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Abstract. Various data sources on the Web tend to be highly dynamic; this is ev-
ident in prominent Web services frameworks in which devices register or dereg-
ister their descriptions quite rapidly and in Semantic Web portals which allow
content authors to modify or extend underlying ontologies and submit content.
Such applications often leverage Description Logic (DL) reasoning for a variety
of tasks (e.g., classifying Web service descriptions, etc); however, this can intro-
duce substantial overhead due to content fluctuation, as DL reasoners have only
been considered for relatively static knowledge bases. This work aims to provide
more efficient DL reasoning techniques for frequently changing instance bases
(ABoxes). More specifically, we investigate the process of incrementally updat-
ing tableau completion graphs used for reasoning in the expressive DLs SHOQ
and SHIQ, which correspond to a large subset of the W3C standard Web On-
tology Language, OWL-DL. We present an algorithm for updating completion
graphs under the syntactic addition and removal of ABox assertions. We also
provide an empirical analysis of the approach through an implementation in the
OWL-DL reasoner, Pellet.

1 Introduction

Recently, there has been increased interest in providing formal representation of Web
content using ontologies that correspond to expressive Description Logics (DLs). Due
to data sources that produce fluctuating data, there exists a variety of reasoning use
cases which require frequent updates at both the assertional (ABox) and terminological
(TBox) levels, some of which are briefly highlighted below:

– Prominent web services frameworks (e.g., OWL-S) use Description Logics for ser-
vice discovery and matchmaking [24,25,21]. Services, especially device services
in pervasive contexts, may register or deregister their descriptions (and supporting
ontologies) quite rapidly, yet the matchmaking service must remain responsive.

– Semantic Web portals often allow content authors to modify or extend the ontolo-
gies which organize their site structure or page content. While in some cases a
“defer update” strategy is acceptable, in general it is more gratifying to users if
changes they make are reflected immediately in the site.
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– Perhaps the single most common use of Description Logic reasoners is in ontol-
ogy editors. Most editors do not do continuous reasoning while one is editing (one
exception is [18]), relying on an analogue of the edit-compile-test loop of most
programming environments. However, if this cycle is very long (e.g., hundreds of
seconds) then users will be forced to perform larger sets of edits before testing. This
discourages experimentation, particularly in debugging contexts.

– Syndication (publish/subscribe) systems on the Web have recently been transition-
ing to more expressive approaches; that is subscribers (and publishers) are provided
with more expressive means for describing their interests (resp. published content),
enabling more accurate dissemination. Recently, there has been interest in utiliz-
ing OWL and DL reasoning for the purpose of matching published content with
subscription requests [8,9,26,17]. When disseminating time sensitive information
(e.g., in the financial domain), efficient reasoning for frequently changing KBs (due
to continuously published information) will be critical in achieving practical DL-
based approaches.

While there exists such use cases for reasoning under changing data, current DL rea-
soning algorithms have been developed considering relatively static knowledge bases.
In this paper, we investigate performing incremental consistency checking in the ex-
pressive Description Logics SHOQ and SHIQ, which correspond to a large subset
of the W3C standard Web Ontology Language, OWL-DL. In particular, we present an
approach for incrementally updating tableau completion graphs created during consis-
tency checks under syntactic addition and removal of ABox (instance) assertions. This
provides a critical step towards DL reasoning over fluctuating data, as it has been shown
that in KBs with substantially sized ABoxes, consistency checking can dominate rea-
soning time; further, all standard reasoning tasks are reduced to consistency checks.
Lastly, we provide an empirical analysis of the optimizations through an experimental
implementation in an open source OWL-DL reasoner, Pellet.

2 Preliminaries

In this section, we briefly discuss background information directly relevant to this work.
First, we present the syntax and semantics of the Description Logic SHOIQ, which
corresponds to OWL-DL, with the slight extension of qualified cardinality restrictions.
Additionally, we provide a brief overview of tableau algorithms for Description Logic
reasoning.

2.1 SHOIQ Description Logic

Let NC , NR, NI be non-empty and pair-wise disjoint sets of atomic concepts, atomic
roles and individuals respectively. The set of SHOIQ roles (roles, for short) is the set
NR ∪ {R−|R ∈ NR}, where R− denotes the inverse of the atomic role R. Concepts
are inductively defined using the following grammar:

C ← A | ¬C | C1 � C2 | C1 � C2 | ∃R.C | ∀R.C | �� nS.C | {a}
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where A ∈ NC , a ∈ NI , C(i) a SHOIQ concept, R a role, S a simple role 1 and
��∈ {≤,≥}. We write � and ⊥ to abbreviate C � ¬C and C 	 ¬C respectively.

A role inclusion axiom is an expression of the form R1 
 R2, where R1, R2 are
roles. A transitivity axiom is an expression of the form Trans(R), where R ∈ VR.
An RBox R is a finite set of role inclusion axioms and transitivity axioms. For C, D
concepts, a concept inclusion axiom is an expression of the form C 
 D. A TBox T is
a finite set of concept inclusion axioms. An ABox A is a finite set of concept assertions
of the form C(a) (where C can be an arbitrary concept expression) and role assertions
of the form R(a, b). A knowledge base K = (T, R) consists of a TBox and an RBox.

An interpretation I is a pair I = (W , .I), whereW is a non-empty set, called the
domain of the interpretation, and .I is the interpretation function. The interpretation
function assigns to A ∈ NC a subset ofW , to each R ∈ NR a subset of ofW×W and
to each a ∈ NI an element ofW . The interpretation function is extended to complex
roles and concepts as given in [14].

The satisfaction of a SHOIQ axiom α in an interpretation I, denoted I |= α is
defined as follows: (1) I |= R1 
 R2 iff (R1)I ⊆ (R2)I ; (2) I |= Trans(R) iff for
every a, b, c ∈ W , if (a, b) ∈ RI and (b, c) ∈ RI , then (a, c) ∈ RI ; (3) I |= C 
 D iff
CI ⊆ DI ; The interpretation I is a model of the RBox R (respectively of the TBox T)
if it satisfies all the axioms in R (respectively T). I is a model of K = (T, R), denoted
by I |= K, iff I is a model of T and R.

2.2 Tableau Algorithms

The algorithm presented here is based on the tableau decision procedure for ABox
consistency checking in SHOQ [12] and SHIQ [13]. DL tableau-based algorithms
decide the consistency of an ABox A w.r.t a TBox T (by TBox, we are additionally
referring to all axioms for roles) by trying to construct (an abstraction of) a common
model for A and T, called a completion graph [14]. Formally, a completion graph for
an ABox A with respect to T is a directed graph G = (V , E ,L, ˙�=). Each node x ∈ V
is labeled with a set of concepts L(x) and each edge e = 〈x, y〉 with a set L(e)
of role names. The binary predicate ˙�= is used for recording inequalities between
nodes.

The completion graph is constructed by repeatedly applying a set of expansion rules.
Whenever a contradiction is encountered, a DL reasoner will either backtrack and se-
lect a different non-deterministic choice, or report the inconsistency and terminate if no
choice remains to be explored. While there may exist more than one model for A and
T, the tableau algorithm will only find one such model. We also point out that blocking
is utilized to ensure termination of tableau algorithms [11]. Blocking is used to detect
cycles encountered during the application of tableau expansion rules, therefore stop-
ping the expansion of a branch when the same labels reoccur. For example, blocking is
clearly necessary to ensure termination for the following KB, K = {a:C, C 
 ∃R.C}.
Further details can be found in [11]. We lastly note that in our work, we utilize a slightly
modified version of the SHOQ and SHIQ expansion rules, which are augmented for
axiom tracing as defined in [10,16,15].

1 See [14] for a precise definition of simple roles.
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3 Syntactic ABox Updates

In this work, we consider ABox addition and deletion of individual equality and in-
equality assertions x = y and x �= y, concept assertions x:C and role assertions
〈x, y〉:R. In general updating ABox assertions in the presence of a TBox and an RBox
brings up several issues with the semantics.

For the purpose of this work, we adopt syntactic changes/updates of ABox assertions,
which we refer to as Syntactic Updates. By syntactic we refer to the explicitly asserted
ABox facts; this is similiar to the distiction between belief bases and belief sets in belief
revision literature [20]. Intuitively, Syntactic Updates can be described as an update in
which all new ABox assertions are directly added (or removed) to the asserted (base)
axioms; therefore the only changes that occur are those explicitly stated in the ABox
update. Removing an assertion from the ABox under these semantics does not guarantee
that the removed assertion will not be entailed anymore. Furthermore, in this work we
do not address resolving inconsistencies introduced by the addition of a new axiom.
Formally, we describe this update as follows:

Definition 1. (Syntactic Updates) Let S be the set of assertions in an initial ABox A.
Then under Syntactic Updates, updating S with an ABox addition (resp. deletion) α,
written as A + α (resp. A − α), results in an updated set of ABox axioms S′ such that
S′ = S ∪ {α} (resp. S′ = S \ {α}).
This type of ABox update is different when compared to related work in formal update
semantics [19,23] and belief revision [5,6] for DLs, however real world use of this type
of changes is directly present in many document-oriented services, including Semantic
Web Service repositories, publish/subscribe (syndication) application, Semantic Web
portals, etc. For example, an OWL-S Web Service description can be seen as a set of
ABox assertions and publishing/retracting this service description to/from a repository
would be typically done under Syntactic Updates; therefore we feel these semantics is
warranted. Lastly, we note that ABox additions under Syntatic Updates is similar to the
expansion operator as traditionally defined belief revision [1].

4 Update Approach

The goal of the approach presented here is to update a previously constructed comple-
tion graph in such a way that it is guaranteed to correspond to a model of the updated
KB (in the event some model exists). The approach presented here is applicable to the
Description Logics SHOQ [12] and SHIQ [13], as the difference between the two
completion algorithms is independent of the update algorithm.

4.1 ABox Additions

Conceptually, tableau algorithms for SHOQ [12] and SHIQ [13] can be thought of
as incremental in that expansion rules are repeatedly applied in a non-deterministic
manner to labels in the completion graph. Hence, new ABox assertions can be added
even after previous completion rules have been fired for existing nodes and edges in
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the graph. After the addition, expansion rules can subsequently be fired for the newly
added nodes, edges and their labels.

In order to update a completion graph upon the addition of a type assertion, x:C, the
approach first checks if the individual exists in the completion graph. If x �∈ V , then
x is added to V . Then C is added to L(x) if it does not already occur in L(x). If an
individual inequality relation, x �= y, is added to the KB, the algorithm checks if x ∈ V
and y ∈ V . If either does not exists, then they are added to the graph. Additionally, if the
〈x, y〉 �∈ x ˙�=y, then it is added. Alternatively, if an individual equality relation, x = y,
is added to the KB, the approach checks if x ∈ V and y ∈ V . If either does not exists,
then they are added to the graph. Additionally, x and y are merged. Lastly, if a role,
〈x, y〉:R, is added to the KB and 〈x, y〉 �∈ E , then 〈x, y〉 is added to E and R is added to
L(〈x, y〉). If however, 〈x, y〉 ∈ E but R �∈ L(〈x, y〉), then R is added to L(〈x, y〉).

After the graph has been updated, the completion rules must be reapplied to the
updated completion graph, as the update may cause additional expansion rules to be
fired. We note here that if there has previously been a deletion update, then previously
explored branches which had a clash must be re-explored as the deletion could have
removed the axiom which caused the clash.

4.2 ABox Deletions

When updating a completion graph under ABox axiom removals, components (nodes,
edges, labels, etc.) in the graph that correspond to the removed axiom cannot be simply
removed. This is because as completion rules are applied, newly added portions of the
graph are dependent on the presence of the original axioms in the KB. By deleting an
ABox assertion, components of the graph that are dependent on that assertion need to
be updated as well.

In order to account for this, we propose using axiom pinpointing [2,15,16], which
tracks the dependencies of completion graph components on original source axioms
from the ontology through the tableau expansion process. More specifically, the appli-
cation of the expansion rules triggers a set of events, denoted EV , that change the state
of the completion graph, or the flow of the algorithm. In [15,16] a set of change events
is defined, which include the following:

– Add (C,L(x)) represents the action of adding a concept C to the label of a node
x, i.e. the operation L(x)← L(x) ∪ {C}.

– Add (R,L(〈x, y〉)) represents the addition of a role R to the label of an edge 〈x, y〉,
i.e., L(〈x, y〉)← L(〈x, y〉) ∪ {R}.

– x E y is the action of merging the nodes x, y. A detailed description of the merge
operation can be found in [14].

– x NE y stands for the addition of an inequality relation between two nodes x,y i.e.
˙�=← ˙�= ∪ {〈x, y〉}.

In order to record the changes on the completion graph, [15,16] introduces a tracing
function, which keeps track of the asserted axioms responsible for changes to occur.
The tracing function, τ , maps each event e ∈ EV to a set of sets, each set containing
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a fragment of the KB that cause the event to occur. This tracing function is maintained
throughout the application of tableau expansion rules.

For purpose of this work, the original set of change events has been extended [10] to
include all possible events that can occur during the application of expansion rules. The
extension of events includes the following additional events:

– Add (x,V) represents the action of adding a node x to the vertex set, V , a comple-
tion graph, i.e. the operation V ← V ∪ {x}.

– Add (〈x, y〉, E) represents the action of adding a edge 〈x, y〉 to the edge set, E , in a
completion graph, i.e. the operation E ← E ∪ {〈x, y〉}.

– Remove (x,V) represents the action of removing a node x from the vertex set, V ,
a completion graph, i.e. the operation V ← V \ {x}.

– Remove (〈x, y〉, E) represents the action of removing an edge 〈x, y〉 from the edge
set, E , in a completion graph, i.e. the operation E ← E \ {〈x, y〉}.

– Remove (C,L(x)) represents the action of removal a concept C from the label of
a node x, i.e. the operation L(x)← L(x) \ {C}.

– Remove (R,L(〈x, y〉)) represents the removal of a role R from the label of an
edge 〈x, y〉, i.e., L(〈x, y〉)← L(〈x, y〉) \ {R}.

– Remove x E y represents the action of undoing a previous merge between the
nodes x, y. A detailed description of the merge operation can be found in [14].

– Remove x NE y represents the removal of an inequality relation between two
nodes x,y, i.e. ˙�=← ˙�= \ {〈x, y〉}

Additionally, the tracing function maintenance through expansion rule application
has been extended [10]. Although the tracing extension has been provided for SHOIQ
[14], it is trivial to see how they are applied to SHIQ and SHOQ completion strate-
gies. Further details can be found in [10].

The general idea is to utilize axiom tracing in order to track the dependencies of parts
of the completion graph, so that the effects of ABox assertions being removed can be
rolled-back. We note here that portions of the completion graph can be introduced by
multiple (explicitly) asserted axioms, however each concept or role name in a label will
only occur once. Therefore, axiom traces must be maintained for each asserted axiom
sets that can potentially introduce a particular concept or role name in a label.

To clarify, consider the following KB, K = {1. a:C	D, 2. D 
 B} (axiom numbers
are provided for tracing purposes). After the completion graph is initially created for this
KB, the node in the graph corresponding to a would have a variety of concept names in
L(a), including D with an axiom trace of {1} (this would be added from the	-rule) and
B with an axiom trace of {1, 2} (this would be added from the unfolding-rule). Next
consider an incremental update of (Add a:D); since there already exists a trace for D,
another axiom set is added to its trace. Therefore the axiom traces are sets of traces, as
defined in [10,15,16]. In this case the axiom trace for D ∈ L(a) would be {{1}, {3}},
where {3} corresponds to the added assertoin. We note here that in [15,16], the tableau
algorithm runs to saturation (i.e, it continues applying all expansion rules until no rules
are applicable, even if a clash is detected). However for purpose of this work, we use
the normal tableau termination procedure, in which the algorithm proceeds until either
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all completion graphs are closed or one complete and clash-free completion graph is
found. We additionally note that this does not affect the tracing procedure.

In general, the update algorithm for deletion works as follows. When an ABox ax-
iom is removed, the algorithm performs a lookup in the graph for all change events
whose axiom traces include the axiom number of the deleted axiom. These events are
rolled-back if and only if their axiom trace sets only include sets which contain the
deleted axiom, possibly among other axioms. By roll-back we refer to simply undoing
(the inverse) the event (e.g., rolling back the event Add(x,V) would be the process of
removing x from V). If there exists additional axiom traces for that particular event that
do not include the removed axiom, then only the sets including the removed axiom are
deleted from the axiom trace set; in this situation the actual event is not rolled-back.
This holds as there still exists support for that particular event.

As in the approach for additions, the completion rules must be reapplied to the up-
dated completion graph as it is possible for the graph to be incomplete. Axiom tracing
additionally requires a slight modification to the update approach for ABox additions in
order to maintain axiom traces. For example, in the case that a individual type assertion
is added to the KB, the algorithm must add a new tracing set to the axiom trace for the
affected components (this set will consist of the new axiom number).

4.3 Update Algorithm

We now define the update algorithm UPDATE(G, α), which takes as input a comple-
tion graph G (for a knowledge base K) and an update α and returns a new completion
graph; the algorithm is shown in Figure 1. Note that τ is the tracing function and deps
(dependents) is the inverted tracing function index (asserted axiom to a set of change
events).

Now we provide the correctness proof for update algorithm under ABox additions.
We first make the following observation: due to the generating tableau expansion rules,
namely the ∃ − rule and the ≥ −rule, new individuals could have been introduced to
the graph that would not have been added in the completion graph if it were built from
scratch; therefore it cannot simply be shown that UPDATE(G, α) will obtain a com-
pletion graph that could have been built if we applied the expansion rules to the updated
KB (explicit ABox and TBox assertions). For example, this is evident if there is an ad-
dition b:C to an ABox that consists of a:∃R.C and 〈a, b〉:R. If the completion graph
where built from scratch, the ∃-rule would be blocked for the node with label ∃R.C as
there already exists a R-neighbor b (i.e., R ∈ L(b)). In contrast, in UPDATE (G, α)
the ∃ − rule would have already fired prior to the addition.

Theorem 1. Under ABox additions, UPDATE (G, α) is sound, complete, and termi-
nating.

Proof Sketch

It is obvious that every graph generated from a subpart of a KB is a possible state of the
completion graph for the KB, though it is potentially incomplete as more rules can fire.
In UPDATE(G, α), the newly induced structure from the syntactic update is added to
the graph, as it would’ve existed if the completion graph for K ∪ {α} were built from
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function UPDATE( G, α )
if α is an addition then

if α is a x �= y or x = y then
let op be the operation, such that op ∈ {=, �=}
if x �∈ V then
V ← V ∪ {x}

if y �∈ V then
V ← V ∪ {y}

if op is �= then
if 〈x, y〉 �∈ x ˙�=y then add it

if op is = then
Merge x and y

τ(x op y)← τ(x op y) ∪ {{α}}
τ(Add(x,V))← τ(Add(x,V)) ∪ {{α}}
τ(Add(y,V))← τ(Add(y,V)) ∪ {{α}}
deps(α) ← deps(α) ∪ {{x op y}, {Add(x,V)}, {Add(x,V)}}

else if α is a individual type addition, x:C then
if x �∈ V then
V ← V ∪ {x}
L(x)← L(x) ∪ {C}
τ(Add(x,V))← τ(Add(x,V)) ∪ {{α)}}
τ(Add(C,L(x)))← τ(Add(C,L(x))) ∪ {{α}}
deps(α) ← deps(α) ∪ {{Add(x,V)}, {Add(C,L(x))}}

else if α is a role assertion addition, 〈x, y〉:R then
if 〈x, y〉 �∈ E then
E ← E ∪ {〈x, y〉}
L(〈x, y〉)← L(e) ∪ {R}
τ(Add(x,V))← τ(Add(x,V)) ∪ {{α)}}
τ(Add(y,V))← τ(Add(y,V)) ∪ {{α)}}
τ(Add(〈x, y〉,E))← τ(Add(〈x, y〉,E)) ∪ {{α)}}
τ(Add(R,L(〈x, y〉)))← τ(Add(R,L(〈x, y〉))) ∪ {{α}}
deps(α) ← deps(α) ∪ {{Add(x,V)}, {Add(y,V)}, {Add(〈x, y〉, E)}, {Add(R,L(〈x, y〉))}}

Apply expansion rules to G
if there is a clash then

Perform backjumping
else if α is a deletion then

events ← deps(α)
deps(α) ← ∅
for each e ∈ events do

traces← τ(e)
for each t ∈ traces do

if α ∈ t do
traces← traces \ t

if traces = ∅ do
roll-back e

τ(e)← traces
Apply expansion rules to G
if there is a clash then

Perform backjumping
return G

Fig. 1. Pseudo-code of update procedure for SHOQ and SHIQ KBs

scratch. From our discussion earlier, it is clear the initially updated completion graph
can contain clashes; however the completion rules are then re-fired. It can therefore be
shown that the resulting completion graph must correspond to a model if and only if
at least one exists, as if it were the case that the completion graph did not correspond
to a model (via some clash), then the soundness or completeness of [12,13] would be
contradicted (i.e., if a model exists yet the initially updated completion graph contains
a clash, it would be removed by shrinking expansion rules or backjumping). Further,
if a non-deterministic choice were taken and backjumping occurs, the newly added
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structures imposed by the update will remain, as they are explicitly asserted. It is clear
that if some model exists, the tableau algorithm then proceeds as usual and a closed,
clash-free completion graph is found. Therefore, it can be shown that under ABox ad-
ditions, UPDATE(G, α) is sound, complete, and terminating. �

Additionally, the correctness proof for the update algorithm under ABox deletions is
presented.

Theorem 2. Under ABox deletions, UPDATE(G, α) is sound, complete, and termi-
nating.

Proof Sketch

As shown in [16,15,10], the tracing function captures all change events in G that were
caused in part by α. It can be shown that by undoing all events that are only reliant on an
axiom trace that includes α, G is effectively rolled-back to a state in which the effects
of the rule firings caused by α are removed. This holds because the tracing algorithm
is shown to be complete [16,15,10], thus all necessary components will be rolled-back.
Because UPDATE(G, α) performs this rollback, it can be shown that the updated
completion graph is a possible intermediate state of the a completion graph for the KB
after the deletion. While this graph is potentially incomplete (e.g., due to blocking),
reapplying expansion rules guarantees (by [12,13]) the algorithm will arrive at some
completion graph that could be obtained by simply applying the completion rules to
K ∪ {α}. It can therefore be shown that under ABox deletions, UPDATE(G, α) is
sound, complete, and terminating. �

5 Implementation and Evaluation

We have implemented the approach presented in this paper in an open source OWL-DL
reasoner, Pellet [22]. In order to evaluate the algorithm, we have performed an em-
perical evaluation using two different KBs with large ABoxes - the Lehigh University
Benchmark (LUBM)2 and AKT Reference Ontology 3.

For the LUBM test case, three experiments were run over three different KBs con-
sisting of one, two, and lastly three universities created by the LUBM dataset generator.
First an initial consistency check was performed and then in each test a random update
was selected which was used to update the KB. In the regular version of the reasoner,
the cached completion graph was discarded, while in the optimized reasoner the up-
date algorithm was utilized. For each KB size, varying sized additions and deletions
were randomly selected from the dataset. Update sizes include single axiom, twenty-
five axioms, and fifty axioms (individuals and/or roles). Each test was averaged over
twenty-five times iterations. Expressivity and KB statistics are provided in Table 1.

Results for additions and deletions in the LUBM test are presented in Figures 2
and 3 (timing results are shown in milliseconds and the scale is logarithmic). We note

2 LUBM Ontology: http://swat.cse.lehigh.edu/projects/lubm/
3 AKT Ontology: http://www.aktors.org/publications/ontology/
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Table 1. LUBM and AKT Portal Dataset Statistics

Name Classes / Properties / Individuals / Assertions Expressivity
LUBM-1 Univ 43 / 32 / 18,257 / 97,281 SHI
LUBM-2 Univ 43 / 32 / 47,896 / 254,860 SHI
LUBM-3 Univ 43 / 32 / 55,110 / 295,728 SHI
AKT-1 160 / 152 / 16,505 / 70,948 SHIF
AKT-2 160 / 152 / 32,926 / 143,334 SHIF

Fig. 2. Addition Updates of LUBM datasets

that the ‘0’ axiom value represents the initial consistency check. In both versions of
the reasoner, initial consistency checks are comparable. However for both update types
(additions and deletions), performance improvements ranging from one to three orders
of magnitude are achieved under updates in the reasoner with the optimized update
algorithm. This is due to the avoidance of re-firing of completion rules by maintaining
the previous completion graph; therefore very few (if any in some cases) completion
rules must be fired. It can also be observed that as the update size is increased, the
performance of the update approach scales well. This provides direct empirical evidence
for the effectiveness of the update algorithm.

In a second evaluation, two datasets4 adhering to the AKT Reference ontology were
used (statistics shown in Table 1). The tests were structured in the same manner as
the LUBM test. Again, each test was performed twenty-five times and the results are

4 Hyphen-REA: http://www.hyphen.info/rdf/hero complete.zip
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Fig. 3. Deletion Updates of LUBM datasets

averaged over these iterations. All timings are in milliseconds and the scale is loga-
rithmic. Similar to the LUBM test, update performance is improved between one to
three orders of magnitude (as shown in Figures 4 and 5). It is interesting to observe
that the performance of the deletion updates is slightly better in the LUBM test cases
for larger sized updates. This is primarily due to the increased complexity of the AKT
Reference Ontology; therefore, a larger number of expansion rules are applied after the
update. However, the update algorithm greatly outperforms the regular reasoner again
demonstrating the effectiveness and overall impact of the update approach.

6 Discussion and Future Work

One limitation of the approach presented in the work is related to potential overhead
introduced by the algorithm, specifically related to tracing. However, we point out here
that in [16] the tracing approach was shown to introduce small memory overhead and
only marginally increase the running time of the normal reasoning procedure. For ex-
ample, in the Tambis 5 ontology, tracing introduced only 56ms to the running time and
3.65mb memory overheard [16]. Therefore, we feel the approach is acceptable due to
the observed performance improvements.

5 Tambis ontology: http://www.cs.man.ac.uk/ horrocks/OWL/Ontologies/tambis-full.owl
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Fig. 4. Addition Updates of AKT datasets

The approach presented in this work is applicable to the Description Logics SHOQ
and SHIQ; this is primarily due to fact that there is no expansion rule ordering imposed
by the tableau algorithms [12,13]. We are currently working to extend the approach to
SHOIQ (and therefore all of OWL-DL), which will be addressed in future work.

While we achieved dramatic results for consistency checking under syntactic ABox
updates, one may wish to update TBox axioms as well. This presents the additional
issue of rolling back through pre-processing steps, such as absorption. We are currently
investigating this problem and plan to address it in future work.

In the current approach, if the KB is inconsistent after the update, nothing is done to
resolve the inconsistency. As future work, we are working towards developing a revision
algorithm for OWL-DL KBs; with such a technique, inconsistencies resulting after the
update would be resolved using a revision operator.

This work only directly addresses consistency checking under ABox changes; how-
ever, standard reasoning tasks in DL reasoners, including classification, realization, and
query answering are all reducible to KB consistency checking [3]. Currently, we are
investigating the utility of the update algorithm for generalized reasoning services. We
note here that initial results on leveraging the approach presented in this paper for con-
tinuous conjunctive query answering demonstrates orders of magnitude improvements
in performance.
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Fig. 5. Deletion Updates of AKT datasets

7 Related Work

To our knowledge there has been no previous work in DL reasoning algorithms for
incremental maintenance of completion graphs. We do note that this work can be paral-
leled to view maintenance [7] and truth maintenance [4]; however we deal with a more
expressive logic and a different proof theory.

In this work, we have leveraged and extended previous work in axiom tracing
[2,15,16]. [2] introduces the notion of axiom pinpointing for the purpose of computing
extensions of default theories. [15,16] extends [2] to support a more expressive logic.
As discussed earlier, we have further extended [15,16] as further effects of axioms were
needed to be identified.

Recently, there has been interest in specifying formal update semantics for descrip-
tions logics [19,23]. Additionally, [5,6] has investigated applying traditional AGM be-
lief revision [1] theory to DL knowledge bases; the authors show however, that in cer-
tain expressive DLs (including those considered in this work) the AGM postulates for
contraction cannot be satisfied. This finding does not impact this work, as we assume
syntactic updates of asserted axioms. Further, this work is independent of belief revi-
sion and formal update semantics as we are concerned with maintaining the internal
state of the reasoner.
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8 Conclusion

Current Description Logic reasoners are traditionally oriented toward providing reason-
ing services for relatively static ontologies. However, there are numerous use cases in
which the ontology itself is in flux, requiring frequent updates. This includes promi-
nent Web services frameworks (e.g., OWL-S), in which Web ontologies are used for
service discovery and matchmaking. In such settings devices register or deregister their
descriptions quite rapidly. Additionally, Semantic Web portals often allow content au-
thors to modify or extend the ontologies which organize their site structure or page
content. Lastly, there has been recent interest in utilizing DL reasoning for the purpose
of matching published content with subscription requests [8,9,26,17]. When dissemi-
nating time sensitive information efficient reasoning for frequently changing KBs will
be critical in achieving practical DL-based approaches.

While there exists such use cases for reasoning under changing data, current DL rea-
soning algorithms have been developed considering relatively static knowledge bases.
In this paper, we have presented an algorithm for updating tableau completion graphs
for the Description Logics SHIQ(D) and SHOQ(D) under both the addition and
removal of ABox assertions, providing a critical step towards reasoning procedures
for fluctuating or streaming data. We have provided an empirical analysis of the al-
gorithm through an experimental implementation in the Pellet reasoner, in which our
initial results are very promising as they demonstrate orders of magnitude performance
improvement.
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