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Abstract. In our service engineering approach, services are specified by
UML 2.0 collaborations and activities, focusing on the interactions be-
tween cooperating entities. To execute services, however, we need precise
behavioral descriptions of physical system components modeling how a
component contributes to a service. For these descriptions we use the
concept of state machines which form a suitable input for our existing
code generators that produce efficiently executable programs. From the
engineering viewpoint, the gap between the collaborations and the com-
ponents will be covered by UML model transformations. To ensure the
correctness of these transformations, we use the compositional Temporal
Logic of Actions (cTLA) which enables us to reason about service spec-
ifications and their refinement formally. In this paper, we focus on the
execution of services. By outlining an UML profile, we describe which
form the descriptions of the components should have to be efficiently
executable. To guarantee the correctness of the design process, we fur-
ther introduce the cTLA specification style cTLA/e which is behaviorally
equivalent with the UML 2.0 state machines used as code generator in-
put. In this way, we bridge the gap between UML for modeling and de-
sign, cTLA specifications used for reasoning, and the efficient execution
of services, so that we can prove important properties formally.

1 Introduction

The ongoing convergence of the communication and the computing domain en-
ables a wide range of advanced services, involving a complex mixture of technolo-
gies, devices and networks. The development has reached a degree of complexity
in which formal reasoning about specifications and corresponding tool support
are increasingly important to design services of high quality within acceptable
time and cost limits. In consequence, service engineering has become a discipline
in its own right. In earlier publications we demonstrated the close conceptual
relationship between services and collaborations, and the suitability of collab-
orations as a framework for service specifications [1,2,3]. Collaborations model
cross-cutting, partial behavior involving several participants. Service specifica-
tions consisting of several sub-functionalities may be constructed from collabo-
rations, which can be reused in several services.
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Fig. 1. Collaboration for the entire system
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Fig. 2. Activities describing collaborations GetPosition and UpdatePosition

While we use the concept of UML 2.0 collaborations [4] to model the struc-
tural aspects of collaborations and services, we use UML 2.0 activities to specify
their behavior. Figures 1 and 2 describe a service that retrieves the locations
of small devices as part of a group communication service. In Fig. 1, we use
icons for the collaboration roles and omit the frame of the system collaboration
for clarity. Each device is connected to one local node, and all local nodes are
connected to one central node. Sensors capture the movement of the devices and
update the position information in the local nodes. This is specified by the col-
laboration uses u1 and u2 of the collaboration type UpdatePos. The behavior
of this collaboration type is expressed in detail by the activity on the left side
of Fig. 2. The sensors send updates of the device positions to their connected
local node, which updates the entry in its local table. Thereafter, the local node
forwards the update to the central node, which refreshes the central table con-
taining the location of all devices. Furthermore, devices can ask their local node
for the position of other devices. This behavior is specified by collaboration Re-
questPos outlined on the right side of Fig. 2. Device d1 can, for instance, ask for
the position of d2 by sending PosReq to its local node. As d2 is registered on
the same local node, l1 has the position of it in its local table and can therefore
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Fig. 3. Development approach using UML and cTLA

answer right away. If d1 asks for d3, then l1 sends a request to the central node
and returns the reply to d1.

Our experiences using collaborations and activities to specify services are
very encouraging, as collaborations allow intuitive but yet precise specifications
of services. In order to execute a service, however, a behavioral description for
each participating component is needed that can be efficiently executed in form
of a program running on available platforms. To accomplish that, we follow the
approach of stepwise refinement, adding more and more details until we get mod-
els that can be directly transformed into executable code. We intend to achieve
these design steps by a set of model transformations in the spirit of MDA, as
shown in the engineering part of Fig. 3. The result of the model transformations
is an executable service model that is based on UML 2.0 state machines and
composite structures. It is the input for our existing code generators that can
generate programs executing the services on various Java platforms, appropriate
for both the telecommunication as well as for the computing domain (cf. [5]).

To ensure the correctness of these transformations, we need a formal reasoning
technique. The temporal logic cTLA [6] offers operators and techniques suitable
for refinement [7], and it can capture such transformation steps in a formal
way quite well, as shown in [6,8,9]. Moreover, the composition of services from
collaborations can be directly expressed with the well-understood concept of
process composition in cTLA.

Of course, a correctness-preserving development approach is only meaningful
if we can guarantee that the generated code corresponds to the executable service
model. Thus, we have to clarify formally that the executable code is a correct
refinement of the executable service model in spite of the practical limitations of
execution frameworks such as finite message buffers. For this sake, we introduce
a cTLA specification style cTLA/e. It corresponds directly to the executable
service model and describes which form a cTLA specification must have to be
efficiently executable on existing service platforms. In this way, we establish
a relationship between an intuitive service execution model in UML 2.0, the
efficient execution of services on real platforms, and a formal model allowing
reasoning and analysis.

In the following, we describe the execution platform in Sect. 2 and outline
a profile for the executable service model based on UML 2.0 state machines in
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Sect. 3. This execution model is based on the experience of about three decades
of system engineering and originates from the SDL-based design methodology
SOM [10], which described the basic modeling and execution mechanisms also
used in the projects SISU and SISU II [11]. These projects resulted in the system
engineering method TIMe [12] and had a “major impact on the SDL methodology
guidelines as well as on the SDL and MSC standards” [13, p. 171]. As UML 2.0
adopted most of the language elements for the SDL mechanisms used in TIMe,
we use it as a base for our model description. In addition, we sketch the specifi-
cation technique cTLA in Sect. 4 and the specification style cTLA/e in Sect. 5.
In Sect. 6 we outline the conformance of the executable service model with the
executable system based on cTLA/e and discuss the properties a cTLA/e speci-
fication should have in order to properly address practical software and hardware
limits. We close with a reflection about related approaches and some concluding
remarks.

2 Service Execution Based on State Machines

Systems that execute services fall into the category of reactive systems as char-
acterized by Pnueli [14]. A service typically requires the coordinated effort of
several physically distributed devices [15], so that a system delivering a service
needs to be decomposed into a number of reactive components running on dif-
ferent execution nodes. To define the behavior of the service components, we
use communicating extended finite state machines in the form of UML 2.0 state
machines. Similar descriptions are applied in ROOM [16] as well as in the formal
description techniques Estelle [17] and SDL [18]. We assume that state machines
communicate asynchronously using buffered message passing. This enables both
asymmetrical client-server interactions typical for the computing domain as well
as symmetrical peer-to-peer interactions common in the telecom domain (cf. [5]).
Buffered communication also helps to decouple the different state machine in-
stances and simplifies distribution, as this mechanism can be implemented for
local as well as for remote communication without making changes to the model.

State machines define an executable abstract machine that can be imple-
mented as a virtual machine layer providing runtime support. This gives the
benefits of virtual machines in terms of adaptability and portability of applica-
tions. Contrary to other virtual machine approaches, the communicating state
machines enable a highly efficient solution due to the following reasons:

– Asynchronous message passing avoids blocking on message sending.
– Transition-based execution models enable a very simple scheduling.
– Several state machines can be efficiently integrated in one native process.
– Generic mechanisms for input protection, error handling, and testing can be

provided easily as part of the runtime support.

In this section, we outline how state machines can be executed using runtime
support systems or execution frameworks. As an example, we present the runtime
support system JavaFrame that facilitates execution of state machines on Java.
Thereafter, we sketch other execution frameworks built on JavaFrame.
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2.1 Runtime Support Systems and Execution Frameworks

To achieve a good performance of the executable code, the integration of state
machines to native processes (e.g., operating system processes, Java threads)
plays a significant role. A naive approach is to execute each state machine in-
stance in a separate native process. This, however, would result in a significant
space and time penalty caused by excessive context switching of the operating
system. Therefore the common practice is to integrate several state machine
instances into a single native process, which is called light integration in [13].
Scheduling of such state machines is extremely space and time efficient, pro-
viding the state machines have equal priority and can be allowed to run each
transition to completion. Support for state machines can be integrated into a
general virtual machine layer supporting the execution of state machines, the
so-called runtime support system (RTS). Alongside process management and
scheduling, an RTS can offer a range of services to the application layer, such as
communication, timer routines, instance creation, logging, debugging and mon-
itoring, as well as mobility management and load control. This approach has
been used on numerous performance-critical products by many different compa-
nies in the telecommunication and automotive industry. Layered approaches can
also be found in the computing domain. Instead of an RTS, one uses execution
platforms like J2EE or newer platforms as for example JAIN SLEE [19], which
try to more directly target the needs of traditional telecommunication services.

2.2 The Runtime Support System JavaFrame

To illustrate runtime support, we introduce JavaFrame [20], which is an RTS and
Java execution framework facilitating the execution of UML 2.0 state machines.
It is based on an RTS in C++ presented by Bræk and Haugen in [21], which
implements an abstract SDL machine. JavaFrame provides a scheduler and base
classes for state machines that can be extended with application-specific logic.
Mediator objects encapsulate various communication protocols and routing func-
tionality to send signals between state machines. Mediators can also be used to
connect the state machines to environments not modeled by state machines.

With the behavior in form of single transitions, state machines naturally offer
scheduling units that can be executed individually. Transitions are programmed
in JavaFrame using transition methods containing nested if-statements. These
if-statements differentiate the available trigger and the current control state and
thereby realize the transition table of the state machine. The bodies of these
nested statements contain the code that is executed as the effect of the transition.
In particular, signals are sent to other state machines, operations are performed
on local data or timers, and the next control state is determined. If an incoming
signal should not be handled in the current state, it can be deferred by putting
it into a dedicated defer queue, which is moved back into the input queue when
another transition is executed. This corresponds to the save-concept of SDL. A
scheduler controls a set of state machine instances and dispatches the events
in their input queues by executing their transitions with the transition method
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described above, using a FIFO ordering of queues. Following the action-oriented
approach [13,21], the state of each state machine instance is stored explicitly in a
data structure. This facilitates an efficient implementation, where the scheduler
can manage the states of a large number of state machine instances. To execute
a transition, the scheduler retrieves the current state and makes it available
to the transition method as a parameter once a transition should be executed.
Consequently, the transition method is reentrant, and needs to be provided only
once per state machine type.

With this transition method, JavaFrame handles the selection of transitions
and their execution in one single method call (as opposed to a more general
solution, where transition selection and execution are implemented in separate
methods [13]). This simplifies the scheduler further and considerably reduces
the computation time to find an enabled transition, as the scheduler simply calls
the transition method each time an event is available in the input queue. In
consequence, transitions are enabled depending on their source state and their
trigger only, and must not contain additional enabling conditions. In practice,
this is not a real constraint, as transitions still may include decisions.

The scheduler of JavaFrame runs in one Java thread and executes only one
transition at a time. In this way, JavaFrame complies to the run-to-completion
semantics assumed in modeling languages like SDL, ROOM, and UML. The fact,
that the Java thread of the scheduler may be interrupted by another thread,
is not problematic, as these do not access any data of the interrupted state
machine. The simple structure of the transition method (i.e., with the nested
conditional statements) also implies that if several transitions are enabled in
the same source state by the same input trigger, only the first one written in
the transition method will be executed, while the code of the other transitions
is never reachable. Such a situation can easily be avoided by combining these
competing transitions to a single one, which contains a choice leading to the
different effects of the original transitions.

2.3 State Machine Execution on Other Platforms

JavaFrame can be used directly to implement state machine-based specifications
on the standard Java platform J2SE. Due to its simplicity, it may also be seen
as a prototype that can guide the implementation of execution frameworks on
other platforms. To facilitate the execution of telecommunication services fur-
ther, a prototypical service execution framework ServiceFrame [22] was devised
by Ericsson extending the basic JavaFrame execution mechanisms with concepts
targeted to service engineering and deployment. Specifically for the domain of
telecommunication services, ServiceFrame contains a part defining service com-
ponents like user agents and terminal agents. In addition, a number of resource
adapters were defined to connect the system to existing technologies, interfaces
and transport protocols like Parlay-X, SIP, as well as Bluetooth connections and
location tracking via GSM or WLAN for mobile devices. The part for the exe-
cution of services, called ActorFrame [23], is an extension of JavaFrame, adding
routing mechanisms, an addressing scheme and protocols for the management of
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Fig. 4. Object diagram of the system

the system structure. The initial version of ActorFrame was implemented on the
standard Java platform, J2SE, followed by versions running on the J2EE [24]
and later also the J2ME platform, which makes it possible to run parts on the
system also on mobile devices.

2.4 Code Generation

As parts of our integrated service engineering tool suite Ramses [25], we de-
veloped code generators [26,27] for the ActorFrame platform, both the J2EE
as well as the J2SE version. Based on them, a number of prototypical service
applications were realized and deployed, including services running in the oper-
ational network of the Norwegian telecom operator Telenor. As input, Ramses
uses UML 2.0 models based on state machines as presented in the next section.

3 Executable Service Models in UML 2.0

In the following, we outline a profile in UML 2.0 that can be directly mapped
to an execution in JavaFrame-based systems. The complete profile is presented
in [28]. In particular, we introduce constraints on transitions to facilitate schedul-
ing and refine some semantic variation points of UML 2.0.

Figure 4 shows an object diagram of our example system with a number of
devices, two local nodes, and the central node in the middle. Each state machine
owns some ports that are used to transmit the signals to other state machines
via the links connecting them. A state machine can send a signal by putting it
into the output queue of a port. Thereafter, the signal is transmitted via a link.
At the receiver side, the signal is added to the common input queue of the state
machine. If one port is connected to several others, the signal contains some
routing information that can be used by the sending port to choose the correct
receiver. We assume hereby that signals are transferred in an order-preserving
and reliable way, and that the queues are unbounded1.

Figure 5 shows the state machine for a local node. For the execution model,
we use only a subset of UML 2.0 state machines. In particular, we assume that
a state machine has exactly one region and that transitions have a certain struc-
ture, which is described later. To distinguish such state machines from other
state machines in UML, we mark them with the stereotype «executable».
1 In Sect. 6, we describe in the context of the formal method cTLA under which

circumstances these practical limitations can be handled.
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As in JavaFrame, events are either the reception of signals or the expiration
of local timers. UML assumes the events arriving at a state machine to be stored
in an event pool, and gives no further rules for the order of dispatching them,
intentionally allowing different strategies. We assume the input pool to be a
FIFO queue like in SDL processes, so that events are dispatched in the order
of their arrival. This matches the scheduling procedure in JavaFrame. Deferred
events are specified in UML by writing them into the state symbol with the
keyword /defer. For example, in the state retrieving in Fig. 5, incoming Update
or PosReq signals are deferred, until Response arrives and the state machine
changes into state idle.

Actions can be executed as the effect of transitions. A state machine operates
on its auxiliary variables, controls local timers, and sends signals to other state
machines. Actions may also call operations defined for the auxiliary data. Such
actions must execute within the same run-to-completion step and therefore be
local and not waiting on external events. In our example, after receiving an
update, the state machine updates the local data structure localPos by using its
operation update(). Send signal actions can be used to transmit signals to other
state machines. We assume that these actions are assigned to a port (using
the keyword via) and that the signals contain information so that the port
may decide about the destination. The local node, for instance, includes its own
address L in signal Retrieve that is sent via port c towards the central node.
This address may be used by the output port of the central node to route signal
Response for the answer.

As we only use simple states and pseudo states of the kinds choice and initial,
we may distinguish the following forms of transitions:

– A simple transition connects two control states without any decisions or
pseudo states.

– A compound transition is similar to a simple transition but can contain
choices, so that its effects and the target state can depend on a decision. The
decision is made by the guards that are declared on each branch originating
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from a choice. UML requires that at least one of these guards is true, so that
a compound transition can always be completed once it is started.

– An initial transition originates from an initial pseudo state and is executed
when the state machine is started. Each state machine has exactly one initial
transition. Like a compound transition, an initial transition may also use
choices that result in different branches.

Due to the scheduling mechanism in the execution platform, we assume that
all transitions, that do not originate in an initial pseudo state, have exactly
one trigger that matches either a signal reception or a timer expiration event.
The scheduler assumes a transition to be enabled if the state machine is in
the declared source state and the next event to be dispatched matches the one
declared as trigger by the transition. In consequence, a transition may not declare
any additional guards that would prevent its execution. We further assume that
an event is not deferred in a state if a transition originates from that state with
the same event as trigger. Thus, an incoming event is either consumed by a
transition or deferred in a given state.

4 Compositional Temporal Logic of Actions (cTLA)

Lamport’s Temporal Logic of Actions (TLA, [29]) is a linear-time temporal logic
modeling the behavior of a system as a set of infinitely long state sequences

〈s0, s1, s2, . . .〉.

Thus, the TLA semantics fits excellently with that of the state machines in-
troduced above which, in the end, also model infinite sequences of states si

starting with an initial state s0. Compositional TLA (cTLA, [6]) was derived
from TLA to provide more easily comprehensible specifications and offer a more
flexible composition of specifications. cTLA is oriented at programming lan-
guages and introduces the notion of processes. A cTLA process can be in a
simple form which directly describes system behavior by means of state tran-
sition systems. A process can also be compositional and describe systems as a
combination of other process instances each specifying a sub-functionality of the
system.

An example of a simple process type is sketched in Fig. 6. The header Lo-
calNode declares the name of the process type while generic module parameters
like DeviceAddr enable to specify a spectrum of similar process instances by a
single process type. Signals is a constant record-typed expression. The body of
a simple cTLA process type describes a state transition system. It contains a
set of variables like state or inQueue modeling the state space. The subset of
initial states is specified by the predicate INIT. The transitions are expressed
by actions (e.g., enqueue, dequeueC) which are predicates on pairs of a current
and a next state describing a set of transitions each. Variables in simple form
(e.g., inQueue) refer to the current state while the next state is described by
the so-called primed form (e.g., inQueue’). The statement UNCHANGED lists



1622 F.A. Kraemer, P. Herrmann, and R. Bræk

PROCESS LocalNode (DeviceAddr: ANY; MyDevices: SUBSET(DeviceAddr);
NodeAddr: ANY; MyAddress: NodeAddr;
Pos: ANY; unknownPos: Pos)

CONSTANTS
Signals Δ= [[ t: {Start, Update, PosReq, Response, Retrieve};

a: DeviceAddr; d: DeviceAddr; l: MyAddr; p: Pos ]] ;
VARIABLES
state: {initState, idle, retrieving}; localPos: [MyDevices → Pos];
inQueue: QUEUE OF Signals; deferQueue: QUEUE OF Signals;
outQueueC: QUEUE OF Signals; outQueueD: QUEUE OF Signals;

INIT Δ=
state = initState ∧ inQueue = EMPTY ∧ deferQueue = EMPTY ∧
outQueueC = EMPTY ∧ outQueueD = EMPTY ∧ localPos ∈ [MyDevices → Pos];

ACTIONS
enqueue (inSignal : Signals) Δ=

inQueue ′ = inQueue ◦ 〈inSignal〉 ∧ state �= initState ∧
UNCHANGED 〈deferQueue, state, outQueueC, outQueueD, localPos〉;

dequeueC (outSignal : Signals) Δ=
outQueueC �= EMPTY ∧ outSignal = FIRST(outQueueC) ∧
outQueueC ′ = TAIL(outQueueC) ∧
UNCHANGED 〈inQueue, deferQueue, state, outQueueD, localPos〉;

dequeueD (outSignal : Signals) Δ= . . . ;
initial Δ= state = initState ∧ state ′ = idle ∧

localPos ′ = [d ∈ MyDevices | d �→ unknownPos] ∧
UNCHANGED 〈inQueue, deferQueue, outQueueC, outQueueD〉;

INTERNAL ACTIONS
update Δ= state = idle ∧ FIRST(inQueue).t = Update ∧

state ′ = idle ∧
inQueue ′ = deferQueue ◦ TAIL(inQueue) ∧ deferQueue ′ = EMPTY ∧
localPos ′ = [localPos EXCEPT FIRST(inQueue).a �→ FIRST(inQueue).p] ∧
outQueueC ′ = outQueueC ◦ 〈 [[ t �→ Update; a �→ FIRST(inQueue).a;

d �→ FIRST(inQueue).d; l �→ MyAddress;
p �→ FIRST(inQueue).p ]] 〉 ∧

UNCHANGED 〈outQueueD〉;
requestPos Δ= state = idle ∧ FIRST(inQueue).t = PosReq ∧

state ′ = IF FIRST(inQueue).a ∈ MyDevices THEN idle ELSE retrieving ∧
inQueue ′ = deferQueue ◦ TAIL(inQueue) ∧ deferQueue ′ = EMPTY ∧
localPos ′ = localPos ∧
outQueueC ′ = outQueueC ◦ IF FIRST(inQueue).d ∈ MyDevices THEN EMPTY

ELSE 〈 [[ t �→ Retrieve; a �→ FIRST(inQueue).a;
d �→ FIRST(inQueue).d;
l �→ MyAddress ]] 〉 ∧

outQueueD ′ = outQueueD ◦ IF d = FIRST(inQueue).d ∈ MyDevices
THEN 〈 [[ t �→ Response; a �→ First(inQueue).a;

d �→ FIRST(inQueue).d; l �→ MyAddress;
p �→ localPos[First(inQueue).d ]] ]〉

ELSE EMPTY;
retrievePos Δ= . . . ;
deferInRetrieving Δ= state = retrieving ∧ FIRST(inQueue).t ∈ {Update, PosReq}

∧ inQueue ′ = TAIL(inQueue) ∧ deferQueue ′ = deferQueue ◦ 〈FIRST(inQueue)〉 ∧
UNCHANGED 〈state, localPos, outQueueC, outQueueD〉;

WF: dequeueC, dequeueD, initial, update, requestPos,
retrievePos, saveInRetrieving;

END

Fig. 6. cTLA/e process modeling the local node
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variables not changed by an action. Action parameters like inSignal allow to
model different actions by a single representation. Actions can be distinguished
into two classes. External actions can be coupled with actions of the process
environment while internal actions cannot.

We can provide actions with weak and strong fairness properties guarantee-
ing that they are carried out in a lively manner. In particular, weak fairness
forces the execution of an activity if it would be enabled continuously otherwise.
Strong fairness forces the execution even if the action is sometimes disabled.
Unlike TLA, cTLA provides for conditional fairness assumptions to ensure the
consistency of the process compositions introduced below. A fairness statement
refers to periods of time in which an action is both enabled and the environment
of the process is ready to tolerate the action. The statement WF: dequeueC,
dequeueD,... indicates that the listed actions have to be carried out weak fairly.

A process type describes a set of TLA state sequences. The first state s0
of each modeled state sequence has to fulfill the initial condition INIT. The
state changes 〈si, si+1〉 either correspond with a process action or with a so-
called stuttering step in which the current and the next states are equal (i.e.,
si = si+1). The fairness assumptions have to be fulfilled as well. cTLA also allows
to define additional real time properties [30] and the description of continuous
behavior [31] which we omit here for the sake of brevity.

Compositional cTLA processes model systems as compositions of concurrent
process instances. Since the process variables are encapsulated and can only
be referenced by the actions of the process defining them, the system state
space is basically the vector of the variables of all process instances belonging
to the system. We compose processes with each other by coupling their external
actions to joint system actions. Formally, a system action is a conjunction of
the corresponding process actions which therefore are executed simultaneously.
A process may contribute to a system action with either exactly one process
action or with a stuttering step. An internal process action, however, must only
be coupled with stuttering steps of the other processes.

Figure 7 describes a compositional process type. It consists of the process
instances c, l1, l2, etc. which are listed in the section PROCESSES. At that
place, we also specify the module parameter instantiations (e.g., the parameter
myDevices of the instance l1 of process type LocalNode in Fig. 7 is instantiated
with the set {d1, d2}). The system actions are depicted in the lower part of the
specification2 as conjunctions of process actions. For instance, the system ac-
tion ctol1 corresponds to the joint execution of the process actions dequeueC of
process C and enqueue of l1 while the other processes perform stuttering steps.
The data transfer between c and l1 is modeled by the action parameter sig.
Moreover, we added an additional conjunct sig.l = l1 enabling the execution of
the action for certain action parameter settings only. In [6] we proved that com-
positional cTLA processes can be transformed into equivalent simple processes
which enables nested system specifications.

2 To keep the specification short, we omitted processes performing stuttering steps in
each system action description.
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PROCESS System
CONSTANTS
DevAddr Δ= {d1, d2, d3}; NodeAddr Δ= {l1, l2};
Ps Δ= [[ x : REAL; y : REAL; z : REAL ]] ;
uPs Δ= [[ x �→ 0, y �→ 0, z �→ 0 ]] ;
Sig Δ= [[ t : {Start, Update, PosReq, Response, Retrieve};

a : DevAddr; d : DevAddr; p : Ps ]] ;
PROCESSES
cn: CentralNode (DeviceAddr ← DevAddr, Pos ← Ps, unknownPos ← uPs);
l1: LocalNode (DeviceAddr ← DevAddr, myDevices ← {d1, d2},

NodeAddr ← NodeAddr, MyAddress ← l1,
Pos ← Ps, unknownPos ← uPs);

s1: Sensor (DeviceAddr ← DevAddr, myDevices ← {d1, d2}, Pos ← Ps);
d1: Device (DeviceAddr ← DevAddr, myDeviceAddr ← d1, Pos ← Ps);

...initializations of local node l2, sensor s2 and devices d2 and d3...
INTERNAL ACTIONS
Initial
cnInitial Δ= cn.initial; l1Initial Δ= l1.initial; l2Initial Δ= l2.initial;
d1Initial Δ= d1.initial; d2Initial Δ= d2.initial; d3Initial Δ= d3.initial;
s1Initial Δ= s1.initial; s2Initial Δ= s2.initial;

local nodes ↔ central node (portC)
l1toc(sig: Sig) Δ= l1.dequeueC(sig) ∧ c.enqueue(sig);
l2toc(sig: Sig) Δ= l2.dequeueC(sig) ∧ c.enqueue(sig);
ctol1(sig: Sig) Δ= c.dequeueC(sig) ∧ l1.enqueue(sig) ∧ sig.l = l1;
ctol2(sig: Sig) Δ= c.dequeueC(sig) ∧ l2.enqueue(sig) ∧ sig.l = l2;

... actions for other connections ...
END

Fig. 7. cTLA/e process modeling the global system

5 cTLA/e: An Executable Form of cTLA

cTLA is a powerful means to describe various forms of behavior. The cTLA
specifications, however, may have a form that is difficult to implement effi-
ciently. Therefore, we describe a special cTLA specification style (cTLA/e),
which directly models the mechanisms of the execution platforms exemplified
by JavaFrame in Sect. 2. cTLA/e determines a form for simple processes corre-
sponding to state machines explained in Sect. 5.1 and a form for compositional
processes to couple the state machines in Sect. 5.2.

5.1 cTLA/e Process for State Machines

In the following, we will sketch the cTLA/e models of state machines by the
specification of the local node from the example listed in Fig. 6. This process
corresponds to the state machine of the local node depicted in Fig. 5. One state
machine is represented by one cTLA/e process. The control state is described by
a cTLA variable state expressing the enumeration of the control state identifiers.
Incoming signals are placed in the data structure inQueue, which is a sequence
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of signals with the operations FIRST() to obtain the first element and TAIL()
to get the queue after removing the first element. The operator ◦ denotes the
concatenation of queues. Similarly, the defer queue for signals is modeled by
the cTLA variable deferQueue. Signals are appended to the input queue by the
action enqueue, which has the received signal as action parameter.

For each port used to send signals to other state machines, the process contains
an output queue3. Signals are records, where the field t denotes the type of the
signal, a the device address calling for a position or part of an update, d the
device address for which a position is requested, l the address of a local node
retrieving a position, and p the position information. To send a signal via a
port, a transition adds it to the corresponding output queue. A dequeue action
defined for each port (e.g., dequeueC and dequeueD) is used to transmit the
signals from the output queues to their respective receivers. Additional variables
represent the auxiliary variables of the state machine. For instance, a local node
stores the positions of its local devices in the map localPos.

Every transition of the state machine is represented by a cTLA action formu-
lated as a conjunction of several sub-actions ttrans = ten ∧ tnext ∧ tqm ∧ tsend ∧
taux, each having a distinct purpose:

– The enabling sub-action ten = ttrigger ∧ tprev determines whether a transition
is ready to execute. This depends on the first event in the input queue
(ttrigger) and the current control state (tprev). For example, the action update
defines a transition enabled in control state idle and for the signal Update
with state = idle ∧ FIRST(inQueue).t = Update. As an initial transition has
no trigger, sub-action ttrigger is omitted in action initial.

– The target state sub-action tnext specifies the change of the control state. It
simply is an assignment to the control state variable. For compound transi-
tions including several branches, the assignment can include an if-statement.
The target of the requestPos transition, for instance, is either state idle or
retrieving.

– The queue maintenance sub-action tqm describes the move of the content
of the defer queue to the front of the input queue, so that they are again
available for consumption in the next state. The sub-action tqm � inQueue’=
deferQueue◦tail(inqueue)∧deferQueue’= EMPTY is identical for every tran-
sition. As the defer queue is empty when the initial transition is executed,
it is not necessary to include this sub-action in the action initial.

– Sub-actions tsend model the transmission of signals, simply by appending
them to the corresponding output queue. The signals sent may depend on
conditions, which can be expressed by an if-statement. For example, transi-
tion requestPos either sends Response via port D or Retrieve via port C.

– Sub-actions taux specify the new settings of the local auxiliary variables. The
local position map localPos, for instance, is updated with the new position
in transition update.

3 In the example, no signals are sent from the local node to the sensor via port s.
Therefore, this port is not represented with an output queue.
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Like on our execution platforms based on JavaFrame, deferred signals are
moved into a the dedicated defer queue by an explicit action. This action is a
conjunct ttrigger ∧ tprev ∧ tdefer, with tdefer performing the actual move into the
defer queue. For instance, in Fig. 6, deferInRetrieving removes the signals Update
or PosReq from the input queue and appends them to the defer queue.

Similarly to SDL, we model timers by means of signals. The starting, stopping
and triggering of a timer is specified by auxiliary cTLA actions. Once a timer
expires, the runtime support system places a signal representing the timer expi-
ration in the input queue. In our example system, we use timers in the sensors
which, however, are not listed for the sake of brevity.

5.2 cTLA/e Process for the Global System

The system is specified by a compositional cTLA process combining the processes
for the individual state machines, as shown in Fig. 7. After declaring constants for
the used types such as device addresses, signal formats and positions, it defines a
process instance for each state machine instance and passes parameters to them.
The configuration reflects the system structure given in Fig. 4 by initializing
local nodes and sensors with the device addresses attached to them.

According to the system structure, the corresponding dequeue and enqueue
actions are coupled together, so that signals can be transfered from an output
queue to the input queue of the receiver. In our example, we represent each link
between two state machines by an individual cTLA action. For example, the
links from the central nodes to each of the local nodes are represented by cTLA
actions ctol1 and ctol2 in which the additional conjuncts sig.l = l1 and sig.l =
l2 model the routing decision. To enable scalable system models, we can also
use coupling descriptions specifying various links and, in particular, dynamic
connections by a single cTLA system action (cf. [8]).

6 Executing cTLA/e Specifications

To provide the complete formal proof, that our code generators produce soft-
ware code implementing a cTLA/e specification correctly, we need to create a
fully-fledged cTLA model of the code, which is beyond the scope of this paper.
Therefore, we only provide a sketch of the proof. As mentioned previously, the
specification style cTLA/e was laid out in a way that its actions correspond with
the program steps of the generated code based on JavaFrame. Moreover, the vari-
ables used in cTLA/e reflect directly the variables in the executable code. For
instance, the sub-action tqm is similar to the step of the implementation where
in a transition the first signal is removed from the input queue and previously
deferred signals are moved to the front of the input queue in the order of their
deferral. Thus, we can describe the execution of a transition as an order of steps:

Si
ttrigger−−−−→ ̂Si,1

tprev−−−→ ̂Si,2
taux−−→ ̂Si,3

tsend−−−→ ̂Si,4
tnext−−−→ ̂Si,5

tqm−−→ Si+1

As previously mentioned, the implemented state machines follow the run-to-
completion semantics, so that the sequence of steps is carried out without
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interruptions by other events. Therefore, it is easy to prove formally that this
sequence implies the sequence

Si
stutter−−−−→ Si

stutter−−−−→ Si
stutter−−−−→ Si

stutter−−−−→ Si
stutter−−−−→ Si

ttrans−−−→ Si+1

That means the first five steps of the executed transition are mapped to stut-
tering steps in cTLA/e, while the last step is mapped to the cTLA/e action
modeling the entire transition in one (atomic) step. This is a well-known ex-
ample of a formally correct refinement step as described for example in [32].
Likewise, we can verify that a signal deferral consisting of the steps

Si
ttrigger−−−−→ ̂Si,1

tprev−−−→ ̂Si,2
tdefer−−−→ Si+1

implements the cTLA/e defer action.
In cTLA/e, a signal transmission is modeled by three distinct actions: (1) the

transition putting the signal into an output queue, (2) the action transferring the
signal from the output queue to the input queue of the receiver (as a conjunction
of two process actions) and (3) the transition triggered by the signal that con-
sumes it. Thus, action (2) is an abstraction of the transmission mechanism of a
middleware layer in an implementation and the signals currently in the cTLA/e
output queues are assumed to be under transmission.

Of course, we have to consider that resources in the real world are limited and
computation steps take time. In particular, the size of signal queues is bounded
and buffer overflows may occur. In our example, a sensor may send position
updates so frequently, that the local node cannot process all of them. To avoid
this, we can introduce mechanisms already on the specification level. We may, for
instance, require the sensor to wait for an acknowledgment from the local node
before sending another update. Alternatively, updates may only be sent when
requested by the local node. In this case, one can verify by cTLA-based invariant
proofs that the queues do not exceed an upper bound. Furthermore, we may use
real-time reasoning to guarantee the boundedness of queues. For instance, we
may enforce a minimum waiting time for the sensor and maximum response time
properties for other system actions using the real-time extension of cTLA [30].
Then we can prove that the local node can handle an update signal even in
peak situations before the next update is triggered. This is complementary to
the technique used in [21] which estimates the execution time of transitions.

A deadlock can occur if there is a signal at the first position of the queue
that a state machine cannot handle in its current state (i.e., neither consume in
a transition nor defer). To prevent this kind of design flaw, we should verify by
means of cTLA invariant proofs that every incoming signal can be handled. In
our example, the local nodes have two states4 idle and retrieving. The signals
Update and PosReq can always be consumed in state idle (by the actions update

4 We can disregard the initial pseudo state initState here, as the originating initial
transition is enabled independently of the input queue and will be eventually exe-
cuted due to its fairness property.
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or requestPos in Fig. 6) and deferred in state retrieving (by action saveInRe-
trieving). In contrast, signal Response is only consumed in the state retrieving.
Therefore, we must verify the cTLA invariant, that this signal is only sent by
the central node if the local node is in the state retrieving. Based on the activity
diagram in Fig. 2 it is evident that this invariant is straightforward.

So far, we considered safety properties guaranteeing that “nothing wrong”
happens. Beyond that, the layout of cTLA/e, and the scheduling mechanisms
based on JavaFrame also allow assertions about liveness properties, describing
that “...something good eventually happens...” [33]. In cTLA, liveness is expressed
by the fairness assumptions introduced in Sect. 4. The layouts of cTLA/e and
the JavaFrame-based scheduler guarantee that every transition once enabled will
eventually be executed, since the following properties hold:

– Due to the isolation of state machines and the fact that transitions are
enabled based on the source state and trigger event only, a transition once
enabled will remain enabled until it is executed.

– As explained in Sect. 2, there is at most one transition enabled for each
combination of a source state and a trigger event.

– Due to the cTLA invariant proof, all received signals can be handled.
– The scheduler serves all of its state machines in a round-robin fashion.

One can verify that these properties imply the strong fairness properties (and, in
consequence, the weak fairness properties) of the corresponding cTLA/e actions.
This is a valuable property of our execution platform, as it is the prerequisite to
include fairness reasoning on the more abstract specifications of our system as
well. If we can prove that fairness assumptions of more abstract collaborations
are fulfilled by the cTLA/e refinement, it is evident, that these assumptions are
also realized by the executable code.

7 Related Work

Closest related to our work is probably that of the specification approach and
language DisCo [34], which, like cTLA, is based on the Temporal Logic of Ac-
tions. Similar to collaborations, DisCo is focusing on the cooperation of ob-
jects. Instead of processes as in cTLA, DisCo uses layers that may be composed
or refined. To facilitate a specification-driven approach, Pitkänen [35,36] intro-
duces an additional level of refinement called TransCo. This is a subset of the
DisCo language and oriented towards business components and transactions.
TransCo can be derived from DisCo by refinement and then further be trans-
lated into J2EE applications by an experimental code generator. The concept
of an intermediate formal language like cTLA/e or TransCo is also present in
the B-Method [37], where a subset of B — called B0 — is closer to imperative
languages that are easier to implement. The intermediate languages TransCo,
B0, and cTLA/e focus on different domains or platforms. While TransCo targets
at transaction processing, and B0 is close to sequential code like ADA, cTLA/e
is an abstraction of the executable state machines described above.
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In this paper, we focused on the formal treatment of an execution model to
ensure correctness of the resulting programs. If we extend our scope towards
the development of reactive systems in general, we naturally find other methods
with slightly different aims, specialized towards other domains. One approach
that seems to cover the step from specifications to executable code in a rather
complete way, is that of Burmester et al. in [38] which is integrated into the
FUJABA toolset. They focus on specifications of systems including real-time
properties. Similar to collaborations, they specify patterns that can be verified
independently and composed together. For the description of these patterns,
UML state machines extended with real-time properties are used. To transform
a specification into executable systems, an intermediate model is described in [39]
that takes platform-specific aspects into consideration, such as the assignment of
state machine instances to execution threads. For the implementation they pro-
pose a direct mapping of one state machine instance to one real-time execution
thread, instead of using a scheduler that takes advantage of the state machines,
as described in Sect. 2.

8 Concluding Remarks

We described how distributed services can be efficiently executed based on com-
municating state machines. Moreover, we outlined the mechanisms of JavaFrame
to exemplify how execution platforms and support systems can be constructed. It
was further discussed which form UML 2.0 state machines should have in order to
be easily transformable to programs using the presented execution mechanisms.
We defined a cTLA specification style (cTLA/e) to combine the correctness-
preserving service design with the efficient execution mechanisms. cTLA/e is
dedicated to an easy and correct mapping of the state machines forming the
input of JavaFrame-based implementations. We made plausible that the imple-
mentations fulfill interesting properties concerning the fairness of execution and
we outlined how boundedness of signal queues can be ensured.

We described a triangle relationship between the efficient execution of services,
the intuitive modeling based on UML, and the formal analysis based on temporal
logic with cTLA/e. This relationship also aligns the scopes of three different
kinds of engineers that perform activities in service engineering:

– Execution platform designers create mechanisms for the execution and de-
ployment of services that need computational models allowing an efficient
execution, such as the state machines presented in Sect. 2.

– Service engineers focused on specific applications want to have suitable mod-
eling concepts and generally accepted notations, such as the UML 2.0 state
machines of Sect. 3.

– Providers of tools for modeling, analysis, and transformations need a formal
logic like cTLA of Sect. 4 to to reason about the correctness of tools and
methods.

With cTLA/e we provided such an alignment for the execution of services.
It is the final stage in our strategy to generate executable components from
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formal collaborations describing the services. In addition to cTLA/e, we de-
veloped another cTLA specification style modeling collaborations which uses
UML 2.0 collaborations for a structural description and UML activities for the
behavioral part, like the ones briefly presented in the introduction. In the next
step, we will specify how this cTLA style can be refined to cTLA/e. In par-
ticular, we want to provide service engineers with the suitable means for the
correctness-preserving top-down construction of distributed services. Here, cTLA
already proved its capability for various application domains [6,8,9,31]. As part
of this work we have to reduce collaborations to component models as needed
for the execution. This means to re-arrange the process structure described by
the collaborations and to split it into the behavior that each service component
contributes to a collaboration. An integral part of such a refinement is the adap-
tion of the process couplings and the cTLA actions into the form we described
by cTLA/e.

The combination of UML 2.0 modeling with cTLA-based reasoning offers a
number of practical advantages for service engineering in general. Most promi-
nent is the realization of the correctness-preserving refinement as UML 2.0 model
transformations. Here, the cTLA refinement steps are a fundament for creating
MDA tools performing suitable model transformations. While these tools use
cTLA formalizations of the UML models and the refinement steps, for the ser-
vice engineer cTLA will in fact be invisible.
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