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Abstract. Both in High Performance Computing and in Grid comput-
ing dynamic load balancing is becoming one of the most important fea-
tures. In this paper, we present a novel load balancing model based on
Lattice Boltzmann Cellular Automata. Using numerical simulations our
model is compared to diffusion algorithms adopted on HPC load balanc-
ing and to agent-based balancing strategies on Grid systems. We show
how the proposed model generally gives better performances for both
the considered scenarios.

Keywords: Lattice Boltzmann Models, Dynamic Load Balancing, dif-
fusion algorithm.

1 Introduction

Dynamic load balancing is one of the most challenging features for the next
generation of both Grid and High-performance computing (HPC) systems. The
main differences in the formulation for the dynamic load balancing (DLB in the
following) problem between these scenarios are related to the capabilities associ-
ated to each processing element and its network topology. In High-performance
systems the computing elements are considered homogeneous and are connected
according to highly regular topologies, in general as meshes, fat-trees or hyper-
cubes [2]. On the contrary Grid infrastructures [9] assume that all the computing
elements participating in a Virtual Organization can be very different both in
terms of network connectivity and in performance capability.

Let us define an abstract distributed formulation for the DLB Problem that is
suited for both the Grid and the HPC scenarios. We are given an arbitrary, undi-
rected, connected graph G = (V, E) describing a general distributed processor
system. Two real numbers are associated to any processor p ∈ V : ρ(p, t) ∈ R

+,
the current work load at time t for p, and c(p, t) ∈ R

+ representing the maximal
sustainable work load for the i-th node at time t. Obviously for HPC systems
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the capacity c is assumed as a constant, ∀p ∈ V, ∀t ∈ N, c(p, t) = c ∈ R
+. A

node is assumed to be able to communicate bidirectionally with any other node
connected to it. The connections for every node are stated in the set E ⊆ V ×V .
Communication between nonadjacent nodes is not allowed.

The goal is to determine a schedule to move an amount of work load across
edges so that finally, the weight on each node is the closest as possible to the node
capacity. The performance of a balancing algorithm can be measured in terms
of number of iterations it requires to reach a stable state and in terms of the
amount of load moved over the edge of the graph. The abstract DLB formulation
holds when we associate a node with a processor, an edge with a communication
link of unbounded capacity between two processors, and the weight ui on each
node can be divided into a very large amount of independent tasks.

In this paper we present a brand new approach for the DLB problem based on
a Cellular Automata model known as Lattice Boltzmann [4]. This local model
was originally created to simulate flow phenomena and to solve elliptic and par-
abolic PDEs [16]. Today Lattice Boltzmann Models are widely used to simulate
complex systems such as multiphase turbolent flows and percolation [19].

The rest of the paper is organized as follows. Section 2 presents several com-
monly used approaches for the solution of the DLB problem. In Section 3 the
Lattice Boltzmann model to solve the DLB problem is presented, while in Sec-
tion 4 some numerical simulations of the new method are reported. In this section
we will also show how the model operates efficiently both on Grid and on homo-
geneous distributed processors with respect to some other efficient DLB solvers.
Finally in Section 5 conclusive notes are reported.

2 Related Work

Many different approaches have been used in the recent years to solve efficiently
the DLB problem. These techniques take inspiration from numerical approxi-
mations and distributed Artificial Intelligence. In this section several success-
ful DLB solvers are described, showing the highlights and drawbacks of each
methodology.

2.1 Diffusion Equation Models

Diffusion algorithms assume that a node of the graph is exclusively able to
send and receive messages to/from all its neighbors simultaneously. Most of the
existing iterative DLB algorithms [7, 10, 17] involve three steps:

– Diffusion Iteration: flow balance calculation towards the equilibrium of the
system.The diffusion iteration is a preprocessing phase which determines the
actual load balance logic and rules the performance of the DLB solver.

– Flow Calculation: work load schedule preparation to migrate the amount
of exceeding load between neighboring processors.

– Task Migration: deciding which particular tasks are to be migrated. This
phase is particularly network intensive and is strongly application dependent.
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Naturally, these models focus their efforts on the search of an effective way to
reach a stable status during the Diffusion Iteration phase.

The original algorithm described in the Cybenko work [6], known as the Dif-
fusion method, assumes the workload vector p over all the nodes p ∈ V evolves
according to the model

ρ(t + 1) = Mρ(t)

where ρ(0) is the initial configuration and M is the diffusion equation governing
the iterative process. The optimal matrix M is defined as M = I− 2

λ2+λn
L where

I is the identity matrix, L is the Laplacian Matrix for the graph G and λ2, λn

are the larger and the smaller subdominant eigenvalues of L. Let us remind
that L = diag(dpp) − A where dpp is the degree of node p, and A denotes
the adjacency matrix of G. The Flow Calculation for the Diffusion method is
performed solving the linear system Ld(t) = ρ(t) − c(t), where c denotes the
c(p, t) values for each processor p ∈ V and d(t) defines the schedule for the Task
Migration [10]. It can be proved that the linear system solution can be performed
online using an iterative schema similar to the one used for ρ(t), in particular
d(t + 1) = d(t) + 2

λ2+λn
ρ(t).

Even in the case of the optimal matrix M , anyhow, the original Diffusion
method lacks in performance because of its very slow convergence to the equi-
librium.

A huge convergence acceleration is given by the Semi-iterative schema pro-
posed in [11], which is somehow inspired by θ-schemas commonly used in nu-
merical function extrapolations. In this algorithm the Diffusion Iteration is ruled
by:

ρ(t + 1) = σt+1

(
ρ(t) − 2Lρ(t)

λ2 + λn

)
+ (1 − σt+1)ρ(t − 1) (1)

with σ1 = 1, σ2 =
(λ2 + λn)2

2λ2λn
, and σt+1 =

(
1 − (λ2 − λn)2

(λ2 + λn)2
· σt

4

)−1

(2)

The Flow Calculation step for the Semi-iterative schema requires the evalua-
tion of the following flow potential: d(t + 1) = σt+1

(
d(t) + 2

λ2+λn
ρ(t)

)
+ (1 −

σt+1)ρ(t − 1). The use of semi-iterative techniques improves the rate of conver-
gence of an order of magnitude with respect to the classical Diffusion method.

The main lack of Diffusion Models is that they are limited to the HPC systems
only, where each node has the same characteristics and the same performances.

2.2 Swarm Intelligences

The Distributed Artificial Intelligence approach for DLB on Grid has been orig-
inally proposed in [12], thought they can be easily and effectively adapted to
HPC context. The main idea behind this models derives from the artificial ants
proposed to approximate efficiently NP-Complete problems solutions [15].

The swarm intelligence for DLB adopts a greedy schema divided in three
phases:
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– SearchMax: a migrating ant locates the most overloaded node;
– SearchMin: another other ant locates the less efficiently used node;
– Transfer: an ant migrates computational load from the most overloaded

node to the most underloaded one.

In HPC or Grid environments a coalition of multiple mobile ants is considered.
Each ant takes care of a computational workload granule. Ants have to exploit
nodes and federate themselves into small teams with a fixed maximum size.
Teams are useful both to save time during the SearchMax/SearchMin phases
and to improve the transfer bandwidth. An ant can join or leave teams according
the trails left behind by the other ants in the team. Such trails inform the
newcomer about the load of the node currently hosting the team. Once the ants
are clustered onto the most overloaded and on the most underloaded sites, then
the transfer phase can be performed.

The main advantage of the outlined load balancing mechanism is that it re-
quires no global knowledge of the node topology w.r.t. the Diffusion algorithms.
Moreover, the direct migration among the nodes does not require a migration
schedule calculation. The main drawbacks of swarm intelligence DLB solvers is
that the ants may introduce further work load for the system. Such overload
could imply a significant overhead for a very high number of agents. The conver-
gence performance of the method is also very sensitive to the work load migration
capabilities of ants: a small migration capacity would bring to a large number of
ants overcrowding the system. Instead, a too large transfer capacity would imply
a very slow convergence rate, with a small number of nodes swapping each other
loads repeatedly [20].

3 The Model

Lattice Boltzmann Models (LBM) have been widely used to simulate multiphase
fluid flows, porous media and many other complex systems [4] in the last decade.
Such Cellular Automata simulate the mesoscopic behavior of the fluid inside
an automaton cite. If the evolution rule preserves physical quantities, such as
the local mass density and the local momentum density, theoretically it can be
proved that macroscopic behavior emerges conformant to PDEs describing the
simulated physical phenomena.

The proposed LBM solver assumes that the nodes V in the system graph
G introduced in Section 1 are connected according to a regular topology with
dimension d defining the set of the edges E (e.g. a ring topology for d = 1, a torus
for d = 2, an n-cube for higher values of d). In HPC systems this configuration
can be easily obtained remapping the physical network connections logically
among the processing elements. In Grid systems a ring topology can be efficiently
obtained constructing a peer-to-peer overlay among the worker nodes. Recently
some efficient algorithms for the autonomous organization of nodes in overlays
have been proposed [1]. The DLB Lattice Boltzmann solver is an iterative process
similar to the Iterated Dynamical Systems adopted by the diffusion equation
models described in Section 2. Though, as the multiagent approaches, it is not
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(a) (b) (c)

Fig. 1. Nodes arrangement from the physical network topology (a) to a regular overlay
network (b) which is used as support to identify the neighbors of each node through
the vectors {ei} (c)

necessary to solve a migration scheduling problem because the information in
the automaton cells state how the work load has to be transferred.

In general, we assume n automaton cells, corresponding to the computing
nodes, are organized in a d-dimensional space so that each node p ∈ V has
exactly degree 2d. In this way a cell is connected to its 2d neighbors along the
processor links. The links are modelled as directions corresponding to 2d unary
link vectors ei. For example, in the case of d = 2 the link vectors are

e0 := (0, 0) ei :=
(

cos
(

π(i − 1)
2

)
, sin

(
π(i − 1)

2

))
, i ∈ {1, 2, 3, 4} (3)

where the vector e0 corresponds to the central position of each cell.
The set {ei} for a generic node p ∈ V is constructed assigning a node p′ s.t.

(p, p′) ∈ E to one of the vectors ei. In this way the processor graph can be
mapped into a lattice suited for the LBM computation. We also introduce the
nearest neighbor function NN : V × {ei} → V that associates to each node p
the node p′ connected to it through a direction vector ei. An example for d = 2
of this mapping is reported in Figure 1. A generic cell state is characterized by
2d real number quantities modelling the load a processing element is going to
move toward a neighbor along its links. More formally, given a processor p ∈ V ,
at time t its load configuration is defined as f (p, t) = {fi(p, t) : i = 0, 1, . . . , 2d}
where fi(p, t) ∈ R

+ are called load distributions and represent the work load
that will be moved along the link i. On the basis of these quantities we evaluate
the two variables ρ(p, t) and c(p, t) according to the following equations:

ρ(p, t) =
2d∑

i=0

fi(p, t) and c(p, t) = Π(p, t) (4)

where, as stated in Section 1, ρ(p, t) is the total load for a node p ∈ V at time t
and c(p, t) is the maximum node capability with respect to a generic performance
measure Π : V × N → R

+.
The time-step automaton evolution consists of two phases, according to the

common LBM stream-and-collide algorithm:
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– Collision: the load within a cell is redistributed among the 2d directions
and the rest load distribution. Original distributions f (p, t) = {fi(p, t) : i =
0, 1, . . . , 2d} are modified in f∗(p, t) = {f∗

i (p, t) : i = 0, 1, . . . , 2d} applying
an instantaneous transition, formalized by the following equation:

f∗
i (p, t) = fi(p, t) + Ωi(p, t) (5)

where the collision operators Ωi(p, t) must satisfy the following conservation
law:

ρ∗(p, t) =
2d∑

i=0

f∗
i (p, t) =

2d∑
i=0

fi(p, t) = ρ(p, t) (6)

Equivalently this corresponds to
∑2d

i=0 Ωi(p, t) = 0. That is, the work load
on each node is conserved during the redistribution. In the classical LBM
context the Equation (6) corresponds to the mass conservation principle.

– Streaming: the load distributions move along their direction towards adjacent
cells/processors in the network. This transfer is described in the automaton
by the following equation:

fi(NN(p, ei), t + 1) = f∗
i (p, t) (7)

where the function NN is the previously defined nearest neighbor function,
which associates a node p with another node along the direction ei.

Composition of the two Equations. (5) and (7) leads to an evolution rule
similar to the Lattice Boltzmann Equation:

fi(NN(p, ei), t + 1) = fi(p, t) + Ωi(p, t) (8)

We use a common form of the collision operator Ωi, known as BGK formula-
tion (see[13, 3, 14]):

Ωi(fi(p, t)) =
1
τ

(feq
i (p, t) − fi(p, t)) (9)

where τ is called the relaxation time of the model. It has been proved theoretically
that the LBMs with BGK collision operator are unconditionally unstable for
τ < 1/2 [18]. Thus, the evolution equation of a LBM is

fi(NN(p, ei), t + 1) = fi(p, t) +
1
τ

(feq
i (p, t) − fi(p, t)) (10)

The choice for the specific form for the equilibrium distributions feq
i is

feq
0 (p, t) = (1 − 2dα(p, t)) ρ(p, t) and feq

i (p, t) = α(p, t) ρ(p, t) (11)

where α(p, t) is an over-relaxation term [8] introduced to speed up the conver-
gence:

α(p, t) =
1
2d

(ρ(p, t) − c(p, t)) − b

(
1 − ρ(p, t)

c(p, t)

)
(12)
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with b � 1 over-relaxation constant ruling the numerical stability. Using a
Chapman-Enskog expansion, it can be proved that the model described above
approximates a continuous diffusion equation up to the second order, where the
diffusion constant is proportional to the parameter τ [4].

Even though the synchronous automaton evolution is more suited for typical
HPC all-to-all optimized communications, it is possible to reproduce the dis-
crete time stepping on Grid systems using the WsNotification standard [5] or
analogous Grid messaging systems.

4 Numerical Experiments

In this section we will present numerical experiments results for the LBM solver.
These results will be compared to the solutions by both diffusive schemas and
swarm intelligence proposed in Section 2. After the comparison we will state
our conclusion. For these numerical insights a ring processor graph is taken in
account. Ring topology has been chosen because of the lowest connectivity as
possible and also because it is the most frequent and natural overlay topology
adopted by peer-to-peer Grid systems.

In the first set of simulations the LBM solver performances are compared
w.r.t. the Semi-iterative schema on an HPC system. The load balance will be
calculated for a number of processors ranging from 32 up to 1024. The maximum
allowed number of iterations is 1000. The initial load distribution on the nodes
will be generated randomly. The convergence criterion for each test is err(t) =∑

p∈V (ρ(p, t) − c(p, t)) < ε, with ε = 10−3. For the comparison between the
Semi-iterative schema and the LBM solver we considered the following system
capacity function c(p, t) = c =

∑
p∈V ρ(p, 0)/|V |.

For each test the optimal values of the models parameters are considered.
In Table 1 the two iterative schemas are compared by the number of iterations
required to reach the steady state c(p, t) according to the criterion stated above.
It is particularly interesting to notice how the Lattice Boltzmann approach scales
better than the accelerated diffusion model for larger systems. Moreover we have
not yet found a formal relation between the network topology and the LBM
relaxation time τ , so we had to tune it numerically for each considered graph,
while the theoretical optimal parameters for the diffusion models are well-known
(see Section 2).

As the LBM solver and the Semi-iterative schema are different numerical ap-
proaches to the same class of models, we can focus our attention on the way they
damp load distribution frequencies during the diffusion. Studying the dynamical
evolution of the distributions toward the equilibrium it has been noticed that the
LBM solver results to be faster thanks to its capabilities of damping low wave-
lengths. In particular, the diffusion process takes advantage from the adaptive pa-
rameter α(p, t), defined in Equation (12), that keeps on pushing the exceeding load
away from the nodes. This adaptive schema grants, in general, that the conver-
gence ratio does not slow down, even if the nodes are slightly out-of-equilibrium.
Instead, the convergence parameter for the Semi-iterative schema of Equation (2),
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Table 1. Number of iterations for the LBM and the Semi-iterative schema

# of nodes LBM Semi-iterative

32 32 20
64 55 43
128 112 93
256 144 198
512 313 420
1024 783 897

Table 2. LBM performance w.r.t. Semi-iterative schema for strongly biased initial
configuration

# of nodes LBM Semi-iterative

32 103 20
64 193 39
128 342 77
256 719 152
512 >1000 303
1024 >1000 611

depending on the time only, seems to become less efficient as the load distribution
becomes smoother and the low frequencies components become dominant.

The second set of tests compares the performance between the LBM and
the Semi-iterative schema in the case of a strongly biased initial condition. In
particular, we set only one node with most of the load in the system, while the
others are strongly under-loaded. Under this condition the Semi-iterative schema
performs much better than the proposed LBM model. More investigation on
this singularity will be performed in future, even thought we are quite confident
that this abnormal behaviour is related to the poor high frequency damping
capabilities exhibited by all the Lattice Boltzmann cellular automata [18, 4].
Some results for these tests are reported in Table 2.

For the Grid scenario we compared the LBM solver approach with the DLB
solution proposed by the Swarm intelligence model described in Section 2. Three
agents have been assigned to each node in the system: SearchMin, SearchMax
and Transfer agents respectively. The agent teams maximum size has been chosen
so that it is proportional to the number of nodes in the graph. E.g., for |V | = 32
we found, after some empirical tests, that teams of at most 15 agents give best
results without introducing agent overcrowding overhead. As a general rule, we
noticed that a number of agents of about half of the computational nodes gives
the best convergence speed. The network connecting the nodes is still arranged
as a ring. The initial load configuration is generated randomly and also the node
capacities are chosen randomly. The initial load configuration, in particular, is
normalized to the nodes capacities, so that at the steady state the system is
fully saturated. In Figure 2 we reported the initial and the final configurations
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Fig. 2. Initial configuration with system capacity (a). Steady state configuration
reached in about 50 iterations (b).

Table 3. LBM performance w.r.t. swarm intelligence for a Grid environment

# of nodes LBM Swarm

32 43 150
64 52 269
128 113 399
256 210 737
512 404 >1000
1024 795 >1000

for a graph containing 64 nodes. On the abscissa axes the node ID is reported,
while on the y axes we reported the work load assigned to each node. In the
initial configuration picture we reported also the system capacities (dashed line).
Analogous results are obtained with a swarm intelligence schema, but the LBM
convergence takes a significantly lower number of iterations. Some results on the
convergence speed are reported in Table 3.

The reasons for the different convergence speed could be searched in the LBM
solver capabilities of calculating the load transfer without the need of moving
agents across the network. Furthermore, fixed payload moved by agents can
affect the swarm approach in a significant way: a too small payload can slow
down the convergence but transferring a large work load with each agent could
jeopardise the whole balancing process. In the worst case a too large payload
could bring the balancing to a starvation, with the nodes swapping the work load
forever. For these particular tests we tried to tune the payload for each agent
so that the better convergence performance are obtained. Further investigation
should be performed to better understand the swarm intelligence convergence
performances with respect to both the used number of agents and the quantity
of computational load each agent can move across the system.

Both the LBM and the Swarm intelligence DLB solver exhibit a proper behav-
ior even in the case of globally overloaded environments. That is, they distribute
the exceding load equally even in the case of low system capacity. An example of
such behavior is shown in Figure 3. Let us remind that the node IDs are reported
on the x axes and that on the y axes the work load is reported.



Grid and HPC Dynamic Load Balancing with Lattice Boltzmann Models 1161

10 20 30 40 50 60

0.2

0.4

0.6

0.8

1

Fig. 3. Steady state reached by the LBM solver in the case of a globally overloaded
system

5 Conclusion

In this paper, we have introduced a novel DLB solver which is inspired by the
Lattice Boltzmann cellular automata usually used to simulate complex fluids
dynamics. In particular, we modified the original LBM to approximate a dif-
fusive phenomenon that suitably solves the DLB problem. We compared the
performances of the proposed LBM solver with the ones of an accelerated diffu-
sion equation model usually adopted in DLB on HPC systems. The model has
been also compared to swarm intelligence models commonly adopted in Grid
context load balancing problems. For both the comparisons it has been shown
how the LBM behaves more efficiently than the standard approaches to the DLB
problem. Only for ad-hoc initial configurations the LBM always presents worse
performances than the other methods.
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