebra with Fixpoints. Let χ = {X1,X2, · · · } be a countable
set of variables. Lμ(W,9,O), or shortly Lμ when (W,9) and O are understood, is the
set of O-terms with least and greatest fixpoints given by the following abstract syntax:

Lμ & ϕ,ψ ::= o(ϕ1, . . . ,ϕk)
∣∣ X ∣∣ μX .ϕ

∣∣ νX .ϕ
∣∣C↑(ϕ)

∣∣ C↓(ϕ)
∣∣ K↑(ϕ)

∣∣ K↓(ϕ)

where X runs over variables from χ, and o over operators from O. μX .ϕ and νX .ϕ are
fixpoint expressions. Free and bound occurrences of variables are defined as usual. We
assume that no variable has both bound and free occurrences in some ϕ, and that no
two fixpoint subterms bind the same variable: this can always be ensured by renaming
bound variables. (The abstract syntax for Lμ could be shorter but we wanted to stress
that C↑, C↓, K↑, and K↓ are required to be present in O.)

The meaning of Lμ terms is as expected: an environment is a mapping env : χ → 2W

that interprets each variable X ∈ χ as a subset of W . Given env, a term ϕ ∈ Lμ denotes a
subset of W , written �ϕ�env and defined by induction on the structure of ϕ:

�X�env
def= env(X) �o(ϕ1, . . . ,ϕk)�env

def= o(�ϕ1�env, . . . ,�ϕk�env)

�C↑(ϕ)�env
def= C↑
(
�ϕ�env

)
�C↓(ϕ)�env

def= C↓(�ϕ�env)

�K↑(ϕ)�env
def= K↑(�ϕ�env) �K↓(ϕ)�env

def= K↓
(
�ϕ�env

)
�μX .ϕ�env

def= lfp
(
Ω[ϕ,X ,env]

)
�νX .ϕ�env

def= gfp
(
Ω[ϕ,X ,env]

)
where, for all ϕ, X , and env, Ω[ϕ,X ,env] : 2W → 2W is a unary operator defined by

Ω[ϕ,X ,env](V ) def= �ϕ�env[X :=V ], using the standard variant notation “env[X := V ]” for
the environment that agrees with env everywhere except on X where it returns V . As
usual, �ϕ�env does not depend on env(X) if X is not free in ϕ, so that we may shortly
write �ϕ� when ϕ is a closed term, i.e., a term with no free variables.

We recall that the semantics of the fixpoint terms is well-defined since, for every ϕ, X
and env, Ω[ϕ,X ,env] is monotonic (and since (2W ,⊆) is a complete lattice). Moreover,
if env and env′ are such that env(X) ⊆ env′(X) for all X ∈ χ, shortly written env ⊆ env′,
then lfp(Ω[ϕ,X ,env]) ⊆ lfp(Ω[ϕ,X ,env′]) and gfp(Ω[ϕ,X ,env]) ⊆ gfp(Ω[ϕ,X ,env′]).
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Definition 2.2 (Upward- and downward-guardedness)

1. A variable X is upward-guarded in ϕ if all free occurrences of X in ϕ are in the
scope of either a C↑ or a K↑ operator, i.e., appear in a subterm of the form C↑(ψ)
or K↑(ψ).

2. Dually, X is downward-guarded in ϕ if all its free occurrences are in the scope of a
C↓ or a K↓ operator.

3. A term ϕ is guarded if all its least-fixpoint subterms μX .ψ have X upward-guarded
in ψ, and all its greatest-fixpoint subterms νX .ψ have X downward-guarded in ψ.

Given some ϕ, X and env, the approximants of lfp(Ω[ϕ,X ,env]) are given by the se-
quence (Mi)i∈N of subsets of W defined inductively by M0 = /0 and Mi+1 = �ϕ�env[X :=Mi].
Monotonicity yields

M0 ⊆ M1 ⊆ M2 ⊆ ·· · ⊆ lfp(Ω[ϕ,X ,env]). (2)

Similarly we define (Ni)i∈N by N0 = W and Ni+1 = �ϕ�env[X :=Ni], so that

N0 ⊇ N1 ⊇ N2 ⊇ ·· · ⊇ gfp(Ω[ϕ,X ,env]). (3)

Lemma 2.3 (Finite convergence of approximants). If X is upward-guarded in ϕ, then
there exists an index k ∈ N such that

�μX .ϕ�env = Mk = Mk+1 = Mk+2 = . . . (4)

Dually, if X is downward-guarded in ϕ, then there exists a k′ ∈ N such that

�νX .ϕ�env = Nk′ = Nk′+1 = Nk′+2 = . . . (5)

Proof. We only prove the first half since the other half is dual. Let ψ1, . . . ,ψm be the
maximal subterms of ϕ that are immediately under the scope of a C↑ or a K↑ operator.
Then ϕ can be decomposed under the form

ϕ ≡ Φ(⇑ ψ1, . . . ,⇑ ψm)

where the context Φ(Y1, . . . ,Ym) uses fresh variables Y1, . . . ,Ym to be substituted in, and
where ⇑ ψi is either C↑(ψi) or K↑(ψi), depending on how ψi appears in ϕ. In either case,
and for any environment env′, the set �⇑ ψi�env′ is upward-closed.

For V1, . . . ,Vm ⊆W we shortly write �Φ�(V1, . . . ,Vm) for �Φ�env[Y1:=V1,...,Ym:=Vm]. Since
X is upward-guarded in ϕ, it has no occurrence in Φ, only in the ψi’s, so that

Mi+1 = �ϕ�env[X :=Mi ] = �Φ�(�⇑ ψ1�env[X :=Mi], . . . ,�⇑ ψm�env[X :=Mi ])

= �Φ�(Li,1, . . . ,Li,m)

writing Li, j for �⇑ ψ j�env[X :=Mi]. From M0 ⊆ M1 ⊆ M2 ⊆ ·· · , we deduce L0, j ⊆ L1, j ⊆
L2, j ⊆ ·· · Since K↑ and C↑ return upward-closed sets, the Li, j’s are upward-closed sub-
sets of W . For all j = 1, . . . ,m, Fact 2.1 implies that there is an index k j such that
Li, j = Lkj , j for all i ≥ k j. Picking K = max(k1, . . . ,k j) gives for any i ≥ K

Mi+1 = �Φ�(Li,1, . . . ,Li,m) = �Φ�(Lk1 ,1, . . . ,Lkm,m) = �Φ�(LK,1, . . . ,LK,m) = MK+1.

Thus,
⋃

i∈N Mi = MK+1 = MK+2 and MK+1 is a fixpoint of Ω[ϕ,X ,env], hence the least
one thanks to (2). Picking k = K + 1 satisfies (4). ��
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Regions with Guarded Fixpoints. We can now prove our main result: subsets de-
fined by Lμ terms are regions (and can be computed effectively if the underlying region
algebra is effective).

By a region-environment we mean an environment env : χ → R that associates re-
gions with variables. If env is a region-environment, and ϕ has only free variables, i.e.,
has no fixpoint subterms, then �ϕ�env is a region.

Theorem 2.4. If ϕ ∈ Lμ is guarded and env is a region-environment then �ϕ�env is a
region. Furthermore, if the region algebra is effective, then �ϕ�env can be computed
effectively from ϕ and env.

Proof. By structural induction on the structure of ϕ. If ϕ = o() is a nullary operator, the
result holds by definition of the region algebra. If ϕ = o(ϕ1, · · · ,ϕk), the �ϕi�env’s are
(effectively) regions by induction hypothesis, so that �ϕ�env is an (effective) region too
by definition. In particular, this argument applies when o is a nullary operator, or is one
of the unary operators we singled out: C↑, C↓, K↑, and K↓.

If ϕ = μX .ψ, we can apply Lemma 2.3 after we have proved that each one of the
approximants M0,M1,M2, . . ., of �ϕ�env are regions. In particular, M0 = /0 is a region,
and if Mi is a region, then Mi+1 = �ψ�env[X :=Mi] is one too, since env′ = env[X := Mi] is
a region-environment, and since by induction hypothesis �ψ�env′ is a region when env′

is a region-environment. When RO is effective, the Mi can be computed effectively, and
one can detect when Mk = Mk+1 since region equality is decidable by definition. Then
�ϕ�env = Mk can be computed effectively. Finally, the case where ϕ = νX .ψ is dual. ��

Corollary 2.5 (Decidability for guarded Lμ properties). The following problems are
decidable for effective monotonic region algebras:

Model-checking: “Does w ∈ �ϕ�?” for a w ∈ W and a closed and guarded ϕ ∈ Lμ.
Satisfiability: “Is �ϕ� non-empty?” for a closed and guarded ϕ ∈ Lμ.
Universality: “Does �ϕ� = W?” for a closed and guarded ϕ ∈ Lμ.

A Region Algebra of Regular Languages. Consider W = Σ∗, the set of finite words
over some finite alphabet Σ. The subword ordering, defined by “u 9 v iff u can be
obtained by erasing some letters from v”, is a WQO (Higman’s Lemma). Regular lan-
guages over Σ are a natural choice for regions: observe that the closure operators C↑ and
C↓ preserve regularity and have effective implementations.2 Natural operators to be con-
sidered in O are ∪ (union) and ∩ (intersection). However, any operation on languages
that is monotonic, preserve regularity, and has an effective implementation on regu-
lar languages can be added. This includes concatenation (denoted R.R′), star-closure

(denote R∗), left- and right-residuals (R−1R′ def= {v | ∃u ∈ R,uv ∈ R′}), shuffle product

(denoted R ‖ R′), reverse (denoted
←−
R ), conjugacy (R̃

def= {vu | uv ∈ R}), homomorphic
and inverse-homomorphic images, and many more [26]. Complementation is not al-
lowed in O (it is not monotonic) but the duals of all above-mentioned operators can be

2 From a FSA for R, one obtains a FSA for C↑(R) simply by adding loops q
a−→ q on all states

q of the FSA and for all letters a ∈ Σ. A FSA for C↓(R) is obtained by adding ε-transitions

q
ε−→ q′ whenever there is a q

a−→ q′. From this, K↑ and K↓ can be implemented using (1).
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included in O (without compromising effectiveness) so that, for all practical purposes,
complement can be used with the restriction that bound variables in Lμ terms are under
an even number of complementations.

An application of Theorem 2.4 is that, if R1 and R2 are regular languages, then the
language defined as μX .νY.

(
K↑
[
R1 ‖ (X∗∩C↓(Y−1←−X ∩X−1R2))

])
is regular and a finite

representation for it (e.g., a regular expression or a minimal DFA) can be constructed
from R1 and R2.

3 Verification of Lossy Channel Systems

Theorem 2.4 has several applications for regular model checking of lossy channel sys-
tems [5] (LCS) and other families of well-structured systems [3,16]. In the rest of this
paper we concentrate on LCS’s.

3.1 Channel Systems, Perfect and Lossy

A channel system is a tuple L = (Q,C,M,Δ) consisting of a finite set Q = {p,q, . . .} of
locations, a finite set C = {c, . . .} of channels, a finite message alphabet M = {m, . . .}
and a finite set Δ = {δ, . . .} of transition rules. Each transition rule has the form q

op−→ p
where op is an operation: c!m (sending message m ∈ M along channel c ∈ C), c?m
(receiving message m from channel c), or

√
(an internal action to some process, no

I/O-operation).

Operational Semantics. Let L = (Q,C,M,Δ) be a channel system. A configuration
(also, a state) is a pair σ = (q,w) where q ∈ Q is a location and w : C → M∗ is a channel
valuation that associates with any channel its content (a sequence of messages). The set
Q×M∗C of all configurations is denoted by Conf = {σ,ρ, . . .}. For a subset V of Conf ,

we let V
def= Conf �V .

Steps between configurations are as expected. Formally, σ = (q,w) leads to σ′ =

(q′,w′) by firing δ = p
op−→ r, denoted σ δ−→perf σ′, if and only if q = p, q′ = r and w′ is

obtained from w by the effect of op (the “perf” subscripts emphasizes that the step is
perfect: without losses). Precisely

w′(c) =

{
w(c)m if op = c!m,

m−1w(c) if op = c?m,

where the notation “w(c)m” (for concatenation) and “m−1w(c)” (for left-residuals) are
as in section 2. Furthermore, w′(c) = w(c) for all channels c that are not touched upon
by op.

Thus, when op = c?m, w′ is only defined if w(c) starts with m and indeed this is the

intended condition for firing δ. Whenever σ δ−→ ρ for some ρ, we say that δ is enabled
in σ, written δ ∈ Δ(σ).

Below we restrict our attention to LCS’s where from each q ∈ Q there is at least one
rule q

op−→ p in Δ where op is not a receiving action: this ensures that the LCS has no
deadlock states and simplifies many technical details without losing any generality.
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Lossy Systems. In lossy channel systems, losing messages is formalized via the sub-
word ordering, extended from M∗ to Conf : (q,w) 9 (q′,w′) if q = q′ and w(c) 9 w′(c)
for all channels c ∈ C.

A (possibly lossy) step in the LCS is made of a perfect step followed by arbitrary

losses:3 formally, we write σ δ−→ ρ whenever there is a perfect step σ δ−→perf σ′ such that

ρ 9 σ′. This gives rise to a labeled transition system LTSL
def= (Conf ,Δ,→).

Remark 3.1. Our choice of operational semantics has the consequence that LTSL is not
turned into a WSTS by 9 because message losses only occur after a step. However, the

WSTS structure is recovered with the following relation: σ � ρ def⇔ σ 9 ρ ∧ Δ(σ) =
Δ(ρ). Both 9 and � turns Conf into a WQO. From now on we assume, for the sake of
simplicity, that (Conf ,9) is the WQO on which Lμ is defined. ��

Following standard notations for transition systems (Conf ,Δ,→) labeled over some

Δ, we write Pre[δ](σ) def= {ρ ∈ Conf | ρ δ−→ σ} for the set of predecessors via δ of σ
in L . Then Pre(σ) def=

⋃
δ∈Δ Pre[δ](σ) has all 1-step predecessors of σ, and Pre(V ) =⋃

σ∈V Pre(σ) has all 1-step predecessors of states in V . The dual P̃re of Pre is defined

by P̃re(V ) = Pre(V ). Thus σ ∈ P̃re(V ) iff all 1-step successors of σ are in V (this
includes the case where σ is a deadlock state).

Seen as unary operators on 2Conf , both Pre and P̃re are monotonic and even contin-
uous for all transition systems [30]. For LCS’s, the following lemma states that Pre is
compatible with the WQO on states, which will play a crucial role later when we want
to show that some Lμ term is guarded.

Lemma 3.2. Let V ⊆ Conf in the transition system LTSL associated with a LCS L .
Then Pre(V ) = Pre(C↑(V )) and P̃re(V ) = P̃re(K↓(V )).

Proof. V ⊆ C↑(V ) implies Pre(V ) ⊆ Pre(C↑(V )). Now σ ∈ Pre(C↑(V )) implies that
σ −→ ρ > ρ′ for some ρ′ ∈V . But then σ −→ ρ′ by definition of lossy steps and σ ∈ Pre(V ).
The second equality is dual. ��

An Effective Region Algebra for LCS’s. We are now ready to apply the framework of
section 2 to regular model checking of lossy channel systems. Assume L = (Q,C,M,Δ)
is a given LCS. A region R ∈ R is any “regular” subset of Conf . More formally, it is
any set R ⊆ Conf that can be written under the form

R = ∑
i∈I

(qi,R
1
i , . . . ,R

|C|
i )

3 Note that, with this definition, message losses only occur after steps (thus, not in the initial
configuration). The usual definition allows arbitrary losses before and after a step [5]. There
is no essential semantical difference between these two ways of grouping atomic events into
single “steps”, except for the first step. The definition from [5] is technically smoother when
LCS’s are viewed as nondeterministic systems, but becomes unnatural in situations where
several adversarial processes compete, e.g., in probabilistic LCS’s [9] or the game-theoretical
settings we explore in sections 4 and 5.
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where I is a finite index set, the qi’s are locations from Q, and each R j
i is a regular

language on alphabet M. The notation has obvious interpretation, with summation de-
noting set union (the empty sum is denoted /0). We are not more precise on how such
regions could be effectively represented (see [6]), but they could be handled as, e.g.,
regular expressions or FSAs over the extended alphabet M∪Q∪{′(′, ′)′, ′,′}.

The set O of operators includes union, intersection, C↑, C↓, K↑, K↓: these are mono-
tonic, regularity-preserving, and effective operators as explained in our example at the
end of section 2. Operators specific to regular model-checking are Pre and P̃re. That
they are regularity-preserving and effective is better seen by first looking at the special
case of perfect steps. We use

Preperf[p
ci?m−−→ q](q,R1

p, · · · ,R
|C|
p ) = (p,R1

p, . . . ,R
i−1
p ,mRi

p,R
i+1
p , . . . ,R|C|

p ),

Preperf[p
ci!m−−→ q](q,R1

p, · · · ,R
|C|
p ) = (p,R1

p, . . . ,R
i−1
p ,Ri

pm−1,Ri+1
p , . . . ,R|C|

p )

completed with the obvious

Preperf[p
op−→ q](r,R1

p, · · · ,R
|C|
p ) = /0 when r �= q,

Preperf

(
∑
i∈I

(qi,R
1
i , . . . ,R

|C|
i )
)

= ∑
i∈I

∑
δ∈Δ

Preperf[δ](qi,R
1
i , . . . ,R

|C|
i ).

Then lossy steps are handled with Pre(R) = Preperf(C↑(R)).
Clearly, both Preperf and Pre are effective operators on regions.

3.2 Regular Model-Checking for Lossy Channel Systems

Surprising decidability results for lossy channel systems is what launched the study of
this model [15,5,12]. We reformulate several of these results as a direct consequence
of Theorem 2.4, before moving to new problems and new decidability results in the
next sections. Note that our technique is applied here to a slightly different operational
semantics (cf. footnote 3) but it would clearly apply as directly to the simpler semantics.

Reachability Analysis. Thanks to Lemma 3.2, the co-reachability set can be expressed
as a guarded Lμ term:

Pre∗(V ) = μX .V ∪Pre(X) = μX .V ∪Pre(C↑(X)). (6)

Corollary 3.3. For regular V ⊆ Conf , Pre∗(V ) is regular and effectively computable.

Safety Properties. More generally, safety properties can be handled. In CTL, they can
be written ∀(V1RV2). Recall that R, the Release modality, is dual to Until: a state σ
satisfies ∀(V1RV2) if and only if along all paths issuing from σ, V2 always holds until
maybe V1 is visited. Using Lemma 3.2, �∀(V1RV2)�, the set of states where the safety
property holds, can be defined as a guarded Lμ term:

�∀(V1RV2)� = νX .
(
V2 ∩ (P̃re(X)∪V1)

)
= νX .

(
V2 ∩ (P̃re(K↓(X))∪V1)

)
. (7)
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Corollary 3.4. For regular V1,V2 ⊆ Conf , �∀(V1RV2)� is regular and effectively com-
putable.

Another formulation is based on the duality between the “∀R” and the “∃U” modalities.

Theorem 3.5. [21, sect. 5] If f is a temporal formula in the TL(∃U,∃X,∧,¬) frag-
ment of CTL (using regions for atomic propositions), then � f � is regular and effectively
computable.

Proof. By induction on the structure of f , using �∃X f �
def= Pre(� f �), and the fact that

regions are (effectively) closed under complementation. ��

Beyond Safety. Inevitability properties, and recurrent reachability can be stated in Lμ.
With temporal logic notation, this yields

�∀♦V � = μX .
(
V ∪ (Pre(Conf )∩ P̃re(X))

)
,

�∃�♦V � = νX .
(
μY.((V ∪Pre(Y ))∩Pre(X))

)
.

These two terms are not guarded and Lemma 3.2 is of no help here. However this is
not surprising: firstly, σ |= ∃�♦V is undecidable [4]; secondly, and while σ |= �∀♦V �
is decidable, the set �∀♦V � cannot be computed effectively [23].

3.3 Generalized Lossy Channel Systems

Transition rules in LCS’s do not carry guards, aka preconditions, beyond the implicit
condition that a reading action c?m is only enabled when w(c) starts with m. This bare-
bone definition is for simplification purpose, but actual protocols sometimes use guards
that probe the contents of the channel before taking this or that transition. The simplest

such guards are emptiness tests, like “p
c=ε?−−→ q” that only allows a transition from p to

q if w(c) is empty.
We now introduce LCS’s with regular guards (GLCS’s), an extension of the barebone

model where any regular set of channel contents can be used to guard a transition rule.
This generalizes emptiness tests, occurrence tests (as in [25]), etc., and allows express-
ing priority between rules since whether given rules are enabled is a regular condition.

Formally, we assume rules in Δ now have the form p
G:op−−→ q with p,q,op as before,

and where G, the guard, can be any regular region. The operational semantics is a ex-

pected: when δ = p
G:op−−→ q, there is a perfect step σ δ−→perf θ iff σ ∈ G and θ is obtained

from σ by the rule p
G:op−−→ q (without any guard). Then, general steps σ δ−→ ρ are obtained

from perfect steps σ δ−→perf σ′ by message losses ρ 9 σ′.

Verification of GLCS’s. For GLCS’s, Pre and Post are effective monotonic regularity-
preserving operators as in the LCS case since

Pre[p
G:op−−→ q](R) = G ∩ Pre[p

op−→ q](R),

Post[p
G:op−−→ q](R) = Post[p

op−→ q](G∩R).

Observe that Lemma 3.2 holds for GLCS’s as well, so that Equations (6) and (7) entail
a generalized version of Theorem 3.5:
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Theorem 3.6. For all GLCS’s L and formulae f in the TL(∃U,∃X,∧,¬) fragment, � f �
is regular and effectively computable.

4 Solving Games on Lossy Channel Systems

In this section, we consider turn-based games on GLCS’s where two players, A and
B, alternate their moves. Games play a growing role in verification where they address
situations in which different agents have different, competing goals. We assume a basic
understanding of the associated concepts: arena, play, strategy, etc. (otherwise see [17]).

Games on well-structured systems have already been investigated in [2,27,28]. The
positive results in these three papers rely on ad-hoc finite convergence lemmas that are
special cases of our Theorem 2.4.

4.1 Symmetric LCS-Games with Controllable Message Losses

We start with the simplest kind of games on a GLCS: A and B play in turn, choosing the
next configuration, i.e., picking what rule δ ∈ Δ is fired, and what messages are lost.

Formally, a symmetric LCS-game is a GLCS L = (QA,QB,C,M,Δ) where the set
of locations Q = QA ∪QB is partitioned into two sets, one for each player, and where

the rules ensure strict alternation: for all p
G:op−−→ q ∈ Δ, p ∈ QA iff q ∈ QB. Below, we

shortly write Conf A for QA ×M∗|C|, the regular region where it is A’s turn to play. Conf B
is defined similarly. Strict alternation means that the arena, LTSL , is a bipartite graph
partitioned in Conf A and Conf B.

Reachability Games. Reachability and invariance are among the simplest objectives
for games. In a reachability game, A tries to reach a state in some set V , no matter how
B behaves. This goal is denoted ♦V . It is known that such games are determined and
that memoryless strategies are sufficient [17]. The set of winning configurations for A
is denoted with 〈〈A〉〉♦V , and can be defined in Lμ:

〈〈A〉〉♦V = μX .
[
V ∪
[
Conf A ∩Pre(X)

]
∪
[
Conf B ∩ P̃re(X)

]]
. (8)

The first occurrence of X can be made upward-guarded by replacing Pre(X) with
Pre(C↑(X)) (Lemma 3.2). For the second occurrence, we can unfold the term, relying
on the fixpoint equation �μX .ϕ(X)� = �μX .ϕ(ϕ(X))�. This will replace Conf B ∩ P̃re(X)
in (8) with

Conf B ∩ P̃re
(

V ∪
[
Conf A ∩Pre(X)

]
∪
[
Conf B ∩ P̃re(X)

])
. (+)

Now, the strict alternation between Conf A and Conf B lets us simplify (+) into

Conf B ∩ P̃re
(

V ∪Pre(X)
)
. (9)

Hence (8) can be rewritten into

〈〈A〉〉♦V = μX .
[
V ∪
[
Conf A ∩Pre(C↑(X))

]
∪
[
Conf B ∩ P̃re(V ∪Pre(C↑(X)))

]]
. (8’)
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Invariance Games. In invariance games, A’s goal is to never leave some set V ⊆ Conf ,
no matter how B behaves. Invariance games are dual to reachability games, and the set
of winning configurations 〈〈A〉〉�V is exactly 〈〈B〉〉♦V .

Repeated Reachability Games. Here A’s goal is to visit V infinitely many times, no
matter how B behaves. The set of winning configurations is given by the following Lμ

term:
〈〈A〉〉�♦V = νY.〈〈A〉〉♦

[
V ∩ (ϕA(Y )∪ϕB(Y ))

]
, (10)

where

ϕA(Y ) def= Conf A ∩Pre
(
C↑(P̃re(K↓(Y )))

)
,

ϕB(Y ) def= Conf B ∩ P̃re(K↓(Y )).

and where we reuse (8’) for 〈〈A〉〉♦[. . .].

Persistence Games. In a persistence game, A aims at remaining inside V from some
moment on, no matter how B behaves. Dually, this can be seen as a repeated reachability
game for B. Note that 〈〈A〉〉♦�V �= 〈〈A〉〉♦(〈〈A〉〉�V ).

Theorem 4.1 (Decidability of symmetric LCS-games). For symmetric LCS-games L
and regular regions V , the four sets 〈〈A〉〉♦V , 〈〈A〉〉�V, 〈〈A〉〉♦�V, and 〈〈A〉〉�♦V, are (ef-
fective) regions. Hence reachability, invariance, repeated reachability, and persistence
symmetric games are decidable on GLCS’s.

Proof (Sketch). The winning sets can be defined by guarded Lμ terms.

Remark 4.2. There is no contradiction between the undecidability of ∃�♦V and the
decidability of 〈〈A〉〉�♦V . In the latter case, B does not cooperate with A, making the
goal harder to reach for A (and the property easier to decide for us). ��

4.2 Asymmetric LCS-Games with 1-Sided Controlled Loss of Messages

Here we adopt the setting considered in [2]. It varies from the symmetric setting of
section 4.1 in that only player B can lose messages (and can control what is lost), while
player A can only make perfect steps. Note that this generalizes games where A plays
moves in the channel system, and B is an adversarial environment responsible for mes-
sage losses. We use the same syntax as for symmetric LCS-games.

Reachability and Invariance Games. Let us first consider games where one player
tries to reach a regular region V (goal ♦V ), no matter how the other player behaves.

The configurations where B can win a reachability game are given by:

〈〈B〉〉♦V = μX .V ∪
(

Conf B ∩Pre(X)
)
∪
(

Conf A ∩ P̃reperf(X)
)

= μX .V ∪
(

Conf B ∩Pre(C↑(X))
)
∪
(

Conf A ∩ P̃reperf(V ∪Pre(C↑(X)))
)

where guardedness is obtained via Lemma 3.2 and unfolding.
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When we consider a reachability game for A, the situation is not so clear:

〈〈A〉〉♦V = μX .V ∪
(

Conf A ∩Preperf(X)
)
∪
(

Conf B ∩ P̃re(X)
)
.

Neither Lemma 3.2 nor unfolding techniques can turn this into a guarded term. This
should be expected since the set 〈〈A〉〉♦V cannot be computed effectively [2].

Theorem 4.3 (Decidability of asymmetric LCS-games [2]). For asymmetric LCS-
games L and regular regions V , the sets 〈〈B〉〉♦V and 〈〈A〉〉�V are (effective) regions.
Hence reachability games for B, and invariance games for A are decidable on GLCS’s.

Proof (Sketch). Invariance games are dual to reachability games, and the winning set
〈〈B〉〉♦V is defined by a guarded Lμ term.

5 Channel Systems with Probabilistic Losses

LCS’s where messages losses follow probabilistic rules have been investigated as a less
pessimistic model of protocols with unreliable channels (see [29,1,9] and the references
therein).

In [9], we present decidability results for LCS’s seen as combining nondeterministic
choice of transition rules with probabilistic message losses. The semantics is in term of
Markovian decision processes, or 1 1

2 -player games, whose solutions can be defined in
Lμ. Indeed, we found the inspiration for Lμ and our Theorem 2.4 while extending our
results in the MDP approach to richer sets of regions.

In this section, rather than rephrasing our results on 1 1
2 -player games on LCS’s, we

show how to deal with 2 1
2 -player games [13] on LCS’s, i.e., games opposing players A

and B (as in section 4) but where message losses are probabilistic. This relies on new
characterizations, like equations (11) or (12) below, for which the proof will be found
in the full version of this paper.

Formally, a symmetric probabilistic LCS-game L = (QA,QB,C,M,Δ) is exactly like
a symmetric LCS-game but with an altered semantics: in state σ ∈ Conf A, player A
selects a fireable rule δ ∈ Δ (B picks the rule if σ ∈ Conf B) and the system moves to a

successor state ρ where σ δ−→perf σ′ > ρ and ρ is chosen probabilistically in C↓({σ′}).
The definition of the probability distribution P(σ,δ,ρ) can be found in [29,9] where it is

called the local-fault model. It satisfies P(σ,δ,ρ)> 0 iff ρ 9 σ′ (assuming σ δ−→perf σ′).
Additionally it guarantees a finite-attractor property: the set of states where all channels
are empty will be visited infinitely many times almost surely [1,8].

Reachability Games. Assume A tries to reach region V (goal ♦V ) with probability 1
no matter how B behaves. The set 〈〈A〉〉[♦V ]=1 of states in which A has an almost-sure
winning strategy is given by

〈〈A〉〉[♦V ]=1 = νY.μX .

⎛⎝V∪
[
Conf A ∩Preperf(C↑(X)∩K↓(Y ))

]
∪
[
Conf B ∩ P̃reperf(C↑(X)∩K↓(Y ))

]
⎞⎠ . (11)
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Remark 5.1. Justifying (11) is outside the scope of this paper, but we can try to give
an intuition of why it works: the inner fixpoint “μX .V ∪·· ·” define the largest set from
which A has a strategy to reach V no matter what B does if the message losses are
favorable. However, whatever messages are lost, A’s strategy also guarantees that the
system will remain in Y , from which it will be possible to retry the strategy for ♦V
as many times as necessary. This will eventually succeed almost surely thanks to the
finite-attractor property. ��

Invariance Games. Assume now A tries to stay in V almost surely (goal [�V ]=1), no
matter how B behaves. Then A must ensure �V surely and we are considering a 2-player
game where message losses are adversarial and could as well be controlled by B. This
leads to

〈〈A〉〉[�V ]=1 = νX .V ∩
([

Conf A ∩Preperf(K↓(X))
]
∪
[
Conf B ∩ P̃re(X)

])
= νX .V ∩

([
Conf A ∩Preperf(K↓(X))

]
∪
[
Conf B ∩ P̃re(K↓(X))

])
.

(12)

In (12), the subterm Preperf(K↓(X)) accounts for states in which A can choose a perfect
move that will end in K↓(X), i.e., that can be followed by any adversarial message losses
and still remain in X . The subterm P̃re(X) accounts for states in which B cannot avoid
going to X , even with message losses under his control. P̃re(X) can be rewritten into
P̃re(K↓(X)) thanks to Lemma 3.2, so that we end up with a guarded term.

Goals to be Satisfied with Positive Probability. In 2 1
2 -player games, it may happen that

a given goal can only be attained with some non-zero probability [13]. Observe that,
since the games we consider are determined [22], the goals [♦V ]>0 or [�V ]>0 are the
opposite of goals asking for probability 1:

〈〈A〉〉[♦V ]>0 = 〈〈B〉〉[�V ]=1, 〈〈A〉〉[�V ]>0 = 〈〈B〉〉[♦V ]=1.

Theorem 5.2 (Decidability of qualitative symmetric probabilistic LCS-games). For
symmetric probabilistic LCS-games L and regular regions V , the sets 〈〈A〉〉[♦V ]=1,
〈〈A〉〉[♦V ]>0, 〈〈A〉〉[�V ]=1, and 〈〈A〉〉[�V ]>0 are (effective) regions. Hence qualitative
reachability and invariance games are decidable on GLCS’s.

Proof (Sketch). These sets can be defined by guarded Lμ terms. ��

6 Conclusion

We defined a notion of upward/downward-guarded fixpoint expressions that define sub-
sets of a well-quasi-ordered set. For these guarded fixpoint expressions, a finite conver-
gence theorem is proved, that shows how the fixpoints can be evaluated with a finite
number of operations. This has a number of applications, in particular in the symbolic
verification of well-structured systems, our original motivation. We illustrate this in the
second part of the paper, with lossy channel systems as a target. For these systems, we
derive in an easy and uniform way, a number of decidability theorems that extend or
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generalize the main existing results in the verification of temporal properties or game-
theoretical properties.

These techniques can be applied to other well-structured systems, with a region al-
gebra built on, e.g., upward-closed sets. Such regions are not closed by complemen-
tation, hence fewer properties can be written in Lμ. Admittedly, many examples of
well-structured systems do not enjoy closure properties as nice as our Lemma 3.2
for LCS’s, which will make it more difficult to express interesting properties in the
guarded fragment of Lμ. But this can still be done, as witnessed by [27,28] where the
authors introduced a concept of B-games and BB-games that captures some essential
closure assumptions allowing the kind of rewritings and unfoldings we have justified
with Lemma 3.2.
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Abstract. We present a method to convert (i) an operational semantics
for a given machine language, and (ii) an off-the-shelf theorem prover,
into a high assurance verification condition generator (VCG). Given a
program annotated with assertions at cutpoints, we show how to use the
theorem prover directly on the operational semantics to generate verifi-
cation conditions analogous to those produced by a custom-built VCG.
Thus no separate VCG is necessary, and the theorem prover can be em-
ployed both to generate and to discharge the verification conditions. The
method handles both partial and total correctness. It is also composi-
tional in that the correctness of a subroutine needs to be proved once,
rather than at each call site. The method has been used to verify several
machine-level programs using the ACL2 theorem prover.

1 Introduction

Operational semantics has emerged as a popular approach for formal modeling of
complex computing systems. In this approach, a program is modeled by defining
an interpreter that specifies the effect of executing its instructions on the states
of the underlying machine. Unfortunately, traditional code proofs based on op-
erational models have been tedious and complex, requiring the user to define
global invariants which are preserved on each transition or a clock function that
precisely characterizes the number of machine steps to termination [1,2].

Research in program verification has principally focused on assertional rea-
soning [3,4]. Here a program is annotated with assertions at cutpoints. From
these annotations, one derives a set of formulas or verification conditions, which
guarantee that whenever program control reaches a cutpoint the associated as-
sertions hold. Assertional methods generally rely on (i) a verification condition
generator (VCG) to generate verification conditions from an annotated program,
and (ii) a theorem prover to discharge these conditions.

In this paper, we present a method for verifying deterministic sequential pro-
grams, using operational semantics, that inherits the benefits of the assertional
methods. Given an annotated program and an operational semantics, we show
how to configure a theorem prover to emulate a VCG for generating (and dis-
charging) the verification conditions.
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In this section, we first provide a brief overview of operational models and as-
sertional proof approaches to establish the relevant background. We then discuss
our contributions in greater detail.

1.1 Background

In operational semantics, a program is modeled by its effects on the underlying
machine state. A state is viewed as a tuple of values of all machine variables
like the program counter (pc), registers, memory, etc. One defines a transition
function next : S → S where S is the set of states: for a state s, next(s) returns
the state after executing one instruction from s. Executions are modeled by a
function run : S × IN → S which returns the state after n transitions from s.

run(s, n) 
{
s if n = 0
run(next(s), n− 1) otherwise

Correctness is formalized with three predicates pre, post, and exit, on set S.
Predicates pre and post are the preconditions and postconditions, and exit spec-
ifies the “final states”; when verifying a program component, exit is defined to
recognize the return of control from that component. There are two notions of
correctness, partial and total. Partial correctness involves showing that for any
state s satisfying pre, the predicate post holds at the first exit state reachable
from s (if some such state exists). Total correctness involves showing both partial
correctness and termination, that is, the machine starting from a state s satisfy-
ing pre eventually reaches an exit state. Partial correctness and termination are
formalized as follows:

Partial Correctness: ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒
(∃m : (m ≤ n)∧exit(run(s,m))∧post(run(s,m)))

Termination: ∀s : pre(s) ⇒ (∃n : exit(run(s, n)))

Several deductive techniques have been devised to facilitate proofs of the above
statements. One method is to define a global invariant inv satisfying I1-I3 below:

I1: ∀s : pre(s) ⇒ inv(s)
I2: ∀s : inv(s) ∧ ¬exit(s) ⇒ inv(next(s))
I3: ∀s : inv(s) ∧ exit(s) ⇒ post(s)

Partial correctness follows from I1-I3. By I1 and I2, any state reachable from
a pre state s up to (and including) the first exit state p satisfies inv; I3 then
guarantees post(p). For total correctness, one also defines a function rank : S →
W where W is well-founded under some ordering ≺, and shows I4 below. Well-
foundedness guarantees termination.

I4: ∀s : inv(s) ∧ ¬exit(s) ⇒ rank(next(s)) ≺ rank(s).

Another approach is to use clock functions. A clock function clock : S → IN
satisfies conditions C1-C3 below:
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C1: ∀s : pre(s) ⇒ exit(run(s, clock(s)))
C2: ∀s : pre(s) ⇒ post(run(s, clock(s)))
C3: ∀s, n : pre(s) ∧ exit(run(s, n)) ⇒ (clock(s) ≤ n)
C1-C3 imply total correctness: for every pre state s, there exists an n, namely
clock(s), such that run(s, n) is an exit state, guaranteeing termination. To express
only partial correctness, one weakens C1 and C2 by adding the predicate (∃n :
exit(run(s, n))) as a conjunct in the antecedents. It is known [5] that global
invariants and clock functions have the same logical strength in that a correctness
proof in one method can be mechanically transformed into the other.

Assertional methods are based on annotating a program with assertions at
certain control points called cutpoints that typically include loop tests and pro-
gram entry and exit [3,6]. To formalize this, assume that we have two predicates
cut and assert, where cut recognizes the cutpoints and assert specifies the as-
sertions at each cutpoint. Commonly cut is a predicate on the pc values but
might occasionally involve other state components. A VCG generates a set of
verification conditions from the annotated program, which are verified using a
theorem prover. The guarantee provided by the process is informally stated as:
“Let p be a non-exit cut state satisfying assert. Let q be the next cut state in an
execution from p. Then assert(q) must hold.” Thus, if (i) initial (i.e., pre) and
exit states are cutpoints, (ii) pre implies assert, and (iii) assert implies post at
exit, then the first exit state reachable from a pre state satisfies post. Finally, for
termination, one also defines a ranking function rank : S → W , where W is a
well-founded set, and shows that for any non-exit cutpoint p satisfying assert, if
q is the next cutpoint, then rank(q) ≺ rank(p). Notice that both assertions and
ranking functions are attached to cutpoints rather than to every state.

1.2 Contributions of This Paper

Operational semantics and assertional methods have complementary strengths.
Operational models have been lauded for clarity and concreteness [1,7], and fa-
cilitate the validation of formal models by simulation [7,8]. However, performing
code proofs with such models is cumbersome: defining an appropriate global in-
variant or clock function requires understanding of the effect of each transition
on the machine state [1,9,2]. Assertional methods factor out verification com-
plexity by restricting user focus to cutpoints, but require a VCG which must
be trusted. A VCG encodes the language semantics as formula transformations.
Most VCGs also perform on-the-fly simplifications to keep the generated formu-
las manageable. Implementing a practical VCG, let alone ensuring its correctness
by verifying it against an operational semantics, is non-trivial [10].

In this paper, we present a technique to integrate assertional methods with
operational semantics that is suitable for use with general-purpose theorem prov-
ing and does not depend on a trusted VCG. As in assertional reasoning, the user
annotates the program at cutpoints. However, instead of implementing a VCG
we show how to configure the theorem prover to generate verification conditions
by symbolic simulation on the operational model. The result is a high assur-
ance program verifier with an off-the-shelf theorem prover as the only trusted
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component. The method handles both partial and total correctness, and recur-
sive procedures. It is also compositional; subroutines can be verified separately
rather than at every call site. The method has been mechanized in the ACL2
theorem prover [11], and used to reason about several machine-level programs.
The basic approach (i.e., without composition) has also been formalized in the
Isabelle theorem prover [12].

The rest of the paper is organized as follows. We present the basic approach
in Section 2. In Section 3, we discuss compositionality and means for handling
recursive procedures. In Section 4, we present illustrative applications of the
method. We discuss related work in Section 5 and conclude in Section 6.

2 Basic Methodology

Assume that we have defined next, pre, post, exit, cut, and assert, as described
in Section 1.1. Consider the following function csteps:

csteps(s, i) 
{
i if cut(s)
csteps(next(s), i+ 1) otherwise

If j is the minimum number of transitions to a cutpoint from state s, then
csteps(s, i) returns i+ j; the recursion does not terminate if no cutpoint is reach-
able. Generally, defining a recursive function requires showing that the recursion
terminates. However, if the definition is tail-recursive as above, then it is ad-
missible in theorem provers whose logics support Hilbert’s choice operator; the
defining axiom can be witnessed by a total function that returns an arbitrary
constant when the recursion does not terminate [13][12, §9.2.3].

We now formalize the notion of “next cutpoint”. Fix a state d such that
cut(d) ⇔ (∀s : cut(s)). State d can be defined with a choice operator. Then
nextc(s) returns the first reachable cutpoint from s if any, else d:

nextc(s) 
{

run(s, csteps(s, 0)) if cut(run(s, csteps(s, 0)))
d otherwise

With these definitions, we formalize verification conditions as formulas V1-V5.
Notice that the formulas involve obligations only about assertions at cutpoints.

V1: ∀s : pre(s) ⇒ assert(s)
V2: ∀s : assert(s) ⇒ cut(s)
V3: ∀s : exit(s) ⇒ cut(s)
V4: ∀s : assert(s) ∧ exit(s) ⇒ post(s)
V5: ∀s : assert(s) ∧ ¬exit(s) ⇒ assert(nextc(next(s)))

The formulas imply partial correctness. To prove this, we define function esteps
to count the number of transitions up to the first exit state, and nexte that
returns the first reachable exit point. Note that esteps is tail-recursive.

esteps(s, i) 
{
i if exit(s)
esteps(next(s), i+ 1) otherwise

nexte(s)  run(s, esteps(s, 0))
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We can take esteps(s, 0) as the definition of a generic clock function. Partial
correctness now follows from Theorem 1.

Theorem 1. Suppose conditions V1, V3-V5 hold. Let state s and natural num-
ber n be such that pre(s) and exit(run(s, n)). Then esteps(s, 0) ≤ n, exit(nexte(s)),
and post(nexte(s))).

Proof sketch: esteps(s, 0) ≤ n and exit(nexte(s)) hold since esteps(s, 0) returns
the number of steps to the first reachable exit state, if one exists. If assert holds
for a cutpoint p, then by V5 assert holds for every cutpoint reachable from
p until (and, by V3, including) the first exit state. Since a pre state satisfies
assert (by V1), the first exit state reachable from a pre state satisfies assert. Now
post(nexte(s))) follows from V4. ��
For termination, we also need a well-founded rank over cutpoints. V6 below
formalizes the corresponding proof obligation. By Theorem 2, total correctness
follows from V1-V6.

V6: ∀s : assert(s) ∧ ¬exit(s) ⇒ rank(nextc(next(s))) ≺ rank(s)

Theorem 2. Suppose V1-V6 hold, and let s satisfy pre. Then exit(nexte(s))
and post(nexte(s)) hold.

Proof sketch: To prove exit(nexte(s)), it suffices to show that some exit state is
reachable from each pre state s. By V1, V2, and V5, for every non-exit cutpoint
p reachable from s, there exists a subsequently reachable cutpoint p′. But, by
V6 and well-foundedness of ≺, eventually one of these cutpoints must be an exit
state. Then post(nexte(s)) follows from exit(nexte(s)) and Theorem 1. ��
We now discuss how the verification conditions are discharged for a concrete
program. The non-trivial conditions are V5 and V6, which involve relation be-
tween two consecutive cutpoints. To automate their verification, we use theorems
SSR1 and SSR2 below, which are trivial consequences of the definition of nextc.

SSR1: ∀s : ¬cut(s) ⇒ nextc(s) = nextc(next(s))
SSR2: ∀s : cut(s) ⇒ nextc(s) = s

We use SSR1 and SSR2 as conditional rewrite rules oriented left to right.
For any symbolic state s, the rules rewrite the term nextc(s) to either s or
nextc(next(s)) depending on whether s is a cutpoint, in the latter case causing
a symbolic expansion of the definition of next possibly with auxiliary simplifica-
tions, and applying the rules again on the resulting term. Proofs of V5 and V6
thus cause the theorem prover to symbolically simulate the program from each
cutpoint satisfying assert until the next cutpoint is reached, at which point we
check if the new state satisfies assertions. The process mimics a “forward” VCG,
but generates and discharges the verification conditions on a case-by-case basis.

3 Composing Correctness Statements

The basic method above did not treat subroutines compositionally. Consider
verifying a procedure P that invokes a subroutine Q. Symbolic simulation from
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a cutpoint of P might encounter an invocation of Q, resulting in symbolic ex-
ecution of Q. Thus subroutines have been treated as if they were in-lined. We
often prefer to separately verify Q, and use its correctness theorem for verifying
P. We now extend the method to afford such composition.

We will uniformly use the symbols P and Q to refer to invocations of the caller
and callee respectively. We also use a subscript to distinguish between predicates
about P and Q when necessary, for example referring to the postcondition for
P as postP .

For composition, it is convenient to extend the notion of exit states as follows.
We define a predicate inP to characterize states which are poised to execute an
instruction in P or one of its callees. Then define exitP (s)  ¬inP (s). Thus, exitP
recognizes any state that does not involve execution of P (or any subroutine),
not just those that return control from P. Note that this does not change the
notion of the first exit state from P. With this view, we add the new verification
condition CC below, stating that no cutpoint of P is encountered during the
execution of Q. The condition will be used in the proofs of additional rules
SSR3 and SSR3′ that we define later, which are necessary for composition.

CC: ∀s : cutP (s) ⇒ exitQ(s)

Another key ingredient for composition is the formalization of frame con-
ditions necessary to prove that P can continue execution after Q returns. A
postcondition specifying that Q correctly performs its desired computation is
not sufficient to guarantee this. For instance, Q, while correctly computing its
return value, might corrupt the call stack preventing P from executing on return.
To account for this, postQ needs to characterize the global effect of executing
Q, that is, specify how each state component is affected by the execution of
Q. However, such global characterization of the effect of Q might be difficult.
In practice, we require that postQ is strong enough such that for any state s
satisfying exitQ and postQ we can infer the control flow for continuing execu-
tion of P. For instance, if Q updates some “scratch space” which is irrelevant
to the execution of P, then postQ need not characterize such update. Then we
prove the additional symbolic simulation rule SSR3 (resp., SSR3′) below, which
(together with SSR1 and SSR2) affords compositional reasoning about total
(resp., partial) correctness of P assuming that Q has been proven totally (resp.,
partially) correct. Here excutP (s)  cutP (nextcP (s)).

SSR3: ∀s : preQ(s) ⇒ nextcP (s) = nextcP (nexteQ(s))
SSR3′: ∀s : preQ(s) ∧ excutP (s) ⇒ nextcP (s) = nextcP (nexteQ(s))

Proof sketch: We only discuss SSR3 since the proof of SSR3′ is similar. By
CC and the definition of estepsQ, if s satisfies preQ and n < estepsQ(s, 0), then
run(s, n) does not satisfy cutP . Hence the next cutP state after s is the same
as the next cutP state after the first exitQ state reachable from s. The rule now
follows from the definitions of nextc and nexte. ��
We prioritize rule applications so that SSR1 and SSR2 are tried only when
SSR3 (resp., SSR3′) cannot be applied during symbolic simulation. Therefore,
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if Q has been proven totally correct and if a non-cutpoint state s encountered
during symbolic simulation of P satisfies preQ, then SSR3 “skips past” the
execution of Q; otherwise we expand the transition function via SSR2 as desired.

We need one further observation to apply SSR3′ for composing partial cor-
rectness proofs. Note that SSR3′ has the hypothesis excutP (s). To apply the
rule, we must therefore know for a symbolic state s satisfying preQ whether
some subsequent cutpoint of P is reachable from s. However, such a cutpoint, if
one exists, can only be encountered after s. The solution is to observe that for
partial correctness we can weaken the verification condition V5 to V5′ below.
For a cutpoint s satisfying assertions, V5′ requires the next subsequent cutpoint
to satisfy the assertion only if some such cutpoint is reachable.

V5′: ∀s : assert(s) ∧ ¬exit(s) ∧ excut(next(s)) ⇒ assert(nextc(next(s)))

V5′ allows us to assume excutP (next(s)) for any non-exit cutpoint s of P. Now
let b be some preQ state encountered during symbolic simulation. We must have
previously encountered a non-exit cutpoint a of P such that there is no cutpoint
between nextP (a) and b. Assuming excutP (next(a)) we can infer excutP (b) by
the definitions of excut and nextc, enabling application of SSR3′.

Note that while we used the word “subroutine” for presentation, our treat-
ment does not require P or Q to be subroutines. One can mark any program
block by defining an appropriate predicate in, verify it separately, and use it
to compositionally reason about programs that invoke it. In practice, we sep-
arately verify callees that (i) contain one or more loops, and (ii) are invoked
several times, possibly by several callers. If Q is a straight-line procedure with
complicated semantics, for instance some complex initialization code, we skip
composition and allow symbolic simulation of P to emulate in-lining of Q.

We now turn to recursive procedures. So far we have considered the scenario
where Q has been verified before P. This is not valid for recursive programs
where P and Q are invocations of the same procedure. Nevertheless, we can
still assume the correctness of Q while reasoning about P. The soundness of the
assumption is justified by well-founded induction on the number of machine steps
needed to reach the first exit state for P, and the fact that recursive invocations
of P execute in fewer steps than P itself.

We end the description of the method with a note on its mechanization in
ACL2. Observe that the proofs of Theorems 1 and 2, the symbolic simula-
tion rules, and the justification for applying induction for recursive procedures
above, do not depend on the actual definitions of next, pre, post, etc., but merely
on conditions V1-V5, V5′, and CC. Thus we can verify concrete programs
by instantiating the correctness theorems with the corresponding functions for
the concrete machine model. In ACL2, we make use of a derived rule of infer-
ence called functional instantiation [14], which enables instantiation of theorems
about constrained functions with concrete functions satisfying the constraints. In
particular, we have used constrained functions pre, post, next, etc., axiomatized
to satisfy the verification conditions, and mechanically derived the remaining
theorems and rules. This allows us to automate assertional reasoning on opera-
tional models by implementing a macro which performs steps 1-4 below.
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1. Mechanically generate concrete versions of the functions csteps, nextc, esteps,
etc., for the given operational semantics.

2. Functionally instantiate the generic symbolic simulation rules SSR1, SSR2,
and SSR3 (resp., SSR3′), and the justification for recursive procedures.

3. Use symbolic simulation to prove the verification conditions.
4. Derive correctness by functionally instantiating Theorems 1 and 2.

4 Applications

In this section, we discuss applications of the method in verification of concrete
programs. All the examples presented have been verified in ACL2 using the
macro mentioned above. We start with an assembly language Fibonacci program
on a simple machine model called TINY [8]. The subsequent examples are JVM
bytecodes compiled from Java for an operational model of the JVM in ACL2
called M5 [2]. The details of TINY or M5 are irrelevant to this paper; we chose
them since they are representative of operational machine models in ACL2, and
their formalizations were accessible to us.

4.1 Fibonacci Implementation on TINY

TINY is a stack-based 32-bit processor developed at Rockwell Collins Inc [8].
The Fibonacci program shown in Fig. 1 is the result of compiling the standard
iterative implementation for this machine. TINY represents memory as a linear
address space. The two most recently computed values of the Fibonacci sequence
are stored in addresses 20 and 21, and the loop counter n is maintained on the
stack. TINY performs 32-bit integer arithmetic. Given a number k the program
computes fix(fib(k)), where fix(n) returns the low-order 32 bits of n, and fib is
the mathematical Fibonacci function defined below:

fib(k) 
{

1 if k ≤ 1
fib(k − 1) + fib(k − 2) otherwise

The pre, post, and exit predicates for the verification of the Fibonacci program1

are shown in Fig. 2, and the assertions at the different cutpoints in Fig. 3. They
are fairly traditional. The key assertion is the loop invariant which specifies that
the numbers at addresses 20 and 21 are fix(fib(k − n)) and fix(fib(k − n − 1))
respectively, where n is the loop count stored at the top of the stack when the
control reaches the loop test. For partial correctness, no further user input is
necessary. Symbolic simulation proves the standard verification conditions.

For total correctness, we additionally use the function rank below that maps
the cutpoints to the well-founded set of ordinals below ε0.

rank(s) 
{

0 if exit(s)
(ω ·o tos(s)) +o |∗halt∗ − pc(s)| otherwise

1 Functions pre and post here take an extra argument k while our generic proofs used
unary functions. This is admissible since one can functionally instantiate constraints
with concrete functions having extra arguments, as long as such arguments do not
affect the parameters (in this case s) involved in the constraints [14].
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100 pushsi 1 *start*

102 dup

103 dup

104 pop 20 fib0 := 1;

106 pop 21 fib1 := 1;

108 sub n := max(n-1,0);

109 dup *loop*

110 jumpz 127 if n == 0, goto *done*;

112 pushs 20

113 dup

115 pushs 21

117 add

118 pop 20 fib0 := fib0 + fib1;

120 pop 21 fib1 := fib0 (old value);

122 pushsi 1

124 sub n := max(n-1,0);

125 jump 109 goto *loop*;

127 pushs 20 *done*

129 add return fib0 + n;

130 halt *halt*

Fig. 1. TINY Assembly Code for computing the nth Fibonacci sequence. The numbers
to the left of each instruction is the pc value for the loaded program. High-level pseudo-
code is shown at the extreme right. The add instruction at pc value 129 removes 0 from
the top of stack; this trick is necessary since TINY has no DROP instruction.

– pre(k, s)  pc(s) = ∗ start∗ ∧ tos(s) = k ∧ k ≥ 0 ∧ fib-loaded(s)
– post(k, s)  tos(s) = fix(fib(k))
– exit(s)  pc(s) = ∗halt∗

Fig. 2. Predicates pre, post, and exit for the Fibonacci program. Here pc(s) and tos(s)
return the program counter and top of stack at state s, and fib-loaded holds at state s
if the program in Fig. 1 is loaded in the memory starting at location *start*.

Here ω is the first infinite ordinal, and ·o and +o represent ordinal multiplication
and addition. Informally, rank is a lexicographic ordering of the loop count and
the difference between the location *halt* and pc(s).

4.2 Recursive Factorial Implementation on the JVM

Our next example involves JVM bytecodes for a recursive implementation of the
factorial program (Fig. 4). We use an operational model of the JVM called M5,
developed at the University of Texas [2]. M5 defines the semantics for 138 JVM
instructions, and supports invocation of static, special, and virtual methods,
inheritance rules for method resolution, multi-threading, and synchronization via
monitors. The bytecodes in Fig. 4 are produced from the Java implementation
by disassembling the output of javac and can be executed with M5.
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Program Counter Assertions

*start* tos(s) = k ∧ 0 ≤ k ∧ fib-loaded(s)

*loop* mem(20, s) = fix(fib(k − tos(s))) ∧ 0 ≤ tos(s) ≤ k∧
mem(21, s) = fix(fib(k − tos(s) − 1)) ∧ fib-loaded(s)

*done* mem(20, s) = fix(fib(k)) ∧ tos(s) = 0 ∧ fib-loaded(s)

*halt* tos(s) = fix(fib(k))

Fig. 3. Assertions for the Fibonacci program

Method int fact (int)

0 ILOAD_0 *start*

1 IFLE 12 if (n<=0) goto *done*

4 ILOAD_0

5 ILOAD_0

6 ICONST_1

7 ISUB

8 INVOKESTATIC #4 <Method int fact (int)> x:= fact(n-1)

11 IMUL x:= n*x

12 IRETURN *ret* return x

13 ICONST_1 *done*

14 IRETURN *base* return 1

Fig. 4. M5 Bytecodes for the Factorial Method

The example is an entertaining illustration of our treatment of recursion.
With the exception of the recursive call, the procedure involves a straight line
code. Thus we only need to specify the precondition and the postcondition. The
precondition posits that the state s is poised to start executing the bytecodes
for fact on argument k; the postcondition specifies that the return state pops
the top frame from the call stack and stores fix(fact(k)) on the frame of the
caller where fact is the mathematical factorial function. No further annotation
is necessary. When symbolic simulation reaches the state in which the recursive
call is invoked, it skips past the call (inferring the postcondition for the recursive
call) and continues until the procedure exits. This stands in stark contrast to
all the previously published ACL2 proofs of the method [2,15], which require
complex assertions to characterize each recursive frame in the call stack.

4.3 CBC-Mode Encryption and Decryption

Our third example is a more elaborate proof of functional correctness of a Java
program implementing encryption and decryption of an unbounded array of
bits. By functional correctness, we mean that the composition of encryption
and decryption yields the original plaintext. Functional correctness of crypto-
graphic protocols has received considerable attention recently in formal verifica-
tion [16,17]. We refer the reader to Schneier [18] for an overview of cryptosystems.
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Cryptographic protocols use a block cipher that encrypts and decrypts a fixed-
size block of bits. We use blocks of 128 bits. Encryption and decryption of large
data streams additionally require the following operations.

– A mode of operation extends the cipher from a single block to arbitrary block
sequences. We use Cipher Block Chaining (CBC), which ’xor’s a plaintext
block with the previous ciphertext in the sequence before encryption.

– Padding expands a bit sequence to one which is a multiple of a block length,
so as to apply a block cipher; unpadding drops the padding during decryption.

– Blocking involves transforming an array of bits to an array of blocks for use
by CBC encryption; unblocking is the obvious inverse.

Our Java implementation performs the following sequence of operations on an
unbounded bit-array: (i) padding, (ii) blocking, (iii) CBC encoding, (iv) CBC
decoding, (v) unblocking, and (vi) unpadding. It follows Slind and Hurd’s HOL
model of the operations [16], adapted for bit arrays. However, we do not imple-
ment a practical block cipher; our cipher ’xor’s a 128-bit block with a key based
on a fixed key schedule. The program constitutes about 300 lines of Java (with
18 subroutines), which compiles to 600 bytecodes.

We verify both partial and total functional correctness. The precondition spec-
ifies that the class table containing the routines is loaded and the current call
frame contains a reference to an array a of bits in the heap; the postcondition
requires that the array on termination is the same as a. Using ACL2 libraries on
arithmetic and arrays, the only non-trivial user inputs necessary for the proofs
are the loop invariants for the associated procedures. Furthermore, the only prop-
erty of the block cipher used in reasoning about the CBC methods is that the
encryption and decryption of 128-bit blocks are inverses. Thus, it is now possible
to independently prove this invertibility property for a practical block cipher,
and “plug in” the cipher to obtain a proof of the corresponding unbounded
bit-array encryption.

5 Related Work

Operational semantics was introduced by McCarthy [19], and has since been
used extensively for mechanical verification of complex programs. In particular,
ACL2 and its predecessor Nqthm have used such models extensively [1,2,8,20].
Operational models have also been used in Isabelle/HOL to formalize Java and
the JVM [21], and in PVS to model state chart languages [22].

The notion of assertions was used by Goldstein and von Neumann [23], and
Turing [24], and made explicit in the classic works of Floyd [3], Manna [6],
Hoare [4], and Dijkstra [25]. King [26] wrote the first mechanized VCG. VCGs
have been used extensively in practice, for example in the Extended Static
Checker for Java (ESC/Java) [27], the Java certifying compiler [10], and the
Praxis verification of Spark programs [28]. Several researchers have commented
on the complexity of a practical VCG [29,30]. There has also been significant re-
search verifying VCGs via theorem proving [31,32,33]. In the context of theorem
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proving, assertions have also been used to verify C programs in HOL [34], and
reason about pointers and BDD normalization algorithms in Isabelle [35,36].

This work is influenced by two earlier efforts in ACL2 by the individual au-
thors, namely Moore [15] and Matthews and Vroon [37], to emulate VCG reason-
ing with a theorem prover. Moore defines a tail-recursive predicate inv such that
the proof of invariance of inv reduces to showing that each cutpoint satisfies asser-
tions. However, since the definition of inv is tied to assertions, the method cannot
be used to reason about ranking functions (and hence termination). Matthews
and Vroon prove termination by directly characterizing cutpoints, but conflate
assertions and cutpoints in a single predicate. Thus symbolic simulation can
skip past cutpoints not satisfying assertions, and partial correctness cannot be
inferred. Neither method handles composition or recursive procedures. Our work
can be viewed as a unification and substantial extension of these efforts.

There are parallels between our work and research on proof-carrying code
(PCC) [38]. VCGs are the key trusted components in PCCs. Similar to our
work, foundational PCC research [39] ensures reliability of verification condition
generation by relying only on a general-purpose theorem prover and the opera-
tional semantics of a machine language. However, while PCCs focus on automatic
proofs of fixed safety properties (such as type and memory safety), our approach
is geared towards verifying functional program correctness which requires more
general-purpose assertions. We achieve this by using the simplification mecha-
nisms of a theorem prover to automate verification condition generation.

An early implementation of our ACL2 macro is currently distributed with
ACL2. Several researchers have personally communicated to the authors inde-
pendent endeavors applying and extending the method. At Galois Connections
Inc., Pike has applied the macro to verify programs on the Rockwell Collins
AAMP7TM processor [40]. At the National Security Agency, Legato has used it
to verify an assembly language multiplier for the Mostek 6502 microprocessor.
At Rockwell Collins Inc., Hardin et al. are independently extending the method
and using it for AAMP7 and JVM code verification [41]. Fox has formalized the
method in HOL4 and is applying it on ARM assembly language programs.

6 Summary and Conclusion

We have presented a method to apply assertional reasoning for verifying sequen-
tial programs based on operational semantics, that is suitable for use in mechani-
cal theorem proving. Symbolic simulation is used for generating and discharging
verification conditions, which are then traded for the correctness theorem by
automatically generating a tail-recursive clock. Partial and total correctness are
handled uniformly. The method is compositional in that individual procedures
can be verified component-wise to prove the correctness of their composition. It
also provides a natural treatment of recursive procedures.

The method unifies the clarity and concreteness of operational semantics with
the abstraction provided by assertional methods without requiring the imple-
mentation (or verification) of a VCG for the target language. To understand
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why implementing a VCG for a realistic programming language is difficult, con-
sider the method invocation instruction of the JVM. This instruction involves
method resolution with respect to the object on which the method is invoked,
and side effects on many parts of the states such as the call frames, heap (for
synchronized methods), and the class table (for dynamic methods). Encoding
such operations as predicate transformation instead of state transformation is
non-trivial. Furthermore, most VCGs perform on-the-fly formula simplifications
to generate manageable verification conditions. As a measure of the complex-
ity, the VCG for the Java certifying compiler ran to about 23000 lines of C in
2001 [10]. In our approach, only one trusted tool, namely an off-the-shelf theorem
prover, is necessary, while still inheriting the benefits of a VCG; the requisite
simplifications are performed with the full power of the theorem prover.

Note however, that practical VCGs may implement substantial static analysis
on the control flow of the program. For instance, the VCG for ESC/Java per-
forms static analysis to elide assertions from join points of conditionals without
incurring exponential case blow-up [29]. To emulate them with a theorem prover,
the simplification engine and lemma libraries must be powerful enough to encode
such transformations. ACL2 provides a meta reasoning facility [42], allowing the
user to augment its native simplification heuristics. We are investigating its use
to encode the analysis performed by a practical VCG.

We are working on making our ACL2 macro more efficient and applying it to
verify high-assurance programs on realistic machine models. A target application
is the verifying compiler being developed at Galois Connections and Rockwell
Collins, Inc. to compile programs in the CryptolTM language into code for the
AAMP7TM processor [43]. The goal is to generate, in addition to object code,
a proof to certify that the code implements the source program semantics, and
our macro can be used with the existing ACL2 model of the AAMP7 [40] to
generate the requisite verification conditions.
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References

1. Boyer, R.S., Moore, J.S.: Mechanized Formal Reasoning about Programs and Com-
puting Machines. In Veroff, R., ed.: Automated Reasoning and Its Applications:
Essays in Honor of Larry Wos, MIT Press (1996) 141–176

2. Moore, J.S.: Proving Theorems about Java and the JVM with ACL2. In Broy, M.,
Pizka, M., eds.: Models, Algebras, and Logic of Engineering Software, Amsterdam,
IOS Press (2003) 227–290



Verification Condition Generation Via Theorem Proving 375

3. Floyd, R.: Assigning Meanings to Programs. In: Mathematical Aspects of Com-
puter Science, Proceedings of Symposia in Applied Mathematcs. Volume XIX.,
Providence, Rhode Island, American Mathematical Society (1967) 19–32

4. Hoare, C.A.R.: An Axiomatic Basis for Computer Programming. Communications
of the ACM 12 (1969) 576–583

5. Ray, S., Moore, J.S.: Proof Styles in Operational Semantics. In: FMCAD 2004.
LNCS 3312, Springer-Verlag (2004) 67–81

6. Manna, Z.: The Correctness of Programs. JCSS 3 (1969) 119–127
7. Oheimb, D.v., Nipkow, T.: Machine-checking the Java Specification: Proving Type-

Safety. In Alves-Foss, J., ed.: Formal Syntax and Semantics of Java. Volume 1523
of LNCS. Springer (1999) 119–156

8. Greve, D., Wilding, M., Hardin, D.: High-Speed, Analyzable Simulators. In Kauf-
mann, M., Manolios, P., Moore, J.S., eds.: Computer-Aided Reasoning: ACL2 Case
Studies, Kluwer Academic Publishers (2000) 89–106

9. Shankar, N.: Machine-Assisted Verification Using Theorem Proving and Model
Checking. In Broy, M., Schieder, B., eds.: Mathematical Methods in Program
Development. Volume 158 of NATO ASI Series F: Computer and Systems Science.
Springer (1997) 499–528

10. Colby, C., Lee, P., Necula, G.C., Blau, F., Plesko, M., Cline, K.: A Certifying
Compiler for Java. In: ACM SIGPLAN 2000 conference on Programming language
design and implementation. (2000) 95–107

11. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: An Ap-
proach. Kluwer Academic Publishers (2000)

12. Nipkow, T., Paulson, L., Wenzel, M.: Isabelle/HOL: A Proof Assistant for Higher
Order Logics. Volume 2283 of LNCS. Springer-Verlag (2002)

13. Manolios, P., Moore, J.S.: Partial Functions in ACL2. Journal of Automated
Reasoning 31 (2003) 107–127

14. Boyer, R.S., Goldshlag, D., Kaufmann, M., Moore, J.S.: Functional Instantiation
in First Order Logic. In Lifschitz, V., ed.: Artificial Intelligence and Mathemati-
cal Theory of Computation: Papers in Honor of John McCarthy, Academic Press
(1991) 7–26

15. Moore, J.S.: Inductive Assertions and Operational Semantics. In Geist, D., ed.:
CHARME 2003. Volume 2860 of LNCS., Springer-Verlag (2003) 289–303

16. Slind, K., Hurd, J.: Applications of polytypism in theorem proving. In Basin, D.,
Wolff, B., eds.: 16th International Conference on Theorem Proving in Higher Order
Logics. LNCS 2978 (2003) 103–119

17. Toma, D., Borrione, D.: Formal verification of a SHA-1 circuit core using ACL2. In
Hurd, J., Melham, T., eds.: TPHOLS 2005. Springer LNCS 3603 (2005) 326–341

18. Schneier, B.: Applied Cryptography (2nd ed.): Protocols, Algorithms, and Source
Code in C. John Wiley & Sons, Inc. (1995)

19. McCarthy, J.: Towards a Mathematical Science of Computation. In: Proceedings
of the Information Processing Congress. Volume 62., North-Holland (1962) 21–28

20. Yu, Y.: Automated Proofs of Object Code for a Widely Used Microprocessor. PhD
thesis, University of Texas at Austin (1992)

21. Strecker, M.: Formal Verification of a Java Compiler in Isabelle. In Voronkov, A.,
ed.: CADE 2004. LNCS 2392, Springer-Verlag (2002) 63–77

22. Hamon, G., Rushby, J.: An Operational Semantics for Stateflow. In: FASE 2004.
LNCS 2984, Springer-Verlag (2004) 229–243

23. Goldstein, H.H., J. von Neumann: Planning and Coding Problems for an Elec-
tronic Computing Instrument. In: John von Neumann, Collected Works, Volume
V, Pergamon Press, Oxford (1961)



376 J. Matthews et al.

24. Turing, A.M.: Checking a Large Routine. In: Report of a Conference on High Speed
Automatic Calculating Machine, University Mathematical Laboratory, Cambridge,
England (1949) 67–69

25. Dijkstra, E.W.: Guarded Commands, Non-determinacy and a Calculus for Deriva-
tion of Programs. Communications of the ACM 18 (1975) 453–457

26. King, J.C.: A Program Verifier. PhD thesis, Carnegie-Melon University (1969)
27. Detlefs, D.L., Leino, K.R.M., Nelson, G., Saxe, J.B.: Extended Static Checking for

Java. Technical Report 159, Compaq Systems Research Center (1998)
28. King, S., Hammond, J., Chapman, R., Pryor, A.: Is Proof More Cost-Effective

Than Testing? IEEE Transactions on Software Engineering 26 (2000) 675–686
29. Flanagan, C., Saxe, J.B.: Avoiding Exponential Explosion: Generating Compact

Verification Conditions. In: Proceedings of the 28th ACM SIGPLAN-SIGACT
symposium on Principles of Programming Languages . (2001) 193–205

30. Leino, K.R.M.: Efficient weakest preconditions. Inf. Process. Lett. 93 (2005)
281–288

31. Homeier, P., Martin, D.: A Mechanically Verified Verification Condition Generator.
The Computer Journal 38 (1995) 131–141

32. Gloess, P.Y.: Imperative Program Verification in PVS. Technical report, École
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Abstract. Abstraction-Carrying Code (ACC) has recently been pro-
posed as a framework for Proof-Carrying Code (PCC) in which the code
supplier provides a program together with an abstraction (or abstract
model of the program) whose validity entails compliance with a prede-
fined safety policy. Existing approaches for PCC are developed under
the assumption that the consumer reads and validates the entire pro-
gram w.r.t. the full certificate at once, in a non incremental way. In
the context of ACC, we propose an incremental approach to PCC for
the generation of certificates and the checking of untrusted updates of a
(trusted) program, i.e., when a producer provides a modified version of
a previously validated program. Our proposal is that, if the consumer
keeps the original (fixed-point) abstraction, it is possible to provide only
the program updates and the incremental certificate (i.e., the difference
of abstractions). Furthermore, it is now possible to define an incremen-
tal checking algorithm which, given the new updates and its incremental
certificate, only re-checks the fixpoint for each procedure affected by the
updates and the propagation of the effect of these fixpoint changes. As
a consequence, both certificate transmission time and checking time can
be reduced significantly.

1 Introduction

Proof-Carrying Code (PCC) [13] is a general technique for mobile code safety
which proposes to associate safety information in the form of a certificate to
programs. The certificate (or proof) is created at compile time by the certifier
on the code supplier side, and it is packaged along with the code. The consumer
who receives or downloads the (untrusted) code+certificate package can then
run a checker which by an efficient inspection of the code and the certificate can
verify the validity of the certificate and thus compliance with the safety policy.
The key benefit of this “certificate-based” approach to mobile code safety is that
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the consumer’s task is reduced from proving to checking, a task which should be
much simpler, efficient, and automatic than generating the original certificate.

Abstraction-Carrying Code (ACC) [4] has been recently proposed as an en-
abling technology for PCC in which an abstraction (i.e., an abstract model of
the program) plays the role of certificate. An important feature of ACC is that
not only the checking, but also the generation of the abstraction (or fixpoint) is
automatically carried out by a fixed-point analyzer. In this paper, we will con-
sider analyzers which construct a program analysis graph which is interpreted
as an abstraction of the (possibly infinite) set of states explored by the concrete
execution. Essentially, the certification/analysis carried out by the supplier is
an iterative process which repeatedly traverses the analysis graph until a fix-
point is reached. A key idea in ACC is that, since the certificate is a fixpoint,
a single pass over the analysis graph is sufficient to validate the certificate in
the consumer side. The ACC framework and our work here are applied at the
source-level while in existing PCC frameworks the code supplier typically pack-
ages the certificate with the object code rather than with the source code (both
are untrusted). This is without loss of generality because both the ideas in ACC
and in our current incremental proposal could also be applied to bytecode.

Non incremental models for PCC (ACC among them) are based on checkers
which receive a “certificate+program” package and read and validate the entire
program w.r.t. its certificate at once . However, there are situations which are not
well suited to this simple model. In particular, we consider possible untrusted
updates of a validated (trusted) code, i.e., a code producer can (periodically)
send to its consumers new updates of a previously submitted package. By up-
dates, we mean any modification over a program including: 1) the addition of
new data/procedures and the extension of already existing procedures with new
functionalities, 2) the deletion of procedures or parts of them and 3) the re-
placement of certain (parts of) procedures by new versions for them. In such a
context of frequent software updates, it appears inefficient to submit a full cer-
tificate (superseding the original one) and to perform the checking of the entire
updated program from scratch, as needs to be done with current systems. In the
context of ACC, we investigate an incremental approach to PCC by considering
any arbitrary program update over the original program.

When a program is updated, a new fixpoint has to be computed for the
updated program. Such fixpoint differs from the original fixpoint stored in the
certificate in a) the new fixpoint for each procedure affected by the changes and
b) the update of certain (existing) fixpoints affected by the propagation of the
effect of a). However, certain parts of the original certificate may not be affected
by the changes. Thus, if the consumer still keeps the original abstraction, it
is possible to provide, along with the program updates, only the difference of
both abstractions, i.e., the incremental certificate. The first obvious advantage
of an incremental approach is that the size of the certificate may be substantially
reduced by submitting only the increment.

Moreover, the task performed by the checker can also be further reduced in
incremental PCC. In principle, a non-incremental checker (like the one in [4])
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requires a whole traversal of the analysis graph where the entire program + up-
dates is checked against the (full) certificate. However, it is now possible to define
an incremental checking algorithm which, given the updates and its incremental
certificate, only rechecks the part of the analysis graph for the procedures which
have been affected by the updates and, also, propagates and rechecks the effect
of these changes. In order to perform such propagation of changes, the dependen-
cies between the nodes of the original analysis graph have to be computed and
stored by the consumers, together with the original certificate. With this, the
checking process is carried out in a single pass over the part of the abstraction
affected by the updates. Thus, the second advantage of our incremental approach
is that checking time is further reduced.

2 Abstraction-Carrying Code

We assume some familiarity with abstract interpretation (see [6]), (Constraint)
Logic Programming (C)LP (see, e.g., [11,10]) and PCC [13].

An abstract interpretation-based certifier is a function Certifier: Prog ×
ADom × Approx 
→ Approx which for a given program P ∈ Prog , an abstract
domain Dα ∈ ADom and an abstract safety policy Iα ∈ Approx generates an
abstract certificate Certα ∈ Approx , by using an abstract interpreter for Dα,
such that the certificate entails that P satisfies Iα. An abstract safety policy
Iα is a specification of the safety requirements given in terms of the abstract
domain Dα. We denote that Iα and Certα are specifications given as abstract
semantic values of Dα by using the same subscript α. The basics for defining
such certifiers (and their corresponding checkers) in ACC are summarized in the
following five points:
Approximation. We consider a description (or abstract) domain 〈Dα,9〉∈ADom
and its corresponding concrete domain 〈2D,⊆〉, both with a complete lattice
structure. Description (or abstract) values and sets of concrete values are related
by an abstraction function α : 2D → Dα, and a concretization function γ :
Dα → 2D. The pair 〈α, γ〉 forms a Galois connection. The concrete and abstract
domains must be related in such a way that the following condition holds [6]
∀x ∈ 2D : γ(α(x)) ⊇ x and ∀y ∈ Dα : α(γ(y)) = y. In general 9 is induced
by ⊆ and α. Similarly, the operations of least upper bound (�) and greatest lower
bound (�) mimic those of 2D in a precise sense.
Analysis. We consider the class of fixed-point semantics in which a (monotonic)
semantic operator, SP , is associated to each program P . The meaning of the
program, [[P ]], is defined as the least fixed point of the SP operator, i.e., [[P ]] =
lfp(SP ). If SP is continuous, the least fixed point is the limit of an iterative
process involving at most ω applications of SP starting from the bottom element
of the lattice. Using abstract interpretation, we can usually only compute [[P ]]α,
as [[P ]]α = lfp(Sα

P ). The operator Sα
P is the abstract counterpart of SP .

analyzer(P,Dα) = lfp(Sα
P ) = [[P ]]α (1)

Correctness of analysis ensures that [[P ]]α safely approximates [[P ]], i.e., [[P ]] ∈
γ([[P ]]α). Thus, such abstraction can be used as certificate.
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Certificate. Let Certα be a safe approximation of [[P ]]α. If an abstract safety
specification Iα can be proved w.r.t. Certα, then P satisfies the safety policy
and Certα is a valid certificate:

Certα is a valid certificate for P w.r.t. Iα iff Certα 9 Iα (2)
Together, Equations (1) and (2) define a certifier which provides program fix-
points, [[P ]]α, as certificates which entail a given safety policy, i.e., by taking
Certα = [[P ]]α.
Checking. A checker is a function Checker: Prog × ADom × Approx 
→ bool
which for a program P ∈ Prog , an abstract domain Dα ∈ ADom and certificate
Certα ∈ Approx checks whether Certα is a fixpoint of Sα

P or not:
checker(P,Dα, Certα) returns true iff (Sα

P (Certα) ≡ Certα) (3)
Verification Condition Regeneration. To retain the safety guarantees, the con-
sumer must regenerate a trustworthy verification condition –Equation (2)– and
use the incoming certificate to test for adherence of the safety policy.

P is trusted iff Certα 9 Iα (4)
A fundamental idea in ACC is that, while analysis –Equation (1)– is an iterative
process, checking –Equation (3)– is guaranteed to be done in a single pass over
the abstraction.

3 Notions on Certificates

Although ACC and Incremental ACC are general proposals not tied to any
particular programming paradigm, our developments for incremental ACC (as
well as for the original ACC framework [4]) are formalized in the context of
(C)LP. Very briefly, a constraint is essentially a conjunction of expressions built
from predefined predicates (such as term equations or inequalities over the reals)
whose arguments are constructed using predefined functions (such as real addi-
tion). An atom has the form p(t1, ..., tn) where p is a predicate symbol and ti
are terms. A literal is either an atom or a constraint. A goal is a finite sequence
of literals. A rule is of the form H:-D where H , the head, is an atom and D,
the body, is a possibly empty finite sequence of literals. A constraint logic pro-
gram P ∈ Prog , or program, is a finite set of rules. Program rules are assumed
to be normalized: only distinct variables are allowed to occur as arguments to
atoms. Furthermore, we require that each rule defining a predicate p has iden-
tical sequence of variables xp1 , . . . xpn in the head atom, i.e., p(xp1 , . . . xpn). We
call this the base form of p. This is not restrictive since programs can always be
normalized, and it will facilitate the presentation of the checking algorithms.

3.1 The Notion of Full Certificate

For concreteness, we rely on an abstract interpretation-based analysis algorithm
in the style of the generic analyzer of [7]. This goal-dependent analysis algorithm,
which we refer to as analyzer, given a program P and abstract domain Dα,
receives a set Qα ∈ AAtom of Abstract Atoms (or call patterns) and constructs
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an analysis graph [5] for Qα. The elements of Qα are pairs of the form A : CP
where A is a procedure descriptor and CP is an abstract substitution (i.e.,
a condition of the run-time bindings) of A expressed as CP ∈ Dα.1 Then, the
analysis graph is an abstraction of the (possibly infinite) set of (possibly infinite)
trees explored by the concrete execution of initial calls described by Qα in P .
The program analysis graph computed by analyzer(Qα) for P in Dα can be
implicitly represented by means of two data structures, the answer table and the
dependency arc table (which are in fact the result of the analysis algorithm).

Answer Table (AT). Its entries correspond to the nodes in the analysis graph.
They are of the form A : CP 
→ AP, where A is always an atom in base form.
They should be interpreted as “the answer pattern for calls to A satisfying
precondition (or call pattern), CP, accomplishes postcondition (or answer
pattern), AP.” AP and CP are abstract substitutions in Dα.

Dependency Arc Table (DAT). Dependencies correspond to the arcs in the
analysis graph. The intended meaning of a dependency Ak : CP ⇒ Bk,i :
CP1 associated to a program rule Ak:-Bk,1, . . . , Bk,n with i ∈ {1, ..n}, is
that the answer for Ak : CP depends on the answer for Bk,i : CP1, say AP1.
Thus, if AP1 changes with the update of some rule for Bk,i then, the arc
Ak : CP ⇒ Bk,i : CP1 must be reprocessed in order to compute the new
answer for Ak : CP . This is to say that the rule for Ak has to be processed
again starting from atom Bk,i.

All the details and the formalization of the analysis algorithm analyzer can be
found in [7]. Certification in ACC [4] consists in using the complete set of en-
tries stored in the answer table as certificate. Dependencies are not needed for
certificate generation neither for non-incremental checking though they will be
fundamental later for incremental certificate checking.

Definition 1 (certificate [4]). Let P ∈ Prog, Dα ∈ ADom and Qα ∈ AAtom.
We define Cert ∈ Approx , the certificate for P and Qα, as the set of entries
stored in the answer table computed by analyzer(Qα) [7] for P in Dα.

Example 1. The next example shows a piece of a module which contains the
following (normalized) program for the naive reversal of a list and uses an im-
plementation of app with several base cases (e.g., added automatically by a
partial evaluator [8] for efficiency purposes).

(rev1) rev(X, Y) : − X = [ ], Y = [ ].
(rev2) rev(X, Y) : − X = [U|V], rev(V, W), T = [U], app(W, T, Y).
(app1) app(X, Y, Z) : − X = [ ], Y = Z.
(app2) app(X, Y, Z) : − X = [U], Z = [U|Y].
(app3) app(X, Y, Z) : − X = [U, V], Z = [U, V|Y].
(app4) app(X, Y, Z) : − X = [U|V], Z = [U|W], app(V, Y, W).

The description domain that we use in our examples is the domain Pos of Pos-
itive Boolean functions [12]. The key idea in this description is to use implica-
tion to capture groundness dependencies. The reading of the function x → y is
1 We sometimes omit the subscript α from Qα when it is clear from the context.
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“if the program variable x is (becomes) ground, so is (does) program variable
y.” For example, the best description of the constraint f(X, Y) = f(a, g(U, V)) is
X ∧ (Y ↔ (U ∧ V)). Groundness information is of great importance as a safety
property in order to verify that (C)LP programs are “well moded” (i.e., argu-
ments are correctly instantiated). The most general description . does not pro-
vide information about any variable. The least general substitution ⊥ assigns
the empty set of values to each variable.

For the analysis of our running example, we consider the calling pattern rev(X,
Y) : ., i.e., no entry information is provided on X nor Y. analyzer(rev(X, Y) :
.) produces State 0 composed of the following answers and dependencies:

(A1 ) rev(X, Y) : . 
→ X ↔ Y (D1 ) rev(X, Y) : . ⇒ rev(V, W) : .
(A2 ) app(X, Y, Z) : . 
→ (X ∧ Y) ↔ Z (D2 ) rev(X, Y) : . ⇒ app(W, T, Y) : .

(D3 ) app(X, Y, Z) : . ⇒ app(V, Y, W) : .
Intuitively, D2 denotes that the answer for rev(X, Y) : . may change if the an-
swer for app(W, T, Y) : . changes. In such a case, the second rule for rev must
be processed again starting from atom app(W, T, Y) in order to recompute the
fixpoint for rev(X, Y) : .. D1 and D3 reflect the recursivity of rev(X, Y) : . and
app(W, T, Y) : ., respectively, since they depend on themselves. The detailed steps
performed by the algorithm can be found in [7] for the same program without
the rules app2 and app3. However these rules do not add any further informa-
tion to the fixpoint computation and the steps performed there still apply to
our example. According to Definition 1, the certificate Cert for this example is
composed of all entries in the answer table, i.e., A1 and A2 . �

3.2 The Notion of Incremental Certificate

Given a program P , we define an update of P , written as Upd(P) ∈ UProg, as a
set of tuples of the form 〈A,Add(A),Del(A)〉, where A = p(x1, . . . , xn) is an atom
in base form, Add(A) is the set of rules which are to be added to P for predicate
p2 and Del(A) is the set of rules which are to be removed from P for predicate p.

When a program is updated, depending on the kind of update, the new certifi-
cate for the modified program can be either equal, more or less precise than the
original one, or even not comparable. In any case, it appears inefficient to gen-
erate, transmit, and check the full certificate Ext Cert for the updated program
UP defined as UP = P ⊕ Upd(P).3 Our proposal is that it is possible to submit
only the new program update Upd(P) together with the incremental certificate
Inc Cert, i.e., the difference of Ext Cert w.r.t. the original Cert.

Definition 2 (incremental certificate). In the conditions of Def. 1, we con-
sider Upd(P) ∈ UProg. Let Cert be the certificate for P and Qα. Let Ext Cert be
2 This includes both the case of addition of new procedures, when p did not exist in

P , as well as the extension of additional rules (or functionality) for p, if it existed.
3 The operator “⊕” applies the update to P and generates UP = P ⊕ Upd(P). This

can be implemented by using a program in the spirit of the traditional Unix patch
command as ⊕ operator.



An Incremental Approach to Abstraction-Carrying Code 383

the certificate for P ⊕Upd(P) and Qα. We define Inc Cert, the incremental cer-
tificate for Upd(P) w.r.t. Cert, as Ext Cert−Cert, where Ext Cert−Cert is defined
as the set of entries B : CPB 
→ APB ∈ Ext Cert such that:

1. B : CPB 
→ �∈ Cert or,
2. A : CPA 
→ APA ∈ Cert, A : CPA = B : CPB and APA �= APB (modulo

renaming).

The definition of incremental certificate for the particular case of program ex-
tensions can be found in [2]. The following example illustrates that updating
a program can require the change in the analysis information previously com-
puted for other procedures whose fixpoint is indirectly affected by the updates,
although their definitions have not been directly changed.

Example 2. Consider the following new definition for app, which is a specializa-
tion of the previous app to concatenate lists of a’s of the same length :

(Napp1) app(X, Y, Z) : − X = [ ], Y = [ ], Z = [ ].
(Napp2) app(X, Y, Z) : − X = [a|V], Y = [a|U], Z = [a, a|W], app(V, U, W).

The update consists in deleting all rules for app in Ex. 1, and replacing them by
Napp1 and Napp2. After running the (incremental) analysis algorithm in [7], the
following answer table and dependencies are computed (State 1):

(NA1 ) rev(X, Y) : . 
→ X ∧ Y (ND1 ) rev(X, Y) : . ⇒ rev(V, W) : .
(NA2 ) app(X, Y, Z) : . 
→ X ∧ Y ∧ Z (ND2 ) rev(X, Y) : . ⇒ app(W, T, Y) : W
(NA3 ) app(X, Y, Z) : X 
→ X ∧ Y ∧ Z (ND3 ) app(X, Y, Z) : X ⇒ app(V, U, W) : V

Note that the analysis information has changed because the new definition of
app allows inferring that all its arguments are ground upon success (NA2 and
NA3 ). This change propagates to the answer of rev and allows inferring that,
regardless of the calling pattern, both arguments of rev will be ground on the
exit (NA1 ). According to Def. 2, the incremental certificate Inc Cert contains
NA3 , as it corresponds a new calling pattern (point 1), and also NA1 and NA2

since their answers have changed w.r.t. the ones in State 0 (point 2). �

Note that in a non incremental framework, the size of certificates can be reduced
by using compression techniques as in [3]. This approach is not compatible with
the incremental setting we discuss in this paper, because information essential
for the incremental checker can have been removed by the fixpoint reduction.

4 A Checking Algorithm with Support for Incrementality

In this section, we present a checking algorithm for full certificates which is in-
strumented with a Dependency Arc Table (DAT in the following). The DAT
stores the dependencies between the atoms in the analysis graph (see Section 3).
This structure is not required by non incremental checkers [4] but it is funda-
mental to support an incremental design.
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1: procedure checking(P, Q, Cert,ATmem ,DATmem)
2: ATmem := ∅; DATmem := ∅; CPchecked := ∅;
3: for all A : CP ∈ Q do
4: process node(P,A : CP , Cert,ATmem ,DATmem ,CPchecked );
5: return Valid;
6: procedure process node(P,A : CP , Cert,ATmem ,DATmem ,CPchecked )
7: if (∃ a renaming σ s.t. σ(A : CP �→ AP) in Cert) then
8: add A : CP �→ σ−1(AP) to ATmem ;
9: CPchecked := CPchecked ∪ {A : CP};

10: else return Error;
11: process set of rules(P, P |A,A : CP �→ σ−1(AP), Cert,

ATmem ,DATmem , CPchecked );
12: procedure process set of rules(P, R,A : CP �→ AP , Cert,

ATmem ,DATmem ,CPchecked )
13: for all rule Ak ← Bk,1, . . . , Bk,nk

in R do
14: W := vars(Ak, Bk,1, . . . , Bk,nk

);
15: CPb :=Aextend(CP, vars(Bk,1, . . . , Bk,nk

));
16: CPRb := Arestrict(CPb, Bk,1);
17: CPa :=process rule(P ,A : CP ,Ak ← Bk,1, . . . , Bk,nk

,W ,CPb ,CPRb , Cert,
ATmem ,DATmem ,CPchecked );

18: AP1 := Arestrict(CPa, vars(Ak)) ; AP2 := Alub(AP1, AP );
19: if (AP <> AP2) then return Error;
20: procedure process rule(P,A : CP , Ak ← Bk,j , . . . , Bk,nk

, W,CPb ,CPRb , Cert,
ATmem ,DATmem ,CPchecked )

21: for all Bk,i in the rule body i = j, ..., nk do
22: CPa := process arc(P ,A : CP ,Bk,i : CPRb, CPb, W,Cert,

ATmem ,DATmem , CPchecked );
23: if (i <> nk) then CPRa := Arestrict(CPa, var(Bk,i+1));
24: CPb := CPa; CPRb := CPRa;
25: return CPa;
26: procedure process arc(P ,A : CP ,Bk,i : CPRb, CPb, W, Cert,

ATmem ,DATmem ,CPchecked )
27: if (Bk,i is a constraint) then CPa := Aadd(Bk,i, CPb);
28: else
29: if ( � ∃ a renaming σ s.t. σ(Bk,i : CPRb �→ AP ′) in ATmem) then
30: process node (P ,Bk,i : CPRb, Cert,ATmem , DATmem ,CPchecked );
31: AP1 := Aextend (ρ−1(AP ),W ); where ρ is a renaming s.t.

ρ(Bk,i : CPRb �→ AP ) in ATmem

32: CPa := Aconj (CPb, AP1);
33: add A : CP ⇒ Bk,i to DATmem ;
34: return CPa;

Fig. 1. Checking with Support for Incrementality (Algorithm 1)

Algorithm 1 presents our checker, which receives as parameters a program
P , a set Q of call patterns, the certificate Cert returned by analyzer, and two
input/output variables ATmem and DATmem (initially empty) and constructs a
program analysis graph in a single iteration by assuming the fixpoint information
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in Cert. While the graph is being constructed, the obtained answers are stored in
ATmem and compared with the corresponding fixpoints stored in Cert. If any of
the computed answers is not consistent with the certificate (i.e., it is greater than
the fixpoint), the certificate is considered invalid and the program is rejected.
Otherwise, Cert gets checked. The checker returns the reconstructed answer ta-
ble ATmem and the set of dependencies DATmem which have been traversed. A
detailed explanation of this algorithm can be found in [2] (where only program
extensions are considered and the parameter CPchecked is not needed). Algo-
rithm 1 is parametric w.r.t. the abstract domain of interest Dα and it is hence
defined in terms of five abstract operations on Dα:

– Arestrict(CP, V ) performs the abstract restriction of a description CP to the
set of variables in the set V , denoted vars(V );

– Aextend(CP, V ) extends the description CP to the variables in the set V ;
– Aadd(C,CP) performs the abstract operation of conjoining the constraint C

with the description CP;
– Aconj(CP1,CP2) performs the abstract conjunction of two descriptions;
– Alub(CP1,CP2) performs the abstract disjunction of two descriptions.

Example 3. The abstract operations for the domain Pos (Ex. 1) are:
Arestrict(CP, V ) = ∃−V CP Aconj(CP1,CP2) = CP1 ∧ CP2

Alub(CP1,CP2) = CP1 � CP2 Aextend(CP, V ) = CP
Aadd(C,CP) = αDef (C) ∧ CP αDef (X = t) = (X ↔

∧
{Y ∈ vars(t)})

where ∃−V F represents ∃v1, . . . , vnF , {v1, . . . , vn} = vars(F ) − V , and � is the
least upper bound (lub) operation over the Pos lattice. For instance, Aconj(X,Y
↔ (X ∧ Z))=X ∧ (Y ↔ Z). Aadd(X = [U |V ], Y )=(X ↔ (U ∧ V )) ∧ Y .
Alub(X,Y )=X ∨ Y . As an example of checking, we illustrate the steps carried
out by the checker to validate the rules app1 and app4 of Ex. 1 w.r.t. a certificate
Cert composed of the entry A2. We take as call pattern app(X, Y, Z) : .. Consider
the call to procedure process node for app(X, Y, Z) : .. The entry A2 is added
(L8) to ATmem (initially empty), and app(X, Y, Z) : . is marked as checked by
inserting it in CPchecked . A call to process set of rules is generated for the call at
hand w.r.t. app1 and app4 (L11). Consider the processing of the two rules.

1. The call to process rule for app1 (L17) executes process arc (L22) for each of
the two constraints in the body. The final answer CPa ≡ X ∧ (Y ↔ Z) (L17)
for app1 is built up from the abstract conjunction (L32) between X (partial
answer from first constraint) and Y ↔ Z (from second constraint). Since the
least upper bound (L18) between CPa and the answer A2 is A2, then no
Error is issued (L19) and the first rule app1 gets successfully checked.

2. As before, the call to process rule for app4 executes process arc for the first
two constraints and computes as (partial) solution CPa ≡ (X ↔ (U ∧ V)) ∧ (Z
↔ (U ∧W)) (L22). Since we are not in the last atom of the rule (L23), CPa is
restricted to the variables in app(V, Y, W), giving as result CPRa ≡ .. Now,
the next call to process arc for the rightmost body atom app(V, Y, W) : . com-
putes as final solution (X ↔ (U ∧ V)) ∧ (Z ↔ (U∧ W)) ∧ (V ∧ (Y ↔ W)), which
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is simplified to A2. The corresponding dependency is stored in DATmem .
Thus, the call to process rule for app4 computes as solution A2 (L17), the
same answer stored in Cert, and no Error is issued (L19).

In order to support an incremental extension, the final values of the data struc-
tures ATmem , DATmem and P must be available after the end of the execution
of the checker. We denote by ATpersist , DATpersist and Ppersist the copy in per-
sistent memory (i.e., in disk) of such structures.

Definition 3 (checker). We define function checker:Prog×Approx×AAtom
×ADom 
→ boolean which takes a program P ∈ Prog and its certificate Cert ∈
Approx for Qα ∈ AAtom in Dα ∈ ADom and it returns the result of checking(P,
Qα,Cert,ATmem , DATmem). If it does not issue an Error, then it stores in mem-
ory ATpersist := ATmem, DATpersist := DATmem and Ppersist := P .

5 Incremental Checking

In this section, we propose an incremental checking algorithm which deals with
all possible updates over a program in a unified form. The basic idea is that
the task performed by an incremental checker has to be optimized such that it
only: a) rechecks the part of the abstraction for the procedures which have been
directly affected by an update and, b) propagates and rechecks the indirect effect
of these changes. In order to do this, we will take as starting point the checker
in Algorithm 1. Its DAT will allow the incremental algorithm to propagate the
changes and carry out the process in a single pass over the subgraph affected by
the updates. Algorithm 2 presents our implementation of this intuition. We start
by removing all (possibly incorrect or inaccurate) information directly affected
by the updates from the answer table and DAT (i.e., the information for the
updated procedures) and, then, we check it from scratch against the answers
provided in the incremental certificate. If the “direct” checking succeeds, we
proceed to check the information indirectly affected by such changes in a similar
way (i.e., delete the information for them from answer and DAT and recheck it
from scratch). This iterative process successfully finishes when all directly and
indirectly affected information gets checked. Otherwise, an Error is issued.

The incremental checker is defined as follows: replace the procedure checking
by the new procedure incremental checking in Algorithm 2 and use the remaining
procedures defined in Algorithm 1. Below we enumerate the points which should
be done in a way or another in any incremental checking algorithm beyond the
analysis of logic programs.

1. Retrieve stored data. After checking the original package, the structures
ATpersist , DATpersist and the program Ppersist have been stored in persis-
tent memory (see Definition 3). Our checker retrieves such stored data and
initializes, respectively, the parameters ATmem , DATmem and P with them.

2. Update program and answer table. Prior to proceeding with the proper check-
ing, the incoming updates Upd(P) are applied (by means of the operator ⊕)
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1: procedure incremental checking(P ,Upd(P),Inc Cert,ATmem ,DATmem)
2: Pmem := P ⊕Upd(P); update answer table(ATmem ,Inc Cert);
3: call patterns to check(Upd(P),ATmem ,CPtocheck );
4: CPchecked := ∅; % call patterns already checked

5: check affected entries(Pmem ,Inc Cert,ATmem ,DATmem ,CPtocheck ,CPchecked );
6: return Valid;
7: procedure update answer table(ATmem ,Inc Cert)
8: for all entry A : CP �→ AP in ATmem do
9: if (∃ A : CP �→ APA in Inc Cert and AP �= APA (modulo renaming))

then replace entry for A : CP �→ AP in ATmem by A : CP �→ APA;
10: procedure call patterns to check(Upd(P),ATmem ,CPtocheck )
11: CPtocheck := ∅; % call patterns required to be checked

12: for all entry A : CP �→ ∈ ATmem do
13: if A is updated in Upd(P) then CPtocheck :=CPtocheck∪{A : CP};
14: procedure check affected entries(Pmem ,Inc Cert,ATmem ,DATmem ,

CPtocheck ,CPchecked )
15: while CPtocheck ! = ∅ do
16: select A : CP from CPtocheck ;
17: remove previous info(A : CP ,ATmem ,DATmem);
18: if A : CP �∈ Inc Cert then
19: let A : CP �→ AP the entry for A : CP in ATmem ;
20: Inc Cert = Inc Cert ∪ {A : CP �→ AP}; propagate := false;
21: else propagate := true ;
22: process node(Pmem ,A : CP , Inc Cert,ATmem ,DATmem , CPchecked );
23: CPtocheck := CPtocheck− CPchecked ;
24: if propagate then propagate effects(A : CP ,DATmem ,

CPtocheck ,CPchecked );
25: procedure remove previous info(A : CP ,ATmem , DATmem)
26: remove entry for A : CP from ATmem ;
27: remove from DATmem all dependencies of the form A : CP ⇒ ;
28: procedure propagate effects(A : CP ,DATmem , CPtocheck ,CPchecked )
29: for all B : CPB ⇒ A : CP ∈ DATmem do
30: if B : CPB �∈ CPchecked∪ CPtocheck then
31: CPtocheck :=CPtocheck∪{B : CPB};

Fig. 2. Incremental Checking (Algorithm 2)

to P in order to generate Pmem (L2). Also, the procedure update answer table
updates the answers for those call patterns in ATmem which have a different
answer in Inc Cert (L8-9). The new entries not yet present in ATmem will be
asserted upon request, as in the usual checking process (L8 of Algorithm 1).

3. Initialize call patterns to check. The procedure call patterns to check initial-
izes the set CPtocheck with those call patterns with an entry in ATmem which
correspond to a rule directly affected by an update (L12-13). During the ex-
ecution of the checker, the set CPtocheck will be dynamically extended to
include the additional call patterns whose checking is indirectly affected by
the propagation of changes (L31).
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4. Check affected procedures. Procedure check affected entries launches the
checking of all procedures affected by the updates, i.e., the call patterns
in CPtocheck − CPchecked . The set CPchecked is used to avoid rechecking the
same call pattern more than once, if it appears several times in the anal-
ysis subgraph to be checked. Three actions are taken in order to check a
call pattern:4 remove its analysis information (L17), proceed to check it by
calling process node of Algorithm 1 (L22) and, propagate the effects of type
b) if needed (L24). We only propagate effects if the answer provided in In-
c Cert for the call pattern at hand is different from that originally stored in
ATpersist (L21). As a technical detail, in L20, we add to Inc Cert the infor-
mation which, although has not changed w.r.t. ATmem , needs to be checked
and, therefore, it must be available in Inc Cert (or process node would issue
an error in L10 of Algorithm 1).

5. Remove previous analysis information. Before proceeding with the checking,
we need to get rid of previous (possibly incorrect or inaccurate) analysis in-
formation. Procedure remove previous info eliminates the entry to be checked
from ATmem (L26) and all its dependencies from DATmem (L27).

6. Propagate effects. After processing the updated rules, the procedure propa-
gate effects introduces in the set CPtocheck (L31) the calling patterns whose
answer depends on the updated one, i.e., those which are indirectly affected
by the updates. Their checking will be later required in L15.

7. Store data. Upon return, the checker has to store the computed ATmem ,
DATmem and Pmem, respectively, in ATpersist , DATpersist , and Ppersist for
achieving a compositional design of our incremental approach.

Definition 4 (incremental checker). We define function Incr Checker:
UProg ×Approx× 
→ boolean which takes Upd(P) ∈ UProg and its incremen-
tal certificate Inc Cert ∈ Approx and 1) it retrieves from memory ATmem :=
ATpersist , DATmem := DAT persist and P := Ppersist and 2) it returns the result
of incremental checking(P,Upd(P), Inc Cert, ATmem , DATmem) for P . If it does not
issue an Error, then it stores ATpersist := ATmem , DATpersist := DATmem and
Ppersist := Pmem .

Note that the safety policy has to be tested w.r.t. the answer table for the
extended program. Therefore, the checker has reconstructed, from Inc Cert, the
answer table returned by analyzer for the extended program, Ext Cert, in order to
test for adherence to the safety policy –Equation (4), i.e., AT persist ≡ Ext Cert.

The following example illustrates a situation in which the task performed by
the incremental checker is optimized to only check a part of the abstraction.

Example 4. Consider the deletion of rules app2 and app3 of Example 1. The anal-
ysis algorithm of [7] returns the same state (State 0) since the eliminated rules
do not affect the fixpoint result, i.e., they do not add any further information.

4 Note that an updated rule which does not match any entry in ATmem does not need
to be processed by now. Its processing may be required by some other new rule or
they can simply not be affected by the checking process.
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Thus, the incremental certificate Inc Cert associated to such an update is empty.
The checking algorithm proceeds as follows. Initially, ATmem and DATmem are
initialized with the values in State 0. Pmem is composed of the rules rev1, rev2,
app1 and app4. Procedure update answer table (L2) does not modify ATmem . The
execution of procedure call patterns to check (L3) adds E1 ≡ app(X, Y, Z) : .
to CPtocheck . Procedure check affected entries selects E1 from CPtocheck . The
next call to remove previous info (L17) removes A2 from ATmem and D3 from
DATmem . It then inserts A2 in Inc Cert. The variable “propagate” takes the value
false. We now jump to the non incremental checking with a call to procedure pro-
cess node (L22). This process corresponds exactly to the checking illustrated in
Example 3. Upon return from process node (since variable “propagate” is false),
no effects have to be propagated.

The important point to note is that the incremental checker has not had to
recheck the rules for rev since its answer is not affected by the deletion. Once
Inc Cert has been validated, the consumer memoizes ATmem , DATmem (which
are those of State 0) and Pmem in disk. �

Our second example is intended to show how to propagate effects.

Example 5. Let us illustrate the checking process carried out to validate the
update proposed in Example 2 with an incremental certificate, Inc Cert, which
contains the entries NA1 , NA2 and NA3 . The incremental checker retrieves
State 0 from disk. Next, procedure update answer table returns as new ATmem

the entries NA1 and NA2 which replace the old entries A1 and A2, respec-
tively. Then, the set CPtocheck is initialized with E1 ≡ app(X, Y, Z) : .. Proce-
dure check affected entries first executes remove previous info, which eliminates
E1 from ATmem and dependency D3 from DATmem . Moreover, the variable
“propagate” is initialized to true. This annotates that effects have to be prop-
agated later. The execution of process node for E1 succeeds and adds the de-
pendency D3 to DATmem and the set CPchecked is returned with E1 marked as
checked. Upon return, since the variable “propagate” is true, a call to propa-
gate effects is generated which forces the checking of rev. After inspecting D2

and D3 (the two dependencies for E1), only the entry E2 ≡ rev(X, Y) : . is
added to CPtocheck . The dependency for D3 will not be checked because E1

has been already processed (hence, it belongs to CPchecked). Now, procedure
check affected entries takes E2 from CPtocheck , and similarly to the previous case,
successfully executes process node, and replaces D2 by ND2 . During the check-
ing of rule rev2, a new call to process node is generated for E3 ≡ app(X , Y, Z) : X
which introduces E3 in CPchecked , and replaces the dependency D3 in DATmem

by the new one ND3 of Example 2. Upon return, since the variable “propagate” is
true, a call to propagate effects is generated from it. But the affected dependency
D1 is not processed because E1 was processed already and belongs to CPchecked .
The conclusion is that a single pass has been performed on the three provided
entries in order to validate the certificate. �

The following theorem establishes the correctness of incremental checking. The
proof can be found in [1].



390 E. Albert, P. Arenas, and G. Puebla

Theorem 1 (correctness). Let P ∈ Prog, Upd(P) ∈ UProg, Dα ∈ ADom
and Qα ∈ AAtom. Let Cert be the certificate for P and Qα, Ext Cert the cer-
tificate for P ⊕ Upd(P) and Qα and Inc Cert the incremental certificate for
Upd(P) w.r.t. Cert. If Incr Checker(Upd(P), Inc Cert) does not issue an Er-
ror, then the validation of Inc Cert is done in a single pass over Inc Cert and
ATpersist ≡ ATmem, DATpersist ≡ DATmem , where ATmem and DATmem are,
respectively, the answer table and DAT returned by checking(P ⊕ Upd(p), Qα,
Ext Cert, ATmem ,DATmem).

Efforts for coming up with incremental approaches are known in the context
of program analysis (see [17,7,14,15]) and program verification (see [18,9,16]).
Our work is more closely related to incremental program analysis, although the
design of our incremental checking algorithm is notably different from the design
of an incremental analyzer (like the ones in [7,14]). In particular, the treatment
of deletions and arbitrary changes is completely different. In our case, we can
take advantage of the information provided in the certificate in order to avoid
the need to compute the strongly connected components (see [7]). This was
necessary in the analyzer in order to ensure the correctness of the incremental
algorithm. Unlike [7,14], we have integrated in a single algorithm all incremental
updates over a program in a seamless way. In [2], we have identified the particular
optimization for the addition of rules to a program.

6 Conclusions

Our approach to incremental ACC aims at reducing the size of certificates and
the checking time when a supplier provides an untrusted update of a (previously)
validated package. Essentially, when a program is subject to an update, the in-
cremental certificate we propose contains only the difference between the original
certificate for the initial program and the new certificate for the updated one.
Checking time is reduced by traversing only those parts of the abstraction which
are affected by the changes rather than the whole abstraction. An important
point to note is that our incremental approach requires the original certificate
and the dependency arc table to be stored on the consumer side for upcoming
updates. The appropriateness of using the incremental approach will therefore
depend on the particular features of the consumer system and the frequency of
software updates. In general, our approach seems to be more suitable when the
consumer prefers to minimize as much as possible the waiting time for receiving
and validating the certificate while storage requirements are not scarce. We be-
lieve that, in everyday practice, time-consuming safety tests would be avoided by
many users, while they would probably accept to store the safety certificate and
dependencies associated to the package. We are now in the process of extending
the ACC implementation already available in the CiaoPP system to support in-
crementality. Our preliminary results in certificate reduction are very promising.
We expect optimizations in the checking time similar to those achieved in the
case of incremental analysis (see, e.g., [7]).
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Abstract. We propose a modular, assertion-based system for verifica-
tion and debugging of large logic programs, together with several in-
teresting models for checking assertions statically in modular programs,
each with different characteristics and representing different trade-offs.
Our proposal is a modular and multivariant extension of our previously
proposed abstract assertion checking model and we also report on its im-
plementation in the CiaoPP system. In our approach, the specification of
the program, given by a set of assertions, may be partial, instead of the
complete specification required by traditional verification systems. Also,
the system can deal with properties which cannot always be determined
at compile-time. As a result, the proposed system needs to work with
safe approximations: all assertions proved correct are guaranteed to be
valid and all errors actual errors. The use of modular, context-sensitive
static analyzers also allows us to introduce a new distinction between
assertions checked in a particular context or checked in general.

1 Introduction

Splitting program code into modules is widely recognized as a useful technique
in the process of software development. In this paper we propose a framework
for static (i.e., compile-time) checking of assertions in modular logic programs,
based on information from global analysis. We assume a strict module system,
i.e., a system in which modules can only communicate via their interface. The
interface of a module contains the names of the exported predicates and the
names of the imported modules.

Within our framework, the programmer is expected to write a (partial) spec-
ification for a module (or a set of modules) being subject to the verification
process. The specification is written in terms of (Ciao) assertions [13]. From the
programmer’s viewpoint, these assertions resemble the type (and mode) dec-
larations used in strongly typed logic languages such as Mercury [16] and in
functional languages. However, when compared to the latter, note that in logic
programming arguments of procedures behave differently in the sense that argu-
ments might be either input or output, depending on the specific usage (i.e., the
context) of the procedure. For instance, the classical predicate append/3 can be
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used for concatenating lists, for decomposing lists, for checking or finding a prefix
of a given list, etc. Therefore, our assertion language and the checking procedure
are designed to allow various usages of a predicate. Moreover, comparing to the
former, herein we are interested in supporting a general setting in which, on one
hand assertions can be of a quite general nature, including properties which are
undecidable, and, on the other hand, only a small number of assertions may be
present in the program, i.e., the assertions are optional.

Our approach is strongly motivated by the availability of powerful and mature
static analyzers for (constraint) logic programs (see, e.g., [8] and its references),
generally based on abstract interpretation [6]. Also, since we deal with modular
programs, context-sensitive static analyses that handle modules (see, e.g., [7]
and its references) provide us with suitable background. Especially relevant is our
recent work on context sensitive, multivariant modular analysis (see [15,5] among
others). These analysis systems can statically infer a wide range of properties
(from types to determinacy or termination) accurately and efficiently, for realistic
modular programs. We would like to take advantage of such program analysis
tools, rather than developing new abstract procedures, such as concrete [10]
or abstract [3,14] diagnosers and debuggers, or using traditional proof-based
methods, e.g., [1,9].

The work presented builds on [13] where the assertion language that we use
was introduced, and on [14] where a proposal for the formal treatment of asser-
tion checking, both at compile-time and at run-time, was presented. We extend
the above-mentioned work in four main directions. Most importantly, the solu-
tion of [14] is not modular. We show herein how to check assertions in modular
programs in a way that ensures the soundness of the approach. Also, the for-
malization is different to that of [14], the present one being based on generalized
and trees. In addition, in this work we exploit multivariant information gener-
ated by the analysis. This essentially means that multiple usages of a procedure
can result in multiple descriptions in the analysis output. In consequence, this
enables us to verify the code in a more accurate way.

Modular verification has also been studied within OO programming (e.g.,
[11]) where the importance of contextual correctness, as in our paper, has been
recognized. Nevertheless this work differ from ours in several respects, the most
important one being that they are based on traditional Hoare-like based verifi-
cation techniques and the full specification is required, whereas our framework
is based on abstract interpretation and allows for partial specifications.

In the context of Logic Programming [4] shows how to perform abstract diag-
nosis of incomplete logic programs. Our approach is similar to theirs, since the
correctness of a modular program is established in terms of the correctness of
its modules. However, in [4] the complete specification is needed and, more im-
portantly, context-sensitive analysis information is not used, and therefore there
is no concept of correctness in context. We claim that this is an important ad-
vantage of our approach, because it allows the validation of a module in a given
program even when it is not possible to validate it in a context-independent way.
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2 Preliminaries

An atom has the form p(t1, ..., tn) where p is a predicate symbol and the ti are
terms. A predicate descriptor is an atom p(X1, . . . , Xn) where X1, . . . , Xn are
distinct variables. We shall use predicate descriptors to refer to a certain form of
atoms, as well as to predicate symbols. A clause is of the form H:-B1, . . . , Bn

whereH , the head, is an atom and B1, . . . , Bn, the body, is a possibly empty finite
conjunction of atoms. In the following we assume that all clause heads are nor-
malized, i.e., H is of the form of a predicate descriptor. Furthermore, we require
that each clause defining a predicate p has an identical sequence of variables
Xp1 , ..., Xpn in the head. We call this the base form of p. This is not restrictive
since programs can always be normalized, and it will facilitate the presentation
of the algorithms later. However, both in the examples and in the implementa-
tion we handle non-normalized programs. A definite logic program, or program,
is a finite sequence of clauses. ren denotes a set of renaming substitutions over
variables in the program at hand.

The concrete semantics used for reasoning about programs will use the notion
of generalized and trees, as they are described in [2]. Every node of a generalized
and tree, denoted 〈θc, P, θs〉, contains a call to a predicate P , with a call substi-
tution θc and corresponding success subtitution θs. The concrete semantics of a
program R for a given set of queries Q, �R�Q, is the set of generalized and trees
that represent the execution of the queries in Q for the program R.1

Definition 1. calling context(P,R,Q) of a predicate given by the predicate de-
scriptor P defined in R for a set of queries Q is the set {θc|∃T ∈ �R�Q s.t.
∃〈θ′c, P ′, θ′s〉 in T ∧ ∃σ ∈ ren s.t. P = P ′σ ∧ θc = θ′cσ}
success context(P,R,Q) of a predicate given by the predicate descriptor P

defined in R for a set of queries Q is the set of pairs {(θc, θs)|∃T ∈ �R�Q s.t.
∃〈θ′c, P ′, θ′s〉 in T ∧ ∃σ ∈ ren s.t. P = P ′σ ∧ θc = θ′cσ ∧ θs = θ′sσ}.

Our basic tool for checking assertions is abstract interpretation [6]. Abstract
interpretation is a technique for static program analysis in which semantics of the
program is conservatively approximated using an abstract domain Dα (equipped
with a partial order 9) which is simpler than the actual, concrete domain D.
Abstract values and sets of concrete values are related via a pair of monotonic
mappings 〈α, γ〉: abstraction α : D → Dα, and concretization γ : Dα → D.

Goal-dependent abstract interpretation takes as input a program R and a call
pattern2 P :λ, where P is an atom, and λ is a restriction of the run-time bindings
of P expressed as an abstract substitution in Dα. Such an abstract interpretation
(denoted analysis(R,P :λ)) computes an answer table (AT ) whose entries are of
the form Pi:λc

i 
→ λs
i , where Pi is an atom and λc

i and λs
i are, respectively, the

abstract call and success substitutions. An analysis is said to be multivariant

1 We find this formalization more suitable than the derivation-based one used in our
previous work [14] because it simplifies the presentation of the subsequent material.

2 Note that we shall use sets of call patterns instead in the subsequent sections –the
extension is trivial.
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(on calls) if more than one entry P :λc
1 
→ λs

1, . . . , P :λc
n 
→ λs

n n ≥ 0 with
λc

i �= λc
j for some i, j may be computed for the same predicate. As it is shown

in this paper, multivariant analyzers may provide valuable information for as-
sertion checking not obtainable otherwise. An abstract interpretation process is
monotonic, in the sense that the more specific the initial call pattern is, the more
precise the results of the analysis are.

The abstract semantics of a program (or module) R for a set of queries Q,
�R�α

Qα
, can be represented as a set of abstract and-or trees [2]. A context-

sensitive, multivariant static analyzer such as that in CiaoPP [12] actually com-
putes this set of trees, and returns the set of nodes in such trees, kept in the
answer table AT .

3 Modular Programs and Modular Analysis

We start by introducing some notation. We will use m and n to denote mod-
ules. Given a module m, by imports(m) we denote the set of modules which m
imports. By depends(m) we refer to the set generated by the transitive closure
of imports. Note that there may be circular dependencies among modules. The
program unit of a given module m is the finite set of modules containing m and
the modules on which m depends: program unit(m) = {m} ∪ depends(m).3 m
is called the top-level module of its program unit. Finally, exported(m) is the
set of predicate names exported by module m, and imported(m) is the set of
predicate names imported by m. Given a program unit program unit(m), we
can always obtain a single-module program that behaves like program unit(m).
We will denote such program as flatten(m).

In summary, the framework for modular analysis works as follows: given the
top-level module m, analysis computes an intermodular fixed point by iterating
through the modules in program unit(m), and analyzing them one by one. When
the intermodular fixed point has been reached, the analysis results for exported
predicates are stored in a Global Answer Table (GAT for short), in the form of
P : CP 
→ AP entries, where CP and AP are the call and the answer patterns
of an exported predicate, respectively. In the rest of the paper we will use CP
and AP to refer to abstract substituions stored in the GAT , and λ for other
abstract substitutions.

We will use the function GAT = modular analysis(m) to refer to the analysis
of the program unitm, that returns as result the global answer table, and LAT =
analysis(m,E,AT ) to indicate the analysis of module m, with call patterns for
exported predicates E and success patterns of imported predicates contained in
AT , and returning the Local Answer Table (LAT ), which contains the results of
analyzingm. When computing the intermodular fixed point, analysis(n,E,AT )
is invoked for each module n in the program unit, where E is the set of calling
patterns in GAT for predicates defined in n which need to be (re)analyzed, AT
is the current state of the GAT , and the GAT is updated after analysis with
3 Library modules and builtins require special treatment in order to avoid reanalysis

of all used library predicates every time a user program is analyzed.
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information from the resulting LAT . See [15] for details. We can define a partial
ordering on answer tables over a given module in the following sense: AT1 � AT2

iff ∀(P : CP1 
→ AP1) ∈ AT1, (∃(P : CP2 
→ AP2) ∈ AT2 s.t. CP1 9 CP2 and
∀(P : CP ′

2 
→ AP ′
2) ∈ AT2, if CP1 9 CP ′

2 then AP1 9 AP ′
2).

The computation performed by analysis(m,E,AT ) has the difficulty that,
from the point of view of analysis of a given module m, the code to be analyzed
is incomplete in the sense that the code for procedures imported from other
modules is not available to analysis. During the analysis of a module m there
may be calls P : CP such that the procedure P is not defined inm but instead it is
imported from another module n. There are several alternatives for computing a
temporary answer pattern for P : CP, which are selected by means of the success
policy (SP for short). SP is needed because given a call pattern P : CP it will
often be the case that no entry of exactly the form P : CP 
→ AP exists in the
analysis results stored in the GAT for n (or there may be no entry at all). In
such case, the information already present may be of value in order to obtain a
(temporary) answer pattern AP, and continue the analysis of module m.

Several success policies can be defined which provide over- or under-approx-
imations of the “exact” answer pattern AP= with different degrees of accuracy.
By this exact value AP= we refer to the one which would be computed for the
flattened program. As shown in [15], using over-approximating success policies
(named SP+) has the advantage that after analyzing any number of modules,
even when a fixed point has not been reached yet, the information obtained
for each module is always a correct over-approximation. The drawback is that
when the fixed point is reached it may not be the least fixed point, i.e., infor-
mation is not as precise as it could be. In contrast, under-approximating (SP−)
policies obtain the least fixed point (most precise information) but only pro-
duce correct results when the fixed point is reached. Therefore, SP− policies
are as accurate as performing the analysis of the flattened program. We will
denote with analysisSP (m,E,AT ) the analysis of a module m with respect to
the set of call patterns E and using a success policy SP applied to the answer
table AT .

4 Assertions

We consider two fundamental kinds of (basic) assertions [13].4 The first one is
success assertions, which are used to express properties which should hold on
termination of a successful computation of a given predicate ( postconditions).
At the time of calling the predicate, the computation should satisfy a certain
precondition. success assertions can be expressed in our assertion language using
an expression of the form: success P : Pre ⇒ Post, where P is a predicate
descriptor, and Pre and Post are pre- and post-conditions respectively. Without
loss of generality, we will consider that Pre and Post correspond to abstract
substitutions (λPre and λPost resp.) over vars(P ). This kind of assertion should
be interpreted as “in any invocation of P if Pre holds in the calling state and
4 [13] presents other types of assertions, but they are outside the scope of this paper.
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the computation succeeds, then Post should also hold in the success state.”
The postcondition stated in a success assertion refers to all the success states
(possibly none). Note that success P : true ⇒ Post can be abbreviated as
success P ⇒ Post.

A second kind of assertions expresses properties which should hold in any
call to a given predicate. These properties are similar in nature to the classi-
cal preconditions used in program verification. These assertions have the form:
calls P : Pre, and should be interpreted as “in all activations of P Pre should
hold in the calling state.” More than one assertion may be written for each pred-
icate. That means that, in any invocation of P , at least one calls assertion for
P should hold.

Finally, we write pred P : Pre ⇒ Post, as a shortcut for the two assertions:
calls P : Pre and success P : Pre ⇒ Post. We claim that the pred form is
a natural way to describe a usage of the predicate. In what follows, we will use
calls (resp. success) assertions when we want to refer to the calls part (resp.
success part) of a pred assertion. We will assume, for simplicity and with no
loss of generality, that all assertions referring to a predicate P defined in module
m are also provided in that module. We will denote with assertions(m) the set
of assertions appearing in module m, and assertions(P ) refers to the assertions
for predicate P .

Example 1. A possible set of calls assertions for the traditional length/2 pred-
icate that relates a list to its length, might be:

:- calls length(L,N) : (var(L), int(N)). %(1)

:- calls length(L,N) : (list(L), var(N)). %(2)

These assertions describe different modes for calling that predicate: either for
(1) generating a list of length N, or (2) to obtain the length of a list L.

Possible success assertions for that predicate are:

:- success length(L,N) : (var(L), int(N)) => list(L).

:- success length(L,N) : (var(N), list(L)) => int(N).

The following two assertions are equivalent to all the previous assertions for
length/2:

:- pred length(L,N) : (var(L), int(N)) => list(L).

:- pred length(L,N) : (var(N), list(L)) => int(N).

We assign a status to each assertion. The status indicates whether the assertion
refers to intended or actual properties, and the relation between the property
and the program semantics. This section builds on [14], but it has been adapted
to our use of generalized and trees.

We say that a calls assertion A with predicate descriptor P is applicable
to a node N = 〈θc, P ′, θs〉 of the generalized and tree if there is σ ∈ ren (a
renaming substitution) s.t. P ′ = Pσ and N is adorned on the left, i.e., the call
substitution θc of N has been already computed. A success assertion A with
predicate descriptor P is applicable to a node N if P ′ = Pσ (where σ ∈ ren)
and N is adorned on the right, i.e., the success substitution θs of the call at N



398 P. Pietrzak et al.

has been computed (the procedure exit has been completed). In what follows,
we will denote with ρ a suitable renaming substitution.

If an assertion holds within a fixed set of queries Q then the assertion is said
to be checked with respect to Q. If this is proved, the assertion receives the
corresponding status checked. Formally:

Definition 2 (Checked assertions). Let R be a program.

– An assertion A = calls P : Pre in R is checked w.r.t. the set of queries Q
iff ∀θc ∈ calling context(P,R,Q), θcρ ∈ γ(λPre).

– An assertion A = success P : Pre ⇒ Post in R is checked w.r.t. a set of
queries Q iff ∀(θc, θs) ∈ success context(P,R,Q), θcρ ∈ γ(λPre) → θsρ ∈
γ(λPost).

A calls or success assertion can also be false, whenever it is known that there is
at least one call (or success) pattern in the concrete semantics that violates the
property in the assertion. If we can prove this, the assertion is given the status
false. In addition, an error message will be issued by the preprocessor.

Definition 3 (False assertions). Let R be a program.

– An assertion A = calls P : Pre in R is false w.r.t. the set of queries Q iff
∃θc ∈ calling context(P,R,Q) s.t. θcρ /∈ γ(λPre).

– An assertion A = success P : Pre ⇒ Post in R is false w.r.t. the calling
context Q iff ∃(θc, θs) ∈ success context(P,R,Q) s.t. θcρ ∈ γ(λPre) ∧ θsρ /∈
γ(λPost).

Finally, an assertion which expresses a property which holds for any initial query
is a true assertion. If it can be proven, independently on the calling context,
during compile-time checking, the assertion is rewritten with the status true.
Formally:

Definition 4 (True success assertion). An assertion A = success P :
Pre ⇒ Post in R is true if and only if for every set of queries Q, ∀(θc, θs) ∈
success context(P,R,Q), θcρ ∈ γ(λPre) → θsρ ∈ γ(λPost).

Note that the difference between checked assertions and true ones, is that the
latter hold for any context. Thus, the fact that an assertion is true implies that
it is also checked.

Assertions are subject to compile-time checking. An assertion which is not
determined by compile-time checking to be given any of the above statuses is a
check assertion. This assertion expresses an intended property. It may hold or
not in the current version of the program. This is the default status, i.e., if an
assertion has no explicitly written status, it is assumed that the status is check.
Before performing a compile-time checking procedure all assertions written by
the user have check status.

In our setting, checking assertions must be preceded by analysis, and basi-
cally it boils down to comparing assertions (whenever applicable) with the ab-
stract information obtained by analysis. Below we present sufficient conditions
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for compile-time assertion checking in a program not structured in modules. The
following sections will deal with assertion checking of modules and modular pro-
grams. In the case of proving a calls assertion, we would like to ensure that all
concrete calls are included in the description λPre. For disproving calls asser-
tions, i.e., turning them to false, we want to show that there is some concrete
call which is not covered by λPre.

Definition 5 (Abstract assertion checking). Let R be a program, and Qα

an abstract description of queries to R.

– An assertion A = success P : Pre ⇒ Post in R is abstractly true iff
∃P ′:λc 
→ λs ∈ analysis(R, {P : λPre}) s.t. ∃σ ∈ ren, P ′ = Pσ, λc =
λPre ∧ λs 9 λPost.

– An assertion A = success P : Pre ⇒ Post in R is abstractly checked
w.r.t. Qα iff ∀P ′:λc 
→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc 9
λPre → λs 9 λPost.

– An assertion A = calls P : Pre in R is abstractly checked w.r.t. Qα iff
∀P ′:λc 
→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc 9 λPre.

– An assertion A = success P : Pre ⇒ Post in R is abstractly false w.r.t.
Qα iff ∀P ′:λc 
→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc 9
λPre ∧ (λs � λPost = ⊥).

– An assertion A = calls P : Pre in R is abstractly false w.r.t. Qα iff
∀P ′:λc 
→ λs ∈ analysis(R,Qα) s.t. ∃σ ∈ ren, P ′ = Pσ, λc � λPre = ⊥.

In this definition analysis(R,Qα) is a generic analysis computation, and there-
fore the definition is parametric with respect to the analysis actually performed
for checking the assertions, as will be shown below. The sufficient conditions are
the following:

Proposition 1 (Checking a calls assertion). Let A = check calls P : Pre
be an assertion.

– If A is abstractly checked w.r.t. Qα, then A is checked w.r.t. γ(Qα).
– If A is abstractly false w.r.t. Qα, then A is false w.r.t. γ(Qα).
– otherwise, nothing can be deduced about A considered atomically (and it is

left in check status).

Soundness of the above statements can be derived directly from the correctness
of abstract interpretation. In the case of checked assertions, we make sure that all
call patterns that can appear at run-time belong to γ(λPre). The “false” cases are
a bit more involved. Due to the approximating nature of abstract interpretation,
there is no guarantee that a given abstract call description λc corresponds to any
call pattern that can appear at run-time. Thus, it is possible that the assertion
is never applicable, but if it is, it will be invalid. What is known is that every
run-time call pattern is described by one or more entries for P in AT . Thus,
in order to ensure that no call pattern will satisfy λPre, all λc’s for P must be
taken into account.

Finally, if a calls assertion is not abstractly checked nor abstractly false, we
cannot deduce anything about A when it is considered atomically. However, we
could still split it, and apply the same process to the parts.
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Proposition 2 (Checking a success assertion). Let A = check success P :
Pre⇒ Post be an assertion.

– If A is abstractly true, then A is true.
– If A is abstractly checked w.r.t. Qα, then A is checked w.r.t. γ(Qα).
– If A is abstractly false w.r.t. Qα, then A is false w.r.t. γ(Qα).
– otherwise, nothing can be deduced about A considered atomically (and it is

left in check status).

In the same way as before, a success assertion remains atomically check when
it is not abstractly checked nor abstractly false. We can however simplify the
assertion when part of the assertion can be proved to hold, like in a calls
assertion. Note that the more precise analysis results are, the more assertions
get status true, checked and false.

5 Checking Assertions in a Single Module

The modular analysis framework described in Section 3 is independent from the
assertion language. Nevertheless, assertions may contain relevant information for
the analyzer. To this end when analysis(m,E,AT ) is computed for a module m,
the parameters E and AT can also refer to information gathered directly from
assertions, rather than from other analysis steps. This yields additional entry
and success policies:

– E can be extracted from the call parts of pred assertions for exported
predicates in m. Such set will be denoted as CPAsst

m = {P : λPre | P ∈
exported(m) ∧ pred P : Pre ⇒ Post ∈ assertions(m)} ∪ {P : . | P ∈
exported(m) ∧ assertions(P ) = ∅}.

– AT can also be extracted from pred (or success) assertions found in the
imported modules. Given a module m, the answer table generated from the
assertions for imported modules is denoted as AT Asst

m =
⋃

n∈imports(m)({P :
λPre 
→ λPost | P ∈ exported(n)∧pred P : Pre⇒ Post ∈ assertions(n)}∪
{P : . 
→ . | P ∈ exported(n) ∧ assertions(P ) = ∅}).

Note that we assume the topmost patterns if no assertions are present.
When checking assertions of modular programs, a given module can be con-

sidered either in the context of a program unit or separately, taking into account
only the imported predicates. When treated in the context of a program unit,
the calling context of a module m is called the set of initial queries Qm. We say
that the set of initial queries Qm to a module m is valid iff for every imported
predicate p all the calls assertions related to p are checked w.r.t. Qm.

Definition 6 (Partially correct in context module). A module m is par-
tially correct in context with respect to a set of initial queries Qm iff (1) every
calls assertion in m is checked w.r.t. Qm, and (2) every success assertion in m is
true, or checked w.r.t. Qm, and (3) every calls assertion for a predicate imported
by m is checked with respect to Qm.
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Definition 7 (Partially correct module). A module m is partially correct
iff m is partially correct in context w.r.t. any valid set of initial queries.

Assertions are checked, as explained above, w.r.t. all analysis information avail-
able for a given (call or success of a) predicate after executing the analysis of
the code. Such analysis information is multivariant, and covers all the program
points in the analyzed code where a given predicate is called and how it suc-
ceeds. If available, a GAT table can be used to improve the analysis results with
information from previous analyses of imported modules.

In our system, when checking a module, calls assertions for imported pred-
icates are visible, and can therefore also be checked. This enables verifying
whether a particular call pattern to an imported predicate satisfies its asser-
tions. Of course, a calls assertion cannot be given status true or checked,
as in general not all call patterns for the imported predicate occur in the call-
ing module. Nevertheless, a warning or error is issued whenever the assertion is
violated and/or cannot be shown to hold.

Proposition 3. Let LAT = analysisSP+(m, CPAsst
m , AT ), where m is a mod-

ule and AT is an over-approximating answer table for (some modules in)
imports(m). The module m is partially correct if all success assertions are
abstractly true w.r.t. LAT and all calls assertions for predicates in m and
imported(m) are abstractly checked w.r.t. LAT .

This proposition considers correctness of a single module regardless of the call-
ing context of the module, since the starting point of the analysis is the set of
preconditions in pred assertions. Note that LAT must be computed using an
over-approximating success policy, in order to obtain correct results (provided
that AT is correct). The answer table AT used for the analysis may be incom-
plete, or even an empty set: this approach allows us to check the assertions of
a given module even when there is no information available from the imported
modules. However, the more accurate AT is, the more assertions get status true
or checked. This proposition is especially useful during the development of a
modular program (i.e., the “edit-check cycle”), when different programmers de-
velop different modules of the program. A programmer can check the assertions
of his/her module as soon as it is syntactically correct. If other programmers in
the team have analyzed their modules already, a shared GAT can be used to
generate the answer table AT for checking the module more accurately.

Unfortunately, if the modules imported by m are not implemented yet, there
is no possibility to analyze them in order to provide more accurate information to
the analyzer. In order to overcome that, we can use the assertion information for
the exported predicates in imported modules to obtain a more precise LAT . In
this case, correctness of the module cannot be guaranteed, but a weaker notion
of correctness, conditional partial correctness, may be proved. Note that in this
case the analysis relies on possibly unverified assertions written by the user.

Proposition 4. Let LAT = analysisSP+(m, CPAsst
m ,AT Asst

m ), where m is a
module. The module m is conditionally partially correct if all success assertions
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are abstractly true, and all calls assertions for predicates in m and imported(m)
are abstractly checked w.r.t. LAT .

This conditional partial correctness turns into partial correctness when the pro-
gram unit is taken as a whole, as we will see in Section 6.

Example 2. Consider the standard functor/3 predicate. The ISO standard for
Prolog states that functor/3 can only be invoked using two possible calling
modes, and any other mode will raise a run-time error. The first mode allows
obtaining the functor name and arity of a structure, while the second calling
mode builds up a structure given its functor name and arity.

Our assertion checking system is able to statically detect such calling patterns
because several assertions are allowed for a given predicate, and the underlying
analyzer captures context-sensitive, multivariant abstract information. They can
be expressed by means of the following assertions:

:- pred functor(+T,Name,Arity) => (atomic(Name), nat(Arity)).

:- pred functor(T,+Name,+Arity) : (atomic(Name), nat(Arity)) => nonvar(T).

In these assertions, the plus sign before an argument has the usual meaning of a
Prolog mode, i.e., that the argument cannot be a free variable on calls. The calls
parts of these assertions will be used when analyzing and checking any module
that uses this library predicate, in order to check the calling modes to it.

6 Checking Assertions in a Program Unit

Checking assertions in a program unit consisting of several modules differs from
checking assertions in a single module in some ways. First of all, the most accu-
rate initial queries to a given module m are provided by the calls to m made by
other modules in the program unit (except the top-level one). Secondly, the suc-
cess patterns of imported predicates may also be more accurate if we consider a
given program unit. This leads us to the notion of correctness for program units.
Note that the following definition concerns the concrete semantics.

Definition 8 (Partially correct program unit). Let mtop be a module defin-
ing a program unit U = program unit(mtop). U is partially correct iff mtop is
partially correct and ∀m ∈ depends(mtop), m is partially correct in context w.r.t.
the sets of initial queries induced by the initial queries to mtop.

Verifying a Program Unit with No Intermodular Analysis Information

As explained in the previous section, every assertion A of the form

check calls P : λPre ∈ assertions(m)

where P ∈ exported(m) is verified in every module that imports P from m. If
such calls assertions are abstractly true in all importing modules (i.e., for every
call pattern CP found in a module importing P we have that CP 9 λPre),
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Algorithm 1. Checking assertions without modular analysis
Input: top-level module mtop

Output: Warning/Error messages, new status in the assertions in program unit (mtop)

for all m ∈ program unit(mtop) do
LATm := analysisSP+(m, CPAsst

m ,AT Asst
m )

check assertions(m,LATm)
end for

then that means that λPre approximates all possible calling patterns to P from
outside m. Therefore, the calls assertions can be used as starting points for
analyzing every module in the program unit for checking the assertions. This
leads us to a scenario for checking assertions, shown in Algorithm 1, where no
prior intermodular analysis is required, and which aims at proving every module
to be conditionally correct rather than correct in context.

Observe that Algorithm 1 does not use the modular analysis results as in-
put. Instead, pred assertions of exported predicates are taken as input to the
single-module analysis phase, CPAsst

m . A similar policy is applied when collecting
success patterns of imported predicates.

This scenario can be viewed as proving conditional correctness of each module
m ∈ program unit(mtop), where the conditions are the corresponding pred as-
sertions from imported modules, as stated in Proposition 4. On the other hand,
since we check all the modules in the program unit, and the program unit is
self-contained, the pred assertions from imported modules are also the subject
of checking. Assume that after checking all the modules in program unit(mtop)
all the pred assertions get status checked or true.5 This means that for every
exported/imported predicate P , the analysis information P : CP 
→ AP gen-
erated when analyzing individual modules satisfies the checking conditions of
Propositions 1 and 2. Thus, the following result holds:

Proposition 5. Let mtop be a module defining a program unit U =
program unit(mtop). If each module m ∈ U is conditionally partially correct,
and mtop is partially correct, then U is partially correct.

If the assertions get true or checked using Algorithm 1, it is easy to see that they
would also get true or checked if the (full) modular analysis were used, as modular
analysis computes the least fixed point, i.e., it returns the most accurate analysis
information. Consequently, if the calls assertions receive status checked and
the success assertions receive status true when checking with Algorithm 1,
there is no need to run a costly modular analysis.

Interleaving Analysis and Checking

Algorithm 1 may not be able to determine that a program unit is partially correct
if the user has provided either too few assertions for exported predicates or they
5 In this case the calls part originated from the pred assertion receives status
checked, and the success part status true.
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Algorithm 2. Interleaving analysis and checking
Input: top module mtop

Output: GAT , Warning/Error messages, new status in the assertions in program unit
(mtop)

Set initial GAT with marked entries for call patterns from CPAsst
mtop

while there are modules with marked entries in GAT do
1 select module m

LATm := analysisSP (m, CPGAT
m , GAT )

check assertions(m,LATm)
if an error is detected in m then

STOP
end if

2 update GAT with LATm

end while

are not accurate enough. In this case we have to replace information from the
missing assertions and to incorporate a certain degree of automatic propagation
of call/success patterns among modules during the checking process. The basic
idea is to interleave analysis and compile-time checking during modular analysis.
The main advantage of this approach is that errors will be detected as soon
as possible, without computing an expensive intermodular fixpoint, yet having
call and success patterns being propagated among modules. The whole process
terminates as soon as an error is detected or when the modular analysis fixed
point has been reached, as shown in Algorithm 2. Concrete procedures in steps
1 and 2 depend on a specific intermodular analysis algorithm, success and entry
policies, etc. Note that in Algorithm 2 every module is analyzed for CPGAT

m , the
set of all call patterns for a module m in the GAT .6

If an SP+ success policy is used in Algorithm 2, then LAT 1
m � LAT 2

m � · · · �
LAT n

m, where LAT n
m coincides with the analysis results of module m when the

intermodular fixed point has been reached, and each of the LAT i
m corresponds to

the status of the analysis answer table for m at every iteration of the algorithm
that schedules m for analysis.

Proposition 6. Let LATm be an answer table for module m. If an assertion is
abstractly checked (resp. abstractly true or abstractly false) w.r.t. LATm it will
also be abstractly checked (resp. abstractly true or abstractly false) w.r.t. any
answer table LAT ′

m s.t. LAT ′
m � LATm.

Thus, the conclusions drawn about the assertions are sound in the following
sense: if an assertion is detected to be checked or false in an intermediate step,
it will surely remain checked or false at the end of the process. If the assertion
is not yet proved not disproved, its status might change in the subsequent steps
as the analysis information might be more accurate in future iterations.
6 CPGAT

m is used for simplicity of the presentation. In the actual implementation the
modules are analyzed just for the marked entries, and only the assertions related to
those entries are checked.
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Algorithm 2 can be adapted to apply the SP− success policy. The sequence
of answer tables generated during the analysis using that policy is now LAT 1

m �
LAT 2

m � · · · � LAT n
m, where only LAT n

m, i.e. the one corresponding with the
global fixpoint, is guaranteed to safely approximate the module’s semantics.

Proposition 7. Let LATm be an answer table for module m. If an assertion A
is not abstractly checked w.r.t. LATm, then ∀LAT ′

m s.t. LATm � LAT ′
m, A will

not be abstractly checked w.r.t. LAT ′
m.

Therefore, in this case the following conclusions can be made about the final
status of assertions: if at any intermediate step the status of an assertion remains
as check or becomes false, it will at most be check at the end of the whole
process. Therefore, Algorithm 2 must stop and issue an error as soon as false
or check assertions are detected (instead of stopping only when there are false
assertions, as above).

Sufficient condition for partial correctness follows:

Proposition 8. Let mtop be a module defining a program unit U =
program unit(mtop). If Algorithm 2 terminates without issuing error messages,
then (1) if SP+ is used and Algorithm 2 decides that an assertion A is abstractly
true (resp. checked), then A is true (resp. checked); and (2) if SP− is used then
all assertions in U are checked.

7 Conclusions

Algorithms 1 and 2 have different levels of accuracy, computing cost, and ver-
ification power. The advantages of Algorithm 2 are that it is potentially more
accurate and it does not impose any burden on the user, since no assertions
are compulsory. On the other hand, Algorithm 1 has low computing cost, since
modules only need to be analyzed once and it can be applied to incomplete pro-
grams. All this at the price of a development policy where module interfaces are
accurately described using assertions.

Comparing this paper with related work, the scenario described in Section 6
can be seen as an instance of the analysis with user-provided interface of [7].
Our goal is however different than theirs: instead of computing the most precise
analysis information we try to prove or disprove assertions, which makes this
method more related in fact to the one of [4], focused on program verification.
Nevertheless, unlike [4] we do not require the user to provide a complete spec-
ification, specially in Algorithm 2 –the missing parts are either described by
topmost values or infered by the interleaved analysis algorithm.
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8. M. Garćıa de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Trans. on Programming Languages and Systems, 18(5):564–615, 1996.

9. P. Deransart. Proof methods of declarative properties of definite programs. Theo-
retical Computer Science, 118:99–166, 1993.

10. W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging with
assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming in Logic
Programming, pages 501–522. MIT Press, 1989.

11. K. R. M. Leino and P. Müller. Modular verification of static class invariants. In
J. Fitzgerald, I. Hayes, and A. Tarlecki, editors, Formal Methods (FM), volume
3582 of LNCS, pages 26–42. Springer-Verlag, 2005.

12. K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable De-
pendency Using Abstract Interpretation. JLP, 13(2/3):315–347, July 1992.

13. G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for Constraint
Logic Programs. In Analysis and Visualization Tools for Constraint Programming,
volume 1870 of LNCS, pages 23–61. Springer-Verlag, 2000.

14. G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In LOPSTR’99, num-
ber 1817 in LNCS, pages 273–292. Springer-Verlag, 2000.

15. G. Puebla, J. Correas, M. Hermenegildo, F. Bueno, M. Garćıa de la Banda, K. Mar-
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Álvaro Cortés-Calabuig1, Marc Denecker1, Ofer Arieli2, and Maurice Bruynooghe1

1 Department of Computer Science, Katholieke Universiteit Leuven, Belgium
{alvaro, marc.denecker, maurice.bruynooghe}@cs.kuleuven.be

2 Department of Computer Science, The Academic College of Tel-Aviv, Israel
oarieli@mta.ac.il

Abstract. The Local Closed-World Assumption (LCWA) is a generalization of
Reiter’s Closed-World Assumption (CWA) for relational databases that may be
incomplete. Two basic questions that are related to this assumption are: (1) how
to represent the fact that only part of the information is known to be complete,
and (2) how to properly reason with this information, that is: how to determine
whether an answer to a database query is complete even though the database in-
formation is incomplete. In this paper we concentrate on the second issue based
on a treatment of the first issue developed in earlier work of the authors. For
this we consider a fixpoint semantics for declarative theories that represent lo-
cally complete databases. This semantics is based on 3-valued interpretations
that allow to distinguish between the certain and possible consequences of the
database’s theory.

1 Introduction

In database theory it is common to falsify any atomic fact that does not appear in the
database instance. This approach follows Reiter’s Closed-World Assumption (CWA)
[13], that presupposes a complete knowledge about the database’s domain of discourse.

Databases, however, are not always complete1. There are many reasons for this fact,
including ignorance about the domain, lack of proper maintenance, incomplete migra-
tion, accidental deletion of tuples, the intrinsic nature of database mediator-based sys-
tems (see [10]), and so forth. Unless properly handled, partial information in database
systems might lead to erroneous conclusions, as illustrated in the following example:

Example 1. Consider a database of a computer science (CS) department which stores
information about the telephone numbers of the department’s members and collabora-
tors. A fragment of the database is represented in Figure 1. A reasonable assumption in
this case is that this database is complete with respect to all CS department members, but
possibly incomplete regarding its external collaborators. Thus, appropriate answers for
the queries Telephone(Bart Delvaux,3962836) and Telephone(Leen Desmet,3212445)
are “no” and “unknown,” respectively.

1 Nor they are always correct, but we do not address this problem here.

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 407–421, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Telephone

Name Telephone

Leen Desmet 6531421
Bart Delvaux 5985625
Tom Demans 5845213

Deparment

Name Department

Bart Delvaux Computer Science
Leen Desmet Philosophy
Tom Demans Computer Science

Fig. 1. A database of contact phone numbers for a CS department

Example 1 illustrates a situation in which database information is locally complete,
and so applying the CWA is not realistic, and might even lead to wrong conclusions.
The other extreme approach, known as Open-World Assumption (OWA) [1,9], is often
used for maintaining distributed knowledge, e.g. for mediator-based systems. In this
approach a relational database is considered as a correct but possibly incomplete rep-
resentation of the domain of discourse. The main weakness of the OWA is that it does
not allow to express locally complete information, and so in the example above, for
instance, one cannot state a full knowledge regarding the phone numbers of the CS
department members.

In order to overcome the drawbacks of the CWA and the OWA in representing
partial knowledge in reality, Etzioni [6] and Motro [12] introduced the notion of Lo-
cal Closed-World Assumption (LCWA) that, intuitively, is “a specification of the
areas in the real world in which a database contains all true tuples” [3]. In Exam-
ple 1, for instance, such an assumption would state a meta-knowledge that the in-
formation in the Telephone relation is complete for the members of the CS
department.

At the practical level, the LCWA poses some important challenges. First, a proper
way of representing the fact that only part of the information is known to be complete
is required. In the literature there are several proposals for this, using e.g. theories in
a logic programming style [7] or second-order circumscriptive formulae [5]. Here we
follow the first-order representation considered in [3].2 Another challenge, which is
addressed in this paper, is the problem of query answering in the presence of LCWA.
This involves not only the query computation itself, but also a determination whether
the query answer is complete even though the database information is incomplete. Our
approach is based on a 3-valued fixpoint semantics and corresponding algorithms for
constructing a 3-valued interpretation that evaluates queries under certain and possible
semantics. More specifically, the following issues are addressed:

– Fixpoint theory for the LCWA. A sound fixpoint operator for the LCWA is in-
troduced, and conditions for assuring its completeness are defined. This yields a
mechanism for computing a 3-valued interpretation that approximates all the 2-
valued interpretations of the database’s theory and so allows informative query
answering.

2 It is shown there that this representation and its second-order derivative capture and generalize
both Reiter’s CWA and the OWA.
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– Query answering algorithm. A simple yet general algorithm for query answering
under the LCWA is presented. It distinguishes between certain and possible answers
and can be easily implemented by standard relational databases engines.

– Reconciliation of paradigms. Alternative approaches to the LCWA are consid-
ered. In particular, LCWA handling in the context of database systems [3,12,11] is
related to LCWA formalizations for modelling logic-based agents [5,6].

The rest of this paper is organized as follows. In Section 2 we recall some preliminary
definitions and facts about the LCWA. In Section 3 we introduce a fixpoint semantics
for locally complete databases, and in Section 4 we define corresponding query answer-
ing formalisms. Some related works are discussed in Section 5 and future research is
sketched in Section 6. Full proofs of all the propositions in this paper appear in [2].

2 Preliminaries

In what follows we denote byΣ a first-order vocabulary consisting of predicate symbols
R(Σ) (a relational schema in database terminology) and a finite set C(Σ) of constants
representing the elements of the domain of discourse. For a formula Ψ in Σ we denote
by Ψ [x] that the free variables of Ψ are a subset of x. The Herbrand base of Σ is the set
HB(Σ) of atomic formulas formed using C(Σ) and the predicate symbols in R(Σ). A
database is a finite set of ground atoms in Σ.

Definition 1. [3] A local closed-world assumption (LCWA), is an expression of the
form

LCWA (P (x), Ψ [x]),

where P ∈ Σ is a predicate symbol, called the LCWA’s object; and Ψ [x], called a
window of expertise for P , is a first-order formula over Σ.

Example 2. The expression LCWA (Tel(x, y),Dept(x,CS)) is a local closed-world as-
sumption stating that the telephone numbers of all the members of the computer science
department are known. That is, for every x0 in {x | Dept(x,CS)} (the window of ex-
pertise for Tel), all atoms of the form Tel(x0, y) are in the database.

Definition 2. [3] Let θ = LCWA(P (x), Ψ [x]) be a local closed-world assumption and
D a database under vocabulary Σ. Denote by PD the set of tuples corresponding to
the set of atoms of P in D. We abbreviate the formula

∨
a∈P D (t = a) by P (t) ∈ PD,

where t is a tuple of terms. The meaning of θ underD is the formula

MD(θ) = ∀x
(
Ψ [x] ⊃

(
P (x) ⊃ (P (x) ∈ PD)

))
.

The intuition behind this formula is simple: for all tuples x of domain elements such
that Ψ(x) holds in the real world, if P (x) is true (again, in reality), then x must be a
tuple in the table of P inD.
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Example 3. The meaning of θ = LCWA (Tel(x, y),Dept(x,CS)) in the databaseD of
Example 1 is given by

MD(θ) = ∀x∀y
(
Dept(x,CS) ⊃ Tel(x, y) ⊃(

(x = Leen Desmet ∧ y = 6531421) ∨ (x = Bart Delvaux ∧ y = 5985625)

∨ (x = Tom Demans ∧ y = 5845213)
))

In some cases, we may want to express within the same expression local closed-world
assumption on different predicates. In doing so, we need to extend the basic notion of
an LCWA expression to allow for set of objects:

θ = LCWA ({P1(x1), . . . , Pn(xn)}, Ψ [x]),

where the Pi ∈ Σ are predicate symbols (the LCWA’s objects) and Ψ [x] is a first-order
formula overΣ with free variables y s.t. y ⊆

⋃n
i=1 xi = x.When an LCWA expression

takes this form, the meaning of θ under a databaseD is extended as follows:

MD(θ) = ∀x
(
Ψ [x] ⊃

( n∧
i=1

(
Pi(xi) ⊃

(
Pi(xi) ∈ PD

i

))))
.

In this paper we assume only one predicate object for each LCWA expression. As the
following proposition shows, this assumption does not harm generality:

Proposition 1. [3] Given a formula Ψ , denote by ∃|xΨ the existential quantification of
all free variables in Ψ , except those in x. Let θ = LCWA({P1(x1), . . . , Pn(xn)}, Ψ)
and θi = LCWA(Pi(xi), ∃|xiΨ), i = 1, . . . n. Then MD(θ) ≡

∧n
i=1 MD(θi).

Similarly, one may split a disjunctive window of expertise to its disjuncts and still pre-
serve the original LCWA, and any collection of LCWAs on the same predicate may be
combined to one (disjunctive) LCWA.

Proposition 2. Let θ = LCWA (P (x),
∨n

i=1 Ψi[xi]) and θi = LCWA(P (x), Ψi[xi]),
i=1, . . . , n. Then MD(θ) ≡

∧n
i=1 MD(θi).

In the sequel we assume, without loss of generality, one LCWA expression per predicate
of R(Σ). The predicates in R(Σ) that do not appear as objects in any LCWA expression
are considered as objects of LCWAs in which the windows of expertise is false. In other
words, there is no context in which those predicates are complete.

The meaning of a database is now defined by the conjunction of its atoms augmented
with the meaning of the given local closed-word assumptions, and the following two
general assumptions:

– Domain Closure Axiom: DCA(Σ) = ∀x(
∨n

i=1 x = Ci),

– Unique Name Axiom: UNA(Σ) =
∧

1�i<j�n Ci �= Cj ,

where C1, . . . , Cn are the constant symbols of Σ (i.e., in C(Σ)).
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Definition 3. Let D be a database and let L be a set of LCWA expressions θj =
LCWA(Pj , Ψj), j=1, . . . , n applied onD. The meaning ofD and L is given by:

M(D,L) =
∧

A∈D

A ∧
n∧

j=1

MD(θj) ∧ UNA(Σ) ∧ DCA(Σ).

The theory consisting of the meaning of D and L is consistent and decidable3. Con-
sistency is shown in [3] and decidability follows from the fact that the language does
not contain function symbols and that UNA and DCA are imposed, ensuring a fixed
and finite domain. Note also that each model of this theory is isomorphic to a Herbrand
model.

Our goal is to evaluate queries with respect to the meaning M(D,L) of a database
D and a set L of LCWA expressions. In this context, particularly interesting queries
are those formulas that are either entailed by M(D,L) or are necessarily falsified by
it. Such queries induce definitive answers. This idea is formalized in different ways
in [3,6,11]. In what follows we adopt the definition of [6].

Definition 4. A first-order theory Γ determines complete world information (CWI)
on a query Q[x] iff for every ground tuple d, either Γ |= Q[d] or Γ |= ¬Q[d] holds.

Observe that the LCWA and CWI are related concepts that capture different phenomena.
The LCWA expresses completeness of a set of atoms in a relational database while the
CWI identifies completeness of queries posed to the databases. Frequently, one or more
LCWAs determine CWI on a query with respect to a given database. In Section 3 we
consider sufficient conditions for assuring this.

As the meaning M(D,L) of a database is a first-order formula, one way of evaluat-
ing queries is by using off-the-shelf theorem provers. This requires a new derivation for
every ground instance of the query, which makes the whole process time consuming.
An alternative approach is to generate a 3-valued Herbrand interpretation approximat-
ing all models of M(D,L) and then evaluate different queries with respect to this
interpretation. The advantage of this approach is twofold. From a theoretical point of
view, it is a good tool to distinguish the complete consequences of the theory from the
incomplete ones, and in particular CWI can be easily determined. From a more practical
perspective, the 3-valued Herbrand interpretation can be used to compute approximat-
ing answers to queries. In the next sections we consider this approach.

3 3-Valued Fixpoint Theory for LCWA

3.1 3-Valued Semantics

The truth values T HREE = {t,u, f}, standing for true, unknown and false, of 3-
valued semantics are usually arranged in two orders: the truth order, �, which is a
linear order given by f � u � t, and the precision order �p, which is a partial order
on T HREE in which u is the least element, and t and f are incomparable maximal
elements. The structure of T HREE is drawn in the following diagram.

3 There is an effective way of deciding whether any given sentence is a theorem of the theory.
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The conjunction ∧ in T HREE is defined by the �-glb of this structure, the dis-
junction ∨ is defined by the �-lub, and the negation operator ¬ is associated with the
�-involution, that is: ¬t = f , ¬f = t, and ¬u = u.

In this paper we focus on Herbrand interpretations. Two-valued (respectively, 3-
valued) (Herbrand) interpretations of Σ are total functions from the set HB(Σ) of
all ground atoms of Σ to the set of truth values {t, f} (respectively, to the elements in
T HREE). Equivalently, two-valued interpretations are sometimes represented as sets
of (true) atoms. Extensions to complex formulas are as usual. An interpretation I sat-
isfies a formula ψ if ψI = t; I satisfies a set Γ of formulas if it satisfies every formula
in Γ . In this case I is called a model of Γ . The orders � and �p between truth val-
ues are extended to 3-valued Herbrand interpretations by pointwise comparisons. For
a fixed Σ, the set L of 2-valued Herbrand Σ-interpretations forms a complete lattice
under �. The set Lc of 3-valued HerbrandΣ-interpretations is a chain complete poset4

under �p.
There is an interesting lattice theoretic way to construct the 3-valued interpretations

from L. Given a lattice L, we can define Lc as the set of consistent pairs (x, y) ∈ L,
i.e., pairs such that x � y. On Lc, we can define two orders:

1. (x, y) � (x′, y′) if x � x′ and y � y′
2. (x, y) �p (x′, y′) if x � x′ and y′ � y

In general, � is a lattice order and �p is a chain-complete order. The following mapping
from 3-valued interpretations K to consistent pairs (I, J) of two-valued interpretations
is a one-to-one correspondence from Lc to Lc, preserving both � and �p:

I ={P (a) ∈ HB(Σ) | P (a)K = t}
J ={P (a) ∈ HB(Σ) | P (a)K = t or P (a)K = u}

Conversely, K can be constructed from (I, J) by defining for every atom P (a):

P (a)K =

⎧⎨⎩ t if P (a)I = t
f if P (a)J = f
u otherwise

3.2 Fixpoint Operators for LCWAs

Below, we focus on theories Γ that include UNA and DCA, i.e., every model is isomor-
phic with a Herbrand model.

4 A poset P is chain-complete if every totally ordered subset C ⊆ P has a least upper bound.
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Definition 5. Let Γ be a consistent theory based on Σ. We say that a 3-valued Her-
brand Σ-interpretation K approximates Γ (from below) iff for every 2-valued
Herbrand model M of Γ , K �p M . The optimal approximation for Γ is a 3-valued
Σ-interpretation, defined by Kopt(Γ ) = glb�p({M |M |= Γ}), whereM ranges over
2-valued Herbrand models of Γ .

Kopt(Γ ) is the most precise of all 3-valued Herbrand Σ-interpretations approximating
Γ and is well-defined since every nonempty set S ⊆ Lc has a greatest lower bound and
Γ is consistent. Back in the LCWA context, note that M(D,L) satisfies the consistency
condition, hence Kopt(M(D,L)) is well-defined.

In order to construct a 3-valued approximation for M(D,L), we first introduce a
fixpoint operator on the chain complete poset of 3-valued HerbrandΣ-interpretations.

Definition 6. Define an operator OLCWA : Lc → Lc as follows: for every K ∈Lc, the
interpretation K′ = OLCWA (K) is defined for each ground atom P (a) by:

P (a)K
′
=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t if P (a) ∈ D
f if there is LCWA (P (x), Ψ [x]) ∈ L such that

Ψ [a]K = t and P (a) �∈ D
u otherwise

The idea is to iterate OLCWA starting with total ignorance (a valuation that assigns u
to every ground atom), and gradually extend the definite knowledge according to the
database and its LCWAs.

Proposition 3. OLCWA is a �p-monotone operator on the chain complete poset of 3-
valuedΣ-interpretations, thus it has a least fixpoint. Moreover, the least fixpoint can be
computed in polynomial time in the size of the database.

Proof. Monotonicity follows from �p-monotonicity of the truth assignment. By an ex-
tension of the well-known Knaster-Tarski theorem, every monotone operator in a chain
complete poset has a fixpoint. Polynomial complexity follows from the fact that per
application of the operator, the number of queries to be solved is polynomial in the size
of the database and each query can be solved in polynomial time, while the number of
iterations is at most polynomial in the size of the database. ��

Definition 7. Denote by O↑
LCWA the �p-least fixpoint of OLCWA .

Example 4.

1. IfD=∅ and θ1 =LCWA (P,R) then RO↑
LCWA =u and PO↑

LCWA =u.

2. Suppose that D = ∅, θ1 = LCWA (Q, t), and θ2 = LCWA (P,¬Q). In this case

QO↑
LCWA = f and PO↑

LCWA = f .

3. Consider the database D of Example 1 and LCWA (Tel(x, y),Dept(x,CS)), that

is discussed in Example 2. Here Tel(Bart Delvaux, 1234567)O
↑
LCWA = f , while

Tel(Leen Desmet, 1234567)O
↑
LCWA =u.

The following theorem shows that O↑
LCWA is a sound approximation of M(D,L).
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Theorem 1. (Soundness) O↑
LCWA approximates M(D,L).

Proof (Outline). Denote by ⊥ the interpretation that assigns u to every ground atom,
and by OLCWA (⊥)i the i-th iteration of OLCWA starting from ⊥. Let M be a model
of M(D,L). By induction on i, one shows that OLCWA (⊥)i �p M . ��

Example 5. In the following two cases O↑
LCWA is strictly less than Kopt(M(D,L)):

1. D = ∅, θ = LCWA (Q,P ∨ ¬P ).
All the models of M(D,L) assign f to Q, thus QKopt(M(D,L)) = f . However, as
in the standard 3-valued Kripke-Kleene semantics P∨¬P is unknown whenever P
is unknown, we have that QO↑

LCWA = u.
2. D = ∅, θ1 = LCWA (P,R), θ2 = LCWA (Q,R ⊃ ¬P ).

Here againQO↑
LCWA = u, while QKopt(M(D,L)) = f .

One way to address the phenomenon in item (1) is to extend the Kripke-Kleene se-
mantics to supervaluations [4]. Under this semantics, two-valued and 3-valued tautolo-
gies/contradictions coincide. In what follows we avoid this problem by representing
tautologies and contradictions only with the standard t and f symbols (respectively).

The difference between Kopt(M(D,L)) and O↑
LCWA in item 2 is more subtle. In

this case M(D,L) is the formula (R ⊃ ¬P ) ∧ ((R ⊃ ¬P ) ⊃ ¬Q), which obviously
entails ¬Q. The intuitive reason for the difference is that the window of expertise in
θ2 is exactly the meaning of θ1, and this link is not captured by OLCWA . To gain
completeness, some restrictions need to be imposed to the windows of expertise. In the
following section we study such conditions.

3.3 A Hierarchy of LCWAs

Definition 8. An LCWA dependency graph that is determined by a set of LCWAs L, is
a directed graph whose nodes correspond to R(Σ), such that there is a directed edge
from Q to P iff there exists LCWA (P (x), Ψ [x]) ∈ L such that Q occurs in Ψ .

Example 6. Consider the following set of local-closed world assumptions:

L =
{
LCWA (P1(x), t), LCWA (P2(x), t), LCWA (Q(x), P1(x) ∧ P2(x))
LCWA (Q(x), S(x)), LCWA (S(x), Q(x)), LCWA (R(x), Q(x))

}
The corresponding (cyclic) dependency graph is shown below:

P1 P2

Q S

R

�

��

���	



�

Definition 9. A local closed-world assumption expression LCWA (P (x), Ψ [x]) is pri-
mitive iff Ψ [x] is either t, f , contains only the equality predicate or any Boolean com-
bination of those. Likewise, a predicate P is primitive iff P appears as object of a
primitive LCWA expression.
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Primitive LCWAs induce CWI on appropriate subsets of their object predicates. Con-
sider for instance LCWA (P (x), x = a). This is a primitive LCWA and it specifies
that CWI on P is obtained for the domain constant a. Thus M(D,L) |= P (a) or
M(D,L) |= ¬P (a), for any database D. The following proposition formalizes this
property and establishes the relationship between primitive LCWA and CWI.

Proposition 4. Let D be a database and let θ = LCWA(P (x), Ψ)∈L be a primitive
LCWA on D. Then for any c s.t. Ψ [c] is true, M(D,L) |= P (c) iff P (c) ∈ D and
M(D,L) |= ¬P (c) iff P (c) /∈D. In this case, then, every model of M(D,L) satisfies
¬P (c).

Proof. Let HU be the Herbrand universe of Σ. As θ is a primitive LCWA, for every
c ∈ HUn either Ψ [c] holds in every Herbrand interpretation of M(D,L) or else Ψ [c] is
falsified by every Herbrand interpretation. Assume that Ψ [c] is true. If P (c) ∈ D, then
M(D,L) contains the conjunct P (c), hence every model of M(D,L) satisfies P (c).
If P (c) /∈ D, then every modelM of M(D,L) satisfies:

Ψ [c] ⊃ (P (c) ⊃ P (c) ∈ D)

It follows that P (c) is false inM . ��

Corollary 1. Let D be a database and let θ = LCWA(P (x), Ψ) ∈ L be a primitive
LCWA onD. For any c such that Ψ [c] holds, M(D,L) determines CWI on P (c).

Another interesting relation between LCWA and CWI is the following:

Proposition 5. Let θ = LCWA(P (x), Ψ [x]) ∈ L. If M(D,L) determines CWI on
Ψ [x], then it also determines CWI on P (x) ∧ Ψ [x] and on ¬P (x) ∧ Ψ [x].

Proof. Again, denote by HU the Herbrand universe of Σ. By assumption, for every
c∈HUn either M(D,L) |=Ψ [c] or M(D,L) |=¬Ψ [c]. In the second case, M(D,L) |=
¬(P (c) ∧ Ψ [c]) and M(D,L) |= ¬(¬P (c) ∧ Ψ [c]). In the first case, the values of
P (c)∧Ψ [c] and ¬P (c)∧Ψ [c] are determined by the question whether P (c) and ¬P (c)
are true. As in the proof of Proposition 4, this reduces to the validity of P (c) ∈ PD,
which is determined by the content ofD. ��

Example 7. Consider again Example 6. By the last proposition, some of the formulas
to which M(D,L) determines CWI can be inductively defined by the following stages:
1. P1(x), ¬P1(x), P2(x), ¬P2(x).
2. P1(x) ∧ P2(x), ¬P1(x) ∧ P2(x), P1(x) ∧ ¬P2(x), ¬P1(x) ∧ ¬P2(x).
3. Q(x) ∧ P1(x) ∧ P2(x), ¬Q(x) ∧ P1(x) ∧ P2(x), and so forth.

Definition 10. A hierarchically closed database D based on vocabulary Σ is a pair
(D,L), where D is a database and L is a set of LCWAs inducing a cycle-free depen-
dency graph.

The transitive closure of a cycle-free LCWA dependency graph is a well-founded strict
order on R(Σ), denoted by <L. The minimal predicates in this order are those that
are the object of a primitive LCWA (recall that every predicate is the object of exactly
one LCWA in L). This property together with the definition of OLCWA are the corner
stones for the following constructive definition of an approximation of M(D,L).
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Definition 11. Let D = (D,L) be a hierarchically closed database. The interpretation
KL that is induced by D is defined by induction on <L as follows: for each predicate
P of Σ and every tuple a,

P (a)KL =

⎧⎪⎪⎨⎪⎪⎩
t if P (a) ∈ D
f if there exists LCWA (P (x), Ψ [x]) ∈ L s.t.

Ψ [a]KL = t and P (a) /∈ D
u otherwise

Note 1. In spite of their similar forms, Definitions 6 and 11 define 3-valued interpre-
tations in different ways. In Definition 6 a given operator is iterated so that several
3-valued interpretations are constructed until a fixpoint is reached. Definition 11, on
the other hand, induces a gradual construction of a single interpretation, starting from
bottom elements of the underlying LCWA dependency graph. This construction only
works for cycle-free graphs.

It is easy to see how an algorithm to compute KL could look like: first, a primitive
predicate P fromΣ is (non-deterministically) selected. For every tuple a of the domain,
if P (a) is in the database, then P (a)KL = t. Otherwise, if the corresponding window
of expertise ΨP (a) holds in KL, then P (a)KL = f . Otherwise, P (a)KL is u. The same
steps can be repeated for any predicate Q once all the predicates on which Q depends
have been evaluated.

Proposition 6. KL can be computed in polynomial time in the size of the databaseD.

Proposition 7. KL ≡ O↑
LCWA for every hierarchically closed database D = (D,L).

Proof. Let rank(P )=max({1+rank(Q) | Q<LP}) and rank(Q)=1 iff Q is prim-
itive. The proof is by induction on these ranks: If rank(P )=1 then as P is a primitive

predicate, by the definitions of O↑
LCWA and KL, PO↑

LCWA = PKL . If rank(P ) = n
for some n> 1, then PO↑

LCWA is computed using the elements in {Q | Q<L P}. As
the rank of each elementQ in this set is strictly smaller than n, by induction hypothesis
QO↑

LCWA =QKL . It follows then that OLCWA and KL must assign the same truth value
for P , so again PO↑

LCWA =PKL . ��

Given Proposition 7, the soundness of KL is obtained as a corollary of Theorem 1.

Corollary 2. (Soundness) Let D = (D,L) be a hierarchically closed database. Then
KL approximates M(D,L).

The next theorem states sufficient conditions under which optimal approximation for
M(D,L) can be effectively constructed. Below, �L denotes the reflexive closure
of <L.

Theorem 2. (Completeness) Let D = (D,L) be a hierarchically closed database. If
Ψθ (the windows of expertise of an LCWA expression θ) is a conjunction of literals for
every LCWA θ in L, then KL = Kopt(M(D,L)).
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Proof (Sketch). The proof is based on the fact that for every predicate P , KL|{Q|Q�LP}
= glb({I|{Q|Q�LP}|I |= M(D,L)}). This is proven by induction on the dependency
order on predicates. The crucial step is when P (a)KL = u, which is when P (a) �∈ D
and ΨP (a)KL �= t. In that case, we show the existence of models I and I ′ of M(D,L)
making P (a) t, resp. f . The databaseD itself represents a model of M(D,L) in which
P (a) is false. In constructing a model in which P (a) is true, we exploit the fact that
ΨP (a)KL �= t. Since ΨP is a conjunction of literals, there is a literal l s.t. lKL �= t and
l is less than P in the dependency order. Using the induction hypothesis we construct a
model I ′ of M(D,L) s.t. P (a)I′

= t but lI
′
= f and hence ΨP (a)I′

= f . ��

Note 2. As Example 5 shows, the requirement in Theorem 2 that Ψθ should be a con-
junction of literals is indeed necessary.

Example 8. Consider a database in which D = {P1(a), P1(b), P2(a), Q(c)} and L is
the set of LCWA of Example 6 without LCWA (Q(x), S(x)). That is,

L =
{
LCWA (P1(x), t), LCWA (P2(x), t), LCWA (Q(x), P1(x) ∧ P2(x))
LCWA (S(x), Q(x)), LCWA (R(x), Q(x))

}
This database is hierarchically closed as the dependency graph induced by L is acyclic.
Also, as each window of expertise is a conjunction of literals, the conditions of Theo-
rem 2 are satisfied in this case. Clearly, Q(a)KL = f , Q(b)KL = u and Q(c)KL = t.
By Corollary 2, then, M(D,L) |= ¬Q(a) and M(D,L) |= Q(c). Moreover, by Theo-
rem 2, KL is an optimal approximation of M(D,L).

4 Query Answering

In the previous section we presented techniques to compute an (optimal) 3-valued inter-
pretation for the meaning of a database and its set of LCWAs. In this section we show
how these interpretations can be used for query answering in incomplete databases.

Definition 12. Given a 3-valuedΣ-interpretation K and a query Q[x] in Σ, define:

– Certain answers: Cert(Q[x]) = {x | Q[x]K = t}.

– Possible answers: Poss(Q[x]) = {x | Q[x]K � u}.

Note 3. The notions of certain and possible answers proposed here differ from def-
initions considered in some domains of incomplete databases (see for instance [1]),
where the certain and possible answers depend on whether an open or closed-world
is assumed. Our definition is based on 3-valued semantics and it does not rely on the
assumption that is adopted for the database.

Proposition 8. Let D = (D,L) be a hierarchically closed database. If a ground tuple
d is a certain answer for Q in KL, then M(D,L) |= Q[d].

We can not prove in general that for any possible answer d for a query Q in KL, that
M(D,L) ∪ {Q[d]} is consistent. All we can assure is that the set of possible answers
for Q constitutes a safe (and usually quite precise) over-approximation of this set.
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Proposition 9. Let D = (D,L) be a hierarchically closed database and Q a dis-
junction of literals. If a ground tuple d is a possible answer for Q in KL and KL =
Kopt(M(D,L)), then M(D,L) ∪ {Q[d]} is satisfiable.

Given a 3-valued Herbrand Σ-interpretation K and a query Q[x] in Σ, we compute
certain/possible answers by Algorithm 1 below. In this algorithm, steps 1 and 2 are
computed once (unless K is changed), while step 3 is executed for each new query. Ob-
serve that in step 3.a we under-approximate positive occurrences and over-approximate
negative occurrences of predicates, while in 3.b we do the converse.

Algorithm 1. Computing Certain/Possible Answers

1: For each predicate P , define Σ′ = {R ∈ Σ : RKis 2-valued}∪{Pu, Pt : PKis 3-valued}.
2: Define IK as the 2-valued Herbrand Σ′-interpretation, such that:

• RIK
= RK if RK is 2-valued in K.

• P IK
t = {d | P (d)K = t}.

• P IK
u = {d | P (d)K � u}.

3: Consider the query Q[x].

3.a To obtain certain answers for Q[x] compute Qc[x] as follows:

• Replace positive occurrences of 3-valued predicates P by Pt.
• Replace negative occurrences of 3-values predicates P by Pu.

3.b To obtain possible answers for Q[x] compute Qp[x] as follows:

• Replace positive occurrences of 3-valued predicates P by Pu.
• Replace negative occurrences of 3-valued predicates P by Pt.

Theorem 3. A ground tuple d is a certain (alternatively possible) answer for Q[x] in
K iff d is an answer to Qc (alternatively Qp) in IK.

Proof. Consider the (non-standard representation of) truth assignment interpreting a
formula ϕ in a pair of structures (I, J) with the same domain, such that positively
occurring atoms of ϕ are interpreted by I , and negatively occurring ones by J . A sat-
isfaction relation |= between these valuations and formulas in Σ is inductively defined
as follows:

– (I, J) |= P (d) iff I |= P (d), i.e., d
I ∈ P I ;

– (I, J) |= ¬ϕ iff (J, I) �|= ϕ;
– (I, J) |= ϕ ∨ ψ iff (I, J) |= ϕ or (I, J) |= ψ;
– (I, J) |= ∃x ϕ(x) iff there is a d∈dom(I), such that (I[x/d], J [x/d]) |= ϕ(x).

There is a strong link with 3-valued logic. Indeed, when (I, J) is the result of splitting a
3-valued interpretation K in a 2-valued underestimation I and 2-valued overestimation
J (see Section 3.1), then it is well-known that :
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– ϕK = f iff (J, I) �|= ϕ;
– ϕK = u iff (J, I) |= ϕ and (I, J) �|= ϕ;
– ϕK = t iff (I, J) |= ϕ.

A straightforward consequence of these equalities is ϕK � u iff (J, I) |= ϕ. Let (I, J)
be the pair of 2-valued Herbrand Σ-interpretations associated with K. By construction
of IK (see step 2 in Algorithm 1), for every 3-valued predicate P , (Pt)IK

= P I and
(Pu)IK

= P J . It is easy to see that for any tuple of domain elements d, (I, J) |= Q[d]
iff IK |= Qc[d] and (J, I) |= Q[d] iff IK |= Qp[d]. It follows that if IK |= Qc[d], then
Q[d]K = t, i.e., d is a certain answer for Q, and if IK |= Qp[d] then Q[d]K � u, i.e., d
is a possible answer for Q. ��

Example 9. Consider the database D of Example 8. Let us check the query Q[x] =
P1(x) ∧ R(x) for x = b. Let KL be the 3-valued interpretation that is induced by
D (obtained by the inductive construction of Definition 11), and let I be the 2-valued
interpretation derived from KL by step 2 of Algorithm 1. Since P1 is 2-valued in KL,
for every constant a, P1(a)KL = P1(a)I . The predicate R is 3-valued in KL, and
following step 2 we replace it by Rt and Ru in I . It follows that Rt(b)I = f and
Ru(b)I = t. Rewriting Q[x] using now step 3, we obtain Qc[x] = P1(x) ∧ Rt(x) and
Qp[x] = P1(x) ∧Ru(x). It follows that x = b is a possible but not a certain answer for
Q[x] (that is, b ∈ Poss(Q) − Cert(Q)).

The last example demonstrates query answering in hierarchically closed databases. The
whole process can be summarized as follows:

1) Given a database D = (D,L), check whether it is hierarchically closed (this is
simple, as both the construction of the dependency graph and cycle checking for it
are polynomial in the size of L).

2) Apply the procedure that is sketched in the paragraph above the proof of Proposi-
tion 6 for constructing the 3-valued interpretation KL that is induced by D.

3) Given a query Q, apply Algorithm 1 with KL and Q.

5 Related Works

In [6], the authors introduced the concept of closed-world information on a formula Q
in the context of logical agents. The idea amounts to the specification of which parts of
a logical theory are complete. More formally, an agent has CWI relative to a formula
Q(x) if every ground instance Q(a) is either entailed by the first-order knowledge base
or necessarily false. As argued in this paper (see the discussion after Definition 4), the
notions of CWI and LCWA (as presented here) are closely related, but they capture
different properties of different entities.

Doherty et al. [5] propose a semantics for the CWI of Etzioni et al. in terms of
(second-order) circumscription. This approach generalizes the one in [6] by allowing
limited use of negation and disjunction in the representation of CWI, while retaining
tractability of reasoning. The query processing in [5] is based on fixpoint semantics.
One of the robust characteristics of this approach is the possibility to express inductive
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definitions by means of CWI formulas. The correspondence between this approach and
our notion of LCWA is considered in detail in [3].

The database community has made important contributions to the study of locally
complete databases. In [12], Motro formalizes the concept of partial completeness in
relational databases by means of completeness constraints, which are concerned with
“true information that must be part of a complete database”. Such constraints are rep-
resented in the conjunctive relational calculus. The role of Motro’s completeness con-
straints is taken here by the windows of expertise, which are represented by a more
expressive language (function-free first-order). In [11], Levy investigates how to deter-
mine whether the answer to a given query is complete even if the database is incomplete.
The notion of completeness is semantically characterised in terms of virtual relations
(those that are true in the real world) and available relations (the actual database). Nei-
ther Motro nor Levy address the problem of obtaining possible answers to queries, as
we do in this paper.

In answer-set programming, Gelfond and Lifschitz [7] introduce the possibility to
partially define a predicate by combining in one rule classical negation and negation
as failure. Consider, for instance, the following program5: {¬p ← not p, ϕ}. Under
stable-models semantics [8], the truth of ¬p can be established if no evidence is found
about p and ϕ is provable. The relationship with the LCWA in this context is clear: ϕ is
a window of expertise of p.

6 Conclusions and Future Work

We have presented a general algebraic fixpoint theory for the local closed-world as-
sumption of relational databases. The framework proposed here re-conciliates the no-
tions of CWI and LCWA used in the contexts of knowledge-base agents and relational
databases. More specifically, (i) important cases in which LCWA induces CWI are iden-
tified, and (ii) a simple query answering mechanism that allows to distinguish between
possible and certain answers is introduced. Future lines of research include the follow-
ing topics:

– Extension from relational to deductive databases. In deductive databases (some-
times referred as Datalog), so called intensional predicates are defined in terms of
extensional relations. Given a relational database and set of LCWAs, it would be
informative to identify where locally complete extensional relations induce com-
plete knowledge on intensional ones. The immaterial nature of intensional predi-
cates presumably requires some extension of the notion of LCWA considered in
this paper.

– Integration with mediator-based systems [10]. In [3] it was shown how to rep-
resent LCWA information over a number of different data-sources. Informally, the
idea amounts to represent that a set of data-sources, taken together, may store com-
plete knowledge about certain predicates. An open question is how to explore this

5 Following standard conventions, the symbols ¬ and not represent classical negation and nega-
tion as failure, respectively.
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additional knowledge to retrieve more informative answers from queries to the me-
diator. An approach based on the semantic considerations presented in this paper
could provide a well-founded solution to the elusive problem of answering negative
queries from mediator systems.

– Efficient query answering techniques for the LCWA. The methods we presented
here for query answering require the computation of a 3-valued interpretation. This
approach allows a straightforward identification of the exact knowledge endorsed
by a database, but, if the database or the set of the LCWA expressions is updated,
the 3-valued interpretation must be re-computed. Incremental methods for updat-
ing 3-valued interpretations may be incorporated for reducing the computational
complexity of the revision process.
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Abstract. We present a datastructure for storing memory contents of
imperative programs during symbolic execution—a technique frequently
used for program verification and testing. The concept, called updates,
can be integrated in dynamic logic as runtime infrastructure and mod-
els both stack and heap. Here, updates are systematically developed as
an imperative programming language that provides the following con-
structs: assignments, guards, sequential composition and bounded as
well as unbounded parallel composition. The language is equipped both
with a denotational semantics and a correct rewriting system for execu-
tion, whereby the latter is a generalisation of the syntactic application of
substitutions. The normalisation of updates is discussed. The complete
theory of updates has been formalised using Isabelle/HOL.

1 Introduction

First-Order Dynamic Logic [1] is a program logic that enables to reason about the
relation between the initial and final states of imperative programs. One way to
build calculi for dynamic logic is to follow the symbolic execution paradigm and
to execute programs (symbolically) in forward direction. This requires infrastruc-
ture for storing the memory contents of the program, for updating the contents
when assignments occur and for accessing information whenever the program
reads from memory. Sequent calculi for dynamic logic often represent memory
using formulas and handle state changes by renaming variables and by relating
pre- and post-states with equations. All information about the considered pro-
gram states is stored in the side-formulas Γ , Δ of a sequent Γ 	 〈α 〉 φ,Δ, like
in inequations 0

.
< x and equations x′ .= x+ 1.

As an alternative, this paper presents a datastructure called Updates, which
are a generalisation of substitutions designed for storing symbolic memory con-
tents. When using updates, typical sequents during symbolic execution have the
shape Γ 	 {u} 〈α 〉 φ,Δ. The program α is preceded by an update u that deter-
mines parts of the program state, for instance the update x := x+ 1. Compared
with side-formulas, updates (i) attach information about the program state di-
rectly to the program, (ii) avoid the introduction of new symbols, (iii) can be
simplified and avoid the storage of obsolete information, like of assignments that
have been overridden by other assignments, (iv) represent accesses to variables,
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array cells or instance attributes (in object-oriented languages) in a uniform way,
(v) delay case-distinctions that can become necessary due to aliasing, (vi) can
be eliminated mechanically once a program has been worked off completely.

Historically, updates have evolved over years as a central component of the
KeY system [2], a system for deductive verification of Java programs. They are
used both for interactive and automated verification. In the present paper, we
define updates as a formal language (independently of particular program logics)
and give them a denotational semantics based on model-theoretic semantics of
first-order predicate logic. The language is proposed as an intermediate language
to which sequential parts of more complicated languages (like Java) can stepwise
be translated. The thesis [3] related to this paper gives a rewriting system that
allows to execute or eliminate updates mechanically. The main contributions of
the paper are new update constructs (in particular quantification), the devel-
opment of a complete metatheory of updates and its formalisation1 using the
Isabelle/HOL proof assistant [4], including proofs of all lemmas about updates
that are given in the present paper or in [3].

The paper is organised as follows: Sect. 2 motivates updates through an exam-
ple. Sect. 3 and 4 introduce syntax and semantics of a basic version of updates in
the context of a minimalist first-order logic. Sect. 5 describes the rewriting sys-
tem for executing updates. Sect. 6 adds an operator for sequential composition
to the update language. Sect. 7 shows how heap structures can be modelled and
modified using updates, which is applied in Sect. 8 about symbolic execution.
Sect. 9 discusses laws for simplification of updates.

2 Updates for Symbolic Execution in Dynamic Logic

We give an example for symbolic execution using updates in dynamic logic.
Notation and constructs used here are later introduced in detail. The program
fragment max is written in a Java-like language and is executed in the context
of a class/record List representing doubly-linked lists with attributes next, prev
and val for the successor, predecessor and value of list nodes:

max = if (a.val
.
< a.next .val) g = a.next.val ; else g = a.val ;

where a and g are program variables pointing to list nodes. The initial state of
program execution is specified in an imperative way using an update:

init = a.prev := nil | b.next := nil | a.next := b | b.prev := a |
a.val := c | b.val := d

init can be read as a program that is executing a number of assignments in
parallel and that is setting up a list with nodes a and b. In case a .= b—which is
possible because we do not specify the opposite—the two nodes will collapse to
the single node of a cyclic list and will carry value d: assignments that literally
1 www.cs.chalmers.se/∼philipp/updates.thy, ≈ 3500 lines Isabelle/Isar code.
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occur later (b.val := d) can override earlier assignments (a.val := c). This means
that parallel composition in updates also has a sequential component: while the
left- and right-hand sides of the assignments are all evaluated in parallel, the
actual writing to locations is carried out sequentially from left to right.

When adding updates to a dynamic logic, they can be placed in front of modal
operators for programs, like in {init} 〈max 〉 φ. The diamond formula 〈max 〉 φ
alone expresses that a given formula φ holds in at least one final state of max .
Putting the update init in front means that first init and then the program max
is supposed to be executed—init sets up the pre-state of max .

We execute max symbolically by working off the statements in forward di-
rection. Effects of the program are either appended to the update init or are
translated to first-order connectives. We denote execution steps of max by 	
and write ≡ for an update simplification step. init is used as an abbreviation.

{init} 〈 if (a.val
.
< a.next .val) g = a.next .val ; else g = a.val ;〉 φ

A conditional statement can be translated to propositional connectives. The
branch condition is co = (a.val

.
< a.next .val).

	 {init}
(
(co ∧ 〈 g = a.next .val ;〉 φ) ∨ (¬co ∧ 〈 g = a.val ;〉 φ)

)
The application of init distributes through propositional connectives. Applying
init to co yields the condition co′ = ({init} co) ≡ ((if a .= b then d else c)

.
< d).

≡ (co′ ∧ {init} 〈 g = a.next .val ;〉 φ ∨ (¬co′ ∧ {init} 〈 g = a.val ;〉 φ)
The program assignments are turned into update assignments that are sequen-
tially ( ; ) connected with init .
	 (co′ ∧ {init ; g := a.next.val} φ) ∨ (¬co ′ ∧ {init ; g := a.val} φ)

The updates are simplified by turning sequential composition ; into parallel
composition | . The update init has to be applied to the right-hand sides, which
become ({init} a.next .val) ≡ d and ({init} a.val) ≡ (if a .= b then d else c).
≡ (co′ ∧ {init | g := d} φ) ∨ (¬co′ ∧ {init | g := (if a .= b then d else c)} φ)

The last formula is logically equivalent to the original formula {init} 〈max 〉 φ
and can further be simplified by applying the updates to φ. An implementation
like in KeY can, of course, easily carry out all shown steps automatically.

3 Syntax of Terms, Formulas, and Updates

The present paper is a self-contained account on updates. To this end, we ab-
stract from concrete program logics and define syntax and semantics of a (min-
imalist)2 first-order logic that is equipped with updates. Updates can, however,
be integrated in virtually any predicate logic, e.g., in dynamic logic.

We first define a basic version of our logic that contains the most common
constructors for terms and formulas (see e.g. [5]), the equality predicate .= and

2 We do not include many common features like arbitrary predicate symbols, in order
to keep the presentation concise. Adding such concepts is straightforward.
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a strict order relation
.
<, as well as operators for minimum and conditional

terms. The two latter are not strictly necessary, but enable a simpler definition
of laws and rewriting rules. In this section, updates are only equipped with the
connectives for parallelism, guards and quantification, sequential composition is
added later in Sect. 6.

In order to define the syntax of the logic, we need (i) a vocabulary (Σ,α) of
function symbols, where α : Σ → defines the arity of each symbol, and (ii) an
infinite set Var of variables.

Definition 1. The sets Ter, For and Upd of terms, formulas and updates are
defined by the following grammar, in which x ∈ Var ranges over variables and
f ∈ Σ over functions:

Ter ::= x || f(Ter , . . . ,Ter) || if For then Ter else Ter || minx.For || {Upd} Ter

For ::= true || false ||For ∧ For ||For ∨ For || ¬For || ∀x.For || ∃x.For ||
Ter .= Ter ||Ter

.
< Ter || {Upd} For

Upd ::= skip || f(Ter , . . . ,Ter ) := Ter ||Upd |Upd || if For {Upd} ||for x {Upd}
The update constructors represent the empty update skip, assignments to func-
tion terms f(s1, . . . , sn) := t, parallel updates u1 | u2, guarded updates if φ {u},
and quantified updates for x {u}. The possibility of having function terms as
left-hand sides of assignments is crucial for modelling heaps. In Sect. 2, expres-
sions like a.prev are really function terms prev (a), but we use the more common
notation from programming languages. More details are given in Sect. 7. There
are also constructors for applying updates to terms and to formulas (like {u} φ).

We mostly use vector notation for the arguments t̄ of functions. Operations
on terms are extended canonically or in an obvious way to vectors, for in-
stance f({u} t̄) = f({u} t1, . . . , {u} tn), valS,β(t̄) = (valS,β(t1), . . . , valS,β(tn)).

4 Semantics of Terms, Formulas, and Updates

The meaning of terms and formulas is defined using classical model-theoretic
semantics. We consider interpretations as mappings from locations to individuals
of a universe U (the predicates .= and

.
< are handled separately):

Definition 2. Given a vocabulary (Σ,α) of function symbols and an arbitrary
set U , we define the set Loc(Σ,α),U of locations over (Σ,α) and U by

Loc(Σ,α),U := {〈f, (a1, . . . , an)〉 | f ∈ Σ, α(f) = n, a1, . . . , an ∈ U} .
If the indexes are clear from the context, we just write Loc instead of Loc(Σ,α),U .

The following definition of structures/algebras deviates from common definitions
in the addition of a strict well-ordering on the universe.3 The well-ordering is
used for resolving clashes that can occur in quantified updates (see Example 1
and Sect. 8).
3 As every set can be well-ordered (based on Zermelo-Fraenkel set theory [6]) this

does not restrict the range of considered universes. Because the well-ordering is also
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Definition 3. Suppose that a vocabulary (Σ,α) of function symbols is given. A
well-ordered algebra over (Σ,α) is a tuple S = (U,<, I), where

– U is an arbitrary non-empty set (the universe),
– < is a strict well-ordering on U , i.e., a binary relation with the properties4

• Irreflexivity: a �< a for all a ∈ U ,
• Transitivity: a1 < a2, a2 < a3 entails a1 < a3 (a1, a2, a3 ∈ U),
• Well-orderedness: Every non-empty set A ⊆ U contains a least element

min<A ∈ A such that min<A < a for all a ∈ A\{min<A},
– I is a (total) mapping Loc(Σ,α),U → U (the interpretation).

A partial interpretation is a partial function Loc(Σ,α),U → U .

A (partial) function f :M → N is here considered as a subset of the cartesian
product M ×N . For combining and modifying interpretations, we frequently
make use of the overriding operator ⊕, which can be found in Z [7] and many
other specification languages. For two (partial or total) functions f, g :M → N
we define

f ⊕ g := {(a 
→ b) ∈ f | for all c: (a 
→ c) �∈ g} ∪ g ,

i.e., g overrides f but leaves f unchanged at points where g is not defined. For
S = (U,<, I), we also write S ⊕A := (U,<, I ⊕A) as a shorthand notation.

Definition 4. A variable assignment over a set Var of variables and a well-
ordered algebra (U,<, I) is a mapping β : Var → U .

Given a variable assignment β, we denote the assignment that is altered in
exactly one point as is common:

βa
x(y) :=

{
a for x = y
β(y) otherwise

From now on, we consider the vocabulary (Σ,α) and Var as fixed.

Definition 5. Given a well-ordered algebra S = (U,<, I) and a variable assign-
ment β, we define the evaluation of terms, formulas and updates through the
equations of Table 1 as the (overloaded) mapping

valS,β : Ter → U, valS,β : For → {tt, ff }, valS,β : Upd → (Loc → U),

i.e., in particular updates are evaluated to partial interpretations.

accessible through the predicate
.
<, however, the expressiveness of the logic goes

beyond pure first-order predicate logic. One can, for instance, axiomatise natural
numbers up to isomorphism with a finite set of formulas. In our experience, this is
not a problem for the application of updates, because quantification in updates will
in practice only be used for variables representing integers, objects or similar types.
On such domains, appropriate well-orderings are readily available and have to be
handled anyway.

4 Note, that well-orderings are linear, i.e., a < b, a = b, or b < a for arbitrary a, b ∈ U .
Further, well-orderings are well-founded—there are no infinite descending chains—
which enables us to use well-founded recursion when defining update evaluation.
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Table 1. Evaluation of Terms, Formulas, and Updates

For terms:

valS,β(x) = β(x) (x ∈ Var)

valS,β(f(t̄)) = I〈f,valS,β(t̄)〉 (S = (U, <, I))

valS,β(if φ then t1 else t2) =

{
valS,β(t1) for valS,β(φ) = tt

valS,β(t2) otherwise

valS,β(min x. φ) =

{
min< A for A �= ∅
min< U otherwise

where S = (U,<, I) and A = {a ∈ U | valS,βa
x
(φ) = tt}

For formulas:

valS,β(true) = tt , valS,β(false) = ff

valS,β(φ1 ∧ φ2) = tt iff ff �∈ {valS,β(φ1), valS,β(φ2)}
valS,β(φ1 ∨ φ2) = tt iff tt ∈ {valS,β(φ1), valS,β(φ2)}

valS,β(¬φ) = tt iff valS,β(φ) = ff

valS,β(∀x.φ) = tt iff ff �∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(∃x.φ) = tt iff tt ∈ {valS,βa
x
(φ) | a ∈ U}

valS,β(t1
.
= t2) = tt iff valS,β(t1) = valS,β(t2)

valS,β(t1
.
< t2) = tt iff valS,β(t1) < valS,β(t2) (S = (U, <, I))

For updates:

valS,β(skip) = ∅
valS,β(f(s̄) := t) = {〈f, valS,β(s̄)〉 �→ valS,β(t)}

valS,β(u1 | u2) = valS,β(u1) ⊕ valS,β(u2)

valS,β(if φ {u}) =

{
valS,β(u) for valS,β(φ) = tt

∅ otherwise

valS,β(for x {u}) =
⋃

{A(a) | a ∈ U}

where A : U → (Loc → U) is defined by well-founded recursion on (U, <) and the equa-
tion A(a) = valS,βa

x
(u) ⊕⋃ {A(b) | b ∈ U, b < a}

Application of updates: (S′ = S ⊕ valS,β(u) and α ∈ Ter ∪ For)

valS,β({u} α) = valS′,β(α)
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The most involved part of the update evaluation concerns quantified expres-
sions for x {u}, whose value is defined by well-founded recursion on (U,<). The
definition shows that quantification is a generalisation of parallel composition:
informally, for a well-ordered universe U = {a < b < c < · · · } we have

valS,β(for x {u}) = · · · ⊕ valS,βc
x
(u) ⊕ valS,βb

x
(u) ⊕ valS,βa

x
(u) .

For a general definition (see Table 1) of the partial interpretation on the right-
hand side, we need a union operator on partial functions:5

(⋃
M
)
(x) =

{
f(x) if there is f ∈M with f(x) �= ⊥
⊥ otherwise

,

where we write f(x) = ⊥ if a partial function f is not defined at point x.

Example 1. The following examples refer to the well-ordered algebra ( , <, I),
where < is the standard order on . We assume that the vocabulary contains
literals and operations +, ·, and that these symbols are interpreted as usual for .

valS,β(a := 2) = {〈a〉 
→ 2}
In parallel composition, the effect of the left update is invisible to the right one:

valS,β(a := 2 | f(a) := 3) = {〈a〉 
→ 2, 〈f, (valS,β(a))〉 
→ 3}
The right update in parallel composition overrides the left update when clashes
occur. Here, this happens for valS,β(a) = 1:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (1)〉 
→ 2}
In contrast, for valS,β(a) �= 1 both assignments have an effect:

valS,β(f(a) := 1 | f(1) := 2) = {〈f, (valS,β(a))〉 
→ 1, 〈f, (1)〉 
→ 2}
Quantified updates make it possible to define whole functions:
valS,β({for x {f(x) := 2 · x+ 1}} f(5)) = 11
When clashes occur in quantified updates, smaller valuations of the quantified
variable will dominate. The smallest individual of ( , <) is 0:

valS,β(for x {a := x}) = {〈a〉 
→ 0}
Update constructors can be nested arbitrarily, like in quantified parallel updates:

valS,β(for x {(f(x+ 3) := x | f(2 · x) := x+ 1)}) =

{〈f, (3)〉 
→ 0, 〈f, (4)〉 
→ 1, 〈f, (5)〉 
→ 2, 〈f, (6)〉 
→ 3, 〈f, (7)〉 
→ 4, . . . ,
〈f, (0)〉 
→ 1, 〈f, (2)〉 
→ 2, 〈f, (4)〉 
→ 3, 〈f, (6)〉 
→ 4, 〈f, (8)〉 
→ 5, . . . }

In the last example, both kinds of clashes occur: (i) the pair 〈f, (6)〉 
→ 3 stems
from f(x+ 3) := x and is overridden by 〈f, (6)〉 
→ 4 (from f(2 · x) := x+ 1),
because updates on the right side of parallel composition dominate updates on
the left side (“last-win semantics”). (ii) the pair 〈f, (4)〉 
→ 3 stems from the
valuation x 
→ 2 and is overridden by 〈f, (4)〉 
→ 1 (from x 
→ 1), because small
valuations of variables dominate larger valuations (“well-ordered semantics”).
5 The operator

⋃
is obviously not uniquely defined by the given equation, but because

of A(a) ⊆ A(b) for a < b its result is unique when defining the evaluation function.
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We formalise the behaviour of updates for the latter kind of clashes:

Lemma 1. Small valuations of variables in updates override larger ones:

valS,β(for x {u})(loc) = valS,βm
x

(u)(loc)

where m =

{
min<A for A �= ∅
arbitrary otherwise

and A = {a | valS,βa
x
(u)(loc) �= ⊥}

We can now also introduce the equivalence symbol ≡ used in Sect. 2:

Definition 6. We call two terms, formulas or updates α1, α2∈Ter ∪ For ∪ Upd
equivalent and write α1 ≡ α2 if they are necessarily evaluated to the same value:
for all well-ordered algebras S and all variable assignments β over S,

valS,β(α1) = valS,β(α2) .

≡ is a congruence relation for all constructors given in Def. 1 (see Lem. 2).

5 Application of Updates by Rewriting

Updates do in principle not increase the expressiveness of terms or formulas:
given an arbitrary term, formula or update α, there will always be an equivalent
expression α′ ≡ α that does not contain the update application operator.6 We
obtain this result by giving a rewriting system that eliminates updates using
altogether 44 rules like {u} (t1 ∗ t2) → {u} t1 ∗ {u} t2 (with ∗ ∈ { .=, .

<}). For the
complete rewriting system, we have to refer to [3].

Syntactic application of updates to terms or formulas, i.e., simplification of
expressions {u} α, is carried out in two phases: first, the update is propagated
to subterms or subformulas. In the second phase, when the update has reached
a function application, it is analysed whether the update assigns the represented
location. For achieving this separation, we need to introduce further operators
and extend the syntax given Def. 1 as well as the semantics of Def. 5:

Definition 7. We define the sets TerA, ForA and UpdA of terms, formulas and
updates as in Def. 1, but with further constructors (x ∈ Var ranges over variables
and f ∈ Σ over functions):

TerA ::= · · · || {x/TerA} TerA ||non-rec(UpdA, f, (TerA, . . . ,TerA))

ForA ::= · · · || {x/TerA} ForA || in-dom(f, (TerA, . . . ,TerA),UpdA)

UpdA ::= · · · || {x/TerA} UpdA ||reject(UpdA,UpdA)

The constructors represent the explicit application of substitutions to terms, for-
mulas, and to updates (like {x/s} t), the non-recursive application of an update u

6 As we have not formally proven that our rewriting system that turns α into α′ is
terminating (but consider it as obvious), we do not state this as a theorem.
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to function terms f(t̄) (like non-rec(u, f, t̄)), the test whether an update u as-
signs to the location denoted by f(t̄) (like in-dom(f, t̄, u)), and filtered updates
reject(u1, u2) (which are described in Sect. 9). We also extend the evaluation
function valS,β on TerA, ForA and UpdA by adding the following clauses:

valS,β({x/s} α) = valS,β′(α) ,

where β′ = βvalS,β(s)
x and α ∈ TerA ∪ ForA ∪ UpdA,

valS,β(non-rec(u, f, t̄)) = I ′〈f, valS,β(t̄)〉 ,
where S = (U,<, I) and I ′ = I ⊕ valS,β(u),

valS,β(in-dom(f, t̄, u)) = tt iff valS,β(u)〈f, valS,β(t̄)〉 �= ⊥
valS,β(reject(u1, u2)) = {(loc 
→ a) ∈ valS,β(u1) | valS,β(u2)(loc) = ⊥}

The difference between non-recursive application non-rec(u, f, t̄) and ordi-
nary application {u} f(t̄) is that the subterms t̄ are in the first case evaluated
in the unmodified algebra, whereas in the latter case the algebra is first updated
by u. Formally, we have {u} f(t̄) ≡ non-rec(u, f, {u} t̄). The non-recursive op-
erator enables us to separate the syntactic propagation of updates to subterms
and subformulas from the syntactic evaluation of updates.

6 Sequentiality and Application of Updates to Updates

We extend the basic version of updates from Sect. 3 a second time and intro-
duce sequential composition. Sequentiality already occurs when applications of
updates are nested, for instance in an expression {u1} {u2} α. It seems natural
to make an operator for sequential composition compatible with the nesting of
updates: {u1} {u2} α ≡ {u1 ; u2} α. Sequential composition of this kind can be
reduced to parallel composition by extending the update application operator to
updates themselves, i.e., by considering updates {u1} u2.

Definition 8. We define the sets TerAS, ForAS and UpdAS of terms, formulas
and updates as in Def. 7, but with two further constructors:

UpdAS ::= · · · ||UpdAS ; UpdAS || {UpdAS} UpdAS

Again, the evaluation function is extended to TerAS , ForAS and UpdAS by adding
two clauses (in both cases S′ = S ⊕ valS,β(u1)):

valS,β(u1 ; u2) = valS,β(u1) ⊕ valS′,β(u2), valS,β({u1} u2) = valS′,β(u2)

The second clause resembles the semantics of update application to terms and
formulas. The first clause is very similar to the evaluation of parallel updates,
with the only difference that the right update u2 is evaluated in the structure S′

updated by u1. Intuitively, with parallel composition the effect of u1 is invisible
to u2 (and vice versa), whereas sequential composition carries out u1 before
u2. This directly leads to the equivalence u1 ; u2 ≡ u1 | {u1} u2 that makes it
possible to eliminate sequentiality (see [3]).

The relation ≡ from Def. 6 can be extended to TerAS , ForAS and UpdAS :
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Lemma 2. Equivalence ≡ of terms, formulas and updates is a congruence re-
lation for all constructors given in Def. 1, 7 and 8.

Example 2. We continue Example 1 and assume the same vocabulary/algebra.

a := 1 ; f(a) := 2 ≡ a := 1 | f(1) := 2
valS,β(a := 1 ; f(a) := 2) = {〈a〉 
→ 1, 〈f, (1)〉 
→ 2}

valS,β(a := 1 ; (a := 3 | f(a) := 2)) = {〈a〉 
→ 3, 〈f, (1)〉 
→ 2}

7 Modelling Heap Structures

The memory of imperative and object-oriented programs can be modelled as a
well-ordered algebra by choosing appropriate vocabularies Σ. By updating the
values of function symbols, the memory contents can be modified symbolically.
Compared to a more explicit encoding of program states as individuals (for
instance, elements of a datatype), directly representing memory using a first-
order vocabulary leads to very readable formulas that are in particular suited
for interactive proof systems (see [3] for a more detailed discussion).

In the whole section, we assume that the universe for evaluating updates are
the natural numbers , and that the standard well-ordering < is used (as in
Example 1). A more realistic application would, of course, require a typed logic
and to model the datatypes of programming languages properly. For this section,
it shall suffice to treat both data and addresses/pointers as natural numbers.

Variables: The simplest way to store data in programs is the usage of global
variables, which can be seen as constants g, h, i, . . . ∈ Σ when representing pro-
gram memory using well-ordered algebras (α(g) = α(h) = · · · = 0). Assignments
are naturally performed through updates g := t. Expanding a sequential update
into a parallel update yields a representation of the post-state by describing the
post-values of all modified variables in terms of the pre-values:7

gswap = i := g ; g := h ; h := i ≡ g := h | h := g | i := g

Classes and Attributes: The individual objects of a class can be distinguished
using addresses (natural numbers). Instance attributes of a class C are then
unary functions aC , bC . . . ∈ Σ (with α(aC) = α(bC) = · · · = 1) that take an ad-
dress as argument. As an example, we consider again the class List representing
doubly-linked lists from Sect. 2 (with attributes next , prev , val ∈ Σ). The follow-
ing two updates describe the setup of singleton lists (that hold a value v) and
the concatenation of two lists (where one list ends with the object e and the
second one begins with the object b):

setup(o, v) = o.prev := nil | o.val := v | o.next := nil
cat(e, b) = e.next := b | b.prev := e

7 We leave out parentheses because both parallel and sequential composition are as-
sociative, see (R52) and (R53) in Table 2.
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(we assume that nil ∈ Σ denotes invalid addresses and the beginning and end
of lists). The update init from Sect. 2 and a list containing the numbers 0, . . . , n
can then be set up as follows:

init ≡ setup(a, c) ; setup(b, 2) ; cat(a, b) ; a.next.val := d
seq = for x {if x .

< n+ 1 {setup(x, x)}} ; for x {if x .
< n {cat(x, x+ 1)}}

≡ 0.prev := nil | n.next := nil | for x {if x .
< n+ 1 {x.val := x}} |

for x {if x .
< n {x.next := x+ 1}} |

for x {if x .
< n {(x+ 1).prev := x}}

Properties about the lists can be proven by applying the updates and performing
first-order reasoning:

∀x. (¬x .
< n ∨ {seq} x.next .prev .= x) ≡ ∀x. (¬x .

< n ∨ x .= x) ≡ true

Object Allocation: Updates cannot add or remove individuals from a universe
(constant-domain semantics). In modal logic, the usual way to simulate changing
universes is to introduce a predicate that distinguishes between existing and non-
existing individuals. Likewise, for our heap model “implicit” attributes createdC

can be defined that, for instance, have value 1 for existing and 0 for non-existing
objects of a class C. An initial state in which no objects are allocated can be
reached through the update for x {x.createdC := 0}. We write an allocator for
list nodes as follows:8

alloc(o, v) = o := min i. (i.createdList
.= 0) ;

(
o.createdList := 1 | setup(o, v)

)
Note, that allocating objects in parallel using this method will produce clashes,
because parallel updates cannot observe each other’s effects. When running in
parallel, alloc(a, 1) and alloc(b, 2) will deterministically allocate the same object:

alloc(a, 1) | alloc(b, 2) ≡ alloc(b, 2) ; a := b �≡ alloc(a, 1) ; alloc(b, 2)

Arrays: Arrays in a Java-like language behave much like objects of classes,
with the difference that arrays provide numbered cells instead of attributes.
We can model arrays be introducing a binary access function ar ∈ Σ and a
unary function len ∈ Σ telling the length of arrays (α(ar ) = 2 and α(len) = 1).
Array allocation can be treated just like allocation of objects through an implicit
attribute createdar . Given this vocabulary, we can allocate an array of length n
and fill it with numbers 0, . . . , n− 1: (we write o[x] instead of ar (o, x))

allocar (o, n) = o := min i. (i.createdar
.= 0) ;

(
o.createdar := 1 | o.len := n

)
seqar = allocar (o, n) ; for x {if x .

< o.len {o[x] := x}}.
8 For practical purposes, it is reasonable to have more book-keeping about allocated

objects than shown here. The approach that is followed in KeY is to introduce
variables nextToCreateC and to allocate objects sequentially.
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8 Symbolic Execution in Dynamic Logic Revisited

As shown in Sect. 2, during symbolic execution, updates can represent a certain
prefix (or path) of a program, whereas the suffix that remains to be executed is
given in the original language. In order to use updates for symbolic execution, first
of all a suitable representation of the program states using a first-order vocabulary
and algebras (along the lines of Sect. 7) has to be chosen. Rewriting rules then
define the semantics of program features in terms of updates and of connectives
of first-order logic. This approach has been used to implement symbolic execution
for the “real-world” language JavaCard [8]. Examples for the rewriting rules are:9

〈 〉 φ 	 φ, 〈 s = t; α 〉 φ 	 {s := t} 〈α 〉 φ
〈 if (b) β1; else β2; α 〉 φ 	 (b ∧ 〈β1; α 〉 φ) ∨ (¬b ∧ 〈β2; α 〉 φ)

It is important to note that updates are not intended as an intermediate repre-
sentation for complete programs: the focus is on handling the sequential parts.
For reasoning about general loops or recursion, techniques like induction or in-
variants are still necessary. It is, nevertheless, possible to translate certain loops
directly to an update [9]. An example are many array operations in Java:10

〈 System.arrayCopy(ar1, o1, ar2, o2, n) 〉 φ
	 {for x {if ¬x .

< o2 ∧ x .
< o2 + n {ar2[x] := ar1[x− o2 + o1]}}} φ

Compared to a declarative specification of arrayCopy using a post-condition
that contains a universally quantified formula, the imperative update can be
applied to formulas or terms like a substitution. We consider updates as advan-
tageous both for interactive and automated reasoning: the program structure is
preserved, and unnecessary non-determinism in a derivation is avoided.

A characteristic of imperative programs is that memory locations can be as-
signed to/overwritten multiple times. After elimination of sequential composi-
tion, overwritten locations occur as clashes in updates. An example is the update
init from Sect. 2 and 7, which contains potential clashes because of aliasing: for
a
.= b, the expressions a.val and b.val denote the same location. Due to last-win

semantics, it is not necessary to distinguish the possible cases when turning se-
quential composition into parallel composition. Only when applying the update,
as in the expression co′ in Sect. 2, the case a .= b has to be handled explicitly.

Well-ordered semantics enables an implicit handling of output dependencies
in loops (different iterations assign to the same locations) in a similar way [9].
A simple example is: (e(i) is a side-effect free, possibly non-injective expression)

〈 while (¬i .= 0) {i = i− 1; a[e(i)] = i;} 〉 φ
	 {i := 0 | for x {if x .

< i {a[e(x)] := x}}} φ.
9 s, t, b have to be free of side-effects. It general, it will also be necessary to define a

translation of side-effect free program expressions into terms.
10 For sake of clarity, the example ignores the diverse errors that can occur when calling

arrayCopy, for instance for ar1
.
= ar2.
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Table 2. Laws for Commuting and Distributing Update Connectives

For α ∈ TerAS ∪ ForAS ∪ UpdAS:

{u1} {u2} α ≡ {u1 ; u2} α (R51)

u1 | (u2 | u3) ≡ (u1 | u2) | u3 (R52)

u1 ; (u2 ; u3) ≡ (u1 ; u2) ; u3 (R53)

u1 | u2 ≡ reject(u1, u2) | u2 (R54)

u1 | u2 ≡ u2 | reject(u1, u2) (R55)

u ≡ u | if φ {u} (φ arbitrary) (R56)

u1 ≡ u1 | reject(u1, u2) (u2 arbitrary) (R57)

if φ {u1 | u2} ≡ if φ {u1} | if φ {u2} (R58)

if φ1 {if φ2 {u}} ≡ if φ1 ∧ φ2 {u} (R59)

for x {if φ {u}} ≡ if φ {for x {u}} (x �∈ fv(φ)) (R60)

for x {if φ {u}} ≡ if ∃x.φ {u} (x �∈ fv(u)) (R61)

for x {u1 | u2} ≡ for x {u1} | u2 (x �∈ fv(u2)) (R62)

For u = for z {if z
.
< x {{x/z} u1}} and z �= x, z �∈ fv(u1):

for x {u1} ≡ for x {reject(u1, u)} (R63)

for x {u1 | u2} ≡ for x {u1} | for x {reject(u2, u)} (R64)

For u = for z {if z
.
< x {{x/z} for y {u1}}} and |{x, y, z}| = 3, z �∈ fv(u1):

for x {for y {u1}} ≡ for y {for x {reject(u1, u)}} (R65)

9 Laws for Update Simplification

Sect. 7 demonstrates how updates can be simplified and written as parallel com-
position of assignments. More formally, we can extend Sect. 5 and state that,
given an arbitrary update u, there will always be an equivalent update u′ ≡ u
of the following shape: (in which φi, si, ti do not contain further updates)

for x1,1 {for x1,2 {for · · · {if φ1 {s1 := t1}}}}
| · · ·
| for xk,1 {for xk,2 {for · · · {if φk {sk := tk}}}}

(1)

It is usually advantageous to establish this shape: (i) Obvious clashes, like in the
update g := 1 | g := 2, can easily be eliminated. (ii) The update can easily be
read and directly tells about the values of variables or heap contents. (iii) When
applying updates syntactically using the rewriting system of Sect. 5, this form
is more efficient than most other shapes, because it supports the search for
matching assignments. (iv) It is possible to define more specialised and efficient
rewriting rules for update application (than the ones given in [3]). This has been
done for the implementation of updates in KeY.
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Table 2 gives, besides others, identities that enable to establish form (1) by
turning sequential composition into parallel composition, distributing if and
for through parallel composition and commuting if and for. In this table, we
denote the set of free variables of an expression α with fv(α) (see, e.g., [5]). The
soundness of all rules and identities, based on the semantics of Sect. 4, has been
proven using the Isabelle/HOL proof assistant.

For formulating the transformation rules, we need a further operator from
Def. 7: the expression reject(u1, u2) denotes an update that carries out exactly
those assignments of u1 that do not define locations that are also assigned to
by u2. This enables us to make updates disjoint, i.e., to prevent updates from
assigning to the same locations, which is often a premise for permuting updates.
Disjointness is relevant for parallel composition (R55) and for quantification
(R64), (R65), where permutation can change the order of assignments.

10 Related Work

A theory that is very similar to updates are abstract state machines (ASMs) [10].
While there are different versions of ASMs, all update constructors of this paper
can in similar form also be found in [11]. The main difference is the notion of
“consistent updates” that exists for ASMs and that demands clash-freeness. In
contrast, the present paper describes a semantics in which clashes are resolved
by a last-win strategy or a well-ordering strategy, which we consider as better
suited for representing imperative programs.

Substitutions in B [12] have character similar to updates. Like ASMs, they
are used for modelling systems and are a complete programming language that
also provides loops and non-determinism. Updates are deliberately kept less
expressive, focussing on automated simplification and application.

The guarded command language [13] is used as intermediate language in the
verification systems ESC/Java2 and Boogie. In contrast to updates, guarded
commands are used to represent complete object-oriented programs—which re-
quires concepts like loops or non-determinism—and are eliminated using wp-
calculus.

In the context of the KeY system, updates turn up in [8] for the first time,
where the only update constructor are assignments. Parallel updates are de-
scribed in [14,15] for the first time, and have the same last-win semantics as in
this paper.

11 Conclusions and Future Work

The update language described in this paper has been implemented in the KeY
prover. Quantified updates, added most recently, have mostly improved the abil-
ity of the prover to handle arrays, as operations like arrayCopy (Sect. 8) can now
be specified and symbolically executed very efficiently. Compared to the rules in
Sect. 5 and 9 (which are more general), KeY also contains further optimisations
for applying updates that have been found to be important in practice.
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In the future, an interesting step would be the combination of ordinary sub-
stitutions and updates. This would require developing a concept of bound re-
naming for updates. Another appealing improvement would be the possibility
of non-deterministic updates, which would allow to handle object creation (or,
generally, under-specification of language features) more naturally.
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I want to thank Reiner Hähnle for bringing up the idea of extending the update
language by adding quantification, as well as for discussions. I am also grateful for
discussions and comments from Wolfgang Ahrendt, Richard Bubel, and Steffen
Schlager, and for comments from the anonymous referees.

References

1. Harel, D., Kozen, D., Tiuryn, J.: Dynamic Logic. MIT Press (2000)
2. Ahrendt, W., Baar, T., Beckert, B., Bubel, R., Giese, M., Hähnle, R., Menzel, W.,
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Abstract. In logic programs, negation-as-failure has been used both for
representing negative information and for providing default nonmono-
tonic inference. In this paper we argue that this twofold role is not
only unnecessary for the expressiveness of the language, but it also plays
against declarative programming, especially if further negation symbols
such as strong negation are also available. We therefore propose a new
logic programming approach in which negation and default inference are
independent, orthogonal concepts. Semantical characterization of this
approach is given in the style of answer sets, but other approaches are
also possible. Finally, we compare them with the semantics for logic pro-
grams with two kinds of negation.

1 Introduction

The utility of a language as a tool for practical development of knowledge repre-
sentation systems is grounded on a simple syntax with intuitive semantics, and
efficient proof procedures. So, in order to keep a broad scope of users and appli-
cations, the language should be both powerful and simple at the same time. The
absence of any of these conditions produces languages with theoretical interest,
but difficult to use in real applications. We think the original success of Logic
Programming was due to the fulfillment of these requirements, so any extension
must also preserve them.

Despite its lack of declarative meaning in all programs, negation-as-failure
partially satisfied these properties at the beginning. The semantics supported
for stratified programs is intuitive and general enough for extended use. Seman-
tics for nonmonotonic reasoning, such as the stable models or the well founded
semantics, filled the gap and provided an elegant characterization valid for all
programs. They also helped in understanding the close relationship between
“not ” and nonmonotonic reasoning formalisms, such as default logic, circum-
scription or autoepistemic logics. As soon as this relationship became clear, it
was evident that negation-as-failure plays a dual rôle in the language of logic
programs: it is both a negative connective, and a default, nonmonotonic rule
of inference. As a negative connective, it represents negative information, and
as a default rule of inference it allows to draw conclusions from the absence of
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facts. But the Negation-as-failure mechanism was shown to be inadequate for
representing explicitly negative information [1,2,3,4]. Extended logic programs
were introduced with the possibility of referring to another negation symbol “¬”,
called strong, explicit, or classical negation. Therefore, syntax and semantics of
logic programs have been extended to reflect the distinction between asserting
something false, and denying something true.

However, the presence of two negative symbols goes against the necessary
simplicity for logic programming languages. When using negative information
to infer new facts, it is necessary to evaluate if negation-as-failure or strong
negation is the right choice. Moreover, most proposed semantics for extended
programs do not relate both meanings, yielding two completely independent
semantics for negative connectives.

In this paper we argue that in the presence of strong negation, negation-
as-failure is no longer necessary for representing negative information. Conse-
quently, negation-as-failure remains in logic programs only as a nonmonotonic
inference rule, which is better referred to independently of the way negative and
positive information is represented. Formalisms like default logic, circumscrip-
tion, or autoepistemic logic can be taken as models in this sense. We propose a
syntax of logic programs without negation-as-failure, but with strong negation
and non-monotonic inference rules. The semantics associated with this approach
is given in the style of answer set semantics, but other approaches such as well
founded models are also possible.

The structure of the paper is as follows: in Section 2, we perform a more de-
tailed analysis of the above mentioned problems, mostly attributable to the lack
of distinction between negation and nonmonotonic inference in logic programs.
In Section 3 we propose to extend the influence of nonmonotonic reasoning into
logic programming, not only to provide a semantics for negation-as-failure, but
also to induce a framework of logic programs where negation and default rea-
soning are independent concepts. In Section 4 we apply this approach to some
examples and show some semantic properties. Finally, in Section 5 we com-
pare it with known semantics for extended logic programs with two kinds of
negation.

2 “not ” Considered Harmful

We consider in this section the language of extended logic programs from the
viewpoint of the requirements for useful knowledge representation tools, identi-
fying some problems and analyzing their causes. In this sense, we will shortly
review the concept of declarative language and show that negation-as-failure
can be considered harmful for the declarativeness of logic programs, in a simi-
lar way Dijkstra [5] analyzed the GOTO statement in the context of structured
programming.

Informally, a declarative programming language is one that specifies what is
computed, instead of how it is done. Baral and Gelfond [6] consider McCarthy
to be the first advocate for representing knowledge in a declarative way:
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“. . . expressing information in declarative sentences is far more modu-
lar than expressing it in segments of computer programs or in tables.
Sentences can be true in a much wider context than specific programs
can be used. The supplier of a fact does not have to understand much
about how the receiver functions or how or whether the receiver will use
it. The same fact can be used for many purposes, because the logical
consequences of collections of facts can be available.”

In our view, the key point is to establish a clear distinction between the supplier
of a fact, and its receiver or user. The receiver does not know how the fact is
produced, nor does the supplier know how it is used.

In a logical system, this problem is translated into drawing the boundary
between logic and control in Kowalski’s [7] equation algorithm = logic+control.
In this sense, John Lloyd [8] proposed that a program is declarative if it may
be considered as a formal theory and its results may be obtained as deductions
from the theory. This is a broad criterion that all formal systems satisfy as
long as they specify a language and a proof theory. But the main advantage of
declarativeness is being modular, i.e. allowing the theory to be composed with
theories, possibly written by other programmers.

One way to achieve this goal in a programming language with a general scope
is to define a syntax similar to natural discourse with semantics that coincides
with common sense reasoning. Originally, logic programming fell short of this
point because its syntax is simpler than that of full first order logic, and the
meaning of definite rules is even clearer; furthermore, the efficiency of its proof
methods provides an additional benefit. However, negation is necessary in a logic
programming language. The question is whether logic programs with several
kinds of negation still satisfy the requirements of declarativeness.

Let us then define the components of a formal theory from such logic pro-
grams. A rule is a clause of the form

L0 ← L1, . . . , Lm,not Lm+1, . . . ,not Ln (1)

where all Li, 0 ≤ i ≤ n are literals (ground atoms A, or strong negated atoms
¬A). A logic program is then a set of rules, and a query is a finite set of literals.
It is clear that literals belong to the language of the formal theory, since they
bear truth values and are deduced by the inference rules. Rules are generally not
considered as members of the language. Thus, we consider rules of the form (1)
as inference rules of the formal theory determined by a specific logic program.

Traditionally, these rules have been split into two parts: head and body. The
head, literal L0 in (1), is where the truth value of the literal is defined. The pro-
gram containing a rule with a literal in its head may be regarded as the supplier
of the fact, according to McCarthy’s use of the word. On the other hand, in the
body of the rule is where facts are used. We have not yet established which are
the facts in this part since they depend on the interpretation of “not ”. However,
since we want the language to be declarative, these facts must not express the
way in which they are inferred. Note that a query is the other possible place
where facts can be used.
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The status of “not ” is still to be determined. In principle, there are two
possible alternatives. It is possible to consider rules where “not ” appears as
nonmonotonic inference rules, similar to the ones in default logic. By doing so,
rules of the form (1) are read as “if L1, . . . , Lm are true, and there is not enough
evidence for Lm+1, . . . , Ln, then L0 is true”. If this is the case, then the language
only contains literals with explicit negation and “not ” has nothing to do with
negation. Moreover, “not A” and “not ¬A” do not have truth value; instead, they
express conditions in the meta-language, and so should not be part of queries.
Otherwise, “not ” can be treated as a connective. Here, the language is formed
by extended literals (literals, and applications of “not ” to literals), queries may
contain “not ”, and rules of the form (1) are monotonic inference rules with the
usual meaning “if L1, . . . ,not Ln are true then L0 is true”. Marc Denecker [9]
made a similar critique of the semantics for negation-as-failure, based on the
different epistemological interpretations that can be given to models, or in this
case, answer sets.

Both alternatives are feasible. In fact, one of the first proposals for the se-
mantics of logic programs with two kinds of negation has been proposed as a
translation of the logic program into a default logic theory [10]. However, it is
not possible to easily extend this translation to other semantics, and in order to
be coherent with its use, a change in the syntax of “not ” is necessary. General
use suggests “not A” as being a negative fact, assigning the values true or false
just as in any other formula in the language.

Even though “¬” and “not ” are two connectives in the alphabet of the lan-
guage, they are very special ones. The primitive function of a connective is to
build a new formula from smaller ones. This syntactical view does not require
a functional truth definition of the meaning of the new formula from the truth
values of its components. Nevertheless, traditional connectives in propositional
logics such as “∨”, “∧”, etc. do have clear truth tables. If a formal theory satisfies
this property, then it is possible to replace one of the components in a formula
by any other formula with the same truth value. However, this is not the case
for the two negative connectives in logic programming; truth for negated literals
are not a direct consequence of the truth of its components. Furthermore, in the
case of “¬”, most semantic characterizations only specify a sort of consistency
condition when both “A” and “¬A” are provable.

Another problem is that these negative connectives cannot be nested, which
is not actually a problem for “¬” since it is easy to change syntax and semantics
of logic programs to allow nested explicit negation. However, “not not A” does
not have a clear negative semantics, particularly a declarative one. An approach
to assign semantic to these expressions is given in [11]. If we read “not A” as
“A is not known” or “A is not believed”, the problem does not appear. In fact,
general usage of this connective suggests this interpretation as it follows from
the example below [1].

Example 1. A college is awarding scholarships to its students. Examination sco-
res are represented by predicates highGPA(·) and fairGPA(·), and selected(·)
represents those who where chosen.
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selected(X) ← highGPA(X)
selected(X) ← minority(X), fairGPA(X)
¬selected(X) ← ¬fairGPA(X),¬highGPA(X)
interview(X) ← not selected(X),not ¬selected(X)

The last rule in the program shows a body where an atom appears both neg-
atively and positively. Indeed, if “not ” represents negation, then the rule is
meaningless.

The real semantics of these occurrences of “not ” is “not known”, as in Moore’s
autoepistemic modal operator [12]. The representation of negative information
by “not ” should avoid this confusion, even if it cannot be nested.

From the semantical point of view, another serious problem arises. Even when
both are negative connectives, there is no connection between “¬” and “not ” in
most semantics. The following examples show this fact. Example 2 presents an
atom A such that in the well-founded semantics ¬A is true and not A is false.
Example 3 shows the opposite situation.

Example 2. The following program has no answer set, and its well-founded model
is 〈{¬p}, ∅〉.

p ← not p
¬p ←

The well-founded semantics accepts ¬p and sets not p as undefined. Technically,
the set of consequences under the answer set semantics is the whole language.

Example 3. In this example, we will follow the definitions and notations in [13].
Suppose the language contains the constant 0 and the unary function symbol
s(·) to represent all natural numbers. The logic program

even(0) ←
even(s(X)) ← not even(X)

has a unique answer set S = {even(sn(0)), for all even n}. Therefore, its well
founded model is 〈S,L\S〉 implying that for example ¬even(s(0)) is false, as
well as even(s(0)). This problem can be solved adding the rule

¬even(X) ← not even(X)

but this is the programmer’s choice. We consider that the semantics should solve
this kind of problems for all programs, instead of trusting the programmer to
include one additional rule for each predicate symbol in such conditions. Thus,
the formalization of the semantics avoids the problem from the beginning.

In answer set semantics, the difference between “not ” and “¬” diminishes since it
is a two-valued semantics. However, the different connectives are still there, and
when applied to programs with “¬” the semantics lack the necessary connection
between them.

Even though there exists a close relationship between logic programming se-
mantics and formalizations of nonmonotonic reasoning, in these systems the
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problem does not arise. Moreover, negation is represented by only one connec-
tive and is completely separated from the nonmonotonic rule of inference.

Example 4. We represent Example 3 in nonmonotonic formalisms. In default
logic we need the following default rule D, along with theory W = {even(0)},

: ¬ even(x)
¬even(x) ∧ even(s(x))

Then we can prove all intuitive positive and negative facts, like ¬even(s(0)) and
even(s(s(0))). Note that atoms, literals, and composed formulas can be obtained
by default rules. In circumscription we can represent this problem by means
of the theory {even(0), ∀x(¬even(x) ⊃ even(s(x)))} where predicate even(·) is
minimized. Apart from the formal theory, circumscription needs to specify which
circumscriptive policy is applied. However, the consequences are also formulas
in the traditional logic language; there is no connective distinguishing between
nonmonotonically and monotonically inferred formulas. Autoepistemic logic, as
well as all nonmonotonic modal logics, has a belief modal connective “L”. The
formula “not A” in logic programming is associated with “¬LA”. In these sys-
tems, the problem of distinguishing between “¬A” and “¬LA” is also present.
But here “LA” has an intended semantics of “A is known” or “A is believed”
which makes the distinction between “A” and “LA”.

These examples show that negative and positive information can be inferred
monotonically or not, and a clear distinction is made between the nonmonotonic
semantics and the contingently chosen syntactic representation of a piece of
information.

Consider for instance an atom A in a logic program under the well-founded
semantics. The syntax allows the four alternatives A, ¬A, not A, not ¬A, and
since the semantics is three valued, nine truth value assignments are possible,
which are indeed too many cases for easy understanding. Notice the paradox
that an inconsistent program, represented by both A and ¬A being true, has
not A and not ¬A as false formulas. In particular, if a programmer is trying
to use a positive occurrence of the atom, he/she will need to decide which of A,
not ¬A or A ∧ not ¬A is adequate.

Alferes and Pereira [14] suggested that all semantic formalization should sat-
isfy the following coherence principle: “ if ¬A belongs to the semantics of a
program then not A must also belong to the same semantics”. Obviously, the
well-founded semantics does not observe this principle, and they proposed a
variant that complies with it. Even though this principle improves the situa-
tion, both connectives are still present in this class of programs. We think this
dual representation of negation is the original problem. The not is a syntac-
tical device used to refer to the inference rule used to prove the literal. This
procedural meaning was the reason for the difficulty in finding its declarative
counterpart.
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3 Logic Programs with Default Policies

Circumscription is a general term that designates a whole family of nonmono-
tonic reasoning formalisms which have the minimization of a semantic concept
as a distinctive feature (see Lifschitz [15] for a review). Nonmonotonicity in these
logics originates from the fact that minimization is always done when it is con-
sistent to do so. Therefore, new facts may block the assumption of previously
accepted conclusions. Each theory in these logics is specified by a collection of
first order formulas together with a particular circumscriptive policy, a set of
rules defining the way in which minimization must be applied. A second or-
der logic formula is constructed from these two elements, which determines the
semantics of the theory.

In the logic programming language that is defined in this section we introduce,
within logic programs, features of two special circumscriptive logics: pointwise
circumscription [16] and circumscriptive theories [17]. In pointwise circumscrip-
tion, minimization is taken to be at the level of ground atoms, rather than at
the level of predicates or formulas as it is in the general case. Circumscriptive
theories are characterized by the insertion of a circumscriptive policy within
the same language of the theory. These two features are incorporated into the
definition of logic programs with default policies.

Due to the fact that the syntax of these programs should include the cir-
cumscriptive policy, one or more second order predicates must be present in the
alphabet.

Definition 1. Let σ = 〈V , Func, Pred, Pred2〉 be a signature (set of variable,
function, first order predicate, and second order predicate symbols respectively).
The set Lit(σ) of all its literals is called a circumscriptive language if Pred2 =
{def}. A circumscriptive language will be noted by LitCIRC(σ).

Then a circumscriptive language is just an ordinary language for logic programs,
except for the fact that it includes a special “second order” predicate def(·). This
predicate will be used in the definition of minimization policies among atoms,
which in turn will be interpreted by the semantics to implement default rea-
soning. The circumscriptive policy, i.e. the set of all atoms containing predicate
def(·), may be considered the extension of a classic second order predicate.
However, since there is no quantifier and the semantics will interpret variables
as shorthand for subsumed rules, then the language is not as expressive as (and
does not have the computational problems of) second order logic.

Logic programs with circumscriptive policies are then basic programs (mono-
tonic programs with strong negation [13]) using a circumscriptive language.

Definition 2. Let LitCIRC(σ) be a circumscriptive language. A logic program
with default policy (lpdp) is a set of basic rules in LitCIRC(σ).

Note that the only requirement for these programs is that some of the literals
might refer to predicate def(·). In the same way, the syntax of circumscriptive
theories [17] is the same as that of first order logic. Every basic program Π can
be considered as an lpdp taking its signature σ without second order predicates,
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and extending it by including def(·) in a signature σ′. Therefore, when referring
to a lpdp we assume the language and signature are those implicitly determined
by the program.

The semantics of an lpdp will minimize those ground literals L̄ such that
def(L) is a consequence in the program. Truth minimization implies that literal
L will be assumed by default whenever it is consistent to do so. It will be the
only nonmonotonic rule of inference in the program, and it can be applied to
positive or negative literals.

For the formal characterization, we need to introduce the concept of the set
of default literals for a program with respect to a given answer set. Recall that
Cn(Π) is the set of (monotonic) consequences of Π , i.e. the minimal set closed
both logically and under the rules of the program.

Definition 3. Let Π be an lpdp, and C a set of literals in its language. The
set of default literals of Π with respect to C is the set

DefΠ(C) := {L : def(L) ∈ Cn(Π) ∧ L̄ �∈ C} (2)

C is called the consistency basis of DefΠ(C). The minimization policy of Π is
the set of atoms in Cn(Π) with predicate def(·).

This means that L is a default literal if def(L) belongs to Cn(Π), and L̄ does not
belong to C. Then, the set of default literals depends on the minimization policy
of the program, and a given consistency basis. From the semantic point of view,
this set is important because it contains all literals that are assumed to be true
by default. Traditional rules determine monotonic inferences; circumscriptive
policies and the consistency basis determine nonmonotonic ones.

We will now introduce the answer set semantics for a lpdp. The answer sets
definition for extended logic programs [13] constitutes an extension of the stable
model semantics [18] definition only for negation as failure. The idea is that,
for a set of literals (or only atoms in the original case) to be the consequences
of a program, it is necessary to satisfy all negation as failure occurrences in it.
However, every literal in the set must have some justification for being in it. In
other words, the set should satisfy at the same time a completeness property, i.e.
it should contain all the rules’ consequences, and a soundness property, i.e. no
other literal should be contained. The negation-as-failure characteristics make
these conditions mutually dependent. Technically, this is solved by means of an
equation: the sets that satisfy the equation are answer sets of the lpdp, or stable
models of the extended logic program.

Definition 4. Let Π an lpdp, and S a set of literals in its language. S is called
an answer set of Π if it satisfies

S = Cn(Π ∪ DefΠ∪S(S)) (3)

Equation 3 assures that if S is an answer set then the default literals generated
by S, with consistency basis S, have as consequence in Π the same set S. The
answer set thus provides a certain “stability” to the program since it generates
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each of its members, and contains all of the generated elements. The difference
with the equation for extended programs is that the extended literals are in-
terpreted through the reduct of a program. On the other hand, in equation (3)
default literals are generated outside the traditional rules in program Π , and
then incorporated as facts in order to obtain the consequences of the program.
The program reduct disappears as default literals are introduced.

Example 5. Let Π be the following lpdp

1. def(¬p) ←
2. def(q) ←
3. p ← q

We can see DefΠ({}) = {¬p, q}, and DefΠ∪{¬p,q}({¬p, q}) = {¬p, q}, but this is
not an answer set for Π because Cn(Π ∪ {¬p, q}) is the whole set of literals in
the language. If we consider {p, q}, then DefΠ∪{p,q}({p, q}) = {q}, and Cn(Π ∪
{p, q}) = {p, q} so this set is an answer set for Π . Considering {¬p} we have
that DefΠ∪{¬p}({¬p}) = {¬p, q} and Cn(Π ∪ {¬p, q}) is again the whole set of
literals, so {¬p} is not an answer set for Π .

In a similar manner, it is possible to introduce the well founded model semantics
for lpdp’s or to include rules in the style of Default Logic instead of the circum-
scriptive logic [19]. In the next section we present several examples for lpdp’s,
and we discuss some properties of this semantics.

4 Properties and Examples

We will show an example in which positive and negative default conclusions are
possible. This emphasizes the symmetry of our approach with respect to positive
and negative data, in contrast to the standard attachment of a “negative” context
to negation-as-failure.

Example 6. Suppose we know that every train T is passing through some sta-
tions, but we do not know in advance in which of these stations it stops. When
the train is announced, information about the stops is given in the shortest pos-
sible way. If the train stops in many stations, only information for non-stopping
stations is given. If the train stops in a small number of stations, only informa-
tion for stopping stations is given. The following program formalizes the com-
plete reasoning about stopping and non-stopping stations for a train in this line,
beginning with the information given in an announcement.

1. line station(T, lavis) ← train(T )
2. line station(T, mezzocorona) ← train(T )
3. line station(T, salorno) ← train(T )
4. line station(T, egna) ← train(T )
5. def(¬stops(T,X)) ← line station(T,X), stops(T, Y )
6. def(stops(T,X)) ← line station(T,X),¬stops(T, Y )

The first four rules define the stations in the line, and the last two formalize the
default reasoning. For instance, rule 5 says that if we know that the train stops
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in some station, then it will be assumed by default that the train does not stop
in others. Note that this default is not applied if the conclusion is contradictory
with some already known fact; therefore, it is not necessary to include conditions
such as X �= Y in the body of these rules. If the announcement is

train(r123), stops(r123, mezzocorona)

then there is only one answer set of the above program together with these facts
which contains the following extension of the stop(·, ·) predicate

{stop(r123, mezzocorona),¬stop(r123, lavis),
¬stop(r123, salorno),¬stops(r123, egna)}

For a new announcement

train(r124),¬stops(r123, lavis)

then the answer set contains

{stop(r124, mezzocorona),¬stop(r124, lavis),
stop(r124, salorno), stops(r124, egna)}

In case we only know that train(r125), then no positive nor negative informa-
tion about stops is inferred from the program.

The same kind of problems represented in extended logic programs need several
combinations of “not ” and “¬” in the bodies of the rules. This fact affects the
objectives mentioned in Section 2, and obviously make the understanding of such
programs more difficult.

In order to formalize this reasoning, let S be an answer set for an lpdp P .
Let us call a literal L supported in S for Π iff there is some rule in Π with L
in the head, and a body included in S; a literal L is a default literal in S for Π
if def(L) is supported, and L̄ �∈ S. Intuitively, a supported literal can exhibit
some justification to be included in the semantics. Then the following result can
be proved.

Proposition 1. Let Π be an lpdp with a consistent answer set S. Then, for
every literal L ∈ S either L or def(L) is supported in S for Π

It is not possible for a similar property to hold for extended logic programs.
There is no rule in an extended program for justifying extended literals of the
form not L. Therefore, not only are these literals unsupported, but the rules
that use these literals in their body cannot justify their conclusions. In fact,
these definitions can be used to characterize answer sets for lpdp’s.

Proposition 2. Let Π be an lpdp with a consistent answer set S. Then,
S = {L : L is supported or L is default in S for Π}
Naturally enough, several other properties of the answer set semantics for ex-
tended logic programs also hold for answer sets in lpdp’s. For example, there
are lpdp’s with no, one, and several answer sets.
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In view of the diversity of semantics for negation-as-failure in logic programs,
Dix [20,21] proposed a method for classifying and characterizing them. Inspired
in similar work in nonmonotonic reasoning [22], he introduced a nonmonotonic
entailment relation for normal logic programs and studied its properties under
each of the semantics. These principles are classified into two types: strong prop-
erties are adaptations of those from nonmonotonic reasoning and belief dynam-
ics, such as cumulativity, rationality, cut, and cautious monotony; weak properties
reflect the specific idea of negation-as-failure in logic programming. The answer
set semantics for extended programs does not satisfy most strong properties
like cumulativity or rationality, and the same holds for the given semantics for
lpdp’s. In fact, this allows us to give the name of “answer set” to this seman-
tics. However, there are some weak properties like reduction that do not hold
for lpdp’s even if they are satisfied in extended programs. Reduction removes
those literals that are facts in the program from the bodies of all other rules.
The idea is to interpret those literals as true, and simplifying the rules that
refer to them. In the original version [21] for normal logic programs, reduction
has two effects: one for positive literals, and the other for negative literals. Pos-
itive literals are considered as true with the explained meaning, but negative
literals in these programs are interpreted with negation-as-failure semantics. So
the effect of reducing a program by a negative literal is to consider the comple-
mentary literal as false, and eliminating from the program all rules that have
the complement in the head. This is no longer adequate for lpdp’s, because
negative literals can also be in the head of basic rules, and non-monotonic infer-
ence can also be applied to positive literals. In short, we can say lpdp’s do not
satisfy reduction because negation is no longer the result of only nonmonotonic
inferences.

5 Comparison with Related Work

As it was mentioned in the introduction, negation-as-failure preceded explicit
negation in its incorporation into a logic programming framework. The first
proposals that included the possibility to express both types of negation [10,1,3]
did so under the semantics of the stable models. As it was shown in several
examples, this semantics has the property of preferring those models that are
“as much two-valued as possible”. In other words, it maximizes the truth value
of literals, according to the ordering ≤k. Therefore, the non orthogonal problems
are reduced, since it is often the case that when ¬L belongs to the semantics so
does not L.

On the other hand, the well founded model semantics only assigns a truth
value of true or false to a literal if it is safe to do so in every situation. The fact
that a default literal is consistent with the set of consequences is not enough
justification to include it. When explicit negation was added to this frame-
work [23,24], the lack of semantic connection between ¬L and not L was wors-
ened. Literals can be negated in one way or the other, but both negations are
completely independent, as it is shown in the following example.
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Example 7. Consider the following extended program

1. a ← not b
2. b ← not a
3. ¬a ←

The well founded model of this program is the set {¬a,not ¬b}, where a and b
have undefined truth value. In spite of the fact that ¬a is true, not a is undefined
and this does not allow the application of rule 2. In this case strong negation is
not “strong” enough to generate weak negation as failure. Note that the program
has only one stable model, S1 = {¬a, b}, so both credulous and sceptic semantics
coincide. In this case the relation between ¬a and not a is forced by the incon-
sistent assumption. In this way, however, the semantics assigns a preference of
rule 2 over rule 1.

In view of these facts, Alferes and Pereira [25,14] presented a new version of the
well founded model semantics, called WFSX, such that the coherence principle
(see section 2) is enforced. In order to simplify the presentation, we will not
discuss here the precise definitions for the construction of the model according to
WFSX. It is based on the traditional well founded model (γΠ(·) operator); then,
those literals that are necessary for the satisfaction of the coherence principle
are added, a new closure is calculate, and a fixpoint of the resulting operator is
obtained. The following program shows the result of this semantics.

Example 8. Let Π be the extended program from example 7. Then the set
{¬a, b,not a,not ¬b} is the set of consequences in the WFSX semantics.

The WFSX semantics, as it is shown in the previous example, considers “not ”
as a connective in the language. Therefore it has an extensional meaning, at
the same level as “¬”. Besides, WFSX has two fundamental characteristics that
distinguish it from most of the other semantics for programs with two types of
negation.

– Symmetry in the treatment of positive and negative literals. The fact that
a literal is positive or negative doesn’t have an impact on the set of con-
sequences of a semantics, and therefore on the truth value assigned. Many
times the sign of a literal depends on the election of the name for the predi-
cate, such as for example guilty(X) or ¬innocent(X). In consequence, the
programmers will to use one or another version makes a difference in most
semantics [3]. The WFSX semantics amends these characteristics if we do
not distinguish both types of negations.

– Existence of a semantic connection between the two negative connectives. It
solves the problems of Section 2 concerning the negative relationship. Thus
it allows to combine both connectives, and the use of negative connectives
can be simplified.

The WFSX semantics provides a solution to the problem of semantic connection
between negative connectives. However, this formalism doesn’t solve other prob-
lems, like the non-homogeneous syntax and the poor adaptability to changes
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in the program. We consider all these problems related by the same cause: the
bond of non-monotonic inference and a negative connective. The WFSX seman-
tics does not break this bond. Instead, it attacks one of its effects. The rela-
tionship between the WFSX semantics and lpdp’s is that both have a similar
motivation. The proposal of Alferes and Pereira redefines the well founded pro-
cess to include those consequences that were intuitively missing. On the other
hand, lpdp tries to maintain the well known inferences of answer sets and well
founded models, but makes a complete revision of the representation of the in-
formation and the inference rules in a program. The idea behind this proposal is
that both the answer set and the well founded model semantics are sufficiently
expressive mechanisms to represent most of the practical problems in which you
expect to apply a logic programming system. Therefore, instead of changing the
inference methods, it was preferred to change the programming style to separate
negation from nonmonotonic inference. This decision not only permits to solve
the problem of the semantic connection, but it also establishes a more elegant
syntax and allows the resulting logic programs to have more extendibility and
composition properties, as it was shown in the previous section.

In lpdp’s the use of non-monotonic inference is protected by the language:
once it is applied, no clues are left to indicate its application. The representation
of information is transparent to the inference procedure. Since the underlying
programs in the WFSX semantics are still extended programs, every reference to
“not ” has the modal flavor that makes it incompatible with negation. Further
references to explicit negation might not be in concordance with this style. When
negation is independent of the inference rules, combinations, extensions, and
restrictions of the original program can be more declaratively specified.

Now we briefly compare with other related works. Wagner’s proposal for
two negations [4,26] is in the same line as the WFSX semantics. It presents
a semantics of logical programs with two negative connectives, “∼” and “−”
which are semantically related. However, both semantic characterizations dif-
fer from negation-as-failure. Besides, the connection is carried out at the level
of predicates, e.g., all the atoms that contain a predicate father are such
that the negation ∼ father(X,Y ) implies −father(X,Y ), a kind of selec-
tive coherence principle in the sense of WFSX. For lpdp’s, the only nega-
tion connective can be inferred by monotonic or non-monotonic inference rules,
and this fact is not carried out in the representation. In these programs, it is
also possible to make nonmonotonic inference only for certain ground atoms
(def(father(charles, susan)), instead of applying it to the whole extension of
the predicate. On the other hand, Poole proposes in [27] Theorist, a practical
implementation of a diagnosis system based on the PROLOG language. It uses
a syntax of logic programming such that it incorporates a kind of default rule
as an additional type of inference rule. The syntax of these rules is similar that
of default rules, but the semantics is different. The nonmonotonic inference is
carried out by means of abduction, that is, trying to generate explanations for
a given atom. There is no connection in the system among the abducible liter-
als and the possible references to explicit negation. Yann Loyer and Umberto
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Straccia presented in [28] the Any-World Assumption, which allows to assign de-
fault interpretations for atoms over any truth space that is a bilattice. A default
truth value is defined, and then when an atom cannot be assigned a truth value
following the rules of the programs, the default truth value is applied. The main
difference with our approach is that this default policy if fixed for all atoms.

6 Conclusions

In this paper we presented some problems in the integration of negation-as-failure
and strong negation into logic programs. Their origin is the fact that negation-
as-failure is both a negative symbol and a nonmonotonic inference rule. We pro-
posed an approach where negation-as-failure is not present in the language, and
nonmonotonicity is introduced in the form of default policies. Then, we showed
that it is possible to recast the answer set semantics and recover similar proper-
ties that hold for extended programs. We conclude that negation-as-failure is not
necessary for the semantics of logic programming, or answer set programming.
Furthermore, since it also makes the understanding of extended programs more
difficult because of the presence of two negation symbols without semantic con-
nection, it is preferable to remove it. In this way, we are encouraging simplicity
while maintaining the expressiveness of the language.
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Abstract. Constructing parsimonious phylogenetic trees from species data is a
central problem in phylogenetics, and has diverse applications, even outside biol-
ogy. Many variations of the problem, including the cladistic Camin-Sokal (CCS)
version, are NP-complete. We present Answer Set Programming (ASP) models
for the binary CCS problem, as well as a simpler perfect phylogeny version, along
with experimental results of applying the models to biological data. Our contribu-
tion is three-fold. First, we solve phylogeny problems which have not previously
been tackled by ASP. Second, we report on variants of our CCS model which sig-
nificantly affect run time, including the interesting case of making the program
“slightly tighter”. This version exhibits some of the best performance, in contrast
with a tight version of the model which exhibited poor performance. Third, we
are able to find proven-optimal solutions for larger instances of the CCS problem
than the widely used branch-and-bound-based PHYLIP package.

Keywords: phylogeny, maximum parsimony, Camin-Sokal, answer set
programming.

1 Introduction

Phylogenetics is the taxonomical classification of organisms based on their evolutionary
distance. The central problem is that of constructing phylogenies (evolutionary trees)
which postulate the most likely evolution of a set of extant species. This problem, and
its variations, are widely applicable. For example, they play an important role in ho-
mology determination [1] and haplotyping [2], and can even be applied to the evolution
of natural languages [3]. These variations are, for the most part, NP-complete, however
their wide applicability requires the development of tools that help to overcome this
intractability.

One of the most general and widely used forms of the problem is the maximum
parsimony problem, where the goal is to find the smallest evolutionary tree (called
the most parsimonious tree) that accounts for the diversity of the given species. The
problem is specified as follows: A set of characters, each of which can take on a number
of possible states, characterizes a group of species. The input is a set of species, given as
character vectors. The goal is to construct a tree, with nodes labeled as character vectors,
such that the node labels include all species, and the total number of character changes
along edges is minimized. Variations of the problem arise from different restrictions on
character changes and different metrics on the minimization.
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One traditional approach to solving maximum parsimony phylogeny problems, pro-
posed by Hendy and Penny [4], is branch-and-bound (BNB). The BNB method in-
volves constructing candidate trees in a depth-first manner, keeping track of the best
trees found so far. The method benefits from heuristics which direct the search toward
promising trees, and often finds optimal or near-optimal trees quickly. However, in the
worst case, finding optimal phylogenies requires enumerating all trees. For data sets
with many species, this is a daunting task since the number of trees grows exponen-
tially in the number of species.

Due to the success of BNB, most present day software packages for phylogeny con-
struction use this approach. The two most common packages, PHYLIP [5] and PAUP [6],
use BNB to solve several variations of the phylogeny construction problem. Many of
these packages sacrifice optimality in an effort to improve running times and it can be
difficult to know if and when optimality has been reached. Other methods are needed, es-
pecially when optimality is required. In particular, we would like to develop a tool which
can quickly compute optimal phylogenies for the maximum parsimony problem.

One strategy for dealing with NP-complete problems is to specify a solution’s prop-
erties declaratively, and solve the declarative model with a general-purpose solver. This
contrasts with the procedural approach used in BNB packages such as PHYLIP. In
recent years, Answer Set Programming (ASP), a declarative approach, has gained in-
creasing attention in tackling combinatorial search problems. Based on the stable model
semantics of logic programming [7], it was identified as a new programming paradigm
in 1999 [8,9]. Problems are modeled in extended logic programming notation so that
models of the logic program correspond to problem solutions. An answer set solver,
such as smodels [10] or Cmodels [11] is used to compute answer sets, which represent
models of the program and hence solutions. Phylogeny problems, with their combina-
torially large search spaces, seem ideal candidates for ASP formulation.

In attempting to solve the maximum parsimony problem using ASP, we must choose
a metric space in which to work. The ultimate goal is to use the Wagner metric [12], the
most general metric, in which arbitrary mutations are allowed. In general, this metric
yields extremely large search spaces and it seems difficult to find ASP models which
perform satisfactorily on substantial data sets. Another well-established metric for the
maximum parsimony problem is the cladistic Camin-Sokal (CCS) metric [13]. Though
other models are more common, the CCS version is in use for specific applications (see
[14,15,16]). In this version, the states of each character are ordered and all changes are
to the next state in the order. These changes are irreversible. In the binary version, each
character has two states. The CCS problem, even in the binary case, is NP-complete [17].

In this paper, we define an ASP model for the binary CCS problem. As a first step
towards modeling this problem, we construct a model for the so-called perfect phy-
logeny problem. So long as the number of character states is constant, perfect phy-
logenies can be constructed in polynomial-time [18]. Our model to construct perfect
binary CCS phylogenies performs well and we base our general CCS model on it. A
straightforward implementation gives a model with unsatisfactory running time, which
is not uncommon in modeling NP-hard problems. To achieve a speed-up, we experi-
mented with a considerable number of variations of the basic model, of which the seven
most interesting are presented here. We present empirical evidence of the performance
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of the variations tried. Indeed, one of our contributions is a deeper understanding of
how ASP models can be modified to potentially reduce running times. In particular,
we propose the notion of slightly tighter models and show that a slightly tighter model
can obtain better performance where a completely tight program fails to do so. We
compare the performance of our ASP-based approach with PENNY, the BNB-based
program from the PHYLIP package which constructs CCS phylogenies, on two bio-
logical data sets, including haplotype data for Poecilia reticulata (guppies) which was
recently determined experimentally [19]. Our method finds, and proves optimality of,
trees for subsets of this data with up to 27 species and 24 characters, or 36 species and
18 characters. PENNY cannot establish optimality of trees for subsets with more than
18 species within a two hour cutoff period. As the number of species grows, our meth-
ods seem to yield a more viable technique than PENNY to obtain optimal solutions.
This work shows that by refining an original, basic declarative model, one can achieve
performance comparable to, or faster than, procedural approaches.

2 Related Work

There are two main approaches (both yielding NP-complete problems) in character-
based phylogeny construction: the “maximum parsimony” approach and the “maximum
compatibility” approach. The goal of the former approach is to find a phylogeny for the
input species with the minimum number of evolutionary changes, and is the approach
we use in this paper. The goal of the latter approach is to construct a phylogeny using the
maximum number of compatible characters. Brooks et al. present an ASP-based method
for the “maximum compatibility” approach [20]. ASP solvers have also been used to
construct “perfect phylogenetic networks”, from phylogenetic trees, to explain the evo-
lution of Indo-European languages [3]. These networks extend given phylogenies with
extra edges to create perfect phylogenetic networks which explain how languages are
related, both through evolutionary changes and contact amongst different cultures.

This work focuses on the binary CCS version of the “maximum parsimony” ap-
proach. Recent biological uses of binary CCS include finding phylogenetic trees of Sac-
charomyces sensu stricto complex of yeast [14]. The model was also applied to DNA
fragment data for individuals from Pellia genus, where state 1 represents the presence
of the particular DNA fragment and state 0 represents its absence [16]. Nozaki et al.
utilized the irreversibility in the CCS model because they observed that regaining of
plastid genes is generally impossible during evolution [15].

As mentioned earlier, BNB is the most common method used in the “maximum parsi-
mony” approach. In recent years, advances have been made to the basic BNB procedure,
such as developing tighter lower bounds and better branching heuristics, e.g. [21,22,23].
These advances have helped improve the speed of BNB algorithms for finding the most
parsimonious evolutionary trees. We are not aware of any recent developments in BNB
techniques which are tailored directly to the CCS version.

3 Cladistic Camin-Sokal Problem

The general large parsimony problem is to construct a tree with the minimum num-
ber of mutations, or state changes. In binary CCS, a given character may mutate only
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once on any directed path from the root. Since this mutation is irreversible, we may
assume that all mutations are from state 0 to state 1, and the root of the tree is the zero
vector.

The usual convention for phylogenetic tree construction is to construct binary trees,
to place all species at the leaves of the tree, and allow any number of characters to
change along each edge. For our purposes, it is easier to model phylogenetic trees by
dropping the assumptions that the tree is binary and that species appear only in leaves
of the tree and enforcing exactly one character state change along each edge. Every
leaf will be labeled by a species, but not necessarily vice versa. Since we limit our-
selves to one change per edge rather than grouping changes on a single edge, there
are more phylogenies possible with our convention. However, each of our phyloge-
nies maps to a unique phylogeny in the standard convention, and each phylogeny in
the standard convention can be mapped to a group of isomorphic phylogenies in our
convention.

Consider the small 6 species, 5 character example in Figure 1. Notice that exactly one
character changes on each edge (labeled by ci to denote the i-th character has changed)
and that species may occur at internal nodes. Both of these properties differ from the
phylogenies produced by PENNY, but it is easy to convert trees from either format to
the other.

00000
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11000 10100 01010 01001

c1
c2

c

c2 c c
c

Species:
00010
01000
01001
01010
10100
11000

Fig. 1. Example of a binary CCS phylogenetic tree with minimum number of extra vertices. Ver-
tices for species are marked with black dots.

Definition 1. The binary cladistic Camin-Sokal problem (binary CCS) is:

Instance: A set S of n distinct species vectors from {0, 1}m, and natural num-
ber B.

Question: Is there a directed tree T = (V,E), such that: T is rooted at
0m; S ⊆ V ⊆ {0, 1}m; every leaf in T is in S; if (v1, v2) ∈ E, v1
and v2 differ in exactly one character; ∀(v1, v2) ∈ E, if v1 has charac-
ter state 1 for character c, then v2 has state 1 for c (irreversibility); and
|V | ≤ B.

In a perfect phylogeny, each character mutation occurs only once in the tree. For binary
CCS, this is equivalent to setting B = m.
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4 Models

Before giving our ASP model for binary CCS, we describe a simpler model for the
perfect phylogeny version. This model will help us illustrate our general model, given in
Section 4.2, since we constructed the general model by extending the perfect phylogeny
model to allow for individual characters to mutate multiple times.

4.1 Perfect Phylogeny Model

Our ASP model (program) takes as input a set of facts:

a(P, C, S).

where P is the species number ranging from 1 to n, C is the character number ranging
from 1 tom, and S is the state, either 0 or 1, of that character.

Let predicate c(C) be true if C is a character. We name each vertex, other than the
root, by the character that has just changed from 0 to 1 (with the rule “v(C) :- c(C).”).
This naming scheme identifies each vertex, other than the root, with a character. Since
the root has only character states of 0, and no character/vertex associated with it, we
ignore it in our model. Thus we generate a forest. Connecting the root of each tree
in the forest to our real root in post-processing produces the solution. To enforce this
forest structure, we define relation edge on vertices so that each vertex has at most one
incoming edge:

{ edge(V1,V): c(V1): V1 != V } 1 :- c(V).

It remains to ensure that each species is represented by a vertex in the tree. We do not
have an explicit mapping between species and vertices, but rather ensure that exactly
those characters with state 1 in a species appear as vertices along the path to it from the
root. For this, we introduce two new relations: above and comparable. Relation above
is the transitive closure of edge:

above(V,V1) :- v(V), v(V1), V != V1, edge(V,V1).
above(V,V2) :- v(V:V1:V2), V != V1, V != V2, V1 != V2, above(V,V1), edge(V1,V2).

Two vertices (characters) are comparable if one is above the other:

comparable(C,C1) :- v(C), v(C1), C != C1, above(C,C1).
comparable(C,C1) :- v(C), v(C1), C != C1, above(C1,C).

We say two characters are shared if, for some species, they both take the value 1. We
require that each pair of shared characters is comparable:

:- a(P,C,1), a(P,C1,1), C != C1, not comparable(C,C1).

The constraint ensures that, for each species, all characters with state value 1 must
appear along a single path in the forest. However, this path should not contain characters
which take value 0 for this species. For any species, we must prevent a character with
state 0 occurring above a character with state 1:

:- a(P,C,0), a(P,C1,1), above(C,C1).
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To complete the model, we must ensure a graph is a forest. To eliminate cycles, we
add a constraint to prevent any two different characters from being above each other:

:- c(C), c(C1), above(C,C1), above(C1,C).

4.2 General Model

To handle the general problem, we modify our simple model for the perfect version.
Predicates c(C) and sp(P) indicate that C is a character and P is a species. In this model,
c(C) no longer represents vertices. Since characters can change states multiple times,
there is no longer a one-to-one correspondence between vertices and characters. We let
v(V) denote that V is a vertex. For m characters, we have m + k vertices, where k is a
number of extra vertices:

v(C) :- c(C).
v(m+ i). (for 1 ≤ i ≤ k)

We create a mapping m(V,C) from vertices to characters. Since each character must
change to state 1 at least once, the firstm vertices are mapped identically to the charac-
ters. The k extra vertices are free to be mapped to any character:

m(C,C) :- c(C).
1 { m(V,C) : c(C) } 1 :- v(V), V > m.

As before, we create a forest by allowing each vertex to have at most one incoming
edge and by forbidding cycles. We again use relation above to define paths amongst
directed edges, but we modify it to be reflexive (i.e., the reflexive transitive closure of
edge):

above(V,V) :- v(V).

This will simplify the remaining specification that each species is properly mapped
to a vertex in the tree. In the general case, it is not enough to insist that each pair of
characters which take the value 1 for a particular species are comparable, as multiple
vertices can be mapped to the same character. For each species, we need a path from a
root to a particular vertex such that the vertices in the path map exclusively to all of the
characters which take value 1 for that species. To do this, we first introduce a mapping
p(P,V) from species to vertices:

1 { p(P,V) : v(V) } 1 :- sp(P).

Suppose that species s is mapped to vertex v (i.e., p(s,v) holds). If character c has state
1 for species s, we require some vertex above v to map to c (above is now reflexive, so
v itself could map to c). Similarly, if character c has state 0 for species s, we require
that no vertex above v maps to c. To model these requirements, we introduce relation
g(P,C), which is true of all characters C which have changed along the path to species P.
For example, suppose that species s maps to vertex v which maps to character c. Then
g(s,c) holds if there is a vertex v1, above v, which maps to c:

g(P,C) :- sp(P), c(C), v(V1), v(V), p(P,V), m(V1,C), above(V1,V).
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For each species P, we require that all characters with state 1 to be exactly those
satisfying g(P,C):

:- a(P,C,1), not g(P,C).
:- a(P,C,0), g(P,C).

This completes the model.
To solve an instance of this problem, we consider a sequence of instances of the

model. In the first instance, we have no extra vertices (i.e., require a perfect phylogeny).
In each successive instance, we increase the number of extra vertices by one. We con-
tinue until a solution, which must be optimal, is found.

4.3 Model Variations

We were unable to solve the CCS problem for either of the full data sets we obtained. In
attempting to improve performance, we tried a number of variations of the basic model
just described. We report the most interesting, based on these four strategies: adding
redundant constraints; rephrasing constraints; tightening the program; and adding pre-
processing steps to reduce the size of the search space.

Model A - Redundant constraints. A common strategy to improve performance of
declarative models is to add redundant constraints. Adding redundant constraints to
a logic program does not change the resulting answer sets, but can reduce the running
time of the solver to find these solutions as candidate solutions can possibly be discarded
more quickly.

A species can only be mapped to a vertex which takes state 1 for this species, so we
added a constraint which explicitly prevents a species from being mapped to a vertex
which maps to a character that has state 0 for this species:

:- sp(P), v(V), c(C), p(P,V), m(V,C), a(P,C,0).

Note that this constraint does not change the requirements for a candidate tree to be
a solution. Without this constraint, it is still impossible for a species to be mapped to a
vertex which represents a character for which the species takes a zero.

Model B - Rephrase constraints. Our basic model from Section 4.2 makes use of the
fact that above is reflexive. This allows for a more concise definition of predicate g. We
tested the idea of making above irreflexive and altering the program to account for this.

We remove the reflexive constraint from our basic model, and replace the rule to
remove cycles with our new irreflexive constraint (this will also serve to prevent cycles):

:- v(V), above(V,V).

To modify relation g(P,C) so that reflexivity is not needed, we introduce a new pred-
icate, ch above(C,V):

ch above(C,V) :- c(C), v(V), m(V,C).
ch above(C,V) :- c(C), v(V), v(V1), V != V1, m(V1,C), above(V1,V).
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ch above(c,v) is true if vertex v maps to character c or there is a vertex v1 above v
which maps to c. Predicate g can now be simply defined as:

g(P,C) :- sp(P), c(C), v(V), p(P,V), ch above(C,V).

Model C - Make program tight. If a logic program satisfies a syntactic condition
called “tightness” or being “positive-order-consistent”, then its stable models can be
characterized as the models of its completion (for a discussion of tight logic programs,
see [24]). In general, Cmodels may make exponentially many calls to a SAT solver
during one execution, but on tight programs it will only make one such call [11]. This
may improve the overall run time.

To make our program tight, we create an ordering on the vertices, by replacing our
identity mapping rule with a general mapping rule so each vertex can map to any char-
acter:

1 { m(V,C) : c(C) } 1 :- v(V).

We modify the edge selection rule so that only edges from smaller vertices to greater
vertices are allowed:

{ edge(V1,V): v(V1): V1 < V } 1 :- v(V).

Model D - Use preprocessing to reduce search space. In an attempt to reduce the
size of the search space, we determined which characters are in conflict by construct-
ing a conflict graph, in a preprocessing stage. A conflict graph has a vertex for each
character, and edges between characters which are in conflict. Two binary characters
are in conflict if there are three distinct species in which they take the state pairs ‘0-1’,
‘1-0’, and ‘1-1’. If two characters are in conflict, at least one of them will require an
extra vertex in any resulting phylogenies. This is due to the fact that, from some parent
node which has value 0 for both characters, both characters must change state along
different paths to produce the ‘0-1’ and ‘1-0’ state pairs. However, one of these two
characters must change again to obtain the ‘1-1’ state pair. In this variation, we restrict
the possible characters to which the extra vertices can be mapped to those which are in
conflict.

We define a predicate con(C) to mean character C is in conflict. When adding extra
vertices, we only choose among the characters in conflict:

1 { m(V,C) : con(C) } 1 :- v(V), V > m.

Surprisingly, only Model A showed improved running time. We take Model A as our
base model for these further improvements:

Model E. Our attempt to make the program completely tight resulted in horrendous
performance. Using a similar idea we made a ‘tighter’ program by creating an ordering
on the extra vertices only. In this model, there can be edges from the firstm vertices to
any other vertices, but for each extra vertex numbered k > m, there can only be edges
to vertices numbered greater than k.
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To accomplish this, we create a predicate l which defines which pairs of vertices are
allowed to have an edge between them. So l(v1,v) is true if v1 ≤ m orm < v1 < v:

l(V1,V) :- v(V1), v(V), V1 <= m.
l(V1,V) :- v(V1), v(V), V1 > m, V1 < V.

With l defined, we can define our new edge relation as:

{ edge(V1,V): v(V1): V1= V } 1 :- v(V), V <= m.
{ edge(V1,V): v(V1): l(V1,V) } 1 :- v(V), V > m.

Model A+. A character cannot change to state 1 more than once along any given path,
so we add another redundant constraint which prevents vertices which map to the same
character from being comparable. Since the first m vertices map to unique characters,
we only need to check a pair of vertices for this condition if at least one of the two
vertices is an extra vertex. We add these rules in the preprocessing phase:

:- v(V), v(V1), V > m, V1 <= m, c(C), m(V,C), m(V1,C), above(V,V1).
:- v(V), v(V1), V <= m, V1 > m, c(C), m(V,C), m(V1,C), above(V,V1).
:- v(V), v(V1), V > m, V1 > m, V= V1, c(C), m(V,C), m(V1,C), above(V,V1).

We again note that these constraints do not alter the resulting answer sets.

Model MC. For each pair of conflicting characters, at least one needs an extra vertex
(i.e., the extra vertices must form a vertex cover of the conflict graph). Every vertex
cover contains a minimal one. We make use of this fact and add mappings, in prepro-
cessing, from the first extra vertices to characters so that a particular minimal vertex
cover is a part of the extra vertices. Our iteration procedure begins with minimal covers
with the smallest number of vertices, then continuing with these minimal covers and
one additional extra vertex, and with minimal vertex covers with one more vertices than
the minimum number, etc., until an optimal solution is found. Since we have explicitly
chosen the characters some extra vertices map to, we have significantly reduced the
number of possible mappings. However, we must (currently) manually find all minimal
vertex covers in the conflict graph. For the reported data sets, this is not hard.

As mentioned, Models B, C, and D did not improve the performance of our basic
model. The results of tests with the remaining variations are given in the next section.

5 Experimental Results

We present experimental results based on two sets of species data. One set, ‘fb65’, is
haplotype information for P. reticulata containing 37 species and 468 characters with
5 states. Since the binary characters (SNPs) of this data are the most important, and
our models are restricted to the binary case, we remove non-binary characters, leaving
449. The other set, ‘pin’, is from a taxonomic study of the saccharomyces sensu stricto
complex [14], consisting of 20 species and 274 binary characters.

Identical characters form non-branching paths in phylogenies and all but one copy
can be removed in preprocessing. Removed characters can easily be added to resulting
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trees in post processing. After this, the ‘fb65’ data set is left with 65 characters and
‘pin’ is left with 75.

Our ASP solver, in all reported results, was Cmodels-2 with zchaff. Cmodels regu-
larly performed much better than smodels on our data. Our model, along with the input,
was grounded using lparse [25]. This is always fast and is not included in the timing.
Times shown are durations output by Cmodels. In the case of the general CCS problem,
the time given is the sum of durations for the sequence of models as the number of extra
vertices is increased. All runs were on a Sun Fire V20z, with Opteron 250 (2.4 GHz)
CPU, and 4GB DDR1 RAM, running 64-bit Suse Linux Enterprise Server 9.

5.1 Perfect Phylogeny Model Results

To test the performance of our model, we derived subsets of ‘fb65’ which must have
perfect phylogenies. We compared each pair of characters to find conflicting character
pairs. For ‘fbpp1’, the first character in each conflicting pair was removed before con-
tinuing, leaving 38 characters. In ‘fbppr’, a random character from each conflicting pair
was removed. This data set has 39 characters. For each, we solved subsets with 12, 24,
36, and 37 species (see Table 1). These results verified the correctness of the model. We
found solutions to our full test data sets quickly, as hoped.

Table 1. Running times (in seconds) to construct phylogenies using our perfect phylogeny model
on two different data sets, as the number of species (Sp) is varied

Sp 12 24 36 37
fbpp1 0.01 0.09 0.25 0.27
fbppr 0.01 0.07 0.28 0.29

5.2 General Model Results

We also used the ‘fb65’ data to test the performance of our CCS model and its varia-
tions. The 37-species 65-character data set is too large for any solver we tested, so we
considered a number of subsets, varying both the number of characters and the number
of species. Our notation for these subsets is of the form ‘15s,39c’, for example, which
represents the data set comprised of the first 39 characters from each of the first 15
species in our data.

To obtain the minimum number of extra vertices needed to produce a solution, we
proceed incrementally from zero, adding a vertex whenever the solver returns false. We
do not use binary search since the most time consuming computation often occurs when
the number of extra vertices is one less than optimal (see Table 2). To prove a solution
is optimal, we must show that no trees can be constructed with one less than the optimal
number of vertices. Adding more vertices to the optimal number increases the running
time of the solver. For this particular example, where the optimal solutions have four
extra vertices, our algorithm requires just 28 seconds to reach three extra vertices when
proceeding linearly. Solving even one instance with more than four vertices would be
less efficient.
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Table 2. Running times (in seconds) as the number of extra vertices (#EV) is increased, for
‘24s,24c’. Optimal solution has 4 extra vertices.

#EV 0 1 2 3 4 5 6
Time 0 1 27 11931 4845 8930 9011

Table 3 lists the largest data sets for which we could find solutions, together with run
times for our various models. These represent a frontier for the size of problems we are
able to solve. We can construct a phylogeny for ‘36s,18c’ in seconds, but are unable to
construct one for ‘36s,21c’ in two hours.

Table 3. Model comparsion on ‘fb65’ data. Column ‘Data’ shows the largest data sets for which
we could find solutions. Column ‘#EV’ shows the optimal number of extra vertices needed. The
remaining columns give the running times, in seconds, for each model on each data set.

Data #EV Basic A E A+ MC
3s,63c 0 0 0 0 0 0
6s,51c 0 3159 2503 1701 2398 2503
9s,39c 3 3191 4099 4850 1996 1500
12s,39c 3 670 579 496 863 131
15s,39c 3 1107 755 797 4093 73
18s,39c 3 1077 947 1050 3787 191
21s,21c 3 23 5 5 4 10
24s,24c 4 16803 10784 8634 1916 440
27s,24c 4 1990 1180 913 239 6
30s,18c 3 4 3 3 3 2
33s,18c 3 5 4 4 3 2
36s,18c 3 6 5 5 4 4

Since Model A+ generally has the best performance (Model MC performs best, but
we exclude it as it requires manual steps), we used it to compare the performance of our
ASP-based approach to that of PENNY. Table 4 gives run times for the two methods
on our two data sets. For each data set, we construct several subsets, as before. The
tables list the largest data sets for which a solution was found with our method (Data),
the optimal number of extra vertices (#EV), the total length of time, rounded to the
nearest second, to find a solution with Model A+, and the time for PENNY, in seconds
(PENNY). Times for PENNY are wall-clock times, as this package does not provide a
timing function. An ‘X’ in the table denotes that PENNY did not halt within the two
hour cutoff period.

The best performance we have obtained, to date, is with our Model MC, which, in
pre-processing, modifies the ASP program to reduce the search space based on proper-
ties of the data. This approach drastically reduced running times, enabling us to solve
larger problems within reasonable amounts of time. Figure 2 shows the frontier of
largest subsets of our ‘fb65’ data solvable within two hours, for Models A+ and MC, as
well as PENNY.
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Table 4. Comparison of performance of Model A+ and PENNY on two data sets: (a) fb65 - 37
species, 65 characters; (b) pin - 20 species, 75 characters. Running times are given in seconds.
An ‘X’ in the table represents failure to return a solution within the two hour cutoff period.

Data #EV A+ PENNY
3s,63c 0 0 0
6s,51c 0 2398 0
9s,39c 3 1996 0
12s,39c 3 863 1
15s,39c 3 4093 8
18s,39c 3 3787 5700
21s,21c 3 4 X
24s,24c 4 1916 X
27s,24c 4 239 X
30s,18c 3 3 X
33s,18c 3 3 X
36s,18c 3 4 X

(a)

Data #EV A+ PENNY
3s,75c 0 0 0
6s,57c 1 3 0
9s,30c 4 317 0
12s,21c 4 10 46
15s,10c 2 0 1350
18s,9c 3 8 X
20s,9c 3 7 X

(b)
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6 Discussion and Future Work

We presented ASP models for the binary CCS phylogeny problem, and for the restric-
tion to the perfect phylogeny case. We examined the performance of a method using
these models and the Cmodels solver on experimentally obtained biological data.

As we would hope, solutions for the polytime perfect phylogeny case were found
very quickly. The general problem is much harder, and we know of no method, includ-
ing ours, that can determine optimal phylogenies for the full data sets we use. We tried
several ideas for improving the performance of our model. The best of our model vari-
ants can determine optimal phylogenies for larger fragments of the data (measured by
number of species included) than can PENNY, the standard branch-and-bound program
for the problem.
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For data with n species, PENNY essentially enumerates all phylogenetic trees on
n nodes, keeping track of the most parsimonious ones found so far (measured by total
number of character changes on the tree). PENNY relies on good heuristics which direct
the search toward the most promising trees, and trims subspaces which cannot contain
optimal solutions. This approach has three main effects: it is very effective at finding
good trees quickly, at least on small data sets; its performance is largely unaffected by
the number of characters in the data; and it can establish optimality only for data sets
with few species, since a large number of species implies too many trees to search.

Our ASP models fix a limit on the number of mutations in the tree to be found. Our
method solves a series of models, beginning with the one which requires a perfect phy-
logeny, and then adding extra vertices until a phylogeny is found. This phylogeny must
be optimal. In contrast with PENNY: Our general method relies on no domain-specific
heuristics, and searches for a “perfect” tree, rather than enumerating trees; Our model
involves mappings between both species and vertices, and vertices and characters, so
performance is significantly affected by number of characters as well as number of
species; The first phylogeny we find is optimal, and because we do not have to enumer-
ate all trees, we can prove optimality for cases involving larger numbers of species.

Based on our experimental results and our understanding of the performance of the
two methods, we conclude that declarative methods, and ASP in particular, are promis-
ing for solving hard phylogeny problems, especially when optimality is relevant. We
understand that advances have been made in BNB algorithms since PENNY was de-
veloped, and that commercial software such as PAUP* 4.0 make use of these more
advanced approaches. However, we also feel that time will permit advances in the
declarative approach, both through the development of better models (perhaps with
non-declarative components) and the development of faster ASP solvers.

Among our model variations, a few deserve attention. Model C was obtained by
looking for a straightforward way to make the ASP program tight. Models for a tight
program coincide with models for its completion, so some solvers could perform better
on an equivalent tight program. Our change involved ordering the vertices. However,
off-setting any benefit of tightness is the fact that the solver must also guess the ordering.
This significantly enlarges the search space. The resulting performance was very poor.
However, Model E, a model which involved ordering the extra vertices only, exhibited
good performance in general, and the best performance for some particular data sets. We
have simultaneously increased the search space slightly and made the program slightly
tighter. In doing so, we have exhibited better performance than a purely tight model or
a model with a smaller search space.

The second best model, A+, was the result of adding two sets of redundant con-
straints to the model. This is a standard technique in constraint satisfaction (CSP) prac-
tice, for example, but less used in ASP.

The best performance was with Model MC. This model was based on pre-processing
the data to obtain information which was used to revise the model, on an instance-by-
instance basis, to reduce the search space. The fact that the performance of this version
was significantly better than the others highlights a general problem for declarative
approaches, namely, can we always solve problems with a purely declarative approach,
or will we always need to consider such non-declarative components when tackling
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hard problems? Put another way, can we find a way to capture ideas such as the one
used in version MC declaratively, or not; if so, how, and if not, under what conditions
should we look beyond declarative methods?

Future work includes exploring more ways to improve the performance of our binary
CCS models. Possible directions include further attempts at reformulations, incorporat-
ing more recent, faster SAT solvers into Cmodels, and exploring hybrid techniques
which combine BNB and declarative approaches. The generation of minimal vertex
covers for Model MC could be automated, perhaps by using another ASP program.
Our CCS model could be extended to the non-binary case. We have made some ini-
tial explorations in this direction, but the straightforward model we constructed yields
unsatisfactory performance and considerable work remains. Continuing to remove re-
strictions from our CCS model, until we reach the more general Wagner version of the
problem, would make this technique applicable to a wider range of applications.
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Abstract. Given any dag t representing a fully or partially compressed
XML document, we present a method for evaluating any positive unary
query expressed in terms of Core XPath axes, on t, without unfolding t
into a tree. To each Core XPath query of a certain basic type, we asso-
ciate a word automaton; these automata run on the graph of dependency
between the non-terminals of the straightline regular tree grammar asso-
ciated to the given dag, or along complete sibling chains in this grammar.
Any given Core XPath query can be decomposed into queries of the basic
type, and the answer to the query, on the dag t, can then be expressed
as a sub-dag of t suitably labeled under the runs of such automata.

Keywords: Automata, Tree grammars, Dags, XML, Core XPath.

1 Introduction

Several algorithms have been optimized in the past, by using structures over
dags instead of over trees. Tree automata are widely used for querying XML
documents (e.g., [6,11,12]); on the other hand, the notion of a compressed XML
document has been introduced in [1,5,9], and a possible advantage of using dag
structures for the manipulation of such documents has been brought out in [9].
It is legitimate then to investigate the possibility of using automata over dags
instead of over trees, for querying compressed XML documents.

Our aim in this paper is to propose an approach based on word automata, for
evaluating queries on any XML document possibly given in a compressed format.
With such an objective, we first define the notion of a compressed document as
a tree/dag (trdag, for short), designating a directed acyclic graph that may be
partially or fully compressed; the terms ‘trdag’ and ‘document’ will therefore
be considered synonymous in the sequel. We adopt then the view that a trdag
t is equivalent to a minimal straightline regular tree grammar Lt that one can
naturally associate with t, cf. e.g., [2,3]. From the grammar Lt, we construct
the graph of dependency Dt between its non-terminals, and also the chiblings
(linear graphs formed of complete chains of sibling non-terminals) of Lt. The
word automata that we construct below will run on Dt, or on the chiblings of
Lt, rather than on the document t itself.

We shall only consider positive unary queries expressed in terms of Core XPath
axes. (The view we adopt allows us to define the various axes of Core XPath
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on compressed documents, in a manner which does not modify their semantics
on trees.) For evaluating any such query on any document (trdag) t, we proceed
as follows. We first break up the given query into basic sub-queries of the form
Q= //∗[axis::σ] where axis is a Core XPath axis of a certain type. To each
such basic query Q, we associate a word automaton AQ. The automaton AQ

runs on the graph Dt when axis is non-sibling, and on the chiblings of Lt when
axis is a sibling axis. An essential point in our method is that the runs of AQ

are guided by some well-defined semantics for the nodes traversed, indicating
whether the current node answers Q, or is on a path leading to some other
node answering Q. The automaton is not deterministic, but its runs are made
effectively unambiguous by defining a priority relation between its transitions,
based on the semantics. A basic query Q can then be evaluated in one single
top-down pass of AQ, under such an unambiguous run. An arbitrary positive
unary Core XPath query Q can be evaluated on t by combining the answers to
its various basic sub-queries, and the answer set for Q is expressed as a sub-trdag
of t, whose nodes get labeled in conformity with the semantics. It is important
to note that the evaluation is performed on the given trdag t; as such, on two
different trdags corresponding to two different compressions of the same XML
tree, the answers obtained may not be the same, in general.

The paper is structured as follows: Section 2 presents the notion of trdags. In
Section 3, we construct from any trdag t its normalized straightline regular tree
grammar Lt, as well as the dependency graph Dt and the chiblings of Lt; these
will be seen as rooted labeled acyclic graphs (rlags, for short); the basic notions
of Core XPath are also recalled. Section 4 is devoted to the construction of the
word automata for any basic Core XPath query, based on the semantics, and
an illustrative example. In Section 5, we prove that the runs of these automata,
uniquely and effectively determined under a maximal priority condition, generate
the answers to the queries. Section 6 shows how a non basic (composite, or
imbricated) Core XPath query can be evaluated in a stepwise fashion.

2 Tree/Dags

Definition 1. A tree/dag, or trdag for short, over an unranked alphabet Σ is
a rooted dag (directed acyclic graph) t = (Nodes(t), Edges(t)), where:

– every node u ∈ Nodes(t) has a name ∈ Σ, denoted namet(u) or name(u);
– the edges going out of any node are ordered.

Given any node u on a trdag t, the notion of the sub-trdag of t rooted at u is
defined as usual, and denoted as t|u. If v is any node, γ(v) = u1 . . . un will denote
the string of all its not necessarily distinct children nodes. For any node u on t,
we set: Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

A trdag t is said to be a tree iff for every node u on t other than the root,
Parents(u) is a singleton. For any trdag t, we define the set Pos(t) as the set
of all the positions post(u) of all its nodes u, these being defined recursively, as
follows: if u is the root node on t, then post(u) = ε, otherwise, post(u) = {α.i |
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α ∈ post(v), v is a parent of u, u is the i-th child of v}. The elements of Pos(t)
are words over natural integers.

The function namet is extended naturally to the positions in Pos(t) as follows:
for every u ∈ Nodes(t) and α ∈ post(u), we set namet(α) = namet(u). Given
a trdag t, we define its tree-equivalent as a tree t̂ such that: Pos(t̂) = Pos(t),
and for every α ∈ Pos(t) we have namet̂(α) = namet(α). A trdag is said to
be a tdag, or fully compressed, iff for any two distinct nodes u, u′ on t, the two
sub-dags t|u and t|u′ have non-isomorphic tree-equivalents; otherwise, the trdag
is said to be partially compressed, if it is not a tree. For example, the tree to the
left of Figure 1 is the tree-equivalent of the partially compressed trdag to the
right, and also of the fully compressed tdag to the middle.

3 Querying Compressed Documents: Preliminaries

Given a trdag t, one can naturally construct a regular tree grammar associated
with t, which is straightline (cf. [3]), in the sense that there are no cycles on
the dependency relations between its non-terminals, and each non-terminal pro-
duces exactly one sub-trdag of t. Such a grammar will be denoted as Lt, if it is
normalized in the following sense:

(i) for every non-terminal Ai of Lt, there is exactly one production of the
form Ai → f(Aj1 , . . . , Ajk

), where i < jr for every 1 ≤ r ≤ k; we shall then set
Sons(Ai) = {Aj1 , . . . , Ajk

}, and symbLt(Ai) = f ;
(ii) the number of non-terminals of Lt is the number of nodes on t.

Such a normalized grammar Lt is uniquely defined up to a renaming of the
non-terminals. For instance, for the trdag t to the left of Figure 2, we get the
following normalized grammar:

A1 → f(A2, A3, A4, A5, A2), A2 → c, A3 → a(A5), A4 → b, A5 → b

Such a grammar is easily constructed from t, for instance by using a standard
algorithm which computes the ‘depth’ of any node (as the maximal distance
from the root), to number the non-terminals so as to satisfy condition (i) above.

The dependency graph of the normalized grammar Lt associated with t, and
denoted as Dt, consists of nodes named with the non-terminals Ai, 1 ≤ i ≤ n,
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and one single directed arc from any node Ai to a node Aj whenever Aj is a son
of Ai. The root of Dt is by definition the node named A1. The notion of Sons
of the nodes on Dt is derived in the obvious way from that defined above on Lt.

Furthermore, to any production Ai → f(Aj1 , . . . , Ajk
) of Lt, we associate a

rooted linear graph composed of k nodes respectively named Aj1 , . . . , Ajk
, with

root at Aj1 , and such that for all l ∈ {2, . . . , k} the node named Ajl
is the son of

the node named Ajl−1 . This graph is referred to as the chibling of Lt associated
with the (unique) Ai-production; it is denoted as Fi. We also define a further
chibling denoted F0, as the linear graph with a single node named A1, where A1

is the axiom of Lt.
In the sequel, we designate by G either Dt or any of the chiblings F of Lt.

We complete any of these acyclic graphs G into a rooted labeled acyclic graph
(rlag, for short), by attaching to each node u on G, with name(u) = Ai, a label
denoted label(u), and defined as label(u) = (symbLt(Ai),−); cf. Figure 2.

3.1 Positive Core XPath Queries on Trdags

In this paper, our study is restricted to positive Core XPath queries on trdags.
Recall that Core XPath (cf. [7]) is the navigational segment of XPath, based on
the following axes of XPath: self, child, parent, ancestor, descendant,
following-sibling, preceding-sibling. A location expression is defined as
a predicate of the form [axis::b], where axis is one of the above axes, and b is
a symbol of Σ. Given any trdag t over Σ, a context node u on t and b ∈ Σ, the
semantics for axis is defined by evaluating this predicate at u. The semantics
for the axes self, child, descendant are easily defined, exactly as on trees
(cf. [14]). For defining the semantics of the remaining axes, we first recall that
Parents(u) = {v ∈ Nodes(t) | u is a child of v}.

Definition 2. Given a context node u on a trdag t, and b ∈ Σ:
i) [parent::b] evaluates to true at u, if and only if there exists a b-named

node in Parents(u);
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ii) [ancestor::b] evaluates to true at u, iff either [parent::b] evaluates
to true at u, or there exists a node v ∈ Parents(u) such that [ancestor::b]
evaluates to true at v;

iii) [following-sibling::b] evaluates to true at u, iff there exists a b-
named node u′, and a node v on t such that γ(v) is of the form . . . u . . . u′ . . . ;

iv) [preceding-sibling::b] evaluates to true at u, iff there exists a b-
named node u′, and a node v on t such that γ(v) is of the form . . . u′ . . . u . . .

For the ‘composite’ axes descendant-or-self and ancestor-or-self, the se-
mantics are then deduced in an obvious manner. We shall also need position
predicates of the form [position() = i]; their semantics is that the expres-
sion [child::b [position() = i]] evaluates to true at a context node u, iff:
[child::b] evaluates to true at u, and u is an i-th child of some parent.

Positive Core XPath query expressions are usually defined in the literature
(cf. e.g., [5]), as those generated by the following grammar:

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling

Scan ::= A::σ | position() = i | Scan and Scan | Scan or Scan

Ecan ::= A::∗[Scan] | Ecan[Ecan]
Qcan ::= /Scan | /Ecan | Qcan/Qcan

We shall refer to the query expressions generated by this grammar as canon-
ical ; they can be shown to be of the type /C1/C2/ . . . /Cn, where each Ci is
of the form A::σ[Xcan], or of the form A::σ[Xcan] conn A’::σ′[X ′

can], with
conn ∈ {and, or}, and Xcan, X

′
can ∈ {Scan, Ecan, true}; we agree here to identify

A::σ[true] with A::σ.
Any such positive Core XPath query expression can be translated into one that

is in “standard form”, i.e., where the format of the sub-queries is of the type
‘axis::b’; we formalize this idea now. The axes self, child, descendant,
parent, ancestor, preceding-sibling, following-sibling will be refer-
red to as basic. A basic Core XPath query is a query of the form //∗[axis::σ],
where axis is basic. More generally, the queries we propose to evaluate on trdags
are defined formally as the expressionsQstd generated by the following grammar,
where σ stands for any node name on the documents, or for ∗ (meaning ‘any’):

A ::= self | child | descendant | parent | ancestor |
preceding-sibling | following-sibling

S ::= A::σ | position() = i | S and S | S or S | Root
E ::= A::∗[S] | E[E]
Qstd ::= //∗ | //∗[S] | //∗[E]

Core XPath queries Qstd of the format generated by this grammar are said to
be in standard form; to be able to handle any positive Core XPath query with
such a grammar, we have introduced a special predicate called Root, deemed
true only at the root node of the trdag considered.

By the evaluation of a given query expression Q on any trdag t, we mean
the assignment: t 
→ the set of all context nodes on t where the expression Q
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evaluates to true (following the conventions of Definition 2); this latter set is also
called the answer for Q on t. Two given queries Q1, Q2 are said to be equivalent
iff, on any trdag t, the answer sets for Q1 and Q2 are the same. Any positive
Core XPath query Qcan can be translated into an equivalent one in standard
form; e.g., /c[following-sibling::g]/d is equivalent to //∗[self::d and
parent::∗[Root and self::c [following-sibling::g]]] in standard form.
An inductive procedure performing such a translation in the general case (of
linear complexity w.r.t. the number of location steps in Qcan) is given in [4].
The following proposition results from Definition 2.

Proposition 1
(1) For any set of nodes X on a trdag t, and any axis A, we have A(X) =⋃
x∈X,

α∈post(x)
α = i1...ik

{/child::∗[position() = i1]/. . ./child::∗[position() = ik]/A::∗}

(2) For any trdag t, and any node with name b on t, we have:
i) //∗[preceding::b] =

⋃
u

{descendant-or-self(following-sibling(

//∗[self::u and (descendant::b or self::b)] ))}
ii) //∗[following::b] =

⋃
u

{descendant-or-self(preceding-sibling(

//∗[self::u and (descendant::b or self::b)] ))}

For any set S of nodes on t, the sets following(S) and preceding(S) can then
be defined formally, following [1], as below:

a) following(S) =
descendant-or-self(following-sibling(ancestor-or-self(S))),

b) preceding(S) =
descendant-or-self(preceding-sibling(ancestor-or-self(S))).

Note 1 Unlike on a tree, the ancestor, descendant, following, self and
preceding axes do not partition the set of nodes on a trdag t, in general.

4 Automata for Basic Core XPath Queries

4.1 The Semantics of the Approach

We first consider basic Core XPath queries. Composite or imbricated queries will
subsequently be evaluated in a stepwise fashion; see Section 6.

To any basic query Q = //∗[axis::σ], we shall associate a word automaton
(actually a transducer), referred to as AQ. It will run top-down, on the rlag Dt

if axis is non-sibling, and on each of the chiblings F of Lt otherwise. In either
case, a run will attach, to any node traversed, a pair of the form (�l, x), where the
first component �l will have the intended semantics of selection or not by Q, of the
corresponding node on t, and the component x will be a 1 or 0, with the intended
semantics that x = 1 iff the corresponding node on t has a descendant answering
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Q. At the end of the run, label(u), at any node u of Dt, will be replaced by a
new label derived from the ll-pairs attached to u by the run.

To formalize these ideas, we introduce a set of new symbols L = {s, η,.,.′}
referred to as llabels (the term ‘llabel’ is used so as to avoid confusion with the
term label). We define ll-pairs as elements of the set L×{0, 1}, and the states of
AQ as elements of the set {init}∪ (L×{0, 1}). For any Q, the automaton AQ is
over the alphabet Σ ∪ {s, η}, has init as its initial state, and has no final state.
The set ΔQ of transitions of AQ will consist of rules of the form (q, τ) → q′

where q ∈ {init} ∪ (L× {0, 1}), q′ ∈ (L× {0, 1}), and τ ∈ Σ ∪ {s, η}.
For any rlag G, we define a function llab : Nodes(G) → Σ ∪ {s, η}, by setting

llab(u) = π1(label(u)), the first component of label(u). A run of AQ on G is a
map r : Nodes(G) → L×{0, 1}, such that, for every u ∈ Nodes(G), the following
holds:

– if u is rootG , then the rule (init, llab(u)) → r(u) is in ΔQ;
– otherwise, for every v ∈ γ(u) the rules (r(u), llab(v)) → r(v) are all in ΔQ.

Note 2 When axis is non-sibling, this amounts to requiring that, for any node
v, the state r(v) must be in conformity with the states r(u) for every parent
node u of v, with respect to the rules in ΔQ.

From the run of the automaton AQ and from the states it attaches to the nodes
of Dt, we will deduce, at every node u of t, a well-determined ll-pair as (a new)
label at u, via the natural bijection between Nodes(t) and Nodes(Dt). The ll-
pairs thus attached to the nodes of t will have the following semantics (where
x stands for the name of the node u on t, corresponding to the ‘current’ node
on Dt):

(s, 1) : x �= σ, current node is selected;
(η, 1) : x �= σ, current node is not selected, but has a selected descendant;
(η, 0) : x �= σ, current node is not selected, and has no selected descendant;
(.′, 1) : x = σ, current node on t is selected by (i.e., is an answer for) Q;
(., 1) : x = σ, current node is not selected, but has a selected descendant;
(., 0) : x = σ, current node is not selected, and has no selected descendant.

Only the nodes on Dt, to which the run of AQ associates the labels (s, 1) or
(.′, 1), correspond to the nodes of t that will get selected by the query Q. The
ll-pairs with boolean component 1 will label the nodes of Dt corresponding to
the nodes of t which are on a path to an answer for the query Q; thus the
automaton AQ will have no transitions from any state with boolean component
0 to a state with boolean component 1. Moreover, with a view to define runs
which are unique (or unambiguous in a sense that will be presently made clear),
we define the following priority relations between the ll-pairs:

(η, 0) > (η, 1) > (s, 1), and (., 0) > (., 1) > (.′, 1).

A run of the automaton AQ will label any node u on G with an ll-pair coming
either from the group {(η, 0), (η, 1), (s, 1)}, or from {(., 0), (., 1), (.′, 1)}; this
group will be determined by llab(u).
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For ease of presentation, we agree to set η′ := s, and often denote either of
the above two groups of ll-pairs under the uniform notation {(l, 0), (l, 1), (l′, 1)},
where l ∈ {η,.}, with the ordering (l, 0) > (l, 1) > (l′, 1).

We shall construct a run r of AQ on G that will be uniquely determined by
the following maximal priority condition:
(MP): at any node v on G, r(v) is the maximal ll-pair (�l , x) for the ordering >
in the group {(l, 0), (l, 1), (l′, 1)} determined by llab(v), such that AQ contains
a transition rule of the form (r(u), llab(v)) → (�l , x), for every parent u of v.

Such a run will assign a label with boolean component 1 only to the nodes
corresponding to those of the minimal sub-trdag t containing the root of t and
all the answers to Q on t.

4.2 Re-labeling of Dt by the Runs of AQ

We first consider a non-sibling basic query Q on a given document t, and a given
run r of the automaton AQ on Dt; at the end of the run, the nodes on Dt will
get re-labeled with new ll-pairs, computed as below for every u ∈ Nodes(Dt):

labr(u) = (s, 1) iff r(u) ∈ {(s, 1), (.′, 1)},
labr(u) = (η, 1) iff r(u) ∈ {(η, 1), (., 1)},
labr(u) = (η, 0) iff r(u) ∈ {(η, 0), (., 0)}.

The rlag obtained in this manner from Dt, following the run r and the associated
re-labeling function labr, will be denoted as r(Dt).

For a basic query Q over a sibling axis, the situation is a little more complex,
because several different nodes on one chibling of Lt can have the same name
(non-terminal), or several different chiblings can have nodes named by the same
non-terminal, or both. Thus, to any node of Dt, named with a non-terminal A,
will correspond in general a set of ll-pairs, assigned by the various runs of AQ

to the A-named nodes on the various chiblings of Lt. We therefore proceed as
follows: for every complete set r̂ of runs of AQ, formed of one run rF on each
chibling F , we will define r̂(Dt) as the re-labeled rlag derived from Dt, under r̂.
With that purpose we associate to r̂ and any u ∈ Nodes(Dt), a set of ll-pairs:

llr̂(u) =
⋃

rF∈ r̂

{rF (v) | v ∈ Nodes(F), and name(v) = name(u)}.

We then derive, at each node of Dt a unique ll-pair in conformity with the
semantics of our approach, by using the following function:

λr̂(u) = s ⇐⇒ llr̂(u) ∩ {(s, 1), (.′, 1)} �= ∅, ,
λr̂(u) = η < ⇐⇒ llr̂(u) ∩ {(s, 1), (.′, 1)} = ∅.

From Dt and this function λr̂, we next derive an rlag λr̂(Dt) by re-labeling
each node u on Dt with the pair (λr̂(u),−). And finally we define r̂(Dt) as the
rlag obtained from λr̂(Dt), by running on it the automaton for the basic non-
sibling query //∗[self::s], as indicated at the beginning of this subsection.



Automata for Positive Core XPath Queries on Compressed Documents 475

In practical terms, such a run amounts in essence to setting, as the second
component of label(u) at any node u, the boolean 1 iff u is on a path to some node
with llab s, and 0 otherwise. All these details are illustrated with an example in
the following subsection.

4.3 The Automata

We present the automata for all the basic queries in Figure 3. A few words on
some of the automata by way of explanation. First, the reason why the automa-
ton for self does not have the states (., 0), (., 1), (s, 1): for (., 0), (., 1), by
the semantics of Section 4.1 we must have x = σ, where x is the name of the
current node on t, but then the query //∗[self::σ] should select the current
node, so one cannot be at such a state; as for (s, 1), the reasoning is just the
opposite. Next, the reason why the automaton for descendant does not have
the states (η, 1), (., 1): if the semantics attribute one of these pairs to any node
u, that would mean the node u has a selected descendant u′; which means that
u′ has some σ-descendant node, which would then be a σ-descendant for u too,
so Q should select u.

Figure 4 illustrates the evaluation of Q = //∗[following-sibling::b],
on the trdag t of Figure 2. We first use the automaton for the basic query
//∗[following-sibling::σ]with σ = b, and then the automaton for the query
//∗[self::σ] with σ = s. The sub-trdag of t, formed of nodes corresponding to
those of r̂(Dt) with labels having boolean component 1, contains all the answers
to Q on t.

5 Maximal Priority Runs of Basic Query Automata

Note that the following properties, required by our semantics of Section 4.1, hold
on the automaton AQ for any basic Core XPath query Q = //∗[axis::σ]:

i) There are no transitions from any state with boolean component 0 to a state
with boolean component 1;

ii) The σ-transitions have all their target states in {(., 0), (., 1), (.′, 1)}; for
any γ �= σ, the target states of γ-transitions are all in {(η, 0), (η, 1), (s, 1)}.

Theorem 1. Let Q be any basic Core XPath query, t any given trdag, and let G
denote either the rlag Dt, or any given chibling F of Lt. Assume given a labeling
function L from Nodes(G) into the set of ll-pairs, which is correct with respect
to Q, i.e., in conformity with the semantics of Section 4.1. Then there is a run
r of the automaton AQ on G, such that:

i) r is compatible with L; i.e., r(u) = L(u) for every node u on G;
ii) r satisfies the maximal priority condition (MP) of Section 4.1.

Proof. We first construct, by induction, a ‘complete’ run (i.e., defined at all the
nodes of G) satisfying property i). For that, we shall employ reasonings that will
be specific to the axis of the basic query Q. We give here the details only for the
axis parent; they are similar for the other axes.
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Q = //∗[parent::σ]: (The axis considered is non-sibling so G = Dt here.) At
the root u node of Dt, we set r(u) = L(u); we have to show that there is a
transition rule in AQ of the form (init, llab(u)) → L(u). Obviously, for the axis
parent, the root node u cannot correspond to a node on t selected by Q, so the
only ll-pairs possible for L(u) are (l, 0), (l, 1), with l ∈ {η,.}; for each of these
choices, we do have a transition rule of the needed form, on AQ.

Consider then a node v on Dt such that, at each of its ancestor nodes u on Dt,
the part of the run r of AQ has been constructed such that r(u) = L(u); assume
that the run cannot be extended at the node by setting r(v) = L(v). This means
that there exists a parent node w of v, such that (L(w), llab(v)) → L(v) is not
a transition rule of AQ; we shall then derive a contradiction. We only have to
consider the cases where the boolean component of L(w) is greater than or equal
to that of L(v). The possible couples L(w),L(v) are then respectively:

L(w) : (., 0) | (., 1) | (., 1) | (.′, 1) | (.′, 1)
L(v) : (η, 0) | (., 1) | (η, 1) | (., 1) | (η, 1)

In all cases, we have llab(w) = σ because of the semantics, so the node (on t
corresponding to the node) v has a σ-parent, so must be selected; thus the above
choices for L(v) are not in conformity with the semantics; contradiction.

We now prove that the complete run r thus constructed, satisfies property
ii). For this part of the proof, the reasoning does not need to be specific for
each Q; so, write Q more generally, as //∗[axis::σ] for some given σ. Suppose
the run r does not satisfy the maximal priority condition at some node v on G;
assume, for instance, that the run r made the choice, say of the ll-pair (l, 1),
although the maximal labeling of the node v, in a manner compatible with
the ll-pairs of all its parents, was the ll-pair (l, 0). Since L is assumed correct,
and r is compatible with L, the maximal possible labeling (l, 0) would mean
that the node (on t corresponding to the node) v has no descendant selected
by Q; whereas, the choice that r is assumed to have made at v, namely the
ll-pair (l, 1), has the opposite semantics whether or not llab(v) = σ; in other
words, the labeling L would not be correct with respect to Q; contradiction. The
other possibilities for the ‘bad’ labelings under r also get eliminated in a similar
manner. ��

Theorem 2. Let Q, t,Dt,F ,G be as above. Let r be a (complete) run of the
automaton AQ on G, which satisfies the maximal priority condition (MP) of
Section 4.1. Then the labeling function L on Nodes(G), defined as L(u) = r(u)
for any node u, is correct with respect to the semantics of Section 4.1.

Proof. Let us suppose that the labeling L deduced from r is not correct with
respect to Q; we shall then derive a contradiction. The reasoning will be by case
analysis, which will be specific to the axis of the basic query Q considered. We
give the details here for Q = //∗[descendant::σ]. The axis is non-sibling, so
we have G = Dt. The sets Nodes(t), Nodes(Dt) are in a natural bijection, so for
any node u on Dt we shall also denote by u the corresponding node on t, in our
reasonings below.
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We saw that the automaton AQ for the descendant axis does not have the
states (η, 1), (., 1). Consider then a node u on Dt such that: for all ancestor nodes
w of u, the llabel r(w) is in conformity with the semantics, but the ll-pair r(u) is
not in conformity. Now, AQ has only 5 states: (init), (.′, 1), (s, 1), (., 0), (η, 0),
of which only the last four can llabel the nodes. So the possible ‘bad’ choices
that r is assumed to have made at our node u, are as follows:

(a) r(u) = (.′, 1), but the node u is not an answer to the query Q. Here
name(u) must be σ, so the choice of r ought to have been (., 0);

(b) r(u) = (s, 1), but the node u is not an answer to the query Q. But
name(u) �= σ, so the choice of r ought to have been (η, 0);

(c) r(u) = (η, 0), but the node u is an answer to the query Q. But name(u) �=
σ, so the choice of r ought to have been (s, 1);

(d) r(u) = (., 0), but the node u is an answer to the query Q. Here name(u)
must be σ, so the choice of r ought to have been (.′, 1).

In all the four cases, we have to show:
i) that the “ought-to-have-been” choice ll-pair is reachable from all the parent

nodes of u;
ii) and that, with such a new and ‘correct’ choice made at u, r can be com-

pleted from u, into a run on the entire dag Dt.
The reasoning will be similar for cases (a), (b) and for the cases (c), (d). Here

are the details for case (a): That u is not an answer to Q means that u has
no σ-descendant node, so for all nodes v below u on Dt, we have llab(v) �= σ.
Therefore, assertions i) and ii) above follow from the following observations on
the automaton for Q= //∗[descendant::σ]:

i) if r could reach the state (.′, 1) at node u (via a σ-transition) from any
parent node of u, then (., 0) is also reachable thus at u, from any of them;

ii) if, from the state (.′, 1), r could reach all the nodes on Dt below u (with
state (η, 0)), via transitions over γ �= σ, then it can do exactly the same now,
with the ‘correct’ choice ll-pair (., 0) at u.

As for case (c): Node u is an answer to Q here, so u has a σ-descendant; let v
be a σ-node below u on Dt; the ll-pair r(v) that r assigns to v must then be either
(.′, 1) or (., 0); this implies that r passed from the state (η, 0) – supposedly
assigned by r to u – to (.′, 1) or (., 0) somewhere between u and v; which
is impossible, as is easily seen on the automaton AQ for the axis descendant
considered. The reasoning for case (d) is even easier: from state (., 0), no state
with an outgoing σ-transition is reachable. ��

6 Evaluating Composite Queries

A composite query is a query in standard form, but not basic; it is evaluated
incrementally. We first consider queries of the form //∗[A::x conn A’::x′],
where conn ∈ {and, or}, where the axes are all basic. Observe that the answer
for Q = //∗[A::x conn A’::x′] can be obtained as union (resp. intersection) of
the answers for the two ‘component’ queries //∗[A::x], and //∗[A’::x′], when
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Fig. 3. Automata for //∗[axis::σ]
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conn is an or (resp. and). So, we apply the method described earlier, separately
for Q1 = //∗[A::x] and for Q2 = //∗[A’::x′], thus getting two respective
evaluating runs r1, r2. Any node u of the dag Dt will then be re-labeled, by the
composite query Q, with ll-pairs computed by a function AND when conn = and
(resp. OR when conn = or), in conformity with the semantics of Section 4.1:
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AND(u) = (s, 1) iff r1(u) = (l′, 1) = r2(u);
AND(u) = (η, 0) iff r1(u) = (l, 0) or r2(u) = (l, 0);
AND(u) = (η, 1) otherwise.

OR(u) = (s, 1) iff r1(u) = (l′, 1) or r2(u) = (l′, 1);
OR(u) = (η, 0) iff r1(u) = (l, 0) = r2(u);
OR(u) = (η, 1) otherwise .

Figure 5 illustrates the above reasoning, for the evaluation of the composite
query Q = //∗[self::b and parent::a], on the trdag t of Figure 2:

Next, we consider imbricated queries of the form Q = //∗[A1::∗[A2::σ]].
We first consider a maximal priority run evaluating r2 (resp. a set of runs r̂2) of
the automaton associated to the inner query //∗[A2::σ], on Dt (resp. on the set
of all chiblings of Lt). This run (resp. the set of runs) will output the rlag r2(Dt)
(resp. r̂2(Dt)), as described in Section 4.2. Evaluating the given imbricated query
Q on the dag t is then done by running the automaton for the basic outer query
//∗[A1::s] on r2(Dt) (resp. r̂2(Dt)).

Finally, the answer for a query of the type Q = //∗[child::x[position() =
k]], is the subset of the nodes answering //∗[child::x], which correspond to
a k-th node on some sibling.

7 Conclusion

Information retrieval from compressed structures, without having to uncompress
them, is a field of active research; cf. e.g., [13,8]. Our concern has been the evalua-
tion of queries on XML documents that may be in a compressed form. Limiting
our concern to positive Core XPath queries, we have presented a method for
evaluating them on any trdag t without having to uncompress t; the given query
is first translated (in linear time w.r.t. the number of location steps, cf. [4]) into a
standard form, where the sub-queries are of a basic type. With each basic query,
an automaton is associated such that an unambiguous maximal priority run of
this automaton can evaluate the query. An algorithm constructing the maxi-
mal priority runs is given in [4]; the complexity bound is O(n3) on any trdag
t, where n is the number of nodes of t; it reduces to O(n2) on trees, where the
relation Parents is trivial. This algorithm has just been implemented. (Please
note: given a query Q, the answer for Q on a trdag t can be a strict superset of
the answer for the same query Q on the tree-equivalent t̂ of t; it is shown in [4]
how to derive the answer for Q on t̂, from the answer for Q on t; the method
consists in completing the label associated to any given node u on t by the run
of AQ, by an appropriate subset of post(u).)

An advantage of the approach presented in this paper seems to be that the
basic sub-queries “composing” a given query can be evaluated in parallel, in
several cases; a detailed analysis of this issue could be a direction for future
work. We also expect to be able to extend our approach to the evaluation of more
general XPath queries, such as those involving the data values, by adapting its
underlying mechanism based on labeling.
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There is not a person in this courtroom
who has never told a lie,

who has never done an immoral thing,
and there is no man living

who has never looked upon a woman
without desire.1

—Harper Lee: To Kill a Mockingbird

Abstract. A potential advantage of using a Boolean-ring formalism for
propositional formulæ is the large measure of simplification it facilitates.
We propose a combined linear and binomial representation for Boolean-
ring polynomials with which one can easily apply Gaussian elimina-
tion and Horn-clause methods to advantage. We demonstrate that this
framework, with its enhanced simplification, is especially amenable to
intersection-based learning, as in recursive learning and the method of
St̊almarck. Experiments support the idea that problem variables can be
eliminated and search trees can be shrunk by incorporating learning in
the form of Boolean-ring saturation.

1 Introduction

Simplification has been used successfully in recent years in the context of theo-
rem proving. This process requires a well-founded notion of “simplicity”, under
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which one can delete intermediate results that follow from known (or yet to be
derived) simpler facts, without jeopardizing completeness of the inference mech-
anism. Simplifying as much as possible at each stage can greatly reduce storage
requirements. Simplification-based theorem-proving strategies, as in the popu-
lar term-rewriting approach, have been used to solve some difficult problems in
mathematics, including the long-open Robbins Algebra Conjecture [19]. Term
rewriting means using equations asymmetrically to replace “equals by equals”
in the direction that decreases the complexity of the term (according to some
well-founded measure). For term rewriting as a tool in automated deduction, see
[1,12]. For an abstract theory of inference with simplification, see [11,5].

A natural way of incorporating simplification in propositional reasoning is to
use the Boolean-ring (BR) formalism. Boolean rings obey the following identities:

xx = x x0 = 0 x1 = x
x+x = 0 x+0 = x −x = x
xy = yx (xy)z = x(yz)

x+ y = y + x (x+ y) + z = x+ (y + z) x(y+z ) = xy+xz

where (nilpotent) + is exclusive-or and (idempotent) juxtaposition is logical-
and, ∧. (The additive inverse −x is useless.) It is straightforward to express
inclusive-or and negation: x ∨ y is xy + x+ y and x is x+ 1.

The Boolean-ring formalism differs from Boolean algebra in that it defines a
unique normal form (up to associativity and commutativity of the two operators)
for every Boolean formula, called a Boolean polynomial (also known as a Zhe-
galkin polynomial or Reed-Muller normal form). It is known [22,21] that circuits
based on exclusive-or are smaller, on the average, than those using inclusive-or.
A similar advantage should accrue symbolic representations. Like any other nor-
mal form, applying the distributive law (the bottom-right equation) can cause
the length of a Boolean polynomial to grow exponentially in the worst case.

This paper focuses on satisfiability testing using Boolean rings (which is, of
course, NP-hard [4]). Several possibilities are outlined in the next two sections.
Section 4 proposes a Davis-Putnam-like method for satisfiability. We use a novel
representation, called Bin-Lin, separating the set of formulæ into two parts (lin-
ear, binomial), each of which, on its own, can be dealt with efficiently. This is
followed (in Sect. 5) by some suggestions for practical improvements. Converting
to the Bin-Lin representation is the subject of Sect. 6. Section 7 provides several
relevant complexity results, including NP-completeness (via reduction from SAT,
which implies completeness of the proposed method). We also give polynomial-
time results for restricted classes of Boolean-ring formulæ corresponding to the
two parts mentioned above. The latter results provide some justification as to
why the proposed method may be efficient.

The main advantage of the proposed Bin-Lin representation is that it allows
for a large measure of polynomial-time inference of new facts, using Gaussian
elimination on the linear part and Horn methods for the binomial. This suggests
incorporating more forward reasoning in a search-based satisfiability procedure
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than just Boolean constraint propagation. In Sect. 8, we apply the Boolean-
ring representation in a framework—akin to St̊almarck’s method [23] (see also
[3]) and recursive learning [18]—that includes computing the intersection of sets
of formulæ. Preliminary experimental results may be found in Sect. 9. This is
followed by some brief comments.

2 Satisfiability

To decide satisfiability, one can transform a formula into a normal form that
clearly distinguishes between satisfiable and unsatisfiable cases. Such canonical
representations include disjunctive normal form (DNF) and conditional nor-
mal form (as in OBDDs). The Boolean-ring normal form (BNF), described
above, can be obtained directly by using pattern matching and repeatedly ap-
plying the emboldened ring axioms (on the previous page) from left to right
to any subformula [14]. Tautologies reduce to 1; contradictions, to 0; contin-
gent formulæ, to neither. But a normal form can of necessity be exponentially
larger than the original. For example, the BNF of (p + p′)(q + q′)(r + r′) is
pqr + pqr′ + pq′r + pq′r′ + p′qr + p′qr′ + p′q′r + p′q′r′. Despite the fact that,
in the process of normalization, terms that appear twice in a sum cancel each
other out (since x+ x = 0), this method is still, in reality, impractical.

An alternative [7,15] to BNF is to construct a Gröbner basis (confluent and
terminating rewrite system) from the initial set of equations, plus idempotence
(xx = x) for each propositional variable (x). To begin with, rather than present
the whole given formula as one big equation, conjunctions AB = 1 are divided
into two, A = 1 and B = 1, and inclusive disjunctions A ∨ B = 0 into A = 0,
B = 0. The BR axioms are applied at each step, and equations are inter-
reduced by using each as a simplifier of others (permuting arguments, as nec-
essary to match rule patterns), until no longer possible. The resultant reduced
set of Boolean polynomials is unique up to associativity and commutativity of
sums and products. By imposing an ordering on (variables and extending it to)
monomials, a unique normal form for Boolean functions is obtained. Efficient
techniques (congruence closure, Gröbner bases) can be applied to the genera-
tion task. A structure-sharing (“decision diagram”) exclusive-or normal from is
presented in [16].

The Davis-Putnam-Logemann-Loveland (DPLL) procedure [8] was the first
attempt to solve the satisfiability problem efficiently, employing a backtracking
search strategy, plus heuristics to minimize formulæ. A truth value is assigned
to a variable and the formula is recursively solved, trying another value when
no solution is found. There are many fast implementations today based on this
old procedure.

In the same vein, one can easily represent formulæ as sets of Boolean polyno-
mials (without any exponential blowup in size), and use a similar backtracking
method. See [15]. Splitting is done on variables, as usual, but formulæ are kept
as simplified BR equations. Section 4 below improves on this by employing a
new BR representation.



Boolean Rings for Intersection-Based Satisfiability 485

The traditional mechanical approach to satisfiability of a propositional for-
mula is to assert its negation and try to infer a contradiction. The total number
of consequences one needs to derive is, of course, in general, exponential. Most
nontrivial proofs require some form of case splitting. In Sect. 8, we show how to
combine limited saturation with search, within a BR framework.

3 Simplification

To counter the certain exponential cost of näıve realizations of satisfiability meth-
ods, simplification at intermediate stages is of paramount importance. Equations
being processed are replaced with simpler ones (in some well-founded sense) by
making polynomial-time inferences and deleting now-redundant formulæ. Such
steps reduce the likelihood of suffering from the potentially exponential aspect
of the approach (be it case analysis, splitting, merging, or distributivity).

Regardless of the method, it is helpful to make cheap and valuable
deductions—which may enable additional simplifications—as early as possible.
In particular, virtually all approaches employ some mechanism for detecting
“necessary” assignments. Simplification rules used in DPLL and OBDD provers
[6] include tautology, unit (Boolean constraint propagation), pure literal, sub-
sumption, and failed literal. (In practice, tautology and pure-literal are often
omitted.) In the search approach, after assigning 0 or 1 to a variable, simplifiers
like x0 = 0, x1 = x, x∨0 = x, and x∨1 = 1 should be applied, regardless of the
specific manner in which formulæ are represented, since these rules may result
in the deletion of all occurrences of some other variables.

Performing simplification during preprocessing can also be useful. In [20], pre-
processing CNF formulæ derived from circuit testing, bounded model checking,
combinatorial equivalence checking, and superscalar processor verification, was
found to reduce the number of variables to 1/3 in many cases. In a normalization
approach, the same simplifiers can dramatically reduce the size of formulæ. The
first five Boolean-ring axioms are simplifiers. They can be easily implemented
by keeping terms sorted.

4 Representation

We argue that Boolean rings are an especially convenient framework for simpli-
fication. As already mentioned, distributivity is the potentially expensive step
(even when directed acyclic graphs are used for shared subterms). We propose
a new representation, called Bin-Lin, that circumvents this problem.

A linear equation (over Z2) is a Boolean equation of the form x1+ · · ·+xn = 1
or x1 + · · ·+xn = 0, where the xi are distinct propositional variables. A binomial
equation is a Boolean equation with at most two monomials, that is, an equation
of one of the three forms: P = Q, P = 0, or Q = 1, where P and Q are products
of distinct propositional variables (distinct on account of idempotence). Simple
equations, x = 0, y = 1, or x = y, for propositional variables x, y, as well as



486 N. Dershowitz et al.

degenerate equations, 0 = 0, 1 = 1, or 1 = 0, will be considered both linear and
binomial.

Let B be a set of binomial equations and L be a set of linear equations over the
propositional variables. Instead of solving a general set of Boolean-ring equations
(e.g. xy+ x+ y = 0 implies x = 0 and y = 0), we will decide the satisfiability of
B ∪ L. Simplification by B of L, and vice-versa, will be severely limited.

Given a system R = B∪L and an ordering> on monomials, inference proceeds
as follows:

1. Termination Test. If 1 = 0 has been inferred, the system is unsatisfiable.
2. Tautology Deletion. Remove all trivial equations A = A.
3. Decomposition. Decompose any equation x1x2 · · ·xk = 1 in B into x1 =

1,. . . , xk = 1.
4. Unit Rule. Use all unit equations of the form x = 0 or x = 1 in R to simplify

equations in R.
5. Equivalence Rule. If two variables are equated, as in x = y or x + y = 0,

replace one by the other throughout R.
6. Simplification. Inter-reduce one equation by another within B and within

L, by replacing occurrences in B ∪ L of the larger side (larger, in the given
ordering >) of any equation M = N , say M , with the smaller side, N .

7. Splitting. Split the system of equations by considering R ∪ {x = 1} and
R ∪ {x = 0}, individually and recursively, for some propositional variable x
appearing in R. Heuristics (e.g. [10]) can be applied to decide which variable
x to split on.

Equations in B and L are processed independently, except for the Unit Rule and
Equivalence Rule. Splitting on x and applying the rule for units eliminates x
from both B ∪ {x = 1} ∪ L and B ∪ {x = 0} ∪ L.

This inference procedure is complete for propositional reasoning, because any
Boolean formula can be converted into a Bin-Lin form preserving satisfiability,
as will be explained in Sect. 6, and splitting with the Unit Rule suffices to test
satisfiability of BR formulæ.

The Simplification step is not needed for completeness, but rather to improve
search efficiency. All the steps, save Splitting, are encompassed by the replace-
ment rules of Table 1. The choice of ordering > is flexible: It may prefer long
monomials, to keep equations short, or short ones, to maximize the likelihood of
a simplifier applying.

One advantage of this mixed representation is that relatively fast methods
exist for processing each of the two components; see Sect. 7. Software is readily
available to handle the computations within each of the two sets, B and L.
Distributivity is not needed when simplifying Boolean terms, because (non-unit)
equations in L are not used to simplify B. So formulæ do not grow very large,
as in more conventional Boolean-ring based methods.

Example 1. Suppose we want to prove the validity of the formula

(p ∨ q) ∧ (q ∨ s) ∧ (s ∨ p) ∧ (p ∨ r) ∧ (r ∨ p ∨ t) ⇒ (t ∧ r) .
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Table 1. Inference rules for replacing antecendents with consequents (A, B are any
formulæ; M, N are monomials, including variables and values; x is any propositional
variable; c, d are either Boolean value; A[N ] is formula A[M ] with subformula N instead
of M ; ⊥ signifies unsatisfiability)

1 = 0

⊥
⊥, A = B

⊥
A = A

MN = 1

M = 1, N = 1

M0 = N

N = 0

M1 = N

M = N

Mxx = N

Mx = N

A + 0 = c

A = c

A + 1 = 1

A = 0

A + 1 = 0

A = 1

A + x + x = c

A = c

M + N = 0

M = N

M = N, A[M ] = B

M = N, A[N ] = B
M>N

x + A = c, x + B = d

x + A = c, A + B = c + d
x>B>A

To represent the clause p∨q, a new variable p̂ for p is required. The clausal form
of its negation, written as Boolean equations, is as follows:

(1) qs = q (2) sp = s (3) prt = pr (4) rt = 0
(5) p+ p̂ = 1 (6) qp̂ = p̂ (7) pr = p .

Equation (4) simplifies (3) to pr = 0, which, in turn, simplifies (7) to p = 0. This
invokes the Unit Rule, and (2,5) become s = 0 and p̂ = 1. The new (2) simplifies
(1) to q = 0. Finally, p̂ = 1 and q = 0 simplify (6) into the contradiction 1 = 0,
concluding the proof (sans splits). ��

Example 2. The Pigeon-Hole Principle for 3 pigeons and 2 holes can be expressed
as linear equations {a1 +a2 +1 = 0, b1 +b2 +1 = 0, c1 +c2 +1 = 0} and binomial
equations {xiyj = 0 | xi, yj ∈ A, x �= y ∨ i �= j}, where A = {a1, a2, b1, b2, c1, c2}
and xi means that pigeon x is in the ith hole. One split on a1, with simplification,
proves the principle. If a1 = 0, then a2 = 1 from the linear part, b2 = c2 = 0 from
the binomial part, b1 = c1 = 1 from the linear part, leading to a contradiction
1 = 0 from the binomial b1c1 = 0. A similar contradiction obtains from a1 = 1.

��

5 Cross-Fertilization

It is advantageous to allow some “cross-fertilization” between B and L, so that
useful equations can migrate from one set to the other. A trivial case is when
equations can belong to both sets. In fact, the Unit and Equivalence Rules of
Sect. 4 belong to this case.

Since B is Horn, it can express cases where variables propagate values, such as
those that can be obtained from equations in L. For example, consider a linear
equation x+y+z = 1. By assigning 1 to variables x and y, the equation reduces
to z = 1, since an even number of 1’s cancel each other. Thus, we may conclude
that the binomial equation xyz = xy (that is, x and y imply z) is a logical
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Table 2. Transformation rules

Gate Bin-Lin

Wide-or: F :=
∨

i Fi μ(F ) =
∏

i μ(Fi)

Wide-and: F :=
∧

i Fi ν(F ) =
∏

i ν(Fi)

Exclusive-or: F :=
⊕

i Fi ν(F ) =
∑

i ν(Fi)

Negation: F := G ν(F ) = μ(G)

Implication: F := F1 ⇒ F2 μ(F ) = ν(F1) · μ(F2)

Equivalence: F := F1 ⇔ F2 ⇔ · · · ⇔ Fk ν(F ) =
∑

i ν(Fi) + (k − 1) mod 2

consequence of the linear equation. Furthermore, if we are lucky enough to have
xyz = 0 (equivalent to x∨y∨z) as a constraint, we can deduce xy = 0. In general,
a linear equation y1 + y2 + · · · + yk = 1 implies the binomial y1y2 · · · yk = 0,
whenever k is even, while y1 + y2 + · · · + yk = 0 implies y1y2 · · · yk = 0 when
k is odd. The equation y1 + y2 + · · · + yk = c breeds k binomials of the form
y1y2 · · · yk = y1 · · · yi−1yi+1 · · · yk in the remaining two cases (c = 1 and k odd,
or c = 0 and k even).

Additional simplifications within B are also possible. Suppose we haveMP =
QR and MQ = 0, where M,P,Q,R are monomials. Since either M or Q equals
0, it is evident that either MP or QR equals 0. However, MP = QR; hence,
both must be 0. Therefore, we can use MQ = 0 to reduce MP = QR to two
equations, MP = 0 and QR = 0. This is an example of a critical pair compu-
tation [12], which results—after simplification—in smaller equations. In general,
entailment of equations in either B or L alone is cheap (cf. Theorems 1 and 2
below).

Simplification within B tends to produce equations like M = 0, where M is a
monomial. However, substituting a variable x in M by its counterpart 1 + x̂ can
further expand it into a non-degenerate binomial equation.

6 Compilation

Any SAT formula encoded by a Boolean circuit can be recursively compiled
into the Bin-Lin representation, as described in Table 2. Each logical gate F
is associated with two new variables, ν(F ) and μ(F ), together with the linear
equation ν(F ) + μ(F ) = 1. Intuitively speaking, ν(F ) is the structure variable
for F , μ(F ) is its negation, ν(x) is x, for input variable x, and μ(x) is a new
variable x̂.

A SAT problem encoded in conjunctive normal form can also be compiled
into the Bin-Lin representation in this way. A clause l1 ∨ l2 ∨ · · · ∨ lt can be
easily converted into an equation by expanding (l1 + 1)(l2 + 1) · · · (lt + 1) = 0.
If there are more than two positive literals amongst the li’s, the final equation
will contain at least four monomials. To avoid this, we introduce new Boolean
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variables that serve as complements of the positive ones. When li is a positive
literal, a new variable l̂i and new equation l1 + l̂i = 1 are introduced, and li + 1
is replaced by l̂i. Therefore, at most 2n variables remain after compilation.

Additional inference rules can help handle the positive variable ν(F ) and the
negative variable μ(F ). Two variables x and y are called complementary if the
linear equation x+ y = 1 exists. We proceed as follows:

1. Replace any product of variables by 0 if it contains complementary variables.
2. Replace a negative variable x̂ by x + 1 in every linear equation other than
x+ x̂ = 1 (and simplify).

3. Suppose we haveMM ′x = N andM ′y = 0, whereM,N,M ′ are monomials.
Replace MM ′x = N by MM ′ = N if x and y are complementary.

4. Replace MN = 1 by M = 1 and N = 1.
5. Suppose we have MP = QR and MQ = 0. Replace MP = QR by MP = 0

and QR = 0.
6. Remove an equation x = M if x is a variable that appears only in this

equation.

Example 3. Consider, again, the instance in Example 1:

(p ∨ q) ∧ (q ∨ s) ∧ (s ∨ p) ∧ (p ∨ r) ∧ (r ∨ p ∨ t) ⇒ (t ∧ r) .

To prove this formula valid, we set it equal to false and try to find a counterex-
ample. We compile it into the following:

(1) t̂1 = p̂q̂ (2) t̂2 = qŝ (3) t̂3 = sp̂
(4) t̂4 = pr̂ (5) t̂5 = rpt̂ (6) t6 = tr
(7) t7 = t1t2t3t4t5 (8) t̂8 = t7 t̂6 (9) t8 = 0 .

Note that the ti and the variables wearing hats are new. (We’ve omitted all the
duality constraints.) It follows that (9) forces t7 = 1 and t6 = 0 in (8), which
further forces t1 = t2 = t3 = t4 = t5 = 1 in (7). Then repeatedly applying Rule 3
and the Unit Rule, we get rp = 0 in (5), p = 0 in (4), s = 0 in (3), q = 1 in (1),
and finally 0 = 1 for (2). ��

In [23], all formulæ are represented as definitional “triplets”, of the form x ⇔
y∧ z, where x, y, z are propositional variables, which is just the binomial x = yz
in BR.

7 Complexity

We next present several simple complexity results, including two polynomial-
time subclasses (for B and L). These results give some indication as to why our
Bin-Lin method may be relatively effective.

Let Linear-BRSAT be the problem of solving a system of linear equations over
the Boolean ring.
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Theorem 1. Linear-BRSAT is solvable in polynomial time.

Proof. By Gaussian elimination (modulo 2). ��

Note that, although Tseitin formulæ have an exponential lower bound for reso-
lution [24,2], they can be solved easily within L alone.

Let Binomial-BRSAT be the problem of solving a system of binomial equations.

Theorem 2. Binomial-BRSAT is linear-time solvable.

The well-known Horn-SAT case falls within this class, since any Horn clause
x1 ∧ · · · ∧ xm → y is equivalent to x1 · · ·xmy = x1 · · ·xm in the Boolean ring.
In fact, Binomial-BRSAT defines the same Boolean functions as does Horn-SAT,
which has linear complexity [13].

Proof. If 1 = 0 is in B, then it is unsatisfiable. Variables appearing in an equation
M = 1 can each be assigned 1. These variables can then be used to simplify
the other equations, and this process continues until all equations are of the
form M = 0 or M = N . Observe that these remaining equations can be easily
satisfied just by assigning 0 to all variables appearing in them. Implemented
appropriately, the process terminates in linear time. ��

Full-fledged computation of the Gröbner basis of B is not feasible, since its size
can be exponential in the number of variables.2

Despite the fact that Linear-BRSAT and Binomial-BRSAT are easy, their com-
bination, BRSAT (satisfiability over B∪L) is NP-complete, as one would expect.
We have already shown how to compile a set of clauses into the Bin-Lin repre-
sentation (cf. Sect. 6). Thus:

Theorem 3. BRSAT is NP-complete.

It is easy to design a polynomial simplification algorithm that uses every binomial
to rewrite every other binomial (Step 6), until nothing more can be reduced.3

8 Intersection Method

The core idea of recursive learning [18] is to learn as much as possible from shal-
low case splits, and to use the learned facts to prune the search space. St̊almarck’s
Prover [23] has used this innovative approach successfully for testing satisfiability
of many large-scale industrial problems. Such saturate-by-intersection methods
proceed via iterative deepening. Informally, the steps in this learning approach
are as follows:

1. Perform cheap (i.e. polynomial) inferences to reduce formulæ. Check if done.
2. Choose a variable to split on; recur on each case.
2 We have not determined the precise complexity of computing an efficient represen-

tation of the basis.
3 We have not, however, found a linear-time algorithm for this purpose.
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x = 0

A

x = 1

A0

Merge

A1

A∗

CheapCheap

Cheap

Fig. 1. Intersection-based learning method

3. If either case succeeds, then done; otherwise, merge results.
4. If something learned, add it to formulæ and reset the list of variables.
5. If no unsplit variables remain, increase depth up to current bound;

otherwise, continue at same depth.
6. Repeat with incremented bound until maximum depth.

By “merging”, we mean looking for consequences that hold in both cases. This,
too, should be a polytime step. See Fig. 1.

Suppose, then, that we are provided with the following four polynomial pro-
cedures:

1. Sat A, which detects “obvious” cases of satisfiability of the formulæ in a set
of formulæ A.

2. Unsat A, which detects “obvious” cases of unsatisfiability of A.
3. Cheap A, which performs simple, but incomplete, “reduction” inferences on
A.

4. Merge A,B, which returns a set of formulæ that can be inferred from both
A and B.

Let Th A be the theory (deductive closure) of A, ⊥ denote unsatisfiability (false-
hood, failure), and Var A be the (unassigned) variables appearing in A. We need
for the above procedures to satisfy the following requirements:

– Sat and Unsat are sound:

Sat A = T ⇒ (Th A)′ �= ∅
Unsat A = T ⇒ (Th A)′ = ∅

where (Th A)′ are the formulæ that are not theorems.
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– Sat and Unsat do something:

Var A = ∅ ⇒ (Sat A = T ) ∨ (Unsat A = T )

– Cheap is sound:

Cheap A ⊆ Th A

– Cheap is a closure operation:

A ⊆ Cheap A

Cheap A ⊆ Cheap (A ∪B)
Cheap (Cheap A) = Cheap A

– Merge is sound:

Merge A,B ⊆ (Th A) ∩ (Th B)
Merge A,. = Merge ., A = .

– Merge does something:

Merge A,B ⊇ A ∩B

– Failure propagates:

Sat ⊥ = F
Unsat ⊥ = T
Cheap ⊥ = ⊥

Merge ⊥, A = Merge A,⊥ ⊇ A

With this framework, intersection-based learning (IBL) works as shown in the
algorithm of Fig. 2. Assuming the above requirements, we have the following:

IBL(A) = . ⇔ (Th A)′ �= ∅
IBL(A) = ⊥ ⇔ (Th A)′ = ∅

IBL(A) /∈ {.,⊥} ⇒ IBL(A) ⊆ Th A

The original Davis-Putnam satisfiability procedure [9] uses unit propagation
and elimination for Cheap; it looks for the absence of complementary literals to
declare Sat; it detects unsatisfiability in the form of an empty set; and merges
by generating one round of resolvents.

For the Bin-Lin method, Cheap applies the simplifications described above;
Sat includes checking that there is no 0 occurring in Bin and that all formulæ
in Lin are of even parity; Unsat looks for 1 = 0; Merge can be simple syntactic
intersection. We have implemented such a scheme for the full Bin-Lin represen-
tation, as described in the next section.

Better yet, Merge could comprise limited generate-and-test. The low com-
plexity of inference for either binomials or linear equations means that one can
tractably test for small shared simplifiers, even if they do not appear explicitly
in B or L.
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IBL(P ) := I(P,Var P, N)
where I(B,V, n) is

if n = 0 then return Cheap B
A := I(B,V, n − 1)
if Unsat A then return ⊥ ‖ if Sat A then return !
V ′ := V ∩ Var A
if V ′ = ∅ then return A
choose p :∈ V
V ′′ := V ′ \ p
A0 := I(A ∪ {p}, V ′′, n − 1) ‖ A1 := I(A ∪ {p}, V ′′, n − 1)
A∗ := Merge A0, A1

if A∗ ∈ {!,⊥} then return A∗

if A = A∗ then return I(A,V ′′, n)
else return I(A∗, Var A∗, n)

Fig. 2. Generic intersection-based learning algorithm (S‖S′ means that execution of S
and S′ can be performed in parallel; N is the maximum depth of splits for learning)

9 Results

The degree to which simplification and learning can sometimes reduce the num-
ber of splits needed in a backtrack search is the main practical question. In
earlier, initial experiments with an implementation of a näıve Boolean-ring-
based search method (of Sect. 2), the number of splits was reduced by 30%
[17]. This saving, however, came at the price of time-consuming simplification,
mainly because—in that implementation—distributivity was needed, which is
not the case with the method proposed here.

We conducted several sets of experiments to measure the usefulness of reduc-
tion techniques under the Bin-Lin framework:

P: This is a basic DPLL procedure, with learning of conflict clauses. Variables
are split according to their given order. This set is intended as a baseline
reference.

I: The intersection method described in Sect. 8, with syntactic intersection, is
incorporated in this case. The maximum depth for intersection-based learn-
ing was set to 3.

GI: Gaussian elimination on linear equations is added to the implementation of
Set I.

HI: Equivalence of variables are learned from binomial equations, together with
Set I.

GHI: The features of Sets GI and HI are combined.

Over 700 satisfiable examples, taken from actual Intel Corp. hardware veri-
fication problems, were tested for each set of features. Not surprisingly, using
combined simplification (GHI) performed best in terms of eliminating splits.
Indeed, nearly 14% of these 700 examples have over 50% savings on splits with
GHI. Some examples can be solved completely—without any splits—just with
I; this phenomenon occurs more frequently for GHI.
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Table 3. Representative runs

Input P I GI HI GHI Over-
Vars Gates Splits Splits Savings Splits Savings Splits Savings Splits Savings head

5 18 15 14 6.7% 14 6.7% 14 6.7% 10 33.3% 13
5 38 31 31 0.0% 31 0.0% 13 58.1% 13 58.1% 15
6 10 20 19 5.0% 19 5.0% 17 15.0% 17 15.0% 16
6 37 63 63 0.0% 56 11.1% 63 0.0% 56 11.1% 18
7 33 38 37 2.6% 37 2.6% 37 2.6% 19 50.0% 19
7 36 95 95 0.0% 95 0.0% 95 0.0% 45 52.6% 21
8 30 116 115 0.9% 115 0.9% 115 0.9% 0 100% 22
8 34 191 191 0.0% 191 0.0% 191 0.0% 6 96.9% 24
9 39 507 507 0.0% 507 0.0% 504 0.6% 127 75.0% 27
9 45 17 0 100% 0 100% 0 100% 0 100% 9

10 54 258 257 0.4% 257 0.4% 257 0.4% 65 74.8% 28
10 63 511 511 0.0% 432 15.5% 511 0.0% 214 58.1% 30
11 41 1794 1794 0.0% 1794 0.0% 896 50.1% 896 50.1% 33
11 46 1983 1983 0.0% 1983 0.0% 1983 0.0% 991 50.0% 33
11 52 1187 1187 0.0% 593 50.0% 1187 0.0% 593 50.0% 33

Despite the heavy cost of merging, there was an overall average reduction of
3% in run time, compared to the baseline, since merging often produces simpli-
fiers that greatly reduce the need for splitting.4

Table 3 shows some sample results. The savings for GHI are usually more than
the sum of those obtained by GI and HI. This is due to the cross-fertilization
between B and L. The last column indicates the additional splits (on average)
needed for applying the learning technique. In only two of the smallest cases
does this overhead outweigh the benefit in terms of total splits.

10 Discussion

We have endeavored to show that using powerful simplification, such as provided
by the Boolean-ring format, combined with the forward reasoning of intersection-
based learning, can lead to a significant reduction in the number of variables on
which splitting will need to be performed.

Simplification is more time-consuming than splitting on a variable or evaluat-
ing a truth-assignment. Splitting a variable can usually be carried out in linear
time, but simplification, though polynomial, is not linear. On the other hand,
eliminating a split saves space, and may in the long run save time.

Besides the ease of incorporating simplification, Boolean rings are a suitable
representation for preprocessing for the following reason: Let C be the set of

4 The code wasn’t designed to be competitive in terms of overall performance, but
only as proof of concept. In particular, constant propagation over the Bin-Lin system
was noticeably time consuming. Accordingly, there is no point in providing time
comparisons with alternative approaches.
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Boolean formulæ over all binary and unary operations, D be over {∨,∧, },
and G over {1,+,∧}. As shown in [16], any formula in C is linearly reducible
to one in G, but may not be linearly reducible to one in D. Hence, Boolean-
ring formulæ can preserve the structure of any Boolean formula, while Boolean
algebra requires additional variables. This ability to preserve structure is also
important for St̊almarck’s method (cf. Sect. 8), which is sensitive to the structure
of the input formula.

Nilpotence of + makes it possible to express parity succinctly as a linear
equation in the Boolean ring. This feature allows for very simple BR proofs of
the pigeon-hole principle (see Example 2) and the mutilated checkerboard. In
contrast, in Boolean algebra, the shortest corresponding formula is of quadratic
length, if no new variables are introduced. Introducing new variables normally
increases computational effort.

It should also be interesting to identify additional subclasses of Boolean rings
(like Binomial-BRSAT) for which satisfiability testing can be accomplished by
simplification alone, without splitting.
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Abstract. In this paper we present a method of integrating theory rea-
soning into the instantiation framework. This integration is done in the
black-box style, which allows us to integrate different theories in a uni-
form way. We prove completeness of the resulting calculus, provided that
the theory reasoner is answer-complete and complete for reasoning with
ground clauses. One of the distinctive features of our approach is that it
allows us to employ off-the-shelf satisfiability solvers for ground clauses
modulo theories, as a part of general first-order reasoning. As an ap-
plication of this approach, we show how it is possible to combine the
instantiation calculus with other calculi, such as ordered resolution and
paramodulation.

1 Introduction

Instantiation-based theorem proving has been studied intensively in recent years,
see, e.g., [6,7,16,18,19,24] among others. It has attractive features of combining
efficient reasoning on ground formulas with first-order reasoning.

In this paper we develop a method for integrating theory reasoning into the
instantiation-based framework, introduced in [13]. Approaches for integrating
theory reasoning into a logical calculus usually fall into two major categories:
black-box and glass-box approaches.

In the glass-box approach, theory reasoning is integrated via specialised infer-
ence rules, e.g., for the theory of equality, ordered paramodulation can be used.
Usually, the resulting calculus is very efficient for a particular theory. However,
for each theory one needs to devise specific rules which can make completeness
arguments for the resulting calculus highly non-trivial. There is extensive litera-
ture on the integration of various theories into the resolution based framework.
Much less is known about such integration into the instantiation framework
beyond the integration of equality reasoning [8,14,19,24].

In this paper we introduce theory instantiation which is closely related to
theory resolution [25], and can be viewed as a black-box approach. Thus we
assume only limited knowledge of the theory itself and the theory reasoner. This
allows us to integrate theory reasoning in a uniform manner for different theories.

We follow the instantiation framework developed in our earlier papers [13,14].
In our theorem proving process we interleave efficient satisfiability checking for
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ground clauses with appropriate instantiations witnessing unsatisfiability at the
ground level. One of the distinctive features of our approach is that it allows us
to employ off-the-shelf satisfiability solvers for ground clauses modulo theories,
as a part of general first-order reasoning. Let us note that for many important
theories such reasoners have received considerable attention and very efficient
implementations are available (see, e.g., [5] and work on DPLL(T) [11,22,26]).

We prove completeness of the resulting calculus provided that the theory rea-
soner satisfies some general requirements. In particular, we require the theory
reasoner to be answer-complete for reasoning with unit clauses, and to be com-
plete for reasoning with ground clauses (formal definitions are given later in the
paper). Our completeness proof is based on the model generation technique (see
[3,23]), which allows us to justify redundancy elimination based on a semantic
notion of redundant clauses and redundant inferences. We also show that the in-
stantiation process can be guided by (partial) information on models for ground
clauses.

One of the applications of the presented approach is a method for combining
various calculi with instantiation. It is reasonable to assume that some classes
of formulas can be efficiently treated by instantiation, e.g., near propositional
formulas, whereas other classes by resolution/paramodulation calculi. Therefore,
combinations of various calculi is an important issue. In our approach we can
divide the set of input clauses into two classes: the first class can be taken
as theory clauses and we apply a specialised procedure to them; the second
class are clauses treated with the instantiation calculus. In this case, the theory
reasoner itself can be a logical calculus which satisfies the abstract requirements
on the theory reasoner. We show that the requirements on the theory reasoner
can be naturally satisfied by the ordered paramodulation calculus. Let us note
that in this setting it is natural to use the black-box approach since the theory
axiomatized by the theory part is generally not known in advance.

Our approach for integrating theory reasoning is closely related to theory
resolution [9,17,25], (see also work on DPLL(T) [11,26]). Here we consider full
first-order reasoning in the instantiation-based framework. We are also concerned
with issues of how to restrict instantiation and issues related to permutative
theories.

2 Preliminaries

Let Σ = 〈P ,F〉 be a first-order signature, where P is the set of predicate symbols
and F is the set of function symbols. We assume that P contains the equality
predicate 2 and F contains the constant ⊥. The term algebra T (F), with the
universe of all ground terms in F is defined as usual by assigning an interpreta-
tion of a function fT (F)(t1, . . . , tn) to f(tT (F)

1 , . . . , t
T (F)
n ).

A clause is a possibly empty multiset of literals denoting their disjunction and
is usually written as L1 ∨ . . .∨Ln; a literal being either an atomic formula or the
negation thereof. The logical constant false is denoted as �. Variables are usually
denoted by x, y, and z, whereas, unless indicated otherwise, letters a, b and c
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denote constants. If L is a literal, L denotes the complement of L. Substitutions
are defined as usual and will be denoted by letters ρ, σ, τ , and θ. We will also
use ⊥ to denote the substitution mapping all variables to the constant ⊥. If S
is a set of clauses, by S⊥ we denote all ground clauses obtained by applying ⊥
to each clause in S. Renamings are injective substitutions which map variables
to variables. Two clauses are variants of each other if one can be obtained from
the other by applying a renaming.

As in our previous work on instantiation ([13,14]), we consider a refined notion
of instances of clauses called closures. A closure is a pair consisting of a clause
C and a substitution σ written C ·σ. We work modulo renaming, that is, do not
distinguish between closures C ·σ and D ·τ for which C is a variant of D and Cσ
is a variant of Dτ . A closure is called ground if it represents a ground clause. Let
S be a set of clauses and C be a clause in S, then a ground closure C ·σ is called
a ground instance of S; we also say that the closure C · σ is a representation (of
the clause Cσ) in S. Truth values for closures are defined from the truth values
of the clauses they represent.

We consider a universally axiomatized background theory T in the signature
Σ 1 and assume that T implies the usual congruence axioms for equality. We are
interested in proving unsatisfiability of sets of clauses modulo T , i.e., in proving
that there is no model of T in which the considered clauses are true. Since the
theory T is universal, from the Herbrand theorem it follows that a set of clauses
is satisfiable in a model of T if and only if it is satisfiable in a Herbrand model of
T . Therefore, we can restrict ourselves to Herbrand models. A Herbrand model
of T , called T -model, is a model of T on the set of all ground terms where all
functions are interpreted as in the term algebra T (F).

We say that a clause C follows from clauses C1, . . . , Cn modulo T (or T -
follows), denoted C1, . . . , Cn |=T C, if for all T -models where C1, . . . , Cn are true,
C is also true. We say that a clause C is T -satisfiable if C is true in a T -model,
likewise we say C is T -unsatisfiable if C is false in all T -models, also denoted as
C |=T �. For two ground clauses C,C′ we write C ↔T C

′ if |=T C ↔ C′. For
two ground terms t and s, we write t 2T s if |=T t 2 s, and t �2T s if �|=T t 2 s.
Likewise, we write for a pair of n-tuples of ground terms t̄ 2T s̄ if ti 2T si for
all 1 ≤ i ≤ n and write t̄ �2T s̄ if for some 1 ≤ i ≤ n, ti �2T si. Let us note that
2T is the least congruence on the term algebra T (F), which satisfies all unit
equational theorems of T , i.e., theorems of the form ∀x̄ t(x̄) 2 s(x̄).

The Herbrand interpretations we deal with are sometimes partial, given by
sets I of ground literals consistent with T . A clause C is called T -true in a partial
interpretation I, written I |=T C, if C is true in each T -model of I. Otherwise C
is called T -false in I. This is the case when there is a T -model of I in which C is
false. A ground literal L is called T -undefined in I if neither L nor L is T -true in
I. An interpretation I is called total if for each ground literal, I either contains
the literal or its complement.

Our restrictions on the instantiation calculus and completeness proofs are
based on an ordering on closures defined as follows. First we need to adapt the

1 If T is not a universal theory one can consider its Skolemization.
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notion of a proper instantiator from [13]. We call a substitution θ a T -proper
instantiator for a clause C if for some variable x in C, xθ⊥ �2T x⊥. We will
show that in our instantiation process it is sufficient to consider only T -proper
instantiators. Let � be a total simplification ordering on ground terms such that
⊥ is a minimal term wrt. �. We assume that � is defined on ground clauses by a
total, well-founded and monotone extension of the ordering on terms as defined,
e.g., in [23]. Now we lift the ordering � from ground clauses to ground closures.
Let C · σ and D · τ be ground closures. We say that C · σ �′ D · τ if either
(i) Cσ � Dτ , or (ii) Cσ = Dτ and there exists a T -proper instantiator θ for C
such that Cθ = D. It is obvious that �′ is well-founded. We define ordering �
on closures as any total well-founded extension of �′.

3 An Informal Description of the Instantiation Procedure

Let us first informally describe our instantiation-based inference process for rea-
soning modulo a universal theory T .

Let S be a given set of first-order clauses. We start by mapping all variables
in all clauses in S, into the distinguished constant ⊥, obtaining a set of ground
clauses S⊥. If S⊥ is T -unsatisfiable, then S is also T -unsatisfiable and we are
done. Otherwise, we non-deterministically select a literal in each clause, obtain-
ing a set of literals L (below we will show how this selection can be guided by
information on a T -model of S⊥). If L is T -satisfiable, then S is T -satisfiable
and we are done. Otherwise, we generate relevant instances of clauses from S
witnessing T -unsatisfiability of L at the ground level. This is done based on
the Unit Calculus (UC). For the refutational completeness of the overall process
we need to ensure that sufficiently many instances of clauses are generated. For
this we require UC to be answer-complete. Finally, we add obtained instances
of clauses to S.

We prove the completeness of this instantiation process, following the steps
below. First, in Section 4, we formulate an abstract calculus UC for reasoning
with unit clauses, and introduce the notion of answer-completeness. Then, in
Section 5, we introduce our main instantiation calculus TInst-Gen, based on
an answer-complete UC, together with redundancy notions. Next, we introduce
the notion of a saturated set of clauses and show that every saturated set can
either be shown to be unsatisfiable by reasoning on ground clauses, or it is
satisfiable (modulo the background theory). In Section 6, we show how such
saturated sets can be achieved via effective fair saturation processes. We conclude
with the theorem which states that every fair saturation process either stops
after a finite number of steps detecting satisfiability/unsatisfiability of the initial
set of clauses, or in the limit we obtain a saturated set and hence the initial
set of clauses is satisfiable (modulo the background theory). In Section 7 we
apply our main theorem for combining the ordered paramodulation calculus
with instantiation.
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4 The Unit Calculus

In this section we formulate requirements on the theory reasoner, wrt. reasoning
with literals. This will be done in terms of an abstract calculus UC for proving
T -unsatisfiability of sets of (selected) literals, which also provides substitutions
for generating relevant instances witnessing T -unsatisfiability.

The Unit Calculus (UC)
L1, . . . , Ln

L1θ, . . . , Lnθ

where θ is such that L1θ⊥ ∧ . . . ∧ Lnθ⊥ |=T �.

We assume that literals in the premise do not share variables. Let us note that
the premise of UC may contain variants of the same literal.

The unit calculus will be used to generate instantiations based on T -unsatisfia-
ble sets of literals, ensuring that the inconsistency can be detected by a theory
reasoner for ground clauses.

Next we introduce the notion of answer-completeness, which is needed for
overall completeness of the instantiation process. We say that UC is answer-
complete wrt. (T,�), if the following holds. Let L = {L1, . . . , Ln} be a set of
literals and τ be a grounding substitution such that (i) Lτ is T -unsatisfiable and
(ii) every proper subset of Lτ is T -satisfiable. Then, there is an inference in UC
with L1, . . . , Ln as a premise and L1θ, . . . , Lnθ as a conclusion and a grounding
substitution ρ such that x̄τ 2T x̄θρ and x̄τ � x̄θρ. Let us note that an answer-
complete UC calculus can produce any other instantiations, so in practice we do
not need to check condition (ii) that every proper subset of Lτ is T -satisfiable.

Intuitively, answer-completeness requires UC to instantiate T -unsatisfiable
sets of literals, with the restriction that we only need to consider instantiators
generalizing minimal (wrt. �) representatives of the congruence classes defined
by T . In Section 8, we show that it is possible to weaken the latter restriction
further, to possibly non-minimal representatives, which is more natural in the
presence of permutative subtheories.

5 The Instantiation Calculus (TInst-Gen)

In this section we introduce the instantiation calculus TInst-Gen and prove that
if a set of clauses S is saturated wrt. TInst-Gen, then either S⊥ is already
T -unsatisfiable and therefore a theory reasoner for ground clauses can detect
the unsatisfiability, or S is T -satisfiable. In Section 6 we show how to achieve
saturated sets.

Selection function. Our inference system will be guided by a selection function
on clauses which will be based on a model for the ground clauses S⊥. A selection
function sel for a set of clauses S is a mapping from clauses in S to literals such
that sel(C) ∈ C for each clause C ∈ S. We say that sel is based on a model I⊥
of S⊥, if I⊥ |= sel(C)⊥ for all C ∈ S.
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Let UC be an answer-complete wrt. (T,�) calculus for literals and let sel be
a selection function. We define TInst-Gen based on UC and sel as follows.

TInst-Gen
L1 ∨ C1 . . . Ln ∨ Cn

(L1 ∨ C1)θ . . . (Ln ∨ Cn)θ

where (i) the literal Lk is selected by sel in the clause Lk ∨Ck, for 1 ≤ k ≤ n,
(ii) there is an inference in UC with L1, . . . , Ln as a premise and L1θ, . . . , Lnθ
as a conclusion, (iii) θ is a T -proper instantiator for at least one of L1, . . . , Ln.

Redundancy. Now we adapt the semantic notion of redundancy from [13]. Let
S be a set of clauses. A ground closure C is called T -redundant in S if there
exist closures C1, . . . , Ck that are ground instances of S such that, (i) for each i,
C � Ci, and (ii) C1, . . . , Ck |=T C. A clause C (possibly non-ground) is called T -
redundant in S if each ground closure C ·σ is T -redundant in S. An inference with
premises C1, . . . , Cn and a unifier θ (thus deriving conclusions C1θ, . . . , Cnθ) is
T -redundant in S if for any substitution ρ grounding all the Ciθ there exists an
index i0 such that Ci0 · θρ is T -redundant in S.

A set of clauses S is called TInst-saturated up to redundancy wrt. a selection
function sel if all inferences in TInst-Gen with premises from S are T -redundant
in S.

Theorem 1. Let S be a set of clauses such that S⊥ is T -satisfiable and sel be a
selection based on a T -model I⊥ of S⊥. If S is TInst-saturated up to redundancy
wrt. sel then S is T -satisfiable.

Proof. Suppose that S is a set of clauses such that S⊥ is satisfied in a T -model
I⊥, and sel is a selection function based on I⊥. By induction over � we construct
a candidate T -model IS for all ground instances of S. Let C = C′ ·σ be a ground
instance of S. Suppose, as an induction hypothesis, we have defined sets of literals
εD, for all ground instances D of S smaller than C wrt. �. Let IC denote the
set
⋃

C	D εD. Then, define εC = {Lσ}, if

1. C is T -false in IC (i.e., there is a T -model of IC in which C is false); and
2. L is a literal in C′ such that Lσ is T -undefined in IC (i.e., neither IC |=T Lσ

nor IC |=T Lσ holds) and sel(C′) = L.

Otherwise define εC = ∅. In the case when εC = {Lσ} we say that Lσ is produced
by C. Finally, define IS to be the union of all εC where C is an instance of S.

Let us first show that IS is consistent with T . Otherwise, by compactness,
there would be a finite set of literals L1σ1, . . . , Lnσn in IS which is contradic-
tory with T . Let Liσ be produced by a closure Ci for 1 ≤ i ≤ n, and Cj be
the maximal wrt. � closure among them. Then, we have ICj |=T Ljσj , which
contradicts the productiveness of Cj .

Let S be a set of clauses saturated under TInst-Gen and I be a total extension
of IS , consistent with T . We will show that I is a model for all ground instances
of S.
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First we note that our model construction is monotone: if a ground closure D
is T -true in some IC then it is T -true in all IC′	C and also true in I.

Now, by induction on � we show that every ground instance D of S, is T -true
in ID ∪ εD. From this the theorem follows. Assume otherwise. Let D = D′ ·σ be
the minimal ground instance of S that is not T -true in ID ∪ εD. Let L = sel(D′).
As D is not productive and T -false in ID we have ID |=T Lσ. By compactness,
there is a finite set C1 · τ1, . . . , Cn · τn of closures, producing L1τ1, . . . , Lnτn
such that L1τ1 ∧ . . . ∧ Lnτn |=T Lσ. We can assume that no proper subset of
{L1τ1, . . . , Lnτn} T -implies Lσ. First we show that neither D nor any of Ci · τi
is T -redundant in S. Indeed, if Ci · τi would T -follow from smaller closures in S,
then by the induction hypothesis these closures would be T -true in ICi·τi and
hence Ci · τi would not be productive. Similarly, if D′ · σ would T -follow from
smaller closures in S, it would be T -true in ID contradicting the assumption.

It will be convenient to introduce a substitution τ which is the composition
of all substitutions σ, τ1, . . . , τn, we assume that all clauses D′, C1, . . . , Cn are
renamed apart.

Since the inference system for unit clauses UC is answer-complete wrt. (T,�),
we have that there is a UC inference with the premise L,L1, . . . , Ln and the
conclusion Lθ, L1θ, . . . , Lnθ such that for a grounding substitution ρ, x̄τ 2T

x̄θρ and x̄τ � x̄θρ. Let us show that θ is a T -proper instantiator for at least
one of L,L1, . . . , Ln. Otherwise, we would have x̄⊥ 2T x̄θ⊥, where x̄ are all
variables in L,L1, . . . , Ln. This implies that L⊥ ↔T Lθ⊥, Li⊥ ↔T Liθ⊥ for
1 ≤ i ≤ n. Since Lθ, L1θ, . . . , Lnθ is a conclusion of a UC inference, we have
that Lθ⊥∧L1θ⊥∧ . . .∧Lnθ⊥ |=T � and therefore L⊥∧L1⊥∧ . . .∧Ln⊥ |=T �,
which contradicts that L⊥ and each Li⊥ are true in a T -model I⊥.

Since θ is a T -proper instantiator we have that TInst-Gen is applicable to
D′, C1, . . . , Cn, with the conclusionD′θ, C1θ, . . . , Cnθ. To derive a contradiction,
let us show that this inference is not redundant. For this it is sufficient to show
that all closures D′ · θρ, C1 · θρ, . . . , Cn · θρ are not redundant. Consider D′ · θρ.
From x̄τ � x̄θρ and monotonicity of � it follows that D′ · σ = D′ · τ � D′ · θρ.
MoreoverD′σ ↔T D

′θρ. Hence if D′ ·θρ T -follows from smaller closures then D′ ·
σ also T -follows from these closures, this contradicts that D′ ·σ is not redundant
which was shown above. In the same way one can show that C1 · θρ, . . . , Cn · θρ
are not redundant.

Theorem 1 implies that if a set of clauses S is TInst-saturated up to redundancy
then we can check T -satisfiability of S by checking T -satisfiability of the ground
set of clauses S⊥. This can be done by a theory reasoner for ground clauses. In
order be able to use the TInst-Gen calculus for TInst-saturation we need to show
that adding the conclusion of an TInst-Gen inference to S makes the inference
redundant.

Lemma 1. Let S be a set of clauses. Consider a TInst-Gen inference, apply-
ing substitution θ and a clause Cθ in the conclusion, for which θ is a T -proper
instantiator (note that such a clause always exists). Then, the inference is re-
dundant if either Cθ is in S or is redundant in S. In particular, adding Cθ to
S makes the inference redundant.
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Proof. Let Cθ be in S. Since θ is T -proper for C we have that for every ρ,
C · θρ � Cθ · ρ, and therefore C · θρ is redundant in S. This shows that the
inference is redundant. The case when Cθ is redundant in S is similar.

6 Effective Saturation

In this section we show how TInst-Gen saturation of a set of clauses can be
achieved as a limit of a fair saturation process.

A TInst-saturation process is a sequence {〈Si, sati⊥, sel
i〉}∞i=1, where (i) Si is a

set of clauses, (ii) sati⊥ is a procedure for checking T -satisfiability of finite sets of
ground clauses, (iii) seli is a selection function. In addition, we require {sati⊥}∞i=1

and {seli}∞i=1 to satisfy some natural requirements below.
Given {〈Si, sati⊥, sel

i〉}, a successor state {〈Si+1, sati+1
⊥ , seli+1〉} is obtained

by one of these steps: (i) Si+1 = Si ∪ N , where N is a set of clauses such
that Si |=T N ; or (ii) Si+1 = Si \ {C}, where C is TInst-redundant in Si.
If sati+1

⊥ (Si+1⊥) returns ”unsatisfiable”, then the process terminates with the
result “unsatisfiable”. Define S∪ = ∪∞

i=1S
i. Let S∞ denote the set of persisting

clauses, that is, the lower limit of {Si}∞i=1, (i.e., S∞ = ∪i≥1 ∩j≥i S
j).

In certain applications, e.g., when the theory is given as a part of the input
clause set, it is natural to assume that the theory reasoner can only semi-decide
T -unsatisfiability of sets of ground clauses. This is reflected in the requirements
on {sati⊥}∞i=1 and the selection functions {seli}∞i=1 below.

Requirements on sat⊥

Soundness. For every finite set of clauses Sfin ⊆ S∪, we have: (i) If sati⊥(Sfin⊥)
returns “unsatisfiable” then Sfin⊥ is T -unsatisfiable. (ii) If sati⊥(Sfin⊥) returns
“satisfiable” then Sfin⊥ is T -satisfiable.

Completeness. For every finite set of clauses Sfin ⊆ S∞, we have: If Sfin⊥ is
T -unsatisfiable then there exists i such that for all j ≥ i, satj⊥(Sfin⊥) returns
”unsatisfiable”.

Termination. For every finite subset Sfin ⊆ S∪ and every i, sati⊥(Sfin⊥) is
terminating, possibly returning ”unknown”.

The Requirement on sel. For a TInst-saturation process {〈Si, sati⊥, sel
i〉}∞i=1,

it is desirable that at each step i the selection functions seli is based on a T -model
of Si⊥. Since we assume that at a step i we do not know all information about
T -models of Si⊥, we need a weaker requirement on the selection functions.
We require that selection functions only eventually respect the models. More
formally, the following should hold: either (i) some finite subset of S∞⊥ is T -
unsatisfiable (hence unsatisfiability will be detected by sati⊥ for some i), or (ii) for
each finite subset Sfin ⊆ S∞ there is an index i′ such that for all i ≥ i′ we have
that for each C ∈ Sfin , seli(C)⊥ is true in some T -model Ii

⊥ of Sfin⊥.
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Next, in order to ensure that in the limit of a TInst-saturation process we
always obtain a TInst-saturated set, we require the saturation process to be
TInst-fair. Consider a TInst-saturation process {〈Si, sati⊥, sel

i〉}∞i=1. A TInst-Gen
inference from clauses {L1 ∨ C1, . . . , Ln ∨ Cn} (on literals L1, . . . , Ln) in S∞ is
called persisting if there are infinitely many indexes i such that seli(Lk ∨ Ck) =
Lk for all 1 ≤ k ≤ n and conditions (i-iii) on applicability of TInst-Gen to
these clauses are satisfied. A TInst-saturation process is called TInst-fair if every
persisting TInst-Gen inference in S∞ is redundant in Sk for some k. Let us note
we can make a TInst-Gen inference redundant by simply adding the conclusion
of the inference to the current clause set (see Lemma 1).

If we compare our notion of saturation to saturation in the resolution frame-
work (e.g., [3]), one of the key differences is that the literal selection can change
at each step of the saturation. In particular, we need to consider an additional
problem of showing that in the limit of a TInst-fair saturation process, we obtain
a TInst-saturated set wrt. some selection function based on a T -model of the
limit set of ground clauses. This is done in the next lemma.

Lemma 2. Let S∞ be a set of persistent clauses of a TInst-fair saturation pro-
cess {〈Si, sati⊥, sel

i〉}∞i=1, and S∞⊥ is T -satisfiable. Then, there exists a T -model
I⊥ of S∞⊥ and a selection function sel based on I⊥ such that S∞ is TInst-
saturated wrt. sel.

Proof. The proof can be found in the full version of this paper [15].

We summarize the obtained results in the following theorem.

Theorem 2. Let {〈Si, sati⊥, sel
i〉}∞i=1, be a TInst-fair saturation process. Then,

either (1) for some i the procedure sati⊥(Si⊥) returns ”unsatisfiable” and there-
fore our initial set S1 is T -unsatisfiable, or (2) for all i, sati⊥(Si⊥) returns either
”unknown” or ”satisfiable” and therefore, (by Lemma 2 and Theorem 1) S1 is T -
satisfiable. Moreover if for some i, Si is TInst-saturated and sati⊥(Si⊥) returns
”satisfiable” then at this step we can conclude that S1 is T -satisfiable.

Theorem 2 can be applied as follows. Assume that we have an answer-complete
theory reasoner for unit clauses and a theory reasoner for ground clauses satisfy-
ing the requirements above. Then, based on the TInst-Gen calculus, we can form
a TInst-fair saturation process for any set of clauses. Theorem 2 implies that this
will be a complete procedure for reasoning modulo this theory. In the next sec-
tion we will give an example of an application of this approach for combining
the ordered paramodulation calculus with instantiation.

7 Combining Instantiation with Other Calculi

In this section we show that the presented approach to theory reasoning is also
suitable for combining the instantiation calculus with other calculi. The idea is
to divide the set of input clauses into two classes: the first class can be taken as
theory clauses and we apply a specialized procedure to them, the second class
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are the clauses treated with the instantiation calculus. In this case the theory
reasoner itself can be a logical calculus which satisfies the abstract requirements
introduced above.

As an example, we consider the case when theory clauses are Horn, possi-
bly containing equality and clauses treated by instantiation contain equality
only negatively, other predicates can occur positively and negatively. In order
to satisfy conditions on the theory reasoner we first need an answer-complete
procedure for reasoning with literals. This can be obtained based on ordered
paramodulation combined with answer computations on selected literals. Such
procedures, complete for answer computations, are well-studied (see [21]). Sec-
ondly, we need a procedure for theory reasoning with ground clauses. For this we
can interleave ordered paramodulation with propositional reasoning, which can
be done in the DPLL(T) framework [26,22]. Let us remark that for the theory of
lists and some other data structures we can use paramodulation based decision
procedures for ground reasoning, studied in [1].

It is not difficult to define a TInst-fair saturation process interleaving ordered
paramodulation between theory clauses, ground satisfiability checking and an-
swer computation on selected literals with corresponding instantiation. Now we
can apply Theorem 2 to show that the obtained combination of paramodulation
type calculus and instantiation is complete for this class of clauses.

Remarks. Let us first note that based on our notion of redundancy we can easily
justify redundancy elimination and in particular simplifications of instantiation
clauses by theory clauses, such as demodulation, subsumption and T -tautology
deletion. Next, we note that for answer computation we can employ other answer-
complete calculi, for example calculi designed for E-unification (see [10,2,20]).

Now we consider the issue of a modular integration of existing reasoners for
ground clauses. One of the main issues here is that usually off-the-shelf reasoners
for ground clauses can reason only modulo some subtheory T ′ of the background
theory T . (For example T ′ can be the theory of equality and T extends T ′ with
some theory clauses.) Next we show how to design a reasoner for ground clauses
modulo T based on a reasoner for ground clauses modulo a weaker theory T ′

and additional ground lemmas that can be generated by a T -reasoner for unit
clauses. Such a reasoner will be sufficient for the completeness of the instantiation
process modulo T .

Let S be a given set of clauses and T ′ ⊆ T . Let L = {L1, . . . , Ln} be a
set of literals. A T ′-witness (of T -unsatisfiability) for L⊥ is a set of ground
clauses W = {C1, . . . Cm} such that (i) S |=T Ck for 1 ≤ k ≤ m and (ii) if
L⊥ |=T � then L⊥ ∪W |=T ′ �. In particular, if L⊥ is T -unsatisfiable and W
is a T ′-witness for L⊥, then a T ′ reasoner can be used to show that L⊥ ∪W is
T ′-unsatisfiable. Now we formalise a saturation process based on a T ′ reasoner
for ground clauses, assuming that we are provided with necessary T ′-witnesses of
T -unsatisfiability. A TWInst-saturation process with T ′-witnesses is a sequence
{〈Si, sati⊥, sel

i,W i〉}∞i=1 such that the following holds. At each saturation step the
clause set is modified as in a usual TInst-saturation. The witness set is modified
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as follows: W 1 = ∅ and either W i+1 = W i or W i+1 = W i ∪ {C1, . . . , Cn},
where {C1, . . . , Cn} is a finite set of ground clauses such that S1 |=T Ck for
1 ≤ k ≤ n. If for some i, sati⊥(Si⊥ ∪ W i) returns ”unsatisfiable”, then the
saturation process terminates with the result “unsatisfiable”. We assume that
sat⊥, sel andW satisfy the following requirements, where we use ′ to distinguish
new requirements from the requirements on sat⊥ and sel in Section 6.

Requirements′ on sat⊥

Soundness′. For every finite set of clauses Sfin ⊆ S∪, and every i we have: (i) If
sati⊥(Sfin⊥ ∪ W i) returns “unsatisfiable” then Sfin⊥ ∪ W i is T ′-unsatisfiable
(and therefore T -unsatisfiable). (ii) If sati⊥(Sfin⊥∪W i) returns ”satisfiable” then
Sfin⊥ ∪W i is T ′-satisfiable and W i is a T ′-witness for {L⊥|L = seli(C), C ∈
Sfin} (and therefore Sfin⊥ is T -satisfiable).

Completeness′. For every finite set of clauses Sfin ⊆ S∞, we have: If Sfin⊥∪W i

is T ′-unsatisfiable then there exists i such that for all j ≥ i, satj⊥(Sfin⊥ ∪W j)
returns ”unsatisfiable”.

Termination′. For every finite subset Sfin ⊆ S∪ and every i, sati⊥(Sfin⊥ ∪W i)
is terminating, possibly returning ”unknown”.

The Requirement′ on W . Let {L1∨C1, . . . , Ln∨Cn} ⊆ S∞, and for infinitely
many i we have Lk = seli(Lk ∨ Ck) for 1 ≤ k ≤ n. Then, for some j, W j is a
T ′-witness for {L1⊥, . . . , Ln⊥}.
The Requirement′ on sel. The following should hold: either (i) for some j
and some finite subset Sfin ⊆ S∞ we have Sfin⊥∪W j is T ′-unsatisfiable (hence
unsatisfiability will be detected by sati⊥ for some i), or (ii) for each finite subset
Sfin ⊆ S∞ there is an index i′ such that for all i ≥ i′ we have that for each
C ∈ Sfin , seli(C)⊥ is true in some T ′-model Ii

⊥ of Sfin⊥ ∪W i.
Let us remark that based on a sound and complete T ′-reasoner for ground

clauses we can easily define {sati⊥}∞i=1 and {seli}∞i=1 satisfying the above
requirements.

In order to apply our main Theorem 2 we need to show that for a TWInst-
saturation process {〈Si, sati⊥, sel

i,W i〉}∞i=1, we have {〈Si, sati⊥, sel
i〉}∞i=1 is also a

TInst-saturation process. The only nontrivial cases to check are the Complete-
ness requirement on sat⊥ and the Requirement on sel. Let Sfin ⊆ S∞ such that
Sfin⊥ is T -unsatisfiable. Let us show that in this case the TWInst-saturation
process is finite. Otherwise Sfin = {L1 ∨ C1, . . . , Ln ∨ Cn}, where for infinitely
many i we have Lk = seli(Lk ∨ Ck) for 1 ≤ k ≤ n. From the Requirement′

on W it follows that for some j, W j is a T ′-witness for L = {L1⊥, . . . , Ln⊥}.
Therefore, L⊥ ∪W j is also T ′-unsatisfiable which contradicts the Requirement′

on sel. From this it follows that the TWInst-saturation process terminates with
”unsatisfiable” and therefore the Completeness requirement is satisfied. Using
similar considerations we can show that the Requirement on sel is also satisfied.

We define the notion of the TWInst-fair saturation process in the same way
as TInst-fair saturation. From Theorem 2 we obtain.
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Corollary 1. Let {〈Si, sati⊥, sel
i,W i〉}∞i=1, be a TWInst-fair saturation process.

Then, either (1) for some i the procedure sati⊥(Si⊥∪W i) returns ”unsatisfiable”
and therefore our initial set S1 is T -unsatisfiable, or (2) for all i, sati⊥(Si⊥∪W i)
returns either ”unknown” or ”satisfiable” and therefore, S1 is T -satisfiable.
Moreover if for some i, Si is TInst-saturated and sati⊥(Si⊥ ∪W i) returns ”sat-
isfiable” then at this step we can conclude that S1 is T -satisfiable.

The only issue left to consider is how to generate witness sets. Let us consider
the case when T ′ is the theory of equality and the theory reasoner for unit
clauses is based on the ordered paramodulation calculus. In order to satisfy the
Requirement′ on W , we need to ensure that if a set of literals L = {L1, . . . , Ln}
is persistently selected and L⊥ is T -unsatisfiable then for some i, L⊥ ∪W i is
T ′-unsatisfiable. Since the T -reasoner for unit clauses is answer-complete a proof
of the empty clause will be generated from theory clauses and L. If we propagate
substitutions in such a proof from the root to the leaves (as it is done in [14] in
a different context), we obtain a proof of the empty clause from the instances of
the theory clauses, denoted as Tinst , and L where all substitutions map variables
to variables. Therefore we have that Tinst⊥ ∪ L⊥ is T ′-unsatisfiable. Adding
instantiations of the theory clauses Tinst to the witness set will produce the
desired effect. Let us remark that clauses in the witness sets do not participate
in the instantiation inferences and are only used as lemmas for the T ′-reasoner
on ground clauses.

Example 1. Let T ′ be the theory of equality. Let T extend T ′ with the axiom:

A1 : ¬P (g(x), y) ∨ f(h(x), y) 2 g(x).

Let S1 be the set of clauses:

C1 : ¬P (f(x, y), c) ∨ ¬P (x, c) C2 : P (g(x), c) ∨ ¬P (h(x), c) C3 : P (h(x), c).

We assume that theory reasoning for unit clauses is based on the ordered para-
modulation/resolution calculus wrt. the lexicographic path ordering with the
precedence P ? f ? h ? g. We assume that the ground reasoner is based
on T ′ and the witness set W 1 = ∅. Let us describe a possible TWInst-fair sat-
uration process. First, we apply a ground reasoner modulo T ′ on S1⊥ which
selects ¬P (f(x, y), c) in C1, P (g(x), c) in C2, and P (h(x), c) in C3, note that
{¬P (f(⊥,⊥), c), P (g(⊥), c), P (h(⊥), c)} is T ′-satisfiable. Then we apply the rea-
soner for unit clauses on the set of selected literals {¬P (f(x, y), c), P (g(x), c),
P (h(x), c)}. We derive the empty clause by resolving A1 with P (g(x), c) obtain-
ing f(h(x), c) 2 g(x), then paramodulating f(h(x), c) 2 g(x) into ¬P (f(x, y), c)
obtaining ¬P (g(x), c) and finally resolving ¬P (g(x), c) with P (g(x), c). Propa-
gating substitutions in this proof (we need to be careful to rename variables)
from the root to the leaves, we obtain an instance of C1, C′

1 : ¬P (f(h(x), c), c)∨
¬P (h(x), c) and an instance of A1, A′

1 : ¬P (g(x), c) ∨ f(h(x), c) 2 g(x). We add
C′

1 to S and A′
1⊥ to the witness set W . At the next step the T ′ reasoner for

ground clauses is able to detect unsatisfiability of S2⊥ ∪W 2 and therefore the
initial set S1 is T -unsatisfiable.
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8 Permutative Theories

In this section we show that it is possible to relax conditions on answer-complete-
ness to appropriately accommodate reasoning modulo theories containing
permutative axioms such as associativity and commutativity (AC). Let TP be a
subtheory of the theory T . Intuitively we want the unit calculus to avoid produc-
ing all permutations of witnesses equivalent wrt. TP . For this we first need to define
an appropriate TP -compatible closure ordering. In order to ensure that such an or-
dering exists we impose the following restrictions on the theory TP . Later we show
that these restrictions are satisfied by permutative theories such as AC.

Condition on TP (1). There exists a TP -compatible simplification ordering �TP

on ground terms which is total on TP congruence classes. An ordering �TP is
called TP -compatible if the following holds: if t �TP s, t 2TP t′ and s 2TP

s′ then t′ �TP s′. We assume that �TP is also defined on all ground clauses
by an extension from ground terms, which is also a TP -compatible TP -total
simplification ordering on ground clauses.

Now we lift the ordering �TP from ground clauses to ground closures. For this
we need an auxiliary relation �′

TP
on closures. Let C · σ and D · τ be ground

closures. We say that C · σ �′
TP
D · τ if either (i) Cσ �TP Dτ or (ii) there exists

a T -proper instantiator θ for C such that Cθ = D and x̄σ 2TP x̄θτ . Next, we
would like to extend �′

TP
to a well-founded order on closures. Let us show that

it is not always possible for certain theories TP . Indeed, let 2TP be the theory
of equality together with the axiom f(f(x)) 2 x. Then, we would have that
A(f(x)) · [c/x] �′

TP
A(f(f(x))) · [f(c)/x] �′

TP
A(f(f(f(x)))) · [c/x] �′

TP
· · · .

Therefore we impose the following condition on TP .

Condition on TP (2): �′
TP

is well-founded. Now we can define �TP on ground
closures as a TP -total, well-founded ordering extending �′

TP
. Note that such an

extension always exists, since any well-founded relation can be extended to a
total well-founded ordering. We call �TP a closure ordering wrt. TP .

Now we show that for some important subtheories TP , the ordering require-
ments on TP can be satisfied.

Lemma 3. Let TP be a theory such that Condition (1) is satisfied and each TP

congruence class of ground terms is finite. Then TP satisfies Condition (2).

Proof. Let us show that �′
TP

is well-founded. Indeed, consider an infinite chain
of closures C1 �′

TP
C2 �′

TP
· · · . Since �TP is well-founded on ground clauses,

we have that starting from some i, Ci+k and Ci+k+1 satisfy the condition (ii)
from the definition of �′

TP
, (for all k ≥ 0). Therefore we have an infinite chain:

C · σ �′
TP
Cθ1 · σ1 �′

TP
Cθ1θ2 · σ2 �′

TP
· · · �′

TP
Cθ1 · · · θi · σi �′

TP
· · ·

where x̄σ 2TP x̄θ1σ1 2TP · · · 2TP x̄θ1 · · · θiσi 2TP · · · . But this is impossible
since each θi is a T -proper instantiator and therefore has a depth of at least 1
but each TP congruence class contains only a finite number of terms.

Corollary 2. For the theory associativity and commutativity Conditions (1-2)
can be satisfied.
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Now, assume that a subtheory TP of our background theory T satisfies Condi-
tions (1-2). Let �TP be a closure ordering wrt. TP . Now we can relax restrictions
on answer-completeness by considering �TP in place of �. It is straightforward
to check that all our previous considerations and theorems will hold in this case.

9 Conclusion

In this paper we have presented a framework for integrating theory reasoning into
instantiation-based theorem proving. This integration is done in the black-box
style, which allows us to integrate different theories in a uniform way. Moreover
in this way we can combine different calculi with the instantiation process by
treating part of the input clauses as theory clauses. We also show how in this
framework it is possible to employ efficient off-the-shelf satisfiability solvers for
ground clauses modulo theories. For completeness of the resulting process we
impose some general requirements on the theory reasoner and show that these
requirements can be naturally satisfied by calculi based on ordered paramodu-
lation. One of our main results is the theorem which implies that if the theory
reasoner satisfies the requirements then any fair instantiation process will be
complete for reasoning modulo this theory. Moreover, we show how this pro-
cess can be guided by (partial) information on models for ground clauses. In
addition, our framework allows to justify redundancy elimination based on a
semantic notion of redundant clause and redundant inference.

For future work let us mention extending our approach to theories with par-
ticular properties, like Shostak theories [12]. This would help to integrate rea-
soning with fragments of Arithmetic. It would also be interesting to study the
relationship between our approach and hierarchical reasoning [4]. Currently the
implementation of the instantiation calculus is in progress 2 which will be used
to evaluate practical applicability of the proposed methods.

Acknowledgements. Many thanks to Robert Nieuwenhuis, Andrei Voronkov
and anonymous reviewers for providing useful comments.

In Memoriam. It is to our deep sorrow that Professor Harald Ganzinger passed
away on 3th of June 2004. His work was revolutionary in the field of automated
deduction and will continue to inspire future researchers.
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Abstract. Lazy algorithms for Satisfiability Modulo Theories (SMT)
combine a generic DPLL-based SAT engine with a theory solver for
the given theory T that can decide the T -consistency of conjunctions
of ground literals. For many theories of interest, theory solvers need to
reason by performing internal case splits. Here we argue that it is more
convenient to delegate these case splits to the DPLL engine instead. The
delegation can be done on demand for solvers that can encode their inter-
nal case splits into one or more clauses, possibly including new constants
and literals. This results in drastically simpler theory solvers. We present
this idea in an improved version of DPLL(T ), a general SMT architecture
for the lazy approach, and formalize and prove it correct in an exten-
sion of Abstract DPLL Modulo Theories, a framework for modeling and
reasoning about lazy algorithms for SMT. A remarkable additional fea-
ture of the architecture, also discussed in the paper, is that it naturally
includes an efficient Nelson-Oppen-like combination of multiple theories
and their solvers.

1 Introduction

The performance of propositional SAT solvers based on the Davis-Putnam-
Logemann-Loveland (DPLL) procedure [9,8] has importantly improved during
the last years, and DPLL-based solvers are becoming the tool of choice for at-
tacking more and more practical problems. The DPLL procedure has also been
adapted for handling problems in more expressive logics, and, in particular, for
the Satisfiability Modulo Theories (SMT) problem: deciding the satisfiability
of ground first-order formulas with respect to background theories such as the
integer or real numbers, or arrays. SMT problems frequently arise in formal
hardware and software verification applications, where typical formulas consist
of very large sets of clauses like:

p ∨ ¬q ∨ a=f(b− c) ∨ read(s, f(b− c) )=d ∨ a− g(c) ≤ 7
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with propositional atoms as well as atoms over (combined) theories like the
integers, arrays, or Equality with Uninterpreted Functions (EUF). SMT has
become a very active area of research, and efficient SMT solvers exist that can
handle (combinations of) many such theories T . Currently most SMT solvers
follow the so-called lazy approach to SMT, combining (i) theory solvers that can
handle conjunctions of literals over the given theory T , with (ii) DPLL engines
for dealing with the Boolean structure of the formulas.

DPLL(T ) is a general SMT architecture for the lazy approach [10]. It consists
of a DPLL(X) engine, whose parameter X can be instantiated with a T -solver
Solver

T
, thus producing a DPLL(T ) system. The DPLL(X) engine always con-

siders the problem as a purely propositional one. For example, if the theory
T is EUF, at some point DPLL(X) might consider a partial assignment con-
taining, among many others, the four literals a=b, f(a)=c, f(b)=d, and
c �=d without noticing its T -inconsistency, because it just considers such liter-
als as propositional (syntactic) objects. But Solver

T
continuously analyzes the

partial model that DPLL(X) is building (a conjunction of literals). It can warn
DPLL(X) about this T -inconsistency, and generate a clause, called a theory
lemma, like a �=b ∨ f(a)�=c ∨ f(b)�=d ∨ c=d, which can be used by DPLL(X)
for backjumping. Solver

T
sometimes also does theory propagation: as soon as,

e.g., a=b, f(a)=c, and f(b)=d become true, it can notify DPLL(X) about T -
consequences like c=d that occur in the input formula. The modular DPLL(T )
architecture is flexible, and can be implemented efficiently: the BarcelogicTools
implementation of DPLL(T ) won all the four divisions it entered at the 2005
SMT Competition [1].

Here we propose an improved version of the DPLL(T ) architecture, to ratio-
nalize and simplify the construction of lazy SMT systems where Solver

T
does

reasoning by cases. We present it formally by means of a corresponding extension
of Abstract DPLL Modulo Theories, a uniform, declarative framework introduced
in [12] for modeling and reasoning about lazy SMT procedures.

Example 1. In the array theory, the equation read(write(A, i, v), j) = read(A, j)
holds in two situations: when the indices i and j are distinct, or when they are
equal but the write(A, i, v) changes nothing, i.e., the value of array A at position
i is already v. Deciding the T -consistency of a large conjunction of equations and
disequations over arrays essentially requires Solver

T
to do an analysis of many

Boolean combinations of such cases. In the extension of DPLL(T ) we propose
here, SolverT can delegate all such case splittings to the DPLL(X) engine, e.g.,
it can demand DPLL(X) to split on atoms like i=j, by sending it a theory lemma
(i.e., a ground clause valid in the theory) that encodes the split—for instance, a
clause like read(write(A, i, v), j)�=read(A, j) ∨ i �=j ∨ read(A, i) = v. ��
The main novelty, and complication, versus the previous version of DPLL(T )
is that the lemma may contain atoms that do not occur in the input formula.
Sometimes even new constant symbols may be introduced. For example, in (frag-
ments of) set theory [7], a set disequality s �= s′ may be handled by the theory
solver by reducing it to the disjunction (a ∈ s∧a /∈ s′) ∨ (a /∈ s∧a ∈ s′), where
a is a fresh Skolem constant.
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Centralizing all case splitting in the engine allows one to avoid the duplication
of search functionality in the theory solver and drastically simplify its implemen-
tation, since a case splitting infrastructure is no longer necessary. Roughly, the
solver’s only requirement reduces to being able to detect T -inconsistencies once
all case splits it has requested have been done.

The main contribution of this paper is a general and formal specification of
this sort of architecture, together with a rigorous proof of its correctness. The
relevance of this architecture is that it unquestionably leads to simpler solvers
for theories that require case splits—in practice, all theories T where checking
the T -inconsistency of ground literals is NP-hard.

In many SMT applications the background theory T is defined as a combina-
tion of several component theories T1, . . . , Tn, each with its own local solver. An
important aspect of our approach is that it can be naturally refined to accom-
modate such combined theories, giving rise to a DPLL(T1, . . . , Tn) architecture.

Example 2. Let T be the union of two disjoint theories T1 and T2 where T1 is
EUF and T2 is (some fragment of) arithmetic, two of the most common theories
in SMT. Let F be the conjunction a=b ∧ f(a) − c ≤ 3 ∧ f(b) − c ≥ 4
over the combined signature of T1 and T2. Introducing new constants c1 and c2,
F can be purified, into an equisatisfiable conjunction of the T1-pure formula F1

and the T2-pure formula F2 below:

a=b ∧ c1=f(a) ∧ c2=f(b) c1 − c ≤ 3 ∧ c2 − c ≥ 4 .

In general, an arrangement A for such pure conjunctions F1 . . . Fn is a con-
junction saying, for every two constants shared between at least two different
Fi’s, whether the constants are equal or distinct. A general combination result
underpinning the Nelson-Oppen method [11] states that for stably infinite and
signature disjoint Ti’s, F is T -consistent if, and only if, for some arrangement A
each Fi∧A is Ti-consistent (see, e.g., [14] for precise definitions and details). This
can be decided by the respective Ti-solvers. In this example, F is T -inconsistent
since F1 ∧ c1 �=c2 is T1-inconsistent and F2 ∧ c1=c2 is T2-inconsistent.

In practice, it is useful if each Ti-solver is able to generate all clauses c1=c′1 ∨
· · ·∨ ck=c′k over the shared constants that are Ti-entailed by the conjunction Fi.
For convex Ti, these entailed clauses are in fact always unit. It is not difficult
to see that, if these two properties hold for all Ti, we only have to consider one
arrangement: the one where every two constants not equated in a propagated
equality are distinct. But usually the situation is less ideal. If some Ti is non-
convex, it is necessary to do case splitting over the Ti-entailed non-unit clauses,
and if some Ti-solver has limited or too expensive generation capabilities, the
possible arrangements need to be (partially) guessed and tried.

By centralizing case splitting into the DPLL(X) engine and extending it to
equalities over shared constants we can use the engine, in effect, to efficiently
enumerate the arrangements on demand, that is, as requested by the individ-
ual theory solvers. Note that in the resulting DPLL(T1, . . . , Tn) architecture,
the engine will again handle literals possibly not in the input clauses, namely,
(dis)equalities between shared variables. ��
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Section 2 of this paper introduces and discusses the correctness of an Extended
Abstract DPLL Modulo Theories framework that formalizes our approach.1 Sec-
tion 3 illustrates how to use the framework to avoid internal case splits in a very
general class of theory solvers. Section 4 discusses the application of the frame-
work to DPLL(T1, . . . , Tn). Finally, Section 5 concludes.

Related work. Some of the ideas formalized in this paper on centralizing case
splits in the Boolean engine are implemented in the system CVC [5] and CVC-
Lite [4]. But apart from a brief note in Clark Barrett’s PhD thesis (in Section
3.5.1 of [3]), we are not aware of any other description of them in the literature.

Bozzano et al. propose in [6] to use the Boolean engine in multi-theory SMT
systems to do case splitting over the space of all possible arrangements. In con-
trast to this work, there the centralization of case-splitting concerns only equal-
ities between shared constants, as needed by the Nelson-Oppen method. As far
as theory solver combination is concerned, our approach and that in [6] are in
a sense dual, possibly as a consequence of their different motivations. Simplify-
ing a bit, in [6] the theory solvers are (or can be) completely unaware of each
other. The DPLL engine is in charge of identifying shared constants and feeding
(dis)equalities between them as appropriate to the solvers. This way, off-the-
shelf decision procedures can be used as theory solvers. In our case, the roles
are reversed. As we will see, the solvers are aware of their shared constants, and
are in charge of producing lemmas containing (dis)equalities between them, for
the engine to split on. The advantage in this case is that the same mechanism
already in place for splitting on demand can be used for combination as well,
with no changes to the engine.

2 Extended Abstract DPLL Modulo Theories

In this section, we briefly describe the Abstract DPLL Modulo Theories frame-
work (see [12] for more details) and then extend it so that it can be used to
formalize our new version of DPLL(T ) and, more generally, SMT approaches
where new atoms and new symbols are introduced.

2.1 Abstract DPLL Modulo Theories

As usual in SMT, given a theory T (a set of closed first-order formulas), we will
only consider the SMT problem for ground (and hence quantifier-free) CNF for-
mulas F . Such formulas may contain free constants, i.e., constant symbols not
in the signature of T , which, as far as satisfiability is concerned, can be equiva-
lently seen as existential variables. Other than free constants, all other predicate
and function symbols in the formulas will instead come from the signature of T .
From now on, we will assume that all formulas satisfy these restrictions.

The formalism we describe is based on a set of states together with a binary
relation =⇒ (called the transition relation) over these states, defined by means
1 Because of space constraints we cannot provide the correctness proof here. The

complete proof can be found in [2].
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of transition rules. Starting with a state containing an input formula F , one
can use the rules to generate a finite sequence of states, where the final state
indicates whether or not F is T -consistent.

A state is either the distinguished state FailState (denoting T -unsatisfiability)
or a pair of the form M || F , where M is a sequence of literals, with ∅ denoting
the empty sequence, and F is a formula in conjunctive normal form (CNF),
i.e., a finite set of disjunctions of literals. We additionally require that M never
contains both a literal and its negation and that each literal in M is annotated
as either a decision literal (indicated by ld) or not. Frequently, we will refer to
M as a partial assignment or consider M just as a set or conjunction of literals,
ignoring both the annotations and the order of its elements.

In what follows, a possibly subscripted or primed lowercase l always denotes
a literal. Similarly C and D always denote clauses (disjunctions of literals), F
and G denote conjunctions of clauses, andM and N denote partial assignments.

We write M |= F to indicate that M propositionally satisfies F . If C is a
clause l1 ∨ · · · ∨ ln, we sometimes write ¬C to denote the formula ¬l1 ∧ · · ·∧¬ln.
We say that C is conflicting in a state M || F,C if M |= ¬C.

A formula F is called T -(in)consistent if F ∧ T is (un)satisfiable in the first-
order sense. We say that M is a T -model of F if M |= F and M , seen as a
conjunction of literals, is T -consistent. It is not difficult to see that F is T -
consistent if, and only if, it has a T -model. If F and G are formulas, then F
entails G in T , written F |=T G, if F ∧ ¬G is T -inconsistent. If F |=T G and
G |=T F , we say that F and G are T -equivalent. A theory lemma is a clause C
such that ∅ |=T C.

We start with the transition system first presented in [12].2

Definition 1. Abstract DPLL Modulo Theories consists of the rules in Figure 1.
The Basic DPLL Modulo Theories system consists of the rules Decide, Fail,

UnitPropagate, T-Propagate and T -Backjump. We denote the transition relation
defined by these rules by =⇒B. We denote the transition relation defined by all
the rules by =⇒FT.

For a transition relation =⇒, we denote by =⇒∗ the reflexive-transitive closure of
=⇒. We call any sequence of the form S0 =⇒ S1, S1 =⇒ S2, . . . a derivation,
and denote it by S0 =⇒ S1 =⇒ S2 =⇒ . . . . We call any subsequence of a
derivation a subderivation. If S =⇒ S′ we say that there is a transition from S
to S′. A state S is final with respect to =⇒ if there are no transitions from S.

The relevant derivations in the Abstract DPLL Modulo Theories system are
those that start with a state of the form ∅ || F , where F is a formula to be
checked for T -consistency, and end in a state that is final with respect to =⇒B.

2.2 The Extended Abstract DPLL Modulo Theories System

Any realization of the Abstract DPLL Modulo Theories framework, in addition
to implementing the rules and an execution strategy, must be able to determine
2 For simplicity, we omit the Restart and T -Forget rules. A complete treatment of these

rules is included in the full report [2].
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UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

{
M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ FailState if

{
M |= ¬C
M contains no decision literals

T -Learn :

M || F =⇒ M || F, C if

{
each atom of C occurs in F or in M
F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:

F, C |=T C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

T-Propagate :

M || F =⇒ M l || F if

⎧⎨⎩
M |=T l
l or ¬l occurs in F
l is undefined in M

Fig. 1. Rules for Abstract DPLL Modulo Theories

the T -consistency of M when a final state M || F is reached. For this purpose,
one typically assumes the existence of SolverT which can do precisely that.

However, for some important theories, determining the T -consistency of a
conjunction of literals requires additional internal case splitting. In order to
simplify Solver

T
and centralize the case splitting in the DPLL engine, it is de-

sirable to relax the requirement on Solver
T

by allowing it to demand that the
DPLL engine do additional case splits before determining the T -consistency of
the partial assignment. For flexibility—and because it is needed by actual the-
ories of interest—the theory solver should be able to demand case splits on
literals that do not appear in M or F and possibly even contain fresh constant
symbols.

It is not hard to see, however, that allowing this kind of flexibility poses
a potential termination problem. We can overcome this difficulty if, for any
input formula F , the set of all literals needed to check the T -consistency of F
is finite. More precisely, as a purely theoretical construction, we assume that for
every input formula F there is a finite set L(F ) of literals containing all literals
on which a given theory solver may demand case splits when starting with a
conjunction of literals from F . For example, for a solver for the theory of arrays
L(F ) could contain atoms of the form i= j, where i and j are array indices
occurring in F . This technical requirement poses no limitations on any of the
practically useful theory solver procedures we are aware of (see Section 3). Also,



518 C. Barrett et al.

for the proofs here there is no need to construct the set L(F ). It is enough to
know that it exists. Formally, we require the following.

Definition 2. L is a suitable literal-generating function if for every finite set
of literals L:

1. L maps L to a new finite set of literals L′ such that L ⊆ L′.
2. For each atomic formula α, α ∈ L(L) iff ¬α ∈ L(L).
3. If L′ is a set of literals and L ⊆ L′, then, L(L) ⊆ L(L′) (monotonicity).
4. L(L(L)) = L(L) (idempotence).

For convenience, given a formula F , we denote by L(F ) the result of applying L
to the set of all literals appearing in F .

The introduction of new constant symbols poses potential problems not only
for termination, but also for soundness. One property of the transition relation
=⇒FT is that whenever ∅ || F =⇒∗

FT M || F ′, the formulas F and F ′ are
T -equivalent. This will no longer be true if we allow the introduction of new
constant symbols. However, it is sufficient to simply ensure T -equisatisfiability
of F and F ′. To this end, we introduce the following definition.

Definition 3. Given a formula F and a formula G, we define γF (G) as follows:

1. Let G′ be the formula obtained by replacing each free constant symbol in G
that does not appear in F with a fresh variable.

2. Let v be the set of all fresh variables introduced in the previous step.
3. Then, γF (G) = ∃ v.G′.

Now we can give a new transition rule called Extended T-Learn which replaces
T -Learn and allows for the desired additional flexibility.

Definition 4. The Extended DPLL Modulo Theories system, denoted as
=⇒XT, consists of the rules of Basic DPLL Modulo Theories, together with the
rule:

Extended T-Learn

M || F =⇒ M || F, C if
{

each atom of C occurs in F or in L(M)
F |=T γF (C)

The key observation is that an implementation using Extended T-Learn has more
flexibility when a state M || F is reached which is final with respect to =⇒B.
Whereas before it would have been necessary for the theory solver to determine
the T -consistency of M when such a state was reached, the Extended T-Learn
rule allows the possibility of delaying a response by demanding that additional
case splits (on possibly new literals appearing in the clause C) be done first. As
we will show below, the properties of L ensure that the solver’s response cannot
be delayed indefinitely.
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2.3 Correctness of Extended Abstract DPLL Modulo Theories

A decision procedure for SMT can be obtained by generating a derivation using
=⇒XT with a particular strategy. As with =⇒FT, the aim of a derivation is to
compute a state S such that: (i) S is final with respect to the rules of Basic DPLL
Modulo Theories and (ii) if S is of the form M || F then M is T -consistent.

Lemma 1. If ∅ || F =⇒∗
XT M || G then the following hold.

1. All the literals in M and all the literals in G are in L(F ).
2. M contains no literal more than once and is indeed an assignment, i.e., it

contains no pair of literals of the form p and ¬p.
3. G |=T F and for some H, F |=T γH(G).
4. If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision

literals of M , then G, l1, . . . , li |=T Mi for all i in 0 . . . n.

Theorem 1 (Termination of =⇒XT). There is no infinite derivation of the
form ∅ || F =⇒XT S1 =⇒XT . . .

The main difference in the termination argument with respect to =⇒FT is that,
while Extended T-Learn can produce lemmas with new literals, it can only pro-
duce a finite number of them thanks to the properties of L.

Lemma 2. If ∅ || F =⇒∗
XT M || F ′ and there is some conflicting clause in

M || F ′, i.e., M |= ¬C for some clause C in F ′, then either Fail or T -Backjump
applies to M || F ′.

Property 1. If ∅ || F =⇒∗
XT M || F ′ andM is T -inconsistent, then either there

is a conflicting clause in M || F ′, or else Extended T-Learn applies to M || F ′,
generating a clause enabling some Basic DPLL Modulo Theories step.

Lemma 2 and Property 1 show that, for a state of the form M || F , if there
is some literal of F undefined in M , or there is some conflicting clause, or M
is T -inconsistent, then a rule of Basic DPLL Modulo Theories is always appli-
cable, possibly after a single Extended T-Learn step. Together with Theorem 1
(Termination), this shows how to compute a state to which the following main
theorem is applicable.

Theorem 2. Let Der be a derivation ∅ || F =⇒∗
XT S , where S is (i) final

with respect to Basic DPLL Modulo Theories, and (ii) if S is of the form M || F ′

then M is T -consistent. Then

1. S is FailState if, and only if, F is T -inconsistent.
2. If S is of the form M || F ′ then M is a T -model of F .

For a given theory T , Theorems 1 and 2 show how to obtain a decision procedure
for the T -consistency of formulas as long as we have a theory solver and can prove
for it the existence of a suitable literal-generating function L such that the fol-
lowing holds: for every state of the formM || F that is final with respect to =⇒B,
the theory solver is able to (i) determine thatM is T -inconsistent, (ii) determine
that M is T -consistent, or (iii) generate a new clause via Extended T-Learn that
enables some Basic DPLL Modulo Theories step.
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3 Avoiding Case Splitting Within Theory Solvers

In this section, we show how rule-based theory solvers can be used in the context
of Extended DPLL Modulo Theories.

Recall that theory solvers only need to deal with conjunctions (equivalently,
sets) of literals. Then observe that any solver deciding the T -consistency of such
conjunctions in a theory where this problem is NP-hard is bound to resort to
some form of case splitting.3 We show how the Extended T-Learn rule allows such
solvers to avoid any internal case splitting, and we explain why, for rule-based
solvers, the existence of L is reasonable.

3.1 Rule-Based Theory Solvers

A large class of theory solvers can be defined using inference rules that describe
how to take a set of literals and transform it in some way to get new sets of literals
(or ⊥, indicating T -inconsistency). Consider a theory T . For our purposes, let
us assume that an inference rule has one of the following two formats:

Γ,Δ
⊥

Γ,Δ
Γ,Δ1 Γ,Δ2 · · · Γ,Δn

where the meta-variables Γ,Δ and Δi represent sets of literals. We call rules of
the first kind refuting rules and rules of the second kind progress rules. Typically,
Δ has side-conditions or is a schema, while Γ can represent any set of literals.
Progress rules describe a local change based on a small number of literals (the
ones in Δ), while all of the other literals (the ones in Γ ) are unchanged.

A refuting rule is sound if and only if any legal instance δ of Δ is T -
inconsistent. A progress rule is sound if whenever Δ,Δ1, . . . ,Δn are instanti-
ated with δ, δ1, . . . , δn respectively, δ is T -consistent iff

∨n
i=1 δi is T -consistent.

We say that a set Φ of literals is (ir)reducible with respect to a set of derivation
rules R if (n)one of the rules in R applies to it, i.e., if (no) some subset of Φ is a
legal instance of Δ in a rule of R. A strategy is a function that, given a reducible
set of literals Φ, chooses a rule from R to apply.

Given a set R of rules and a strategy S, a derivation tree for a set of literals
Φ is a finite tree with root Φ such that for each internal node E of the tree, E is
reducible and its children are the conclusions of the rule selected by S for E. A
refutation tree (for Φ) is a derivation tree all of whose leaves are ⊥. A derivation
is a sequence of derivation trees starting with the single-node tree containing Φ,
where each tree is derived from the previous one by the application of a rule
from R to one of its leaves. A refutation is a finite derivation ending with a
refutation tree. A strategy S is terminating if every derivation using S is finite.
A strategy S is complete if whenever Φ is T -inconsistent, S produces a refutation
for Φ.

It is not hard to see that a set R of sound inference rules together with
a terminating and complete strategy S provide a decision procedure for the
3 In fact, conceivably a solver may be based on case splitting even if the above T -

consistency problem is polynomial, for simplicity or convenience.
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T -consistency of sets of ground literals. In fact, all decision procedures typically
associated with applications of Satisfiability Modulo Theories can be described in
this way. We will now describe how such decision procedures can be incorporated
into the Extended Abstract DPLL Modulo Theories formalism.

3.2 Integration with Rule-Based Theory Solvers

Recall that the original DPLL Modulo Theories framework requires that for
every state M || F that is final with respect to Basic DPLL Modulo Theories,
the theory solver can determine the T -consistency of M . Given a set of sound
inference rules and a terminating and complete strategy,M can be checked for T -
consistency simply by generating the derivation starting withM and determining
whether it results in a refutation tree or not.

Note that this process may require a large derivation tree with many branches.
The purpose of the Extended T-Learn rule is to allow the theory solver to avoid
having to do any splitting itself. This can be accomplished as follows. Given a
state M || F which is final with respect to Basic DPLL Modulo Theories, the
theory solver begins applying rules starting withM . However, this time, as soon
as a splitting rule is encountered (a progress rule with n > 1), the theory solver
halts and uses Extended T-Learn to return one or more clauses representing the
case split. The theory solver is then suspended until another final state M ′ || F ′

is reached.
The obvious remaining question is how to capture the case split with a learned

clause. As we show in [2], one way to do this that will work for any rule-based
theory solver is to encode the number of possible case splits using Boolean con-
stants. In practice, however, it is usually possible and desirable to encode split-
ting rules more directly. For example, a progress rule of the form seen in the
previous subsection (where n > 1) corresponds to the following formula schema:
¬(Δ) ∨

∨n
i=1 Δi. Any instance of this schema can be converted into CNF and

the resulting clauses sent to the DPLL engine via Extended T-Learn. For this to
work, one additional requirement is that the rules be refining. We say that an
inference rule is refining if it is a refuting rule or if whenever Δ,Δ1, . . . ,Δn are
instantiated with δ, δ1, . . . , δn respectively, δ |=T γδ(

∨n
i=1 δi). This is essentially

a stronger version of soundness. It requires that any model of the premise can
be refined into a model of some of the consequents. It is necessary in order to
satisfy the side conditions of Extended T-Learn.

We must also check that an appropriate literal-generating function L exists.
Assume we are given a set R of rules and a terminating strategy S. First, define
D to be a function which, given a set Φ of literals returns all literals that may
appear along any branch of the derivation tree with any subset of Φ at its root.
And let N be a function which, given a set Φ of literals, returns all literals
that can be formed from the atomic formulas in Φ. Now, we define a series
of functions Li as follows. Let L0 be the identity function and for i > 0, let
Li(Φ) = N (D(Li−1(Φ))). If for some k > 0, Lk = Lk+1, then we say that R is
literal-bounded under S, and define L = Lk.
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Property 2. If R is a set of sound refining rules for a theory T , S is a strategy
for R that is terminating and complete, and R is literal-bounded under S, then
R can be integrated with the Extended DPLL Modulo Theories framework.

Proof. We first show that L satisfies Definition 2. It is easy to see that Proper-
ties 1 and 2 in the definition are satisfied. Because D(Φ) considers derivations
starting with any subset of Φ, Property 3 must also be satisfied. Finally, because
L is a fixed point of Li, it must be idempotent.

Now, we must show that whenever a state M || F is reached that is final with
respect to Basic DPLL Modulo Theories, the theory solver can do one of the
following: determine thatM is T -consistent; determine thatM is T -inconsistent;
or introduce a new clause via Extended T-Learn that enables some Basic DPLL
Modulo Theories step.

Given a stateM || F , we simply apply rules fromR toM according to strategy
S. If ⊥ is derived, then by soundness, M is T -inconsistent. If an irreducible set
of literals is derived, then by completeness, M must be T -consistent. If a split-
ting rule is reached, and Γ,Δ,Δ1, . . . ,Δn are instantiated with φ, δ, δ1, . . . , δn
respectively, there are three possibilities:

1. For all i, M |= ¬δi. In this case, we apply Extended T-Learn to learn ¬(δ) ∨∨n
i=1 δi, which will result in one or more clauses that are conflicting in M ,

thus enabling either Fail or T -Backjump by Lemma 2.
2. For some i, M |= δi, or else δi is undefined in M and M |= ¬δj for every
j �= i. In either case, no split is necessary and we simply proceed by applying
rules of R to φ, δi.

3. The final case is when at least two of the δi are undefined in M . Then we
apply Extended T-Learn to learn ¬(δ)∨

∨n
i=1 δi which is guaranteed to contain

at least one clause that is not satisfied by M , thus enabling Decide. ��

Example 3. As we saw in a previous example the theory of arrays requires case
splitting. One (sound and refining) rule-based decision procedure for this theory
is given in [13]. A careful examination of the decision procedure reveals the
following: (i) each term can be categorized as an array term, an index term, a
value term, or a set term; (ii) no new array terms are ever introduced by the
inference rules; (iii) at most one new index term for every pair of array terms
is introduced; (iv) set terms are made up of some finite number of index terms;
(v) the only new value terms introduced are of the form read(a, i) where a is an
array term and i is an index term. It follows that the total number of possible
terms that can be generated by the procedure starting with any finite set of
literals is finite. Because there are only a finite number of predicates, it then
follows that this set of rules is literal-bounded. ��

4 Application to Satisfiability Modulo Multiple Theories

In this section, we focus on background theories T that are actually the union of
two or more component theories T1, . . . , Tn, each equipped with its own solver.
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We first show how to obtain an Abstract DPLL Modulo Theories transition
system for the combined theory T as a refinement of the system XT described
in Section 2 using only the solvers of the theories Ti. Then we show how to refine
the new DPLL(T ) architecture into a DPLL(T1, . . . , Tn) architecture in which
each Ti-solver is directly integrated into the DPLL(X1, . . . , Xn) engine.

We will work here in the context of first-order logic with equality. For the rest
of the section we fix n > 1 stably infinite theories4 T1, . . . , Tn with respective,
mutually disjoint signatures Σ1, . . . , Σn. We will consider the theory T = T1 ∪
· · ·∪Tn with signature Σ = Σ1∪· · ·∪Σn. We are interested in the T -satisfiability
of ground formulas over the signature Σ extended with an infinite set K of free
constants. For any signature Ω we will denote by Ω(K) the signature Ω ∪ K.
We say that a ground clause or literal is (i-)pure if it has signature Σi(K)
where i ∈ {1, . . . , n}. Given a CNF formula F of signature Σ(K), by abstracting
subterms with fresh constants from K, it is possible to convert F in linear time
into an equisatisfiable CNF formula, all of whose atoms are pure. See [14], for
instance, for details on this purification procedure. From now on, we will limit
ourselves with no loss of generality to pure formulas.

Following the Nelson-Oppen combination method, the various solvers will
cooperate by exchanging entailed equalities over shared constants. Let L be a
set of pure literals over the signature Σ(K). We say that a constant k ∈ K is
an (ij-)shared constant of L if it occurs in an i-pure and a j-pure literal of L
for some distinct i and j. For i = 1, . . . , n, we denote by Li the set of all the
Σi(K)-literals of L and by Si(L) the set of all equalities between distinct ij-
shared constants of L for every j �= i. Note that for every j �= i, Lj ∩Li contains
at most equalities or the negation of equalities from Si(L). An arrangement for
L is a set containing for each equality e ∈

⋃
i Si(L) either e or ¬e (but not both),

and nothing else.
The extended Abstract DPLL Modulo theories framework can be refined to

take into account that T is a combined theory by imposing the following addi-
tional requirements on the XT system.

Refinement 1. We consider only derivations starting with states of the form
∅ || F , where each atom of F is a pure Σ(K)-atom.

Refinement 2. We consider only applications M || F =⇒ M l || F of the rule
T-Propagate and applications M || F =⇒ M || F, C of Extended T-Learn where
l and each literal of C are pure.

Refinement 1 and 2 maintain the invariant that all the literals occurring in
a state are pure, and so can be fed to the corresponding local solvers. Given
these minimal requirements, it will be sufficient for T-Propagate to propagate
only literals l that are i-pure for some i = 1, . . . , n and such that and M i |=Ti

l, where the entailment M i |=Ti l is determined by the Ti-solver. Similarly,
Extended T-Learn will rely on the local solvers only to learn Ti-lemmas, i.e., i-pure
clauses C such that ∅ |=Ti γF (C). Note that we do allow lemmas C consisting
4 A theory T is stably infinite if every T -consistent quantifier-free formula F over T ’s

signature is satisfiable in an infinite model of T .
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of pure literals from different theories and such that F |=T γF (C), as lemmas of
this sort can be computed even if one only has local solvers (consider for example
the backjump clauses generated by standard conflict analysis mechanisms).

Refinement 3. The suitable literal-generating function L maps every finite set
L of pure Σ(K)-literals to a finite set of pure Σ(K)-literals including

⋃
i Si(L).

To use the various solvers together in a refutationally complete way for T -
consistency, it is necessary to make them agree on an arrangement. To do this
efficiently, they should be able to share the entailed (disjunctions) of equalities
of shared constants. Refinement 3 then essentially states that theory lemmas can
include shared equalities.

4.1 From DPLL(T ) to DPLL(T1, . . . , Tn)

Assuming the previous refinements at the abstract level, we now show in con-
crete how the DPLL(T ) architecture can be specialized to use the various local
solvers directly and to facilitate cooperation among them. Here we define a local
requirement on each Ti-solver that does not even need refutational complete-
ness for Ti-consistency. If M is an assignment consisting of pure literals and
i ∈ {1, . . . , n}, we call the (default) completion of M i and denote by M̂ i the
smallest extension of M i falsifying every shared equation for M i that is unde-
fined in M , that is, M̂ i =M i ∪ {¬e | e ∈ Si(M), e undefined in M}.
Requirement 1. For each i = 1, . . . , n, the solver for Ti, given a state M || F ,
must be able to do one of the following:
1. determine that M̂ i is Ti-consistent, or
2. identify a Ti-inconsistent subset of M i, or
3. produce an i-pure clause C containing at least one literal of L(M) undefined

in M and such that ∅ |=Ti γF (C).

The computational cost of the test in Point 1 of this requirement depends on
the deduction capabilities of the theory solver.5 Note, however, that the test
can be deferred thanks to Point 3. The solver may choose not to generate the
completion ofM i explicitly and test it for Ti-inconsistency, and instead generate
a lemma for the engine containing one of the undefined equalities.

If a solver meeting Requirement 1 cannot determine the Ti-consistency of the
completion M̂ i, it must be either because it has determined that a subset of M̂ i

(possibly of M i alone) is in fact inconsistent, or that it needs more information
about some of the undefined literals of L(M) first. However, once every literal
of L(M) is defined in M , including the equalities in Si(M), the solver must be
able to tell whether M i is Ti-consistent or not. This is a minimal requirement
for any solver to be used in a Nelson-Oppen style combination procedure.

Usually though it is desirable for Nelson-Oppen solvers to also be able to
compute (disjunctions of) shared equalities entailed by a given set of literals, so
5 For some solvers, such as the common ones for EUF or linear rational arithmetic, this

additional cost is actually zero as these solvers already explicitly maintain complete
information on all the entailed equalities between the known terms.



Splitting on Demand in SAT Modulo Theories 525

that only these equalities can be propagated to the other solvers, and guessing
is minimized. For instance, if one solver communicates that a is equal to either
b or c, then the other solvers do not have to consider cases where a is equal to
some fourth constant. Requirement 1 allows that possibility, as illustrated by
the following example.

Example 4. Assume, just for simplicity, that for every M , L(M) is no more
than M ∪

⋃
i Si(M), which entails that each Ti-solver is refutationally complete

for Ti-consistency. Then consider an assignment M where Mi is Ti-consistent,
for some i, and let e1, . . . , en be equalities in Si(M) undefined in M such that
l1, . . . , lm |=

∨
k ek for some {l1, . . . , lm} ⊆ M i. In this case, M̂ i is clearly Ti-

inconsistent. However, since M i alone is consistent, by Requirement 1 the Ti-
solver must return a lemma containing one or more undefined literals of L(M).

Now, if the solver can in fact compute (deterministically, with no internal case
splits!) the clause

∧
j lj ⇒

∨
k ek, that clause will be the ideal lemma to return.

Otherwise, it is enough for the solver to return any lemma that contains at least
one shared equality e (in the worst case, even a tautology of the form e∨¬e will
do). Intuitively, this marks a progress in the computation because eventually one
of the shared equalities will be added to M (for instance, by an application of
Decide), reducing the number of undefined literals in L(M). ��

Requirement 1 and the earlier refinements are enough to guarantee that we
can use the local Ti-solvers directly—as opposed to building a solver for the
combined theory T—to generate derivations satisfying Theorem 2. The first
thing we need for Theorem 2 is easy to see: it is always possible to derive from
a state ∅ || F a final state S with respect to Basic DPLL Modulo Theories
(=⇒B). The second thing we need is that whenever the final state S has the
form M || F ′, the assignment M is T -consistent. Although none of the local
solvers is able to determine that by itself, it can do it in cooperation with the
other solvers thanks to Requirement 1. It is then not difficult to show (see [2])
that, under the assumptions in this section, the following property holds.

Property 3. Each derivation of the form ∅ || F =⇒∗
XT M || G where M || G

is final wrt. Basic DPLL Modulo Theories can be extended in finitely many
steps using the solvers for T1, . . . , Tn to a derivation of the form ∅ || F =⇒∗

XT

M || G =⇒∗
XT S where S is either FailState or a state M ′ || G′ with a T -

consistent M ′.

5 Conclusions and Further Work

We have proposed a new version of DPLL(T ) in which theory solvers can dele-
gate all case splits to the DPLL engine. This can be done on demand for solvers
that can encode their internal case splits into one or more clauses, possibly in-
cluding new constants and literals. We have formalized this in an extension of
Abstract DPLL and proved it correct. We think that the new insights gained
by this formalization will help us and others when incorporating these ideas
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into our respective SMT solvers. We have also introduced a DPLL(T1, . . . , Tn)
architecture for combined theories, which also fits naturally into the extended
Abstract DPLL framework. This refinement is crucial in practice because most
SMT applications are based on combinations of theories. Our splitting on de-
mand approach leads to significantly simpler theory solvers. The price to pay
is an increase in the complexity of the DPLL(X) engine, which must be able
to deal with a dynamically expanding set of literals. However, we believe that
doing this once and for all is better than paying the price of building a far more
complex theory solver for each theory that requires case splits. Moreover, the
requirement of being able to deal dynamically with new literals and clauses is
needed in general for flexibility in applications, not just for our approach.

As future work, we plan to evaluate the approach experimentally. We also
plan to investigate theory-dependent splitting heuristics, and effective ways for
a theory solver to share such heuristic information with the DPLL(X) engine.
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2 DIT, Università di Trento, Italy
{griggio, rseba}@dit.unitn.it

Abstract. Many approaches for Satisfiability Modulo Theory (SMT(T )) rely on
the integration between a SAT solver and a decision procedure for sets of liter-
als in the background theory T (T -solver). When T is the combination T1 ∪T2
of two simpler theories, the approach is typically handled by means of Nelson-
Oppen’s (NO) theory combination schema in which two specific T -solvers de-
duce and exchange (disjunctions of) interface equalities.

In recent papers we have proposed a new approach to SMT(T1 ∪ T2), called
Delayed Theory Combination (DTC). Here part or all the (possibly very expen-
sive) task of deducing interface equalities is played by the SAT solver itself, at
the potential cost of an enlargement of the boolean search space. In principle this
enlargement could be up to exponential in the number of interface equalities gen-
erated.

In this paper we show that this estimate was too pessimistic. We present a com-
parative analysis of DTC vs. NO for SMT(T1 ∪T2), which shows that, using state-
of-the-art SAT-solving techniques, the amount of boolean branches performed by
DTC can be upper bounded by the number of deductions and boolean branches
performed by NO on the same problem. We prove the result for different deduction
capabilities of the T -solvers and for both convex and non-convex theories.

1 Introduction

Satisfiability Modulo a Theory T (SMT(T )) is the problem of checking the satisfiability
of a quantifier-free (or ground) first-order formula with respect to a given first-order
theory T . Theories of interest for many applications are, e.g., the theory of difference
logic DL , the theory EUF of equality and uninterpreted functions, the quantifier-free
fragment of Linear Arithmetic over the rationals LA(Q) and that over the integers
LA(Z). Particularly relevant is the case of SMT(T1 ∪T2), where the background theory
T is the combination of two (or more) simpler theories T1 and T2. 1

� This work has been partly supported by ISAAC, an European sponsored project, contract no.
AST3-CT-2003-501848, by ORCHID, a project sponsored by Provincia Autonoma di Trento,
and by a grant from Intel Corporation.

1 For better readability, and as it is common practice in papers dealing with combination of the-
ories, in this paper we always deal with only two theories T1 and T2. The discourse generalizes
to more than two theories.
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A prominent approach to SMT(T ) which underlies several systems (e.g., CVCLITE

[2], DLSAT [8], DPLL(T) /BarceLogic [10], MATHSAT [4], TSAT++ [1], ICS /YICES

[9]), is based on extensions of SAT technology: a SAT engine is modified to enumerate
boolean assignments, and integrated with a decision procedure for sets of literals in the
theory T (T -solver). The above schema is also followed to tackle the SMT(T1 ∪ T2)
problem. The approach relies on a decision procedure able to decide the satisfiability of
sets of literals in T1 ∪T2, that is typically based on an integration schema like Nelson-
Oppen (NO) [11] (or its variant due to Shostak [13]): the Ti-solvers are combined by
means of a structured exchange of (disjunctions of) interface equalities (ei j’s).

Unfortunately from a practical point of view this schema poses some challenges.
First, the integration between the two Ti-solvers is not trivial to implement. Second,
the ability of Ti-solvers of inferring (disjunctions of) interface equalities (hereafter ei j-
deduction completeness) required by NO is neither always easy to achieve nor always
cheap to perform. (E.g., ei j-deduction is cheap for EUF but can be very expensive for
LA(Z).) Third, in case of non-convex theories (e.g., LA(Z)), a backtrack search must
be used to take care of the disjunctions that need to be managed.

In recent papers [3,6] we have proposed a novel approach to SMT(T1 ∪ T2), called
Delayed Theory Combination (DTC). The main idea is to avoid the integration schema
between T1 and T2, and tighten the connection between each Ti and the SAT engine. While
the truth assignment is being constructed, it is checked for consistency with respect to
each theory in isolation. This can be seen as constructing two (possibly inconsistent) par-
tial models for the original formula; the “merging” of the two partial models is enforced,
on demand, since the solver is requested to find a complete assignment to the ei j’s.

Compared to the NO schema, this approach has several advantages [3,6]. First, it is
easier to implement and analyze. Second, the approach does not rely on the Ti-solvers
being ei j-deduction complete, although it can fully benefit from this property. Third, the
DTC nicely encompasses the case of non-convex theories. On the negative side, in [3,6]
we noticed that these benefits are traded with a potential enlargement of the boolean
search space which, in principle, could be up to exponential in the number of interface
equalities generated. Thus, despite the positive empirical results presented in [3,6], the
latter fact represented, at least in theory, one possible drawback of DTC.

In this paper we show that this latter point was way too pessimistic. We present a
comparative analysis of DTC vs. NO for SMT(T1 ∪T2), and we introduce some novel
theoretical results, for both convex and non-convex theories and for different deduction
capabilities of the T -solvers. These results show that, by exploiting the full power of
advanced SAT techniques like backjumping and learning, DTC can be implemented in
such a way as to mimic the behavior of NO, so that the amount of boolean branches
required by DTC can be upper-bounded by the sum of the number of deductions and
branches required by NO in order to perform the same tasks.

From these results we have that DTC generalizes NO, in the sense that:

– under the same hypotheses of ei j-deduction-completeness of the Ti-solvers required
by NO, DTC emulates NO with no extra cost in terms of boolean search;

– in the more general case (Ti-solvers with partial or no ei j-deduction capabilities)
DTC can mimic the behavior of NO, in such a way that all or part of the (possibly
very expensive) ei j-deductions are substituted with only few extra boolean branches.
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We also notice that the capability of learning conflict clauses containing interface equal-
ities, which is typical of DTC, allows for cutting branches corresponding to repeated
deductions in an equivalent NO schema.

The paper is structured as follows. In Section 2 we present some background and in-
troduce the Nelson-Oppen combination schema for SMT(T1 ∪ T2). DTC is then
discussed in Section 3. We present our analysis in Sections 4 (where the case of ei j-
deduction completeness in the Ti-solvers of DTC is examined) and 5 (where the Ti-
solvers employed by DTC are assumed to have limited or no deduction capabilities).
Finally, in Section 6 we draw some conclusions.

For lack of space, the proofs of the theorems and a more detailed description of the
algorithms are omitted here, and they are reported in an extended technical report [7].

2 SMT for Combined Theories Via Nelson-Oppen’s Integration

2.1 Basic Definitions and Properties

Consider a theory T with equality. T is stably-infinite iff every quantifier-free T -
satisfiable formula is satisfiable in an infinite model of T . Notice that EUF , DL(Q),
DL(Z), LA(Q), LA(Z) are stably-infinite, whereas e.g. theories of bit-vectors BV are
typically not. In what follows, we shall assume to deal only with stably-infinite theories
with equality and with disjoint signatures.

T is convex iff, for every collection l1, . . . , lk,e1, . . . ,en of literals in T s.t. e1, . . . ,en

are in the form (x = y), x,y being variables, we have that

{l1, ..., lk} |=T

n∨
i=1

ei ⇐⇒ {l1, ..., lk} |=T ei for some 1 ≤ i ≤ n.

Notice that EUF , DL(Q), LA(Q) are convex, whereas DL(Z) and LA(Z) are not.
Consider two theories T1, T2 with equality and disjoint signatures Σ1,Σ2. An atom ψ

is i-pure if only =, variables and symbols from Σi occur in ψ. A formula ϕ is pure iff
every atom in ϕ is i-pure for some i ∈ {1,2}. Every non-pure T1 ∪T2 formula ϕ can be
converted into an equivalently satisfiable pure formula ϕ′ by recursively labeling terms
t with fresh variables vt , and by adding the atom (vt = t). E.g.:

( f (x+3y)= g(2x−y)) ⇒ ( f (vx+3y)= g(v2x−y))∧(vx+3y = x+3y)∧(v2x−y = 2x−y).

This process is called purification, and is linear in the size of the input formula. Thus,
henceforth we assume w.l.o.g. that all input formulas ϕ ∈ T1 ∪T2 are pure.

If ϕ is a pure T1 ∪ T2 formula, then v is an interface variable for ϕ iff it occurs in
both 1-pure and 2-pure atoms of ϕ. An equality (vi = v j) is an interface equality for ϕ
iff vi, v j are interface variables for ϕ. We assume an unique representation for (vi = v j)
and (v j = vi). Henceforth we denote the interface equality (vi = v j) by “ei j”.

Given a T -inconsistent set of literals L = {l1, . . . , ln} in a theory T , a conflict set
η is an (T -)inconsistent subset of L. η is minimal if none of its strict subsets is T -
inconsistent. We say that η is ¬ei j-minimal iff η\{¬ei j} is no more T -inconsistent, for
every ¬ei j ∈ η.
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function Bool+T (ϕ: quantifier-free formula)
1 A p ←− T 2B(Atoms(ϕ))
2 ϕp ←− T 2B(ϕ)
3 while Bool-satisfiable(ϕp) do
4 μp ←− pick total assign(A p,ϕp)
5 (ρ,π)←− T − satis f iable(B2T (μp))
6 if ρ = sat then return sat
7 ϕp ←− ϕp ∧T 2B(¬π)
8 end while
9 return unsat
end function

Fig. 1. A simplified view of enumeration-based T-satisfiability procedure: Bool+T

A T -solver is a procedure that decides the consistency of an assignment μ in T . An
(propositional) assignment μ for a formula ϕ is a function μ : Atoms(ϕ) 
→ {true, f alse}.
μ can be equivalently represented as a set of literals μS, where ¬A ∈ μS if μ(A) = f alse,
and A ∈ μS otherwise. μ can also equivalently be seen as a formula μϕ, built as the
conjunction of the literals in the set μS. (In the following, we will denote all such equiv-
alent representations with μ. Moreover, we will denote with μTi

the subassignment of μ
containing only i-pure literals.) When a T -solver detects the inconsistency of μ, it also
returns a conflict set η of μ. Finally, we also require every T -solver involved in either
the NO schema or DTC to be incremental (it does not need to restart the computation
from scratch to decide the satisfiability of μ′ if it had already proved that of μ ⊂ μ′) and
backtrackable (it can return to a previous state in an efficient manner) [11].

We say that a T -solver is ¬ei j-minimal (resp. minimal) if the conflict sets it returns
are always ¬ei j-minimal (resp. minimal). Notice that ¬ei j-minimality is a much weaker
requirement than minimality.

2.2 Satisfiability Modulo Theory

Fig. 1 presents Bool+T , a (much simplified) decision procedure for SMT(T ). The
function Atoms(ϕ) takes a ground formula ϕ and returns the set of atoms which occur
in ϕ. We use the notation ϕp to denote the propositional abstraction of ϕ, which is
formed by the function T 2B that maps propositional variables to themselves, ground
atoms into fresh propositional variables, and is homomorphic w.r.t. boolean operators
and set inclusion. The function B2T is the inverse of T 2B . We use μp to denote a
propositional assignment. (If T 2B(μ) |= T 2B(ϕ), then we say that μ propositionally
satisfies ϕ.) The idea underlying the algorithm is that the truth assignments for the
propositional abstraction of ϕ are enumerated and checked for satisfiability in T . The
procedure either returns sat if one such model is found, or returns unsat otherwise. The
function pick total assign returns a total assignment to the propositional variables in
ϕp, that is, it assigns a truth value to all variables in A p. The function T -satisfiable(μ)
detects if the set of conjuncts μ is T -satisfiable: if so, it returns (sat, /0); otherwise, it
returns (unsat, π), where π ⊆ μ is a T -unsatisfiable set, called a theory conflict set. We
call the negation of a conflict set, a conflict clause.
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The algorithm is a coarse abstraction of the ones underlying TSAT++, MATHSAT,
DLSAT, DPLL(T) /BarceLogic, CVCLITE, and ICS /YICES. The test for satisfiabil-
ity and the extraction of the corresponding truth assignment are kept separate in this
description only for the sake of simplicity.

In practice, the enumeration of truth assignments is carried out by means of efficient
implementations of the DPLL algorithm [15], where a partial assignment μp is built
incrementally, each time selecting an unassigned literal l (literal selection), called de-
cision literal, according to some heuristic criterion, adding it to μp and performing all
the other assignments which derive deterministically from this choice (unit propaga-
tion). When some assignment μp falsifies the formula returning a (boolean) conflict set
πp, or when T -satisfiable(B2T (μp)) fails returning a theory conflict set π, the negation
¬πp of (the boolean abstraction of) the conflict set is passed as a conflict clause to the
boolean solver. Then ¬πp is added in conjunction to ϕp either temporarily or perma-
nently (learning), and the algorithm backtracks up to the highest point in the search
where a literal can be unit-propagated on ¬πp (backjumping). Learning also avoids
generating the same conflicts in future branches.

An important variant [10] is that of building from ¬πp a “mixed boolean+theory
conflict clause”, by recursively removing non-decision literals l from the conflict clause
by resolving the latter with the clause Cl which caused the unit-propagation of l; this
is done until the conflict clause contains only decision literals (last-UIP strategy) or at
most one non-decision literal assigned after the last decision (first-UIP strategy).2

Another important improvement is early pruning (EP): before every literal selection,
intermediate assignments are checked for T -satisfiability and, if not T -satisfiable, they
are pruned (since no refinement can be T -satisfiable). Finally, theory deduction can
be used to reduce the search space by allowing the T -solvers to explicitly return truth
values for unassigned literals, which can be unit-propagated by the SAT solver. The
interested reader is pointed to, e.g., [1,4,10,5] for details and further references.

2.3 Nelson-Oppen’s Schema

Given two signature-disjoint stably infinite theories T1 and T2, the Nelson-Oppen com-
bination schema [11], in the following referred to as NO, allows for solving the satisfia-
bility problem for T1 ∪T2 (i.e. the problem of checking the T1 ∪T2-satisfiability of sets
of Σ1 ∪Σ2-literals) by using the satisfiability procedures for T1 and T2. The procedure is
basically a structured interchange of information inferred from either theory and prop-
agated to the other, until convergence is reached. The schema requires the exchange of
information, the kind of which depends on the convexity of the involved theories. In
the case of convex theories, the two solvers communicate to each other single interface
equalities. In the case of non-convex theories, the NO schema becomes more com-
plicated, because the two solvers need to exchange arbitrary disjunctions of interface
equalities, which have to be managed within the decision procedure by means of case
splitting and of backtrack search. In the latter case, the NO schema performs a number
of branches to check the consistency of a set of literals which depends on how many

2 These are standard techniques implemented in most SAT solvers in order to build the boolean
conflict clauses [14].
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〈ei j-deduction〉 〈ei j-deduction〉

〈ei j-deduction〉〈ei j-deduction〉

RESET5

Fig. 2. Representation of the search tree for the formula of Example 1

disjunctions of equalities are exchanged at each step: if the current set of literals is μ,
and one of the Ti-solver sends the disjunction

∨n
k=1(ei j)k to the other, the latter must

further investigate up to n branches to check the consistency of each of the μ∪{(ei j)k}
sets separately.

Example 1 (convex case). Consider the following EUF ∪LA(Q) formula ϕ (cf Fig. 2)

EUF : (v3 = h(v0))∧ (v4 = h(v1))∧ (v6 = f (v2))∧ (v7 = f (v5))∧
LA(Q) : (v0 ≥ v1)∧ (v0 ≤ v1)∧ (v2 = v3 − v4)∧ (RESET5 → (v5 = 0))∧
Both : (¬RESET5 → (v5 = v8))∧¬(v6 = v7).

(1)

v0, v1, v2, v3, v4, v5 are interface variables, v6, v7, v8 are not. (Thus, e.g., (v0 = v1) is an
interface equality, whilst (v0 = v6) is not.) RESET5 is a boolean variable.

After the first run of unit propagations, assume DPLL selects the literal RESET5,
resulting in the assignment

μ = { (v3 = h(v0)),(v4 = h(v1)),(v6 = f (v2)),(v7 = f (v5)),(v0 ≥ v1),
(v0 ≤ v1),(v2 = v3 − v4),¬(v6 = v7),RESET5,(v5 = 0)}, (2)

which propositionally satisfies ϕ. Now, the set of literals μEUF ⊂ μ is given to the EUF
solver, which reports its consistency and deduces no new interface equality. Then the
set μLA(Q) ⊂ μ is given to the LA(Q) solver, which reports consistency and deduces the
interface equality (v0 = v1), which is passed to the EUF solver. The new set μEUF ∪
{(v0 = v1)} is still EUF -consistent, but this time the EUF solver deduces the equality
(v3 = v4), which is in turn passed to the LA(Q) solver, that now as a consequence of this
and the assignment μLA(Q) deduces (v2 = v5). The EUF solver is then invoked again
to check the EUF -consistency of the assignment μEUF ∪{(v0 = v1),(v2 = v5)}: since
this check fails, the Nelson-Oppen method reports the EUF ∪LA(Q)-unsatisfiability
of ϕ under the whole assignment μ. At this point, then, DPLL backtracks and tries
assigning false to RESET5, resulting in the new assignment

μ = { (v3 = h(v0)),(v4 = h(v1)),(v6 = f (v2)),(v7 = f (v5)),(v0 ≥ v1),(v0 ≤ v1),
(v2 = v3 − v4),¬(v6 = v7),¬RESET5,(v5 = v8))},

which is found EUF ∪LA(Q)-satisfiable (see Fig. 2). �	
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〈ei j-deduction〉

〈ei j-deduction〉

〈ei j-deduction〉

Fig. 3. Representation of the search tree for the formula of Example 2

Example 2 (non-convex case). Consider the following EUF ∪LA(Z) formula ϕ

EUF : ¬( f (v1) = f (v2))∧¬( f (v2) = f (v4))∧ ( f (v3) = v5)∧ ( f (v1) = v6)∧
LA(Z) : (v1 ≥ 0)∧ (v1 ≤ 1)∧ (v5 = v4 −1)∧ (v3 = 0)∧ (v4 = 1)∧

(v2 ≥ v6)∧ (v2 ≤ v6 + 1).
(3)

Here (see Fig. 3) all the variables (v1, . . . ,v6) are interface ones. ϕ contains only unit
clauses, so after the first run of unit propagations, DPLL generates the assignment μ
which is simply the set of literals in ϕ. The Nelson-Oppen combination schema then
runs as follows. First, the sub-assignment μEUF is given to the EUF solver, which
reports its consistency and deduces no interface equality. Then, the sub-assignment
μLA(Z) is given to the LA(Z) solver, which reports its consistency and deduces the
disjunction (v1 = v3)∨ (v1 = v4). Next, there is a case-splitting and the two equalities
(v1 = v3) and (v1 = v4) are passed to the EUF solver. The first branch, corresponding
to selecting (v1 = v3), is opened: then the set μEUF ∪{(v1 = v3)} is EUF -consistent,
and the equality (v5 = v6) is deduced. After that, the assignment μLA(Z) ∪{(v5 = v6)}
is passed to the LA(Z) solver, that reports its consistency and deduces another disjunc-
tion, (v2 = v3)∨ (v2 = v4). At this point, another case-splitting is needed in the EUF
solver, resulting in the two branches μEUF ∪{(v1 = v3),(v2 = v3)} and μEUF ∪{(v1 =
v3),(v2 = v4)}. Both of them are found inconsistent, so the whole branch previously
opened by the selection of (v1 = v3) is found inconsistent; at this point, the other
case of the branch (i.e. the equality (v1 = v4)) is selected, and since the assignment
μEUF ∪{(v1 = v4)} is EUF -consistent and no new interface equality is deduced, the
Nelson-Oppen method reports the EUF ∪LA(Z)-satisfiability of ϕ under the whole
assignment μ. ��

3 SMT for Combined Theories Via Delayed Theory Combination

In the Delayed Theory Combination (DTC) schema [3,6], the SMT(T1 ∪T2) problem
is tackled in a different way: each of the two Ti solvers works in isolation, without
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function Bool+T1+T2 (ϕi: quantifier-free formula)
1 ϕ ←− purify(ϕi)
2 A p ←− T 2B(Atoms(ϕ)∪ interface equalities(ϕ))
3 ϕp ←− T 2B(ϕ)
4 while Bool-satisfiable (ϕp) do
5 μp

1 ∧μp
2 ∧μp

e = μp ←− pick total assign(A p,ϕp)
6 (ρ1,π1)←− T1-satisfiable (B2T (μp

1 ∧μp
e ))

7 (ρ2,π2)←− T2-satisfiable (B2T (μp
2 ∧μp

e ))
8 if (ρ1 = sat∧ρ2 = sat) then return sat else
9 if ρ1 = unsat then ϕp ←− ϕp ∧T 2B(¬π1)
10 if ρ2 = unsat then ϕp ←− ϕp ∧T 2B(¬π2)
11 end while
12 return unsat
end function

Fig. 4. A simplified view of the Delayed Theory Combination procedure for SMT(T1 ∪T2)

direct exchange of information. Their mutual consistency is ensured by augmenting the
input problem with all interface equalities ei j, even if these do not occur in the original
problem. The enumeration of assignments includes not only the atoms in the formula,
but also the interface equalities ei j. Both theory solvers receive, from the boolean level,
the same truth assignment μe for ei j: under such conditions, the two “partial” models
found by each decision procedure can be merged into a model for the input formula.

A simplified view of the algorithm is presented in Fig. 4. Initially (lines 1–3), the for-
mula is purified, the new ei j’s are created and added to the set of propositional symbols
A p, and the propositional abstraction ϕp of ϕ is created. Then, the main loop is entered
(lines 4–11): while ϕp is propositionally satisfiable (line 4), a satisfying truth assign-
ment μp is selected (line 5). It is important to stress that truth values are associated not
only to atoms in ϕ, but also to the ei j atoms, even though they do not occur in ϕ. μp is
then (implicitly) separated into μp

1 ∧ μp
e ∧ μp

2 , where B2T (μp
i ) is a set of i-pure literals

and B2T (μp
e ) is a set of ei j-literals. The relevant parts of μp are checked for consis-

tency against each theory (lines 6–7); Ti-satisfiable(μ) returns a pair (ρi,πi), where ρi

is unsat iff μ is unsatisfiable in Ti, and sat otherwise. If both calls to Ti-satisfiable re-
turn sat, then the formula is satisfiable. Otherwise, when ρi is unsat, then πi is a theory
conflict set, i.e. πi ⊆ μ and πi is Ti-unsatisfiable. Then, ϕp is strengthened to exclude
truth assignments which may fail in the same way (line 9–10), and the loop is resumed.
Unsatisfiability is returned (line 12) when the loop is exited without having found a
model.

In practical implementations of DTC, the search for a satisfactory assignment is
based on a modern DPLL engine, performing literal selection, unit-propagation, back-
jumping and learning, early pruning, and theory deduction, as explained in §2.2. In
particular, DTC can be enhanced by ei j-deduction, in which ei j’s can by deduced by the
Ti-solvers and hence unit-propagated. We refer the reader to [3,6] for a more detailed
discussion.

Notation-wise, we call “new” ei j’s all the interface equalities ei j’s which do not occur
in any clause of the input formula ϕ (including all the clauses learned). Moreover, we
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often write sets of literals {l1, ..., ln} as conjunctions l1 ∧ ...∧ ln, and we often write
clauses (

∨
i li)∨ (

∨
j l j) as implications: (

∧
i¬li) → (

∨
j l j) or (

∧
i¬li ∧

∧
j ¬l j) →⊥.

Hereafter, for the sake of proving the theoretical results in §4 and §5, we assume that
DTC implements the following strategy.

Strategy 1 (NO emulation)

1. All the conflict clauses derived by theory conflicts are learned. 3

2. Each conflict clause in 1. is a mixed boolean+theory conflict clause which is built
from the theory conflict set by means of the last-UIP strategy described in §2.2. 4

3. The literal selection heuristic and the Ti-solvers calls are such that:
(i) new ei j’s are selected only after all the other literals have been assigned,

(ii) Early pruning (EP) is applied before every selection of a new ei j, 5

(iii) the new ei j’s selected are always assigned false,
(iv) each Ti-solver is invoked only if at least one literal (which has not been de-

duced singularly by Ti-solver itself) has been added to its input since the last
call. 6

4. At every early-pruning call on a branch (namely μ) which is found both T1- and T2-
consistent, if one Ti-solver performs the ei j-deduction μ∗ |=Ti

∨k
j=1 e j, s.t. μ∗ ⊆ μTi

,
each e j being an unassigned interface equality on variables in μ, then:

(i) the clause T 2B(μ∗ →∨k
j=1 e j) is learned immediately;

(ii) if k = 1, then ek is added to the current assignment and unit-propagated im-
mediately;

(iii) if k> 1, then ¬e1, ...,¬ek are put on the top of the literal selection list, so that
to be the next ¬ei j’s selected by the literal selection heuristic.

5. [If and only if both Ti-solvers are ei j-deduction complete]
If a total assignment μ which propositionally satisfies ϕ is found Ti-satisfiable for
both Ti’s, and neither Ti-solver performs any ei j-deduction from μ, then DTC stops
returning “Sat”. 7

4 DTC with ei j-Deduction-Complete Ti-solvers vs. NO

In this section, we assume that both the Ti-solvers employed by DTC are ei j-deduction
complete. Under these assumptions, we have the following result.

3 That is, if one Ti-solver returns a conflict set π, then the conflict clauses T 2B(¬π) is always
added to ϕp, either temporarily or permanently.

4 That is, each conflict clause contains all and only (the negation of) the decision literals which
forced the unit-propagation or the ei j-deduction of those in the theory conflict.

5 That is, before adding a new (negated) ei j to μ, the Ti-satisfiability of μ is checked for both
Ti’s by calling the Ti-solver’s. If μ is found Ti-inconsistent for some Ti, then the procedure
backtracks.

6 This avoids invoking a Ti-solver twice in sequence on the same input. The restriction “which
... by Ti-solver itself” means that, if Ti-solver (μ) returns “Sat” and deduces ei j, then Ti-solver
is not invoked on μ∪{ei j}.

7 Step 5. is identical to the T1 ∪T2-satisfiability termination condition of NO.
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Fig. 5. DTC execution of Example 3 on LA(Q)∪EUF , with ei j-deduction-complete Ti-solvers

Theorem 1. Let T1 and T2 be two stably-infinite (possibly non-convex) theories and let
both Ti-solvers be ei j-deduction complete; let ϕ be a pure T1 ∪ T2 formula and let μ
be a total assignment propositionally satisfying ϕ. Let DTC with Strategy 1 prove the
T1 ∪T2-consistency (resp. T1 ∪T2-inconsistency) of μ, returning a conflict set η in the
case of inconsistency. Let dtc br be the number of boolean branches required in the
DTC proof. Then we have:

dtc br ≤ no br (4)

no br being the number of branches performed by a corresponding NO proof of the
T1 ∪T2-consistency (resp. T1 ∪T2-inconsistency) of μ.

Theorem 1 states that, under the same hypotheses of ei j-deduction as NO, DTC emulates
NO with no extra cost in terms of boolean search.

Example 3 (convex case). Consider again the EUF ∪LA(Q) formula ϕ of Example 1.
Figure 5 illustrates a DTC execution when both Ti-solvers are ei j-deduction complete.

On the left branch (when RESET5 is selected), after the unit-propagation of (v5 = 0),
the LA(Q) solver deduces (v0 = v1), and thus by Step 4. (i) of Strategy 1, the clause
C01 is learned and (v0 = v1) is unit-propagated. As a consequence of this, the EUF
solver can deduce (v3 = v4), resulting in the learning of C34 and the unit-propagation of
(v3 = v4), which in turn causes the LA(Q)-deduction of (v2 = v5), with the resulting
learning of C25 and unit-propagation of the deduced equality.

At this point, μ′′EUF ∪{(v2 = v5)} 8 is found EUF -inconsistent, so that the EUF -
solver returns (the negation of) the clause C67, which is resolved backward with the
clauses C25, C34, C01, ¬(v6 = v7), and (RESET5 → (v5 = 0)) as explained in Step
2. of Strategy 1, obtaining a mixed theory+boolean conflict clause C′

67 in the form
(μ∗ ∧RESET5) →⊥ s.t. μ∗ contains no interface equality. C′

67 forces DTC to backjump
up to the last branching point. Then the execution of the right branch begins with the

8 Hereafter, μ′T , μ′′T , μ′′′T will denote generic subsets of μT , T ∈ {EUF ,LA(Q),LA(Z)}.
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SAT

f (v1) = v6

¬( f (v1) = f (v2))
¬( f (v2) = f (v4))

f (v3) = v5

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
v2 ≤ v6 +1

v5 = v4−1
v3 = 0
v4 = 1

¬(v1 = v4)

v2 = v3

v1 = v3

v5 = v6

¬(v2 = v4) v2 = v4

v1 = v4

μLA(Z):μEUF : C13 : (μ′LA(Z)) → ((v1 = v3)∨ (v1 = v4))
C56 : (μ′EUF ∧ (v1 = v3)) → (v5 = v6)
C23 : (μ′′LA(Z)∧ (v5 = v6)) → ((v2 = v3)∨ (v2 = v4))
C24 : (μ′′EUF ∧ (v1 = v3)∧ (v2 = v3)) →⊥
C14 : (μ′′′

EUF ∧ (v1 = v3)∧ (v2 = v4)) →⊥

LA(Z)-deduce (v1 = v4)∨ (v1 = v3), learn C13

EUF -unsat, C14

EUF -unsat, C24

LA(Z)-deduce (v2 = v4)∨ (v2 = v3), learn C23

EUF -deduce (v5 = v6), learn C56

Fig. 6. DTC execution of Ex 4 on LA(Z)∪EUF , with ei j-deduction-complete Ti-solvers

unit-propagation of ¬RESET5 on C′
67 and hence of (v5 = v8) on ¬RESET5 → (v5 = v8),

which produces an assignment propositionally satisfying ϕ. The theory solvers are in-
voked, and the LA(Q) solver deduces again (v0 = v1), learning a clause C′

01 which is
similar to C01 except for the fact that it may contain the redundant literal (v5 = v8) in-
stead of (v5 = 0). 9 Then (v3 = v4) is unit-propagated on C34. At this point, since both
theory solvers cannot deduce any new ei j, by Step 5. of Strategy 1 DTC concludes that
ϕ is EUF ∪LA(Q)-satisfiable. ��

Notice that the left branch of the DTC search tree of Figure 5 mimics directly that of
the NO execution of Figure 2. The main difference relies on the fact that, unlike with
NO, the deduced ei j’s are not exchanged directly by the Ti-solvers, but rather they are
added to the current assignment μ and unit-propagated.

In the right branch, instead, all values are assigned directly by unit-propagation. This
fact illustrates one further potential advantage of DTC with respect to NO: the fact that
new ei j’s are known a priori to the DPLL engine allows their inclusion in the learned
clauses derived by theory conflicts. Thanks to unit-propagation, this makes it possible
to assign truth values to them directly at the boolean level, without performing the
(potentially costly) invocation of the Ti-solvers. In the traditional NO schema, this fact
does not come naturally, because the boolean solver knows nothing about the ei j’s.

We consider now the case where some Ti’s are non-convex.

Example 4 (non-convex case). Consider the EUF ∪LA(Z) formula ϕ and assignment
μ of Example 2. Figure 6 illustrates a DTC execution when both Ti-solvers are ei j-
deduction complete.

The first invocation of the LA(Z) solver results in deducing of the disjunction (v1 =
v4)∨ (v1 = v3) and learning of the corresponding clause C13. By Step 4.(iii) of Strat-
egy 1, then, (v1 = v4) and (v1 = v3) are put on the top of the literal selection list.

9 Here we assume the “worst” case in which μ′LA(Q) in C01 contains the (redundant) literal

(v5 = 0). If this is not the case, then (v0 = v1) is directly unit-propagated on C01, without
calling the theory solvers.
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As a consequence, DTC selects ¬(v1 = v4), and thanks to C13 it immediately unit-
propagates (v1 = v3). At this point the EUF solver can deduce (v5 = v6), so that
the clause C56 is learned and the deduced equality is unit-propagated immediately.
When μLA(Z)∪{(v5 = v6)} is passed to the LA(Z) solver, this deduces the disjunction
(v2 = v4)∨(v2 = v3), learning C23. Selecting ¬(v2 = v4) results in the unit-propagation
of (v2 = v3), which in turn causes a EUF conflict. After the EUF -solver returns
(the negation of) C24, DTC backjumps up to a point where (v2 = v4) can be unit-
propagated. This results again in an EUF -conflict, so that the EUF -solver returns
(the negation of) C14, which causes another backjumping up to where (v1 = v4) can be
unit-propagated. Then, after another invocation to the theory solvers, DTC stops, declar-
ing ϕ to be EUF ∪LA(Z)-satisfiable. ��

As with the convex example, notice that the DTC search tree of Figure 6 mimics directly
that of the NO execution of Figure 3 (both dtc br and no br are equal to 3.)

5 DTC with Non ei j-Deduction-Complete Ti-solvers vs. NO

In this section, we assume that both the Ti-solvers employed by DTC are ¬ei j-minimal
and have limited or no ei j-deduction capabilities. Under these assumptions, we have the
following result.

Theorem 2. Let T1 and T2 be two stably-infinite (possibly non-convex) theories. Let
both Ti-solvers be ¬ei j-minimal, and possibly have some ei j-deduction capabilities; let
ϕ be a pure T1∪T2 formula and let μ be a total assignment propositionally satisfying ϕ.
Let DTC with Strategy 1 prove the T1 ∪T2-consistency (resp. T1 ∪T2-inconsistency) of
μ, returning a conflict set η in the case of inconsistency. Let dtc br and dtc ded be the
number of boolean branches and of ei j-deductions performed in the DTC proof. Then
we have:

dtc br + dtc ded ≤ no br + no ded, (5)

no ded and no br being respectively the number of deductions and of branches per-
formed by a corresponding NO proof of the T1∪T2-consistency (resp. T1∪T2-inconsis-
tency) of μ.

Theorem 2 states that, if the Ti-solvers are both ¬ei j-minimal, then there is a strategy
for DTC which emulates some NO proof (even though the Ti-solvers have limited or no
ei j-deduction capabilities!) at the cost of (at most) one extra boolean branch for every
ei j-deduction performed by NO. Therefore the (possibly very expensive) ei j-deduction
steps of the NO schema can be avoided at the cost of one extra boolean branch each.

More generally, we notice that one key idea in the proof of Theorem 2 is that, when
the DPLL engine fails and generates a conflict set π, it backjumps up to the second-
most-recently-assigned ¬ei j in π, if any [7]. (See, e.g., the case of C23 in Figure 7.)
Therefore, in a more general case than that of Theorem 2 (no ¬ei j-minimality), the
more redundant ¬ei j’s the Ti-solvers are able to remove from the conflict set returned,
the more boolean branches are skipped by backjumping.
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f (v1) = v6

¬( f (v1) = f (v2))
¬( f (v2) = f (v4))

f (v3) = v5

¬(v1 = v4)

¬(v1 = v3)

v2 = v3

¬(v2 = v3)

¬(v2 = v4)

v1 = v3

v5 = v6

v2 = v4

v1 = v4

¬(v5 = v6)

v1 ≥ 0
v1 ≤ 1
v2 ≥ v6
v2 ≤ v6 +1

v5 = v4−1
v3 = 0
v4 = 1

μEUF : μLA(Z):

LA(Z)-unsat, C13

EUF -unsat, C56

LA(Z)-unsat, C23

EUF -unsat, C14

EUF -unsat, C24

C13 : (μ′
LA(Z)) → ((v1 = v3)∨ (v1 = v4))

C56 : (μ′
EUF ∧ (v1 = v3)) → (v5 = v6)

C14 : (μ′′′
EUF ∧ (v1 = v3)∧ (v2 = v4)) →⊥

C24 : (μ′′EUF ∧ (v1 = v3)∧ (v2 = v3)) →⊥

C23 : (μ′′LA(Z)∧ (v5 = v6)) → ((v2 = v3)∨ (v2 = v4))

Fig. 7. DTC execution of Example 5 on LA(Z)∪EUF , with no ei j-deduction. The clauses Ci j’s
are the same as those of Fig. 6.

Example 5 (no ei j-deduction, non-convex case). Consider the EUF ∪LA(Z) formula
ϕ (3) and the assignment μ of Example 2. Look at Fig. 7. Both μLA(Z) and μEUF are
found consistent in the respective theories by the respective solvers.

Then DTC starts selecting new ¬ei j’s, and proceeds without causing conflicts, until
it selects ¬(v1 = v4) and ¬(v1 = v3), which cause a LA(Z) conflict. The branch is
in the form μ∪⋃ j ¬e j , so that, the ¬ei j-minimal conflict set η13 returned is in the
form μ′LA(Z) ∪ {¬(v1 = v3),¬(v1 = v4)}. Thus DTC learns the corresponding clause
C13 (see Fig 7) and backjumps up to the highest point which allows for unit-propagating
(v1 = v3) on C13, and performs such unit propagation. Then DTC starts and proceeds
selecting new ¬ei j’s without causing conflicts, until it selects ¬(v5 = v6), which causes
a EUF conflict represented by the clause C56. As EUF is convex, ¬(v5 = v6) is the
only ¬ei j occurring in the conflict set, so that DTC backtracks over the last chain of
¬ei j’s and unit-propagates (v5 = v6).

Again, DTC selects a chain of new ¬ei j’s without causing conflicts, until it selects
¬(v2 = v4) and ¬(v2 = v3), which cause a LA(Z) conflict represented by clause C23.
As before, it backjumps to the highest point where it can unit-propagate (v2 = v3).
Performing the latter unit propagation causes a EUF conflict, learning the clause C24.
By applying Step 2. of Strategy 1, resolving on literal (v2 = v3) the conflicting clause
C24 with the clause C23 (which caused the unit-propagation of (v2 = v3)), DTC obtains
a clause C′

24 : (μ′′LA(Z) ∧ μ′′EUF ∧ (v5 = v6)∧ (v1 = v3)) → (v2 = v4), which allows it
for backjumping over all the remaining ¬ei j’s of the current chain and unit-propagating
(v2 = v4).

The latter causes a new EUF conflict represented by the clause C14. By Step 2. of
Strategy 1, C14 is resolved with the clauses C′

24, C56, C13 (which caused the propagation
of (v2 = v4), (v5 = v6), (v1 = v3) respectively), obtaining the clause C′

14 : (μ′LA(Z) ∧
μ′′LA(Z) ∧ μ′EUF ∧ μ′′EUF ∧ μ′′′EUF ) → (v1 = v4), which allows for backjumping up to μ

and unit-propagating (v1 = v4).
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Finally, DTC starts and proceeds selecting ¬ei j’s (possibly unit-propagating some
value due to the clauses learned) without generating conflicts, so that to conclude that
the formula is T1 ∪T2-satisfiable.

Comparing with Fig. 3, dtc br = 6, dtc ded = 0, no ded = 3 and no br = 3. ��

Notice that the three leftmost diagonal branches in Fig. 7 obtain the same effect as the
ei j-deduction steps in Fig. 6 (and in Fig. 3).

6 Conclusions

Theorem 1 shows that, under the same hypotheses of ei j-deduction-completeness as
NO, DTC can emulate NO, with no extra boolean search. Theorem 2 shows that, un-
der the hypothesis of ¬ei j-minimality, even Ti-solvers with limited or no ei j-deduction
capabilities allow DTC to emulate NO, at the cost of (at most) one extra boolean
branch for every (possibly very expensive) ei j-deduction performed by NO. Both re-
sults also highlight the fact that DTC naturally allows for learning clauses containing
ei j’s, which can be used in subsequent branches to prune search and avoid redoing the
same search/deductions from scratch.

We remark that Strategy 1 has been conceived only for mimicking NO, and by no
means it is assumed to be the most efficient strategy for DTC. (E.g., Step 3.(ii) can be
substituted with a weakened version of EP [4], and more efficient literal selection strate-
gies might be preferable to Step 3.(i) and (iii).) Some alternatives are currently under
investigation, and their theoretical properties and practical performance are subjects for
future work.

As far as the ¬ei j-minimality hypothesis is concerned, we notice that, at least for
theories like EUF and LA(Q), there are known decision procedures that fulfill this
requirement (see [12] and [4] respectively.) For other theories, the problem of ¬ei j-
minimization opens a novel research branch. 10 However, we remark that DTC works
also when the Ti-solvers are not ¬ei j-minimal, at the cost of (at most) one extra branch
to explore for each redundant ¬ei j returned in a conflict set.

It is also important to notice that, in general, only a fraction of the assignments μ
enumerated turn out to be Ti-satisfiable for both Ti’s, so that to require the boolean
search on the ei j’s. Thus, for all the other branches, DTC may save the effort of many
failed attempts of deducing implied ei j’s.

On the whole, the results presented in this paper show that DTC allows for trading
boolean search for ei j-deduction. Thus everyone can choose and implement the most
suitable Ti-solvers without being forced by the ei j-deduction-completeness straitjacket:
for theories for which efficient ei j-deduction complete procedures are available (e.g.,
EUF [12]), DTC allows for exploiting the full power of ei j-deduction; for harder the-
ories (e.g., LA(Z)), the research task changes from that of finding ei j-deduction com-
plete T -solvers to that of finding ¬ei j-minimal or nearly-¬ei j-minimal ones.

10 Bottom line, one can always make μ ¬ei j-minimal by dropping the remaining ¬ei j’s one by
one, each time checking μ\{¬ei j}. Notice that, in general, with ¬ei j-minimization the search
for the candidate ¬ei j’s to drop is restricted to only those occurring in μ, whilst with ei j-
deduction the search for the candidate ei j’s to deduce extends to all the unassigned ei j’s.
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Abstract. We address the problems of combining satisfiability proce-
dures and consider two combination scenarios: (i) the combination within
the class of rewriting-based satisfiability procedures and (ii) the Nelson-
Oppen combination of rewriting-based satisfiability procedures and arbi-
trary satisfiability procedures. In each scenario, we use meta-saturation,
which schematizes saturation of the set containing the axioms of a given
theory and an arbitrary set of ground literals, to syntactically decide
sufficient conditions for the combinability of rewriting-based satisfiabil-
ity procedures. For (i), we give a sufficient condition for the modular
termination of meta-saturation. When meta-saturation for the union of
theories halts, it yields a rewriting-based satisfiability procedure for the
union. For (ii), we use meta-saturation to prove the stable infiniteness of
the component theories and deduction completeness of their rewriting-
based satisfiability procedures. These properties are important to estab-
lish the correctness of the Nelson-Oppen combination method and to
obtain an efficient implementation.

1 Introduction

Satisfiability procedures for theories of data types such as arrays, lists, or integers
are at the core of many state-of-the-art verification tools. The task of design-
ing, proving correct, and implementing such procedures is far from simple. One
of the main problems is proving their correctness. To overcome this difficulty,
an approach to flexibly build satisfiability procedures based on saturation has
been proposed in [3]. The key idea is that proving correctness of the procedure
for a theory T reduces to showing the termination of the fair and exhaustive
application of the rules of the superposition calculus [10] on an axiomatization
of T plus an arbitrary set S of (ground) literals. The approach has been shown
competitive with ad hoc satisfiability procedures in [1]. An automated method
to check the termination of superposition for a theory T is given in [8] by using
a meta-saturation calculus schematizing the inferences of the standard superpo-
sition calculus relevant to solve the satisfiability problem of T .

Most verification problems require reasoning in a combination of theories. As
a consequence, there is a need to modularly build procedures for the composed
theory by re-using available procedures for the component theories. In this re-
spect, there are two possible approaches:

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 542–556, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(i) use superposition on the union of the axioms of the theories being combined
or

(ii) use the Nelson-Oppen combination schema [9] to modularly combine pro-
cedures for the component theories.

For (i), [2] provides a sufficient condition on component theories to guarantee
the termination of the superposition calculus on their union. Here, the problem
is the possibility to have “across-theories inferences,” which are likely to prevent
termination when theories are not considered in isolation. To avoid this problem,
in this paper, we give a condition (along the lines of [2]) on the component the-
ories to guarantee that superposition may derive only finitely many new clauses
when considering the composed theory. Also, we go a step further by describ-
ing an automatic test to check that a component theory satisfies the sufficient
condition for modular termination by using meta-saturation.

For (ii), it is particularly interesting to study how to efficiently incorpo-
rate rewriting-based procedures in the Nelson-Oppen schema. One of the key
problems to obtain an efficient integration is the capability to derive equalities
between shared constants. Theoretically, it is not a problem: to check that a
(ground) formula φ is entailed by a theory T , it is sufficient to check that the
negation of φ is unsatisfiable in T . Practically, this solution requires guessing
which may decrease performance unacceptably (see [6] for an in-depth discus-
sion of this issue). To overcome this problem, [7] shows that—under certain
assumptions—the exhaustive application of the rules of the superposition calcu-
lus derives enough equalities between shared constants to guarantee the
completeness of the Nelson-Oppen schema. This result is not obvious since su-
perposition is not complete for consequence finding. Here, we give a sufficient
condition for a rewriting-based satisfiability procedure to be deduction complete,
thereby generalizing the results in [7] which were developed for some theories
in an ad hoc way. More importantly, we give an automatic test to check the
condition for deduction completeness, again, by using meta-saturation.

The final contribution of this paper is an automatic test for establishing
whether a theory admitting a rewriting-based satisfiability procedure is stably
infinite1 by using meta-saturation. To our knowledge, this is the first time that
an automatic check for stable infiniteness is described.

Plan of the paper. Section 2 introduces some background notions. Section 3
overviews the main ideas of the rewriting-based [3] and the meta-saturation [8]
approaches. Section 4 presents the modularity result on the termination of su-
perposition and its automatic check. Section 5 describes the conditions for sta-
ble infiniteness and deduction completeness, and their automatic tests. Section
6 illustrates the results of Sections 4 and 5 on some interesting theories. Sec-
tion 7 discusses the relevance of the results and compares them with related
work.

1 Roughly, a theory T is stably infinite iff for every satisfiable quantifier-free formula
ϕ, we have that ϕ is satisfiable in an infinite model of T .
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2 Preliminaries

We assume the usual first-order syntactic notions of signature, term, position,
and substitution, as defined, e.g., in [5]. If l and r are two terms, then l = r
is an equality and ¬(l = r) (also written as l 	= r) is a disequality. A lit-
eral is either an equality or a disequality. A first-order formula is built in the
usual way over the universal and existential quantifiers, Boolean connectives,
and symbols in a given first-order signature. We call a formula ground if it
has no variables. A clause is a disjunction of literals. A unit clause is a clause
with only one disjunct, equivalently a literal. A Horn clause is a clause with
at most one equality. The empty clause is the clause with no disjunct, equiv-
alently an unsatisfiable formula. We denote with V ars(t), V ars(l), V ars(φ)
the sets of variables appearing respectively in a term t, a literal l and a for-
mula φ. For a term t, depth(t) = 0, if t is a constant or a variable, and
depth(f(t1, . . . , tn)) = 1+max{depth(ti) | 1 ≤ i ≤ n}. A term is flat if its depth
is 0 or 1. For a literal, depth(l �� r) = depth(l) + depth(r), where ��∈ {=, 	=}. A
positive literal is flat if its depth is 0 or 1. A negative literal is flat if its depth
is 0. A positive literal of the form f(k1, . . . , km) = k0, where ki is a constant or
a variable for i ∈ {0, . . . , m}, is called a flat f -equality.

We also assume the usual first-order notions of model, satisfiability, validity,
logical consequence. A first-order theory (with finite signature) is a set of first-
order formulae with no free variables. When T is a finitely axiomatized theory,
Ax(T ) denotes the set of axioms of T . All the theories in this paper are first-
order theories with equality, which means that the equality symbol = is always
interpreted as the equality relation. A formula is satisfiable in a theory T if it is
satisfiable in a model of T . The satisfiability problem for a theory T amounts to
establishing whether any given finite conjunction of literals (or equivalently, any
given finite set of literals) is T -satisfiable or not. A satisfiability procedure for T
is any algorithm that solves the satisfiability problem for T (the satisfiability of
any quantifier-free formula can be reduced to the satisfiability of sets of literals
by converting to disjunctive normal form and then splitting on disjunctions).

3 Rewriting-Based Satisfiability Procedure

3.1 The Superposition Calculus (SP)

In the sequel, = is (unordered) equality, ≡ is identity, l, r, u, t are terms, v, w, x,
y, z are variables, all other lower case letters are constant or function symbols. A
fundamental feature of SP is the usage of a reduction ordering  which is total on
ground terms, for example the lexicographic path ordering [5]. We also assume
that if a term t is not a variable or constant, then for any constant c we have
that t  c. The ordering  is extended to positive literals by considering them
as multisets of terms, and then to the clauses by considering them as multisets
of positive literals. Also, we define  in such a way that negative literals are
always bigger than the positive ones.
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Superposition
Γ ⇒ Δ, l[u′] = r Π ⇒ Σ, u = t

σ(Γ,Π ⇒ Δ, Σ, l[t] = r)
(i), (ii), (iii), (iv)

Paramodulation
Γ, l[u′] = r ⇒ Δ Π ⇒ Σ, u = t

σ(l[t] = r, Γ, Π ⇒ Δ, Σ)
(i), (ii), (iii), (iv)

Reflection
Γ, u′ = u ⇒ Δ

σ(Γ ⇒ Δ)
(v)

Eq. Factoring
Γ ⇒ Δ, u = t, u′ = t′

σ(Γ, t = t′ ⇒ Δ, u = t′)
(i), (vi)

where a clause ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bn is written in sequent style as
{A1, . . . , An} ⇒ {B1, . . . , Bm} (where the Ai’s and Bj ’s are equalities), equality is the
only predicate symbol, σ is the most general unifier of u and u′, u′ is not a variable in
Superposition and Paramodulation, L is a literal, and the following hold:

(i) σ(u) �� σ(t), (ii) ∀L ∈ Π ∪ Σ : σ(u = t) �� σ(L), (iii) σ(l[u′]) �� σ(r),
(iv) ∀L ∈ Γ ∪ Δ : σ(l[u′] = r) �� σ(L), and (v) for all L ∈ Γ ∪ Δ : σ(u′ = u) �≺ σ(L),
and (vi) for all L ∈ Γ : σ(u) �� σ(L), and for all L ∈ {u′ = t′} ∪ Δ : σ(u = t) �≺ σ(L).

Fig. 1. Expansion Inference Rules of SP

Subsumption
S ∪ {C, C′}

S ∪ {C}
if for some substitution θ, θ(C) ⊆
C′

Simplification
S ∪ {C[l′], l = r}

S ∪ {C[θ(r)], l = r}
if l′ ≡ θ(l), θ(l) $ θ(r), and
∀L ∈ C[θ(l)] : L $ (θ(l) = θ(r))

Deletion
S ∪ {Γ ⇒ Δ, t = t}

S

where C and C′ are clauses and S is a set of clauses.

Fig. 2. Contraction Inference Rules of SP

A clause C is redundant with respect to a set S of clauses if either C ∈ S or
S can be obtained from S ∪ {C} by a sequence of application of the contraction
rules of Figure 2. An inference is redundant with respect to a set S of clauses
if its conclusion is redundant with respect to S. A set S of clauses is saturated
with respect to SP if every inference of SP with a premise in S is redundant
with respect to S. A derivation is a sequence S0, S1, . . . , Si, . . . of sets of clauses
where at each step an inference of SP is applied to generate and add a clause
(cf. expansion rules in Figure 1) or to delete or reduce a clause (cf. contraction
rules in Figure 2). A derivation is characterized by its limit, defined as the set
of persistent clauses S∞ =

⋃
j≥0

⋂
i>j Si.

A derivation S0, S1, ..., Si, ... with limit S∞ is fair with respect to SP if for
every inference in SP with premises in S∞, there is some j ≥ 0 such that the
inference is redundant in Sj .

Theorem 1 ([10]). If S0, S1, . . . is a fair derivation of SP, then ( i) its limit
S∞ is saturated with respect to SP, ( ii) S0 is unsatisfiable iff the empty clause
is in Sj for some j, and ( iii) if such a fair derivation is finite, i.e. it is of the
form S0, . . . , Sn, then Sn is saturated and logically equivalent to S0.
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We say that SP is refutation complete since it is possible to derive the empty
clause with a finite derivation from an unsatisfiable set of clauses (cf. (ii) of
Theorem 1).

3.2 Rewriting-Based Methodology

The rewriting-based methodology for T -satisfiability consists of two phases:

1. Flattening: all ground literals are flattened by introducing new constants,
yielding an equisatisfiable flat problem.

2. Ordering selection and termination: any fair derivation of SP is shown to be
finite when applied to a flat problem together with the axioms of T , provided
that  satisfies a few properties depending on T .

If T is a theory for which the rewriting-based methodology applies, a T -satisfiabi-
lity procedure can be built by implementing the flattening (this can be done once
and for all), and by using a prover mechanizing SP with a suitable ordering . If
the final set of clauses returned by the prover contains the empty clause, then the
T -satisfiability procedure returns unsatisfiable; otherwise, it returns satisfiable.

3.3 Meta-saturation

Meta-saturation [8] has been designed to simulate the saturation process of the
axioms of a given theory T together with an arbitrary set S of ground flat literals.
It works by saturating the axioms Ax(T ) together with the set GT

0 schematizing
any finite set of ground flat literals built out of symbols in the signature of T ,
with respect to the inference system mSP (see Figures 3 and 4). Intuitively, the
saturation of Ax(T ) ∪ GT

0 schematizes the saturation of Ax(T ) together with
any finite set of ground flat literals. Therefore if the meta-saturation halts for
the theory T , then any saturation of Ax(T ) ∪ S will be finite and consequently
the T -satisfiability problem is decidable. Below, we quickly overview the formal
concepts underlying the meta-saturation approach of [8].

An atomic constant constraint is of the form const(t) and it is true if t is a
constant. A constant constraint is of the form const(t1) ∧ . . . ∧ const(tn), n ≥ 0.
A substitution λ satisfies a constant constraint φ if λ(φ) is true. A constrained
clause is of the form C ‖ φ, where C is a (unconstrained) clause and φ is a
constant constraint. We say that λ(C) is a constraint instance of C ‖ φ if
dom(λ) = V ars(φ) and ran(λ) only contains constants. There are standard
techniques to define the ordering on constrained clauses by comparing all ground
instances of constrained clauses (see [10] for details).

Define GT
0 as follows:

GT
0 ={x = y ‖ const(x) ∧ const(y)} ∪ {x 	= y ‖ const(x) ∧ const(y)}∪⋃

f∈ΣT

{f(x1, . . . , xn) = x0 ‖
n∧

i=0

const(xi)} ,

where ΣT is the signature of T .
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The inference system mSP (see Figures 3 and 4) is almost identical to SP ,
except that all clauses now have constraints (unconstrained clauses have empty
constraints), which are inherited by the conclusions of an inference; also Con-
strained Contraction Rules have different applicability conditions. This is be-
cause we cannot simulate every subsumption, deletion or simplification since
we cannot assume that ground literals are always present in a saturation of
Ax(T ) ∪ S, on which such contraction inferences depend.

Superposition
Γ ⇒ Δ, l[u′] = r ‖ φ Π ⇒ Σ, u = t ‖ ϕ

σ(Γ,Π ⇒ Δ, Σ, l[t] = r ‖ φ ∧ ϕ)
(i), (ii), (iii), (iv)

Paramodulation
Γ, l[u′] = r ⇒ Δ ‖ φ Π ⇒ Σ, u = t ‖ ϕ

σ(l[t] = r, Γ, Π ⇒ Δ, Σ ‖ φ ∧ ϕ)
(i), (ii), (iii), (iv)

Reflection
Γ, u′ = u ⇒ Δ ‖ φ

σ(Γ ⇒ Δ ‖ φ)
(v)

Eq. Factoring
Γ ⇒ Δ, u = t, u′ = t′ ‖ φ

σ(Γ, t = t′ ⇒ Δ, u = t′ ‖ φ)
(i), (vi)

where a clause ¬A1 ∨ · · · ∨ ¬An ∨ B1 ∨ · · · ∨ Bn is written in sequent style as
{A1, . . . , An} ⇒ {B1, . . . , Bm} (where the Ai’s and Bj ’s are equalities), equality is the
only predicate symbol, σ is the most general unifier of u and u′, u′ is not a variable in
Superposition and Paramodulation, L is a literal, and the following hold:

(i) σ(u) �� σ(t), (ii) ∀L ∈ Π ∪ Σ : σ(u = t) �� σ(L), (iii) σ(l[u′]) �� σ(r),
(iv) ∀L ∈ Γ ∪ Δ : σ(l[u′] = r) �� σ(L), and (v) for all L ∈ Γ ∪ Δ : σ(u′ = u) �≺ σ(L),
and (vi) for all L ∈ Γ : σ(u) �� σ(L), and for all L ∈ {u′ = t′} ∪ Δ : σ(u = t) �≺ σ(L).

Fig. 3. Constrained Expansion Inference Rules of mSP

Subsumption
S ∪ {C, C′ ‖ φ}

S ∪ {C}
if C ∈ Ax(T ) and for some sub-
stitution θ, θ(C) ⊆ C′, or if C and
C′ ‖ φ are renamings of each other.

Simplification
S ∪ {C[l′] ‖ φ, l = r}

S ∪ {C[θ(r) ‖ φ], l = r}
if l = r ∈ Ax(T ), l′ ≡ θ(l), θ(l) $
θ(r), and
∀L ∈ C[θ(l)] : L $ (θ(l) = θ(r))

Deletion
S ∪ {Γ ⇒ Δ, t = t ‖ φ}

S
S ∪ {Γ ⇒ Δ ‖ φ}

S
if φ is unsatisfiable

where C and C′ are clauses and S is a set of clauses.

Fig. 4. Constrained Contraction Inference Rules of mSP

Lemma 1 (Theorem 5 of [8]). Let T be a theory axiomatized by a finite set
Ax(T ) of clauses, which is saturated with respect to SP. Let GT

∞ be the set of all
clauses generated in a finite saturation of Ax(T ) ∪ GT

0 by mSP. Let S be a set
of ground flat literals. Then, we can saturate Ax(T ) ∪ S by SP such that every
clause generated in the saturation is
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(A) a disjunction of equalities between constants c1 = c′1 ∨ . . . ∨ cn = c′n, where
n ≥ 1, or

(B) a clause of the form C ∨ c1 = c′1 ∨ . . . ∨ cn = c′n, where n ≥ 0 and C is a
constraint instance of a clause C′ in GT

∞, or
(C) a clause of the form C ∨ c1 = c′1 ∨ . . .∨ cn = c′n such that n ≥ 0 and C is a

ground flat f -equality and f 	∈ ΣT .

In [8], an extension of the Superposition Calculus SP by a special rule — called,
the Orient rule — is used, which is crucial to obtain better complexity results
than those in [3]. However, Lemma 1 continues to hold for the Superposition
Calculus SP used in this paper. In fact, a proof of Lemma 1 can be obtained
from that of Theorem 2 in [8] by simply omitting the case for the Orient rule.
For the sake of simplicity, we have chosen to disregard complexity issues in this
paper and hence we have omitted the Orient rule. It would be straightforward to
include such a rule to give similar complexity results as those in [8] to complement
the results obtained in this paper.

4 Modular Termination of Rewriting-Based Procedures

We study conditions under which the theory T1 ∪ T2 admits a rewriting-based
satisfiability procedure, provided that T1 and T2 are disjoint theories admitting
rewriting-based satisfiability procedures. To this end, we have to consider termi-
nation of the SP-saturation process of Ax(T1)∪Ax(T2)∪S for an arbitrary set
of ground flat literals S. Since the signatures of the component theories are dis-
joint, across-theories SP-inferences can only take place on variables, constants,
or flat uninterpreted terms. It is easy to see that SP-inferences on constants
or flat uninterpreted terms generate finitely many clauses. It simply remains to
exclude across-theories SP-inferences on variables to ensure the modular termi-
nation. Before stating formally the results, we need to introduce the following
definition.

Definition 1 (Variable-active Clause). A clause C is variable-active with
respect to an ordering  if

– C contains a literal of the form X = t, where X 	∈ V ars(t), and
– there exists some substitution λ such that λ(X = t) is maximal in λ(C) and

λ(X) is maximal in λ(X = t) with respect to .

A constrained clause is variable-active with respect to  if one of its constraint
instances is variable-active with respect to .

From now on, when we say that a clause C is variable-active we mean that C is
variable-active with respect to  used by SP . The following proposition provides
us with a syntactic criterion to check whether a clause is variable-active or not.

Proposition 1. A clause C is variable-active if and only if C contains a max-
imal literal of the form X = t and X 	∈ V ars(t).
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Proof. (⇒). If C contains no literals of the form X = t then C is not variable-
active. If C contains literals of the form X = t but they are not maximal in
C then C is still not variable-active. Assume that a maximal literal X = t
is in C but X ∈ V ars(t). Then by subterm property, λ(t)  λ(X) for every
substitution λ and hence λ(X) is not maximal in λ(X = t). Consequently C is
not variable-active.

(⇐). Assume that C contains a maximal literal of the form X = t, where
X 	∈ V ars(t), then we can choose a substitution λ such that λ(X) is maximal in
λ(X = t) and λ(X = t) is maximal in λ(C) and thereby C is variable-active. ��

Lemma 2. Let T be a theory axiomatized by a finite set Ax(T ) of clauses, which
is saturated with respect to SP . Assume that any saturation of Ax(T ) ∪ GT

0 by
mSP is finite and does not contain any variable-active clauses. Then for every
set S of ground flat literals, any saturation of Ax(T )∪S by SP does not contain
any variable-active clauses.

Proof. Assume that a saturation of Ax(T )∪S by SP contains a clause variable-
active D, then D must have the form (B) in Lemma 1, i.e. a clause of the form
C ∨ c1 = c′1 ∨ . . . ∨ cn = c′n, where n ≥ 0 and C is a constraint instance of a
clause C′ in GT

∞. That would imply that C is variable-active and C′ also is, and
this contradicts the hypothesis of the lemma. ��

Lemma 3. Let Ti be a theory axiomatized by a finite set Ax(Ti) of clauses,
which is saturated with respect to SP for i = 1, 2. Assume that

– the signatures of T1 and T2 are disjoint, and
– for every set S of ground flat literals, any saturation of Ax(Ti)∪S by SP is

finite and does not contain any variable-active clauses, for i = 1, 2.

Then for every set S of ground flat literals, any saturation of Ax(T1)∪Ax(T2)∪S
by SP is finite.

Proof. We consider all possible across-theories inferences between clauses of the
forms listed in Lemma 1. Inferences between clauses of the form (A) generate
finitely many clauses of this form. Inferences between clauses of the form (C)
also generate finitely many clauses of the form (A). Inferences between a clause
of the form (A) and a clause of the form (C) also generate finitely many clauses
of the form (C). Now, let us consider inferences between clauses of the form (B),
i.e. C ∨ c1 = c′1 ∨ . . .∨ cn = c′n, where C is a constraint instance of a clause C′ in
GTi

∞, for i = 1, 2 and other clauses. This kind of inferences is possible if and only
if C is variable-active because the signatures of the theories are disjoint; that
would contradict the hypothesis of the theorem. Consequently, the number of
clauses generated in any saturation of Ax(T1)∪Ax(T2)∪S by mSP is finite. ��

Lemma 2 and Lemma 3 allow us to state the first important result of the paper
regarding the modular termination of rewriting-based satisfiability procedures.

Theorem 2. Let Ti be a theory axiomatized by a finite set Ax(Ti) of clauses,
which is already saturated with respect to SP for i = 1, 2. Assume that
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– the signatures of T1 and T2 are disjoint, and
– any saturation of Ax(Ti) ∪ GTi

0 by mSP is finite and does not contain any
variable-active clauses, for i = 1, 2.

Then, SP is a satisfiability procedure for T1 ∪ T2.

5 Stable Infiniteness and Deduction Completeness

The Nelson-Oppen combination method allows us to combine satisfiability proce-
dures for the class of stably infinite theories (cf. Definition 2 below) in a modular
way.

Definition 2 (Stably Infinite Theory). Let T be a consistent theory. T is
stably infinite iff for every T -satisfiable conjunction ϕ of ground literals, we have
that ϕ is T -satisfiable in an infinite model.

Since the requirement of being stably infinite is important for the Nelson-Oppen
combination method, it is interesting to develop automated techniques to prove
stable infiniteness. Here, we develop such a technique for theories admitting
rewriting-based satisfiability procedures by using meta-saturation.

5.1 Deciding Stable Infiniteness

Let ∃≥n be ∃x1 . . . xn.
∧

j �=k(xj 	= xk), ∃≤n be ∀x0 . . . xn.
∨

j �=k(xj = xk), and
∃∞ stand for the infinite set {∃≥n|n ≥ 2}. It is easy to see that ∃≥n, ∃≤n, and
∃∞ constrain the cardinality of each one of their models to be at least n, at most
n, and infinite, respectively.

Lemma 4. Let T be a first-order theory. If T has no infinite models, then there
exists a positive integer n such that, for each model M of T , the cardinality of
M is bounded by n.

The proof of this lemma can be found in any introductory textbook about model
theory (see, e.g., [12]). The key idea is to apply compactness to T ∪ ∃∞.

Definition 3 (Finite Cardinality Clause). A clause is a finite cardinality
clause if it has the form ∃≤n, for some positive integer n.

Lemma 5. Let T be a consistent theory. If T has no infinite models then T
entails a finite cardinality clause.

Proof. Assume that T has no infinite models. Let M be a model of T . Then, we
have M |= ∃≤κ (i.e. M contains at most κ elements) for |M | = κ. By Lemma
4, we know that there exists some positive integer n such that the cardinality of
every model of T is bounded by n, which implies that there are finitely many
models M1, ...,Mr (for some r ≥ 1) of T , up to isomorphism. Let C be the
clause

∨r
i=1 ∃≤κi , where Mi is a model of T , |Mi| = κi (for i = 1, ..., r), and we

have left implicit the universal quantifiers of ∃≤κi . Clearly, we have T |= C and
C entails necessarily a finite cardinality clause. ��



Automatic Combinability of Rewriting-Based Satisfiability Procedures 551

Lemma 6. Let T be a consistent theory axiomatized by a finite set Ax(T ) of
clauses and S be a finite T -satisfiable set of ground literals. If T ∪ S entails a
finite cardinality clause, then any saturation of Ax(T ) ∪ S by SP contains a
variable-active clause.

Proof. Assume that there is some finite cardinality clause C such that T∪S |= C.
Reasoning by refutation, T ∪S |= C iff S∧¬C is not T -satisfiable. Hence, it must
be possible to derive the empty clause by applying SP to the set Ax(T ) ∪ S ∪
Sk(¬C), where C ≡ ∃≤n and Sk(¬C) being the set {csk

i 	= csk
j | 0 ≤ i 	= j ≤ n}

such that csk
i , csk

j are Skolem constants (recall that each implicitly universally
quantified variable in C becomes existentially quantified in ¬C). To obtain a
saturation of Ax(T ) ∪ S ∪ Sk(¬C), it is possible to obtain the saturation S′ of
Ax(T ) ∪ S first (which is saturated by SP with respect to the extension of the
signature of the clauses in Ax(T ) ∪ S by the Skolem constants introduced by
Sk because SP is stable under signature extensions [10]) and then consider all
possible inferences between a clause in S′ and one in Sk(¬C).2 Let us analyze
such inferences, i.e. inferences between a clause csk

i 	= csk
j and some clause s =

t∨D in S′. This kind of inference is possible only if s, t are variables or constants
and s = t is maximal in s = t∨D. If both s and t are constants, then an inference
between csk

i 	= csk
j and s = t ∨ D is not possible. Let t be a variable. Now if s is

a term containing a function symbol of arity greater than zero then an inference
is not possible since σ(s)  csk

j , where σ is the most general unifier of t and csk
j .

Therefore s is a variable or a constant, which implies t 	∈ V ars(s), otherwise we
have a tautology clause which is immediately deleted. But then by Proposition
1, we have that s = t ∨ D is a variable-active clause, and this completes the
proof. ��

We are now ready to state and to prove the second important result of this paper
for automatically recognizing stably infinite theories.

Theorem 3. Let T be a consistent theory axiomatized by a finite set Ax(T ) of
clauses, which is saturated with respect to SP. Let GT

∞ be the set of all clauses
generated in a finite saturation of Ax(T ) ∪ GT

0 by mSP. If GT
∞ contains no

variable-active clauses, then T is stably infinite.

Proof. By contradiction, assume that T is not stably infinite. Then, there must
exist a T -satisfiable set S of ground literals such that T ∪ S has no infinite
models. By Lemma 5, T ∪S entails some finite cardinality clause. It follows from
Lemma 6 that any saturation of Ax(T )∪S contains some variable-active clause.
Then, by Lemma 2, GT

∞ contains a variable-active clause, which contradicts the
hypothesis of the theorem. ��

2 No other inferences are possible between two clauses in S′ ∪ Sk(¬C) since S′ has
already been saturated by SP and Sk(¬C) contains only negative unit clauses to
which only Reflection (cf. Figure 1) can be applied obtaining the empty clause,
thereby concluding the proof.
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5.2 Deciding Deduction Completeness

The crux of the Nelson-Oppen combination method is to exchange entailed equal-
ities between satisfiability procedures. There does not seem to be any problem
in using a satisfiability procedure to check whether a set S of literals entails a
formula φ in a theory since we can check whether S and the negation of φ is
unsatisfiable. However, to implement the Nelson-Oppen combination method ef-
ficiently, the satisfiability procedure for the component theories must be capable
to derive the equalities to exchange with other procedures.

Definition 4 (Elementary Equality). An elementary equality is an equality
between constants.

Satisfiability procedures capable of deriving sufficiently many elementary equal-
ities to ensure the completeness of the Nelson-Oppen method will be called
deduction complete.

Definition 5 (Deduction Complete Satisfiability Procedure). A T -sati-
sfiability procedure is deduction complete with respect to elementary equalities
iff for any T -satisfiable conjunction φ of ground literals it returns, in addition
to satisfiable, a set Se of elementary equalities such that for every elementary
equality c = c′, the following holds: T |= φ ⇒ c = c′ iff Se |= c = c′.

Lemma 7. Assume

– T to be a theory axiomatized by a finite set Ax(T ) of Horn clauses, which is
saturated with respect to SP;

– GT
∞ to be the set of all clauses generated in a finite saturation of Ax(T )∪GT

0

by mSP such that GT
∞ contains no variable-active clauses;

– S to be a finite T -satisfiable set of ground flat literals;
– S′ to be a saturation of Ax(T ) ∪ S by SP.

Then, for every elementary equality c = c′ such that Ax(T ) ∪ S |= c = c′, we
have that the subset containing all elementary equalities in S′ entails c = c′.

Proof. Assume that there is some elementary equality c = c′ such that T ∪ S |=
c = c′. Reasoning by refutation, T ∪S |= c = c′ iff S ∧ c 	= c′ is not T -satisfiable.
Hence, it must be possible to derive the empty clause by applying SP to the set
S′ ∪ {c 	= c′}. Since S′ is T -satisfiable and saturated, only inferences involving
both clauses from (or inferred from) S′ and c 	= c′ can infer the empty clause.
Let us analyze such inferences, i.e. inferences between c 	= c′ and some clause
C′ in S′. If there is an inference between c 	= c′ and C′, then C′ must be an
equality between constants or variables. This is because the ordering  is defined
such that a disequality is always bigger than an equality and as consequence an
equality is maximal in a clause only if the latter contains no disequalities. If C′

contains a variable, then C′ is variable-active. This implies that GT
∞ contains

a variable-active clause because C′ must have the form (B) listed in Lemma 1;
that would contradict the assumption of the lemma. If C′ only contains con-
stants, then C′ is an elementary equality and the clause inferred from c 	= c′
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and C′ must be a disequality between constants. This means that an inference
between c 	= c′ and a clause in S′ is possible only if the latter is an elementary
equality and only derives a disequality between constants. Therefore, the subset
containing all elementary equalities in S′ together with c 	= c′ suffice to infer the
empty clause. Or equivalently the subset containing all elementary equalities in
S′ entails c = c′. ��

The next theorem, which directly follows from Lemma 7, offers an automated
check for deduction completeness by meta-saturation.

Theorem 4. Let T be a theory axiomatized by a finite set Ax(T ) of Horn
clauses, which is saturated with respect to SP. Let GT

∞ be the set of all clauses
generated in a finite saturation of Ax(T ) ∪ GT

0 by mSP. If GT
∞ contains no

variable-active clauses, then SP is a deduction complete T -satisfiability proce-
dure with respect to elementary equalities.

6 Application

We apply the main results of this paper (Theorem 2, 3, and 4) to some of
the theories considered in [3]. For the sake of conciseness, let const(x1, ..., xn)
abbreviate const(x1) ∧ · · · ∧ const(xn), where x1, ..., xn are variables.

Theory of Equality. The theory E of equality is considered primitive in our
framework and so it is axiomatized by the empty set of sentences. Then, GE

0

consists of the following constrained clauses

x = y ‖ const(x, y) and x 	= y ‖ const(x, y).

Now, GE
∞ contains all clauses in GE

0 . Indeed, GE
∞ is finite and contains no

variable-active clauses. It follows from Theorem 3 that E is stably infinite. And
SP is a deduction complete procedure for E by Theorem 4.

Theory of Lists. Let ΣL = {cons, car, cdr}. The theory L of lists is axiomatized
by the following set Ax(L) of axioms:

{car(cons(X, Y )) = X, cdr(cons(X, Y )) = Y, cons(car(X), cdr(X)) = X}

where X and Y are implicitly universally quantified variables. Then, GL
0 consists

of the clauses in GE
0 ∪ Ax(L) and the following clauses:

car(x) = y ‖ const(x, y),
cdr(x) = y ‖ const(x, y),

cons(x, y) = z ‖ const(x, y, z).

Now, GL
∞ consists of all clauses in GE

∞ ∪ Ax(L) ∪ GL
0 and the following clauses:

cons(car(x), y) = z ‖ const(x, y, z)
cons(x, cdr(y)) = z ‖ const(x, y, z)
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Again, we have that GL
∞ is finite and no variable-active clause is in GL

∞. It
follows from Theorem 3 that L is stably infinite. Since L is equational, SP is a
deduction complete satisfiability procedure for L by Theorem 4.

Theory of Arrays. Let ΣA = {select, store}. The theory A of arrays is axioma-
tized by the following finite set Ax(A) of axioms:

{select(store(A, I, E), I) = E, I = J ∨ select(store(A, I, E), J) = select(A, J)}

where A, I, J, E are implicitly universally quantified variables. Then, GA
0 consists

of the clauses in GE
0 and the following clauses:

select(x, y) = z ‖ const(x, y, z)
store(x, y, z) = t ‖ const(x, y, z, t)

And GA
∞ consists of all clauses in GE

∞ ∪ Ax(A) ∪ GA
0 and the following clauses:

select(x, t) = select(z, t)∨ y = t ‖ const(x, y, z)
select(x, t) = z ∨ y = t ‖ const(x, y, z, t)

x = y ∨ z = t ‖ const(x, y, z, t)
x = y ∨ z = t ∨ u = v ‖ const(x, y, z, t, u, v)

GA
∞ is finite and does not contain any variable-active clauses; and consequently

A is stably infinite and SP is a satisfiability procedure for A.

Union of the theories of Lists and Arrays. Since GL
∞ and GA

∞ are both finite
and contain no variable-active clauses, it follows from Theorem 2 that SP is a
satisfiability procedure for L∪A. Unsurprisingly, L, A, and L∪A are all stably
infinite theories (respectively) by Theorem 3.

7 Discussion

In this paper, we have shown that the meta-saturation approach to rewriting-
based satisfiability procedures can be used not only to derive complexity bounds
on the obtained procedures as in [8], but also to provide automatic checks for
(1) the modular termination of superposition, (2) stable infiniteness, and (3)
deduction completeness. For the sake of simplicity, we use for all these problems
the same assumptions on the ordering and the same criterion for the meta-
saturation, based on variable-active clauses.

Regarding (1), the work described here extends the results in [2], where the
authors define a class of variable-inactive theories. Any saturation of the ax-
ioms of two variable-inactive theories together with an arbitrary set of ground
flat literals do not allow for across-theories inferences. Modular termination is
guaranteed as soon as it is possible to show the termination of the saturation for
each component theory. In this paper, we have introduced variable-active clauses
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which allow for across-theories inferences. We have shown that if meta-saturation
for each component theory halts and derives no variable-active clauses, then we
obtain modular termination of meta-saturation and hence a rewriting-based sat-
isfiability procedure for the union of the theories. We have also given a syntac-
tical criterion to decide whether a clause is variable-active or not, provided that
the ordering used by the superposition calculus is defined in such a way that a
negative literal is larger than a positive literal whenever they contain the same
maximal term. This requirement is easily implemented using standard orderings
and it is commonly used by superposition provers because of efficiency. This is
so because such a prover is trying to refute the set of input clauses, i.e. to derive
the empty clause, which can only be inferred by an inference involving a negative
literal. For this reason, we believe that such a requirement on the ordering used
by the superposition calculus is both natural and does not restrict the scope of
(practical) applicability of the results in this paper.

For (2), by using again the concept of variable-active clauses, we have devel-
oped an automatic check for stable infiniteness for theories admitting a rewriting-
based procedure: if, for given a theory T , meta-saturation halts, and does not
infer any variable-active clauses, then T is stably infinite. To our knowledge,
this is the first time that an automatic check for stable infiniteness is given.
This result complements that in [4] about the relationship between the variable-
inactivity condition of [2] and stable infiniteness. In fact, [4] shows that, under
certain assumptions, if a theory is not stably infinite, then superposition is guar-
anteed to generate clauses (which are a particular case of the variable-active
clauses introduced here) that constrain the cardinality of its models, so that
the theory is not variable-inactive. It is important to note that our automatic
check relies on a condition which is sufficient but not necessary. Indeed, meta-
saturation may infer a variable-active clause whilst the theory is stably infinite.
A possible extension of this work would be to find a better criterion for the
particular problem of stably infiniteness using meta-saturation.

Regarding (3), the work in this paper complements the results in [7] where
it is shown that superposition yields a deduction complete procedure for the
theories of equality, and lists. In this paper, the concept of variable-active clauses
allows us to develop an automatic method to check whether a rewriting-based
satisfiability procedure is deduction complete: if, for an equational theory or a
Horn theory T , meta-saturation halts, and does not infer any variable-active
clauses, then superposition is a deduction complete satisfiability procedure for
T . In order to obtain deduction completeness for non-Horn theories, we could use
a clause splitting rule, along the lines of [11], to activate every possible inference
and therefore derive sufficiently many disjunctions of elementary equalities.
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Abstract. Satisfiability Modulo Theories (SMT(T )) is the problem of deciding
the satisfiability of a formula with respect to a given background theory T . When
T is the combination of two simpler theories T1 and T2 (SMT(T1 ∪T2)), a stan-
dard and general approach is to handle the integration of T1 and T2 by performing
some form of search on the equalities between the shared variables.

A frequent and very relevant sub-case of SMT(T1 ∪ T2) is when T1 is the
theory of Equality and Uninterpreted Functions (EUF ). For this case, an alter-
native approach is to eliminate first all uninterpreted function symbols by means
of Ackermann’s expansion, and then to solve the resulting SMT (T2) problem.

In this paper we build on the empirical observation that there is no absolute
winner between these two alternative approaches, and that the performance gaps
between them are often dramatic, in either direction.

We propose a simple technique for estimating a priori the costs and benefits,
in terms of the size of the search space of an SMT tool, of applying Ackermann’s
expansion to all or part of the function symbols.

A thorough experimental analysis, including the benchmarks of the SMT’05
competition, shows that the proposed technique is extremely effective in improv-
ing the overall performance of the SMT tool.

1 Introduction

Satisfiability Modulo a Theory T (SMT(T )) is the problem of checking the satisfiabil-
ity of a quantifier-free (or ground) first-order formula with respect to a given first-order
theory T (we are considering theories with equality). Theories of interest for many
applications are, e.g., the theory of difference logic DL , the theory EUF of equal-
ity and uninterpreted functions, the quantifier-free fragment of Linear Arithmetic over
the rationals LA(Q) and that over the integers LA(Z), the theory of bit-vectors BV .
The prominent lazy approach to SMT(T ), which underlies several systems (e.g., CV-
CLITE [3], DLSAT [10], DPLL(T) /BarceLogic [12], MATHSAT [5], TSAT++ [2],
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ICS /YICES [11]), is based on extensions of propositional SAT technology: a SAT
solver is modified to enumerate boolean assignments, and integrated with a decision
procedure for sets of literals in the theory T (T -solver).

When T is the combination of two simpler theories T1 and T2 (SMT(T1 ∪ T2)), a
standard and general approach is to handle the integration of T1 and T2 by performing
some form of search on the equalities between the variables which are shared between
the theories (interface equalities): in the Nelson-Oppen [13] and Shostak [15] schemata
(NO hereafter), the interface equalities are deduced by the T -solvers; in the Delayed
Theory Combination schema (DTC hereafter) [6,7] all or part of them are assigned to
truth values also by the underlying SAT solver.

A frequent and very relevant sub-case is when one of the two theories is that of
equality and uninterpreted functions EUF . (Hereafter we refer to this problem as SMT
(EUF ∪T ).) For this case, an alternative approach is to eliminate first all uninterpreted
function symbols by means of Ackermann’s expansion [1], and then to solve the result-
ing single-theory SMT(T ) problem. (Hereafter we refer to this approach as ACK.)

In this paper we focus on SMT (EUF ∪T ). Comparing the performances of DTC

and ACK approaches, we notice that not only there is no absolute winner, but also the
performance gaps are often dramatic, in either direction. We investigate the causes of
this fact, and we introduce a technique for estimating off-line the costs and benefits, in
terms of the size of the search space of an SMT tool, of applying Ackermann’s expan-
sion to all or part of the function symbols.

We have implemented a preprocessor which analyzes the input formula, decides au-
tonomously which functions to expand, performs such expansions and gives the result-
ing formula as input to an SMT tool.

A thorough experimental analysis, including the benchmarks of the SMT’05 compe-
tition, shows that our preprocessor performs the best choice(s) nearly always, and that
the proposed technique is extremely effective in improving the overall performance of
the SMT tool.

The paper is organized as follows. In §2 we introduce the necessary background in-
formation on SMT, SMT(T1 ∪T2), DTC and Ackermann’s expansion. In §3 we present
the main intuitions and ideas underlying our work. In §4 we present our new preproces-
sor. In §5 we present the experimental evaluation of our work. In §6 we conclude and
briefly present potential future developments.

2 Background

2.1 Satisfiability Modulo Theory

Fig. 1 presents Bool+T , (a much simplified version of) a standard schema of a decision
procedure for SMT(T ). The function Atoms(ϕ) takes a ground formula ϕ and returns
the set of atoms which occur in ϕ. We use the notation ϕp to denote the propositional ab-
straction of ϕ, which is formed by the function T 2B that maps propositional variables
to themselves, ground atoms into fresh propositional variables, and is homomorphic
w.r.t. boolean operators and set inclusion. The function B2T is the inverse of T 2B . We
use μp to denote a propositional assignment, i.e. a conjunction (a set) of propositional
literals. (If T 2B(μ) |= T 2B(ϕ), then we say that μ propositionally satisfies ϕ.)
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function Bool+T (ϕ: quantifier-free formula)
1 A p ←− T 2B(Atoms(ϕ))
2 ϕp ←− T 2B(ϕ)
3 while Bool-satisfiable(ϕp) do
4 μp ←− pick total assign(A p,ϕp)
5 (ρ,π)←− T − satis f iable(B2T (μp))
6 if ρ = sat then return sat
7 ϕp ←− ϕp ∧¬T 2B(π)
8 end while
9 return unsat
end function

Fig. 1. A simplified view of enumeration-based T-satisfiability procedure: Bool+T

The idea underlying the algorithm is that the truth assignments for the propositional
abstraction of ϕ are enumerated and checked for satisfiability in T . The procedure ei-
ther returns sat if one such model is found, or returns unsat otherwise. The function
pick total assign returns a total assignment to the propositional variables in ϕp, that is,
it assigns a truth value to all variables in A p. The function T -satisfiable(μ) detects if the
set of conjuncts μ is T -satisfiable: if so, it returns (sat, /0); otherwise, it returns (unsat,
π), where π⊆ μ is a T -unsatisfiable set, called a theory conflict set. We call the negation
of a conflict set, a conflict clause.

The algorithm is a coarse abstraction of the ones underlying most SMT tools (includ-
ing, e.g., TSAT++, MATHSAT, DLSAT, DPLL(T) /BarceLogic, CVCLITE, and ICS
/YICES).

In practice, the enumeration is carried out by means of efficient implementations of
the DPLL algorithm [16], where a partial assignment μp is built incrementally, and
unit propagation is used extensively to perform all the assignments which derive de-
terministically from the current μp. Conflict sets, generated because either the current
μp falsifies the formula or because T -satisfiable(B2T (μp)) fails, are used to prune the
search tree and to backtrack as high as possible (backjumping), and learned as conflict
clauses to avoid generating the same conflicts in future branches. Another important im-
provement is early pruning: intermediate assignments are checked for T -satisfiability
and, if not T -satisfiable, then are pruned (since no refinement can be T -satisfiable);
finally, theory deduction can be used to reduce the search space by explicitly returning
truth values for unassigned literals, as well as constructing/learning implications. The
interested reader is pointed to [5,8,3,12,11] for details and further references.

2.2 SMT(T1 ∪T2) Via Theory Combination

In many practical applications of SMT(T ), the background theory is a combination
of two (or more) theories T1 and T2. Most approaches to SMT(T1 ∪ T2) rely on the
adaptation of the Bool+T schema, by instantiating T -satisfiable with some decision
procedure for the satisfiability of T1 ∪T2, typically based on an integration schema like
Nelson-Oppen (NO) [13] (or its variant due to Shostak [15]), or on the more recent
Delayed Theory Combination (DTC) schema [6,7].
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function DTC (ϕi: quantifier-free formula)
1 ϕ ←− purify(ϕi)
2 A p ←− T 2B(Atoms(ϕ)∪ interface equalities(ϕ))
3 ϕp ←− T 2B(ϕ)
4 while Bool-satisfiable (ϕp) do
5 μp

1 ∧μp
2 ∧μp

e = μp ←− pick total assign(A p,ϕp)
6 (ρ1,π1)←− T1-satisfiable (B2T (μp

1 ∧μp
e ))

7 (ρ2,π2)←− T2-satisfiable (B2T (μp
2 ∧μp

e ))
8 if (ρ1 = sat∧ρ2 = sat) then return sat else
9 if ρ1 = unsat then ϕp ←− ϕp ∧¬T 2B(π1)
10 if ρ2 = unsat then ϕp ←− ϕp ∧¬T 2B(π2)
11 end while
12 return unsat
end function

Fig. 2. A simplified view of the DTC procedure for SMT(T1 ∪T2)

Both the NO and DTC schemata work only for combinations of stably-infinite and
signature-disjoint theories Ti with equality (we recall that Ti is stably-infinite iff every
quantifier-free Ti-satisfiable formula is satisfiable in an infinite model of Ti ). Moreover,
they require the input formula to be pure: a formula ϕ is pure iff every atom ψ in ϕ is
i-pure for some i ∈ {1,2}, that is ψ contains only =, variables and symbols from the
signature of Ti. Every non-pure T1∪T2 formula ϕ can be converted into an equivalently
satisfiable pure formula ϕ′ by recursively labeling terms t with fresh variables vt , and
by conjoining the definition atom (vt = t) to the formula. E.g.:

( f (x+3y)= g(2x−y)) ⇒ ( f (vx+3y)= g(v2x−y))∧(vx+3y = x+3y)∧(v2x−y = 2x−y).

This process is called purification, and is linear in the size of the input formula.
In a pure formula ϕ, an interface variable is a variable appearing in both 1-pure and

2-pure atoms. An interface equality is an equality between two interface variables.
In the NO schema, the two decision procedures for T1 and T2 (Ti-solvers) coop-

erate by exchanging (disjunctions of) interface equalities (ei j’s). In the DTC schema,
each of the two Ti-solvers works in isolation, without direct exchange of information.
Their mutual consistency is ensured by augmenting the input problem with all interface
equalities ei j, even if these do not occur in the original problem. The enumeration of
assignments includes not only the atoms in the formula, but also the interface equalities
ei j. Both theory solvers receive, from the boolean level, the same truth assignment μe for
ei j: under such conditions, the two “partial” models found by each decision procedure
can be merged into a model for the input formula.

A simplified view of the DTC algorithm is presented in Fig. 2. Initially (lines 1–3),
the formula is purified, the ei j’s which do not occur in the purified formula are created
and added to the set of propositional symbols A p, and the propositional abstraction ϕp

of ϕ is created. Then, the main loop is entered (lines 4–11): while ϕp is propositionally
satisfiable (line 4), a satisfying truth assignment μp is selected (line 5). Truth values
are associated not only to atoms in ϕ, but also to the ei j atoms, even though they do
not occur in ϕ. μp is then (implicitly) separated into μp

1 ∧ μp
e ∧ μp

2 , where B2T (μp
i ) is
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a set of i-pure literals and B2T (μp
e ) is a set of ei j-literals. The relevant part of μp are

checked for consistency against each theory (lines 6–7); Ti-satisfiable(μ) returns a pair
(ρi,πi), where ρi is unsat iff μ is unsatisfiable in Ti, and sat otherwise. If both calls to Ti-
satisfiable return sat, then the formula is satisfiable. Otherwise, when ρi is unsat, then
πi is a theory conflict set, i.e. πi ⊆ μ and πi is Ti-unsatisfiable. Then, ϕp is strengthened
to exclude truth assignments which may fail in the same way (line 9–10), and the loop
is resumed. Unsatisfiability is returned (line 12) when the loop is exited without having
found a model.

In practical implementations of DTC, as before, the enumeration is carried out by
means of efficient implementations of the DPLL engine, where a partial assignment
μp is built incrementally, exploiting unit-propagation, backjumping and learning, early
pruning and theory deduction. Moreover, if one or both Ti-satisfiable have the capabil-
ity of deducing (disjunctions of) interface equalities which derive from Ti from a partial
assignment μ, 1 then such a deduction is exploited to prune the boolean search on the
interface equalities (ei j-deduction). To this extent, DTC extends the NO schema, in the
sense that it allows for using Ti-satisfiable procedures with every deduction capabil-
ity, trading ei j-deduction power with boolean search, and allows for emulating the NO
schema [9]. For the sake of simplicity, in this paper we do not consider ei j-deduction
for DTC. We refer the reader to [7,9] for a more detailed discussion.

Example 1. Let ϕ be the following EUF ∪LA(Z)-pure formula

ϕ ≡ w = h(x)∧a = h(y)∧ c = f (z)∧d = f (b)∧ f (c) = f (b) ∧
w = f (d)∧¬(c = d)∧ x ≥ y∧ x ≤ y∧ z = w−a∧b = 0.

(1)

x,y,z,w,a,b are the interface variables, so that there are 15 interface equalities: z =
b,w = b,a = b,x = b,y = b,z = w,z = a,x = z,y = z,w = a,x = w,y = w,x = a,y =
a,x = y.
The DPLL solver generates first the assignment μ := μEUF ∪ μLA(Z) satisfying ϕ, s.t.
μEUF := {w = h(x),a = h(y),c = f (z),d = f (b), f (c) = f (b),w = f (d),¬(c = d)},

μLA(Z) := {x ≥ y,x ≤ y,z = w−a,b = 0}.
Then it tries to extend it with a total truth assignment μe to the interface equalities

such that μEUF ∪ μe and μLA(Z) ∪ μe are consistent in EUF and LA(Z) respectively.
This requires some search on the 15 interface equalities.

E.g, if the DPLL engine is smart or lucky enough to select first x = y, w = a, z = b,
then we have
μLA(Z)∪{¬(x = y)} |=LA(Z) ⊥, so that x = y is added to μ,
μEUF ∪{x = y,¬(w = a)} |=EUF ⊥, so that w = a is added to μ,
μLA(Z)∪{x = y,w = a,¬(z = b)} |=LA(Z) ⊥, so that z = b is added to μ,
μEUF ∪{x = y,w = a,z = b} |=EUF ⊥, hence ϕ is EUF ∪LA(Z)-inconsistent. ��

Notice that on a single-theory SMT(T ) problem, DTC behaves as a standard SMT tool,
because there are no interface equalities.

1 In the NO schema this capability is strictly required for both Ti-satisfiable’s [13].
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2.3 SMT(EUF ∪T ) Via Ackermann’s Expansion

When one of the theories Ti is EUF , another possible approach to the SMT(T1 ∪T2)
problem is to eliminate uninterpreted function symbols by means of Ackermann’s ex-
pansion [1] so to obtain an SMT(T ) problem with only one theory. The method works
by replacing every function application occurring in the input formula ϕ with a fresh
variable and then adding to ϕ all the needed functional consistency constraints. The
new formula ϕ′ obtained is equisatisfiable with ϕ, and contains no uninterpreted func-
tion symbols. First, each distinct function application f (x1, . . . ,xn) is replaced by a fresh
variable v f (x1,...,xn). Then, for every pair of distinct applications of the same function,
f (x1, . . . ,xn) and f (y1, . . . ,yn), a constraint

(
arity( f )∧

i=1

ack(xi) = ack(yi)) → v f (x1,...,xn) = v f (y1,...,yn), (2)

is added, where ack is a function that maps each function application g(z1, . . . ,zn) into
the corresponding variable vg(z1,...,zn), each variable into itself and is homomorphic wrt.
the interpreted symbols. The atom ack(xi) = ack(yi) is not added if the two sides of the
equality are syntactically identical.

Example 2. Let ϕ be the pure formula (1) of Example 1. Then, replacing every function
application with a fresh variable, and adding all the functional consistency constraints,
we obtain the formula

ϕACK ≡ w = vh(x)∧a = vh(y)∧ c = v f (z)∧d = v f (b)∧ v f (c) = v f (b) ∧
w = v f (d)∧¬(c = d)∧ x ≥ y∧ x ≤ y∧ z = w−a∧b = 0 ∧
(x = y → vh(x) = vh(y)) ∧ (z = b → v f (z) = v f (b)) ∧
(z = c → v f (z) = v f (c)) ∧ (z = d → v f (z) = v f (d)) ∧
(c = b → v f (c) = v f (b)) ∧ (c = d → v f (c) = v f (d)) ∧
(b = d → v f (b) = v f (d)).

(3)

The DPLL solver first deterministically selects the truth assignment
μLA(Z) := { w = vh(x),a = vh(y),c = v f (z),d = v f (b),v f (c) = v f (b),w = v f (d),

¬(c = d),x ≥ y,x ≤ y,z = w−a,b = 0} ,

which is consistent in LA(Z). Then, it performs some search on the remaining 12
equalities. 2

E.g., if it is smart or lucky enough to select first x = y, z = b, then we have:
μLA(Z)∪{¬(x = y)} |=LA(Z) ⊥, so that x = y is added to μ,
μLA(Z)∪{x = y,vh(x) = vh(y),¬(z = b)} |=LA(Z) ⊥, so that z = b is added to μ,
μLA(Z)∪{x = y,vh(x) = vh(y),z = b,v f (z) = v f (b)} |=LA(Z) ⊥, hence ϕ is EUF ∪LA(Z)-
inconsistent. ��

2 The remaining equalities are only 12 because v f (c) = v f (b) causes the removal of the 5th
implication.
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Fig. 3. Execution time ratio (in logarithmic scale) for DTC and ACK on the benchmarks Wisa and
Hash, using MATHSAT. A dot above the diagonal line means better performance of ACK and
vice versa. The horizontal and vertical dashed lines represent time-out.

Notice that, for simplicity, in Example 1 we have considered a pure formula ϕ, which
might be the result of purifying some non-pure formula ϕ′. If so, applying Ackermann
expansion directly to ϕ′ might result into a more compact formula than (3).

Henceforth, we call respectively Ackermann constraints or Ackermann implications
the functional consistency constraints added by Ackermann expansion, Ackermann
equalities the equalities occurring in the Ackermann constraints, and Ackermann vari-
ables the variables occurring in the Ackermann equalities.

3 To Ackermann-ize or Not to Ackermann-ize?

We start from a simple empirical observation: neither DTC or ACK always prevails in
the task of solving SMT(EUF ∪T ) problems, and the performance gaps between the
two approaches may be dramatic, in either direction. As an example, Figure 3 shows
the execution times of the two approaches on two different groups of benchmarks, for
the MATHSAT [8] solver (both tests will be described in §5). For the Wisa bench-
marks (left), ACK is up to 1000 times faster than DTC (or even more, considering
also the timed-out examples) , whilst for the Hash benchmarks (right) the converse
is true.

By tracing the behavior of MATHSAT on these tests, we notice that the performance
gaps mirror the different amount of boolean search performed by the two techniques.
From which we argue that one of the main reasons of such big performance gaps is the
different size of the boolean search space that each technique has to explore in order to
decide the satisfiability of its input.

Thus, we look to both techniques from the perspective of the boolean search only.
Both DTC and ACK require the SAT solver to perform an extra boolean search on
equalities which did not occur in the original formula (i.e., on the interface equalities
and on the Ackermann equalities respectively). Thus the enlargement of the boolean
search space with the two techniques depends directly on the number of these new
equalities introduced.
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3.1 Enlargement of the Search Space with DTC

In the DTC approach it may be necessary to assign a truth value to up to all the interface
equalities. If ϕ is a pure EUF ∪T formula, then the number of interface equalities is
given by |V | · (|V |−1)/2, where |V | is the number of interface variables in ϕ. (Notice
that this is an upper bound for the number of the new equalities introduced, since some
of them might already appear in ϕ.) Thus, with DTC, the number of boolean atoms the
SAT solver may have to explore is enlarged by a factor that is quadratic in the number
of the interface variables.

Example 3. The formula ϕ of Example 1 has 6 interface variables, so that the number
of atoms the SAT solver may have to explore is increased by (6 · 5)/2 = 15 interface
equalities, all of which are new. ��

Notice that, in general, the input problem ϕ must be purified to be handled by DTC. The
purification process adds a number of new variables and atoms that is linear in the size
of ϕ. However, this does not cause an enlargement of the boolean search space, because
all the atoms added are definitions of terms like (vt = t) and occur as unit clauses in the
resulting formula, so that they are assigned a priori and deterministically to true by the
SAT solver.

3.2 Enlargement of the Search Space with ACK

In the ACK approach, the increase in the boolean search space depends on the number
of (new) equalities in the Ackermann constraints introduced.

Let F be the set of (distinct) function symbols occurring in ϕ, and let O f be the set
of all (distinct) applications of the function f in the input formula ϕ. Then the number
of new Ackermann equalities introduced is less than or equal to

∑
f∈F

|O f | · (|O f |−1)
2

· (arity( f )+ 1). (4)

In fact, for each f ∈ F and for each of the (|O f | · (|O f |−1))/2 pairs of distinct occur-
rences of f , Equation (2) causes the introduction of up to (arity( f ) + 1) new Ackermann
equalities. (As with DTC, this is an upper bound, both because some of the equalities in
one constraint could already occur in the formula or in other constraints, and because
identities like x = x are dropped by construction.)

Thus, with ACK, the number of boolean atoms the SAT solver may have to explore
is enlarged by a factor that is quadratic in the number of occurrences of each function
symbol, and linear in the number of distinct function symbols and in their arity.

Example 4. In the formula ϕ (1) of Example 1, Oh = 1 and O f = 4. Thus the Ackermann
constraints introduced in the formula ϕACK (3) of Example 2 contain (2 ·1)/2 ·(1+1)+
(4 ·3)/2 · (1 + 1) = 14 equalities. Since v f (c) = v f (b) is not new, the new equalities are
13. Notice that also c = b does not really increase the boolean search space, because the
5th implication is immediately removed by the DPLL solver (Footnote 2). ��
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Fig. 4. Schemas of the frontier between EUF and T in the DTC and ACK approaches

3.3 Intuition: the “frontier” Between EUF and T in DTC and ACK

Both DTC and ACK introduce an enlargement of the search space of the input problem
ϕ. Intuitively, we can think of this extra boolean search as the cost associated to each
of the two approaches for handling the interaction between the two theories. We notice
that the set of new equivalences introduced by either approach corresponds to a distinct
notion of “frontier” between EUF and T in the two approaches.

In DTC, the frontier is given by the interface variables (see Figure 4.a). As the cost
of DTC depends quadratically on the size of the frontier, DTC is expected to perform
better for those examples where the two theories are loosely coupled, and worse when
there is a strong connection between them.

With ACK, the frontier between the two theories is potentially much larger, because
it consists of the inputs and outputs of all (distinct) function applications (i.e, the Acker-
mann variables), including those which do not interact with terms of the theory T (see
Figure 4.b). However, in this case the cost is not quadratic in the number of variables
in the frontier; rather, it depends on the number of different functions and of distinct
occurrences of each function invocation (4). Thus ACK is expected to perform better
when the number of the distinct function invocations for the same function is low.

4 Cost-Driven Ackermann-ization

When we want to check the satisfiability of an SMT(EUF ∪T ) formula ϕ, no matter
which of the two approaches (DTC or ACK) we use, we must pay a price in terms
of enlargement of the boolean search space. We believe that this cost is one of the
main factors which influence the performance of the two methods. Thus, being able to
estimate this cost a priori can drive the choice of which technique to apply.

4.1 A Global-Decision Approach: DECIDE

Our first, basic idea is that of trying to estimate a priori the difference of costs of apply-
ing ACK or DTC, and to simply select the technique that costs less. We call this first idea
“a global-decision approach” because here the decision involves all function symbols
altogether.

The resulting algorithm DECIDE is outlined in Figure 5. Let ϕ be a (possibly non-
pure) SMT(EUF ∪T ) formula. The function countAckEqualities returns the number
of new Ackermann equalities added by the Ackermann’s expansion of ϕ. The function
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function DECIDE (ϕ: quantifier-free formula)
1 ack eq ←− countAckEqualities(ϕ)
2 int eq ←− countInterfaceEqualities(ϕ)
3 if ack eq < int eq then return ackermanize(ϕ)
4 else return ϕ
end function

Fig. 5. High-level description of the DECIDE algorithm

countInterfaceEqualities returns the number of new interface equalities in (the formula
resulting from purifying) ϕ. Notice that both functions return the exact number of equal-
ities introduced, avoiding counting repeated equalities, identities, etc. Both functions
are straightforward to implement, and their complexity is linear in the size of ϕ.

DECIDE works as a preprocessor for an SMT solver for SMT(EUF ∪ T ) which
uses DTC: the algorithm either returns an Ackermann-ized version of the input ϕ (if
ACK costs less), or leaves the input untouched. As noticed in §2, in the first case DTC

behaves as a standard single-theory SMT tool, so that the two options correspond to
ACK and DTC respectively.

Example 5. Consider again the formulas (1) and (3) of Examples 1 and 2 respectively.
DTC would introduce 15 new interface equalities, whilst ACK would introduce 13 new
Ackermann equalities. Therefore DECIDE in this case would choose ACK. ��

4.2 A Local-Decision Approach: PARTIAL

The idea just described can be generalized in the following way. From §3 we know
that the cost of DTC depends quadratically on the global number of interface variables,
whilst the cost of ACK, for each function symbol f , depends quadratically on the num-
ber of the distinct occurrences of f and linearly on its arity. Thus, we can decide to
apply Ackermann’s expansions only to subsets of the function symbols, according to
their relative costs. We call this second idea “a local-decision approach” because here
the decision involves subsets of function symbols.

Let f be a function in ϕ with very few occurrences but many arguments shared be-
tween EUF and T . Then f causes a low increase of the ACK costs and a big increase
of the DTC costs, because Ackermann’s expansion will introduce few constraints, whilst
the high number of interface variables would make DTC generate many new equalities.
On the other hand, a function g with many occurrences but few or no arguments shared
among the theories is going to cost much less for DTC than for ACK for the very same
reason. Thus, if we consider a formula which contains both f and g, then applying Ack-
ermann’s expansion only partially, so that to remove only f , and solving the resulting
problem with DTC, is going to cost less than pure ACK or pure DTC.

Example 6. Consider again the formula (1) of Example 1. If we expand only h, we get
the following formula:

ϕ′ ≡ w = vh(x) ∧ c = f (z)∧d = f (b)∧ f (c) = f (b)∧w = f (d)∧¬(c = d) ∧
x ≥ y∧ x ≤ y∧ z = w− vh(y)∧b = 0∧ x = y → vh(x) = vh(y),

(5)
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function PARTIAL (ϕ: quantifier-free formula)
1 A ←− /0
2 ψ ←− puri f y(ϕ)
3 do
4 B ←− selectFunctionsToAckermanize(ψ)
5 ψ ←− ackermanizeFunctions(ψ,B)
6 A ←− A ∪B
7 while B 	= /0
8 ϕ′ ←− ackermanizeFunctions(ϕ,A)
9 return ϕ′

end function

Fig. 6. High-level description of the PARTIAL algorithm

which has only 3 interface variables (z, b and w). Using DTC on ϕ′ would then enlarge
the search space by 3 interface equalities. Therefore, the mixed approach would cost in
total 5 new equalities (2 for the Ackermann constraints and 3 for the interface equali-
ties), which is less than with ACK (13) and DTC (15). ��

The ideal solution would be to develop an algorithm that applies Ackermann’s expan-
sion to the subset of the function symbols corresponding to a global minimum in the
number of new equalities to add. Unfortunately, finding such a global optimal solution
seems to be very expensive. Intuitively, this is because both the cost and the bene-
fit of applying Ackermann’s expansion to each function symbol —in terms of more
Ackermann equalities and less interface equalities to add respectively— depend on
the previous eliminations of some other functions. (For example, as a consequence
of the elimination of a function f , it may become convenient to eliminate also g be-
cause they had many pairs of corresponding arguments in common.) Thus, finding the
global optimum may require exploring up to all the 2|F | possible subsets of function
symbols.

For this reason, we have conceived instead the algorithm PARTIAL (outlined in Fig-
ure 6) which finds a local optimum. PARTIAL is a greedy algorithm that starts from the
purified formula and that finds at each step a set of function symbols B whose removal
causes a reduction in the number of equivalences to add. When this set is empty, a local
minimum has been reached, and the algorithm terminates. Then the Ackermann’s ex-
pansion on the set of selected functions A is performed on the original input formula ϕ,
and the result is returned.

The core of PARTIAL is the function selectFunctionsToAckermanize, which returns
the set of functions to remove in order to reduce the number of new equalities to add,
according to the following heuristic. The function symbols occurring in ϕ are divided
into (possibly overlapping) subgroups Gv’s, one for every interface variable v in ϕ,
Gv consisting of the set of all the function symbols that cause v to be an interface
variable. Then the group Gv is returned which causes the maximum reduction gainGv

in
terms of equivalences to add. (That is, gainGv

is defined as the difference between the
number of interface equalities to remove and the number of equalities in the functional
consistency constraints to add, if all the functions in the group were removed with
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Ackermann’s expansion.) If for no group Gv the value gainGv
is positive, then the empty

set is returned. 3

Example 7. Consider the pure formula (1) used in all the previous examples. When
invoked for the first time, selectFunctionsToAckermanize constructs for the set of func-
tions { f ,h} in (1) six groups, one for each interface variable:

Gx = Gy = Ga = {h} Gw = Gz = Gb = { f}.

Then, for each of them, the associated gain (i.e. the difference between the number of
interface equalities to remove and the number of equalities to add for the functional
consistency constraints) is computed:

gainGx
= gainGy

= gainGa
= 12−2 = 10, gainGw

= gainGz
= gainGb

= 12−11 = 1

because removing h makes x, y and a loose the status of interface variables, whilst re-
moving f the same happens for w, z and b. Thus selectFunctionsToAckermanize selects
{h} only, causing the generation of the formula (5) of Example 6. At the next iteration
of the main loop of PARTIAL, the only function symbol is f , which is not removed since
all gainGv

’s are negative. ��

5 Empirical Evaluation

We implemented both DECIDE and PARTIAL in a preprocessor program, written in
C++. It handles SMT(EUF ∪LA) problems, and has four different operational modes:

transparent (DTC), which simply reads a problem from its standard input and outputs
it to its standard output without doing anything;

ackermanize, which removes every uninterpreted function symbol;
decide, which applies the DECIDE algorithm; and
partial, which applies the PARTIAL algorithm to remove a subset of the uninterpreted

function symbols.

We tested our preprocessor with the MATHSAT [8] solver, which handles SMT(EUF
∪LA) problems with DTC. We used different benchmarks, coming from different do-
mains:

QF UFIDL comes from the SMT-LIB [14], and is made of formulas with EUF and
integer difference logic. It is a superset of the QF UFIDL set used in the SMT-
COMP’05 competition [4];

Wisa are software verification benchmarks from the Wisconsin Safety Analyzer, cre-
ated with a slightly modified version of the generator available at
http://www.cs.wisc.edu/wisa/papers/icse05/wisa-benchmarks.html;

3 As a direct consequence of how the groups are built, removing the functions in a group removes
at least one interface variable from V , so that at least |V |−1 interface equalities are removed.
It may be the case that more than one interface variable is removed: e.g., if Gx ⊆ Gy, then
removing all the function symbols in Gy causes the removal of both x and y from V .
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EufLaArithmetic are simulations of arithmetic operations (succ, pred, sum) modulo
N, using EUF and LA(Z). This and the following groups of benchmarks were
introduced in [7];

Hash are problems over hash tables, modeled with a combination of EUF and LA(Z);
RandomCoupled are randomly generated SMT(EUF ∪ LA(Q)) problems, with a

propositional 3-CNF structure. In this group, there is a high coupling between the
two theories, that is there is a high probability that for instance an argument of a
function is a LA(Q) term;

RandomDecoupled are tests generated in the same way as the previous group, but
where the coupling between EUF and LA(Q) is low.

The tests were run on a machine with an Intel Xeon 3GHz processor running Linux.
The memory limit was set to 1GB, and the time limit to 1000 sec.

Figure 7 shows the results, both for the individual suites singularly and for the union
of all the suites. A point in 〈X ,Y 〉 states that X problems have been solved each in
less than or equal to Y seconds. (Notice the logarithmic scale of the Y axis.) A higher
number of tests solved means better performance. When this number is the same, the
lowest line is the best. All the plots include the cost of preprocessing, which however is
negligible.

The following table summarizes the total results. The rows are sorted from the worst
to the best, while the columns show details of the performances in terms of total number
of tests solved, total running time, and total time to solve a fixed amount N of tests, for
various values of N.

Number of Total time Total time for solving N tests
tests solved (for all tests) 300 600 1200 1384 1479 1513

transparent (DTC) 1384 34500 25.9 100.8 1804 34500 - -
ackermanize 1479 41431 33.0 149.3 1402 5436 41431 -
decide 1513 12891 22.1 82.4 629 1646 3577 12891
partial 1516 13393 21.1 75.9 602 1495 3450 11335

We can see from both Figure 7 and the above table that different suites show very
different performance gaps between transparent (DTC) and ackermanize (ACK), as
observed in §2, and that both decide (DECIDE) and partial (PARTIAL) always behave
quite similarly to the best of the two. (E.g., looking at the data, we noticed that decide
chooses the most efficient option nearly always, and that the few samples for which it
does not are such that the performance gaps between ACK and DTC are minor.)

The overall result shows that both DECIDE and PARTIAL are globally much more
efficient than both ACK and DTC, with PARTIAL being the best technique. The reason
why the performances of two techniques are so similar is that, on these benchmarks, it
turns out that PARTIAL either removes all or most of the functions or it removes none,
thus behaving very similarly to DECIDE.

6 Conclusions

In this paper we have focused on the SMT(EUF ∪T ) problem. We have proposed a
simple technique for estimating a priori the costs and benefits, in terms of the size of
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Fig. 7. Results of the benchmarks for the MATHSAT solver. For each technique, the X axis rep-
resents the number of tests solved and the Y axis the time required (in log scale). The labels in
the plots are sorted according to performance: from the worst to the best.
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the search space of an SMT tool, of applying Ackermann’s expansion to all or part of
the function symbols; we have implemented a preprocessor which analyzes the input
formula, decides autonomously which functions to expand, performs such expansions
and gives the resulting formula as input to an SMT tool; we have performed a thorough
experimental analysis with MATHSAT on SMT(EUF ∪DL), SMT(EUF ∪LA(Q))
and SMT(EUF ∪LA(Z)), showing that the proposed technique is extremely effective
in improving the overall performance of the SMT tool.

As future developments, we plan to experiment the effectiveness of our techniques
also with other SMT tools (e.g., CVCLITE [3], ICS /YICES [11]), and with other theo-
ries (e.g., EUF with the theory of bit-vectors BV ).
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Abstract. The Model Evolution (ME) Calculus is a proper lifting to first-order
logic of the DPLL procedure, a backtracking search procedure for propositional
satisfiability. Like DPLL, the ME calculus is based on the idea of incrementally
building a model of the input formula by alternating constraint propagation steps
with non-deterministic decision steps. One of the major conceptual improvements
over basic DPLL is lemma learning, a mechanism for generating new formulae
that prevent later in the search combinations of decision steps guaranteed to lead
to failure. We introduce two lemma generation methods for ME proof proce-
dures, with various degrees of power, effectiveness in reducing search, and com-
putational overhead. Even if formally correct, each of these methods presents
complications that do not exist at the propositional level but need to be addressed
for learning to be effective in practice for ME. We discuss some of these issues
and present initial experimental results on the performance of an implementation
of the two learning procedures within our ME prover Darwin.

1 Introduction

The Model Evolution (ME) Calculus [5] is a proper lifting to first-order logic of the
DPLL procedure, a backtracking search procedure for propositional satisfiability. Like
DPLL, the calculus is based on the idea of incrementally building a model of the in-
put formula by alternating constraint propagation steps with non-deterministic decision
steps. Two of the major conceptual improvements over basic DPLL developed over the
years are backjumping, a form of intelligent backtracking of wrong decision steps, and
lemma learning, a mechanism for generating new formulae that prevent later in the
search combinations of decision steps guaranteed to lead to failure.

Adapting backjumping techniques from the DPLL world to ME implementations
is relatively straightforward and does lead to performance improvements, as our past
experience with Darwin, our ME-based theorem prover, has shown [2]. In contrast,
adding learning capabilities is not immediate, first because one needs to lift properly
to the first-order level both the notion of lemma and the lemma generation process
itself, and second because any first-order lemma generation process adds a significant
computation overhead that can offset the potential advantages of learning.

In this paper, we introduce two lemma learning procedures for ME with different
degrees of power, effectiveness in reducing search, and computational overhead. Even
if formally correct, each of these procedures presents issues and complications that do
not arise at the propositional level and need to be addressed for learning to be effective

M. Hermann and A. Voronkov (Eds.): LPAR 2006, LNAI 4246, pp. 572–586, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Lemma Learning in the Model Evolution Calculus 573

for ME. We mention some of these issues and then present initial experimental results
on the performance of an implementation of the learning procedures within Darwin.

The ME calculus is a sequent-style calculus consisting of three basic derivation rules:
Split, Assert and Close, and three more optional rules. To simplify the exposition we will
consider here a restriction of the calculus to only the non-optional rules. The learning
methods presented in this paper extend with minor modifications to ME derivations that
use the optional rules as well. The derivation rules are presented in [5] and in more detail
in [6]. We do not present them directly here because in this paper we focus on proof pro-
cedures for ME, which are better described in terms of abstract transition systems (see
Section 2). It suffices to say that Split, with two possible conclusions instead of one, is
the only non-deterministic rule of the calculus, and that the calculus is proof-confluent,
i.e., the rules may be applied in any order, subject to fairness conditions, without endan-
gering completeness. Derivations in ME are defined as sequences of derivation trees,
trees whose nodes are pairs of the form Λ � Φ where Λ is a literal set and Φ a clause
set. A derivation for a clause set Φ0 starts with a single-node derivation tree containing
the clause set Φ0 and grows the tree by applying one of the rules to one of the leaves,
adding to that leaf the rule’s conclusions as children.

A proof procedure for ME in effect grows the initial derivation tree in a depth-first
manner, backtracking on closed branches, i.e., failed branches whose leaf results from
an application of Close.1 The procedure determines that the initial clause set Φ0 is
unsatisfiable after it has determined that all possible branches are closed. Conversely, it
finds a model of Φ0 if it reaches a node that does not contain the empty clause and to
which no derivation rule applies.

Like in all backtracking procedures, performance of a proof procedure for ME can be
improved in principle by analyzing the sequence of non-deterministic choices (i.e, Split
decisions) that have led to a conflict, a closed branch. The analysis determines which
of the choices were really relevant to the conflict and saves this information so that the
same choices, or similar choices that can also lead to a conflict, are avoided later in the
search. In the next section, we present two methods for implementing this sort of learn-
ing process. The methods follow the footprints of popular learning methods from the
DPLL literature: conflict analysis is performed by means of a guided resolution deriva-
tion that synthesizes a new clause, a lemma, containing the reasons for the conflict;
then learning is achieved simply by adding the lemma to the clause set and using it like
any other clause in constraint propagation steps during the rest of the derivation. These
methods can be given a logical justification by seeing them just as another derivation
rule that adds to the clause set selected logical consequences of the set. In our experi-
ments we also tried, as a sanity check, a third and much simpler learning method based
on purely propositional techniques. While this method has low overhead it is also a lot
less general than the other two and did not fare well experimentally. Because of this we
do not discuss it here and instead refer the reader to [3] for more details.

Related work. To our knowledge there is little work in the literature on conflict-driven
lemma learning in first-order theorem proving. One of them is described in [1] and con-
sists of the “caching” and “lemmaizing” techniques for the model elimination calculus.

1 More precisely, the proof procedure performs a sort of iterative-deepening search, to avoid
getting stuck in infinite branches.
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Caching means to store solutions to subgoals (which are single literals) in the proof
search. The idea is to look up a solution (a substitution) that solves the current subgoal,
based on the solution of a previously computed solution of a compatible subgoal. This
idea of replacing search by lookup is thus conceptually related to lemma learning as we
consider it here. However, as far as we can tell from [1] (and other publications), the
use of lemmas there seems having been restricted to unit lemmas, perhaps for pragmatic
reasons, although the mechanism has been defined more generally (already in [12]). A
more general caching mechanism for unit clauses has been described in [11].

A recent paper [8] describes the Geometric Resolution calculus, which includes a
lemma learning mechanism that is closely related to our lifted method (cf. Section 2.2).
A major difference is that lemmas learned there are used only to close branches, but
not to derive new information such as implied unit clauses. Unfortunately, [8] does not
contain an experimental analysis describing the impact of their learning technique.

Further related work comes from Explanation-Based Learning (EBL), which allows
the learning of logical descriptions of a concept from the description of a single concept
instance and a preexisting knowledge base. A comprehensive and powerful EBL frame-
work based on the language of definite logic programs and SLD-resolution is presented
in [15]. As depicted there, EBL is essentially the process of deriving from a given SLD
proof a (definite) clause representing parts of the proof or even generalizations thereof.
The goal is to derive clauses that are of high utility, that is, that help find shorter proofs
of similar theorems without broadening the search space too much. The learning proce-
dures we present here follows a similar process. Structurally, they are SLD-derivations
producing lemma clauses, and have a role comparable to the derivations of [15].

2 An Abstract Proof Procedure ME

Being a calculus, ME abstracts away many control aspects of a proof search. As a con-
sequence, one cannot formalize in it stateful operational improvements such as learning.
Following an approach first introduced in [14] for the DPLL procedure, one can how-
ever formalize general classes of proof procedures for ME in a way that makes it easy
to model and analyze operational features like backtracking and learning.

An ME proof procedure can be described abstractly as a transition system over states
of the form ⊥, a distinguished fail state, or the form Λ � Φ where Φ is a clause set
and Λ is an (ordered) context, that is, a sequence of annotated literals, literals with
an annotation that marks each of them as a decision or a propagated literal. We model
generic ME proof procedures by means of a set of states of the kind above together with
a binary transition relation over these states defined by means of conditional transition
rules. For a given state S, a transition rule precisely defines whether there is a transition
from S by this rule and, if so, to which state S′. A proof procedure is then a transition
system, a set of transition rules defined over some given set of states. In the following,
we first introduce a basic transition system for ME and then extend it with learning
capabilities.

Formal Preliminaries. If =⇒ is a transition relation between states we write, as usual,
S =⇒ S′ instead of (S,S′) ∈ =⇒. We denote by =⇒∗ the reflexive-transitivclosure of
=⇒. Given a transition system R, we denote by =⇒R the transition relation defined
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by R. We call any sequence of transitions of the form S0 =⇒R S1, S1 =⇒R S2, . . . a
derivation in R, and denote it by S0 =⇒R S1 =⇒R S2 =⇒ . . .

The concatenation of two ordered contexts will be denoted by simple juxtaposition.
When we want to stress that a context literal L is annotated as a decision literal we will
write it as Ld. With an ordered context of the form Λ0 L1 Λ1 · · ·Ln Λn where L1, . . .Ln are
all the decision literals of the context, we say that the literals in Λ0 are at decision level
0, and those in Li Λi are at decision level i, for all i = 1, . . . ,n.

The ME calculus uses two disjoint, infinite sets of variables: a set X of universal
variables, which we will refer to just as variables, and another set V , which we will
always refer to as parameters. We will use u and v to denote elements of V and x,y and
z to denote elements of X . If t is a term we denote by V ar(t) the set of t’s variables
and by P ar(t) the set of t’s parameters. A term t is ground iff V ar(t) = P ar(t) = /0.
A substitution ρ is a renaming on W ⊆ (V ∪ X) iff its restriction to W is a bijection of
W onto itself. A substitution σ is p-preserving (short for parameter preserving) if it is
a renaming on V . If s and t are two terms, we say that s is a p-variant of t iff there is
a p-preserving renaming ρ such that sρ = t. We write s ≥ t iff there is a p-preserving
substitution σ such that sσ = t. We write tsko to denote the term obtained from t by
replacing each variable in t by a fresh Skolem constant. All of the above is extended
from terms to literals in the obvious way.

Every (ordered) context the proof procedure works with starts with a pseudo-literal
of the form ¬v (which, intuitively, stands for all negative ground literals). Where L is
a literal and Λ a context, we will write L ∈� Λ if L is a p-variant of a literal in Λ. A
literal L is contradictory with a context Λ iff Lσ = Kσ for some K ∈� Λ and some
p-preserving substitution σ. (We write K to denote the complement of the literal K.) A
context Λ is contradictory if one of its literals is contradictory with Λ.

Each non-contradictory context containing ¬v determines a Herbrand interpretation
IΛ over the input signature extended by a countable set of Skolem constants. We re-
fer the reader to [5,6] for the formal definition of IΛ. Here it should suffice to say
that the difference between (universal) variables and parameters in ME lies mainly
in the definition of this Herbrand interpretation. Roughly, a literal with a parameter,
like A(u), in a context assigns true to all of its ground instances that are not also an
instance of a more specific literal, like ¬A( f (u)), with opposite sign. In contrast, a
literal with a variable, like A(x), assigns true to all of its ground instances, with no
exceptions.

In a state of the form Λ � Φ, the interpretation IΛ is a candidate model for Φ.
The purpose of the proof procedure is to recognize whether the candidate model is in
fact a model of Φ or whether it possibly falsifies a clause of Φ. The latter situation is
detectable syntactically through the computation of context unifiers.

Definition 1 (Context Unifier). Let Λ be a context and C = L1∨·· ·∨Lm∨Lm+1 ∨·· ·∨
Ln a parameter-free clause, where 0 ≤ m ≤ n. A substitution σ is a context unifier of C
against Λ with remainder Lm+1σ∨·· ·∨Lnσ iff there are fresh p-variants K1, . . . ,Kn ∈�
Λ such that (i) σ is a most general simultaneous unifier of {K1,L1}, . . . ,{Kn,Ln}, (ii)
for all i = 1, . . . ,m, (P ar(Ki))σ ⊆ V, (iii) for all i = m + 1, . . . ,n, (P ar(Ki))σ 	⊆ V. A
context unifier σ of C against Λ with remainder Lm+1σ∨ ·· · ∨Lnσ is admissible (for
Split) iff for all distinct i, j = m+ 1, . . . ,n, V ar(Liσ) ∩ V ar(Ljσ) = /0.
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If σ is a context unifier with remainder D of a clause C against a context Λ, we call each
literal of D a remainder literal of σ. We say that C is conflicting (in Λ because of σ) if
σ has an empty remainder.

For space constraints we must refer the reader again to [5,6] for the rationale behind
context unifiers and how parameters arise in ME derivations. Intuitively, the existence
of a context unifier σ for a clause C indicates that Cσ is possibly falsified by the current
IΛ. If σ has a remainder literal Lσ, adding Lσ to the context makes progress towards
making IΛ eventually satisfy Cσ. If σ has no remainder literals, the problem is not
repairable and backtracking is instead needed.

2.1 A Basic Proof Procedure for ME

A basic proof procedure for ME is the transition system B defined by the rules De-
cide, Propagate, Backjump and Fail below. Since the transition system B is at a lower
level of abstraction, its rules do not correspond one-to-one to the derivation rules of
ME. Roughly speaking, Decide implements Split, Propagate implements Assert, while
Backjump and Fail implement Close. The relevant derivations in this system are those
that start with a state of the form {¬v} � Φ, where Φ is the clause set whose unsatisfi-
ability one is interested in.

Decide: Λ � Φ, C∨L =⇒ Λ (Lσ)d � Φ, C∨L if (∗)

where (∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ is an admissible context unifier of C∨L against Λ (cf. Def. 1)

with at least two remainder literals,

Lσ is a remainder literal, and

neither Lσ nor (Lσ)sko is contradictory with Λ

We call the literal Lσ above a decision literal of the context unifier σ and the clause C∨
L. Decide makes the non-deterministic decision of adding the literal Lσ to the context.
It is the only rule that adds a literal as a decision literal.

Propagate: Λ � Φ, C∨L =⇒ Λ, Lσ � Φ, C∨L if (∗)

where (∗) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
σ is an admissible context unifier of C∨L against Λ
with a single remainder literal Lσ,

Lσ is not contradictory with Λ, and

there is no K ∈ Λ such that K ≥ Lσ

We call the literal Lσ in the rule above the propagated literal of the context unifier σ
and the clause C∨L.

Backjump: Λ LdΛ′ � Φ, C =⇒ Λ L
sko � Φ, C if

{
C is conflicting in

Λ Ld but not in Λ

Backjump models both chronological and non-chronological backtracking by allow-
ing, but not requiring, that the undone decision literal L be the most recent one. Note
that L’s complement is added as a propagated literal, after all (and only) the variables
of L have been Skolemized, which is needed for soundness. More general versions of
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Backjump are conceivable, for instance along the lines of the backjump rule of Abstract
DPLL [14]. Again, we present this one here mostly for simplicity.

Fail: Λ � Φ, C =⇒ ⊥ if

{
C is conflicting in Λ,

Λ contains no decision literals

Fail ends a derivation once all possible decisions have generated a conflict.

Restart: Λ � Φ =⇒ {¬v} � Φ

Restart is used to generate fair derivations that explore the search space in an iterative-
deepening fashion.

Although it is beyond the scope of this paper, one can show that there are (determin-
istic) rule application strategies for this transition system that are refutationally sound
and complete, that is, that reduce a state of the form {¬v} � Φ to the state ⊥ if and
only if Φ is unsatisfiable.

2.2 Adding Learning to ME Proof Procedures

To illustrate the potential usefulness of learning techniques for a transition system like
the system B defined in the previous subsection, it is useful to look first at an example
of a derivation in B.

Example 1. Let Φ be a clause set containing, among others, the clauses:

(1) ¬B(x)∨C(x,y) (2) ¬A(x)∨¬C(y,x)∨D(y) (3) ¬C(x,y)∨E(x) (4) ¬D(x)∨¬E(x).

The table below provides a trace of a possible derivation of Φ. The first column shows
the literal added to the context by the current derivation step, the second column speci-
fies the rule used in that step, and the third indicates which instance of a clause in Φ was
used by the rule. A row with ellipses stands for zero or more intermediate steps. Note
that Backjump replaces the whole subsequence B(u)dC(u,y)D(u)E(u) of the current
context with ¬B(u).

Context Literal Derivation Rule Clause Instance
. . . . . . . . .

A(t(x)) Propagate instance A(t(x))∨·· · of some clause in Φ
where t(x) is a term with a single variable x.

. . . . . . . . .
B(u)d Decide instance B(u)∨·· · of some clause in Φ
C(u,y) Propagate instance ¬B(u)∨C(u,y) of (1)
D(u) Propagate instance ¬A(t(x))∨¬C(u,t(x))∨D(u) of (2)
E(u) Propagate instance ¬C(u,y)∨E(u) of (3)
¬B(u) Backjump instance ¬D(u)∨¬E(u) of (4)

It is clear by inspection of the trace that any intermediate decisions made between
the additions of A(t(x)) and B(u) are irrelevant in making clause (4) conflicting at
the point of the Backjump application. The fact that (4) is conflicting depends only
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on the decisions that lead to the propagation of A(t(x))—say, some decision literals
S1, . . . ,Sn with n≥ 0—and the decision to add B(u). This means that the decision literals
S1, . . . ,Sn,B(u) will eventually produce a conflict (i.e., make some clause conflicting) in
any context that contains them. The basic goal of this work is to define efficient conflict
analysis procedures that can come to this conclusion automatically and store it into the
system in such a way that Backjump is applicable, possibly with few propagation steps,
whenever the current context happens to contain again the literals S1, . . . ,Sn,B(u). Even
better would be the possibility to avoid altogether the addition of B(u) as a decision
literal in any context containing S1, . . . ,Sn, and instead add the literal ¬B(u) as a prop-
agated literal. We discuss how to do these in the rest of the paper. ��

Within the abstract framework of Section 2.1, and in perfect analogy to the Abstract
DPPL framework of Nieuwenhuis et al. [14], learning can be modeled very simply and
generally by the addition of the following two rules to the transition system B:

Learn: Λ � Φ =⇒ Λ � Φ, C if Φ |= C

Forget: Λ � Φ, C =⇒ Λ � Φ if Φ |=C

Note that adding entailed clauses to the clause set is superfluous for completeness.
The Learn rule then is meant to be used only to add clauses that are more likely to cause
further propagations and correspondingly reduce the number of needed decisions. The
intended use of the Forget rule is to control the growth of the clause set, by removing
entailed clauses that cause little propagation.

Because of the potentially high overhead involved in generating lemmas and prop-
agating them in practice, we focus in this work on only the kind of conflict-driven
learning that has proven to be very effective in DPLL-based solvers. In the following
we discuss two methods for doing that. Both of them are directly based on a lemma gen-
eration technique common in DPLL implementations. This technique can be described
proof-theoretically as a linear resolution derivation whose initial central clause is a con-
flicting clause in the DPLL computation, and whose side clauses are clauses used in
unit propagation steps. In terms of the abstract framework above, the linear resolution
derivation proceeds as follows. The central clause C∨L is resolved with a clause L∨D
in the clause set only if L was added to the current context by a Propagate step with
clause L∨D. Since the net effect of each resolution step is to replace L in C∨L by L’s
“causes” D, we can also see this resolution derivation as a regression process.

Both of the methods we present below lift this regression to the first-order case,
although with different degrees of generality. The first method produces lemmas that
are strictly subsumed by the lemmas produced by the second method. We present it
here because it is practically interesting in its own right, and because it can be used to
greatly simplify the presentation of the second method.

The Grounded Method. Let D = ({¬v} � Φ0 =⇒L . . . =⇒L Λ � Φ) be a derivation
in the transition system L where Λ contains at least one decision literal and Φ contains
a clause C0 conflicting in Λ. We describe a process for generating from D a lemma, a
clause logically entailed by Φ, which can be learned in the derivation by an application
of Learn to the state Λ � Φ.

We describe the lemma generation process itself as a transition system, this time
applied to annotated clauses, pairs of the form C | S where C is a clause and S is finite
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mapping {L �→ M, . . .} from literals in C to context literals of D. A transition invariant
for C | S will be that C consists of negated ground instances of context literals, while S
specifies for each literal L of C the context literal M of which L is an instance, provided
that M is a propagated literal. The mapping L �→ M will be used to regress L, that is, to
resolve it with M in the clause used in D to add M to the context.

The initial annotated clause A0 will be built from the conflicting clause of D and will
be regressed by applying to it the GRegress rule, defined below, one or more times.
In the definition of A0 and of GRegress we use the following notational conventions:
if σ is a substitution and C a clause or a literal, Cσ denotes the expression obtained by
replacing each variable or parameter of Cσ by a fresh Skolem constant (one per variable
or parameter); if σ is a context unifier of a clause L1 ∨·· ·∨Ln against some context, we
denote by Lσ

i the context literal paired with Li by σ.
Assume that C0 is conflicting in Λ because of some context unifier σ0. Then A0 is

defined as the annotated lemma

A0 = C0σ0 | {Lσ0 �→ Lσ0 | L ∈C0 and Lσ0 is a propagated literal}

consisting of a fresh grounding of C0σ0 by Skolem constants (hence the name “ground-
ed method”) and a mapping of each literal of C0σ0 to its pairable literal in Λ if that
literal is a propagated literal. The regression rule is

GRegress: D∨M | S, M �→ Lσ =⇒gr D∨Cσμ | S,T if (∗)

where (∗) =

⎧⎪⎨⎪⎩
Lσ is the propagated literal of some context unifier σ and clause L∨C,

μ is a most general unifier of M and Lσ,

T = {Nσμ �→ Nσ | N ∈C and Nσ is a propagated literal}

Note that the mapping is used by GRegress to guide the regression so that no search
is needed. The regression process simply repeatedly applies the rule GRegress an ar-
bitrary number of times starting from A0 and returns the last clause. While this clause
is ground by construction, it can be generalized to a non-ground clause C by replacing
each of its Skolem constants by a distinct variable. As stated in the next result, this
generalized clause is a logical consequence of the current clause set Φ in the derivation,
and so can be learned with an application of the Learn rule.2

Proposition 1. If A0 =⇒∗
gr C′ | S, the clause C obtained from C′ by replacing each

constant of C′ not in Φ by a fresh variable is a consequence of Φ0.

An important invariant in practice is that one can continue regressing the initial clause
until it contains only decision literals. This result, expressed in the next proposition,
gives one great latitude in terms of how far to push the regression. In our implemen-
tation, to reduce the regression overhead, and following a common practice in DPLL
solvers, we regress only propagated literals belonging to the last decision level of Λ.

Proposition 2. If A0 =⇒∗
gr A and A has the form D∨M | S,M �→ N, then the GRegress

rule applies to A.

Example 2. Figure 1 shows a possible regression of the conflicting clause ¬D(x)∨
¬E(x) in the derivation of Example 1. This clause is conflicting because of the con-

2 We refer the reader to a longer version of this paper [3] for all the proofs of the results below.
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¬D(a)∨¬E(a) ¬C(u,y)∨E(u)

¬D(a)∨¬C(a,b) ¬A(t(x))∨¬C(u,t(x))∨D(u)

¬C(a,b)∨¬A(t(c))∨¬C(a,t(c)) ¬B(u)∨C(u,y)

¬A(t(c))∨¬C(a, t(c))∨¬B(a) ¬B(u)∨C(u,y)

¬A(t(c))∨¬B(a)

Fig. 1. Grounded regression of ¬D(u)∨¬E(u)

text unifier σ0 = {x �→ u}, pairing the clause literals ¬D(x) and ¬E(x) respectively
with the context literals D(u) and E(u). So we start with the initial annotated clause:
A0 = (¬D(x) ∨ ¬E(x))σ0 | {(¬D(x))σ0 �→ (¬D(x))σ0 , (¬E(x))σ0 �→ (¬E(x))σ0} =
¬D(a)∨¬E(a) | {¬D(a) �→ D(u), ¬E(a) �→ E(u)}. To ease the notation burden, we
represent the regression in the more readable form of a linear resolution tree, where
at each step the central clause is the regressed clause, the literal in bold font is the re-
gressed literal, and the side clause is the clause (L∨C)σ identified in the precondition
of GRegress. The introduced Skolem constants are a,b and c. Stopping the regression
with the resolvent¬A(t(c))∨¬B(a) gives, after replacing the Skolem constants by fresh
variables, the lemma ¬A(t(zc))∨¬B(za). (Similarly for the previous resolvents.) ��

To judge the effectiveness of lemmas learned with this process in reducing the explored
search space we also need to argue that they let the system later recognize more quickly,
or possibly avoid altogether, the set of decisions responsible for the conflict in D. This
is not obvious within the ME calculus because of the role played by parameters in
the definition of a conflicting clause. (Recall that a clause is conflicting because of
some context unifier σ iff it moves parameters only to parameters in the context literals
associated with the clause.) To show that lemmas can have the intended consequences,
we start by observing that, by construction, every literal Li in a lemma C = L1 ∨·· ·∨Lm

generated with the process above is a negated instance of some context literal Ki in Λ.
Let us write CΛ to denote the set {K1, . . . ,Km}.

Proposition 3. Any lemma C produced from D by the regression method in this section
is conflicting in any context that contains CΛ.

Proposition 3 implies, as we wanted, that having had the lemma C in the clause set
from the beginning could have led to the discovery of a conflict sooner, that is, with
less propagation work and possibly also less decisions than in D. Moreover, the more
regressed the lemma, the sooner the conflict would have been discovered. For instance,
looking back at the lemmas generated in Example 2, it is easy to see that the lemma
¬C(za,zb)∨¬A(t(zc))∨¬C(za,t(zc)) becomes conflicting in the derivation of Exam-
ple 1 as soon as C(u,y) is added to the context. In contrast, the more regressed lemma
¬A(t(zc))∨¬B(za) becomes conflicting as soon as the decision B(u) is made. Since
a lemma generated from D is typically conflicting once a subset of the decisions in Λ
are taken, learning it in the state Λ � Φ, C0 will help recognize more quickly these
wrong decisions later in extensions of D that undo parts of Λ by backjumping. In fact,
if the lemma is regressed enough, one can do even better and completely avoid the con-
flict later on if one uses a derivation strategy that prefers applications of Propagate to
applications of Decide.
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¬D(x)∨¬E(x) ¬C(x1,y1)∨E(x1)

¬D(x)∨¬C(x,y1) ¬A(x2)∨¬C(y2,x2)∨D(y2)

¬C(x,y1)∨¬A(x2)∨¬C(x,x2) ¬B(x3)∨C(x3,y3)

¬A(x2)∨¬C(x,x2)∨¬B(x) ¬B(x4)∨C(x4,y4)

¬A(x2)∨¬B(x)

Fig. 2. Lifted regression of ¬D(x)∨¬E(x)

Example 3. Consider an extension of the derivation in Example 1 where the context has
been undone enough that now its last literal is A(t(x)). By applying Propagate to the
lemma ¬A(t(zc))∨¬B(za) it is possible to add ¬B(za) to the context, thus preventing
the addition of B(u) as a decision literal (because B(u) is contradictory with ¬B(za))
and avoiding the conflict with clause (4). With the less regressed lemma ¬C(za,zb)∨
¬A(t(zc))∨¬C(za,t(zc)) it is still possible to add ¬B(za), but with two applications of
Propagate—to the lemma and then to clause (1). ��

So far, what we have described mirrors what happens with propositional clause sets in
DPLL SAT solvers. What is remarkable about learning at the ME level, besides pro-
ducing the same nice effects obtained in DPLL, is that its lemmas are not just caching
compactly the reasons for a specific conflict. For being a first-order formula, a lemma in
ME represents an infinite class of conflicts of the same form. For instance, the lemma
¬A(t(zc))∨¬B(za) in our running example will become conflicting once the context
contains any instance of A(t(zc)) and B(za), not just the original A(t(x)) and B(u).

Our lemma generation process then does learning in a more proper sense of the
word, as it can generalize over a single instance of a conflict, and later recognize unseen
instances in the same class, and so lead to additional pruning of the search space.

A slightly more careful look at the derivation in Example 1 shows that the lemma
¬A(t(zc))∨¬B(za) is actually not as general as it could be. The reason is that a con-
flict arises also in contexts that contain, in addition to any instance of B(za), also any
generalization of A(t(zc)). So a better possible lemma is ¬A(z)∨¬B(za). We can pro-
duce generalized lemmas like the above by lifting the regression process similarly as in
Explanation-Based Learning (cf. Section 1). We describe this lifted process next.

The Lifted Method. Consider again the derivation D from the previous subsection,
whose last state Λ � Φ contains a clause C0 that is conflicting in Λ because of some
context unifier σ0. Using basic results about resolution and unification, this derivation
can be lifted to the first-order level. The lifted derivation can be built simply by follow-
ing the steps of the grounded derivation, but this time using the original clauses in Φ for
the initial central clause and the side clauses. In practice of course, the lifted derivation
can be built directly, without building the grounded derivation first. As in the grounded
case, we can use any regressed clause C as a lemma but with the difference that we
do not need to abstract away Skolem constants because the regression process resolves
only input clauses of C. Again, the resulting clause is a logical consequence of Φ.

More details, including a soundness proof can be found in the long version [3]. Here
we will only present the main idea by means of an example.
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Example 4. Figure 2 shows the lifting of the grounded regression in Figure 1 for the
conflicting clause ¬D(x)∨¬E(x) in the derivation of Example 1. This time, we start
with the initial annotated clause: (¬D(x)∨¬E(x)) | {¬D(x) �→ D(u), ¬E(x) �→ E(u)} .
As before, we represent the regression as a linear resolution tree, where this time at each
step the central clause is the regressed clause, the literal in bold font is the regressed
literal, and the side clause corresponds to the clause L∨C in the precondition of the
lifted version of GRegress. The lemma learned in this case is ¬A(x2)∨¬B(x). ��

3 Experimental Evaluation

A detailed discussion on implementing the various methods can be found in [3], where
we describe the regression processes more concretely. We also discuss some memo-
ization techniques used to reduce the regression cost, condensing techniques to limit
the size of lemmas, and a simple lemma forgetting policy. Here we focus on our initial
experimental results.

First problem set. We first evaluated the effectiveness of lemma learning with version
1.2 of Darwin over version 3.1.1 of the TPTP problem library. Since Darwin can handle
only clause logic, and has no dedicated inference rules for equality, we considered only
clausal problems without equality, both satisfiable and unsatisfiable ones. Furthermore,
as Darwin never applies the Decide rule in Horn problems [10], and thus also never
backtracks, we further restricted the selection to non-Horn problems only. All tests were
run on Xeon 2.4Ghz machines with 1GB of RAM. The imposed limit on the prover were
300s of CPU time and 512MB of RAM.

The first 4 rows of Table 1 summarize the results for various configurations of Dar-
win, namely, not using lemmas and using lemmas with the grounded and lifted regres-
sion methods. The first significant observation is that all configurations solve almost
exactly the same number of problems, which is somewhat disappointing. The situation
is similar even with an increased timeout of one hour per problem. A sampling of the
derivation traces of the unsolved problems, however, reveals that they contain only a
handful of Backjump steps, suggesting that the system spends most of the time in prop-
agation steps and supporting operations such as the computation of context unifiers.

The second observation is that for the solved problems the search space, measured in
the number of Decide applications, is significantly pruned by all learning methods (with
18% to 58% less decisions), although this improvement is only marginally reflected in
the run times. This too seems to be due to the fact that most derivations involve only a
few applications of Backjump in the configuration without lemmas. Indeed, 652 of the
898 problems solved with the lifted technique require at most 2 backjumps. This implies
that only a few lemmas can be learned, and thus their effect is limited and the run time
of most problems remains unchanged. Based on these tests alone, it is not clear if the
small number of backjumps is an artifact of the specific proof procedure implemented
by Darwin or a characteristic of the problems in the TPTP library.

The rest of Table 1 shows the same statistics, but restricted to the problems solved
by the no lemmas configuration using, respectively, at least 3, 20, and 100 applications
of Backjump within the 300s time limit. There, the effect of the search space pruning
is more pronounced and does translate into reduced run times. In particular, the speed
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Table 1. Problems that respectively take at least 0, 3, 20, and 100 applications of Backjump
without lemmas within 300s, where Solved Problems gives the number of problems solved by
a configuration, while the remaining values are for the subsets of 894, 241, 106, 65 problems
solved by all configurations. Avg Time (Total Time) gives the average (total) time needed for
the problems solved by all configurations, Speed up shows the run time speed up factor of each
configuration versus the one with no lemmas. Failure, Propagate, and Decide give the number
of rule applications, with Failure including both Backjump and Fail applications.

Method Solved Avg Total Speed Failure Propag. Decide
Probls Time Time up Steps Steps Steps

no lemmas 896 2.7 2397.0 1.00 24991 597286 45074
grounded 895 2.4 2135.6 1.12 9476 391189 18935
lifted 898 2.4 2173.4 1.10 9796 399525 19367

no lemmas 244 3.0 713.9 1.00 24481 480046 40766
grounded 243 1.8 445.1 1.60 8966 273849 14627
lifted 246 2.0 493.7 1.45 9286 282600 15059

no lemmas 108 5.2 555.7 1.00 23553 435219 38079
grounded 108 2.2 228.5 2.43 8231 228437 12279
lifted 111 2.6 274.4 2.02 8535 238103 12688

no lemmas 66 5.0 323.9 1.00 21555 371145 34288
grounded 67 1.7 111.4 2.91 6973 183292 9879
lifted 70 2.3 151.4 2.14 7275 193097 10294

up of each lemma configuration with respect to the no lemmas one steadily increases
with the difficulty of the problems, reaching a factor of almost 3 for the most difficult
problems in the grounded case. Moreover, the lifted lemmas configuration always solves
a few more problems than the no lemmas one.

Because of the way Darwin’s proof procedure is designed [3], in addition to pruning
search space, lemmas may also cause changes to the order in which the search space is
explored. Since experimental results for unsatisfiable problems are usually more stable
with respect to different space exploration orders, it is instructive to separate the data in
Table 1 between satisfiable and unsatisfiable problems. For lack of space, we must refer
the reader to [3] for detailed tables with this breakdown. Here it suffices to say that
the results for unsatisfiable problems show the same pattern as the aggregate results
in Table 1. Those solved by all configurations and solved by the no lemmas one with
at least 0, 3, 20, and 100 backjumps are respectively 561, 191, 89, and 61. For these
unsatisfiable problems, the speed up factors for grounded lemmas in particular are re-
spectively 1.07, 1.55, 3.74, and 4.19, which actually compares more favorably overall
to the corresponding speed up factors in Table 1: resp., 1.12, 1.60, 2.43, and 2.91.

In Figure 3 we plot the individual run times of the no lemmas configuration against
the lemma configurations for all problems solved by at least one configuration and
generating at least 3 backjumps in the no lemma one. The scatter plots clearly show
the positive effect of learning. For nearly all of the problems, the performance of the
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Fig. 3. Comparative performance, on a log-log scale, for different configurations for problems
with at least 3 applications of Backjump. For readability, the cutoff is set at 100s instead of 300s,
because in all cases less than a handful of problems are solved in the 100-300s range.

grounded lemmas configuration is better, often by a large margin, than the one with
no lemmas. A similar situation occurs with lifted lemmas, although there are more
problems for which the no lemmas configuration is faster.

Overall, our results indicate that lifted lemmas generate more Decide applications
and have higher overhead than grounded lemmas. The larger number of decision steps
of the lifted method versus the grounded one seems paradoxical at first sight, but can be
explained by observing that lifted lemmas—in addition to avoiding or detecting early a
larger number of conflicts—also cause the addition of more general propagated literals
to a context, leading to a higher number of (possibly useless) context unifiers. Further-
more, due to the increased generality of lifted lemmas and the way they are condensed
when they are too long, sometimes Propagate applies to a grounded lemma but not the
corresponding lifted lemma, making the latter less effective at avoiding conflicts (see
[3] for more details).

The higher overhead of the lifted method can be attributed to two main reasons. The
first is of course the increased number of context unifiers to be considered for rule ap-
plications. The second is the intrinsically higher cost of the lifted method versus the
grounded one, because of its use of unification—as opposed to matching—operations
during regression, and its considerable post-processing work in removing multiple vari-
ants of the same literals from a lemma—something that occurs quite often.

Second problem set. Given that only a minority of the TPTP problems we could use
in the first experiment cause a considerable amount of search and backtracking, and
that, on the other hand, many decidable fragments of first-order logic are NP-hard, we
considered a second problem set, stemming from an application of Darwin for finite
model finding [4]. This application follows an approach similar to that of systems like
Paradox [7]. To find a finite model of a given cardinality n, a clause set, with or without
equality, is converted into an equisatisfiable Bernays-Schönfinkel problem (instead of a
propositional problem as in Paradox) that includes the cardinality restriction. If Darwin
proves the latter clause set unsatisfiable, it increases the value of n by 1 and restarts,
repeating the process until it finds a model—and diverging if the original problem has
no finite models. Since Darwin is a decision procedure for the Bernays-Schönfinkel
class, starting with n above at 1, it is guaranteed to find a finite model of minimum
size if one exists. In the configurations with learning, Darwin uses lemmas during each
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Table 2. Satisfiable problems that transformed to a finite model representation respectively take
at least 0, 100, and 1000 applications of Backjump without lemmas within 300s, where Solved
Problems gives the number of problems solved by a configuration, while the remaining values
are for the subsets of 647, 152, 47 problems solved by all configurations.

Method Solved Average Total Speed Failure Propagate Decide
Probls Time Time up Steps Steps Steps

no lemmas 657 5.6 3601.3 1.00 404237 16122392 628731
grounded 669 3.3 2106.3 1.71 74559 4014058 99865
lifted 657 4.7 3043.9 1.18 41579 1175468 68235

no lemmas 162 17.8 2708.6 1.00 398865 15911006 614572
grounded 174 7.9 1203.1 2.25 70525 3833986 87834
lifted 162 14.0 2126.2 1.27 38157 1023589 57070

no lemmas 52 36.2 1702.9 1.00 357663 14580056 555015
grounded 64 10.5 495.3 3.44 53486 3100339 64845
lifted 57 11.5 538.7 3.16 26154 678319 39873

iteration of the process and carries over to the next iteration those lemmas not depending
on the cardinality restriction. Since a run over a problem with a model of minimum size
n includes n− 1 iterations over unsatisfiable clause sets, it is reasonable to consider
together all the n iterations in the run when measuring the effect of learning.

Table 2 shows our results for (the BS translation of) all the 815 satisfiable problems
of the TPTP library.3 In general, solving a problem in Darwin with the process above
requires significantly more applications of Backjump than for the set of experiments
presented earlier. As a consequence, the grounded lemmas configuration performs sig-
nificantly better than the no lemmas configuration, solving the same problems in about
half the time, and also solving 12 new problems. The lifted configuration on the other
hand performs only moderately better. Although the search space is drastically reduced
(the number of decisions is reduced by an order of magnitude in all cases), the overhead
of lemma simplification almost outweighs the positive effects of pruning. Restricting
the analysis to harder problems shows that the speed up factor of grounded lemmas
increases gradually to about 3.5.

This second set of results then confirms that learning has a significant positive effect
in solving problems that require a lot of search and produce comparatively few unit
propagations.

4 Conclusion and Further Work

We have presented two methods for implementing conflict-based learning in proof
procedures for the Model Evolution calculus. The methods have different degrees of

3 For an idea how we compare with other systems, Mace 4 [13] and Paradox 1.3, currently the
fastest finite model finders available, respectively solve 553 and 714 of those problems, making
Darwin second only to Paradox.
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generality, implementation difficulty, and effectiveness in practice. Our initial experi-
mental results indicate that for problems that are not trivially solvable by the Darwin
implementation and do not cause too much constraint propagation all methods have
a dramatic pruning effect on the search space. The grounded method, however, is the
most effective at reducing the run time as well.

We plan to investigate the grounded and the lifted methods further, possibly adapting
to our setting some of the heuristics developed in [15], in order to make learning more
effective and reduce its computational overhead. We also plan to evaluate experimen-
tally our learning methods with sets of problems not (yet) in the TPTP library.
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