
R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4276, pp. 1290 – 1304, 2006.
© Springer-Verlag Berlin Heidelberg 2006

Autonomous Layer for Data Integration in a Virtual
Repository*,**

Kamil Kuliberda1,4, Radoslaw Adamus1,4, Jacek Wislicki1,4, Krzysztof Kaczmarski2,4,
Tomasz Kowalski1,4, and Kazimierz Subieta1,3,4

1 Technical University of Lodz, Lodz, Poland
2 Warsaw University of Technology, Warsaw, Poland
3 Institute of Computer Science PAS, Warsaw, Poland

4 Polish-Japanese Institute of Information Technology, Warsaw, Poland
{kamil, radamus, jacenty, tkowals}@kis.p.lodz.pl,

kaczmars@mini.pw.edu.pl,
subieta@pjwstk.edu.pl

Abstract. The paper describes a self-operating integration mechanism for
virtual repository’s distributed resources based on object-oriented databases in a
grid architecture. The core architecture is based on the SBA theory and its
virtual updateable views. Our virtual repository transparently processes
heterogeneous data producing conceptually and semantically coherent results.
Our integration apparatus is explained by two examples with different types of
fragmentations – horizontal and vertical. A transparent integration process
exploits a global index mechanism and an independent virtual P2P network for
a communication between distributed databases. Researches presented in the
paper are based on a prototype integrator which is currently under development.

1 Introduction

Recently, a term virtual repository becomes increasingly popular in database
environments as a mean to achieve many forms of transparent access to distributed
resources. A virtual repository user is not aware of an actual data form as he or she
gets only needed information and the best shaped for a particular use. Among many
other new concepts in modern databases this branch is evolving and developing very
quickly as a definite answer from science to business needs. We already know many
potential applications of a dynamic data integration technologies like e-Government,
e-University or e-Hospital. In a modern society data must be accessible from
anywhere, at any time, regardless of a place is stored in and other similar aspects.
There are many approaches which try to realize this idealistic image. Some involve a
semantic data description and an ontology usage extended by logic-based programs
that try to understand users needs, collect data and transform it to a desired form
(RDF, RDFQL, OWL). Other commercial systems like Oracle-10G offer a flexible
execution of distributed queries but they are still limited by a data model and

 * This work is supported by European Commission under the 6th FP project e-Gov Bus, IST-4-

026727-ST.
** This work has been supported by European Social Fund and Polish State in the frame of

“Mechanizm WIDDOK” programme (contract number Z/2.10/II/2.6/04/05/U/2/06).

 Autonomous Layer for Data Integration in a Virtual Repository 1291

languages not sufficient for distributed queries, in which programming suffers from
inflexibility, complexity and many unpredictable complications. Our novel system
offers all necessary features but it keeps programming very simple. The main idea is
focused on P2P networks as a model for connecting clients and repositories combined
with a powerful viewing system [2] enabling users to see data exactly in a required
form [8]. This viewing system also allows an easy-to-operate mechanism for
managing various data fragmentation forms as a consistent virtual whole.

The rest of the paper is organized as follows. Section 2 presents the idea of a data
grid based on a virtual repository. Section 3 presents a virtual network for a data grid.
Section 4 demonstrates the implementation and some examples. Section 5 concludes.

2 Distributed Data in Virtual Repository

The main difficulty of the described virtual repository concept is that neither data nor
services can be copied, replicated and maintained in the global schema, as they are
supplied, stored, processed and maintained on their autonomous sites [6, 7]. What is
even more important, resources should be easily pluggable into the system as well as
users can appear and disappear unexpectedly. Such a system by similarity to an
electric grid was called a grid database or a data grid [1, 9].

Virtual Repository

V
irtual D

ata
V

iew

Virtual Data
View

Virtual Data
View

Rea
l D

at
a

Contri
butio

n
Real Data

Contribution

XML DatabaseRelational Database

User

UserUser

Global infrastructures

trust, transactions,
indexing, workflow

...

User's Data
Schema

User's Data
Schema

Fig. 1. The concept of a virtual repository. Users work with their own and favorite view of
resources not knowing the real data or services.

However, a grid database has some limitations that significantly distinguish it from
an electrical grid:

− a user may have many providers of the same service;
− a service provider can be not the same as a connection provider;
− a trust policy is more extended and more complex.

1292 K. Kuliberda et al.

Because of these reasons a user must exactly describe his or her needs in terms of
business contracts and a service provider must be able to evaluate possibilities of
fulfilling these demands. Figure 1 shows the general concept. A user may plug into a
virtual repository and use resources according to his or her needs, assigned privileges
and their availability. In the same way resource providers may plug in and offer data
or services. We may say that Internet and World Wide Web accompanied with
HTML, search engines and web services work according to that idea. But we also
know that searching for information, whose results are stable and repeatable, is very
difficult. This environment is not sufficient for databases and effective programming
tasks. A virtual repository must be achieved by an additional layer of a middleware
which will supply a full transparency of resources, providers and clients [8]. The
goals of the approach are to design a platform where all clients and providers are able
to access multiple distributed resources without any complications concerning data
maintenance and to build a global schema for the accessible data and services.

Currently, our team is working on a data grid solution developed under the
international eGov-Bus project (contract no. FP6-IST-4-026727-STP). The project
objective is to research, design and develop technology innovations which will create
and support a software environment providing user-friendly, advanced interfaces
supporting “life events” of citizen or enterprises – administration interactions
transparently involving many government organizations within the European
Community [16]. It can be achieved only if all existing government and para-
government database resources (heterogeneous and redundant) are accessible as a
homogeneous data grid. We aim to integrate existing data stores (a cost of software
unification and data migration would be extremely high and a time of such an
operation unacceptably long) represented by various data models and stores (e.g.
relational, object-oriented, semistructured ones).

2.1 Resources Description

We separate two different data schemata. The first one is a description of resources
acceptable by a virtual repository and it is called a contributory schema. A virtual
repository must not accept any data but only data that it “knows” how to integrate.
Another reason for limitations in this area is a consortium, which is establishing a
virtual repository. It also has certain business goals and cannot accept any data from
any provider. We assume that a virtual repository is created for a certain use and
certain institutions [3, 5].

The other description is called a grid schema or a user schema. It describes data
consumed and services used by clients. The task of a virtual repository system is to
transform data from a contributory schema into a user schema performing also
necessary integration and homogenization. This task may be done with different tools
based on data semantics, business analysis performed by experts or any other
programming techniques. In our solution we propose a view-based system with a very
powerful programming and query language. The views are able to perform any data
transformation and they support updates without any limitation common in other
systems. We emphasise that it is the best solution for transparent data integration not
possessing drawbacks of other systems.

 Autonomous Layer for Data Integration in a Virtual Repository 1293

2.2 System Architecture

The global infrastructure is responsible for managing our grid contents through access
permissions, discovering data and resources, controlling location of resources,
indexing whole grid attributes. The realization challenge is a method of combining
and enabling free bidirectional processing of contents of local clients and resource
providers participating in the global virtual store [8].

Each resource provider possesses a view which transforms its local share into an
acceptable contribution. It is called a contributory view. It connects to the repository
and may immediately share data. Providers may also use extended wrappers to
existing DBMS systems [6, 7].

Similarly, a client uses a grid view to consume needed resources in a form
acceptable for his or her applications. This view is performing the main task of data
transformation and its designer must be aware of data fragmentation, replication,
redundancies, etc. [3, 5] This transformation may be described by an integration
schema prepared by business experts or being a result of an automatic semantic-based
analysis. Nevertheless, we insist that in real business cases a human interference is
always necessary at this stage. The problem is how to allow transparent plugging in
new resources and incorporate them into existing and working views. This question is
discussed in the next section.

3 Virtual Network for Distributed Resources

The idea of a database communication in a grid architecture relies on unbound data
processing between all database engines plugged into a virtual repository. Our
approach depicts not only an architecture of the network with its features, but also
additional mechanisms to ensure effortless:

− users joining,
− transparent integration of resources,
− trust infrastructure for contributing participants.

The general architecture of a virtual network concept solves above three issues
though middleware platform mechanisms designed for an easy and scalable
integration of a community of database users. The middleware platform creates an
abstraction method for a communication in a grid community. The solution creates an
unique and simple database grid, processed in a parallel peer-to-peer architecture [8].

The basic concept of a transport platform is based on a well known peer-to-peer
(P2P) architecture. Our investigations concerning distributed and parallel systems like
Edutella [10], OGSA [11] bring a conclusion that a database grid should be also
independent from TCP/IP stack limitations, e.g. firewalls, NAT systems and
encapsulated private corporate restrictions. The network processes (such as an access
to the resources, joining and leaving the grid) should be transparent for the
participants. Because grid networks (also computational grids) operate on a parallel
and distributed architecture, our crucial principle is to design a self-contained virtual
network with P2P elements.

1294 K. Kuliberda et al.

Fig. 2. Data grid communication layers and their dependencies

User’s grid interfaces – in this proposition database engines – are placed over the
(P2P) network middleware. For users DBMSs work as heterogeneous data stores, but
in fact they are transparently integrated in the virtual repository. Users can process
their own local data schemata and also use business information from the global
schema available for all contributors. This part of a data grid activity is implemented
above user applications available through database engines and SBQL query language
[12, 13], see OODBMS Engines Layer in Figure 2.

In such an architecture, databases connected to the virtual network and peer
applications arrange unique parallel communication between physical computers for
an unlimited business information exchange.

3.1 P2P Transport Layer

The transport platform is based on JXTA Project [14, 15] as a core for a virtual
network. It implements a part of P2P mechanism and provides the complete solution
of a centralized and a decentralized P2P network structure. The virtual network has a
centralized model and supports a management module for network mechanisms and
grid processes (also a trust infrastructure). The transport platform is presented in
Figure 2 as P2P applications virtual network. The P2P virtual network solution is a
layer built on top of TCP/IP network. Its goal is to separate TCP/IP networks and
make them transparent and independent of the grid community. The P2P virtual
network has a complex structure containing two main blocks: JXTA Core and JXTA

OODBMS Engines Layer

P2P Applications Virtual Network
Grid Middleware Layer

 - Transport Platform

TCP/IP Networks
Phisical Computers

Private Network
behind NAT

Private Network
behind NAT

Central
 Management Unit

 Autonomous Layer for Data Integration in a Virtual Repository 1295

Services with six additional virtual network protocols. The technical reference on how
to build a P2P network using open JXTA platform is well explained in [15].

Peer-to-peer transport platform applications operate on a TCP/IP stack integrated
with every operating system environment. A JXTA application implementation
utilizes the Java Framework, so the peer applications of a virtual network can be used
on any operating system supporting Java technology.

3.2 Central Management Unit

Our virtual network has a centralized architecture whose crucial element is a central
management unit (CMU) – see Figure 2. In the virtual network there can exist only
one CMU peer, its basic function is a responsibility for lifetime of data grid, besides it
manages the virtual repository integrity and resource accessibility. Inside the P2P
network level CMU is responsible for creating and managing the grid network – it
means that CMU creates a peer group which is dedicated to linking data grid
participants. CMU also maintains this peer group.

The peer group specifies the basic features of a trust infrastructure model for a
database interconnection. This part of a trust infrastructure is located in the lower
level (the virtual network layer) referring to the OODBMS Engines Layer rather
than a direct user interface. In this case a realization consists of binding of a
networking policy between an OODBMS engine and a peer application. In the
current implementation we are focusing on credentials for a contribution of
privileged databases in the data grid through indexing their unique identifiers inside
a CMU’s index. Each peer connected to the virtual network is indexed in CMU (see
chapter 4).

3.3 Communication Peers and DB Engines – Implementation Details

For regular grid contributors the virtual network is equipped with participant’s
communication peers. They are interfaces to the virtual repository for OODBMS
user’s engines. Each database has its unique name in local and global schemata which
is bound with the peer unique name in the virtual network. If a current database IDs
are stored in the CMU, a user can cooperate with the peer group and process
information in the virtual repository (according to the trust infrastructure) through a
database engine with a transparent peer application. Peer unique identifiers are a part
of P2P implementation of JXTA platform [14, 15].

A peer contains a separate embedded protocol for a local communication with an
OODBMS engine and separate ones for cooperating with an applicable JXTA
mechanism and the whole virtual network. All exceptions concerning a local database
operation, a virtual network availability and a TCP/IP network state are handled by a
peer application responsible for a local part of a grid maintenance. Please notice that
in one local environment there are residing two separate applications (a P2P virtual
network application and a database engine) composing (in grid aspects) one logical
application [8].

Figure 3 presents the logical interoperability of grid components concerning the
OODBMS layer and the virtual network layer. Communication can be established
between:

1296 K. Kuliberda et al.

1. Applications in the virtual network. It concerns the virtual network management
and the virtual network processing (JXTA-XML datagrams). Connections in this
layer rely on the protocol provided by the JXTA platform. For a communication
inside the virtual network we use the multithreaded JXTA Socket layer and XML
formulated datagrams for an information flow. We use different datagrams to
exchange information in the P2P network and to manage peers.

2. A database implemented under ODRA (our prototype OODBMS) and a virtual
network peer application used by internal XML-based protocol instances (see
Figure 3). A connection between these applications implements a protocol, which
exploits the JXTA communication stub and the TCP/IP socket implementation in
.NET C#. Because the OODBMS prototype engine is currently implemented in
.NET C#, it has forced a creation of a bridge protocol between JXTA and C#. The
approach based on the bridge brings additional benefits, such as flexibility and
openness for new functionalities and resource kinds, in particular, other DBMS-s,
other P2P networks, other programming languages, etc.

P2P Central
Management
Unit (CMU)

OODBMS

P2P network

Internal
XML-based
protocol

Peer n

P2P Application

OODBMS

Internal
XML-based
protocol

Peer 1

...

Virtual network
management
(JXTA-XML datagram)
Virtual network
processing
(JXTA-XML datagram)

Global
index

Grid
schema

Dynamic
Grid
View

Local
schema

Dynamic
Grid View
from CMU

P2P Application

OODBMS

Internal
XML-based
protocol

Local
schema

Dynamic
Grid View
from CMU

Trust
infastructure

Set of
licenses

Set of
licenses

Fig. 3. Logical architecture of virtual network

All user operations on the virtual repository concern not only a local part of data
stores, but also remote resources. User requests are packaged into XML-based
protocol messages (equipped with some additional information about a source,
a destination, etc.). The packages are sent through an XML-based protocol from a
DBMS to an appropriate peer application. After receiving a XML datagram by a
suitable peer application it is again wrapped according to the JXTA protocols into

 Autonomous Layer for Data Integration in a Virtual Repository 1297

JXTA-XML datagram. Such datagrams should be sent from a source peer to its
destination peer application in the virtual network. A destination peer is responsible
for decomposing a datagram and sending appropriate requests to a target DBMS.
Notice that XML datagrams which come from a database engine have as source and
destination attributes unique identifiers of participating databases. In the virtual
network each database has an additional identifier as its native peer name. The current
database is recognized in the virtual network by a string like DB_name@Peer_name.

4 Transparent Integration Via Viewing System and Global Index

The presented virtual repository based on a P2P networking must be permanently
updated and this is the most important aspect of our virtual repository operation. For
an easy management of the virtual repository’s content we have equipped the CMU
with a global index mechanism which covers technical networking details,
management activities and it is also a tool for efficient programming in a dynamically
changing environment. The global index not necessarily has to be really centralized as
there are many ways to distribute its tasks. The system needs this kind of an
additional control and it does not matter how it is organized. Its tasks are:

− controlling grid views available for users,
− keeping information on connected peers,
− keeping network statistics,
− registering and storing information on available resources.

The global index is a complex object which can be accessed with the SBQL syntax
(as a typical database object) on every database engine plugged into the virtual
repository. This means that we can evaluate queries on its contents. There is one
substantial difference from processing typical virtual repository objects – as a result
of an expression evaluation CMU can return only an actual content of index, like a list
of online grid participants. The global index is the basic source of knowledge about
the content of the virtual repository. Basing on indexed information referring the
views' system we can easily integrate any remote data inside the virtual repository. If
data have been indexed already, it can be transparently processed without any
additional external interference. The global index has a specified structure which is a
reflection of a global schema and it contains mainly additional objects for
characterizing a type of a data fragmentation. These objects are dynamically managed
through the views' systems whenever a virtual repository contents undergoes a change
(e.g. when a resource joins or disconnects the virtual repository its local view
cooperates with the global index). The global index keeps also dependencies between
particular objects (complexity of the objects, etc.) as they are established in the global
schema.

As a simple example of how the global index works we present grid objects named
Employee which are registered in the central index. The grid controls two remote
DBs (DB_Krakow, DB_Lodz), which map their objects named Person as the
mentioned Employee objects in the grid schema (according to contribution views).
Inside the global index list, each Employee object will contain two attributes as
indexed location of Employee resources – the names of remote DBs – DB_Krakow

1298 K. Kuliberda et al.

and DB_Lodz. Notice that the global index is a dynamic structure, thus any change in
grid’s available participants list will alter its content.

Each indexed object in the global index is equipped with a special object called
HFrag (horizontal fragmentation) or VFrag (vertical fragmentation). Each of them
keeps a special attribute named ServerName, whose content is a remote object – an
identifier of a remote data resource (see Figure 6 and 8). If any new resource appears
in a virtual repository, there will be added a suitable ServerName into the global index
automatically with appropriate information about the resource.

Accessing the remote data can be achieved with calling the global index with:

GlobalIndex.Name_of_object_from_global_scheme.(Name_of_subobject).
HFrag_or_VFrag_object.ServerName_object;

Because every change of the virtual repository’s content is denoted in the global
index, accessing data in this way yields to be the only correct one.

Since every reference to a remote object must explicitly contain its location (a
server it resides on), such a procedure would be too complicated for grid attendants.
Moreover, it would not accomplish with transparency requirements and would
complicate an automation of multiple resources integration process. Thus, we have
decided to cover this stage together with automation of integration process behind a
special procedure exploiting the updateable object views mechanism [4]. The process
is described in the next chapter.

4.1 Examples of Transparent Accessibility of Remote Objects

Figure 4 depicts two examples of a distributed database schema to visualize our
approach to data integrators. The first example realizes a transparent integration
process concerning a horizontal fragmentation (Figure 4a). The complex objects
Doctor and Ward are placed on three different servers, but the data structure for each
sever is the same (see Figure 5), and the corresponding global index content is
presented in Figure 6.

Fig. 4. Distributed databases schemata

The situation where data is horizontally fragmented in distributed resources forces
merging all data as a single virtual structure, transparently achieved by all grid’s
clients. This process can be done by updateable object views [4] and the union
operator. In our solution this operator is not needed, because virtual objects like
DoctorGrid (and WardGrid) from a view definition procedure (see an example
below) simply return a bag of identifiers to remote Doctor (or Ward) objects
structured inside identically. The logical schema of this operation is presented in
Figure 5.

Ward [1..*]

Name
ID

 * ► worksIn

manager ◄

Patient [1..*]

Name
Address
Disease
PESEL

Name
Surname

Doctor[1..*]

a) b)

 Autonomous Layer for Data Integration in a Virtual Repository 1299

Fig. 5. Integration of distributed databases (with identical data structure) into one virtual
structure for virtual repository

The updateable object views [4] action in integrating a horizontal fragmentation is
presented by a following query evaluation (we retrieve names of all grid doctors who
are working in the “cardiac surgery” ward):

 (DoctorGrid where WorksIn.WardGrid.Name = “cardiac surgery”).Name;

The DoctorGrid and WardGrid virtual objects definitions (through updateable
object views [4]) are as follows:

create view DoctorGridDef {
virtual_objects DoctorGrid {

return (GlobalIndex.Doctor.HFrag.ServerName).Doctor as doc};
// return remote not fragmented objects doc

on_retrieve do {return deref(doc)}; //the result of retrieval virtual objects
 create view NameDef {

virtual_objects Name {return doc.Name as dn}; //creating the virtual
//subobjects Name of object DoctorGrid

 on_retrieve do {return deref(dn)}; //the result of retrieval virtual objects
 };

create view SurnameDef {//…};

create view worksInDef {
virtual_pointers worksIn { return doc.WorksIn as wi};
on_retrieve do {return deref(wi)};
};

};
create view WardGridDef {
virtual_objects WardGrid {

return (GlobalIndex.Ward.HFrag.ServerName).Ward as war};
on_retrieve do {return deref(war)};

create view NameDef {

ServerA

ServerB

ServerC

DoctorGrid
[1..*]

Name
Surname

Merging to one virtual object

WardGrid
[1..*]

Name
ID

Ward[1..*]

Name
ID

Ward[1..*]

Name
ID

Ward[1..*]

Name
ID

Doctor[1..*]

Name
Surname

Doctor[1..*]

Name
Surname

Doctor[1..*]

Name
Surname

Merging to one virtual object

1300 K. Kuliberda et al.

virtual_objects Name {return war.Name as wn};
on_retrieve do {return deref(wn)};

 };
create view IDDef { //…};

};

Fig. 6. The contents of CMU global index for example of horizontal fragmentation

Please notice, that for well keeping the original data schema inside a grid
consentaneous to resource databases, the view must contain procedures for retrieving
every subobject in an original objects' hierarchy. Therefore the views procedures,
from above example, include subviews. These subviews also describe the methods of
processing the called data.

The similar case concerns the GlobalIndex object, where the content also brings
back the objects hierarchy like in participating databases, but in reality this is only a
map for the indexing mechanism and the content is the information where the original
objects and subobjects are physically stored.

Such an approach is always required where distributed resources and grid schema
must have the identical representation of their contents.

The other example depicts a transparent integration process concerning a vertical
fragmentation, which is more complicated, because we must join different data
structures stored on physically separated servers. For solving this problem we use the
join operator with a join predicate specific for an appropriate integration of distributed
objects. The database schema (according to global schema) is presented in Figure 4b,
where the complex object Patient is placed on three different servers where the data
structure of stored objects is different (see Figure 7), according to this the global
index content is presented on Figure 8.

GlobalIndex

Doctor

HFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

Name

Surname

HFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

HFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

Ward

HFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

Name

ID

HFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

HFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

 Autonomous Layer for Data Integration in a Virtual Repository 1301

Fig. 7. Integration of distributed databases (with different data structure) into one virtual
structure for virtual repository

The conclusion about a grid structure from the above example is that each server
participating the virtual repository has a differential structure of stored data except for
the PESEL object which has an identical content on each server. We utilize the
knowledge about the object PESEL and its content to make “join” on the fragmented
Patient object. The PESEL attribute is an unique identifier (predicate) for joining
distributed objects into a virtual one.

This integration for a vertical fragmentation can be exemplified with a query
evaluation: we retrieve names of all grid patients who suffer from cancer):

(PatientGrid where Disease = “cancer”).Name;

The PatientGrid virtual objects definitions (through updateable object views [4])
are following:

create view PatientGridDef {
virtual_objects PatientGrid {

return { (((GlobalIndex.Patient.VFrag.ServerName).Patient as pat).(
((pat where exist(Name)) as pn) join
((pat where exist(Address)) as pa where pa.PESEL = pn.PESEL) join
((pat where exist(Disease)) as pd where pd.PESEL = pn.PESEL)).(

pn.Name as Name, pn.PESEL as PESEL, pa.Address as Address,
pd.Disease as Disease)) as Patients };
// return remote not fragmented objects Patients

on_retrieve do {return deref(Patients)}; //the result of retrieval virtual objects

create view PatNameDef {
virtual_objects Name {return Patients.Name as PatN};
on_retrieve do {return deref(PatN)};
};

create view PatDiseaseDef {
virtual_objects Disease {return Patients.Disease as PatD};
on_retrieve do {return deref(PatD)};
};

};

ServerA

ServerB

ServerC

Joining to one virtual object

PatientGrid
[1..*]

Name
Address
Disease
PESEL

Patient[1..*]
Name
PESEL

Patient[1..*]
Address
PESEL

Patient[1..*]
Disease
PESEL

1302 K. Kuliberda et al.

Fig. 8. The contents of CMU global index for example of vertical fragmentation

In the above examples we create virtual objects explicitly, what implies that a grid
designer must be aware of fragmented objects in the grid schema. He or she does not
need any knowledge of the fragmentation details, but must know which objects are
fragmented. The rest of the integration process is executed automatically through
SBQL syntactic transformations. Basing on the presented approaches it is easy to
define an integration mechanism of objects fragmented both horizontally and
vertically. In order to do so, we must combine them into a specific model. Also, we
are able to extend our proposal for mixing fragmentation for different resources where
some resources can store an object with a few different subobjects. Current object
also can store simultaneously identical subobjects in different resources as a
replication of the data. For this approach we have prepared the GlobalIndex object
and we have equipped it with HFrag and VFrag subobjects. Our research aims to
extend the global index structure with some information about a replication and
redundant resources for reach transparency in a grid over such data structures and
dependencies.

5 Conclusions and Future Work

We have presented a generic approach to a transparent integration of distributed data
in a virtual repository mechanism. Our solution utilizes a consistent combination of
several technologies, such as P2P networks developed on the ground of JXTA, a SBA
object-oriented database and its query language SBQL with virtual updateable views.
Our preliminary implementation solves a very important issue of independence
between technical aspects of distributed data structure managing (including additional
issues such as participants' incorporation, resource contribution) and a logical virtual
repository content scalability (a business information processing). We expect that the
presented methods of integration of fragmented data will be efficient and fully
scalable. We also expect that due to the power of object-oriented databases and SBQL

GlobalIndex

Patient

VFrag
ServerName: “ServerA” ServerName: “ServerB” ServerName: “ServerC”

Name

Address

VFrag

ServerName: “ServerA”

VFrag

ServerName: “ServerB”

Disease
VFrag

ServerName: “ServerC”

PESEL

VFrag
ServerName: “ServerA”
ServerName: “ServerB”
ServerName: “ServerC”

 Autonomous Layer for Data Integration in a Virtual Repository 1303

such a mechanism will be more flexible than other similar solutions. The prototype is
fully implemented and preliminarily tested.

The mentioned grid architecture is described in details in [6, 7, 8]. The presented
P2P transport layer (also depicted as a grid/transport middleware) is independent of
an application composition which provides a transparent communication between
databases (grid data resources). Database’s UI and engines are equipped with a
separate protocol for a connection with P2P applications (at the transport layer level)
– the details are described in [8] and in Figure 3.

Currently we are working on extending the presented idea to achieve a generic
integration process through new functionalities like managing the mixed form of
fragmentations, data replicas and redundancies of resources.

References

1. Foster I., Kesselman C., Nick J., Tuecke S.: The Physiology of the Grid: An Open Grid
Services Architecture for Distributed Systems Integration. Global Grid Forum, June 22,
2002.

2. Kaczmarski K., Habela P., Kozakiewicz H., Subieta K.: Modeling Object Views In
Distributed Query Processing on the Grid. OTM Workshops 2005, Springer LNCS 3762,
2005, pp.377-386

3. Kaczmarski K., Habela P., Subieta K.: Metadata in a Data Grid Construction. 13th IEEE
International Workshops on Enabling Technologies (WETICE 2004), IEEE Computer
Society 2004, pp. 315-316

4. Kozankiewicz H.: Updateable Object Views. PhD Thesis, 2005, http://www.ipipan.waw.
pl/~subieta/, Finished PhD-s

5. Kozankiewicz H., Stencel K., Subieta K.: Implementation of Federated Databases through
Updateable Views. Proc. EGC 2005 - European Grid Conference, Springer LNCS 3470,
2005, pp.610-619

6. Kuliberda K., Wislicki J., Adamus R., Subieta K.: Object-Oriented Wrapper for Relational
Databases in the Data Grid Architecture. OTM Workshops 2005, Springer LNCS 3762,
2005, pp.367-376

7. Kuliberda K., Wislicki J., Adamus R., Subieta K.: Object-Oriented Wrapper for
Semistructured Data in a Data Grid Architecture. 9th International Conference on Business
Information Systems 2006, Klagenfurt Austria, Proceedings in Lecture Notes in
Informatics (LNI) vol. P-85, GI-Edition 2006, pp.528-542

8. Kuliberda K., Kaczmarski K., Adamus R., Błaszczyk P., Balcerzak G., Subieta K.: Virtual
Repository Supporting Integration of Pluginable Resources, 17th DEXA 2006 and 2nd
International Workshop on Data Management in Global Data Repositories (GRep) 2006,
Proceedings in IEEE Computer Society, to appear.

9. Moore R., Merzky A.: Persistent Archive Concepts. Global Grid Forum GFD-I.026.
December 2003.

10. Nejdl W., Wolf B., Qu C., Decker S., Sintek M., Naeve A., Nilsson M., Palmer M., Risch
T.: EDUTELLA, a P2P networking infrastructure based on RDF. Proc. Intl. World Wide
Web Conference, 2002.

11. Open Grid Services Architecture, Data Access and Integration Documentation,
http://www.ogsadai.org.uk

12. Subieta K.: Theory and Construction of Object-Oriented Query Languages. Editors of the
Polish-Japanese Institute of Information Technology, 2004 (in Polish)

1304 K. Kuliberda et al.

13. Subieta: Stack-Based Approach (SBA) and Stack-Based Query Language (SBQL).
http://www.ipipan.waw.pl/~subieta, Description of SBA and SBQL, 2006

14. The JXTA Project Web site: http://www.jxta.org
15. Wilson B.: JXTA Book, http://www.brendonwilson.com/projects/jxta/
16. eGov-Bus, http://www.egov-bus.org

	Introduction
	Distributed Data in Virtual Repository
	Resources Description
	System Architecture

	Virtual Network for Distributed Resources
	P2P Transport Layer
	Central Management Unit
	Communication Peers and DB Engines – Implementation Details

	Transparent Integration Via Viewing System and Global Index
	Examples of Transparent Accessibility of Remote Objects

	Conclusions and Future Work
	References

