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Abstract. The continuing growth of the Internet challenges search engine 
providers to deliver up-to-date and relevant search results. A critical component 
is the availability of a rapid, scalable technique for PageRank computation of a 
large web graph. In this paper, we propose an efficient parallelized version of 
the PageRank algorithm based on a mixed MPI and multi-threading model. The 
parallel adaptive PageRank algorithm is implemented and tested on two clusters 
of SMP hosts. In the algorithm, communications between processes on different 
hosts are managed by a message passing (MPI) model, while those between 
threads are handled via a inter-thread mechanism. We construct a synthesized 
web graph of approximately 62.6 million nodes and 1.37 billion hyperlinks to 
test the algorithm on two SMP clusters. Preliminary results show that 
significant speedups are possible; however, large inter-node synchronization 
operations and issues of shared memory access inhibit efficient CPU utilization. 
We believe that the proposed approach shows promise for large-scale PageRank 
applications and improvements in the algorithm can achieve more efficient 
CPU utilization. 
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1   Introduction 

The information and knowledge resources provided via the Internet continue to grow 
at a rapid rate, making effective search technology an essential tool for users of this 
information. However, the continual growth in volume of web pages presents a great 
challenge to search engines that must classify the relevance of web resources to user 
searches.  Much current research is directed toward finding more efficient methods to 
obtain effective search results. One important research area is the development of 
algorithms to estimate the authoritative score of each web page by analyzing the 
web’s hyperlinked structure. Leading algorithms are HITS [6] and PageRank [10], 
first proposed in 1998 and subsequently enhanced. The scores computed by these 
algorithms are utilized by the search engine's ranking algorithm: pages with the more 
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significant or higher scores are more highly ranked in search results ordering. 
Currently, web link analysis remains one of the most important components of the 
search engine. 

The PageRank algorithm is less complex than HITS, making it more practical for 
large-scale application; PageRank is utilized by several well-known search engines 
such as Google. PageRank requires analyzing the entire hyperlinked structure of the 
web graph once and then iteratively calculates the page scores. Unfortunately, the vast 
number of pages that must be ranked increasingly make PageRank very 
computationally expensive. For large-scale computation, most researchers usually 
propose to first partition a huge web graph into several parts and then to compute 
them separately. Some studies, such as [3, 1, 5], propose to sequentially compute each 
partition and then combine the sub-results into the global PageRank scores. Other 
studies utilize parallel computing on a PC cluster [8, 2] or even distributed P2P 
architecture [14, 15] to improve performance. 

In this paper, we investigate the use of cluster technology together with an 
efficiently parallelized version of the PageRank computation to improve performance. 
The main idea of our algorithm is to efficiently employ the computing power of the 
cluster to compute subsets of PageRank scores in parallel, and then combine them to 
obtain the total scores of web pages. We also investigate the use of lightweight 
processes, or threads [11], in a Symmetric Multiprocessing (SMP) environment to 
reduce communication overhead and take advantage of shared memory. Cluster 
communication is implemented using the standard Message Passing Interface (MPI) 
protocol [9]. Since our implementation employs both the multi-threading and cluster 
computing models, we call this approach to parallelization a “mixed model”. 

The rest of this paper is organized as follows. Section 2 briefly reviews the 
PageRank algorithm and introduces acceleration techniques for PageRank 
computation. Section 3 discusses the need of parallelization and gives the detail of 
such algorithms as well as system design. Section 4 describes our experiments and 
discusses the results. Finally, section 5 presents conclusions and planned future 
work. 

2   Basic PageRank Concept 

2.1   The Intuition 

The concept behind PageRank [10] is to estimate the importance of web pages by 
hyperlinked structure analysis. A link from page u to page v indicates that the author 
of u recommends and thus confers some importance on page v. Furthermore, a page 
mostly referred by other “important” pages is also important. 

To mathematically formulate this intuitive concept, let n be the total number of 
pages in the web graph and let R be the PageRank vector: R(u) is the PageRank score 
of page u. Also let O(u) be the number of pages that u points out, called “out-degree”. 
All pages u linked to v are grouped into a set of backward pages of v, denoted Bv. The 
rank score of all pages v can be computed using the iterative formula: 
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The two terms in this equation represent two factors contributing to a page’s rank. 
The first is the traditional rank propagation calculated from the hyperlinked structure, 
weighted by α (usually set to 0.85). The second term represents a random surfer 
process over a uniform distribution (i.e., nvEv 1)(: =∀ ). When the surfer visits any 

page he can subsequently jump to a randomly selected page, with probability n
1 . This 

term also guarantees convergence of )(kR and avoids the “rank sink” problem [10]. 

The convergence of )(kR  can be proved by application of Markov’s Theorem [12]. 
)0(R  is the initial distribution; in general, the process is started with a uniform 

distribution, nuRu 1)0( )(: =∀ . Iterative computation of )(kR  is performed using 

Equation (1) until the rank scores converge. The usual convergence criterion is that 
the relative change in scores of all pages between iterations k and k+1 be below a 
prescribed tolerance. That is, v∀  
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The relative tolerance for convergence, δ, is a pre-assigned value; in our 
experiments, δ  is set to 0.0001. 

2.2   Adaptive PageRank Technique 

Application of the PageRank computation in Equation (1) reveals that the 
convergence rate of elements of R(v) is highly non-uniform. Kamvar et al. [4] have 
found that the rank computation for many pages with small rank scores converge 
quickly to their final values, while the ranks of pages with high scores take a much 
longer time for the values to converge. 

To eliminate the redundant computation of converged page ranks, Kamvar et al. 
proposed an “adaptive PageRank algorithm” [4] that omits recomputation of 
PageRank scores that have already satisfied the convergence criterion. For these 
pages, they simply use the previous score in successive iterations. This reduces the 
running time of the original algorithm. Using their modification to Equation (1) 
yields: 
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A PageRank score )()( vR k  is marked as converged when it satisfies Equation (2). 

The algorithm terminates when all PageRank scores have been marked as converged. 
We utilize this adaptive technique in our parallel implementation, described next. 
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3   Parallel PageRank Computation 

To compute the PageRank scores of the totality of pages comprising the hyperlinked 
structure of the Internet by application of Equations (1) or (2) would require massive 
computing power as well as enormous amounts of memory. In practice, this 
computation is nearly infeasible. To obtain a more tractable algorithm, we exploit 
parallelism and partitioning of the problem, and utilize shared resources of a 
computational cluster. 

In this section, we introduce a parallelized version of the PageRank algorithm. First 
we develop the web graph representation. Then, we provide detail of the parallel 
algorithm. 

3.1   Web Graph Representation 

From the crawled web collection, we only consider the hyperlinks between pages. So 
we first map URLs into ordinal numbers, and represent the web’s hyperlinked 
structure using three binary files. The first one, called a link structure file (L), 
represents the relationship between pages via their hyperlinks. Each record in this file 
consists of dest_id field (the target page) and a list of src_id fields (the set of 
authoritative pages.) The other two files, called the out-degree file (O) and in-degree 
file (I), contain the numerical out-degree and in-degree, respectively, corresponding to 
each dest_id in file L. An example of these files is textually shown in Fig. 1. 

 

Fig. 1. Three binary files representing the link structure of a web graph 

As shown in Fig. 1, all values are expressed as 4-byte integers. In this example, 
dest_id 1 is the target of a hyperlink from page (src_id) 1028, and it also has a 
hyperlink to one other page. The dest_id 2 is the target of a hyperlink from page 
(src_id) 106 and has hyperlinks to five other pages. 

In the following subsections we describe an approach to parallelizing the 
PageRank computation utilizing a partitioning of these data files. 

3.2   PPR-M Algorithm 

The PPR-M Algorithm [13] applies the adaptive PageRank technique (expressed in 
Equation (2)) to a cluster computing environment. Implementation of the PPR-M 
algorithm uses the MPI model for message-based communication between nodes in 
the cluster. 
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The algorithm first partitions the three binary files representing a web graph (pre-
processing phase) for assignment to compute nodes. The files L and I are partitioned 
for assignment to compute nodes, while the file O is not partitioned.  Let p be the 
number of compute nodes used in the computation. Then we partition L and I into p 
equal parts by dest_id. Each node is assigned an identifying number i ( pi <≤0 ) and 

allotted a partition of the dest_id with data Li and Ii. Each node will receive a copy of 
the entire O file. 

Pseudo-code of the PPR-M algorithm is shown in Fig. 2. Before beginning the 
computation, each node loads the files Ii and O into main memory. The algorithm also 
loads as much of the file Li into memory as possible (line 1), while the remaining 
values are loaded from hard disk as required. The algorithm iteratively performs the 
adaptive PageRank computation (lines 7-12) until all ranks converge. After 
completing each iteration, every node exchanges its computed rank scores, called a 
synchronization process (line 14). Further details of this process are given in [13]. 

 PPR-M ( npOILi ii ,,,,, ) 

1:  load file Li, Ii, and O into main memory 

2:  iV : source PageRank vector, is initialized to [ ]
1

1
×nn  

3:  iV ′ : target PageRank vector, is initialized to [ ] 10 ×
p
n  

4:  score : a temporary score 

5:  While all pages do not converge 

6:   For each record iLl ∈  

7:    0=score  

8:    If iddestl _.  converges then 

9:     ]_.[]_.[ iddestlViddestlV ii =′  

10:    Else 

11:     Compute all idsrcl _.  as 
]_.[
]_.[

idsrclO
idsrclVi and add to score  

12:     
ni scoreiddestlV )1()(]_.[ αα −+×=′  

13:   Store iV ′  in iV  

14:   Synchronize iV ′  with other processess and also store in iV  

15:  Report iV ′  as local PageRank vector 

Fig. 2. The parallel PageRank algorithm using only MPI 

3.3   PPR-MT Algorithm 

The use of parallel processing in the PPR-M algorithm reduces the elapsed 
computational time required to compute PageRank scores, but adds significant time 
for network communications during the synchronization process after every iteration. 
In the PPR-M algorithm, these communications are managed entirely by the MPI 
library, which also adds overhead.  To reduce the communication overhead, we 
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investigate the use of lightweight processes in combination with MPI-based inter-
process communication. In this subsection, we present the PPR-MT algorithm 
(threaded PPR-M) that improves on PPR-M by using POSIX threads [11] for both 
computation and inter-process communication. 

PPR-MT begins the pre-processing phase by partitioning a web graph and 
allocating partitions to computing nodes as done in PPR-M. After that, each node will 
load a portion of web graph into memory, the same as in PPR-M. The difference is 
that a node may create a number of threads for cooperative computing. The 
synchronization process between threads is done via shared memory within the node, 
while synchronization between nodes is still done by MPI. Pseudo-code of the PPR-
MT algorithm in shown in Fig. 3. 

 PPR-MT ( npOILi ii ,,,,, ) 

1:  load file Li, Ii, and O into main memory 

2:  iV : source PageRank vector, is initialized to [ ]
1

1
×nn  

3:  iV ′ : target PageRank vector, is initialized to [ ] 10 ×
p
n  

4:  score : a temporary score 

5:  Create threads 

6:  While all pages do not converge 

7:   For each record iLl ∈  will be assigned to a thread 

8:    0=score  

9:    If iddestl _.  converges then 

10:     ]_.[]_.[ iddestlViddestlV ii =′  

11:    Else 

12:     Compute all idsrcl _.  as 
]_.[
]_.[

idsrclO
idsrclVi and add to score  

13:     
ni scoreiddestlV )1()(]_.[ αα −+×=′  

14:   Store iV ′  in iV  

15:   Synchronize iV ′  with other processes and also store in iV  

16:  Join threads 

17:  Report iV ′  as local PageRank vector 

Fig. 3. The parallel PageRank algorithm using mixed MPI and threads 

Before computation, the algorithm loads Ii, O, and all or part of Li into memory to 
reduce disk I/O and improve CPU utilization (line 1). In lines 5 and 16, threads are 
created and terminated, respectively. During iterative computation, an unloaded 
thread will be assigned a record of Li for rank score computation (line 7).  Inter-thread 
communication occurs via shared memory used for accessing/storing the PageRank 
scores (line 10 and 13); while inter-process synchronization between nodes occurs 
after each iteration (line 15) via MPI. 
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The architecture of the algorithm is depicted in Fig. 4. It consists of three 
components: allotment, computation, and merge. The Allotment component performs 
pre-processing, including transforming the web graph into the link structure, in-
degree, and out-degree (L, I, O) files, partitioning them, and allocating partitions to 
computing nodes. The Computation component invokes each node (i.e., processor-i) 
to compute rank scores for its partition. At any node, multiple threads collaborate in 
the computation. Finally the Merge component merges the computed scores from all 
computing nodes to obtain the global scores as output. 

 

Fig. 4. An architecture of PPR-MT algorithm 

4   Experiments and Results 

In this section we present the experimental configuration, results obtained, and a 
discussion of the experimental results. 

4.1   Experimental Setup 

Environment and Configuration: The algorithm was tested on two clusters of x86-
based SMP computers. The first cluster (WSC cluster) consists of dual 3.2GHz Intel 
quad-core processors, 4GB of main memory, and 120GB SATA disk in each node. 
The second cluster (MAEKA cluster [7]) consists of hosts with dual AMD 
Opteron240 processors, 3GB main memory, and 72GB SCSI disk. All hosts in both 
clusters run the Linux operating system and are inter-connected via switched Gigabit 
Ethernet. In our implementation, we use the MPICH library, version 1.2.7, and 
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standard POSIX thread library. Experiments were run under unloaded conditions, 
without competition from other computing tasks in the cluster. 

Data Setup: The test data is a subset of the web graph compiled from the Stanford 
WebBase Project [16], hereafter termed SF-Graph, consisting of approximately 28 
million pages and 227 million hyperlinks. We also synthesize another larger and 
denser web graph based on the first one to investigate scalability, termed Syn-Graph. 
Syn-Graph contains approximately 62.6 million pages and 1.37 billion hyperlinks. 

4.2   Evaluation Results and Discussion 

The main objective of our experiments is to study the performance of the PageRank 
algorithms as a function of cluster size, threads per compute node, and size of the web 
graph. We measured the total time needed for the PageRank computation to converge 
using a relative tolerance of 0.0001, varying the number of compute nodes and 
threads per node. Due to limitations in the amount of time available on the clusters 
used, we limited the number of threads per machine in PPR-MT experiments to 2, 4, 
8, and 16 threads. We repeated each experiment at least 3 times and averaged the run 
times. 

Table 1. The average run time of PPR-M (1 thread per machine) and PPR-MT algorithms 

   Average run time (seconds) 

  # of mach 1thr/mach 2thrs/mach 4thrs/mach 8thrs/mach 16thrs/mach 

1 266.40252 126.32589 85.35699 83.34633 83.26815

2 214.84687 113.87603 80.89533 79.93591 77.96629SF
-

G
ra

ph
 

4 152.33151 104.42615 84.71894 68.88086 67.00578

1 1750.74109 1186.18676 986.33184 924.34139 1120.25558

2 435.94806 275.22307 182.84255 119.10821 82.63472W
SC

 c
lu

st
er

 

Sy
n-

G
ra

ph
 

4 346.88886 188.56568 108.77058 67.92434 40.10643

1 420.38131 219.53706 173.33427 120.43113 130.17395

2 285.86809 174.88750 136.59907 110.10362 100.15860

4 209.13478 137.59722 124.17826 95.84211 81.45755

SF
-G

ra
ph

 

8 148.58302 109.82293 93.88049 74.50150 76.56715

1 2342.90540 2009.79438 2210.43035 3229.86019 12551.50322

2 1836.33356 1314.93663 992.73288 1043.49289 1572.52810

4 677.85948 378.02183 262.63831 227.48226 276.16426

M
A

E
K

A
 c

lu
st

er
 

Sy
n-

G
ra

ph
 

8 622.81540 330.72717 218.10580 178.85681 190.38320

Table 1 shows the average total run times required for both SF-Graph and Syn-
Graph data.  The upper half of the table shows results using 1-4 machines in the WSC 
cluster for each web graph.  The bottom half show results for experiments using 1-8 
nodes from the MAEKA cluster. 
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The column “1 thr/mach” (1 thread per machine) gives average times using the 
PPR-M algorithm. The other columns give average times using multiple threads and 
the PPR-MT algorithm.  Using the pseudo-code shown in Fig. 3, the total time needed 
in each experiment consists mainly of the time for PageRank vector initialization and 
thread creation (lines 2-5), the adaptive PageRank computation (lines 7-13), and 
vector synchronization between processors and/or machines (line 15). In each row of 
Table 1, the best time is shown in bold text. For example, the best run time for Syn-
Graph data using 1 machine on the WSC cluster is 924.34 seconds, decreasing to 
40.11 seconds for runs utilizing 4 machines. 

Table 2 summarizes the best run times from Table 1, and gives a speedup factor for 
cluster-based run times relative to the single machine case. The results in Table 2 
show that the performance, in terms of speedup as the number of nodes increases, is 
very poor for the smaller SF-Graph data. This indicates that the communication time 
required for costly PageRank vector synchronization is relatively high, reducing 
efficiency of processor utilization. 

For the larger and denser Syn-Graph, the results are more encouraging: we obtain a 
speedup of 23.05 and 8.83 using 4 machines in the WSC and MAEKA clusters, 
respectively. This suggests that the processors are better utilized in the PageRank 
computation part of overall process. This suggests that it may be more cost effective 
to invest in more computing resources for cluster farms when we need to compute the 
PageRank of a very large web graph, such as those on commercial search engines, 
and using the proposed mixed model algorithm to incorporate multi-threading. 

For both clusters, the speedup when increasing from 1 to 4 nodes is greater than the 
rate of increase in number of nodes. Normally, when increasing from 1 to 4 nodes the 
best one can hope for is a 4-fold speedup, yet the experimental times show an 8.83 
and 23.05 fold acceleration.  The unexpectedly high increase in performance is due to 
improved memory utilization. As the number of nodes increases, the size of each 
node’s data partition decreases. This can increase the percentage of data held in 
physical memory and reduce or eliminate paging.  Utilizing more threads (and more 
CPU core) per node does not reduce the size of a node’s data partition and, 
conversely, can actually increase contention for memory access. No super-linear 
speedup was observed as a function of increasing threads per node. 

Table 2. The best performance speedup as a function of machines utilized 

  WSC cluster MAEKA cluster 

 # of mach Best time Speedup Best time Speedup 

1 83.26815 1.00000 120.43113 1.00000 

2 77.96629 1.06800 100.15860 1.20240 

4 67.00578 1.24270 81.45755 1.47845 

S
F

-G
ra

ph
 

8 - - 74.50150 1.16149 

1 924.34139 1.00000 2009.79438 1.00000 

2 82.63472 11.18587 992.73288 2.02450 

4 40.10643 23.04721 227.48226 8.83495 

S
yn

-G
ra

ph
 

8 - - 178.85681 11.23689 
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5   Conclusion 

We investigate the use of cluster technology for parallelization of page rank 
calculations as a solution to the challenging problem of rapid growth in the Internet 
page data that must be scored by a page rank algorithm. In this paper, we present the 
PPR-M and PPR-MT algorithms that efficiently run on SMP based clusters. The first 
algorithm uses simple message passing for inter-process communication while the 
second algorithm combines the standard thread library for inter-thread communication 
with MPI for cluster communications. Both algorithms exploit the power of SMP 
based clusters to compute the rank scores of a large-scale web graph in parallel. Our 
experiments show encouraging results, speeding the computational process up to 23 
times using 4 machines, compared to base run times on a single machine. 

In future work, we plan to explore some web graph partitioning algorithms for 
better load balancing of the computation between the compute nodes. We will also 
investigate way to reduce the communication overhead of PageRank synchronization, 
as well as study the convergence rate for accelerating the algorithm. 
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