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Foreword 

Software is the fuel of the information society. Many of our systems and applications 
are today controlled and/or developed in software. It is also a well known fact that 
many software systems have reached a level of complication, mainly because of their 
size, heterogeneity and distribution (and hopefully not through bad programming), 
that results in faults appearing which cannot be traced back easily to the code. Some 
of these “faults” could also be unexpected program behaviour that appears as a result 
of interactions between the different parts of the program; this is commonly known as 
complexity. The problem is that sometimes is not easy to say whether a fault is 
traceable to the code or whether it is due to emergent unexpected behaviour from the 
complex software system. Testing the code for possible faults is also very costly. 

New methods, approaches, tools and techniques are needed to cope with the 
increasing complexity in software systems; amongst them, fault tolerance techniques 
and formal methods, supported by the corresponding tools, are promising solutions. 
This is precisely the subject of this book, which is very much welcome. 

The pervasiveness of software in today’s information society makes it of paramount 
importance, and the main objective of the Software Technologies unit of the European 
Commission is to support the European software and services industry so that quality 
software and services are developed to compete in global markets. To help in reaching 
this objective, it is obvious that we need to maintain and contribute to the excellence in 
research from universities and research organizations in this specific area. 

The volume has been prepared by the partners involved in the FP6 IST-511599 
RODIN project (partly funded by the European Commission), “Rigorous Open 
Development Environment for Complex Systems”. The book brings together papers 
focusing on the application of rigorous design techniques to the development of fault-
tolerant, software-based systems. 

In RODIN complexity is mastered by design techniques (specifically formal 
methods) that support clear thinking and rigorous validation and verification. Coping 
with complexity also requires architectures that are tolerant of faults and 
unpredictable changes in the environment; this side is addressed by fault tolerant 
design techniques.  The sources of complexity under study in RODIN are those 
caused by the environment in which the software is to operate and from the poorly 
conceived architectural structure. 

Who should read this book? Basically, the formal methods and fault tolerance 
communities. The formal methods people will learn more about (and probably be 
fired up by) the challenging issues in design for fault tolerance, while researchers on 
fault tolerance will better understand how formal methods can improve way in which 
their techniques are developed and applied. 

The European Commission, through its successive framework programs, has 
supported work on methods and techniques to master system complexity and achieve 
dependable and trustworthy systems. Recently, specifically under the 6th Framework 
Programme, it has called, amongst other topics, for “Principles, methodologies and 
tools for design, management and simulation of complex software systems” and 
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“Foundational and applied research to enable the creation of software systems with 
properties such as self-adaptability, flexibility, robustness, dependability and 
evolvability”.  

It is clear that these issues are, by no means, fully resolved. Software systems are 
increasingly complex, and we will need increased efforts in research just to keep up 
with the pace of development (based on the reflection by the Red Queen in Lewis 
Carroll's Through the Looking Glass, “in this place it takes all the running you can do, 
to keep in the same place”).  It is time, now, for renewed efforts; this book is a pointer 
in that direction. 

August 2006                                                           José-Luis Fernández-Villacañas Martín 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
Disclaimer: The views expressed in this foreword are those of the author only and should not be 
construed to reflect or represent the position of the European Commission. 



Preface

There was, for several decades, a split between researchers who aimed to create
perfect programs by using formal methods and those who pioneered techniques
for fault tolerance. Of course, the approaches actually complement each other.
Fault tolerance generally copes with failures of physical components (and might
in specific cases be able to guard against some sorts of design mistakes). Formal
reasoning is not just about proving (under assumptions) that a given program
will function perfectly; the most productive use of formalism is early on in the
design process to help clean up the architecture of a system. As systems have
become larger and more intimately linked both to the physical world and to
human users, the design task has become far more complex. One of the goals of
design must always be to reduce unnecessary complexity in resulting systems.

The editors of this book are proud to be involved in an EU (FP-6) project
which specifically brings together researchers from the fault tolerance and formal
methods communities. We are aware that through abstraction, refinement and
proof, formal methods provide design techniques that support clear thinking as
well as rigorous validation and verification. Furthermore, good tool support is
essential to support the industrial application of these design techniques.

In 2005 the RODIN (Rigorous Open Development Environment for Complex
Systems) project organised a workshop on Rigorous Engineering of Fault Tol-
erant Systems. REFT 20051 was held in conjunction with the Formal Methods
2005 conference at Newcastle University. The aim of this workshop was to bring
together researchers who were interested in the application of rigorous design
techniques to the development of fault tolerant software based systems.

Such was the success of that event that the organisers decided to prepare a book
on the same combination of topics by inviting the authors of the best workshop pa-
pers to expand their work and a number of well-established researchers working in
the area to write invited chapters. This book contains the refereed and revised pa-
pers that came in response. Twelve of the papers are reworked from the workshop;
nine of them are totally new. We have also included two provocatively different po-
sition statements from Abrial and Amey on the role of programming languages.

The organisers would like to thank the reviewers (some of whom work on
RODIN, others are from outside the project): Jean-Raymond Abrial, Elisabeth
Ball, Fernando Castor Filho, Patrice Chalin, Ernie Cohen, Joey Coleman, Neil
Evans, Massimo Felici, Stefania Gnesi, Stefan Hallerstede, Michael Hansen, Ian
Hayes, Alexei Iliasov, Dubravka Ilić, Maciej Koutny, Linas Laibinis, Annabelle
McIver, Qaisar Ahmad Malik, César Muñoz, Simin Nadjm-Tehrani, Apostolos
Niaouris, Ian Oliver, Patrizio Pelliccione, Mike Poppleton, Shamim Ripon, Colin
Snook and Divakar Yadav.

1 The proceedings are at http://www.cs.ncl.ac.uk/research/pubs/trs/papers/915.pdf
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We should particularly like to thank José-Luis Ferández-Villacañas Martin
who both gave his time to update the meeting on IST plans and has kindly
contributed the Foreword to this volume; and Louise Talbot who has quietly
and efficiently handled the collation of this book.

Both in organising REFT 2005 and in publishing this edited book we are
aiming to build a network of researchers from the wider community to promote
integration of dependability and formal methods research. It is encouraging to
see that many of the papers address software based systems that impact peo-
ples’ everyday lives such as communications systems, mobile services, control
systems, medical devices and business transactions. We hope that you enjoy
reading this volume and encourage you to contribute to our aim of closer col-
laboration between dependability and formal methods research. We expect to
organise another event in London in July 2007: details will appear on the project
WWW site http://www.cs.ncl.ac.uk/research/projects/detail.php?id=219

August 2006 Michael Butler
Cliff Jones

Alexander Romanovsky
Elena Troubitsyna
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Train Systems

Jean-Raymond Abrial

ETH Zurich, Switzerland
jabrial@inf.ethz.ch

Abstract. This chapter presents the modelling of a software controller in charge
of managing the movements of trains on a track network. Some methodological
aspects of this development are emphasized: the preliminary informal presenta-
tion of the requirements, the careful definition of a refinement strategy, the at-
tention payed to the precise mathematical definition of the train network, and the
modelling of a complete system including the external environment. A special
attention is given to the prevention of errors and also (but to a less extend) to their
tolerance. The modelling notation which is used in this presentation is Event-B.

Keywords: Event-B, Requirement, Refinement, Failure, Correct Construction.

1 Informal Introduction

The purpose of this chapter1 is to show the specification and construction of a complete
computerized system. The example we are interested in is called a train system. By this,
we mean a system that is practically managed by a train agent, whose role is to control
the various trains crossing part of a certain track network situated under his supervision.
The computerized system we want to construct is supposed to help the train agent in
doing this task.

Before entering in the informal description of this system (followed by its formal
construction), it might be useful to explain the reason why we think it is important to
present such a case study in great details. There are at least four reasons which are the
following:

1. This example presents an interesting case of quite complex data structures (the
track network) whose mathematical properties have to be defined with great care:
we want to show that this is possible.

2. This example also shows a very interesting case where the reliability of the final
product is absolutely fundamental: several trains have to be able to safely cross the
network under the complete automatic guidance of the software product we want to
construct. For this reason, it will be important to study the bad incidents that could
happen and which we want to either completely avoid or safely manage. In this
chapter however, we are more concerned by fault prevention than fault tolerance.
We shall come back to this in the conclusion.

1 This work has been partly supported by IST FP6 Rigorous Open Development Environment
for Complex Systems (RODIN, IST-511599) Project.

M. Butler et al. (Eds.): Fault-Tolerant Systems, LNCS 4157, pp. 1–36, 2006.



2 J.-R. Abrial

3. The software must take account of the external environment which is to be carefully
controlled. As a consequence, the formal modelling we propose here will contain
not only a model of the future software we want to construct but also a detailed
model of its environment. Our ultimate goal is to have the software working in
perfect synchronization with the external equipment, namely the track circuits, the
points, the signals, and also the train drivers. We want to prove that trains obeying
the signals, set by the software controller, and then (blindly) circulating on the
tracks whose points have been positioned, again by the software controller, that
these trains will do so in a completely safe manner.

4. Together with this study, the reader will be able to understand the kind of method-
ology we recommend. It should be described, we hope, in sufficiently general terms
so that he or she will be able to use this approach in similar examples.

We now proceed with the informal description of this train system together with its
informal (but very precise) definitions and requirements. We first define a typical track
network which we shall use as a running example throughout the chapter. We then study
the two main components of tracks, namely points and crossings. The important con-
cepts of blocks, routes, and signals are then presented together with their main proper-
ties. The central notions of route and block reservations are proposed. Safety conditions
are then studied.This is followed by the complementary train moving conditions allow-
ing several trains to be present in the network at the same time. We propose a number
of assumptions about the way trains behave. Finally we present possible failures that
could happen and the way such problems are solved.

The formal development (model construction) is preceded by the refinement strategy
we shall adopt in order to proceed in a gentle and structured manner. This is followed
by the formal model construction.

1.1 Methodological Conventions for the Informal Presentation

In the following sections, we give an informal description of this train system, and,
together with this description, we state what its main definitions and requirements are.
Such definitions and requirements will be inserted as separate labelled boxes in the
middle of an explanatory text. These boxes must all together clearly define what is to
be taken into account by people doing the formal development. The various definitions
and requirements will be labelled according to the following taxonomy:

ENV Environment

FUN Functional

SAF Safety

MVT Movement

TRN Train

FLR Failure
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– “Environment” definitions and requirements are concerned with the structure of the
track network and its components.

– “Functional” definitions and requirements are dealing with the main functions of
the system.

– “Safety” definitions and requirements define the properties ensuring that no classi-
cal accidents could happen.

– “Movement” definitions and requirements ensure that a large number of train may
cross the network at the same time.

– “Train” definitions and requirements define the implicit assumptions about the be-
havior of trains.

– “Failure” definitions and requirements finally define the various failures against
which the system is able to react without incidents.

Here is our first very general requirement:

The goal of the train system is to safely control trains moving
on a track network FUN-1

1.2 Network Associated with a Controlling Agent

Here is a typical track network that a train agent is able to control. In what follows, we
are going to use that network as a running example:

1.3 Special Components of a Network: Points and Crossings

Such a network contains a number of special components: these are the points and the
crossings as illustrated in the following figure (five points and one crossing).

a crossinga point
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A point is a device allowing a track to split in two distinct directions. A crossing, as
its name indicates, is a device that makes two different tracks crossing each other. In
what follows we briefly describe points and crossings.

A train network may contain some special components: points ENV-1
and crossings

Point. A point special component can be in three different positions: left, right, or
unknown. This is indicated in the following figure.

A

B

C

left right

A C

B
A C

B

unknown

Note that the orientation from A to C is sometimes called the direct track whereas
the one from A to B is called the diverted track. In what follows however, we shall
continue to call them right and left respectively are there is no ambiguity in doing so.

In the first two cases above, the arrow in the figure shows the convention we shall
use to indicate the orientation of the point. Note that these arrows do not indicate the
direction followed by a train. For example, in the first case, it is said that a train coming
from A will turn left, a train coming from B will turn right, and a train coming from C
will probably have some troubles! Also note that a train encountering a point oriented
in an unknown direction (third case) might have some trouble too, even more if a point
suddenly changes position while a train is on it (we shall come to this in section 1.8).

The last case is the one that holds when the point is moving from left to right or
vice-versa. This is because this movement is supposed to take some time: it is per-
formed by means of a motor which is part of the point. When the point has reached
its final position (left or right) it is locked, whereas when it is moving it is unlocked.
Note however that in the coming development we shall not take this into account. In
other words, we shall suppose, as a simplification, that a point moves instantaneously
and that it is thus always locked. In other words, the unknown case is not treated, we
then just require in this development that a point may have only two positions: left or
right.

A point may have two positions: left or right ENV-2

Crossing. A crossing special component is completely static: it has no state as points
have. The way a crossing behaves is illustrated in the following figure: trains can go
from A to B and vice-versa, and from C to D and vice-versa.
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D

B

A

C

1.4 The Concept of Block

The controlled network is statically divided into a fixed number of named blocks as
indicated in the following figure where we have 14 blocks named by single letters from
A to N:

A
B

D F G

H I J N

K

L

M

E

C

A track network is made of a number of fixed blocks ENV-3

Each block may contain at most one special component (points or crossings).

A special component (points or crossings) is always attached
to a given block. And a block contains at most one special ENV-4
component

For example in our case, block C does not contain any special component, whereas
block D contains one point, and block K contains a crossing. Each block is equipped
with a, so-called, track circuit which is able to detect the presence of a train on it. A
block can thus be in two distinct states: unoccupied (no train on it) or occupied (a train
is on it).

A block may be occupied or unoccupied by a train ENV-5

In the following figure, you can see that a train is occupying the two adjacent blocks
D and K (this is indicated in the figure by the fact that the blocks in question are
emphasized).
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A
B

D F G

H I J N

K

L

M

E

C

Notice that when a train is detected in a block we do not know a priori the precise
position of the train in it, nor do we know whether the train is stopped or moving.
Moreover, in the last case, we do not know in which direction the train is moving. But
all such informations are not important for us: as will be seen in this development, it is
only sufficient for our purpose to know that a block is occupied or not.

1.5 The Concept of Route

The blocks defined in the previous section are always structured in a number of stati-
cally pre-defined routes. Each route represents a possible path that a train may follow
within the network controlled by the train agent. In other words, the routes define the
various ways a train can traverse the network. A route is composed of a number of
adjacent blocks forming an ordered sequence.

A network has a fixed number of routes. Each route is
characterized by a sequence of adjacent blocks ENV-6

A train following a route is supposed to occupy in turn each block of that route. Note
that a train may occupy several adjacent blocks at the same time (even a short train).
Also note that a given block can be part of several routes. All this is shown below in the
following table where 10 pre-defined routes are proposed:

R1 L A B C R6 C B A L

R2 L A B D E F G R7 G F E D B A L

R3 L A B D K J N R8 N J K D B A L

R4 M H I K F G R9 G F K I H M

R5 M H I J N R10 N J I H M
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Besides being characterized by the sequence of blocks composing it, a route is also
statically characterized by the positions of the points which are parts of the correspond-
ing blocks. For example, route R3 (L A B D K J N ) is characterized as follows:

– the point in block B is positioned to right,
– the point in block D is positioned to right,
– the point in block J is positioned to right.

This is illustrated in the following figure where route R3 (L A B D K J N ) is
emphasized. The little arrows situated next to the points of blocks B, D, and J indicate
their position:

A
B

D F G

H I J N

K

L

M

E

C

A route is also characterized by the positions of the points
which are situated in blocks composing it ENV-7

Routes have two additional properties. The first concern the first block of a route:

The first block of a route cannot be part of another route unless
it is also the first block of that route ENV-8

And the second one concerns the last block of a route :

The last block of a route cannot be part of another route unless
it is also the last block of that route ENV-9

At the end of the next section, we shall explain why the constraints we have presented
just now are important. Finally, a route has some obvious continuity property:

A route connects its first block to its last one in a continuous ENV-10
manner

and it has no cycle:

A route contains no cycles ENV-11



8 J.-R. Abrial

1.6 The Concept of Signal

Each route is protected by a signal, which can be red or green. This signal is situated
just before the first block of each route. It must be clearly visible from the train drivers.

Each route is protected by a signal situated just before its ENV-12
first block

When a signal is red, then, by convention, the corresponding route cannot be used
by an incoming train. Of course, the train driver must obey this very fundamental
requirement.

A signal can be red or green. Trains are supposed to stop ENV-13
at red signals

In the next figure, you can see the signal protecting each route:

A
B

D F G

H I J N

K

L

M

E

C

Notice that a given signal can protect several routes. For example, the signal situated
on the left of block L protects route R1 (L A B C), R2 (L A B D E F G), and
R3 (L A B D K J N ): this is because each of these routes starts with the same
block, namely block L.

Routes having the same first block share the same signal ENV-14

In the previous figure and in the coming ones, we use the convention that a signal
which is situated to the left of its pole protects the routes situated on its right and vice-
versa. For example, the signal situated on the right hand side of block C protects route
R6, namely (C B A L).

A last important property of a signal protecting the first block of a route is that, when
green, it turns back automatically to red as soon as a train enters into the protected
block.
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A green signal turns back to red automatically as soon as ENV-15
the protected block is made occupied

The reason for the constraints defined at the end of section 1.5 must now be clear: we
want a signal, which is always situated just before the first block of a route, to clearly
identify the protection of that route. If a route, say r1, starts in the middle of another
one r2, then the signal protecting r1 will cause some trouble for train situated in route
r2. As very often the reverse of a route is also used as a route, the previous constraint
applies for the last block of a route: it cannot be common to another route except if it is
also the last block of that route.

1.7 Route and Block Reservations

The train agent is provided with a panel offering a number of commands corresponding
to the different routes he can assign to trains traversing his "territory".

R2
R3

R5
R6

R8
R9

R4 R7R1
R10

When a train is approaching the network, the train agent is told that this train will
cross the network by using a certain route. The train agent then presses the correspond-
ing command in order to reserve that route. Note that other trains might already be
crossing the network while the train agent is pressing that command. As a consequence,
the situation faced by the train agent is potentially dangerous: we shall come back to this
very important fact in section 1.8. This is the reason why the forthcoming reservation
process is entirely controlled by the software we want to construct.

A route can be reserved for a train. The software is in charge
of controlling the reservation process FUN-2

The reservation process of a route r is made of three phases:

1. the individual reservation of the various blocks composing route r is performed,
2. the positioning of the relevant points of route r is accomplished,
3. the turning to green of the signal protecting route r is done.

When the first phase is not possible (see next section), the reservation fails and the
two other phases are then cancelled. In this case, the reservation has to be re-tried later
by the train agent. Let us now describe these phases in more details.
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Phase 1: Block Reservation. The block reservation performed during the first phase
induces another state for a block (besides being occupied or unoccupied by a train, as
seen in section 1.3): a block can be reserved or free.

A block can be reserved or free FUN-3

Note that an occupied block must clearly be already reserved.

An occupied block is always reserved FUN-4

At the end of this first successful phase, the route is said to be reserved, but it is not
ready yet to accept a train.

Reserving a route consists in reserving the individual blocks it
is made of. Once this is done, the route is said to be reserved FUN-5

Phase 2: Point Positioning. When the reservation of all blocks of a route r is success-
ful, the reservation process proceeds with the second phase, namely the positioning of
the corresponding points in the direction corresponding to the route r. When all points
of r are properly positioned, the route is said to be formed.

Once it is reserved, a route has to be formed by properly FUN-6
positioning its points

Note that a formed route remains reserved.

A formed route is always a reserved route FUN-7

Phase 3: Turning Signal to Green. Once a route r is formed, the third and last phase
of the reservation can be done: the signal controlling route r is turned green: a train can
be accepted in it. A train driver, looking at the green signal, then leads the train within
the reserved and formed route. We already know from requirement ENV-15 that the
signal will then turn red immediately.

Once it is formed, a route is made available for the incoming
train by turning its signal to green FUN-8
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1.8 Safety Conditions

As several trains can cross the network at the same time and as the train agent (or rather
the software he uses) is sometimes re-positioning a point when forming a route, there
are clearly some serious risks of bad incidents. This is the reason why we must clearly
identify such risks and see how we can safely avoid them. This is, in fact, the main
purpose of the software we would like to build in order to help the train agent in a
systematic fashion. There are three main risks which are the following:

1. Two (or more) trains traversing the network at the same time hit each other in
various ways.

2. A point may change position under a train.
3. The point of a route may change position in front of a train using that route. In other

words, the train has not yet occupied the block of this point but it will do so in the
near future since that block is situated on that route.

Case 1 is obviously very bad since the hit trains may derail. Case 2 would have the
consequence to cut the train into two parts and, most probably, the train will derail too.
Case 3 may have two distinct consequences: either to move the train outside its current
route so that it can now hit another train (case 1), or to have the train derailing in case
the point now disconnect the current route. We are thus going to set up a number of
safety conditions in order to prevent such risks from happening. The first risk (train
hitting) is avoided by ensuring two safety conditions:

1. a given block can only be reserved for at most one route at a time,

A block can be reserved for at most one route SAF-1

2. the signal of a route is green only when the various blocks of that route are all
reserved for it and are unoccupied, and when all points of that route are set in the
proper direction.

The signal of a route can only be green when all blocks of
that route are reserved for it and are unoccupied, and when SAF-2
all points of this route are properly positioned

As a consequence (and also thanks to requirement FUN-4 stating that an occupied
block is always a reserved block), several trains never occupy the same block at the
same time, provided, of course, that train drivers do not overpass a red signal. We shall
come back to this important point in section 1.11.

The second and third risks (points changing direction under certain circumstances)
are avoided by ensuring that a point can only be maneuvered when the corresponding
block is that of a route which is reserved (all its blocks being reserved) but not yet
formed.
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A point can only be re-positioned if it belongs to a block which
is in a reserved but not yet formed route SAF-3

The last safety requirement ensures that no blocks of a reserved, but not yet formed,
route are occupied by a train.

No blocks of a reserved, but not yet formed, route are occupied SAF-4

A consequence of this last safety requirement is that the re-positioning of a point,
done according to requirement SAF_3, is always safe.

1.9 Moving Conditions

In spite of the safety conditions (which could be preserved by not allowing any train
to cross the network!) we want to allow a large number of trains to be present in the
network at the same time without danger. For this, we allow each block of a reserved
route to be freed as soon as the train does not occupy it any more.

Once a block of a formed route is made unoccupied, it is also MVT-1
freed

As a result, the only reserved blocks of a formed route are those blocks which are
occupied by the train or those blocks of the route which are not yet occupied by the
train.

A route remains formed as long as there are some reserved MVT-2
blocks in it

When no block of a formed route is reserved any more for that route, it means that the
train has left the route, which can thus be made free.

A formed route can be made free (not formed and not reserved
any more) when no blocks are reserved for it any more MVT-3

1.10 Train Assumptions

Note that it is very important that a block once freed for a route (after being occupied
and subsequently unoccupied) cannot be made occupied again for this route unless the
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route is first made free and then formed again. The reason for this is that the freed block
in question can be assigned to another route. For achieving this, we must assume that
trains obey two properties. First, a train cannot split in two or more parts while in the
network.

A train cannot split while in the network TRN-1

And second, a train cannot move backwards while in the network

A train cannot move backwards while in the network TRN-2

This is so because in both cases a freed block can be made occupied again. Note
that clearly trains do split and move backwards (for example, in Zurich main station):
it simply means that the blocks where they do so are not within the network controlled
by a train system.

Another important implicit assumption about trains is that they cannot enter "in the
middle" of a route (it cannot land on a route!)

A train cannot enter in the middle of a route. It has to do so
through its first block. TRN-3

Likewise, a train cannot disappear in the middle of a route (it cannot take off!)

A train cannot leave a route without first occupying then freeing TRN-4
all its blocks

1.11 Failures

In this section, we study a number of abnormal cases which could happen. The fact that
their probabilities are very low is not a reason to preclude these cases.

The first and most important case of failures is obviously the one where, for some
reasons, the driver of a train does not obey the red signal guarding a route. In section
1.6 we said in requirement ENV_14 that "trains are supposed to stop at red signals".
Now, is it always the case?

The solution to this problem is local to the train. This case is detected within the
faulty train by a device called the Automatic Train Protection. As soon as this device
detects that the train passes a red signal, it automatically activates the emergency brakes
of the train. The distance between the signal and the first block of the route it protects
is calculated so that we can be sure that the train will stop before entering that first
block. Note that this protection is not certain as the Automatic Train Protection could
be broken while the train does not stop at a red signal!
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Trains are equipped with the Automatic Train Protection system,
which guarantees that they cannot enter a route guarded by a FLR-1
red signal

In section 1.10, we claimed in requirement TRN_1 that "a train cannot split while
in the network". Is it possible that it happens nevertheless by accident? The solution to
this problem is again local to the train. Each train is now equipped with special bindings
so that it forms a continuous body that cannot be mechanically broken. Here again, the
solution is not certain but professionals claim that the risk is extremely low.

Trains are equipped with special bindings, which guarantee that
they cannot be mechanically broken. FLR-2

Another case raised in section 1.10 is requirement TRN_2 claiming that "a train can-
not move backwards while in the network". Here again, the Automatic Train Protection
system is used. It detects immediately any backward move and in that case it activates
automatically the emergency brakes. But one has to be sure that the train nevertheless
does not occupy again a block that it has freed recently. This is guaranteed by the fact
that the transmission of the occupancy of a block by the track circuit is slightly delayed.
As a consequence, when the train has physically left a block, this fact is not immedi-
ately transmitted to the controller, it is only done when the back of the train has moved
to a certain distance. If the train slightly moves backwards then it does not occupy again
the block since it did not left it (as "seen" from the software controller).

The Automatic Protection System and a slight delay observed
by the track circuit guarantee that a train moving backward FLR-3
cannot occupy again a block which has been physically freed.

In section 1.10, we said in requirement TRN-3 that "a train cannot enter in the mid-
dle of a route". This is certainly the case for trains. The problem is that the software
controller does not "see" trains. It only detects that a block is occupied or free by means
of track circuits connections. As a consequence, it is possible that, for some reasons,
a block is detected to be occupied by its track circuit because a piece of metal is put
on the rail. The software controller can detect such a faulty occupancy. In that case the
train agent can take some emergency action. But this is not always the case however.
This risk is therefore accepted but not treated here.

The risk of a faulty detection of a block occupancy is not FLR-4
treated
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In section 1.10, we said in requirement TRN-4 that "a train cannot leave a route
without first occupying then freeing all its block". This is not always the case however
in the very rare circumstance where a short train (say a single engine) derails and then
falls down: it suddenly quits the block where it is situated! This case can certainly be
detected by the software controller and some emergency action can be taken by the train
agent. We do not treat this case here however.

The case where a short train derails and leaves its block is not FLR-5
treated here

Note that the last two cases of failure raise a difficult problem which is the one of
restarting the system after an emergency. It seems that the only solution consists in
carefully inspecting the network to decide whether a normal situation has been reached
again.

2 Refinement Strategy

The summary of the various informal requirements we have seen in previous sections is
as indicated below. We have all together 39 requirements. Of course, a real train system
might have far more requirements than this: it must be clear that what we are presenting
here is only a very simplified version of such a train system.

ENV Environment 15

FUN Functional 8

SAF Safety 4

MVT Movement 3

TRN Train 4

FLR Failure 5

The role of the formal phase which we start now is to build models able to take ac-
count of these requirements. As it is out of the question to incorporate all of them at
ounce, we are going to proceed by successive approximations, which are called refine-
ments. In this section, we define thus the refinement strategy we are going to follow. It
is very important indeed to define the order in which we are going to extract the various
requirements which have been exhibited in the previous phase.

1. In the initial model, the blocks and routes concepts are formalized. Blocks are de-
fined from a logical point of view however

2. In the first refinement we introduce the physical blocks and thus start to formalize
part of the environment. We establish the connection between the logical blocks
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and the physical ones. This is done in an abstract way however as we do not intro-
duce yet the points.

3. In the second refinement, we introduce the notion of readiness for a route. This
corresponds to an abstract view of the green signals.

4. In the third refinement, we introduce the physical signals. We data-refine (imple-
ment) the readiness of a route by means of green signals.

5. In the fourth refinement, we introduce the points.
6. Some other refinements are needed in order to finalize details. Such refinements are

not treated in this chapter however.

3 A Quick Introduction to Event-B

In this section, we give a very brief summary of Event-B [1]. This is the approach which
we are going to follow in the remaining part of this chapter.

An Event-B development is made of a succession of models starting with an ini-
tial model, which is followed by a number of refined models. A model, be it the ini-
tial model or a refined model, is defined by a state and a number of events. The state
contains a constant part and a dynamic part. The constant part of the state is made
of a number of basic sets (also called carrier sets) and constants. These constants are
made precise by means of a number of named properties. The dynamic part of the
state is made of a number of variables. These variables are made precise by means of
a number of named invariants. Properties and invariants are predicates (logical condi-
tions) written using elementary logic and set-theoretic constructs (discrete mathematics
concepts).

Each event defines a transition which can be observed. An event is made of four parts:
the name, the (optional) local variables, the (optional) guards, and the actions. The
guards are defined in terms of the local variables, the state variables and the constants.
They all together express the necessary conditions for the event to be enabled. The
actions define the state transitions that may occur for enabled events: they are made of
parallel assignments to the state variables. Notice that non-mentioned variables in the
action part of an event are supposed to be left unchanged.

A refined model N is supposed to refine a more abstract model M preceding it in
the development sequence. Model M is called the abstraction of N, whereas model N is
called a refinement of M. Model N contains events which are supposed to be refinements
of events bearing the same name in M. But is is also possible for an abstract event to be
split and thus be refined by two or more events. Model N may also contain some new
events, which have no counterparts in the abstraction M. Such new events are supposed
to refine abstract events doing nothing.

Various proofs can be performed on models. The main proofs are the invariant proofs
and the refinement proofs. An invariant proof allows one to guarantee that an invariants
is indeed kept unchanged when a transition occurs. A refinement proof allows one to
guarantee that an event is indeed a correct refinement of its abstraction. The statements
to be proved are not written explicitly by the people who define the models: they are
generated by a tool called the proof obligation generator (also called the verification
condition generator).
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4 Initial Model

4.1 The State

The state is made of a number of carrier sets, constants and variables, which we study
in the following sections.

Carrier Sets. The initial model is concerned with blocks and routes. We thus take
account of requirement ENV-3 of section 1.4, and of requirement ENV-6 of section
1.5. We do not take account of points or signals for the moment, this will be done in
further refinements. We have thus only two carrier sets, B and R, standing for blocks
and routes. In what follows, we shall use the convention that carrier sets are named
using single upper case letters.

carrier sets: B, R

Constants. The organization of the track network, which is made of a number of routes,
is formalized by means of two constant: rtbl (pronounce "routes of blocks") relating
routes to blocks and nxt (pronounce "next") relating blocks to blocks for each route.

constants: rtbl,
nxt

The constant rtbl is a total (all routes are concerned) and surjective (all blocks are
concerned) binary relation from B to R (prp0_1). This is so because a route may have
many blocks and a block can belong to several routes:

prp0_1: rtbl ∈ B ↔↔ R

The constant nxt denotes the succession of each blocks associated with a route
(ENV-6). This succession forms an injective function from blocks to blocks (that is,
a function whose inverse is also a function):

prp0_2: nxt ∈ R→ (B �� B)

For example, a route like route R3 comprising the following blocksL A B D K J N
in that order
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A
B

D F G

H I J N

K

L

M

E

C

is represented as follows by the injective function nxt(R3). As can be seen, the function
nxt(R3) establishes a continuous connection between the first block L and last block
N of route R3:

first block last block

L A B D K J N

As the first and last block of a route will play a certain role in further properties, we
have to introduce them explictely in our state by means of some new constants. We thus
extend our set of constants by introducing the first and last block of each route r: fst
and lst

constants: · · ·
fst,
lst

These first and last elements of a route enjoy the following obvious properties: they
are defined for each route (prp0_3 and prp0_4) and they are genuine blocks of the route
(prp0_5 and prp0_6). Moreover the first and last block of a route are distinct (prp0_7):

prp0_3: fst ∈ R→B

prp0_4: lst ∈ R →B

prp0_5: fst−1 ⊆ rtbl

prp0_6: lst−1 ⊆ rtbl

prp0_7: ∀r · ( r ∈ R ⇒ fst(r) 	= lst(r) )

As illustrated in the previous figure, we want the connection represented by the func-
tion nxt(r) for each route r, to be continuous as required by requirement ENV-10 of
section 1.5. In other words, we want to exclude cases like this, which do not make sense
for a route:
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first block last block

Moreover, we want to express that the blocks of a route r which are present in the
domain and range of the injection nxt(r) are exactly the blocks of route r, namely
rtbl−1[{r}]. In order to express all this, we just say that the injection nxt(r) is indeed
a bijection from rtbl−1[{r}] \ {lst(r)} to rtbl−1[{r}] \ {fst(r)}:

prp0_8: ∀r · ( r ∈ R ⇒ nxt(r) ∈ s \ {lst(r)}�� s \ {fst(r)}

where s is rtbl−1[{r}]

But this is not sufficient, as the following pathological case can happen:

first block last block

We have then to express that there is no such cycles in the connection. This corre-
sponds to requirement ENV-11 of section 1.5. This can be done by stating that the only
subset S of B which is included in its image under nxt(r), that is nxt(r)[S], is the
empty set (a genuine cycle is indeed equal to its image under nxt(r)):

prp0_9: ∀r ·

⎛
⎜⎜⎝ r ∈ R ⇒ ∀S ·

⎛
⎜⎜⎝

S ⊆ B
S ⊆ nxt(r)[S]
⇒
S = ∅

⎞
⎟⎟⎠

⎞
⎟⎟⎠

A final property of the routes is that they cannot depart or arrive in the middle of
another one. However several routes can depart from the same block or arrive at the
same block. All this corresponds to requirements ENV-8 and ENV-9 of section 1.5. It
is expressed by the following two properties:

prp0_10: ∀r · ( r ∈ R ⇒ ran(lst) ∩ (dom(nxt(r)) \ ran(fst)) = ∅ )

prp0_11: ∀r · ( r ∈ R ⇒ ran(fst) ∩ (ran(nxt(r)) \ ran(lst)) = ∅ )

Note that the previous properties do not preclude two routes to have the same first or
last blocks.
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Variables. In this initial model, we have four variables named resrt, resbl, rsrtbl, and
OCC (see below, the box entitled variables). In what follows, we shall use the con-
vention that physical variables are named using upper case letters only. By "physical
variable", we mean a variable representing part of the external equipment (here OCC
denotes the set of physical blocks which are occupied by trains). The other variables
(named using lower case letters only) are called the logical variables: they represent
variables which will be part of the future software controller. The invariants corre-
sponding to all these variables can be seen on the right table below (these invariants
are explained below):

variables: resrt,
resbl,
rsrtbl,
OCC

inv0_1: resrt ⊆ R

inv0_2: resbl ⊆ B

inv0_3: rsrtbl ∈ resbl → resrt

inv0_4: rsrtbl ⊆ rtbl

inv0_5: OCC ⊆ resbl

Variable resrt (pronounce "reserved routes") denotes the reserved routes (inv0_1):
this is coherent with requirement FUN-2 of section 1.7, which says that a route can be
reserved for a train.

The second variable, resbl (pronounce "reserved blocks"), denotes the set of reserved
blocks (inv0_2): this is coherent with requirement FUN-3 of section 1.7, which say that
a block can be reserved for a route.

Our third variable, rsrtbl (pronounce "reserved routes of reserved blocks"), relates
reserved blocks to reserved routes: it is a total function from reserved blocks to reserved
routes (inv0_3): this is coherent with requirement SAF-1 stating that a block cannot be
reserved for more than one route. Of course, this connection is compatible with the
static relationship rtbl between blocks and routes (inv0_4): a reserved block for a route
is a block of that route.

Finally, variable OCC denotes the set of occupied blocks: this is coherent with re-
quirement ENV-5 stating that a block might be occupied by a train. Such occupied
blocks are obviously reserved for some route (inv0_5): this is coherent with require-
ment FUN-4 of section 1.7 stating that an occupied block is always reserved.

We have to define now more invariants corresponding to the way a train can occupy
a reserved route. The general situation is illustrated on the following figure:

f r e e o c c u p i e d u n o c c u p i e d
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The blocks of a reserved route are divided in three areas:

1. In the first area (on the left, where the blocks are represented by white circles),
the blocks are freed by that route because the train does not occupy them any more.
They can readily be reused (and maybe they are already) for another reserved route.

2. In the second area (in the center, where the blocks are represented by black circles),
the blocks are all reserved and occupied by a train.

3. In the third area (on the right, where the blocks are represented by white squares),
the block are all reserved but not occupied yet by a train.

There are other situations corresponding to some special cases of the general situa-
tion depicted in the previous figure. In the first special case, areas 1 and 2 are empty:
the route is reserved but the train has not yet entered the route:

u n o c c u p i e du n o c c u p i e du n o c c u p i e d

The second special case is the one where area 1 is empty, but not areas 2 and 3. In
fact, the train is entering the route as illustrated in the following figure:

o c c u p i e d o c c u p i e d u n o c c u p i e d

A third special case is one where a (long) train occupies all blocks in a route:

o c c u p i e d o c c u p i e do c c u p i e d

The fourth special case it the one where the train is leaving the route:

o c c u p i e df r e e f r e e 

The last special case is the one where all blocks in the reserved route have been freed
by that route. The route itself is then ready to be freed

f r e e f r e e f r e e 

More formally, let us call M the set of free blocks in a reserved route (those behind
the train), N the set of occupied blocks in a reserved route, and finally P the set of
reserved but unoccupied blocks of a reserved route (those situated in front of a train).
Sets M , N , and P are formally defined as follows for a given reserved route r:

M = rtbl−1[{r}] \ rsrtbl−1[{r}]

N = rsrtbl−1[{r}] ∩ OCC

P = rsrtbl−1[{r}] \OCC
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Note that M , N , and P partition rtbl−1[{r}]. According to the previous presentation,
the only transitions that are allowed are the following:

M → M M → N N → N N → P P → P

This can be represented by the following conditions

nxt(r)[M ] ⊆ M ∪ N nxt(r)[N ] ⊆ N ∪ P nxt(r)[P ] ⊆ P

Such conditions are equivalent to the following ones (since nxt(r)[rtbl−1[{r}]] is
included in rtbl−1[{r}] according to prp0_8):

nxt(r)[M ] ∩ P = ∅ nxt(r)[N ∪ P ] ⊆ N ∪ P nxt(r)[P ] ⊆ P

All this is eventually formalized in the following invariants:

inv0_6: ∀r· ( r ∈ R ⇒ nxt(r)[rtbl−1[{r}] \ s] ∩ (s \OCC) = ∅ )

inv0_7: ∀r· ( r ∈ R ⇒ nxt(r)[s] ⊆ s )

inv0_8: ∀r· ( r ∈ R ⇒ nxt(r)[s \OCC] ⊆ s \OCC )

where s is rsrtbl−1[{r}]

These invariants are coherent with the train requirements TRN-1 to TRN-4 defined
in section 1.10.

4.2 The Events

The four variables resrt, resbl, rsrtbl, and OCC are initialized to the empty set: ini-
tially, no trains are in the network and no routes or blocks are reserved. Besides the
initialization event (which we do not present here), we have five normal events. Events
define transitions which can be observed. In what follows, we shall use the conven-
tion that physical events corresponding to transitions occurring in the environment are
named using upper case letters only. Here are the events of the initial model:

– route_reservation,
– route_freeing,
– FRONT_MOVE_1,
– FRONT_MOVE_2,
– BACK_MOVE.

Event route_reservation corresponds to the reservation of a route r. It is done on
an unreserved route (i.e. r ∈ R \ resrt) whose blocks are not already reserved for a
route (i.e. rtbl−1[{r}] ∩ resbl = ∅). Route r is then reserved together with its blocks.
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This is coherent with requirement FUN-5 which says that a route can be reserved as
soon as all its blocks are themselves reserved.

route_reservation
any r where

r ∈ R \ resrt
rtbl−1[{r}] ∩ resbl = ∅

then
resrt := resrt ∪ {r}
rsrtbl := rsrtbl ∪ rtbl � {r}
resbl := resbl ∪ rtbl−1[{r}]

end

route_freeing
any r where

r ∈ resrt \ ran(rsrtbl)
then

resrt := resrt \ {r}
end

Event route_freeing makes a reserved route free when it does not contain reserved
blocks any more. This is coherent with requirement MVT-3 which says that a route can
be made free when no blocks are reserved for it any more.

Event FRONT_MOVE_1 corresponds to a train entering a reserved route r. The
first block of r must be reserved and unoccupied. Moreover, the reserved route corre-
sponding to the first block of r must be r itself. The first block is made occupied:

FRONT_MOVE_1
any r where

r ∈ resrt
fst(r) ∈ resbl \OCC
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}

end

FRONT_MOVE_2
any b, c where

b ∈ OCC
c ∈ B \OCC
b �→ c ∈ nxt(rsrtbl(b))

then
OCC := OCC ∪ {c}

end

Event FRONT_MOVE_2 corresponds to the occupancy of a block which happens
to be different from the first block of a reserved route. Given a block b which is occupied
and preceded (in the same route) by a block, say c, which is not occupied, then c is made
occupied.

Finally, event BACK_MOVE corresponds to the move of the rear part of the train.
This happens for a block b which is occupied and is the last block of a train. This is
detected when block b has a follower in the route r reserved for b and that follower,
if reserved, is not reserved for r. Moreover, when b has a predecessor, that predeces-
sor must be occupied (so that the train does not disappear before reaching the end of
route r). The action corresponding to that event makes b unoccupied and unreserved.
This is coherent with requirement MVT-1 which says that "once a block of a formed
route is made unoccupied, it is also freed":



24 J.-R. Abrial

BACK_MOVE
any b, n where

b ∈ OCC
n = nxt(rsrtbl(b))
b ∈ dom(n) ⇒ n(b) ∈ OCC⎛

⎜⎜⎝
b ∈ ran(n) ∧
n−1(b) ∈ dom(rsrtbl)
⇒
rsrtbl(n−1(b)) 	= rsrtbl(b)

⎞
⎟⎟⎠

then
OCC := OCC \ {b}
rsrtbl := {b}�− rsrtbl
resbl := resbl \ {b}

end

Important Remark. It might seem strange at first glance (and even incorrect) to have
physical events such as FRONT_MOVE_1, FRONT_MOVE_2, and BACK_MOVE
using non-physical variables in their guards. Clearly, a physical event can be enabled
under certain conditions depending on physical variables only: a physical event cannot
magically "see" the non-physical variables. The reason for having non-physical vari-
ables in the guards here is that we are still in an abstract version where such abnormal-
ities are possible. Of course, in the final refined version of physical events we have to
check that it is not the case any more.

5 First Refinement

In this first refinement, we introduce the physical tracks. So that the movements of the
train will correspond entirely on the physical situation of the track. Note however that
we do not introduce yet the points and the signals.

5.1 The State

We do not introduce new carrier sets or new constants in this refinement.

Variables. In this refinement, we have three new variables named TRK (pronounce
"track"), frm (pronounce "formed routes"), and LBT (pronounce "last blocks of
trains"). Notice that the variables introduced in the initial models, namely resrt, resbl,
rsrtbl, and OCC, are kept in this refinement.

variables: · · · ,
TRK,
frm,
LBT
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Variable TRK is a partial injection (inv1_1) from blocks to blocks defining the
physical succession of blocks. It also contains the direction taken by trains following the
tracks. Note that this last information is not "physical" (you cannot "see" it on the track),
it corresponds however to the physical movements of trains on the physical tracks. Next
is the invariant defining variable TRK as an injective function.

inv1_1: TRK ∈ B �� B

Here is an illustration of the variable TRK in a certain situation:

L A D E F G

K
M H I J N

C

B

As can be seen, route R9 (G F K I H H M ) is now established on the physical
track. In section 5.2, we shall see how the event, which is positioning the points will
modify this situation. Note that the crossing in block K is "broken" and that the physical
track "remembers" the direction followed by trains circulating on it: of course, this is
not what happen in the real tracks, but this is a convenient abstraction.

Finally, all pairs belonging to TRK also belong to nxt(r) for some route r (inv_2):

inv1_2: ∀x, y · (x �→ y ∈ TRK ⇒ ∃ r · ( r ∈ R ∧ x �→ y ∈ nxt(r) ) )

Variable frm represents the set of formed routes: it is a subset of the reserved routes
(inv1_3) Ṫhis is coherent with requirement FUN-7 which says that "a formed route is
always a reserved route". We have a number of invariants involving the formed routes.
The reserved routes of occupied blocks are formed routes (inv1_4). A route r which
is reserved but not yet formed is such that its reserved blocks are exactly the constant
reserved blocks associated with r (inv1_5). The two previous invariants are coherent
with requirements SAF-4 which says that "no blocks of a reserved but not yet formed
route are occupied"

inv1_3: frm ⊆ resrt

inv1_4: rsrtbl[OCC] ⊆ frm

inv1_5: ∀r ·

⎛
⎝ r ∈ resrt \ frm
⇒
rtbl � {r} = rsrtbl � {r}

⎞
⎠
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Now comes the most important invariant (inv1_6): it relates the logical succession
of blocks in a route (represented by the function nxt(r) for each route r) to the physical
tracks on the terrain (represented by the variable TRK). It says that for each formed
route r, the logical succession of blocks (where the train is supposed to be and where
it has to go when proceeding through route r) agrees with the physical tracks on the
terrain. In other words, when a route r is formed, then the portion of the physical
blocks where the train is or where it will be in the future when proceeding along this
route, this portion of the physical blocks corresponds to what is expected in the logical
blocks as recorded by the controller.

inv1_6: ∀r ·

⎛
⎝ r ∈ frm
⇒
rsrtbl−1[{r}] � nxt(r) = rsrtbl−1[{r}] � TRK

⎞
⎠

Finally, variable LBT denotes the set of blocks occupied by the back of each train:
this is also a "physical" variable like variable TRK . The first invariant (inv1_7) con-
cerning this variable, quite naturally says that the last block of a train is indeed occupied
by a train:

inv1_7: LBT ⊆ OCC

And now we state (inv1_8) that the last block b of a train, if it has a follower a on its
route, then a, if reserved, is not reserved for the route of b.

inv1_8: ∀a, b ·

⎛
⎜⎜⎜⎜⎜⎜⎝

b ∈ LBT
b ∈ ran(nxt(rsrtbl(b)))
a = nxt(rsrtbl(b))−1(b)
a ∈ dom(rsrtbl)
⇒
rsrtbl(a) 	= rsrtbl(b)

⎞
⎟⎟⎟⎟⎟⎟⎠

Thanks to the introduction of the physical variables TRK and LBT we shall be able
to define the movements of the train based only on what the train find on the terrain,
namely the physical blocks. Notice that a train "knows" that the last part of it occupies
a block belonging to LBT .

5.2 The Events

Event route_reservation is not modified in this refinement.Other events are modified
as shown below. We also introduce two more events:
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– point_positioning,
– route_formation

Event point_positioning is still very abstract in this refinement. It conveys however
the essence of the communication between the future software and the outside equip-
ment: the physical TRK is modified according to the logical route nxt(r). This event
is coherent with requirement SAF-3 which says that "a point can only be re-positioned
if it belongs to a block which is in a reserved but not yet formed route". In further refine-
ments, this modification of the physical track will correspond to the controller action
modifying the point positions:

point_positioning
any r where

r ∈ resrt \ frm
then

TRK := (dom(nxt(r)) �− TRK �− ran(nxt(r))) ∪ nxt(r)
end

As can be seen, this logical event has an effect on the physical variable TRK . This
is due to the fact that this event is effectively changing (at ounce for the moment) the
physical position of the points of route r.

Next is an illustration of the physical situations just before and just after an occur-
rence of event point_positioning. As can be seen, after this occurrence we have three
properties: (1) route R3 (L A B K J N ) is established on the physical track, (2)
the points have been modified accordingly, and (3) the crossing situated in block K has
been "reorganized":

L A D E F G

K
M H I J N

C

B

L A D E F G

K
M H I J N

C

B

Event route_formation explains when a route r can be "formed", namely when the
physical and logical track agree, that is after event point_positioning has acted on
route r.

route_formation
any r where

r ∈ resrt \ frm
rsrtbl−1[{r}] � nxt(r) = rsrtbl−1[{r}] � TRK

then
frm := frm ∪ {r}

end
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It can be seen that this event refers to the physical variable TRK in its guard.This is
due to the fact that this event is enabled when the controller detects (here at ounce for
the moment) that all points of route r are correctly positioned.

Event route_freeing is slightly extended by making the freed route not formed any
more. This is coherent with requirement MVT_2, which says that "a route remains
formed as long as there are some reserved blocks in it" and MVT-3, which says that "a
formed route can be made free (not formed and not reserved any more) when no blocks
are reserved for it any more".

route_freeing
any r where

r ∈ resrt \ ran(rsrtbl)
then

resrt := resrt \ {r}
frm := frm \ {r}

end

Event FRONT_MOVE_1 is only slightly modified for the moment as we have not
introduced the signals yet: this will be done in further refinements. The present modi-
fication consists in extending the set LBT by adding to it the singleton {fst(r)}. As a
matter of fact, when a train is entering a route, the last block of the train for that route is
certainly the first block of the route until that block is freed when the back of the train
will move in event BACK_MOVE.

FRONT_MOVE_1
any r where

r ∈ frm
fst(r) ∈ resbl \OCC
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}
LBT := LBT ∪ {fst(r)}

end

FRONT_MOVE_2
any b where

b ∈ OCC
b ∈ dom(TRK)
TRK(b) /∈ OCC

then
OCC := OCC ∪ {TRK(b)}

end

Event FRONT_MOVE_2 is now following the physical situation on the real track.
We shall have to prove that it refines its abstraction however. As can be seen, all guards
are now defined in terms of physical variables.

Event BACK_MOVE is split into two events. Event BACK_MOVE_1 corresponds
to the last block of the train leaving the route. Event BACK_MOVE_2 corresponds to
the last block of the train progressing in the route.
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BACK_MOVE_1
any b where

b ∈ LBT
b /∈ dom(TRK)

then
OCC := OCC \ {b}
rsrtbl := {b}�− rsrtbl
resbl := resbl \ {b}
LBT := LBT \ {b}

end

BACK_MOVE_2
any b where

b ∈ LBT
b ∈ dom(TRK)
TRK(b) ∈ OCC

then
OCC := OCC \ {b}
rsrtbl := {b}�− rsrtbl
resbl := resbl \ {b}
LBT := (LBT \ {b}) ∪ {TRK(b)}

end

Remark 1. As can be seen, the guards of physical events FRONT_MOVE_2,
BACK_MOVE_1, and BACK_MOVE_2 are all now involving physical variables only
(remember our "important remark" at the end of section 4.2). It is still not the case for
event FRONT_MOVE_1 however. Only wait until refinement 3 in section 7 where we
shall see that event FRONT_MOVE_1 will be enabled as a consequence of a green
signal, which clearly is a physical condition.

Remark 2. We notice that physical events BACK_MOVE_1 and BACK_MOVE_2
both make reference to some non-physical variables in their action part (rsrtbl and
resbl). We wonder whether this is allowed. It would seem obvious that a physical event
cannot modify a controller variables. The reason to have some non-physical variables
still present in the action parts of these events is because these events have still to be
decomposed into two events: the "pure" physical event and a corresponding event in
the controller. The reason can clearly be seen here: when the train does a physical back
move, the controller has to react by freeing the corresponding logical block. The con-
nection between the physical move and the (separate) logical reaction in the controller
will be done later (in some refinement step to be done, but not presented in this chap-
ter) by having the physical track circuit sending a message to the controller when it
is physically made unoccupied. Upon receiving this message, the controller can then
react.

Remark 3. Notice that both events FRONT_MOVE_1 and FRONT_MOVE_2 do not
make any reference in their action part to some non-physical variables. It means that
such events have no influence on the controller. This is quite understandable, when the
front of the train proceeds, we have nothing to do in the controller whereas when the
back of the train proceeds we have something to do (block freeing).

6 Second Refinement

In this refinement, we introduce the notion of readiness for a route. A route is ready
when it is able to accept a new train. In the next refinement, we shall introduce the
signals. As we shall see, the ready routes will have a green signal.
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6.1 The State

We do not introduce new carrier sets or new constants.

Variables. In this refinement, we introduce the new variable rdy which denotes the set
of ready routes.

variables: · · · ,
rdy

Here are the basic properties of a ready route. A ready route is one which is formed
(inv2_1), has all its blocks reserved for it (inv2_2), and has all its blocks unoccupied
(inv2_3):

inv2_1: rdy ⊆ frm

inv2_2: ∀r

⎛
⎝ r ∈ rdy
⇒
rtbl � {r} ⊆ rsrtbl � {r}

⎞
⎠

inv2_3: ∀r

⎛
⎝ r ∈ rdy
⇒
dom(rtbl � {r}) ∩ OCC = ∅

⎞
⎠

6.2 The Events

Events point_positioning, route_reservation, route_freeing, FRONT_MOVE_2,
BACK_MOVE_1, and BACK_MOVE_2 are not modified in this refinement, they are
thus not copied below. Event route_formation is extended by making the corresp-
onding route ready besides being formed (this action was performed in the previous
refinement).

route_formation
any r where

r ∈ resrt \ frm
rsrtbl−1[{r}] � nxt(r) = rsrtbl−1[{r}] � TRK

then
frm := frm ∪ {r}
rdy := rdy ∪ {r}

end
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The guards of event FRONT_MOVE_1 are simplified (and made stronger) by stat-
ing that the route r is a ready route (this event will be further simplified in the next
refinement where we introduce the signals). We put the abstract version of this event
next to the refined one to show the differences between the two guards:

(abstract-)FRONT_MOVE_1
any r where

r ∈ frm
fst(r) ∈ resbl \OCC
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}
LBT := LBT ∪ {fst(r)}

end

(concrete-)FRONT_MOVE_1
any r where

r ∈ rdy
rsrtbl(fst(r)) = r

then
OCC := OCC ∪ {fst(r)}
LBT := LBT ∪ {fst(r)}
rdy := rdy \ {r}

end

7 Third Refinement

In this refinement, we define the signals. The role of a signal is to express, when green,
that a route is ready.

7.1 The State

Carrier Sets. We introduce the new carrier set S defining the signals.

carrier sets: B, R, S

Constants. In this refinement, we define one constant named SIG (pronounce "signal
of first block"). This constant yields the unique signal associated with the first block of a
route (prp3_1). This corresponds to requirements ENV-12 and ENV-14 of section 1.6.
It is a bijection since every signal is uniquely associated with the corresponding first
block of a route and vice-versa. Notice that routes sharing the same first block share the
same signal.

constants: · · ·
SIG

prp3_1: SIG ∈ ran(fst) �� S

Variables. In this refinement, we introduce the variable GRN denoting the set of green
signals (inv3_1). This variable data-refines variable rdy which disappears. The connec-
tion between the two is established by saying that signals of the first blocks of ready
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routes are exactly the green signals (inv3_2). We have thus established a correspon-
dence between the abstract notion of ready routes and the physical notion of green
signals.

variables: · · ·
GRN

inv3_1: GRN ⊆ S

inv3_2: SIG[fst[rdy]] = GRN

7.2 The Events

The only two events that are modified in this refinement are events route_formation
and FRONT_MOVE_1. Event route_formation is refined by turning to green the sig-
nal associated with the first block of the newly formed route. This is coherent with
requirement FUN-8 which says that "once it is formed, a route is made available for
the incoming train by turning its signal to green". This event is also coherent with re-
quirement SAF-2, which says that "the signal of a route can only be green when all
blocks of that route are reserved for it and are unoccupied". This is due to invariant
inv3_2 equating the blocks with green signal with ready routes, and invariants inv2_2
and inv2_3 telling that ready routes have all their blocks reserved and unoccupied.

route_formation
any r where

r ∈ resrt \ frm
rsrtbl−1[{r}] � nxt(r) = rsrtbl−1[{r}] � TRK

then
frm := frm ∪ {r}
GRN := GRN ∪ {SIG(fst(r))}

end

This logical event acts on the physical variable GRN . It corresponds to the controller
sending a command to turn the physical signal of the first block of route r to green.

Event FRONT_MOVE_1 now reacts to a green signal rather than to a ready route
as in the previous refinement. We take at last account of requirement ENV-13.

FRONT_MOVE_1
any b where

b ∈ dom(SIG)
SIG(b) ∈ GRN

then
OCC := OCC ∪ {b}
LBT := LBT ∪ {b}
GRN := GRN \ {SIG(b)}

end
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As can be seen, the physical movement of trains follows the indication of green
signals. Note that a green signal is automatically turned red when the train enters the
corresponding block: this is coherent with requirement ENV-15.

8 Fourth Refinement

8.1 The State

In this refinement, we introduce the points from an abstract point of view for the mo-
ment. They are denoted by the set of blocks which contain points. We know from re-
quirement ENV-4 that a block may contain at most one special component: point or
crossing.

Constants. We introduce three constants in this refinement: blpt, lft, and rht. Con-
stant blpt (pronounce "blocks with points") denotes the set of blocks containing points
(prp4_1). Each block b containing a point is connected to another block situated on the
left of b and another block situated on its right. This is represented by two total func-
tions lft and rht from blpt to B (prp4_2 and prp4_3). Notice that the two function lft
and rht are disjoint (prp4_4) because a block cannot be situated simultaneously to the
left and to the right of a point:

constants: · · ·
blpt,
lft,
rht

prp4_1: blpt ⊆ B

prp4_2: lft ∈ blpt→B

prp4_3: rht ∈ blpt→ B

prp4_4: lft ∩ rht = ∅

Let us recall our usual example network:

L A D E F G

K
M H I J N

C

B

Next are the set blpt and both functions lft and rht corresponding to this example:

blpt = {B, D, F, I, J }

lft = {B �→ C, D �→ E, F �→ K, I �→ K, J �→ I }

rht = {B �→ D, D �→ K, F �→ E, I �→ J, J �→ K }
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Each point situated in a route is either in the "direct" or "inverse" direction of this
route. This is illustrated in the following figure where you can see fragments of two
routes: on the left, we have a point oriented "direct-right", and on the right we have a
point oriented "inverse-right".

right left

rightleft inversedirect

More precisely, a point is represented in a route by either the left or the right connection,
and also on the direct direction of the route or the inverse one. For example, in route
R2 (L A B D E F G), there are three points: in B, in D, and in F . The one in B
is direct and represented by the pair B �→ D which is a member of rht, the one in D
is direct and represented by the pair D �→ E which is a member of lft, and finally the
one in F is inverse and represented by the pair F �→ E which is a member of rht. The
connection of each point-block to the next one in a route must be functional (since the
point is either in the right or in the left position). This can be formalized as follows:

prp4_5: ∀r·

⎛
⎝ r ∈ R
⇒
(lft ∪ rht) ∩ (nxt(r) ∪ nxt(r)−1) ∈ blpt �→ B

⎞
⎠

Notice that the position of each point relative to a given route r is the following:
(lft ∪ rht) ∩ (nxt(r) ∪ nxt(r)−1).

We also have to add a technical property saying that there is no point in the first or
last block of a route (prp4_6 and prp4_7):

prp4_6: blpt ∩ ran(fst) = ∅

prp4_7: blpt ∩ ran(lst) = ∅

Variable. We have no new variable in this refinement, only a new invariant expressing
that the point positioning is, as expected, functional in the real track. This is expressed
by invariant inv4_1 below

inv4_1: (lft ∪ rht) ∩ (TRK ∪ TRK−1) ∈ blpt �→ B

Notice that the function is partial only: this is due to the crossing. It is not difficult to
prove that this invariant is maintained by event point_positioning, which is recalled
below:
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point_positioning
any r where

r ∈ resrt \ frm
then

TRK := (dom(nxt(r)) �− TRK �− ran(nxt(r))) ∪ nxt(r)
end

A few additional refinements are clearly needed in order to complete this mod-
elling development. It should contain the decomposition of events route_reservation,
route_formation, and point_positioning in more atomic events so as to construct cor-
responding loops.

9 Proofs

The development which has been presented in previous sections has been entirely
proved with the Click’n’Prove tool [2]. Here is the summary of these proofs:

Number of proofs Automatic Interactive

Initial Model 40 24 16

1st Refinement 46 26 20

2nd Refinement 26 15 11

3rd Refinement 12 9 3

4th Refinement 10 8 2

Total 134 82 52

10 Conclusion

As was said in the introduction, this chapter contains more material on fault prevention
than on fault tolerance. This is essentially due to the problem at hand were faults have to
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be avoided by all means. But faults can happen as was explained in section 1.11, so it is
interesting to see how this could have been taken into account in the modelling process.

It would not have been difficult to incorporate the Automatic Train Protection System
(alluded above in section 1.11) within the formal models because we have a global ap-
proach taking account of the environment. This would take care of requirements FLR-1
(drivers passing a red signal) and FLR-3 (trains moving backwards) which are protected
by the Automatic Train Protection System.

As much as I understand form experts, the other failures are not treated simply be-
cause people consider that their probability is extremely low. However, such failures
could sometimes be detected in the case of FLR-4 (wrong block occupancy) and that of
FLR-5 (train leaving a block). In these cases, the controller has to stop the system by
not allowing any signal to be turned green and by not doing any point positioning. This
default phase is to last until the environment is inspected and the system is reset. It
would be also very easy to model this.

What we have presented here is very close to similar studies done in [3] and [5]. The
approach of [3] itself follows from original approaches done in the past by applying the
"Action System" methodology [4]. The important lesson learned from Action System
is the idea of reasoning at a global level by introducing not only the intended software
into the picture but also its physical environment.

In the present study, we insisted on the preliminary informal phase consisting in
presenting the structured "Definitions and Requirements" of the system we want to
build. We think that it is extremely important from a methodological point of view as it
is quite frequently a very weak point in similar industrial applications. It seems that we
have also made a more complete mathematical treatment of the track network model.
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Linköping University SE-581 83 Linköping, Sweden
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1 Introduction

Modern command and control systems are characterised by computing services
provided to several actors at different geographical locations. The actors operate
on a common state that is modularly updated at distributed nodes using local
data services and global integrity constraints for validity of data in the value and
time domains. Dependability in such networked applications is measured through
availability of the distributed services as well as the correctness of the state up-
dates that should satisfy integrity constraints at all times. Providing support in
middleware is seen as one way of achieving a high level of service availability and
well-defined performance guarantees. However, most recent works [1,2] that ad-
dress fault-aware middleware cover crash faults and provision of timely services,
and assume network connectivity as a basic tenet.

In this paper we study the provision of services in distributed object sys-
tems, with network partitions as the primary fault model. The problem appears
in a variety of scenarios [3], including distributed flight control systems. The
scenarios combine provision of critical services with data-intensive operations.
Clients can approach any node in the system to update a given object, copies
of which are present across different nodes in the system. A correct update of
the object state is dependent on validity of integrity constraints, potentially in-
volving other distributed objects. Replicated objects provide efficient access at
distributed nodes (leading to lower service latency). Middleware is employed for
systematic upholding of common view on the object states and consistency in
write operations. However, problems arise if the network partitions. That is, if
there are broken/overloaded links such that some nodes become unreachable,
and the nodes in the network form disjoint partitions. Then, if services are de-
livered to clients approaching different partitions, the upholding of consistency
has to be considered explicitly. Moreover, there should be mechanisms to deal
with system mode changes, with service differentiation during degraded mode.

Current solutions to this problem typically uphold full consistency at the
cost of availability. When the network is partitioned, the services that require
integrity constraints over objects that are no longer reachable are suspended
until the network is physically unified. Alternatively, a majority partition is
assumed to continue delivering services based on the latest replica states. When
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the network is reunified the minority partition(s) nodes rejoin; but during the
partition clients approaching the minority partition receive no service. The goal
of our work is to investigate middleware support that enables distributed services
to be provided at all partitions, at the expense of temporarily trading off some
consistency. To gain higher availability we need to act optimistically, and allow
one primary per partition to provisionally service clients that invoke operations
in that partition.

The contributions of the paper are twofold. First, we present a protocol that
after reunification of a network partition takes a number of partition states and
generates a new partition state that includes a unique state per object. In parallel
with creating this new state the protocol continues servicing incoming requests.
Since the state of the (reconciled) post-reunification objects are not yet finalised,
the protocol has to maintain virtual partitions until all operations that have ar-
rived after the partition fault and provisionally serviced are dealt with.

Second, we show that the protocol results in a stable partition state, from
which onwards the need for virtual partitions is no longer necessary. The proof
states the assumptions under which the stable state is reached. Intuitively, the
system will leave the reconciliation mode when the rate of incoming requests
is lower than the rate of handling the provisionally accepted operations dur-
ing reconciliation. The resulting partition state is further shown to have desired
properties. A notion of correctness is introduced that builds on satisfaction of
integrity constraints as well as respecting an intended order of performed oper-
ations seen from clients’ point of view.

The structure of the paper is as follows. Section 2 i provides an informal
overview of the formalised protocols in the paper. Section 3 introduces the basic
formal notions that are used in the models. Section 4 describes the intuitive rea-
soning behind the choice of ordering that is imposed on the performed operations
in the system and relates the application (client) expectations to the support that
can reasonably be provided by automatic mechanisms in middleware. Section 5
presents the reconciliation protocol in terms of distributed algorithms running
at replicas and in a reconciliation manager. Section 6 is devoted to the proofs
of termination and correctness for the protocol. Related work are described in
Sect. 7, and Sect. 8 concludes the paper.

2 Overview

We begin by assuming that middleware services for replication of objects are
in place. This implies that the middleware has mechanisms for creating replica
objects, and protocols that propagate a write operation at a primary copy to all
the object replicas transparently. Moreover, the mechanisms for detecting link
failures and partition faults are present in the middleware. The latter is typically
implemented by maintaining a membership service that keeps an up to date view
of which replicas for an object are running and reachable. The middleware also
includes naming/location services, whereby the physical node can be identified
given a logical address.
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In normal mode, the system services read operations in a distributed manner;
but for write operations there are protocols that check integrity constraints be-
fore propagating the update to all copies of the object at remote nodes. Both in
normal and degraded mode, each partition is assumed to include a designated
primary replica for each object in the system.

The integrity constraints in the system are assumed to fall in two classes:
critical and non-critical. For operations with non-critical constraints different
primary servers continue to service client requests, and provisionally accept the
operations that satisfy integrity constraints. When the partition fault is repaired,
the state of the main partition is formed by reconciling the operations carried
out in the earlier disjoint partitions. The middleware supports this reconciliation
process and guarantees the consistency of the new partition state. The state is
formed by replaying some provisional operations that are accepted, and rejecting
some provisional operations that should be notified to clients as ”undone”. It is
obviously desirable to keep as many of the provisionally accepted operations as
possible.

The goal of the paper is to formally define mechanisms that support the above
continuous service in presence of (multiple) partitions, and satisfactorily create
a new partition upon recovery from the fault. For a system that has a consid-
erable portion of its integrity constraints classified as non-critical this should
intuitively increase availability despite partitions. Also, the average latency for
servicing clients should decrease as some client requests that would otherwise
be suspended or considerably delayed if the system were to halt upon partitions
are now serviced in a degraded mode.

Figure 1 presents the modes of a system in presence of partition faults. The
system is available in degraded mode except for operations for which the integrity
constraints are critical so that they cannot accept the risk of being inconsistent
during partitions (these are not performed at all in degraded mode). The system
is also partially available during reconciling mode; but there is a last short stage
within reconciliation (installing state) during which the system is unavailable.

In earlier work we have formalised the reconciliation process in a simple model
and experimentally studied three reconciliation algorithms in terms of their influ-
ence on service outage duration [4]. A major assumption in that work was that
no service was provided during the whole reconciliation process. Simulations

Reconciling mode

Degraded mode

Normal mode

Installing state

Partially available

Unavailable

StopInstall

Partially availableFully available

ReunifyPartition

Fig. 1. System modes
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showed that the drawback of the ‘non-availability’ assumption can be severe in
some scenarios; namely the time taken to reconcile could be long enough so that
the non-availability of services during this interval would be almost as bad as
having no degraded service at all (thereby no gain in overall availability).

In this paper we investigate the implications of continued service delivery
during the reconciliation process. This implies that we need to formalise a more
refined protocol that keeps providing service to clients in parallel with reconcili-
ation (and potential replaying of some operations). The algorithms are modelled
in timed I/O automata, that naturally model multiple partition faults occurring
in a sequence (so called cascading effects). More specifically, the fault model
allows multiple partition faults in a sequence before a network is reunified, but
no partitions occur during reconciliation. We also exclude crash faults during
reconciliation in order to keep the models and proofs easier to convey. Crash
faults can be accommodated using existing checkpointing approaches [5] with
no known effects on main results of the paper. Furthermore, we investigate cor-
rectness and termination properties of this more refined reconciliation protocol.
The proofs use admissible timed traces of timed I/O automata.

3 Preliminaries

This section introduces the concepts needed to describe the reconciliation proto-
col and its properties. We will define the necessary terms such as object, partition
and replica as well as defining consistency criteria for partitions.

3.1 Objects

For the purpose of formalisation we associate data with objects. Implementation-
wise, data can be maintained in databases and accessed via database managers.

Definition 1. An object o is a triple o = (S,O, T ) where S is the set of possible
states, O is the set of operations that can be applied to the object state and
T ⊆ S ×O × S is a transition relation on states and operations.

We assume all operation sets to be disjunct so that every operation is associated
with one object.

Transitions from a state s to a state s′ will be denoted by s
α� s′ where

α = 〈op, k〉 is an operation instance with op ∈ O, and k ∈ IN denotes the unique
invocation of operation op at some client.

Definition 2. An integrity constraint c is a predicate over multiple object states.
Thus, c ⊆ S1 × S2 × . . .× Sn where n is the number of objects in the system.

Intuitively, object operations should only be performed if they do not violate
integrity constraints.

A distributed system with replication has multiple replicas for every object
located on different nodes in the network. As long as no failures occur, the
existence of replicas has no effect on the functional behaviour of the system.
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Therefore, the state of the system in the normal mode can be modelled as a set
of replicas, one for each object.

Definition 3. A replica r for object o = (S,O, T ) is a triple r = (L, s0, sm)
where the log L = 〈α1 . . . αm〉 is a sequence of operation instances defined over
O. The initial state is s0 ∈ S and sm ∈ S is a state such that s0 α1� . . .

αm� sm.

The log can be considered as the record of operations since the last checkpoint
that also recorded the (initial) state s0.

We consider partitions that have been operating independently and we assume
the nodes in each partition to agree on one primary replica for each object. This
will typically be promoted by the middleware. Moreover, we assume that all
objects are replicated across all nodes. For the purpose of reconciliation the
important aspect of a partition is not how the actual nodes in the network are
connected but the replicas whose states have been updated separately and need
to be reconciled. Thus, the state of each partition can be modelled as a set of
replicas where each object is uniquely represented.

Definition 4. A partition p is a set of replicas r such that if ri, rj ∈ p are both
replicas for object o then ri = rj .

The state of a partition p = {(L1, s
0
1, s1), . . . , (Ln, s0

n, sn)} consists of the state
of the replicas 〈s1, . . . , sn〉. Transitions over object states can now be naturally
extended to transitions over partition states.

Definition 5. Let α = 〈op, k〉 be an operation instance for some invocation k

of operation op. Then sj α� sj+1 is a partition transition iff there is an object
oi such that si

α� s′i is a transition for oi, sj = 〈s1, . . . , si, . . . , sn〉 and sj+1 =
〈s1, . . . , s

′
i, . . . , sn〉.

We denote by Apply(α, P ) the result of applying operation instance α at some
replica in partition P , giving a new partition state and a new log for the affected
replica.

3.2 Order

So far we have not introduced any concept of order except that a state is always
the result of operations performed in some order. When we later will consider
the problem of creating new states from operations that have been performed
in different partitions we must be able to determine in what (if any) order the
operations must be replayed.

At this point we will merely define the existence of a strict partial order
relation over operation instances. Later, in Sect. 4.2 we explain the philosophy
behind choosing this relation.

Definition 6. The relation → is a irreflexive, transitive relation over the oper-
ation instances obtained from operations O1 ∪ . . . ∪On.

In Definition 8 we will use this ordering to define correctness of a partition state.
Note that the ordering relation induces an ordering on states along the time line
whereas the consistency constraints relate the states of various objects at a given
“time point” (a cut of the distributed system).
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3.3 Consistency

Our reconciliation protocol will take a set of partitions and produce a new parti-
tion. As there are integrity constraints on the system state and order dependen-
cies on operations, a reconciliation protocol must make sure that the resulting
partition is correct with respect to both of these requirements. This section de-
fines consistency properties for partitions.

Definition 7. A partition state s = 〈s1, . . . , sn〉 for partition where
P = {(L1, s

0
1, s1), . . . , (Ln, s0

n, sn)} is constraint consistent, denoted cc(P), iff
for all integrity constraints c it holds that s ∈ c.

Next we define a consistency criterion for partitions that also takes into account
the order requirements on operations in logs. Intuitively we require that there
is some way to construct the current partition state from the initial state using
all the operations in the logs. Moreover, all the intermediate states should be
constraint consistent and the operation ordering must follow the ordering restric-
tions. We will use this correctness criterion in evaluation of our reconciliation
protocol.

Definition 8. Let P = {(L1, s
0
1, s1), . . . , (Ln, s0

n, sn)} be a partition, and let sk

be the partition state. The initial partition state is s0 = 〈s0
1, . . . s

0
n〉. We say that

the partition P is consistent if there exists a sequence of operation instances
L = 〈α1, . . . , αk〉 such that:

1. α ∈ Li ⇒ α ∈ L
2. s0 α1� . . .

αk� sk

3. Every sj ∈ {s0, . . . , sk} is constraint consistent
4. αi → αj ⇒ i < j

4 Application-Middleware Dependencies

In Sect. 3 we introduced integrity constraints and an order relation between
operations. These concepts are used to ensure that the execution of operations
is performed according to the clients’ expectations. In this section we will further
elaborate on these two concepts, and briefly explain why they are important for
reconciliation.

Due to the fact that the system continues to provisionally serve requests in
degraded mode, the middleware has to start a reconciliation process when the
system recovers from link failures (i.e. when the network is physically reunified).
At that point in time there may be several conflicting states for each object
since write requests have been serviced in all partitions. In order to merge these
states into one common state for the system we will have to replay the performed
operations (that are stored in the logs of each replica). Some operations may not
satisfy integrity constraints when multiple partitions are considered, and they
may have to be rejected (seen from a client perspective, undone). The replay
starts from the last common state (i.e. from before the partition fault occurred)
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and iteratively builds up a new state. Note that the replay of an operation
instance may potentially take place in a different state compared to that where
the operation was originally applied in the degraded mode.

4.1 Integrity Constraints

Since some operations will have to be replayed we need to consider the conditions
required, so that replaying an operation in a different state than that it was
originally executed in does not cause any discrepancies. We assume that such
conditions are indeed captured by integrity constraints.

In other words, the middleware expects that an application writer has cre-
ated the needed integrity constraints such that replaying an operation during
reconciliation is harmless as long as the constraint is satisfied, even if the state
on which it is replayed is different from the state in which it was first executed.
That is, there should not be any implicit conditions that are checked by the
client at the invocation of the operation. In such a case it would not be possible
for the middleware to recheck these constraints upon reconciliation.

As an example, consider withdrawal from a credit account. It is acceptable to
allow a withdrawal as long as there is coverage for the account in the balance; it
is not essential that the balance should be a given value when withdrawal is all-
lowed. Recall that that an operation for which a later rejection is not acceptable
from an application point of view should be associated with a critical constraint
(thereby not applied during a partition at all). An example of such an operation
would be the termination of a credit account.

4.2 Expected Order

To explain the notion of expected order we will first consider a system in normal
mode and see what kind of execution order is expected by the client. Then
we will require the same expected order to be guaranteed by the system when
performing reconciliation. In our scenarios we will assume that a client who
invokes two operations α and β in sequence without receiving a reply between
them does not have any ordering requirements on the invocations. Then the
system need not guarantee that the operations are executed in any particular
order. This is true even if the operations were invoked on the same object.

Now assume that the client first invokes α and does not invoke β until it has
received a reply for α confirming that α has been executed. Then the client knows
that α is executed before β. The client process therefore assumes an ordering
between the execution of α and β due to the fact that the events of receiving a
reply for α precedes the event of invoking β. This is the order that we want to
capture with the relation → from Definition 6. When the reconciliation process
replays the operations it must make sure that this expected order is respected.

This induced order need not be specified at the application level. It can be
captured by a client side front end within the middleware, and reflected in a
tag for the invoked operations. Thus, every operation is piggybacked with infor-
mation about what other operations must precede it when it is later replayed.
This information is derived from the requests that are sent by the client and the
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received replies. Note that it is only necessary to attach the IDs of the immediate
predecessors so the overhead will be small.

5 The Reconciliation Protocol

In this section we will describe the reconciliation protocol in detail using timed
I/O automata. However, before going into details we provide a short overview of
the idea behind the protocol. The protocol is composed of two types of processes:
a number of replicas and one reconciliation manager.

The replicas are responsible for accepting invocations from clients and send-
ing logs to the reconciliation manager during reconciliation. The reconciliation
manager is responsible for merging replica logs that are sent during reconciling
mode. It is activated when the system is reunified and eventually sends an in-
stall message with the new partition state to all replicas. The new partition state
includes empty logs for each replica.

The reconciliation protocol starts with one state per partition is faced with
the task of merging a number of operations that have been performed in different
partitions while preserving constraint consistency and respecting the expected
ordering of operations. In parallel with this process the protocol should take care
of operations that arrive during the reconciliation phase. Note that there may be
unreconciled operations in the logs that should be executed before the incoming
operations that arrive during reconciliation.

The state that is being constructed in the reconciliation manager may not yet
reflect all the operations that are before (→) the incoming operations. Therefore
the only state in which the incoming operation can be applied to is one of the
partition states from the degraded mode. Or in other words, we need to execute
the new operations as if the system was still in degraded mode. In order to do
this we will maintain virtual partitions while the reconciliation phase lasts.

5.1 Reconciliation Manager

In Algorithm 1. the variable mode represents the modes of the reconciliation
process and is basically the same as the system modes described in Fig. 1 except
that the normal and degraded mode are collapsed into an idle mode for the
reconciliation manager, which is its initial mode of operation.

When a reunify action is activated the reconciliation manager goes to recon-
ciling mode. Moreover, the variable P , which represents the partition state, is
initialised with the pre-partition state, and the variable opset that will contain
all the operations to replay is set to empty. Now the reconciliation process starts
waiting for the replicas to send their logs and the variable awaitedLogs is set to
contain all replicas that have not yet sent their logs.

Next, we consider the action receive(〈“log′′, L〉)iM which will be activated
when some replica ri sends its operation log. This action will add logged oper-
ations to opset and to ackset[i] where the latter is used to store acknowledge
messages that should be sent back to replica ri. The acknowledge messages are
sent by the action send(〈“logAck′′, ackset[i]〉)Mi. When logs have been received
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from all replicas (i.e. awaitedLogs is empty) then the manager can proceed and
start replaying operations. A deadline will be set on when the next handle action
must be activated (this is done by setting last(handle)).

The action handle(α) is an internal action of the reconciliation process that
will replay the operation α (which is minimal according to → in opset) in the
reconciled state that is being constructed. The operation is applied if it results
in a constraint consistent state.

As we will show in Sect. 6.2, there will eventually be a time when opset is empty
at which M will enable broadcast(“stop′′)M . This will tell all replicas to stop ac-
cepting new invocations. Moreover, M will set the mode to installingState and
wait for all replicas to acknowledge the stop message. This is done to guarantee
that no messages remain untreated in the reconciliation process. Finally, when
the manager has received acknowledgements from all replicas it will broadcast an
install message with the reconciled partition state and enter idle mode.

5.2 Replica Process

A replica process (see Algorithm 2.) is responsible for receiving invocations to
clients and for sending logs to M . We will proceed by describing the states and
actions of a replica process. First note that a replica process can be in four dif-
ferent modes, normal, degraded, reconciling, and unavailable which correspond
to the system modes of Fig. 1.

In this paper we do not explicitly model how updates are replicated from
primary replicas to secondary replicas. Instead, we introduce two global shared
variables that are accessed by all replicas, provided that they are part of the
same group. The first shared variable P [i] represents the partition for the group
with ID i and it is used by all replicas in that group during normal and degraded
mode. The group ID is assumed to be delivered by the membership service.

During reconciling mode the group-ID will be 1 for all replicas since there
is only one partition during reconciling mode. However, as we explained in the
beginning of Sect. 5 the replicas must maintain virtual partitions to service
requests during reconciliation. The shared variable VP[j] is used to represent
the virtual partition for group j which is based on the partition that was used
during degraded mode.

During normal mode replicas apply operations that are invoked through the
receive(〈“invoke”, α〉)cr action if they result in a constraint consistent partition.
A set toReply is increased with every applied operation that should be replied
to by the action send(〈“reply′′, α〉)rc.

A replica leaves normal mode and enters degraded mode when the group
membership service sends a partition message with a new group-ID. The replica
will then copy the contents of the previous partition representation to one
that will be used during degraded mode. Implicit in this assignment is the
determination of one primary per partition for each object in the system (as
provided by a combined name service and group membership service). The
replica will continue accepting invocations and replying to them during degraded
mode.



46 M. Asplund and S. Nadjm-Tehrani

Algorithm 1. Reconciliation manager M
States
mode ∈ {idle, reconciling, installingState} ← idle
P ← {(〈〉, s0

1, s
0
1), . . . , (〈〉, s0

n, s0
n)}/* Output of protocol: Constructed partition */

opset /* Set of operations to reconcile */
awaitedLogs /* Replicas to wait for sending a first log message */
stopAcks /* Number of received stop “acks”*/
ackset[i] ← ∅ /* Log items from replica i to acknowledge*/
now ∈ IR0+

last(handle) ← ∞ /* Deadline for executing handle */
last(stop) ← ∞ /* Deadline for sending stop */
last(install) ← ∞ /* Deadline for sending install */

Actions
Input reunify(g)M

Eff: mode ← reconciling
P ← {(〈〉, s0

1, s
0
1), . . . , (〈〉, s0

n, s0
n)}

opset ← ∅
awaitedLogs ← {All replicas}

Input receive(〈“log”, L〉)iM

Eff: opset ← opset ∪ L
ackset[i] ← ackset[i] ∪ L
if awaitedLogs 	= ∅

awaitedLogs ← awaitedLogs \ {i}
else

last(handle) ←
min(last(handle), now + dhan)

Output send(〈“logAck”, ackset[i]〉)Mi

Eff: ackset[i] ← ∅
Internal handle(α)
Pre: awaitedLogs = ∅

mode = reconciling
α ∈ opset
�β ∈ opset β → α

Eff: if cc(Apply(α,P ))
P ← Apply(α,P )

last(handle) ← now + dhan

opset ← opset \ {α}
if opset = ∅

last(stop) = now + dact

Output broadcast(“stop”)M

Pre: opset = ∅
awaitedLogs = ∅

Eff: stopAcks ← 0
mode ← installingState
last(handle) ← ∞
last(stop) ← ∞

Input receive(〈“stopAck”〉)iM

Eff: stopAcks ← stopAcks + 1
if stopAck = mn

last(install) = now + dact

Output broadcast(〈“install”, P 〉)M

Pre: mode = installingState
stopAcks = m · n

Eff: mode ← idle
last(install) = ∞

Timepassage v(t)
Pre: now + t ≤ last(handle)

now + t ≤ last(stop)
now + t ≤ last(install)

Eff: now ← now + t

When a replica receives a reunify message it will take the log of operations
served during degraded mode (the set L) and send it to the reconciliation man-
ager M by the action send(〈“log′′, L〉)rM . In addition, the replica will enter
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reconciling mode and copy the partition representation to a virtual partition
representation. The latter will be indexed using virtual group-ID vg which will
be the same as the group-ID used during degraded mode. Finally, a deadline will
be set for sending the logs to M .

The replica will continue to accept invocations during reconciliation mode
with some differences in handling. First of all, the operations are applied to a
virtual partition state. Secondly, a log message containing an applied operation is
immediately scheduled to be sent to M . Finally, the replica will not immediately
reply to the operations. Instead it will wait until the log message has been
acknowledged by the reconciliation manager and receive(〈“logAck′′, L〉)Mr is
activated. Now any operation whose reply was pending and for whom a logAck
has been received can be replied to (added to the set toReply).

At some point the manager M will send a stop message which will make the
replica to go into unavailable mode and send a stopAck message. During this
mode no invocations will be accepted until an install message is received. Upon
receiving such a message the replica will install the new partition representation
and once again go into normal mode.

6 Properties of the Protocol

The goal of the protocol is to restore consistency in the system. This is achieved
by merging the results from several different partitions into one partition state.
The clients have no control over the reconciliation process and in order to guar-
antee that the final result does not violate the expectations of the clients we need
to assert correctness properties of the protocol. Moreover, as there is a growing
set of unreconciled operations we need to show that the protocol does not get
stuck in reconciliation mode for ever.

In this section we will show that (1) the protocol terminates in the sense that
the reconciliation mode eventually ends and the system proceeds to normal mode
(2) the resulting partition state which is installed in the system is consistent in
the sense of Definition 8.

6.1 Assumptions

The results rely on a number of assumptions on the system. We assume a par-
tially synchronous system with reliable broadcast. Moreover, we assume that
there are bounds on duration and rate of partition faults in the network. Finally
we need to assume some restrictions on the behaviour of the clients such as the
speed at which invocations are done and the expected order of operations. The
rest of the section describes these assumptions in more detail.

Network Assumptions. We assume that there are two time bounds on the
appearance of faults in the network. TD is the maximal time that the network can
be partitioned. TF is needed to capture the minimum time between two faults.
The relationship between these bounds are important as operations are piled up
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Algorithm 2. Replica r
Shared vars
P [i] ← {(〈〉, s0

1, s
0
1), . . . , (〈〉, s0

n, s0
n)}, for i = 1 . . . N /* Representation for partition i,

before reunification */
VP[i], for i = 1 . . . N /* Representation for virtual partition i, after reunification */

States
mode ∈ {normal, degraded, reconciling, unavailable} ← idle
g ∈ {1 . . . N} ← 1 /* Group identity (supplied by group membership service) */
vg ∈ {1 . . . N} ← 1 /* Virtual group identity, used between reunification and install */
L ← ∅ /* Set of log messages to send to reconciliation manager M*/
toReply ← ∅ /* Set of operations to reply to */
pending ← ∅ /* Set of operations to reply to when logged */
enableStopAck /* Boolean to signal that a stopAck should be sent */
last(log) ← ∞ /* Deadline for next send(〈“log′′, . . .〉) action */
last(stopAck) ← ∞ /* Deadline for next send(〈“stopAck′′, . . .〉) action */
now ∈ IR0+

Actions
Input partition(g′)r

Eff: mode ← degraded
P [g′] ← P [g]
g ← g′

Input reunify(g′)r

Eff: L ← Lr where 〈Lr, s
0
r, sr〉 ∈ P

mode ← reconciling
vg ← g
VP[vg] ← P [g]
g ← g′

last(log) ← now + dact

Input receive(〈“invoke”, α〉)cr

Eff: switch(mode)
normal | degraded ⇒

if Apply(α,P [g]) is Consistent)
P [g] ← Apply(α,P [g])
toReply ← toReply ∪ {〈α, c〉}

reconciling ⇒
if Apply(α,VP[vg]) is Consistent)

VP[vg] ← Apply(α,VP[vg])
L ← L ∪ {α}
last(log) ← min(last(log), now + dact)
pending ← pending ∪ {〈α, c〉}

Output send(〈“log′′, L〉)rM

Pre: mode ∈ {reconciling, unavailable}
L 	= ∅

Eff: L ← ∅
last(log) ← ∞

Input receive(〈“logAck′′, L〉)Mr

Eff: replies ← {〈α, c〉 ∈ pending | α ∈ L}
toReply ← toReply ∪ replies
pending ← pending \ replies

Output send(〈“reply′′, α〉)rc

Pre: 〈α, c〉 ∈ toReply
Eff: toReply ← toReply \ {〈α, c〉}

Input receive(“stop′′)Mr

Eff: mode ← unavailable
enableStopAck ← true
last(stopAck) ← now + dact

Output send(〈“stopAck′′〉)rM

Pre: enableStopAck = true
L = ∅

Eff: enableStopAck = false
last(stopAck) ← ∞

Input receive(〈“install′′, P ′〉)Mr

Eff: P [g] ← P ′ /* g = 1 */
mode ← normal

Timepassage v(t)
Pre: now + t ≤ last(log)

now + t ≤ last(stopAck)
Eff: now ← now + t
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during the degraded mode and the reconciliation has to be able to handle them
during the time before the next fault occurs.

We will not explicitly describe all the actions of the network but we will give
a description of the required actions as well as a list of requirements that the
network must meet. The network assumptions are summarised in N1-N6, where
N1, N2, and N3 characterise reliable broadcast which can be supplied by a system
such as Spread[6]. Assumption N4 relates to partial synchrony which is a basic
assumption for fault-tolerant distributed systems. Finally we assume that faults
are limited in frequency and duration (N5,N6) which is reasonable, as otherwise
the system could never heal itself.

N1 A receive action is preceded by a send (or broadcast) action.
N2 A sent message is not lost unless a partition occurs.
N3 A sent broadcast message is either received by all in the group or a partition

occurs and no process receives it.
N4 Messages arrive within a delay of dmsg (including broadcast messages).
N5 After a reunification, a partition occurs after an interval of at least TF.
N6 Partitions do not last for more than TD.

Client Assumptions. In order to prove termination and correctness of the
reconciliation protocol we need some restrictions on the behaviour of clients.

C1 The minimum time between two invoke actions from one client is dinv.
C2 If there is an application-specific ordering between two operations, then the

first must have been replied to before the second was invoked. Formally,
admissible timed system traces must be a subset of ttraces(C2). ttraces(C2)
is defined as the set of sequences such that for all sequences σ in ttraces(C2):
α → β and (send(〈“invoke′′, β〉)cr, t1) ∈ σ ⇒
∃(receive(〈“reply′′, α〉)r′c, t0) ∈ σ for some r′ and t0 < t1.

In Table 1 we summarise all the system parameters relating to time intervals
that we have introduced so far.

Table 1. Parameter summary

TF Minimal time before a partition fault after a reunify
TD Maximal duration of a partition
dmsg Maximal message transmission time
dinv Minimal time between two invocations from one client
dhan Maximal time between two handle actions within reconciliation manager
dact Deadline for actions

Server Assumptions. As we are concerned with reconciliation and do not
want go into detail on other responsibilities of the servers or middleware (such
as checkpointing), we will make two assumptions on the system behaviour that
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we do not explicitly model. First, in order to prove that the reconciliation phase
ends with the installment of a consistent partition state, we need to assume
that the state from which the reconciliation started is consistent. This is a rea-
sonable assumption since normal and degraded mode operations always respect
integrity constraints. Second, we assume that the replica logs are empty at the
time when a partition occurs. This is required to limit the length of the reconcil-
iation as we do not want to consider logs from the whole life time of a system. In
practice, this has to be enforced by implementing checkpointing during normal
operation.

A1 The initial state s0 is constraint consistent (see Definition 7).
A2 All replica logs are empty when a partition occurs.

We will now proceed to prove correctness of the protocol. First we give a
termination proof and then a partial correctness proof.

6.2 Termination

In this section we will prove that the reconciliation protocol will terminate in
the sense that after the network is physically healed (reunified) the reconcili-
ation protocol eventually activates an install message to the replicas with the
reconciled state. As stated in the theorem it is necessary that the system is able
to replay operations at a higher rate than new operations arrive (reflected in the
ratio q).

Theorem 1. Let the system consist of the model of replicas, and the model
of reconciliation manager. Assume the conditions described in Sect. 6.1. As-
sume further that the ratio q between the minimum handling rate 1

dhan
and

the maximum interarrival rate for client invocations C · 1
dinv

, where C is the
maximum number of clients, is greater than one. Then, all admissible system
traces are in the set ttraces(Installing) of action sequences such that for every
(reunify(g)M , t) there is a (broadcast(〈“install”, P 〉)M , t′) in the sequence, with
t < t′, provided that TF > TD+7d

q−1 + 9d, where d exceeds dmsg and dact.

tlogtreun
Mtp

Partition Reunification Partition

Time

TI TH TE

tinstte

TD TF

Fig. 2. Reconciliation timeline
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Proof. Consider an arbitrary admissible timed trace γ such that
(reunify(g)M , treun

M ) appears in γ. Let all time points ti below refer to points in
γ. The goal of the proof is to show that there exists a point tinst after treun

M , at
which there is an install message appearing in γ.

The timing relation between two partitions and the time line for manager M
can be visualised in Fig. 2 (see N5 and N6). Let treun

i denote the time point at
which the reunification message arrives at process i. The reconciliation activity is
performed over three intervals: initialising (TI), handling (TH), and ending (TE).
The proof strategy is to show that the reconciliation activity ends before the
next partition occurs, considering that it takes one message transmission for the
manager to learn about reunification. That is, dmsg + TI + TH + TE < TF.

Let tlog be the last time point at which a log message containing a pre-
reunification log is received from some replica. This is the time point at which
handling (replaying) operations can begin. The handling interval (TH) ends when
the set of operations to replay (opset) is empty. Let this time point be denoted
by te.

Initialising:
TI = tlog − treun

M

The latest estimate for tlog is obtained from the latest time point at which a
replica may receive this reunification message (treun

r ) plus the maximum time for
it to react (dact) plus the maximum transmission time (dmsg).

TI ≤ max
r

(treun
r ) + dact + dmsg − treun

M

By N4 all reunification messages are received within dmsg.

TI ≤ treun
M + dmsg + dact + dmsg − treun

M ≤ 2dmsg + dact (1)

Handling: The maximum handling time is characterised by the maximum num-
ber of invoked client requests times the maximum handling time for each op-
eration (dhan, see Algorithm 1.), times the maximum number of clients C. We
divide client invocations in two categories, those that arrive at the reconciliation
manager before tlog and those that arrive after tlog.

TH ≤
(
[pre-tlog messages] + [post-tlog messages]

)
· C · dhan

The maximum time that it takes for a client invocation to be logged at M is
equal to 2dmsg + dact, consisting of the transmission time from client to replica
and the transmission time from replica to manager as well as the reaction time
for the replica. The worst estimate of the number of post-tlog messages includes
all invocations that were initiated at a client prior to tlog and logged at M after
tlog. Thus the interval of 2dmsg + dact must be added to the interval over which
client invocations are counted.

TH ≤
(

TD + dmsg + TI

dinv
+

TH + 2dmsg + dact

dinv

)
· C · dhan (2)



52 M. Asplund and S. Nadjm-Tehrani

using earlier constraint for TI in (1). Finally, together with the assumption in
the theorem we can simplify the expression as follows:

TH ≤ TD + 5dmsg + 2dact

q − 1
(3)

Ending: According to the model of reconciliation manager M an empty opset
results in the sending of a stop message within dact. Upon receiving the mes-
sage at every replica (within dmsg), the replica acknowledges the stop message
within dact. The the new partition can be installed as soon as all acknowledge
messages are received (within dmsg) but at the latest within dact. Hence TE can
be constrained as follows:

TE = tinst − te ≤ 3dact + 2dmsg (4)

Final step: Now we need to show that dmsg + TI + TH + TE is less than TF (time
to next partition according to N5). From (1), (3), and (4) we have that:

TI + TH + TE ≤ 2dmsg + dact +
TD + 5dmsg + 2dact

q − 1
+ 3dact + 2dmsg

Given a bound d on delays dact and dmsg we have:

dmsg + TI + TH + TE ≤ TD + 7d

q − 1
+ 9d

Which concludes the proof according to theorem assumptions. ��

6.3 Correctness

As mentioned in Sect. 3.3 the main requirement on the reconciliation protocol
is to preserve consistency. The model of the replicas obviously keeps the parti-
tion state consistent (see the action under receive(〈“invoke′′, α〉)cr . The proof
of correctness is therefore about the manager M withholding this consistency
during reconciliation, and specially when replaying actions. Before we go on to
the main theorem on correctness we present a theorem that shows the ordering
requirements of the application (induced by client actions) are respected by our
models.

Theorem 2. Let the system consist of the model of replicas, and the model of
reconciliation manager. Assume the conditions described in Sect. 6.1. Define the
set ttraces(Order) as the set of all action sequences with monotonically increas-
ing times with the following property: for any sequence σ ∈ ttraces(Order), if
(handle((α), t) and (handle((β), t′) is in σ, α → β, and there is no
(partition(g), t′′) between the two handle actions, then t < t′. All admissible
timed traces of the system are in the set ttraces(Order).
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Proof. We assume α → β, and take an arbitrary timed trace γ belonging to
admissible timed traces of the system such that (handle(α), t) and (handle(β), t′)
appear in γ and no partition occurs in between them. We are going to show that
t < t′, thus γ belongs to ttraces(Order). The proof strategy is to assume t′ < t
and prove contradiction.

By the precondition of (handle(β), t′) we know that α cannot be in the opset
at time t′ (see the Internal action in M). Moreover, we know that α must be
in opset at time t because (handle(α), t) requires it. Thus, α must be added to
opset between these two time points and the only action that can add operations
to this set is receive(〈“log′′, . . .〉)rM . Hence there is a time point tl at which
(receive(〈“log′′, 〈. . . , α, . . .〉〉)rM , tl) appears in γ and

t′ < tl < t (5)

Next consider a sequence of actions that must all be in γ with
t0 < t1 < . . . < t8 < t′.

1. (handle((β), t′)
2. (receive(〈“log′′, 〈. . . , β, . . .〉〉, t8)r1M for some r1

3. (send(〈“log′′, 〈. . . , β, . . .〉〉, t7)r1M

4. (receive(〈“invoke′′, β〉, t6)cr1 for some c
5. (send(〈“invoke′′, β〉, t5)cr1

6. (receive(〈“reply′′, α〉, t4)cr2 for some r2
7. (send(〈“reply′′, α〉, t3)r2c

8. (receive(〈“logAck′′, 〈. . . , α, . . .〉〉, t2)Mr2

9. (send(〈“logAck′′, 〈. . . , α, . . .〉〉, t1)Mr2

10. (receive(〈“log′′, 〈. . . , α, . . .〉〉, t0)r2M

We show that the presence of each of these actions requires the presence of
the next action in the list above (which is preceding in time).

– (1⇒2) is given by the fact that β must be in opset and that
(receive(〈“log′′, 〈. . . , β, . . .〉〉, t8)r1M is the only action that adds operations
to opset.

– (2⇒3), (4⇒5), (6⇒7) and (8⇒9) are guaranteed by the network (N1).
– (3⇒4) is guaranteed since β being in L = 〈. . . , β, . . .〉 at r1 implies that some

earlier action has added β to L and (receive(〈“invoke′′, β〉, t6)cr1 is the only
action that adds elements to L at r1.

– (5⇒6) is guaranteed by C3 together with the fact that α → β.
– (7⇒8) Due to 7 α must be in toReply at r2 at time t3. There are two

actions that set toReply: one under the normal/degraded mode, and one
upon receiving a logAck message from the manager M .

First, we show that r2 cannot be added to toReply as a result of
receive(〈′′invoke′′, α〉)cr2 in normal mode. Since α is being replayed by the
manager ((handle(α), t) appears in γ) then there must be a partition be-
tween applying α and replaying α. However, no operation that is applied in
normal mode will reach the reconciliation process M as we have assumed
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(A2) that the replica logs are empty at the time of a partition. And since α
belongs to opset in M at time t, it cannot have been applied during normal
mode.
Second, we show that r2 cannot be added to toReply as a result of
receive(〈′′invoke′′, α〉)cr2 in degraded mode. If α was added to toReply in
degraded mode then the log in the partition to which r2 belongs would be
received by M shortly after reunification (that precedes handle operations).
But we have earlier established that α /∈ opset at t′, and hence α cannot
have been applied in degraded mode. Thus α is added to toReply as a result
of a logAck action and (7⇒8).

– (9⇒10) is guaranteed since α must be in ackset[r2] and it can only be put
there by (receive(〈“log′′, 〈. . . , α, . . .〉〉, t0)r2M

We have in (5) established that the received log message that includes α
appeared in γ at time point tl, t′ < tl. This contradicts that t0 = tl < t′, and
concludes the proof. ��

Theorem 3. Let the set ttraces(Correct) be the set of action sequences with
monotonically increasing times such that if (broadcast(〈“install′′, P 〉)M , tinst) is
in the sequence, then P is consistent according to Definition 8. All admissible
timed executions of the system are in the set ttraces(Correct).

Proof. Consider an arbitrary element σ in the set of admissible timed system
traces. We will show that σ is a member of the set ttraces(Correct). The strategy
of the proof is to analyse the subtraces of σ that correspond to actions of each
component of the system. In particular, the sequence corresponding to actions
in the reconciliation manager M will be of interest.

Let γ be the sequence that contains all actions of σ that are also actions
of the reconciliation manager M (γ = σ|M). It is trivial that for all processes
C 	= M it holds that σ|C ∈ ttraces(Correct) as there are no install messages
broadcasted by any other process. Therefore, if we show that γ is a member of
ttraces(Correct) then σ will also be a member of ttraces(Correct).

We will proceed to show that γ is a member of ttraces(Correct) by performing
induction on the number of actions in γ.

Base case: Let P be the partition state before the first action in γ. The model
of the reconciliation manager M initialises P to {(〈〉, s0

1, s
0
1), . . . , (〈〉, s0

n, s0
n)}.

Therefore, requirements 1,2 and 4 of Definition 8 are vacuously true and 3 is
given by A1.

Inductive step: Assume that the partition state resulting from action i in γ is
consistent. We will then show that the partition state resulting from action i+1
in γ is consistent. It is clear that the model of the reconciliation manager M does
not affect the partition state except when actions reunify(g)M and handle(α)
are taken. Thus, no other actions need to be considered. We show that reunify
and handle preserve consistency of the partition state.

The action (reunify(g)M , t) sets P to the initial value of P which has been
shown to be consistent in the base case.
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The action (handle(α), t) is the interesting action in terms of consistency
for P . We will consider two cases based on whether applying α results in an
inconsistent state or not. Let P i be the partition state after action i has been
taken.

(1) If Apply(α, P i) is not constraint consistent then the if-statement in the
action handle is false and the partition state will remain unchanged, and thus
consistent after action i + 1 according to the inductive assumption.

(2) If Apply(α, P i) is constraint consistent then the partition state P i+1 will
be set to Apply(α, P i). By the inductive assumption there exists a sequence
L leading to P i. We will show that the sequence L′ = L + 〈α〉 satisfies the
requirements for P i+1 to be consistent.

Consider the conditions 1-4 in the definition of consistent partition (Def. 8).

1. By the definition of Apply we know that all replicas in P remain unchanged
except one which we denote r. So for all replicas 〈Lj, s

0
j , sj〉 	= r we know

that β ∈ Lj ⇒ β ∈ L ⇒ β ∈ L′. Moreover the new log of replica r will
be the same as the old log with the addition of operation α. And since all
elements of the old log for r are in L, they are also in L′. Finally, since α is
in L′ then all operations for the log of r leading to P i+1 is in L′.

2. Consider the last state sk = 〈s1, . . . , sj , . . . sn〉 where sj is the state of the
replica that will be changed by applying α. Let s′j be the state of this replica
in P i+1 which is the result of the transition sj

α� s′j . By the inductive
assumption we have that s0 α1� . . .

αk� sk. Then s0 α1� . . .
αk� sk α� sk+1 where

sk+1 = 〈s1, . . . , s
′
i, . . . sn〉 is a partition transition according to Definition 5.

3. By the inductive assumption we know that P i is consistent and therefore
∀j ≤ k sj is constraint consistent. Further since Apply(α, P i) is constraint
consistent according to (2), sk+1 is constraint consistent.

4. The order holds for L according to the inductive assumption. Let t be the
point for handle(β) in γ. For the order to hold for L′ we need to show that
α � β for all operations β in L. Since β appears in L there must exist a
handle(β) at some time point t′ in γ. Then according to Theorem 2 α � β
(since if α → β then t < t′ and obviously t < t′). ��

7 Related Work

In this section we will discuss how the problem of reconciliation after network
partitions has been dealt with in the literature. For more references on related
topics there is an excellent survey on optimistic replication by Saito and Shapiro
[7]. There is also an earlier survey discussing consistency in partitioned networks
by Davidson et al. [8].

Gray et al. [9] address the problem of update everywhere and propose a solu-
tion based on a two-tier architecture and tentative operations. However, they do
not target full network partitions but individual nodes that join and leave the
system (which is a special case of partition). Bayou [10] is a distributed storage
system that is adapted for mobile environments. It allows updates to occur in a
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partitioned system. However, the system does not supply automatic reconcilia-
tion in case of conflicts but relies on an application handler to do this. This is
a common strategy for sorting out conflicts, but then the application writer has
to figure out how to solve them. Our approach is fully automatic and does not
require application interaction during the reconciliation process.

Some work has been done on partitionable systems where integrity constraints
are not considered, which simplifies reconciliation. Babaouglu et al. [11] present
a method for dealing with network partitions. They propose a solution that
provides primitives for dealing with shared state. They do not elaborate on
dealing with writes in all partitions except suggesting tentative writes that can
be undone if conflicts occur. Moser et al. [12] have designed a fault-tolerant
CORBA extension that is able to deal with node crashes as well as network
partitions. There is also a reconciliation scheme described in [13]. The idea is
to keep a primary for each object. The state of these primaries are transferred
to the secondaries on reunification. In addition, operations which are performed
on the secondaries during degraded mode are reapplied during the reconciliation
phase. This approach is not directly applicable with integrity constraints.

Most works on reconciliation algorithms dealing with constraints after network
partition focus on achieving a schedule that satisfies order constraints. Fekete et
al. [14] provide a formal specification of a replication scheme where the client can
specify explicit requirements on the order in which operations are to be executed.
This allows for a stronger requirement than the well-established causal ordering
[15]. Our concept of ordering is weaker than causal ordering, as it is limited to
one client’s notion of an expected order of execution based on the replies that
the client has received. Lippe et al. [16] try to order operation logs to avoid
conflicts with respect to a before relation. However, their algorithm requires
a large set of operation sequences to be enumerated and then compared. The
IceCube system [17,18] also tries to order operations to achieve a consistent final
state. However, they do not fully address the problem of integrity constraints
that involve several objects. Phatak et al. [19] propose an algorithm that provides
reconciliation by either using multiversioning to achieve snapshot isolation [20]
or using a reconciliation function given by the client. Snapshot isolation is more
pessimistic than our approach and would require a lot of operations to be undone.

8 Conclusions and Future Work

We have investigated a reconciliation mechanism designed to bring a system
that is inconsistent due to a network partition back to a consistent state. As the
reconciliation process might take a considerable amount of time it is desirable
to accept invocations during this period.

We have introduced an order relation that forces the reconciliation protocol
to uphold virtual partitions in which incoming operations can be executed. The
incoming operations cannot be executed on the state that is being constructed.
Since the protocol would then have to discard all the operations that the client
expects to have been performed. However, maintaining virtual partitions during
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reconciliation will make the set of operations to reconcile larger. Thus, there is
a risk that the reconciliation process never ends.

We have proved that the proposed protocol will indeed result in a stable
partition state given certain timing assumptions. In particular, we need time
bounds for message delays and execution time as well as an upper bound on client
invocation rate. Moreover, we have proved that the result of the reconciliation
is correct based on a correctness property that covers integrity consistency and
ordering of operations.

The current work has not treated the use of network resources by the protocol
and has not characterised the middleware overheads. These are interesting direc-
tions for future work. Performing simulation studies would show how much higher
availability is dependent on various system parameters, including the mix of crit-
ical and non-critical operations. Another interesting study would be to compare
the performance with a simulation of a majority partition implementation.

An ongoing project involves implementation of replication and our reconcilia-
tion services on top of a number of well-known middlewares, including CORBA
[3]. This will allow evaluation of middleware overhead in this context, and a
measure of enhanced availability compared to the scenario where no service is
available during partitions.
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Abstract. The “Fault-Tolerant Insulin Pump Therapy” is based on the
Continuous Subcutaneous Insulin Injection technique which combines
devices (a sensor and a pump) and software in order to make glucose
sensing and insulin delivery automatic. These devices are not physically
connected together and they come with the necessary features to detect
malfunctions which they may have.

As the patient’s health is the most important, the therapy has to be
able to work despite the fact that hardware and/or software faults have
or may ocurr.

This paper presents the development cycle for the Insulin Pump Ther-
apy Control System case study, starting from requirements and reaching
the implementation following a top-down approach. It will show how the
Coordinated Atomic Actions (CAAs) structuring mechanism can be used
for modelling Faul-Tolerant (FT) systems and how CAA-DRIP develop-
ment environment is used to implement it.

1 Introduction

Software and hardware systems are being used increasingly in many sectors, such
as manufacturing, aerospace, transportation, communication, energy and health-
care. Failures due to software or hardware malfunctions and malicious intentions
can not only have economic consequences, but can also endanger human life. In
fact, if a health care system breaks down, the consequences for hospitals and
patients could be huge. Dependability is vital in health care systems which must
be available around the clock without exception.

One of the techiques used to achieve dependable systems is fault tolerance.
This technique seeks to preserve the delivery of correct service even in the
presence of active faults. It is implemented by error detection and subsequent
system recovery. In the context of fault tolerance and distributed systems, a
promising technique emerged in recent years named Coordinated Atomic Actions
(CAAs) [14] is used to coordinate complex concurrent activities and support er-
ror recovery between multiple interacting objects. By using CAAs for designing
and structuring these kinds of systems the necessary requirements of reliability
and availability are met.

M. Butler et al. (Eds.): Fault-Tolerant Systems, LNCS 4157, pp. 59–79, 2006.
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The aim of this paper is to show how CAAs can be used successfully to design
medical software with reliability and availability requirements. The code gener-
ation is delegated to the CAA-DRIP framework [4], which embodies CAAs in
terms of a set of Java classes. The case study concerns a diabetes control system
which aims at delivering insulin to patients in the correct manner. A tiny sensor
checks the patient’s status and a pump administers the insulin. Doctors have
to set some parameters on the pump which are used by the software embed-
ded on it. It is of primary importance, for the patient’s health, that the whole
application works properly 24 hours a day without interruption.

The case study is described following the WRSPM reference model [9]. It is a
general methodology wich introduces the use of formal languages (no one in par-
ticular) early in the development software process. In particular, this method-
ology advocates a careful and explicit description of the environment that is
independent of the presence and operations of the system to be constructed.
Therefore W, the world or domain knowledge, has to provide presumed facts
about the operational domain where the system to be built will be embedded.
The other parts composing the methodology are: requirements (R), which indi-
cate what users need; specifications (S) which provide enough information for
a programmer to build a system to satisfy the requirements, and program (P)
which implements the specifications on the Machine (M). W, R and S are de-
scribed using formal languages.

The paper is organized as follows. In Section 2, some background informa-
tion on the methodology, followed in order to reach the system specification,
and details on the CAAs structuring mechanism are given. In Section 3, the
CAA-DRIP framework will be presented, which provides support to implement
specifications described in terms of CAAs. Section 4 provides a detailed descrip-
tion of the domain application (introducing basic terminology), requirements,
specification, design and implementation of the considered case study. Finally,
Section 5 will provide some conclusions and ongoing work.

2 WRSPM Methodology and Coordinated Atomic
Actions (CAAs)

Software engineering methodology is aimed at guiding software system develop-
ers from user-level requirements until the code generation and execution. The
WRSPM methodology does exactly that by putting special emphasis on the use
of formal languages in order to capture the requirements as well as to describe
the assumptions about the application domain.

The WRSPM methodology consists of five artifacts. W, the world, represents
the presumed facts about the environment (domain knowledge) where the pro-
gram P will be embedded. This program P will be running on a programming
platform M and it has to satisfy the requirements R. S is the specification that
provides enough information to programmers to build the program P.

To describe the application domain a primitive vocabulary, called designate
terminology, needs to be available. It provides the terms used to described W,
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R and S, and an informal explanation of their meaning to clarify the role that
these terms may play. The designated terminology of the case study presented
here can be found in the Appendix at the end of the paper.

The specification S is the intersection between the system (S,P,M ) and its
environment (W,R,S ). The overlapping of these groups means that S lies in
the common vocabulary of the environment and the system but, thanks to the
domain knowledge W, S still has enough information to meet the requirements
R. Since WRSPM does not impose a specific formal notation, statecharts [6] are
used (with semantics as implemented in the STATEMATE system [10]) as the
formal language for writing the descriptions.

In this paper, the purpose of using WRSPM methodology is to reach a specifi-
cation (S ) which, under the assumptions and constraints imposed by the ”world”
(or ”domain knowledge”) (W ), is able to meet the requirements (R). Therefore,
WRSPM is followed until the specification S is defined. Once S is determined,
a new description of the system in terms of CAAs will be provided in order to
meet the requirements of dependability, in particular, reliabilty, in spite of faults
coming from the environment (external faults) and internal dormant faults which
may be activated.

Coordinated Atomic Actions (CAAs) is a fault tolerance mechanism that
uses concurrent exception handling to achieve dependability in distributed and
concurrent systems. Thus, by using CAAs, systems that comply with their spec-
ification in spite of faults can be developed.

This mechanism unifies the features of two complementary concepts: conver-
sation and transaction. Conversation [13] is a fault tolerance technique for per-
forming coordinated recovery in a set of participants that have been designed
to interact with each other in order to provide a specific service (cooperative
concurrency). Objects that are used to achieve the cooperation among the par-
ticipants are called shared objects. Transactions are used in order to deal with
competitive concurrency on objects that have been designed and implemented
separately from the applications that make use of them. These kinds of objects
are referred to as external objects.

One CAA characterises an orchestration of actions executed by a group of
roles that exchange information among them, and/or access to external objects
(concurrently with others CAAs) to achieve a common goal. The CAA starts
when all its roles have been activated and a pre-condition has been met. The
CAA finishes when all of them have reached the CAA end and a post-condition
is met. This behaviour returns a normal outcome to the enclosing context.

If for any reason an exception has been raised in at least one of the roles
belonging to the CAA, appropriate recovery measures have to be taken. In that
regard, a CAA provides quite a general solution for fault tolerance based on
exception handling. It consists of applying both forward error recovery (FER)
and backward error recovery (BER) techniques.

Basically, the CAA exception handling semantics says that once an exception
has been raised the FER mechanism has to be started. At that point, the CAA
can finish normally if the FER can meet the original request (normal outcome)
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or exceptionally if the original request is partially satisfied (exceptional out-
come). Otherwise, if the same or another exception is raised during the FER,
the FER mechanism is stopped and the BER is started. The BER’s main task
is to recover every external object to its last consistent state (roll back). If the
BER is successful, the CAA returns the abort outcome. If for any reason the
BER cannot be completed, then the CAA has failed and the failure outcome is
signaled to the enclosing context.

Every external object that is accessed in a CAA must be able to be restored
to its last consistent state (if BER is activated) and provide its own error re-
covery mechanism [15]. Therefore, when the BER takes place, it restores these
external objects using their own recovery mechanisms. However, sometimes the
designer/programmer might want to use an external object that does not pro-
vide any recovery mechanism (due to reasons of cost or physical constraints [2]).
Therefore it would be necessary to allow designers/programmers to specify/
implement a hand-made roll back inside the CAA. This can be achieved by
refining the classic BER to deal with external objects that are restored using
their own mechanism (called AutoRecoverable external objects) and also to deal
with those that have to be restored by a hand-made roll back (called Manual-
lyRecoverable)

3 The CAA-DRIP Implementation Framework

A set of Java [1] classes and interfaces called CAA-DRIP has been defined using
the DRIP framework [16] as a starting point. CAA-DRIP allows us to implement
the CAAs concepts and behaviour described in Section 2 in a straightforward
manner.

The core of this implementation framework is composed of Manager, Role,
Handler and Compensator classes. The Manager class is the controller for Role,
Handler and Compensator classes. Then, each role, handler and compensator
object created is managed by a manager object. There is not a class to rep-
resent a CAA. It consists of a set of managers, roles, handlers and compen-
sators linked together via a leader manager. This leader manager is one of the
manager objects used to manage a role, handler and compensator. The leader
manager is the responsible for synchronising roles upon entry and upon exit
as well as handlers and compensators, in case the recovery process must take
place.

Extending the CAA-DRIP framework classes
Some of the classes that are provided by CAA-DRIP implementation framework
have to be extended by programmers. That is the case for Role, Handler and
Compensator classes.

The definition of a role is made by creating a new class that extends the
Role class. The programmer has to re-implement the body method. This method
receives a list of external objects as input parameter and it does not return any
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value. The defined operations inside this method are executed by the participant
which activated the role.

The other methods that have also to be redefined by the programmer are
preCondition and postCondition. They return a boolean value and are used as
guard and assertion of the role, respectively.

Once role classes have been created, it is necessary to define a handler for each
CAA role in order to deal with exceptions (in this context, an exception means
that a fault has been activated). This step is made by creating a new class that
extends the Handler class. The programmer has to re-implement the body and
the postCondition methods.

If the raised exception cannot be handled by FER, then the CAA has to
undo all its effects on the external objects. This task is done by BER, which is
composed of two phases, Roll back and Compensation. Compensation is used to
execute specific tasks, in case there is at least one external object that needs
manual recovery (see Section 2).

Compensation is achieved by defining a compensator for each CAA role. A
compensator is made by creating a new class that extends the Compensator
class. The recovery method has to be re-implemented by the programmer. This
method receives, as input parameter, a list with the external objects that need
hand-made recovery. The method has to contain the operations to leave these
external objects in a consistent state.

Instantiating a CAA
Once roles, handlers and compensators classes have been created, the program-
mer has to make use of them to create the CAA itself. As said, a CAA consists
of a set of managers, roles, handlers and compensators linked together via a
leader manager. Thus, Manager framework class is used to create the manager
objects.

When a Manager object is created it has to be informed of its name and the
name of the CAA. Once the managers have been created it is necessary to create
the role objects. Each role upon creation is informed of its name, which manager
will be its controller and the manager that will act as the leader.

Each handler upon creation needs to know its name and the manager that
will control this handler. The link between the exception to handle and each
handler is implemented by a hash-table which has as key the exception and as
value the handler object. The method setExceptionAndHandlerList is used to
inform the manager about the relationships exception-handler that have been
set before.

If the CAA has to handle manually recoverable objects (see Section 2), a
compensator has to be created also. Then, analogously to a handler creation,
each compensator upon creation is informed of its name and the manager that
will drive its execution.

Executing a CAA
How classes are instantiated to create a CAA has been just shown. Now how
these objects behave when the CAA is activated has to be explained. The CAA
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activation process begins when each participant starts the role that it wants to
play. The execute method (belonging to the Role class) has to be used by a
participant to start playing a role. When the execute method is called, the role
passes the control to its manager.

The first activity a manager executes is to synchronise itself with all other
managers that are taking place in the CAA. This is done by calling the syncBe-
gin method. Remember that there is a leader manager which is responsible for
this task. This method blocks until the leader determines that all the man-
agers have synchronised and the CAA is ready to begin. Once the syncBe-
gin method returns, the manager checks if the pre-condition of the role is
valid.

The preCondition method receives all the external objects that will be passed
to the role managed by this manager as parameters. If the pre-condition is
not satisfied, then a PreConditionException will be thrown and caught by the
catch(Exception e) block. If the pre-condition is met, then the manager will ex-
ecute the role that is under its control by calling the bodyExecute method of the
Role object.

After the role has finished its execution, the manager synchronises with all
the other managers before testing its post-condition. If the post-conditions are
satisfied, then the manager will synchronise with all the other managers and the
CAA will finish successfully.

A catch block will be executed if an exception takes place during the execution
of any role belonging to the CAA. In such situation, the role where the exception
was raised notifies its manager. This manager passes the control to leader man-
ager for interrupting1 all the roles that have not raised an exception (exceptions
can be raised concurrently). Once all the roles have been interrupted the leader
executes an exception resolution algorithm to find a common exception2 from
those that have been raised.

When such an exception is found, the leader informs all managers about
that exception and FER (for the found exception) is activated. If every handler
completes its execution and the CAA post-condition has been satisfied, then the
CAA can finish.

Now, if the exception resolution algorithm could not find a common excep-
tion, or other exceptions were raised in the FER (even PostConditionException
exception could be possible if FER did not satisfy the post-condition), then the
BER mechanism will be started.

BER calls restoreExecution method. This method uses the compensators ob-
jects, if any, to undo the CAA effects. Once this method has executed, the CAA
finishs returnig Abort. If for any reason the BER process could not complete its
execution, CAA will be finished returning Failure.

More details about CAA-DRIP implementation framework can be found
in [4].

1 Notice that a role will be interrupted in our framework only if the role is ready to
be interrupted, i.e. the role is in a state that it can be interrupted.

2 In the worst case, the common exception is Exception.
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4 The Fault-Tolerant Insulin Pump (FTIP) Control
System Case Study

In this section WRSPM methodology is used to describe the case study in details.
Once the FTIP control system specification is reached, a new specification in
terms of CAAs is introduced to improve the reliability of the control system.

4.1 The World (W): Regulation of Blood Glucose in a Non Diabetic
and a Diabetic Person

According to WRSPM methodology it is essential to provide a careful and ex-
plicit description of the domain, which in this case corresponds to medical soft-
ware systems for treatment of diabetes.

Normally, blood glucose (blood sugar) is maintained in a narrow range [8]. The
hormones which assure this are insulin and glucagons. Both of them are secreted
by the pancreas. If the blood glucose level is too low then the pancreas secretes
glucagons. If the blood glucose level is too high then the pancreas secretes insulin.

Diabetes Mellitus [12,7] is an illness whereby the level of glucose in the
blood is abnormally high. This can be caused by either an absolute deficiency
of insulin secretion, or as a result of reduced effectiveness of insulin, or both.
Therefore, our first approach in the domain is to understand how the body of a
non diabetic person regulates increases in the glucose level. Figure 1 describes
how the body reduces the glucose level when it is higher than normal.
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Fig. 1. Regulation of Blood Glucose in a non diabetic person

In a diabetic person this process does not succeed because of the lack of insulin
secretion by the pancreas (event deliverdInsulin(mi) is not present). Therefore,
a diabetic person must make use of a insulin therapy to fulfil the process as in
a normal person.
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4.2 The Requirement (R)

Another artifact which has to be provided under WRSPM is Requirements, which
is indication of what users need. The range of glucose in the blood of a person
should be between 70 mg/dl and 110 mg/dl (mg/dl means milligrams of
glucose in 100 milliliters of blood). Therefore, the functional requirement which
needs to be met for any diabetes therapy is that the glucose level be kept below of
110 mg/dl. Figure 2 describes this requirement formally (T1 represents the time
that the body takes to update the glucose concentrations in the bloodstream.)

GlucoseConcentration-vi < 110

timeout
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Glucose
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Bloodstream

Fig. 2. The main requirement

4.3 The World (W): The Devices

The Continuous subcutaneous insulin infusion is typically called insulin pump
therapy [12]. Insulin pump therapy is a way of continuously delivering insulin
to the body at a controlled rate. For example, more insulin can be delivered
when it is needed at meal times.

The FTIP control system uses two devices, a sensor and a pump, to comply
with the requirements. The sensor is a piece of hardware that communicates the
patient’s glucose level to the pump. The insulin pump is a small device that
pumps insulin into the body through a cannula (small, thin tube) or a very thin
needle inserted under the skin.

The proposal in this case study is to join and improve the characteristics of
sensors and pumps that currently can be found in the market [7,11] to achieve a
close loop insulin delivering without any participation of the patient. There-
fore, the sensor sends the actual patient’s glucose level to the pump. This pump
has embedded software that is able to maintain the patient’s glucose in a safe
level by delivering necessary doses of insulin (basal rate) day and night. Obvi-
ously, this basal rate, can be easily increased or decreased to match the actual
patient’s needs that can change because of physical activities, illness or, simply
as a meals has been taken.

Any interruption in insulin delivery (loss of insulin potency, or sensor/pump
malfunction) may result in hyperglycemia (high blood glucose). Therefore, both
the hardware (sensors and pumps) and specially the software which take place
in this therapy have to be built with special techniques to achieve highly reliable
and safety operation.
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As these devices are part of the ”world” where the software system is embed-
ded, according to WRSPM, their behaviour have to be described precisely.

The sensor
The sensor is an adaptation of one provided by [11] for glucose monitoring. The
tiny sensor used in FTIP has an integrated small transmitter which wirelessly
and continually communicates the patient’s glucose level to the pump. Every
TSensorV alue (TSensorV alueTimeout = Ts2 + Ts1) units of time the sensor sends
an updated glucose value. This sensor behaviour is formally described in Figure 3
and it is part of the ”world” W where the FTIP takes place.
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Fig. 3. Sensor behaviour description

The pump
The pump used by the FTIP control system is a fusion of two different pumps
which can currently be found on the market [7,11], plus some special character-
istics which have been added to allow it to work cooperatively with the sensor.
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Fig. 4. Domain knowledge of the insulin delivering

The pump has an internal clock which provides the current time at any given
moment. The FTIP control system starts the motor which is kept working for
TDelivery units of time. The TDelivery value is defined by the control system
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according to the current patient’s glucose value, which is sent by the sensor, and
the individual settings defined by a doctor. The pump also contains a cartridge
with fast-acting insulin which is supplied to the patient’s body by a cannula that
lies under the skin. The motor is connected to a piston rod which sends forward
a plunger in order to deliver the insulin to the body.

Therefore, the necessary amount of insulin to keep the glucose at a safe level
(deliveredInsulin(m) on Figure 1) is delivered as a result of the work of the
motor. The relationship between the times at which the motor is in operation
and the amount of insulin delivered, which is part of the domain knowledge that
is accepted as true to develop the FTIP control system, is formally described in
Figure 4.
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Fig. 5. Pump’s elements behaviour

The plunger is built in such a way that it does not move unintentionally as
a result of changes in atmospheric pressure. It moves only to its initial position
(by pressing the Stop button) when the patient needs to fill the cartridge with
fresh insulin.

The pump has also infrared detectors to check the correct movement of the
plunger and the status of the motor. Both detectors help to determine whether
the pump is delivering the insulin properly.

An alarm to alert the patient of abnormal situations is built-in to the pump. A
button (Alarm) to allow the patient to switch it off when it rings and a button
for starting the insulin delivery (Start) are also features of the pump.
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Figure 5 shows how the physical elements which compose the pump behave.
Their behaviour must be taken into consideration to specify the FTIP control
system.

4.4 The Specification (S)

According to WRSPM methodology aspects introduced so far, a specification S
has to be provide such as, S supplemented by the world W, must satisfy the
requirements R. Formally, it means:

W‖S ⇒ R , where
W = DK Sensor‖DK Pump‖DK Delived‖DK Diabetic Person

Meeting the requirements
To start receiving the insulin doses, the patient has to press Start button. Once
this button has been pressed, FTIP control system starts its execution, which
consists of performing repetitively a set of operations. This operations are spread
over three processes running in parallel and cooperating each other. These pro-
cesses are Checking, Controller and Delivery.

Checking is in charge of getting values from sensor device and to provide them
to Controller process. Then, Controller uses these values to define how long the
pump’s motor has to work. The period of time in which the motor is working,
according to the domain knowledge, represents the quantity of insulin that the
patient needs. Once Controller process has defined how long the motor has to
work, it sends this information to Delivery process. Delivery process uses this
value to start and control the activity of the motor.

This sequence of steps defines a cyle that is executed repetitively to keep
the patient’s glucose level below 110 mg/dl (the requirement). While Delivery
process is working with the pump’s motor, Checking process is getting fresh
values from the sensor to be used in the next loop of the cycle.

Safety
Because the insulin is delivered almost continuously, any interruption in the
supplying may result in serious problems to the patient. Then, it is reasonable
to make checks to ensure that the devices are working properly.

FTIP control system checks that each amount of insulin that has to be deliv-
ered does not drop out of the safe range programmed. The pump’s detectors and
the internal clock are used by the control system to check the correct movement
of the plunger, to check the status of the motor and to check if the sensor is
sending the values on time. Therefore, the control system is able to detect any
of the following critical conditions:

– no values have been received from the sensor for the last TSensor units of
time (E1),

– the current patient’s glucose level is out of the safe range (E2),
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– the insulin that has to be delivered to keep the glucose in a safe level does
not drop into the safe range programmed (E3),

– the insulin is not being delivered properly by the pump (E4).
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Fig. 6. FTIP control system specification

When, at least one of these critical conditions takes place, the control system
full stops the cycle execution and sounds the alarm to alert the patient about
the current situation. The alarm will remain ringing till the patient switchs it
off. Instead, when the quantity of insulin in the cartridge is less than the low
limit parameter, the control system keeps executing the cycle and it rings the
alarm, as a warning, for only TWarning units of time.

Figure 6 shows the formal description of the aspects introduced before
concerning the functional requirement and safety.
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For the moment nothing has been said about reliability, which is other of the
atributes used to define dependability. Reliability is the ability of the system to
keep on working in spite of unexpected circumstances (e.g. E1,E2, E3, E4).
The next Section shows a new specification of the system in terms of CAAs in
order to improve the reliabity of FTIP control system.

4.5 The Specification in Terms of CAAs

Both the specification presented in the previous section and the CAA conceptual
framework, are used to reach a new specification to satisfy the requirements
despite of the presence of potential faults. The reliabilty improvements concern
E1, E3 and E4 critical conditions, which have been introduced in the previous
section.

Instead of directly stop the control system execution if one of this critical con-
ditions takes place, error recovery and redundancy have been added to tolerate
E1, E3 and E4 critical conditions. In the following, details of how reliabilty has
been met are shown.

– A possible reason why control system is not receiving values from the sensor
(E1 ), could be because of it is being affected by an electronic “noise” that
surrounds the patient. Usually, this type of problem represents a transient
fault for its limited duration, so there is not need to stop the system. When
the control system faces a situation as described before, a numerical method
based on old received values is used to make an aproximation of the current
glucose level. This alterative is used for the period that the sensor is not
responding (forward error recovery). Nevertheless, if the sensor does not
responde beyond of a such time limit, for safety reasons, the control system
must stop its execution.

– Instead of rely on only one algorithm to define TDelivery (units of time that
the motor has to work), N-version programming approach is used [3].
According to [2], the semantics of N-version programming are as might be
expected N-versions of a program (N > 1) which have been independently
designed to satisfy a common specification is executed and their results com-
pared by some form of replication check. Based on a majority vote, this check
can eliminate erroneous results (E3) (i.e. the minority) and pass on the pre-
sumably correct results calculated by the majority to the rest of the system.

– The infrared detectors are used in a combinated way to avoid false alarms.
If really there is a problem on the plunger or the motor, then both detectors
must report the abnormal situation (E4), since both devices are physically
connected. Thus, the control system does not stop if only one detector reports
a problem.

The new FTIP control system specification is described as a set of CAAs
(Figure 7) that interact cooperatively among them to satisfy the functional
requirement as well as those concenrnig safety and reliability.
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The Cycle
CAA Cycle is the outmost CAA. It is composed of four roles, Sensor, Controller,
Pump and Alarm and its main task is to perform repetitively a set of opera-
tions: (1) getting current glucose level, (2) calculate TDelivery , and (3) insulin
delivering, which were described in the previous section.

The first step is carry out by CAA Checking, the second step is done by
CAA Calculus. The last step is performed by CAA Delivery.

Sensor, Pump and Alarm are the roles used to manage the access to the
SensorDev, MotorDev and AlarmDev devices, respectively. The Controller role
coordinates the others roles of CAA Cycle to keep on executing these steps.

Once the Controller role has received the information from CAA Calculus,
the CAA Checking and CAA Delivery can be performed in parallel to improve
the system performance. The Controller role synchronizes these CAAs in a way
that it is always able to have the necessary information to perform the previous
described steps.

The CAAs enclosed by CAA Cycle were designed using nesting and com-
posing.

Nesting
Nesting is defined as a subset of the roles that belong to the enclosing CAA
(CAA Cycle). These roles (Sensor and Controller) are the same roles that
have been defined for CAA Cycle, but they are used to define a new CAA
(CAA Checking). The operations that they are doing inside CAA Checking are
hidden for the other roles (Pump and Alarm) as well as for the others nested or
composed CAAs that belong to CAA Cycle. As said, CAA Checking is in charge
to carry out the first step and to handle E1 and E2 critical conditions.

If E1 takes place, forward error recovery is applied to try to keep the con-
trol system running (reliability). In case that E2 arrives or forward error re-
covery does not succeed for handling E1, the delivery of insulin has to be
stopped (safety). It is achieved stopping the roles belonging to CAA Checking
and signaling an exception to the enclosing context (which is CAA Cycle). When
CAA Cycle detects the exception, the control system is stopped and the alarm
is rung to let the patient know about the abnormal situation.

Composing
Composing is different from nesting in the sense that CAAs can be used in
other contexts. A composed CAA (CAA Calculus and CAA Delivery) is an au-
tonomous entity with its own roles. The internal structure of a composed CAA
(i.e., set of roles, accessed external objects and behaviour of roles) is hidden from
the calling CAA (CAA Cycle). For instance, when the role Controller which be-
longs to CAA Cycle calls to the composed CAA Calculus it synchronously waits
for the outcome. The calling role, Controller in this case, resumes its execution
according to the outcome of the composed CAA Calculus. If the composed CAA
(CAA Calculus) terminates exceptionally, the calling role (Controller) raises an
internal exception which is, if possible, locally handled. If local handling is not
possible, the exception is propagated to all the peer roles of CAA Cycle for
coordinated error recovery.
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N-version programming
CAA Calculus has been specially defined to calculate TDelivery (step two). using
N-version programming. The implementation of N-version programming requires
a supervisor program (known as driver program) that is in charge for invok-
ing each of the versions, waiting for the versions to complete their execution and
comparing and taking a decision according to the N-results received. Even if the
CAA technique was not thought to implement N-version programming, its fea-
tures allow implementing this programming technique (N-version) easily. In this
case, the driver program as well as each version of the algorithm used to calcu-
late TDelivery has been implemented as roles belonging to CAA Calculus. These
roles are VotingCheck, which implements the driver program, and Algorithm 1,
Algorithm 2, and Algorithm 3. Once the result has been defined by the major-
ity, VotingCheck passes it to the enclosing CAA or, if the E3 critical condition
takes place, it will signal an exception.
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Delivering the insulin
The last CAA taking place in the design is CAA Delivery. This CAA receives
as input value the units of time that the motor of the pump has to work. This
information is used by Motor (the role) to manipulate the motor (the device).
In order to avoid confusion between the motor itself and the role that handles it,
the device is named MotorDev. The other roles (MotorDetector and PlungerDe-
tector) are used to check the behaviour of MotorDev and the movement of the
Plunger respectively. PlungerDetector gets how much the Plunger has been dis-
placed. This value is useful to corroborate if the motor is working properly.

If the insulin delivering is not working properly, which means that both detec-
tors have noticed a problem on the pump (E4 critical conditions), CAA Delivery
will full stop the delivery and it will signal an exception to the enclosing CAA.

4.6 Detailled Design and Implementation

This section shows how the FTIP control system is implemented using CAA-
DRIP framework. Due to space limitations, the implementation of only two
CAAs are shown. The full details can be found in [5].

CAA Calculus is composed of four roles and for each of them a Manager
(lines 2-5 on Figure 8) is defined. Once the instantiation of these objects is done,
each Role object (lines 8-15) can be defined by instantiating a new class, which
inherits from the Role class provided by the framework.

The name of the role, its manager and the leader manager must be given each
time a new Role object is defined. In this case, mgrVotingCheck is the leader
manager and it is the responsible for the coordination of the CAA.

If there is a problem in the normal execution, an alternative behaviour can
be defined in order to deal with the problem. The lines 18-37 show how the
exceptional behaviour can be defined. If these lines are not present, when an
exception is raised, the CAA is stopped and the problem is forwarded to the en-
closing context. It means that the exception is signaled to the enclosing context.

The lines 18-21 correspond to the definition of the handlers that are only
executed when the exception E3 is raised. On Figure 7, error E3 represents
the places where this exception could happen. Each defined handler object is
an instance of a new class derived from Handler class, which belongs to the
framework. For each exception that should be handled by the CAA, n handlers
have to be defined, where n is the number of roles defined in the CAA. Each
handler must be informed of its name and its manager.

The next step is the explicit definition of the binding between the considered
exception, and the handlers that have been defined to manage it. Each binding
is represented by a hash-table, which is controlled by a manager (lines 24-31).
Each hash-table has to be set on the manager, which is controlling the handler
(lines 34-37).

Each manager (e.g. mgrVotingCheck) coordinates the execution of a role (e.g.
roleVotingCheck). The role represents the normal behaviour. In the case in which
an exception is launched (E3 ), each manager stops the execution of its associated
role and then it starts to execute its associated handler (e.g. hndrE3 VC ).
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CAA Cycle is executed repeatedly until the patient stops manually the de-
livery (by pressing the Stop button) or a critical condition took place and it
could not be handled. The Controller role works as a coordinator of the tasks
that have to be carried out in CAA Cycle. One of these tasks is to launch the
composed CAA Calculus that was described earlier.

1 //Managers
2 mgrVotingCheck = new ManagerImpl ( " mgrVotingCheck " , " CAA_Calculus " ) ;
3 mgrAlgorithm 1 = new ManagerImpl ( " mgrAlgorithm_1 " , " CAA_Calculus " ) ;
4 mgrAlgorithm 2 = new ManagerImpl ( " mgrAlgorithm_2 " , " CAA_Calculus " ) ;
5 mgrAlgorithm 3 = new ManagerImpl ( " mgrAlgorithm_3 " , " CAA_Calculus " ) ;
6

7 //Roles
8 roleVotingCheck =
9 new VotingCheck ( " roleVotingCheck " , mgrVotingCheck , mgrVotingCheck ) ;

10 ro l eAlgor i thm 1 =
11 new Algorithm 1 ( " roleAlgorithm_1 " , mgrAlgorithm 1 , mgrVotingCheck ) ;
12 ro l eAlgor i thm 2 =
13 new Algorithm 2 ( " roleAlgorithm_2 " , mgrAlgorithm 2 , mgrVotingCheck ) ;
14 ro l eAlgor i thm 3 =
15 new Algorithm 3 ( " roleAlgorithm_3 " , mgrAlgorithm 3 , mgrVotingCheck ) ;
16

17 //Handlers for E3 except ion
18 hndrE3 VC = new E3 VC( " hndrE3_VC " , mgrVotingCheck ) ;
19 hndrE3 A1 = new E3 A1( " hndrE3_A1 " , mgrAlgorithm 1 ) ;
20 hndrE3 A2 = new E3 A2( " hndrE3_A2 " , mgrAlgorithm 2 ) ;
21 hndrE3 A3 = new E3 A3( " hndrE3_A3 " , mgrAlgorithm 3 ) ;
22

23 //Binding between the Exception and the Handlers
24 Hashtable ehVC = new Hashtable ( ) ;
25 ehVC . put (E3 . class , hndrE3 VC ) ;
26 Hashtable ehA1 = new Hashtable ( ) ;
27 ehA1 . put (E3 . class , hndrE3 A1 ) ;
28 Hashtable ehA2 = new Hashtable ( ) ;
29 ehA2 . put (E3 . class , hndrE3 A2 ) ;
30 Hashtable ehA3 = new Hashtable ( ) ;
31 ehA3 . put (E3 . class , hndrE3 A3 ) ;
32

33 // Se t t ing the binding on each Manager
34 mgrVotingCheck . setExceptionAndHandlerList (ehVC ) ;
35 mgrAlgorithm 1 . setExceptionAndHandlerList ( ehA1 ) ;
36 mgrAlgorithm 2 . setExceptionAndHandlerList ( ehA2 ) ;
37 mgrAlgorithm 3 . setExceptionAndHandlerList ( ehA3 ) ;

Fig. 8. Definition of CAA Calculus

The Java code in Figure 9 shows how the body method of the Controller role
is implemented for the CAA Cycle. The Controller role works as a coordinator
of the tasks to be carried out in CAA Cycle. One of these tasks is to launch the
composed CAA Calculus that was described earlier.

The first time that CAA Cycle is called (lines 7-15) the Controller role starts
to execute CAA Checking (line 10) in order to get the information provided
by the sensor. Once the role has got the information, it returns the value to
the enclosing context (line 15). After CAA Cycle has been executed once, the
enclosing context is able to provide the sv value, which has been taken in the
previous execution of CAA Cycle. Thus, Controller role gets the sv value (line
18-19) and then passes it as an input parameter (line 23) to CAA Calculus. The
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CAA Calculus execution (line 24) returns the period of time (tDelivery value)
that the motor has to be working (line 26-27).

When the tDelivery value is known, it has to be passed to the Pump role
(line 29). Next, the Pump role receives tDelivery and call CAA Delivery to
delivery the insulin. While CAA Delivery is executing, Controller role launches
CAA Checking (line 33) to get information from the sensor that will be be used
in the next iteration of CAA Cycle.

When the information comming from CAA Checking and Pump roles has been
received (line 35-36 and 38 respectively), and passed to the enclosing context
(lines 40 and 41), Controller role can finish its execution and pass the control
to the enclosing context where CAA Cycle is embedded.

1 public void body ( Externa lObjects eos )
2 throws Exception , RemoteException {
3 try{
4 //Getting information from the enc los ing context
5 Loop loop = (Loop ) eos . getExterna lObject ( " loop " ) ;
6 i f ( loop . i s f i r s t ( ) ){
7 // launching nested CAA Checking
8 Externa lObjects check ing =
9 new Externa lObjects ( " checking " ) ;

10 r o l eCont ro l l e rCheck ing . execute ( checking ) ;
11 // ge t t i n g outcome from CAA Checking
12 SensorValue sv =
13 ( SensorValue ) checking . getExterna lObject ( " sv " ) ;
14 //Sending information to the enc los ing context
15 eos . s e tExterna lObjec t ( " sv " , sv ) ;
16 } else {
17 // ge t t i n g sensor value
18 SensorValue sv =
19 ( SensorValue ) eos . getExterna lObject ( " sv " ) ;
20 // launching composed CAA Calculus
21 ExternalObject calculusREOs =
22 new Externa lObjects ( " calculus " ) ;
23 c a l c u l u s . s e tExterna lObjec t ( " sv " , sv ) ;
24 roleVotingCheck . executeAl l ( c a l c u l u s ) ;
25 // ge t t i n g outcome from CAA Calculus
26 Time tDe l i v e ry =
27 (Time) c a l c u l u s . getExterna lObject ( " tDelivery " ) ;
28 // passing information to Pump ro l e
29 pumpQueue . put ( tDe l i v e ry ) ;
30 // launching nested CAA Checking
31 ExternalObject checking =
32 new ExternalObject ( " checking " ) ;
33 r o l eCont ro l l e rCheck ing . execute ( check ing ) ;
34 // ge t t i n g outcome from CAA Checking
35 SensorValue sv =
36 ( SensorValue ) check ing . getExterna lObject ( " sv " ) ;
37 // ge t t i n g va lues from CAA Delivery by Pump ro l e
38 Status s t = ( Status )pumpQueue . get ( ) ;
39 //Sending information to the enc los ing context
40 eos . s e tExterna lObjec t ( " sv " , sv ) ;
41 eos . s e tExterna lObjec t ( " st " , s t ) ;
42 }
43 }catch ( Exception e ) {
44 throw e ; //Local handl ing for Contro l l er except ion ;
45 }
46 }

Fig. 9. Body method of Controller class
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5 Conclusions and Ongoing Work

In this paper a control system for a fault-tolerant insulin pump therapy has been
described. In order to ensure the needed requirements of reliability, the system
has been designed using the CAAs mechanism, which offers approaches for error
recovery. The implementation of the control system has been made in Java, using
an implementation framework called CAA-DRIP which fully supports the CAAs
semantics. This work is part of the ongoing CORRECT project [5]. On the future
work side, the plan is to apply the full CORRECT methodology, improving the
design part and trying to automatically generate a skeleton code from the CAA
design model, via transformation rules. Since it is usually impossible to generate
a complete implementation, the expected result is to generate an implementation
schema, with a set of classes and their methods and exceptions declaration. The
role of a programmer will be then to write the body of the application methods,
while the exception detection, resolution and propagation will be automatically
managed by the other parts of the schema.
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Appendix: “Designated Terminology”

The World (W)

– The body
• L1 ≈ Lowest blood glucose concentration (in mg/dl) tolerated by a

person (mg/dl means milligrams of glucose in 100 milliliters of blood)
(EC/U).

• L2 ≈ Highest blood glucose concentration (in mg/dl) tolerated by a
person (EC/U).

• d ≈ positive value that represents the displacement of blood glucose
concentration (EC/U).

• Meal ≈ Carbohydrates (or sugars) which are absorbed from the in-
testines into the bloodstream after a meal (EC/U).

• gcDowing ≈ the blood glucose level decreases (EC/U).
• T2 ≈ units of time required by the pancreas to produce insulin in order

to decrease the detected blood glucose concentration (EC/U).
• deliveredInsulin(mi) ≈ m is the amount of insulin that has to be

delivered to reach a normal level of glucose (EC/U).
• T3 ≈ units of time that the body’s cells are absorbing glucose (EC/U).

– The Sensor
• sensorValue(sv) ≈ sv is the blood glucose concentration detected by

the sensor (EC/S).
• Ts1 ≈ units of time that the sensor is taking blood from the body

(EC/U).
• Ts2 ≈ units of time required by the sensor to define the current (sv)

blood glucose concentration (EC/U).
– The Pump

• startMotor ≈ the motor is started (MC/S).
• stopMotor ≈ the motor is stopped (MC/S).
• TOP ≈ the plunger has reached its last position. It means that there is

not insulin in the cartridge any more (EC/S).
• movePlunger ≈ the plunger has moved one position forward (EC/U).
• forwardPlunger ≈ the plunger detector has detected that the plunger

moved one position forward (EC/S).
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• ringAlarm ≈ sounds the alarm (MC/S).
• stopAlarm ≈ the alarm is stopped (MC/S).
• pressStartButton ≈ the patient presses the Start button (EC/U).
• pressStopButton ≈ the patient presses the Stop button (EC/U).
• pressAlarmButton ≈ the patient presses the Alarm button (EC/U).
• startDelivery ≈ the patient has pressed the Start button (EC/S).
• stopDelivery ≈ the patient has pressed the Stop button (EC/S).
• stopAlarm ≈ the patient has pressed the Alarm button (EC/S).

Requirements (R)

– T1 ≈ units of time required by the body to update the blood glucose con-
centration (EC/U).

– levelGlucose(vi) ≈ the blood glucose concentration in the body is
vi (EC/U).

Specification (S)

– LC ≈ number of samples to take of the current patient’s glucose level
(MC/U).

– getGlucoseLevel ≈ the system asks to the sensor for number of samples
to take of the current patient’s glucose level (MC/U).

– TDelivery ≈ units of time that the motor will be working (MC/S).
– TSensor ≈ waiting limit time to get the current patient’s glucose concentra-

tion from the sensor (MC/U).
– TWarning ≈ units of time that the alarm will be ringing to warn the patient

about low insulin level in the cartridge (MC/S).
– calculusDone ≈ the FTIP system finds out the period of time that the

motor has to work in order to supply the insulin into the patient (MC/U).
– statusOk ≈ the motor and the plunger have passed the checks made by the

the FTIP system (MC/U).
– errorOnSensor ≈ malfunction detection on the sensor (EC/S).
– errorOnPump ≈ malfunction detection on the pump (EC/S).
– glucoseOutRange ≈ level of glucose out of safe range (EC/S).
– insulinOutRange ≈ dose of insulin to be delivered drops out of the safe

range (MC/S).
– nearEmpty ≈ cartridge almost empty (MC/S).
– empty ≈ cartridge empty (MC/S).
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and Cećılia Mary F. Rubira†

Instituto de Computação
Universidade Estadual de Campinas

Caixa Postal 6176. CEP 13083-970, Campinas, SP, Brazil
Phone/Fax: +55 (19) 3788-5842

{fernando, patrick.silva, cmrubira}@ic.unicamp.br

Abstract. An important challenge faced by the developers of fault-
tolerant systems is to build reliable fault tolerance mechanisms. To achieve
the desired levels of reliability, mechanisms for detecting and handling er-
rors should be designed since early phases of software development, prefer-
ably using a rigorous or formal methodology. In recent years, many
researchers have been advocating the idea that exception handling-related
issues should be addressed at the architectural level, as a complement to
implementation-level exception handling. However, few works in the liter-
ature have addressed the problem of describing how exceptions flow
amongst architectural elements. This work proposes a solution to this
problem to support the early detection of mismatches between architec-
tural elements due to exceptions. Moreover, it makes it possible to validate
whether the architecture satisfies some properties of interest regarding ex-
ception flow before the system is actually built. Our solution proposes a
model for describing the architectural flow of exceptions which is precise
and automatically analyzable by means of a tool.

1 Introduction

Exception handling [13] is a well-known mechanism for structuring error recovery
in fault-tolerant software systems. Since exception handling is an application-
specific technique, it complements other techniques for improving system reli-
ability, such as atomic transactions [17], and promotes the implementation of
sophisticated error recovery measures. Furthermore, in applications where back-
ward error recovery is not possible, such as those that interact with mechanical
devices, exception handling may be the only choice available.
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Usually, a large part of a system’s code is devoted to error detection and
handling [13,25,31]. However developers tend to focus on the normal activity of
applications and only deal with code responsible for error detection and han-
dling at the implementation phase, in an ad hoc manner. Hence, this part of
the code is usually the least understood, tested, and documented [13,25]. To
achieve the desired levels of reliability, mechanisms for detecting and handling
errors should be developed systematically from early phases of software devel-
opment [27], starting from requirements, and passing by analysis, architectural
design, detailed design, and, finally, implementation.

The concept of software architecture [29] has been recognized in the last
decade as a means to cope with the growing complexity of software systems.
According to Clements and Northrop [12], software architecture is the structure
of the components of a program/system, their interrelationships and principles,
and guidelines governing their design and evolution over time. It is widely ac-
cepted that the architecture of a software system has a large impact on its
capacity to meet its intended quality requirements, such as reliability, security,
availability, and performance, amongst others [5,11]. There are many proposals in
the literature [2][16][22] of notations and techniques to formally describe software
architectures to show how they achieve specific quality attributes, such as adher-
ence to interaction protocols [2], and architectural styles [16]. These approaches
are usually supported by tools that automatically or semi-automatically verify
whether an architecture satisfies some previously-defined properties of interest.

An important challenge faced by developers of fault-tolerant systems is to
build fault tolerance mechanisms that are reliable. If a system should be reli-
able and exception handling is one of the mechanisms that can be employed to
achieve this goal, it may be beneficial to consider exception handling-related is-
sues before the implementation phase; in particular during architectural design.
This idea goes hand-in-hand with the notion that exception handling should be
taken into account from early phases of software development, in order to define
the exceptional activity of the system. However, to the best of our knowledge,
there are currently no approaches for the specification and analysis of exception-
related information at the architectural level. As pointed out by Bass and his
coleagues [4], specifying how exceptions flow between architectural components
is a real problem that appears in the development of systems with strict depend-
ability requirements, such as air-traffic control and financial.

This paper proposes an approach for describing software architectures ex-
tended with information about exception flow based on a formal model that
supports reasoning about exception flow-related properties of interest. Further-
more, our solution allows one to automatically verify whether an architecture
satisfies these properties of interest. The ability to formally specify and verify the
flow of exceptions in a system can help in the detection of ambiguities, mistakes,
and incompletenesses, thus improving the system’s overall reliablity. We present
a model for reasoning about exception flow in software architectures. This model
specifies the structuring of an architecture in terms of architectural components
(loci of computation and data stores) and connectors (loci of interaction), as well
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as information relative to exception flow amongst these elements. We show how
systems adhering to this model can be automatically verified using the Alloy [18]
specification language and its associated tool set.

This work is organized as follows. Section 2 provides some background on ex-
ception handling and the Alloy design language. Section 3 describes the overall
approach that we propose for extending architecture descriptions with excep-
tion flow-related information. Section 4 presents the proposed model for reason-
ing about the flow of exceptions at the architectural level. A mix of informal
explanations and set theory notation is employed. Section 5 describes how the
proposed model can be used to verify exception flow in architecture descrip-
tions. Section 6 compares the proposed model with some related research. The
last section rounds the paper and points directions for future works.

2 Background

2.1 Exception Handling

Exception handling [13] is a mechanism for structuring error recovery in software
systems so that errors can be more easily detected, signaled, and handled. It is
implemented by many mainstream programming languages, such as Java, Ada,
C++, and C#. These languages allow the definition of exceptions and their
corresponding handlers. The set of exceptions and exception handlers in a system
define its abnormal or exceptional activity.

When an error is detected, an exception is generated, or raised. If the same ex-
ception may be raised in different parts of a program, different handlers may be
executed, depending on the place where the exception was raised. The choice of
the handler that is executed depends on the exception handling context (EHC)
where the exception was raised. An EHC is a region of a program where the
same exceptions are handled in the same manner. Each context has an associ-
ated set of handlers that are executed when the corresponding exceptions are
raised. Typical examples of EHCs in object-oriented languages are blocks, meth-
ods, and classes [15]. At the architectural level, contexts are usually defined by
architectural components and connectors [6].

The concept of idealized fault-tolerant component (IFTC) [3] defines a concep-
tual framework for structuring exception handling in software systems. An IFTC
is a component (in a broader sense; an object, a software component, a whole
system, etc.) in which the parts responsible for the normal and abnormal activ-
ities are separated and well-defined, within its internal structure. The goal of
the IFTC approach is to provide means to structure systems so that the impact
of fault tolerance mechanisms in the overall system complexity is minimized.
This solution eases the detection and handling of errors. Figure 1 presents the
internal structure of an IFTC and the types of messages it exchanges with other
components in a system.

When an IFTC receives a service request, it produces a normal response if the
request is successfully processed. If an IFTC receives an invalid service request,
it signals an interface exception. If an error is detected during the processing of a
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Fig. 1. Idealized Fault-Tolerant Component

valid request, the normal activity part of the IFTC raises an internal exception,
which is received by the exceptional activity part of the IFTC. If the IFTC is
capable of handling an internal exception properly, normal activity is resumed.
If the IFTC has no handlers for an internal exception or is unable to handle
an exception, it signals a failure exception. Interface and failure exceptions are
collectively called external exceptions. An IFTC might also catch external ex-
ceptions signaled by other IFTCs and attempt to handle them. In this work, it
is assumed that architectural elements behave like IFTCs. Hence, only external
exceptions are taken into account, since internal exceptions are encapsulated
inside components and connectors.

2.2 Alloy

Alloy [18] is a lightweight modeling language for software design. It is amenable
to a fully automatic analysis, using the Alloy Analyzer (AA) [19], and provides
a visualizer for making sense of solutions and counterexamples it finds. Similarly
to other specification languages, such as Z and B [1], Alloy supports complex
data structures and declarative models.

In Alloy, models are analyzed within a given scope, or size. The analysis per-
formed by the AA is sound, since it never returns false positives, but incomplete,
since the AA only checks things up to a certain scope. However, it is complete
up to scope; the AA never misses a counterexample which is smaller than the
specified scope. As pointed out by the Alloy tutorial [19], small scope checks are
still very useful for finding errors.

3 Proposed Approach

The construction of robust fault-tolerant systems requires that developers take
fault tolerance-related issues into account since the outset of software develop-
ment [27]. Our ultimate goal is to devise a general approach for the rigorous
development of dependable software systems that use exception handling to im-
plement forward error recovery at the architectural level. This work addresses
specifically the issue of verifying properties of interest related to exception flow
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in software architectures. Our solution is supported by the Aereal [8] frame-
work. This framework aims to assist in documenting, analyzing, and validating
exception flow in software architectures.

Figure 2 presents a schematic description of our solution. Developers start by
performing traditional activities of a software development process, namely, re-
quirements engineering, analysis, and design (both architectural and detailed) of
the system. At the same time, they define the scenarios in which the system may
fail (fault model), what exceptions correspond to each type of error, and where
and how the exceptions are handled (exceptional activity). The specification of
the system’s fault model and exceptional activity can be conducted as prescribed
by some works in the literature [27]. The result of these activities is an architec-
ture description of the system that includes information about the exceptions
that can be signaled by each architectural element and what elements are re-
sponsible for handling them. We refer to this specialized architecture description
as the Architectural Exception Flow View [8]. Architectural views represent var-
ious aspects of the same architecture and each view shows how the architecture
achieves a particular quality attribute [5]. In Aereal, exception flow views are
specified using the ACME [16] architecture description language [23] (ADL).

To verify whether the exception flow view exhibits some properties of inter-
est, it is necessary to translate this view to a formal language with adequate
support for automated verification (verification language). The formal specifica-
tion produced by this translation must adhere to a generic meta-model which
specifies: (i) the elements that can be part of an architecture description; (ii)
how exceptions flow amongst these elements; and (iii) how they relate to each
other. Hereafter, we call this model Generic Exception Flow Model). Both the
formal specification and the generic exception flow model are described in the
verification language. Currently, we use Alloy to specify the generic exception
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flow model. A system is verified by providing its formal specification as input
to a constraint solver for the verification language, together with the properties
to be verified, and the definition of the generic exception flow model. We used
the AA tool to verify formal specifications in Alloy. When a property of interest
does not hold, the AA produces a counterexample.

In the rest of this paper, we focus on specifying the generic exception flow
model. A detailed description of the general approach described in this section
is available elsewhere [8].

4 Generic Exception Flow Model

In our model, special-purpose architectural connectors model exception flow be-
tween components. These connectors, called exception ducts, are unidirectional
point-to-point links through which only exceptions flow. They are orthogonal
to “normal” architectural connectors and do not constrain the way in which
the architecture is organized [8]. Mehta and Medvidovic [24] argue that simple
point-to-point connections are suitable general-purpose abstractions for mod-
elling communication between architectural components independently of the
architectural styles [29] to which an architecture adheres. We use this struc-
tural perspective on exception flow because it is intuitive to architects (who
are used to thinking in terms of components and connectors), compatible with
well-established views on what exception flow is [13], and it does not require the
modeling of the complete activity of the application. Architectural elements are
assumed to handle only one exception at a time. We address the case where an
EHC might catch multiple exceptions concurrently elsewhere [9]. Upon receipt
of an exception, the receiving element interrupts its execution and initiates ex-
ception handling. This is how exception handling works in most programming
languages. Modeling issues such as data- and control-flow is beyond the scope of
this work. Furthermore, we assume that the infrastructure supporting the excep-
tion handling mechanism (middleware, programming language, etc.) is correct.
Therefore, exceptions are always delivered correctly and timely.

It is important to stress that exception ducts are not implementation-level
connectors. They are just a high-level abstraction to describe exception flow.
Architects often need to understand the architecture of a system from various
perspectives, according to specific quality attributes. Since different architectural
views target different aspects of an architecture, they usually employ different
modeling constructs [21]. Hence, at the implementation level, exception flow is
materialized by means of the constructs provided by the underlying programming
language or infrastructure. For example, in a publisher/subscriber architecture,
exception flow can be materialized as events flowing through a message bus.

4.1 Representation of Components, Ducts, and Exceptions

In our model, components, exception ducts, and exceptions are represented by
objects of a certain type. The proposed model employs a notion of type that
is adopted by some modern formal specification languages, such as Alloy [18]
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Table 1. Elements of the proposed exception flow model

Set Description

Element The type of all architectural elements. Supertype of Component
and Duct.

Component The subtype of Element of which all components in a system are
instances.

Duct The subtype of Element of which all exception ducts in a system
are instances.

RootException The type of which all exceptions in a system are instances.

and B [1]. Moreover, it is compatible with the notion of types used in OO lan-
guages such as Java and C#. A type T is a set of instances and its subtypes
T1, T2, ..., TN of T are disjunct subsets of T . Only single inheritance is allowed.
An exception is any instance of a type that is subtype of type RootException.
The same applies to components and exception ducts, and the types Component
and Duct, respectively. In our model, types Component and Duct are subtypes
of Element (and collectively called “elements”). Table 1 lists the basic elements
of the proposed model. The sets in the table can also be seen as unary rela-
tions and are, therefore, subject to operations that apply to relations, such as
composition.

We represent exceptions as objects, instead of using symbols or global vari-
ables, mainly because objects are more flexible and can be used to encode arbi-
trary information regarding the cause of an exception [15]. Moreover, many large
and complex software systems are developed nowadays using object-oriented lan-
guages, such as Java and C++, which represent exceptions as objects.

The supertype of all exceptions is called RootException, instead of a more
usual name, such as Exception or Error, in order to provide to developers
the flexibility to organize exceptions as required, for instance, based on the
adopted programming language. For example, considering the EHS of Java, a
developer can define at least four exception types: (i) Throwable, subtype of
RootException; (ii) Exception, subtype of Throwable; (iii) Error, subtype of
Throwable; and (iv) RuntimeException, subtype of Exception. Application-
specific exception types would then be subtypes of one of these types.

4.2 System Structure

We follow the general view of a system configuration as a finite connected
graph of components and connectors [23]. We specialize this view, however, so
that it can be used to reason about exception flow. In our model, a compo-
nent is a structural architectural element that catches and/or signals excep-
tions and an exception duct is a structural element that represents flow of
exceptions between two components. The structure of a system is defined in
terms of connections between components and exception ducts. The relations
CatchesFrom ∈ Element ↔ Element and SignalsT o ∈ Element ↔ Element
specify these connections.
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Fig. 3. A trivial software architecture

Given an element B, {B}.CatchesFrom yields the set of elements that sig-
nal exceptions that B catches. Conversely, {B}.SignalsT o yields the set of el-
ements that catch exceptions that B signals. The “.” operator represents re-
lational composition (or join). Given two relations A ⊆ T1 × T2 × ... × Tn

and B ⊆ Tn × Tn+1 × ... × Tn+m, A.B yields a relation C ⊆ T1 × T2 ×
... × Tn−1 × Tn+1 × ... × Tn+m. Relation C comprises all the tuples formed
by combining tuples from A and B whenever the last element of a tuple from
A is the same as the first element of a tuple from B. For example, given
A = {(e1, e2), (e2, e3)} and B = {(e2, e4), (e2, e5), (e3, e6), (e7, e8)}, A.B yields
C = {(e1, e4), (e1, e5), (e2, e6)}. Figure 3 illustrates relations CatchesFrom and
SignalsTo. The figure depicts two components, C1 and C2, connected by an ex-
ception duct D. Since exceptions flow from C1 to C2, passing through D, we can
say that C1 ∈ {D}.CatchesFrom and D ∈ {C2}.CatchesFrom. Conversely,
D ∈ {C1}.SignalsT o and C2 ∈ {D}.SignalsT o.

Table 2 lists some constraints on relations CatchesFrom and SignalsT o.
These constraints specify properties that a system specification adhering to our
model should exhibit. Each one is identified by a name matching the pattern
BPX , where “BP” stands for basic property and “X” is a positive integer.
Properties BP1 and BP2 specify that the CatchesFrom relation is not reflex-
ive and it never associates elements of the same type, respectively. Properties
BP3 and BP4 do the same for relation SignalsT o. Property BP5 states that
exception ducts signal exceptions to exactly one element and catch exceptions
from exactly one element. If B is a component, {B}.CatchesFrom may yield an
empty set, in which case B does not catch exceptions. If {B}.SignalsT o yields
an empty set, exceptions signaled by B, if any, are caught by an implicit compo-
nent OperatingSystem. This is useful to model situations in which a system is
not capable of handling a certain type of error and fails catastrophically by sig-
naling an exception to the operating system. Properties BP6 states that the set
of elements from which an element catches exceptions consists of all elements
that signal exceptions to it. Property BP7 states that the set of elements to
which an architectural element signals exceptions consists of all elements that
catch exceptions from it, respectively. These two properties provide a link be-
tween CatchesFrom and SignalsT o. Property BP8 specifies that the elements
from which an architectural element catches exceptions are different from the
ones to which it signals exceptions. For example, a configuration with only two
elements, C ∈ Component and D ∈ Duct, where C ∈ {D}.CatchesFrom and
C ∈ {D}.SignalsT o is not valid.

For any valid system in the proposed model, the graph formed by using the
components of the system as vertices and the ducts as edges is connected. More
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Table 2. Contraints on the CatchesFrom and SignalsTo relations

Property Constraint

BP1 ∀B ∈ Element • B /∈ {B}.CatchesFrom

BP2 ∀B′ ∈ Element • (B, B′) ∈ CatchesFrom ⇒ ¬(B ∈ Duct ∧ B′ ∈ Duct)∧
¬(B ∈ Component ∧ B′ ∈ Component)

BP3 ∀B ∈ Element • B /∈ {B}.SignalsTo

BP4 ∀B′ ∈ Element • (B, B′) ∈ SignalsTo ⇒ ¬(B ∈ Duct ∧ B′ ∈ Duct)∧
¬(B ∈ Component ∧ B′ ∈ Component)

BP5 ∀D ∈ Duct • |{D}.CatchesFrom| = 1 ∧ |{D}.SignalsTo| = 1
BP6 ∀B1, B2 ∈ Element • B1 ∈ {B2}.CatchesFrom ⇒ B2 ∈ {B1}.SignalsTo

BP7 ∀B1, B2 ∈ Element • B1 ∈ {B2}.SignalsTo ⇒ B2 ∈ {B1}.CatchesFrom

BP8 ∀B ∈ Element • {B}.CathcesFrom ∩ {B}.SignalsTo = {}
BP9 ∀C1, C2 ∈ Component • C1 ∈

{C2}. ∗ ((SignalsTo ∪ CatchesFrom).(SignalsTo∪ CatchesFrom))

formally, let G = (Component, Duct) be a graph, where Component is the set
of all vertexes and Duct is the set of all edges. An edge D ∈ Duct connects two
vertexes C1 ∈ Component and C2 ∈ Component if D ∈ {C1}.CatchesFrom and
C2 ∈ {D}.CatchesFrom. In order for a graph to be connected, there must be a
path between any two vertexes. Property BP9 specifies this constraint formally.
It states that the reflexive transitive closure (∗ operator) of any component with
respect to the relation (SignalsT o∪CatchesFrom).(SignalsT o∪CatchesFrom)
contains all the other components of the system. In property BP9, the ∗ operator
yields the set of all components reachable by composing component C2 with
(SignalsT o∪ CatchesFrom).(SignalsT o∪ CatchesFrom) zero or more times.

4.3 Exception Interfaces and Exception Handling Contexts

As mentioned in previously, we consider a component to be a structural element
that catches and signals exceptions. Exception ducts are similar, but simpler,
as they catch exceptions from exactly one component and signal exceptions
to exactly one component. A component includes (i) a collection of exception
interfaces, which specify the exceptions the component signals; and (ii) a collec-
tion of EHCs, which define regions where exceptions are always handled in the
same way. Exception interfaces are associated to components by the SignalsT o
relation and, for each exception duct in the set {C}.SignalsT o, there is a cor-
responding exception interface. The same applies for the CatchesFrom relation
and EHCs. This represents the fact that a component may signal different ex-
ceptions to (or catch different exceptions from) the various exception ducts to
which it is connected. As imposed by property BP5 (Table 2), each exception
duct has exactly one exception interface and one EHC.

Models for reasoning about exception flow at the programming language level
do not have an explicit separation between exception interfaces and EHCs. This
separation is not necessary because these models focus on fine-grained pro-
gramming constructs, like methods and procedures, where multiple contexts are
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Table 3. Contraints on the PortMap relation

Property Constraint

BP10 ∀B ∈ Element • dom({B}.P ortMap) = {B}.CatchesFrom∧
ran({B}.P ortMap) = {B}.SignalsTo

associated to a single exception interface. At the architectural level, however,
this separation is very important, since a component can have multiple access
points (ports) and the latter are explicit in the system description.

The PortMap ∈ Element ↔ Element ↔ Element relation associates excep-
tion interfaces and EHCs. When an element catches an exception and does not
handle it, the PortMap relation specifies the element to which the exception is
signaled, based on the element that originally signaled it. PortMap associates
architectural elements to EHCs and exception interfaces. Table 3 lists the single
property associated to the PortMap relation. Property BP10 specifies that for
every element B, PortMap associates all the elements from which B catches
exceptions to some element to which it signals exceptions and vice-versa.

4.4 Exception Flow

Exception flow is specified in terms of five relations: Signals ∈ Element ↔
Element ↔ RootException, Generates ∈ Element ↔ Element ↔
RootException, DoesNotMask ∈ Element ↔ Element ↔ RootException ↔
RootException, Catches ∈ Element ↔ Element ↔ RootException, and
Masks ∈ Element ↔ Element ↔ RootException. The first two concern the
exception interfaces of an architectural element, whereas the last three are re-
lated to EHCs. In the rest of this section, we describe these relations in more
detail.

The Signals relation defines the exception interfaces of an architectural ele-
ment. This relation specifies which exceptions an architectural element signals
and the elements that catch these exceptions. Let ES be a set of exceptions
and B1 and B2 be architectural elements such that B2 ∈ {B1}.SignalsT o. If
{B2}.({B1}.Signals) = ES, we say that the element B1 signals the exceptions
in set ES to element B2. Table 4 lists some properties associated to the Signals
relation. Property BP11 specifies that elements only signal exceptions to ele-
ments to which they are connected, as specified by the SignalsT o relation.

Even though, for the sake of uniformity, we have called the second constraint
on Table 4 a “property”, it works more as a definition of the Signals relation.
Property BP12 states that the Signals relation is derived from three other rela-
tions. Intuitively, the set of exceptions that a component signals depends on the
exceptions it generates (raises) and on exceptions it catches that were signaled by
other architectural elements. Propagated and Unhandled are auxiliary relations
defined in terms of the relations that specify a component’s EHCs (described in
the following paragraphs). The Generates relation specifies the exceptions that
components generate when erroneous conditions are detected. These conditions
are dependent on the semantics of the application and on the assumed failure
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Table 4. Contraints on the Signals, Generates, Catches, Masks, and DoesNotMask
relations

Property Constraint

BP11 ∀B ∈ Element • dom({B}.Signals) ⊆ {B}.SignalsTo

BP12 Signals = Generates ∪ Propagated ∪ Unhandled

BP13 Generates ⊆ Signals

BP14 ∀B ∈ Element • dom({B}.Catches) ⊆ {B}.CatchesFrom

BP15 ∀B ∈ Element • ∀B′ ∈ {B}.CatchesFrom•
{B}.({B′}.Signals) = {B′}.({B}.Catches)

BP16 ∀B ∈ Element • dom({B}.Masks) ⊆ {B}.CatchesFrom

BP17 ∀B ∈ Element • dom(({B}.DoesNotMask).RootException) ⊆
{B}.CatchesFrom

BP18 ∀B ∈ Element • ∀B′ ∈ {B}.CatchesFrom • |{B′}.({B}.DoesNotMask)| > 0
⇒ (dom({B′}.({B}.DoesNotMask)) ∩ {B′}.({B}.Masks)) = {}

model. For reasoning about exception flow, the fault that caused an exception
to be raised is not important, just the fact that the exception was raised. Let
ES be a set of exceptions and B1 and B2 be architectural elements such that
B2 ∈ {B1}.SignalsT o. If {B2}.({B1}.Generates) = ES, we say that the element
B1 raises exceptions ES to B2. Property BP13 specifies that all the exceptions
an element generates to another element are also signaled to the latter. This is
coherent with the view that only external exceptions matter at the architectural
level.

Exception handling contexts are defined in terms of three relations: Catches,
Masks, and DoesNotMask. Catches specifies, for an arbitrary element B,
the exceptions B receives from the elements in the set {B}.CatchesFrom. Let
ES be a set of exceptions and B1 and B2 be architectural elements such that
B2 ∈ {B1}.CatchesFrom. If {B2}.({B1}.Catches) = ES, we say that the el-
ement B1 catches exceptions ES from element B2. Table 4 shows the basic
properties associated with Catches, Masks, and DoesNotMask. Propety BP14
specifies that elements only catch exceptions from elements to which they are
connected, as specified by the CatchesFrom relation. Property BP15 states
that the exceptions that an element catches are the exceptions signaled to it.

The Masks relation specifies the exceptions that are masked by a compo-
nent. By “masked”, we mean that the component is capable of taking some
action that stops the propagation of the exception and makes it possible for the
system to resume its normal activity. Modeling the behavior of the exception
handlers is beyond the scope of this work. We are just interested in the effect
the handler has on the flow of exceptions. Let ES be a set of exceptions and
B1 and B2 be architectural elements such that B2 ∈ {B1}.CatchesFrom. If
{B2}.({B1}.Masks) = ES, we say that the element B1 handles exceptions ES
from element B2. Only property BP16 in Table 4 is directly associated to the
Masks relation. This property states that elements only handle exceptions sig-
naled by elements to which they are connected. We could also restrict Masks
to be a subset of Catches just like Generates is a subset of Signals. We do
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Table 5. Properties that define auxiliary relations Unhandled and Propagated

Property Constraint

BP19 Propagated = { T ∈ Element × Element × RootException| s(T ) ∈
{f(T )}.SignalsTo ∧ t(T ) ∈
((({f(T )}.P ortMap).{s(T )}).({f(T )}.Catches\{f(T )}.Masks)).
((({f(T )}.P ortMap).{s(T )}).({f(T )}.DoesNotMask)) }

BP20 Unhandled = { T ∈ Element × Element × RootException| s(T ) ∈
{f(T )}.SignalsTo ∧ t(T ) ∈ ((({f(T )}.P ortMap).{s(T )}).
({f(T )}.Catches\{f(T )}.Masks)) \(((({f(T )}.P ortMap).
{s(T )}).({f(T )}.DoesNotMask)).({s(T )}.({f(T )}.P ropagated))) }

not impose this restriction, however, because sometimes it is useful to specify
general handlers, that is, handlers capable of dealing with any type of exception.

The DoesNotMask relation describes exception handlers that do not stop
the propagation of exceptions. These handlers end their execution by signaling
the same exception or a new one. DoesNotMask specifies a cause-consequence
relationship between an exception that an element catches and an exception that
it signals. Let E and E′ be exceptions and B1 and B2 be architectural elements
such that B2 ∈ {B1}.CatchesFrom. If {B2}.({B1}.DoesNotMask) = (E, E′),
we say that the element B1 explicitly propagates (or simply “propagates”) ex-
ception E′ from E, signaled by B2. The last two properties in Table 4 are directly
related to the DoesNotMask relation. Property BP17 states that an element
can only propagate exceptions signaled by an element from which it catches ex-
ceptions. Property BP18 specifies that an element can handle or propagate the
exceptions it catches from another element, but not both.

Now we can go back to the definition of Signals and define Propagated and
Unhandled. The Propagated ∈ Element ↔ Element ↔ RootException re-
lation specifies the subset of Signals comprising exceptions that are explicitly
propagated by an element. It associates an element to the exceptions it propa-
gates explicitly and the elements that catch these propagated exceptions. The
Unhandled ∈ Element ↔ Element ↔ RootException relation associates the
set of exceptions that an architectural element implicitly propagates and the
elements to which these exceptions are signaled. An exception is said to be im-
plicitly propagated when an architectural element catches it but the element does
handle it or explicitly propagate an exception from it. Such an exception ends
up being signaled to some other architectural element. Table 5 presents formal
definitions for relations Propagated and Unhandled. The constraints in Table 5
use three auxiliary functions, f(), s(), and t(), that take a triple as argument
and return the first, second, and third elements of the triple, respectively.

4.5 Exception Propagation Cycles

An exception propagation cycle is a situation where an exception is propagated
(implicitly or explicitly) indefinitely, without ever being handled, not even by
the special OperatingSystem component, in an architecture that adheres to the



92 F. Castor Filho, P.H. da S. Brito, and C.M.F. Rubira

basic properties BP1 − BP20. Furthermore, exceptions in an exception propa-
gation cycle might potentially have never been raised. For these reasons, valid
exception flow views should not have exception propagation cycles.

A conservative way of preventing the occurrence of exception propagation
cycles is to completely disallow structural cycles in the graph formed by the
components and exception ducts in a system. For most systems, this solution
is sufficient without being overly restrictive. However, for software architectures
where components are peers, like multi-agent and publisher-subscriber, this ap-
proach is not acceptable. At the implementation level, exception propagation
cycles are not a problem, since in exception handling mechanisms such as Java’s
and Ada’s, each EHC is kept in the stack, which is finite, and removed from it
when controls returns from the EHC (possibly due to exception propagation).
Therefore, in a language-level exception propagation cycle, eventually all the
EHCs will be removed from the stack and exception propagation will stop. At
the architectural level, however, this is not always the case, as an exception is
not necessarily implemented as a language-level exception [6,8].

A simple way to avoid propagation cycles without removing structural cycles
is to introduce a partial ordering on exceptions. This ordering could be intro-
duced through additional information associated to each exception type. Then
each element would be required to signal exceptions which are greater than the
ones it catches. This solution has two shortcomings. The first is that it requires
developers to be aware of this ordering, which is not required in any existing
programming languages. The second problem is that it complicates the model
and could have a negative effect on the performance of verification. Using the
type hierarchy to represent the ordering of exceptions is also not adequate, since
it also requires developers to be aware of the ordering and thus imposes con-
straints on the exception type hierarchy. Moreover, from a practical standpoint,
this solution partially defeats the purpose of using different types of exceptions,
as the topmost layers of a system would always receive general exceptions that
do not provide accurate information about the specific error they represent. In
the rest of this section, we propose an alternative solution that is a bit more
complex, but avoids these shortcomings. We formalize the concept of exception
propagation cycle and show how such cycles can be easily detected.

An exception propagation is a tuple φ = (B, E, E′, B′), with B, B′ ∈
Element and E, E′ ∈ RootException. We use the functions f(), s(), t(), and g()
to obtain the first, second, third, and fourth elements of a propagation, respec-
tively. Any propagation φ must satisfy the following well-formedness predicate:

(g(φ) 	= f(φ)) ∧ (g(φ) ∈ {f(φ)}.SignalsTo) ∧ (f(φ) ∈ {g(φ)}.CatchesFrom) ∧
(t(φ) ∈ {f(φ)}.({g(φ)}.Catches)) ∧ (t(φ) ∈ {g(φ)}.({f(φ)}.Signals)) ∧

∃CF ∈ {f(φ)}.CatchesFrom • ((CF, g(φ)) ∈ {f(φ)}.P ortMap) ∧
(s(φ) ∈ {CF}.({f(φ)}.Catches)) ∧ (s(φ) /∈ {CF}.({f(φ)}.Masks)) ∧

(s(φ) ∈ dom({CF}.({f(φ)}.DoesNotMask)) ⇒
t(φ) ∈ {s(φ)}.({CF}.({f(φ)}.DoesNotMask)))
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1 void computePropagations( Element B) {
2 foreach catchesP in B.Catches and not in B.Masks {
3 // catchesP is an ( Element, RootException) pair
4 Propagation prop = new Propagation();
5 foreach portMapP in B.PortMap such that portMapP .f() == catchesP .f() {
6 // portMapP is an ( Element, Element) pair
7 if(there is a Triple propagatesT in B.DoesNotMask such that
8 propagatesT.f() == catchesP .f() && propagatesT.s() == catchesP .s()) {
9 // propagatesT is an ( Element, RootException, RootException) triple

10 prop.t = propagatesT.t();
11 } else { prop.t = catchesP .s(); }
12 prop.s = catchesP .s();
13 prop.f = B;
14 prop.g = portMapP .s();
15 }
16 B.propagations.add(prop);
17 }
18 }

Fig. 4. An algorithm to compute the exception propagations associated to an element

It is easy to compute the set of all exception propagations in a software archi-
tecture adhering to our model. Figure 4 presents an algorithm for computing all
the exception propagations associated to an architectural element.

In order to impose a partial order between two exceptions propagations, we
introduce the notion of consecutiveness. Two propagations φ1 and φ2 are said
to be consecutive if they satisfy the following predicate:

(g(φ1) = f(φ2)) ∧ (f(φ1) ∈ {f(φ2)}.CatchesFrom) ∧
(f(φ2) ∈ f(φ1).SignalsTo) ∧ (f(φ1) 	= f(φ2)) ∧ (t(φ1) = s(φ2)) ∧

(t(φ1) ∈ {f(φ1)}.({f(φ2)}.Catches)) ∧ (s(φ2) ∈ {f(φ2)}.({f(φ1)}.Signals))

In this case, φ1 is said to be the predecessor of φ2 and φ2 is the successor of
φ1. We indicate that propagations φ1 and φ2 are consecutive with the notation
φ1 ⇀ φ2. A sequence of propagations ϕ of length n is a set of propagations
φ1, φ2, φ3..., φn−1, φn such that φ1 ⇀ φ2, φ2 ⇀ φ3, ..., φn−1 ⇀ φn. For simplicity,
we assume that all sequences of propagations are finite. A sequence of propaga-
tions ϕ = φ1, φ2, ..., φn forms an exception propagation cycle iff φn ⇀ φ1.

To verify if a software architecture has exception propagation cycles, it is
necessary to build the directed graph formed by all the exception propagations
of the architecture. This graph is constructed in two steps: (1) compute the
exception propagations for all the elements in the architecture and use them
as vertexes; and (2) create a directed edge between two propagations whenever
they are consecutive, from the predecessor to the sucessor. Detecting exception
propagation cycles in the resulting graph is only a matter of using a regular
algorithm for finding cycles in directed graphs.

5 Materializing the Model

We have translated the generic exception flow model described in Section 4 to
Alloy. In this section, we show how to specify systems based on this model and
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Fig. 5. Layered architecture of a mining control system

how to verify them. We use a well-known textbook example [30] to make the
explanation more concrete. Addressing both the earlier (requirements definition
and analysis) and later (detailed design, implementation, etc.) phases of software
development is outside the scope of this paper.

Figure 5 shows the components and connectors view of a control system for
the mining environment [27]. Rectangles represent architectural components and
arrows represent exception flow. The extraction of minerals from a mine produces
water and releases methane gas to the air. The mining control system is used
to drain mine water from a sump to the surface, and to extract air from the
mine when the methane level becomes high. The system consists of three control
stations: one that monitors the level of water in the sump, one that monitors the
level of methane in the mine, and another that monitors the mineral extraction.
For safety reasons, the extraction of minerals should be interrupted when the
amount of methane in the atmosphere exceeds a safety limit. The air extractor
control station monitors the level of methane inside the mine, and when the level
is high an air extractor is switched on to remove air from the mine. The whole
system is controlled from the surface via an operator console.

The system can fail in several ways. For simplicity, we only consider the
case where the AirExtractorControl component fails by signaling the excep-
tion AirExtractorOffException. This exception is caught and handled by the
ControlStation component. The handler ends its execution by signaling the ex-
ception EmergencyException. A detailed description of the exceptional activity
of the mining system is available elsewhere [27].

Figure 6 shows the Alloy specification of the mining system. In Alloy, a signa-
ture (sig keyword) specifies a type. The one keyword indicates that a signaturehas
exactly one instance. We use signatures for modeling structural elements and ex-
ceptions. The open clause (Line 1) imports the definitions of the basic types of the
generic exception flow model, Element, Component, Duct, and RootException. It
also imports the predicates that specify the basic properties defined in Section 4.
The relations defined in Section 4, such as CatchesFrom, Masks, etc., are ex-
plicitly instantiated by means of facts, predicates that the AA must assume to be
true when evaluating constraints. For instance, the fact SystemStructure (Line
7) states, among other things, that component ControlStation catches excep-
tions from the exception duct AEC CS. The latter connects ControlStation to the
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1 open ExceptionHandlingSystem
2 one sig AirExtractorOffException, EmergencyException extends RootException{}
3 one sig ControlStation, OperatorInterface, AirExtractorControl
4 extends Component{}
5 one sig CS_OI, AEC_CS extends Duct{}
6 ...
7 fact SystemStructure{ ...
8 ControlStation.CatchesFrom = AEC_CS
9 ControlStation.SignalsTo = CS_OI

10 AEC_CS .CatchesFrom = AirExtractorControl
11 AEC_CS .SignalsTo = ControlStation
12 } fact ExceptionFlow{ ...
13 AirExtractorControl. Signals = AEC_CS -> AirExtractorOffException
14 AirExtractorControl.Generates = AEC_CS -> AirExtractorOffException
15 AEC_CS .Catches = AirExtractorControl-> AirExtractorOffException
16 AEC_CS .Signals = ControlStation-> AirExtractorOffException
17 ControlStation.Catches = AEC_CS -> AirExtractorOffException
18 ControlStation.Signals = CS_OI-> EmergencyException
19 no ControlStation.Masks
20 ControlStation.DoesNotMask =
21 AEC_CS -> AirExtractorControlOffException-> EmergencyException
22 } fact PortMap { ...
23 ControlStation.PortMap = AEC_CS ->CS_OI
24 }

Fig. 6. Partial Alloy specification of the mining control system

AirExtractorControl component. Moreover, the fact ExceptionFlow (Line 12)
states that component ControlStation catches the exception AirExtractor-
Control (Line 17), signaled by the AEC CS duct, and signals exception Emergency-
Exception to the CS OI duct (Line 18). ControlStation translates the former
exception to the latter (Lines 20 and 21).

Verification consists in checking whether the Alloy specification of a system
satisfies Alloy predicates corresponding to properties of interest. The properties
of interest that a system must satisfy are split in three categories: basic, desired,
and application-specific. Basic properties define the well-formedness rules of the
model, that is, the characteristics of valid systems. These properties specify the
functioning of the exception handling mechanism and how software architectures
are structured. We have formally specified all the basic properties of the generic
exception flow model in Section 4. Desired properties are general properties that
are usually considered beneficial, although they are not part of the basic ex-
ception handling mechanism. They assume that the basic properties hold. Some
examples are the following.

DP1. Architectural elements do not handle exceptions they do not catch.
DP2. All the exceptions caught by an architectural element are handled by it,
even if some of its handlers end their execution by raising exceptions.
DP3. No unhandled exceptions.

Application-specific properties are rules regarding the flow of exceptions in a
specific application. For the mining system, a possible application-specific prop-
erty is one which guarantees that the OperatorInterface component does not
receive domain-specific exceptions.

AP1. No architectural element signals to the OperatorInterface component an
exception different from EmergencyException.
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1 /* Basic property BP13 */
2 pred bp13() { all C : Component | (C.Generates in C.Signals ) }
3 /* Desired property DP2 */
4 pred dp2() {
5 all C: Component | let nonHandled = (C.Catches - C.Masks)
6 | (all CF : C.CatchesFrom | #(CF <: nonHandled) > 0 =>
7 ((#nonHandled > 0 => #(C.DoesNotMask) > 0) &&
8 all E: CF.nonHandled | #(E.(CF.(C.DoesNotMask))) > 0))
9 }

10 /* Application- specific property AP1 */
11 pred ap1() {
12 all D: OperatorInterface.CatchesFrom |
13 OperatorInterface.(D. Signals ) = EmergencyException
14 }

Fig. 7. Alloy specifications of properties BP13, DP1, DP2, and AP1

The Alloy definition of the generic exception flow model includes the specifica-
tions of several basic and desired properties that can be used “as-is”. Developers
only specify additional desired properties and application-specific properties, if
any. The AA is employed to analyze exception flow. If a property of interest is
violated, the AA generates a counterexample with a configuration of the system
where the violated property does not hold. Otherwise it notifies the user that
the system is valid.

Figure 7 defines four Alloy predicates named bp13, dp2, and ap1, formally
specifying properties BP13, DP2, and AP1, respectively. Alloy predicates are
logic sentences that must be checked by the AA. In the body of the predi-
cates, Generates, Signals, Catches, DoesNotMask, Masks, and CatchesFrom
are names of relations corresponding to the homonymous relations described
in Section 4. Predicate bp13() states that the set of exceptions that a compo-
nent raises is a subset of the exceptions it signals. Predicate dp2() selects, for
each component in the Alloy specification, all the exceptions that the component
catches but does not handle, and checks whether exceptions are propagated from
them. The operators all, <:, &&, and in represent, respectively, universal quan-
tification, domain restriction, logical conjunction, and subset. The operators -,
=>, and # mean set subtraction, logical implication, and set cardinality, respec-
tively, and the declaration let associates an alias to an expression. Predicate
ap1() is a direct translation from the informal description of property AP1.

6 Related Work

Several works propose static analyses of source code that generate information
about exception flow. Usually, this information consists in the exception prop-
agation paths in a program and is used, for example, to identify uncaught ex-
ceptions in languages with polymorphic types, such as ML. Chang et al [10]
present a set-based static analysis of Java programs that estimates their excep-
tion flows. This analysis is used to detect too general or unecessary exception
specifications and handlers. Yi [32] proposes an abstract interpretation that esti-
mates uncaught exceptions in ML programs. Fähndrich [14] and coleagues have
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employed their BANE toolkit to discover uncaught exceptions in ML. Schaefer
and Bundy’s [28] work describes a model for reasoning about exception flow in
Ada programs. This model is used by a tool that tracks down uncaught excep-
tions and provides exception flow information to programmers. The JEX tool,
proposed by Robillard and Murphy [26], analyzes exception flow in Java pro-
grams. The tool includes a GUI to display a program’s exception propagation
paths and detects handlers that are too general.

Our approach leverages previous proposals for exception flow analysis, most
notably Schaefer and Bundy’s [28], but it differs in focus. Out approach targets
the early phases of development and is broader in scope. It describes how an
architectural-level exception handling mechanism works and leverages existing
verification tools to check for adherence to the rules prescribed by this mecha-
nism. Furthermore, it supports the definition of new properties of interest and
their automated verification. Moreover, as mentioned in Section 4.5, existing ex-
ception flow models do not take exception propagation cycles into consideration,
as they are not a problem that occurs at the implementation level.

Jiang and coleagues [20] describe an approach for the analysis of exception
propagation based on a data structure called exception propagation graph. The
goal of the authors is to use exception propagation graphs as a basis for automat-
ically generating structural tests. They do not address exception propagation
cycles, as their work focuses on implementation-level exception flow analysis.
Moreover, they do not show how the proposed approach can be employed to
check whether a system exhibits some properties of interest, such as absence of
useless handlers.

Several approaches for specifying software architectures so that they are pas-
sive to automated analysis have been proposed. Most of them define new ADLs
that target specific aspects of a software system. These ADLs are usually based
on some underlying formalisms that are well-supported by tools. Wright [2] spec-
ifications can be translated to CSP and analyzed for deadlock freedom and in-
terface compatibility. Rapide [22] is based on partially-ordered event sets. The
language supports simulation of architecture descriptions and analysis of the
event patterns produced by components. We do not propose a new ADL. In-
stead, we use an existing ADL which supports extension, ACME, and a formal
design language, Alloy, to specify and analyze exception flow at the architectural
level. To the best of our knowledge, no ADLs currently available focus on the
verification of properties related to exception flow.

In a previous work, Castor and coleagues [7] described an initial version of
the model presented in this paper. This early work does not unify the definitions
of components and ducts and is harder to use and less scalable. Furthermore, it
does not take exception propagation cycles into account.

7 Concluding Remarks

This paper presented a model for reasoning about the flow of exceptions at the
architectural level. This model is part of the Aereal framework and supports
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the specification of several properties of interest related to exception flow. We
have described how systems adhering to it can be automatically analyzed using
the AA, in order to verify whether they exhibit these properties. The main
contributions of this paper are: (i) a formalization of exception flow in terms
of elements that make sense at the architectural level; and (ii) a decomposition
of this formalization in terms of a set of properties that can be easily verified
through existing tools.

In another study [8], we assessed the scalability of the proposed model. We
discovered that, for software architectures with a large number of exceptions
(30+), it does not scale up well. Hence, our most immediate future work is to
improve scalability. We envision two complementary approaches. The first is to
optimize the system model by removing redundant information. The second is
to implement a tool that checks if an Alloy specification satisfies all the basic
properties of the EHS supported by Aereal. This would drastically reduce the
complexity of the checks the AA performs, hence decreasing the amount of mem-
ory that verification requires. This change will not compromise the flexibility of
the framework, since the basic properties do not change and any valid system
must satisfy them.
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Abstract. For decades now, modular design methodologies have helped 
software engineers cope with the size and complexity of modern-day industrial 
applications. To be truly effective though, it is essential that module interfaces 
be rigorously specified. Design by Contract (DBC) is an increasingly popular 
method of interface specification for object-oriented systems.  Many 
researchers are actively adding support for DBC to various languages such as 
Ada, Java and C#.  Are these research efforts justified?  Does having support 
for DBC mean that developers will make use of it?  We present the results of an 
empirical study measuring the proportion of assertion statements used in Eiffel 
contracts.  The study results indicate that programmers using Eiffel (the only 
active language with built-in support for DBC) tend to write assertions in a 
proportion that is higher than for other languages. 

Keywords: design by contract, program assertions, empirical study, Eiffel. 

1   Introduction 

It is generally accepted that there is no silver bullet and that there probably never will 
be; the challenges faced by software engineers will be alleviated by a combination of 
techniques. One of the effective ways that software engineers have found to manage 
the size and complexity of modern-day software systems is to use a modular-design 
methodology. An appropriate partitioning of a system into modules (e.g., libraries, 
classes) offers an effective means of managing complexity while providing 
opportunities for reuse. But when applied to large industrial applications in general 
and fault-tolerant systems in particular, modular design methods can only be truly 
effective if module interfaces are rigorously defined. 

An increasingly popular approach to interface specification for object-oriented 
software is design by contract (DBC) [19-21]. Support for DBC is built in to the 
Eiffel programming language. Although Eiffel is the only active language with 
integrated support for DBC, researchers are currently busy adding DBC support to 
other languages.  Generally, this added support is achieved by extending a subset of 
the target language.  For example, 

• SPARK for Ada [1], 
• Spec# for C# [2], 
• JACK for JavaCard [5], 
• Java Modeling Language (JML) [4], Jass [3], Jcontract [22] for Java. 
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Are such research efforts justified?  Does having built-in support for DBC mean 
that developers will write contracts? In an attempt to provide initial answers to these 
questions we undertook an empirical study of the use of contracts in Eiffel. More 
specifically, we sought to measure the proportion of source lines of code that are 
assertions because program assertions are the main ingredient of contracts, and they 
are easy to quantify. Why did we choose Eiffel programs as the subject of our study? 
Eiffel is the only active programming language with built in support for DBC, and 
this since its inception two decades ago.  Hence, it is the only language for which 
there is a sufficiently large code base to sample. 

In the next section, we explain the relationship between assertions, DBC and 
behavioral interface specifications.  A brief review of Eiffel is also given, thus 
providing the necessary background for an understanding of the metrics used in the 
study.  An introduction to the study and an explanation of the metrics are given in 
Section 3.  Section 4 provides the study results, and Section 5 discusses threats to 
validity. We conclude in Section 6. 

2   Design by Contract and Eiffel 

2.1   Assertions, DBC and Behavioral Interface Specifications 

Design by contract (DBC) refers to a method of developing object-oriented software 
defined by Bertrand Meyer [19, 20]. The main concept that underlies DBC is the 
notion of a precise and formally specified agreement between a class and its clients. 
Such an agreement, named a contract in DBC, is called a behavioral interface 
specification (BIS) in its most general form [26].  Contracts and BISs are built from 
class invariants, method pre- and post-conditions, (and other constructs) which are 
expressed by means of program assertions. 

DBC as a programming language feature refers to a limited form of support for 
BISs where assertions are restricted to be expressions that are executable. Hence, for 
example, in Meyer’s Eiffel programming language an assertion is merely a Boolean 
expression (that possibly makes use of the special old operator1).  Meyer clearly 
identifies this as an engineering tradeoff in the language design of Eiffel [20]—a 
tradeoff that we believe is an important stepping stone from the current use of (plain) 
assertions in industry to the longer-term objective of the industrial adoption of 
verifying compilers [17]. It is understood that this engineering tradeoff imposes a 
limit on the expressiveness of Eiffel assertions (e.g. absence of quantifiers2) but, at the 
same time, we also believe that it is precisely this tradeoff that has kept them 
accessible to practitioners. We stress that it is the individual assertion expressions that 
are restricted to being executable, not the contracts.  Hence, for example, a method 
contract might not be executable if its postcondition describes properties of the 
method result rather than how it can be computed.  
                                                           
1  old e refers to the pre-state value of e, and can only occur in postconditions. 
2 This exclusion is due not to the quantifiers per se, but rather to the possibility of allowing 

quantified expressions with bound variables ranging over arbitrarily large or infinite 
collections. 
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How are contracts currently used in practice? A principal use for contracts, other 
than for documentation, is run-time assertion checking (RAC) [6].  All current 
systems supporting DBC also support RAC.  When RAC is enabled, assertions are 
evaluated at run-time and an exception is thrown if an assertion fails to evaluate to 
true.  Various degrees of checking can be enabled—e.g. from the evaluation of 
preconditions only, to the evaluation of all assertions, including preconditions, 
postconditions, invariants and inline assertions. Enabling RAC during testing, 
particularly integration testing, is an effective means of detecting bugs in modules and 
thus can help contribute to the increase in overall system quality. 

Of course, for most applications, particularly fault-tolerant, safety- and security-
critical systems, it is preferable to be able to guarantee the absence of assertion 
failures before a component is run. Extended Static Checking (ESC) [11] and Verified 
DBC (VDBC) [10, 25] tools can be used for this purpose.  Such tools attempt to 
determine the validity of assertions by static analysis.  ESC tools exist for Modula-3 
and Java [9, 14], and one is currently under development for Eiffel. VDBC tools 
include Omnibus [25] and PerfectDeveloper [10]. 

2.2   Eiffel: A Brief Review 

A sample Eiffel class taken from the Gobo Eiffel kernel library is given in Figure 1. 
Lines too long to fit on the page have been truncated and suffixed with ellipses (“…”). 
Classes optionally begin (and/or end) with an indexing clause that offers information 
about the class. In other languages this is often accomplished by using a comment 
block. Comments, like in Ada, start with a “--” and run until the end of the line.  An 
Eiffel class generally declares a collection of features (attributes and “methods”).  The 
given sample class declares only one feature, an n-ary exclusive or, nxor. 

Of main concern to us here are assertions. An assertion in Eiffel is written as a 
collection of one or more optionally tagged assertion clauses.  The meaning of an 
assertion is the conditional conjunction of its assertion clauses [12]. The tags can 
help readability and debugging since they can be output when the clause is violated 
[21]. Tags zero, unary and binary adorn lines 40, 41 and 42 of Figure 1, 
respectively.  

An assertion clause is either a 

• Boolean expression (as given in lines 40, 41 and 42) or a 
• comment (e.g. line 43). 

Such comments are called informal assertions.  Eiffel’s Boolean operators consist of 
the usual negation (not), conjunction (and) and disjunction (or) as well as 
conditional (i.e. short-circuited) conjunction (and then) and disjunction (or else).  
The implication, a implies b, is an abbreviation for (not a) or else b.  Assertions 
can contain calls to methods identified as queries.  A particular characteristic of a 
query is that it is not permitted to have side effects [21]. 

In Eiffel, an assertion can be used to express a 

• precondition (introduced by the keyword require), 
• postcondition (ensure), 
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1 
2 
3 
4 
5 
6 
7 
8 
… 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
… 
38 
39 
40 
41 
42 
43 
44 
45 

indexing 
 
 description: 
 
  "Routines that ought to be in class BOOLEAN" 
 
 library: "Gobo Eiffel Kernel Library" 
 copyright: "Copyright  (c) 2002, Berend de Boer and others" 
 Lines 9 to 11 have been removed. 
 
class KL_BOOLEAN_ROUTINES 
 
feature -- Access 
 
 nxor (a_booleans: ARRAY [BOOLEAN]): BOOLEAN is 
   -- N-ary exclusive or 
  require 
   a_booleans_not_void: a_booleans /= Void 
  local 
   i, nb: INTEGER 
  do 
   i := a_booleans.lower 
   nb := a_booleans.upper 
   from until i > nb loop 
    Lines 27 to 37 have been removed. 
   end 
  ensure 
   zero: a_booleans.count = 0 implies not Result 
   unary: a_booleans.count = 1 implies Result = … 
   binary: a_booleans.count = 2 implies Result = … 
   -- more: there exists one and only one `i' in … 
  end 
end  

Fig. 1. Sample Eiffel class (kl_boolean_routines.e) 

• class invariant (invariant), 
• loop invariant (invariant), 
• inline assertion (check) 

A sample precondition is given in line 20 of Figure 1. The sample postcondition (lines 
40-43) illustrates the use of more than one assertion clause.  Assertions in 
postconditions can contain occurrences of the special operator old.  For example, the 
postcondition 

ensure  count = oold count + 1 

will be true when the post-state value of count is one more than the pre-state value of 
count.  A check is equivalent to an assert statement in other languages such a C, 
C++ and Java. 

There is only one looping construct in Eiffel, and it has the general form given in 
Figure 2.  As was previously mentioned, an assertion can be used to express a loop 
invariant. Also, of interest is the loop variant: an integer expression that must 
decrease through every iteration of the loop while remaining nonnegative. That 
covers the basics of what we need to be able to explain the study metrics. 
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from 
  init_instructions 
invariant 
  assertion 
variant 
  variant 
until 
  exit_condition 
loop 
  loop_instructions 
end 

Fig. 2. Eiffel loop instruction 

3   Study 

3.1   Objectives and Hypotheses 

Given a language like Eiffel, with built-in support for DBC, our objective has been to 
measure the extent to which developers actually write contracts for their classes.  
Since program assertions are the basic ingredient of contracts and since it is relatively 
straightforward to count assertions, we chose this as a basic metric for our study.  In 
addition to counting assertions we will also categorize them by kind—e.g. 
preconditions, postconditions, etc. vs. ordinary inline assertions.  Our main study 
hypotheses are the following: 

(H1) Developers using a programming language with built in support for DBC 
will write program assertions in a proportion that is higher than for languages not 
supporting DBC. 

(H2) Furthermore, assertions will be used as part of contracts in a proportion 
that is higher than their use as inline assertions. 

3.2   Projects 

During the initial portion of our study we gathered metrics from free Eiffel software, 
consisting of both free commercial software (such as the sources distributed with 
EiffelStudio) as well as open source projects.  This allowed us to conduct a pilot study 
during which we fine tuned our metrics gathering tool.  This was essential before 
embarking on the second phase of the study in which we solicited the participation of 
industry.   

In the second phase of our study, we posted announcements in the EiffelWorld 
newsletter [7]—published monthly by Eiffel Software, the makers of EiffelStudio—
as well as Eiffel mailing lists and bulletin boards, inviting developers of 
commercial and open source Eiffel applications to contribute to the study. The 
invitation directed developers to a web site managed by our research group where 
the purpose of the study is explained and instructions for participation are given.  
After filling in a consent form, developers are provided with a script to run on their 
Eiffel code.  The script generates a metrics file which participants subsequently 
upload to the study site.  Finally, the identity of submitters is confirmed by means 
of an acknowledgement e-mail. 



 Are Practitioners Writing Contracts? 105 

blank comment 

        IALOC 

SLOC

AsnSLOC

IdxSLOC 

assertion

 

Fig. 3. Categorization of Eiffel LOC 

3.3   Definition of Metrics 

Our basic metric is a count of Lines of Code (LOC) per class file.  As can be seen in 
Figure 3, each LOC is categorized at the top-level either as a 

• blank line, containing at most white space 
• comment line, containing a comment possibly preceded by white space 
• (physical) Source Line of Code (SLOC) [23]. 

An illustration of the top-level categorization of the sample Eiffel class of Figure 1 is 
given in Figure 4.   

One of our main statistics is a measure of the proportion of LOC that are 
assertions.  The computation of this ratio is slightly complicated by the existence in 
Eiffel of informal assertions and index blocks, as we explain next. 

An enumeration of the kinds of assertion that are supported by Eiffel is given in 
Figure 5.  Note that we chose to include loop variant expressions as a kind of 
assertion, since it contributes, like the loop invariant, to the overall specification of 
the loop instruction.   

As was explained in Section 2.2, an assertion can take the form of a source 
statement (AsnSLOC) or a comment.  The latter is called an informal assertion 
(IALOC)—see line 43 of Figure 4 for an example.  Hence, 

AsnLOC = AsnSLOC + IALOC 

The lines in Eiffel indexing clauses (identified as IdxSLOC in Figure 3), though 
technically SLOC, merely provide documentation for a class in a manner that is 
handled by a comment block in other languages. We therefore define an “adjusted 
SLOC” metric as 

AdjSLOC = SLOC – IdxSLOC + IALOC 

so we can simply and accurately define the proportion of lines that are assertions as 

AsnProp = AsnLOC / AdjSLOC 
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1
2
3
4
5
6
7
8
…
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
…
38
39
40
41
42
43
44
45

SLOC
blank
SLOC
blank
SLOC
blank
SLOC
SLOC
…
blank
SLOC
blank
SLOC
blank
SLOC
comment
SLOC
SLOC
SLOC
SLOC
SLOC
SLOC
SLOC
SLOC
…
SLOC
SLOC
SLOC
SLOC
SLOC
comment
SLOC
SLOC

idx

idx

idx

idx
idx
...

req

...

ens
ens
ens
ens

indexing

 description: 

  "Routines that ought to be in class BOOLEAN" 

 library: "Gobo Eiffel Kernel Library" 
 copyright: "Copyright  (c) 2002, Berend de Boer and others" 

Lines 9 to 11 have been removed.

class KL_BOOLEAN_ROUTINES 

feature -- Access 

 nxor (a_booleans: ARRAY [BOOLEAN]): BOOLEAN is 
   -- N-ary exclusive or 

require
   a_booleans_not_void: a_booleans /= Void 

local
   i, nb: INTEGER 

do
   i := a_booleans.lower 
   nb := a_booleans.upper 
   from until i > nb loop
    Lines 27 to 37 have been removed.
   end

ensure
   zero: a_booleans.count = 0 implies not Result 
   unary: a_booleans.count = 1 implies Result = … 
   binary: a_booleans.count = 2 implies Result = … 
   -- more: there exists one and only one `i' in … 

end
end  

Fig. 4. LOC categorization for our sample (kl_boolean_routines.e) 

Statement   Use to express … AsnLOC qualifier  
require preconditions Req 

ensure postconditions Ens 

invariant (class) class invariants Inv 

invariant (loop) loop invariant invL 

variant (loop) loop variant varL 

check inline assertion chk 

Fig. 5. Kinds of assertion 

We will keep separate AsnLOCa counts for each kind of assertion a (see Figure 5); 
we note that: 

AsnLOC = AsnLOCreq + AsnLOCens + … + AsnLOCchk 
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Table 1. Number of projects, classes and LOC 

Project  
Category 

Number 
of projects 

Number 
of classes 

LOC 
(106) 

% of 
total  
LOC 

Proprietary 5 28 149 4.4 55% 
Open Source 79 15 986 2.7 33% 
EiffelStudio L&S 1 4 373 0.9 11% 

Total 85 48 508 7.9 100% 
  

3.4   Metrics Gathering Tool 

At first we used the SLOCCount tool [24] as our base.  This tool can count physical 
SLOC for over two-dozen languages—though initially not for Eiffel.  Aside from its 
ability to process many different kinds of languages SLOCCount also does convenient 
house-keeping tasks such as determining the type of a file (by its extension or 
content), flagging duplicates and ignoring generated files. 

Since our needs were specific to Eiffel source, we eventually chose to use a single 
Perl script to gather all metrics.  The creation of the script did pose some challenges 
due, e.g., to the various flavors of Eiffel (as supported by different compilers) and 
inconsistent line endings (Unix, DOS or Mac) sometimes within the same file, as well 
as the variation in lexical rules used for multi-line string literals. 

4   Results 

4.1   General 

As can be seen from Table 1, the study covered 85 projects totaling 48 508 Eiffel 
classes and 7.9 million lines of code (MLOC).  The projects included applications 
from the areas of databases, developer tools, finance/HR, games, modeling, 
middleware, networking, scientific computing, systems software, utility 
library/toolkits, visualization and web applications.  We divided the projects into three 
categories: 

• proprietary (accounting for 55% of the code of the study), 
• open source (33%), and the 
• library and samples shipped with EiffelStudio 5.5 (11%). 

Note that half of the files in the EiffelStudio category consist of open source samples 
(or what they call “free add-ons”), most of which are provided by GoboSoft—an 
important contributor of open source Eiffel libraries and tools.  Nonetheless GoboSoft 
add-on files were counted in the EiffelStudio category only.  We separated out 
EiffelStudio (libraries and samples) into its own category because we expected it to 
have the highest proportion of assertions.  

The breakdown (partitioning) of LOC into SLOC, blank lines and comments is 
given in Table 2.  We see that 74% of LOC are physical source lines of code. On 
average, the classes in our study contained 163 LOC (120 SLOC). The table also 
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Table 2. Breakdown of LOC into SLOC, blank and comment lines 

 SLOC blank comment Total IdxSLOC IALOC AdjSLOC 
LOC (106) 5.8 1.3 0.83 7.9 0.25 0.014 5.6 

% of total LOC 74% 16% 10% 100% 3.2% 0.17% 71% 
Average 120 26 17 163 5 0.3 115 

 

Table 3. Assertion metrics by kind 

Assertion kind, a require ensure class inv loop inv loop var check Total 
(a) AsnLOCa 138 960 111 420 19 794 745 705 8 563 280 187 
(b) AsnLOCa/AdjSLOC 2.5% 2.0% 0.35% 0.013% 0.013% 0.15% 5.0% 
(c) AsnLOCa/AsnLOC 50% 40% 7.1% 0.27% 0.25% 3.1% 100% 
(d) max  AsnLOCa/AsnLOC 56% 49% 52% 11% 5% 33% - 
(e) avg. AsnLOCa / file 2.9 2.3 0.4 0.0 0.0 0.2 5.8 
(f) no. of statements (stmt) 83 712 69 144 8 671 412 694 7 005 169 638 
(g) avg. AsnLOCa / stmt 1.6 1.6 2.3 1.8 1.0 1.2 - 
(h) max AsnLOCa/ stmt 30 84 79 12 3 25 - 
(i) IALOCa 1595 9 752 1 742 104 5 558 13 756 
(j) IALOCa/AdjSLOC 0.03% 0.17% 0.03% 0.00% 0.00% 0.01% 0.25% 
(k) IALOCa/AsnLOC 0.57% 3.5% 0.62% 0.04% 0.00% 0.20% 4.9% 
(l) count (e/=Void) 63 003 22 187 9 672 9 0 2 811 97 682 

(m) % (e/=Void) 45% 20% 49% 1.2% 0.00% 33% 35% 
 

 
provides the value of AdjSLOC, namely 5.6 MLOC, which is defined to be the 
number of SLOC excluding indexing clause lines but including informal assertions 
(cf. Section 3.3). This adjusted SLOC count is the valued used in measuring the 
proportion of assertions. 

4.2   Assertion Metrics 

The metrics concerning assertions are summarized in Table 3.  We highlight some of 
the most interesting results.  For ease of reference, we have labeled the rows of the 
table from (a) to (m).  Looking at the Total column for rows (a) and (b) we see that 
there were 0.28 MLOC of assertions. Hence, out of the 5.6 MLOC of adjusted SLOC 
previously mentioned, overall 5.0% of the LOC were assertions. 

Row (c) of Table 3 gives the distribution of assertions by kind, which is also 
graphically illustrated in Figure 6.  Assertions are mostly used to document 
preconditions (50%), postconditions (40%) and class invariants (7.1%). Few loop 
invariants and variants are given, though both of these appear almost as frequently 
relative to each other.  The low frequency of loop invariants and variants may be a 
testimony to the high degree of challenge associated with writing useful loop 
invariants and variants.  Remarkably only 3.1% of the assertions (0.15% of the overall 
AdjSLOC) were inline checks. 

Recall that the various kinds of assertion statement can contain more than one 
assertion line.  The average number assertion lines per statement (g) ranges from 1.0 
to 2.3, while the average number of assertions per file (e) is 5.8.  While preconditions 
occur most frequently, class invariants have the largest number of assertions  
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Fig. 6. Distribution of assertions by kind (all project categories) 

per statement (2.3).  This suggests that class invariants, when written, express more 
complex conditions since on average, it requires twice as many assertions to express a 
class invariant than a precondition.  The maximum number of assertions per clause 
(h) can be fairly large, e.g. up to 79 LOC for a class invariant and 84 LOC for a 
postcondition. 

We note that a very small proportion of assertions are given in the form of 
comments. Overall, only 0.25% of the AdjSLOC and 4.9% of assertion LOC are 
informal assertions (j), (k). Informal assertions are used most frequently in 
postconditions (3.5% of AsnSLOCens).  We expect this to be the case either because 
(i) some aspect of the postcondition may be too complex to express as an assertion—
e.g. it may require quantifiers—or, (ii) developers do not want the overhead of full 
postcondition evaluation during run-time checking and choose express as comments 
those predicates that would be too computationally intensive. 

A noteworthy proportion of assertions include subexpressions of the form e /= 
Void, stating that a given reference is not Void (i.e. null).  This number is close to 
50% for class invariants and 35% overall (m).  These figures provide some weight to 
the choice made by a number of language designers and static analysis tools (such as 
Splint [13]) which consider a reference type declaration to be non-null by default.  In 
fact, we recently completed a more detailed study that indicates that well over 50% of 
reference type declarations in Java are meant to be non-null [8].  In the newly released 
ECMA Eiffel standard, the notions of attached and detachable types are introduced.  
An identifier of an attached type is guaranteed to always be bound to an object, i.e., it 
cannot be Void/null.  The standard mandates that types are attached by default; to 
indicate a detachable version of a type T one prefixes the type name with a question 
mark: ?T  [12]. 

What was the distribution of AsnProp?  A little over half (52.4%) of the classes in 
the study contained no assertions.  We note that a class without assertions can still 
have a contract, since subclasses inherit contracts from their superclasses (but 
detecting and quantifying such implicit contracts is outside the scope of this study).  
The distribution of the files with a nonzero AsnProp is given in Figure 7.  The highest 
proportion of files (11%) had an AsnProp in the range 2.5% to 5%.  A third of the 
files had an AsnProp between 0 and 12.5%.  Figure 8 shows the number of projects 
with an average proportion of assertions in a given range.  Two projects had no 
assertions, while the majority of projects had between 1.5% and 7% of assertions per 
adjusted SLOC. 
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Fig. 8. Number of projects with AsnProp in a given range 

 
Table 4 shows how the proportion of LOC that are assertions varies by project 

category.  As might be expected, the EiffelStudio category has the highest proportion, 
6.7%, followed by open source projects and proprietary code with 5.8% and 4.2%, 
respectively.  (Recall that the open source category excludes GoboSoft software 
because it is counted in the EiffelStudio project category.) 

Table 4. Proportion of AsnLOCs per project category 

Project Category SLOC
(106) 

AdjSLOC
(106) 

AsnLOC
(106) 

AsnLOC / 
AdjSLOC 

Proprietary 3.3 3.2 0.13 4.2% 
Open Source 1.9 1.8 0.11 5.8% 
EiffelStudio L&S 0.62 0.59 0.04 6.7% 

Total 5.8 5.6 0.28 5.0% 
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5   Threats to Validity 

5.1   Internal Validity 

The most significant potential source of error is in the measurement of metrics 
because the metrics are gathered by a script that uses keyword-based pattern matching 
rather than a true Eiffel parser.  This was deemed the only practical approach because 
study samples were written in several different variants of Eiffel; with the variability 
being due to differences in the language as supported by different compilers or even 
to changes in the language introduced over time.  Since none of the current Eiffel 
compilers support all variants, it seemed utterly impractical to attempt to build our 
own parser that would. 

Due to the manner in which Eiffel makes use of keywords to delimit code blocks 
that can contain assertions, a keyword-based pattern matching approach turned out to 
be not only feasible but also (seemingly) quite accurate.  Our confidence was boosted 
by the use of an inclusive test suite and by the fact that a comprehensive set of sanity 
checks have been build into the script—we have run the script on over 5 million LOC 
without it reporting errors. 

Another aspect which could have biased the study results would be for a file’s data 
to have been counted more than once.  This would be likely to occur when the code of 
an open source library was used in multiple projects.  To guard against this, the script 
used to compute the study metrics was also designed to generate a 32 bit hash code 
for each file based on the file content.  In computing the final statistics we retained at 
most one file with the given hash code. 

5.2   External Validity 

Were the projects used in the study representative of typical Eiffel software?  In the 
first phase of the study we obtained projects from SourceForge and other sites 
dedicated to open source Eiffel software.  Our only selection criterion was for projects 
to appear to be active; we believe that this is reasonable.  In the second phase of the 
study, we solicited contributions from the Eiffel community.  This resulted in 10 
submissions, half of which were proprietary, though this half contributed 55% of the 
LOC for the study.  With respect to the threat to validity, our main concern is whether 
the volunteered projects would have a proportion of assertions that is higher than 
average, hence unfairly contributing support towards our hypothesis.  This cannot be 
ascertained, but we note that the proportion of assertions for proprietary code (4.2%) 
was in fact less than that for open source code (5.8%) and that all but five of the open 
source projects were chosen by us in phase one.  It is clear though, that the relatively 
small size of the Eiffel user community, as compared, say, to that of C or C++, may 
also have some bearing on the study results—e.g. lesser variability. 

Could similar results be expected to hold for other languages supporting DBC? 
One might argue that those who write applications in Eiffel have chosen Eiffel over 
other programming languages precisely because of its built-in support for DBC. 
Hence, the proportion of developers who are willing to write contracts may be higher 
in the case of Eiffel than for another programming language.  Even if this was the 
case, the results offer the promise that such developers may well choose to adopt 
another programming language if DBC support were adequate. 
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6   Conclusion 

In previous work, we were able to establish that the industrial use of assertions is 
fairly widespread [6].  The present study focuses on the use of assertions in Eiffel, the 
only active language supporting the disciplined use of assertions in specifying 
contracts, i.e. Design by Contract (DBC).  Overall, 5.0% of the studied code consisted 
of assertions.  Ninety-seven percent of these assertions were used in contracts rather 
than inline assertions (confirming our hypothesis H2).  We are not aware of any other 
empirical studies that measure the use of assertions, but estimated figures are 
available.  For example, Hoare estimates that 1% of the Microsoft Office Suite LOC 
are assertions [15, 16].  Participants of a survey that we recently conducted offered 
estimates with a mean of 3.2% [6].  The results of the study reported here, allow us to 
confirm (H1) that Eiffel classes contain program assertions in a proportion that is 
higher than the use of assertions in programming languages not supporting DBC.  In 
our opinion, this is good news for those researchers currently striving to add DBC 
support to other languages. 

We expect that developers will be inclined to increase their use of assertions as 
other tools that process assertions and contracts become more mature and widely 
known—e.g. tools like JmlUnit that can automatically generate test oracles from JML 
specifications [18].  By design, DBC restricts the expressiveness of assertions by 
requiring that they be executable.  We believe that this moderation in expressiveness 
is what will allow DBC to be more easily adopted by industry at large.  It will then 
become a smaller step to reach the full expressiveness of behavioral interface 
specifications (BISs). 

References 

[1] J. Barnes, High Integrity Software: The Spark Approach to Safety and Security. Addison-
Wesley, 2003. 

[2] M. Barnett, K. R. M. Leino, and W. Schulte, “The Spec# Programming System: An 
Overview”. In G. Barthe, L. Burdy, M. Huisman, J.-L. Lanet, and T. Muntean editors, 
Proceedings of the International Workshop on the Construction and Analysis of Safe, 
Secure, and Interoperable Smart Devices (CASSIS'04), Marseille, France, 2004, vol. 3362 
of LNCS. Springer, 2004. 

[3] D. Bartetzko, C. Fischer, M. Moller, and H. Wehrheim, “Jass—Java with Assertions”, 
Electronic Notes in Theoretical Computer Science, 55(2):103-117, 2001. 

[4] L. Burdy, Y. Cheon, D. R. Cok, M. D. Ernst, J. R. Kiniry, G. T. Leavens, K. R. M. Leino, 
and E. Poll, “An Overview of JML Tools and Applications”, International Journal on 
Software Tools for Technology Transfer (STTT), 7(3):212-232, 2005. 

[5] L. Burdy, A. Requet, and J.-L. Lanet, “Java Applet Correctness: A Developer-Oriented 
Approach”. Proceedings of the International Symposium of Formal Methods Europe, 
2003, vol. 2805 of LNCS. Springer, 2003. 

[6] P. Chalin, “Logical Foundations of Program Assertions: What do Practitioners Want?” 
Proceedings of the Third International Conference on Software Engineering and Formal 
Methods (SEFM'05), Koblenz, Germany, September 5-9, 2005. IEEE Computer Society 
Press, 2005. 



 Are Practitioners Writing Contracts? 113 

[7] P. Chalin, “DbC and assertions in Eiffel: participants needed for quantitative research 
survey”, EiffelWorld Electronic Newsletter, 32(2), 2006. 

[8] P. Chalin and F. Rioux, “Non-null References by Default in the Java Modeling 
Language”. Workshop on the Specification and Verification of Component-Based Systems 
(SAVCBS'05), Lisbon, Portugal, Sept., 2005. ACM Press, 2005. 

[9] D. R. Cok and J. R. Kiniry, “ESC/Java2: Uniting ESC/Java and JML”. In G. Barthe, L. 
Burdy, M. Huisman, J.-L. Lanet, and T. Muntean editors, Proceedings of the 
International Workshop on the Construction and Analysis of Safe, Secure, and 
Interoperable Smart Devices (CASSIS'04), Marseille, France, March 10-14, 2004, vol. 
3362 of LNCS, pp. 108-128. Springer, 2004. 

[10] D. Crocker, “Safe Object-Oriented Software: The Verified Design-By-Contract 
Paradigm”. Practical Elements of Safety: Proceedings of the 12th Safety-Critical Systems 
Symposium, Birmingham, UK, February, 2004. Springer, 2004. 

[11] D. L. Detlefs, K. R. M. Leino, G. Nelson, and J. B. Saxe, “Extended Static Checking”, 
Compaq Systems Research Center, Research Report 159. December, 1998. 

[12] ECMA International, “Eiffel Analysis, Design and Programming Language”,  ECMA-
367. June 2005. 

[13] D. Evans, “Splint User Manual”, Secure Programming Group, University of Virginia. 
June 5, 2003. 

[14] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe, and R. Stata, 
“Extended static checking for Java”. Proceedings of the ACM SIGPLAN Conference on 
Programming Language Design and Implementation (PLDI’02), June, 2002, vol. 37(5), 
pp. 234-245. ACM Press, 2002. 

[15] C.A.R. Hoare, “Assertions: Progress and Prospects”, http://research.microsoft. com/~ 
thoare, 2001. 

[16] C. A. R. Hoare, “Assertions: A Personal Perspective”, IEEE Annals of the History of 
Computing, 25(2):14-25, 2003. 

[17] C. A. R. Hoare, “The Verifying Compiler: A Grand Challenge for Computing Research”, 
JACM, 50(1):63-69, 2003. 

[18] G. T. Leavens, K. R. M. Leino, E. Poll, C. Ruby, and B. Jacobs, “JML: Notations and 
Tools Supporting Detailed Design in Java”, in OOPSLA 2000 Companion, Minneapolis, 
Minnesota, 2000, pp. 105-106. 

[19] B. Meyer, “Applying Design by Contract”, Computer, 25(10):40-51, 1992. 
[20] B. Meyer, Object-Oriented Software Construction, 2nd ed. Prentice-Hall, 1997. 
[21] R. Mitchell and M. Jim, Design by Contract, by Example. Addison-Wesley, 2002. 
[22] Parasoft, “Jcontract product page”, www.parasoft.com, 2005. 
[23] R. Park, “Software Size Measurement: A Framework for Counting Source Statements”, 

CMU, Software Engineering Institute, Pittsburgh CMU/SEI-92-TR-20, 1992. 
[24] D. A. Wheeler, “SLOCCount”, www.dwheeler.com/sloccount, 2005. 
[25] T. Wilson and S. Maharaj, “Omnibus: A clean language for supporting DBC, ESC and 

VDBC”. Proceedings of the Third International Conference on Software Engineering 
and Formal Methods (SEFM'05), Koblenz, Germany, September 5-9, 2005. IEEE 
Computer Society Press, 2005. 

[26] J. M. Wing, “Writing Larch Interface Language Specifications”, ACM Trans. Program. 
Lang. Syst. , 9(1):1-24, 1987. 

 
 



Determining the Specification of a Control
System: An Illustrative Example

Joey W. Coleman

School of Computing Science
University of Newcastle upon Tyne

NE1 7RU, UK
j.w.coleman@ncl.ac.uk

Abstract. Creating the specification of a system by focusing primarily
on the detailed properties of the digital controller can lead to complex
descriptions that are nearly incoherent. An argument given by Hayes,
Jackson, and Jones provides reasons to focus first on the wider environ-
ment in which the system will reside. In their approach are two major
ideas: pushing out the specification boundaries, and carefully distinguish-
ing between the requirements of the system and the assumptions about
the environment. Pushing out the boundaries of the system specifica-
tion to include the pragmatic intent of the system being specified allows
the specification to be understood relative to the environmental con-
text, rather than remaining a mysterious black box in isolation. Clar-
ifying the distinction between assumptions about the environment and
requirements that the specification must meet increases the clarity of the
specification, and has the potential to seriously reduce the complexity of
the final specification. The example of a gas burner is explored in depth
to illustrate this approach to system specification.

1 Overview of Approach

The general idea of the “Hayes/Jackson/Jones” (HJJ) approach [1] is simple:
for many technical systems it is easier to derive their specification from one
of a wider system in which physical phenomena are measurable. Even though
the computer cannot affect the physical world directly, it is still worthwhile to
start with the wider system. The message can be given as its converse: do not
jump into specifying the digital system in isolation. If one starts by recording
the requirements of the wider physical system, the specification of the technical
components can then be derived from that of the overall system; assumptions
about the physical components are recorded as rely-conditions for the technical
components.

In order to be able to write this style of specification, some technical work
derived from earlier publications of Hayes, Jackson and Jones has to be brought
together. The process of deriving the specification of the software system involves
recording assumptions about the non-software components. These assumptions
are recorded as rely conditions because we know how to reason about them
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Fig. 1. Bridging from the physical world to a digital control system

from earlier work on concurrency (e.g. [2,3,4]). In most cases, we need to reason
about the continuous behaviour of physical variables like altitude: earlier work
by Hayes and Mahony provides suitable notation [5]. The emphasis on “problem
frames” comes from Jackson’s publications [6].

An example of the HJJ approach is a computer-controlled temperature sys-
tem. One should not start by specifying the digital controller; rather, an initial
specification in terms of the actual temperature should be written. In order to
derive the specification of the control system, one needs to record assumptions
(as rely-conditions) about the accuracy of sensors; there will also be assumptions
about the fact that setting digital switches results in a change in temperature.
Once the specification of the control system has been determined, its design and
code can be created as a separate exercise. At all stages — but particularly be-
fore deployment — someone has to make the decision that the rely conditions
are in accordance with the available equipment. Figure 1 gives an abstract view
of the HJJ approach. The referenced [1] outlines this procedure on a “sluice
gate” controller. The analysis includes looking at tolerating faults by describing
weaker guarantees in the presence of weaker rely conditions.

Notice that it is not necessary to build a complete model of the physical
components like motors, sensors and relays: only to record assumptions. But
even in the simple sluice gate example of [1], it becomes clear that choosing
the perimeter of the system is a crucial question: one can consider the physical
phenomena to be controlled as the height of the gate, or the amount of water
flowing; or the humidity of the soil; or even the farm profits. Each such scope
results in different sorts of rely-conditions.

2 Examining the System

2.1 The Example

Our running example in this paper is the specification of a control program for
a gas-burner. The gas-burner is very similar to the one used in [7]. A thermostat
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provides allows the whole system to react to its environment, and the rest consists
of a gas-valve/nozzle assembly, a sensor to detect the flame, and an ignition
transformer. The whole system also includes a computer and a thermostat. The
requirements given in [7] include some detail for intended operation and safety,
and there is also a requirement that the system must operate in an efficient
manner [8].

We are presented with three initial requirements taken verbatim from [7]:

R1. In order to ensure safety the gas concentration in the environment must at
all time be kept below a certain threshold

R2. The gas-burner should burn when heat request is on, provided the gas
ignites and burns without faults

R3. The gas-burner should not burn when heat request is off

There is also a set of assumptions about the environment which will be touched
on when we investigate the rely-conditions for this system.

So far we have presented almost no context for the gas-burner system, and
our source for the example provides little other than what has been mentioned
thus far. At this point, trying to generate a specification would be dangerous
as our assumptions — still unrecorded — about the system would colour the
requirements produced. First, then, we must consider the context and use of
this system.

2.2 The Context

We know that this system reacts to its environment due to the signal provided
by a thermostat. This implies an environment that is colder than the burn-
temperature of the gas that will be used, as well as an environment that has
the tendency to cool down — at least in the area of the thermostat. It would
also seem reasonable to assume that the thermostat will turn the heat request
signal on when the temperature crosses a low threshold, and off when it exceeds
another threshold.

This leads to ruling out a larger set of possible uses: the gas-burner is not
intended as a venting mechanism for something like a refinery. It seems unlikely
that the need to vent gas would be triggered by a temperature (at least, high
temperature gas would not be burnt because of a need for heat). There are also
other usage scenarios that could be ruled out; we will not go into them here.

We also do not know why we are burning gas — perhaps the intention is to
heat the pipes in a boiler, or the bottom of a pot on a gas hob, or just the air
in a gas over or furnace.

For our investigation we will fix the system components to those mentioned
at the beginning of Section 2.1, and assume that the gas-burner is intended to
heat the air around it.

2.3 The Boundaries

The original development of a specification for the gas-burner in [7] starts by
constructing a system model without fully examining the boundaries between
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the system and its surrounding environment. That development does provide an
explicit model of an environment, but it provides little in the way of justification
about the source and accuracy of that model. The definitions of the boundaries —
and their subsequent extension — is not so much an exercise in specifying a larger
system as it is one designed to help ensure that the specification encompasses
all of the pertinent pieces.

Let us consider issues related to the gas itself. Our source gives the requirement
(R1) that the concentration of gas in the atmosphere must be kept below a
certain threshold for “safety”. What does that mean? The first obvious concern
is explosions, of course — it is likely that a high concentration of gas would
explode if ignited. But there are other concerns, especially if people will be in
the same environment as the gas-burner: while unlikely, it is possible that, for
certain types of gas, asphyxiation or intoxication can be caused by a much lower
concentration than is required for an explosion.

Considering the safety properties of the gas, there are also several deeper
properties that should be examined. We are assuming a specific type of gas —
possibly the same natural gas that is commonly piped into houses. What would
happen if a different type of gas were to be used? If we look at the environment
in which the gas-burner will be placed, what assumptions are there? Is it well-
vented? Does it have a “standard” atmospheric gas mix (as opposed to a pure O2
atmosphere)? These considerations — when decided upon — must be recorded
as assumptions.

So much for the properties of the gas on its own; let us bring the gas valve
and nozzle under consideration. We will assume that it is not possible for a
flame to “hide” within the nozzle of the burner as it can with some varieties
of oxyacetylene welding torches. Part of the justification for this assumption is
to limit our system’s boundaries such that we do not have to consider the gas
delivery system. In that vein, we are also going to consider the gas valve to be
an ideal component — its sealing mechanism never fails; it delivers a constant
flow-rate of gas into the environment; and if it ever does fail, it will fail in such
as was as to not release any further gas.

A physical nozzle typically delivers a varying rate of gas as it is turned on
or off, however, the assumption in this example is that the nozzle’s behaviour
will appear binary, delivering either no gas to the environment, or a constant
rate of flow. The development framework used is capable of modelling a variable
flow-rate, but doing so would add little to this exposition.

The ignition transformer generates a spark to ignite the gas, but it is hardly
the only way the gas could ignite. If a person were to hold a lit match near
the gas nozzle, that would suffice to ignite the gas if the valve were opened. In
an open environment there are many possible ignition sources: our specification
must rely only on the ignition transformer.

On reflection, it seems that assuming that the ignition transformer is not the
only source of ignition is a reasonable thing to do: if our specification is writ-
ten such that the gas is only ever turned on when we actually want to burn it,
then the source of ignition is irrelevant. If we do not want to burn gas then our
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usual behaviour is such that the ambient concentration of gas is being reduced.
Note that there is no actual requirement from the source document to keep
the gas off — just one not to burn it if the heat request signal is off (require-
ment R3).

The flame sensor is assumed to be able to detect a flame if one is present. The
failure mode of the system, if it does not detect the presence of a flame, would
be precisely the same as if the gas had failed to ignite in the first place — the
gas would be shut off and the system would wait until the specified time for gas
dissipation expired. If the sensor indicated the presence of a flame when there
was none present, then, while it is possible to detect the fault, the system would
be in a very dangerous state.

Now we hit an issue that falls firmly into the realm of fault tolerance, and is
outside our given requirements: what should the system do if it cannot produce
a flame, even after many attempts? (In this case, “cannot produce a flame”
includes being unable to detect the presence of a flame.) Given our assumption
that if the gas valve fails it will be closed, it is certainly safe to let the system
continue to try to ignite the (possibly not present) gas, but that hardly fits the
notion of an efficient gas-burner.

The thermostat in the system presents many opportunities to widen the scope
of the system. The initial requirements and description suggest that the ther-
mostat contains only a simple on/off switch (or, more precisely, the interface
it presents to the controller will be a boolean value). What considerations are
required for a thermostat that exports an interface that is a percentage of the
maximum possible heat output? Can our gas-burner support that? One designed
for a gas oven would certainly have to do so.

All of the components in the system — to varying degrees — need to be
concerned with “value stutter”. How quickly can the system produce flame; how
quickly can it be extinguished; what sort of delay is required between those
transitions? How often can we transition over a given period of time? Since it
is the thermostat which controls the heat request signal, what are its transition
properties? These questions push the specification boundaries in the temporal
domain, helping determine the lowest granularity level that the specification is
concerned with.

2.4 The Larger Context, Briefly

So, we have now investigated the components of the system and seen how they
can affect the specification and requirements. Let us look at the larger context
of the system. We have already identified some of the scenarios that we are not
concerned with and identified a reasonable, immediate context for the burner:
heating the air around it.

What is the larger context: what kind of larger system could this gas-burner
be a component of? Could there be an unmentioned backup system that might
be used if this gas-burner fails? If so, then the simplest — and possibly best —
error-mode for this gas-burner would be to simply shut down. More important,
however, is that a second gas-burner would invalidate all of the assumptions
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about the concentration of gas in the environment — we rely on this gas-burner
being the only source of gas.

3 An Idealised Specification

Having now thoroughly considered the context that our system is in, we can
finally begin its specification. To do so we are using the same notation as in [1];
systems are either implicitly specified using a system block, or built out of
operators like until/corrects. The system block is an implicit specification,
using keywords such as external, input, output, rely, and guarantee. The
keywords mentioned here are not an exhaustive list as the notation can easily
tolerate extension.

The external keyword is used to identify variables that are important to the
behaviour of the system but are not actually a part of the system being specified.
These variables are eventually eliminated from the specification of the control
software through reification. The input and output keywords are similar to
the VDM rd and wr keywords — they name the variables that the system can
access.

At the heart of the behavioural notions are the rely and guarantee key-
words. The rely-condition states the behaviour that the designer of the system
expects of, and depends on, from the environment. As noted elsewhere, the
system might be deployed in an environment that violates the rely-condition
— it is the responsibility of the user of the system to ensure that the rely-
condition holds. The guarantee-condition complements the rely-condition by
describing the behaviour that the system must conform to in an environment
which respects the rely-condition. Although the system is, formally, free of any
behavioural constraints if the rely-condition is violated, we show some mecha-
nisms to place constraints on a system under certain violations of the rely in
Section 4.

Using this notation we can describe an idealised version of the gas-burner
system as

GasBurnerSystem0 �
system
external Concentration
inputs Temperature
outputs GasFlow ,Spark ,Flame
rely PhysicalProperties ∧GluingAssumptions ∧ Idealisations
guarantee OperationalProperties ∧ LowConcentrationLevel

The idealised system is built under the assumption that everything is working
properly. We will use structures such as until/corrects in Section 4 to add
fault-tolerant features to the system.

In this version of the specification we have Concentration defined as an ex-
ternal variable as it is not possible for any part of this system to directly (or
indirectly) measure the concentration of gas in the environment. Before the final
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specification could be handed off to be implemented all of the external variables
must be removed. The presence of external variables in the initial specification
serves to record the environmental factors: the details about why the system ex-
hibits certain behaviours. This allows us to derive — and justify the derivation
of — specifications that do not use these inaccessible external variables. The
Concentration variable represents the concentration of gas in the environment
immediately surrounding the nozzle of the gas-burner. We make the assumption
that the gas diffuses evenly into the environment, and the Concentration vari-
able is continuous in both domain (time) and range (percentage of gas in the
environment).

The system only has Temperature as an input variable. This represents the
temperature in the vicinity of the thermostat. The variable is continuous in both
its domain (time) and range (temperature at the thermostat). We could easily
put bounds on the range of the value, defining an operational temperature range,
but they add little to the exposition here.

The output variables of the system — GasFlow , Spark , and Flame — are all
boolean-valued and, respectively, represent whether or not the gas is on, whether
or not the ignition transformer is producing sparks, and the presence of a flame
caused by the combustion of gas.

Before moving on to the system’s behaviour, note that all of the input and
output variables will become external variables when the controller is specified.
Because the controller is only able to interact through the signals it receives
and emits, it will be unable to directly access the physical state of the over-
all system. So, in turn, the input and output variables of the overall system
will not be present in the specification that is used to generate the controller’s
implementation.

The rely-condition for this system has been expressed as three conjuncts,
each of which describes a class of assumptions about the environment. The
PhysicalProperties is intended to record the physics that the system relies on, and
is written in terms that are independent of the system itself. To relate the compo-
nents of the system to the physical assumptions we use the GluingAssumptions
conjunct. It makes the connection between things like the IgnitionSource of
PhysicalProperties to the Spark output variable. It has been implicitly idealised,
assuming that all transitions happen instantaneously; the extra complexity of
modelling the delay in transition from one state to another is unnecessary for
this illustration. The last portion, Idealisations, is a set of properties that allow
the system at this level to ignore fault tolerance concerns.

The guarantee-condition of this system has two conjuncts: one of which ex-
presses the actual desired behaviour; the other expresses a sort of behaviour
we wish to exclude. The OperationalProperties gives the core behaviour that
is desired from the gas-burner system. This portion is uncluttered by any no-
tion of fault-tolerance, error detection/correction, or system constraints. The
second conjunct, LowConcentrationLevel , deals with a particularly important
safety condition that our system must respect: it must not cause the concentra-
tion of gas to exceed a certain level.
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3.1 The Notation Used in Properties

The notation used to denote individual properties is essentially that developed
by Mahony and Hayes [5] and used in [1]. The basic intuition is that all state
variables can be treated as continuous functions over a time domain.

The time domain is usually denoted at T , and the expression interval T
represents the set of all possible open, finite intervals of time within that time
domain. It is of note that it is possible to consider T as an interval in its own
right, and that given I as an interval in T , interval I simply represents all of
the possible sub-intervals in I . The letters I , J , and K are typically used to
stand for intervals.

Where they are defined, state variables map specific points in time to values,
so they cannot be used directly with intervals. However, for an interval I and a
predicate P , we write P over I to mean that the predicate holds for all points
in I . This notation is shorthand for ∀i ∈ I · P(i).

Similar to the over operator, there is a form of integration that is used as in
the Duration Calculus [9]. For some predicate, P , the expression

∫
I
P gives the

length of time that P was true in the interval I . There is also a shorthand nota-
tion that represents the total length of a duration, written #I , that is equivalent
to writing

∫
I
true.

Two related predicates over intervals are precedes and adjoins. For the
former, if I preceeds J , then we know that the supremum of I is less than or
equal to the infimum of J . The latter, where I adjoins J , is the stronger case
where the supremum of I is equal to the infimum of J .

3.2 Idealised Rely-Conditions

The PhysicalProperties conjunct contains a model of the physics that is impor-
tant to the gas-burner. These properties do not so much have to be used to
select the environment as verified themselves that they reflect the physics of the
environment. These properties are specified in general terms, using the variable
Combustion to represent any sort of gas combustion, including explosions. We
will later relate the machine-specific Flame variable to the general environmental
property of combustion represented by the Combustion variable.

One such property is the fact that gas, even in high concentrations, will not
spontaneously combust without something to ignite it.

∀I , J : interval T ·

⎛
⎝ I adjoins J ∧ ¬Combustion over I ∧
¬ IgnitionSource over (I ∪ J )
⇒ ¬Combustion over J

⎞
⎠

That is, given two adjoining intervals I and J , if the gas is not lit during I , and
there is nothing to ignite the gas during either I or J , then the gas will not be
lit during J . This holds for any adjoining pair of intervals. One thing to note
about that formula is that IgnitionSource covers anything that could ignite the
gas — the ignition transformer, a heating engineer with a match, and so on.

Directly related to that, we also need to record the physical property that lets
the system ignite the gas:
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∃I : interval T ·
(

(IgnitionSource ∧ Concentration ≥ IgnitionMin) over I
⇒ Combustion over I

)
This formula is an existentially quantified predicate as it is entirely possible for
the gas to not ignite, even in the presence of a spark.

More difficult to express is the notion that combustion reduces the amount of
gas in the environment. Part of the difficulty is that a fully general statement
of this has to talk about gas flow rates, combustion rates, and environmental
dissipation, at the very least. The approach taken here is to codify three cases
around the GasSource and Combustion variables in an attempt to create the
outer bounds of a fully general statement.

∀I , J : interval T ·
(

I adjoins J ∧ ¬GasSource over (I ∪ J )
⇒

∫
I Concentration >

∫
J Concentration

)
This case is the simplest of the three: if there is no gas being added to the envi-
ronment then the overall concentration of gas in the atmosphere will decrease.

∀I , J : interval T ·

⎛
⎜⎜⎝

GasSource over (I ∪ J ) ∧
(¬Combustion ∧ ¬ IgnitionSource) over (I ∪ J ) ∧
(Concentration ≤ EquilibriumLevel) over I
⇒

∫
I Concentration ≤

∫
J Concentration

⎞
⎟⎟⎠

The above formula gives us the situation where gas is being added to the en-
vironment but it is not lit and there is nothing to ignite it. Here we have the
overall concentration of gas increasing.

∀I : interval T ·
(

(GasSource ∧ Combustion) over I
⇒ (Concentration ≤ EquilibriumLevel) over I

)
Finally, if the gas is on and lit, then the overall concentration of gas will not
exceed a concentration where gas is being added at the same rate as it is being
consumed (by dissipation and/or combustion).

The use of EquilibriumLevel in the past few paragraphs is a simplification
made to prevent us from going into a long investigation of combustible gases, fluid
dynamics, and dissipation rates in different environments. Its intended meaning
is simply to act as a mechanism to allow us to note that, say, if the gas is on
and burning then there will be a concentration of gas in the environment that
will be maintained.

The last physical property that we will quickly look at in detail deals with
the possibility of explosions.

∀I : interval T ·
(

(Concentration < ExplosionMin) over I
⇒ ¬Explosion over I

)
Simply put, if there is not enough gas to cause an explosion then we will not get
one.

∃I : interval T ·
(

(Concentration ≥ ExplosionMin) over I
⇒ Explosion over I

)
This property is permissive rather than mandatory as it is possible for the
concentration of gas to exceed the minimum required for an explosion without
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actually causing the explosion. While it is not likely that a spark will fail to
ignite a large concentration of gas, it is possible. And, since we have weakened
the property into a permissive one, it is not necessary to add IgnitionSource to
the formula.

There are, of course, other properties that could — and should — be included
within PhysicalProperties ; only a few of the more interesting are presented here.

The GluingAssumptions conjunct is a complement to the assumptions about
the general physical properties of the environment. In them we make explicit
what it is we assume that the physical components of our system do.

In some cases the state of our equipment implies that a property of the envi-
ronment is true, for instance:

∀I : interval T ·

⎛
⎝ (GasFlow ⇒ GasSource) ∧

(Spark ⇒ IgnitionSource) ∧
(Flame ⇒ Combustion)

⎞
⎠ over I

This formula relates variables in the PhysicalProperties to the output variables of
the system. Specifically, if the gas is on in the system then we can conclude that
there is a source of gas in the environment; when the ignition transformer is on
then there is a means to cause ignition; and when the system is producing a flame
then we have combustion. The formula does not, however, imply the converse,
as it is not necessarily true that the only means of ignition is sparks from the
ignition transformer; it is entirely possible that a person could be holding a lit
match near the nozzle.

The Idealisations conjunct constrains the required scope of the specification,
excluding failures from consideration. The properties expressed in Idealisations
are, over long periods of time, certainly false in any real environment. They are,
however, true most of the time, and are necessary to give the normal behaviour
of the system.

One part of the Idealisations conjunct is essentially the converse of part of
the GluingAssumptions:

∀I : interval T ·

⎛
⎝ (GasSource ⇒ GasFlow) ∧

(IgnitionSource ⇒ Spark) ∧
(Combustion ⇒ Flame)

⎞
⎠ over I

This allows us to assume that there is nothing in the environment that can
directly interfere with the operation of the gas-burner. For example, because
of the formula above we can be certain that there are no other sources of gas
that could help cause an explosion the next time the gas-burner tries to ignite a
flame.

The rest of the Idealisations conjunct includes things to force some of the
permissive parts of PhysicalProperties to become mandatory. For example,

∀I : interval T ·

⎛
⎝ IgnitionSource ∧

Concentration ≥ IgnitionMin
⇒ Combustion

⎞
⎠ over I
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takes the physical property that allows gas to ignite if the concentration is high
enough and there is a spark and adds the constraint that it must happen.

3.3 Idealised Guarantee-Conditions

The guarantee-conditions describe the behaviour that can be expected from a
given system. In the case of the idealised gas-burner the behaviour is straight-
forward.

The OperationalProperties conjunct of the guarantee-condition has a short
definition:

OperationalProperties �
∀I : interval T · ((Temperature ≤ HeatThreshold) ⇔ Flame) over I

The operational behaviour is just that when the environmental temperature is
less than a certain threshold then the system should be burning gas; otherwise,
it should not be burning gas. The formula above has been simplified by the
omission of any time delay between turning the gas on and igniting the gas, and
it also does not consider stuttering when the value of Temperature is close to
the value of HeatThreshold . We can, however, justify this development using the
rely-conditions that we have written.

The LowConcentrationLevel conjunct is the formalisation of the condition
that the concentration of gas in the environment must not exceed a certain safe
threshold to avoid things like explosions.

∀I : interval T · (Concentration ≤ SafeMax ) over I

The justification that satisfying this property prevents explosions relies directly
on the physical property that they cannot happen if the concentration of gas in
the environment is below a certain level, and that SafeMax is always below that
level.

4 Adding Fault-Tolerance

One objection to the idealised specification is that it is impossible to find an
environment that could satisfy the rely-conditions, not to mention equipment
that never fails.

We need the system to have fault-tolerant properties then, and it is important
to first consider how to add such properties to the system. Our approach to fault-
tolerance — indeed, one of the major goals of it — is to keep the fault-handling
behaviour separate from the ordinary behaviour as much as possible. This allows
us the freedom to create idealised specification that are largely uncluttered by
special cases.

These uncluttered specifications are then composed into a larger specification
with provision to handle the faults. The additional material in the larger speci-
fication does not have to deal with the system’s ordinary behaviour and can be
a clean description of what is required to deal with the fault.
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There are two operators proposed in [1] for use when composing specifications:
until/allows and until/requires, i.e.:

OrdinarySpec until Condition allows FaultBehaviourSpec

The particular example they use to explain the operators is related to fault
detection and correction, although other uses of those structures can be imag-
ined. Both operators result in a system that will behave as OrdinarySpec unless
Condition is satisfied. In the case of until/requires the composed system imme-
diately starts behaving as specified in FaultBehaviourSpec. For until/allows, the
composed system can continue as it has been, and optionally change behaviour
at any future time so long as Condition still holds. These operators do not have
quite the right semantics for the purposes of our example, however, as neither
of them allow a return to the ordinary behaviour specification.

We will here propose syntax for another, similar, structure:

OrdinarySpec until Condition corrects FaultBehaviourSpec

As with the two structures from [1], the composed system will initially behave
as OrdinarySpec provides. And, as with until/requires, if the condition holds,
this structure requires that the composed system’s behaviour becomes that of
FaultBehaviourSpec. The specification of FaultBehaviourSpec is limited to the
precisely the same set of variables named in the external, inputs, and outputs
keywords of the OrdinarySpec system. The composed system preserves the reifi-
cation of the variables within the composition. Unlike either of the composition
structures from [1], the specification of FaultBehaviourSpec must provide a test
similar to a post-condition to indicate when the condition that triggered the
fault behaviour has been corrected. Once that post-condition holds the com-
posed system returns to behaving like OrdinarySpec. The intuition behind this
composition operator is to segregate the ordinary behaviour of the system from
the fault-correcting behaviour.

Returning to our idealised specification, we need to consider how to make the
system more robust. The most obvious fault — touched on when the Idealisations
conjunct was described — is the potential for the spark to fail to ignite the gas at
the nozzle. If the gas fails to ignite it is unsafe to continue to attempt to ignite it
as the concentration of unlit gas can quickly build up to unsafe levels. A desired
safety property would be to ensure that in the face of repeated ignition failure
the concentration of gas in the environment does not exceed some given level.
This property would have the effect of preventing an explosive concentration of
gas from occurring. The behaviour that satisfies this property, then, is that if the
gas fails to ignite the system should shut off the valve and ignition transformer
and wait until the concentration has reduced.

We can compose a system specification that handles an ignition failure using
until/corrects:

GasBurnerSystem1 �
GasBurnerSystem0 until IgnitionFailure corrects PurgeWait0



126 J.W. Coleman

This composition creates a system, GasBurnerSystem1, that behaves like the
GasBurnerSystem0 system unless IgnitionFailure ever holds. If IgnitionFailure
holds, then GasBurnerSystem1 will behave as specified for the PurgeWait0
system. The composed system will continue to behave as PurgeWait0 even if
IgnitionFailure ceases to be true. Only when the post-condition of PurgeWait0
is satisfied can the composed system return to behaving as GasBurnerSystem0.

The definition of IgnitionFailure is given as a lambda function rather than a
system, as the intention is to apply this over intervals during the operation of
GasBurnerSystem0, rather than use it directly as a system specification.

IgnitionFailure �
λI : interval T ·#I > MaxIgnitionWait ∧ (GasFlow ∧ ¬Flame) over I

This predicate will be true when the system has had the gas on, but not achieved
ignition over a period longer than MaxIgnitionWait .

Our corrective system, PurgeWait0, is intended to turn off the gas and ignition
transformer and wait for the gas level to dissipate.

PurgeWait0 �
system
external Concentration
outputs GasFlow ,Spark ,Flame
rely PhysicalProperties ∧GluingAssumptions
guarantee SystemOff
post LowConcentrationRestored

The rely-conditions of the system when it is just waiting for gas to dissipate are
similar to GasBurnerSystem0, but the Idealisations conjunct is no longer needed
or desired. The guarantee-condition is defined as

SystemOff � ∀I : interval T · (¬GasFlow ∧ ¬Spark ∧ ¬Flame) over I

and, not surprisingly, requires that the system keep everything turned off.
The post-condition of this system is defined in terms of the environment

LowConcentrationRestored �
∃I : interval T ·

(Concentration ≤ LowConcentrationThreshold) over I

This definition of the post-condition is unusual in that it allows the system to
be considered finished whenever a suitable time interval is found. There is a
semantic assumption that the system is done as soon as the post-condition can
be satisfied, rather than at any arbitrary point after the post-condition has been
satisfied.

5 Deriving the Controller

Up to this point we have been dealing with the specification of the overall system
rather than that of the controller. The derivation of this controller’s specification
follows in two main steps: first, we establish a specification for the controller in
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terms of the system-level variables; and second, we reify that specification to
cast it solely in terms of the signals that the controller can actually access.

A derivation step using this method is, conceptually, the process of moving
from the specification of an overall system to that of a subsystem. This is, in
a sense, the reverse of pushing out the boundaries of the overall system. When
we were pushing out the boundaries we were attempting to bring more elements
into consideration to understand the overall system. During the derivation we
are shifting our focus back to the portion of the overall system which we must
design, but in the process keeping the relevant elements of the overall system in
the specification.

During a derivation step we allow existing variables given with the input and
output keywords to be moved to the external keyword. New variables can be
introduced into the specification as long as there is a part of the rely-condition
that relates them to the external variables. The rely-conditions can be weakened
to allow for a greater variety of behaviour on the part of the environment, and
guarantee-conditions can be strengthened to give a tighter constraint on the
behaviour of the system. Formally, the rely-condition of the original system
must imply the rely-condition of the derived system, and the conjunction of the
rely- and guarantee-conditions of the derived system must imply the guarantee-
condition of the original system.

5.1 The Derivation

The first step is to derive an idealised controller directly from the idealised
system.

GasBurnerController0 �
system
external Concentration,Temperature,GasFlow ,Spark ,Flame
inputs HeatRequest ,FlameDetected
outputs ValvePosition, IgnitionTransformer
rely PhysicalProperties ∧GluingAssumptions ∧ Idealisations ∧

SignalCorrespondences
guarantee OperationalProperties ∧ LowConcentrationLevel

The main differences between the controller and the system are in the input
and output variables. In a sense we have just moved the boundary of the system
that we are considering inwards from the whole gas-burner to just the processing
unit, and this is precisely the approach we want to take. All of the input and
output variables of the whole system are now considered external variables as the
controller does not have access to them. The guarantee-condition can be taken
directly from the overall system for this stage of the controller specification, as
the external behavioural requirements are unchanged.

The rely-condition has a new conjunct that is required to relate the state of the
variables that the controller can directly access to the external variables which
it cannot. For brevity they are presented here under the assumption that the
correspondence between the signals and reality is faultless, but a full specification
would have to be sensitive to that.
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SignalCorrespondences �
∀I : interval T ·

HeatRequest ⇔ (Temperature ≤ HeatThreshold) over I ∧

∀I : interval T ·

⎛
⎝FlameDetected ⇔ Flame ∧

ValvePosition ⇔ GasFlow ∧
IgnitionTransformer ⇔ Spark

⎞
⎠ over I

Of itself, SignalCorrespondences is just the straight mapping of a signal to the
external state that it represents.

The idealised controller needs to be composed in a similar manner as the
idealised system to gain a controller that can tolerate faults.

FTGasBurnerController0 �
GasBurnerController0 until DetectionFailure corrects PurgeWait1

The IgnitionFailure condition that was used in GasBurnerSystem1 becomes
DetectionFailure in this composition. We have defined it in terms of the sig-
nals that are available in GasBurnerController0:

DetectionFailure �
λI : interval T · #I ≥ MaxIgnitionWait ∧

(ValvePosition ∧ ¬FlameDetected) over I

In this definition we has used the signals ValvePosition and FlameDetected
rather than the variables GasFlow and Flame; from the SignalCorrespondences
conjunct of the rely-condition we can know DetectionFailure and IgnitionFailure
will hold under the same conditions.

The corrective system PurgeWait1 bears the same relation to PurgeWait0 as
GasBurnerController0 does to GasBurnerSystem0.

PurgeWait1 �
system
external Concentration,GasFlow ,Spark ,Flame
outputs ValvePosition, IgnitionTransformer
rely PhysicalProperties ∧GluingAssumptions ∧ SignalCorrespondences
guarantee SystemOff
post LowConcentrationRestored

As with GasBurnerController0, all of the system-level variables have become ex-
ternal variables, and SignalCorrespondences is introduced into the rely-condition
to relate the signals the controller can access to the physical state external to
the controller.

5.2 The Reification

The second phase of deriving the specification of the controller is the process
of removing all of the references to external variables while retaining the sys-
tem’s behaviour. This involves specifying a new guarantee that — given the rely-
condition of the unreified controller — implies the unreified guarantee-condition;
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as well as recasting the unreified rely-condition purely in terms of the input and
output variables.

The idealised, reified specification for the controller becomes:

GasBurnerController1 �
system
inputs HeatRequest ,FlameDetected
outputs ValvePosition, IgnitionTransformer
rely SignalProperties ∧ SignalIdealisations
guarantee OperationalProperties1

In this specification the external variables are completely eliminated, but the
inputs and outputs are precisely the same as in GasBurnerController0. The
rely- and guarantee-conditions are very different from the unreified controller
specification.

To give the basis for how the signals work we have the SignalProperties
conjunct of the rely-condition. This is, essentially, a version of the original
PhysicalProperties expressed in terms of the input and output signals. Its justi-
fication is based on the use of SignalCorrespondences, such that

(PhysicalProperties ∧ SignalCorrespondences) ⇒ SignalProperties

To illustrate one particular part of SignalProperties , consider the physical prop-
erty that allows combustion in the presence of both gas and an ignition source.
This properties is defined in SignalProperties as

∃I : interval T ·
(

ValvePosition ∧ IgnitionTransformer
⇒ FlameDetected

)
over I

which states that if we turn on the IgnitionTransformer and ValvePosition sig-
nals then we might get the FlameDetected signal turned on.

The idealisations that the reified version of the controller relies on are — un-
surprisingly — semantically the same as those used by the unreified controller;
they are, however, expressed in terms of the signals. Parallel to the permissive
property on ignition, above, the idealisation that ignition is mandatory is ex-
pressed as:

∀I : interval T ·
(

ValvePosition ∧ IgnitionTransformer
⇒ FlameDetected

)
over I

Fully specified, SignalIdealisations plays the same role of removing the possibility
of failures from the reified controller specification as Idealisations does for the
unreified controller and the whole system.

The reified controller cannot directly guarantee any behaviour relative to
the whole system without the external variables, so its guarantee-condition,
OperationalProperties1 must be written in terms of the input and output variables.

OperationalProperties1 �
∀ I : interval T ·(

HeatRequest ⇔ ValvePosition ∧
(HeatRequest ∧ ¬FlameDetected) ⇔ IgnitionTransformer

)
over I
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The first part of the quantified expression requires that the system will keep the
ValvePosition signal on when the HeatRequest signal is on and off when there it
is off; given the SignalCorrespondences we know that this will keep the gas on
when there is a heat request and off when there is not.

The second part of the quantified expression controls the IgnitionTransformer
signal, ensuring that it is on only when the HeatRequest signal is on and the
FlameDetected signal is off. Again, given the SignalCorrespondences, we know
that this will only engage the actual ignition transformer when the gas valve is
open and there is a heat request.

Moving from the idealised to fault-tolerant version of the reified controller,
we compose it in the same manner as before:

FTGasBurnerController1 �
GasBurnerController1 until DetectionFailure corrects PurgeWait2

Because we have already defined DetectionFailure in terms of the signals we do
not need another version of it; the corrective specification, however, does require
reification.

PurgeWait2 �
system
outputs ValvePosition, IgnitionTransformer
guarantee SignalsOff
post MinPurgeTimeExceeded

The lack of any input or external variables removes need for a rely-condition in
the reified PurgeWait2 specification. Recall that the reification is not attempting
to preserve the description of what the whole system is doing, but rather is
merely trying to preserve the observable behaviour of the system’s input and
output variables. The guarantee-condition is defined as

SignalsOff �
∀I : interval T · (¬ValvePosition ∧ ¬ IgnitionTransformer) over I

which keeps the controller’s output signals off during the period when the correc-
tive behaviour is dominant. It is easy to see that this will be the same behaviour
as PurgeWait1.

The post-condition of the reified corrective system is very different than the
unreified version.

MinPurgeTimeExceeded � ∃I : interval T ·#I ≥ MinPurgeTime

The post-condition changes from being directly concerned with the concentration
of gas in the environment to being concerned only with finding a duration of time
that is sufficiently long. The justification for this comes from the selection of the
length of MinPurgeTime and PhysicalProperties ; the former must be shown to
be long enough, using the dissipation properties in the latter, to reduce the
concentration of gas so that LowConcentrationRestored is satisfied.
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6 Conclusions

This example has been developed using a method that is still being actively
developed by Hayes, Jackson, and Jones. Tackling these and similar further ex-
amples will inevitably refine the method described in [1]. Further effort includes
creating a library of examples — including this one — to create a body of work
that can serve as a guide to practitioners.

In the longer term, it should be possible to use such a library of examples to
generate a set of “HJJ patterns”, not unlike the design patterns [10] currently
used by practitioners of object-oriented development. Even if a set of pattern-
like structures cannot be developed, a full set of guidelines for using this method
is required.

The composition of specifications given with this method, in senses of both
subproblems and whole specifications, is a topic that remains to be fully explored.
The task of creating a specification for a system’s “normal” operation seems well
understood, and creating the specification with weaker rely-conditions for the
“abnormal” system behaviour is equally straightforward. However, the problem
of combining such specifications is a problem that demands further study.

The basic ideas involved in the Jones’ rely-conditions, while good at recording
interference, leave gaps when it comes to notions such as ensuring that the system
can make progress. Work such as Stølen’s on wait-conditions [11] addresses some
of these issues, and should be included in this method.
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Abstract. This paper addresses the rigorous validation of an integrity
policy by means of the application of formal methods and related support
tools. We show how the policy, which provides a flexible fault tolerant
schema, can be specified using a process algebra and verified using model
checking techniques. Actually, we show how this approach allows both
the generic validation of a middleware based on such integrity policy,
and the validation of an integrated application which internally uses this
mechanism. In the first case, the fault tolerance of a system, possibly
composed of Commercial Off The Shelf (COTS) components, is guaran-
teed by a validated resident interaction control middleware. The second
case applies instead when the application is forced to use a given mid-
dleware, as it is the case of Web Services.

Keywords: Integrity policies, fault tolerance, process algebras, model
checking.

1 Introduction

Design and analysis at the architectural level are considered as the most pertinent
basis to support the development of complex computing systems. The software
technology of fault tolerant systems is also moving in this direction.

As examples of complex systems where fault tolerance issues are of prominent
importance, consider those for power plants or those for the transportation in-
dustry, be it automotive, avionic, or railway. These systems offer the customer
several critical functions as well as non–critical ones.

For instance, a top range car is equipped with a multitude of sensors and actu-
ators that provide the driver with both functionalities that assist in conducting
the vehicle more safely (like ABS systems or vehicle stabilisation systems), and
functionalities that provide travel information or even entertainment.

It is obvious that not all such functionalities have the same criticality: a
component of a system is considered critical if its failure can seriously affect the
ability of the overall system to fulfill its safety requirements.
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Then, an important issue is to limit failure propagation among communicating
components. Preventing failure propagation is a way of guaranteeing the fault
tolerance of a system, built as a set of communicating components. In particular,
it is important to guarantee that a critical component (which should never fail
– or should only fail with an extremely low probability) is not influenced by the
failure of non critical ones.

One solution is to isolate critical components, dedicating to them, for instance,
completely separated hardware resources with respect to those dedicated to the
non critical ones, and to rigorously validate the critical components. However,
complete isolation is not always possible because of the inevitable cooperation
among the various parts of the system. In fact, the current trend is towards a
greater integration of different functions on the same computer or network of
computers.

Another solution is to treat all the components as critical. The advantage is that
communications do not have to be limited, the drawback is that all components
have to be rigorously validated making this approachnot always feasible due to the
large dimensions of systems and to the use of “COTS” (Commercial Off The Shelf)
components. Moreover, usually only a few components are really critical.

The issue can be solved with a compromise between the non-effectiveness of
the first solution, and the high cost of the second one, thanks to the defini-
tion of particular interaction policies among components, called integrity poli-
cies [2,6,8,25,26,13]. An integrity policy assigns a level of integrity to each
component of an application and states the communication patterns among pairs
of components, depending on the respective integrity levels. Once a valuable pol-
icy has been adopted, not all the components need to be rigorously validated
with the same effort, but only those which accomplish a critical task and those
which provide data for these critical components.

In particular, critical components may embed typical fault tolerance mecha-
nisms (like majority voting) to fulfil their integrity level. Integrity policies can
be considered as a fault tolerance mechanism at the intercomponent level, since
they guarantee that critical components cannot be affected by the failure of
non–critical ones.

This paper presents the rigorous verification of the Multiple Levels of Integrity
(MLI) policy, defined in [25,26], which addresses an object–oriented framework.
The original definition of the policy consists of a set of declarative rules. We show
how the policy can be formally specified using a process algebra and verified us-
ing model checking techniques. Actually, we show how this approach allows both
the generic validation of a middleware based on such integrity policy, and the
validation of an integrated application which internally uses this mechanism. In
a previous work [3] we have already addressed the formal validation of fault tol-
erance mechanisms by means of model checking techniques along the principles
presented in [4]. The main difference between this paper and [3] is that in the
previous work we addressed basic fault tolerance mechanisms, while here we ad-
dress a communication scheme among components, which might include those
fault tolerant mechanisms.
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This paper is organized as follows: in Sect. 2wedescribe theMultipleLevels of In-
tegrity policy. In Section 3 we introduce the specification and verification approach
we have adopted. In Sect. 4 we formally specify the integrity policy using the CCS
process algebra. In Sect. 5 we present the model checking results and discuss the
key points of the verification process over the generic communication scheme. In
Sect. 6 we deal with the validation of applications which use the MLI mechanism.
In Sect. 7 we consider a case study taken from [1]: a peer–to–peer system, where the
MLI mechanism is integrated at the application level.

2 The Multiple Levels of Integrity Interaction Policy

Integrity policies are defined to prevent failure propagation from non critical to
critical components: they assign a level of integrity, ranging over a finite set of
natural values, to each system component, and they state the communication
patterns.

The Multiple Levels of Integrity (MLI) policy [25,26] has been defined within
an object–oriented framework, to provide flexible fault tolerant schemes. It per-
mits some objects to receive low level data, by decreasing their integrity level by
means of a set of general interaction rules.

The MLI policy builds on Biba’s [6] and Clark and Wilson’s [8] policies. Biba’s
policy, which is based on the Bell–LaPadula lattice model [2], forbids any flow of
data from a low to a high integrity level components. The Clark-Wilson model
defines a set of fine grained rules, based on commercial data processing practices,
to maintain data integrity. Data can flow to a low level and go back, if it is
possible to prove that they did not loose their integrity. The MLI policy is based
on the following concepts:

Integrity levels (il) range on a discrete interval. Data are assigned the in-
tegrity level of the object which produced them.

Single Level Objects (SLO) are objects with a constant integrity level.
Consequently, an SLO of level n is only allowed to receive data from objects of
level greater or equal to n.

Multiple Level Objects (MLO) are the core of the policy: their integrity
level can be dynamically modified, since they are allowed to receive low level
data. To this purpose, an MLO is assigned three values:

maxil which represents the maximum integrity level that the MLO can have. It
is also called the intrinsic level of the MLO, since it is assigned during the
design of the application. It is a constant, and represents the integrity level
at which the object is certified.

minil which represents the minimum value the integrity level of the MLO can
reach while interacting with other objects. It is set at invocation time, on
the bases of the invocation level. No memory of it is kept after the answer
to the invocation is returned: minil is local to an invocation.
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il which is the current integrity level. It is set at invocation time to a value ranging
between maxil and minil and decreases if lower level data are received during
the computation to serve the invocation. Also il is local to each invocation.

The policy requires a new MLO instance to be created every time the MLO is
invoked. As a consequence, an MLO cannot be used to implement a component
which has to store some data. This means that an MLO, from a functional point
of view, is a stateless object: only SLOs can store data. Therefore MLO will
typically refer to some SLOs to maintain their data. In Fig. 1, we provide an
example of the evolution of an MLO in response to an invocation. When an MLO
with maxil = 3 receives a read request of level 1, it sets its minil to 1, meaning
that no answer with integrity level smaller than 1 can be returned. The value
of il is set to maxil, since a read request does not corrupt the integrity level of
the MLO. Suppose the MLO needs to delegate part of the answer construction,
sending another read request to a third object. The level assigned to the request
is set to minil, meaning that an answer is useless if lower than minil. Let the
integrity level of the answer be 2, then the MLO can accept it but its il is
decreased to level 2. Finally, an answer to the first request is provided, at level
2, that is the current il, and the MLO restores its initial state.

Validation Objects (VO) are used to extract reliable data from low level
objects and to provide information at a fixed level of integrity. In real systems,
it is sometimes necessary to get data from unreliable sources, such as sensors,
and use them in critical tasks. However, this use could either lower the level of
the entire system or violate the integrity policy. Validation Objects represent a
safe way to upgrade the integrity level of these data. An example of Validation
Object is the one that uses a redundant number of data sources, and filters them
with appropriate algorithms. For instance, a majority voting can be used to filter
out erroneous data from a set of redundant copies.

A set of rules is given, describing all the possible communication patterns
among pairs of objects, depending on the respective integrity levels. We list them
in Table 1: we call A and B the invoking and the invoked objects, respectively.
The first part of the table considers invocation conditions. The invocation is
refused if the specified condition is not satisfied. If it is accepted, the invoked

3

2

1

0

RR

AN

minil=1 minil=1

il=3

il=2 AN

RR
MLO MLO

Fig. 1. Behaviour of an MLO: dotted arrows follow the MLO’s evolution, thick arrows
bind requests to the corresponding answers
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object (if an MLO) might have to change its integrity level, as shown in the
second part of the table, where invocation effects are considered. In the case of
invoking MLO, the data returned at the end of a method execution may decrease
the integrity level of the invoker, as shown in the third part of the table.

Table 1. Rules describing the communication patterns: conditions to be satisfied for a
method invocation to be accepted, and the effect on the level of objects after acceptance
and after method execution

Conditions A&B SLOs A SLO, B MLO A MLO, B SLO A&B MLOs

A reads B il(A)≤ il(B) il(A)≤maxil(B) minil(A)≤ il(B) minil(A)≤maxil(B)

A writes B il(B)≤ il(A) always il(B)≤ il(A) always

A r-w B il(A)= il(B) il(A)≤maxil(B) minil(A)≤ il(B)≤ il(A) minil(A)≤maxil(B)

Invocation
effect A SLO, B MLO A&B MLOs

A reads B
minil(B) := il(A);
il(B) := maxil(B)

minil(B) := minil(A);
il(B) := maxil(B)

A writes B il(B) := min(il(A), maxil(B)) il(B) := min(il(A), maxil(B))

A r-w B minil(B), il(B) := il(A) minil(B) := minil(A);
il(B) := min(il(A), maxil(B))

Return
effect A MLO, B MLO or SLO

A reads B
A r-w B

il(A) := min(il(A), il(B))

The communication model is based on the notion of method invocation.
Method invocations are assigned an integrity level too. In particular, read, write
and read–write requests are considered as abstractions of any method, with re-
spect to the effect on the state of objects. The level of a write request corresponds
to the level of the data which are written, the level of a read request corresponds
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minil=1

D SLO

VO

Fig. 2. A VO is able to (partly) restore the integrity of data
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to the minimum acceptable level of the data to be read. Read–write requests are
assigned two integrity levels, one for read and one for write.

The assignment of the integrity levels to anSLOor aVOs, or of themaxil value to
an MLO should be done accordingly to the level of its trustiness. For instance, this
value canbeassignedbya certificationauthority. Inamoredecoupledworld,we can
foreseeamodel inwhicheachapplication isdesigned in suchawaythata component
declares its own integrity level, which has to be accepted by the interacting parties.

3 Validation by Model Checking

It is worth noting that model checking algorithms [9] are successful formal ver-
ification techniques, and many efficient model checkers are currently available.
They automatically check the truth of system properties, expressed as temporal
logic formulae, on the finite state model representing the behavior of a system.

Model checking techniques have been already used to check the correctness
of fault tolerant applications [3,4,7,18,24]. In this paper, we propose the formal
validation of a mechanism implementing the MLI policy using model checking
techniques. To do this we rely on a very simple and general specification and
verification framework; we specify the behaviour of the mechanism using value–
passing CCS [19], and describe the properties to be checked using an action-based
branching time temporal logic, ACTL [10]. For verification purpose, we use the
efficient on the fly model checker for ACTL FMC [14].

3.1 The CCS Process Algebra

Process algebras [15,19] are formalisms that can describe a system consisting of
communicating objects at a high level of abstraction. They rely on a small set
of basic operators, which correspond to primitive notions of concurrent systems,
and on one or more notions of behavioral equivalence or preorder. Behavioral
equivalences are used to study the relationships between descriptions of the same
system at different levels of abstraction (e.g., specification and implementation).

Process algebras are particularly suited to describing an interaction policy and
MLI in particular, since policies definition abstracts from the functionalities of
the objects, and the relevant events to be described are the method invocations
and method returns (the actions) which may change the object integrity level,
which is our abstraction of the state.

Moreover, the original definition of the policy consists of a set of declarative
rules (see Table 1). These rules cannot be formalized within a static framework,
such as traditional type theory, due to the presence of dynamically changing
integrity levels for MLOs. We rather need to associate a process to each object
to model its dynamic behaviour with respect to the integrity level.

In CCS a system consists of a set of communicating processes. Each process
executes input and output actions, and synchronizes with other processes to
carry out its activities.

The syntax is based on a set Act of atomic actions. Actions are constituted
by a name and one or more optional values. They are distinguished into output
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actions, terminated by “!”, and input actions, terminated by “?”. Moreover, τ
denotes the special action not belonging to Act, representing the unobservable
action (to model internal process communications). We assume Actτ = Act∪{τ}.
In Table 2 we present the subset of the CCS operators we will use in the rest of
the paper.

The semantic models of CCS terms are Labelled Transition Systems (LTS)
which describe the behavior of a process in terms of states, and labelled transi-
tions, which relate states. An LTS is a 4–tuple A = (Q, q0, Actτ , →), where: Q is
a finite set of states; q0 is the initial state; →⊆ Q× Actτ ×Q is the transition
relation. The structural operational semantics of the considered CCS operators
is given in terms of LTSs [19].

3.2 The ACTL Temporal Logic

The logic ACTL [10] is a branching-time temporal logic, which is the action
based version of CTL [11]. ACTL is well suited to expressing the properties of a
system in terms of the actions it performs at its working time. In fact, ACTL,
whose interpretation domains are LTSs, embeds the idea of “evolution in time by
actions” and is suitable for describing the various possible temporal sequences
of actions that characterize a system’s behavior.

The syntax of ACTL is given by the following grammar, where φ denotes a
state property:

φ ::= true
∣∣ ∼φ

∣∣ φ & φ′ ∣∣ [μ]φ
∣∣ AGφ

∣∣ EGφ
∣∣ A[φ{μ}U{μ′}φ′ ∣∣ E[φ{μ}U{μ′}φ′]

In the above rules μ is an action formula defined by:

μ ::= true
∣∣ a

∣∣ μ ∨ μ
∣∣ ∼μ for a ∈ Act

We provide here an informal description of the semantics of ACTL operators.
The formal semantics is given in [10].

Any state satisfies true. A state satisfies ∼φ if and only if it does not satisfy
φ; it satisfies φ & φ′ if and only if it satisfies both φ and φ′. A state satisfies [μ]φ
if for all next states reachable with μ, φ is true.

Table 2. A fragment of CCS

a. P Action prefix Action a is performed, and then process P is
executed. Action a is in Actτ

P + Q Nondeterministic choice Alternative choice between the behavior of pro-
cess P and that of process Q

P ‖ Q Parallel composition Interleaved executions of processes P and Q.
The two processes synchronize on complemen-
tary input and output actions (i.e. actions with
the same name but a different suffix)

P \ a Action restriction The action a can only be performed within a
synchronization
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Fig. 3. Models and ACTL formulae

The meaning of AG φ is that φ is true now and always and anywhere in the
future, i.e. in all states of all exiting paths. EG φ means that φ is true now and
in all the states of an exiting path.

A state P satisfies A[φ{μ}U{μ′}φ′] if and only if in each path exiting from P ,
μ′ will eventually be executed. It is also required that φ′ holds after μ′, and all the
intermediate states satisfy φ; finally, before μ′ only μ or τ actions can be executed.
The formula E[φ{μ}U{μ′}φ′] has the same meaning, except that it requires one
path exiting from P , and not all of them, to satisfy the given constraint.

A useful formula is A[φ{true}U{μ′}φ′] where the first action formula is true:
this means that any action can be executed before μ′.

Some derived operators can be defined: φ∨φ′ stands for ∼(∼φ & ∼φ′); <μ>φ
stands for ∼[μ]∼φ ; finally, EF φ stands for ∼AG∼φ.

In Figure 3 we exemplify the truth of some formulae on some models.

4 Modeling the Integrity Policy

We formalize the MLI policy by specifying in value passing CCS the behaviour
of SLOs, MLOs, and VOs.

We are interested in an abstraction of a system that only considers the effect
of the interactions between objects on the objects integrity level. We thus model
objects as interacting via the abstract methods read, write, and read–write,
and abstract the objects state by the integrity levels. Also, we model method
invocation through a remote procedure call, in which the invoking object waits
for the method return event. In the following:

SLO(x), MLO(x), and VO(x) are process variables denoting the processes defin-
ing a SLO with integrity level x, a MLO with maxil value x, a VO providing
data of level x, respectively.

read(x) is a read request action of level x. This means that the invocation was
issued by an SLO with x as il or by an MLO with x as minil.

answer(x) is an answer action. Value x can be the current il of the object which
is answering, or -1: answer(-1) means something like: “I cannot answer”.
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write(x) denotes a write request issued by an object with x as il. We call x the
level of the write request. Write requests are not answered.

read write(x,y) denotes a read–write request: variable x denotes the read level
of the request, variable y denotes the write level.

4.1 Modeling the Behaviour of SLO(x)

We provide here the CCS specification of an SLO with integrity level equal to x.

SLO(x)=

read(y)?.( [y≤x]SR(x) + [y> x]answer(-1)!.SLO(x) ) +
write(y)?.( [y< x]SLO(x) + [y≥ x]SW(x) ) +
read write(y,z)?.([y≤ z< x ∨ y> x]answer(-1)!.SLO(x) + [y≤ x≤ z]SR(x))

SR(x) =
answer(x)!.SLO(x) +
write(x)!.SR(x) +
(read(x)! + read write(x,x)!).answer(y)?.

( [y< x] answer(-1)!.SLO(x) + [y≥ x] SR(x) )

SW(x) =
SLO(x) +
write(x)!. SW(x) +
(read(x)! + read write(x,x)!).answer(y)?.([y< x]SLO(x) + [x≤y]SW(x))

When a read request of level y is received and y ≤ x, then the SLO performs
the needed computation to serve the request, as described by SR, while if y > x
then the SLO has not the needed integrity level to supply an answer. When a
write request is received, a computation can be performed to serve the request
(see SW), but no answer is due. If the level of the request is smaller than x, then
it is ignored, and no computation is performed. A read–write request is dealt
with in the same way as the composition of a read and a write one.

To serve a read or a read–write request, the SLO behaves as SR, it can: provide
the answer to the caller and end its duty (first choice); send a write request to
another object and continue (second choice); send a read or a read–write request,
wait for the answer (third choice). In this case, continuation depends on the level
of the answer received, if this is too low, then the computation is stopped, and
a “I cannot answer your request” message is sent.

Note that the specification of SR is non–deterministic, and the SLO might get
into a loop and never send an answer back. Non–determinism is a consequence
of the abstraction from the object functionalities. In particular, whether the first
choice –the normal loop exit– is made or not depends on the functional behaviour
of the object. If it is correct, i.e. no integrity level violation occurs, then the
overall behaviour of the object only depends on its functional description1.

1 Static analysis can be used in some cases to determine termination, which is in
general undecidable. When termination is not provable, it can be enforced by means
of constrains on the functional behaviour (static bounds on the loops, finite state
machine behaviour, fairness constrains, . . . ).
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With SW(x) we represent an SLO(x) which serves a write invocation. Its de-
scription can be derived from SR(x), by removing all output actions of the type
answer, since no answer is due to write requests.

4.2 Modeling the Behaviour of MLO(x)

Multiple Level Object can change their state (value of the integrity levels): the
il is decreased in case of lower level write request, minil is raised when serving a
higher level read request.

MLO(x) =

read(y)?.( [y≤x]MR(y,x,x) + [y>x]answer(-1)!.MLO(x) ) +
write(y)?.( [y≤x]MW(0,y,x) + [y>x]MW(0,x,x) ) +
read write(y,z)?.

( [y≤z≤x]MR(y,z,x) + [y≤x≤z]MR(y,x,x) + [y>x]answer(-1)!.MLO(x) )

When a read request of level y is received and y≤x, then the MLO makes the
necessary computation to serve the request taking y as its minil value, and x,
its maxil value, as its value for il, and behaves like MR(y,x,x). On the contrary,
a read request of level greater than x cannot be considered, since the MLO does
not have the integrity level needed to supply an answer.

When a write request is received, the MLO takes 0 as minil, and the minimum
among x (its maxil) and y (the level of the request) as il. A computation can
then be performed to serve the requests, but no answer is due.

A read–write request is dealt with as the composition of a read and a write
one. Depending on its read and write values, the object can refuse the invocation,
and behave as MR(y,z,x) or as MR(y,x,x).

Process MR(min,il,max) represents an MLO which serves a read invocation, again
characterized by the three values min, il, and max. Indeed, when serving a
request, the MLO can interact with other objects and change these values. When
the request has been served, the MLO forgets the min and il values and keeps
only its intrinsic level max. This is possible since a new object instance is created
every time the object is invoked, and thus the object keeps no memory of previous
invocations.

MR(min,il,max) =

answer(il)!.MLO(max) +
write(il)!.MR(min,il,max) +
(read(min)! + read write(min,il)!). answer(x)?. (

[x<min]answer(-1)!.MLO(max)+[min≤x≤il]MR(min,x,max)+[x≥il]MR(min,il,max)

)

The behaviour of MW(min,il,max) is that of MR(min,il,max) where all output
actions of the type answer are removed, as we have done in the case of SLOs.
We omit the definition.



Achieving Fault Tolerance by a Formally Validated Interaction Policy 143

4.3 Modeling the Behaviour of VO(x)

A Validation Object provides data at a fixed integrity level, that is the level of
integrity to which it is able to raise data. It can be modeled for our purposes as
only accepting:

VO(x) = read(y)?. ([y≤x] VR(x) + [y>x] answer(-1)!. VO(x) )

VR(x) = (answer(x)! + answer(-1)!). VO(x)

The Validation Object either tries to serve the request (VR), or it answers im-
mediately that this is not possible. It can be that the request cannot be served.
This is the case, for instance, if the VO cannot find all the (redundant) data it
needs.

5 Verification of the Integrity Policy

The formal verification of the multi-level integrity policy can be addressed from
two different points of view:

– looking at the generic mechanism itself: the interest is on a complete verifica-
tion of the mechanism in all its possible utilization scenarios; this is especially
useful when we want to propose the mechanism as a sort of certified integrity
preserving middleware that mediates all inter-objects interactions enforcing
the integrity policy. This point of view is addressed in this section;

– dealing with an application which internally uses the policy: in this case, an
ad hoc formal verification should be carried on an integrated model of the
application. This point of view is addressed in the next section.

The Multiple Levels of Integrity policy has to guarantee that the interaction
among different components does not affect the overall confidence of the appli-
cation, i.e that a non–critical component does not corrupt a critical one. In par-
ticular, data of a low integrity level cannot flow to a higher integrity level (unless
through a Validation Object, which is the only kind of object authorized to break
this rule). This condition should hold for isolated objects and in any schema of
interaction among objects. In [12], we address object invocation, nested and con-
current invocations as verification cases, since in an object–oriented framework
most interaction schemata can be reduced to combinations of these interaction
patterns.

Here, we concentrate on the following properties:

Prop 1. An object with intrinsic level i cannot provide answers of level j > i.
Prop 2. An object with intrinsic level i does not accept read requests of level

j > i.
Prop 3. If an MLO with intrinsic level i receives a read request of level j ≤ i,

and, to serve the request, it invokes with a read request a third object of
intrinsic level maxil smaller than j, then it cannot answer the initial request.
Indeed, its level is decreased to the maxil value of the third object because
of the new data received.
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We will check Prop 1 and Prop 2 against the model of an MLO, and Prop
3 against the model of a combination of MLOs based on nested invocation.
Indeed, the most interesting cases are those involving MLOs, which can change
their integrity levels during the computation.

The above properties are first formalized as ACTL formulae, then the FMC
model checker is used to verify their satisfiability on the model of the selected
subsystems. Since actual verification by model–checking requires non–parametric
models, we will define particular instances of the considered validation cases
which are sufficiently representative to be generalized. Hence, we will use these
instances to prove the set of temporal logic formulae expressing the integrity
properties above, and then we will discuss how model checking results can be
generalized. In particular, in the following, we assume integrity levels to range
from 0, the lowest, to 3, the highest.

5.1 Verifying Properties 1 and 2

We consider a system consisting only of the object A2, which is formalized by
MLO(2), i.e. it is an MLO with maxil equal to 2. In this case, properties 1 and 2
can be expressed by the following ACTL formulae2:

F1: ∼ EF 〈A2 answer(3)!〉 true
F2: AG [A2 read(3)?] A [true {false}U {A2 answer(−1)!} true]

i.e. A2 cannot provide answers of level 3, nor serve read requests of level 3.
Formulae F1 and F2 have been proved true on the model of A2 using the

model checker FMC for ACTL.
For other values of maxil, we can repeat the verification using the correspond-

ing formulae and processes. The general formulae formalizing properties 1 and
2, to be instantiated to the various cases, follow. The shorthand &

j>i
φj stays for

φi+1&φi+2& . . .&φk, where k is the highest integrity level of the concrete model
(in our case, k=3).

Prop 1 and Prop 2 say that any Ai satisfies, respectively:

&
j>i

∼ EF 〈Ai answer(j)!〉true.

&
j>i

AG[Ai read(j)?]A[true{false}U{Ai answer(−1)!}true]

5.2 Verifying Property 3

We take into account here the case in which an MLO of a given level, in re-
sponse to a read–request, invokes with a read–request another MLO of a lower

2 In the following we rename requests and answers: requests carry the name of the
object which is invoked to serve the request, answers take the name of the answering
object.
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integrity level. This is indeed the most complex case of nested invocations:
all the other combinations (SLO vs. MLO, read–request vs. write–request or
read/write–request, different levels of integrity) can be reduced to this one: in
any case, a separate validation by model–checking of these other cases can be
made following what is presented here.

We describe such a system with the parallel composition of the two objects:
A2 and B0. A2 is an MLO(2) that, to serve a read request of level 1, sends a
further read request to B0, defined by MLO(0) (see Fig. 4).

Prop 3 for this concrete system is expressed by the ACTL formula:

F3: AG [A2 read(1)?] AG [ν] A [true {μ} U {A2 answer(−1)!} true]

with μ =∼ (A2 answer(0)! ∨A2 answer(1)! ∨A2 answer(2)! ∨A2 answer(3)!)
and ν = B0 read(0)! ∨B0 read(1)! ∨B0 read(2)! ∨B0 read(3)!

i.e., if A2 receives a read request of level 1 and then sends a read request to B0,
then the unique next visible answer has level −1.

Formula F3 has been proved true on the model of A2 ‖ B0.

Generalization of the results. The generalization step deals with the in-
tegrity levels. We would consider all the models built with Ai, Bk, read(j), for
any i, j, k such that i ≥ j > k and integrity levels ranging from 0 to a maximum
value M, and check the corresponding instances of the following general formula
expressing Prop 3.

&
j ≤ i

AG [Ai read(j)?] AG [
∨

k < j
m=0 . . . M

Bk read(m)! ]

A [true{∼ M∨
m=0

Ai answer(m)!} U {Ai answer(−1)!}true]

We can repeat the model–checking for any i, j, k, and it is easy to see that the
result of model–checking will not change. The proved properties guarantee that
data do not flow from a given level of integrity to a higher level of integrity
through a pair of nested invocations.

A further generalization step can be made, to conclude that data do not flow
from a given level of integrity to a higher one, through any number of nested
invocations which include an invocation to an object with a lower level than the
level of initial read invocation, as expressed by:

Prop G–3. If an MLO with intrinsic level i receives a read request of level
j ≤ i, and, to serve the request, it starts a chain of nested invocations to
other objects, one of which has intrinsic level k < j, then it cannot answer
the initial request.

We reason by induction. We consider n objects B1 ‖ B2 ‖ . . . ‖ Bn , where B1 is the
first object of the chain, i.e. the one receiving the first read invocation. Let j be
the integrity level of such an invocation. The inductive assumption guarantees
that if any of the Bs has an integrity level lower that j, then the answer has
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level -1. Thus, we can safely simulate the behaviour of the parallel composition
B1‖B2‖ . . . ‖Bn with an MLO Ck with k<j. Hence, once we have proved that A‖Ck
behaves correctly, we can conclude that this is also true for A ‖ B1 ‖ B2 ‖ . . . ‖ Bn.

Fig. 4. A2 behaviour in the case of nested invocations

6 Validation of Applications Instantiating the Policy

The model of an application which internally uses the policy will be an instance
of the general model of Section 4 and its validation will inherit the proof results
and techniques.

The computational units of an application will be objects, and behave as SLOs,
MLOs, or VOs. Part of the design effort is indeed to decide, for each system com-
ponent, which of the MLI policy objects has to be instantiated. An instance of the
general model introduces the functional aspects of the application of interest, and
reduces the number of possible behaviours, by limiting the non–determinism.

This way of applying the MLI policy in practice was presented in [1], where
some case studies were considered, in the Web Services approach. Among them,
the one discussed in Section 7, dealing with a peer–to–peer service where some
peers may be untrusted.

As far as validation is concerned, in the case the application architecture is
not an instance of the patterns already validated, then an ad hoc verification
can be carried out, by stating the properties of interest in ACTL, and checking
them with FMC.

Otherwise, if the application instantiates a pattern validated in the previous
section or in [12], then the validation process can directly exploit some of the
validation results for the pattern. In fact, the instantiation process preserves
some of the properties holding in the general model.

Instances may, on the one side, prune some paths, on the other they may
introduce new steps in a computation. Hence, not all the formulae holding in an
interaction pattern also hold in the instances. The formulae which are maintained
are those expressed in a fragment of ACTL which is fully abstract with respect
to the weak trace equivalence. In [1] it has been shown this fragment to be:
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φ ::= true
∣∣ false

∣∣ φ & φ′ ∣∣ [μ]φ
∣∣ AG φ

∣∣ A[true{μ}U{μ′}true] (1)

Where μ is an action formula as defined in Section 3.2.

The proposed formalization and validation framework applies also to the case
of Web Services. Conceptually, Web Services are stand-alone components that
reside over the nodes of the network. Each Web Service has an interface which
is network accessible through standard network protocols and describes the in-
teraction capabilities of the service. Applications over the web are developed by
combining and integrating together Web Services.

Web applications show the same verification problems of classical distributed
systems. The modelling and validation techniques presented in the previous sec-
tions can be extended straightforwardly to Web Services. Indeed, interactions
between Web Services are based on message exchange, and interactions can be
one–way or follow a request–response pattern. The only added complexity is due
to the fact that in most cases web applications operate in an open environment,
instead of an environment where all the components and their relationships are
known.

In an open system only a part of the system is known, while only some assump-
tions can be done on the nature and behaviour of the remaining components,
whose set may also dynamically vary. A very weak assumption is to know only
the interface of the remaining components (the environment) and to ignore their
semantics.

For checking a property of a sub–system regardless of its environment, one
can compose the sub–system with an abstraction of the environment. This can
be thought of as the interface of the environment with respect to the specific
sub–system, showing a non–deterministic behaviour. The result is a new system
where more computations are allowed. The formal verification can be done by
just observing the actions which involve the part of the system we are interested
in. Since we allow more computations, i.e. more traces in the computation tree,
the discussion above on the properties preserved by an instantiation process
applies.

7 Case Study: Peer–to–Peer Validation Service

We describe a peer–to–peer service that a user can query to download a video [1].
This is a simplified instance of the concrete problem of identifying remote file
content before downloading in peer–to–peer systems, where some or all of the
peers are untrusted, or content-based access control has to be enforced. In the
example we assume that two peers exist, at level 1 and 2 respectively. Moreover,
the system includes two refutation lists which collect information of help to know
whether the expected content of a file corresponds to the file name or not. The
download is filtered by a Validation Object that first looks for the video with a
read video request, and then validates the answer by querying the refutation
lists.

A peer’s answer to a read video request carries two values: the peer integrity
level, and an integer holding −1 if the peer does not have the video, a different
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value otherwise. If the video is not found from both peers P, the validator VO
sends a negative answer to the user, otherwise it validates the video content with
the help of the clauses of the agents VAL and VAL2. This involves querying one
or more of the refutation lists processes RL.

In the example, we abstract from actual validation algorithms in VAL and
VAL2, and show a completely non-deterministic behavior that can be refined
in any concrete solution. Our validation approach is compositional: to prove the
correctness of the final system, we only need to verify the refinement step. Indeed,
the abstract behavior of the VO specified here corresponds to the interface of any
actual Validation Object, with a specific validation algorithm demanded to the
VAL agent.

To complete the example description, we assume that peers perform a visible
action video when the video is available, and the user performs the visible
actions start at search beginning, then success, or failure. The last two
actions discriminate the cases where a valid video was found from the cases
where either no video was found, or the video content was not correct.

P(x) = ?read_video(y). ( ( [y <= x] (!video. !answer_video(x,x). P(x) +

!answer_video(x,-1). P(x) ) ) +

( [y > x] !answer_video(-1,-1). P(x) ) )

RL(x) = ?query_video(y). ( ( [y <= x] !query_answer(x). RL(x) ) +

( [y > x] !query_answer(-1). RL(x) ) )

VO(x) = ?user_req(y). ( ( [y <= x] !read_video(0). ?answer_video(z,w).

( ( [z = -1] !user_answer(-1). VO(x) ) +

( [z >=0] VAL(x,w) ) ) +

( [y > x] !user_answer(-1).VO(x) ) ) )

VAL(x,w) = [w = -1] !user_answer(-1). VO(x) +

[w >= 0] ( !query_video(0). ?query_answer(y).

( !user_answer(x). VO(x) +

!user_answer(-1). VO(x) +

VAL2(x) ) )

VAL2(x) = !query_video(0). ?query_answer(y). ( !user_answer(x). VO(x) +

!user_answer(-1). VO(x) )

User(x) = !start. !user_req(x). ?user_answer(y).

( ( [y < 0 ] !failure. User(x) ) +

( [y >= 0 ] !success. User(x) ) )

net Net = ( VO(3) || P(1) || P(2) || RL(1) || RL(2) || User(1) )

\read_video \query_video \user_req \answer_video \query_answer

\user_answer

The properties of interest that have been checked state that each downloading
round leads either to a video or to a failure, and that it is not the case that
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it always leads to the downloading of a video. We hence checked the following
formulae, obtaining the expected results.

AG [ !start ] A [ true { ~ !start } U { !failure | !video } true ]

-- The formula is TRUE --

AG [ !start ] A [ true { true } U { !video } true ]

-- The formula is FALSE --

8 Conclusions

We have presented the application of a model–checking approach to specify
and verify the Multiple Levels of Integrity policy defined in [25,26]. A formal
description of the protocol has been provided, in CCS style, and a set of properties
have been formally stated in the ACTL temporal logic. Property satisfaction has
been proved by exploiting the FMC model checker.

We have found the use of process algebras as a natural way to describe the
MLI policy. Anyway, a parallel formal specification and verification of the same
policy has been made also using the popular PROMELA language and SPIN
model-checker [16,17], but with no significant advantage in terms of modeling
and verification effort.

The validation approach we have followed for the Multiple Levels of Integrity
policy can be exported to other contexts where specific integrity or fault toler-
ance properties of Object–Oriented distributed systems have to be guaranteed.
Indeed, we have shown how the validation approach can apply both to “closed”
systems, where ad hoc modeling of specific interactions within the system can
be modeled, in order to check specific properties, and to “open” systems, in
which components coming from different sources, and hence with different levels
of integrity, interact.

The wide diffusion of Object–Oriented distributed middleware infrastructures
and frameworks makes this issue a hot topic where our approach to validation
may prove useful for the validation of the “interactional” aspects.

Indeed, since interaction policies can abstract from data and from functions,
the description of a system adopting a policy can be reduced to the description
of the possible interactions (method invocations) between the objects that make
up the system.

Similar ideas are also used in the formalization and analysis of architectural
styles in an operational framework [5]. The authors use a process algebra to
formalize the interactional properties of components and connectors, abstracting
from their functionalities. Similarly to us, they describe a component/connector
with a term of a process algebra and interactions are specified through actions.
They use the notion of bisimulation equivalence to reason on the properties
of the architecture, with particular interest in architectural compatibility and
conformance.
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Abstraction from data and functional details, which maintains the behavioural
information in a process algebraic style, has been adopted in the definition of
the so called behavioural type systems [22,20,21]. These type systems associate
to a component an abstraction of their behaviour in a suitable process algebra,
aiming to check the compatibility of communicating concurrent objects, with
regard to the matching of their respective behaviour.

The analogy with our approach lies in the interest to verification, though
in the case of behavioural types the focus is in a verification of compatibility
between components (which can be reduced to some form of equivalence or pre-
order verification between two behaviours) while in our case the focus is on the
verification of properties over a single behaviour, hence performed through model
checking.

In an open system, the definition of a behavioural type for a component and
the check of compatibility between components at the interaction level can again
be seen as the enforcement of a specific interaction policy among components.
It is an open research issue how these techniques can be efficiently adopted to
guarantee the integrity of future open component–based applications, such as
those based on the composition of web-services: indeed, the availability of “in-
tegrity preserving” middleware layers will require proving integrity properties in
spite of failures of some of the components to respect their integrity constraints.

Actually, in open systems the integrity level of a remote component is often
unknown or untrusted. In this case, we can envisage at least three solutions: give
a very pessimistic estimate of the integrity level of the remote component; exploit
a trust system; establish proper Validation Objects to be used as envelopes to
guarantee the needed integrity level.
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Abstract. Dependability analysis of the Web Services (WSs), disclosure of 
possible failure modes and their effects are open problems. This paper gives 
results of the Web Services dependability analysis using standardized FMEA- 
(Failure Modes and Effects Analysis) technique and its proposed modification 
IMEA- (Intrusion Modes and Effects Analysis) technique. Obtained results of 
FMEA-technique application were used for determining the necessary means of 
error recovery, fault prevention, fault-tolerance ensuring and fault removal. 
Systematization and analysis of WS intrusions and means of intrusion-tolerance 
were fulfilled by use of IMEA-technique. We also propose the architectures of 
the fault and intrusion-tolerant Web Services based on the components diversity 
and dynamical reconfiguration as well as discuss principles and results of 
dependable and secure Web Services development and deployment by use of 
F(I)MEA-technique and multiversion approach. 

1   Introduction 

The Web Services architecture [1] based on SOAP, WSDL and UDDI specifications 
is rapidly becoming a de facto standard technology for organization of global 
distributed computing and achieving interoperability between different software 
applications running on various platforms.  

It is now extensively used in developing numerous business-critical applications 
for banking, hotel/flight/train reservation and booking, e-business, e-science, GRID-
systems, etc. That is why analysis and dependability ensuring of this architecture are 
acute research issues [1–3].  

Web Services dependability consists of several attributes: availability, reliability, 
security, performance/responsiveness, etc. For e-commerce, in particular, serviceability, 
describing user’s satisfaction, and availability of the required services are important 
characteristics.  

In this paper we focus on ensuring reliability, security, fault and intrusion tolerance 
of Web Services.  

M. Butler et al. (Eds.): Fault-Tolerant Systems
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To improve dependability of Web Services and ensure fault and intrusion tolerance 
it is necessary to take into account possible failures and intrusions modes, their causes 
and influence on the system. With this purpose we propose to use a standardized 
FMEA- (Failure Modes and Effects Analysis) technique [4]. 

The rest of the paper is organised as follows. Section 2 gives a result of the 
failure and intrusion modes and effect analysis of Web Services. In Section 3 we 
describe techniques of Web Services dependability ensuring, including means of 
error recovery, fault prevention, fault and intrusion tolerance and also fault 
removal. Section 4 discusses principles of dependable and secure Web Services 
development and deployment based on using multilevel diversity, dynamical 
adaptation and reconfiguration as well as application of regular updates. Finally, in 
section 5 we briefly outline the on-going work on implementation architectures of 
dependable and secure web services deployment and intrusion tolerance ensuring.  

2   F(I)MEA-Approach to Web Services Dependability Analysis 

2.1   Failure Modes and Effect Analysis  

The FMEA is a standard formalized technique for the systems reliability analysis 
devoted to the specification of failure modes, their sources, causes and influence on 
the system operability [4]. The use of the FMEA-technique for the Web Services 
analysis allows to identify the typical failures and their influence on the Web Services 
dependability, and also to determine the necessary means for error recovery and fault-
tolerance. FMEA-technique can be used in dependability guaranteeing program of 
Web Services.  

O
pe

ra
ti

ng
 S

ys
te

m

Web Server

Application Server

DBMS

Data Base
Stored procedures

Servlets

Software Environment

Web Server App Server Data Base
Server

Web&App
Server

Data Base
ServerHardware Environment

(1) (2) (3)  

Fig. 1. Typical Web Services component architectures: (1) all components in the same host; 
(2) fully separated component architecture; (3) partially separated component architecture 

Computer system providing some Web Services consists of hardware and specific 
software components (web server, application server, DBMS, and application 
software – servlets, stored procedures and triggers) and may have different 
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architectures (Fig.1). These components must be taken into account during analysis of 
failure modes and effects. 

The analysis of Web Services failures and intrusions modes, their causes and 
effects is obtained by using the FMEA-format (Tables 1, 2). To reduce scale of 
FMEA-tables we replaced duplicated rows by arrows and bus-lines. 

To identify the Web Services failures modes new failure taxonomy was proposed 
(Fig. 2) taking into consideration variants described in [5–8]. The proposed taxonomy 
classifies possible failures from the point of view of publishers and end-users of Web 
Services, and takes into account failure domain, failure evidence and stability of 
occurrence, and also failures influence on system operability.  

Environment-dependent failures Application-specific
failures

Hardware (HW) environment

Operation System (OS)

Web-server App Server DBMS

Application
software
(servlets)

DB stored
procedures

 and
triggers

Transient (Accidental)Permanent

No influence InterruptionTermination

Software(SW) environment

Failure dependence

System services

Failure specification
attributes

Failure modes

Non-evidentEvident

Failure domain

Stability of occurrence

Failure evidence

Influence on operability

 

Fig. 2. Failure taxonomy 

We performed the analysis of failure effects on data, system components, users 
and Web Services as a whole. Several failures modes can lead to the prolonged or 
short-term service aborting that affects on users as denial of service. Other failures 
may result in non-evident incorrect services. For many applications (e-commerce, 
e-science, etc.) such effect is more dangerous because it entails serious 
consequences, such as financial loss, calculation errors and, finally, service 
discrediting. 

As it was found, the hardware design faults (faults in processors, chipsets, etc.) still 
remain one of the possible causes of the Web Services failures. Furthermore, a 
monthly Specification Update for Intel product series can contain up to several tens of 
errata, some of which, under certain circumstances, lead to unexpected program 
behavior, calculation errors or processor hang.  
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However, the prevalent sources of Web Services failures are different software 
components. Besides, hacker attacks, viruses and other malicious impacts (Table 3) 
are becoming one of the dangerous sources of Web Services failures and require 
additional detailed consideration. 

The reliability (probability of failure-free operation) of separated Web Services 
architectures presented in the Fig. 1 (2, 3) is lower than that of the centralized 
architecture (1) because of the increased a number of HW components that can fail. 
Thus, such architectures are more expedient to use in cluster systems. 

Performed analysis will help in defining the necessary failure recovery and fault-
tolerance means for specific failure modes. Set of the fault-tolerance means depends 
on failure modes and causes, whereas the required failure recovery means depend on 
failure effect on system and its components.  

To address multiple faults all rows of F(I)MEA-tables should be weighted taking 
into account their severity and influence on system dependability. When multiply 
faults occur the several rows will be selected from the F(I)MEA-tables and top-
priority fault-tolerant means will be chosen on the base of voting by faults severity. 

2.2   The Analysis of Intrusion Modes and Effects  

The network attacks and intrusions can be classified based on the following attributes: 
attack/intrusion mode, nature and cause of attack, intrusion evidence, influence on 
operability and effects on system, data and user. 

The results of analysis of intrusion modes and effects are represented in Table 3. 
We consider such kinds of attacks and intrusions as “sniffing”, “spoofing”, “dummy 
embedding”, “distributed denial of service” and “direct intrusions”. They can be 
represented as IMEA table.  

Direct intrusions are most dangerous because hackers can obtain a full control over 
attacked system with unpredictable dramatic consequences. The basic causes of direct 
intrusions are weak system guard, stack overflow, faults and many other 
vulnerabilities in the OS, Web & Application servers, DBMS and, finally, in the 
application software. When new malicious exploit occurs, all systems with the same 
security vulnerability become open to intrusions until the proper security patch is 
issued and applied. 

3   Ensuring Web Services Dependability and Fault-Tolerance 

3.1   Error Recovery 

Common means of the error recovery for Web Services include: 1) replacement of crashed 
hardware components; 2) reinstallation of crashed software components; 3) data recovery; 
4) system rebooting or restarting of the particular software services. 

To achieve better availability system rebooting and restarting of the particular 
software services and applications must be performed in automatic mode with the 
help of hardware or software implemented watch-dog timers. Besides, it is preferable 
to have a secure way for remote system rebooting performed by the administrator. It 
is also very important for successful data recovery to perform regular data backup. 
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3.2   Fault Prevention 

Fault prevention is attained, first of all, by quality control techniques employed during 
the design and manufacturing of hardware and software [5]. However, most of the 
hardware and software components of Web Services are the COTS- (commercial of 
the shelf) components developed by third parties. 

Hence, service publisher has limited means for fault prevention: 

− quality control techniques employed during the design of theown developed 
application software; 

− procedures for input parameter checking; 
− rigorous procedures for system maintenance and administration; 
− firewalls, security guards and scanners to prevent malicious failures. 

Besides, to prevent transient failures and performance reducing caused by software 
rejuvenation techniques based on forced restarting/reinitialization of the software 
components can be used [9]. 

3.3   Fault and Intrusion Tolerance 

The development of fault tolerant techniques for the Web Services has been an active 
area of research over the last couple of years. The backward (based on rolling of the 
system components back to the previous correct state) and forward (which involves 
transforming the system components into any correct state) error recovery for the web 
on the basis of an application-specific exception handling is discussed in [10].  

More generally, high dependability and fault-tolerance of the Web Services is 
ensured by using different kinds of redundancy and diversity at the different levels of 
the system structure (Fig. 3). HW redundancy may be partial (redundancy of 
processors, hard discs – RAID, network adapters, etc.) as well as complete with 
replication or diversification of SW.  

Complete HW and SW redundancy is a foundation of cluster architectures and 
provides better performance and dependability. 

Diversity is usually used to prevent software or hardware failures caused by design 
faults. But for tolerating transient failures a simple replication of SW environment 
with HW redundancy may be sufficient means, because of the individual behavior of 
even two replicated SW environments. To prevent non-evident failures the voting 
scheme must be used.  

The 72-87% of the faults in open-source software are independent of the operating 
environment (i.e. faults in application software) and hence are permanent [6]. Half of 
the remaining faults is environment depended environment depended caused by 
transient conditions.  

Hence, diversity is the most efficient method of providing fault-tolerance. It can be 
used for HW platform, OS, web and application servers, DBMS and, finally, for 
application software, both separately and in many various combinations.  

However static diversity of Web Services can worsen the intrusion-tolerance and 
security (confidentiality and integrity) because it opens new potential ways for 
malicious intrusions. At the same time diversity brings additional protection against 
DDoS attacks. 
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Fig. 3. Means for Web Services fault-tolerance 

In this connection we propose to use dynamic system diversity. When new exploit 
occurs, it provides dynamic change of the current vulnerable system configuration to 
another one, which will be immune to this type of exploit.  

In the Fig. 4 the set of possible diverse variants for different levels of the Web 
Services architecture is represented. For example, we can use Tomcat or BEA 
WebLogic or IBM Web Sphere as application server; Linux or Win2k or MacOS as 
operating system, etc. 

It is well known that some software components may be incompatible with  
each other. Hence, it is very important to take into account this fact during 
multiversion system development. We propose to solve this problem with the help 
of diversity compatibility analysis at the different levels of Web Services 
architecture. Graph which represents such compatibility analysis is shown in the 
Fig. 5. 
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Fig. 4. Diversity levels and diverse variants 
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Fig. 5. Diversity compatibility analysis 
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Nodes correspond to the diverse variants at each of the diversity levels, whereas 
different types of arcs represent compatibility features. Types of arcs shading show 
which components are compatible and could be selected for particular configuration. 
As a result, all possible configurations of multiversion systems can be identified.  

For example (see Fig. 5), we can choose following diverse Web Service 
configurations for multiversion system:  

1. Win2k (OS), Apache (Web-server), Tomcat with AXIS (App server);  
2. Linux (OS), Lotus Domino Go (Web-server), IBM WebSphere (App server). 

3.4   Fault Removal 

Fault removal of the Web Services is based, first of all, on the systematic application 
of the updates and patches for hardware (microcode updates) and software developed 
by third parties (OS, drivers, web and app servers, DBMS).  

Fault removal from the own developed application software is performed both 
during the development phase and the maintenance. Technique, described in [11], 
provides cooperative and group testing of Web Services that can be performed on-line 
and just-in-time. 

4   Dependable Web Services Development and Deployment  

4.1   Using F(I)MEA-Technique for Dependable Web Services Development 

To develop and deploy dependable Web Services the common FMEA- and IMEA-
tables (see Tables 1-3) describing failures and intrusions modes and effects must be 
concretized taking into account actual hardware/software architecture of particular 
Web Service (Fig. 6). 

Two different development strategies are possible. For business-critical 
applications it is necessary, as a rule, to provide the required dependability at the 
minimum cost, whereas for commercial applications it is important to provide the 
maximum dependability at the limited cost.  

These goals can be achieved by solving optimization problem, taking into account 
failures criticality, probability of occurrence and cost of fault-tolerance means, their 
effectiveness and failures coverage. As a result the Web Service must be updated 
using chosen fault-tolerance means. 

4.2   The Principles of Dependable and Secure Web Services Deployment 

Fault and intrusion tolerance of the Web Services, their security and dependability as 
a whole could be improved using the following principles: 

1. Defense in depth and diversity (D&D). Defense in depth implicates joint usage of 
existing intrusion and fault-tolerance facilities at the different levels of the Web 
Service architecture (HW platform, OS, System SW, etc.) to provide complex 
decision for dependability ensuring. Diversity (as it was shown in section 3.3) is 
one of the advanced techniques that can provide defense against both faults and 
intrusions. 
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2. Adaptability and update (A&U). The essence of this principle is in the dynamic 
changing of Web Service architecture and diversity modes according to the 
observed failures and intrusions. The intellectual monitoring means for detection of 
failures and intrusions, their analysis and the choice of better Web Services 
configurations could be used to achieve that. These means can include external 
alarm services, used to notify about recent Internet security vulnerabilities, novel 
viruses and to distribute security updates and patches.  

The D&D and A&U principles are corresponding to the DIT (Dependable Intrusion 
Tolerance) architecture described in [12]. 

 

Fig. 6. Using FMEA-technique for dependable web services development 

5   Implementation 

In our previous work [8] we described solutions for dependable upgrading of Web 
Services with components upgraded on-line. It is based on using upgrading 
middleware, which includes monitoring and management tools and also database to 
store results statistics.  

At the beginning, all versions of the same Web Service (or different divers Web 
Services with the identical functionality) are invoked concurrently and the final 
(composite) result forms by voting. All invocation results of the particular version are 
stored in the database as well as the composite results. 
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Afterwards, on the base of statistics analysis management tool switches from one 
versions of Web Service to another more reliable version. 

Now we are extending this architecture according to the proposed principles of 
dependable and secure Web Services deployment (see Fig. 7). The new elements are:  

− dynamically updated FMEA- and IMEA-tables and set of means for faults and 
intrusions tolerance provision; 

− service resolver, that provides different customized strategies of the final result 
composition. For example, one strategy can provide better reliability/ 
trustworthiness of Web Service, whereas another one provides better 
performance/responsiveness. 

Besides, the management tool implements Web Service configuration control. 

Fig. 7. Architecture of dependable and secure web services deployment 

We also propose diverse architecture ensuring intrusion–tolerance of Web Systems 
and Services (Fig.8). This is the cluster architecture in which each host has multiple-
choice loading configuration. It means that it is possible to load different OS after 
rebooting and start-up different web and application servers in the same host.  

The main parts in this architecture are the Configuration Control Server (CCS) 
with Intrusion Detection System (IDS), and also Global Internet Security Alarm 
Service (GISAS). There are three main differences between proposed solution and 
DIT architecture, described in [12]. 
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Fig. 8. Intrusion–tolerant Web service architecture 

First, it provides deeper diversity level (levels of web and application servers and 
also DBMS). Secondly, IDS detects intrusions not only by scanning network traffic, 
but also by obtaining on-line information about recent vulnerabilities from the 
GISAS, which could be deployed on the base of http://www.cert.org, 
http://xforce.iss.net or http://nvd.nist.gov sites.  

Finally, CCS performs dynamical reconfiguration of the current vulnerable channel 
with the help of configuration control agents that must be installed on the each host. 
For example, if new exploit attacking OS Win2k is detected, then all hosts in cluster 
that use Win2k will be rebooted with another alternative OS (for example, Linux) 
until proper update (security patch) is issued.  

6   Conclusions 

Publishers of Web Services have a limited possibility for fault prevention and fault 
removal of the most Web Services components, developed by the third parties. Thus, 
redundancy, in combination with diversity, is one of the basic means of ensuring 
dependability and providing tolerance to the majority failure modes. However, using 
diversity in Web Service architecture requires detailed research and additional 
solutions, because it can lead to additional security violations. Here, the cluster 
architecture with multilevel dynamic diversity and controlled configuration may be 
better solution providing high dependability, fault and intrusion tolerance.  

Cluster architecture improves availability of Web Services. The additional adaptive 
reliable algorithms and means of voting, failures and intrusions diagnosis must be 
implemented to ensure tolerance to the non-evident failures and novel vulnerabilities. 
An important problem is the institution of the Global Internet Security Alarm Service. 
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The F(I)MEA is an effective technique, which can be used for the application of  
specific dependability analysis of Web Services, especially of composite WSs. The 
fulfilled analysis can be extended by taking into account the lack of required 
resources or services and unavailability of services due to network failures. Besides, 
the critical analysis of different failure modes can be performed. 

FMEA- and IMEA-tables may be dynamically updated during Web Services 
operation. It allows (along with implementation of D&D and A&U principles) to 
increase the effectiveness of the employed means of dependability ensuring. 

The estimates of the costs of performing F(I)MEA for an average web service as 
well as detailed compatibility analysis between different intrusion and fault-tolerant 
facilities and diversity modes will be the topics of our future research. We are also 
going to carry out a full-scale experiment with proposed intrusion-tolerant Web 
Service architecture. 
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Abstract. In this paper, we investigate context aware location-based
mobile systems. In particular, we are interested how their behaviour,
including fault tolerant aspects, could be captured using a formal se-
mantics, which would then be suitable for analysis and verification. We
propose a new formalism and middleware, called Cama, which provides
a rich environment to test our approach. The approach itself aims at giv-
ing Cama a formal concurrency semantics in terms of a suitable process
algebra, and then applying efficient model checking techniques to the
resulting process expressions in a way which alleviates the state space
explosion. The model checking technique adopted in our work is partial
order model checking based on Petri net unfoldings, and we use a seman-
tics preserving translation from the process terms used in the modelling
of Cama to a suitable class of high-level Petri nets.

Keywords: mobile systems, locations, Linda, Klaim, process algebra,
Petri nets, fault tolerance, model checking.

1 Introduction

Mobile agent systems are increasingly attracting attention of software engineers.
However, issues related to fault tolerance and exception handling in such systems
have not yet received the level of attention they deserve. In particular, formal
support for validating the correctness and robustness of fault tolerance properties
is still under-developed. In this paper, we outline our approach to dealing with
such issues in the context of a concrete system for description of mobility of
agents (Cama), and a concrete technique for verifying their properties (partial
order model checking). Our overall goal in this paper is a formal model for the
specification, analysis and model checking of Cama designs. To achieve it, we
will use process algebras and high-level Petri nets.

In concrete terms, our approach is first to give a formal semantics (including
a compositional translation) of a suitably expressive subset of Cama in terms
of an appropriate process algebra and its associated operational semantics. The
reason why we chose a process algebra semantics is twofold: (i) process algebras,
due to their compositional and textual nature, are a formalism which is very
close to the actual notations and languages used in real implementations; and
(ii) there exists a significant body of research on the analysis and verification
of process algebras. In our particular case, there are two process algebras which
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are directly relevant to Cama, viz. Klaim [3,5] and π-calculus [14], and our
intention is to use the former as a starting point for the development of the
formal semantics.

The process algebra semantics of Cama can then be used as a starting point
for developing efficient model checking techniques aimed at verifying the be-
havioural correctness of Cama designs. In our approach, we are specifically in-
terested in model checking techniques which alleviate the state space explosion
problem, and for this reason we adopted a partial order model checking based on
Petri net unfoldings [13]. To be able to use it, we take advantage of a semantics
preserving translation from the process terms used in the modelling of Cama to
a suitable class of high-level Petri nets based on [7,8].

2 Cama

Cama is a middleware supporting rapid development of mobile agent software. It
offers a programmer a number of high-level operations and a set of abstractions
which help to develop multi-agent applications in a disciplined and structured
way. Cama is an extensible system. Its core functionality is concerned with
inter-agent communication. Weak logical mobility, exception propagation and a
number of other extensions are provided in the form of plug-ins. In this section,
we briefly introduce the Cama architecture and its core functionality.

Cama inter-agent communication is based on the Linda [9] paradigm which
provides a set of language-independent coordination primitives that can be used
for coordination of several independent pieces of software. Thanks to being lan-
guage neutral, Linda became quite popular and its coordination primitives have
been implemented in many programming languages. It perfectly fits the domain
of agent systems with its time and name decoupled communication style. In a
nutshell, Linda coordination primitives allow processes to put tuples (vectors of
values) in a shared tuple space, remove them, and test for their presence. Input
operations use special tuples called templates, where some fields are replaced
with wildcards that can match any value. As a result, Linda provides a mech-
anism for effective inter-process coordination, and other kinds of coordination
primitives, like semaphores or mutexes, can be simulated using Linda primitives
in a straightforward way.

Mobile agent systems can be classified into two categories, according to the
functionality of the nodes in a system. In one case, all the nodes carry the
same functionality and have a capability for communicating with other nodes. A
number of such nodes can create an ad-hoc network and start inter-process col-
laboration. Since all the nodes have similar functionality and capabilities, models
of this kind are called symmetric. The other approach is to implement certain
tasks, such as communication or migration, as additional services. This results
in agents which depend upon service providers, but have a simpler structure and
carry less functionality. This model is closer to the standard service provision
architectures, and is often referred to as asymmetric as services and agents have
complementary functionality.
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The approach described in this paper is based on the asymmetric model of agent
systems within the location-based paradigm of [1,12]. The main part of commu-
nication and control is implemented by a dedicated service, called location. The
client part is lightweight, which facilities agent development for restricted plat-
forms, such as PDAs and smart-phones. The approach supports large-scale mobile
agent networks in a predictable and reliable manner, which is not the case with
the symmetric approach [1]. Moreover, location-based architecture eliminates the
need for employing complex distributed algorithms, such as voting or agreement.
This allows one to guarantee atomicity of certain operations without sacrificing
performance and usability. This scheme also provides a natural way of introducing
context-aware computing, by defining location as a context of an agent.

The main disadvantage of the location-based scheme is that an additional
infrastructure is required to support agent collaboration. However, in [1] it is
argued that the current trends in wireless networks development are favourable
with respect to the asymmetric model.

2.1 CAMA Basic Concepts

A Cama system consists of a set of locations. The main role of a location is to
provide an inter-agent communication service to its client agents. The commu-
nication service is based on a shared blackboard supporting Linda operations.

One of the major contributions of Cama is a novel mechanism to structure
a shared blackboard so that groups of communicating agents can work in iso-
lated sub-spaces, called scopes. Isolation of a communication space is only one
of several roles of the scope construct; for example, it also provides a dynamic
type-checking facility for multi-agent applications. Each agent carries attributes
describing the functionality it implements, and the scoping mechanism only per-
mits collaboration of agents with compatible functionality. It also acts as a ser-
vice discovery mechanism. Agents look up for activities or services by analysing
scope attributes. Scopes attributes are represented as a Linda tuple and the
discovery procedure is based on the Linda tuple matching. This mechanism is
both flexible and powerful.

The main structuring units of Cama applications are agents which are pieces
of software conforming to some formal specification. To distinguish between var-
ious functionalities of individual agents, and to match compatible agents, Cama
uses agent roles as units of functionality structuring. A role is also a structur-
ing unit of an agent, and a part of the scoping mechanism. Role-based type-
checking allows dynamic composition of multi-agent applications which ensures
agent inter-operability and isolation.

Agents are executed on platforms, and several agents may reside on a sin-
gle platform. Each platform provides an execution environment for the agents
residing on it, and an interface to the location middleware.

2.2 CAMA Components

Scope is a dynamic container for tuples. It provides an isolated coordination
space for compatible agents. It restricts visibility of tuples contained within the
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scope to the participants of the scope. A scope creation is initiated by an agent,
however location controls the scope state depending upon the number and kind
of the participants. When there are enough agents to instantiate a multi-agent
application, the location allows participating agents to communicate. A scope
is defined by a set of roles and restrictions on the roles. Scopes can be nested
and scope participants may create new sub-scopes. Restrictions on roles dictate
how many agents can play any given role of a scope. A restriction is a pair of
natural numbers - the minimum required number of agents for a given role and
the maximum allowed number of agents for a given role. The scope’s state tracks
the number of roles currently taken and determines whether the scope can be
used for agent collaboration (see Figure 1).

R1 Rmin
1 Rmax

1

R2 Rmin
2 Rmax

2

...
Rk Rmin

k Rmax
k

Rmin
i ≤ NRi ≤ Rmax

i (roles taken)
n (scope name)
A (owner)

Fig. 1. Scope requirements (left), and scope state (right)

Role is an abstract description of agent’s functionality. Each role is associated
with some abstract scope model. An agent may implement a number of roles
and can also take several roles within the same or different scopes. There is a
formal relationship between a scope and its role. The latter is formally derived
from an abstract model through decomposition process, while the former is a
run-time instantiation of the model through the composition roles of individual
agents (for more details see [10]).

Location is a container for scopes. It can be associated with a particular physical
location. It is the core part of the system providing means of communication
and coordination between agents. We assume that each location has a unique
name. This roughly corresponds to IP addresses of hosts in a network which
are often unique (at least within a local network). A location keeps track of
the connected agents and their properties, in order to update the states of the
scopes and ensure isolation properties. Location also provides additional services
varying from location to location. These are made available to agents through
what appears as a normal scope even though some roles are implemented by the
location itself. As with all the scopes, agents are required to implement specific
roles in order to connect to a location-provided scope. Few examples of such
services include printing on a local printer, Internet access, making a backup to
a location storage, and migration. In addition to supporting scopes as means
of agent communication, locations may also offer support for logical mobility of
agents, hosting of agents, and agent backup. Agent hosting allows autonomous
agents to migrate from a location to location and participate in some activities
on the locations. A location may play a role of a trusted third party in certain
scope types. This facilitates implementation of various transaction schemes.
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Platform provides an execution environment for agents. It is composed of a
virtual machine for code execution, networking support, and client middleware
for interacting with a location. A platform may be hosted by a PDA, smart-
phone, laptop or a location server. The notion of a platform is important to
clearly differentiate between the concepts of a location providing coordination
services to agents, and the middleware that only supports agent execution. In
symmetric approaches no such distinction is made [4,15,16].

Agent is a piece of software implementing a set of roles which allows it to take
part in certain scopes. All agents must implement some minimal functionality,
called the default role, which specifies their activities outside of all the scopes.

2.3 CAMA Operations

We will now present a brief overview of the core operations provided by Cama
middleware. The operations can be seen as belonging to the following three
groups: location engagement, scoping mechanism, and communication. Commu-
nication operations implement the standard Linda coordination paradigm and
so we will not discuss them here.

The location engagement operations associate or disassociate an agent with a
location. There is one operation for each case:

– engage(ag)@ - associates an agent ag with location . It also issues a new
location-wide name a that is unique and unforgeable. This name is used as
agent identifier in all other role operations. The name a is used by the agent
to access other services of the location.

– disengage(a)@ - disassociates agent a from location , and the previously
issued name is no longer valid. After its execution, any operation invoked
with the agent name a is ignored.

The scoping mechanism operations allow an agent to enquiry about the avail-
able scopes, create and remove scopes, join the existing scopes and control their
visibility.

– create(a, R)@.s - creates a new scope s at location  on behalf of agent a
with the scope requirements R.

– destroy(a)@.s - destroys a scope s at location . This operation always
succeeds if the requesting agent is the owner of the scope, and it is executed
recursively for all the sub-scopes contained in the scope.

– join(a, r)@.s - if successful, it permits agent a to take role r in scope s
at location . This operation succeeds if the scope .s exists and agent a is
allowed to take the specified role in that scope.

– leave(a, r)@.s - disallows agent a to participate in the scope .s with role r.
The calling agent must be already participating in the scope with the spec-
ified role.

– put(a, n)@.s - makes the scope .s available to other agents participating
in the parent scope of .s.
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– get(a, r)@.s - enquires about the names of the scopes contained in scope .s
and supporting the role(s) r.

An agent starts its execution by looking for available locations. Once it con-
nects to a location it joins a scope, or creates a new one and waits for other
agents to join it. When a scope requirements are satisfied, agents in a scope can
start collaboration using the Linda coordination primitives. After they finished
using the scope, they leave it.

In the next section, we outline a formal description of various Cama opera-
tions using a process algebra.

3 A Process Algebra for CAMA Systems

The semantical model of Cama will be expressed using a process algebra which
is basically the cKlaim [3] extended with a few features taken from Stock-
Klaim [6] (to model other useful constructs, we plan to use some elements of
the π-calculus [14]). We now briefly outline the key aspects of this develop-
ment which is strongly based on that presented in [7], with some features being
omitted (i.e., those relating to location creation) and some added (i.e., simple
conditionals, general data, and non-singleton tuples). We refer the reader to [7]
for more details about the approach on which this section is based.

We assume that there is a set L of localities ranged over by l, l′, l1, . . . and a
disjoint set U of locality variables ranged over by u, v, w, u′, v′, w′, u1, v1, w1, . . . .
(We also assume that a special locality self belongs to L.) Their union forms the
set of locality names ranged over by , ′, 1, . . . . In addition, A = {A1, . . . , Am}
is a finite set of process identifiers, each identifier A ∈ A having a finite arity nA.

We further assume that D is a set of data values ranged over by d, d′, d1, . . .
and V is a disjoint set of data variables ranged over by h, h′, h1, h1, . . . . Moreover,
E is a set of value expressions ranged over by e, e′, e1, . . . constructed from values,
value variables and suitable operators, some of which will be mentioned in the
rest of the paper. We do not assume any specific syntax of the expressions except
that they can always be evaluated if no variables are involved.

The process algebra we consider in this paper has the syntax given in Figure 2,
where b is a boolean expression and e′ an expression not involving variables.
Moreover, for each A ∈ A, there is exactly one definition A(x1, . . . , xnA) df= PA

(where the xi’s are variables), which is available globally. It is assumed that
in a conditional if b then P fi .Q the process P uses only action prefixes and
possibly other conditionals. Note that tuples can be represented either as finite
sequences of elements or as comma-separated lists enclosed within angle brackets.
The assumed order of precedence among the operators (from the weakest to the
strongest binding) is as follows: ‘‖’, ‘::’, ‘|’, ‘+’ and ‘ . ’.

Networks are finite collections of computational nodes, where data and pro-
cesses can be located. Each node consists of a locality l identifying it and a process
or a datum. There can be several nodes with the same locality part. Effectively,
one may think of a network as a collection of uniquely named nodes, each node
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N ::= l :: P � l :: 〈q〉 � N ‖N (networks)

a ::= out(v)@� � rd(t)@� � in(t)@� � eval(A(v))@� (actions)

P ::= nil � A(v) � a . P � P + P � P |P � if b then P fi . P (processes)

t ::= � � e � !u � !h � � t � e t � !u t � !h t (templates)

q ::= l � d � lq � d q (evaluated tuples)

v ::= � � e � �v � e v (tuples)

f ::= l � self � e′ � selff � lf � e′f (variable-free tuples)

Fig. 2. Process algebra syntax

comprising its own data space and a possibly concurrent process which runs there.
This view is embodied in the rules for structural equivalence on nodes and net-
works, which is the smallest congruence such that the rules in Table 1 hold (note
that {y1/x1, . . . , ynA/xnA} denotes substitution).

Table 1. Structural equivalence rules

(Com) N1 ‖N2 ≡ N2 ‖N1

(Assoc) (N1 ‖N2) ‖N3 ≡ N1 ‖ (N2 ‖N3)

(Abs) l :: P ≡ l :: (P |nil)

(PrInv) l :: A(x1, . . . , xnA) ≡ l :: {y1/x1, . . . , ynA/xnA}PA

(Clone) l :: (P1|P2) ≡ l :: P1 ‖ l :: P2

(If1) if 1 then P fi . Q ≡ P . Q

(If2) if 0 then P fi . Q ≡ Q

Actions are the basic (atomic) operations which can be executed by processes,
as follows:

– out(v)@ deposits a fresh copy of a tuple v (after evaluation) inside the
locality addressed by .

– in(t)@ retrieves an item matching the template t from the locality addressed
by .

– rd(t)@ reads an item matching the template t at the locality addressed by .
– eval(A(f))@ instantiates a new copy of the process identified by A at the

locality addressed by .

The special meaning of self is that it refers to the locality address at which
an action is executed. Note that instantiating a process in an arbitrary locality
allows one to model mobility.
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Processes act upon the data stored at various nodes and spawn new processes.
The algebra of processes is built upon the (terminated) process nil and recursive
call A(v) as well as the composition operators: prefixing by an action (a .P ); sim-
ple conditional (if b thenP fi .Q); choice (P+Q); and parallel composition (P |Q).

Binding is introduced by action prefixes like in(!z)@ .P or rd(!z)@ .P which
bind the variable z within P , and we denote by fn(P ) the free names of P (and
similarly for networks).1 For the process definition, we assume that fn(PA) ⊆
{x1, . . . , xnA}. Processes are defined up to the alpha-conversion, and {y/x, . . .}P
will denote the agent obtained from P by replacing all free occurrences of x by y,
etc., possibly after alpha-converting P in order to avoid name clashes. Note that
self is a distinguished locality, not a variable, and so it is never free nor bound.

Given a network N, one can apply alpha-conversion to obtain a well-formed
network definition. By this we mean that no variable across the network and
process definitions generates more than one binding, and that there are no free
variables in the network.

Recursive behaviour can be achieved in two ways. One is a kind of process
instantiation, possibly at the current location. For example,

l :: eval(A(l′, 〈5, 4〉))@self .nil

with A(u, d) df= out(d)@u . eval(A(u, d))@self .nil will be indefinitely deposit-
ing copies of the tuple 〈5, 4〉 from the locality with address l to the data space
of the locality addressed by l′. Another way of effecting repetitive behaviour (at
the current location) is through a declaration of the form l :: A′(l′, 〈5, 4〉) with:

A′(u, d) df= out(d)@u .A′(u, d) .

In such a case, instantiating successive copies of A′() will take place without
executing any visible activating actions.

Operational semantics The operational semantics of networks and processes
is detailed in Table 2. It is based on the structural equivalence defined above
(see the Struct rule) and labelled transition rules:

N
act
−−−−−→ N′

where act is the record of an execution of a prefix. The act can be o(l, q, l′),
r(l, q, l′), i(l, q, l′) or e(l, A(q), l′), where the initial symbol identifies the type
of action, l is the locality where the action is executed, l′ identifies the locality
where the action takes effect, and q is a parameter (argument of the action),
which is in this case a tuple of data values and/or localities. For instance, action
e(l, A(q), l′) means that, from location l, an instance of process A is launched at
location l′ with an effective parameter q, while i(l, q, l′) records the execution at
l of an input of q from location l′.
1 It is assumed that the prefixes of P in a conditional if b then P fi . Q do not generate

any bindings within Q.
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Table 2. Operational semantics rules

(Par)
N

act−−−−−→ N′

N ‖N′′ act−−−−−→ N′ ‖N′′ and N′′ ‖N
act−−−−−→ N′′ ‖N′

(Sum1)
l :: P

act−−−−−→ N′

l :: P + P ′ act−−−−−→ N′ and l :: P ′ + P
act−−−−−→ N′

(Sum2)
l :: P ‖ l′ :: 〈q〉 act−−−−−→ N′

l :: P + P ′ ‖ l′ :: 〈q〉 act−−−−−→ N′ and l :: P ′ + P ‖ l′ :: 〈q〉 act−−−−−→ N′

(Struct)
N ≡ N1 N1

act−−−−−→ N2 N2 ≡ N′

N
act−−−−−→ N′

(Eval)
l′ = evaluate l(�) q = evaluate l(f) match l(t, q) = ρ

l :: eval(A(f))@� . P
e(l,A(q),l′)

−−−−−−−−−−−−−−→ l :: P ‖ l′ :: ρPA

(Out)
l′ = evaluate l(�) q = evaluate l(f)

l :: out(f)@� . P
o(l,q,l′)
−−−−−−−−→ l :: P ‖ l′ :: 〈q〉

(In)
l′ = evaluate l(�) matchl(t, q) = ρ

l :: in(t)@� . P ‖ l′ :: 〈q〉
i(l,q,l′)
−−−−−−−−→ l :: ρP

(Rd)
l′ = evaluate l(�) matchl(t, q) = ρ

l :: rd(t)@� . P ‖ l′ :: 〈q〉
r(l,q,l′)
−−−−−−−−→ l :: ρP ‖ l′ :: 〈q〉

In Table 2 we use two special notations, for tuple evaluation and matching.
To start with, for every variable-free component x of a tuple and locality l ∈ L:

evaluate l(x) df=

⎧⎨
⎩

l if x = self
d if x is a value expresion evaluating to d
x if x is a locality

Notice that evaluate l(x) is undefined if x ∈ U , so that some of the rules may not
be applicable if, for instance, a locality variable has not been substituted by an
actual locality. The evaluation mapping is then extended to tuples, by setting

evaluate l(f)
df= evaluate l(f1) . . . evaluate l(fr) ,

for every variable-free tuple f = f1 . . . fr. Another construct is needed to properly
handle the input and reading of tuples residing at the tuple space.

Let t = t1 . . . tr be a template, q = q1 . . . qr an evaluated tuple, and l a (non-
self) locality. Then we say that t and q match in l if there exist disjoint subse-
quences i1 . . . ip and j1 . . . jm (p + m = r) of 1 . . . r such that the following hold:
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– for each z ≤ p there is a variable xz of the same type as qiz such that tiz =!xz ,
and if for some g and h, xg = xh then qig = qih

;
– for each z ≤ m, tjz is a data, locality or self and evaluate l(tjz ) = qjz .

If t and q match in l, then match l(t, q) is the substitution obtained from

{qi1/x1, . . . , qip/xp}

by deleting all duplicates. It can be empty if none of the elements of t is of the
form !x. For example, matchl5(!u self !u l3, l4 l5 l4 l3) = {l4/u}.

Note that evaluated tuples are concrete lists of data values and/or locations
which are deposited and removed from the data space, and templates are used
to specify the composition of tuples being removed by processes.

4 Process Algebra Semantics of Cama

The semantics of Cama operations is given using a straightforward adaptation
of the process algebra outlined above. The semantics is based on the description
of the scoping mechanism presented in [11].

The approach is based on simulating the scoping mechanism using a single
shared tuple space and prefix-based tuple matching. The contents of a scope cor-
respond to all tuples starting with some predefined prefix. Various attributes of
agents and scopes are stored as tuples in the shared tuple space, and access to this
information is restricted through the redefinition of the basic Linda primitives.

All Cama operations are initiated by a client and executed at a location. We
specify actions for both the client and location as if they were operating on a
single shared tuple space and we do not explicitly deal with the networking part
of the middleware. The specification defines the Cama scoping mechanism and
actions of agents as well as the middleware. The latter controls the state of a
location (tuple space) and provides a number of services, such as scope creation.
Agents can synchronise using Linda-style operations on scopes, and scopes may
contain sub-scopes thus providing a hierarchy of nested agent activities (for
brevity, in this paper we do not deal explicitly with the sub-scoping aspects).

We use locality variable argument as a reference to a location. In Cama,
locations are fixed network nodes and hence they do not appear or disappear
during the system’s lifetime. Thus the locality argument is often omitted and is
assumed to be known from the context.

The specification uses prefix-based tuple matching. The notation a◦ is used
to match any tuple with size the same or greater than size of a and with the
initial fields are matched by the template a. Prefixes can be concatenated in an
obvious manner; for example, if a = 〈f1, f2, . . . , fk〉 and b = 〈g1, g2, . . . , gm〉 are
two templates, then a ◦ b is the template 〈f1, f2, . . . , fk, g1, g2, . . . , gm〉 matching
tuples with exactly k+m fields. On the other hand, a◦b◦ would match any tuple
whose initial k +m fields are matched by a◦ b. In the same manner, prefixes can
be concatenated with tuples.

In our model, a shared tuple space is the only available storage, and all the
information about active agents and open scopes must be stored using tuples. In
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Table 3. Prefixes used to partition the tuple space

tuple or prefix description

L◦ object locking

M◦ requests to the middleware

A ◦ 〈A〉 issued agent names

U ◦ 〈A′〉 unused agent names

S ◦ 〈Sc〉 names of active scopes

S ◦ s ◦ R ◦ 〈b〉 status of scope s

S ◦ s ◦ P ◦ 〈param〉 static parameters (requirements) of scope s

S ◦ s ◦ D ◦ 〈state〉 dynamic state of scope s

S ◦ s ◦ C◦ contents of scope s

addition, tuples are used for inter-agent communication inside a scope. Partition-
ing the tuple space into a number of disjoint parts makes it easy to manipulate
records about scopes, agents and tuples. We introduce a unique prefix for each
type of record used in the specification, as shown in Table 3. In the table, A
and S are finite sets2 which contain the currently issued agent names and the
existing scopes, respectively (it is assumed that A ⊆ Agents and S ⊆ Scopes,
where Agents and Scopes are pre-defined finite sets). Moreover, A′ is a set of
unused agent names, disjoint from A. Initially, A is empty and A′ non-empty.

The status of a scope, S◦s◦R◦〈b〉, can be either S◦s◦R◦〈0〉, or S◦s◦R◦〈1〉
which translates to the scope being available (1) for inter-agent communication
or not (0). Whenever an agent wants to read or deposit a tuple in the scope, it
checks the status and waits until it becomes 1.

Tuples with the prefix S◦s◦P specify the set of roles supported by the scope s,
and the restrictions on the number of agents for each role. Tuples starting with
S ◦ s ◦ D represent the current state of a scope, i.e., agents that are currently
present in the scope and roles that are still available. This information is updated
when an agent joins or leaves the scope. To make the notation more readable,
we use the following:

– param
df= 〈rolesn, roles, min, max〉 where: rolesn ∈ N is the number of

different roles; roles is a list of role names; min : roles → N gives of the
minimum number of required participants for each role; and max : roles → N
gives the maximum number of allowed participants for each role.

– state
df= 〈rolesr, rolesp, ag〉 where: rolesr ∈ N is the number of roles still

short of the minimal required number of participants; rolesp : roles → P(A)
is a list of the participants for each role of the scope; and ag ∈ A is the name
of the agent owning the scope.

We will now outline how we model the behaviour of a single Cama location
middleware which interacts with multiple agents. To avoid race conflicts on data
2 We will often treat finite sets as though they were lists, and apply to them list

operations. Also mappings with finite domains can be treated as finite lists.
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produced and consumed by agents and the middleware, we introduce low-level
synchronisation in the form of an advisory mutual exclusion (mutex). Two aux-
iliary operations, lock(Z) and unlock(Z) implement such locking by granting
and releasing exclusive access to data associated with the prefix Z:

lock(Z) df= in(L ◦ Z ◦ 〈1〉) .out(L ◦ Z ◦ 〈0〉)
unlock(Z) df= in(L ◦ Z ◦ 〈0〉) .out(L ◦ Z ◦ 〈1〉)

In most cases, the associated data are tuples starting with the prefix Z. Being
an advisory locking, it requires all the parties accessing a shared object to use
this mechanism.

We model the location middleware as a set of cyclic event handlers activated
by tuples of certain structure and always starting with the prefix M. The defi-
nition of a middleware process running at a location l has the following form:

Middleware
df= EngageLocation | DisenageLocation | CreateScope |

DeleteScope | JoinScope | LeaveScope

For each of the above processes, there is a corresponding agent code which gen-
erates requests and receives any results produced by the middleware. An agent
process follows the standard process algebra syntax extended with the set of
additional operations described below.

Engage location registers an agent in a given location and issues a name
which is guaranteed to be location-wide unique. The name allows the recipi-
ent to request execution of other operations from the location middleware. The
AEngageLocation operation is always the first one that an agent executes when
it connects to a new location.

AEngageLocation
df= lock(M) . out(M ◦ 〈engage〉) . in(A ◦ 〈!a〉) .

unlock(M)

EngageLocation
df= in(M ◦ 〈engage〉) . in(A ◦ 〈!A〉) . in(U ◦ 〈!A′〉) .

out(A ◦ 〈A ∪ {first(A′)}〉) . out(U ◦ 〈tail(A′)〉) .

out(A ◦ 〈first(A′)〉) . EngageLocation

In the above, an agent acquires a lock for the prefix M, which is used to iden-
tify requests to the middleware. The agent produces the tuple M ◦ 〈engage〉 to
inform the middleware that there is a new agent connected to the location. The
location middleware does not need to know any identifier of the agent since possi-
ble interference with other agents is avoided by locking of the prefix M. Note that
the middleware does not have to do any locking since the requesting agent releases
the lock only after it receives a name from the middleware. It is also implied that
no other agent or middleware operations operate on tuples of the same structure.

The middleware reads the request which does not have any variable arguments
and acts as a trigger for this operation. It then proceeds with reading in the
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set of issued agent names A, and yet unused names A′. A new agent name is
allocated from the latter set, and both sets are updated accordingly. Note that
first() returns the first element of a list, and tail() returns the list of remaining
elements.

Disengage location removes the name of a connected agent from the set of
issued names. This operation does not require locking because the interaction
between an agent and the middleware is limited to a single tuple produced by
the agent. In the request to the middleware, the agent passes its name (ag). The
request triggers a handler in the middleware which updates the set of issued
agent names.

ADisengageLocation
df= out(M ◦ 〈disengage, ag〉)

DisengageLocation
df= in(M ◦ 〈disengage, !a〉) . in(A ◦ 〈!A〉) .

out(A ◦ 〈A− {a}〉) .DisenageLocation

Create scope makes a new scope defined by a scope name (sc), scope require-
ments (param) and a role (role) that the requesting agent (ag) is going to play
in the new scope. The middleware reads the requests and locks the part of the
tuple space which contains description structures for all scopes (lock(S)). It
then checks that the supplied agent name is one of the names issued by this
location, and that the role it is going to take in the scope is one of the roles
supported by the scope. If these conditions hold, the middleware creates records
describing the new scope. The tuple S◦s◦P◦〈param〉 contains the requirements
for this scope, i.e., the list of supported roles and the restrictions on number of
agents for each role.

The initial state of the scope state needs the number of roles which require
at least one agent. This is done by subtracting the number of roles with zero re-
quired agents from the total number of roles in the scope. The list of participants
is left empty and is immediately populated by the Update operation.

ACreateScope
df= out(M ◦ 〈create sc, ag, sc, param, role〉)

CreateScope
df= in(M ◦ 〈create sc, !a, !s, !p, !r〉) . lock(S) . rd(A ◦ 〈!A〉) .

if a ∈ A ∧ r ∈ p.roles

then
out(S ◦ s ◦P ◦ 〈p〉) .out(S ◦ s ◦R ◦ 〈0〉) .

out(S ◦ s ◦D ◦ 〈p.rolesn− |p.min−1({0})|, 〈〉, a〉) .

Update(r, a, s) fi .

unlock(S) .CreateScope

The Update operation also determines whether all the required roles are present
and the scope can be used for inter-agent communication. This is done by looking
at the scope requirements and the current scope state:
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Update(r, a, s) df= rd(S ◦ s ◦P ◦ 〈!rolesn, !roles, !min, !max〉) .

in(S ◦ s ◦D ◦ 〈!rolesr, !rolesp, !agent〉) .

in(S ◦ s ◦R ◦ 〈!b〉) .

out(S ◦ s ◦D ◦ 〈rolesr′, rolesp′, agent〉) .

if rolesr′ = 0 then out(S ◦ s ◦R ◦ 〈1〉) fi .

if rolesr′ 	= 0 then out(S ◦ s ◦R ◦ 〈0〉) fi

If all the required roles are allocated, the scope is marked as ready with the
tuple S ◦ s ◦R ◦ 〈1〉; otherwise, the communication is prevented by setting the
readiness flag to zero. In the above,

rolesp′ df= {(rolesp(r)+ag)/rolesp(r)}rolesp

is a substitution which adds a new agent (the scope creator) to the list of par-
ticipating agents and

rolesr′ df= if |rolesp(r)| + 1=min(r) then rolesr−1 else rolesr

The above expression tests whether the addition of an agent with role r would
result in the fulfilment of the requirement for the minimum number of agents.
If this the case, rolesr is decremented to reflect the drop in the number of roles
still short of required agents.

Delete scope destroys a scope previously created by the requesting agent. This
operation starts with an agent issuing a deletion requests with two arguments:
the agent’s name and the name of the scope to be deleted. The middleware checks
whether the requesting agent is the owner of the scope, and if it is so it removes
all the information about the scope and updates the list of scope names. The
affected structures are the scope state (prefix S◦s◦D), requirements (S◦s◦P),
and readiness status (S ◦ s ◦R).

ADeleteScope
df= out(M ◦ 〈delete sc, ag, sc〉)

DeleteScope
df= in(M ◦ 〈delete sc, !a, !s〉) . lock(M) .

rd(S ◦ s ◦D ◦ 〈!st〉〉)
if a = st.ag

then
in(S ◦ 〈!S〉) . in(S ◦ s ◦D ◦ 〈!st〉) . in(S ◦ s ◦P ◦ 〈!par〉) .

in(S ◦ s ◦R ◦ 〈!b〉) . out(S ◦ 〈S − {s}〉) fi .

unlock(M) . DeleteScope

Join scope adds an agent to an existing scope provided that there is a vacant
place for the requested role. In the request for this operation, the agent specifies
the name of a scope it is wishing to join and the role it is going to assume. The
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middleware caries out a number of checks, such as whether the requested role is
supported by the scope, and whether there are vacant places for the role.

AJoinScope
df= out(M ◦ 〈join sc, ag, sc, role〉)

JoinScope
df= in(M ◦ 〈join sc, !a, !s, !r〉) . lock(S) .

rd(S ◦ s ◦P ◦ 〈!par〉) . rd(S ◦ s ◦D ◦ 〈!st〉) .

rd(A ◦ 〈!A〉) . rd(S ◦ 〈!S〉) .

if a ∈ A ∧ s ∈ S ∧ r ∈ p.roles ∧ |st.rolesp(r)| < par.max(r)
then Update(r, a, s) fi .

unlock(S) . JoinScope

This operation also updates the rolesr value of the scope’s state, and the readi-
ness status. Note that the latter may have an important side effect if there were
agents blocked due to the unavailability of agents for some roles, as the appear-
ance of a new agent may change the readiness status to 1 unblocking the waiting
agents.

Leave scope removes an agent from a scope. The agent leaves a particular role
of the scope. The middleware checks whether the agent is currently participating
in the relevant role and if this is the case, it removes it from the agent list.

ALeaveScope
df= out(M ◦ 〈leave sc, ag, sc, r〉)

LeaveScope
df= in(M ◦ 〈leave sc, !a, !s, !r〉) . lock(S) .

rd(S ◦ s ◦D ◦ 〈!st〉)
if a ∈ st.roles(r)
then Update′(r, a, s) fi .

unlock(S) . LeaveScope

where Update′(r, a, s) is defined in the same way as Update(r, a, s) except for
the following:

rolesr′ df= if |rolesp(r)|=min(r) then rolesr+1 else rolesr

Communication operations are Linda operations that are suitably modified
to include additional checks for the state of a scope. They differ from the standard
Linda primitives in that they may block if the target scope is not ready (or does
not exists — this enables one to detect problems with the scoping mechanism
through deadlock checking):

– in(t)@s
df= rd(S ◦ s ◦R ◦ 〈1〉) . in(S ◦ s ◦ C ◦ t) checks if the specified scope

exists and that it is ready, then it reads a tuple from the scope. If the scope
is not ready then the operation blocks until the readiness status is changed
to 1.
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– out(t)@s
df= rd(S◦s◦R◦〈1〉) .out(S◦s◦C◦t) outputs a tuple after checking

that the target scope is available and ready.

Other operations are defined in a similar way, each operation being prefixed by
rd(S ◦ s ◦R ◦ 〈1〉) and its tuple or template argument by an appropriate prefix
corresponding to the scope s.

5 Model Checking CAMA Systems

Mobile systems are highly concurrent causing the state space explosion when
applying model checking techniques. We therefore use an approach which alle-
viates this problem, based on partial order semantics of concurrency and the
corresponding Petri net unfoldings.

5.1 Verification of Behavioural Properties

A finite and complete unfolding prefix of a Petri net PN is a finite acyclic net
which implicitly represents all the reachable states of PN together with transi-
tions enabled at those states. Intuitively, it can be obtained through unfolding
PN , by successive firings of transition, under the following assumptions: (i) for
each new firing a fresh transition (called an event) is generated; (ii) for each
newly produced token a fresh place (called a condition) is generated. If PN has
finitely many reachable states then the unfolding eventually starts to repeat it-
self and can be truncated (by identifying a set of cut-off events) without loss of
information, yielding a finite and complete prefix.

Efficient algorithms exist for building such prefixes [13], and complete prefixes
are often exponentially smaller than the corresponding state graphs, especially
for highly concurrent Petri nets, because they represent concurrency directly
rather than by multidimensional ‘diamonds’ as it is done in state graphs. For
example, if the original Petri net consists of 100 transitions which can fire once in
parallel, the state graph will be a 100-dimensional hypercube with 2100 vertices,
whereas the complete prefix will be isomorphic to the net itself. Since mobile
systems usually exhibit a lot of concurrency, but have rather few choice points,
their unfolding prefixes are often much more compact than the corresponding
state graphs. Therefore, unfolding prefixes are well-suited for alleviating the state
space explosion problem.

Our approach is suitable for verification of reachability-like (or state) proper-
ties, such as:

– The system never deadlocks (though it may terminate in a pre-defined set
of successful termination states).

– Security properties, e.g., all sub-scope participants are participants of the
containing scope.

– Proper using of the scoping mechanism: a scope owner does not attempt to
leave without removing the scope; agents do not leave or delete a scope when
other agents expect some input from the scope; the owner of a scope does
not delete it while there are still active agents in the scope; etc.
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– Proper use of cooperative recovery: all scope exceptions must be handled
when a scope completes; all scope participants eventually complete exception
handling; no exceptions are raised in a scope after an agent leaves it; etc.

– Application-specific invariants. (Note that the negation of an invariant is a
state property, i.e., the invariant holds iff there is no reachable state of the
system where it is violated.)

However, to apply net unfoldings, we first need to translate process algebra terms
corresponding to Cama systems into Petri nets.

5.2 From Process Algebra to Petri Nets

The development of a Petri net model corresponding to expressions of the process
algebra for Cama systems has been inspired by the box algebra [2] and by the
rp-net algebra used in [8] to model π-calculus. It uses coloured tokens and read-
arcs (allowing any number of transitions to simultaneously check for the presence
of a resource stored in a place). Transitions can have different labels, such as o
to specify outputting of data to tuple spaces, i to specify retrieving of data from
tuple spaces, and e to specify process creation. The translation is described in
detail in [7] and the modifications to the formal framework used there introduced
in this paper to model Cama can be easily accommodated. (Crucially, all the
proofs that the translation preserves the equivalence of the underlying transition
systems presented in [7] can be adapted for the framework used in this paper.)
Hence we will only outline the main aspects behind the translation from the
process algebra discussed in Section 3 to the domain of high-level Petri nets.

A key idea behind the translation is to view a system as consisting of a main
program together with a number of procedure declarations. We then represent
the control structure of the main program and the procedures using disjoint
unmarked nets, one for the main program and one for each of the procedure
declarations. The program is executed once, while each procedure can be invoked
several times (even concurrently), each such invocation being uniquely identified
by structured tokens which correspond to the sequence of recursive calls along
the execution path leading to that invocation. With this in mind, we use the
notion of a trail σ to represent in a unique way a finite (possibly empty) sequence
of recursive calls. Places of the nets which are responsible for control flow will
carry tokens which are simply trails. (The empty trail will be treated as the
usual ‘black’ token.) Procedure invocation is then possible if, for example, each
of the input places of a transition t labelled with e contains the same trail token
σ, and it results in removing these tokens and inserting a new token σt in each
initial (entry) place of the net corresponding to the definition of A(. . .), together
with other tokens representing the corresponding actual parameters. Places are
labelled in ways reflecting their intended role, as explained below.

– Control flow places: These are used to model control flow and are labelled
by their status symbols (internal places by i, and interface places by e and
x, for entry and exit, respectively).
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– Store places: These are labelled by variables as well as self, and carry
structured tokens representing data and localities known and used by the
main program and different procedure invocations. Each such token, called
a trailed value, is of the form σ.y where σ is a trail and y is a data value or a
locality other than self. Intuitively, its first part, σ, identifies the invocation
in which the token is available, while the second part, y, provides the current
value for the variable (or self) corresponding to the place. Note that store
places labelled by self indicate localities where processes are being executed.

– Tuple-place: This is a distinguished place, labelled by TS, used to represent
data stored at various tuple spaces. It stores a multiset of structured tokens
of the form l :: 〈q〉, as in the process algebra.

e

i

x

ξ1

ξr

 TS

self

... ω.ξr

ω

ω

x::〈̂t〉
ω.x

ω.ξ1
ω.z

K(in(t)@)

...

e

o

x

ξ1

ξr

 TS

self

ω.ξr

ω

ω

x::〈v〉
ω.x

ω.ξ1
ω.z

K(out(v)@)

Fig. 3. Translation for output and input actions with data expressions. In the case
of K(in(t)@�), ξ1, . . . , ξr are the variables used in t, including self. In the case of
K(out(v)@�), ξ1, . . . , ξr are the variables used in v, including self. A dotted line
between the transition and a place ξi indicates a directed arc from the former to the
latter if ti =!ξi, and a read arc otherwise. Transition labels are given in an abbreviated
form: i stands for i(z, t, x) and o stands for o(z, v, x), where t is t with all the !’s deleted.

Two example translations for the basic actions are given in Figure 3. In the first
one, K(in(t)@), we do not assume that ′ and  are distinct, and if that is the case,
we collapse the corresponding store places, and gather together the annotations
of the read arcs. In the second translation, K(out(v)@), we again do not assume
that ′ and  are distinct, and proceed similarly as before if they are.

The translation is syntax driven, and we use Petri net operators corresponding
to those in the process algebra, allowing one to construct Petri nets composition-
ally. The operators we use are prefixing (N .N ′), choice (N + N ′) and parallel
composition (N |N ′); see Figure 4 for the illustration of these operations. Note
that all three operators merge the store places with the same label.

– In the choice composition, the entry and exit places of N and N ′ are com-
bined together. This has the following effect: if we start from a situation
where each entry place contains a copy of a common trail token σ, then
either N or N ′ can be executed under that trail.
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– The prefixing operator combines the exit place of the prefix N with the entry
places of N ′ into internal places, and the effect is that the execution of N
after reaching the terminal marking, where the only exit place is marked, is
followed by that of N ′.

– The parallel composition of N and N ′ puts them side by side allowing to
execute both parts in parallel.

α β

e xω ω

ω.y ω.z

N1
α γ

e xω ω

ω.y ω.t

N2

αβ γ

e
i

xω ω ω ω

ω.tω.yω.yω.z

N1 . N2

αβ γe x

ω ω

ω ω

ω.y

ω.y ω.t

ω.z

N1 + N2

αβ γ

e x

e x

ω ω

ω ω

ω.y

ω.y ω.t

ω.z

N1 | N2

Fig. 4. Illustration of the various operators defined for Petri nets (transition labels are
omitted as they are unaffected by the three operations)

To carry out the translation, we assume that the following well-formed net-
work N is given: (

‖h
i=1li :: Pi

)
‖

(
‖k

j=1l
′
j :: 〈qj〉

)
together with the necessary process identifier definitions. We also assume that
li 	= li′ , for i 	= i′ (by the rules of the structural equivalence, we may always
group all processes occurring in some location into a single, possibly parallel,
process). Note that h or k may be 0, in which case the parallel composition
in the middle is not present. The translation proceeds in the following three
phases:
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Phase I. Each process Pi is translated compositionally into a high-level net
K(Pi) and during this process all store places with the same label are merged.
Similarly, for each process definition A(v) df= PA, we translate compositionally
PA into a high-level net K(A) and, again, during this process all store places
with the same label are merged.

Phase II. For each network node li :: Pi, we take K(Pi) and add a store place
labelled by selfi identifying it with the only self-labelled place (if present) and
give the merged place the label selfi. The result is denoted by K(li :: Pi).

Phase III. We take the parallel composition of the K(A)’s and K(li :: Pi)’s,
identifying all store places with the same label, and then suitably connect the
nets to mimic process instantiation. After that we set the initial marking; in
particular, for each l′j :: 〈q〉, we insert a single l′j :: 〈q〉-token into the TS-labelled
place.

It can be seen that the labelled transition system of the original process alge-
braic expression is behaviourally equivalent to that of the resulting net, and so
the latter can be used for model checking instead of the former.

6 Conclusion

In this paper, we outlined an approach to dealing with context aware location-
based mobile systems. In particular, we described a new formalism and mid-
dleware called Cama, which provides a rich environment to test our approach.
We sketched how to give Cama a formal concurrency semantics in terms of a
suitable process algebra, and then how to apply efficient model checking tech-
niques to the resulting process expressions in a way which alleviates the state
space explosion. The model checking technique adopted in our work is partial
order model checking based on Petri net unfoldings, and we briefly described a
semantics preserving translation from the process terms used in the modelling
of Cama to a suitable class of high-level Petri nets.
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Abstract. Transient faults belong to a wide-spread class of faults typical for 
control systems. These are the faults that only appear for a short period of time 
and might reappear later. However, even by appearing for a short time, they 
might cause dangerous system errors. Hence, designing mechanisms for 
tolerating and recovering from the transient faults is an acute issue, especially in 
the development of the safety-critical control systems. In this paper we propose 
formal development of a software-based mechanism for tolerating transient 
faults in the B Method. The mechanism relies on a specific architecture of the 
error detection actions called the evaluating tests. These tests are executed (with 
different frequencies) on the predefined subsets of the analyzed data. Our 
formal model allows us to formally express and verify the interdependencies 
between the tests as well as to define the test scheduling. Application of the 
proposed approach ensures proper damage confinement caused by the transient 
faults. Our approach aims at the avionics domain by focusing on formal 
development of the engine Failure Management System. However, the 
proposed specification and refinement patterns can be applied in the 
development of control systems in other application domains as well. 

Keywords: Transient faults, control systems, FMS, B Method, refinement. 

1   Introduction 

Nowadays software is a crucial part of many safety-critical applications. To guarantee 
dependability [1] of such systems, we should ensure that software is not only fault-
free but also is able to cope with the faults of the other system components. In this 
paper we focus on designing a controller able to tolerate transient faults of system 
components. Transient faults are the temporal defects within the system [2]. They 
frequently occur in the hardware functioning. However, design of the mechanisms for 
tolerating transient faults is inherently complex. On the one hand, controlling software 
(further referred to as a controller) should not over-react on an isolated transient fault. 
On the other hand, it should ensure that even the isolated transient faults are not 
propagated further into the system. Moreover, if the fault persists, the controller 
should initiate the appropriate recovery actions. The algorithm for ensuring this was 
proposed in [3,4]. 



190 D. Ili  et al. 

In the complex fault-tolerant control systems, a controller largely consists of the 
mechanisms for implementing fault tolerance. This is often perceived as a separate 
subsystem dedicated to fault tolerance. In avionics, such a subsystem is traditionally 
called Failure Management System (further referred to as the FMS). The major role of 
the FMS is to mask the faulty readings obtained from sensors and hereby provide the 
controller with the correct information about the system state.  

The requirements imposed on a specific engine FMS, which is typical in the 
avionics domain, are often changed as a result of simulation of the system behaviour 
under the failure conditions. These changes occur at the later development stages, 
which complicates the design of the FMS [4]. To overcome this difficulty, we propose 
a generic formal pattern for specifying and developing the FMS. The proposed pattern 
can be used in the product-line development [5]. 

Obviously, correctness of the FMS itself is essential for ensuring dependability 
of the overall system. Formal methods are traditionally used for reasoning about 
software correctness. In this paper we demonstrate how to develop the FMS by 
stepwise refinement in the B Method [6,7]. The B Method is a formal framework 
for the development of dependable systems correct by construction. AtelierB [8] – 
a tool supporting the method – provides a high degree of automation of the 
verification process, which facilitates better acceptance of the method in the 
industrial practice. 

The paper is structured as follows: in Section 2 we describe the FMS by presenting 
its structure, the behaviour and the error detection mechanism. In this section we also 
give the graphical representation of the FMS relying on the data from a single sensor. 
In Section 3 we give a short introduction into our modelling framework – the B 
Method. Section 4 demonstrates the process of developing the FMS formally. We 
start from an abstract specification of the system and obtain the detailed specification 
by a number of correctness preserving refinement steps. In Section 5 we discuss the 
proposed approach. 

2   Failure Management System 

2.1   Structure and Behaviour 

The Failure Management System (FMS) [3,4,9] is a part of the embedded control 
system as shown in Fig. 1.  

The control system regularly reads data from its sensors. In this paper we consider 
multiple homogenous analogue sensors. The sensor readings are considered as the 
inputs to the FMS. The outputs from the FMS are forwarded to the controller. The 
task of the FMS is to detect erroneous inputs and prevent their propagation into the 
controller. Hence the main purpose of the FMS is to supply the controller of the 
system with the fault-free inputs from the system environment. 
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Fig. 1. Structure of an embedded control system 

We assume that initially the system is error-free. The FMS operating cycle, defined 
as one FMS iteration step, starts by obtaining the readings from N sensors which 
become the inputs to the FMS. The FMS tests the inputs by applying a certain 
detection procedure. As a result, the inputs are categorized as fault-free or faulty. 
Then the FMS analyses the inputs to distinguish between recoverable and non-
recoverable faulty inputs. This is achieved by assigning a status to each analyzed 
input. The status can be either ok, suspected or confirmed failed. The fault-free inputs 
are marked as ok, the recoverable inputs are marked as suspected and the non-
recoverable inputs are marked as confirmed failed. After finishing analysis, the FMS 
takes the corresponding actions. These actions can be classified as healthy, temporary 
or confirmation1. The classification is adopted from [4]. 

In Fig. 2 we illustrate the general behaviour of the FMS, as proposed in [3]. For 
simplicity, here we assume that there is just one input (i.e., one single sensor) 
monitored by the FMS. 

 

Fig. 2. Specification of the FMS behaviour 

Healthy action. If the FMS is in the Normal state, i.e., a received input is fault-free 
(ok), then the input is forwarded unchanged to the controller and the FMS continues 
its operation by accepting another input from the environment. 

Temporary action. If the FMS is in the Normal state and detects the first faulty input, 
it changes the operating state from Normal to Recover (Fig. 2). While in the Recover 
state, the FMS counts the number of faulty inputs in successive operating cycles. At 
the same time the status of the faulty input is marked as suspected. One of the 
requirements imposed on the FMS is to give a fault-free output even when the input is 
faulty. Hence, while operating in the Recover state, the FMS calculates the output 
using the last good value of this input obtained before entering the state Recover. 
Once a temporary action is triggered, it will keep the system in the state Recover until 

                                                           
1 The confirmation action is an action taken when an input is confirmed as failed. 
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the counting mechanism determines whether the input (i.e., the corresponding sensor) 
has recovered. In this case, the system changes its state from Recover to Normal. 

Confirmation action. If the system has been operating in the state Recover and the 
input fails to recover, the counting mechanism triggers the confirmation action. Then 
the input is marked as confirmed failed and the system changes the operating state to 
Failed. After this, the system proceeds with the control actions defined for the state 
Failed.  

2.2   Error Detection 

The detection mechanism is the most important part of the FMS. Its role is to 
determine whether the input is faulty or fault-free. In Fig. 3 we present the 
architecture of the detection mechanism. 

 

Fig. 3. Detection mechanism architecture 

For each input reading we should apply the tests required to detect whether that 
particular input is faulty. The detection procedure in the FMS is based on applying the 
tests in the order defined by their architecture. The tests may vary depending on the 
application domain. For instance, the most commonly used tests for analogue sensors 
in avionics are the magnitude test, the rate test, and the predicted value test.  

We differentiate between different kinds of tests. The basic category is the simple 
tests. An input reading may pass through several simple tests, which can be applied in 
any order. When triggered, a simple test runs using solely the input reading from the 
sensor. After the test is executed, it is marked as passed for the current input, which in 
turn may trigger the execution of some other associated test.  

The second test category is the complex tests with the level of complexity 1. The 
complex tests may use input readings from several sensors. However, all the simple 
tests required for these sensors should be executed before any complex test is 
performed as shown in Fig. 3. 

In general, there might be L+1 test categories, where the last test category is the 
complex tests with the level of complexity L. The execution of this kind of tests 
depends not only on the previous execution of the simple tests, but also on the 
execution of the complex tests with the level of complexity up to L-1. If the input 
requires several tests of the same complexity level, they can be executed in any order. 
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However, all the applicable tests of the lower levels should be already executed. 
Hence, the detection procedure operates in stages, first executing all the simple tests 
associated with a certain input and then all the complex tests of ascending complexity 
as shown in Fig. 3. 

In general, sensors can be classified into analogue or switch-type sensors. Hence, 
the FMS inputs can be represented as numerical or Boolean values correspondingly. 
For both sensor types, the template of the detection mechanism is the same. However, 
different tests can be applied on the readings from analogue or switch-type sensor. 

After executing all the required tests on received inputs, the FMS classifies the 
inputs as faulty or fault-free. 

2.3   The FMS Pattern 

The actions of the FMS described in Fig. 2 and the detection template presented on 
Fig. 3 constitute the generic FMS structure and behaviour pattern as summarized in 
Fig. 4. For simplicity, the pattern is presented for a single sensor.  

 

Fig. 4. The FMS pattern 

Fig. 4. shows the flow of the detection decisions and the effect of FMS actions 
after the input is received from the system environment. The counting mechanism 
(described in detail later) is introduced to distinguish between the recoverable and 
unrecoverable transient faults. The system switches to the state Normal, if the input 
has recovered, or stays in the state Recover, if the input is still suspected. The system 
enters the state Failed, if the input has failed to recover.  

The given pattern can also be applied for handling N multiple sensors. However, 
when handling N multiple sensors, the system failure state might be reached when 



194 D. Ili  et al. 

several or all sensors have failed. Transition to the failure state corresponds to 
freezing the system or switching to a backup controller (if possible). 

The pattern can be applied in the controlling software product line [5] for creating 
a collection of similar control systems that are tolerant against the transient faults, as 
proposed in [9]. 

3   Formal Modelling in the B Method 

In this paper we have chosen the B Method [6,7] as our formal modelling framework. 
The B Method is an approach for the industrial development of highly dependable 
software that has been successfully used in the development of several complex real-
life applications [10]. The tool support available for B provides us with the assistance 
for the entire development process with a high degree of automation in verifying 
correctness. For instance, Atelier B [8], one of the tools supporting the B Method, has 
facilities for automatic verification and code generation as well as documentation, 
project management and prototyping. The high degree of automation in verifying 
correctness improves scalability of B and speeds up the development.  

In B, a specification is represented by a module or a set of modules, called Abstract 
Machines. The common pseudo-programming notation, called Abstract Machine 
Notation, is used to construct and formally verify them. An abstract machine 
encapsulates the state and the operations of a specification and has the following 
general form: 

MACHINE  name 
SETS  Set 
VARIABLES                   v 
INITIALISATION Init 
INVARIANT                   I 
OPERATIONS  Op 

Each machine is uniquely identified by its name. The state variables of the machine 
are declared in the VARIABLES clause and initialized in the INITIALISATION 
clause. The variables in B are strongly typed by constraining predicates of the 
INVARIANT clause. The constraining predicates are composed by conjunction 
(denoted as ∧). All types in B are represented by non-empty sets and hence set 
membership (denoted as ∈ expresses typing constraint for a variable, e.g., x∈TYPE. 
Local types can be introduced by enumerating the elements of the type, e.g., TYPE = 
{element1, element2,…} in the SETS clause. The operations of the machine are 
atomic and they are defined in OPERATIONS clause.  To describe the computation 
in operations we use the B statements listed in the Table 1. 

In this paper we adopt the event-based approach to system modelling [11]. The 
events are specified as the guarded operations of the form: 

 
Event = SELECT cond THEN body END 

  
Here cond is a state predicate, and body is a B statement describing how the state 
variables are affected by the operation. If cond is satisfied, the behaviour of the guarded 
operation corresponds to the execution of its body. If cond is false at the current state then 
the operation is disabled, i.e., its execution is blocked. The event-based modelling is 
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especially suitable for describing reactive systems, typical examples of which are control 
systems. Then a SELECT operation describes the reaction of the system when a 
particular event occurs. 

Table 1. List of B statements used in our operations 

Statement Informal meaning 
x := e Assignment 
x, y := e1, e2 Multiple assignment 
IF P THEN S1 ELSE S2 END If P is true then execute S1, otherwise S2 
S1 ; S2 Sequential composition 
S1 || S2 Parallel execution of S1 and S2 

x :∈ T 
Nondeterministic assignment – assigns variable x 
arbitrary value from given set T 

ANY x WHERE Q THEN S END  
Nondeterministic block – introduces a new local 
variable x according to the predicate Q, which is 
then used in S 

CHOICE S OR T OR … OR U END 
Nondeterministic choice – one of the statements S, 
T… U is arbitrarily chosen for execution 

B also provides the structuring mechanisms for modularization, which allows us to 
express machines as compositions of other machines. For instance, if in the machine 
M1 we define that M1 SEES M2, where M2 is another machine, then the sets, the 
constants and the state of M2 are available to M1 for the reading in its own 
initialization and within preconditions and the bodies of operations. In particular, this 
allows us to define widely used sets and constants in a separate machine and then 
make it “seen” by all other machines where these sets and constants are needed. 

The development methodology adopted by B is based on stepwise refinement [12]. 
The result of a refinement step in B is a machine called REFINEMENT. Its structure 
coincides with the structure of an abstract machine. A refinement machine contains 
the additional clause REFINES, which directly refers to the refined machine. 
Moreover, besides typing of variables, the invariant of a refinement machine includes 
the refinement relation (linking invariant) that describes the connection between the 
state spaces of the more abstract and refined machines. 

Sometimes, it is useful to introduce user’s own definitions as the abbreviations for 
certain complex expressions. Such definitions can be formulated in the 
DEFINITIONS clause.  

To ensure correctness of a specification or a refinement, we should verify that 
initialization and each operation preserve the machine invariant. The verification can 
be completely automatic or user-assisted. In the former case, the tool generates the 
required proof obligations and discards them without user’s help. In the latter case, 
the user has to prove the remaining proof obligations using the interactive prover 
provided by the tool. 

In the next section we demonstrate how to formally specify the FMS system 
described in the previous section. 
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4   Formal Development of the FMS 

4.1   The FMS Specification Pattern 

Control systems are usually executed in an iterative manner. Their behaviour is 
essentially interleaving between environment stimuli and the controller reaction on 
these stimuli. The controller reaction depends on the results of error detection 
conducted by the FMS. The FMS, in turn, depends on the obtained inputs (i.e., 
stimuli). Because of these interdependencies, it is natural to consider the behaviour of 
the FMS in the context of the overall system.  

The abstract specification pattern given in Fig. 5 is obtained from the informal 
FMS description represented graphically in Fig. 4. The abstract specification defines 
the behaviour of the FMS during one operating cycle (i.e., one FMS iteration step). 
The stages of such a cycle are modelled using the variable FMS_State. The type 
STATES of FMS_State is defined in the machine Global, as follows: 

 
STATES = {env, det, detloop, anl, anlloop, act, out, freeze}; 
 

where the values of FMS_State define the phases of the FMS execution in the 
following way:  

• env – obtaining inputs from the environment,  
• detloop and det – performing tests on the inputs and detecting erroneous 

inputs,  
• anlloop and anl – deciding upon the input status,  
• act – setting the appropriate actions,  
• out – sending output to the controller either by simple forwarding one of 

the obtained inputs or by calculating the output based on the last good 
values of the inputs,  

• freeze – freezing the system.  
 
The variable FMS_State models the evolution of the system behaviour in the operating 

cycle. At the end of the operating cycle the system either reaches the terminating 
(freezing) state or produces a fault-free output. In the latter case, the operating cycle starts 
again. 

In our abstract specification the input values produced by the environment (i.e., the 
sensor data) are assigned nondeterministically in the operation Environment. The input 
values produced by the sensors are modelled by the variable InputN. The variable 
represents the readings of N multiple homogeneous sensors. 

After obtaining the sensor readings from the environment, the FMS starts the 
operation DetectionLoop, which is at this development stage underspecified, and 
proceeds with the operation Detection. In the abstract specification we omit detailed 
representation of error detection and model only its result, which is assigned to the 
variable Input_In_ErrorN. Its value is TRUE, if an error is detected on the sensor 
reading of a particular input, and FALSE otherwise. Observe that the operation 
Detection produces the detection results for all sensors at once. In the further 
development, this will be done gradually in the operation DetectionLoop. 
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After the detection phase, the FMS performs the operation AnalysisLoop. In the 
abstract specification, this operation is underspecified, i.e., it nondeterministically 
chooses to remain in the current phase (detloop) or proceed with the next one (det). In 
the later development, the operation AnalysisLoop will be refined to include gradual 
analysis of the inputs. Now, however, the operation Analysis sets the results of the 
analysis for all the inputs at once. Based on the results obtained at the previous state, 
the FMS decides upon the status of an input – fault-free (i.e., ok), suspected or 
confirmed failed. The variable Input_StatusN is an array that for each of N inputs 
contains a value of the type: 

 
I_STATUS = {ok, suspected, confirmed_failed}; 
 

representing the status of this input. The nondeterministic assignment to 
Input_StatusN is bounded by the following conditions. If the input has successfully 
passed all required detection tests (Input_In_ErrorN(ee)=FALSE), its status can be 
either ok or suspected. However, if an error has been found for this input 
(Input_In_ErrorN(ee)=TRUE), the assigned status becomes either suspected or 
confirmed_failed. The assignment is then written as: 

 

Input_StatusN :∈ {ff | ff∈ Indx → I_STATUS ∧ 
     ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE  ff(ee)∈{ok,suspected}) ∧ 
     ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE  ff(ee)∈{suspected,confirmed_failed}) } 
 

where Indx is a set of ok or suspected inputs. 
 
Upon completing analysis, the FMS applies the corresponding action. A healthy 

action is executed, if the input is fault-free, a temporary action, if the input is 
suspected, and a confirmation action, if the input is confirmed failed. While 
performing a healthy action, the FMS forwards its input to the system controller. As a 
result of a temporary action, the FMS calculates the output based on the information 
about the last good input values. In both cases the operating cycle starts again. If the 
FMS cannot properly function after the input has failed, the system enters the freezing 
state. Otherwise, it removes the input that has been confirmed failed from further 
observations. In the latter case, the output is calculated based on the last good input 
values (similarly as in a temporary action).    

Since the controller of the system relies only on the input it obtains from the FMS, 
in our safety invariant we express the error confinement conditions: 

 
Safety Invariant == 
      (FMS_State=act   

    ∀(ee).(ee∈Indx   
      (Input_In_ErrorN(ee)=FALSE  Input_StatusN(ee)∈{ok,suspected}) ∧ 

           (Input_In_ErrorN(ee)=TRUE  Input_StatusN(ee)∈{suspected,confirmed_failed})))  
       ∧ 
      (Indx=∅  FMS_State=freeze) 
 

The first predicate states that, whenever the FMS is in the state act and some input 
ee is detected fault-free, the value assigned to the variable Input_StatusN is either ok 
or suspected. Similarly, if an error is detected for some input ee, the value assigned to 
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the variable Input_StatusN is either suspected or confirmed_failed. Finally, the last 
predicate states that, if the variable Indx is empty (i.e., all the inputs have failed), 
FMS_State is equal to freeze (i.e., the system is in the freezing state). 

Our initial specification of the FMS abstractly describes the intended behaviour of 
the FMS. However, it leaves the mechanism for detecting errors and analysing the 
inputs underspecified. These details will be introduced by refinement.  

MACHINE     FMS 
SEES       Global 
VARIABLES Indx, InputN, Input_StatusN, Input_In_ErrorN, Last_Good_InputN, Output, FMS_State 
INVARIANT 

Indx ⊆ 1 .. max_indx ∧ 
InputN ∈ Indx → NAT ∧ 
Input_StatusN ∈ Indx → I_STATUS ∧ 
Input_In_ErrorN ∈ Indx → BOOL ∧ 
Last_Good_InputN ∈ Indx → NAT ∧ 
Output ∈ NAT ∧ 
FMS_State ∈ STATES ∧ < safety invariant > 
 

INITIALISATION   /* Constants defined in the machine Global: */ 
Indx := 1 .. max_indx ||   /* max_indx ∈ NAT ∧ max_indx ≥ 2 */ 
InputN := ( 1 .. max_indx ) × { Good_Input } || /* Good_Input ∈ NAT  */ 
Input_StatusN := ( 1 .. max_indx ) × { ok } || 
Input_In_ErrorN := ( 1 .. max_indx ) × { FALSE } || 
Last_Good_InputN :=  ( 1 .. max_indx ) × { Good_Input } || 
Output := Init_Output ||   /* Init_Output ∈ NAT */ 
FMS_State := env 

OPERATIONS 
 

Environment = 
SELECT FMS_State = env 
THEN 

InputN :∈ Indx → NAT || 
            FMS_State := detloop 
END ; 
 

DetectionLoop = 
SELECT FMS_State = detloop 
THEN 

FMS_State :∈ { detloop , det } 
END ;        

           
 
Detection = 

SELECT FMS_State = det 
THEN 

Input_In_ErrorN :∈ Indx → BOOL || 
            FMS_State := anlloop 
END ; 
 

AnalysisLoop = 
SELECT FMS_State = anlloop 
THEN 

FMS_State :∈ { anlloop , anl } 
END ;        

                                                                                                                                                      ... 
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Analysis = 
SELECT FMS_State = anl 
THEN 
     Input_StatusN :∈ { ff | ff ∈ Indx → I_STATUS ∧ 
          ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=FALSE  ff(ee)∈{ok, suspected} ) ∧ 
          ∀ee.(ee∈Indx ∧ Input_In_ErrorN(ee)=TRUE  ff(ee)∈{suspected, confirmed_failed} ) } || 
     FMS_State := act 
END ;         

 
Action = 

SELECT FMS_State = act ∧ confirmed_failed ∈ ran ( Input_StatusN ) 
THEN 

CHOICE 
                 IF Input_StatusN -1 [ { ok , suspected } ] ≠ ∅ 
                 THEN 
                      Indx := Input_StatusN -1 [ { ok , suspected } ] || 
                      InputN := Input_StatusN -1 [ { ok , suspected } ]  InputN || 
                      Input_StatusN := Input_StatusN  { ok , suspected } || 
                      Input_In_ErrorN := Input_StatusN -1 [ { ok , suspected } ] Input_In_ErrorN || 
                      Last_Good_InputN := Input_StatusN -1 [ { ok , suspected } ]  Last_Good_InputN || 
                      FMS_State := out 
                 ELSE FMS_State := freeze END 
            OR 
                 FMS_State := freeze 
            END 
WHEN 

FMS_State = act ∧ confirmed_failed ∉ ran ( Input_StatusN ) ∧ Indx≠∅ 
THEN 

FMS_State := out 
WHEN 

FMS_State = act ∧ confirmed_failed ∉ ran ( Input_StatusN ) ∧ Indx=∅ 
THEN 

FMS_State := freeze 
END ; 
 

Return = 
SELECT FMS_State = out 
THEN 

ANY in WHERE in = ( Last_Good_InputN  ( Input_StatusN -1 [ { ok } ]  InputN ) ) 
            THEN 
                        Last_Good_InputN := in || Output :∈ ran ( in ) 
            END || 
            Input_In_ErrorN := Indx × { FALSE } || FMS_State := env 
END ; 

 
TickTime = 

BEGIN 
skip 

END ; 
 

Failed = 
SELECT FMS_State = freeze 
THEN 

skip 
END 
 

END 

Fig. 5. Excerpt from the abstract FMS specification pattern 



200 D. Ili  et al. 

4.2   Refining Input Analysis in the FMS 

In our first refinement step we introduce a detailed specification of the input analysis 
procedure. In the initial FMS specification the input analysis was modelled by a 
nondeterministic assignment to the variable Input_StatusN in the operation Analysis. 
In the refined specification we calculate the current value of the input status based on 
the value of Input_In_ErrorN and the value of the input status obtained at the 
previous cycle of the FMS. Namely, if the analysed input was ok (fault-free), it 
becomes suspected (faulty) after an error on this input is detected. If the input was 
already suspected and an error is detected again, it can either stay suspected or 
become confirmed_failed. These properties are incorporated into the linking invariant 
as shown in Fig. 6.  

In this refinement step we specify in detail the operation AnalysisLoop. The 
operation gradually performs the input analysis, considering inputs one by one until 
all the inputs are processed. The information about the input status of the processed 
inputs is correspondingly accumulated in the variable Input_StatusN1. After the 
operation AnalysisLoop is completed, the value of Input_StatusN1 is assigned to 
Input_StatusN in the operation Analysis. 

REFINEMENT FMSR1 
REFINES  FMS2 
SEES  Global 
VARIABLES ..., Input_StatusN1, Processed 
INVARIANT 

Input_StatusN1 ∈ Indx → I_STATUS ∧ 
Processed ∈ Indx → BOOL ∧ 
 

/* Linking invariant */ 
( FMS_State ∈ { env , detloop , det } ∧ Indx ≠ ∅  ran ( Processed ) = { FALSE } ) ∧ 
( FMS_State ∈ { anl , act , out }  ran ( Processed ) = { TRUE } ) ∧ 
( FMS_State = det  Indx ≠ ∅ ) ∧ 
( ∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=TRUE  

                                                              Input_StatusN1(ee)∈{suspected, confirmed_failed}) ) ∧ 
( ∀ee.(ee∈Indx ∧ Processed(ee)=TRUE ∧ Input_In_ErrorN(ee)=FALSE   

                                                              Input_StatusN1(ee)∈{ok, suspected}) ) ∧ 
( FMS_State ∈ { act , out , env , detloop , det }  Input_StatusN = Input_StatusN1 ) ∧ 
( FMS_State ∈ { out , env , detloop , det }  ran ( Input_StatusN ) ⊆ { ok , suspected } ) ∧ 
( ∀ee.(ee∈Indx ∧ FMS_State=anlloop ∧ Processed(ee)=FALSE  

                                                             Input_StatusN(ee)=Input_StatusN1(ee)) ) ∧ 
( ∀ee.(ee∈Indx ∧ FMS_State=anlloop ∧ Processed(ee)=FALSE   

                                                             ran(Input_StatusN)⊆{ok, suspected}) ) 
INITIALISATION 
 

... || Input_StatusN1 := ( 1 .. max_indx ) × { ok } || 
Processed := ( 1 .. max_indx ) × { FALSE } 
 

OPERATIONS 
 

Environment = ... 
DetectionLoop = ... 
Detection = ... 

… 
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AnalysisLoop = 
SELECT FMS_State = anlloop 
THEN 

ANY ii WHERE ii ∈ Indx ∧ Processed(ii)=FALSE 
            THEN 
                IF Input_In_ErrorN(ii)=FALSE 
                THEN 
                     IF Input_StatusN(ii)=suspected 
                     THEN 
                             ANY ch WHERE ch∈{ok, suspected} THEN Input_StatusN1(ii):=ch END 
                     END 
                ELSE 
                     ANY ch WHERE ch∈{suspected, confirmed_failed} THEN Input_StatusN1(ii):=ch END 
                END || 
                Processed(ii):=TRUE 
            END ; 
            IF ran(Processed)={TRUE} THEN FMS_State:=anl ELSE FMS_State:=anlloop END 
END ; 

 
Analysis = 

SELECT FMS_State = anl 
THEN 

Input_StatusN := Input_StatusN1 || 
FMS_State := act 

END ; 
 

Action = 
SELECT FMS_State = act ∧ confirmed_failed ∈ ran ( Input_StatusN ) 
THEN 

CHOICE 
                   IF Input_StatusN -1 [ { ok , suspected } ] ≠ ∅ 
                   THEN 
                        ... || Processed := Input_StatusN -1 [ { ok , suspected } ]  Processed 
                   ELSE FMS_State := freeze END 

OR 
                   FMS_State := freeze 

END ... 
END ; 
 

Return = 
SELECT FMS_State = out 
THEN 
            ... || Processed := Indx × { FALSE } || 
            FMS_State := env 
END ; 
 

TickTime = ... 
Failed = ... 

 
END 

Fig. 6. First FMS refinement – specifying input analysis 

Our second refinement step (Fig. 7) aims at introducing a detailed procedure for 
determining the input status in the operation AnalysisLoop. The procedure is based 
on using a customisable counting mechanism which re-evaluates the status of the 
analyzed inputs at each FMS cycle.  
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REFINEMENT FMSR2 
REFINES FMSR1 
SEES  Global 
VARIABLES ..., cc, num 
INVARIANT 

cc ∈ Indx  NAT ∧ num ∈ Indx  NAT 
INITIALISATION 

... || cc := ( 1 .. max_indx ) × { 0 } || num := ( 1 .. max_indx ) × { 0 } 
OPERATIONS 

 

Environment = ... 
DetectionLoop = ... 
Detection = ... 
 

AnalysisLoop = 
SELECT FMS_State = anlloop 
THEN 

ANY ii WHERE ii ∈ Indx ∧ Processed ( ii ) = FALSE ∧  
                            Config(yy)≤cc(ii) ∧ cc(ii)+Config(xx)≤max_int ∧ num(ii)+1≤max_int 
THEN 

                        IF Input_In_ErrorN ( ii ) = FALSE 
                        THEN 
                                IF Input_StatusN ( ii ) = suspected 
                                THEN 
                                        cc(ii):=cc(ii)-Config(yy); num(ii):=num(ii)+1; 
                                        IF (num(ii)<Limit ∧ cc(ii)=0) THEN Input_StatusN1(ii):=ok; num(ii):=0 END 
                                END 
                        ELSE 
                                cc(ii):=cc(ii)+Config(xx); num(ii):=num(ii)+1; 
                                IF (num(ii)≥Limit ∨ cc(ii)≥Config(zz)) 
                                THEN Input_StatusN1(ii):=confirmed_failed             
                                ELSE  Input_StatusN1(ii):=suspected END 
                        END || 
                        Processed(ii):=TRUE 

END ;  
IF ran(Processed)={TRUE} THEN FMS_State:=anl ELSE FMS_State:=anlloop END 

END ; 
Analysis = ... 
 

Action = 
SELECT FMS_State = act ∧ confirmed_failed ∈ ran ( Input_StatusN ) 
THEN 

CHOICE 
                        IF Input_StatusN -1 [ { ok , suspected } ] ≠ ∅ 
                        THEN 
                                ... || cc := Input_StatusN -1 [ { ok , suspected } ]  cc || 
                                num := Input_StatusN -1 [ { ok , suspected } ]  num 
                        ELSE FMS_State := freeze END 

OR 
                        FMS_State := freeze 

END ... 
END ; 

Return = ... 
TickTime = ... 
Failed = ... 
 
END 

Fig. 7. Second FMS refinement – specifying error recovery 
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For each of N inputs, we introduce counters cci(i∈1..N), which contain accumu-
lated values determining how trustworthy a particular input i is. If cci=0 then the input 
i is ok. If 0<cci<zz, where zz is some predefined value, the input i is suspected. 
Otherwise, the input i is considered failed. At every cycle the counters cci are re-
evaluated depending on the detection results. Each faulty input i increments the 
counter cci by a certain predefined value xx. Similarly, each fault-free input i 
decrements the corresponding counter cci by another predefined value yy. If at some 
point the value of cci reaches 0, the input i is declared ok. Similarly, if the value of cci 
exceeds zz, the input i is declared confirmed_failed and should be removed from the 
set of inputs used by the FMS. 

The predefined values zz, xx and yy are set after observing the real performance of 
the FMS. By setting the value of xx higher then the value of yy, the counter cc is 
biased towards failure. However, such a specification is insufficient for guaranteeing 
termination of recovery. Observe that the input may behave in such a way that the 
counter cc is practically oscillating between some values but never reaches the limit zz 
or zero. To overcome this problem, we introduce the second counter num which 
counts the number of the consequent recovering cycles for each suspected input (i.e., 
when 0<cci<zz). When a certain limit for num is exceeded, the recovery terminates 
and, if cc is different from zero, the input is confirmed_failed. 

4.3   Refining Error Detection in the FMS 

We continue the development of the FMS by refining the error detection procedure. 
This third refinement step aims at introducing a test architecture, which is then used 
by the refined error detection procedure. 

The nondeterministic assignment to the variable Input_In_ErrorN in the operation 
Detection specifies only that each of N inputs can either be found in error or error 
free, without specifying in detail the detection procedure. This assignment is refined 
in the third refinement step by introducing the evaluation tests. Since we observe 
homogeneous multiple sensors measuring the same physical process in the environ-
ment, for each of N sensor readings the same series of tests can be applied as shown 
in Fig. 8. 

 

Fig. 8. Defining tests for homogeneous multiple sensors 

The architecture of tests used for error detection follows the idea of test dependen-
cies presented in Section 2.2. The set of all tests (modelled by the deferred set TESTS) 
is partitioned into two subsets:  

 
S_TEST ⊆ TESTS ∧ C_TEST ⊆ TESTS  

 
where S_TEST is the set of all simple tests and C_TEST is the set of all complex tests. 
Moreover, since each complex test depends on some simple tests, we define this de-
pendency as the following constant function: ComplexTest ∈ C_TEST → POW(S_TEST). 

1       2      3               …              N

 

 

 
Test 1   Test 2      …    Test M

InputN
 
 
 
TESTS 
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To model the error detection performed gradually over a set of inputs, we refine the 
abstract operation DetectionLoop. The refined operation is presented bellow. 
Similarly as in the operation AnalysisLoop, the information about the failed inputs is 
gradually accumulated in the variable Input_In_ErrorN1. After DetectionLoop is 
completed, the value of Input_In_ErrorN1 is assigned to Input_In_ErrorN in the 
operation Detection.  

The evaluating tests enabled for execution in DetectionLoop are determined 
according to the following requirements obtained from the requirements document: 

[req1] each test can be executed at most once on a certain input; 
[req2] if the test is complex then all the simple tests it depends on have to be 

already executed; 
[req3] if some input has failed then no more tests on that input should be 

executed. 
The condition of the nondeterministic block ANY of the operation DetectionLoop 

defines which tests are actually enabled for execution according to the requirements 
req1-3. To ensure req1, we introduce the relation TestExecuted that contains only 
those pairs (ii,te), where ii is an input and te is a test, such that the input ii has been 
tested by the test te. Then req1 can be expressed simply as the predicate 
(ii,te)∉TestExecuted. Similarly, the requirement req2 can formally be expressed as the 
predicate (te∈C_TEST  ∀mm.(mm∈ComplexTest(te)  (ii,mm)∈TestExecuted)). Finally, 
the requirement req3 is ensured by checking that the predicate 
Input_In_ErrorN1(ii)=FALSE holds, i.e., an input has not failed yet. 

When an enabled test is executed on a particular input, its result should be saved 
for later analysis. Therefore, we introduce the relation TestPassed that contains only 
those pairs (ii,te) such that the input ii has successfully passed the test te.  

At the beginning of each FMS operation cycle both variables, TestExecuted and 
TestPassed, are initialised with the empty set (i.e., initially no tests have been 
executed and passed). 
 
DetectionLoop = 
SELECT FMS_State=detloop ∧ Counter>0 
THEN  

ANY ii,te WHERE FMS_State=detloop ∧ ii∈Indx ∧ te∈TESTS ∧ 
        (ii,te)∉TestExecuted ∧ Input_In_ErrorN1(ii)=FALSE ∧ 

        (te∈C_TEST  ∀mm.(mm∈ComplexTest(te)  (ii,mm)∈TestExecuted)) 
 THEN 

  CHOICE TestPassed:=TestPassed ∪ {ii te} OR skip END; 

  IF (ii,te)∉TestPassed THEN 
   Input_In_ErrorN1(ii):=TRUE || 
            TestExecuted:=TestExecuted ∪ ({ii} × TESTS) 
  ELSE 
   TestExecuted:=TestExecuted ∪ {ii  te} 

END 
 END 
WHEN FMS_State=detloop ∧ Counter=0  
THEN  

FMS_State:=det 
END ; 
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To ensure that the operation DetectionLoop terminates, we define its variant 
Counter as follows: 

 
Counter ==  
card ({ii,te | ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧ Input_In_ErrorN1(ii)=FALSE 

           ∧ (te∈C_TEST  ∀mm.(mm∈ComplexTest(te)  (ii,mm)∈TestExecuted))})  
 
Counter defines the number of tests enabled for execution. Each DetectionLoop 

decreases the number of enabled tests by increasing the number of tests that have 
been executed. When Counter reaches zero, the operation DetectionLoop finishes 
and the FMS operating cycle proceeds to the operation Detection. 

The invariant of the third refinement step guarantees that, if any of the tests applied 
on a certain input has failed, the input is considered in error: 

∀(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∈TestExecuted ∧ (ii,te)∉TestPassed  
Input_In_ErrorN1(ii)=TRUE ) 

However, this would be insufficient without additionally guaranteeing that, in order 
for some input to be error free, it should successfully pass all the executed tests:   
 
∀(ii).(ii∈Indx ∧ ∀(te).(te∈TESTS ∧ (ii,te)∈TestExecuted  (ii,te)∈TestPassed)  

Input_In_ErrorN1(ii)=FALSE) 
 

The process of error detection can be graphically represented as shown in Fig. 9.  

 

Fig. 9. Process of deciding upon the error detection  

Let us observe the error detection procedure over the inputs (i.e., sensors) 1 and K, 
where K:2..N. Assume that the evaluating tests defined for these sensors are: simple 
tests – STest_1 and STest_2, and a complex test with the level of complexity 1 – 
C1Test.  

Both simple tests have successfully passed on the input 1, hence, the values in the 
matrix TestPassed for these tests on input 1 are T (i.e., true). After the simple tests have 
successfully passed on input 1, the complex test can be executed. Its result determines 
whether the input is in error or not. Since C1Test has successfully passed on input 1, the 
input 1 is found error free, i.e., Input_In_ErrorN for input 1 is F (i.e, false). 
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Let us observe now error detection on the input K. The test STest_1 has 
successfully passed and the value in matrix TestPassed for this input is hence T. 
However, STest_2 has failed and hence the complex test C1Test cannot be executed. 
Input K is considered in error, i.e., Input_In_ErrorN for input K is T. 

The mechanism of error detection can be further refined. In particular, applicability 
of tests can depend not only on the requirements listed in req1-3 but also on some 
additional conditions on the required test frequencies and the internal state of the 
system: 

[req4] every test is executed with a certain frequency; The test frequency can 
be different for different tests; 

[req5] in order for some complex test to be executed, its frequency has to be 
divisible by the frequencies of all the simple tests required for its 
execution; This requirement is necessary in order to ensure the 
execution of all the required tests on the same data; 

[req6] the execution of each test may depend on the current internal state of 
the system. 

To model this, we introduce the constant function Freq: TESTS → NAT that 
defines the frequency for each test. The state of the system is modelled as the variable 
State, whose values are assigned from the abstract set STATE.  

With the new requirements in mind, we develop the fourth FMS refinement step. 
In order to apply tests according to the given frequencies, we introduce time 
scheduling. There is one global clock guaranteeing that the tests with the same 
frequency are executed at the same time instances. We model real time by introducing 
the event TickTime which increments the value of the current time (stored in the 
variable Time), whenever the event is enabled. In addition, the operation TickTime 
models possible change of the internal system state by nondeterministically updating 
the variable State. 

 
TickTime= 
SELECT Clock_Flag=enabled 
THEN 
 Time:=Time+1 || State :∈ STATE;  
 IF Exist_Test_For_Execution THEN Clock_Flag:=disabled END 
END; 
 
where the predicate Exist_Test_For_Execution is defined as: 
 
Exist_Test_For_Execution ==  
     ∃(ii,te).(ii∈Indx ∧ te∈TESTS ∧ (ii,te)∉TestExecuted ∧ (Time mod Freq(te)=0) ∧ 
     Input_In_ErrorN1(ii)=FALSE ∧  
     (te∈C_TEST  ∀mm.(mm∈ComplexTest(te)  

              (ii,mm)∈TestExecuted ∧ (Freq(te) mod Freq(mm)=0)))  
 
The progress of time is allowed in two situations: 

- when one FMS operation cycle finishes and before the next one starts, or 
- when there are no tests enabled for execution under given conditions. 
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In that case we allow time to progress and possibly update the internal system state 
until some tests become enabled.  

The condition under which the tests are enabled combines now the given 
conditions on the internal state (modelled by the abstract function Cond) and the 
required frequency: 

 
CONDITION(tt,ti,st)==(Cond(tt,st)=TRUE ∧ (ti mod Freq(tt)=0)) 
  
The above definition expresses that a particular test tt is enabled for execution at 

the time ti and the system state st. Using this definition, we strengthen the guard of 
the ANY block in the operation DetectionLoop so that it additionally implements the 
requirements req4-6.  

With this refinement step we conclude our formal FMS development. The 
development can be instantiated by a domain-specific FMS. The developed 
specification and refinement patterns are designed specifically for N homogeneous 
multiple sensors. However, they can be easily extended to cover N heterogeneous 
sensors as well. In this case it would require to define tests for each one of N sensor 
readings separately, as shown in Fig. 10. 

 

 

Fig. 10. Defining tests for heterogeneous multiple sensors 

5   Conclusion 

In this paper we proposed a formal pattern for specifying and refining the Failure 
Management System – a part of a safety-critical control system guaranteeing 
confinement of sensor errors. Our formal development of the FMS adopts system 
approach, i.e., we model the system together with its environment. The initial 
specification abstractly models the stages of the FMS execution cycle: input reading, 
error detection, input analysis, applying corresponding actions, calculating the output 
or freezing the system. Further formal development defines the input analysis 
procedure by introducing a customisable counting mechanism. Then we specify the 
error detection mechanism for N multiple homogeneous sensors by applying a certain 
architecture of tests.  

In order to ensure application of tests on the same data, i.e., data collected at the 
same time instances, we introduced test scheduling. We defined a global clock and 
enabled the progression of time only when the whole FMS operating cycle finishes or 
when there are no enabled tests left for execution. 
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Laibinis and Troubitsyna have proposed a formal approach to the model-driven 
development of fault tolerant control systems in B [13]. However, they did not 
consider transient faults. Since we consider this type of faults our approach is an 
extension of the pattern proposed in their work.  

Formal development of the FMS has also been undertaken in [3,9]. This work was 
focused on reusability and portability of the FMS modelled using UML-B [14]. 
However, the dependencies between tests of detection mechanism were not explicitly 
addressed. In our work we explicitly defined a hierarchical test architecture allowing 
us to tackle the input anomalies more efficiently. 

A similar problem – design of software-implemented fault tolerance – was studied 
in [15,16,17]. This work focused on studying how to modify software at the code 
level to achieve fault tolerance. Our approach is complementary: we aimed at 
studying how to specify and develop software with fault tolerance mechanism 
integrated into it. 

We verified our complete development with the automatic tool support – Atelier B. 
Around 70% of proof obligations have been proved automatically by the tool. The 
rest have been proved using the interactive prover. 
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Many approaches to requirements analysis focus on the anticipated interactions be-
tween users and the system to be built. These interactions may be structured as a 
collection of representative scenarios or ‘use cases’. Often the requirements docu-
ment is just an elaborate informal narrative describing in detail the sessions of each 
class of user. By drawing attention to the experience of users, these approaches can 
be a useful kind of paper prototype.

A major flaw of such approaches is that, for many systems, they focus in the 
wrong place. The problem to be solved by the system usually exists not at the inter-
face with the machine, but deeper in the environment [9]. The purpose of a traffic 
light system, for example, is not to control the lights but to ensure steady and safe 
flow of traffic. Its requirements analysis should therefore start with traffic and the 
expected and desired behaviours of drivers, rather than with the question of how the 
lights should be sequenced.

This paper addresses a different but related flaw of approaches based on user 
interaction: that enumerating and elaborating scenarios tends to conflate different 
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Abstract. Often, a requirements document is structured as a long list of 
individual “requirements”, each describing an anticipated function or user 
interaction. An alternative approach is to identify a collection of subproblems, 
each representing an aspect of the larger problem, and to describe each 
subproblem in isolation, deferring their composition to a later stage. This paper 
illustrates the approach by applying it to the requirements of the positioning 
functions of a proton therapy installation. It explains how a flaw in the design of 
the system can be isolated to a single subproblem, which can be formalized and 
subjected to automatic analysis. 

1   Introduction 

concerns. A system must usually satisfy multiple properties, perform multiple func -
tions simultaneously, and satisfy multiple purposes. The eventual design of its user 
interface brings these multiple concerns together. But to describe the interface be-
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fore the concerns have been identified and explored puts the cart before the horse. 
It can easily result in a development in which the individual concerns are never 
properly grasped, and are therefore inadequately addressed or made unnecessarily 
complicated.

This problem has special significance for systems that must be highly dependable. 
An inability to separate concerns makes it hard to pay more attention to the concerns 
that are more critical, and the resulting system may fail to satisfy its most critical re-
quirements because their implementation is interwoven with the implementation of 
less critical requirements. In an earlier study, we found that the software control of 
the emergency stop feature of a radiotherapy machine was dependent on far less im-
portant features of the system; a signal to stop could be rejected, for example, if the 
disk were full so that a log record could not be written [12]. (Fortunately a redundant 
hardware interlock was in place.)

An alternative approach identifies the concerns at the outset. Instead of attempt-
ing to describe an interface that integrates the various concerns, each concern is 
considered independently, and only later is the composition of the concerns ad-
dressed [9]. This paper illustrates the approach with an example of a problem that 
arose in the development of the software for a proton therapy machine. The work is 
part of an ongoing collaboration between the Software Design Group at MIT and 
the Burr Proton Therapy Center (BPTC) at Massachusetts General Hospital whose 
aim is to find ways to improve the dependability of critical software.

The problem was known to the developers of the therapy system, and had been 
resolved before the writing of this paper, and it never posed a safety risk. But it is 
worth studying because it illustrates the pitfalls of the traditional approach to re-
quirements analysis, some potential benefits of an approach based on problem de-
composition, and is characteristic of problems that arise in many similar systems.

Proton therapy involves exposing a patient’s tumour to a focused beam of protons. 
The positioning of the patient and the device issuing the beam is an intricate matter. 
At the BPTC, the positioning is carried out in two distinct phases. In the first phase, 
the patient and device are put in a “setup position” that is suitable for imaging. An X-
ray image is taken to determine the exact position of the tumour, and a “delta” is ob-
tained that captures the difference between the setup position and the position that 
would be required for the beam to be appropriately aligned. In the second phase, 
the patient and device are oriented in the “treatment position”; the delta obtained 
during setup is applied as a correction to the initial treatment position so that the 
proton beam will be aligned correctly.

Patient and beam position are adjusted in a number of ways. The beam follows a 
path along a fixed beamline from the cyclotron to the treatment room, and is bent 

2   The Proton Therapy System 

by electromagnets to align with a snout mounted on a gantry that surrounds the 
patient couch and can rotate around one axis. The snout itself moves in and out 
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(towards and away from the patient), and can also rotate. The patient is positioned, 
often on a firm cushion, on a robotic couch that has six degrees of freedom (lateral, 
longitudinal, vertical, roll, pitch and rotation). When the rotation of the couch is at 
0 degrees, adjusting the roll of the couch and the angle of the gantry have the same 
effect, although the couch can only move plus or minus 3 degrees, so it tends to be 
used for making small adjustments only.

In the initial design of the software, the therapist issued the command “gotoSetup” 
to move the patient into the recorded setup position. She then took X-rays, and ad-
justed the position of the gantry and couch until alignment was achieved. A single 
command “saveSetup” was then executed, whose effect was two-fold: to obtain the 
delta used to offset the treatment position, and to record a new setup position for 
subsequent treatment sessions.

The therapists observed that sometimes the gantry angle had deviated over the 
course of several treatment sessions quite considerably from its initial position, de-
spite the fact that the therapist had made no adjustments to the gantry itself. This 
was not in itself a safety concern, since the unexpected movement of the gantry had 
been compensated by a corresponding adjustment of the couch. Eventually, howev-
er, the gantry had moved so far that it was no longer possible to compensate because 
of the limited freedom of movement of the couch.

The problem, it turned out, was that the “saveSetup” command would overwrite 
the gantry angle setting even when it had not been adjusted. Since the “gotoSetup” 
command only moved the gantry to within the recorded position by some tolerance, 
the effect of “saveSetup” was to change the gantry angle setting even when the thera-
pist had not intended any change. In some cases, it seems that these small errors 
accumulated, resulting eventually in a significant change.

The solution that was implemented was simply to eliminate the ability to adjust 
the gantry angle during setup. The code of the “saveSetup” command was changed 
accordingly so that it never overwrites the gantry angle setting. This approach is 
acceptable because the adjustments that are typically needed are small, and can be 
achieved by adjustments to the couch position alone.

The solution suggested by the analysis based on subproblems is different. It dis-
tinguishes those “saveSetup” commands that follow “gotoSetup” commands, and 
insists that they make no change to the recorded setup position.

A decomposition into subproblems starts with an attempt to uncover the purpose 
behind the functions to be implemented. In this case, a discussion with the develop-
ers revealed two distinct purposes: (1) to save the setup position so that in a sub-
sequent session the need for setup adjustment is eliminated or reduced; and (2) to 
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determine, with the help of an X-ray or some other imaging device, an adjustment to 
the relative positions of the patient and the beam that will ensure proper alignment 
during treatment.

An important clue that these purposes should be regarded as distinct subproblems 
is that they have different spans. The first, which we call the Set/Restore subproblem, 
has a span that encompasses multiple treatment sessions. The second, which we 
call the Alignment subproblem, involves only a single session. The two subproblems 
are shown in figs. 1 and 2 in Problem Frame notation [9]. In each figure the striped 
rectangle represents the machine to be developed for the corresponding subprob-
lem. The other rectangles represent problem domains interacting with the machine 
at interfaces of shared phenomena; the dashed ellipse represents the requirement, 
which is a condition on the problem domains, expressed in terms of phenomena 
that may or may not be shared with the machine. An arrowhead indicates that the 
requirement expresses a constraint on the domain to which it points.

Before delving further into either subproblem, we notice that they share a com-
mon feature: the positioning of the equipment by the machine. The physical devices 
that perform this positioning cannot be perfectly controlled; a position is set using 
a control loop that makes repeated adjustments and measurements. The control 
loop’s design involves tradeoffs between the accuracy of the final position and how 
quickly it is reached.

Recognizing this, it becomes clear that the positioning of the device in accor-
dance with a desired position is itself a non- trivial, third, subproblem that should 
be separated from the two subproblems already identified. We shall call this the 
Positioning subproblem (fig. 3). The domains marked Equipment in the subproblems 
of figs. 1 and 2 now correspond to the PhysicalEquipment domain and Machine of fig. 
3. The machines in figs. 1 and 2, issuing nudge and reposition commands to Equip-
ment, correspond to the Commander domain in fig. 3. The domain marked Physi-
calEquipment in fig. 3 is less abstract, and represents the actual physical plant and 
its monitoring and controlling devices. In implementation terms, interactions with 
the Equipment domain represent indirect interactions with the PhysicalEquipment 
domain mediated by the Machine in the Positioning subproblem.

Let’s now examine each of the three subproblems in more detail.

The Positioning subproblem (fig. 3) has a domain Commander that issues two kinds 
of command: nudge, to request a relative adjustment, and reposition, to request an 
absolute position. The domain PhysicalEquipment, as mentioned, represents the 
physical plant and its devices; it is controlled by adjustment commands represented 
by the operation adjust, and is monitored by the reading of a variable position that 
is shared with the machine. The requirement is that, after a reposition(x), position is 
within some epsilon of x, and, after a nudge(d), position is within some epsilon of d 
applied to the previous value of position.

The details of the tolerance and the time taken to achieve the final position need 
not concern us here, and are standard issues in the design of a control loop for a 
physical device (such as a robot arm). A primary benefit of identifying such a sub-

3.1   Positioning Subproblem 
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problem is factoring out parts of the development that are complex and tricky when 
faced for the first time, but are conventional and easily handled by a specialist.

The Set/Restore subproblem is also an instance of a wider class. The setup protocol 
in our proton therapy setting is essentially the same as the protocol for adjusting the 
seat position in a fancy car. The car stores a preferred position for each driver, and 
has three principal commands: to adjust the seat position; to save a preference; and 
to restore the position to the last position saved for that driver.

In this subproblem, the domain Equipment has a shared variable position that re-
veals the current position of the equipment. Unlike the domain PhysicalEquipment 
in the Positioning subproblem, however, its phenomena include the more powerful 
commands nudge and reposition rather than just adjust. This subproblem therefore 
need not be concerned with how a particular positioning command is handled; it 
assumes that the equipment responds appropriately.

The Therapist issues three kinds of command: save(p) to save the current posi-
tion as the preferred saved position for patient p, restore(p) to move to the posi-
tion previously saved for patient p, and reqNudge(d) to request an adjustment by 
an amount d. The preferred positions are stored in a database represented by the 
Database domain, which offers a relation prefPosition mapping each patient to a 
preferred position.

A careful consideration of this subproblem in isolation reveals the creep problem. 
Since reposition only achieves an approximation to the desired position, issuing the 
command reposition (position) repeatedly can cause arbitrary changes in position; 
each request to set the position to the current recorded position may actually result 
in a change in position. A naive design in which every save(p) writes the current 
value of position to prefPosition[p] will exhibit this anomaly if a sequence of save/
restore pairs is executed.

To avoid the problem, we can make save(p) have no effect if the preceding event 
was a restore(p). A full formalization of this subproblem is discussed below, with a 
more detailed explanation of this decision.

The Alignment subproblem is the hardest to handle, because it is more complicated, 
and because it seems to be unique to this domain. It can nevertheless be described 
fairly succinctly. Rather than representing the gantry and couch as distinct compo-
nents with distinct positions, we regard the system as a whole as occupying a coor-
dinate in some abstract space, just as we did with other subproblems.

In this space, some coordinates can be classified as oriented: these correspond 
to the gantry and couch positions in which the patient is oriented appropriately for 
treatment. Some coordinates, likewise, can be regarded as aligned: these are the 
coordinates in which the relative positions of the couch and the gantry will ensure 
that the beam is appropriately directed at the tumour. By viewing alignment and 
orientation as projections of a coordinate, we can define planes (isosurfaces) in the 
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abstract space of coordinates that share a particular alignment or a particular orien-
tation. Correct alignment (or orientation) means that the alignment (or orientation) 
projection has a particular value.

The Therapist issues four kinds of command: reqNudge to request a position ad-
justment, gotoSetUp to request the setup position, and gotoTreatment to request 
that the equipment move to the treatment position stored in the Database, and 
confirm to confirm that the equipment is well aligned in the current position. The 
Database holds a setup position and a treatment position for each patient p rep-
resented as shared variables setUpPosition[p] (assumed to be almost aligned) and 
treatmentPosition[p] (assumed to be oriented, and also almost aligned).

The procedure to be followed by the Therapist is first to request the setUpPosition 
with gotoSetUp; then, if adjustment is necessary to effect it by reqNudge commands; 
then to issue a confirm followed by gotoTreatment command.

The requirement is roughly that, following gotoTreatment, the equipment is both 
aligned and oriented. It will be established by a combination of assumed properties 
of the Therapist, Database and Equipment domains, and of the specification of the 
Machine, namely that (1) Therapist will issue the confirm command only when the 
equipment is shown to be aligned by the X-ray or other imaging technique; (2) the 
value of treatmentPosition[p] in Database is oriented; (3) in the Equipment domain, 
the command reposition(x), where x is aligned and oriented, results in a value of 
position that is also aligned and oriented.

Decomposing into subproblems allows us to analyze each subproblem independent-
ly. In this section, we illustrate this by formalizing the Set/Restore subproblem in 
Alloy [8], and subjecting the formal model to an automatic analysis using the Alloy 
Analyzer [2].

An Alloy model begins with a module name, and imports for any modules that 
are used. In this case, we import a library module that imposes a total ordering on 
the set Event, to be declared later:

module saveRestore
open util/ordering [Event]

The import makes available functions which will be used later: next(e), nexts(s), 
prev(e), and prevs(s), which for an element e (or a set s) give respectively the next 
element, all subsequent elements, the immediately preceding element, and all pre-
ceding elements; and first() and last(), which give the first and last events in the 
ordering.

The set of positions is declared, with a relation near associating each position 
with the set of positions that are within some epsilon (the tolerance of the Position-
ing subproblem), along with a fact (a global assumption) that this relation is reflexive 
and symmetric:

4   Set/Restore Formalized 
 

sig Position {near: set Position}
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fact {
 Position <: iden in near
 near = ~near
 }

It is significant that near is not transitive; its lack of transitivity is the source of the 
gantry creep problem.

A set of patients is likewise declared:

sig Patient {}

The states of the system are declared explicitly as a set also; Alloy has no built-in 
state machine idiom. Two relations are declared on states, one for the state of the 
Equipment domain that associates each state with a position – the physical position 
of the equipment – and one for the state of the Database domain that associates each 
state with a function mapping patients to preferred positions:

sig State {
 Equipment_position: Position,
 Database_prefPosition: Patient -> one Position
 }

The Database_prefPosition relation is a total function: it maps each patient to 
exactly one position.

The various requests and commands are modelled as event objects. We start with 
a set of events declared to be abstract (indicating that it will be exhausted by the sub-
sets that will be subsequently declared), and with relations associating each event 
with its pre-state (the state before its occurrence), its post-state (the state after its 
occurrence), and the patient to which the event applies:

abstract sig Event {
 pre, post: State,
 patient: Patient
 }

The pre- and post-state relations must be constrained so that for any event e 
except the last event in a trace, the pre- state of e’s successor event is the post-state 
of e:

fact {
 all e: Event - last () | next (e).pre = e.post
 }

We declare a partition of the event set into subsets corresponding to the three 
commands issued by the therapist:

sig Therapist_save, Therapist_restore, Therapist_reqNudge extends Event {}

The Equipment domain has two event sets of its own; the use of the  in keyword in 
their declarations allows these sets to overlap with the other event sets:
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sig Equipment_reposition in Event {position: Position}
sig Equipment_nudge in Event {}
fact {no Equipment_reposition & Equipment_nudge}

Our plan is to have them overlap with the Therapist events, so that a reqNudge in 
the Therapist domain can be equated to a nudge in the Equipment domain. They will 
not overlap with each other, however, so an explicit fact is recorded to this effect.

Note that the reposition event has a position relation declared for it; this is in 
fact the only event in which a position must be made explicit. The commands of the 
Therapist domain are interpreted with respect to the current position in the Equip-
ment domain, which is not communicated by the therapist.

It will be convenient to have two functions for describing temporal relationships 
between events. The function following takes an event e and a set of events s and 
returns either the first event that follows e that belongs to the set s or the empty set 
if there is none:

fun following (e: Event, s: set Event): lone Event {
 let succs = s & nexts (e) | succs - nexts (succs)
 }

This defines succs as the intersection of s and the set of all events occurring after 
e. The difference between succs and the set of all events occurring after any of its 
members is then the singleton set containing its first member or the empty set if it 
has no first member. The lone keyword indicates that the function following may 
return a singleton or empty set of events; it can be read ‘less than or equal to one’.

The function between takes two events and returns the set of events that occur 
between them:

fun between (from, to: Event): set Event {
 nexts (from) & prevs (to)
 }

Now we can define the constraints: the requirements and the domain properties. 
There are two distinct requirements. The first says, roughly speaking, that a restore 
command returns the equipment to the position prior to the last save. More pre-
cisely, for any patient p and save command s associated with p, and for any restore 
command r following s, if there is no other save for p that intervenes between the 
two, the position after the restore is ‘nearish’ to the position before the save:

pred Memory_Requirement () {
 all p: Patient, s: Therapist_save & patient.p |
  all r: following (s, Therapist_restore &
  patient.p) |
   no Therapist_save & patient.p & between (s, r) implies
    nearish (r.post.Equipment_position, s.pre.Equipment_position)
 }

The expression Therapist_save & patient.p denotes the set of Therapist_save 
events applying to patient p, and so on.
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Two positions are ‘nearish’ if there is some position they are both near to:

pred nearish (p, p’: Position) {some p“: Position | p+p’ in p”.near}

(The need for this notion is explained below). The second requirements says, 
roughly speaking, that there is no creep. For any patient p, save command s as-
sociated with p, and restore commands r and r’, also associated with p, that follow 
s without an intervening reqNudge command, the positions resulting from r and r’ 
are nearish:

pred Consistency_Requirement () {
 all p: Patient, s: Therapist_save & patient.p, r: nexts (s), r’: nexts (r)  |
  (r + r’ in Therapist_restore & patient.p and
  no between (r, r’) & Therapist_reqNudge & patient.p) implies
   nearish (r.post.Equipment_position, r’.post.Equipment_position)
 }

The two restore commands need not follow immediately, and can have other re-
store commands occurring between them.

The therapist positions each patient afresh, rather than using the position of the 
previous patient. We record this assumption as a predicate saying that if an event 
is associated with a different patient than its predecessor, it must be a restore com-
mand:

pred Therapist () {
 all e: Event | e.patient != prev(e).patient implies e in Therapist_restore
 }

(Note that if e has no predecessor, then the expression prev(e).patient denotes 
the empty set: there are no undefined expressions or special values in Alloy.)

The specification of the machine links together the commands of the therapist 
with the reading and updating of the database, and the issuing of commands to the 
equipment:

pred Specification () {
 -- respond to a restore command from the therapist by issuing
 -- a reposition command to the equipment whose position argument
 -- is that position of this patient in the database
 all r: Therapist_restore |
  r in Equipment_reposition and
   r.position = r.pre.Database_prefPosition[r.patient]
 -- a reqNudge command from the therapist is matched to a nudge
 --  command to the equipment and a restore is matched to a reposition
 Therapist_reqNudge = Equipment_nudge
 Therapist_restore = Equipment_reposition
 -- when a save command is received from the therapist, the position of
 -- the associated patient is updated in the database with the current
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 -- equipment position, unless the previous command was a restore
 -- for this patient
 all s: Therapist_save | let p = s.patient |
  s.post.Database_prefPosition = s.pre.Database_prefPosition ++
   if some prev (s) & Therapist_restore & patient.p
    then none -> none else p -> s.pre.Equipment_position
 -- for any event except a save, the database is not written
 all e: Event - Therapist_save |
  e.pre.Database_prefPosition = e.post.Database_prefPosition
 }

The assumptions about the equipment are that a reposition moves the equipment 
to a position near to the position requested, and that only reposition and nudge 
events result in a change in position:

pred Equipment () {
 all r: Equipment_reposition | r.post.Equipment_position in r.position.near
 all e: Event | e.post.Equipment_position = e.pre.Equipment_position
  or e in Equipment_reposition + Equipment_nudge
 }

Finally, we can declare as assertions the key correctness properties, namely that 
the combination of the specification and domain properties implies each of the re-
quirements:

assert CorrectnessM {
 Specification () and Equipment () and Therapist ()
  implies Memory_Requirement ()
 }
assert CorrectnessC {
 Specification () and Equipment () and Therapist ()
  implies Consistency_Requirement ()
 }

The Alloy language is undecidable, so an assertion cannot be checked automati-
cally in an unbounded space. So Alloy’s checking commands specify a scope indicat-
ing how many elements each set may have. For example, for an initial analysis, we 
might execute the command

check CorrectnessM for 3

which checks the assertion CorrectnessM for all scenarios involving up to  3 events, 
states, positions and patients. Because there are so many scenarios even within small 
scopes, they are often sufficient to detect interesting flaws.

For example, if the definition of nearish is replaced by

pred nearish (p, p’: Position) {p in p’.near}

so  that  two  points  are  nearish  only  when  they are near , the Alloy Analyzer finds 
a counterexample for this command in about 5 seconds (on a 1.67GHz Powerbook 
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G4 laptop), as shown in fig. 4. The large ovals linked by next show the chain of events 
for a particular patient. The first event is a restore; its pre-state, not shown in this 
particular visualization, associates position P0 with the patient in the database, so 
P0 is the argument to the reposition command. On receiving this command, the 
equipment is free to set the position to any that is near P0; it chooses P2. (The near 
relation amongst positions is shown in the upper right.) Now a save command oc-
curs, which has no effect, since it is preceded by a restore. Then a second restore is 
performed. The database has not changed, but this time, the equipment chooses a 
different position near P0, namely P1. So although creep can’t happen, since different 
restore commands can approximate the commanded position differently, the actual 
error margin is twice the tolerance of the equipment.

Replacing the definition of nearish by its original definition results in no counter-
example. To gain further confidence, we can increase the scope. Checking the com-
mand for all scenarios involving 7 events, 7 states, 7 positions and 3 patients

Fig. 4. A counterexample 
 

 

 

check CorrectnessM for 7 but 3 Patient

gives no counterexamples, in a search that takes under 4 minutes.
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Separating concerns. By separating the problem into three subproblems, we were 
able to see more clearly what the essential difficulties were. The creep problem, for 
example, is a direct consequence of the interface presented by the Positioning sub-
problem to the Set/Restore subproblem, and can be solved by ensuring that saves 
that do not follow nudges have no effect. In the original requirements document, the 
description of the setup procedure involves reading both setup and treatment posi-
tions from a database, and using both to compute the final treatment position. Ex-
amination of the Alignment subproblem reveals that this need only depend on the 
treatment position given in the database and the alignment information obtained 
from any reasonable setup position. The conflation occurs only because the imple-
mented database incorporates the databases of both subproblems, and because the 
setup position used to obtain alignment is the same setup position that is saved and 
restored.

Formal analysis. The decomposition into subproblems simplifies the formal anal-
ysis, not only in allowing smaller models, but also by making them more tractable 
and the results easier to interpret. Simply writing things down more formally reveals 
misunderstandings; mechanical analysis inevitably reveals additional, more subtle 
problems. Our experience formalizing the Set/Restore subproblem was typical in 
this respect.

Span. The span of a subproblem is the set of phenomena it involves. In this case, 
the span of a subproblem might involve one or many patients, and one or many 
treatment sessions. Identifying the span is a crucial first step in understand a prob-
lem, and the presence of requirements with different spans suggests a decomposi-
tion into subproblems.

Abstraction. A subproblem is easier to understand and analyze when the phe-
nomena have been abstracted appropriately. In the original requirements docu-
ment, for example, the discussion of positioning involves the many components of 
the gantry and patient couch position. This level of detail is not relevant to these 
subproblems.

Distinct phenomena. A scenario-based analysis encourages the developer to con-
flate phenomena, for example to assume that the saving of a preferred setup position 
and the confirmation of alignment are the same event. They happen to be performed 
by the same person at the same time, often for the same position, but there is no 
fundamental reason that they need to be equated. Arguably, a cleaner design would 
offer two separate commands, allowing the therapist to save a preferred position 
without confirming alignment, for example. In short, it is better to start with the as-
sumption that phenomena are distinct and merge them than to start with a smaller 
set and try to split phenomena later.

5   Discussion

Composing the Positioning subproblem. Analysis of a problem into distinct sub-
problems must be followed by recombination of the analysed subproblems to give a 
solution to the original problem. Recombining the Positioning subproblem with the 
other two is straightforward and entirely conventional. The span of the Positioning 
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subproblem is receipt and execution of a single nudge or reposition command: the 
Machine in the Positioning subproblem has no need to save state from one command 
to the next, because the only significant state is held in the Physical Equipment. This 
Machine can therefore be easily implemented as a module that interfaces with the 
equipment on one side and offers the nudge and reposition commands on the other. 
This module is made available to the Set/Restore and Alignment subproblems.

Composing the Set/Restore and Alignment subproblems. Recombining the Set/Re-
store and Alignment subproblems demands more care. The composition task is to 
combine the subproblems by identifying phenomena that are common to both, and 
to ensure that the composition preserves the properties of each. The Therapist has, 
in principle, the full repertoire of both subproblems available, but each subproblem 
imposes its own restrictions on the acceptable command sequences. As has already 
been mentioned, it is appropriate to identify the Database field prefPosition in the 
Set/Restore subproblem with the setUpPosition field in the Alignment subproblem. 
The reqNudge commands in the two subproblems are evidently identical. The con-
firm command in the Alignment subproblem can be identified as a save command in 
the Set/Restore subproblem: responsibility for avoiding the creep problem belongs 
to the Set/Restore subproblem, where save will have no effect unless there has been 
a reqNudge since the most recent save. The databases are composed simply by merg-
ing their schemas. The two subproblem machines can be combined, in an object-
oriented setting, by introducing a control layer that delegates commands issued by 
the Therapist to lower-level objects implementing the two machines.

Without hindsight? We have, of course, had the benefit of hindsight. The gantry 
creep problem had already been identified in the existing system, and we took that 
as our starting point. Would we have identified the problem if we had been doing 
an original design without the benefit of hindsight? We believe that we would. By 
our criteria the Set/Restore subproblem is clearly distinct from the Alignment sub-
problem, because the two have different spans: many sessions versus one session. 
Once these subproblems have been separated there is no reason to confuse the save 
action in the Set/Restore subproblem with the confirm action in the Alignment sub-
problem.

The confirm action need not, in principle, cause a database update, because the 
confirmed position will be used immediately to compute the delta and the treatment 
position. Only a later recognition that it, too, could involve saving a position in the 
database suggests the possibility that the two saved positions might be represented 
by the same database field in the patient’s record. Such a design choice, in our ap-
proach, would be a conscious decision in an explicit composition task, and would 
demand careful examination of the circumstances in which the two actions could 
share a part of their implementation.

Dijkstra coined the term ‘separation of concerns’. In an early note [4], he advocated 
the idea of focusing  on one aspect of a problem at a time. Since then, the notion of 
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The insight that the requirements of a system to be built should be viewed as a col-
lection of fairly independent subproblems is now also widely understood, although 
in practice the identification of subproblems is not made explicit in the require-
ments document, but arises only during design, when the subproblems emerge as 
design challenges. The idea that the requirements themselves should be structured 
around subproblems is the premise of the Problem Frames approach [9], which 
characterizes problems into archetypal classes, in the hope that most subproblems 
encountered will be instances of subproblems that have already been faced, and for 
which simple and effective solutions are well known.

Formal methods attempt to uncover the essence of the requirements problem, 
and to express it precisely and unambiguously in a formal notation. They do not 
tend, however, to give effective guidance or heuristics for decomposing problems 
into subproblems, although the presence of conjunction in declarative specification 
languages makes them well suited to such a decomposition [1, 7, 10].

Viewpoints [5] are a bit like subproblems, but they arise from the interests of dif-
ferent stakeholders, rather than from structure inherent to the problem itself.

Aspect-oriented programming [11] and subject-oriented programming [6] aim 
to achieve better separation of concerns by new implementation constructs. Work 
on ‘early aspects’ seems to focus not so much on separation of concerns in the early 
phases of development as on the early identification of features that can be imple-
mented using the technology of aspect-oriented programming.

Failure to recognize that a problem is composed of multiple subproblems is likely 
to result in complicated and obscure implementation. An extreme programming 
approach [3] may well exacerbate the difficulties, by encouraging the coding of a 
complex composite machine before simpler submachines have been identified. The 
effort invested in an early decomposition into subproblems is likely to pay off, and an 
extreme programming approach in which individual submachines are implemented 
and evaluated prior to consideration of their composition might work well.

Dr. Jay Flanz, director of the Burr Proton Therapy Center, generously explained to 
us the details of the gantry creep problem; Dr. Hanne Kooy, radiation physicist, and 
Doug Miller and Nghia Ho Van, developers of the Therapy Control System were 
also very helpful. Robert Seater is developing a problem-frame- based analysis of the 
system, and shared his ideas and insights with us. This research was funded in part 
by grant 0325283 (Safety Mechanisms for Medical Software) from the ITR program 
of the National Science Foundation.
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Abstract. This paper examines the hypothesis that rigorous fault tol-
erance can be achieved by using aspect oriented software development in
conjunction with formal methods of verification and analysis. After brief
summaries on fault tolerance, aspect-oriented programming, and formal
methods, some examples of aspects for fault tolerance are outlined. Then
some recent research on applying formal methods to aspects is described,
with the potential implications for rigorous fault tolerance using aspects.

Keywords: aspect orientation, fault tolerance, formal methods.

1 Introduction

This paper examines the hypothesis that rigorous fault tolerance can be achieved
by using aspect-oriented software development in conjunction with formal meth-
ods of verification and analysis. It thus connects three largely disparate areas,
each with an extensive literature of its own: fault tolerance, aspects, and formal
methods.

Before considering a possible synthesis of these areas, some of the major objec-
tives and accomplishments of each are briefly summarized. Then some examples
of using aspects for fault tolerance are outlined, in Section 2. In Section 3 re-
sults on applying formal methods to aspects are surveyed. Finally, the potential
mutual benefits of aspects, fault tolerance, and formal methods are considered.

1.1 Fault Tolerance

A variety of techniques and problems are combined under the heading of fault
tolerance. Since most faults involve communications or processing units, the area
largely deals with concurrent systems, usually distributed. The terminology and
basic practices of the area are well established [38,37,39,26]. The treatment of
processor faults is based on occasional checkpointing of a system state, detection
of faults, and either rollback to a recent checkpoint for re-execution [9], or roll-
forward techniques [45] that use reserve processors to determine which processor
is faulty when disagreement arises among multiple processors intended to be
duplicating identical computations.
� This work was partially supported by the EU Network of Excellence AOSD-Europe.
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Fault tolerance for communication faults has usually been treated as part of
a layered view of communication. Even when configurable systems are needed,
such a protocol stack view is possible, e.g., as seen in the x-kernel [25], that
handles such issues transparently. However, in some contexts, it is much more
natural to handle configurable fault-tolerance as a concern that interacts with
the other system concerns in a more complex way. Such designs are seen in
the Cactus system [22] and its predecessor Coyote [7]. The model assumes that
services can have complex interactions. The modules within each service are
called micro-protocols, and are activated by events that other services can raise.

On the practical system level considered above, the exact nature of the fault
does not have to be analyzed, and, at least initially, is viewed as a transient
problem that can be overcome by reactivation from a consistent state. In a more
abstract context, the easiest faults to describe are known as crash faults, and
involve the potential failure of a processing unit in a distributed system, often
assumed to be executing a single process of such a system. On the level of a
program, such a fault means that the code of that process simply is not executed
from some point on. One of the major difficulties of treating such faults in an
asynchronous system is that a crash occurs without an explicit announcement or
warning. It thus is impossible [18] to distinguish this situation from one where
the process is merely executing slowly relative to the others in an asynchronous
system, unless time-outs or some other semi-synchronous mechanism is used.

Other forms of faults include those related to loss of messages in a distributed
message-passing system. One form relates to ”cutting a communication line”,
and means that from some point on, all communication stops. Other faults are
more intermittent, such as occasionally losing messages, but with a guarantee
that if sufficient messages are sent, some will get through [36].

All of the above relate to fault-events, that can be modelled as an augmented
semantics where the fault can occur as an alternative to the regular successful in-
struction. Another form of fault tolerance relates to an occasional transient fault,
that is followed by normal operation, but from an unexpected state. This is cov-
ered in the family of faults to be corrected by ”self-stabilizing” algorithms [15].
The idea is that from time to time the system undergoes a traumatic ”scram-
bling” of its state, and then continues execution from the resultant state that
may be an inconsistent state in a distributed system, and otherwise unreachable.
This type of fault could model, for example, a computer in space that is exposed
to gamma radiation that could reverse some of the bits in memory arbitrarily
from time to time. In its pure form, even the control counters can be arbitrar-
ily reset, so that the code continues executing from unexpected locations, never
having executed some of the preceding instructions. Such faults are modelled by
viewing the system as if it begins in an abnormal and completely arbitrary state,
often not reachable at all by normal computation. The goal of a self-stabilizing
algorithm is to return the computation to a ”normal” state that was previously
reachable in the computations without faults.

Of course, many algorithms exist that are fault tolerant. Some work has been
done on generic algorithms that add fault tolerance to a program that was
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correct relative to its specification but not fault-tolerant. However, more often
the fault-tolerance is built into the algorithm along with its other functionality
(because otherwise the loss in efficiency is too great), or is fixed in a hierarchy
of system or communication levels. In these cases, it becomes difficult to apply
various kinds of fault tolerance dynamically according to specific requirements
or environments, to easily change the treatment of fault-tolerance, or to treat
interactions of treatments for fault tolerance with other tasks. These questions
are considered in greater detail later.

1.2 Aspects

Aspect-oriented programming [33] is an extension of the object oriented pro-
gramming paradigm to treat what are known as cross-cutting concerns. A con-
cern is a grouping of requirements, such as security, monitoring and debugging,
preventing overflow of integer values, or fault-tolerance. The treatment of such
concerns in traditional object-oriented systems often suffers from both scatter-
ing— the code treating the concern is scattered throughout the system— and
tangling— the treatment is mixed together with the treatment of other concerns
[43]. In this case it is said to cross-cut the primary decomposition of the system,
and this is said to be inevitable for complex systems.

Aspects provide a new form of modularity to encapsulate the treatment of
a concern. The approach was first developed for programming languages, and
especially for extensions of Java such as AspectJ or Ceasar [41]. In such languages
there is a way to define joinpoints (states or events where an aspect should be
applied) using pointcuts (predicates or descriptors of groups of joinponts) and
advice (portions of code to be executed at appropriate joinpoints). These appear
within a separately declared, usually parametric, unit known as an aspect. The
binding of an aspect declaration to an object system is known as weaving. This
involves connecting the parameters of the aspect to actual elements in the classes
to which the aspect is woven.

In recent years, the ideas of concerns and aspects have been extended to earlier
stages of system development, such as requirements analysis and system design,
and there are, for example, UML extensions to treat aspects [10,11,27].

Aspects have been shown particularly useful during the debugging stage of
system development. Applying an aspect for tracing all changes to a variable
that is suspect, or for recording the values each time a method is activated are
natural debugging activities that are effectively done using aspects. In particular,
by encapsulating the debugging activities in aspects, there is no need to disturb
the original code, and the debugging can easily be deactivated, with the aspect
code removed, when no longer needed.

Aspects have also proven useful in middleware components, where previously
a series of flags were used to indicate how. e.g., security is to be handled in a
version of a component. For example, the JBOSS middleware framework has
been reimplemented in recent versions that are based on aspects. These show
promise of adding flexibility and adaptability to Web-based components.
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It should be noted that aspects were preceded by, and are closely related
to, language constructs and reasoning for superimpositions of algorithms over
distributed systems [29,3]. Connections between aspects and superimpositions
are pointed out in [50].

1.3 Formal Methods

Formal methods for verification of programs have a long history and developed
theory. Techniques include static code analysis, extended datatypes with predi-
cates, model checking, bounded model checking, and inductive methods.

Several of these approaches have also gained practical acceptance in analysis
and error detection for hardware designs, where the cost of errors in a relatively
compact algorithm can be devastating. The infamous Pentium floating point
error cost billions of dollar to correct and led to significant investment in us-
ing formal methods, and especially model checking. The formal techniques are
used in addition to the more traditional simulation techniques for debugging
algorithms that are ultimately implemented in firmware or hardware. Commu-
nication protocols and safety-critical software are two other areas where formal
methods are considered and sometimes used.

Most model checking tools (see the excellent introduction to the subject by
Clarke, Grumberg, and Peled [12]), such as SMV [40] or Spin [24], have spe-
cialized model description languages and treat key individual algorithms or pro-
tocols. Software model checkers, such as Bandera [20], Java Pathfinder [21], or
Microsoft SLAM [5], work directly from high-level programs in Java or C with
annotations. Such tools either have their own internal model checker, or translate
to the notation of one of the earlier tools.

Although these methods are still not regularly applied to large software pro-
grams, due to their complexity and the limitations of the formal techniques,
model checking and, more recently, tools based on satisfiability (SAT) solvers
are beginning to gain acceptance as their capabilities are extended. For example,
Microsoft routinely uses SLAM or the recent SDV extension [4] to help detect
errors in their internal driver system software. NASA also has had excellent suc-
cess detecting errors and improving quality of software with its Pathfinder model
checker.

2 Aspects for Fault Tolerance

As seen, notations for aspects provide new expressive power in describing join
points and types of changes to be made to underlying systems. This seems to
promise renewed possibilities for defining fault tolerance generically for families
of programs by using reusable parametric aspects. The notations allow identify-
ing the key events in a system where changes must be made to guarantee different
types of fault tolerance. The possibility of applying an aspect only when faults
of a certain type are anticipated, and of dynamically deciding which faults and
which algorithmic solutions are appropriate are additional attractive features of
aspects. After showing a few examples of how aspects could be used to provide
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fault tolerance for different fault models, we will also show how formal methods
for aspects can provide additional leverage for the approach.

2.1 Classic Fault-Tolerance Operations Using Aspects

The basic activities in dealing with processor faults using the classic techniques
described in the Introduction are natural candidates for aspectization. The key
task of recording consistent states in checkpoints is clearly appropriate for as-
pects since logging and recording values for purposes of debugging are well-know
applications of aspects. Detecting faults, and activating a rollback or roll-forward
strategy can also be expressed as aspects. A library of such aspects could be used
to easily configure an underlying system with various forms of fault tolerance.
Aspects can also be used to dynamically decide on which strategy to activate
depending on the system state and history of execution, especially if another as-
pect has been used to gather relevant information on, for example, the frequency
and location of previous faults.

Recent work [34] on using aspects to implement the ACID (atomicity, consis-
tency, isolation, and durability) properties for transactional objects also antici-
pate some of the needed functionality of aspects for recovery from faults.

2.2 Communication Faults Using Aspects

Consider adding fault tolerance for communication faults over a network to a
communication system that previously ignored this concern. As noted in the
Introduction, such problems have usually been treated by a classic layered view
of communication, which may be hard to configure easily.

The basic premise of treating fault tolerance and other network communica-
tion concerns in a flexible configurable way is that interactions among services
can influence all layers. The analogy between micro-protocols used for fault tol-
erance and aspects is clear and has been analyzed in detail in [23]. That work
includes suggestions to use the mechanisms of aspects to enhance the capa-
bilities of configurable networks in general, and fault tolerance in particular.
For example, even when an application level message is transmitted using an
alternating-bit protocol (to treat occasional message loss at a lower layer), the
implementation could interact with other services such as congestion control or
security at both the application and transmission layers.

Similarly, a protocol for routing messages through nodes by using a rout-
ing table at each node could be made fault tolerant to node crash failures by
sending each message twice, with disjoint routing tables, except source and final
destination, and an indicator that the two represent the same message. Then
at each sending point, the two messages are generated and sent, and at each
receiving point, the first appearance of a message accepts the message, while
the second receipt (if it occurs) is ignored. This can be encoded into an aspect,
and is fault tolerant to a single crash fault of a communication node. Obvious
questions of interactions among aspects, and their order of application, need to
be treated and analyzed. For example, how would such an aspect interact with
one treating the alternating-bit protocol, or with security concerns? Such issues
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are indeed the subjects of intense research in the aspect community, as will be
shown later.

2.3 Self-stabilization Using Aspects

Several works have shown that self-stabilization can be added on to existing
systems (rather than directly designed into the algorithm along with the other
requirements of its functionality). As one example, in [31], a self-stabilizing dis-
tributed snapshot is added to algorithms with a variety of different tasks. In
general such a snapshot [8] gathers information in the local state at one node
about the global state of a distributed system, without stopping the execution
of the system. The algorithm assumes reliable message passing in a FIFO chan-
nel, and gathers a state that is a possible descendant of the true (distributed)
state when the algorithm begins, and a possible ancestor of the state when it
finishes. Thus stable properties, which remain true in all descendants once they
become true, will hold for the actual system state if they held for the local version
obtained by the snapshot.

Many variations of this algorithm exist, but in a self-stabilizing context, most
are incorrect. The difficulty is that the system could ”awaken” after a traumatic
fault in a state where a node has apparently just completed a snapshot, but
the local state supposedly gathered might in fact have no relation to the ac-
tual state of the system. In the self-stabilizing version, repeated snapshots are
taken even when it appear that none is needed, and the node resets the entire
system to a correct ”home” state when the snapshot seems to have detected an
inconsistent global state. Even though this could lead to unnecessary resetting,
it does guarantee that eventually an accurate snapshot is taken, and then the
reset will correct any problems and no more resets will be necessary until the
next traumatic fault.

2.4 Simulations to Ease Fault-Tolerance

A generic approach especially appropriate for aspects involves transformations
of an algorithm designed to treat crash failures so that it can be used for stronger
types of failures, up to Byzantine failures in synchronous systems. In [2] such
simulations are divided into three concerns, each of which is a candidate for
encoding as an aspect. First, the possibility of sending messages with different
contents to different processors in the same round is treated. Second, a faulty
processor can send an arbitrary message, even if it is the same to all neighbors,
and finally, problematic behavior can persist over multiple rounds. In this and
additional examples, the composition of relatively simple aspects to yield a more
complex protocol is natural, again reflecting a central theme of AOSD.

3 Formal Methods for Aspects

3.1 Overview

Along with their flexibility and potential for reuse, aspects introduce new correct-
ness issues that could reduce system reliability. Of course, there is the question
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of whether the aspect achieves the added functionality (in our case, the degree
of fault-tolerance required) whenever it is woven to a system. Because the aspect
is not a stand-alone program, and the definitions of the joinpoints are crucial, it
is difficult to achieve a generic proof that an aspect adds fault tolerance, with-
out considering a concrete underlying system. Moreover, it is important that
the system augmented with an aspect does not violate desired properties that
previously were already true of the system without the aspect. There is also the
question of possible interference among multiple aspects: it is possible that each
aspect individually woven is correct, but when applied together the augmented
system violates the desired properties of either some of the aspects or of the
underlying system.

Some work has been done on using modern testing techniques including model-
based testing and testing frameworks for aspects [54,53]. However, there is still
relatively little experience with testing for aspects.

Research on formal methods for aspects is also still at a relatively early stage.
However, there are several results that show promise of practicality by exploiting
the modularity of aspects. That is, instead of proving properties directly for a
complex system including aspects, it may be possible to consider each aspect
separately, and verify it relative to a generic specification. Below, we survey
some of the major themes in using static code analysis and formal verification for
systems with aspects. Many of the techniques are appropriate for the properties
needed by fault-tolerance, but such specifications and verifications have not yet
been investigated in terms of aspects.

The survey is not intended to be comprehensive, and is unlikely to be com-
pletely up-to-date, due to the considerable ongoing activity in this area. On some
topics, there is also a greater description of work in which I personally partici-
pated and with which I am most familiar. However, the survey does provide a
sampling of various approaches and tools for formal verification of systems with
aspects.

3.2 Static Code Analysis

In static code analysis, standard categories of aspects are identified using type
checking, dataflow analysis, or other code analysis techniques. For superimposi-
tions of distributed algorithms, an informal classification was proposed in [29],
and the same distinctions apply to aspects. Three categories of aspects are de-
fined: Spectative aspects do not influence the values of underlying variables or
conditions for underlying events, and only gather information in local variables.
Regulative aspects can affect the control of the underlying system (e.g., by short-
circuiting underlying computation sequences) in addition to the capabilities of
spectative aspects. Invasive aspects can change the values of variables in the
underlying system, and change the transformations (actions) of the underlying
system.

In [30] the additional category of weakly invasive aspects is defined as those
where the advice finishes in some previously reachable state of the underlying
system. For each category, theorems are proven that automatically guarantee



Rigorous Fault Tolerance Using Aspects and Formal Methods 233

that some classes of properties of the underlying system will be maintained in
the augmented system, or be such that new properties are easier to establish
than for general aspects.

One intuitively clear theorem that can be proven is that all safety and liveness
properties of the underlying system that do not involve a next-state temporal
modality are maintained in an augmented system with a spectative aspect. An-
other is that for regulative aspects, all safety properties of the underlying system
not containing a next-state operator are maintained in the augmented system
(but liveness properties may not be automatically assumed to be maintained,
and must be reproven for the augmented system).

In the influential work of Clifton and Leavens [13], the spectative aspects are
called observers and a methodology for development is suggested to effectively
modularize system development with aspects.

In the work of Rinard, Salcianu, and Bugrara [46], finer distinctions are de-
fined, but the basic three above still appear. That work concentrates on deter-
mining the relations between an aspect and a method of the underlying system.
If they are orthogonal, the two access disjoint fields, if they are independent nei-
ther writes to a field that the other may read or write (but both may read the
same field), in an observation relation the advice may read fields that the meth-
ods may write, actuation means that the advice may write to a field that the
method may read, but they are otherwise independent, and interference means
that both may write to the same field.

As already noted, several works have concentrated on static code analysis,
using typing and dataflow techniques. Although in the paper defining Observers
[13] a tool was not developed, that work points out difficulties of aliasing that
can complicate syntactic static analysis of code to determine whether an aspect
is an observer. The code analysis system for a simplified aspect language by
Sereni and de Moor [48] is intended primarily for code optimization, but the
information gathered can also be (and has been) used by the authors to iden-
tify spectative aspects. Similarly, in the approach of Storzer and Krinke [52] an
extensive interference analysis is made for real Java and AspectJ-like programs,
emphasizing the complications introduced by inheritance and multiple instances.
Again, the result is to effectively identify spectators/observers (which is there
called interference-freedom).

The most extensive static code analysis tool to date is described in the system
of Rinard, Salcianu, and Bugrara [46], where standard dataflow techniques are
emphasized for AspectJ over Java, and numerous sample programs have been
analyzed.

There is also considerable work on using well-known programming slicing
techniques based on dataflow in order to identify the extent of influence of an
aspect on the underlying system, and in order to identify potential conflicts
among aspects . In effect, any potential interactions or conflicts are identified.
Such techniques can also be used to reduce the size of the model that must be
analyzed when model-checking techniques are to be applied. The first paper on
slicing for aspects is by Zhou [55]. Recent work by Balzarotti, D’Ursa, Cavallaro,
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and Monga [6] includes an implemented slicing system for AspectJ to identify
the influence of each aspect.

3.3 Assume-Guarantee Specification and Inductive Verification

A few works have begun to consider inductive proofs for aspects. The basic idea,
first described by Devereux [14] and Sipma [51], is that an assume-guarantee
paradigm is appropriate for aspect specification and verification. That is, each
joinpoint is given an associated assumption of what must be true in the under-
lying system at that point, and using that assumption, the assertion guaranteed
to hold when the appropriate advice has completed is proven to follow from the
assumption and the advice code using an inductive proof system, such as PVS
[47]. Clearly, it remains to show that the assumption indeed is true whenever the
joinpoint is reached in the underlying system. For that task, the aspect advice
can be assumed to have fulfilled its guarantee at all preceding return points. The
assume-guarantee specification style is also seen in the aspect specifications by
Sihman and Katz in [50], where semantic correctness criteria for aspects are also
given, and collections of aspects are claimed to be the proper module for inde-
pendent specification. Sipma also presented some initial ideas on using transition
systems to represent aspects and their interactions with underlying systems.

In [30] the assume-guarantee paradigm is shown to allow extending an in-
ductive invariant true of the underlying system to the augmented one (even for
invasive aspects) without having to reprove anything for the code from the un-
derlying system. An invariant is defined to be inductive if it only requires itself
as a precondition to show that it is preserved by each step. When the invari-
ant is not truly inductive on its own, new proofs may need to be done for the
underlying code as part of extending the invariant.

3.4 Model Checking for Validation of Augmented Systems

Adapting model checking tools to treat aspects adds yet another level of com-
plexity to the already-difficult task of model checking software and is still at a
relatively early stage of research and development. In [32] a prototype system
is described by Katz and Sihman that preprocesses collections of generic appli-
cation aspects that have specifications themselves given as validation aspects.
The idea is that each time the application aspects are woven to a system, the
associated validation aspects, that express the specification, are used to gener-
ate automatically a series of model checking tasks. If all the tasks are completed
successfully, then for the particular weaving of the application aspects over an
underlying system, the properties described in the validation aspects are true
in the augmented system. The generation of the model checking tasks, and the
model checking themselves are in theory automatic and use the same bindings
needed for the weaving of the application aspects into the underlying system.
The approach is intended to encourage reuse through libraries of aspects, each
with a specification given in validation aspects. However, because the entire aug-
mented system is treated at once, there may be problems of scalability with this
approach.
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3.5 Modular Model Checking for Aspects

In order to have a more modular approach, some work has been done on con-
ducting model checking only for the state machine generated by the aspect code.
In the work of Krishnamurthi, Fisler, and Greenberg [35], CTL properties true of
the original system are checked to see whether their extension to the augmented
system is justified. That work separates finding the joinpoints-the states where
new edges to the aspect state machine are to be added— from the analysis of the
aspect state machine. The former task is done by a clever reversal of edges in the
original state machine to discover states with a history satisfying the joinpoint
description. It should be noted that this procedure detects potential pointcuts,
in that some of the states identified may also have other paths that reach them
but that do not satisfy the pointcut description.

The technique used to check the aspect state machine depends on the back-
wards marking of atomic formulas common in model checking. Unfortunately,
this means that the aspect state machine must reconnect to the machine of the
underlying program either at the state that was previously immediately follow-
ing the added edge to the aspect from the underlying state machine or at one or
two states later. These are not always realistic assumptions since the aspect of-
ten changes the values of fields, creating new states not in the underlying system
at all. In particular, some of the aspects needed for fault tolerance do change
the values of the system, and thus cannot be used with this approach, as given.

The first attempt to model check the aspect independently of a weaving to a
particular base system is seen in [19]. An aspect is assumed to have an assumption
about what any base system to which it may be woven should satisfy, and a
result assertion that is then asserted to be true for an augmented system to
which the aspect is woven, whenever the base satisfies the assumption. Both
the assumption and result assertions are given in Linear temporal Logic (LTL).
A single model is built by weaving the aspect into a state machine that is the
tableau corresponding to the assumption. This provides a truly generic proof for
the aspect, but there are still various restrictions. In particular, the approach
has so far only been shown for weakly invasive aspects, where the state after the
aspect advice completes was reachable in the original system. It should be noted
that aspects for fault tolerance generally will be in this category, since a state is
reached that could have occurred if there were no fault.

3.6 Scenario-Based Model Checking for Conformance

In a scenario-based specification of aspects, as presented in works by Araujo,
Whittle, and Kim [1], the aspect is described as an added-on scenario activated
at various states (that can depend on the history of computation to that point).
In the actual system, the actions of the aspect scenario may be interleaved with
other actions, and delayed, rather than executing all at once at each joinpoint.
A system specification in this framework consists of regular scenarios and aspect
scenarios that interrupt the regular ones when their joinpoint states are reached.
The obviously significantly differs from specifications where temporal logic prop-
erties or invariants are used, and has a different correctness criterion. A system
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conforms to such a specification if every possible computation is equivalent to
one where the aspects are applied immediately and as a block, interleaved with
other scenarios. In [28] model checking is used to guarantee conformance in this
sense, by automatically generating an extended model and a series of temporal
logic assertions that can be checked using regular model checkers.

3.7 Interference and Conflict Among Aspects

In most of the work above, the relation between an aspect and an underlying
system is considered. However, there has also been some work on detecting inter-
ference or conflicts among multiple aspects applied to a system. Especially when
the entire system is seen as a collection of concerns or aspects, as in HyperJ [43],
this approach is essential. As noted, aspects for fault tolerance can interact with
aspects for other tasks, or for different forms of faults, and thus such analysis is
also critical in this context. Of necessity, most such work concerns a particular
composition and weaving (i.e., an augmented system), and is not generic for any
weaving of an aspect.

General semantic criteria are described by Sihman and Katz in [49] for check-
ing whether the specifications and applicability conditions of one distributed
aspect (or superimposition) are interfered with by another, depending on how
they are applied. Since this work depends on the existence of specifications it
has not yet been implemented for realistic AOP languages. Using an abstract
formalism with rules for composition, Douence, Fradet, and Sudholt present in
[16] a framework and techniques to identify overlapping pointcuts and interfering
advice. Strong (syntactic) independence, weak (semantic) independence, and an
intermediate level based on requirements are defined and transformation rules
for their detection are described. This work, like that above, provides a possible
basis for analysis tools but has not yet been adapted or implemented for nota-
tions widely used in practice. Its main application so far has been in providing
semantic foundations for aspect interactions.

In the framework of Compose*, in work by Bergmans, Nagy, and Aksit [42],
there are implemented analysis tools which both influence the implementation of
Composition Filters, and detect interference among the filters (which correspond
to aspects). These tools are based on intercepting messages and then identifying
types of filters such as Error (raising an exception), Wait (queueing the message
until a condition is satisfied), or Substitute (replace elements of the message
and continue). Some of the tools determine possible orderings of actions for
a collection of filters and thus are part of the implementation engine, while
others can identify impossible combinations, with conflicting message patterns
or responses. They thus use static analysis to determine interference among
composition filters. Some of the techniques analyze only the filters, while others
also take advantage of user-provided requirements annotations.

In [44] Pawlak, Duchien, and Seinturier introduce a notation called CompAr to
specify constraints on the application of multiple aspects with around advice (i.e.,
where advice code is added both before and after the activation of code from the
underlying system). A compiler then checks conformance with the constraints,
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detecting conflicts in a way reminiscent of the Compose* approach, but for a
more general context. This work provides an implemented static analysis for
interference that seems common to a wide variety of aspect languages.

It should be noted that the tool described in [46] as well as some of the other
static analysis tools also have capabilities of detecting interference among as-
pects. In particular, the tools described earlier based on program slicing (e.g.,
[6]) are applicable for detecting syntactic conflicts (i.e., potential semantic inter-
ference that should be further investigated).

3.8 Integrated Verification Tools for Aspects

Although considerable research has been undertaken on verification of aspects,
most existing tools are in a preliminary prototype stage, and emphasize static
code analysis. It is clear that a combination of tools will ultimately be necessary,
combining static code analysis, model checking, and perhaps inductive proofs.
The analysis and proofs will be complemented by reusable testing and simula-
tion suites specific for the aspects. All of these techniques need to be connected
through a comprehensive theory that justifies any conclusions on correctness by
using formal semantic definitions. The choice of tool depends, among other fac-
tors, on the specifications available, on whether the aspect language is amenable
to static analysis, and on the kind of properties.

As a first step in this direction, the Common Aspect Proof Environment
(CAPE) framework is being developed. This integrated collection of tools for
aspects is being designed and implemented as a project in the Formal Methods
Lab of AOSD-Europe, an EU Network of Excellence. The architecture and design
of the CAPE is available at the AOSD-Europe website [17], and several tools
are currently being integrated in a preliminary implementation. The idea is to
develop an extensible framework where different types of verification and analysis
tools can be applied to systems with aspects, written in a variety of languages
with constructs for aspect-oriented programming.

4 Conclusions

A gap has developed between the distributed algorithms community and language
developers for systems, when fault-tolerance is considered. The algorithms com-
munity develops, reasons about, and evaluates complexity of various algorithms,
but does not encapsulate them in language constructs. Moreover, only rarely do
the algorithm developers consider how solutions for various kinds of fault tolerance
interact with each other and with other parts of the system, or how to modularly
express such algorithms so they can be reused. When fault-tolerance is hidden in
a system or communication layer, the algorithms and treatment are often fixed,
and cannot easily interact with other concerns of the system.

Aspects can be used to modularize many non-functional concerns of com-
plex systems. Rather than attempting to develop language constructs or frame-
works only for fault-tolerance, it seems advantageous to take advantage of the
existing work on Aspect-Oriented Software Development to help in expressing
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fault-tolerant algorithms in a reusable configurable way. As seen, formal meth-
ods can be used to increase the reliability of such aspects. Interactions among
multiple fault-tolerant algorithms, and with other concerns of the system can
also be analyzed using known techniques from aspects.
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Abstract. Agent systems are examples of complex distributed systems.
Though agents operate in unreliable communication environment, of-
ten such systems have high reliability requirements imposed on them.
Therefore, we need methods which allow us not only to ensure system
correctness but also to integrate design of fault tolerance mechanisms in
the development process. In this paper we present a formal approach for
the development of fault tolerant location-based mobile agent systems.
Our approach is based on stepwise refinement in the Event B framework.
We start from an abstract system specification modelling agents together
with their communication environment and gradually introduce imple-
mentation details in a number of correctness-preserving transformations.
Such stepwise development allows us to specify complex system proper-
ties, such as fault tolerance, in a structured and rigorous way. More-
over, it enables a formal representation of essential abstractions used in
the development of fault tolerant agent systems, including scopes, roles,
locations, and agents. Application of the proposed approach results in
designing fault tolerant agent systems in which inter-consistency and
inter-operability of agents is ensured by construction.

1 Introduction

Mobile agent systems are complex distributed systems that are dynamically com-
posed of independent agents. Usually agents are designed by different developers
to perform individual computational tasks. The agent technology naturally solves
the problem of partitioning complex software into smaller parts that are easier
to analyse, design and maintain. However, to ensure interoperability of agents,
the individual developments should adhere to a certain ”standard”, which would
guarantee compatibility of constructed agents yet avoid over-constraining of the
development process. Within IST RODIN project [17] we are working on cre-
ating a methodology allowing us to ensure correctness of the development of
complex systems dynamically composed of individually developed agents.

In this paper we present a formal derivation of abstract patterns for specifying
middleware for mobile location-based agent systems. We conduct the derivation
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in Event B [2,3] – a framework extending the B Method [1,20] to model com-
plex distributed systems. Event B supports top-down development of systems
correct by construction. We start from an abstract specification of the overall
agent system, i.e., abstractly model agents together with the location support-
ing inter-agent communication. In a number of correctness preserving steps we
incorporate various system properties, including fault tolerance, into the specifi-
cation. Finally, we arrive at the specification of entire middleware, which can be
decomposed into parts to be implemented by the location and by each individual
agent.

In the independent development of individual agents the programmers merely
need to augment this abstract part with an implementation of the desired agent
functionality. Such an approach allows us to ensure inter-operability of individu-
ally developed agents and the correctness of the overall system. Moreover, since
the proposed patterns contain abstract specifications of the means for detect-
ing agent failures, such as disconnections and crashes, and the corresponding
error recovery procedures, we can guarantee fault tolerance of an agent system
developed according to the proposed approach.

Our work is based on an asymmetric model of the agent system within the
location-based paradigm [12,11,4]. The asymmetric scheme is closer to the tra-
ditional service provision architectures. It can support large-scale mobile agent
networks in a reliable manner. This scheme also provides a natural way of in-
troducing context-aware computing by defining location as a context. The main
disadvantage of the location-based scheme is that an additional infrastructure
is required to support mobile agent collaboration. From fault tolerance point of
view, this might seem to be disadvantageous, since it introduces additional point
of failure in the system. However, since correctness of our middleware is formally
verified we avoid this problem.

We proceed as follows: in Section 2 we describe our formal framework – the
Event B formalism. In Section 3 we define the essential abstractions used in mod-
elling of Context-Aware Mobile Agent systems – CAMA systems and demon-
strate the system approach to specifying such systems in Event B. In Section
4 we show how to introduce the scoping mechanism by refinement in Event B.
Finally, in Section 5 we discuss the proposed approach, give overview of the
related work and outline future work.

2 Formal Modelling and Refinement in Event B

In this section we present the background for formal development of fault tolerant
mobile agent systems in the EventB framework.

2.1 Modelling in Event B

A formal specification is a mathematical model of the required behaviour of a
(part of) system. In B, a specification is represented by a collection of modules,
called Abstract Machines. The pseudo-programming notation, called Abstract
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Machine Notation (AMN), is used in constructing and formally verifying them.
An abstract machine encapsulates a local state (local variables) of the machine
and provides operations on the state. A simple abstract machine has the following
general form:

MACHINE AM
SETS TYPES
VARIABLES v
INVARIANT I
INITIALISATION INIT
EVENTS

E1 = . . .
. . .
EN = . . .

END

The machine is uniquely identified by its name AM. The state variables of
the machine, v, are declared in the VARIABLES clause and initialised in
INIT as defined in the INITIALISATION clause. The variables in B are
strongly typed by constraining predicates of the machine invariant I given in
the INVARIANT clause. The invariant is usually defined as a conjunction
of the constraining predicates and the predicates defining the properties of the
system that should be preserved during system execution. All types in B are rep-
resented by non-empty sets. Local types can be introduced by enumerating the
elements of the type, e.g., TYPE = {element1, element2, . . .}, or by defining
them as subsets of already existing types or sets.

In this paper we take the event-based approach to specifying mobile agent
systems. The operations of event-based systems are called events and defined
in the EVENTS clause. The events are atomic meaning that, once an event is
chosen, its execution will run until completion without interference. An event is
defined as follows:

E = WHEN g THEN S END

where the guard g is a predicate over the state variables v, and the body S is a
B statement describing how v are affected by the event.

Several events can be grouped together in an array of events. It has the fol-
lowing syntax:

AE = ANY i WHERE C(i) THEN S END

where i is a list of local distinct indices, C(i) is a list of array conditions, and S
is the body of the event.

The occurrence of events represents the observable behaviour of the system.
The guard defines the conditions under which the body can be executed, i.e.,
the event is enabled. If several events are enabled simultaneously then one of
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them is non-deterministically chosen for execution. If no event is enabled (the
guard of each event evaluates to false) then the system deadlocks, i.e., stops its
execution.

B statements that we will use to describe the body of the events have the
following syntax:

S == x := e | IF cond THEN S1 ELSE S2 END | S1 ; S2 |
x :: T | ANY z WHERE Q THEN S END | S1 || S2 | . . .

The first three constructs - an assignment, a conditional statement and a
sequential composition have the standard meaning. Sequential composition is
disallowed in abstract specifications but permitted in refinements. The remain-
ing constructs allow us to model nondeterministic or parallel behaviour in a
specification. Usually they are not implementable so they have to be refined
(replaced) with executable constructs at some point of program development.
We use two kinds of nondeterministic statements - the nondeterministic assign-
ment and the nondeterministic block. The nondeterministic assignment x :: T
assigns the variable x an arbitrary value from the given set (type) T. The non-
deterministic block ANY z WHERE Q THEN S END introduces the new
local variable z which is initialised (possibly nondeterministically) according to
the predicate Q and then used in the statement S. Finally, S1 || S2 models par-
allel (simultaneous) execution of S1 and S2 provided S1 and S2 do not have a
conflict on state variables. The special case of the parallel execution is a multiple
assignment which is denoted as x, y := e1, e2.

The B statements are formally defined using the weakest precondition seman-
tics [7]. Intuitively, for a given statement S and a postcondition P, the weakest
precondition wp(S,P) describes the set of all such initial states from which exe-
cution of S is guaranteed to establish P. The weakest precondition semantics is a
foundation for establishing correctness of specifications and verifying refinements
between them. To show correctness (consistency) of an event-based system, we
should demonstrate that its invariant is true in the initial state (i.e., after the
initialisation is executed) and that every event preserves the invariant:

wp(INIT, I) = true, and
gi ∧ I ⇒ wp(Ei, I)

2.2 Refinement of Event-Based Systems

The basic idea underlying formal stepwise development is to design the sys-
tem implementation gradually, by a number of correctness preserving steps,
called refinements. The refinement process starts from creating an abstract, al-
beit unimplementable, specification and finishes with generating an executable
code. The intermediate stages yield the specifications containing a mixture of
abstract mathematical constructs and executable programming artifacts. In gen-
eral, refinement process can be seen as a way to reduce nondeterminism of the
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abstract specification, to replace abstract mathematical data structures by data
structures implementable on a computer, and, hence, gradually introduce imple-
mentation decisions.

Formally, we say that the statement S is algorithmically refined by the state-
ment S′, written S � S′, if, whenever S establishes a certain postcondition,
so does S′ [7]:

S � S′ if and only if for all postconditions p : wp(S, p) ⇒ wp(S′, p)

A more general form of refinement is data refinement. Assume S operates on
variables a, u and S′ operates on variables c, u. Let R be a predicate over a, c, u.
We say that S is data-refined by S′ via a relation R, written S �R S′ iff

for all p : R ∧ wp(S, p) ⇒ wp(S′, (∃ a·R ∧ p))

In the AMN the results of intermediate development stages - the refinement
machines - have essentially the same structure as the more abstract specifica-
tions. In addition, the refinement machine explicitly states which specification
it refines.

Assume that the refinement machine AM ′ is a result of refinement of the
abstract machine AM :

REFINEMENT AM ′

REFINES AM
VARIABLES v′

INVARIANT I ′

INITIALISATION INIT ′

EVENTS
E1 = . . .
. . .
EN = . . .

END

In AM ′ we replace the abstract data structures of AM with the concrete ones.
The invariant of AM ′ – I ′ – defines now not only the invariant properties of
the refined specification, but also the connection between the newly introduced
variables and the abstract variables that they replace. For a refinement step to
be valid, every possible execution of the refined machine must correspond (via
I ′) to some execution of the abstract machine. To demonstrate this, we should
prove that INIT ′ is a valid refinement of INIT , each event of AM ′ is a valid
refinement of its counterpart in AM and that the refined specification does not
introduce additional deadlocks, i.e.,

wp(INIT ′, ¬wp(INIT,¬I ′)) = true,
I ∧ I ′ ∧ g′

i ⇒ gi ∧ wp(S′,¬wp(S,¬InvC)), and
I ∧ N

i gi ⇒ g′
i
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While introducing implementation details into the abstract specifications we
might need to refine granularity of events, i.e., split events. Such refinement is
often called atomicity refinement. Let us consider the abstract machine AM A
and the refinement machine AM AR:

REFINEMENT AM AR
MACHINE AM A REFINES AM
VARIABLES v VARIABLES v′

INVARIANT I INVARIANT I ′

INITIALISATION INIT INITIALISATION INIT ′

EVENTS EVENTS
E = WHEN g E1 ref E = WHEN g1 THEN S1 END

THEN S END E2 ref E = WHEN g2 THEN S2 END
E3 ref E = WHEN g3 THEN S3 END

END END

Observe that the abstract event E is replaced by the events E1, E2 and E3 in the
refinement machine. To establish refinement between AM A and AM AR we
should demonstrate that each of the events E1, E2 and E3 is a valid refinement
of E. Moreover, we should prove that AM AR does not introduce additional
deadlocks.

Often refinement process introduces new variables and the corresponding com-
putations on them while leaving the previous variables and computations essen-
tially unchanged. Such refinement is referred to as superposition refinement. Let
us consider the abstract machine AM S and the refinement machine AM SR:

REFINEMENT AM AR
MACHINE AM S REFINES AM
VARIABLES a VARIABLES a, b
INVARIANT I INVARIANT I ′

VARIANT V
INITIALISATION INIT INITIALISATION INIT ′

EVENTS EVENTS
E = WHEN g E = WHEN g

THEN S END THEN S END
E1 = WHEN g1 THEN S1 END
E2 = WHEN g2 THEN S2 END

END END

Observe that the refinement machine contains the new events E1 and E2 as well
as the new clause VARIANT. The new events define computations on the newly
introduced variables b and, hence, can be seen as the events refining the statement
skip on the abstract variables. Every new event should decrease the value of the
variant. This allows us to guarantee that a new event cannot take the control for-
ever, since the variant expression cannot be decreased indefinitely. For each newly
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introduced event, we should demonstrate that the variant expression is a natural
number and execution of the event decreases the variant, i.e.,

V ∈ NAT, and
I ′ ∧ gi ⇒ wp((n := V ; Si), n < V )

Next we illustrate modelling and refining in Event B by formal development of
a mobile agent system.

3 The System Approach to Modelling Agent Systems

3.1 CAMA Structure and Operations

Context-Aware Mobile Agents systems – Cama systems – are defined via a set of
abstractions and operations on them modelling inter-agent communication and
operability. The primary goal of defining a Cama system is to offer programmers
a formally-verified basis for rapid development of mobile agent software in a
disciplined and structured way.

One of the major contributions of Cama is a novel mechanism to structure a
shared blackboard so that groups of communicating agents can work in isolated
coordination spaces, called scopes [12]. In addition to isolation of the coordi-
nation space, the scoping mechanism also provides a dynamic type-checking
facility ensuring agent inter-operability for multi-agent applications. As a result,
the scoping mechanism only permits collaboration of the agents with compatible
functionality, which is defined by their attributes.

Let us now briefly describe the Cama abstractions which we will use in our
formal modelling. The detailed description of Cama can be found in [15].

Scope is an abstraction designating an isolated coordination space for compat-
ible agents. A scope creation is initiated by an agent. A scope is defined by a
set of roles and restrictions on roles. The restrictions on roles dictate how many
agents can play any given role in a scope. In particular, the restrictions for a role
Ri are defined by Rmin

i – the minimum required number of agents for a given
role, and Rmax

i – the maximum allowed number of agents for a given role. For
any role Ri supported by a scope, we require that Rmin

i ≤ Rmax
i and Rmax

i > 0.
A location tracks the number of currently taken roles in all created scopes.

On the basis of this information it determines the current state of a scope. There
are three important states of a scope. Their summary is given in Fig. 1, where
Roles S designates a set of roles specific to the scope S and Nr stands for the
current number of agents playing the role r in a scope.

A scope in the pending state does not allow agents to communicate because
there are agents missing in some required roles. When the minimal number of
all the required roles is taken, the scope becomes expanding or closed. In the
expanding state, a scope supports communication among agents while still al-
lowing other agents to join the scope. In the closed state, there are no free roles
and no more agents may join the scope.
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Scope state Definition

pending ∃ r · (r ∈ Roles S ∧ Nr < Rmin
r )

expanding ∀ r · (r ∈ Roles S ⇒ Nr ≥ Rmin
r ) ∧

∃ r · (r ∈ Roles S ∧ Nr < Rmax
r )

closed ∀ r · (r ∈ Roles S ⇒ Nr = Rmax
r )

Fig. 1. States of a scope

Role is an abstract description of an agent functionality. Each scope supports a
predefined number of different roles. An agent may implement a number of roles
and can also take several roles within different scopes. In this paper we assume
that an agent can play at most one role in each scope.

Location is an abstraction defining inter-agent communication. It is the core
part of the system because it provides the means of communication and coordi-
nation between agents. We assume that each location can be uniquely identified.
A location keeps track of the connected agents and their properties in order to
update scope states and ensure isolation. A location by itself might also provide
some additional services to agents. In addition to supporting scopes as means of
agent communication, locations may also offer a support for logical mobility of
agents, hosting of agent and agent backup.

Agent is a piece of software implementing a set of roles which allows it to partic-
ipate in certain scopes. All agents must implement some minimal functionality
which allows them to engage in or disengage from a location.

The Cama operations can be grouped together into the following three cat-
egories: location engagement, scoping mechanism, and communication. The com-
munication operations implement the standard Linda [10] coordination
paradigm. The location engagement operations associate or disassociate an agent
with a location. The scoping mechanism operations allow an agent to enquiry
for available scopes, create new scopes, destroy previously created scopes, join
and leave existing scopes.

In a typical scenario, an agent connects to a location and then joins an existing
scope. In a scope it can cooperate with agents participating in the same scope.
When an agent leaves the scope, it either joins another scope or disconnects from
the location.

One of the major challenges in designing agent systems lies in ensuring inter-
operability of agents. This problem can only be properly addressed if we define
the essential properties of the overall agent system, derive the properties to be
satisfied by the location and each agent, and ensure that they are preserved
in the agent and location development. This goal can be achieved by adopting
the system approach to developing agent systems, i.e., modelling the entire set
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of agents together with the location that provides the infrastructure for agent
communication.

3.2 Specifying Fault Tolerant CAMA Systems

Next we present our approach to development of fault tolerant agent systems
by refinement. The proposed development adopts the system approach. Indeed,
our initial specification given in the machine Cama models the entire agent sys-
tem, i.e., the agents and the location together. The variable agents represents
the set of agents that joined the location. The operations Engage and Disengage
model joining and leaving the location correspondingly. While an agent is in
the location, it performs some computations as modelled by the operation Nor-
malActivity. To express that these computations are performed locally within
the agent and hence do not affect the abstract state of the system, we model
them by the statement skip.

MACHINE Cama

SETS Agents

VARIABLES agents

INVARIANT agents ⊆ Agents

INITIALISATION agents:= ∅
EVENTS

Engage = ANY aa WHERE aa ∈ Agents ∧ aa 	∈ agents

THEN agents := agents ∪ {aa} END;
NormalActivity = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN skip END ;
Disengage = ANY aa WHERE aa ∈ Agents ∧ aa ∈ agents

THEN agents := agents - {aa} END

END

Cama systems should operate in a volatile error prone environment and cope
with abnormal situations typical for mobile agents. Hence, a methodology sup-
porting development of Cama should enable systematic integration of fault tol-
erance mechanisms into development of Cama applications. The most typical
faults that these applications encounter are temporal connectivity losses, which
can cause failures of communication between cooperating agents or between an
agent and the location. Since in our approach the agent and location software are
developed from the corresponding B specifications, the fault tolerance features
should be incorporated into these specifications.

For example, while modelling collaboration between agents in a scope, we have
to define the agent behaviour in the presence of message losses, hardware fail-
ures, etc. Moreover, while developing agent roles from the corresponding scope
specifications, the fault tolerance mechanisms should be distributed between all
involved parties. Generally speaking, fault tolerance in Cama is supported by
a set of abstractions used by the application developers and a specialised mid-
dleware. The abstractions are developed to systematically separate the normal
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system behaviour from the abnormal one in a form of a specialised exception
handling mechanism. The middleware detects disconnections and, when neces-
sary, involves scope members into coordinated error recovery.

In our initial specification we abstracted away from explicit modelling of sys-
tem behaviour in presence of faults. In our first refinement step we introduce
an abstract representation of the most typical class of faults – a temporal loss
of connection. Let us observe that in most cases an agent loses connection only
for a short period of time. After connection is restored, the agent is willing to
continue its activities virtually uninterrupted. Therefore, after detecting connec-
tion loss, the location should not immediately disengage the disconnected agent
but rather set a deadline before which the agent should reconnect. If the discon-
nected agent restores its connection before the deadline then it can continue its
normal activity. However, if the agent fails to do it, the location should disengage
the agent.

Such a behaviour can be adequately modelled by the timeout mechanism.
Upon detecting a disconnection the location activates a timer. If the agent re-
connects before the timeout then the timer is stopped. Otherwise, the location
forcefully disengages the disconnected agent. To model this behaviour, in the re-
finement step we introduce the variable timers representing the subset of agents
that have disconnected but for which the timeouts have not expired yet. More-
over, we introduce the variable ex agents to model the subset of agents that
missed their reconnection deadline and should be disengaged from the location.
Finally, we add the new events Disconnect, Connect and Timer to model agent
disconnection, reconnection and timeout correspondingly.

To ensure that the refined system does not introduce additional deadlocks, we
define variant, which limits the number of successive disconnections and recon-
nections. The constant Disconn limit defines the maximal number of successive
disconnections. The variable disconn limit obtains the value Disconn limit in
the initialization. Each newly introduced events decreases the value of the variant
either by decreasing the value of disconn limit or by removing elements from the
set timers. The value of the variant is restored by executing the NormalActivity
event.

In our specification we assume that agent failure due to the loss of connection
is detected by the location. However, an agent might by itself detect an error in
its functioning and leave the location. Therefore, the agent might get disengaged
from the location due to the following three reasons:

– because it has successfully completed its activities in the location,
– due to the disconnection timeout,
– due to a spontaneous failure detected by the agent itself.

In the refined specification we model all these different types of leaving by
splitting the operation Disengage into three corresponding operations: Normal-
Leaving, TimerExpiration and AgentFailure. The result of this refinement step
– the machine Cama1 is given below.
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REFINEMENT Cama1

REFINES Cama

CONSTANTS Disconn limit

PROPERTIES Disconn limit ∈ NAT1

INITIALISATION

agents := ∅ || timers := ∅ ||
ex agents := ∅ || disconn limit := Disconn limit

VARIABLES agents, timers, ex agents, disconn limit

INVARIANT

timers ⊆ agents ∧
ex agents ⊆ agents ∧
timers ∩ ex agents = ∅ ∧
disconn limit ∈ NAT

VARIANT

card(timers) + 2*disconn limit

EVENTS

Engage = ANY aa WHERE aa ∈ Agents ∧ aa 	∈ agents

THEN agents := agents ∪ {aa} END;
NormalActivity = ANY aa WHERE aa ∈ agents

THEN disconn limit := Disconn limit END;
NormalLeaving ref Disengage = ANY aa WHERE

(aa ∈ agents) ∧ (aa 	∈ timers) ∧ (aa 	∈ ex agents)

THEN agents := agents - {aa} END;
TimerExpiration ref Disengage = ANY aa WHERE

(aa ∈ agents) ∧ (aa ∈ ex agents)

THEN agents := agents - {aa} || ex agents := ex agents - {aa} END;
AgentFailure ref Disengage = ANY aa WHERE

(aa ∈ agents) ∧ (aa 	∈ timers) ∧ (aa 	∈ ex agents)

THEN agents := agents - {aa} END;
Connect = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN timers := timers - {aa} END;
Disconnect = ANY aa WHERE

(aa ∈ agents) ∧ (aa 	∈ ex agents) ∧ (aa 	∈ timers) ∧ disconn limit > 0
THEN timers := timers ∪ {aa} || disconn limit := disconn limit - 1 END;

Timer = ANY aa WHERE (aa ∈ agents) ∧ (aa ∈ timers)

THEN ex agents := ex agents ∪ {aa} || timers := timers - {aa} END

END

Our first refinement step is a combination of the superposition refinement and
atomicity refinement. The resultant specification contains an abstract represen-
tation of both error detection and error recovery. Hence, already at a high level of
abstraction we specify fault tolerance as an intrinsic part of the system behaviour.
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4 Introducing Scopes and Roles by Refinement

4.1 Introducing Scoping Mechanism

In the abstract specification and the first refinement step we mainly focused
on modelling interactions of agents with the location. Our next refinement step
introduces an abstract representation of the scopes as an essential mechanism
that governs agent interactions while they are involved in cooperative activities.

The creation of a scope is initiated by an agent, which consequently becomes
the scope owner. The other agents might join the scope and become engaged
into the scope activities. The agents might also leave the scope at any instance
of time. The scope owner cannot leave the scope but might close it (this action
is not permitted for other agents). When the scope owner closes the scope, it
forces all agents participating in the scope to leave.

The introduction of the scoping mechanism also enforces certain actions to
be executed when an agent decides to leave a location. Namely, an agent should
first leave or close (if it is the scope owner) all scopes in which it is active.

The scoping mechanism also has a deep impact on modelling error recovery in
agent systems. For instance, if a scope owner irrecoverably fails, then, to recover
the system from this error, the location should close the affected scope and force
all agents in this scope to leave.

While refining the machine Cama1, we introduce the variable scopes, which is
defined as a relation associating the active scopes with the agents participating
in them. Moreover, the variable sowner is introduced to model scope owners. It
is defined as a partial function from the active scopes to agents.

We define the new events Create, Join, Leave and Delete to model creating a
scope by the owner, joining and leaving it by agents, as well as closing a scope. In
the excerpt from the refinement machine Cama2, we demonstrate introducing
the new variables and events as well as the effect of the refinement on the events
AgentFailure and TimerExpiration. The guard of the event NormalLeaving is
now strengthened to disallow an agent to leave the location when it is still ac-
tive in some scopes.

REFINEMENT Cama2

REFINES Cama1

SETS ScopeName

DEFINITIONS activeAgent(aa) == (aa 	∈ ex agents ∧ aa 	∈ timers)
VARIABLES . . . , scopes, sowner

INVARIANT

scopes ∈ ScopeName ↔ agents ∧ sowner ∈ ScopeName �→ agents ∧
dom(sowner) = dom(scopes) ∧ sowner ⊆ scopes

EVENTS

. . .

Create = ANY aa, nn WHERE (aa ∈ agents) ∧ (activeAgent(aa)) ∧
(nn ∈ ScopeName) ∧ (nn 	∈ dom(scopes))

THEN CHOICE
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scopes := scopes ∪ {nn �→ aa} || sowner := sowner ∪ {nn �→ aa}
OR skip END

END;
Join = ANY aa, nn WHERE (aa ∈ agents) ∧ (activeAgent(aa) ∧

(nn ∈ dom(scopes)) ∧ ((nn �→ aa) 	∈ scopes)

THEN CHOICE scopes := scopes ∪ {nn �→ aa} OR skip END

END;
Leave = ANY aa, nn WHERE nn ∈ dom(scopes) ∧ aa ∈ agents ∧

activeAgent(aa) ∧ (nn �→ aa) ∈ scopes ∧ aa 	= sowner(nn)
THEN scopes := scopes - {nn �→ aa} END;

Delete = ANY aa, nn WHERE nn ∈ dom(scopes) ∧ aa ∈ agents ∧
activeAgent(aa) ∧ aa=sowner(nn)

THEN scopes, sowner := {nn} �− scopes, {nn} �− sowner END;
NormalLeaving = ANY aa WHERE aa ∈ agents ∧ aa 	∈ timers ∧

activeAgent(aa) ∧ aa 	∈ ran(scopes) ∧ aa 	∈ ran(sowner)
THEN agents := agents - {aa} END;

TimerExpiration = ANY aa WHERE aa ∈ agents ∧ aa ∈ ex agents

THEN

agents := agents - {aa}; scopes := scopes �− {aa};
scopes := sowner −1 [{aa}] �− scopes;
ex agents := ex agents - {aa}; sowner := sowner �− {aa}

END;
AgentFailure = ANY aa WHERE aa ∈ agents ∧ activeAgent(aa)

THEN

agents := agents - {aa}; scopes := scopes �− {aa};
scopes := sowner −1 [{aa}] �− scopes; sowner := sowner �− {aa}

END

END

Note that the domain substraction �− and the range substraction �− operations
are used here to update the variables scopes and sowner. They allow us to remove
the data associated with the corresponding subsets of domains and ranges.

4.2 Introducing Failure Modes and Error Recovery

In our current specification the event AgentFailure treats any agent failure as an
unrecoverable error. Indeed, upon detecting an error, the failed agent is removed
from the scope and disengaged from the location. In our next refinement step we
distinguish between recoverable and irrecoverable errors. Namely, upon detecting
an error the agent at first tries to recover from it (probably involving some other
agents in the error recovery). If the error recovery eventually succeeds then the
normal operational state of the agent is restored. Otherwise, the error is treated
as irrecoverable.

We introduce the variable astate to model the current state of the agent. The
variable astate can have one of three values: OK, RE or KO, designating a fault
free agent state, a recovery state, and an irrecoverable error correspondingly. We
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introduce the event AgentRecoveryStart which is triggered when an agent be-
comes involved in an error recovery procedure. Observe that AgentRecoveryStart
implicitly models two situations:

– when an agent itself detects an error and subsequently initiates its own error
recovery,

– when an agent decides to become involved into co-operative recovery from
another agent failure.

In both cases the state of the agent is changed from OK to RE.
The event AgentRecovery abstractly models the error recovery procedure. Er-

ror recovery might succeed and restore the fault free agent state OK or continue,
i.e., leave the agent in the recovery state RE. Finally, error recovery might fail,
as modelled by the event AgentRecoveryFailure. The event AgentRecoveryFail-
ure enables the event AgentFailure, which removes the irrecoverably failed agent
from the corresponding scopes and disengages it from the location.

While specifying error recovery procedure, it is crucial to ensure that the error
recovery terminates, i.e., does not continue forever. To ensure this, we introduce
the variable recovery limit, which limits the amount of error recovery attempts
for each agent. Each attempt of error recovery decrements recovery limit. As
soon as for some agent recovery limit becomes zero, agent error recovery ter-
minates and the error is treated as irrecoverable.

As in our previous refinement steps, we define the system variant to ensure
that newly introduced events converge, i.e., do not take the control forever. Here
we define the variant as the sum of recovery limit of agents. However, in this
refinement step the variant also allows us to express an essential property of the
system – the termination of the error recovery procedure.

The introduction of agent states affects most of the events – their guards
become strengthened to ensure that only fault free agents can perform normal
activities, engage into location and disengage from it, as well as create and close
scopes. In the excerpt from the refinement machine Cama3, we present only the
newly introduced events and the refined event AgentFailure.

REFINEMENT Cama3

REFINES Cama2

SETS STATE = {OK, KO, RE}
DEFINITIONS activeAgent(xx) == (xx 	∈ ex agents ∧ xx 	∈ timers)
VARIABLES . . ., astate, recovery limit

INVARIANT

. . . ∧ astate ∈ agents → STATE ∧ recovery limit ∈ agents → NAT

VARIANT aa.(aa ∈ agents | recovery limit(aa))
EVENTS

. . .

AgentFailure = ANY aa WHERE

aa ∈ agents ∧ activeAgent(aa) ∧ astate(aa) = KO

THEN

agents := agents - {aa}; scopes := scopes �− {aa};
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scopes := sowner −1 [{aa}] �− scopes; sowner := sowner �− {aa};
astate := aa �− astate; recovery limit := aa �− recovery limit

END;
AgentRecovery = ANY aa WHERE aa ∈ agents ∧ activeAgent(aa) ∧

astate(aa) = RE ∧ recovery limit(aa) > 0
THEN

recovery limit(aa) := recovery limit(aa) - 1 ||
ANY vv WHERE vv ∈ {OK, RE} THEN astate(aa) := vv END

END;
AgentRecoveryStart = ANY aa WHERE aa ∈ agents ∧ activeAgent(aa) ∧

astate(aa) = OK ∧ recovery limit(aa) > 0
THEN

recovery limit(aa) := recovery limit(aa) - 1 ||
astate(aa) := RE

END;
AgentRecoveryFailure = ANY aa WHERE aa ∈ agents ∧ activeAgent(aa) ∧

astate(aa) = RE ∧ recovery limit(aa) > 0
THEN

recovery limit(aa) := recovery limit(aa) - 1 ||
astate(aa) := KO

END

END

4.3 Defining Roles in a Scope

Each scope provides the isolated coordination space for compatible agents to com-
municate. Compatibility of agents is defined by their roles – abstract descriptions
of agent functionality. To ensure compatibility of agents in a scope, each scope
support a certain predefined set of roles. When an agent joins a scope, it chooses
one of the supported roles. We assume that an agent can join a scope only in one
role and this role remains the same while the agent is in the scope. However, an
agent might leave a scope and join it in another role later.

The creator of the scope defines the minimal and maximal numbers of agents
that are allowed to play each supported role. This is dictated by the logical
conditions on the scope functionality. For instance, if the scope is created for
purchasing a certain item on an electronic auction then there are must be only
one seller and at least one buyer for a scope to function properly.

However, agent systems are asynchronous systems. Therefore, at the time of
scope creation it cannot be guaranteed that agents will take all the required roles
in the right proportions at once and the scope will instantly become functional.
Since agents join and leave the scope arbitrarily, the scope can be in various
states at different instances of time: pending, when the number of agents is still
insufficient for normal functioning of the scope; expanding, when the scope is
functional but new agents can still join it; closed, when the maximal allowed
number of agents per each role is reached.
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Though in our next refinement step we abstract away from representing the
number of agents which has taken each of the supported roles, we introduce the
function role status, which returns the value

– Pending, if the minimal number of agents in this particular role is not yet
reached,

– Expanding, if the minimal number of agents in this role has already joined
the scope but the maximal number has not yet been reached,

– Closed, if the maximal allowed number of agent has already taken this role.

We introduce the variable scope roles, that stores the information about
which role an agent took when joining the scope. To model the state of the
scope we introduce the variable scope status, which takes the values from the
set {Pending, Expanding, Closed}. The value of scope status directly depends
on the values of role status for this particular scope. This conditions are defined
as a part of the invariant as follows:

∀ ss. (ss ∈ ScopeName ∧ ss ∈ dom(scope status) ⇒
(scope status(ss)=Pending ⇒ Pending ∈ ran(role status(ss)))) ∧

∀ ss. (ss ∈ ScopeName ∧ ss ∈ dom(scope status) ⇒
(scope status(ss)=Closed ⇒ ran(role status(ss))={Closed})) ∧

∀ ss. (ss ∈ ScopeName ∧ ss ∈ dom(scope status) ⇒
(scope status(ss)=Expanding ⇒ Pending 	∈ ran(role status(ss)) ∧
Expanding ∈ ran(role status(ss))))

Let us observe that, when an agent fails, we need to update the states of all the
scopes in which it has been active and all roles that it has been taking in them.
We introduce the variable affected scopes to model the scopes for which we need
to re-evaluate their states and the event StatusUpdate that actually performs re-
evaluation of status of each scope in affected scopes. Moreover, when an agent
joins or leaves a scope, we have to update the status of the taken role as well as
re-evaluate the state of the scope. The events which are the most significantly
affected by this refinement, as well as the newly introduced event StatusUpdate
are presented below.

Join = ANY aa, nn, rr WHERE

aa ∈ agents ∧ nn ∈ dom(scopes) ∧
rr ∈ Role ∧ activeAgent(aa) ∧ (nn �→ aa) 	∈ scopes ∧
astate(aa) = OK ∧ role status(nn)(rr) ∈ {Pending,Expanding} ∧
¬ (nn ∈ affectedScopes)

THEN

CHOICE

scopes := scopes ∪ {nn �→ aa};
scope roles(nn,aa) := rr;
ANY rstatus WHERE rstatus ∈ Status



Rigorous Development of Fault-Tolerant Agent Systems 257

THEN

role status(nn)(rr) := rstatus

END;
ANY new st WHERE new st ∈ scopeEval(nn)
THEN

scope status(nn) := new st

END

OR skip END

END;

AgentFailure = ANY aa WHERE

aa ∈ agents ∧ activeAgent(aa) ∧ astate(aa) = KO

THEN

agents := agents - {aa}; astate := {aa} �− astate;
recovery limit := {aa} �− recovery limit;
scopes := sowner −1 [{aa}] �− scopes ;

affectedScopes := dom (scopes � {aa}); scopes := scopes �− {aa};
sowner := sowner �− {aa}; scope roles := scopes � scope roles;
scope status := dom(scopes) � scope status;
role status := dom(scopes) � role status

END;

StatusUpdate = ANY ss WHERE ss ∈ affectedScopes

THEN

ANY new st WHERE new st ∈ scopeEval(ss)
THEN

scope status(ss) := new st

END;
affectedScopes := affectedScopes - {ss}

END

Due to the lack of space, we omit presenting the B specifications in full
length. The complete development can be found in the accompanying technical
report [14].

We can continue the refinement process by introducing more low-level imple-
mentation details into our specification. For example, we can replace the vari-
able role status with the variables defining the minimal and maximal numbers
of agents allowed to play a particular role in a created scope. Also, the presented
error recovery mechanism can be further refined by introducing special messages
(exceptions) that agents exchange when they cannot cope with some particular
failure or erroneous situation.

The presented formal development has been completely verified by
AtelierB [6] – an automatic tool supporting B. The use of AtelierB has sig-
nificantly eased verification of the refinement process, since the tool generated
all the required proofs and proved most of them automatically. Approximately
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250 non-trivial proofs were generated and about 80 % of them were proved au-
tomatically by the tool. The remaining proof obligations have been discharged
using the interactive prover provided by AtelierB. We observed that the most
difficult to prove were the properties relating the scope status with the status of
collaborating agents in the last refinement step. Also the later refinement steps
required significant efforts for proving that newly introduced events converge,
i.e., do not introduce additional deadlocks.

5 Conclusions

In this paper we have done two major technical contributions. First, we have
defined the abstractions required to model behaviour of mobile location-based
agent systems. Second, based on these abstractions we formally developed generic
middleware for fault tolerant agent systems.

In our development we adapted the system approach, i.e., captured the be-
haviour of agents together with their communication environment. While carry-
ing out the development of the system by refinement, we modelled the essential
properties of agent systems and incorporated fault tolerance mechanisms into the
system specification. We demonstrated how to define the mechanisms for toler-
ating agent disconnections typical for mobile systems as well as agent crashes.

The proposed approach provides the developers of agent systems with a formal
basis for ensuring inter-operability of independently developed agents. Indeed,
by decomposing the proposed formal model of the middleware into the parts
to be implemented by the agents and by the location and ensuring adherence
of their implementations to these specifications, we can guarantee agent inter-
operability.

By straightforward translation of the proposed formal specification we ob-
tained an implementation of the CAMA middleware in C [13]. The formal spec-
ification has significantly simplified the implementation process, which is usually
cumbersome and error-prone due to distributive nature of the system.

Another paper [15] devoted to CAMA appearing in this book describes a
method for verification of temporal properties of Cama systems configurations.
Configurations are made of a number of cooperating agents. The system evo-
lution is constrained by a set of properties. Process algebra notation is used
to describe configurations and Petri nets-based model checker is applied for the
verification. The process algebra incorporates Linda communication mechanism
augmented with the scoping mechanism, which we formally specified in this pa-
per. The range of verified properties includes deadlocks detection, proper use
of the scoping mechanism and other application-specific properties. The formal
development in B presented here can provide valuable inputs to model checking.
For instance, the scope state invariants defined in out last refinement can be
used by the model checker to verify that agents do not attempt to execute any
illegal scope operations.

We believe that the approaches presented in these two papers well comple-
ment each other. Static verification with the B Method is used to develop a
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fine-grained model of the middleware. The model contains enough details to
lay the foundation for an effective implementation. On the other hand, model
checking approach uses a more abstract model of the middleware but permits
analysis of system dynamics. Model checking helps to overcome the limitations
of the static verification approach, while static verification is not prone to state
explosion and thus suitable for modelling large systems.

A formalization of mobile agent systems has been proposed by Roman et
al. [19]. In their approach agent systems are specified using the UNITY nota-
tion and then verified using the UNITY proof techniques. The latest extension,
called ContextUNITY [18], also captures the essential characteristics of context-
awareness in mobile agent systems. However, this approach focuses primary on
specifying agent systems and leaves the gap between a formal specification and
implementation. The use of refinement in our approach allows us to overcome
this limitation.

Fisher and Ghidini have presented a formal logic for describing agent ac-
tivities [9]. They proposed either to deduce agent correctness from an agent
specification via a number of transformations or verify it using a model checker.
In their work, communication is modelled very abstractly by representing a list
of external messages for each agent. This restricts reasoning about agent inter-
operability, which is supported in our approach.

Model checking techniques have also been successfully employed for verifying
agent systems. For example, [5] discusses model checking of a BDI-based formal
agent model, [8] describes a verification of π-calculus based process algebra for
mobile agents, and [16] presents modelling of fault-tolerant agents by stochastic
petri nets. However, model checking approaches typically suffer from the state
space explosion problem, which is especially acute for large systems. The major
advantage of our approach that it avoids this problem.

In our future work we are planning to extend the proposed approach in two
directions. On the one hand, it would be interesting to investigate the use of
decomposition to derive role-structured agent software from the overall system
specification. On the other hand, it would also be appealing to explore the formal
specification of cooperative recovery as a basic mechanism for fault tolerance in
agent systems.
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Abstract. Telecommunication systems should have a high degree of
availability, i.e., high probability of correct and timely provision of re-
quested services. To achieve this, correctness of software for such sys-
tems and system fault tolerance should be ensured. Application of formal
methods helps us to gain confidence in building correct software. How-
ever, to be used in practice, formal methods should be well integrated into
existing development process. In this paper we propose a formal model-
driven approach to development of communicating systems. Essentially
our approach formalizes and extends Lyra – a top-down service-oriented
method for development of communicating systems. Lyra is based on
transformation and decomposition of models expressed in UML2. We for-
malize Lyra in the B Method by proposing a set of formal specification
and refinement patterns reflecting the essential models and transforma-
tions of the Lyra service specification, decomposition and distribution
phases. Moreover, we extend Lyra to integrate reasoning about fault
tolerance in the entire development flow.

Keywords: communicating systems, service-oriented development, fault
tolerance, UML, B Method.

1 Introduction

Modern telecommunication systems are usually distributed software-intensive
systems providing a large variety of services to their users. Development of soft-
ware for such systems is inherently complex and error prone. However, software
failures might lead to unavailability or incorrect provision of system services,
which in turn could incur significant financial losses. Hence it is important to
guarantee correctness of software for telecommunication systems.

Formal methods have been traditionally used for reasoning about software
correctness. Nevertheless, they are yet insufficiently well integrated into cur-
rent development practice. Unlike formal methods, Unified Modeling Language
(UML) [18] has a lower degree of rigor for reasoning about software correctness
but is widely accepted in industry. UML is a general purpose modelling language
and, to be used effectively, should be tailored to a specific application domain.
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Nokia Research Center has developed the design method Lyra [15] – a UML2-
based service-oriented method specific to the domain of communicating systems
and communication protocols. The design flow of Lyra is based on the concepts
of decomposition and preservation of the externally observable behaviour. The
system behaviour is modularised and organized into hierarchical layers according
to the external communication and related interfaces. It allows the designers to
derive the distributed network architecture from the functional system require-
ments via a number of model transformations.

From the beginning Lyra has been developed in such a way that it would be
possible to bring formal methods (such as program refinement, model checking,
model-based testing etc.) into more extensive industrial use. A formalization of
the Lyra development would allow us to ensure correctness of system design
via automatic and formally verified construction. The achievement of such a
formalization would be considered as significant added value for industry.

In this paper we propose a set of formal specification and refinement patterns
reflecting the essential models and transformations of Lyra. Our approach is
based on stepwise refinement of a formal system model in the B Method [3] –
a formal framework with automatic tool support. While developing a system by
refinement, we start from an abstract specification and gradually incorporate im-
plementation details into it until executable code is obtained. While formalizing
Lyra, we single out a generic concept of a communicating service component and
propose patterns for specifying and refining it. In the refinement process the ser-
vice component is decomposed into a set of service components of smaller gran-
ularity specified according to the proposed pattern. Moreover, we demonstrate
that the process of distributing service components between different network
elements can also be captured by the notion of refinement.

To achieve system fault tolerance, we extend Lyra to integrate modelling of
fault tolerance mechanisms into the entire development flow. We demonstrate
how to formally specify error recovery by rollbacks as well as reason about error
recovery termination.

The proposed formal specification and development patterns establish a back-
ground for automatic generation of formal specifications from UML2 models
and expressing model transformations as refinement steps. Via automation of
the UML2-based Lyra design flow we aim at smooth incorporation of formal
methods into existing development practice.

2 Lyra: Service-Based Development of Communicating
Systems

2.1 Overview of Lyra

Lyra [15] is a model-driven and component-based design method for the devel-
opment of communicating systems and communication protocols. It has been
developed in the Nokia Research Center by integrating the best practices and
design patterns established in the area of communicating systems. The method
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covers all industrial specification and design phases from prestandardisation to
final implementation. It has been successfully applied in large-scale UML2-based
industrial software development, e.g., for specification of architecture for several
network components, standardisation of 3GPP protocols, implementation of sev-
eral network protocols etc.

Lyra has four main phases: Service Specification, Service Decomposition, Ser-
vice Distribution and Service Implementation. The Service Specification phase
focuses on defining services provided by the system and their users. The goal of
this phase is to define the externally observable behaviour of the system level ser-
vices via deriving logical user interfaces. In the Service Decomposition phase the
abstract model produced at the previous stage is decomposed in a stepwise and
top-down fashion into a set of service components and logical interfaces between
them. The result of this phase is the logical architecture of the service implemen-
tations. In the Service Distribution phase, the logical architecture of services is
distributed over a given platform architecture. Finally, in the Service Implemen-
tation phase, the structural elements are adjusted and integrated into the target
environment, low-level implementation details are added and platform-specific
code is generated. Next we discuss Lyra in more detail with an example.

2.2 Lyra by Example

We model a positioning system which provides positioning services to calculate
the physical location of a given item of user equipment (UE) in a mobile net-
work [1,2]. We consider Position Calculation Application Part (PCAP), which
manages communication between two standard network elements. We assume
that the PCAP functional requirements are correctly defined [1,2] and, hence,
focus on the architectural decomposition and distribution decisions.

The Service Specification phase starts from creating the domain model of the
system. It describes the system with included system level services and differ-
ent types of external users. Each association connecting an external user and a
system level service corresponds to a logical interface. For the system and the
system level services we define active classes, while for each type of an exter-
nal user we define the corresponding external class. The relationships between
the system level services and their users become candidates for PSAPs - Pro-
vided Service Access Points of the system level services. The logical interfaces
are attached to the classes with ports. The domain model for the Positioning
system and its service PositionCalculation is shown in Fig.1(a) and PSAP of
the Positioning system – I User PSAP is shown in Fig.1(b). The UML2 in-
terfaces I ToPositioning and I FromPositioning define the signals and signal
parameters of I user PSAP. We formally describe the communication between
a system level service and its user(s) in the PSAPCommunication state machine
as illustrated in Fig.1(c). The positioning request pc req received from the user
is always replied: with the signal pc cnf in case of success, and with the signal
pc fail cnf otherwise.

To implement its own services, the system usually uses external entities.
For instance, to provide the PositionCalculation service, the positioning system
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(a) (b) (c)

Idle serving

pc_req

pc_cnf

pc_fail_cnf

<<ServiceSpecification>>

                      Positioning                     

I_ToPositioning I_FromPositioning

I_user

aUser : User

<<usecase>>
PositionCalculation

aPositioning : Positioning

Fig. 1. (a) Domain Model. (b) PSAP of Positioning. (c) State diagram.

should first request Radio Network Database (DB) for an approximate position
of User Equipment (UE). The information obtained from DB is used to con-
tact UE and request it to emit a radio signal. At the same time, one or more
Reference Location Measurement Unit devices (ReferenceLMU) are contacted
to provide additional measurements of radio signals. The radio measurements
obtained from UE and ReferenceLMU are used to calculate the exact position
of UE. The calculation is done by the Algorithm service provider (Algorithm),
which produces the final estimation of the UE location. Let us observe that
the services provided by the external entities partition execution of the Posi-
tionCalculation service into the corresponding stages. In the next phase of the
Lyra development - Service Decomposition - we focus on specifying the service
execution according to the identified stages.

In the Service Decomposition phase, we introduce the providers of external
services into the domain model constructed previously, as shown in Fig.2(a).
The model includes the external service providers DB, UE, ReferenceLMU and
Algorithm, which are then defined as the external classes. For each association
between a system level service and the corresponding external class we define a
logical interface. The logical interfaces are attached to the corresponding classes
via ports called USAPs – Used Service Access Points, as presented in Fig.2(b).

Let us observe that the system behaviour is modularised according to the related
service access points – PSAPs and USAPs. Moreover, the functional architecture is
defined in terms of service components, which encapsulate the functionality related
to a single execution stage or another logical piece of functionality.

In Fig.3(a) we present the architecture diagram of the Positioning system.
Here ServiceDirector plays two roles: it controls the service execution flow and
handles the communication on the PSAP. The behaviour of ServiceDirector is
presented in Fig.3(b). The top-most state machine specifies the communication
on PSAP, while the state submachine Serving specifies a valid execution flow of
the position calculation. The substates of Serving encapsulate the stage-specific
behaviour and can be represented as the corresponding submachines. In their
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aUser : User

<<usecase>>
PositionCalculation

aDB : DB

anUE : UE

anAlgorithm : Algorithm

aRefLMU : ReferenceLMU

aPositioning : Positioning

(a)

<<ServiceDecomposition>>

                                  Positioning                                

   

     

   

   ()

   ()

   ()

  

  

I_ToPositioning I_FromPositioning

I_FromDB

I_FromUE

I_FromLMU

I_FromAlgorithm

I_ToDB
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I_ToLMU

I_ToAlgorithm
I_UE

I_DB

I_User

I_Algorithm

I_LMU

(b)

Fig. 2. (a) Domain Model. (b) PSAP and USAPs of Positioning.

turns, these machines (omitted here) include the specifications of specific PSAP-
USAP communications.

The modular system model produced at the Service Decomposition phase
allows us to analyse various distribution models. In the next phase – Service
Distribution – the service components are distributed over a given network ar-
chitecture. The signalling network protocols are used for communication between
the service components allocated on distant network elements.

In Fig.4(a) we illustrate the physical structure of the distributed position-
ing system. Here Positioning RNC and Positioning SAS represent the pre-
defined network elements called RNC and SAS correspondingly. The standard
interface Iupc is used in the communication between them. We map the func-
tional architecture obtained at the previous stage to the given network ar-
chitecture by distributing the service components between the network ele-
ments. The functional architecture of the Positioning SAS network element is
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illustrated in Fig.4(b). The functionality of ServiceDirector specified at the Ser-
vice Decomposition phase is now decomposed and distributed over the given
network. ServiceDirector SAS handles the interface towards the RNC network
element and controls the execution flow of the positioning calculation process in
the SAS network element.

Architecture Diagram I_FromPositioning

I_FromDB

I_FromAlgorithm

I_FromUE

aDirector : ServiceDirector

I_FromLMUHandler

I_FromDBHandler

I_ToPositioning

I_User

I_DBHandler

I_AlgorithmI_UE

I_LMUHandler

I_AlgorithmHandlerI_UEHandler

I_User

I_positioning I_positioning

I_positioning
I_positioning

I_DB I_LMU

I_FromUEHandler
I_FromAlgorithmHandler

I_ToUEHandler
I_ToAlgorithmHandler

I_ToLMUHandler

I_DB

I_UE I_Algorithm

I_LMU

I_ToDBHandler

I_ToUE

I_FromLMU

I_ToAlgorithm

I_ToLMUI_ToDB

aDB : DBHandler aLMU : LMUHandler

anUE : UEHandler anAlgo : AlgoHandler

active <<ServiceDecomposition>> class

(a)

Idle serving

LMU_Measurement

Algorithm_Invocation

DB_Enquiry

UE_Enquiry

pc_req

pc_cnf

pc_fail_cnf

[lmu_ok]

[db_ok]

[ue_ok]

[algo_ok]

xp_pc_ok

ep_serving

(b)

Fig. 3. (a) PositionCalculation functional architecture. (b) Service Director: PSAP
communication and execution control.

Finally, at the Service Implementation phase we specify how the virtual commu-
nication between entities in different network nodes is realized using the underly-
ing transport services. We also implement data encoding and decoding, routing
of messages and dynamic process management. The detailed description of this
stage can be found elsewhere [15,1,2].
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I_RNCToSAS

Iupc

sas : Positioning_SASmc : Positioning_RNC

active <<ServiceDistribution>> class Positioning

I_DBI_DB

I_UE I_UE
Iupc

I_LMU

I_Algorithm

I_LMU

I_Algorithm

I_SASToRNC

I_User

I_User

(a)

Architecture Diagram

I_FromAlgorithm

aDirector : ServiceDirector_SAS
I_RNCToSAS Iupc

I_Algorithm

I_Algorithm

I_positioning

I_LMU

I_FromAlgorithmHandler

I_ToAlgorithmHandler
I_ToLMUHandler

I_Algorithm I_LMU

I_FromLMU

I_ToAlgorithm I_ToLMU
aLMU : LMUHandleranAlgo : AlgoHandler

active <<ServiceDistribution>> class
Positioning_SAS

I_LMU

I_FromLMUHandler

Iupc
I_SASToRNC

I_positioning

(b)

Fig. 4. (a) Architecture of service. (b) Architecture of Positioning SAS.

In the next section we give a brief introduction into our formal framework,
the B Method, which we will use to formalize the development flow described
above.

3 Developing Systems by Refinement in the B Method

The B Method [3] is an approach for the industrial development of highly de-
pendable software. The method has been successfully used in the development
of several complex real-life applications [16]. Recently the B method has been
extended by the Event B framework [4], which enables modelling of event-based
systems. Event B is particularly suitable for developing distributed, parallel and
reactive systems. In fact, this extension has incorporated the action system for-
malizm [6] in the B Method. In the rest of the paper, we refer to the B Method
together with its extension Event B simply as B.

The tool support available for B provides us with the assistance for the entire
development process. For instance, Atelier B [9], one of the tools supporting
the B Method, has facilities for automatic verification and code generation as
well as documentation, project management and prototyping. It has a plug-in
for integrating modelling in Event B. Atelier B provides us with a high degree
of automation in verifying correctness that improves scalability of B, speeds up
development and, also, requires less mathematical training from the users.

3.1 Modelling in B

The B Method adopts the top-down approach to system development. The devel-
opment starts from creating a formal system specification. A formal specification
is a mathematical model of the required behaviour of a system, or a part of a
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system. In B, a specification is represented by a collection of modules, called Ab-
stract Machines. The Abstract Machine Notation (AMN), is used in constructing
and verifying them. An abstract machine encapsulates a local state (local vari-
ables) of the machine and provides operations on the state. A simple abstract
machine has the following general form:

MACHINE AM
SETS TYPES
VARIABLES v
INVARIANT I
INITIALISATION INIT
EVENTS

E1 = . . .
. . .
EN = . . .

END

The machine is uniquely identified by its name AM. The state variables of
the machine, v, are declared in the VARIABLES clause and initialised in
INIT as defined in the INITIALISATION clause. The variables in B are
strongly typed by constraining predicates of the machine invariant I given in
the INVARIANT clause. The invariant is usually defined as a conjunction
of the constraining predicates and the predicates defining the properties of the
system that should be preserved during system execution. All types in B are rep-
resented by non-empty sets. Local types can be introduced by enumerating the
elements of the type, e.g., TYPE = {element1, element2, . . .}, or by defining
them as subsets of already existing types or sets.

The operations E1, . . . , EN of the machine are defined in the
EVENTS clause. The operations are atomic meaning that, once an operation is
chosen, its execution will run until completion without interference. There are two
standardways todescribeanoperation inB: either by thepreconditionedoperation
PRE cond THEN body END or the guarded operation SELECT cond THEN
body END. Here cond is a state predicate, and body is a B statement. If cond is sat-
isfied, the behaviour of both the precondition operation and the guarded operation
corresponds to the execution of their bodies. However, these operations behave dif-
ferently when an attempt to execute them from a state where cond is false is under-
taken. In this case the precondition operation leads to a crash (i.e., unpredictable or
even non-terminating behaviour) of the system, while the execution of the guarded
operation is blocked. The preconditioned operations are used to describe the oper-
ations that will be turned (implemented) into procedures called by the user. On the
other hand, the guarded operations are useful when we have to specify system be-
haviour in terms of its reactions on the occurrence of certain events. The operations
of event-based systems are often called events.

The B statements that we will use to describe the bodies of events have the
following syntax:

S == x := e | IF cond THEN S1 ELSE S2 END | S1 ; S2 |
x :: T | ANY z WHERE Q THEN S END | S1 || S2 | . . .
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The first three constructs - an assignment, a conditional statement and a
sequential composition have the standard meaning. A sequential composition is
disallowed in abstract specifications but permitted in refinements. The remaining
constructs allow us to model nondeterministic or parallel behaviour in a specifi-
cation. Usually they are not implementable so they have to be refined (replaced)
with executable constructs at some point of program development. We use two
kinds of nondeterministic statements – the nondeterministic assignment and the
nondeterministic block. The nondeterministic assignment x :: T assigns the
variable x an arbitrary value from the given set (type) T. The nondeterministic
block ANY z WHERE Q THEN S END introduces the new local variable z
which is initialised (possibly nondeterministically) according to the predicate Q
and then used in the statement S. Finally, S1 || S2 models parallel (simultane-
ous) execution of S1 and S2 provided S1 and S2 do not have a conflict on state
variables. The special case of the parallel execution is a multiple assignment,
which is denoted as x, y := e1, e2.

The B statements are formally defined using the weakest precondition seman-
tics [10]. Intuitively, for a given statement S and a postcondition P, the weakest
precondition wp(S,P) describes the set of all such initial states from which exe-
cution of S is guaranteed to establish P. The weakest precondition semantics is a
foundation for establishing correctness of specifications and verifying refinements
between them. To show correctness (consistency) of an event-based system, we
should demonstrate that its invariant is true in the initial state (i.e., after the
initialisation is executed) and that every event preserves the invariant:

wp(INIT, I) = true, and
gi ∧ I ⇒ wp(Ei, I)

3.2 Refinement of Event-Based Systems

The basic idea underlying stepwise development in B is to design the system
implementation gradually, by a number of correctness preserving steps called re-
finements. The refinement process starts from creating an abstract specification
and finishes with generating executable code. The intermediate stages yield the
specifications containing a mixture of abstract mathematical constructs and ex-
ecutable programming artefacts. In general, refinement process can be seen as a
way to reduce nondeterminism of the abstract specification and replace abstract
mathematical data structures by data structures implementable on a computer.
Hence refinement allows us to introduce implementation decisions gradually.

Formally, we say that the statement S is refined by the statement S′, written
S � S′, if, whenever S establishes a certain postcondition, so does S′:

S � S′ if and only if for all postconditions p : wp(S, p) ⇒ wp(S′, p)

In the AMN the results of intermediate development stages – the refinement
machines – have essentially the same structure as the more abstract specifica-
tions. In addition, a refinement machine explicitly states which specification it
refines.
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Assume that the refinement machine AM ′ given below is a result of refinement
of the abstract machine AM :

REFINEMENT AM ′

REFINES AM
VARIABLES v′

INVARIANT I ′

INITIALISATION INIT ′

EVENTS
E1 = . . .
. . .
EN = . . .

END

In AM ′ we replace the abstract data structures of AM with concrete ones. The
invariant of AM ′, I ′, defines now not only the invariant properties of the refined
specification but also the connection between the newly introduced variables
and the abstract variables that they replace. For a refinement step to be valid,
every possible execution of the refined machine must correspond (via I ′) to some
execution of the abstract machine. To demonstrate this, we should prove that
INIT ′ is a valid refinement of INIT, each event of AM ′ is a valid refinement
of its counterpart in AM and that the refined specification does not introduce
additional deadlocks, i.e.,

wp(INIT ′, ¬wp(INIT,¬I ′)) = true,
I ∧ I ′ ∧ g′

i ⇒ gi ∧ wp(S′,¬wp(S,¬I ′)), and
I ∧ N

i gi ⇒ g′
i

Often refinement process introduces new variables and the corresponding com-
putations (new events) on them, while leaving the previous variables and com-
putations essentially unchanged. Such refinement is referred to as superposition
refinement [7]. Let us consider the abstract machine AM S and the refinement
machine AM SR:

REFINEMENT AM SR
MACHINE AM S REFINES AM S
VARIABLES a VARIABLES a, b
INVARIANT I INVARIANT I ′

VARIANT V
INITIALISATION INIT INITIALISATION INIT ′

EVENTS EVENTS
E = WHEN g E = WHEN g

THEN S END THEN S END
E1 = WHEN g1 THEN S1 END
E2 = WHEN g2 THEN S2 END

END END

Observe that the refinement machine contains the new events E1 and E2 as well
as the new clause VARIANT. The new events define computations on the newly
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introduced variables b and, hence, can be seen as the events refining the statement
skip on the abstract variables. Every new event should decrease the value of the
variant. This allows us to guarantee that new events cannot take the control for-
ever, since the variant expression cannot be decreased infinitely. For each newly
introduced event, we should demonstrate that the variant expression is a natural
number and execution of the event decreases the variant, i.e.,

V ∈ NAT, and
I ′ ∧ gi ⇒ wp((n := V ; Si), n < V )

In B, there are also mechanisms for structuring the system architecture by
modularisation. The abstract machines can be composed by means of several
mechanisms providing different forms of encapsulation. For instance, if the ma-
chine C INCLUDES the machine D then all variables and operations of D are
incorporated in C. However, to guarantee internal consistency (and hence inde-
pendent verification and reuse) of D, the machine C can change the variables of
D only via the operations of D.

Nextwe illustrate modelling and refinement in B by presenting a formal develop-
ment of fault-tolerant communicating systems according to the Lyra methodology.

4 Towards Formalizing and Extending Lyra

4.1 Modelling a Service Component in B

In Section 2 we have defined a service component as a coherent piece of func-
tionality that provides its services to a service consumer via PSAP(s). We used
this term to refer to the providers of external services introduced at the Service
Decomposition phase. However, the notion of a service component can be gener-
alized to represent the service providers at different levels of abstraction. Indeed,
even the entire Positioning system can be seen as a service component provid-
ing the Position Calculation service. On the other hand, peer proxies introduced
at the lowest level of abstraction can also be seen as the service components
providing the physical data transfer services. Therefore, the notion of a service
component is central to the entire Lyra development process.

A service component has two essential parts: functional and communicational.
The functional part is a ”mission” of a service component, i.e., the service(s)
that it is capable of providing. The communicational part is an interface via
which a service component receives requests to execute the service(s) and sends
the results of service execution.

Execution of a service usually involves certain computations. We call the B
representation of this part of a service component Abstract CAlculating Machine
(ACAM). The communicational part is correspondingly called Abstract Commu-
nicating Machine (ACM), while the entire B model of a service component is
called Abstract Communicating Component (ACC). The abstract machine ACC
below presents the proposed pattern for specifying a service component in B.



272 L. Laibinis et al.

While specifying a service component, we adopt a systemic approach, i.e.,
model the service component together with the relevant part of its environment,
the service consumer. Namely, when modelling the communicational (ACM) part
of ACC, we also specify how the service consumer places requests to execute
a service in the operation input and reads the results of service execution in
the operation output. The input parameters param and time of the operation
input model the parameters of a request and the maximal time allowed for
executing the service. For instance, in the Positioning System example described
in Section 2, an arrival of the position calculation request – the signal pc req
– can be represented as an instantiation of the operation input. Moreover, the
request might have parameters – the precision of position calculation defined by
the service consumer and the maximal execution time defined by the system,
e.g., according to the current network load. The parameters of the request are
stored in the internal data buffer in data, so they can be used by ACAM while
performing the required computations.

In our initial specification we abstract away from the details of computa-
tions required to execute a service, i.e., ACAM is modelled as a statement non-
deterministically generating the results of service execution. These results are
stored in the internal output buffer out data. The service consumer obtains the
results of service provision as the output parameter res of the operation output.
Already in the abstract specification we model possibility of failure – out data
might contain values representing the results of not only successful service ex-
ecutions but also failed ones. In our example, in case of successful execution,
the signal pc cnf together with the calculated position are sent to the service
consumer. Otherwise, the signal pc fail cnf is generated.

While executing the operation output, the input and output buffers are emp-
tied and the service component becomes ready to accept a new service request.
Here we reserve the abstract constant NIL to model the absence of data.

MACHINE ACC

SETS DATA

CONSTANTS NIL, Abort data

PROPERTIES
NIL ∈ DATA ∧ Abort data ∈ DATA ∧ ¬ (Abort data = NIL)

VARIABLES in data, out data

INVARIANT
in data ∈ DATA ∧ out data ∈ DATA

INITIALISATION
in data, out data := NIL, NIL

EVENTS

input(param,time) =
PRE param ∈ DATA ∧ time ∈ NAT1 ∧ ¬ (param=NIL) ∧ in data=NIL
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THEN
in data := param

END;

calculate =
SELECT ¬ (in data=NIL) ∧ out data = NIL
THEN

out data :∈ DATA - {NIL}
END;

res ← output =
PRE ¬ (out data = NIL)
THEN

res := out data ||
in data,out data := NIL, NIL

END

END

In Lyra, a service component is usually represented as an active class with the
PSAP(s) attached to it via the port(s). The state diagram depicts the signalling
scenario on PSAP including the signals from and to the external class modelling
the service consumer. Essentially these diagrams suffice to specify a service com-
ponent according to the ACC pattern. Namely, the UML2 description of PSAP
is translated into the communicational (ACM) part of the machine ACC. The
functional (ACAM) part of ACC should be instantiated by the data types spe-
cific to the modelled service component. This translation formalizes the Service
Specification phase of Lyra.

Let us observe that the machine ACC can be seen as a specification pattern,
which can be instantiated by supplying the details specific to a service component
under construction. For instance, the ACM part of ACC models data transfer
to and from a service component very abstractly. We have shown how it can
be instantiated for the Positioning system example. While developing a more
complex service component, this part can be instantiated with more elaborated
data structures and the corresponding protocols for transferring them.

Next we discuss how to extend Lyra with the explicit representation of the
fault tolerance mechanisms and then show the use of the ACC pattern in the
entire Lyra development process.

4.2 Introducing Fault Tolerance in the Lyra Development Flow

Currently the Lyra methodology addresses fault tolerance implicitly, i.e., by
representating not only successful but also failed service provision in the Lyra
UML models. However, it leaves aside modelling of mechanisms for detecting
and recovering from errors – the fault tolerance mechanisms. We argue that,
by integrating explicit representation of the means for fault tolerance into the
entire development process, we establish a basis for constructing systems that



274 L. Laibinis et al.

are better resistant to errors, i.e., achieve better system dependability. Next we
will discuss how to extend Lyra to integrate modelling of fault tolerance.

In the first development stage of Lyra we set a scene for reasoning about fault
tolerance by modelling not only successful service provision but also service
failure. In the next development stage – Service Decomposition – we elabo-
rate on representation of the causes of service failures and the means for fault
tolerance.

In the Service Decomposition phase we decompose the service provided by a
service component into a number of stages (subservices). The service component
can execute certain subservices itself as well as request other service components
to do it. According to Lyra, the flow of the service execution is managed by a
special service component called Service Director. It implements the behaviour
of PSAP of a service component as specified earlier. Moreover, it co-ordinates the
execution flow by enquiring the required subservices from the external service
components.

In general, execution of any stage of a service can fail. In its turn, this might
lead to failure of the entire service provision. Therefore, while specifying Ser-
vice Director, we should ensure that it does not only orchestrates the fault-free
execution flow but also handles erroneous situations. Indeed, as a result of re-
questing a particular subservice, Service Director can obtain a normal response
containing the requested data or a notification about an error. As a reaction to
the occurred error, Service Director might

– retry the execution of the failed subservice,
– repeat the execution of several previous subservices (i.e., roll back in the

service execution flow) and then retry the failed subservice,
– abort the execution of the entire service.

The reaction of Service Director depends on the criticality of an occurred
error: the more critical is the error, the larger part of the execution flow has to
be involved in the error recovery. Moreover, the most critical (i.e., unrecoverable)
errors lead to aborting the entire service. In Fig.5(a) we illustrate a fault free
execution of the service S composed of subservices S1, . . . , SN . Different error
recovery mechanisms used in the presence of errors are shown in Fig.5(b) - 5(d).

Let us observe that each service should be provided within a certain finite
period of time – the maximal service response time Max SRT. In our model
this time is passed as a parameter of the service request. Since each attempt of
subservice execution takes some time, the service execution might be aborted
even if only recoverable errors have occurred but the overall service execution
time has already exceeded Max SRT. Therefore, by introducing Max SRT in
our model, we also guarantee termination of error recovery, i.e., disallow infinite
retries and rollbacks, as shown in Fig.5(e).

Next we demonstrate how to represent the extended Lyra development as
refinement in B.



Formal Service-Oriented Development 275

SS1 SS2 SS3 SSN-1 SSN

S

(a) Fault free execution flow

SS1 SS2 SS3 SSN-1 SSN

S

Retry

(b) Error recovery by retrying execution
of a failed subservice

SS1 SS2 SS3 SSN-1 SSN

S

Rollback

(c) Error recovery by rollbacks

SS1 SS2 SS3 SSN-1 SSN

S

Unrecoverable error

Success

Service
 failure

(d) Aborting service execution

SS1 SS2 SS3 SSN-1 SSN

S

Success

Service
 failure

Execution_time > Max_SRT

(e) Aborting the service due to timeout

Fig. 5. Service decomposition: faults in the execution flow

5 Service-Oriented Development by Refinement in B

5.1 Formalizing Service Decomposition

In the first stage of our formalized development we used the UML2 models pro-
duced at the Service Specification phase to specify a service component according
to the ACC pattern. The next step focuses on modelling the service execution
flow with the incorporated fault tolerance mechanisms. Namely, we introduce
a representation of Service Director into the abstract specification of a service
component. This is done by refining the machine ACC to capture the design de-
cisions made at Service Decomposition and Service Distribution phases. Hence,
to derive the specification of Service Director, we use UML2 diagrams modelling
both the functional and the platform-distributed architectures. In general, we
should consider two cases:

1. Service Director is ”centralized”, i.e., it resides on a single network element,
2. Service Director is ”distributed”, i.e., different parts of the execution flow

are orchestrated by distinct service directors residing on different network
elements.

Assume for simplicity that the set of subservices required in the execution of the
service S consists of three elements: S1, S2 and S3. At the Service Decomposition
phase, in both cases the model of the service component providing the service
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S looks as shown in Fig.6. The service distribution architecture diagram for the
first case is given in Fig.7. In the second case, let us assume that the execution
flow of the service component is orchestrated by two service directors: the Service
Director1, which handles the communication on PSAP and communicates with
the service component providing S1, and Service Director2, which orchestrates
the execution of the subservices S2 and S3. The service directors communicate
with each other while passing the control over the corresponding parts of the
execution flow. The architecture diagram depicting the overall arrangement for
the second case is shown in Fig.9.

I_ToS
 I_FromS

I_S1

I_S2

I_S3

I_ToS3

I_FromS3

I_FromS1

I_ToS1
I_FromS2

I_ToS2

Fig. 6. Service component with USAPs

I_User

I_User

I_S3 I_S3I_S2

I_S2

I_S1
I_S1

Fig. 7. Architecture diagram (case 1)

We model the decomposed service as a sequence over the abstract set TASKS.
Each element of TASKS represents the individual subservice. Moreover, we in-
troduce the abstract function Next to models the service execution flow. In case
of the centralized Service Director, the subservices are executed one after an-
other, i.e., the abstract representation of Next will be instantiated as follows:

Next(Si) = Si+1

for i : 1..max sv, where max sv is the maximal number of subservices required
to execute the service.

In the second case, the function Next describes the execution flow from the
point of view of the main service director, i.e., it treats the groups of services
managed by other service directors as atomic steps in the execution flow. In our
example, the service S1 is managed by Service Director1, while S2 and S3 are
managed by ServiceDirector2. In this case the function Next treats the execu-
tion of S2 and S3 as one execution step the performance of which is delegated to
Service Director2. Hence, in this example Next will be instantiated as follows:

Next(S1) = S2, and Next(S2) = S4

The result of refinement of the machine ACC – the machine ACC DEC – is
given below.

REFINEMENT ACC DEC

REFINES ACC
SETS
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DATA; TASK; RESPONSE = {OK, REPEAT, ROLLBACK, ABORT}
CONSTANTS Service, Eval, Next, max sv
PROPERTIES

Service ∈ seq1(TASK) ∧ size(Service) = max sv ∧
Eval ∈ TASK × DATA → RESPONSE ∧
∀ dd. (dd ∈ DATA ⇒ ¬ (Eval(Service(1),dd) = ROLLBACK)) ∧

Next ∈ 1 . . max sv �� 2 . . max sv+1 ∧
1 ∈ dom(Next) ∧ (max sv+1) ∈ ran(Next) ∧
∀ii. (ii ∈ dom(Next) ∧ ¬ (Next(ii)=max sv+1) ⇒ Next(ii) ∈ dom(Next))∧
∀ii. (ii ∈ dom(Next) ⇒ ii<Next(ii)) ∧ . . .

VARIABLES
in data, out data, time left, old time left,
curr task, resp, finished, results, curr data

INVARIANT
resp ∈ RESPONSE ∧
results ∈ 1 . . max sv �→ DATA-{NIL} ∧
curr data ∈ DATA ∧
curr task ∈ 1 . . max sv+1 ∧
(finished = FALSE ⇒ time left>0) ∧
time left ≤ old time left ∧
dom(results) ⊆ dom(Next) ∧
(finished = TRUE ⇒ (resp=ABORT) ∨ (curr task = max sv+1)) ∧
(finished = FALSE ⇒ curr task ∈ 1 . . max sv) ∧
(finished = FALSE ⇒ curr task ∈ dom(Next)) ∧
(curr task = max sv+1 ⇒ ¬ (resp=ABORT)) ∧
(finished = TRUE ∧ curr task = max sv+1 ⇒
Next −1 (curr task) ∈ dom(results)) ∧ . . .

INITIALISATION
in data, out data := NIL, NIL ||
time left, old time left := max time, max time ||
curr task, resp := 1, OK ||
finished, results := FALSE, ∅ ||
curr data := NIL

EVENTS
input(param,time) =
PRE param ∈ DATA ∧ time ∈ NAT1 ∧ ¬ (param=NIL) ∧ in data=NIL
THEN

in data, time left, old time left := param, time, time
END;

handle =
SELECT ¬ (in data=NIL)∧finished=FALSE∧(time left<old time left)
THEN

old time left := time left; curr data :∈ DATA-{NIL};
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resp := Eval(Service(curr task),curr data);
CASE resp OF
EITHER OK THEN

results(curr task) := curr data;
curr task := Next(curr task);
IF curr task = max sv+1 THEN finished := TRUE END

OR ROLLBACK THEN
curr task := Next −1 (curr task);
results := {curr task} �− results

OR REPEAT THEN skip
OR ABORT THEN finished := TRUE
END

END
END;

timer =
SELECT ¬ (in data=NIL)∧finished=FALSE∧(time left=old time left)
THEN
CHOICE

time left :∈ {xx | xx ∈ NAT1 ∧ xx<time left}
OR

time left, resp := 0, ABORT ;
finished := TRUE

END
END;

calculate =
SELECT ¬ (in data=NIL) ∧ out data = NIL ∧ finished = TRUE
THEN
IF resp = ABORT THEN out data := Abort data
ELSE

out data := results(Next −1 (curr task))
END

END;
res ← output =
PRE ¬ (out data = NIL)
THEN

res := out data ; in data,out data := NIL, NIL
END

END

The currently executed subservice is modelled by the variable curr task. The
results of the current subservice execution are stored in the variable curr data.
The results of all subservices already executed are accumulated in the variable
results. The variable finished indicates the end of service execution. The variable
is set to TRUE when the whole sequence of subservices has been executed or
some unrecoverable error has occurred.
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To model progress of time, we introduce the variable time left. When a service
request is received in the operation input, time left is set to the maximal service
response time Max SRT, which is received as the second parameter of input.
The variable old time left is used to force interleaving between progress of the
execution flow and the passage of time. The operation timer decreases the value
of time left, disables itself and enables the operation handle, which specifies the
service co-ordinating behaviour of Service Director.

In the operation handle, we model not only requesting a certain subservice
and obtaining its response, but also handling notifications about errors. We
introduce the abstract function Eval, which evaluates the obtained response from
a requested subservice. The result of evaluation is assigned to the variable resp.
If the subservice was successfully executed then the variable resp gets the value
OK. In this case the next element from the sequence of subservices is chosen for
execution according to the function Next. If a benign failure has occurred and
error recovery merely requires to retry the execution of the failed subservice then
the variable resp is assigned the value REPEAT. This situation is illustrated in
Fig. 5(b). However, if a more critical error has occurred, i.e., the variable resp
gets the value ROLLBACK, the execution of several subservices preceding the
failed service should be repeated as well. This case is depicted in Fig. 5(c). The
inverse of the function Next defines which subservices should be re-executed,
i.e., to which subservice the execution flow should rollback. In this case, we
also delete the results of executing these subservices from results. Finally, if an
unrecoverable error has occurred, i.e., the value of resp becomes ABORT, then
the execution of the service is terminated (i.e., the variable finished is assigned
TRUE ) as shown in Fig. 5(d).

Let us note, that the variable resp also obtains the value ABORT once the
timeout has occurred. This is modelled in the operation timer. The system might
be in a state where the value of time left had already became zero, while the
execution of the service has not yet been finished, as depicted in Fig. 5(e).

In the refined machine ACC DEC the guard of the event calculate is strength-
ened to ensure that the final result of the service is computed only after the exe-
cution of all subservices is finished (or aborted), i.e., when finished = TRUE.

The performed refinement has affected the ACAM part of the ACC pattern.
The newly introduced events allowed us to define the details of execution of
the decomposed service. In the VARIANT clause of ACC DEC we not only
ensure that the newly introduced events do not take control forever but also that
execution of the service terminates.

Let us observe that our approach to introducing fault tolerance can be seen
as an abstract implementation of the rollback error recovery frequently used
in distributed systems [11]. Indeed, the operation handle defines the rollback
procedure by co-ordinating error recovery according to the check-points defined
by the function Next. The stable data storage is modelled by the variable results.
The operation handle ensures consistency of the system state by the appropriate
updates of results.
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While defining the execution flow over subservices in ACC DEC, we ab-
stracted away from modelling the details of the communication between Service
Director and the external service providers – the USAP communication. More-
over, we omitted the explicit representation of the external service providers as
such and modelled only the results of subservices provision. In our next refine-
ment steps we decompose the obtained specification to introduce the detailed
representation of the external service providers and the USAP communication.

 ACAM_SC1

ACM_SC1

SC1 
 ACAM_SC2  ACAM_SC3

 ACAM_SC

ACM_SC2 ACM_SC3

SC2 SC3

SC

ACC_SC

External service consumer

.

Fig. 8. Specification architecture (case 1)
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Fig. 9. Architecture diagram (case 2)

5.2 Formal Modelling of Service Distribution

Let us first consider the case of a ”centralized” service director shown in Fig. 7. It
is easy to observe that the service component SC providing the service S plays a
role of the service consumer for the service components SC1, . . . , SCN providing
the subservices S1, . . . , SN . We specify the service components SC1, . . . , SCN

as the separate machines ACC SC1, . . . ACC SCN according to the proposed
pattern ACC. The process of translating the UML2 models of SC1, . . . , SCN

into B is similar to specifying SC at the Service Specification phase. The commu-
nicational parts of the included machines ACC SC1, . . . , ACC SCN specify
the PSAPs of SC1, . . . , SCN . To ensure the match between the corresponding
USAPs of SC and PSAPs of the external service components, we derive USAPs
of SC from PSAPs of SC1, . . . , SCN .

To define the mechanism for communicating with SC1, . . . , SCN , we refine
the operation handle to specify the communication on USAPs. Namely, we re-
place the nondeterministic assignments modelling specific stages of the service
execution by the corresponding signalling scenarios: at the proper point of the
execution flow, a desired service is requested by writing into the input chan-
nel of the corresponding included machine, and later the produced results are
read from the output channel of this machine. Graphically this arrangement is
depicted in Fig.8.

Modelling the case of a distributed service director is more complex. Let us
assume that the execution flow of the service component SC is orchestrated by
two service directors: the ServiceDirector1, which handles the communication
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on PSAP of SC and communicates with SC1, and ServiceDirector2, which or-
chestrates the execution of the SC2 and SC3 services. The architecture diagram
depicting the overall arrangement is shown in Fig.9.

The service execution proceeds according to the following scenario: via PSAP
of SC ServiceDirector1 receives the request to provide the service S. Upon this,
via USAP of SC, it requests the component SC1 to provide the service S1.
When the result of S1 is obtained, ServiceDirector1 requests ServiceDirector2
to execute the rest of the service and return the result back. In its turn, Ser-
viceDirector2 at first requests SC2 to provide the service S2 and then SC3 to
provide service S3. Upon receiving the result from S3, it forwards it to ServiceDi-
rector1. Finally, ServiceDirector1 returns to the service consumer the result of
the entire service S via PSAP of SC.

This complex behaviour can be captured in a number of refinement steps.
At first, we observe that ServiceDirector2, coordinating execution of S2 and
S3, can be modelled as a ”large” service component SC2-SC3, which provides
the services S2 and S3. Let us note that the execution flow in SC2-SC3 is or-
chestrated by the ”centralized” service director ServiceDirector2. We use this
observation in our next refinement step. Namely, we refine the B machine mod-
elling SC defined according to the ACC DEC pattern by including into it the
machines modelling the service components SC1 and SC2-SC3 and introducing
the required communicating mechanisms. The result of this refinement step –
the machine SDirector1 – is given below (the parts of SDirector1, which coincide
with the corresponding parts of ACC DEC are replaced with dots).

REFINEMENT SDirector1
REFINES ACC DEC
INCLUDES Comp1, SDirector2
CONSTANTS

boolnum , . . .
PROPERTIES
boolnum ∈ BOOL → 0 . . 1 ∧
boolnum(FALSE) = 0 ∧ boolnum(TRUE) = 1 ∧
max sv = 3 ∧ Next = {1 �→ 2,2 �→ 4} ∧
(Service = ([C1 Service] � SD2 Service))
VARIABLES

in data, out data, time left, old time left,
curr task, resp, finished, results, curr data, start flag

INVARIANT
start flag ∈ BOOL

VARIANT
boolnum(start flag)

INITIALISATION
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. . . || start flag := TRUE
ASSERTIONS

Next ∈ 1 . . max sv �� 2 . . max sv+1 ∧
1 ∈ dom(Next) ∧ (max sv+1) ∈ ran(Next) ∧
∀ ii. (ii ∈ dom(Next) ⇒ ii<Next(ii)) ∧
∀ ii. (ii ∈ dom(Next) ∧ ¬ (Next(ii)=max sv+1) ⇒ Next(ii) ∈ dom(Next))

EVENTS
input(param,time) = . . .END;
handle =
SELECT ¬ (in data=NIL) ∧ finished = FALSE ∧

(time left < old time left) ∧
((curr task=1 ∧ C1 out data 	= NIL) ∨
(curr task=2 ∧ SD2 out data 	= NIL))

THEN
old time left := time left;
CASE curr task OF
EITHER 1 THEN curr data ← C1 output
OR 2 THEN curr data ← SD2 output
END

END;
resp := Eval(Service(curr task),curr data);
CASE resp OF
EITHER OK THEN
results(curr task) := curr data;
curr task := Next(curr task);
IF curr task = max sv+1 THEN finished := TRUE END

OR ROLLBACK THEN
curr task := Next −1 (curr task);
results := {curr task} �− results

OR REPEAT THEN skip
OR ABORT THEN finished := TRUE
END

END;
start flag := TRUE

END;

starter =
SELECT ¬ (in data=NIL) ∧ finished = FALSE ∧

(time left = old time left) ∧
start flag = TRUE ∧

((curr task=1 ∧ C1 in data = NIL) ∨
(curr task=2 ∧ SD2 in data = NIL))

THEN
CASE curr task OF
EITHER 1 THEN C1 input(in data,time left)
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OR 2 THEN SD2 input(results(Next −1 (curr task)),time left)
END

END;
start flag := FALSE

END;
timer = . . .END;

calculate = . . .END;

res ← output = . . .END;
END
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Fig. 10. Specification architecture (case 2)

The machine SDirector1 includes the machines Comp1 and SDirector2 specify-
ing the service components SC1 and SC2-SC3 correspondingly. They are defined
according to ACC and ACC DEC patterns respectively. Since these machines
can be obtained by a simple instantiation of these patterns, we omit their rep-
resentation here.

The Service Director of SC communicates with the service component SC1
and the Service Director of SC2-SC3 by placing the corresponding requests in
their input channels and reading the responses from their output channels. The
order of requests is defined by the function Next. The function is instantiated
in the PROPERTIES close to represent the particular architecture given in
Fig. 9. Requesting the services from CS1 and SC2-SC3 is modelled in the oper-
ation starter, reading the output channels of SC1 and SC2-SC3 in the operation
handle. Note, that the operation handle have been refined to explicitly model
obtaining a response from the requested component.

In our consequent refinement step we focus on decomposition of SC2-SC3.
We single out separate service components SC2 and SC3 as before and refine
ServiceDirector2 to model communication with them. The final architecture of
formal specification is shown in Fig.10. We omit the presentation of the detailed
formal specifications – they are again obtained by recursive application of the
proposed specification and refinement patterns.

At the further refinement steps we focus on particular service components and
refine them (in the way described above) until the desired level of granularity
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is obtained. Once all external service components are in place, we can further
decompose their specifications by separating their ACM and ACAM parts. Such
a decomposition will allow us to concentrate on the communicational parts of
the components and further refine them by introducing details of the required
concrete communication protocols.

5.3 Discussion

The proposed approach to formalizing Lyra in B allows us to verify correctness
of the Lyra decomposition and distribution phases. This is done by introducing
generic patterns for communicating service components and then associating the
Lyra development steps with the corresponding B refinements on these patterns.
In development of real systems we merely have to establish by proof that the
corresponding components in a specific functional or network architecture are
valid instantiations of these patterns. All together this constitutes a basis for
automating industrial design flow of communicating systems.

The decomposition model that we have used for testing our approach is still
relatively simple. As a result, all refinement steps were automatically proved by
AtelierB – a tool supporting B. While describing the formalization of Lyra in
B, we considered only the sequential model of service execution. However, par-
allel execution of services is also a valid interpretation of the considered UML2
models. We are planning to work on extending our B models to include paral-
lel execution of services. We foresee that such extensions will make automatic
proof of model refinements more difficult. However, by developing generic proof
strategies, we will try to achieve high degree of automation in formal verification
of our models.

Currently our approach can be implemented on a platform supporting the
classical B Method and EventB. However, it can be adapted to the emerging
RODIN platform [17] as well. The two major adjustments would need to be
done. Firstly, we would need to replace the preconditioned operations modelling
communication between service components by the events, which explicitly work
with input and output buffers of communicating components. Consequently, in
the operation handle and starter, the calls of preconditioned operations would
be replaced by the assignments to the corresponding buffers. Secondly, we would
need to eliminate sequential composition and other control structures (like con-
ditional and CHOICE statements) extensively used in our specifications. This
can be achieved by splitting the operations using these control structures into
the corresponding sets of events. Obviously, it would lead to rather artificial
proliferation of new events. However, we believe that in the future the RODIN
platform will allow us to conservatively extend the language and, hence, keep
the used control structures.

6 Conclusions

In this paper we proposed a formal approach to development of communicating
distributed systems. Our approach formalizes and extends Lyra [15] – the UML2-
based design methodology adopted in Nokia. The formalization is done within
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the B Method [3] and its extension EventB [4] – a formal framework support-
ing system development by stepwise refinement. We derived the B specification
and refinement patterns reflecting models and model transformations used in
the development flow of Lyra. The proposed approach establishes a basis for
automatic translation of UML2-based development of communicating systems
into the specification and refinement process in B. Such automation would en-
able smooth integration of formal methods into existing development practice.
Since UML is widely accepted in industry, we believe that our approach has a
potential for wide industrial uptake.

Lyra adopts the service-oriented style for development of communicating
systems. We presented the guidelines for deriving B specifications from cor-
responding UML2 models at each development stage of Lyra and verified the
development by the corresponding B refinements. The major model transfor-
mations aim at service decomposition and distribution over the given platform.
The proposed formal model of communication between the distributed service
components is generic and can be instantiated by virtually any concrete commu-
nication protocol. Moreover, we demonstrated how to extend Lyra to integrate
reasoning about fault tolerance in the entire development flow.

The initial formalization of Lyra has been undertaken using model checking
techniques [15]. However, since telecommunicating systems tend to be large and
data intensive, this formalization was prone to the state explosion problem. Our
approach helps to overcome this limitation.

Development of distributed communicating systems has been a topic of ongo-
ing research over several decades. Our review of related work is confined to the
consideration of the recent research conducted within B.

The pioneering work on formal development of distributed systems in
Event B was done by Abrial et al. [5]. They demonstrated how to prove ter-
mination of a complex distributed protocol in Event B. In our work we use the
principles defined in [5] to formalize the service-oriented development of complex
communicating systems.

Yadav and Butler [22] used Event B to design fault tolerant transactions for
replicated distributed database systems. They demonstrated how to formally
verify by refinement that the design of a replicated database confirms to the one
copy database abstraction. Similarly, in our work we use refinement to verify that
the externally observable behaviour of distributed implementation of a service
is equivalent to its centralized abstraction. However, our primary goal was not
only formal verification of service development but also integration of modelling
and refinement in B into the existing UML2-based development flow.

Treharne et al. [21] investigated verification of safety and liveness properties
of communicating components by combining the B Method and the process alge-
bra CSP. However, they do not consider service decomposition and distribution
aspects of the communicating system development.

Boström and Walden [8] proposed a formal methodology (based on the B
Method) for developing distributed grid systems. In their approach the B lan-
guage is extended with grid-specific features and the system development is
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governed by B refinement. In our approach the system development is guided
by the existing development practice, so that the refinement process is hidden
behind the facade of UML2.

There is active research going on translating UML to B [12,13,14,19,20].
Among these, the most notable is research conducted by Snook and Butler [19]
on designing the method and the U2B tool to support the automatic translation.
In our future work we are planning to integrate our efforts with the U2B develop-
ers to achieve the automatic translation of Lyra into B. While doing this, we will
focus specifically on translating models and model transformations used in Lyra
to automate formalization of the entire UML-based development process in the
domain of the communicating distributed systems. Moreover, we are planning
to further enhance the proposed approach to address issues of concurrency.
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Abstract. Formal proofs of functional correctness and rigorous anal-
yses of fault tolerance have, traditionally, been separate processes. In
the former a programming logic (proof) or computational model (model
checking) is used to establish that all the system’s behaviours satisfy
some (specification) criteria. In the latter, techniques derived from engi-
neering are used to determine quantitative properties such as probability
of failure (given failure of some component) or expected performance (an
average measure of execution time, for example).

To combine the formality and the rigour requires a quantitative ap-
proach within which functional correctness can be embedded. Program-
ming logics for probability are capable in principle of doing so, and in
this article we illustrate the use of the probabilistic guarded-command
language (pGCL) and its logic for that purpose.

We take self-stabilisation as an example of fault tolerance, and present
program-logical techniques for determining, on the one hand, that termi-
nation occurs with probability one and, on the other, the the expected
time to termination is bounded above by some value. An interesting
technical novelty required for this is the recognition of both “angelic”
and “demonic” refinement, reflecting our simultaneous interest in both
upper- and lower bounds.

1 Introduction

Formal methods establishes correctness of a program (or system) by mathemat-
ical methods which have independently been proved sound. Ideally, a formal
verification should cover as much of the system’s construction as possible: be-
ginning with a specification that is so clear the user can have no doubt of its
meaning; and ending with an implementation that is so concrete the manufac-
turer can have no doubt of how to build it. With the caveat that there always is
a gap at either end (“Is this the right specification?” — “Has the implementa-
tion been correctly transliterated?”), traditional formal methods concerns itself
with so-called “absolute” correctness: a successful formal development ensures
(modulo the caveats) that the program will satisfy its user every time.

Fault tolerance has a matching traditional form, where the unavoidable fail-
ures that reality serves up —in spite of all our efforts— are handled by backup
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mechanisms, redundancy, etc. whose aim is to make that so-called “absolute”
correctness in fact as likely as possible. That is, independent of formal methods
(and with a much longer history), the techniques of risk- and failure analysis are
used to take account of statistical, that is quantitative information about possi-
ble component-failures and, from it, to derive an estimate about the reliability
of the system as a whole.

Our recent work (about ten years [12,10]) has been to address that phrase
“independent of formal methods”, and the contribution of this article is to illus-
trate some of the progress that has been made. We choose self-stabilisation as a
fault-tolerance paradigm, and show to what extent quantitative behaviour can be
included in formal reasoning about correctness, rather than being independent
of it or an adjunct to it.

Self-stabilisation is a compensating mechanism for systems prone to faults
which are either too expensive or impossible to eliminate: when a fault occurs,
and is detected, the system automatically takes steps to return itself to a state
from which the fault has been removed. The “fault-free” state is considered
stable in the sense that an absolute-correctness argument has established (or is
supposed to have established. . .) that the system will not itself introduce faults
through programming error.

The context for self-stabilisation is usually algorithms which are physically
distributed, and “good style” generally dictates that the stabilisation process be
symmetric and (hence) to some extent randomised deliberately. Symmetry is to
avoid “weak links” whose failure on their own could bring down the whole system;
but that symmetry itself introduces a problem because the stable configurations
are asymmetric — and only randomisation can take a symmetric system to an
asymmetric one.1

There are two especially important aspects of randomised algorithms: with
what probability are they correct; and how long should we expect them to take.
The technical theme of this paper is to show how to deal with those issues in a
programming logic, i.e. formally. In particular, we investigate the following:

1. The theoretical foundations for reasoning at the source-code level about
worst-case, i.e. upper bounds for expected performance of random algo-
rithms;

2. A sound program-logic rule for estimating those bounds;
3. Practical techniques for using annotations to prove the bounds; and
4. Two case studies illustrating the techniques in action.

One case study deals with expected time to termination (where termination
itself is obvious); the other, a more complicated situation, concentrates on show-
ing termination itself.

A key methodological aspect is the prominent role of refinement in our anal-
yses: rather than proving performance properties of “direct” representations of

1 That is why coins are used in cricket matches: the symmetric state is that the two
teams have equal right to bat first; but the outcome —where just one team does
so— is asymmetric, and is brought about by the coin flip.
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the algorithms, we prove properties of their abstractions. Working with abstrac-
tions makes the reasoning more tractable but, most importantly, relies on the
properties’ being preserved by refinement. That means of course that the refine-
ment rules must be carefully formulated to do that, depending on the properties
in question; in our case here, that accounts for our use of angelic nondetermin-
ism when in Sec. 3 we are trying to preserve upper- (rather than the more usual
lower) bounds.

We use the these notations. Function f applied to argument x is written f.x,
where the dot “.” is left-associative. This allows for example f.g.x rather than
(f(g))(x) .

A discrete probability distribution d over a set X is a one-summing function
from X into [0, 1], thus assigning probability d.x to point x.

For some x ∈ X the point probability distribution “x with probability one” is
written x; for a subset X ′ ⊆ X the characteristic function taking 1 on X ′ and 0
on the remainder X−X ′ is written [X ′].

Under abuses of notation we collect the following: for the characteristic func-
tion of a point we write [x] rather than [{x}]; for the probability of a set we
write d.X ′ rather than

∑
x∈X′ d.x; for the expected value of a function over a

distribution we write d.f rather than
∑

x∈X(d.x × f.x).
Where context supplies unambiguously a predicate language for describing

subsets, we write predicates directly for the subsets they denote. Thus for exam-
ple if X is a state space and d a distribution over it, and (say) for some variables
a, b the predicate a > b denotes a subset of X ′ of X , then we write freely a > b
where X ′ might be expected — whence d.[a>b] is the probability that a > b
holds in distribution d over X .

2 Performance-Style Properties in pGCL

When systems operate within random contexts their properties can no longer be
guaranteed absolutely, but only up to some probability. The program fragment

x : = 0 1/4⊕ x : = 1 , (1)

for example, does not guarantee to set variable x to 0 under any (initial) condi-
tion — the probabilistic choice operator “1/4⊕” describes the flip of a (1/4, 3/4)-
biased coin, so that operationally either 0 or 1 will be observed, but it is im-
possible to predict which. The only guarantee is probabilistic, in this case that
“with probability 1/4, x will be set to 0 if the program fragment is executed”.
What this means in practice is that over a large number of experiments, the
ratio of recorded 1’s and 0’s will be approximately 3, up to statistical confidence
measures [16].

A formal description of that behaviour —the operational semantics— takes
the form of a transition-system model of programs combined with probabil-
ity. The model characterises program execution as causing the state to change,
though for probabilistic programs the precise state change can be decided by a
coin flip. Thus an operational model for a probabilistic program is a function
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which maps an (initial) state to a (set of) probability distributions over final
states. For example the program at (1) above maps any initial state s to a single
result distribution d where d.s0 = 1/4 and d.s1 = 3/4. (Here s0 and s1 are states
in which “x = 0” and “x = 1” respectively, but otherwise agree with s.) Given
the details of the model we can, for example, determine the probability with
which the above property “x is set to 0 finally” is established when the program
executes: all we need do is evaluate d.[x = 0], where d is the distribution of final
states of the program, since from standard probability theory it is the probabil-
ity that the predicate “x = 0” holds with respect to d. In this case the answer
is 1/4.

Although the operational semantics is indeed a faithful model of program
behaviour, in practice —from a prover’s perspective— it is too complicated to
use as the basis for deriving properties of any intricacy. This becomes apparent
when general program features are included in the the programming language,
such as Boolean choice, nondeterminism, sequential composition and iteration.
Better is to use the dual semantics —the so-called expectation transformers—
which focusses directly on program properties, rather than on the details of the
probabilistic transitions which imply them.

We use the expectations as a generalisation of predicates; they are defined to
be the set of real-valued functions ES from the state space S to the reals R, and
they are ordered by lifting ≤ so that we say A � A′ if, for all s ∈ S, we have
A.s ≤ A′.s. They generalise Boolean predicates if the latter are considered as
characteristic functions S → {0, 1} with false being zero and true one, in which
case � generalises ⇒ as well.

To appreciate the duality we rationalise the above calculation, this time con-
centrating on properties rather than transitions. First of all, we use expectations
to express properties rather than predicates. This immediately allows us to re-
gard programs as transforming expectations consistent with their operational
semantics. We write wp.(x : = 0 1/4⊕ x : = 1) for the expectation transformer as-
sociated with (1), which must now be defined in such a way that it transforms
the post-expectation [x = 0] to the pre-expectation 1/4; more precisely we say
that

1/4 ≡ wp.(x : = 0 1/4⊕ x : = 1).[x = 0] .2

In general, if Prog is a program, PostE a post-expectation, and s an initial state,
then wp.Prog.PostE.s is defined to be the “greatest guaranteed expected value of
PostE with respect to the result distributions of program Prog if executed from
initial state s”. We often make use of the familiar Hoare-triple format to say the
same thing for all initial states at once; thus we would write equivalently

{PreE} Prog {PostE} . (2)

We say that Prog has been correctly annotated with a pre-expectation PreE and
post-expectation PostE just when PreE � wp.Prog.PostE.

The full definition of wp, as a mapping from program texts to to expecta-
tion transformers, is set out at Fig. 1. We use the small programming language
2 The underline is an indication that choice is interpreted demonically.



292 C.C. Morgan and A.K. McIver

pGCL [11] an extension of GCL [3] with probabilistic choice. The definitions are
almost identical to the Dijkstra’s original predicate transformers, the difference
being that we use a domain of expectations based on the � order, rather than
predicates and implication. This means, conveniently, that the only apparent dif-
ferences are that the definitions use arithmetical- rather than Boolean operators.
Nondeterministic choice, for example, takes the minimum of its two arguments.
The new operator probabilistic choice is parametrised by a real 0 ≤ p ≤ 1 and
takes the p-weighted average of its arguments.

skip wp.skip.A =̂ A ,
abort wp.abort.A =̂ 0 ,
assignment wp.(x : =E).A =̂ A[E/x] ,
sequence wp.(r; r′).A =̂ wp.r.(wp.r′.A) ,

probability wp.(r p⊕ r′).A =̂
p ∗ wp.r.A + (1−p) ∗ wp.r′.A ,

nondeterminism wp.(r[]r′).A =̂ wp.r.A � wp.r′.A ,

Boolean choice wp.(if B then r else r′ fi).A =̂
[B] ∗ wp.r.A + [¬B] ∗ wp.r′.A ,

iteration wp.(do B → r od).A =̂
(μX · [B] ∗ wp.r.X + [¬B] ∗ A) .

A is an expectation, E is an expression in the program variables, and a term (μX ·f.X)
refers to the least fixed point of expectation-to-expectation function f with respect
to �. These definitions are dual to an operational model based on the state-to-
distribution semantics [12]. We define (demonic) program refinement so that wp-
properties are preserved.

r � r′ iff (∀A : ES | wp.r.A � wp.r′.A) .

Fig. 1. Structural definitions of wp for pGCL

Nondeterminism is distinguished fromprobabilility in the programmodel—un-
like probability it represents truly unquantifiable uncertainty present in the sys-
tem. This distinction leads to a logic of programs based on arithmetical properties
of transformers, in which the presence of nondeterminism can be characterised by
the failure to distribute addition. In Fig. 2 we set out the full transformer logic;
the rules play the part of the “healthiness conditions” used by Dijkstra in his origi-
nal presentation of the predicate transformers. Intuitively they characterise “legal
computations” — mathematically they define the common rules satisfied exactly
bywp−images of programs [12]. For practical purposes this kind of “completeness”
means that the prover is at liberty to appeal to any rule in Fig. 2 without disturbing
the integrity of his proof.
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subadditivity wp.Prog.(A + B) 	 wp.Prog.A + wp.Prog.B ,
scaling wp.Prog.(k ∗ A) ≡ k ∗ wp.Prog.A ,
constants wp.Prog.(A � k) 	 wp.Prog.A � k .

A, B are expectations, k is a non-negative real, and Prog is a program. The function
� is defined by

A � k =̂ (A − k) � 0 .

Fig. 2. Axioms of the expectation transformer logic [12]

The decision to interpret nondeterministic choice as the minimum applies
when lower bounds on guarantees are sought: one typically proves that a program
establishes a postcondition with at least some probability. In standard logic
this is reduces to the usual total correctness, where the postcondition is to be
established with probability (at least) one.

For example the program

faultyFlip =̂ (x : = 0 1/3⊕ x : = 1) [] (x : = 0 2/3⊕ x : = 1) , (3)

represents the program that flips for the value of x with a probability that varies
between the specified bounds, so that x is set to 0 with probability anywhere
in the range [1/3, 2/3]. Thus we can regard faultyFlip as modelling a coin which
does not behave like one which can exhibit an exact distribution of 0’s and 1’s
(a feat which in any case is impossible to achieve in practice), but rather more
realistically one which can approximate a probability distribution within error
bounds. As suggested above, and from application of the definitions at Fig. 2,
we have that wp.faultyFlip.[x = 0] is 1/3, since all probabilistic transitions give
a probability that x is set to zero of at least 1/3 (even the right-most transition
at (3)).

In some cases however we are interested in bounding the probabilistic proper-
ties from above, and for that we need to interpret the nondeterminism as maxi-
mum. Once we do that, refinement —corresponding to a reduction in the range
of nondeterminism— means that upper bounds decrease.3 The next definition
supplies the details.

Definition 1. The greatest possible expected value of A on execution of Prog
is given by wp.Prog.A, where wp interprets all nondeterminism angelically: def-
initions in Fig. 2 remain the same except for nondeterminism which becomes

wp.(r[]r′).A =̂ wp.r.A � wp.r′.A .

3 This raises the question of whether “flipping” of nondeterminism from minimum to
maximum should make us flip our fixed points from least- to greatest as well; we
can do either, depending on how we want to interpret the performance metric in
the case of non-termination. However when termination occurs with probability one
(actually a slightly stronger condition [10, Sec. 2.11.1]) the fixed-points are the same,
and that is the case here.
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Angelic refinement decreases wp-properties.

r � r′ iff (∀A : ES · wp.r.A 	 wp.r′.A) .

To see Def. 1 in action we can consider the upper bound on the probability
that faultyFlip can establish [x = 0].

wp.faultyFlip.[x = 0]
= (x : = 0 1/3⊕ x : = 1) [] (x : = 0 2/3⊕ x : = 1).[x = 0] (3)
= wp.(x : = 0 1/3⊕ x : = 1).[x = 0] � wp(x : = 0 2/3⊕ x : = 1).[x = 0] Def. 1
= 1/3 � 2/3
= 2/3 .

We write
{| PreE |} Prog {| PostE |} , (4)

to mean that PreE 	 wp.Prog.PostE, or “PreE is an upper bound on the greatest
possible expected value of PostE after executing Prog”.

As we shall see in the next section, for performance-style properties we are
more interested in upper bounds.

3 Estimating Performance-Style Properties

The use of probability in many distributed algorithms and protocols is only to
guarantee termination [5,14] — in these cases a proof of termination can often
boil down to the behaviour of a finite-state probabilistic process, and techniques
for proving termination with probability 1 are explored in detail elsewhere [10].
The idea is to combine the notion of a standard program variant with probability
theory, so that now a termination variant may either increase or decrease within
some finite range of values provided that there is always some fixed probability
with which it is guaranteed to decrease.

We summarise the main steps in a probabilistic proof rule [10, p.191]. Let V
be an integer-valued expression in the program variables. Suppose further that

1. there are some fixed integer constants L (low) and H (high) such that L ≤
V ≤ H is an invariant of the loop, and

2. for some fixed probability ε > 0, and for all integers N we have

ε[G ∧ (V = N)] � wp.body.[V < N ] .

Then termination is certain everywhere.
Next we study the expected time to termination, and how to reason about it

in a Hoare-style framework.
We begin with the simple case of faultyFlip inside a loop

faultyLoop =̂
do x = 1 → (x : = 0 1/3⊕ x : = 1) [] (x : = 0 2/3⊕ x : = 1) od ,
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and consider how to compute the expected number of times the loop body must
iterate until x is set to 0. Using our definitions we see that, if we add a fresh
variable n which is updated at the end of every iteration, so that

faultyLoopn =̂ do x = 1 →
(x : = 0 1/3⊕ x : = 1)[](x : = 0 2/3⊕ x : = 1);
n : = n + 1

od ,

we may compute the least expected number of iterations by evaluating

wp.(n : = 0; faultyLoopn).n .

Here n, as a postcondition, is simply the expectation which returns the value
of n in its current state. However, if we now imagine that faultyLoop is used to
guarantee termination in a distributed protocol, we would be more interested in
the greatest expected number of iterations.

Definition 2. The greatest expected time to termination of a loop with termi-
nating body

loop =̂ do B → Prog od ,

is given by
T (loop) =̂ lim

N≥1
(wp.loopN .n) ,

where

loopN =̂ do (B ∧ n < N) → Prog; n := n + 1 od .

In fact Def. 2 computes the longest expected execution path until termination.4

Combining the above results reveals a rule for proving upper bounds on worst-
case expected performance of programs.

Lemma 1. Let loop be defined by

loop =̂ do B → Prog od .

If E is an expectation such that

{| [B]× (E−1) |} Prog {| E |}, 5 (5)

then T (loop) is bounded above by E. We call such an expectation a bounding
variant.
4 The reason we take an explicit limit is to avoid arithmetic with ∞ in Fig. 1’s defi-

nition of loop semantics.
5 Often in proving properties of a loop body it’s convenient to assume truth of some

predicate whose invariance is proved separately via standard (i.e. non-probabilistic)
wp [10, Lem. 1.7.1]. That technique applies here also.
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Proof. We show that wp.loopN � E +n, and the result then follows from Def. 2
(where as before n is a fresh variable, so that E is independent of it). First we
show that [¬B ∨ n = N ] × n + [B ∧ n < N ] × wp.Prog.(E + n) � E + n, as
follows:

[¬B ∨ n = N ]× n + [B ∧ n < N ]× wp.Prog; (n : = n + 1).(E + n)
≡ [¬B ∨ n = N ]× n + [B ∧ n < N ]× wp.Prog.(E + n + 1)
� [¬B ∨ n = N ]× n + [B ∧ n < N ]× (E + n) (5), (4), arithmetic

� E + n . 0 � E

Appealing now to the least fixed point property, we see that wp.loopN � E + n,
as required.

To see Lem. 1 in action, we consider the expected number of iterations of fault-
yLoop above. We note that

{| 2[x = 1] |} faultyFlip {| 3[x = 1] |} , (6)

since

wp.faultyFlip.(3 ∗ [x = 1])
≡ 3 ∗ wp.faultyFlip.[x = 1] wp distributes scalars
≡ 3 ∗ 2/3
≡ 2 .

Thus we are able to deduce that, for any execution of the nondeterminism
in faultyLoop, it must terminate after performing on average no more than 3
iterations.

In this section we have illustrated some general results for deducing the
expected-performance-style properties of programs. Our approach is to anal-
yse an abstraction of the program, then using program refinement to associate
the results with a refinement.

Whether we use the program logic for demonic � or angelic � refinement de-
pends on whether we are concerned with correctness (demonic: postcondition
established with probability at least some p) or performance (angelic: expected
iterations is at most some N). In either case, since refinement preserves program
properties we see that if we prove termination with probability one of the ab-
straction, then any demonic refinement will also terminate with probability one.
Similarly any upper bound or worst case behaviour of the abstraction is also an
upper bound or worst case behaviour of any angelic refinement.

Note that “removing []” achieves both forms of refinement simultaneously, as
one would expect: our separation of the two is so that we do not have to calculate
both if in fact we’re interested in only one of them.

4 Case Study: Self-stabilisation Algorithms

We illustrate the above techniques on two case studies. The first is a leadership-
election protocol, in which the stable states are those where exactly one of N
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participants is the leader, allowed by convention then to take certain actions
on behalf of the group; an unstable state is one where there is no leader or
several (aspiring) leaders, perhaps due to hardware failure; and the stabilisation
algorithm is to bring about the exactly-one-leader situation again. We analyse
the expected time for the election to complete.

The second case study is a general network in which tokens circulate (an
abstraction of many distributed algorithms); unstable states are those in which
there are several tokens; stable states are those in which there is exactly one.

The difference between the two studies is that in the first, the communi-
cation pattern is regular (all-to-all) and the unstable state is presumed to be
detected somehow, leading to the initiation of the stabilisation protocol. In the
second, the network and communication patterns are so general that we can
only hope to establish termination (and not expected time to it), and the stabil-
isation algorithm is running continuously, without any need to detect unstable
states.

4.1 A Leadership-Election Protocol

Our first example is a leadership-election protocol [1, Sec. 8.5.4] for a totally
connected network of processes; we show that its expected number of rounds to
stabilisation is constant.6

We first give an informal description of the protocol.

Informal description and formalisation. A number N of processes are to elect
a single leader. On each round, each process chooses a number k for itself, uni-
formly from 1..N , and sends its choice to all other processes. Each process then
separately acts as follows:

– If no process chose 1, then it enters a new round.
– If some processes chose 1, but it did not, then it drops out.
– If it and possibly other processes chose 1, it enters a new round.

The election is finished when only one process remains. We formalise the protocol
in Fig. 3; more detailed descriptions would be angelic refinements of this one.

Rapid termination. We note first that the protocol of Fig. 3 terminates expo-
nentially fast, that is the chance of its taking more than some number of steps
M is exponentially small in M .

6 The earlier example of cricket can illustrate rounds, and expected time to termina-
tion. The normal protocol is not symmetric, because one team flips and the other
calls. But the time to termination is exactly one flip.

A truly symmetric protocol would employ three coins, and both teams and the
referee would flip all at once: the winning team would be the first to flip a face
different from the other two. This protocol has constant expected time to termination
of two rounds of three simultaneous flips each, assuming the coins are fair. (It still
works if the players’ coins are unfair —one never knows— but then it could take
longer.)
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1 n : =N
2 do n > 1 →
3 n′ :∈ {k : 0..n @

(
n
k

)
× (n−1)n−k/nn}

4 if n′ 	= 0 then n : =n′ fi
od

1— Initially all N processes participate; subsequently n is the number (still) partici-
pating at any point, and n decreases over time as processes drop out.

2— Termination occurs when only one process remains, and it becomes the leader.
(Note that 1 ≤ n ≤ N is an invariant.)

3— Here with operator :∈ we choose n′ from a distribution, indicated by a set-like
comprehension (bound variable k) but containing an @ for “with probability”
(instead of a | for “such that”), in which the probability of there having been
being k processes that chose 1 (out of 1..n) is explicitly given.

4— If no processes chose 1, then they all go on to the next round (and n is not
changed); if at least one processor chose 1, then it and any others similarly go on
to the next round. (Note therefore that they all go ’round again in two cases: all
chose 1, or none did.)

Fig. 3. Leadership election protocol

Sufficient for that is a bounded-away-from-zero probability of termination on
any single iteration. That is trivial, by inspection, as the probability of setting
n′ to 1 is just (

n
1

)
× (n−1)n−1/nn = (n−1/n)n−1

which, being anti-monotonic in n, is bounded below by (N−1/N)(N−1) no matter
what value n has as the loop continues to execute.

Expected iterations. We now show that the expected number of iterations is
constant. We assume that constant to be some E, and by a schematic proof find
suitable conditions for it. Since termination occurs in zero steps when n = 1, we
choose our bounding variant to be

E × [n > 1] ,

and from Lem. 1 we must show that n > 1 (the guard) implies

E × [n > 1] − 1 	 wp . “3;4 in Fig. 3” . (E × [n > 1]) .
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Here is the calculation:

E × [n− 1]
· ≡ if n′ 	= 0 then E × [n′ > 1] else E × [n > 1] fi applying wp.(4)

· ≡ (
∑

k : 1..n · E × [k > 1]×
(

n
k

)
× (n−1)n−k/nn)

+ E × [n > 1]×
(

n
0

)
× (n−1)n/nn

applying wp.(3)

≡ E × (
∑

k : 2..n ·
(

n
k

)
× (n−1)n−k/nn)

+ E ×
(

n
0

)
× (n−1)n/nn

arithmetic; assumption n > 1

≡ E × (1− ((n−1)/n)n − ((n−1)/n)n−1

+ E × ((n−1)/n)n
arithmetic

≡ E × (1 − ((n−1)/n)n−1) arithmetic
� E × [n > 1] − 1 assume n > 1 and 1 ≤ E × ((n−1)/n)n−1

Our assumption, rearranged, is that for n ≥ 2 we have

(n−1/n)n−1 ≥ 1/E ,

a property that holds for the “real” e = 2.718 · · ·
Thus we have shown that the protocol terminates in expected constant time

no more than e, that is just under 3, rounds. If the rounds themselves cost time
N each (for the exchange of N messages), then the expected time complexity of
stabilisation is no more than 3N .
A more severe abstraction. There is however an alternative approach, in which
our initial description of the algorithm is “more severely abstracted” — we note
merely whether n = 1 or not. Letting Boolean b record that abstraction, our
algorithm is transformed into the one shown in Fig. 4.

Fig. 4. Leadership election protocol, more severely abstracted

We justify the abstraction by noting that the only command that sets n to 1
in the original (3; 4) does so with probability(

n
k

)
× (n−1)n−k/nn =

(
n−1
n

)n−1

when k = 1,

1 b : = (N > 1)
2 do b →
3 b : = false ≥ (N−1

N
)N−1⊕ skip

od

1

1

(N−1
N

)N−1

1/e
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that we know n ≤ N , and that the expression shown is anti-monotonic in n
(tending to 1/e from above), so that the n = N case —as appears in the ab-
stracted algorithm— is indeed the most pessimistic value.

The expected number of rounds here is then no more than the inverse of that
probability, which tends to e from below as N increases without bound.

But is this easier, really? The work to prove the soundness of the abstraction
Fig. 4 is probably the same as required to do the earlier calculations anyway.

4.2 A Token-Graph Stabilisation Algorithm

As a second example we treat a more general situation whose exact behaviour is
quite complex but for which, nevertheless, proof of termination is still possible
using the techniques we have explained.

Informal description. There is a strongly connected directed graph with N
nodes; each node is either full (contains a token) or empty (doesn’t). An ad-
versarial scheduler (but fair — see below) repeatedly selects some single node to
take a step:

– If the node is empty, nothing happens.
– If the node is full then it chooses between keeping its token or passing it

one step along an outgoing edge. The choice is made probabilistically, with a
fixed non-zero lower bound applied to each alternative (including keeping).
(Note that if the lower bounds sum to less than one, the node can itself
act demonically — thus we have demonic choice potentially in both the
scheduling and in the nodes’ actions.)

Any node receiving a token becomes full (but never “over-full” — multiple
tokens reduce to one).

The adversarial scheduler. We allow the scheduler to choose nodes demonically,
except for the following fairness constraint. Say that a node’s priority is the
number of steps since it was last scheduled: we require that for some fixed con-
stant (trigger) T the scheduler must schedule nodes of priority at least T before
any of priority lower than T .

This is a realistic policy (could easily be implemented), and if T is large it
allows the scheduler a great deal of choice.

With suitable T ≥ N > 1 the policy maintains the invariant (I1 ) that all
priorities are no more than (a maximum) M = T+N , which in turn gives an
easy variant to show that no node is forever overlooked. To prove the invariant
we need a subsidiary invariant (I2 ), that

if there is a node with priority p satisfying T ≤ p ≤ M , then there are
at least p−T nodes with priority below p−N .

Truth of I1 is immediate from I2 and the fact that there are only N nodes:
assume for a contradiction that some “high” node has priority p more than M ;
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then from I2 there would be more than M − T = (T + N)− T = N nodes with
priority below p−N . Since there are only N nodes overall, that is a contradiction.

Preservation of I2 is argued as follows. Suppose a step has just been taken,
and consider all nodes in turn, just after a step has been taken: all nodes will have
“new” priority one more than their “old” priority, except for the one scheduled,
whose new priority will be 0.

If a node’s new priority p satisfies p < T , then I2 is true trivially (false
antecedent); if it satisfies p = T then I2 is again trivial (there are at least zero
nodes satisfying anything).

In the remaining case where the new priority p satisfies T < p ≤ M then
—because p−T has increased by one— we must show there to be one more node
prioritised below p−N after the step than there were below (p−1) − N before
the step. Since all not-scheduled nodes below (p−1)−N before are (still) below
p−N now, and also the just-scheduled node is below p−N now with its new
priority 0 satisfying 0 < p−N (because p > T ≥ N), we need only show that
the just-scheduled node was not below (p−1)−N before.

Suppose the just-scheduled node had priority p′ before. Since T < p now,
we know that T ≤ p′, since otherwise by the policy p′ would not have been
scheduled instead of p. We reason

p′ 	< (p−1)−N
iff p′ ≥ (p−1)−N
if T ≥ (p−1)−N p′ ≥ T

if T ≥ (M−1)−N p ≤ M

iff T ≥ (T+N−1)−N M = T+N

iff T ≥ T−1 ,

which concludes the argument for maintaining I2.

Formalisation of the protocol. Say that a full cover of the nodes is a directed
path in which all full nodes appear; its size is the number of nodes in it (including
of course any empty ones along the way). A minimal full cover (MFC ) is a full
cover of minimum size; and the minimum cover size (MCS ) is the size of a
minimal full cover.

We say that a node is a straggler if it is the trailing node of someMFC. The impor-
tance of stragglers is that, if scheduled, they will with non-zero probabilitydecrease
the MCS by choosing to move one edge along the MFC they are at the end of.

Let NId be a set of (unique) node identifiers, so that #NId = N . Function
pr : NId → N gives the priority of each node, zeroed whenever it is scheduled
and incremented otherwise.

The set sgs : PNId contains the NId ’s of the stragglers. Natural number mcs : N
is the minimum cover size; note that if mcs = 1 then there is only one full node,
and the algorithm should terminate.

In Fig. 5 is a program giving the behaviour of these variables; more detailed
descriptions would be demonic refinements of this one. It turns out, surprisingly,
that we do not have to keep track of which nodes are full: information about sgs
is enough.
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pr : = 0; // All nodes’ priorities initially zero.
do mcs > 1 →

// — Book-keeping of priorities; selection of token; fairness constraint. —
1 pr : = pr + 1; // Increment all priorities. . .

n :∈ NId; // . . . but then choose one node. . .
pr.n : = 0; // . . . and schedule it.
[pr ≤ M ]; // Require for fairness that no priority is too large.

// — Movement of selected token: straggler, or not? —
if n ∈ sgs → // If the scheduled node is a straggler. . .

2 (mcs :<1 mcs // . . . then it might decrease mcs. . .
≥p⊕ // . . . but if it moves the wrong way. . .

3 mcs :≤1 N ); // . . . then anything goes.
4 sgs :⊆1 NId // Either way, the stragglers can change.

[] n �∈ sgs → // If it’s not a straggler. . .
5 ( skip // . . . then it might stay where it is. . .

≥p⊕ // . . . but, if not, again. . .
mcs :≤1 N ; // . . . anything goes. . .
sgs :⊆1 NId ) // . . . and stragglers can change if it moved.

fi
od

Assignments and tests to pr as a whole operate pointwise: thus (pr + 1) increments all
priorities, and (pr ≤) bounds all priorities.

The “coercion” [pr≤M ] acts as a miracle (in theory causing backtracking) if its pred-
icate is false, having the effect thus of forcing earlier nondeterminism —if possible—
never to make it false. The nondeterminism in this case is the selection n:∈NId of the
node to schedule, and our earlier argument establishing I1 simply shows that there are
non-backtracking implementations of the nondeterminism which make the scheduling
feasible.

The assignments :<1, :≤1and :⊆1 are nondeterministic choices according to the relation
given, but requiring that the result be at least 1, or non-empty, as appropriate.

Note that in the n ∈ sgs alternative the assignment to sgs occurs unconditionally; in
the n �∈ sgs alternative, it occurs only with probability < p.

Fig. 5. Stabilisation of token network: abstraction

Termination of the algorithm. Define V0 to be the maximum over all n ∈ sgs of
pr.n; this cannot exceed M . Define V1 to be mcs. Then the termination variant
overall is lexicographic, with V0 ascending and V1 descending:

V0 =̂ (�n : sgs · pr.n)
V1 =̂ mcs

V =̂ V1× (M+1)−V0 .
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The mcs is just 2. One wrong move,
and the mcs is 7.

The directed network is connected as shown; note the uni-directional arc at bottom
right. Nodes in a minimal cover are shown double-bordered, and the cover’s arcs are
double-arrowed.

On the left, the mcs is just two, and the algorithm is “near” termination: both full
nodes are min-stragglers. We suppose the right-hand min-straggler is selected but —
unfortunately— the probabilistic choice ≥p⊕ goes against us, and Statement 3 is exe-
cuted for that node.

As a result the small minimal full cover is replaced by a very large one, and the variant
V has increased substantially, by approximately 5M (where M , recall, is the fairness
parameter for scheduling).

The virtue of the probabilistic variant is that these complex situations do not matter
for termination —they can be ignored— as long as their probability of occurrence is
bounded away from one.

Fig. 6. A straggler moves “the wrong way”

This variant is bounded below by zero because V1 is at least 1 (loop guard)
and V0 never exceeds M (invariant I1, enforced by the coercion).

Thus for termination with probability one it is sufficient to show that on each
iteration V strictly decreases with non-zero probability. Informally we argue that
there are two cases:

– A straggler is scheduled, in which case with probability at least p the sub-
variant V1 decreases by at least one (Statement 2). Sub-variant −V0 can
increase (Statement 4), but not by more than M . Hence overall V decreases
by at least 1.

– or a non-straggler is scheduled, in which case with probability at least p
sub-variant V1 is unchanged (Statement 5), but sub-variant −V0 has (al-
ready) decreased by 1 (Statement 1). Again, V must decrease with non-zero
probability.

Those two cases are sufficient to establish termination with probability one.
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Illustration of the complexity avoided. Once the termination variant is found, the
termination argument (as usual) is very straightforward. Recall however that
we are illustrating novel probabilistic variant techniques, and that the control
of complexity they provide was “designed in” by analogy with their standard
versions, and we are taking advantgage of it.

Consider for example the case where a straggler is scheduled but (with prob-
ability < p) it moves “the wrong way” (Statement 3) and does not act to reduce
the minimum cover size: this situation is illustrated in Fig. 6 for a simple directed
ring topology. Although the variant can increase enormously (by approximately
5M in the figure), the probabilistic-variant technique ensures that those situa-
tions need not be analysed if probability-one termination is all that is required.

5 Conclusions

We have illustrated how the expectation-transformer approach to verification
can be used to calculate both correctness and performance-style properties of
probabilistic programs by reasoning at the source-code level. The fact that re-
finement is an integral part of the expectation transformers means that we may
transfer proved properties of the abstraction to any refinement, a feature which
separates us from other approaches to program verification, such as model check-
ing [13,6,8]. This effectively allows us to use “lightweight” methods, leaving the
bulk of the formality to a proof of refinement, and techniques for expediting that
are addressed elsewhere [10], some of which have mechanised support [7].

In standard program semantics the use of a program variant is sufficient to
supply both an upper bound on performance (number of iteration of a loop) as
well as termination. In the probabilistic systems, it appears at first that the two
must be separated — but in fact the bounding variant is the more general [2],
although the termination variant is rather easier to use.

Other systems using refinement for performance include Hallerstede et al. [4]
and Sere et al. [15].
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Abstract. The Small Aircraft Transportation System (SATS) is a NASA
project aimed at increasing access to small non-towered non-radar airports
in the US. SATS is a radical new approach to air traffic management where
pilots flying instrument flight rules are responsible for separation without
air traffic control services. In this paper, the SATS project serves as a case
study of an operational air traffic concept that has been designed and ana-
lyzed primarily using formal techniques.TheSATS concept of operations is
modeled using non-deterministic, asynchronous transition systems, which
are then formally analyzed using state exploration techniques. The objec-
tive of the analysis is to show, in a mathematical framework, that the con-
cept of operation complies with a set of safety requirements such as absence
of dead-locks,maintaining aircraft separation, and robustness with respect
to the occurrence of off-nominal events. The models also serve as design
tools. Indeed, they were used to configure the nominal flight procedures
and the geometry of the SATS airspace.

Acronyms

AMM Airport Management Module
FAF Final Approach Fix
HVO Higher Volume Operations
IAF Initial Approach Fix
IF Intermediate Fix
IMC Instrument Meteorological Conditions
MAHF Missed Approach Holding Fix
PVS Prototype Verification System
SATS Small Aircraft Transportation System
SCA Self-Controlled Area

1 Introduction

The primary safety objective of an air traffic management system is to provide
aircraft separation. This objective is achieved trough air/ground equipment and
a set of flight rules and procedures, usually called concept of operations. Emerging
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and more reliable surveillance and communication technologies have enabled
new concepts where pilots and air traffic controllers share the responsibility for
traffic separation. One of such concepts is NASA’s Small Aircraft Transportation
System (SATS), Higher Volume Operation (SATS HVO) [1].

The SATS project aims to increase access to small airports in the US dur-
ing instrument approach operations. Currently, under poor weather conditions,
small airports are restricted to one-in/one-out operations. The SATS HVO con-
cept enables up to four simultaneous arrival approaches and multiple departures.
A key aspect of the concept is that, under nominal operations, aircraft are self-
separated, i.e., pilots are responsible for separation without assistance of an air
traffic controller. To this end, the SATS HVO concept designs the airspace sur-
rounding the airport as a Self-Controlled Area (SCA). A centralized, automated
system, called the Airport Management Module (AMM), serves as an arbiter to
aircraft entering the SCA. In this concept, aircraft constantly broadcast their
locations and receive traffic aircraft locations. Therefore, they have an updated
view of the airspace.

The SATS HVO operational concept is a collection of rules and procedures
to be followed by aircraft operating or transitioning in/out of the SCA. For
instance, the concept of operations states when and how an aircraft is allowed
to enter (or leave) the SCA, when an aircraft is allowed to initiate the approach,
and how to perform a missed approach. In order to alleviate pilot workload
and increase situational awareness, on board navigation tools provide advisories
that assist pilots in following these procedures. An overview of the SATS HVO
operational concept is given in Section 2.

Because the operational concept is a safety critical element of the SATS
project, the task of showing that it satisfies safety requirements is accomplished
using formal mathematical analysis. A discrete mathematical model of the SATS
HVO operational concept for nominal operations is described in [11]. That model
was mechanically checked for safety and liveness properties. The discrete model,
and its limitations, is presented in Section 3.

In this paper, we extend the discrete model in [11] in two orthogonal ways.
First, in Section 4, we include off-nominal procedures such as closing of the SCA
and re-sequencing of aircraft. We verify that most of the safety properties are still
maintained with minimal modifications to the operational concept. Second, in
Section 5, we study spacing and separation issues in the Self-Controlled Airspace.
To this end, we describe a hybrid model that extends the discrete model to take
into account the geometry of the SCA and the aircraft speed performances. Using
this new model, we formally verified that the SATS HVO operational concept
effectively achieves self-separation, i.e., aircraft performing nominal approaches
are safely separated according to minimum spacing criteria.

2 Higher Volume Operations

In the SATS HVO concept, pilots operating within the Self-Controlled Area
(SCA) are required to fly by latitude/longitude points in the space, called fixes.
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Similar to a GPS-T approach, fixes are arranged as a T (see Figure 1).1 The fixes
at the extremes of the T are called initial approach fixes (IAF’s) and they are the
entry points to the SCA. The IAF’s also serve as missed approach holding fixes
(MAHF’s), i.e., fixes where aircraft will proceed in case they have to perform a
missed approach. The holding areas are located at 2000 feet and 3000 feet above
ground level at the IAF’s.

Missed
Appraoch
Path

IFIAF−R

IAF−L

FAF

runway

side view

departure fixdeparture fix

5000
4000
3000

IAF−L IAF−RIF
FAF
runway

lateral
entry Vertical

entry

2000      

.

Fig. 1. Top and side view of SCA

There are two types of entry procedures: vertical entry and lateral entry. In a
vertical entry, an aircraft at the IAF descends from 4000 feet to 3000 feet and
holds at 3000 feet until it is enabled to descend to 2000 feet. In a lateral entry, an
aircraft flies directly to its IAF at or above 2000 feet. When the aircraft is enabled
to initiate the approach, it flies to the intermediate fix (IF), from there to the
final approach fix (FAF), and finally to the runway threshold. In case of a missed
approach, the aircraft flies to its assigned missed approach holding fix at the
lowest available altitude (2000 or 3000 feet). Then, it re-initiates the approach
and either follows a normal landing procedure or leaves the SCA. The linear
segments between the IAFs and the IF are called base segments; the segment
between the IF and the runway threshold is called the final segment. Henceforth,
we say that an aircraft is on final approach if it is in the base or final segments.

The Airport Management Module (AMM) is an automated centralized system
that resides at the airport grounds. It receives state information from aircraft
in the vicinity of the airport and communicates with aircraft via data link. The
AMM provides entry clearances (vertical or lateral) and assigns missed approach
1 As it is usually depicted, right and left are relative to the pilot facing the runway,

i.e., opposite from the reader’s point of view.
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holding fixes. When an entry is granted by the AMM, the aircraft receives a
follow notification and a missed approach holding fix assignment. The follow
notification is either none, if it is the first aircraft in the landing sequence, or
the identification of a lead aircraft. Missed approach holding fixes are assigned
by the AMM on an alternating basis. This technique ensures that consecutive
aircraft on missed approach are not flying to the same missed approach holding
fix.

For nominal arrival operations, self-separation is achieved by requiring an
aircraft to hold at its IAF until it meets a spacing safety threshold with respect
to its lead aircraft. The threshold guarantees a minimum separation during the
approach and during a missed approach, in case of this eventuality.

The concept of operations also describes nominal departure operations. How-
ever, for simplicity, the analysis presented in this paper only considers arrival
operations. This simplification does not affect the result of the formal verifica-
tion as arriving aircraft are geographically separated from departing aircraft and
an aircraft cannot depart if there is an aircraft on final approach. The fact that
departing aircraft are separated was also verified using the techniques presented
in this paper.

3 Discrete Model and Its Limitations

The discrete model described in [11] is a mathematical abstraction of the SATS
HVO concept. A simple way to visualize that model is via an analogy with a
board game where the board is a discretized SCA, the pieces that move across
the board are the aircraft, and the rules of the game are given by the concept of
operations. This analogy is illustrated in Figure 2.The places where an aircraft
can be during an arrival operation are called zones. There are 12 zones:

– holding3 (left, right): Holding patterns at 3000 feet.
– holding2 (left, right): Holding patterns at 2000 feet.
– lez (left, right): Lateral entry zones.2

– base (left, right): Base segments.
– maz (left, right): Missed approach zones.
– final and runway: Final segment and runway.

An aircraft is always in one and only one zone, but several aircraft may be in
the same zone. Aircraft leave the zones in the same order as they arrive. The
arrows in Figure 2 are the valid moves and they represent 15 flight rules and
procedures:

– Vertical entry (left, right): Initial move to holding3.
– Lateral entry (left, right): Initial move to lez.
– Descend (left, right): Move from holding3 to holding2.
– Approach initiation (left, right): Move from holding2 to base.
– Final approach (left, right): Move from base to final.

2 Lateral entry zones start outside the SCA.
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holding2r

lezr

baser

mazr
final

runway

holding3r holding3l

holding2l

basel

mazl lezl

SCA

IF

Fig. 2. Discrete view of SCA

– Landing: Move from final to runway.
– Missed approach initiation (left, right): Move from final to maz.
– Transition to lowest available altitude (left, right). Move from maz to either

holding3 or holding2.

The state of the SCA is then composed of the 12 zones, each one being a
list of aircraft, the next available landing sequence (natural number), and the
next alternating missed approach holding fix (left or right). Each aircraft is
represented by its initial approach fix (left or right), landing sequence (natural
number), and missed approach holding fix assignment (left or right). Aircraft
identifications are implicit as aircraft can be distinguished from each other by
their landing sequence.

The discrete model is conservative in the sense that it abstracts away the
SCA geometry and physical performance parameters of the aircraft. Hence, it
includes scenarios that may no physically occur in the real world. We argue that
the model is complete, i.e., it includes all nominal operations. Indeed, the model
has been extensively reviewed by the developers of the SATS HVO concept.

From a mathematical point of view, the discrete model is a state transition
system where the states are snapshots of the zones at discrete times and the tran-
sitions describe how the states evolve when the flight procedures are applied. A
priori, there are no bounds on the number of aircraft in each zone; therefore, the
transition system is potentially infinite. However, an exhaustive exploration of
the set of reachable states reveals that the transition system is finite. Indeed, the
system was exhaustively explored [11] using an explicit model checker algorithm
written and formally verified in the verification system PVS [12].

Using formal techniques, it has been shown in [11] that, under nominal
operations, the concept satisfies the following safety properties:
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– There are at most four arriving aircraft.
– There are no more than two aircraft assigned to a given missed approach

holding fix.
– For an aircraft on missed approach, there is always an available altitude at

the assigned MAHF.
– There are at most two aircraft on each side of the SCA.
– There is at most one aircraft holding at a given altitude of a holding fix.
– There are at most two aircraft on missed approach assigned to the same

MAHF.
– There are no simultaneous lateral and vertical entries at a given fix.
– Aircraft land in order according to the landing sequence.

Furthermore, it has been verified that each reachable state evolves into an empty
SCA when entry rules are inhibited, and that the concept of operations is free
of dead-locks, i.e., all aircraft eventually land (or depart).

The rest of this section illustrates some limitations of the discrete model that
are addressed by this paper.

3.1 Off-Nominal Operations

It is very difficult, if possible, to handle the occurrence of off-nominal events in
a comprehensive way. For this reason, the operational concept for off-nominal
SATS HVO operations [2] only addresses pragmatic failures and operational er-
rors, i.e., conditions that have a practical expectation for occurrence. These
conditions are further segregated in three categories:

1. Routine non-normal conditions due to pilot deviations from nominal opera-
tions.

2. Equipment malfunction conditions due to hardware failures.
3. Emergency conditions that cause a landing priority request.

In general, safety properties are not preserved under operations that are non-
conforming to SATS HVO procedures. For example, if an aircraft returns to its
incorrect missed approach holding fix, there is no guarantee that the aircraft
will find an available altitude to hold. However, for this situation to occur, the
pilot would have already ignored the information provided by the Multi-Function
Display and the Pilot Adviser, which are components of the SATS HVO concept.
Furthermore, the Conflict Detection and Alerting system provides an additional
layer of safety to the overall system [4].

The discrete model presented in [11] does not include off-nominal operations.
Given the complex nature of off-nominal events, a complete mathematical model
of off-nominal operations is a major endeavor. In this work, we aim at a sim-
pler objective. We extend the discrete SATS HVO model with procedures for
SCA closing, re-sequencing, and re-assignment during a missed approach. These
procedures are critical to several procedures for off-nominal conditions.
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3.2 Self-separation Guarantees

Consider the two states depicted in Figure 3. Although these states do not satisfy
the same separation requirements, they are indistinguishable by the discrete
model. This behavior is due to the way the approach initiation procedure was
written in the discrete model. The concept of operations states that an aircraft

A

B

A

B

(a) Aircraft A and B are separated (b) Aircraft A and B are not separated

Fig. 3. Indistinguishable discrete states

may initiate the approach if (a) it is the first aircraft in the landing sequence or
(b) it meets a safety threshold with respect to the lead aircraft, which is already
on approach [1]. There are several ways a pilot can check whether the safety
threshold is satisfied or not. In the most conservative case, the pilot has to delay
the approach initiation until the lead aircraft is within 6 nautical miles from
the runway. The value 6 is for a nominal SCA where the base segments are 5
nautical miles and the final segment is 10 nautical miles. In the general case,
the initial distance between an aircraft and its lead aircraft is configurable and
could be calculated by on-board tools according to the geometry of the SCA and
the speeds of the aircraft involved. Since the geometry of the SCA and speeds
of the aircraft are not considered in the discrete model, the approach initiation
transition rule was simplified. The condition (a) rests the same. However, the
discrete model uses a weaker condition (b) where an aircraft can initiate the
approach as soon as the lead aircraft is already on the final approach (base or
final segments). Because the safety threshold is not checked, spacing properties
cannot be verified using the discrete model.

In order to verify spacing properties, we need a more detailed modeling of the
approach initiation procedure. To this end, we extend the discrete model of the
SATSHVOconceptwith continuousvariables that encode thegeometryof theSCA
and the aircraft speed performances.

4 Off-Nominal Procedures

To model off-nominal procedures, the state of the SCA is extended with a new
field status of an enumeration type {OP,CLOSE,OFF}. The value OP is used to
indicate normal operations, the value CLOSE is used to indicate that the SCA
is close, and the value OFF is used to indicate that the AMM is unavailable.
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The status CLOSE and OFF differ in that in the former case the AMM is
providing normal service to the aircraft already in the SCA but has inhibited new
operations; in the latter case, the AMM is not providing any service. Transition
rules are modified accordingly to cope with the extended state. For instance,
entries are only allowed when status is OP, AMM services inside the SCA are
provided only if status is different from OFF, etc.

4.1 SCA Closing

The following off-nominal conditions require the SCA to be closed to new oper-
ations:

– Change of approach direction.
– Loss of aircraft state data input/output on an arriving SATS aircraft.
– Loss of AMM.
– Loss of voice radio communication.
– Priority request from an aircraft on landing approach.

The SCA closing procedure is modeled as a transition rule that changes the
status of the SCA to CLOSE and from CLOSE to OP in a non-deterministic
asynchronous way.

4.2 Re-sequencing

Under normal operations, re-sequencing is only necessary for missed approach
operations. In this case, the aircraft in the missed approach re-initiates the ap-
proach as the last aircraft in the landing sequence (or the first one, if it is the
only aircraft in the SCA). Furthermore, if it is the first aircraft in the approach,
it keeps its MAHF assignment. Otherwise, it gets an alternating MAHF with
respect to its lead aircraft.

Off-nominal situations such as pilot cancellation of an approach request and pri-
ority request fromanaircraft onapproach,may require theAMMto removeoneair-
craft from the normal approach sequence and re-sequence the remainder aircraft.
To handle these situations, the re-sequencing transition rule has been modified as
follows. Assume that the removed aircraft had the landing sequence n:

– Aircraft with an approach sequence less than n keep their assigned approach
sequence and MAHF.

– Aircraft with an approach sequence greater than n decrease their landing
sequence by one. If n 	= 1, they get assigned to their opposite MAHF. Oth-
erwise, they keep their MAHF.

4.3 Re-assignment During Missed Approach

Aircraft in missed approach get a new approach sequence and a MAHF as-
signment from the Airport Management Module. The concept of operations for
off-nominal operations requires that, if the AMM output is lost, pilots use voice
radio communication to complete the approach.

To support this procedure, we have designed a very simple transition rule for
re-assignment during missed approach when status is OFF:
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– Aircraft in a missed approach keep their relative landing sequence and their
assigned MAHF.

– All other aircraft complete their normal approaches.

4.4 Verification of Off-Nominal Procedures

Exhaustive exploration of the discrete transition system extended with the pre-
vious off-nominal procedures shows that these procedures preserve all the safety
properties in Section 3. In particular, it can be shown that in case of a AMM
failure, aircraft in missed approach will always have a place to hold even if they
perform a missed approach after the AMM has failed. However, in this case,
MAHF are not necessarily assigned in an alternating way. We have not explored
this issue further, but this may not be a major issue as, if the AMM is down, the
SCA is closed for new operations and the probability of simultaneous consecutive
missed approaches is relatively low.

5 Spacing Properties

The term spacing refers to linear separation of an aircraft with respect to the
lead aircraft. If both aircraft are not flying the same approach, spacing is com-
puted relative to the merging point of their linear trajectories. For instance, in
a symmetric SCA, if the trail and lead aircraft are on opposite initial approach
fixes their spacing is 0, although their Euclidean distance is twice the length
of the of the base segments. Note that, independently of the initial Euclidean
distance, if both aircraft start the approach at roughly the same time and speed,
they will have a conflict at the merging point.

The geometry of the SCA is given by the lengths of the base segments, denoted
Lbase(s) where s ∈ {left, right}, the length of the final segment, denoted Lfinal ,
and the lengths of the missed approach zones, denoted Lmaz (s) where s ∈
{left, right}. Henceforth, we write iafA and mahfA to denote, respectively, the
initial approach fix and missed approach holding fix (left or right) of aircraft A.

We define DA(t) as the linear distance at time t of an aircraft A from its
initial approach fix. In a symmetric SCA, i.e., Lbase(left) = Lbase(right) and
Lmaz (left) = Lmaz (right), the spacing at time t between an aircraft A and its
lead aircraft B is simply defined as DB(t)−DA(t). However, in the general case,
we must consider the difference in length of the base segments. Hence, if B is
before A in the landing sequence, the spacing between A and B is defined as

SA→B(t) ≡ DB(t)−DA(t) + Lbase(iafA)− Lbase(iafB). (1)

Now, we specify the spacing requirements to be formally verified.

Proposition 1. Under nominal operations, aircraft A and B on final approach
at time t, such that B is the lead aircraft of A, satisfy the following spacing
requirement:

ST ≤ SA→B(t). (2)
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Proposition 2. Under nominal operations, A and B on final approach, on
missed approach at the same fix at time t, such that B is before A in the landing
sequence, satisfy the following spacing requirement:

SMAZ ≤ SA→B(t). (3)

The constants ST and SMAZ are the theoretical spacing that the concept guar-
antees on final approach and missed approach, respectively. These constants are
determined by the geometry of the SCA, the minimum and maximum speed of
the aircraft, vmin and vmax, and the initial spacing between the aircraft, S0, as
follows:

ST ≡ S0 − (Lmax + Lfinal − S0)Δv, (4)
SMAZ ≡ min(Lmin + Lfinal − LmazΔv,

2S0 − (Lmax + Lfinal + Lmaz − S0)Δv), (5)

where

Lmin ≡ min(Lbase(left),Lbase(right)), (6)
Lmax ≡ max(Lbase(left),Lbase(right)), (7)
Lmaz ≡ max(Lmaz (left),Lmaz (right)), (8)

Δv ≡
vmax − vmin

vmin
. (9)

5.1 Hybrid Model

In order to verify Propositions 1 and 2, we extend the discrete model of the SCA
with the following continuous variables:

– A current time t that evolves in a continuous way.
– For each aircraft A on final approach or missed approach, the linear distance

from its IAF, DA(t). We assume that the speed of an aircraft may vary with
time in the interval [vmin, vmax]. Therefore, the value of DA(t) is constrained
by

(t1 − t0)vmin ≤ DA(t1)−DA(t0) ≤ (t1 − t0)vmax, (10)

if t0 ≤ t1 (t0 and t1 are measured in the same approach operation).

These continuous variables allow us to state the approach initiation rule in a
more precise way:

– Approach initiation for vertical and lateral entry (left and right): An aircraft
A may initiate the approach when (a) it is the first aircraft in the landing
sequence or (b) its lead aircraft B is already on the final approach (base or
final segments) and

S0 ≤ SA→B(t). (11)
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Other transitions have to be modified to relate the continuous variables to
the geometry of the SCA:

– Merging: An aircraft A in the base segment turns to the final segment when

DA(t) = Lbase(iafA). (12)

– Missed approach initiation: An aircraft A in the final segment may go to the
missed approach zone when it is the first aircraft in the landing sequence
and

DA(t) = Lbase(iafA) + Lfinal . (13)

– Landing: An aircraft A in the final segment may land if it is the first aircraft
in the landing sequence, there is no other aircraft in the runway, and

DA(t) = Lbase(iafA) + Lfinal . (14)

– Determination of lowest available altitude (left and right): An aircraft A on
missed approach may go to the holding fix at the lowest available altitude
when

DA(t) = Lbase(iafA) + Lfinal + Lmaz (mahfA). (15)

We note that they hybrid transition system has been defined such that all
the reachable states in the hybrid system are reachable in the discrete system
(modulo the common discrete variables). Therefore, all the safety properties in
Section 3 are satisfied on the hybrid transition system. Of course, the converse
is not true: not all the reachable states of the discrete system are reachable in
the hybrid system; in particular, those states violating the spacing requirement
expressed by Formula (11) are not reachable in the hybrid system.

5.2 Mechanical Verification

The discrete model of the SATS HVO concept was written in PVS and verified
using a state exploration PVS tool called Besc [11]. Roughly speaking, Besc
is a basic explicit model checker, written and formally verified in PVS.3 Early
attempts to analyze the hybrid transition system described in this paper, using
a hybrid model checker, e.g., HyTech [6], failed mainly due to the number of
variables of the SATS HVO model. We tried a different approach: we encoded
the hybrid transition system as a discrete one and explored it using Besc.

If we take all the reachable states in the discrete system and eliminate those
that do not satisfy the continuous behavior expressed by Formulas (11)–(15), we
have a valid abstraction of the SATS HVO concept. Instead of physically elimi-
nating states during the state exploration, which would require a hybrid model
checker, we collect for each state a set of constraints yielded by Formulas (11)–
(15). Afterward, we process the set of reachable states and use the constraints
3 Besc is available from http://research.nianet.org/~munoz/Besc
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to discharge the spacing properties expressed by Propositions 1 and 2. As we
will see, this process can be done using a discrete explicit model checker.

A hybrid constrained state of the SCA is a tuple (D, C), where D is the discrete
state of the SCA and C is a set of constraints of the form e ≤ f , where e and f
are expressions described by the following grammar:

A, B ::= 1, 2, . . .

s ::= left | right | iafA | mahfA
T ::= t | TA

e, f ::= T | DA(T ) | Lbase(s) | Lfinal | Lmaz (s) | S0 |
Lmin | Lmax | Lmaz | SA→B(T ) | e + f

Informally, a hybrid constrained state (D, C) represents an infinite set of hybrid
states where all the constraints in C are satisfied.

A hybrid constrained transition is a rule that transforms a state (D, C) into
a state (D′, C′), i.e., in addition to modify the value of the discrete variables, a
transition may also add or remove constraints from the previous state.

The continuous behavior described by Formulas (11)–(15) is expressed by
hybrid constrained transitions. These transitions are discretized by encoding the
constraints in a symbolic way. This is possible because the constraints only relate
continuous variables.

– Approach initiation for vertical and lateral entry (left and right): Let A be
the aircraft that initiates the approach. The following symbolic constraints
are added:
• The fact that A is in the base segment:

TA ≤ t, (16)
DA(t) ≤ Lbase(iafA). (17)

• If B is the lead aircraft of A, the fact that the aircraft are spaced at time
TA:

TB ≤ TA, (18)
S0 ≤ SA→B(TA). (19)

• For all aircraft C on missed approach, the fact that C was ahead of A:

Lbase(iafA) + Lfinal ≤ DC(TA). (20)

– Merging: Let A be the aircraft that goes into the final segment. Constraint(17)
is removed from the constraints. But, the fact that A is in the final segment is
added to the constraints:

DA(t) ≤ Lbase(iafA) + Lfinal . (21)
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– Missed approach initiation: Let A be the aircraft that initiates the missed
approach. Constraint (21) is removed from the constraints. But, the fact that
A is on missed approach is added to the constraints:

DA(t) ≤ Lbase(iafA) + Lfinal + Lmaz (mahfA). (22)

– Landing: Let A be the aircraft that is landing. All constraints related to A are
removed from the constraints, except instances of Constraints (18) and(19)
when B, the previous lead aircraft of A, is on missed approach.

– Determination of lowest available altitude (left and right): Let A be the
aircraft that goes to the lowest available altitude. All constraints related to
A are removed from the constraints.

Finally, to verify Propositions 1 and 2, we explicitly generate the set of reach-
able constrained states and for each state s = (D, C), we formally prove the
following invariant properties.

Invariant 1. For each pair of aircraft A and B in s such that A and B are on
final approach at time t, and B is the lead of aircraft A,

C  ST ≤ SA→B(t), (23)

i.e., the minimum spacing ST holds for A and B under the constraints C.

Invariant 2. For each pair of aircraft A and B in s such that they are on missed
approach to the same fix at time t, and B is before A in the landing sequence,

C  SMAZ ≤ SA→B(t), (24)

i.e., the minimum spacing SMAZ holds for A and B under the constraints C.

We remark that, for the explicit model checker, the constraints C are just data
without logical meaning. Thus, the invariant properties cannot be checked on the
fly during the state exploration process. The mechanical verification proceeds in
three different stages. In the first stage, the hybrid constrained transition system
is fully explored in PVS using the explicit model checker Besc. In order to get
a finite system, the constraints are implemented as a set rather than a list to
avoid repetitions. Besc reports a total of 2768 reachable states and a diameter,
maximum length of a path, of 27 states.

In the second stage, we process the set of reachable hybrid constrained states
using an external tool called PVSio4 and generate a PVS file where there is a
lemma for each possible instance of Invariant 1 or Invariant 2. Without counting
repetitions, 117 spacing lemmas were generated. From those, 73 lemmas are
instances of the first invariant and the remaining 44 lemmas are instances of the
second one.
4 PVSio enhances the PVS ground evaluator with input/output operations. It is avail-

able from http://research.nianet.org/~munoz/PVSio
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In addition to the spacing lemmas, proof scripts, which automatically dis-
charge these lemmas, are also generated. In the final stage of the mechanical
verification task, all 117 proof scripts are successfully checked in batch mode via
the utilities provided by ProofLite.5

The proof scripts that are automatically generated are based on three lem-
mas. One lemma, called T, takes care of instances of Invariant 1. The other two
lemmas, called Maz1 and Maz2, handle particular cases of Invariant 2. These
lemmas were checked in PVS. Afterward, they were integrated into a PVS strat-
egy that mechanically discharges the automatically generated spacing lemmas.
For completeness, the lemmas T, Maz1, and Maz2 are included in the appendix.

The SATS HVO formal development, excluding the PVS tools Besc, PVSio
and ProofLite, is about 2800 lines of PVS specification and lemmas and 6500
lines of proofs. From these, 1600 lines of lemmas and 5900 lines of proofs were
automatically generated using the PVS tools.

6 Conclusion

Several air traffic management systems have been previously specified and ana-
lyzed using formal notations and tools. For instance, the collision avoidance sys-
tem TCAS II, which is required on commercial aircraft with more than 30 seats,
was formally specified in the Requirements State Machine Language (RSML) in
[7]. A portion of this specification was translated to SMV and several general prop-
erties were studied using model checking [3]. Examples of these properties included
identification of non-deterministic transitions, function consistency, and termina-
tion. In [9], reachability analysis is used to find optimal conflict-free trajectories for
aircraft in a distributed air traffic management environment. A runway incursion
monitoring algorithm is analyzed using the SMART model checker in [13]. This
analysis resulted in the identification of suspicious scenarios that were not consid-
ered by the algorithm. All these works use discretized finite models of the airspace.
Hence, the verification techniques are based on model checking.

Continuous infinite models that enable the verification of timing and spacing
properties are used in [10] and [8]. The formerwork studies the minimum time prior
to a collision after an alarm is issued by an alerting algorithm for parallel landing.
The later one describes the formal proof of the correctness of a conflict detection
and resolution algorithm for distributed air traffic management. In both cases, the
verification effort was performed using the PVS verification system.

Another example of the use of formal methods in air traffic management is
presented in [14]. In this case, components written in C++ of an aeronautical
information systems are specified using pre- and post-conditions. The experience
discovered ambiguities in the formal specification, but no major logical errors
were found.

The work presented in this paper extends a previous work [11] in two orthogo-
nal aspects: off-nominal procedures and spacing properties. The overall approach

5 ProofLite is a PVS tool for non-interactive proof checking. It is available from
http://research.nianet.org/~munoz/ProofLite
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is novel in several aspects. First, it is not related to a particular piece of software
but to a more general system: a concept of operations that defines the expected
interactions beetween multiple components of an air traffic management system.
Second, the analysis involves general safety properties, which are expressed using
discrete variables, andprecise spacing requirements,whichare expressedusingcon-
tinuous variables. The complete approach is developed in PVS, but it involves both
model checking and theorem proving techniques. Finally, the models presented in
this paper served as design tools. Indeed, the verification effort resulted in the iden-
tification of 9 issues, including one major flaw, in the original concept. Ten recom-
mendations were made to the concept development working group [5]. All the rec-
ommendationswere accepted and incorporated into the final concept of operations,
which was successfully demonstrated on a flight experiment.

The model of off-nominal procedures proposed in this paper does not capture
all abnormal conditions described in [2]. One such model is a major endeavor.
A hazard analysis may help to determine which conditions are the most critical.
If these conditions are handled in a procedural way, they can be modeled using
the formal techniques described in this paper.

From a practical point of view, the spacing analysis presented in this paper,
e.g., Formulas (4) and (5), can be used to configure a nominal SCA and the
parameters of the baseline procedure for self-separation. For instance, consider
a symmetrical nominal SCA where Lbase(left) = Lbase(right) = 5 nm, Lfinal =
10 nm, and Lmaz (left) = Lmaz (right) = 13 nm. If the initial separation S0 is
6 nm and vmin = 90 kt, vmax = 120 kt, then

Lmin = Lmax = 5 nm, (25)
Lmaz = 13 nm, and (26)

Δv =
120− 90

90
=

1
3
. (27)

The value of ST is computed using Formula (4):

ST = 6− 5 + 10− 6
3

= 3 nm. (28)

This configuration of the SCA satisfies Formula (60). Therefore, the value of
SMAZ can be computed using Formula (59):

SMAZ = 12− 5 + 10 + 13− 6
3

= 4.66 nm. (29)

Hence, if the initial spacing of the trail aircraft with respect to the lead aircraft
is 6 nm, the SATS HVO concept of operations guarantees a minimum spacing
of 3 nm on final approach and 4.66 nm on missed approach.

The work presented demonstrates that the formal analysis can be used to
show compliance with safety requirements and also to explore design decisions
concerning the concept of operation. The mechanical verification is necessary to
make sure that no cases were forgotten. Formal proofs are the ultimate guarantee
that the mathematical development presented here is correct.
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Appendix

The lemmas described here were mechanically checked in PVS. Afterward, they
were integrated into a PVS strategy that mechanically discharges the automat-
ically generated spacing lemmas.

First, we present some auxiliary properties. The time when an aircraft A
initiates the final approach, i.e., when it enters the base segment, is denoted TA.
Hence, by definition,

DA(TA) = 0. (30)

Therefore, Constraint (19) is equivalent to

S0 + Lbase(iafB)− Lbase(iafA) ≤ DB(TA). (31)

Furthermore, if A is on final approach at time t, Constraint (17) and Con-
straint (21) yield

DA(t) ≤ Lbase(iafA) + Lfinal . (32)

Lemma 1 (T). Let A and B be aircraft on final approach at time t such that
B is the lead of aircraft A. It holds that

S0 − (Lmax + Lfinal − S0)Δv ≤ SA→B(t), (33)

under the hypotheses

TA ≤ t (34)
S0 + Lbase(iafB)− Lbase(iafA) ≤ DB(TA), (35)

DB(t) ≤ Lbase(iafB) + Lfinal . (36)

(Formula (34) is the Constraint (16), Formula (35) is the spacing constraint
from Formula (31), and Formula (36) is the instantiation of Formula (32) on
aircraft B, which is on final approach.)

Proof. Subtracting Formula (35) from Formula (36), we get

DB(t)−DB(TA) ≤ Lbase(iafA) + Lfinal − S0. (37)

Using Formula (10) on A and B,

(t− TA)vmin ≤ DB(t)−DB(TA), (38)
DA(t)−DA(TA) ≤ (t− TA)vmax. (39)

Formula 39 yields

DA(t) ≤ (t− TA)vmax. (40)
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From Formulas (37) and (38),

t− TA ≤ Lbase(iafA) + Lfinal − S0

vmin
. (41)

Hence,

SA→B(t) = DB(t)−DA(t) + Lbase(iafA)− Lbase(iafB)
= DB(TA) + (DB(t)−DB(TA))−DA(t) + Lbase(iafA)− Lbase(iafB)
≥ S0 + (DB(t)−DB(TA))−DA(t), by Formula (35),
≥ S0 + (t− TA)vmin − (t− TA)vmax, by Formulas (38) and (40),

≥ S0 − (Lbase(iafA) + Lfinal − S0)
vmax − vmin

vmin
, by Formula (41),

≥ S0 − (Lmax + Lfinal − S0)Δv, by Formulas (7) and (9).

Lemma 2 (Maz1). Let A and B be aircraft on missed approach at time t such
that B is before A in the landing sequence. Furthermore, assume that when A
initiated the approach, B was on missed approach. It holds that

Lmin + Lfinal − LmazΔv ≤ SA→B(t), (42)

under the hypotheses

TA ≤ t (43)
DB(t) ≤ Lbase(iafB) + Lfinal + Lmaz (mahfB), (44)

Lbase(iafB) + Lfinal ≤ DB(TA). (45)

(Formula (43) is the Constraint (16), Formula (44) is the instantiation of Con-
straint (22) on aircraft B, and Formula (45) is the additional assumption about
aircraft A and B.)

Proof. Subtracting Formula (45) from Formula (44), we get

DB(t)−DB(TA) ≤ Lmaz (mahfB). (46)

Formulas (38)–(40) are derived as in Lemma 1. From Formulas (38) and (46),

t− TA ≤ Lmaz (mahfB)
vmin

. (47)

Hence,

SA→B(t) = DB(t)−DA(t) + Lbase(iafA)− Lbase(iafB)
= DB(TA) + (DB(t)−DB(TA))−DA(t) + Lbase(iafA)− Lbase(iafB)
≥ Lbase(iafA) + Lfinal + (DB(t)−DB(TA))−DA(t), by Formula (45),
≥ Lbase(iafA) + Lfinal + (t− TA)vmin − (t− TA)vmax,

by Formulas (38) and (40),

≥ Lbase(iafA) + Lfinal − Lmaz (mahfB)
vmax − vmin

vmin
, by Formula (47),

≥ Lmin + Lfinal − LmazΔv, by Formulas (6), (8), and (9).
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Lemma 3 (Maz2). Let A and B be aircraft on missed approach at time t such
that B is before A in the landing sequence. Furthermore, assume that when A
initiated the approach, aircraft B and X where on final approach, B was the lead
of aircraft X, and X was the lead aircraft of A. It holds

2S0 − (Lmax + Lfinal + Lmaz − S0)Δv ≤ SA→B(t), (48)

under the hypotheses

TA ≤ t (49)
TX ≤ TA (50)

DB(t) ≤ Lbase(iafB) + Lfinal + Lmaz (mahfB),(51)
S0 + Lbase(iafB)− Lbase(iafX) ≤ DB(TX), (52)
S0 + Lbase(iafX)− Lbase(iafA) ≤ DX(TA). (53)

(Formula (49) is the Constraint (16), Formula (50) is the instantiation of Con-
straint (18) on aircraft X and A, Formula (51) is the instantiation of Con-
straint (22) on aircraft B, and Formulas (52) and (53) are the additional
assumptions about aircraft A, B, and X.)

Proof. Subtracting Formula (52) from Formulas (51), we get

DB(t)−DB(TX) ≤ Lbase(iafX) + Lfinal + Lmaz (mahfB)− S0. (54)

Formula (40) is derived as in Lemma 1. From Formula (30), DX(TX) = 0.
Therefore, using Formula (10) on X ,

DX(TA) ≤ (TA − TX)vmax. (55)

From Formulas (49) and (50), TX ≤ t. Using Formula (10) on B,

(t− TX)vmin ≤ DB(t)−DB(TX). (56)

From Formulas (54) and (56),

t− TX ≤ Lbase(iafX) + Lfinal + Lmaz (mahfB)− S0

vmin
. (57)

Hence,
SA→B(t) = DB(t)−DA(t) + Lbase(iafA)− Lbase(iafB)

= DB(TX) + (DB(t)−DB(TX))−DA(t) + Lbase(iafA)− Lbase(iafB)
≥ S0 + Lbase(iafA)− Lbase(iafX) + (DB(t)−DB(TX))−DA(t),

by Formula (52),
≥ S0 + Lbase(iafA)− Lbase(iafX) + (t− TX)vmin − (t− TA)vmax,

by Formulas (40) and (56),
= S0 + Lbase(iafA)− Lbase(iafX)− (t− Tx)(vmax − vmin) +

(TA − TX)vmax



Formal Analysis of the Operational Concept for the SATS 325

≥ S0 + Lbase(iafA)− Lbase(iafX)− (t− Tx)(vmax − vmin) + DX(TA),
by Formula (55),

≥ 2S0 − (t− Tx)(vmax − vmin), by Formula (53),

≥ 2S0 − (Lbase(iafX) + Lfinal + Lmaz (mahfB)− S0)
vmax − vmin

vmin
,

by Formula (57),
≥ 2S0 − (Lmax + Lfinal + Lmaz − S0)Δv,

by Formulas (7), (8), and (9).

Note that the conclusions of Lemmas 2 and 3 could be replaced by

min(Lmin + Lfinal − LmazΔv, 2S0 − (Lmax + Lfinal + Lmaz − S0)Δv) ≤
SA→B(t). (58)

Furthermore,

SMAZ = 2S0 − (Lmax + Lfinal + Lmaz − S0)Δv, (59)

when

1 +
vmin

vmax
≤ Lmin + Lfinal

S0
, (60)

and

St ≤ SMAZ , (61)

when

LmazΔv ≤ S0. (62)
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Abstract. We present work in progress1 on a method for the engineering, val-
idation and verification of generic requirements using domain engineering and
formal methods. The need to develop a generic requirement set for subsequent
system instantiation is complicated by the addition of the high levels of verifica-
tion demanded by safety-critical domains such as avionics. Our chosen applica-
tion domain is the failure detection and management function for engine control
systems: here generic requirements drive a software product line of target systems.

A pilot formal specification and design exercise is undertaken on a small (two-
sensor) system element. This exercise has a number of aims: to support the do-
main analysis, to gain a view of appropriate design abstractions, for a B novice to
gain experience in the B method and tools, and to evaluate the usability and utility
of that method. We also present a prototype method for the production and verifi-
cation of a generic requirement set in our UML-based formal notation, UML-B,
and tooling developed in support. The formal verification both of the structural
generic requirement set, and of a particular application, is achieved via translation
to the formal specification language, B, using our U2B and ProB tools.

1 Introduction

The need for generic approaches to support reuse in systems engineering is well known;
in the avionics industry, for example, [16, 11] describe the reuse of generic sets of re-
quirements in engine control and flight control systems. The need for reuse arises in many
contexts, such as in system evolution, adaptation, or component-based construction. In
this paper we are concerned with formal, generic requirements engineering to address
the need for software product lines in the failure management domain in avionics.

A software product line (SPL) is a collection of variant implementations of a generic
software requirement specification, to meet a variety of platform, environmental, func-
tional, or other requirements. In avionics, the generic requirement specification for an
engine control system is implemented in a different variant in each manufacturer air-
frame; [Op.Cit.] describe SPL solutions. The notion of software product line engineer-
ing became well established [18], after Parnas’ prescient proposal [22] in the 70’s.

1 This work is part of the EU funded research project IST 511599 - RODIN (Rigorous Open
Development Environment for Complex Systems).

M. Butler et al. (Eds.): Fault-Tolerant Systems, LNCS 4157, pp. 326–342, 2006.
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Domain analysis and object oriented frameworks are among numerous vehicles pro-
posed to support product line development. In Domain-Specific Software Architecture
[29] for example, the production of a set of generic, domain-specific requirements
through domain engineering is followed by its successive refinement, in a series of
system engineering cycles, into specific product instance requirements. On the other
hand [12] describes the Object-Oriented Framework as “a reusable, semi-complete
application that can be specialized to produce custom applications”. Here the domain
engineering produces an object-oriented model that must be instantiated, in some sys-
tematic way, for each specific product required. In this work we combine object-oriented
and formal techniques and tools in the domain analysis and engineering of generic
requirements.

It is widely recognized that formal methods (FM) technology makes a strong con-
tribution to the verification required for safety-critical systems [19]. It is further recog-
nized that FM will need to be integrated [3] in as “black-box” as possible a manner in
order to achieve serious industry penetration. The B method of J.-R. Abrial [1, 23] is
a formal method with good tool support [2, 9] and a good industrial track record, e.g.
[10]. At Southampton, we have for some years been developing an approach of inte-
grating formal specification and verification in B, with the UML [8]. The UML-B [26]
is a specialisation of UML that defines a formal modelling notation combining UML
and B. It is supported by the U2B tool [24], which translates UML-B models into B,
for subsequent formal verification. This verification includes model-checking with the
ProB model-checker [17] for B. These tools have all been developed at Southampton,
and continue to be extended in current work.

1.1 Failure Detection and Management for Engine Control

A common functionality required of many systems is to detect and manage the failure
of its inputs. This is particularly pertinent in aviation applications where lack of tol-
erance to failed system inputs could have severe consequences. The failure manager
filters inputs from the controlled system, providing the best information possible and
determining whether a transducer or system component has failed or not.

Inputs may be tested for magnitude, rate of change and consistency with other inputs.
When a failure is detected it is managed in order to maintain a usable set of input values
for the control subsystem and provide ‘graceful degradation’. To prevent over-reaction
to isolated transient values, a failed condition must be confirmed as persistent before
irreversible action is taken. Failure detection and management (FDM) in engine control
systems is a demanding application area, see e.g. [7], giving rise to far more than a
simple parameterizable product line situation.

Our approach contributes to the failure detection and management domain by propos-
ing a method for the engineering, validation and verification of generic requirements for
product-line engineering purposes. The approach exploits genericity both within as well
as between target system variants. Although product-line engineering has been applied in
engine and flight control systems [16, 11], we are not aware of any such work in the FDM
domain. We define generic classes of failure-detection test for sensors and variables in
the system environment, such as rate-of-change, limit, and multiple-redundant-sensor,
which are simply instantiated by parameter. Multiple instances of these classes occur
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in any given system. Failure confirmation is then a generic abstraction over these test
classes: it constitutes a configurable process of execution of specified tests over a num-
ber of system cycles, that will determine whether a failure of the component under test
has occurred. Our approach is focussed on the genericity of this highly variable process.

1.2 Fault Tolerance

This application domain (and our approach to it) includes fault tolerant design in two
senses: tolerance to faults in the environment, and in the control system itself. The FDM
application is precisely about maximizing tolerance to faults in the sensed engine and
airframe environment. The control system (including the FDM function) is supported
by a backup control system in a dynamically redundant design. This backup system
with dissimilar hardware/software design, with a reduced-functionality sensing fit can
be switched in by a watchdog mechanism if the main system has failed.

In the narrower (and more usual) sense, we will be examining various schemes for
designing fault tolerance into the FDM software subsystem. Work to date has specified
and validated a generic requirements specification for FDM. As we apply refinement
techniques and technology to construct the design, we will consider various relevant
approaches, such as driving the specification of a control system from environmental
requirements [13], or the use of fault-tolerant patterns for B specifications [14] and
their refinements [15].

1.3 The Paper

We present the results of a pilot formal specification and design exercise. This was un-
dertaken on a small (two-sensor) element of a typical system from our partner ATEC’s
domain. This exercise was intended to support the domain analysis, and to gain a view
of appropriate design abstractions for the full exercise of developing and validating
the generic requirements. Furthermore, since the ATEC engineer (and co-author of this
paper) was a novice to the B method, the exercise would also enable him to gain expe-
rience in the B method and tools, and to evaluate the usability and utility of that method
to an engineer in the target domain.

The pilot exercise took place in the context of our development of a prototype method
for the specification and verification of generic requirements sets for systems of this
type. The method is briefly presented here; for a fuller discussion see [27, 28]. We also
report briefly on tooling subsequently developed to support the method.

The paper proceeds as follows. The pilot study and its evaluation is presented in
section 2. Sections 3 and 4 review our prototype method and our domain analysis activ-
ity. Section 5 describes the domain engineering of the generic model, followed by the
engineering of a sample application instance in section 6. A brief taxonomy of valida-
tion/verification problems is then presented in section 7. Section 8 concludes.

2 Pilot Study

To explore the FDM domain in more detail we carried out a pilot study that modeled
and verified in B a very small example consisting of two sensors used to measure one
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environment variable. The aim of the pilot study was to gain a better understanding of
the stages and processes involved, before embarking on the search for generic re-usable
modeling abstractions. The pilot study was carried out by our co-author, an engineer
with our industrial partner company, who provided the domain expertise. Since he was
a novice to formal specification and the B method, the pilot study also provided insight
into the reaction we might expect from industrial users that adopt our method. Thus
a secondary aim was to evaluate model development using B and the existing B tools
from the point of view of adoption in an industrial setting.

The model was intended to be both analytical and specificational, i.e. the aim was
to explore the requirements as well as develop a specification. The dual redundant en-
gine speed (ES) functionality was selected as it includes behaviour representative of
other control inputs and includes interaction between sensors. The ES value is normally
taken from the ESa input but if this is not healthy, the ESb input is used instead. If both
inputs are unhealthy the ES signal is not updated. The ES failure management require-
ments include input magnitude tests, comparative (difference) tests between two given
inputs, and confirmation mechanisms that select appropriate output values and failure
flag settings.

2.1 Approach

The engineer initially explored the requirements by developing the model as a series of
specifications adding functionality and validating new behaviour in stages using the ProB
animation tool. The stages were ‘idealisations’ rather than true abstractions because they
omitted to allow for the effects of events added in later stages. Hence they give only an
approximate indication of behaviour corresponding to that obtained by ignoring some of
the details to be added later. (Analogous to idealisation in physics, such as ideal gases,
where some phenomena that affect the system are simply ignored even if they effect the
the variables of the model). This approach, although less rigorous than refinement, was
chosen as it allowed a quick exploration of the requirements by avoiding the difficult
process of finding useful abstractions and proving their refinements. The ProB model
checker was used to check internal consistency within the requirements at each stage.

The next stage was to revise the specifications to achieve refinement consistency.
The ProB model checker [17] and the prover tool Click’N’Prove/B4free [9] were used
to verify the refinements. A final stage to refine the model towards code implementation
is ongoing.

To obtain a refinement chain, sufficient abstract detail was added to the idealised spec-
ification to satisfy the proof obligations. In practice this meant that, when adding new
events, the abstract versions in previous levels were not skip, but non-deterministic al-
terations to variables at that level. Informally, this is a generalisation of event refinement
where the effect of new events is, in a loose sense, not significant to the old variables. It
is interesting to note that a proven refinement chain can be constructed in this manner
with little experience, using the proof obligations as a guide to find the weakest appro-
priate abstraction. However, the constructed refinement chain is only useful if it is used
in some way to validate the refinements. Hence the abstract level was reconsidered to
ensure that the effect of the new events on the old variables is acceptable and does not
invalidate the model.
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Hence, the approach utilises idealisation (which seems to be easier than abstraction),
superimposing detail (which is easy because it is not required to refine anything) and
‘upwards’ addition of suitable detail to obtain refinement (which is fairly easy because
it is led by the proof tools). We present a sanitized version of the final specifications
with notes to explain the initial intentions from which they derived.

2.2 Abstract Model

The most abstract specification is shown below in machine Engine speed 0. The
intention of this stage was to represent the functionality as a ‘black box’ that allows
given output combinations as a result of under-specified environment changes. The only
constraint is that the outputs have some interlocking relationships. For example, if a
flag indicates that the ESa signal healthy action was taken, then the output should be
equal to the ESa sensor value until the environment changes the ESa sensor value. The
idealisation is that the output is only the same as a snapshot reading of the sensor value.
In later refinements we would like to introduce the read value of the sensor and specify
that the output is equal to this.

Two sensors, esa and esb are defined. Each sensor has a change event which al-
ters the sensor value non-deterministically. Each sensor has a flag which is set (by the
outcome operations) to record when it has failed. There are four alternative outcome
events corresponding to the health or failure combinations of the two sensors (e.g. hh
is the outcome taken when both esa and esb are healthy). These outcomes take the
appropriate failure action by setting the output to either esa, esb or its previous value.
In this stage, the selection of the appropriate outcome, from those available, is left to
chance and not related to the input values in any way. Initially all 4 outcomes are avail-
able but, since failed sensors are not allowed to recover,hh will be disabled thereafter if
either of the sensors is subjected to a failing outcome. This ‘latching out’ of a possible
outcome is represented by the latch flags esalatch and esblatch. Eventually only
the ff outcome will be available. An invariant specifies the alternative properties that
should be achieved on the output in terms of the sensor values (until the environment
changes the sensor values again).

MACHINE Engine speed 0
...
INVARIANT ... &

(newVal = TRUE or
(esalatch = UNSET & output = esavalue) or
(esblatch = UNSET & output = esbvalue) or
output = previous)

OPERATIONS /*EVENTS*/
esaChange =
BEGIN

esavalue :: NATURAL || newVal := TRUE
END;

hh =
SELECT

esalatch = UNSET & esblatch = UNSET
THEN

output , previous := esavalue, esavalue ||
newVal := FALSE

END;
...
ff =
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BEGIN
output := previous ||
esalatch, esblatch := SET, SET ||
newVal := FALSE

END

2.3 First Refinement

In the first refinement of this abstract model more detail is added by introducing the
events, esavalidate and esbvalidate. These events are responsible for deter-
mining which of the alternative outcomes will be taken. They do this by setting the
esaresult and esbresult flags, which are now used in the guards of the outcome
events. The guards of the outcome events are also strengthed to ensure that both esa
and esb sensors have been newly validated before the outcome is taken. The means
by which validate decides which outcome to activate remains underspecified. This
is a valid refinement because the outcome event guards are strengthened and new data
(result) is superimposed. However, the specification of validation is idealised because
it omits the difference test which, in the next refinement, is added as a new event that
also modifies the variable esbresult. To satisfy the prover and achieve the next re-
finement we later revisit this stage to de-idealise it by adding an abstract version of the
difftest event that non-deterministically alters esaresult and esbresult.

This refinement stage led to consideration of what types and level of failure detection
should be addressed and whether they should indicate different actions. The ordering of
the sequence of events from failure detections to actions was considered. The refinement
raised the issue of test scheduling and input sampling and whether a series of tests could
easily be accommodated in the design by an appropriate sequencing mechanism
REFINEMENT Engine speed 1
REFINES Engine speed 0
...
;
esavalidate =

SELECT
esavalidated=FALSE

THEN
esaresult :: PASS FAIL ||
esavalidated := TRUE

END
;
hh =

SELECT
esavalidated = TRUE & esbvalidated = TRUE &
esaresult = PASS & esbresult = PASS &
esalatch = UNSET & esblatch = UNSET &

THEN
esavalidated, esbvalidated := FALSE, FALSE ||
output, previous := esavalue, esavalue ||
newVal := FALSE

END;
hf =

SELECT
esavalidated = TRUE & esbvalidated = TRUE &
esaresult = PASS & esbresult = FAIL &
esalatch = UNSET

THEN
esavalidated, esbvalidated := FALSE, FALSE ||
output, previous := esavalue, esavalue ||
esblatch := SET ||
newVal := FALSE

END;
...



332 C. Snook, M. Poppleton, and I. Johnson

2.4 Second and Third Refinements

In the second refinement, a new event that can also affect the selected outcome, is added.
This event, difftest, represents a comparison between the two sensor values. It
must happen after both esa and esb have been validated and before an outcome event
occurs. Note that it can only change sensor results from pass to fail not vice versa.
Again the mechanism by which it decides this is left under-specified.

difftest =
SELECT

esavalidated = TRUE & esbvalidated = TRUE &
esdiffvalidated = FALSE

THEN
IF esaresult = PASS & esbresult = PASS
THEN esbresult :: PASS FAIL
END ||
esdiffvalidated := TRUE

END;

Since this stage added a new event that alters a variable (esbresult) introduced
in the previous refinement stage, an abstract version of this event must be added to
the first refinement to allow the second refinement to be a refinement of the first. The
most abstract version of the event would be a simple non-deterministic assignment of
the variable to any value from its type (esbresult :: PASS FAIL). However, al-
though this would ensure the refinement, it would be a pointless exercise since the
previous level would no longer describe a desired behaviour. That is, the difftest
event could unlatch some failure results which is one of the main features that were
embodied in the abstract level. A slightly more constrained abstract version is obtained
by also retaining any conjuncts from guards or conditions that are based on variables in
the previous level. This restricts the effect of the event in a way that corresponds with
the refinement. Hence it stands a better chance of being an acceptable specification
for the refinement. Its consistency and validity can then be examined using the ProB
model checker and animator. In our case, this method produced abstract specifications
that were consistent with the existing invariants and valid but we are not convinced that
this will always be the case. It may be necessary to reconsider the way the feature is
introduced if the abstract model does not behave as desired or violates the invariant.

difftest =
SELECT

esavalidated = TRUE & esbvalidated = TRUE
THEN

IF esaresult = PASS & esbresult = PASS
THEN esbresult :: PASS FAIL
END

END;

Similarly, the previous level abstract model must have an even more abstract version
of the new difftest event added to it. This is obtained by a similar process, retaining
only the guards, conditions and non-deterministic versions of assignments that utilise
variables in the abstract specification.

difftest =
IF esaresult = PASS & esbresult = PASS
THEN esbresult :: PASS FAIL
END;
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In the third refinement, the details of how validate and difftest set result
(and hence select an outcome) is provided. This entails comparing the sensor value
against fixed limits and against each other. A confirmation counter mechanism was
also introduced to model the requirement to not be oversensitive to sensor noise. This
entailed adding a third, intermediate state FAILING to the possible values of result
with corresponding new outcome events. The refinement was proven by adding a gluing
invariant to match the states with the abstract version.

2.5 Evaluation

The pilot study was carried out and proven in B and the refinement chain was fully
proven by automatic proof. Since choosing useful abstractions and appropriate refine-
ments is difficult, requiring considerable experience and understanding of the refine-
ment process, it surprised us that the novice engineer was able to achieve this, even
for the simple example. To complicate matters, an event style of B (used in the Rodin
project) was used but proof had to be achieved using the existing proof tools which are
not event B based. For example, if a new event is added at a refinement, an abstract
version of the event, with body skip (i.e. do nothing) must be added to all previous
levels. The prover was able to automatically prove all of the proof obligations when
the specifications were correct. This meant that the interactive prover was only used to
identify corrections to the specifications.

The ease of proof was due to two factors. Firstly, only simple data types were used.
We tried rewriting the specifications using a set of sensors with two elements esa
and esb and relations from this set for the sensor data. With this data representation,
the prover was no longer able to complete automatically. The almost exclusive use
of superposition refinement (i.e. lack of data refinement) also probably assisted the
prover.

The engineer recognised that it was difficult to find early abstract models that allowed
for future refinements. The modeller’s perception of what is important may change
through experience with the model and understanding of the domain. The process is
therefore iterative in nature. The novice engineer found the animation facility of the
ProB tool particularly useful to quickly validate and explore model behaviour. He recog-
nised that in larger scale problems the use of invariant checking with the tools will be an
invaluable aid to verification and validation where it may be quite onerous to exercise
the equivalent assurance using other methods. However the effectiveness of invariants
in models relies on how well they can be created and it was recognised that weak or
incorrect invariants can be generated by lack of experience, which may be a hindrance
to development and verification.

The syntax of the B notation did not present significant difficulties in this develop-
ment as functionality could be expressed using simple constructs. Most proof obliga-
tions were discharged automatically. Where they were not, the proof goals were used to
identify where the specifications need to be corrected or enhanced to achieve automatic
proof.

The pilot study provided a better understanding of several issues in the FDM domain.
In particular, a better understanding of the reaction between sensor values, tests and
outcomes was gained.
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3 Methodology

The process for obtaining a generic model of requirements is illustrated in Fig. 1. The
first stage is an informal domain analysis which is based on prior experience of de-
veloping products for the application domain of failure detection and management in
engine control. A taxonomy of generic requirements found in the application domain is
developed. For example, class INP includes generic requirements INP2, INP5 and their
sample instances below:

INP2
The subsystem input variables represent either sensor values or
other subsystem variables.

INP5
Some “other subsystem” input variables represent the controller
state.

Ref Name Type Range Res Description Freq
INP2.5 ET5 digitised -200 to 2000F 0.1F Engine Temp. sensor 5 24
INP2.10 ESa digitised 0-200 % 0.01 Engine Speed (main) 24
INP5.1 CYCLE NO digital 1..16 1 Execution cycle counter 24

The instance requirements in each generic requirement class are thus expressed as data
in tabular form. Thus a first-cut generic entity-relationship model can be constructed by
relating these generic requirement entities, or classes. This generic model is represented
as a UML-B class diagram, and a corresponding B specification is generated.

The identification of a useful generic model is a difficult process warranting further
exploration. This is done in the domain engineering stage where a more rigorous exam-
ination of the first-cut model is undertaken, using UML-B, U2B and ProB. The model
is animated by creating typical instances of its generic requirement classes, to test when
it is and is not consistent. This stage is model validation by animation, using the ProB
and U2B tools, to show that it is capable of holding the kind of information that is found
in the application domain. During this stage the relationships between the classes are
likely to be adjusted as a better understanding of the domain is developed. This stage
results in a validated generic model of requirements that can be instantiated for each
new application.

For each new application instance, the generic requirement classes are instantiated
from product instance data, producing an instance model. The relationship between
the generic and the instance model is analogous to that between a class and and ob-
ject model in UML. Instantiation is done by our prototype Requirements Manager tool,
which reads instance requirement data from a database (see sec. 6), and uses that data
to instantiate the generic UML-B model. The ProB model checker is then used to au-
tomatically verify that the instantiated application is consistent with the relationship
constraints embodied in the generic model. This stage, producing a consistent instance
model, shows that the requirements are a consistent set of requirements for the domain.
It does not, however, show that they are the right set of requirements that will give the
desired system behaviour.

Our aim in future work, therefore, is to add dynamic features to the instantiated
model in the form of variables and operations that model the behaviour of the entities
in the domain and to animate this behaviour so that the instantiated requirements can be
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Fig. 1. Process for obtaining the generic model

validated. The ultimate goal is to specify this behaviour in the generic model in order
to maximize reuse at the instantiation stage.

During the domain analysis phase we found that considering the rationale for re-
quirements revealed key issues, which are properties that an instantiated model should
possess. Key issues are higher level requirements that could be expressed at a more ab-
stract level from which the generic model is a refinement. The generic model could then
be verified to satisfy the key issue properties by proof or model checking. This matter
is considered in [25] which gives an example of refinement of UML-B models in the
failure management domain.

The final stage is to validate a specific, instantiated configuration. This would be done
by providing actual values to generic behaviours when the generic model is instantiated.
The resulting specific model could then be animated to validate its behaviour.

Finally, we recognize the need for tools to support uploading of bulk system instance
definition data, as well as the efficient and user-friendly validation/ debugging of said
data. The Requirements Manager prototype provides database storage and some vali-
dation; ProB could easily be enhanced to provide, for example, data counterexamples
explaining invariant violations.

4 Domain Analysis

Domain analysis such as used by Lam [16] is the study of the application domain,
with domain specialists, with the intention of capturing its characteristics, processes
and requirements in textual and diagrammatic form. The first step was to define the
scope of the domain in discussion with engine controller experts. An early synthesis of
the requirements and key issues were formed, giving due attention to the rationale for
the requirements. Considering the requirements rationale is useful in reasoning about
requirements in the domain [Op.Cit.]. For example, the rationale for confirming a failure
before taking action is that the system should not be generate false positive failure
results from transient interference on its inputs. From the consideration of requirements
rationale, key issues were identified which served as higher level properties required of
the system. An example of such a property would be that the failure management system
must not be held in a transient action state indefinitely. The rationale from which it has
been derived is that a transient state is temporary and actions associated with this state
may only be valid for a limited time.



336 C. Snook, M. Poppleton, and I. Johnson

A core set of requirements were identified from several representative failure man-
agement engine systems. For example, the identification of magnitude tests with vari-
able limits and associated conditions established several magnitude test types; these
types have been further subsumed into a general detection type. This type structure
provided a taxonomy for classification of the requirements.

Domain analysis showed that failure management systems are characterised by a
high degree of fairly simple similar units made complex by a large number of minor
variations and interdependencies. The domain presents opportunities for a high degree
of reuse within a single product as well as between products. For example, a magnitude
test is usually required in a number of instances in a particular system. This is in contrast
to the engine start domain addressed by Lam [16], where a single instance of each
reusable function exists in a particular product. Our method is targeted at domains such
as failure management where a few simple units are reused many times and a particular
configuration depends on the relationships between the instances of these simple units.
A first-cut entity relationship model was constructed from the units identified during
the domain analysis stage. The entities identified during domain analysis were:

– INP Identification of an input sensor and its characteristics to be tested
– COND Condition under which a test is performed or an action is taken. (A predicate

based on the values and/or failure states of other inputs)
– DET Detection of a failure state. A predicate that compares the value of an expres-

sion to be tested against a limit value. There are specialized versions of detection,
e.g. DET MAG for magnitude tests and DET RATE for rate-of-change tests

– CONF Confirmation of a failure state. An iterative algorithm performed for each
invocation of a detection, used to establish whether a detected failure state is gen-
uine or transitory

– ACT Action taken either normally or in response to a failure, possibly subject to
a condition. Assigns the value of an expression, which may involve inputs and/or
other output values, to an output

– OUT Identification of an output to be used by an action

Figure 2 shows the final class diagram resulting from this early entity-relationship
model of generic requirements.

5 Domain Engineering

The aim of the domain engineering stage is to explore, develop and validate the first-
cut generic model of the requirements into a validated generic model, using suitable
technology. At this stage this is essentially an entity relationship model, omitting any
behaviours (except temporary ones added for validation purposes). The model indi-
cates the necessary and permitted configurations of the various functional requirements
without detailing the behaviour involved in those requirements. For example, that there
must be one confirmation mechanism for each input and that a configuration must have
at least one detection mechanism.

The first-cut model from the domain analysis stage was converted to the UML-B
notation (Fig. 2) by adding stereotypes and UML-B clauses (tagged values) as defined in
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Fig. 2. Final UML-B version of generic model of failure management requirements

the UML-B profile [26]. This allows the model to be converted into the B notation where
validation and verification tools are available. The model contains invariant properties,
which constrain the associations, and ensures that every instance is a member of its
class. As well as these diagrammatic invariants, additional textual invariants may be
added where the diagram notation is unable to express constraints. For example, the
invariant in Fig. 2 expresses the fact that every action (instance of class ACT) must be
linked at least once to a confirmation (instance of class CONF) via one of the three
associations, hAct, pAct and tAct. To validate the model we needed to be able
to build up the instances it holds in steps. For this stage a constructor was added to
each class so that the model could be populated with instances. The constructor was
defined to set any associations belonging to that class according to values supplied as
parameters.

The model was tested by adding example instances using the animation facility of
ProB and examining the values of the B variables representing the classes and associa-
tions in the model to see that they developed as expected. ProB provides an indicator to
show when the invariant is violated. Due to the ‘required’ (i.e. multiplicity greater than
0) constraints in our model, the only way to populate it without violating the invariant
would be to add instances of several classes simultaneously. However, we found that
observing the invariant violations was a useful part of the feedback during validation of
the model. Knowing that the model recognises inconsistent states, is just as important as
knowing that it accepts consistent ones. The model was rearranged substantially during
this phase as the animation revealed problems. Once we were satisfied that the model
was suitable, we removed the constructor operations to simplify the corresponding B
model for the next stage.
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The next stage is to add behaviour to the generic model by giving the classes opera-
tions. In future work we will investigate the best way to introduce this behaviour during
the process. It may be possible to add the behaviour after the static model has been
validated as described above. Alternatively, perhaps the behaviour will affect the static
structure and should be added earlier. In either case, we aim to formalise the rationale
described in the domain analysis and derive the behaviour as a refinement from this.

6 Requirements for a Specific Application

Having arrived at a useful model we then use it to specify the requirements for an in-
stance application by populating it with instance requirements for each of the generic
requirement classes. For a particular application, the instances are not created and de-
stroyed dynamically but are defined as a static configuration consistent with the generic
model. Thus we do not use constructors to populate the model; we define each class to
have a fixed set of instances.

At first we used ProB to check the application is consistent with the properties ex-
pressed in the generic model. This verification is a similar process to the previous val-
idation but the focus is on possible errors in the instantiation rather than in the model.
The application is first described in tabular form. The generic model provides a template
for the construction of the tables. Each class is represented by a separate table; foreign
key links represent the associations owned by that class. The tabular form is useful as
documentation of the application but is not directly useful for verification. To verify its
consistency, the tabular form is translated into class instance enumerations and associa-
tion initialisation clauses attached to the UML-B class model. We found that doing this
manually was tedious and error prone. Therefore we automated the translation by im-
plementing a ‘Requirements Manager’ tool. The tool was developed as an IBM eclipse
plug-in by a student group2. The Requirements Manager (RM) tool loads application
configuration data from an Excel file and populates the relevant fields in the UML-B
class model.

Initially, we used ProB to check which conjuncts of the invariant are violated. For our
FDM example, several iterations were necessary to eliminate errors in the tables before
the invariant was satisfied. The ProB ‘analyse invariant’ facility provides information
about which conjuncts of the invariant are violated but, in a data intensive model such
as this, it is still not easy to see which part of the data is at fault. It would be useful
to show a data counterexample to the conjunct (analogous to an event sequence coun-
terexample in model checking). The RM tool verifies the application data against the
class structure and association constraints of the UML-B class model, when that data is
first loaded into the database. RM then reports any violations, identifying the specific
data that caused the violation. Figure 3 is a screenshot of the RM tool in use, showing
the generic requirements structure in two views, and two detail views (on lower right)
of data verification errors. Note that a limitation of the tool (inherited from its underly-
ing database representation) is that many to many associations cannot be represented.
This is circumvented by inserting an intermediate class into the association (e.g. HACT,
PACT and TACT). The RM tool is described in more detail in [28].

2 See acknowledgements.
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Fig. 3. Screenshot of Requirements Manager being used to populate the generic model

7 Classification of Problems

It is useful to classify the kinds of problems found during animation and verification in
order to better understand the source of problems and improve the requirements engi-
neering process. So far, we have found that problems can be classified on a methodolog-
ical stage basis. Possible categories on this basis, some of which we have experienced,
are as follows.

– Verification of generic model - the generic model is inconsistent or incorrect
– Validation of generic model - the generic model is correct and consistent but does

not reflect the generic requirements
– Validation of generic requirement - the generic model works as expected but ani-

mation leads expert to review generic requirements
– Verification of instantiation - the instantiation is inconsistent with the generic model

because of an incorrect instantiation
– Verification of instantiation (generic model) - the instantiation is inconsistent with

the generic model because the generic model is inadequate
– Validation of instantiation - the instantiation is consistent with the generic model

but does not reflect the specific requirements
– Validation of specific requirements - the instantiation is consistent with the generic

model but animation leads expert to review specific requirements

In the future, when behavioural features are modelled, we expect to find other ways
of classifying problems. For example we may be able to distinguish functional areas
that are prone to incorrect specification.
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8 Conclusion

In this paper we have discussed a formal, object-oriented approach to the rigorous engi-
neering, validation and verification of generic requirements for a product line of critical
systems. Our case study is in the domain of failure management and detection for engine
control. The approach can be generalised to any relatively complex system component
where repetitions of similar units indicate an opportunity for parameterised reuse but the
extent of differences and interrelations between units makes this non-trivial to achieve.
The product-line approach to application instance production amortises the effort in-
volved in formal validation and verification over many instances. So far we have con-
sidered the static entity-relationship, or class-association aspects of the requirements.
In future work we aim to extend the approach to consider also the detailed meaning (i.e.
dynamic behaviour) of these classes of requirements.

We have also undertaken a pilot study on a small subset of the requirements, i.e. the
dual redundant engine speed functionality ESa and ESb. This exercise had a number
of aims: (i) to support the domain analysis at a level of fine detail, (ii) to gain an early
view of appropriate design abstractions, (iii) for a B novice to gain experience in the
B method and tools, (iv) and to evaluate the usability and utility of method and tools.
In particular, the novice engineer’s independent development of an approach to refine-
ment by what we have called ‘idealisation’ and ‘de-idealisation’ may be a promising
methodological contribution. Thus invaluable input has been provided to the ongoing
exercise of developing the new Event-B method and tools.

Two broad areas of future work are indicated by the case study, both linking to related
work on Product Line Engineering (PLE). The first concerns instance data management,
the second variability vs. commonality in the generic model.

For a product family such as FDM at ATEC as currently envisaged, instance data
management is in principle straightforward. This is because no system instance/variant
requirements are defined at the generic level - all structure and behaviour is specified in
terms of a single generic model. Instance/variant requirements are captured completely
by instance-level data. This means that all instance data structures are defined in terms
of the generic class definitions. Therefore, the data for a system instance is simply
defined as a subset of the database of all required instance specifications; tooling is
thus a straightforward database application, as we have demonstrated with our new
Requirements Manager tool.

Instance management becomes more complex when variability is required in the
generic model. This is the usual state of affairs in PLE. The mobile phone scenario of
[20] is typical, where each system instance is defined by a distinct set of functional
features, aimed at a specific market segment and target price. We might define a feature
to be a small coherent group of requirements respresenting some system goal; examples
in telephony include CH (call hold), CD (caller divert), CC (conference call). Features
are not in general simply composable, and the totality of features cannot in general be
specified in one generic model: variability specification is required in the generic model.
To date approaches to this (such as [20]) have been in the obvious syntactic form: in
ATEC for example, variants on the generic model for other engine manufacturers might
be described as extra colour-coded classes, associations, states, events etc. A system
variant (or sub-family) would thus be defined in terms of some colour-combination
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submodel. A more sophisticated metamodelling approach to variability specification,
based on the Model-Driven Architecture of the OMG, has recently been proposed [21].

Future work will investigate developing such variability and tooling issues in the
ATEC context, using the UML-B and refinement approaches and the RM tool discussed
in this paper. The application of refinement approaches to PLE to date has been modest,
e.g. [6, 30], and has, in our view, much potential. An obvious unit for modelling vari-
abilities is the feature. Investigations are ongoing into the development of refinement
decomposition and generic instantiation in Event-B, and their deployment on variability
specification via features. Retrenchment, a generalizing theory for refinement, has been
investigated in a feature engineering context [5], and may well also be useful in PLE.
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Abstract. System availability is improved by the replication of data
objects in a distributed database system. However, during updates, the
complexity of keeping replicas identical arises due to failures of sites and
race conditions among conflicting transactions. Fault tolerance and reli-
ability are key issues to be addressed in the design and architecture of
these systems. Event B is a formal technique which provides a framework
for developing mathematical models of distributed systems by rigorous
description of the problem, gradually introducing solutions in refinement
steps, and verification of solutions by discharge of proof obligations. In
this paper, we present a formal development of a distributed system
using Event B that ensures atomic commitment of distributed transac-
tions consisting of communicating transaction components at participat-
ing sites. This formal approach carries the development of the system
from an initial abstract specification of transactional updates on a one
copy database to a detailed design containing replicated databases in re-
finement. Through refinement we verify that the design of the replicated
database confirms to the one copy database abstraction.

1 Introduction

A distributed system is a collection of autonomous computer systems that coop-
erate with each other for successful completion of a distributed computation. A
distributed computation may require access to resources located at participating
sites. A distributed transaction may span several sites reading or updating data
objects. A typical distributed transaction contains a sequence of database opera-
tions which must be processed at all of the participating sites or none of the sites
to maintain the integrity of the database [28]. Assuming that each site main-
tains a log and a recovery procedure, commit protocols [16,28] ensure that all
sites abort or commit a transaction unanimously despite multiple failures. Sev-
eral versions of commit protocols were proposed to improve performance dealing
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with various aspects such as site failures, blocking and even compensation. Dis-
tributed transaction execution within the framework of commit protocols ensures
consistency and provides fault tolerance.

In this paper we formally develop an abstractmodel of transactions in B for a one
copy database. The notion of replicated database is introduced in the refinement of
abstractmodel. The replica control mechanism considered in the refinement allows
both update and read-only transactions to be submitted at any site. In our abstract
model, an update transaction modifies the abstract one copy database through a
single atomic event. In the refinement, anupdate transaction consists of a collection
of interleaved events updating each replica separately. The transaction mechanism
on the replicated database is designed to provide the illusion of atomic update of a
one copy database. Through our refinement proof we verify that this is indeed the
case. A read-only transaction reads the values from a replica locally at the site of
submission.Transaction failure is representedby sitesaborting a transaction.A site
maydecide to abort anupdate transactiondue to race conditions among conflicting
transactions. We address the one copy equivalence consistency criterion through
this refinement. By verifying the refinement, we verify that the design of the repli-
cated database confirms to the one copy database abstraction despite transaction
failures at a site.

The remainder of this paper is organized as follows: Section 2 contains back-
ground on the problem, Section 3 provides an introduction to the B Method,
Section 4 describes the system model informally, Section 5 presents an abstract B
model of transactions considering the database as a single logical entity, Section
6 presents a refinement of the abstract B model introducing details of replicated
database, Section 7 present some properties of system given as gluing invariants
detailing relationship between the single copy and the replicated database and
lastly Section 8 concludes the paper.

2 Background

Replication improves availability in a distributed database system. It is advanta-
geous to replicate data objects when the transaction workload is predominantly
read only. However, during updates, the complexity of keeping replicas identical
arises due to site failures and conflicting transactions. Several approaches has
been proposed for management of replicated data using group communication
primitives [5,17,18,25,29]. The application of formal methods to a replication
algorithm is considered in [15]. Group communication has also been investigated
in Isis [8], Totem [22] and Trans [20]. The protocols in these system use varying
broadcast primitives and address group maintenance, fault tolerance and con-
sistency services. The transaction semantics in the management of replicated
data is also considered in [5,6,25]. In addition to providing fault tolerance, one
of the important issues to be addressed in the design of replica control protocols
is consistency. The One Copy Equivalence [7,23] criteria requires that a repli-
cated database is in a mutually consistent state only if all copies of data objects
logically have the same identical value.
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The One Copy Serializability [7] is the highest correctness criterion for replica
control protocols. It is achieved by coupling consistency criteria of one copy equiva-
lence and providing serializable execution of transactions. In order to achieve this
correctness criterion, it is required that interleaved execution of transactions on
replicas be equivalent to serial execution of those transactions on one copy of a
database. The one copy equivalence and serial execution together provide one copy
serializability which is supported in a read anywhere write everywhere approach
[26]. For example, consider any serial execution of a transaction produced by sys-
tem in the read anywhere write everywhere replica control. A transaction which
writes to a data item does so by writing data everywhere. Thus from the view point
of a transactionwhich reads thevaluesproducedbyan earlier transaction,all copies
were written simultaneously. So no matter which copy a transaction reads, it reads
the same value written by an earlier transaction [7]. Though serializability is the
highest correctness criteria, it is too restrictive in practice. Various degrees of iso-
lation to address this problem has been studied in [18].

The verification of distributed algorithms has long been an issue of study.
Formal methods provide a systematic approach to the development and veri-
fication of dependable complex systems. They use mathematical notations to
describe and reason about systems. The B Method [1,12] is a model oriented
state based method developed by Abrial for specifying, designing and coding
software-based systems. The development methodology supported in B Method
is stepwise refinement. This is done by defining an abstract formal specifica-
tion and successively refining it to an implementable specification through a
number of correctness preserving steps. At each refinement step more concrete
specifications of a system are obtained. The B Method requires the discharge of
proof obligations for consistency checking and refinement checking. The B Tools
Atelier B [30], Click’n’Prove [4], B-Toolkit [13] provide an environment for gen-
eration and discharge of proof obligations required for consistency checking and
refinement checking. Applications of the B method to distributed system may
be found in [3,9,10,11,24,31]. In this work we have used Click’n’Prove.

Our focus in this paper is on providing a formal analysis of read anywhere write
everywhere replica control protocol for a distributed database system. An update
transaction which spans several sites issuing a series of read/write operations is
executed in isolation at a given site. The basic idea used in this paper is to
allow update transactions to be submitted at any site. This site, called the
coordinating site, broadcasts update messages to replicas at participating sites.
Upon receipt of update requests, each site starts a sub transaction if it does
not conflict with any other active transactions at that site. The coordinating
site decides to commit if a transaction commits at all participating sites. The
coordinating site decide to abort it if it aborts at any participating site.

3 B Method

The B Method provides a state based formal notation based on set theory for
writing abstract models of systems. A system may be defined as an abstract
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machine. Abstract machines contains sets, variables, invariants, initialization
and a set of operations defined on variables. The sets clause contains user defined
sets that can be used in the rest of the machine. The variables describe the
state of machine. The invariants are first order predicates and these invariants
are to be preserved while updating the variables through the operations. The
operations can have input and output parameters. Operation of machines are
defined through generalized substitution which allow both non deterministic and
deterministic assignments.

3.1 Event B

Event B [2,21] is an event driven approach to system modelling based on B for de-
veloping distributed systems. This formal technique consists of the following steps:

- Rigorous description of abstract problem.
- Introduce solutions or details in refinement steps to obtain more concrete

specifications.
- Verifying that proposed refinements are valid.

In Event B operations are referred to as events which occur spontaneously rather
then being invoked. The events are guarded by predicates and these guards may
be strengthened at each refinement step. The state variables are modified by a
set of events. The invariants state properties that must be satisfied by variables
and maintained by activation of events. In refinement steps, variables may be
replaced and new events may be introduced. Abstract and concrete variables are
related through gluing invariants.

3.2 B Notations

In this section we present some B notation frequently used in our model (Table-1).
A more detailed explanation of these may be found in [1,27].

Let A and B be two sets, then the relational constructor ↔ defines the set of
relations between A and B as,

A ↔ B = P(A× B)

where × is cartesian product of A and B. A mapping of element a ∈ A and b ∈
B in a relation R ∈ A ↔ B is written as a �→ b.

Table 1. Some frequently used B Notations

dom(R) domain of relation R ran(R) range of relation R
� domain restriction �→ mapping
�− domain anti restriction × cartesian product
�− relational overide operator R[A] relational image of R over set A
P1 non empty power set P power set
�→ partial function → total function
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The domain of a relation R ∈ A ↔ B is the set of elements of A that R relates
to some elements in B defined as,

dom(R) = {a|a ∈ A ∧ ∃b.(b ∈ B ∧ a �→ b ∈ R)}

Similarly, the range of relation R ∈ A ↔ B is defined as set of elements in B
related to some element in A :

ran(R) = {b|b ∈ B ∧ ∃a.(a ∈ A ∧ a �→ b ∈ R)}

A relation R ∈ A ↔ B can be projected on a domain U ⊆ A called domain
restriction(�) defined as,

U � R = {a �→ b | a �→ b ∈ R ∧ a ∈ U}

A domain anti-restriction U �− R removes all mappings whose first element is in
U. The domain anti-restriction is defined as,

U �−R = {a �→ b | a �→ b ∈ R ∧ a 	∈ U}

The Relational image R[U ] where U⊆A is defined as,

R[U ] = {b | a �→ b ∈ R ∧ a ∈ U}

If R0 ∈ A ↔ B and R1 ∈ A ↔ B are relations defined on set A and B, the
relational over-ride operator (R0 �− R1) replaces mappings in relation R0 by
those in relation R1.

R0 �−R1 = (dom(R1) �−R0) ∪R1

A function is a relation having some special properties. A partial function from
set A to B (A �→ B) is a relation which relates an element in A to at most one
element in B. A partial function f ∈ A �→ B satisfies following,

∀(a, b1, b2).(a ∈ A ∧ b1 ∈ B ∧ b2 ∈ B ⇒ (a �→ b1 ∈ f ∧ a �→ b2 ∈ f) ⇒ b1 = b2))

Similarly a total function f ∈ A → B is a partial function where dom(f)=A.
Given f ∈ A �→ B and a ∈ dom(f), f(a) represents the unique value that a is
mapped to by f.

4 System Model

In this section we present an informal model of a distributed database. Our system
model consistof a setsof sites anddataobjects.Thedistributeddatabase consistsof
sets of objects stored at different sites. Users interact with the database by starting
transactions. The data objects are assumed to be replicated across all sites. The
Read Anywhere Write Everywhere [7,23] replica control mechanism is considered
for updating replicas. We consider the case of full replication and assume all data
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objects are updateable. A transaction is considered as a sequence of read/write
operations executed atomically, i.e., a transaction will either commit or abort the
effect of all database operations.

Transaction Types

The following types of transactions are considered for this model of replicated
database.

- Read-Only Transactions : These transaction are submitted locally to the site
and commit after reading the requested data object locally.

- Update Transactions : These transactions update the requested data objects.
The effect of update transactions are global, thus when committed, all repli-
cas of data objects maintained at all sites must be updated. In case of abort,
none of the sites update the data object.

To illustrate the two cases, considerRead Only transactionT1 and Update transac-
tion T2 defined over set of data object O1 and O2 respectively. The read-only trans-
actionT1 issues a sequence of read operations over data objects inO1 andupdateT2
issues a sequence of read or write operation over data objects in O2. A transaction
is termed an update transaction if it issues at least one write operation.

Commitment of Transactions

Transactions in Read Anywhere, Write Everywhere replica control execute as
follows. A read transaction may be submitted at any site and its execution remain
confined to that site. However, an update transaction is executed globally and the
global commit decision of an update transaction is determined by the commit
decisions of the components of the update transaction at participating sites.
Consider an update transaction Ti submitted at a site Si called the coordinator
site. Since Ti issues write operations, the coordinator site of Ti broadcasts its
operations to all participating sites. Participating site Sj , upon receipt of request
from coordinator Si, begins a subtransaction Tij . Each Tij is executed following a
two phase locking scheme at participating site Sj . Coordinating site Si waits for
the notification to commit or abort from each participating site. A notification
to either commit or abort a sub transaction is sent by each Sj to coordinator
Si. The transaction may fail at a participating site due to race condition. The
decision of a global commit or abort is taken at the coordinator site. Thus the
decision of a global commit or abort of an update transaction is taken in the
framework of a two phase commit protocol. The commit or abort decision of an
update transaction Ti is taken as follows,

- Ti commits if all Tij commit at Sj .
- Ti aborts if some Tij aborts at Sj .

Degree of Isolation

We consider the situations where read-only and update transactions may be sub-
mitted to any site. In order to ensure correct serial execution of transactions they



Rigorous Design of Fault-Tolerant Transactions 349

MACHINE          Replica1 
DEFINITIONS    PartialDB  == ( OBJECT  VALUE ) ; 
                 UPDATE  ==  (PartialDB  PartialDB ) ; 
                      ValidUpdate (update,readset) == ( dom(update)= readset  VALUE 
                                                                                     ran(update)  readset  VALUE )   
SETS              TRANSACTION;  OBJECT; VALUE;   
                            TRANSSTATUS={COMMIT,ABORT,PENDING} 
VARIABLES     trans, transstatus, database, transeffect, transobject 
 
INVARIANT         trans   (TRANSACTION) 
              transstatus   trans  TRANSSTATUS 
             database  OBJECT  VALUE 
              transeffect  trans  UPDATE 
             transobject  trans  1 (OBJECT)   
                 t.(t  trans  ValidUpdate (transeffect(t), transobject(t)) )  
 
INITIALISATION        trans :=                             || transstatus :=   
                                 || transeffect :=  {}           || transobject :={}  
                                 || database :   OBJECT  VALUE 
                        
 

 

Fig. 1. Abstract Model of Transactions in B

must execute in isolation. Various degrees of isolation, e.g., no isolation, read-write
isolation and general isolation are discussed in [14] in the context of replication. In
order to meet the strong consistency requirement where each transaction reads the
correct value of a replica, conflicting transactions need to be executed in isolation.
Two transactions Ti and Tj are in conflict if the sequence of operations issued by
Ti and Tj are defined on set of object Oi and Oj respectively and Oi ∩ Oj 	= ∅. In
our model, we ensure this property by not issuing a transaction at a site if there is
a conflicting transaction that is active at that site.

5 Abstract Model of Transactions in B

The abstract data model of transactions is given in Fig.1 as a B machine. The
operations of the machine are shown in Fig.2. The abstract model maintains a
notion of a central or one copy database. The abstract database is modelled as
a total function from objects to values :

database ∈ OBJECT → VALUE

In practice a database will be partial, but for simplicity, in this paper, we avoid
dealing with the errors caused by trying to read undefined objects and instead
focus on errors caused by sites failing to commit a transaction. An individual
transaction will involve a set of objects readset ⊆ OBJECT. It will read from a
partial projection of the database (pdb) on to readset, i.e.,

pdb = readset � database
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If it is an update transaction it will write to a subset of readset and the new
values of the objects to be written may depend on the existing values of the
objects in readset. Let the set of objects to be written be writeset where writeset
⊆ readset. So we model an update to a database as function that takes a partial
database (representing the current values of the objects in readset) and yields
a partial database (representing the new values of the objects in writeset). A
transaction is a read only-transaction if its writeset = ∅. Thus for a read-only
transaction, its update function maps a partial database defined over readset to
an empty set. The update function is defined as below,

UPDATE 
 PartialDB �→ PartialDB
where PartialDB 
 OBJECT �→ VALUE

An update function update maps a partial database (pdb1 ) where pdb1 = (readset
� database) to another partial database (pdb2 ) where dom(pdb2) = writeset. The
update function update ∈ UPDATE updates the database as follows,

database := database �− update (pdb1 )

We say that update ∈ UPDATE is valid with respect to a set of objects readset
whenever,

dom(update) = readset → VALUE
∧ ran(update) ⊆ readset �→ VALUE

Our model of database updates is sufficiently general to model atomic series of
read-only and update transactions. A brief description of Fig.1 is given below.

- TRANSACTION, SITE, OBJECT and VALUE are defined as a deferred
sets. The TRANSSTATUS is an enumerated set containing values COM-
MIT,ABORT and PENDING. These values are used to represent the global
status of transactions.

- The database is represented by a variable database as a total function from
OBJECT to VALUE. A mapping (o �→ v) ∈ database indicates that object
o has value v in the database.

- The variable trans represent a set of started transactions. The variable
transstatus maps each started transaction to TRANSSTATUS.

- The variable transobject is a total function which maps a transaction to a
set of objects. The set transobject(t) represents the set of data objects read
by a transaction t. The set of objects written to by t will be a subset of
transobject(t).

- The variable transeffect is a total function which maps each transaction to
an object update function UPDATE as previously described.

- A transaction t is a read-only transaction if ran(transeffect(t)) = {∅}, i.e.,
each partial database is mapped to the empty partial database.
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StartTran( tt  TRANSACTION )    
     ANY      updates , objects            
     WHERE            tt  trans 

 updates  UPDATE   
 objects  1 (OBJECT) 
 ValidUpdate (updates,objects) 

     THEN     trans := trans  {tt}     ||   transstatus(tt) := PENDING 
          ||     transobject(tt) := objects  ||  transeffect(tt) := updates 
      END ; 
 
CommitWriteTran( tt  TRANSACTION)   
 ANY    pdb                               
      WHERE           tt  trans  

 transstatus(tt) =PENDING  
 ran(transeffect(tt))  { } 
 pdb =  transobject(tt)  database  

     THEN     transstatus(tt) := COMMIT  ||   database  := database  transeffect(tt)(pdb) 
    END; 
 
AbortWriteTran( tt  TRANSACTION)   
      WHEN   tt  trans  

 transstatus(tt) = PENDING  
 ran(transeffect(tt))  { } 

THEN       transstatus(tt) := ABORT 
 END; 

 
val  ReadTran (tt  TRANSACTION )    
       WHEN   tt  trans   

 transstatus(tt) = PENDING  
 ran(transeffect(tt))= { } 

       THEN     val := transobject(tt)   database    ||  transstatus(tt) := COMMIT 
        END; 

Fig. 2. Operations of abstract transaction model

- The invariant t ∈ trans ⇒ ValidUpdate(transeffect(t),transobject(t)) indicate
that all updates must be valid.

Starting a Transaction

The event StartTran(tt), given in Fig.2, models starting a new transaction tt.
The guard given in the WHERE statement ensure that tt is a fresh transac-
tion. The ANY statement sets the variables transobject(tt) and transeffect(tt)
so that transobject(tt) is a non empty set of objects and transeffect(tt) is some
valid update on the objects. A transaction tt is considered as read-only if the
ran(transeffect(tt)) is set to an empty set and it is considered an update trans-
action if ran(transeffect(tt)) contains at least one mapping of the form (o �→v).
The status of transaction tt is set to PENDING.
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REFINEMENT     Replica2 
REFINES               Replica1 
 
SETS                     SITE ;  
      SITETRANSSTATUS={commit,abort,precommit,pending} 
 
VARIABLES         trans, transstatus, activetrans, coordinator, sitetransstatus, 
                              transeffect, transobject, freeobject, replica 
 
INVARIANT         activetrans  SITE  trans   
       coordinator   trans  SITE    
                             sitetransstatus  trans  (SITE  SITETRANSSTATUS) 
                             replica  SITE  ( OBJECT  VALUE)  
       freeobject  SITE  OBJECT 
 
INITIALISATION     trans :=      || transstatus :=        || activetrans :=   
                           ||  coordinator  :=   || sitetransstatus  :=      ||  transeffect := {}    
     ||  transobject  := {}   || freeobject  := SITE   OBJECT 
                           ||    ANY  data  WHERE  data  OBJECT  VALUE  
                                THEN  replica :=  SITE   {data}  END 
 
 Fig. 3. Initial part of Refinement

Commitment and Abortion of Update Transactions

The event CommitWriteTran(tt) models commitment of an update transaction.
As a consequence of the occurrence of this event, the abstract database is updated
with the effects of the transaction and its status is set to commit.

The event AbortWriteTran(tt) models abort of an update transaction. As a
consequence of occurrence of this event, the transaction status is set to abort and
its effects are not written to the database. The B specification of these operations
are given in Fig.2.

Commitment of Read Only Transactions

The event ReadTran(tt), given in Fig.2, models commitment of a read-only trans-
action tt. A pending read-only transaction tt commits after reading the objects
from the abstract database defined by variable transobject(tt). A read-only trans-
action commits by returning the values of the objects as a partial database.

6 Refinement of Transactional Model

The initial part of the refinement of the abstract model is given in Fig.3. The
B specification of events of the refinement are introduced later in this section.
The abstract B model of transactions maintains a notion of an abstract central
database. The variable database represents a central database in this model. In the
refinement, the notion of replicated database is introduced. The abstract variable



Rigorous Design of Fault-Tolerant Transactions 353

Participating Site

ExeCommitDecision
ExeAbortDecision

 SiteAbortTx
SiteCommitTx

BeginSubTran

AbortWriteTran
CommitWriteTran

Coordinator

IssueWriteTran
StartTran

Fig. 4. Events of Update Transaction

database is replaced by a concrete variable replica in the refinement. It may be
noted that in the abstract model given in Fig.2, an update transaction performs
updates on an abstract central database whereas in the refined model, an update
transaction updates replicas at each site separately. A read-only transaction
reads the data from the replica at the site of submission of the transaction. A
brief description of the refinement in Fig.3 is given below.

- The variables coordinator, replica, activetrans,freeobject and sitetranstatus
are introduced in the refinement. The variable coordinator is defined as a
total function from trans to SITE. A mapping of form (t �→s) ∈ coordinator
implies that site s is a coordinator site for transaction t.

- Each site maintains a replica of the database. The variable replica is ini-
tialized to have the same value of each data object at each site. A mapping
(s �→(o�→v)) ∈ replica indicate that site s currently has value v for object o.

- Variable activetrans keeps a record of transactions running at various sites,
i.e., it is in the state pending or precommit. A mapping (s �→t) ∈ activetrans
indicates that site s is running transaction t. The variable freeobject keeps a
record of objects at various sites which are free, i.e., those objects which are
not locked by any active transaction.

- The variable sitetransstatus maintains the status of all started transactions
at various sites. A mapping of form (t �→(s �→commit))∈ sitetransstatus indi-
cate that t has committed at site s.

- The new events such as IssueWriteTran, BeginSubTran, SiteAbortTx, Site-
CommitTx, ExeAbortDecision and ExeCommitDecision are introduced in
operations.

An informal logical ordering of the occurrence of various events of the refinement
for an update transaction is given in Fig.4. These events are triggered within the
framework of two phase commit protocol. These events are either coordinator
site events or participating site event. A brief description of the events of the
refinement is given below.
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StartTran(tt)                                                                                           
ANY      ss, updates, objects    
WHERE    ss  SITE  

 tt  trans  
 updates  UPDATE   
 objects  1 (OBJECT) 
 ValidUpdate (updates,objects) 

THEN         trans := trans  {tt}      ||  transstatus(tt) := PENDING   
                     ||   transobject(tt) := objects   ||  transeffect(tt) := updates 
                   ||   coordinator(tt) := ss 
                    ||   sitetransstatus(tt)(ss) := pending 
END; 
 
IssueWriteTran(tt)                                                                                  
WHEN     tt  trans   

 (coordinator(tt)  tt)   activetrans   
 transstatus(tt)=PENDING 
 ran(transeffect(tt))  { }   
 transobject(tt)  freeobject[{coordinator(tt)}] 
 tz.(tz  trans  (coordinator(tt)  tz)   activetrans  

                           transobject(tt)  transobject(tz) =  ) 
THEN      activetrans := activetrans  {coordinator(tt)  tt}    
                 ||  sitetransstatus(tt)(coordinator(tt)):= precommit 
                      ||  freeobject := freeobject - {coordinator(tt)}  transobject(tt) 
END; 
 

Fig. 5. Refinement: Coordinator Site Events-I

Starting and Issuing a Transaction

Submission of a transaction tt is modelled by the event StartTran(tt). The event
IssueWriteTran(tt) models the issuing of an update transaction at the coordina-
tor from a set of started transactions which are not in conflict with other issued
transactions at the coordinator site. The guard of IssueWriteTran(tt) ensures
that a transaction tt is issued by the coordinator when all active transactions tz
running at the coordinator site of tt are not in conflict with tt, i.e.,

tz ∈ trans ∧ (coordinator(tt) �→ tz ) ∈ activetrans
⇒ transobject(tt) ∧ transobject (tz ) = ∅

The B specification for events StartTran(tt) and IssueWriteTran(tt) of the re-
finement are given in Fig.5.

Commitment and Abortion of Update Transactions

Refined specifications for the commit and abort events of update transaction tt are
given in Fig.6. An update transaction tt globally commits only if all participating
sites are ready to commit it, i.e., it has status pre-commit at all sites.
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CommitWriteTran(tt)     
     ANY             pdb        
     WHERE    tt  trans   
        pdb =  transobject(tt)  replica(coordinator(tt) 
        ran(transeffect(tt)) { }   
        (coordinator(tt)  tt)  activetrans 
              transstatus(tt) = PENDING  
        s.( s  SITE  sitetransstatus(tt)(s) = precommit ) 
              (s,o)  (s  SITE  o  OBJECT  o  transobject(tt)  (s  o)  freeobject) 
              s.(s   SITE  (s  tt)  activetrans) 
     THEN        transstatus(tt) := COMMIT    || activetrans := activetrans -{coordinator(tt) tt} 
                  || sitetransstatus(tt)(coordinator(tt)):= commit     
                   || freeobject := freeobject  {coordinator(tt)}  transobject(tt) 
                   ||  replica(coordinator(tt))  :=  replica(coordinator(tt))  transeffect(tt)(pdb)  
      END; 
 
AbortWriteTran(tt)      
      WHEN        tt  trans  
     ran(transeffect(tt)) { }   
     (coordinator(tt)  tt)  activetrans 
                   transstatus(tt)=PENDING   
     s. (s  SITE  sitetransstatus(tt)(s)= abort) 
      THEN         transstatus(tt) := ABORT        || activetrans := activetrans -{coordinator(tt) tt} 
           || sitetransstatus(tt)(coordinator(tt)):= abort 
           || freeobject := freeobject  {coordinator(tt)}  transobject(tt) 
      END; 
 
val  ReadTran(tt,ss)    
       WHEN         tt  trans   
     transstatus(tt)=PENDING   
     transobject(tt)  freeobject[{ss}] 
                   ss = coordinator(tt)  
     ran(transeffect(tt)) = { }    
      THEN          val := transobject(tt)  replica(ss)   || sitetransstatus(tt)(ss) := commit  
               || transstatus(tt):=COMMIT              
       END; 
 

Fig. 6. Refinement: Coordinator Site Events - II

As a consequence of the occurrence of the commit event at the coordinator, the
replica maintained at the coordinator site is updated with the transaction effects,
data objects held for transaction tt are declared free and the status of the transac-
tion at the coordinator site is set to commit. The AbortWriteTran(tt) event ensures
that an update will abort if it has aborted at some participating site.

Further Refinement of Commit Event

The event CommitWriteTran(tt) can be further refined under the following
observations.
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- sitetransstatus(t)(s)= precommit ⇒ (s �→t) ∈ activetrans
- o ∈ transobject(t) ∧ (s �→t) ∈ activetrans ⇒ (s �→ o) 	∈ freeobject

These observations can be included as invariants in a further refinement allowing
the guards of the CommitWriteTran(tt) event to be simplified. The simplified
guards for the refined CommitWriteTran(tt) are given below.

[ tt ∈ trans
∧ ran(transeffect(tt)) 	= {∅}
∧ transstatus(tt)= PENDING
∧ ∀s.( s ∈ SITE ∧ sitetransstatus(tt)(s)= precommit) ]

Read only Transactions

The specification of executing a read-only transaction is also given in Fig.6. A
pending read-only transaction tt returns the value of objects in the set transob-
ject(tt) from the replica at its coordinator. The necessary conditions for occur-
rence of this event are as follows.

[ transstatus(tt)=PENDING ∧ ran(transeffect(tt))= {∅}
∧ transobject(tt) ⊆ freeobject [{ss}] ]

As a consequence of the occurrence of this event, transaction tt reads the objects
from the replica at site ss as,

val := transobject(tt) � replica(ss)

It may be noted that in the abstract model given in Fig.2, a read-only transaction
read the objects from abstract database as,

val := transobject(tt) � database

In refinement checking, we need following invariant to show that the refinement
is valid.

(ss �→ oo) ∈ freeobject ⇒ database(oo) = replica(ss)(oo)

A further explanation of this invariant is given in Section 6.

Starting a Sub-transaction

The BeginSubTran(tt,ss) event models starting a subtransaction of tt at partic-
ipating site ss. The specification of this event is given in Fig.7. The guard of
BeginSubTran(tt) ensures that a sub transaction of tt is started at site ss when
all active transactions tz running at ss are not in conflict with tt and transaction
tt has precommitted at the coordinator site of tt :

- (ss �→ tz ) ∈ activetrans ⇒ transobject(tt) ∧ transobject(tz ) = ∅
- sitetransstatus(tt)(coordinator(tt))= precommit

As a consequence of the occurrence of this event, transaction tt becomes active
at site ss and the sitetransstatus of tt at ss is set to pending.
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BeginSubTran(tt,ss)  
WHEN           tt   trans    
    sitetransstatus(tt)(coordinator(tt)) = precommit 
               (ss  tt)  activetrans    
    ss  coordinator(tt)    
    ran(transeffect(tt)) { } 
               transobject(tt)  freeobject[{ss}]   
    transstatus(tt)=PENDING 
               tz.(tz  trans  (ss  tz)   activetrans   transobject(tt)  transobject(tz) = ) 
THEN        activetrans := activetrans  {ss  tt}               ||  sitetransstatus(tt)(ss) := pending 
               || freeobject := freeobject - {ss}  transobject(tt) 
END; 
 

SiteCommitTx(tt,ss)   
 WHEN         (ss  tt)   activetrans    
     sitetransstatus(tt)(ss)= pending 
                  ss  coordinator(tt)     
     ran(transeffect(tt)) { }   
     transstatus(tt)=PENDING 
   THEN           sitetransstatus(tt)(ss) := precommit 
   END; 
 
SiteAbortTx(tt,ss)  
 WHEN          (ss  tt)  activetrans  

    sitetransstatus(tt)(ss)= pending 
                ss  coordinator(tt)    
    ran(transeffect(tt)) { }   
    transstatus(tt)=PENDING 
THEN           sitetransstatus(tt)(ss) := abort    || freeobject := freeobject  {ss}  transobject(tt) 
                || activetrans := activetrans -{ss  tt} 
END; 
 

 
 

Fig. 7. Refinement: Participating Site Events -I

Pre-commitment and Abortion of Subtransaction

A participating site ss can independently decide to either pre-commit or abort
a subtransaction. The events SiteCommitTx(tt,ss) and SiteAbortTx(tt,ss), given
in Fig.7, model pre-committing or aborting a subtransaction of tt at ss. Pre-
committing a transaction at a participating site is considered as a commit guar-
antee given to the coordinator by a participating site. In the case of abort, a site
sets all objects of transaction tt free and a subtransaction is removed from the
list of active transactions at that site.

Coordinator Decision of Global Commit

We have already seen how the refined CommitWriteTran(tt) and AbortWrite-
Tran(tt) model the global commit or abort decision. The event of ExeCommit-
Decision(tt,ss) and ExeAbortDecision(tt,ss) given in Fig.8 model commit and
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ExeAbortDecision(ss,tt)  
WHEN          tt  trans   
     (ss  tt)   activetrans    
    transstatus(tt) =ABORT 
               ss  coordinator(tt)  
    ran(transeffect(tt)) { } 
THEN        sitetransstatus(tt)(ss):= abort    
   || activetrans := activetrans -{ss  tt} 
              || freeobject := freeobject  {ss}  transobject(tt) 
END; 
 

ExeCommitDecision(ss,tt)    
       ANY             pdb      

WHERE        tt   trans    
 (ss  tt)   activetrans    
 transstatus(tt) = COMMIT  
 ss  coordinator(tt)  
 ran(transeffect(tt))  { } 
 pdb =  transobject(tt)  replica(ss)   

THEN            activetrans := activetrans -{ss  tt}      
    ||  sitetransstatus(tt)(ss) := commit 
               ||  freeobject := freeobject  {ss}  transobject(tt) 
                    ||  replica(ss)  :=  replica(ss)  transeffect(tt)(pdb)  
END; 
 

Fig. 8. Refinement: Participating Site Events -II

abort of tt at participating site ss once the global abort or commit decision
has been taken by the coordinating site. In the case of global commit, each site
updates its replica separately.

In our model, messaging among the site is not dealt explicitly. A transaction may
deadlock due to race conditions in a replicated database. It is our assumption that
ordered delivery of messages may be used to prevent deadlock arising due to two
simultaneous update requests on the same objects fromtwodifferent sites. A formal
development of causal ordering ofmessages for fault tolerant transactions and their
implementation with logical clock has been proposed in [31].

7 Gluing Invariants

The one copy equivalence consistency criterion require us to prove that our
refinement (replicated database) is a valid refinement of the abstract transac-
tion model (abstract central database). We have replaced the abstract variable
database in the abstract model by the variable replica in the refinement. An
abstract machine is refined by applying the standard technique of data refine-
ment. If a statement S that acts on variable a, is refined by another statement
T that acts on variable b under invariants I then we write S �I T. The invari-
ant I is called the gluing invariant and it defines the relationships between a
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Table 2. Events Code

RT/ST Read/StartTran IWT IssueWriteTran CWT CommitWriteTran
AWT AbortWriteTran BST BeginSubTran SAT SiteAbortTx
SCT SiteCommitTX ECT ExeCommitDecision EAT ExeAbortDecision

and b. Replacing the abstract variable database in machine Replica1 by concrete
variable replica in refinement Replica2 results in proof obligations generated by
the B tool. Initially, the only proof obligations that can not be proved involve
the relationship between variables database and replica. These proof obligations
were associated with the events ReadTrans and CommitWriteTran. In order to
prove these we added the gluing invariants-I shown in Fig.9. The name of various
events of our model and their corresponding event codes are given in Table 2.

The invariant Inv-1 means that a free object oo at site ss represents the value
of oo in the abstract database. We have omitted the quantification over all iden-
tifiers (tt,ss,oo) to avoid clutter. When invariant Inv-1 is added to the refined
machine, the B tool generates further proof obligations associated with several
other events. Discharging these additional proof obligations required further in-
variants given by Gluing Invariants-II in Fig.10. A brief description of these
invariants is given below.

- Inv-2 : If a transaction t is active at its coordinator then all transaction
objects o ∈ transobject(t) in the abstract database have the same value in
the replica at the coordinator.

- Inv-3 : If two conflicting transactions t1 and t2 are active at a site s, they
must represent the same transaction, i.e., t1=t2 . This also implies that two
different conflicting transactions can not be active at the same time at the
same site s.

- Inv-4 : For a committed transaction t which is active at one of the site s,
the new values of objects defined by transeffect(t) reflects the value of those
objects in the abstract database.

Following a similar approach, in order to preserve the invariants in Fig.10, we
have to prove another set of invariants given by Gluing Invariants-III in Fig.11.
The brief description of invariants in Fig.11 are given below.

- Inv-5 : For a committed transaction t which is still active at a participating
site s, the value of any read-only objects of t is the same in replica(s) as in
database.

                         Invariants                    Required By 
___________________________________________________________________________ 
 
/*Inv-1*/          (ss oo)   freeobject  database(oo) = replica(ss)(oo)           RT,CWT 
 
 Fig. 9. Gluing Invariants-I
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     Invariants              Required By 
___________________________________________________________________________ 
 
/*Inv-2*/     (coordinator(t)  t)   activetrans       AWT,CWT,EAD,ECD 
    o  transobject(t)      
    database(o) = replica(coordinator(t))(o)   
/*Inv-3*/  (s  t1)   activetrans           ST,IWT,BST 
     (s  t2)   activetrans       
                     transobject(t1)  transobject(t2)     
    t1=t2    
/*Inv-4*/  transstatus(t)= COMMIT          CWT,AWT,RT,SCT 
    (s  t)   activetrans                                          
    o   dom(transeffect(t)(transobject(t)  replica(s))) 
                    database(o) = transeffect(t)(transobject(t)  replica(s))(o) 
 

Fig. 10. Gluing Invariants -II

                    Invariants                 Required By 
___________________________________________________________________________ 
 
/*Inv-5*/  transstatus(t)= COMMIT             CWT,AWT,BST,ECD 
                    o   transobject(t)          SAT,SCT 
    (s  t)   activetrans      
                    o   dom(transeffect(t)(transobject(t)  replica(s)))              
                  database(o) = replica(s)(o) 
/*Inv-6*/  transstatus(t)=ABORT                                                   AWT,EAD,ECD,ST 
                      sitetransstatus(t)(coordinator(t))= abort 
/*Inv-7*/ transstatus(t)= COMMIT                                                CWT,AWT,EAD,ECD,ST 
                     sitetransstatus(t)(coordinator(t))= commit           
 
 
 

Fig. 11. Gluing Invariants -III

                         Invariants                   Required By 
___________________________________________________________________________ 
 
/*Inv-8*/   transstatus(t)  COMMIT         CWT,AWT,EAD, 
                          (s t)   activetrans           ECD,RT 
                       o   transobject(t)  
     database(o )= replica(s)(o)             
/*Inv-9*/  transstatus(t)  PENDING         ST,IWT, SAT,SCT 
     ran(transeffect(t)) { }    
                (coordinator(t)  t)   activetrans 
 
 
 
 
 
 
 
 

Fig. 12. Gluing Invariants -IV
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- Inv-6,7 : If a transaction t commits or aborts globally, it must have either
committed or aborted locally at its coordinator.

Finally the B tool generates more proof obligations to preserve Invariant-III
which in turns requires Gluing Invariants-IV shown in Fig.12. The brief descrip-
tion of Invariants-IV is given below.

- Inv-8: A transaction t which has not globally committed and is still active
at some site s, then for all objects o ∈ transobject(t), value of object o at
replica(s) is the same as its value in abstract database. Since this refers to the
situations where a transaction is not committed, therefore it also involves
the situations where the transaction global status is either PENDING or
ABORT.

- Inv-9: An update transaction whose global status is not PENDING must not
be active at its coordinator site. This refers to situations where the global
status of an update transaction is either COMMIT or ABORT.

We observe that at every stage new proof obligations are generated by the B
tool due to the addition of new invariants. In this process at every stage we also
discover further invariants to be expressed in our model. After four iterations of
invariant strengthening, we arrive at an invariant that is sufficient to discharge all
proof obligations. By discharging the proof obligations we ensure that refinement
is a valid refinement of the abstract specification.

8 Conclusions

In this paper we have presented a formal approach to modelling and analyz-
ing a distributed transaction mechanism for replicated databases using Event
B. The abstract model of transactions is based on the notion of a single copy
database. In the refinement of the abstract model, we introduced the notion of
a replicated database. The replica control mechanism presented in the paper al-
lows an update transaction to be submitted at any site. An update transaction
commits atomically updating all copies at commit or none when it aborts. A
read-only transaction may perform read operations on any single replica. The
various events given in the B refinement are triggered within the framework of
commit protocols which ensure global atomicity of update transactions despite
site or transaction failures. The system allows the sites to abort a transaction
independently and keeps the replicated database in a consistent state.

Distributed algorithms [19] are difficult to verify and their verification has
long been an issue of study. The work reported in [15] applies formal modelling
to a replica control strategy and considers proof of correctness. They use I/O
automata to model an algorithm and then prove properties about all trace be-
haviors of the automation. Instead of proving trace properties, we prove that
our model of the algorithm is a correct refinement of a abstract model of single
copy database. Also [15] does not consider transaction failures at sites.

The system development approach considered is based on Event B, which
facilitates incremental development of dependable systems. The work was carried
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out on the Click’n’Prove B tool. The tool generates the proof obligations for
refinement and consistency checking. The majority of proofs were discharged
using the automatic prover of the tool, however one third of the complex proofs
required use of the interactive prover. These proofs helped us to understand the
complexity of problem and the correctness of the solutions. They also helped us
to discover new system invariants providing a clear insight to the system. Our
experience with this case study strengthens our believe that abstraction and
refinement are valuable technique for modelling complex distributed system.
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Abstract. This chapter establishes a common base for discussing re-
configurability in distributed software systems in general and in perva-
sive systems in particular, by introducing a generic reconfiguration cycle.
Following this cycle, we discuss in detail three former efforts on recon-
figurable pervasive systems, and draw conclusions about the capacity of
existing approaches to deal with open, dynamic, ad hoc environments.
We, then, outline our approach towards uncontrolled reconfiguration
targeting environments in which no centralized coordination or prior
awareness between services being composed is assumed. Our solution
supports awareness of service semantics and related service discovery,
configuration change detection and state transfer, interface-aware dy-
namic adaptation of service orchestrations and conversation-aware check-
pointing and recovery.

1 Introduction

Dynamic reconfiguration proved, along the years, to be a major issue towards
the development of dependable distributed software systems. In principle, we
may distinguish three basic types of reconfiguration situations based on the tar-
geted needs [1]. First, we have corrective reconfiguration that aims at dealing
with faults causing failures in the constituents of a system. Second, we have
perfective reconfiguration that targets changes performed towards meeting the
evolving functional and non-functional requirements of the system. Finally, we
have adaptive reconfiguration aiming at the proper functioning of devices and
their hosted applications that are dynamically integrated in a computing system
without prior knowledge of the functional constraints (e.g., available functionali-
ties and resources) imposed by this system. The first two types of reconfiguration
were typically targeted by stationary distributed systems. On the other hand,
the need for the last type of reconfiguration arose with the latest emergence
of pervasive computing systems. An in between evolution with respect to these
two system domains were nomadic computing systems, which added wide area
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mobility to stationary distributed systems and were a precursor to pervasive
computing systems. There, mobility makes the computing environment less pre-
dictable than in stationary systems, thus as well implying the need for adaptive
reconfiguration, to a lesser extent, however, than in pervasive systems.

Reconfiguration in stationary distributed systems – architecturally modelled
in terms of components and connectors [2] – concerns adding, removing or sub-
stituting components or connectors. Changes should take place at runtime to
avoid compromising the availability of the overall system. The basic techniques
to achieve this goal rely on a main authority that is often called reconfiguration
manager [3]. This authority has knowledge of the changes that are going to take
place and its main responsibility is to perform them, whilst not jeopardizing the
overall system integrity. Techniques proposed for handling reconfiguration aim
at isolating a component of the system that is to be removed or substituted by
enforcing request blocking [3,4] or request redirection [5] on components that
use this component. By request blocking, this component eventually reaches a
state where it is not used, and reconfiguration can be safely performed. Request
redirection supports immediate component replacement: a connector can direct
all communication after a certain point in time from the old component to the
new one. In this case and if the components are statefull, state transfer [4,6,7]
from the old component to the new one enables a seamless transition.

Evolution to nomadic computing systems enabled users to be mobile and to
carry around wireless devices. The key concept in such systems is that a client
software entity resides on the user’s device and is connected to some remote
server software entity. Connectivity between client and server may be intermit-
tent due to insufficient wireless network coverage or limited bandwidth shared
between multiple users. However, it is assumed that eventually the client will
reconnect to the same server or to some replica of the server. Then, the objec-
tive is to enable users to use their mobile devices even during periods of low or
non-connectivity. The basic technique applied is to emulate locally at the client
the remote server, e.g., by locally replicating server data [8,9] or code [10], or by
just buffering client requests, and by synchronizing client and server upon re-
connection [11]. Further attention may be required when a server is updated by
multiple clients, or when clients connect to and disconnect from more than one
server replica [8]. Data integrity should be maintained when data is replicated
on multiple hosts. In terms of architectural modelling, connectors can handle
transparently for components the disconnection, reconnection, or connection to
replicated servers.

Being one step further, pervasive computing systems aim at making compu-
tational power available everywhere. Mobile and stationary devices will dynam-
ically connect and coordinate to seamlessly help people in accomplishing their
tasks. For this vision to become reality, systems must adapt themselves with
respect to the constantly changing conditions of the pervasive environment: (i)
the highly dynamic character of the computing and networking environment
due to the intense use of the wireless medium and the mobility of the users;
(ii) the resource constraints of mobile devices, e.g., in terms of CPU, memory
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and battery power; and (iii) the high heterogeneity of integrated technologies
in terms of networks, devices and software infrastructures. In response to such
challenges, the Service-Oriented Architecture (SOA) paradigm [12] provides an
attractive solution. A service is a consistent piece of functionality made avail-
able over the network by a software entity and accessed by other – customer
– software entities. A service is accessible at a specific network address, via a
well-defined interface, i.e., a set of supported operations, and over a specific mid-
dleware communication protocol. Besides this generic definition, no restriction
is imposed on the implementation of a service, which enables integration of di-
verse technologies and loose coupling between interacting services, making SOA
suitable for dynamic, heterogeneous environments. Further, a service supports
a set of valid service conversations, which are processes in the form of workflow
that define the behavior of the service. All the above information concerning
a service constitutes the service specification, which may be published on the
network, thus, made discoverable by customers via a service discovery protocol.
Discovering a service means matching a required service specification with a pro-
vided service specification. A direct matching technique constitutes in comparing
– among others – the required and provided interface specifications syntax, as-
suming that two syntactically compatible interfaces imply semantically – i.e.,
concerning their meaning – compatible services. However, enforcing an agree-
ment on a common syntax for denoting semantics is impossible to achieve in
open environments, such as pervasive computing environments. Thus, the latest
tendency is towards adopting semantic representation paradigms for specifying
and matching services even when these differ in their syntactic interfaces. Such
paradigms employ ontologies to represent concepts and related well-founded for-
malisms to enable machine reasoning about them [13]. Finally, services may be
composed towards realizing complex functionalities. Two essential models for
service composition are: (i) service orchestration, where a customer invokes a set
of services in a coordinated way, and (ii) service choreography, where a set of
services interact with each other in a peer-to-peer fashion.

Regarding reconfiguration, the distinctive feature of pervasive systems is that
software entities making up a system may have no a priori knowledge of each
other before their dynamic composition. Bindings between entities are ad hoc
and temporary, which is served pretty well by the loosely coupled interaction
model of SOA. However, unawareness not only concerns which concretely the
entities are, but is further extended to the specification of entities, e.g., in terms
of interfaces and conversations. This means that entities composing pervasive
systems have not necessarily been developed to be syntactically compatible. In
the same direction, after a disconnection, a client software entity will most likely
not reconnect to the same server software entity or even a replica of it, but rather
to another server. This new server should be semantically equivalent or similar
to the old one, and thus compatible with the client, but it will not necessar-
ily be syntactically compatible with it. Thus, semantic paradigms prove to be
essential for pervasive systems. Semantic matching enables associating seman-
tically compatible software entities, but this is not sufficient. To integrate such



Engineering Reconfigurable Distributed Software Systems 367

entities, adaptation is further needed in terms of interfaces and conversations.
Furthermore, no central reconfiguration management can be established in such
systems. We call such reconfiguration uncontrolled. Uncontrolled reconfiguration
in pervasive systems distinguishes itself from the controlled one in stationary
and nomadic systems, where prior awareness is a basic assumption.

Uncontrolled reconfiguration in pervasive systems presents numerous chal-
lenges as made clear in the above. In this chapter, we particularly contribute with
an approach for reconfiguration in pervasive environments, which comprises syn-
tactic and semantic dynamic service discovery, change detection, state transfer,
interface-aware orchestration adaptation and conversation-aware checkpointint
and recovery mechanisms. Before presenting our approach to uncontrolled recon-
figuration in pervasive computing systems (Section 3), we examine in detail three
related efforts on reconfigurable pervasive systems (Section 2), which gives a con-
crete view of ongoing research in the domain, and discuss goals, strong points
and constraints in current approaches. We particularly examine the capacity of
these approaches to deal with open, dynamic, ad hoc pervasive environments. In
the beginning of the latter section, we introduce a general view of the reconfig-
uration procedure in distributed software systems, which establishes a common
base for discussing both existing approaches and the proposed one. Finally, we
conclude with a summary of this chapter, and point out open issues and future
work (Section 4).

2 Reconfigurable Systems

In this section, we discuss in detail three former efforts related to dynamic recon-
figuration of pervasive computing systems (Section 2.2). To allow comparative
study of such systems, we introduce a generic reconfiguration cycle, which pro-
vides an abstract descriptive view of the reconfiguration procedure of a system;
this cycle can pretty well apply to different distributed software systems – sta-
tionary, nomadic, pervasive – and related reconfiguration techniques (Section
2.1). Our detailed presentation of the three approaches allows a comprehensive
view of the whole reconfiguration procedure, each time for a complete, consistent
system.

2.1 Generic Reconfiguration Cycle

To allow a separation of concerns, we distinguish between the Reconfigurable
System (RS), its Context or Environment (CE), and the Reconfiguration Man-
agement System (RM), as depicted in Figure 1. CE is in constant interaction
with RS, for example, affecting RS functioning or hosting some functional entity
that may join RS as a result of reconfiguration. RM integrates all functionality
necessary for RS reconfiguration, while RS should only hold some architectural
and functional properties supporting its reconfiguration along with the capacity
to respond to RM actions; otherwise, RS is not aware of its reconfiguration.
We further assume that the architecture of RS, CE and RM can be described at
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a generic level in terms of components and connectors [2]. Based on that, we
deal with architectural reconfiguration of RS in terms of adding, removing and
substituting components [4] and connectors [6,7].

Fig. 1. Separation of concerns for reconfiguration

We call reconfiguration cycle a complete sequence of phases that takes place
during the execution of RS and reconfigures it taking it from a consistent state
to another consistent state, i.e., one from which RS can continue normally its ex-
ecution rather than progressing towards an error state. We introduce the generic
reconfiguration cycle depicted in Table 1, where lines are associated to phases
succeeding one another in time in ascending order, and columns are associated to
functional entities that may act or be acted upon concurrently, specifically RS,
CE and RM. RM’s activity is presented in two columns: the first one indicates
RM’s overall functions, while the second one is dedicated to RM’s data pro-
cessing concerning reconfiguration. Our reconfiguration cycle aims at enabling a
common, abstract descriptive view of the reconfiguration procedure for a large
variety of systems. Representing the exact state transitions of RS, CE and RM
and the eventually complex interactions taking place between them for any of
these systems with a single reconfiguration cycle is certainly not possible. Thus,
we make no strict assumptions about the functional entities and phases of the
reconfiguration cycle, other than the ones stated in the above. In the following,
we introduce in detail the various phases of the reconfiguration cycle.

In Phase 1, RS executes normally, while RM monitors both RS and its CE.
RM holds a set of data concerning RS, which were produced at RS development
or deployment time. Thus, RS configuration description represents the current
configuration of RS, which includes, for example, the functional dependencies be-
tween components. Further, the normal execution of the combination RS-CE is
delimited by a set of execution constraints, for example, which components need
to be up and running, or minimum communication bandwidth available to RS
[14,15]. Definition of normal execution naturally directly defines as well abnor-
mal execution. Along with this, enhanced execution may be identified, enabling
automated perfective reconfiguration. Finally, a set of possible reconfiguration
strategies and actions may be provided, specifying the scope of RM’s role [14,15].
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Table 1. Generic reconfiguration cycle

Moreover, during its execution, RM manages some dynamic RS data. Thus, it
produces monitoring data concerning RS and CE. It may as well periodically
save dynamic RS data, such as the state of RS components, thus checkpoint-
ing RS. Another example of such activity is the local caching or pre-fetching of
remote server data by a client entity in nomadic systems [8,9].

In Phase 2, a cause for reconfiguration emerges, generated by either RS or
CE. This cause may be accompanied by abnormal RS execution or not. An
example of the first case may be the disconnection or failure of an essential
component of RS, or the drop in the available bandwidth, while an example of
the second case may be the availability of a new component that offers enhanced
quality of service. In Phase 3, RM detects the emerging cause for reconfiguration
after having observed current monitoring data and compared it with execution
constraints. In Phase 4, RM decides its way of intervention to reconfigure RS. To
this aim, RM uses the current RS configuration description and the set of possible
reconfiguration strategies and actions in order to produce the sequence of actual
reconfiguration actions that it will take. For example, based on dependencies
between components, RM may identify components affected by the intended
reconfiguration and take some preventive action before applying reconfiguration.

In Phases 5, 6 and 7, RM applies the sequence of actual reconfiguration ac-
tions. In Phase 5, RM prepares RS for reconfiguration. This preparation con-
cerns components affected by the intended reconfiguration and may take several
forms. For example, request blocking [3,4], request redirection [5] or request
queuing may be enforced on components that interact with a component that
is about to leave RS. RM may save the state of a leaving mobile component
just in time if the component issues a warning before leaving; this provides a
perfectly up-to-date state, which may not be the case for state saved by periodic
checkpointing. A similar last minute action may be taken by a client entity in a
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nomadic system to locally pre-fetch remote server data just before disconection
[9]. Further in the same phase, RM determines the participation of CE to the
new configuration, i.e., whether some new components coming from CE will join
RS. This task heavily depends on whether RM has a priori or not knowledge
of the new components that will be introduced into RS. Such awareness may
range: from concretely knowing already from the deployment of RS which these
components are, to having to carry out dynamic component discovery based
on syntactic or semantic descriptions of the interfaces and supported conversa-
tions of the components. In Phase 6, RM may have to adapt either one or both
of RS and CE to the new configuration, so that their integration be possible.
RS adaptation may involve coordination workflow adaptation to be compatible
with a new component being introduced, or workflow rollback to cancel some
interrupted transaction. CE adaptation may involve transferring the saved state
of the leaving component to its substitute component [6,7,16]. In the case of a
nomadic system upon reconnection, CE adaptation may involve synchronizing
the remote server with updates maintained locally on the client, or submitting
to the server all locally queued client requests [8]. Finally, in Phase 7, RM car-
ries out the final reconfiguration action on RS, possibly integrating some new
components coming from the CE. Now, the new RS configuration description is
available, and RS may go back to normal execution (Phase 1).

In the next section, we study in detail three approaches to reconfigurable
pervasive systems on the basis of the above discussion. We highlight the rela-
tion of the presented efforts to the introduced generic reconfiguration cycle by
referencing specific phases of the cycle.

2.2 Reconfigurability in Pervasive Computing Systems

The first two reconfiguration approaches that we discuss in this section, RAPID-
ware and CASA, focus on techniques enabling a smooth transition of the system
from its initial to its target configuration, where no loss of component processing
or data occurs during reconfiguration. RAPIDware calculates a safe reconfigu-
ration strategy and employs request blocking based on dependencies between
components, while CASA manages state transfer at object programming level for
dynamically replaceable local objects. The third approach, Polymorphic appli-
cations, enables migration of distributed component-based applications between
pervasive environments. The combined presentation of these three approaches
allows looking into how well-established techniques coming from stationary dis-
tributed systems are applied to pervasive systems, as well as pointing out new
requirements and solutions specific to pervasive systems.

RAPIDware. This project addresses perfective reconfiguration of component-
based pervasive systems [17]. The reconfiguration approach is applied to a wire-
less video streaming application, which involves a video server multicasting video
streams to clients residing on laptops and handheld devices. Streaming is secure
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via encryption of the wireless stream. Reconfiguration aims at enhancing system
properties: in the specific application, encoder and decoder components are sub-
stituted by alternative ones in order to enforce a higher encryption scheme, thus
enhancing security. All available encoder and decoder components are known be-
fore system execution and have been developed to directly fit together in terms
of interfaces and behavior. Reconfiguration is executed by a central reconfigu-
ration manager (RM), which coordinates a set of reconfiguration agents (RAs)
attached to system components involved in the reconfiguration.

RM holds the system configuration description, which is in terms of (Phase
1): (i) dependency relationships between components, i.e., the correct function-
ality of a component may require the correct functionality of other components;
and (ii) critical communication segments between components, i.e., communica-
tion segments whose interruption may cause errors in the system. Further, the
reconfiguration manager holds the set of all possible reconfiguration actions. A
fixed cost is associated to each reconfiguration action, depending on associated
system blocking time, delay of data delivery and resource usage.

Upon some external command, e.g., by the user, RM obtains the target con-
figuration (Phases 2-3). A reconfiguration procedure is safe if (a) it does not
violate dependency relationships and (b) it does not interrupt critical commu-
nication segments. Based on that, RM specifies reconfiguration in three steps
(Phase 4):
1. Based on the source and target configurations and the dependency relation-

ships, RM produces a set of safe configurations. A safe configuration is one
that satisfies all the dependency relationships.

2. RM constructs a safe reconfiguration graph, where vertices are all safe con-
figurations and edges are all possible reconfiguration actions connecting safe
configurations. This graph can be deduced from available reconfiguration
actions. To ensure a safe reconfiguration procedure, reconfiguration actions
should not interrupt critical communication segments.

3. RM applies Dijkstra’s shortest path algorithm on the graph to find a safe
reconfiguration path with minimum weight, where the weight of a path is
the sum of the costs of all the edges along the path.

Finally, RM applies the calculated reconfiguration path. For each reconfigu-
ration action in the path:
1. RM sends block commands via RAs to affected components to enforce sus-

pension of their functioning. Block commands are applied after waiting for
the last critical communication segment to be completed (Phase 5).

2. RM/RAs carry out the actual reconfiguration action, e.g., replacing a com-
ponent by another one. When the adaptation action is done, RM/RAs send
resume commands to blocked components reactivating them (Phase 7).

The interest of the RAPIDware approach lies in the systematic way for cal-
culating a safe reconfiguration path. Certainly, even if applied to a wireless mo-
bile application, a well-controlled environment is required, where all information
about component functionality and interaction, both for current and for new
system components, is known in advance.
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CASA (Contract-based Adaptive Software Architecture). This frame-
work enables dynamic adaptation of a component-based software application
executing on a mobile device in response to changes in contextual information
such as user’s location, or to changes in resource availability such as bandwidth
[18]. A device hosting adaptive applications is required to run an instance of the
CASA runtime system, which is responsible for monitoring the changes in the
environment and adapt these applications accordingly. Components in CASA-
enabled applications are objects in an object-oriented programming language.
This reconfiguration approach is realized at object programming level and con-
sequently inherits all restrictions coming from the strong coupling inherent in
the object-oriented paradigm – which was relaxed in the descendant component-
oriented and service-oriented paradigms. Nevertheless, it presents a number of
features that can be of interest as well to reconfigurable systems based on the
latter two paradigms.

Replaceability of objects is determined based on the notion of a set of alter-
native classes, which is a collection of classes whose instances can dynamically
replace each other. This means that these classes: (1) conform to the same in-
terface; (2) the pre- and post-conditions of the methods of their interfaces are
the same; and (3) a valid persistent state of an instance of one such class can
be mapped to a valid persistent state of an instance of another such class. To
enable replacement, the Bridge software architectural pattern [19] is used, where
every set of alternative classes is associated with a unique Handle class, which
conforms to the same interface as the classes of the set. Clients of an object are
actually bound to an instantiation of the Handle class, which allows hiding from
them the fact that the object may be dynamically replaced.

CASA adaptation is based on an application contract, which is divided into
context elements. Each context element represents a state of contextual informa-
tion of interest to the application and contains a list of alternative configurations
of the application, suited to the particular state of contextual information. Thus,
reconfiguration is decided and carried out in order to respect the application
contract (Phases 1-3). Regarding specification of reconfiguration (Phase 4), two
replacement strategies are defined: (a) in lazy replacement, an already running
component is allowed to complete its current execution before being replaced;
(b) in eager replacement, the execution of a running component is suspended,
and the execution resumes again from the point where it was suspended, af-
ter the component is replaced. To eagerly replace an object objA by an object
objB, where both are handled by a Handle object objH, the following steps are
taken:

1. objH starts queueing calls made to objA (Phase 5).
2. objA is notified to suspend execution of the current call. Suspension can be

done only when execution of objA has reached one of the explicitly prede-
fined safe points at which execution can be resumed correctly by objB. The
information about the safe point where the call is suspended is passed to
objH (Phase 5).

3. objH creates objB (Phase 5).
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4. objH reinvokes the suspended call on objB, passing the information about
the safe point where the call was previously suspended, in order to enable
objB to resume the execution correctly (Phases 6-7).

A necessary condition for valid eager replacement is that the transferred state
of objA can get transformed into a reachable state of objB. However, this may
not be possible for a transient state of objA. In this case, lazy replacement is
applied, where objA is not running at the time of replacement, and thus the
state to be transferred is the persistent state of objA, which, as indicated above,
can become a valid persistent state of objB.

As already indicated, even if the object-oriented architectural style may be
restrictive, the interest of CASA lies in its management of state transfer which
is a general issue concerning reconfiguration. As also observed for RAPIDware,
reconfiguration in CASA requires as well a well-controlled local environment.
Response to context changes based on an application contract is also worth
noting in CASA, even if the alternative application configurations suited to a
particular contextual state are pre-defined.

Polymorphic applications. This approach addresses application migration
with the user across pervasive environments that may differ in terms of available
devices and services as well as context [20]. Migration consists in suspending an
executing application and resuming it later in a new environment. The targeted
pervasive environment, called an Active Space, is situated in a physical space like
a room or a building, and consists of various entities including users, applications,
services and devices. An example polymorphic application is one that supports
a user’s slide show by integrating distributed resources, such as a PowerPoint
viewer component, a wall-mounted display and a GUI component. Application
structure is based on the Model-View-Controller framework [6], consisting of
input (controller), output (view) and logic (model) components. Applications
execute on top of Gaia, a CORBA-based meta operating system that manages
all physical and digital entities in an Active Space.

Reconfiguration concerns three kinds of application adaptation: change in the
type of components, change in the number of components, and change in the
devices on which these components execute. These types of adaptation are based
on the notion of semantic similarity of application components, stating that an
application component can be substituted by another component if it allows the
user to perform the same tasks in some manner. Thus, a PowerPoint viewer can
be replaced by an Acrobat Reader viewer (if appropriate data transcoding is
done) or by a Speech Engine that reads out the text in the slides. Certainly, Ac-
robat Reader is semantically closer to PowerPoint. Semantic similarity between
components is determined with the help of ontologies that define a hierarchy
of components based on the kinds of tasks that they help users to perform.
Application migration between two Active Spaces is performed by two collab-
orating instances of the Migration Service (MS), a central coordinating entity
that controls an Active Space.

MS holds the current structure of an executing application stored in an Appli-
cation Customized Description (ACD) file. Further, MS has access to the Space
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Repository, which maintains information concerning all devices, components and
services available in the Active Space (Phase 1). The migration procedure is trig-
gered by the user through a GUI; the user specifies the Active Space to which the
application is to be migrated (Phases 2-3). Then, MS saves the current state of
the application along with its structure in the ACD file, and communicates the
file to the new Active Space over the network. MS in the new Active Space takes
the old ACD of the application and generates a new ACD for the application,
after performing appropriate adaptation in three steps (Phases 4-6):

1. MS consults the Active Space ontologies to identify classes of components
that are semantically similar to the components listed in the old ACD, as well
as classes of devices that can host these component classes. Some additional
components that should do, e.g., data transcoding, may be needed.

2. MS queries the Space Repository to get instances of the classes of devices
obtained from the previous step that are available in the new Active Space.

3. For each identified component, MS decides the cardinality and the devices on
which the components must be instantiated using rules involving the context
of the new Active Space and preferences of the user. Context includes the
location of the user in the room, the location of devices, the presence of other
people in the room, the current activity of the user and so on.

Finally, once MS arrives at a new application structure, it instantiates this
application in the new Active Space (Phase 7).

The approach of polymorphic applications is very interesting, as it highlights
several issues of pervasive applications, such as mobility of users between perva-
sive environments, on-the-fly integration of available resources and adaptation
to them, semantic similarity between resources, and context-awareness. Never-
theless, even if resources differ between Active Spaces, composition of resources
within an Active Space is pretty direct in terms of interfaces, and only data en-
coding adaptation needs to be dealt with. While this is reasonable for stationary
resources, it cannot be assumed for mobile resources present on devices of mobile
users, which also make part of the pervasive environment.

Concluding this section, we point out that the presented efforts on reconfig-
urable pervasive systems largely assume a well-controlled environment: a central
coordinating entity is responsible for reconfiguration, and has absolute control
and, mostly, full a priori knowledge over available resources. In the next sec-
tion, we deal with reconfiguration in uncontrolled environments, in an attempt
to come closer to the realization of the concepts of pervasive and ubiquitous
computing.

3 Uncontrolled Reconfiguration in Pervasive Computing
Systems

In this section, we present our vision of uncontrolled reconfiguration targeting
open, dynamic, ad hoc pervasive environments. Our approach adopts the SOA
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paradigm. To discuss in more detail the basic functional requirements for deal-
ing with uncontrolled reconfiguration in SOA-based environments, we employ
a motivating scenario inspired by [21] (Section 3.1). Based on this scenario, we
introduce a service-oriented pervasive environment enhanced with awareness of
semantics of services (Section 3.2), and we outline the essential mechanisms
supporting reconfiguration in such an environment (Section 3.3). Throughout
the present section, we relate our approach to the discussion of Section 2 by
referencing specific phases of the generic reconfiguration cycle.

3.1 Scenario and Requirements

In our scenario, we are placed in the near territory of the island of Cyprus. Our
pervasive environment consists of several services offering, e.g., tourist informa-
tion, hotel reservation and car reservation. These services execute on stationary
hosts located onshore. The environment that we consider further comprises mo-
bile hosts located on cruise ships, yachts, and other boats. At a short distance
from the island, software entities residing on mobile hosts may have access to the
services located onshore through a wireless network. If moving further from the
island, however, their only possibility to access the services is through satellite-
based connections, which are usually expensive and inefficient (especially in the
case of GEO networks). To confront this problem, the island’s local authorities
realized the following setup. The stationary software entities located onshore
may actually recruit volunteer mobile entities that can serve as their proxies.
Proxies provide indirect wireless access to the onshore services to mobile entities
that do not have direct access to these services. As an exchange, the crew mem-
bers and the tourists onboard may benefit from more favorable hotel, restaurant
and car rental prices. Figure 2 gives three snapshots of our pervasive environ-
ment resulting from the mobility of the participating entities. In Figure 2(a),
the mobile entity S4 is added to the pervasive environment. The entity requires
using a hotel reservation service. Since S4 does not have direct access to the sta-
tionary services, it selects S5 as a proxy to the required service. In Figure 2(b),
the geographical location of S5 obliges it to leave the pervasive environment. In
Figure 2(c), S4 has to deal with the change triggered by the S5 entity. The re-
moval of S5 may take place while S4 is trying to use the proxy services provided
by S5.

Preserving the environment’s consistency in the presence of the aforemen-
tioned changes involves dealing with the following issues. In Figure 2(a), the
newly added entity should be able to execute its orchestration processes. Con-
sequently, it should discover services suitable for the realization of these or-
chestration processes. In the open environment of the scenario, discovering ser-
vices that are syntactically suitable should be considered as the exception rather
than the rule. Thus, syntactic discovery of services is not sufficient; support-
ing semantic description and matching of services is an essential requirement.
Then, to be able to use the discovered, semantically compatible services, adap-
tation is further needed in terms of interfaces and conversations. The newly
added entity should adapt its orchestration processes to both the interfaces and
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(a) A ship added to the network b) A ship removed from the network

(c) Adapting to configuration changes

Fig. 2. A pervasive environment formed around the island of Cyprus

conversations of the discovered services. Getting to Figures 2(b) and (c), entities
that use the leaving entity should detect its departure, so as to properly adapt
their affected orchestration processes. The affected processes are distinguished
into pending and inactive. Pending processes are ones whose execution started
before the mobile entity decides to leave and involve the removed entity. Inac-
tive processes are non-instantiated processes that involve the removed entity. In
the case of a pending process, the affected entity should discover new services
that can substitute the ones of the removed entity, semantically and, if possible,
syntactically suitable, and adapt the process to the interfaces and conversations
of the new services. Furthermore, the process should be rolled back to a point
where it is possible to resume its execution, now with the new services in the
place of the removed ones. State transfer between the old and the new services,
if and whenever possible, could minimize rolling back or make it unnecessary.
Finally, entities used by the leaving entity should also detect this incident so as
to terminate all the pending conversations initiated by this entity.

The main outcome from the above discussion is that the effective support for
dynamic reconfiguration in pervasive environments requires mechanisms for:

(1) semantic and syntactic service discovery; (2) configuration changes detec-
tion and state transfer; (3) process dynamic adaptation; and (4) checkpointing
and recovery.

Apart from our motivating example, several other scenarios may involve the
requirements we identified here. Consider for instance some of the scenarios
identified by ISTAG (Information Society Technologies Advisory Group) for
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ambient intelligence (AmI) environments [22]. In the scenario that concerns AmI
environments for business, employees who used to work at a fixed location, to-
day change working locations and environments frequently. In such cases, the
employees that are added in a new working environment would require access
to location-specific, syntactically or semantically compatible services. Similarly,
in AmI environments supporting E-Government, people may migrate from one
country to another one. Different countries may employ semantically equivalent
procedures for these people (e.g., for validating a driver’s licence), supported
by semantically compatible E-Government services offered by each community.
Confronting the previous, involves transparently adapting the processes used by
the immigrants with respect to the E-services of the new country that they visit.
In AmI for intelligent transport systems the goal is to develop intelligent vehicles
able to monitor traffic conditions using services offered either by the environ-
ment or by other vehicles. Moving from one area to another implies adapting
the processes used by intelligent vehicles with respect to the interfaces offered
by the AmI environment that supports the new area.

In the following sections we concentrate on our sailing example. In particular,
we introduce a semantics-aware service-oriented environment that can effectively
represent the pervasive environment of our sailing scenario, and we outline the
required mechanisms in the context of this environment.

3.2 Semantic Service-Oriented Pervasive Environment

Adopting the service-oriented architectural style in the context of pervasive com-
puting systems implies employing a middleware infrastructure that supports it.
SOA middleware infrastructures for pervasive environments should support the
execution of services on top of resource-constrained devices. As an appropri-
ate such middleware platform, we employ WSAMI [23], which is a lightweight
Web Services middleware suitable for mobile devices with limited resources. A
Web service is identifiable by a URI (Unified Resource Identifier), has its in-
terface described in the XML-based WSDL language, and is accessible over the
XML-based SOAP communication protocol on top of standard Internet protocols
like HTTP.

To deal with dynamic reconfiguration in a pervasive environment, we intro-
duce the notion of a pervasive configuration C, which consists of entities avail-
able in the environment: a set ME of networked mobile entities, and a set SE
of networked stationary entities, where an entity e (mobile or stationary) is a
collection of software functionalities – which will be specified in the following
– executing on a host over WSAMI. For the sailing scenario introduced in the
previous section, availability is defined with respect to a specific entity e, i.e.,
C.ME ∪ C.SE are entities accessible to e thanks to network coverage; we also
call them e’s neighboring entities in the following. In terms of the generic recon-
figuration cycle (Section 2.1), C is the union of the reconfigurable system (RS)
and its context or environment (CE). We specify the addition (e.g., may apply
to the case of an entity joining the environment) and removal (e.g., may apply
to the case of an entity leaving the environment, or the case of an entity that



378 A. Zarras et al.

fails) of an entity e as two actions that cause, respectively, the inclusion and
exclusion of e in C.ME (C.SE). The addition and the removal actions may be
events generated by either the environment or the entities themselves.

An entity e (mobile or stationary) consists of: a set PS of provided appli-
cation services ws, a set PR of orchestration processes pr, a service discovery
service SD, a process execution engine PEE, a changes detection service D, a
checkpointing service CH, a recovery service RE and possibly, a state transfer
service ST. The e.SD, e.D, e.CH, e.RE and e.ST are system services, as well de-
ployed over the WSAMI platform. In terms of the generic reconfiguration cycle,
these system services, as well as part of the functionalities of e.PEE, constitute
the reconfiguration manager (RM), which is completely distributed: there is an
RM instance included in each entity of C. The e.PS comprises concrete service
specifications. A concrete service specification is a tuple consisting of the WSDL
interface specification of the service, the URI identifying where the service is
deployed, and the service conversations, which follow the standard, XML-based,
Business Process Execution Language (BPEL) [24].

Orchestration processes are also defined in BPEL. Each process pr that be-
longs to e.PR is a tuple that contains: a set of activities a, and a set of services
ws required for the execution of these activities. Activities may be either simple
ones, involving the invocation of an operation provided by a service, or com-
plex ones, consisting of more than one constituent activity. Complex activities
include sequence activities, comprising the sequential execution of two or more
constituent activities; while activities, consisting of the iterative execution of a
constituent activity; flow activities, involving the concurrent execution of two or
more constituent activities; and switch activities, allowing the selection amongst
two or more alternative activities. Required services ws are identified in terms of
required WSDL interface specifications. URIs of concrete provided services that
syntactically match these required services are resolved by service discovery. We
assume that concrete services that provide interfaces syntactically compatible to
the ones required by the orchestration process, also provide syntactically com-
patible conversations.

Finally, to enable semantic service specification and discovery, C is further
characterized by an ontology O. The ontology O is defined for the purpose of this
chapter as a graph whose nodes represent different semantic classes sc of services
that may be provided by the entities of C. The edges between the nodes represent
semantic relations between the classes. Currently, we assume generalization and
aggregation relationships. Each semantic class aggregates the syntactic WSDL
specifications of alternative standard interfaces which may be provided by dif-
ferent, semantically compatible, services ws that belong to this class; along with
each service interface specification, the service conversations specification is also
included. Different, semantically compatible, services that belong to the same se-
mantic class provide alternative service conversations. Figure 3 gives an ontology
that corresponds to the scenario discussed in the previous section. Specifically,
we have the HotelReservation, CarReservation and TouristInformation classes,
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Fig. 3. An ontology for the sailing scenario

comprising services that may provide various kinds of interfaces (e.g., the IBIS-
Interface and the HiltonInterface interfaces for the case of HotelReservation).

3.3 Mechanisms Supporting Reconfiguration

In the context of the semantic service-oriented pervasive environment introduced
in the previous section, we now sketch the mechanisms elicited in Section 3.1.

Semantic and Syntactic Service Discovery. At the time when the entity
e is added in a pervasive configuration C, e’s service discovery e.SD obtains
information about services provided by e’s (mobile and stationary) neighboring
entities (i.e., C.ME ∪ C.SE). More specifically, e.SD periodically checks the
environment for other instances of SD services hosted by neighboring entities,
and maintains a related registry. This task is realized by multicasting a discovery
request in a standard discovery protocol (e.g., the Service Location Protocol
- SLP). Then, e.SD provides two basic operations for syntactic and semantic
service search.

The syntactic search takes as input the WSDL interface specification of a re-
quired service ws. When invoked by e, e.SD makes corresponding calls to the SD
services of e’s neighbors. The replies of all neighbors concerning provided services
that syntactically match ws are merged into a single set RESws, which is returned
back to e. Caching the most recent replies enables optimizing service discovery la-
tency and bandwidth consumption. The semantic search takes as input a required
semantic class sc from the pervasive configuration ontology C.O, or the WSDL in-
terface specification of a required service ws. In the second case, the semantic class
sc to which ws belongs has to be resolved. The semantic search is executed in the
same way as above discussed for the syntactic search. Now, replies contained in
RESsc or RESws concern provided services that belong to the semantic class sc. In
the second case, this means that services contained in RESws semantically match
ws. Optionally, to increase the possibility of discovering a provided service that can
be employed, we may have supplementary semantic search calls for services that
belong to specializations of the semantic class sc.

In our sailing scenario, a possible syntactic search could be for hotel reser-
vation services which provide an interface that follows the IBISInterface WSDL
specification (Figure 3). Similarly, a possible semantic search could be for any
services belonging to the HotelReservation semantic class.

Configuration Changes Detection and State Transfer. The changes de-
tection service (D) is a simple push-based notification service. When an entity e
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is removed from a pervasive configuration, a corresponding event may be pushed
in the change detection services of all of e’s neighbors (mobile and stationary),
which are thus notified about the fact that e is being removed or has already
been removed from the pervasive configuration C (this depends on the particular
network latency). A broadcast-based approach is employed for (D) instead of a
unicast one that would involve only the entities that are affected by the removal,
since it is not possible to know all of them in advance. Actually, the entity being
removed knows only the entities that are engaged in a pending conversation with
it. It can not possibly know the entities that intend to begin a conversation with
it. Getting to our sailing scenario, at the time when S5 is leaving, notification
events may be sent to all of S5’s neighbors (including S4, who is actually us-
ing S5). Issuing a notification before departing or not may depend on the good
will of the leaving entity or simply on its consciousness of its departure. In the
case of no warning, pending connections with the leaving entity will be broken
and new connection attempts will fail; thus, the changes detection services of
affected entities will eventually be notified by the underlying middleware. Cer-
tainly, when applied, pre-departure notification enables detecting the change
and dealing with it as early as possible. Moreover, it enables communicating the
state of the removed entity. The state of e is the aggregate of the states of all
services provided by e. When e is removed from a pervasive configuration C, its
(current or logged) state may be exported with a corresponding event to the ST
services of all of its neighbors. This information may be directly discarded or
used afterwards so as to initialize compatible entities that are going to take e’s
place in the execution of orchestration processes that use e’s services.

ProcessDynamicAdaptation. TheprocessexecutionenginePEE ofanentitye
has two main functionalities. The first one is to execute the orchestrationprocesses
of e. This execution may be triggered by a user in an application-dependent way
(e.g., through a GUI). The second functionality amounts in adapting the orchestra-
tionprocessesdynamically in response to changes thatoccur in thepervasive config-
urationC that includes e.Thefirst functionalityofPEE is a typical oneprovidedby
variousprocess execution engines that already exist fornon-mobile service-oriented
systems (e.g., ActiveBPEL1). On the other hand, the second functionality is intro-
duced specifically to deal with the problem of dynamic reconfiguration in pervasive
computing configurations. The realization of the second functionality involves the
service discovery (SD), changes detection (D), state transfer (ST ), checkpointing
(CH ) and recovery (RE ) services.

We first consider the case of reconfiguration upon addition of an entity e to
the pervasive configuration C. In terms of the generic reconfiguration cycle, this
is actually an initial configuration of RS, which was not executing before. Upon
entering in C and if triggered in an application-dependent way, e is requested
to adapt its orchestration processes with respect to the services provided by the
entities of C (Phases 2-4). Accordingly, e searches for syntactically compatible
services required for the execution of its processes (Phase 5). If for every required

1 http://www.activebpel.org/
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wsj service used in a process pri the syntactic search returns a non-empty set
RESwsj of matching services, then one of them is selected. Following, e’s pro-
cess execution engine (e.PEE ) should adapt pri with respect to the URI of the
selected service (Phases 6-7). Suppose now that for a service wsj , required by
pri, the syntactic search returns an empty set of results. Following, e performs
a semantic search, which may also return a set of alternative services (Phase
5). Suppose that a service wssem

j is selected. Following, e.PEE should adapt pri

with respect to the interface, the conversations and the URI of wssem
j (Phases

6-7). Achieving this step in a systematic manner involves using the concept of
refinement rules.

In general, the refinement rules are a part of the overall reconfiguration pol-
icy/strategy [25] used upon an event that signals a configuration change (entity
addition, removal). Specifically, a set of refinement rules is specified along with
every pair of services (wsj , wssem

j ) which provide alternative standard interfaces
that are aggregated by the same semantic class sc of the pervasive configuration
ontology C.O. A refinement rule is a mapping relation between the activity ai

of a conversation process realized using wsj and a corresponding activity aj of a
conversation process realized using wssem

j . In the simplest case, a refinement rule
may directly map an invocation activity to another invocation activity. However,
it is also possible that a refinement rule maps an invocation activity to a more
complex activity (e.g., a sequence activity), or the inverse (e.g., a sequence ac-
tivity to a simple invocation activity). We may envision even more complicated
refinement rules, mapping complex activities (e.g., a sequence activity) to other
complex activities (e.g., a while activity). Hence, to adapt the processes that use
the wsj service into corresponding ones that use the wssem

j one, e.PEE uses the
refinement rules defined for the (wsj , wssem

j ) pair.
Getting to our sailing scenario, let us assume that when S4 joins the en-

vironment (Figure 2(a)), it requires a service that provides the IBISInterface
towards the realization of the orchestration process that is given in Figure 4(a).
According to this process, the customer at some point confirms a reservation
by executing a sequence of two invocations, involving the Book and the Pre-
Payment operations. The PrePayment operation is required by IBIS hotels to
deposit a percentage of the overall amount to pay for the room. Suppose now
that there are no available proxies providing the IBISInterface and the seman-
tic search returns among others a semantically compatible service that provides
the HiltonInterface. The HiltonInterface provides operations that are semanti-
cally compatible with the operations of the IBISInterface, may differ, however,
in terms of operation names and parameter names and data types. With regard
to process structure, interaction with the service providing the HiltonInterface
is simpler given that there is no need for advance payment. Consequently, to
adapt S4’s orchestration process to the conversation of the service providing the
HiltonInterface, besides adapting semantically matching operations in terms of
names and parameters, the sequence of the Book and the PrePayment operations
should be reduced into a simple invocation that involves the Confirm operation
of the HiltonInterface (Figure 4(b)).
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Fig. 4. Inactive process adaptation

We now consider the case of reconfiguration upon removal of an entity e’ from
the pervasive configuration C. As previously discussed, the changes detection
service D of an entity e will receive a notification (either soft or hard) about
entity e’ removed from the pervasive configuration C (Phases 2-3). If e uses e’ in
some of its orchestration processes (i.e., the affected processes), these processes
should be adapted as in the case where e is added to C (Phase 4). Specifically,
for every affected process pri, a syntactic search, possibly followed by a semantic
one, is performed for a substitute entity (Phase 5). Following, the affected process
is adapted by e.PEE in the way introduced earlier (Phase 6). At this point, the
role of e.PEE is done if pri is an inactive process. Otherwise, if pri is pending, the
following steps are further followed (Phases 6-7): If the removed entity issues a
notification before departing, and both the removed and the substitute entities
provide state transfer capabilities and are state-compatible, then the part of
the state of the removed entity that concerns pri is imported in the substitute
entity. Then, the execution of pri resumes from a point that depends on the
previous step. This particular step is realized based on the checkpointing and
recovery mechanisms detailed in the following paragraph. In the worst case, all
the activities of pri that involve the removed entity may have to be restarted.

Checkpointing and Recovery. The checkpointing and recovery mechanisms
discussed here are primarily inspired by traditional mechanisms used in con-
ventional distributed systems [26], adapted to the concepts of orchestrations
and conversations. Specifically, the checkpointing and recovery mechanisms take
charge of rolling back a pending orchestration process to a point that preserves
the process consistent execution. These particular mechanisms are triggered if



Engineering Reconfigurable Distributed Software Systems 383

an entity e′ is substituted by another one e” and the entities do not provide any
state transfer capabilities. As previously discussed, an orchestration process in
BPEL consists of different types of activities executed using operations offered
by Web services deployed in the environment. Moreover, a Web service specifi-
cation comprises the service’s interface (i.e., the operations provided), a service
URI and the valid conversations that can be realized by invoking the service’s
operations (Section 1). Therefore, an orchestration process actually consists of
a set of valid conversations executed over a set of Web services. Based on this
observation, we define consistency for a pending orchestration process pr of e
as follows: The execution of the pending orchestration process after reconfigu-
ration is consistent if there exist no pending constituent conversations of this
process that execute using data produced by conversations involving e′. Based
on this definition, we discuss in the following the basic responsibilities of the
checkpointing and recovery mechanisms.

The checkpointing mechanism is used on the side of Web services that par-
ticipate in the execution of certain conversations. The checkpointing mecha-
nism requires from a Web service to specify along with its valid conversa-
tions the decomposition of these conversations into atomic sub-conversations.
An atomic sub-conversation is a subset of the activities of a conversation that
must be rolled-back as a whole. Based on this specification, the mechanism check-
points the state of the service at the beginning of each atomic sub-conversation
triggered.

The recovery mechanism is used on the side of entities performing certain
orchestration processes. Specifically, before the beginning of each orchestration
pr performed by e that consists of conversations with a set of Web services,
the orchestration is divided into atomic sub-conversations, based on the Web
services specifications. Following, the mechanism discovers the possible data de-
pendencies that exist between sub-conversations performed with Web services
offered by different entities. A data dependency exists between two atomic sub-
conversations spri and sprj if the entity that performs the orchestration process
uses data resulting from output messages of operations invoked during spri to
construct input messages issued during the invocation of operations performed
during sprj .

Taking, now the case where e′ is substituted by e”, the following actions are
taken by the recovery mechanism of e. If pr is pending, the recovery mechanism
locates every pending sub-conversation sprj that depends on conversation spri

performed with e′. Following, it notifies the checkpointing mechanism respon-
sible for spri that spri must be rolled-back to the beginning of its execution.
Regarding the overall orchestration pr, the recovery mechanism rolls it back to
the beginning of the execution of the first sub-conversation performed with e′.

Getting back to our sailing scenario, suppose that S5 is leaving the environ-
ment and issues a related notification. S4’s changes detection service will receive
this notification. Suppose that at this time S4 is executing a pending orchestra-
tion process that consists of a flow of two conversations that execute concurrently
(Figure 5). The first one is the HiltonInterface-based conversation of Figure 4(b)
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Fig. 5. Pending process adaptation

that executes on S5 and the second one is an AVISInterface-based car reservation
conversation executed on S2. The syntactic search that follows the notification of
S4 results in selecting S3 as S5’s substitute. Suppose that both conversations are
specified as being atomic. This means that before their beginning the states of
S5 and S2 are saved by the checkpointing mechanisms deployed on the aforemen-
tioned entities. In the absence of state transfer, the whole HiltonInterface-based
conversation should be restarted. Moreover, if there exists a data dependency
between the two conversations the AVISInterface-based conversation must be
rolled-back. Otherwise, the execution of the latter continuous normally.

4 Conclusion

In this chapter we established a common base for investigating reconfigurability
in distributed software systems, by introducing a generic reconfiguration cycle.
Based on this cycle, we investigated in detail former efforts on reconfigurable
pervasive systems. The main outcome of this study was that these approaches
are strongly influenced by principles, assumptions and techniques proposed in
the context of stationary systems, where reconfiguration is controlled in the
sense that a central reconfiguration manager is in control, a priori aware of
entities currently present in the system and entities that are candidate to join
the system. Finally, we discussed our approach towards uncontrolled reconfig-
uration targeting environments in which no centralized coordination or prior
awareness between services being composed is assumed. The proposed solution
comprises syntactic and semantic dynamic service discovery, change detection,
state transfer, interface-aware orchestration adaptation and conversation-aware
checkpointing and recovery mechanisms.

A number of issues are still open in our approach, which are to be dealt with in
our current and future work. A language for specifying refinement rules and the
process adaptation mechanism are currently under development. Particularly,
we focus on an aspect-oriented approach that relies on our prior work in this
field [27]. The development and global interconnection of ontologies proposed by
paradigms such as the Semantic Web [28] may prove useful for our approach.
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The issue of QoS-aware process adaptation is also an interesting direction for
future research [29]. Finally, till now, we have considered service compositions
in the form of orchestrated processes. Extending the proposed approach to deal
with services choreography is challenging as it may possibly involve distributed
coordination mechanisms for service discovery, changes detection, checkpointing,
recovery, state transfer, and process adaptation.

References

1. Oreizy, P., Medvidovic, N., Taylor, R.N.: Architecture-based runtime software
evolution. In: Intl. Conf. on Software Engineering, Kyoto, Japan (1998)

2. Garlan, D., Shaw, M.: An introduction to software architecture. Technical Report
CMU-CS-94-166, Carnegie Mellon University (1994)

3. Kramer, J., Magee, J.: The evolving philosophers problem: Dynamic change man-
agement. IEEE Transactions on Software Engineering 16(11) (1990) 1293–1306

4. Bidan, C., Issarny, V., Saridakis, T., Zarras, A.: A dynamic reconfiguration service
for corba. In: ICCDS ’98: Proceedings of the 4th IEEE International Conference
on Configurable Distributed Systems. (1998) 35–42

5. Minsky, N., Ungureanu, V., Wang, W., Zhang, J.: Building reconfiguration primi-
tives into the law of a system. In: ICCDS ’96: Proceedings of the 3rd International
Conference on Configurable Distributed Systems. (1996) 62–69

6. Blair, G.S., Blair, L., Issarny, V., Tuma, P., Zarras, A.: The role of software
architecture in constraining adaptation in component-based middleware platforms.
In: Proceedings of MIDDLEWARE’00. (2000) 164–184

7. Zarras, A.: Online upgrade of object-oriented middleware. Journal of Object
Technology 3(7) (2004) 121–140

8. Kistler, J.J., Satyanarayanan, M.: Disconnected operation in the coda file system.
In: Thirteenth ACM Symposium on Operating Systems Principles. Volume 25.,
Asilomar Conference Center, Pacific Grove, U.S., ACM Press (1991) 213–225

9. Kuenning, G.H., Popek, G.J.: Automated hoarding for mobile computers. In:
SOSP ’97: Proceedings of the sixteenth ACM symposium on Operating systems
principles, New York, NY, USA, ACM Press (1997) 264–275

10. Fuggetta, A., Picco, G.P., Vigna, G.: Understanding Code Mobility. IEEE Trans-
actions on Software Engineering 24(5) (1998) 342–361

11. Joseph, A.D., deLespinasse, A.F., Gifford, J.A.T.D.K., Kaashoek, M.F.: Rover: a
toolkit for mobile information access. In: Proceedings of the 15th ACM Symposium
on OperatingSystems Principles (SOSP ’95), Copper Mountain Resort, Colorado
(1995) 156–171

12. Papazoglou, P., Georgakopoulos, D., eds.: Service-oriented computing. In: Com-
munications of the ACM. Volume 46. ACM Press (2003)

13. Martin, D., Paolucci, M., McIlraith, S., Burstein, M., McDermott, D., McGuinness,
D., Parsia, B., Payne, T., Sabou, M., Solanki, M., Srinivasan, N., Sycara, K.:
Bringing semantics to web services: The owl-s approach. In: First International
Workshop on Semantic Web Services and Web Process Composition (SWSWPC
2004), San Diego, California, USA. (2004)

14. Cheng, S.W., Garlan, D., Schmerl, B.R., Sousa, J.P., Spitznagel, B., Steenkiste,
P., NingningHu: Software architecture-based adaptation for pervasive systems. In:
ARCS. (2002) 67–82



386 A. Zarras et al.

15. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
Architecture-based self-adaptation with reusable infrastructure. Computer 37(10)
(2004) 46–54

16. Soules, C., Appavoo, J., Hui, K., Silva, D., Ganger, G., Krieger, O., Stumm, M.,
Wisniewski, R., Auslander, M., Ostrowski, M., Rosenburg, B., Xenidis, J.: System
support for online reconfiguration (2003)

17. Zhang, J., Cheng, B.H., Yang, Z., McKinley, P.K.: Enabling safe dynamic
component-based software adaptation. In: Architecting Dependable Systems III,
Springer Lecture Notes in Computer Science (2005)

18. Mukhija, A., Glinz, M.: Runtime adaptation of applications through dynamic
recomposition of components. 16(11) (2005) 124–138

19. Gamma, E., Helm, R., Johnson, R.: Design Patterns. Elements of Reusable Object-
Oriented Software. Addison-Wesley Professional Computing Series. Addison-
Wesley (1995) GAM e 95:1 1.Ex.

20. Ranganathan, A., Chetan, S., Campbell, R.: Mobile polymorphic applications in
ubiquitous computing environments. In: Mobiquitous 2004 : The First Annual
International Conference on Mobile and Ubiquitous Systems:Networking and Ser-
vices, Boston, Massachusetts, USA (2004)

21. Pitkranta, T., Riva, O., Toivonen, S.: Designing and implementing a system for
the provision of proactive context-aware services. In: CAPS ’05: Proceedings of
the Workshop on Context Awareness for Proactive Systems. (2005) 21–30

22. IST Advisory Group (ISTAG): Software Technologies, Embedded Systems and
Distributed Systems - A European Strategy Towards Ambient Intelligent Environ-
ment. Technical report, IST (2002) http://www.cordis.lu/ist/istag.html.

23. Issarny, V., Sacchetti, D., Tartanoglu, F., Sailhan, F., Chibout, R., Levy, N., Ta-
lamona, A.: Developing ambient intelligence systems: A solution based on web
services. Automated Software Engineering 12(1) (2005) 101–137

24. IBM, Microsoft Corporation and BEA: Business Process Execution Language for
Web Service (BPEL4WS) v.1.0. Technical report, IBM, Microsoft Corporation,
BEA (2002) http://www.ibm.com/developerworks/webservices/library/ws-bpel/.

25. Porcarelli, S., Castaldi, M., Giandomenico, F.D., Bondavalli, A., Inverardi, P.: An
Approach to Manage Reconfiguration in Fault Tolerant Distributed Systems. In:
Proceedings of the ICSE 2003 Workshop on Software Architectures for Dependable
Systems. (2003) 71–76

26. Babaoglu, O., Marzullo, K.: Consistent Global States of Distributed Systems: Fun-
damental Concepts and Mechanisms. In Mullender, S., ed.: Distributed Systems.
Addison-Wesley (1993) 55–96

27. Zarras, A.: Applying Model Driven Architecture to Achieve Distribution Trans-
parencies. Information and Software Technology 48(7) (2006) 498–516

28. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. In: Scientific Amer-
ican. (2001)

29. Mokhtar, S.B., Liu, J., Georgantas, N., Issarny, V.: Qos-aware dynamic service
composition in ambient intelligence environments. In: ASE ’05: Proceedings of the
20th IEEE/ACM international Conference on Automated software engineering,
New York, NY, USA, ACM Press (2005) 317–320



Tools for Developing Large Systems (A Proposal)

Jean-Raymond Abrial

ETH Zurich, Switzerland
jabrial@inf.ethz.ch

Abstract. It is claimed, as a provocative thesis, that high level programming
languages and corresponding compilers might not be the right tools to be used
to construct large reliable software systems. An alternative is proposed which is
based on the concept of a System Development Database.
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The subject mentioned in the title of this short article does not seem, at first glance,
to be a genuine research subject. Although there are, from time to time, some famous
breakdowns of large computerized systems (as, for instance, recently at SBB in Zurich),
it seems nevertheless that these systems are working nowadays in a satisfactory fashion.
As a consequence, their construction process must have been mastered otherwise such
disasters would have occurred more frequently. This was clearly the case at the begin-
ning of last century with an emerging technology such as avionics. There were lots of
crashes due to the fact that people did not know how to construct good airplanes. The
main reason for this was that they did not understood yet the theory of flight mechanics,
which was in its infancy.

In our case, however, the situation is a bit different from that of early avionics in that
there is no clear theory yet related to large computerized systems. The most obvious
indication supporting this fact is that, most of the time, experts cannot clearly explain
why such systems indeed work correctly. When a serious breakdown occurs, the cor-
responding superficial reason is normally found after some time (not always however),
and it is usually repaired in a very ad-hoc fashion. But people are never sure that another
breakdown will not occur some time later, precisely because they do not know the more
profound reason for that earlier breakdown. It is my belief that such a state of the art is
not satisfactory.

From almost the beginning of Informatics, the main tools used to develop computer
systems were a High Level Programming Language and a corresponding Compiler.
There has been many of them (far too many in fact) always proposing new features
whose pretensions are to eventually solve the problem of constructing better programs
than the previous generation of High Level Programming Languages and Compilers
did. One can even regularly see in the literature the term “next generation of program-
ming languages” being used. Unfortunately, it does not seem to solve the problem since,
over the years, the famous software crisis is still with us.

An interesting research is then to investigate whether there could exist some other
intellectual means and tools that could be used instead of High Level Programming
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Languages and Compilers. It does not mean of course that we believe that we can re-
place final computer programs by something else. But, we would like to investigate
whether we could invent some other ways to obtain such final programs.

When High Level Programming Languages were invented in the sixties (i.e. Algol),
the idea was to make abstract programming patterns such as conditionals, loops, proce-
dure calls, and the like be first class citizens in the programming methodology. In the
more restricted realm of Assembly Code, such programming patterns did not exist ex-
plicitly but were all implemented by means of a single feature, namely the conditional
goto instruction. The High Level Programming Language was then an abstraction of
the more concrete Assembly Code. And the Compiler was the tool that allows us to
move from this abstraction to a concrete implementation.

An interesting statistics that can be obtained from high level source programs is the
ratio of the number of lines of code devoted to pure algorithms over the total number of
lines of code excluding comments and the like. Of course, the figures differ from one
application to the other but it is usually far less than 1/2. This means that such abstract
relational features as components, classes, methods, inheritance, visibility, assertions
and the like describing the objects, their properties, and their relationships are becom-
ing far more important than pure algorithmic features such as conditionals, loops, and
more generally computations. It is my belief that such abstract relational features are
not well handled in a High Level Programming Languages, whereas pure algorithmic
calculations are in my opinion still well handled in such languages.

In other engineering disciplines (i.e. mechanical construction) people do not hesi-
tate to use languages when they are clearly needed and other means when they are not
needed. For instance, they use the language Mathematica to define the formal compu-
tations related to their usage of the Calculus. But they do not use languages to describe
the complex relationships between the components of their future system, their proper-
ties, their links, etc. In fact they store the various components of their product in one
form or another and express the relationships that hold between them. We can consider
that they thus build a Database of their future system. The engineering process is sup-
ported by the contents of this Database, its modification, and the tools that are disposed
around it.

In our discipline, there is a frequent confusion between the two terms "assertion"
and "specification", even if both of them are written using a mathematical notation. An
assertion, is a local predicate that must always be true at some point in the execution
of a program: it can be either checked dynamically while the program is running or
better statically proved. But in no ways can such assertions represent the specifications
of a large computerized system. For the simple reason that the specifications of a large
computerized system essentially consist in the definition of a number of global proper-
ties by which it will be possible to state that the final system comprising software and
external equipment (including users) works in a correct fashion. Clearly, when writing
such properties the software part of the computerized system does not exist yet and even
sometimes also the external equipment. In fact, such global properties are not associ-
ated with specific pieces of code in the final software, they are rather supposed to be
globally maintained by the software in question together with its environment, which,
most of the time, are both supposed to run for ever. Moreover, the specifications, as
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just described, are the point of departure of the design which has also to be defined
first globally to end up eventually, by architectural decomposition, in some more local
properties: the assertions then appear to correspond to the final stage of a long design
process. It is quite clear that High Level Programming Languages (event “modern”
ones) are not at all suited to be the place for writing such specifications.

What is wrong is to have the semantics of the High Level Programming Language
being the medium defining the properties of the offered features. This is far more easily
handled and modifiable as the invariant properties of a System Construction Database.
It might still be useful to have some pretty printing of the contents of the Database. This
would resemble a high level program but would be produced as an additional output of
the construction process rather than as its input. In first approximation, the contents of
the System Construction Data Base is made of the various components of the system
in construction together with their relationships. These components are surrounded by
a number of tools that can be used to develop them. The System Construction Database
should not be confused however with what High Level Programming Language tech-
nology calls a “library”. In fact, it is far more general as explained below. The System
Construction Database approach offers quite a number of advantages over High Level
Programming Languages. Here are a few of them:

1. The System Construction Database can be used not only to store future software
components but also, more importantly, their various abstract, and later refined,
mathematical models. And here the tools that replace the compiler and even the
computer executing the final program are a proof obligation generator and a prover.
Specification, and design, and corresponding tools, are put together with implemen-
tation and corresponding tools. In this respect, the System Construction Database
contains the on-going design history of the software construction. It is important to
note that the specification of a large system is not a monolithic text but rather a suc-
cession of more and more precise mathematical models taking account gradually of
the requirements of the future system. High Level Programming Languages are not
at all appropriate to handle this task: they suffer from their initial purpose, namely
that of instructing a computer on the way to perform its computations. Specifica-
tions and design have nothing to do with instructing a computer, they rather record
the thoughts and reasoning of the engineers.

2. The System Construction Database approach will also induce a rather more appro-
priate way of elaborating the final product than that given by the usage of a High
Level Programming Languages and Compilers. Unless it is very small, you shall
never write a program and subsequently submit it to the compiler. This sequential
approach to construction will be replaced by a more reactive approach, which corre-
sponds to the way engineers work. You rather interact with the Database by entering
modeling elements, their properties, and their relationships. Such an interaction is
permanently supported in the background by tools working in a differential fashion
without being explicitly even invoked by the user.

3. The System Construction Database approach will also allow us to store and up-
date components which can be quite different in nature from computer programs,
namely models of pieces of equipments which might interact with the future soft-
ware components. Such models will be able to be refined as other future software
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models are. This will allow us to construct embedded systems by specifying and
designing their software parts in strong relationships with some modeling of their
environments.

4. Besides the formal tools we have already mentioned above in 1 (proof obligation
generators and provers), the System Construction Database may contain other tools
as well, being able to be applied to the various models, namely model checkers,
informal modelling (UML) to corresponding formal modelling tools, model ani-
mators, abstract interpretation tools, even testing tools, etc. The reason for incorpo-
rating such tools is that clearly there is no universal panacea. The engineers need to
have a large palette of possibilities at their disposal in order to construct their com-
puterized systems in the most effective way. The System Construction Database
offers the possibility to have all such tools working in an integrated fashion on all
the models that are recorded in the Database.

5. Besides the components and their mathematical models (be they future software
or environment components), it will be possible to also store in the System Con-
struction Database a document related to the requirements of the future system.
Such a document will take the form of natural language fragments intermixed with
slightly more structured texts containing the concise and precise requirements of
the system in construction. A useful analogy is that of a book of mathematics where
definitions and theorems are labeled, numbered, and written using a different font
from that used in the rest of the text corresponding to explanations and proofs:
this will make the definitions and theorems immediately separable from the rest of
the text. By structuring in this way the requirement document, the traceability of
the requirements will be handled in an integrated fashion within the System Con-
struction Database. This will be done by connecting each structured requirement
to some parts of the abstract models dealing with that requirement. This trace-
ability can then be pursued during the design phase and the final software and
environment construction. It must be noted here that such requirement documents
are usually very poor: either inexistent or far too verbose. As a consequence, the
designers have often lots of difficulties in extracting from them the precise require-
ments. Experience shows that the famous, and said to be inevitable, syndrome of
"specification changes during construction", appears to magically disappear when
such a special attention is payed initially to writing and structuring the requirement
document. Every large project must have an important initial phase devoted to this
task: the System Construction Database will then be the natural repository for such
requirement documents.

In conclusion, we question the present usage of High Level Programming Languages
for constructing large computerized systems. We propose instead to partially replace it
by defining and using a System Construction Database which will be far more appropri-
ate as an engineering medium than the actual programming languages. As a matter of
fact, this proposal is not really new: Eclipse is, among others, a proposal that has been
made for a number of years and that goes clearly in that direction.
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Abstract. This paper examines some aspects of the aims and goals of the RODIN
project and asks whether a successful outcome of the project will remove the
need for us to worry about programming languages and the meaning of program
source code. In common with some other currently ascendent approaches to soft-
ware engineering, such as model-based development, RODIN is leading towards
the construction of software models (in RODIN’s case precise software mod-
els) from which we may hope to generate source or even object code. So, does
this remove the need for us to be concerned with the form these automatically-
generated, intermediate representations take? Perhaps rather surprisingly, I con-
clude that the need to show an unbroken chain of confidence from requirements
to object code means that programming languages and their analysis, remain an
extremely important topic. I hope to show that the ability to produce better spec-
ifications and designs, as promised by approaches exemplified by RODIN, is a
necessary precondition for effective high-integrity software development rather
than a substitute for approaches currently in use.

1 Introduction

RODIN [12] (or more fully Rigorous Open Development Environment for Complex
Systems) is an EU funded research programme seeking to create a methodology and
supporting open tool platform for the cost-effective, rigorous development of depend-
able complex software systems and services. For the purposes of this position paper I
am focussing on one small aspect of this overall set of challenging and lofty goals: how
will we implement a system that has been “cost-effectively and rigorously developed”
using the RODIN methodology and tools?

Since the RODIN project is working towards formally-based, tool-supported meth-
ods for the construction of trustworthy, fault-tolerant systems. It seems obvious, at first
glance, that these lofty goals, if achieved, will eliminate our concerns about program-
ming languages and our need to reason about the meaning of program source code.
After all, if we have a mathematically-sound specification which we can use in the
following ways:

– to prove that certain safety or security properties are implemented and preserved;
– to animate so as to gain confidence that it meets the original user requirements; and
– as a basis for automatic code generation from which the implementation can be

derived

then what role is left for conventional programming languages?
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The answer to this conundrum can only be found by looking at the totality of the
high-integrity software challenge and then seeing what parts of that challenge are ad-
dressed by RODIN and what parts are left to be dealt with by other means. The chal-
lenges for formally-based approaches are:

– handling mismatches between the logical model used to construct the specification
and the real world in which the implementation lives;

– dealing with vital but non-functional requirements, such as performance or safety,
that might be very hard to express formally; and

– showing an unbroken chain of integrity from the specification to the ones and zeroes
on the hardware which implements it.

Adding the additional challenge of fault tolerance, a key objective of the RODIN project,
can modify or amplify these challenges but does not fundamentally change them.

2 The Impact of Fault Tolerance

The building fault-tolerant systems is a major subgoal of the RODIN project so it is
appropriate to consider how fault-tolerance affects the overall high-integrity software
challenge. Fault tolerance is a system level property. We might achieve the goal of fault
tolerance through some hardware means completely external to any software-controlled
device we are building. For example, a plant operator might watch the plant operating
on a closed-circuit TV screen and throw a large switch to turn on a backup control
system if he sees that the plant has stopped working. These kinds of solution have no
effect on the manner in which we construct high-integrity software.

Alternatively, and more likely, we will have to give some authority for fault toler-
ance to the software-controlled machines we are constructing. For example, part of the
functionality of a control system might be to monitor the values read from a sensor
and perform various tests to maintain confidence that the sensor is working correctly.
The same system might select a chain of various fall-back options when it suspects that
the sensor can no longer be trusted. These tests of trustworthiness and selection of fall
back strategies are software controlled and so impose precisely the same challenges as
the basic control functionality. So software-controlled fault tolerance does not change
the nature of the high-integrity software challenge, it just means that there is more
of it!

So I conclude that the need for fault tolerance does not fundamentally change the
nature of the high-integrity software challenge1: we either provide it independently of
the software, in which case it it out of scope; or provide it in software in which case it
is just another requirement, specification and design item for us to worry about along
with all the rest.

1 There is one obvious counter example to this general argument and that is where fault tolerance
can be moved to the operating system or even hardware level in a manner completely transpar-
ent to an application running on it; this approache is exemplified by high-reliability computing
platforms such as those produced by Stratus Techologies. http://www.stratus.com
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3 Boundaries of the Logical Model

3.1 Overview

All formal approaches to software construction work by creating a model of some aspect
or aspects of the desired system. The model may be pictorial or textual. To be a formal
model I would argue that it must have certain very specific properties. The model must
have defined semantics such that it is possible, by mechanical means, to obtain guar-
antees that the model has certain specified properties. Different models may be used
for different kinds of analysis and for the establishment of different properties. Com-
parisons between artefacts, for example specification and code, requires that a suitable
model exists for each. Furthermore, a method can only be regarded as a formal method
if its determination of the presence of a particular property is sound. Sound analysis
means that the method never asserts a property to be true when it may not be true. Note
that the converse case, the assertion that a property is false when it may be true, col-
loquially “the raising of false alarms”, is a usability issue but not a soundness issue.
Also note that these requirements do not imply that the method has to be complete: it
is acceptable for a method to return “don’t know” when trying to establish whether a
property holds.

So far this discussion has been wholly about our formal model. What actually matters
to us is the behaviour of our finished system. So a key property we need to establish is
how well the model represents the behaviour of the finished system. My experience is
that formal methods advocates, of which I am one, have a tendency to gloss over this
rather awkward point, preferring to focus on the wonderful things they can prove about
their model. It is perhaps also worth noting that this problem of equivalence between
models and reality forms a major part of engineering disciplines other than software and
that engineering failures frequently have causes that hide in the cracks between the two.
The series of accidents involving metal fatigue in Comet airliner fuselages and, more
recently, the wobbly Millenium Bridge, are both examples of the real world failing to
conform to the behaviour of an engineering model.

Formal models have three important limitations:

1. Their ability to capture and express some key user requirements, especially non-
functional ones.

2. The correspondence of the logic used in reasoning about the model with the be-
haviour of the real world.

3. The fidelity with which the model can be translated into binary object code on target
hardware.

The Figure 1 below illustrates the first and second of these limitations.
I will now consider each of these potential problem areas in turn.

3.2 Beyond Simple Functional Behaviour

Formal notations provide an extremely powerful mechanism for capturing the desired
functional behaviour of a system. We can unambiguously describe system state, inputs,
outputs and the relationship between them. There is ample evidence (see for example
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[1]) of the benefits of doing so, not least in the early resolution of requirements ambigu-
ity and conflict that results from the process of writing the specification. Unfortunately
many of the most complex challenges of software engineering are not readily expressed
as functional behaviour. We may have key design concerns about integrity, reliability or
security that are not about behaviour but rather how that behaviour is delivered.

As an example, consider the world’s simplest aircraft stores management system. It
comprises a single release button and a single weapon station. The functional require-
ment is simple: “when the button is pressed, the store falls off the weapon station”. We
can readily express this behaviour in any of our favourite formal notations and, indeed,
implement it in any of our favourite programming languages. If we are interested in
automatic code generation from our formal model then we can also readily define map-
ping rules from specification constructs to code constructs that will produce the desired
functional result.

Unfortunately this is only a tiny part of the real problem because we also have a non-
functional requirement: “when the release button is not pressed, the store will not fall off
more often than once in 109 flying hours”. Suddenly the problem looks rather harder!
We now need to meet the original functional requirement but in a way which allows us
to construct a credible engineering argument that our system will not malfunction in a
dangerous way anytime in the next 114,000 or so years!

The Praxis “Correctness by Construction” (CbyC) approach (see [2]) tackles this
problem by a deliberate separation of the specification process from the high-level de-
sign process. The former focusses on a complete, abstract description of the required
behaviour while the latter concentrates on the design, architectural and structural ap-
proaches required to meet the non-functional challenges. For the stores management
example, we might introduce multiple channels that need to agree before a weapon is
released or dynamically generate a carefully-chosen “magic number” that has to ex-
actly fit a hardware lock on the weapon station rather than just relying on control flow
to enable release.
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Without this conceptual separation, we are in a rather difficult position, especially
if the goal is some form of automatic code generation from the formal model. How
can the code generator know what kind of code to generate for the logical operation
“button press”? The only sensible answer to this seems to be that the specification will
have to have numerous levels of refinement which allow it to be transformed steadily
from a specification into a design. We could, for example, express how our “magic
number” weapon release key is generated at a sufficiently low level that very simple
code generation rules would produce the desired result. We would then need to construct
an argument that this chosen detailed specification was a valid refinement of the original
abstract specification. Although this is clearly feasible, the approach does have some
disadvantages. A strict refinement approach means that the detailed design can’t be
started until the abstract specification is complete whereas experience of CbyC suggests
that abstract specification and high-level design can often be tackled in parallel because
they address largely disjoint issues. Furthermore, a strict refinement approach is very
vulnerable to requirement and consequential specification changes; these force us to
roll back to the point of change and reconstruct all the refinements. Finally we have the
problem that notations that are powerful and effective at one level of abstraction may
not be so effective at another. Our store release “magic number”, for example, may well
be chosen so that the bit pattern of its representation does not match any op code of the
target machine language (to reduce the chance that the weapon station might accidently
be passed a piece of code that mimics a valid piece of data). That level of design detail
is a very long way away from high level considerations of sets and partial functions.

In practice our experience is that suitable programming languages may be much
more expressive than specification notations at this level of detail. SPARK [3,4], for
example can be conceived as a detailed design and specification language which just
happens to be compilable by any standard Ada compiler. Personally I would prefer to
reason about the bit pattern of magic numbers in SPARK rather than say Z.

In case the reader thinks this example a little contrived, I can provide a real exam-
ple. The SHOLIS system (see, inter alia [5]), which provides flight-critical guidance on
ship’s helicopter operating limits, had a system requirement that it should be possible to
remove circuit boards from the system, while running, without it crashing or malfunc-
tioning. You can be assured that this requirement needed considerable design activity;
required SPARK code to handle it; and was completely impossible to specify in Z!

3.3 Logical Correspondence

The difficulties of the previous section are probably not insuperable provided we are
willing to invest in suitably detailed notations and expend sufficient effort on construct-
ing refinements.

Rather more challenging is the need to show that the logic used to reason about our
formal specification is preserved in the resulting implementation. The challenge here
is that the formal model is likely to inhabit a mathematically pure world of integer
and Boolean values that only has a passing resemblance to the implementation domain.
For example, our specification may refer to some integral input value and assert that
a particular action results if the value exceeds a certain value, say Temperature >
100 → SystemOverheat. This is a completely clear and precise abstract expression of
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desired behaviour at the model level. In the real system things are rather different. What
if the value of Temperature obtained from the system’s environment isn’t actually any
valid integer value at all? What does Temperature > 100 mean if Temperature isn’t
an entity that has the integer-like properties being relied on in the model? This might
sound rather esoteric but is a signficant problem in a real world of bent connector pins
and other exotic hardware and sensor failures.

The usual response to these challenges is to wrap our formally-specified system in a
layer of “device drivers” that deal with all these real-world inconveniences and deliver
structurally valid values to the core application. We might need, for example, to read the
sensor value into a machine word of a size chosen so that any bit pattern is a valid value
and then check the actual bit pattern to ensure it represents a valid example of the type
we have assumed in our specification model. These device drivers are rarely, if ever,
formally specified because typical specification notations are not strong on the kind
of 3-value logic (True, False, Unknown) needed to reason about them. So the correct
behaviour of our formal model becomes dependent on a layer of hand written code on
its boundaries. To misuse a rather famous diagram from [6], reproduced as Figure 2, we
might say that our formal model is limited to the SOFT and, perhaps, OUT relations
but that the IN relation has to be hand crafted.

The challenge this presents is for us to demonstrate, with the same rigour that we can
reason about our formal model, that the composition of hand-written device drivers and
other code, perhaps automatically generated from the formal model, has the required
behaviour and integrity.

3.4 Fidelity of Translation

The Implementation Domain. Similar challenges arise when we attempt to translate
the formal parts of our system description into code that we can either execute or, more
likely, compile then execute. Again we face challenges from the fact the mathemati-
cally precise specification entity Temperature + 1 > 100 has a rather less precise
meaning in the implementation domain. What if Temperature + 1 overflows the
valid range of machine representations for the type of the variable Temperature? We
could, capture, in the specification, the necessary information to avoid implementation
domain problems of this kind, perhaps by adding side conditions to every operation
in the specification. However, as with the issue of non-functional requirements, this
greatly complicates the specification, blurs the distinction between specification and
design, makes the specification less portable and places extra stress on our ability to
reason about refinement.
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Source Code Ambiguity. Other code generation issues are equally challenging. If
we generate any of the commonly used programming languages we can only be sure
that the generated code preserves properties we may have proved at the specification
level if the generated code is wholly unambiguous. If a compiler can legally interpret
our generated source code in a way that has a meaning different from that intended
by the author of the specification and the author of the code generator then the link
between model behaviour and system behaviour is broken. Ambiguity in programming
languages can arise from many causes. A simple, and typical, example is freedom of
expression evaluation order in the presence of expression side effects. The combination
of these two creates a situation where a program statement may have different meaning
when evaluated from left-to-right or from right-to-left. The compiler writer may be
free, according to the language definition, to choose either order. If the code generator
writer makes assumptions about the order then specification model properties may not
be preserved in the generated code. I find it rather surprising how little this behaviour is
understood and the naive confidence parts of the computing community seem to have
in the precision of their source code! 2

Since the phenomenon is so widely unappreciated a tiny example (in Ada just to
show that even well-designed languages suffer) is perhaps worthwhile.

with Text IO; use Text IO;

procedure Test1

is
X, Y, Z, R : Integer;

function F (X : Integer) return Integer is
begin

Z := 0;

return X + 1;

end F;

begin
X := 10;

Y := 20;

Z := 10;

R := Y / Z + F (X); -- order dependency here.

Put (Integer’Image(R)); -- R = 13 if L → R evaluation,

-- constraint error if R → L

end Test1;

This program exhibits an evaluation order dependency arising from a function side-
effect, because function F updates the value of Z which is global to it. The evaluation

2 An interesting corner of this naivety is the trust some mathematicians seem to have in
computer-assisted proofs. When asked if the C code their proof depends upon has been com-
piled and run on different computer platforms using different compilers and whether that pro-
duces identical results, they often respond with blank incomprehension.
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order dependency occurs in the assignment to R because evaluating F(X) before the
division Y / Z is required to raise the predefined exception Constraint Error.
The expected, exception-free, result is obtained if the division is evaluated before the
function call. It is worth noting that this program is defined as erroneous in Ada termi-
nology. Erroneous here has the special meaning (or perhaps “cop out”) that the program
is wrong but the compiler is not required to detect the problem nor report it to the user.

Implementation issues such as this pose particular challenges for automatic code
generation from formal specifications. We could, in principle, solve them by ensuring
that our code generator never generated code that might have an implementation de-
pendency concealed in it. For example, we could insist that function calls and operators
with side effects are only used in simple assignment statements and only allow the use
of simple variables in expressions. These are, however, rather draconian restrictions
which may well impact on efficiency (important given that many high-integrity systems
are also real-time systems). It is also, in practice, extremely hard to do because ambigu-
ity is so easy to introduce. No amount of testing of simple specification constructs and
the code they map to, can ensure that arbitrary combinations of such constructs will not
produce code that exhibits ambiguous behaviour of the type illustrated above.

Resource Consumption. A more easily handled consideration for code generation is
that of resource consumption. Many critical systems run for very long periods on de-
vices with very limited resources. In such circumstances it is important that our method
of code generation does not allow those limited resources to be consumed by such things
as memory leaks. We should be able to ensure that is the case at the design level but it
also needs to be considered at the intermediate code level; this issue will be revisisted
in Section 4

Semantic Gaps. There remains one large problem with the generation of code from
specifications: semantic gaps and our ability to reason across them. Let’s assume for
a moment that we solve all the problems outlined above and produce a code generator
that produces binary object code for our target processor directly from our specification.
We perform various rigorous analyses of our specification, press a button, and object
code comes out. Can we deploy this in our critical application? The answer is clearly
“no”. We cannot readily trace the object code to the specification because the semantic
gap between them is too large. What about trusting the code generator? Well, in cur-
rent typical development processes we aren’t always permitted to trust compilers yet
the semantic gap between source code and object code is much smaller than between
specification and object code, so it seems infeasible that we can take a complex and
opaque code generator on trust for the kind of critical application for which we would
choose formal methods in the first place. What about testing the output from the code
generator. Well, yes, of course we should do that, but we also know that we cannot gain
enough confidence for a critical application by this means alone (see [7,8,9]).

If we conclude that the semantic gap between specification and object code is too
big then it follows that we need some kind of intermediate representation, presumably
in the form of the source code of a suitable programming language. The consequences
of this unavoidable design choice will be discussed in the next section.
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4 Required Properties of Intermediate Representations

From the above, we have determined that some intermediate notation between our spec-
ification and object code is required, or at least highly beneficial. We have also identified
some of the challenges that our chosen notation must meet. An intermediate notation
that provides real value in a formal development chain would address the following
issues; it would:

– allow the rigorous generation of “device drivers” and other “glue” code required
to handle those parts of the system that cannot sensibly be formally specified and
facilitate the integration of that code with automatically-generated code;

– facilitate a demonstration that the logical rules used to formalize the behaviour
described in the specification are preserved in the implementation;

– bridge the semantic gap between specification and object code by allowing pre-
cise reasoning showing the equivalence of the specification and the intermediate
notation and the equivalence of the intermediate notation and the object code; and

– provide an alternative notation that may be more suitable than the specification
notation for capturing specific design choices to deal with non-functional require-
ments such as safety, while still allowing formal equivalence with the specification
to be proved.

These considerations have taken us rather a long way from our starting point. We
started with the strawman that: given a mathematically-sound specification which we can
animate for our end users; prove properties of; and generate code from, then it doesn’t
matter what language the final code is generated in. The strawman is, I think, now thor-
oughly demolished. The intermediate notation, or programming language source code,
that bridges the gap between the specification and the deployed object code is not only
still essential but has to meet some very stringent requirements of its own. Furthermore,
ducking this issue very significantly undermines all the ultimate goals and ambitions of
the RODIN project. We should not, after all, be rather narrowly interested in whether
or not we can write better specifications because that goal, alone, is meaningless. Our
real goal is to produce better systems and better specifications are only of interest if they
contribute to that more important goal.

What properties might a suitable intermediate notation have? I think we can identify
the following requirements:

Logical soundness. This is fundamental. Logical soundness means freedom from the
kinds of imprecise and ambiguous behaviour noted in section 3.4. We cannot begin
to show correspondence between our formally verified specification and the code
we obtain from it (both manually and automatically) without first achieving this
goal. In practice, and as a minimum starting point, this means a language free from
the possibility of undefined variable values; freedom from aliasing; and freedom
from function and expression side effects.

Simplicity of formal language definition. Not essential, but a useful check. If we can’t
readily produce a formalization of the semantics of our intermediate notation then
we are unlikely to have, or know that we have, a logically sound one.
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Expressive power. The intermediate language must be rich and expressive enough to
allow the efficient translation of our specifications into code and to allow the effec-
tive hand-crafting of those parts of the system for which this is appropriate. Clearly
we could make a “safe” language by making it so small you couldn’t write any
programs in it; a rather unhelpful limiting case!

Security. Security here has the special meaning of “it shall be possible to detect all
violations of the rules of the language”. There is no point in imposing a language
rule such as “functions are not permitted to have side effects” if there is no way of
detecting those situations where the rule is broken. This consideration is especially
important in the case of code generation from rigorous specifications because it pro-
vides protection from the difficult case where a combination of legal specification
entities produces a collection of code entities that in combination violate the goal
of logical soundness. The ability to check the generated code for such violations is
essential and the principle of security makes it feasible.

Verifiability. Really a consequential property of logical soundness and security. A ver-
ifiable language allows us bind together both automatically-generated and hand-
written code and demonstrate that the whole conforms to our formal specification.
As noted in section 3.1, we can only formally compare two artefacts if we have a
formalization of each of them. Even where nearly all of the code has been generated
by a rigorous process of refinement, this independent verification path is of great
value precisely because of its diversity and the extra confidence such redundancy
brings. Verifiability also allows us to deal with the imperfect (in the pure mathe-
matical sense) numerical behaviour of computers as noted in section 3.4. We may
well do better to worry about these implementation domain problems in the imple-
mentation domain by a suitable proof of absence of run-time errors performed on
our intermediate notation. See, for example, [10].

Bounded space and time requirements. This follows from the consideration noted in
section 3.4. There is no point carefully devising a code generator that avoids such
things as arbitrary heap allocations if the generated code is processed by a compiler
that does do those unwanted things. We are likely to be equally concerned about
predicatability of resource usage. For example, generating code in a language that
relies on periodic garbage collection will lead to unpredictable execution timing
which may be unacceptable in many critical applications. Our intermediate lan-
guage must be designed to be free from such effects and so that the compilers we
use to process it will preserve the desirable restrictions we have placed on the way
the code is generated from the specification.

Compilable by standard tools. Long experience shows that, to gain acceptance, a lan-
gage must provide access to a wide range of compilers targeted at a wide range of
processors. The temptation to produce a custom intermediate notation for RODIN
specifications is a strong but dangerous one. Essentially it would ensure that the
application of all the advances generated by RODIN would be restricted to an ex-
tremely small subset of target processors and architectures. It follows from this
consideration that any viable intermediate notation is likely to take the form of a
subset of a mainstream programming language rather than being a completely new
development.
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Verifiability of compiled code. A rather grand requirement. Ideally we would devise
an intermediate notation so that typical compilers for it produced machine code that
was readily traceable to its source. If achieved, this would support the ultimate goal
of traceability from specification to object code. Although there has been useful
research in this area, it remains an area of considerable practical difficulty.

Minimal run-time system requirements. Finally, we need to remember that the ma-
chine code eventually deployed on our system will comprise that compiled from
our intermediate notation (itself a mix of hand-crafted and automatically-generated)
together with some underlying run-time library or support system. For the final sys-
tem to be trustworthy, both components must be trustworthy. Unfortunately we are
unlikely to have such strong evidence for the integrity of the compiler vendor’s
run-time as we hope to be able to generate for the code we produce using our
RODIN-inspired tools. From this we conclude that a useful additional goal is that
chosen intermediate language should be designed to require the smallest amount
of run-time support that is possible. Ideally we should be able to generate code for
a bare board target and trace every byte of machine code on it back to one of our
design and specification artefacts.

The above is quite a daunting list. It has also been chosen quite deliberately because
it is identical to the list of requirements from the original 1983 rationale for the SPARK
programming language which can still be found in the introduction of [4]. This is not to
suggest that SPARK represents the ultimate in programming language design but does
at least provide existential proof that the properties we require in a notation that purports
to bridge the semantic gap between a formal specification and a deployed system are
actually achievable in practice.

5 Conclusions

So, far from programming languages being rendered obsolete by formal methods and
code generation, they become more important! Fortunately, programs such as RODIN
provide us with an opportunity here. Experience (some might say bitter experience)
shows just how hard it is to wean programmers off error-prone and inadequate nota-
tions such as C. By moving the emphasis from coding to specification, and providing a
rewarding development environment for the latter, RODIN may unblock some of these
obstacles. Once users come to understand the benefits of a rigorous, formally-backed
approach to specification, then persuading them to accept a more rigorous intermediate
notation than C might just become a little more achievable. For large parts of a RODIN-
specified system the code can be automatically generated and so we do not need to ask
the C enthusiasts to write very much of our new and unfamiliar intermediate notation.

The idea that we might combine two different formal notations to both increase con-
fidence in the verification we perform and also to widen the scope of that verification has
been considered before in the context of the SCADE graphical notation and the SPARK
programming language, see [11]. The combination of SCADE and SPARK illustrates
many of the issues discussed in this paper and provides a practical demonstration of
the benefits that come from combining different formal notations so as to spread rigour
more widely across the entire development process.
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The RODIN project, and follow-on work from it, offers us a unique opportunity to
deploy these concepts more widely and to provide an unbroken chain of formal reason-
ing from requirements to (very nearly) object code. We shouldn’t fumble that opportu-
nity out of mistaken view that programming languages no longer matter: they do.
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