
R. Meersman, Z. Tari et al. (Eds.): OTM 2006, LNCS 4276, pp. 1223 – 1233, 2006.
© Springer-Verlag Berlin Heidelberg 2006

A Mixed MPI-Thread Approach for Parallel Page
Ranking Computation

Bundit Manaskasemsak1, Putchong Uthayopas2, and Arnon Rungsawang1

1 Massive Information & Knowledge Engineering
Department of Computer Engineering, Faculty of Engineering

Kasetsart University, Bangkok 10900, Thailand
{un, arnon}@mikelab.net

2 Thai National Grid Center, Software Industry Promotion Agency
Ministry of Information and Communication Technology, Thailand

putchong_ut@thaigrid.or.th

Abstract. The continuing growth of the Internet challenges search engine
providers to deliver up-to-date and relevant search results. A critical component
is the availability of a rapid, scalable technique for PageRank computation of a
large web graph. In this paper, we propose an efficient parallelized version of
the PageRank algorithm based on a mixed MPI and multi-threading model. The
parallel adaptive PageRank algorithm is implemented and tested on two clusters
of SMP hosts. In the algorithm, communications between processes on different
hosts are managed by a message passing (MPI) model, while those between
threads are handled via a inter-thread mechanism. We construct a synthesized
web graph of approximately 62.6 million nodes and 1.37 billion hyperlinks to
test the algorithm on two SMP clusters. Preliminary results show that
significant speedups are possible; however, large inter-node synchronization
operations and issues of shared memory access inhibit efficient CPU utilization.
We believe that the proposed approach shows promise for large-scale PageRank
applications and improvements in the algorithm can achieve more efficient
CPU utilization.

Keywords: PageRank computation, parallel computing, link analysis.

1 Introduction

The information and knowledge resources provided via the Internet continue to grow
at a rapid rate, making effective search technology an essential tool for users of this
information. However, the continual growth in volume of web pages presents a great
challenge to search engines that must classify the relevance of web resources to user
searches. Much current research is directed toward finding more efficient methods to
obtain effective search results. One important research area is the development of
algorithms to estimate the authoritative score of each web page by analyzing the
web’s hyperlinked structure. Leading algorithms are HITS [6] and PageRank [10],
first proposed in 1998 and subsequently enhanced. The scores computed by these
algorithms are utilized by the search engine's ranking algorithm: pages with the more

1224 B. Manaskasemsak, P. Uthayopas, and A. Rungsawang

significant or higher scores are more highly ranked in search results ordering.
Currently, web link analysis remains one of the most important components of the
search engine.

The PageRank algorithm is less complex than HITS, making it more practical for
large-scale application; PageRank is utilized by several well-known search engines
such as Google. PageRank requires analyzing the entire hyperlinked structure of the
web graph once and then iteratively calculates the page scores. Unfortunately, the vast
number of pages that must be ranked increasingly make PageRank very
computationally expensive. For large-scale computation, most researchers usually
propose to first partition a huge web graph into several parts and then to compute
them separately. Some studies, such as [3, 1, 5], propose to sequentially compute each
partition and then combine the sub-results into the global PageRank scores. Other
studies utilize parallel computing on a PC cluster [8, 2] or even distributed P2P
architecture [14, 15] to improve performance.

In this paper, we investigate the use of cluster technology together with an
efficiently parallelized version of the PageRank computation to improve performance.
The main idea of our algorithm is to efficiently employ the computing power of the
cluster to compute subsets of PageRank scores in parallel, and then combine them to
obtain the total scores of web pages. We also investigate the use of lightweight
processes, or threads [11], in a Symmetric Multiprocessing (SMP) environment to
reduce communication overhead and take advantage of shared memory. Cluster
communication is implemented using the standard Message Passing Interface (MPI)
protocol [9]. Since our implementation employs both the multi-threading and cluster
computing models, we call this approach to parallelization a “mixed model”.

The rest of this paper is organized as follows. Section 2 briefly reviews the
PageRank algorithm and introduces acceleration techniques for PageRank
computation. Section 3 discusses the need of parallelization and gives the detail of
such algorithms as well as system design. Section 4 describes our experiments and
discusses the results. Finally, section 5 presents conclusions and planned future
work.

2 Basic PageRank Concept

2.1 The Intuition

The concept behind PageRank [10] is to estimate the importance of web pages by
hyperlinked structure analysis. A link from page u to page v indicates that the author
of u recommends and thus confers some importance on page v. Furthermore, a page
mostly referred by other “important” pages is also important.

To mathematically formulate this intuitive concept, let n be the total number of
pages in the web graph and let R be the PageRank vector: R(u) is the PageRank score
of page u. Also let O(u) be the number of pages that u points out, called “out-degree”.
All pages u linked to v are grouped into a set of backward pages of v, denoted Bv. The
rank score of all pages v can be computed using the iterative formula:

 A Mixed MPI-Thread Approach for Parallel Page Ranking Computation 1225

∑
∈

+ −+=∀
vBu

k
k vE

uO

uR
vRv)()1(

)(

)(
)(:

)(
)1(αα (1)

The two terms in this equation represent two factors contributing to a page’s rank.
The first is the traditional rank propagation calculated from the hyperlinked structure,
weighted by α (usually set to 0.85). The second term represents a random surfer
process over a uniform distribution (i.e., nvEv 1)(: =∀). When the surfer visits any

page he can subsequently jump to a randomly selected page, with probability n
1 . This

term also guarantees convergence of)(kR and avoids the “rank sink” problem [10].

The convergence of)(kR can be proved by application of Markov’s Theorem [12].
)0(R is the initial distribution; in general, the process is started with a uniform

distribution, nuRu 1)0()(: =∀ . Iterative computation of)(kR is performed using

Equation (1) until the rank scores converge. The usual convergence criterion is that
the relative change in scores of all pages between iterations k and k+1 be below a
prescribed tolerance. That is, v∀

δ≤
−+

)(

)()(

)(

)()1(

vR

vRvR

k

kk

 (2)

The relative tolerance for convergence, δ, is a pre-assigned value; in our
experiments, δ is set to 0.0001.

2.2 Adaptive PageRank Technique

Application of the PageRank computation in Equation (1) reveals that the
convergence rate of elements of R(v) is highly non-uniform. Kamvar et al. [4] have
found that the rank computation for many pages with small rank scores converge
quickly to their final values, while the ranks of pages with high scores take a much
longer time for the values to converge.

To eliminate the redundant computation of converged page ranks, Kamvar et al.
proposed an “adaptive PageRank algorithm” [4] that omits recomputation of
PageRank scores that have already satisfied the convergence criterion. For these
pages, they simply use the previous score in successive iterations. This reduces the
running time of the original algorithm. Using their modification to Equation (1)
yields:

⎪
⎩

⎪
⎨

⎧

−+=∀ ∑
∈

+
otherwise)()1(

)(

)(
converged)(if)(

)(:)(

)(

)1(

vBu

k

k

k

vE
uO

uR
vRvR

vRv αα (3)

A PageRank score)()(vR k is marked as converged when it satisfies Equation (2).

The algorithm terminates when all PageRank scores have been marked as converged.
We utilize this adaptive technique in our parallel implementation, described next.

1226 B. Manaskasemsak, P. Uthayopas, and A. Rungsawang

3 Parallel PageRank Computation

To compute the PageRank scores of the totality of pages comprising the hyperlinked
structure of the Internet by application of Equations (1) or (2) would require massive
computing power as well as enormous amounts of memory. In practice, this
computation is nearly infeasible. To obtain a more tractable algorithm, we exploit
parallelism and partitioning of the problem, and utilize shared resources of a
computational cluster.

In this section, we introduce a parallelized version of the PageRank algorithm. First
we develop the web graph representation. Then, we provide detail of the parallel
algorithm.

3.1 Web Graph Representation

From the crawled web collection, we only consider the hyperlinks between pages. So
we first map URLs into ordinal numbers, and represent the web’s hyperlinked
structure using three binary files. The first one, called a link structure file (L),
represents the relationship between pages via their hyperlinks. Each record in this file
consists of dest_id field (the target page) and a list of src_id fields (the set of
authoritative pages.) The other two files, called the out-degree file (O) and in-degree
file (I), contain the numerical out-degree and in-degree, respectively, corresponding to
each dest_id in file L. An example of these files is textually shown in Fig. 1.

Fig. 1. Three binary files representing the link structure of a web graph

As shown in Fig. 1, all values are expressed as 4-byte integers. In this example,
dest_id 1 is the target of a hyperlink from page (src_id) 1028, and it also has a
hyperlink to one other page. The dest_id 2 is the target of a hyperlink from page
(src_id) 106 and has hyperlinks to five other pages.

In the following subsections we describe an approach to parallelizing the
PageRank computation utilizing a partitioning of these data files.

3.2 PPR-M Algorithm

The PPR-M Algorithm [13] applies the adaptive PageRank technique (expressed in
Equation (2)) to a cluster computing environment. Implementation of the PPR-M
algorithm uses the MPI model for message-based communication between nodes in
the cluster.

1

2

3

4

1028

106

311 312

35 96 487 5052

1

5

3

1

dest_id
(4 bytes)

src_id
(4 bytes each)

out_deg
(4 bytes)

file L file O

1

1

2

4

in_deg
(4 bytes)

file I

 A Mixed MPI-Thread Approach for Parallel Page Ranking Computation 1227

The algorithm first partitions the three binary files representing a web graph (pre-
processing phase) for assignment to compute nodes. The files L and I are partitioned
for assignment to compute nodes, while the file O is not partitioned. Let p be the
number of compute nodes used in the computation. Then we partition L and I into p
equal parts by dest_id. Each node is assigned an identifying number i (pi <≤0) and

allotted a partition of the dest_id with data Li and Ii. Each node will receive a copy of
the entire O file.

Pseudo-code of the PPR-M algorithm is shown in Fig. 2. Before beginning the
computation, each node loads the files Ii and O into main memory. The algorithm also
loads as much of the file Li into memory as possible (line 1), while the remaining
values are loaded from hard disk as required. The algorithm iteratively performs the
adaptive PageRank computation (lines 7-12) until all ranks converge. After
completing each iteration, every node exchanges its computed rank scores, called a
synchronization process (line 14). Further details of this process are given in [13].

 PPR-M (npOILi ii ,,,,,)

1: load file Li, Ii, and O into main memory

2: iV : source PageRank vector, is initialized to []
1

1
×nn

3: iV ′ : target PageRank vector, is initialized to [] 10 ×
p
n

4: score : a temporary score

5: While all pages do not converge

6: For each record iLl ∈

7: 0=score

8: If iddestl _. converges then

9:]_.[]_.[iddestlViddestlV ii =′

10: Else

11: Compute all idsrcl _. as
]_.[
]_.[

idsrclO
idsrclVi and add to score

12:
ni scoreiddestlV)1()(]_.[αα −+×=′

13: Store iV ′ in iV

14: Synchronize iV ′ with other processess and also store in iV

15: Report iV ′ as local PageRank vector

Fig. 2. The parallel PageRank algorithm using only MPI

3.3 PPR-MT Algorithm

The use of parallel processing in the PPR-M algorithm reduces the elapsed
computational time required to compute PageRank scores, but adds significant time
for network communications during the synchronization process after every iteration.
In the PPR-M algorithm, these communications are managed entirely by the MPI
library, which also adds overhead. To reduce the communication overhead, we

1228 B. Manaskasemsak, P. Uthayopas, and A. Rungsawang

investigate the use of lightweight processes in combination with MPI-based inter-
process communication. In this subsection, we present the PPR-MT algorithm
(threaded PPR-M) that improves on PPR-M by using POSIX threads [11] for both
computation and inter-process communication.

PPR-MT begins the pre-processing phase by partitioning a web graph and
allocating partitions to computing nodes as done in PPR-M. After that, each node will
load a portion of web graph into memory, the same as in PPR-M. The difference is
that a node may create a number of threads for cooperative computing. The
synchronization process between threads is done via shared memory within the node,
while synchronization between nodes is still done by MPI. Pseudo-code of the PPR-
MT algorithm in shown in Fig. 3.

 PPR-MT (npOILi ii ,,,,,)

1: load file Li, Ii, and O into main memory

2: iV : source PageRank vector, is initialized to []
1

1
×nn

3: iV ′ : target PageRank vector, is initialized to [] 10 ×
p
n

4: score : a temporary score

5: Create threads

6: While all pages do not converge

7: For each record iLl ∈ will be assigned to a thread

8: 0=score

9: If iddestl _. converges then

10:]_.[]_.[iddestlViddestlV ii =′

11: Else

12: Compute all idsrcl _. as
]_.[
]_.[

idsrclO
idsrclVi and add to score

13:
ni scoreiddestlV)1()(]_.[αα −+×=′

14: Store iV ′ in iV

15: Synchronize iV ′ with other processes and also store in iV

16: Join threads

17: Report iV ′ as local PageRank vector

Fig. 3. The parallel PageRank algorithm using mixed MPI and threads

Before computation, the algorithm loads Ii, O, and all or part of Li into memory to
reduce disk I/O and improve CPU utilization (line 1). In lines 5 and 16, threads are
created and terminated, respectively. During iterative computation, an unloaded
thread will be assigned a record of Li for rank score computation (line 7). Inter-thread
communication occurs via shared memory used for accessing/storing the PageRank
scores (line 10 and 13); while inter-process synchronization between nodes occurs
after each iteration (line 15) via MPI.

 A Mixed MPI-Thread Approach for Parallel Page Ranking Computation 1229

The architecture of the algorithm is depicted in Fig. 4. It consists of three
components: allotment, computation, and merge. The Allotment component performs
pre-processing, including transforming the web graph into the link structure, in-
degree, and out-degree (L, I, O) files, partitioning them, and allocating partitions to
computing nodes. The Computation component invokes each node (i.e., processor-i)
to compute rank scores for its partition. At any node, multiple threads collaborate in
the computation. Finally the Merge component merges the computed scores from all
computing nodes to obtain the global scores as output.

Fig. 4. An architecture of PPR-MT algorithm

4 Experiments and Results

In this section we present the experimental configuration, results obtained, and a
discussion of the experimental results.

4.1 Experimental Setup

Environment and Configuration: The algorithm was tested on two clusters of x86-
based SMP computers. The first cluster (WSC cluster) consists of dual 3.2GHz Intel
quad-core processors, 4GB of main memory, and 120GB SATA disk in each node.
The second cluster (MAEKA cluster [7]) consists of hosts with dual AMD
Opteron240 processors, 3GB main memory, and 72GB SCSI disk. All hosts in both
clusters run the Linux operating system and are inter-connected via switched Gigabit
Ethernet. In our implementation, we use the MPICH library, version 1.2.7, and

1230 B. Manaskasemsak, P. Uthayopas, and A. Rungsawang

standard POSIX thread library. Experiments were run under unloaded conditions,
without competition from other computing tasks in the cluster.

Data Setup: The test data is a subset of the web graph compiled from the Stanford
WebBase Project [16], hereafter termed SF-Graph, consisting of approximately 28
million pages and 227 million hyperlinks. We also synthesize another larger and
denser web graph based on the first one to investigate scalability, termed Syn-Graph.
Syn-Graph contains approximately 62.6 million pages and 1.37 billion hyperlinks.

4.2 Evaluation Results and Discussion

The main objective of our experiments is to study the performance of the PageRank
algorithms as a function of cluster size, threads per compute node, and size of the web
graph. We measured the total time needed for the PageRank computation to converge
using a relative tolerance of 0.0001, varying the number of compute nodes and
threads per node. Due to limitations in the amount of time available on the clusters
used, we limited the number of threads per machine in PPR-MT experiments to 2, 4,
8, and 16 threads. We repeated each experiment at least 3 times and averaged the run
times.

Table 1. The average run time of PPR-M (1 thread per machine) and PPR-MT algorithms

 Average run time (seconds)

 # of mach 1thr/mach 2thrs/mach 4thrs/mach 8thrs/mach 16thrs/mach

1 266.40252 126.32589 85.35699 83.34633 83.26815

2 214.84687 113.87603 80.89533 79.93591 77.96629SF
-

G
ra

ph

4 152.33151 104.42615 84.71894 68.88086 67.00578

1 1750.74109 1186.18676 986.33184 924.34139 1120.25558

2 435.94806 275.22307 182.84255 119.10821 82.63472W
SC

 c
lu

st
er

Sy
n-

G
ra

ph

4 346.88886 188.56568 108.77058 67.92434 40.10643

1 420.38131 219.53706 173.33427 120.43113 130.17395

2 285.86809 174.88750 136.59907 110.10362 100.15860

4 209.13478 137.59722 124.17826 95.84211 81.45755

SF
-G

ra
ph

8 148.58302 109.82293 93.88049 74.50150 76.56715

1 2342.90540 2009.79438 2210.43035 3229.86019 12551.50322

2 1836.33356 1314.93663 992.73288 1043.49289 1572.52810

4 677.85948 378.02183 262.63831 227.48226 276.16426

M
A

E
K

A
 c

lu
st

er

Sy
n-

G
ra

ph

8 622.81540 330.72717 218.10580 178.85681 190.38320

Table 1 shows the average total run times required for both SF-Graph and Syn-
Graph data. The upper half of the table shows results using 1-4 machines in the WSC
cluster for each web graph. The bottom half show results for experiments using 1-8
nodes from the MAEKA cluster.

 A Mixed MPI-Thread Approach for Parallel Page Ranking Computation 1231

The column “1 thr/mach” (1 thread per machine) gives average times using the
PPR-M algorithm. The other columns give average times using multiple threads and
the PPR-MT algorithm. Using the pseudo-code shown in Fig. 3, the total time needed
in each experiment consists mainly of the time for PageRank vector initialization and
thread creation (lines 2-5), the adaptive PageRank computation (lines 7-13), and
vector synchronization between processors and/or machines (line 15). In each row of
Table 1, the best time is shown in bold text. For example, the best run time for Syn-
Graph data using 1 machine on the WSC cluster is 924.34 seconds, decreasing to
40.11 seconds for runs utilizing 4 machines.

Table 2 summarizes the best run times from Table 1, and gives a speedup factor for
cluster-based run times relative to the single machine case. The results in Table 2
show that the performance, in terms of speedup as the number of nodes increases, is
very poor for the smaller SF-Graph data. This indicates that the communication time
required for costly PageRank vector synchronization is relatively high, reducing
efficiency of processor utilization.

For the larger and denser Syn-Graph, the results are more encouraging: we obtain a
speedup of 23.05 and 8.83 using 4 machines in the WSC and MAEKA clusters,
respectively. This suggests that the processors are better utilized in the PageRank
computation part of overall process. This suggests that it may be more cost effective
to invest in more computing resources for cluster farms when we need to compute the
PageRank of a very large web graph, such as those on commercial search engines,
and using the proposed mixed model algorithm to incorporate multi-threading.

For both clusters, the speedup when increasing from 1 to 4 nodes is greater than the
rate of increase in number of nodes. Normally, when increasing from 1 to 4 nodes the
best one can hope for is a 4-fold speedup, yet the experimental times show an 8.83
and 23.05 fold acceleration. The unexpectedly high increase in performance is due to
improved memory utilization. As the number of nodes increases, the size of each
node’s data partition decreases. This can increase the percentage of data held in
physical memory and reduce or eliminate paging. Utilizing more threads (and more
CPU core) per node does not reduce the size of a node’s data partition and,
conversely, can actually increase contention for memory access. No super-linear
speedup was observed as a function of increasing threads per node.

Table 2. The best performance speedup as a function of machines utilized

 WSC cluster MAEKA cluster

 # of mach Best time Speedup Best time Speedup

1 83.26815 1.00000 120.43113 1.00000

2 77.96629 1.06800 100.15860 1.20240

4 67.00578 1.24270 81.45755 1.47845

S
F

-G
ra

ph

8 - - 74.50150 1.16149

1 924.34139 1.00000 2009.79438 1.00000

2 82.63472 11.18587 992.73288 2.02450

4 40.10643 23.04721 227.48226 8.83495

S
yn

-G
ra

ph

8 - - 178.85681 11.23689

1232 B. Manaskasemsak, P. Uthayopas, and A. Rungsawang

5 Conclusion

We investigate the use of cluster technology for parallelization of page rank
calculations as a solution to the challenging problem of rapid growth in the Internet
page data that must be scored by a page rank algorithm. In this paper, we present the
PPR-M and PPR-MT algorithms that efficiently run on SMP based clusters. The first
algorithm uses simple message passing for inter-process communication while the
second algorithm combines the standard thread library for inter-thread communication
with MPI for cluster communications. Both algorithms exploit the power of SMP
based clusters to compute the rank scores of a large-scale web graph in parallel. Our
experiments show encouraging results, speeding the computational process up to 23
times using 4 machines, compared to base run times on a single machine.

In future work, we plan to explore some web graph partitioning algorithms for
better load balancing of the computation between the compute nodes. We will also
investigate way to reduce the communication overhead of PageRank synchronization,
as well as study the convergence rate for accelerating the algorithm.

Acknowledgments. We would like to thank to all anonymous reviewers for their
comments and suggestions. We also thank to Dr. James Edward Brucker for his
reading of the final version of this paper. The research is funded by the Kasetsart
University Research and Development Institute (KURDI).

References

1. Chen, Y., Gan, Q., Suel, T.: I/O-efficient techniques for computing PageRank. Pro-
ceedings of the 11th International Conference on Information and Knowledge Management
(2002)

2. Gleich, D., Zhukov, L., Berkhin, P.: Fast parallel PageRank: a linear system approach.
Technical Report, Yahoo! Research Labs (2004)

3. Haveliwala, T.H.: Efficient computation of PageRank. Technical Report, Stanford
University (1999)

4. Kamvar, S.D., Haveliwala, T.H., Golub, G.H.: Adaptive methods for the computation of
PageRank. Technical Report, Stanford University (2003)

5. Kamvar, S.D., Haveliwala, T.H., Manning, C.D., Golub, G.H.: Exploiting the block
structure of the web for computing PageRank. Technical Report, Stanford University
(2003)

6. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. Journal of the ACM
(JACM), Vol. 46 (1999) 604-632

7. MAEKA: Massive Adaptable Environment for Kasetsart Application. Available source:
http://maeka.ku.ac.th (2003)

8. Manaskasemsak, B., Rungsawang, A.: Parallel PageRank computation on a gigabit PC
cluster. Proceedings of the International Conference on Advanced Information Networking
and Applications (2004)

9. MPI library: Massive Passing Interface. Available source: http://www-unix.mcs.anl.gov/
mpi (2006)

10. Page, L., Brin, S., Motwani, R., Winograd, T.: The PageRank citation ranking: bringing
order to the web. Technical Report, Stanford University (1999)

 A Mixed MPI-Thread Approach for Parallel Page Ranking Computation 1233

11. POSIX Threads Programming. Available source: http://www.llnl.gov/computing/tutorials/
pthreads (2006)

12. Ross, S.M.: Introduction to probability models. 8th Edition, Academic Press (2003)
13. Rungsawang, A., Manaskasemsak, B.: Parallel adaptive technique for computing

PageRank. Proceedings of the 14th Euromicro International Conference on Parallel,
Distributed and Network-Based Processing (2006)

14. Sankaralingam, K., Sethummadhavan, S., Browne, J.C.: Distributed PageRank for P2P
systems. Proceedings of the 12th IEEE International Symposium on High Performance
Distributed Computing (2003)

15. Shi, S., Yu, J., Yang, G., Wang, D.: Distributed page ranking in structured P2P networks.
Proceedings of the International Conference in Parallel Processing (2003) 179-186

16. The Stanford WebBase Project. Available source: http://www-diglib.stanford.edu/
~testbed/ doc2/WebBase (2004)

	Introduction
	Basic PageRank Concept
	The Intuition
	Adaptive PageRank Technique

	Parallel PageRank Computation
	Web Graph Representation
	PPR-M Algorithm
	PPR-MT Algorithm

	Experiments and Results
	Experimental Setup
	Evaluation Results and Discussion

	Conclusion
	References

