
M. Butler et al. (Eds.): Fault-Tolerant Systems, LNCS 4157, pp. 100 – 113, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Are Practitioners Writing Contracts?

Patrice Chalin

Dept. of Computer Science and Software Engineering,
Dependable Software Research Group, Concordia University

chalin@cse.concordia.ca

Abstract. For decades now, modular design methodologies have helped
software engineers cope with the size and complexity of modern-day industrial
applications. To be truly effective though, it is essential that module interfaces
be rigorously specified. Design by Contract (DBC) is an increasingly popular
method of interface specification for object-oriented systems. Many
researchers are actively adding support for DBC to various languages such as
Ada, Java and C#. Are these research efforts justified? Does having support
for DBC mean that developers will make use of it? We present the results of an
empirical study measuring the proportion of assertion statements used in Eiffel
contracts. The study results indicate that programmers using Eiffel (the only
active language with built-in support for DBC) tend to write assertions in a
proportion that is higher than for other languages.

Keywords: design by contract, program assertions, empirical study, Eiffel.

1 Introduction

It is generally accepted that there is no silver bullet and that there probably never will
be; the challenges faced by software engineers will be alleviated by a combination of
techniques. One of the effective ways that software engineers have found to manage
the size and complexity of modern-day software systems is to use a modular-design
methodology. An appropriate partitioning of a system into modules (e.g., libraries,
classes) offers an effective means of managing complexity while providing
opportunities for reuse. But when applied to large industrial applications in general
and fault-tolerant systems in particular, modular design methods can only be truly
effective if module interfaces are rigorously defined.

An increasingly popular approach to interface specification for object-oriented
software is design by contract (DBC) [19-21]. Support for DBC is built in to the
Eiffel programming language. Although Eiffel is the only active language with
integrated support for DBC, researchers are currently busy adding DBC support to
other languages. Generally, this added support is achieved by extending a subset of
the target language. For example,

• SPARK for Ada [1],
• Spec# for C# [2],
• JACK for JavaCard [5],
• Java Modeling Language (JML) [4], Jass [3], Jcontract [22] for Java.

 Are Practitioners Writing Contracts? 101

Are such research efforts justified? Does having built-in support for DBC mean
that developers will write contracts? In an attempt to provide initial answers to these
questions we undertook an empirical study of the use of contracts in Eiffel. More
specifically, we sought to measure the proportion of source lines of code that are
assertions because program assertions are the main ingredient of contracts, and they
are easy to quantify. Why did we choose Eiffel programs as the subject of our study?
Eiffel is the only active programming language with built in support for DBC, and
this since its inception two decades ago. Hence, it is the only language for which
there is a sufficiently large code base to sample.

In the next section, we explain the relationship between assertions, DBC and
behavioral interface specifications. A brief review of Eiffel is also given, thus
providing the necessary background for an understanding of the metrics used in the
study. An introduction to the study and an explanation of the metrics are given in
Section 3. Section 4 provides the study results, and Section 5 discusses threats to
validity. We conclude in Section 6.

2 Design by Contract and Eiffel

2.1 Assertions, DBC and Behavioral Interface Specifications

Design by contract (DBC) refers to a method of developing object-oriented software
defined by Bertrand Meyer [19, 20]. The main concept that underlies DBC is the
notion of a precise and formally specified agreement between a class and its clients.
Such an agreement, named a contract in DBC, is called a behavioral interface
specification (BIS) in its most general form [26]. Contracts and BISs are built from
class invariants, method pre- and post-conditions, (and other constructs) which are
expressed by means of program assertions.

DBC as a programming language feature refers to a limited form of support for
BISs where assertions are restricted to be expressions that are executable. Hence, for
example, in Meyer’s Eiffel programming language an assertion is merely a Boolean
expression (that possibly makes use of the special old operator1). Meyer clearly
identifies this as an engineering tradeoff in the language design of Eiffel [20]—a
tradeoff that we believe is an important stepping stone from the current use of (plain)
assertions in industry to the longer-term objective of the industrial adoption of
verifying compilers [17]. It is understood that this engineering tradeoff imposes a
limit on the expressiveness of Eiffel assertions (e.g. absence of quantifiers2) but, at the
same time, we also believe that it is precisely this tradeoff that has kept them
accessible to practitioners. We stress that it is the individual assertion expressions that
are restricted to being executable, not the contracts. Hence, for example, a method
contract might not be executable if its postcondition describes properties of the
method result rather than how it can be computed.

1 old e refers to the pre-state value of e, and can only occur in postconditions.
2 This exclusion is due not to the quantifiers per se, but rather to the possibility of allowing

quantified expressions with bound variables ranging over arbitrarily large or infinite
collections.

102 P. Chalin

How are contracts currently used in practice? A principal use for contracts, other
than for documentation, is run-time assertion checking (RAC) [6]. All current
systems supporting DBC also support RAC. When RAC is enabled, assertions are
evaluated at run-time and an exception is thrown if an assertion fails to evaluate to
true. Various degrees of checking can be enabled—e.g. from the evaluation of
preconditions only, to the evaluation of all assertions, including preconditions,
postconditions, invariants and inline assertions. Enabling RAC during testing,
particularly integration testing, is an effective means of detecting bugs in modules and
thus can help contribute to the increase in overall system quality.

Of course, for most applications, particularly fault-tolerant, safety- and security-
critical systems, it is preferable to be able to guarantee the absence of assertion
failures before a component is run. Extended Static Checking (ESC) [11] and Verified
DBC (VDBC) [10, 25] tools can be used for this purpose. Such tools attempt to
determine the validity of assertions by static analysis. ESC tools exist for Modula-3
and Java [9, 14], and one is currently under development for Eiffel. VDBC tools
include Omnibus [25] and PerfectDeveloper [10].

2.2 Eiffel: A Brief Review

A sample Eiffel class taken from the Gobo Eiffel kernel library is given in Figure 1.
Lines too long to fit on the page have been truncated and suffixed with ellipses (“…”).
Classes optionally begin (and/or end) with an indexing clause that offers information
about the class. In other languages this is often accomplished by using a comment
block. Comments, like in Ada, start with a “--” and run until the end of the line. An
Eiffel class generally declares a collection of features (attributes and “methods”). The
given sample class declares only one feature, an n-ary exclusive or, nxor.

Of main concern to us here are assertions. An assertion in Eiffel is written as a
collection of one or more optionally tagged assertion clauses. The meaning of an
assertion is the conditional conjunction of its assertion clauses [12]. The tags can
help readability and debugging since they can be output when the clause is violated
[21]. Tags zero, unary and binary adorn lines 40, 41 and 42 of Figure 1,
respectively.

An assertion clause is either a

• Boolean expression (as given in lines 40, 41 and 42) or a
• comment (e.g. line 43).

Such comments are called informal assertions. Eiffel’s Boolean operators consist of
the usual negation (not), conjunction (and) and disjunction (or) as well as
conditional (i.e. short-circuited) conjunction (and then) and disjunction (or else).
The implication, a implies b, is an abbreviation for (not a) or else b. Assertions
can contain calls to methods identified as queries. A particular characteristic of a
query is that it is not permitted to have side effects [21].

In Eiffel, an assertion can be used to express a

• precondition (introduced by the keyword require),
• postcondition (ensure),

 Are Practitioners Writing Contracts? 103

1
2
3
4
5
6
7
8
…
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
…
38
39
40
41
42
43
44
45

indexing

 description:

 "Routines that ought to be in class BOOLEAN"

 library: "Gobo Eiffel Kernel Library"
 copyright: "Copyright (c) 2002, Berend de Boer and others"
 Lines 9 to 11 have been removed.

class KL_BOOLEAN_ROUTINES

feature -- Access

 nxor (a_booleans: ARRAY [BOOLEAN]): BOOLEAN is
 -- N-ary exclusive or
 require
 a_booleans_not_void: a_booleans /= Void
 local
 i, nb: INTEGER
 do
 i := a_booleans.lower
 nb := a_booleans.upper
 from until i > nb loop
 Lines 27 to 37 have been removed.
 end
 ensure
 zero: a_booleans.count = 0 implies not Result
 unary: a_booleans.count = 1 implies Result = …
 binary: a_booleans.count = 2 implies Result = …
 -- more: there exists one and only one `i' in …
 end
end

Fig. 1. Sample Eiffel class (kl_boolean_routines.e)

• class invariant (invariant),
• loop invariant (invariant),
• inline assertion (check)

A sample precondition is given in line 20 of Figure 1. The sample postcondition (lines
40-43) illustrates the use of more than one assertion clause. Assertions in
postconditions can contain occurrences of the special operator old. For example, the
postcondition

ensure count = old count + 1

will be true when the post-state value of count is one more than the pre-state value of
count. A check is equivalent to an assert statement in other languages such a C,
C++ and Java.

There is only one looping construct in Eiffel, and it has the general form given in
Figure 2. As was previously mentioned, an assertion can be used to express a loop
invariant. Also, of interest is the loop variant: an integer expression that must
decrease through every iteration of the loop while remaining nonnegative. That
covers the basics of what we need to be able to explain the study metrics.

104 P. Chalin

from
 init_instructions
invariant
 assertion
variant
 variant
until
 exit_condition
loop
 loop_instructions
end

Fig. 2. Eiffel loop instruction

3 Study

3.1 Objectives and Hypotheses

Given a language like Eiffel, with built-in support for DBC, our objective has been to
measure the extent to which developers actually write contracts for their classes.
Since program assertions are the basic ingredient of contracts and since it is relatively
straightforward to count assertions, we chose this as a basic metric for our study. In
addition to counting assertions we will also categorize them by kind—e.g.
preconditions, postconditions, etc. vs. ordinary inline assertions. Our main study
hypotheses are the following:

(H1) Developers using a programming language with built in support for DBC
will write program assertions in a proportion that is higher than for languages not
supporting DBC.

(H2) Furthermore, assertions will be used as part of contracts in a proportion
that is higher than their use as inline assertions.

3.2 Projects

During the initial portion of our study we gathered metrics from free Eiffel software,
consisting of both free commercial software (such as the sources distributed with
EiffelStudio) as well as open source projects. This allowed us to conduct a pilot study
during which we fine tuned our metrics gathering tool. This was essential before
embarking on the second phase of the study in which we solicited the participation of
industry.

In the second phase of our study, we posted announcements in the EiffelWorld
newsletter [7]—published monthly by Eiffel Software, the makers of EiffelStudio—
as well as Eiffel mailing lists and bulletin boards, inviting developers of
commercial and open source Eiffel applications to contribute to the study. The
invitation directed developers to a web site managed by our research group where
the purpose of the study is explained and instructions for participation are given.
After filling in a consent form, developers are provided with a script to run on their
Eiffel code. The script generates a metrics file which participants subsequently
upload to the study site. Finally, the identity of submitters is confirmed by means
of an acknowledgement e-mail.

 Are Practitioners Writing Contracts? 105

blank comment

 IALOC

SLOC

AsnSLOC

IdxSLOC

assertion

Fig. 3. Categorization of Eiffel LOC

3.3 Definition of Metrics

Our basic metric is a count of Lines of Code (LOC) per class file. As can be seen in
Figure 3, each LOC is categorized at the top-level either as a

• blank line, containing at most white space
• comment line, containing a comment possibly preceded by white space
• (physical) Source Line of Code (SLOC) [23].

An illustration of the top-level categorization of the sample Eiffel class of Figure 1 is
given in Figure 4.

One of our main statistics is a measure of the proportion of LOC that are
assertions. The computation of this ratio is slightly complicated by the existence in
Eiffel of informal assertions and index blocks, as we explain next.

An enumeration of the kinds of assertion that are supported by Eiffel is given in
Figure 5. Note that we chose to include loop variant expressions as a kind of
assertion, since it contributes, like the loop invariant, to the overall specification of
the loop instruction.

As was explained in Section 2.2, an assertion can take the form of a source
statement (AsnSLOC) or a comment. The latter is called an informal assertion
(IALOC)—see line 43 of Figure 4 for an example. Hence,

AsnLOC = AsnSLOC + IALOC

The lines in Eiffel indexing clauses (identified as IdxSLOC in Figure 3), though
technically SLOC, merely provide documentation for a class in a manner that is
handled by a comment block in other languages. We therefore define an “adjusted
SLOC” metric as

AdjSLOC = SLOC – IdxSLOC + IALOC

so we can simply and accurately define the proportion of lines that are assertions as

AsnProp = AsnLOC / AdjSLOC

106 P. Chalin

1
2
3
4
5
6
7
8
…
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
…
38
39
40
41
42
43
44
45

SLOC
blank
SLOC
blank
SLOC
blank
SLOC
SLOC
…
blank
SLOC
blank
SLOC
blank
SLOC
comment
SLOC
SLOC
SLOC
SLOC
SLOC
SLOC
SLOC
SLOC
…
SLOC
SLOC
SLOC
SLOC
SLOC
comment
SLOC
SLOC

idx

idx

idx

idx
idx
...

req

...

ens
ens
ens
ens

indexing

 description:

 "Routines that ought to be in class BOOLEAN"

 library: "Gobo Eiffel Kernel Library"
 copyright: "Copyright (c) 2002, Berend de Boer and others"

Lines 9 to 11 have been removed.

class KL_BOOLEAN_ROUTINES

feature -- Access

 nxor (a_booleans: ARRAY [BOOLEAN]): BOOLEAN is
 -- N-ary exclusive or

require
 a_booleans_not_void: a_booleans /= Void

local
 i, nb: INTEGER

do
 i := a_booleans.lower
 nb := a_booleans.upper
 from until i > nb loop
 Lines 27 to 37 have been removed.
 end

ensure
 zero: a_booleans.count = 0 implies not Result
 unary: a_booleans.count = 1 implies Result = …
 binary: a_booleans.count = 2 implies Result = …
 -- more: there exists one and only one `i' in …

end
end

Fig. 4. LOC categorization for our sample (kl_boolean_routines.e)

Statement Use to express … AsnLOC qualifier
require preconditions Req

ensure postconditions Ens

invariant (class) class invariants Inv

invariant (loop) loop invariant invL

variant (loop) loop variant varL

check inline assertion chk

Fig. 5. Kinds of assertion

We will keep separate AsnLOCa counts for each kind of assertion a (see Figure 5);
we note that:

AsnLOC = AsnLOCreq + AsnLOCens + … + AsnLOCchk

 Are Practitioners Writing Contracts? 107

Table 1. Number of projects, classes and LOC

Project
Category

Number
of projects

Number
of classes

LOC
(106)

% of
total
LOC

Proprietary 5 28 149 4.4 55%
Open Source 79 15 986 2.7 33%
EiffelStudio L&S 1 4 373 0.9 11%

Total 85 48 508 7.9 100%

3.4 Metrics Gathering Tool

At first we used the SLOCCount tool [24] as our base. This tool can count physical
SLOC for over two-dozen languages—though initially not for Eiffel. Aside from its
ability to process many different kinds of languages SLOCCount also does convenient
house-keeping tasks such as determining the type of a file (by its extension or
content), flagging duplicates and ignoring generated files.

Since our needs were specific to Eiffel source, we eventually chose to use a single
Perl script to gather all metrics. The creation of the script did pose some challenges
due, e.g., to the various flavors of Eiffel (as supported by different compilers) and
inconsistent line endings (Unix, DOS or Mac) sometimes within the same file, as well
as the variation in lexical rules used for multi-line string literals.

4 Results

4.1 General

As can be seen from Table 1, the study covered 85 projects totaling 48 508 Eiffel
classes and 7.9 million lines of code (MLOC). The projects included applications
from the areas of databases, developer tools, finance/HR, games, modeling,
middleware, networking, scientific computing, systems software, utility
library/toolkits, visualization and web applications. We divided the projects into three
categories:

• proprietary (accounting for 55% of the code of the study),
• open source (33%), and the
• library and samples shipped with EiffelStudio 5.5 (11%).

Note that half of the files in the EiffelStudio category consist of open source samples
(or what they call “free add-ons”), most of which are provided by GoboSoft—an
important contributor of open source Eiffel libraries and tools. Nonetheless GoboSoft
add-on files were counted in the EiffelStudio category only. We separated out
EiffelStudio (libraries and samples) into its own category because we expected it to
have the highest proportion of assertions.

The breakdown (partitioning) of LOC into SLOC, blank lines and comments is
given in Table 2. We see that 74% of LOC are physical source lines of code. On
average, the classes in our study contained 163 LOC (120 SLOC). The table also

108 P. Chalin

Table 2. Breakdown of LOC into SLOC, blank and comment lines

 SLOC blank comment Total IdxSLOC IALOC AdjSLOC
LOC (106) 5.8 1.3 0.83 7.9 0.25 0.014 5.6

% of total LOC 74% 16% 10% 100% 3.2% 0.17% 71%
Average 120 26 17 163 5 0.3 115

Table 3. Assertion metrics by kind

Assertion kind, a require ensure class inv loop inv loop var check Total
(a) AsnLOCa 138 960 111 420 19 794 745 705 8 563 280 187
(b) AsnLOCa/AdjSLOC 2.5% 2.0% 0.35% 0.013% 0.013% 0.15% 5.0%
(c) AsnLOCa/AsnLOC 50% 40% 7.1% 0.27% 0.25% 3.1% 100%
(d) max AsnLOCa/AsnLOC 56% 49% 52% 11% 5% 33% -
(e) avg. AsnLOCa / file 2.9 2.3 0.4 0.0 0.0 0.2 5.8
(f) no. of statements (stmt) 83 712 69 144 8 671 412 694 7 005 169 638
(g) avg. AsnLOCa / stmt 1.6 1.6 2.3 1.8 1.0 1.2 -
(h) max AsnLOCa/ stmt 30 84 79 12 3 25 -
(i) IALOCa 1595 9 752 1 742 104 5 558 13 756
(j) IALOCa/AdjSLOC 0.03% 0.17% 0.03% 0.00% 0.00% 0.01% 0.25%
(k) IALOCa/AsnLOC 0.57% 3.5% 0.62% 0.04% 0.00% 0.20% 4.9%
(l) count (e/=Void) 63 003 22 187 9 672 9 0 2 811 97 682

(m) % (e/=Void) 45% 20% 49% 1.2% 0.00% 33% 35%

provides the value of AdjSLOC, namely 5.6 MLOC, which is defined to be the
number of SLOC excluding indexing clause lines but including informal assertions
(cf. Section 3.3). This adjusted SLOC count is the valued used in measuring the
proportion of assertions.

4.2 Assertion Metrics

The metrics concerning assertions are summarized in Table 3. We highlight some of
the most interesting results. For ease of reference, we have labeled the rows of the
table from (a) to (m). Looking at the Total column for rows (a) and (b) we see that
there were 0.28 MLOC of assertions. Hence, out of the 5.6 MLOC of adjusted SLOC
previously mentioned, overall 5.0% of the LOC were assertions.

Row (c) of Table 3 gives the distribution of assertions by kind, which is also
graphically illustrated in Figure 6. Assertions are mostly used to document
preconditions (50%), postconditions (40%) and class invariants (7.1%). Few loop
invariants and variants are given, though both of these appear almost as frequently
relative to each other. The low frequency of loop invariants and variants may be a
testimony to the high degree of challenge associated with writing useful loop
invariants and variants. Remarkably only 3.1% of the assertions (0.15% of the overall
AdjSLOC) were inline checks.

Recall that the various kinds of assertion statement can contain more than one
assertion line. The average number assertion lines per statement (g) ranges from 1.0
to 2.3, while the average number of assertions per file (e) is 5.8. While preconditions
occur most frequently, class invariants have the largest number of assertions

 Are Practitioners Writing Contracts? 109

Fig. 6. Distribution of assertions by kind (all project categories)

per statement (2.3). This suggests that class invariants, when written, express more
complex conditions since on average, it requires twice as many assertions to express a
class invariant than a precondition. The maximum number of assertions per clause
(h) can be fairly large, e.g. up to 79 LOC for a class invariant and 84 LOC for a
postcondition.

We note that a very small proportion of assertions are given in the form of
comments. Overall, only 0.25% of the AdjSLOC and 4.9% of assertion LOC are
informal assertions (j), (k). Informal assertions are used most frequently in
postconditions (3.5% of AsnSLOCens). We expect this to be the case either because
(i) some aspect of the postcondition may be too complex to express as an assertion—
e.g. it may require quantifiers—or, (ii) developers do not want the overhead of full
postcondition evaluation during run-time checking and choose express as comments
those predicates that would be too computationally intensive.

A noteworthy proportion of assertions include subexpressions of the form e /=
Void, stating that a given reference is not Void (i.e. null). This number is close to
50% for class invariants and 35% overall (m). These figures provide some weight to
the choice made by a number of language designers and static analysis tools (such as
Splint [13]) which consider a reference type declaration to be non-null by default. In
fact, we recently completed a more detailed study that indicates that well over 50% of
reference type declarations in Java are meant to be non-null [8]. In the newly released
ECMA Eiffel standard, the notions of attached and detachable types are introduced.
An identifier of an attached type is guaranteed to always be bound to an object, i.e., it
cannot be Void/null. The standard mandates that types are attached by default; to
indicate a detachable version of a type T one prefixes the type name with a question
mark: ?T [12].

What was the distribution of AsnProp? A little over half (52.4%) of the classes in
the study contained no assertions. We note that a class without assertions can still
have a contract, since subclasses inherit contracts from their superclasses (but
detecting and quantifying such implicit contracts is outside the scope of this study).
The distribution of the files with a nonzero AsnProp is given in Figure 7. The highest
proportion of files (11%) had an AsnProp in the range 2.5% to 5%. A third of the
files had an AsnProp between 0 and 12.5%. Figure 8 shows the number of projects
with an average proportion of assertions in a given range. Two projects had no
assertions, while the majority of projects had between 1.5% and 7% of assertions per
adjusted SLOC.

110 P. Chalin

0.00%

2.00%

4.00%

6.00%

8.00%

10.00%

12.00%

(0 -
2.5%]

(2.5 -
5%]

(5 -
7.5%]

(7.5 -
10%]

(10 -
12.5%]

(12.5 -
15%]

(15 -
17.5%]

(17.5 -
20%]

(20 -
22.5%]

(22.5 -
25%]

(25 -
27.5%]

(27.5 -
30%]

(30 -
100%]

Fig. 7. Percentage of files with AsnProp in a given range

0

1

2

3

4

5

6

7

8

9

10

0%

(0
-0

.5
%

]

(0
.5

-1
%

]

(1
-1

.5
%

]

(1
.5

-2
%

]

(2
-2

.5
%

]

(2
.5

-3
%

]

(3
-3

.5
%

]

(3
.5

-4
%

]

(4
-4

.5
%

]

(4
.5

-5
%

]

(5
-5

.5
%

]

(5
.5

-6
%

]

(6
-6

.5
%

]

(6
.5

-7
%

]

(7
-7

.5
%

]

(7
.5

-8
%

]

(8
-8

.5
%

]

(8
.5

-9
%

]

(9
-9

.5
%

]

(9
.5

-1
0%

]

(1
0-

10
.5

%
]

(1
0.

5-
11

%
]

(1
1-

11
.5

%
]

(1
1.

5-
12

%
]

(1
2-

12
.5

%
]

(1
2.

5-
13

%
]

(1
3-

13
.5

%
]

(1
3.

5-
14

%
]

(1
4-

14
.5

%
]

(1
4.

5-
10

0%
]

Fig. 8. Number of projects with AsnProp in a given range

Table 4 shows how the proportion of LOC that are assertions varies by project

category. As might be expected, the EiffelStudio category has the highest proportion,
6.7%, followed by open source projects and proprietary code with 5.8% and 4.2%,
respectively. (Recall that the open source category excludes GoboSoft software
because it is counted in the EiffelStudio project category.)

Table 4. Proportion of AsnLOCs per project category

Project Category SLOC
(106)

AdjSLOC
(106)

AsnLOC
(106)

AsnLOC /
AdjSLOC

Proprietary 3.3 3.2 0.13 4.2%
Open Source 1.9 1.8 0.11 5.8%
EiffelStudio L&S 0.62 0.59 0.04 6.7%

Total 5.8 5.6 0.28 5.0%

 Are Practitioners Writing Contracts? 111

5 Threats to Validity

5.1 Internal Validity

The most significant potential source of error is in the measurement of metrics
because the metrics are gathered by a script that uses keyword-based pattern matching
rather than a true Eiffel parser. This was deemed the only practical approach because
study samples were written in several different variants of Eiffel; with the variability
being due to differences in the language as supported by different compilers or even
to changes in the language introduced over time. Since none of the current Eiffel
compilers support all variants, it seemed utterly impractical to attempt to build our
own parser that would.

Due to the manner in which Eiffel makes use of keywords to delimit code blocks
that can contain assertions, a keyword-based pattern matching approach turned out to
be not only feasible but also (seemingly) quite accurate. Our confidence was boosted
by the use of an inclusive test suite and by the fact that a comprehensive set of sanity
checks have been build into the script—we have run the script on over 5 million LOC
without it reporting errors.

Another aspect which could have biased the study results would be for a file’s data
to have been counted more than once. This would be likely to occur when the code of
an open source library was used in multiple projects. To guard against this, the script
used to compute the study metrics was also designed to generate a 32 bit hash code
for each file based on the file content. In computing the final statistics we retained at
most one file with the given hash code.

5.2 External Validity

Were the projects used in the study representative of typical Eiffel software? In the
first phase of the study we obtained projects from SourceForge and other sites
dedicated to open source Eiffel software. Our only selection criterion was for projects
to appear to be active; we believe that this is reasonable. In the second phase of the
study, we solicited contributions from the Eiffel community. This resulted in 10
submissions, half of which were proprietary, though this half contributed 55% of the
LOC for the study. With respect to the threat to validity, our main concern is whether
the volunteered projects would have a proportion of assertions that is higher than
average, hence unfairly contributing support towards our hypothesis. This cannot be
ascertained, but we note that the proportion of assertions for proprietary code (4.2%)
was in fact less than that for open source code (5.8%) and that all but five of the open
source projects were chosen by us in phase one. It is clear though, that the relatively
small size of the Eiffel user community, as compared, say, to that of C or C++, may
also have some bearing on the study results—e.g. lesser variability.

Could similar results be expected to hold for other languages supporting DBC?
One might argue that those who write applications in Eiffel have chosen Eiffel over
other programming languages precisely because of its built-in support for DBC.
Hence, the proportion of developers who are willing to write contracts may be higher
in the case of Eiffel than for another programming language. Even if this was the
case, the results offer the promise that such developers may well choose to adopt
another programming language if DBC support were adequate.

112 P. Chalin

6 Conclusion

In previous work, we were able to establish that the industrial use of assertions is
fairly widespread [6]. The present study focuses on the use of assertions in Eiffel, the
only active language supporting the disciplined use of assertions in specifying
contracts, i.e. Design by Contract (DBC). Overall, 5.0% of the studied code consisted
of assertions. Ninety-seven percent of these assertions were used in contracts rather
than inline assertions (confirming our hypothesis H2). We are not aware of any other
empirical studies that measure the use of assertions, but estimated figures are
available. For example, Hoare estimates that 1% of the Microsoft Office Suite LOC
are assertions [15, 16]. Participants of a survey that we recently conducted offered
estimates with a mean of 3.2% [6]. The results of the study reported here, allow us to
confirm (H1) that Eiffel classes contain program assertions in a proportion that is
higher than the use of assertions in programming languages not supporting DBC. In
our opinion, this is good news for those researchers currently striving to add DBC
support to other languages.

We expect that developers will be inclined to increase their use of assertions as
other tools that process assertions and contracts become more mature and widely
known—e.g. tools like JmlUnit that can automatically generate test oracles from JML
specifications [18]. By design, DBC restricts the expressiveness of assertions by
requiring that they be executable. We believe that this moderation in expressiveness
is what will allow DBC to be more easily adopted by industry at large. It will then
become a smaller step to reach the full expressiveness of behavioral interface
specifications (BISs).

References

[1] J. Barnes, High Integrity Software: The Spark Approach to Safety and Security. Addison-
Wesley, 2003.

[2] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec# Programming System: An
Overview”. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean editors,
Proceedings of the International Workshop on the Construction and Analysis of Safe,
Secure, and Interoperable Smart Devices (CASSIS'04), Marseille, France, 2004, vol. 3362
of LNCS. Springer, 2004.

[3] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim, “Jass—Java with Assertions”,
Electronic Notes in Theoretical Computer Science, 55(2):103-117, 2001.

[4] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino,
and E. Poll, “An Overview of JML Tools and Applications”, International Journal on
Software Tools for Technology Transfer (STTT), 7(3):212-232, 2005.

[5] L. Burdy, A. Requet, and J.-L. Lanet, “Java Applet Correctness: A Developer-Oriented
Approach”. Proceedings of the International Symposium of Formal Methods Europe,
2003, vol. 2805 of LNCS. Springer, 2003.

[6] P. Chalin, “Logical Foundations of Program Assertions: What do Practitioners Want?”
Proceedings of the Third International Conference on Software Engineering and Formal
Methods (SEFM'05), Koblenz, Germany, September 5-9, 2005. IEEE Computer Society
Press, 2005.

 Are Practitioners Writing Contracts? 113

[7] P. Chalin, “DbC and assertions in Eiffel: participants needed for quantitative research
survey”, EiffelWorld Electronic Newsletter, 32(2), 2006.

[8] P. Chalin and F. Rioux, “Non-null References by Default in the Java Modeling
Language”. Workshop on the Specification and Verification of Component-Based Systems
(SAVCBS'05), Lisbon, Portugal, Sept., 2005. ACM Press, 2005.

[9] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java and JML”. In G. Barthe, L.
Burdy, M. Huisman, J.-L. Lanet, and T. Muntean editors, Proceedings of the
International Workshop on the Construction and Analysis of Safe, Secure, and
Interoperable Smart Devices (CASSIS'04), Marseille, France, March 10-14, 2004, vol.
3362 of LNCS, pp. 108-128. Springer, 2004.

[10] D. Crocker, “Safe Object-Oriented Software: The Verified Design-By-Contract
Paradigm”. Practical Elements of Safety: Proceedings of the 12th Safety-Critical Systems
Symposium, Birmingham, UK, February, 2004. Springer, 2004.

[11] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe, “Extended Static Checking”,
Compaq Systems Research Center, Research Report 159. December, 1998.

[12] ECMA International, “Eiffel Analysis, Design and Programming Language”, ECMA-
367. June 2005.

[13] D. Evans, “Splint User Manual”, Secure Programming Group, University of Virginia.
June 5, 2003.

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata,
“Extended static checking for Java”. Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI’02), June, 2002, vol. 37(5),
pp. 234-245. ACM Press, 2002.

[15] C.A.R. Hoare, “Assertions: Progress and Prospects”, http://research.microsoft. com/~
thoare, 2001.

[16] C. A. R. Hoare, “Assertions: A Personal Perspective”, IEEE Annals of the History of
Computing, 25(2):14-25, 2003.

[17] C. A. R. Hoare, “The Verifying Compiler: A Grand Challenge for Computing Research”,
JACM, 50(1):63-69, 2003.

[18] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs, “JML: Notations and
Tools Supporting Detailed Design in Java”, in OOPSLA 2000 Companion, Minneapolis,
Minnesota, 2000, pp. 105-106.

[19] B. Meyer, “Applying Design by Contract”, Computer, 25(10):40-51, 1992.
[20] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-Hall, 1997.
[21] R. Mitchell and M. Jim, Design by Contract, by Example. Addison-Wesley, 2002.
[22] Parasoft, “Jcontract product page”, www.parasoft.com, 2005.
[23] R. Park, “Software Size Measurement: A Framework for Counting Source Statements”,

CMU, Software Engineering Institute, Pittsburgh CMU/SEI-92-TR-20, 1992.
[24] D. A. Wheeler, “SLOCCount”, www.dwheeler.com/sloccount, 2005.
[25] T. Wilson and S. Maharaj, “Omnibus: A clean language for supporting DBC, ESC and

VDBC”. Proceedings of the Third International Conference on Software Engineering
and Formal Methods (SEFM'05), Koblenz, Germany, September 5-9, 2005. IEEE
Computer Society Press, 2005.

[26] J. M. Wing, “Writing Larch Interface Language Specifications”, ACM Trans. Program.
Lang. Syst. , 9(1):1-24, 1987.

	Introduction
	Design by Contract and Eiffel
	Assertions, DBC and Behavioral Interface Specifications
	Eiffel: A Brief Review

	Study
	Objectives and Hypotheses
	Projects
	Definition of Metrics
	Metrics Gathering Tool

	Results
	General
	Assertion Metrics

	Threats to Validity
	Internal Validity
	External Validity

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

